
HAL Id: tel-02921424
https://pastel.hal.science/tel-02921424v1

Submitted on 25 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2D-3D scene understanding for autonomous driving
Maximilian Jaritz

To cite this version:
Maximilian Jaritz. 2D-3D scene understanding for autonomous driving. Machine Learning [cs.LG].
Université Paris sciences et lettres, 2020. English. �NNT : 2020UPSLM007�. �tel-02921424�

https://pastel.hal.science/tel-02921424v1
https://hal.archives-ouvertes.fr

Préparée à MINES ParisTech

2D-3D Scene Understanding for Autonomous Driving

Compréhension 2D-3D de scènes pour la conduite autonome

Soutenue par

Maximilian JARITZ
Le 26 juin 2020

École doctorale no621
ISMME Ingénierie des
Systèmes, Matériaux, Mé-
canique, Energétique

Spécialité
Informatique temps réel,
robotique et automatique

Composition du jury :

Vincent LEPETIT
Prof., École des Ponts ParisTech Président

Gabriel BROSTOW
Prof., University College London Rapporteur

Frédéric JURIE
Prof., Université de Caen Normandie Examinateur

Angela DAI
Dr., Technical University of Munich Examinateur

Fawzi NASHASHIBI
Prof., Inria Directeur de thèse

Raoul DE CHARETTE
Dr., Inria Examinateur

Émilie WIRBEL
Dr., Valeo Examinateur

Acknowledgements

First, I’d like to thank my mentors Raoul de Charette and Émilie Wirbel for
having dedicated so much time advising me scientifically and on all other
matters that are often overseen. I appreciate so much that you were always
available for me and pushed me further. This thesis would not have been
possible without your support.

Furthermore, I am very grateful to Patrick Pérez for having welcomed
me to the excellent team of Valeo.ai, which he leads with great care, and
for having taken the time to share his scientific insights in our meetings and
bringing clarity to my writing. I would also like to thank Fawzi Nashashibi
for setting up the framework for my thesis in his RITS team at Inria and his
great handling of academic-industrial collaboration, as well as his insights
into the field of robotics.

I also want to thank all the great people that I had the chance to work
with. Etienne Perot, who introduced me to Deep Learning at Valeo, before
starting this thesis. My managers at the Valeo Driving Assistance Research
team: Julien Rebut, Vanessa Picron, Xavier Perrotton and Antoine Lafay,
who always believed in me and made so much possible. Hao Su, who received
me at his lab at UC San Diego where I worked with Jiayuan Gu who writes
such good code. And Tuan-Hung Vu from Valeo.ai, who it was such a
pleasure to work with and who introduced me to new research fields.

Moreover, I would like to thank Gabriel Brostow and Vincent Lepetit
for carefully reviewing my thesis, as well as Frédéric Jurie and Angela Dai
for evaluating me remotely in those times of COVID-19, and enabling me
to see the context in which my work is placed.

I would also like to thank all the colleagues and lab mates for the dis-
cussions and happy moments that we shared: Marin Toromanoff, Thibault
Buhet, Raphaël Rose-Andrieux, Fabio Pizzati, Luís Roldao, Anne Verroust,
Jean-Marc Lasgouttes, Anne Mathurin, Ronald Yu, Rui Chen, Songfang
Han, Matthieu Cord, Renaud Marlet, Alexandre Boulch, Spyros Gidaris,
Gabriel de Marmiesse, Andrei Bursuc, Hedi Ben-younes, Himalaya Jain and
so many other nice colleagues at Valeo Driving Assistance Research, Va-
leo.ai, Inria and UC San Diego.

Finally, I would like to thank my wife Anna, who was introduced to the
ups and downs of academic work and always supported and grounded me,
as well as my parents for their unconditional love.

Contents

1 Introduction 3
1.1 Goals . 5
1.2 Autonomous driving context 7
1.3 Thesis Structure . 9

2 End-to-End Driving with Deep Reinforcement Learning 13
2.1 Introduction . 15
2.2 Reinforcement learning background 18
2.3 Related Work . 20
2.4 Method . 23

2.4.1 Reinforcement learning framework 24
2.4.2 Learning strategy . 27

2.5 Experiments . 31
2.5.1 Training setup . 31
2.5.2 Metrics . 31
2.5.3 Performance evaluation 32
2.5.4 Ablation studies . 34
2.5.5 Generalization . 37

2.6 Discussion . 39
2.7 Conclusion . 40

3 Fusing sparse depth and dense RGB for depth completion 45
3.1 Introduction . 46
3.2 Related Work . 49
3.3 Method . 54

3.3.1 Network Architecture 54
3.3.2 Sparse Data Training 56
3.3.3 Analysis of Validity Mask 58

3.4 Experiments . 59
3.4.1 Datasets . 59
3.4.2 Implementation . 60
3.4.3 Depth completion . 60
3.4.4 Semantic Segmentation 65

3.5 Discussion . 69
3.6 Conclusion . 72

iv Contents

4 Multi-view PointNet for 3D scene understanding 75
4.1 Introduction . 77

4.1.1 Outdoor vs. indoor data 79
4.2 Related Work . 81
4.3 MVPNet . 85

4.3.1 Overview . 85
4.3.2 View Selection . 86
4.3.3 2D Encoder-Decoder Network 87
4.3.4 2D-3D Feature Lifting Module 87
4.3.5 3D Fusion Network . 88

4.4 Experiments on ScanNet . 89
4.4.1 ScanNet Dataset . 89
4.4.2 Implementation Details 89
4.4.3 3D Semantic Segmentation Benchmark 90
4.4.4 Robustness to Varying Point Cloud Density 93

4.5 Ablation Studies . 93
4.5.1 Number of Views . 95
4.5.2 Feature Aggregation Module 95
4.5.3 Fusion . 97
4.5.4 Stronger Backbone . 97

4.6 Experiments on S3DIS . 98
4.6.1 S3DIS Dataset . 98
4.6.2 3D Semantic Segmentation 98

4.7 Conclusion . 99

5 2D-3D Cross-modal Unsupervised Domain Adaptation 103
5.1 Introduction . 104
5.2 Related Work . 106
5.3 xMUDA . 110

5.3.1 Architecture . 111
5.3.2 Learning Scheme . 112

5.4 Experiments . 114
5.4.1 Datasets . 114
5.4.2 Implementation Details 115
5.4.3 Main Experiments . 116
5.4.4 Extension to Fusion 118

5.5 Ablation Studies . 121
5.5.1 Segmentation Heads 121
5.5.2 Cross-modal Learning on Source 122
5.5.3 Cross-modal Learning for Oracle Training 122

5.6 Conclusion . 123

Contents v

6 Conclusion 127
6.1 Contributions . 127
6.2 Future Work . 128

Publications 131

Bibliography 133

A Fusing sparse depth and dense RGB for depth completion 145
A.1 Architecture details . 145

B Multi-view PointNet for 3D scene understanding 147
B.1 2D Encoder Decoder Architecture 147
B.2 Additional Ablation Studies 147

C 2D-3D Cross-Modal Unsupervised Domain Adaptation 149
C.1 Dataset Splits . 149

C.1.1 nuScenes . 149
C.1.2 A2D2 and SemanticKITTI 150

Introduction

French Summary of the Chapter “Introduction”
D’importantes avancées dans le domaine de recherche de la conduite au-
tonome ont permis la réalisation de démonstrateurs impressionants. Ces
avancées ont été réalisées d’une part grâce à l’amélioration des capteurs et
d’autre part grâce à de nouveaux algorithmes, en particulier l’apprentissage
profond. Néanmoins, il reste encore de nombreux challenges à résoudre.
Dans cette thèse, nous abordons les défis de la rareté des annotations et la
fusion de données hétérogènes telles que les nuages de points 3D et images
2D.

Chapter 1

Introduction

Contents
1.1 Goals . 5
1.2 Autonomous driving context 7
1.3 Thesis Structure . 9

4 Introduction

Already in 1994, researchers of the Prometheus project showcased au-
tomated driving on motorways. During three DARPA Grand Challenges
from 2004 to 2007, different teams competed with their fully-driverless cars
to navigate in desert and controlled urban settings. This was seen as proof
that self-driving cars are feasible and sparked great optimism that the tech-
nology would quickly become available. Now, a decade since the start of the
Google driverless car project in 2009, first fleets of robot taxis give rides to
customers in geographically restricted areas1. In a parallel development, pri-
vately owned vehicles are equipped with an increasing number of Advanced
Driver-Assistance Systems (ADAS) such as active steering, speed control
and lane change on highways, as well as automated parking. While these
features work increasingly well, the driver still has to monitor the car at all
times. The first system where the driver can hand over responsibility to the
car in the limited (but often encountered) scenario of highway traffic jams
is ready, but still needs to be certified2.

In light of this progress, large-scale rollout of automated driving promises
to improve road safety and decrease transportation cost. However, experts
remain uncertain how much time it will take until driverless cars can com-
mercially operate in urban scenarios3.

To better understand the technological difficulties that we still face, let us
briefly introduce the pipeline of autonomous driving, traditionally split into
the modules of perception, planning and control. Cameras, LiDARs, radars
and ultrasonic sensors scan the surroundings of the car and perception algo-
rithms analyze the raw sensor data to detect other cars, pedestrians, driving
lanes etc. Using the output from the perception module, the planning mod-
ule forecasts the intentions of other road users, i.e. future trajectories, on
the basis of which the appropriate ego trajectory is chosen. In the control
module, the ego trajectory is then translated to the actuators.

I think that today’s challenges of autonomous driving mainly lie in per-
ception and planning. Perception needs to achieve scene understanding by
fusing sensor data of different nature, while being robust to adverse condi-
tions such as night driving, rain and snow. Moreover, there is great vari-
ability in possible traffic situations with a long tail of rare events. It can
prove prohibitively expensive to annotate this data, as it needs to be done by
hand. For the planning module, unpredictability of human behavior is a big
challenge, especially if traffic rules are disrespected. However, forecasting
the actions of other road users is crucial to take reasonable decisions.

In the recent years, deep learning has brought tremendous progress to
machine learning and especially computer vision. At the forefront was the

1https://venturebeat.com/2019/12/05/waymo-one-ios-app-launch/
2https://www.dw.com/en/autonomous-cars-when-will-our-cars-finally-

really-drive-us/a-49620020
3https://www.nytimes.com/2019/07/17/business/self-driving-autonomous-

cars.html

https://venturebeat.com/2019/12/05/waymo-one-ios-app-launch/
https://www.dw.com/en/autonomous-cars-when-will-our-cars-finally-really-drive-us/a-49620020
https://www.dw.com/en/autonomous-cars-when-will-our-cars-finally-really-drive-us/a-49620020
https://www.nytimes.com/2019/07/17/business/self-driving-autonomous-cars.html
https://www.nytimes.com/2019/07/17/business/self-driving-autonomous-cars.html

1.1. Goals 5

development of methods for image classification (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015; He et al., 2016), semantic segmentation
(Long et al., 2015a) and object detection (Ren et al., 2015). Since then,
we have witnessed the adaptation of these image-focused techniques to 3D
point cloud data (Qi et al., 2017a; Graham and van der Maaten, 2017). In
another line of work, the dependence on labels have successfully been re-
duced, for example through unsupervised representation learning (Doersch
et al., 2015) or the knowledge transfer from a labeled to an unlabeled and
visually different data domain (Ganin et al., 2016). Moreover, the applica-
tion of deep learning to reinforcement learning has enabled machines to play
Atari games (Mnih et al., 2013) and beat human players at Go (Silver et al.,
2016) and Starcraft II (Vinyals et al., 2019).

These recent scientific advances have already helped to enable today’s
successes of autonomous driving to a notable extent, but further research
is key to address the remaining challenges. Moreover, interesting research
problems are triggered by autonomous driving and can potentially be trans-
ferred to other applications such as robotics for industry and farming, as
well as mixed reality that uses headsets to superpose a virtual layer on the
real world.

In the remainder of this chapter, we present our research goals in Sec-
tion 1.1, introduce the autonomous driving context in Section 1.2 and then
outline the organization of this document in Section 1.3.

1.1 Goals

In this thesis, we address three main challenges. First, we aim to simplify
the autonomous driving pipeline and reduce the necessity for abstract la-
bels using an end-to-end driving approach. Second, we focus on perception
to fuse data from multiple sensors for more accurate and robust scene un-
derstanding. Third, we aim to reduce the reliance on labels when training
perception systems by leveraging multi-modality.

End-to-end driving. While the decomposition of the autonomous driv-
ing pipeline into perception, planning and control modules allows to optimize
each sub-problem independently, it requires to make hand-designed abstrac-
tions at intermediate outputs, e.g. the perception module produces abstract
bounding boxes around detected objects. However, if the abstract interme-
diate outputs from upstream modules are not expressive enough to represent
the environment, the downstream modules are unable to work properly. We
aim to address this problem with the approach of end-to-end driving where a
neural network maps sensor inputs directly to control outputs, i.e. integrat-
ing all modules into a single one. This simplifies the pipeline and eliminates
the need for costly labels of intermediate outputs such as bounding boxes

6 Introduction

3D point cloud space

2D image space

projection
unprojection
using depth

(lifting)

Figure 1.1: Projection of 3D points into the image and unprojection of 2D
image pixels to 3D using the pixel depth information. Data from Kitti
dataset (Geiger et al., 2013).

of detected objects, because we can directly train the network end-to-end,
judging only the final control output. Analogously in computer vision, great
performance improvements have been achieved by shifting from modular ap-
proaches, i.e. computing intermediate features (e.g. Histogram of Oriented
Gradients) followed by a learning based classifier, to Convolutional Neural
Networks (CNNs) that are trained end-to-end. While the task is immensely
more complex, there is hope that training a neural network for the driving
task in an end-to-end fashion can also improve performance4.

2D-3D fusion. As discussed earlier, self-driving cars are equipped with
many sensors that analyze the surrounding environment. LiDAR and cam-
era are the sensors with highest resolution and are complementary: while
LiDAR outputs a 3D point cloud, measuring scene geometry, camera outputs
2D images, capturing visual appearance. For example, camera is crucial to
analyze street signs and other objects that can not be discriminated based
on geometry only. However, the active laser scanning technology of LiDAR
also works well at night, while passive camera is highly impacted by exter-
nal lighting conditions. Our goal is to fuse those complementary sensors
to enable more robust and better performing perception systems. In spite
of recent progress in 2D and 3D deep learning, many questions remain re-
garding the combination of multi-modal data, especially how to learn joint
features given their heterogeneous representation spaces.

Thanks to sensor calibration we can compute a correspondence mapping

4https://slideslive.com/38917941/imitation-prediction-and-modelbased-
reinforcement-learning-for-autonomous-driving

https://slideslive.com/38917941/imitation-prediction-and-modelbased-reinforcement-learning-for-autonomous-driving
https://slideslive.com/38917941/imitation-prediction-and-modelbased-reinforcement-learning-for-autonomous-driving

1.2. Autonomous driving context 7

between a point in 2D and 3D space as shown in Figure 1.1. When projecting
the point cloud into image space, we lose one dimension and thus information
about the 3D structure about the scene. To carry out unprojection or 2D-
3D lifting from 2D pixel to 3D point, we need the corresponding depth
information for that pixel. This is a challenge, because usually we do not
have the depth information for all pixels due to the relative sparsity of the
depth sensor once projected into image space. In summary, finding a space
in which to fuse 2D-3D data is not straightforward and depends on the data
and task.

Unsupervised multi-modal learning. The supervised training of 2D-
3D fusion networks requires a lot of labeled data. However, annotation by
hand is tedious and costly. While semantic labeling of an image in the
Cityscapes dataset “required more than 1.5h on average” (Cordts et al.,
2016), the semantic labeling of point clouds in the SemanticKITTI dataset
(Behley et al., 2019) of a 100x100m tile (seen from birdview perspective)
took a staggering 4.5h. Unfortunately, networks that are trained on a labeled
dataset still fail to generalize to different environments due to domain shift
between data distributions. With multi-modal 2D-3D data, especially when
performing fusion, the problem becomes more complex as the domain shift
can be different in each modality, i.e. sensing technology such as camera and
the LiDAR might be affected differently, for instance when shifting from day
to night, given that LiDAR has better night-vision.

We argue that the co-registration of multiple sensors provides valuable
information when labels are scarce. Indeed, audio-visual correspondence
learning in videos has shown encouraging results (Arandjelovic and Zisser-
man, 2017). We aim at exploiting RGB+LiDAR multi-modality as unsu-
pervised learning signal.

1.2 Autonomous driving context

This three-year thesis was conducted with Inria RITS team and the company
Valeo. Both have a long-standing history of collaborations through joint
projects and Valeo’s financing of PhD students.

As a robotics team specialized in autonomous vehicles, the key research
areas of Inria RITS (Robotics for Intelligent Transportation Systems) lie
in perception, decision making, control and large-scale traffic modeling and
optimization. On the perception part, most of the research focuses on scene
understanding from vision sensors (cameras, LiDARs, etc.).

Among other products, the automotive supplier Valeo produces sensors
such as cameras, LiDARs, radars and ultrasonic sensors and develops as-
sociated software systems. This thesis was initiated by the Driving Assis-
tance Research (DAR) team that focuses on research and development in

8 Introduction

Figure 1.2: Sensor setup of the Valeo Drive4U prototype. Source: Valeo.

autonomous driving and Advanced Driver-Assistance Systems (ADAS). I
also joined Valeo.ai after its creation in 2018. This industrial open research
lab investigates and publishes mainly in the field of multi-sensor perception,
domain adaptation and uncertainty estimation.

Sensors. To understand their surrounding environment, self-driving cars
rely on a suite of complementary sensors. An example setup of a Valeo self-
driving prototype car with respective fields of view is depicted in Figure 1.2.
While the setup may vary, most self-driving car prototypes are equipped
with similar sensors. Camera is the closest sensor to our human eyes, essen-
tial for capturing visual cues. Note the high-resolution front camera with
restricted field of view for long-range vision at high speeds and ‘cocoon’ cam-
eras with wide viewing angle to cover the complete surroundings close to the
car. In contrast to the passive camera, LiDAR uses laser beams for active
scanning with time-of-flight measurement to infer distances to objects, cap-
turing the geometry. Note that, even though not in the Valeo setup shown
in Figure 1.2, 360° LiDAR is often used, producing a complete scan of the
car’s surroundings. Instead of high-frequency light waves used by LiDAR,
automotive radars typically emit waves at around 77 GHz and leverage the
Doppler effect which permits accurate velocity measurement of moving ob-
jects, but at low resolution in terms of location. Ultrasonic sensors are much
more limited than the other sensor types, because the comparably low fre-
quencies of 40-70kHz right above the human hearing range of 20Hz to 20kHz
only enable small fields of view and are only precise at low speeds. Therefore,
many of them are installed around the vehicle and they are mostly used for
parking applications. In light of these limitations, we focus on LiDAR and
camera in this thesis, as they are the most informative sensors due to their
high resolutions. Note the overlapping fields of view in Figure 1.2 which

1.3. Thesis Structure 9

favors multi-sensor fusion.
Apart from perception sensors, self-driving cars are also equipped with a

Global Positioning System (GPS) and an Inertial Measurement Unit (IMU)
to localize in a high definition map, as well as communication modules to
allow data exchange with infrastructure and other cars.

Towards integrated data-driven pipelines. With the advent of deep
learning and the intention to tackle complex urban driving, there has been
a paradigm shift in soft- and hardware architectures of perception systems
in autonomous driving.

Traditional perception architectures rely on lightweight recognition algo-
rithms that can be optimized to fit into economical processing units, directly
integrated into each sensor. Consequently, all sensors already produce high-
level output, e.g. bounding boxes for object detection, which can then be
fused centrally, e.g. with a Kalman filter.

Today the trend goes towards raw data fusion, where the sensors simply
provide the captured data, i.e. point cloud and image, to a computationally
powerful central processing unit, usually carrying a GPU to accelerate neu-
ral networks. A multi-modal perception algorithm running on the central
processing unit can then exploit the complementarity of the sensors, e.g. by
carrying out feature fusion inside a neural network.

In this thesis, we are interested in new paradigm, i.e. in designing data-
driven fusion methods using neural networks while exploiting multi-modality
through feature fusion.

1.3 Thesis Structure

The rest of this document is organized as follows.
In Chapter 2, aside from the main topic of this thesis, we address the

challenge of end-to-end driving, i.e. learning to drive using a single neu-
ral network that maps sensor input (the camera image) to control output
(throttle, break, steering). A commonly encountered problem in the imi-
tation learning technique is distribution mismatch between the expert data
seen during training and neural network driving at test time. To tackle
this issue, we leverage Reinforcement Learning (RL) where an agent di-
rectly learns to drive by itself without the need for an expert. As RL relies
on trial-and-error learning, it is possibly dangerous in the real world, as it
could lead to crashing a car. Therefore we resort to training in a simulator,
but we choose a realistic one in an attempt to minimize domain gap between
training and the real world.

In Chapter 3 we introduce our first line of work regarding 2D-3D fusion.
To represent point cloud and image in the same space, we project the 3D
point cloud into 2D image space resulting in a sparse depth map. We focus

10 Introduction

on the task of depth completion, i.e. filling the holes in the sparse depth map
and thereby enhancing LiDAR resolution to image level. To achieve that,
we investigate how 2D CNNs cope with sparse input data and develop an
architecture that fuses dense RGB and sparse depth, effectively using RGB
guidance for depth up-sampling, especially helpful at low LiDAR resolution.
Moreover, we argue that this data-driven approach can also leverage knowl-
edge about general scene structure. However, there are limitations to our
method due to 3D-2D projection, because the loss of a spatial dimension
leads to decreased precision.

In our second line of work, presented in Chapter 4, we use multi-view
images and a global point cloud as input data for the task of 3D semantic
segmentation of indoor scenes. We assume that it is preferable to solve a
3D task using a 3D data representation. Therefore, we lift 2D information
to 3D, rather than using 3D to 2D projection like in Chapter 3 which leads
to a loss in precision. To still be able to process images in their natural
2D space with efficient CNNs, we perform 2D-3D lifting of features after
the 2D CNN is applied, instead of lifting the original RGB values. As we
consider multiple views, we can represent them all in the same 3D space,
which enables efficient fusion and subsequent semantic segmentation with a
3D point network. We show in experiments that our 2D-3D fusion strategy
outperforms the 3D baseline where only colors from images, but not features
like in our approach, are lifted to the point cloud. Like in Chapter 3, we
find that 2D-3D fusion increases robustness to low point cloud resolution.

In Chapter 5, we introduce the novel task of cross-modal unsupervised do-
main adaptation, where the aim is to address domain shift between a labeled
source and an unlabeled target dataset that both hold multi-modal data. We
propose mutual mimicking between image and point cloud data to enable
2D-3D cross-modal learning and effectively reduce the discrepancy between
source and target distributions. We evaluate our method on three different
UDA scenarios using recent driving datasets and find cross-modal learn-
ing to exhibit domain adaptation capabilities comparable to the uni-modal
state-of-the-art techniques. Additionally, as our technique is complemen-
tary to existing approaches, we can achieve best performance by combining
cross-modal learning with other techniques such as pseudo-labeling.

Finally, Chapter 6 summarizes our contributions and gives an outlook
on future work.

Conduite de bout en bout
avec apprentissage par
renforcement profond

French Summary of the Chapter “End-to-End Driv-
ing with Deep Reinforcement Learning”
Nous adoptons une stratégie de conduite de bout en bout où un réseau de neu-
rones est entraîné pour directement traduire l’entrée capteur (image caméra)
en contrôles-commandes, ce qui rend cette approche indépendante des anno-
tations dans le domaine visuel. Pour ce faire, nous utilisons l’apprentissage
par renforcement profond où l’algorithme apprend de la récompense, obtenue
par interaction avec un simulateur réaliste. Nous proposons de nouvelles
stratégies d’entraînement et fonctions de récompense pour une meilleure
conduite et une convergence plus rapide.

Chapter 2

End-to-End Driving with
Deep Reinforcement

Learning

The contributions of this chapter were published in a short workshop paper
(Perot et al., 2017) and in a conference paper (Jaritz et al., 2018a):

Perot, E., Jaritz, M., Toromanoff, M., and de Charette, R. (2017). End-to-
end driving in a realistic racing game with deep reinforcement learning. In
CVPR Workshop 2017.
1-minute driving video: https://youtu.be/e9jk-lBWFlw

Jaritz, M., de Charette, R., Toromanoff, M., Perot, E., and Nashashibi, F.
(2018a). End-to-end race driving with deep reinforcement learning. In ICRA
2018.
3-minute explanation video: https://youtu.be/AF0sryuSHdY

This project was initiated when I worked at Valeo before starting this
thesis, with the goal to demonstrate Deep Reinforcement Learning for Au-
tonomous Driving in a realistic simulator at the Consumer Electronics Show
2017. During the first months of my thesis with Inria and Valeo, the project
was extended with more emphasis on the scientific contributions.

Note that this chapter is quite different from the others, because it tackles
the complete autonomous driving task, while the remaining chapters focus
on perception.

https://youtu.be/e9jk-lBWFlw
https://youtu.be/AF0sryuSHdY

14 End-to-End Driving with Deep Reinforcement Learning

Contents
2.1 Introduction . 15
2.2 Reinforcement learning background 18
2.3 Related Work . 20
2.4 Method . 23

2.4.1 Reinforcement learning framework 24
2.4.2 Learning strategy . 27

2.5 Experiments . 31
2.5.1 Training setup . 31
2.5.2 Metrics . 31
2.5.3 Performance evaluation 32
2.5.4 Ablation studies . 34
2.5.5 Generalization . 37

2.6 Discussion . 39
2.7 Conclusion . 40

2.1. Introduction 15

Input image

Modular pipeline

Direct perception

Control output

Imitation / Reinforcement

Figure 2.1: Different approaches for vision-based driving. The commonly
used modular pipeline approach splits driving into separate algorithms for
perception, planning and control. By contrast, the end-to-end approach
directly maps sensor input to control output. Direct perception is a hybrid
approach between the two preceding ones. Source: Chen et al. (2015),
modified.

2.1 Introduction

The well-established approach of a modular pipeline (Sun et al., 2006; Urm-
son et al., 2008; Montemerlo et al., 2008) divides the autonomous driving
task into three parts – perception, planning, control. For example, the per-
ception module estimates the driving lanes and bounding boxes of other
cars, as depicted in Figure 2.1 in the top middle, and provides this informa-
tion to the planning module. The planning module forecasts the intention of
other road users, computes a trajectory and passes it to the control module
which in turn calculates the final control output. Today, most autonomous
cars use this paradigm as it enables the decomposition of a problem into
simpler sub-problems and allows for interpretation of intermediate outputs
along the pipeline.

However, there are limitations to this approach, especially when consid-
ering the variety of complex urban driving scenarios, because the abstract
intermediate outputs along the modular pipeline turn out to be informa-
tion bottlenecks. For example, the perception module provides the planning
module with bounding boxes of detected cars and pedestrians, but other
information that might help forecasting the trajectories of other road users
is lost. Consider a pedestrian waving at a bus driver from the other side of
the street signaling him to wait. This informs us that the pedestrian will
probably cross the street even if there is no crosswalk and our car should
take this into account. However, the planner is unable to do so, because an
abstract bounding box from the perception module does not convey enough
information.

16 End-to-End Driving with Deep Reinforcement Learning

End-to-end driving tries to overcome the difficulties of the modular
pipeline approach by training a neural network that maps raw sensor input
(e.g. image) directly to output controls (e.g. throttle, break, steering angle),
as shown in Figure 2.1. Information bottlenecks are reduced, because there
is only a ‘single module’. Thus, complex situations with detailed informa-
tion can be encoded in high-dimensional feature space and preserved while
being passed on from layer to layer inside the neural network. Moreover,
there are no hand-written rules, because the network is trained end-to-end.
In the following, we introduce the existing end-to-end approaches, grouped
into three categories: imitation learning, reinforcement learning and direct
perception. Note that direct perception does not directly predict control
output, but can still be seen as end-to-end technique.

Imitation learning tries to clone the human driver by leveraging expert
driving data in a supervised setting (Pomerleau, 1989; Bojarski et al., 2016).
No annotations are necessary, because the recorded driver’s actions, i.e.
how the driver applies throttle, brake and steering at each time step, serve
directly as labels for the corresponding raw sensor data (e.g. the camera
image). This allows for the collection of large amounts of training data at
low cost. However, there is the problem of distribution mismatch: the expert
will rarely, if ever, encounter situations of failure (e.g. significant deviation
from lane, stopping too close behind the vehicle in the front at the red light,
etc.) and thus, the self-driving system can not learn to react accordingly in
such a failure situation as this is missing from the training set. Moreover,
the performance of imitation learning is always limited by the quality of
demonstrations. For instance, it is not possible to train a smooth driving
system with training data from a roughly driving expert. Unlike for other
supervised tasks, there isn’t a unique ground truth for driving, i.e. different
driving styles exist and are all valid. In short, imitation learns to mimic the
driving style in the training set.

Reinforcement learning (RL) (Sutton and Barto, 1998), or Deep RL
(DRL) when using a deep neural network, differs significantly from imi-
tation learning in that it is trained in a self-supervised fashion. It consists
of an agent that learns by itself via interaction with the environment. The
trial-and-error learning behavior of RL is dangerous in the real world where
accidents are to be avoided at all cost. For this reason, RL is most often car-
ried out in simulators. Learning is based on reward instead of labels, where
the goal is to maximize reward, accumulated over time. The reward can
be sparsely distributed, for example when achieving a goal such as success-
fully completing a turn right maneuver. Reward can also be negative, i.e. a
penalty, for instance when the car departs from the lane. Hence, reward is
different from labels and not tied to the local action, but rather to the overall
achievement. Unlike imitation learning, RL can prevent distribution mis-
match between the situations encountered during training and test, i.e. the
agent can choose bad actions during training and learn how to counterbal-

2.1. Introduction 17

(a) TORCS (b) WRC6

Figure 2.2: Screenshots of race driving simulators. (a) TORCS has basic
physics and graphics, and was used in related reinforcement learning works
(Mnih et al., 2016; Lillicrap et al., 2016). (b) WRC6 is a modern rally
racing game, released in 2016, that tries to make the physics and graphics
as realistic as possible. We choose this simulator to facilitate generalization
to real data.

ance them. However, there are also drawbacks to RL. Training time is very
long, because reward is a weaker and sparser learning signal than explicit
labels in supervised learning. Moreover, transferring from simulated to real
environments is a challenge, especially if the simulators lack realism such as
the commonly used TORCS environment (Wymann et al., 2000), depicted
in Figure 2.2a. In this chapter, we use RL to tackle end-to-end driving and
introduce the general background of RL more extensively in Section 2.2.

Direct perception is a hybrid approach between end-to-end driving and
modular pipelines (Chen et al., 2015). The idea is to learn an intermediate
interpretable representation that is sufficient to control a vehicle. For exam-
ple, a network could directly predict the distance to the vehicle ahead and
feed it to a controller that uses this distance to compute the appropriate
low-level control commands. However, even if direct perception can poten-
tially improve interpretability, it still requires a rule-based controller.

In this chapter, we try to solve the race driving task by using the front
camera image as input and directly predicting low-level controls (throttle,
brake, hand brake, steering). To that end, we employ the state-of-the-art
deep reinforcement learning algorithm A3C (Mnih et al., 2016) and modify
the action space, reward function, network architecture and agent initializa-
tion procedure to optimize for race driving and to speed up convergence. We
use the video game World Rally Championship 6 (WRC6)1 as simulation
environment. A side-by-side comparison of TORCS and WRC6 is shown
in Figure 2.2. WRC6 is much more realistic than TORCS, as WRC6 was

1http://www.wrcthegame.com

http://www.wrcthegame.com

18 End-to-End Driving with Deep Reinforcement Learning

Start

(a) Snow (SE) 11.61km

Start

(b) Mountain (CN) 13.34km

Start

(c) Coast (UK) 4.59km

Figure 2.3: Screenshots and outlines of the three training tracks in WRC6.
There are important differences in visual aspects and road layout.

designed to be as genuine as possible in terms of both physics (mass trans-
fer, road adherence of the tires, etc.) and graphics. By using such a highly
realistic simulator, we hope to facilitate the transfer from simulation to real
world driving.

We train on three tracks with a total length of 29.6km, shown in Fig-
ure 2.3. Visual appearances (snow, mountain, coast) and physics (road
adherence) vary greatly across these tracks. Using distributed learning, we
train on the three tracks in parallel, learning a single policy. Our contribu-
tions can be summarized as:

• We apply DRL to the realistic race driving simulator WRC6.

• We propose new training strategies to maximize benefits of asyn-
chronous learning (multiple tracks, agent initialization).

• We design new reward functions that demonstrate faster convergence
and better driving.

Learning a single policy, we successfully drive on all training tracks in
WRC6. Moreover, we observe some degree of generalization when testing
the resulting policy on an unseen track in WRC6 or on real videos. For the
latter, we conduct open loop testing and qualitatively observe the prediction
of reasonable actions to follow the road, avoid oncoming traffic etc.

2.2 Reinforcement learning background
In the common RL setup, depicted in Figure 2.4, an agent interacts with an
environment at discrete time steps t by receiving the state st, on which basis

2.2. Reinforcement learning background 19

Agent

Environment
��+1

��+1

�
�

reward
�

�

state
�

�

action

Figure 2.4: Reinforcement learning setup where an agent learns by interac-
tion with an environment. The agent computes an action at based on the
current state st. The environment executes action at and moves to a new
state st+1 and yield a reward rt+1. The agent optimizes its policy, i.e. how
to choose actions, by seeking to maximize reward. Adapted from: Sutton
and Barto (1998).

it selects an action at as a function of policy π with probability π(at|st) and
sends it to the environment where at is executed and the next state st+1 is
reached with associated reward rt+1. Both, state st+1 and reward rt+1, are
returned to the agent which allows the process to start over. The discounted
return corresponds to the sum of rewards that is gained taking infinite time
steps and is to be maximized by the agent. It writes:

Rt =
∞∑
k=0

γkrt+k, (2.1)

where γ ∈ [0, 1[is the discount factor. Hypothetically, we could set γ = 1,
so that there would be no decay and future rewards are as important as
the current reward. However, this creates a mathematical problem, because
the sum could go to infinity for positive rewards. Setting γ < 1 makes the
sum of rewards finite and helps convergence of reinforcement algorithms. A
typical value is γ = 0.99 which decays the rewards over time, making an
agent slightly short-sighted in desiring to collecting rewards earlier, rather
than later.

RL algorithms can be divided into three different families. Policy-based
RL methods directly try to estimate the policy π(a|s). Thus, for each state
s, the policy π(a|s) tells us which action we should take. In practice, policy-
based RL methods are often coupled with an actor-critic approach to stabi-
lize training, which we will introduce in detail in Section 2.4.1, along with
the actor-critic A3C (Mnih et al., 2016), used in this work.

Value-based RL algorithms or Q-learning, seek to approximate the opti-
mal action-value function

Q∗(s, a) = max
π

Eπ[Rt|s0 = s, a0 = a] (2.2)

20 End-to-End Driving with Deep Reinforcement Learning

which gives the expected return for taking action a in current state s and
acting according to the optimal policy thereafter. Value-based methods do
not estimate the policy π(a|s). Instead, they choose the optimal action a∗(s)
that maximizes the action-value function

a∗(s) = arg max
a

Q∗(s, a). (2.3)

The third family are model-based RL methods which are mostly used if
one has access to a model of the environment. In this case, one can use
the model to plan several steps ahead before choosing the action. How-
ever, while the model is completely known for simple environments such as
boardgames (Go, chess, etc.), modeling driving is very complex.

The actions in RL can be continuous or discrete. In the discrete case,
action prediction amounts to a classification problem. The set of available
actions is referred to as action space. When training an RL algorithm, an
episode refers to a whole sequence from initial to terminal state (e.g. from
game start to game over).

2.3 Related Work
In the following we present related works in imitation learning and Deep
Reinforcement Learning (DRL). While we deliberately limit ourselves to
works applied to end-to-end driving in imitation learning, we take a slightly
larger scope in RL: we first detail the methods of two representative DRL
works and then introduce those applied to end-to-end driving.

Imitation learning. The seminal work of Pomerleau (1989), depicted in
Figure 2.5a, already achieved astonishing results at the time: from camera
and LiDAR inputs, a neural network with two fully-connected layers pre-
dicted the road direction to follow. More recently, but in the same spirit,
Bojarski et al. (2016) train an eight layer CNN to learn the lateral con-
trol from a front view camera image, using the steering angle from a real
driver as ground truth. They use 72h of training data, with homographic
interpolation of three forward-facing cameras to generate novel viewpoints.
This helps to address distribution mismatch by simulating failure situations
(deviations from the road). Pomerleau (1989) and Bojarski et al. (2016)
achieve following a single road. However, to navigate intersections, Codev-
illa et al. (2018) introduce conditional imitation learning where the network
takes high-level driving commands, such as ‘turn left’, ‘turn right’ or ‘go
straight’ as additional input. The architecture is shown in Figure 2.5b:
a CNN takes the front camera image as input and produces features I(i)
that are concatenated with features M(m) which are computed from mea-
surements (current speed of the car) with fully-connected layers. In the

2.3. Related Work 21

(a) Pomerleau (1989) (b) Codevilla et al. (2018)

Figure 2.5: End-to-end driving with imitation learning. (a) Pomerleau
(1989) use a neural network with only two fully-connected layers takes image
and LiDAR point cloud as inputs and directly predicts the road direction
to follow. (b) Codevilla et al. (2018) concatenate CNN image features I(i)
and measurement features M(m) to feature vector j. The input command
c switches to the corresponding fully-connected layers of the action predic-
tion branches Ak, specialized in different commands, for example ‘turn left’,
‘turn right’ or ‘go straight’.

following, I(i) and M(m) are concatenated to the feature vector j which is
shared between different branches Ak that are composed of fully-connected
layers and specialize in the different possible commands c, e.g. ‘turn left’.
The command c acts as switch to choose the correct branch Ak and can also
be given at test time to influence the driving.

Chen et al. (2019a) use privileged information, the complete environment
state in form of a map, to train a teacher which, in a second step, supervises
a student that has only access to the image.

Deep reinforcement learning. In the following, we introduce the rep-
resentative works of DQN (Mnih et al., 2013) and DDPG (Lillicrap et al.,
2016), list works with applications to video games and robotics, and finally
detail DRL works applied to autonomous driving.

DQN (Mnih et al., 2013) is the first combination of modern deep neural
networks with reinforcement learning which has given rise to the term of deep
reinforcement learning. DQN uses Q-learning (Watkins and Dayan, 1992)
which approximates the optimal action-value function Q∗(s, a). In DQN,
the approximation is carried out with a neural network with parameters θi:

Q(s, a; θi) ≈ Q∗(s, a) (2.4)

where i refers to each iteration of the training algorithm, i.e. the weights θi
are updated at each iteration.

22 End-to-End Driving with Deep Reinforcement Learning

Mnih et al. (2013) use a replay buffer B where they store experiences
e = (s, a, r, s′) where state s′ results from taking action a in state s. As
opposed to the policy-based family that requires on-policy updates, DQN,
which is part of the value-based family, is able to learn off-policy from
arbitrary experiences. Thus, during each training iteration i in DQN, a
mini-batch of experiences can randomly be sampled from the replay buffer:
(s, a, r, s′) ∼ U(B). This way, experiences are decorrelated, as opposed to
online learning without buffer where experiences come in order and are corre-
lated. Moreover, the replay buffer allows for greater data-efficiency, because
experiences can be used multiple times to update the weights of the network
before being discarded.

The regression of the action-value function Q(s, a; θi) is achieved with
an L2 loss between Q(s, a; θi) and the target yi:

Li(θi) = E(s,a,r,s′)∼U(B)
[(
r + γmax

a′
Q(s′, a′; θ−i)︸ ︷︷ ︸
yi

−Q(s, a; θi)
)2]

(2.5)

where the target yi is computed as sum of reward r and the value of the
Q-function to approximate the return of the remaining time steps. Note
that the Q-function is used in the regression and the target yi. This can
pose a stability problem during training, because there can be a feedback
loop where the Q-network wrongly reinforces itself in the belief that some
state-action pair is very valuable. To mediate this, Mnih et al. (2013) use
a target network with θ−i of an earlier iteration to compute the target yi.
Although this slows down training, it effectively reduces the risk of feedback
and stabilizes training.

In the loss function of Equation 2.5 and also to choose actions at infer-
ence time, a maximum of the Q-function has to be taken over all possible
actions. This is straightforward when the action space is discrete and thus
finite. However, it becomes intractable when the action space is continuous.
DDPG (Lillicrap et al., 2016) addresses this problem by learning a target
policy µ(s; θtarg), parameterized by θtarg, that estimates the continuous ac-
tion which maximizes Q. Thus, the Q-function only needs to be evaluated
once using the predicted action µ(s′; θtarg). Hence, the DDPG variant of
Equation 2.5 writes:

Li(θi) = E(s,a,r,s′)∼U(B)
[(
r + γQ(s′, µ(s′; θtarg); θ−i)−Q(s, a; θi)

)2]
. (2.6)

Note that, there is no max anymore.

Many DRL algorithms are evaluated on Atari games, including DQN
(Mnih et al., 2013), A3C (Mnih et al., 2016), IQN (Dabney et al., 2018) or
on the robotic simulator MuJoCo (Todorov et al., 2012), including DDPG

2.4. Method 23

(Lillicrap et al., 2016), TRPO (Schulman et al., 2015), PPO (Schulman
et al., 2017) and SAC (Haarnoja et al., 2018).

Another line of work applies DRL to real robotic arms (Levine et al.,
2016) and has recently been extended to parallel training on an ensemble of
robot arms (Gu et al., 2017; Kalashnikov et al., 2018; Levine et al., 2018).

Opposed to that, only few DRL works address the end-to-end driving
task. DDPG (Lillicrap et al., 2016) used a continuous and A3C (Mnih et al.,
2016) a discrete action space to learn to drive in the TORCS race driving
simulator (Wymann et al., 2000). The reward in both works is computed
as the car’s velocity projected onto the direction of the road. A practical
problem of training RL algorithms is that training examples are correlated
when they originate from the same agent evolving in an environment. To
address this, DDPG (Lillicrap et al., 2016) uses a replay buffer from which
diverse past examples can be recalled, whereas A3C leverages asynchronous
learning with multiple agents that evolve in different instances of the envi-
ronment in parallel. In this work, we use A3C (Mnih et al., 2016), because it
was the state-of-the-art at the time of our contribution and training is more
stable than in DDPG. Moreover, the asynchronous learning framework of
A3C facilitates distribution across multiple machines for faster training.

Kendall et al. (2019) were the first to apply RL to a real car. They use
DDPG (Lillicrap et al., 2016) for the rather simple task of lateral control to
follow a country road. The reward was computed as the distance that was
covered without human intervention.

The preceding RL works in end-to-end driving (Lillicrap et al., 2016;
Mnih et al., 2016; Kendall et al., 2019) use extremely shallow CNNs of 3 or 4
layers to encode the information from the image, because they are sufficient
for simple road following and because a larger network would take much
longer to train. In order to benefit from deeper networks, commonly used in
perception systems, Toromanoff et al. (2020) split training into two stages.
First, they supervisedly pretrain the perception part of the framework, a
CNN with ResNet18 backbone (He et al., 2016), on proxy tasks such as
semantic segmentation and traffic light state prediction. Second, they freeze
the weights of the visual encoder and carry out RL of the vehicle control
part of the framework which consists of fully-connected layers.

2.4 Method

In this chapter, we aim at learning end-to-end rally driving, where visual and
physical conditions change on each track, e.g. slippery dirt road in snowy
winter forest or dry tarmac in sunny weather. This task is challenging
because we seek to not only learn how to drive but to implicitly learn the
dynamics of the car depending on the conditions (varying physics in each
track).

24 End-to-End Driving with Deep Reinforcement Learning

State encoder
Policy Network

Rallye Game

Front cam
(84x84x3)

state reward

Im
ag

e

C
on

trol
com

m
an

d

M
etad

ata

API

(32)

Brake Throttle

HandbrakeSteering

30fps

action

Figure 2.6: Overview of our end-to-end driving framework using the WRC6
rally environment (red = for training only). The state encoder tries to learn
the optimal control commands, using only 84x84 front view images and
speed. The stochastic game environment is complex with realistic physics
and graphics.

We learn full control – steering, brake, throttle and even hand brake to
enforce drifting – to drive in the realistic rally racing game WRC6 with an
API to communicate images, metadata and control decisions between RL
algorithm and simulator. The WRC6 communication API was specifically
built for our need in the context of a contractual collaboration with Ky-
lotonn, the game developing company. The overall pipeline is depicted in
Figure 2.6. At every time-step, the algorithm receives the state of the game
st, acts on the car through an action at (a combination of control commands
which is executed in the simulator) and finally gets back a reward rt+1. We
employ the RL algorithm A3C (Mnih et al., 2016) to optimize a driving
policy that outputs the action probabilities for vehicle control, using only
the RGB front view image as input.

In the following Section 2.4.1, we introduce A3C (Mnih et al., 2016) and
explain how we carried out distributed learning on multiple machines. In
Section 2.4.2, we detail our learning strategy that consists of specific design
choices for the rally driving task.

2.4.1 Reinforcement learning framework

Asynchronous Advantage Actor Critic (A3C). In this work, we em-
ploy A3C (Mnih et al., 2016) which is a member of the policy-based RL
family and uses an actor-critic approach. The actor chooses the action a
in a certain state s and is formalized by policy π(a|s). While the policy
outputs action probabilities, the critic estimates how good a certain state s
is with the value function V π(s). It computes the expected return that is
obtained departing from state s and always acting according to policy π:

V π(s) = Eπ[Rt|s0 = s]. (2.7)

2.4. Method 25

The policy πθ(at|st; θ) is parameterized by θ, i.e. the weights of a neural
network. To optimize πθ, gradient ascent is performed to maximize the
expectation of the discounted reward E[Rt], introduced in Equation 2.1.
This means that we update policy πθ, such that, in a state s, actions that
bring high reward are made more likely and actions that bring low reward
less likely. The REINFORCE method (Williams, 1992) estimates the policy
gradient ∇θE[Rt] as

∇θ log πθ(at|st; θ)Rt. (2.8)

To reduce the variance of this estimate, one can subtract a baseline bt(st),
i.e. a known policy, from Rt. This can be written as

∇θ log πθ(at|st; θ)(Rt − bt(st)). (2.9)

The difference Rt − bt(st) measures if our policy performs better or worse
than the baseline bt(st) and scales the policy gradient ∇θ log πθ(at|st; θ). In
actor-critics, the difference Rt− bt(st) is replaced by the advantage function

A(at, st) = Q(at, st)− V (st) (2.10)

where the Q-function Qπ(at, st) is the expected, discounted, cumulative re-
ward, taking action at in state st and following policy πθ thereafter. It
writes

Qπ(at, st) = rt(at, st) + Eπ[γrt+1 + γ2rt+2 + . . .] (2.11)

where rt(at, st) is the reward that is obtained when taking action at in st
and Eπ[γrt+1 + γ2rt+2 + . . .] is the expected reward from thereon following
policy πθ. Eπ[γrt+1 + γ2rt+2 + . . .] accumulates the reward over an infinite
amount of steps which is intractable to compute. To bootstrap learning,
we approximate the sum of expected rewards departing from state st+1
by using the value function V π(st; θv) that is parameterized by θv. Thus,
Equation 2.11 becomes

Qπ(at, st) ≈ rt(at, st) + γV π(st+1). (2.12)

In A3C, the network weights of policy πθ and value function V π(st; θv) are
updated after tmax steps or sooner if the episode ends before. We empirically
find that tmax = 5 works well although it corresponds, at 30Hz, to a limited
time span of 0.167sec. We can then extend Equation 2.12 by using the real
reward of the first k time steps (bounded by tmax), instead of only a single
step, and approximate the rest using the value function V π(st; θv):

Qπ(at, st) ≈
k−1∑
i=0

(
γirt+i

)
+ γkV π(st+k; θv) , k ≤ tmax. (2.13)

26 End-to-End Driving with Deep Reinforcement Learning

weight synchronization

weight update
n

1

control

image

n

1
2

globally shared
target network

learner
thread

simulator
instance

2

speed
EnvironmentAsynchronous actor-critic

red = train only

metadata

blue = train+test

TCP/IP

Figure 2.7: Scheme of our distributed training setup. Multiple simulator
instances run on two machines (green box) and communicate through a
dedicated API with the learner threads which run on a different machine
(blue box). The learners update and synchronize their weights frequently
with the shared target network in an asynchronous fashion.

By plugging the approximation ofQπ (cf. Equation 2.13) into Equation 2.10,
we obtain an approximation of the advantage function

A(at, st; θ, θv) ≈
k−1∑
i=0

(
γirt+i

)
+ γkV π(st+k; θv)− V (st; θv) (2.14)

which can be used instead of the difference Rt − bt(st) to scale the policy
gradient. Thus Equation 2.9 becomes

∇θ log πθ(at|st; θ)A(at, st; θ, θv) (2.15)

which is the gradient estimate used in A3C to update the parameters of pol-
icy πθ(at|st; θ). Intuitively, the advantage function A(at, st; θ, θv) measures
whether the actions at, at+1, ..., at+k−1 were actually better or worse than
expected.

The parameters of value function V π(st; θv) are updated with an L2 loss
between the estimated reward from the value function and the real reward.

For generality, it is said that the policy π(at|st; θ) (the actor) and the
value function V π(st; θv) (the critic) are estimated independently with two
neural networks. In practice, both networks share all layers but the last
fully-connected one as can be seen in Figure 2.8b.

Distributed learning. We choose A3C not only for its state-of-the-art
performance, but also for its focus on asynchronous parameter updates that
can originate from multiple learners. In our implementation, the learners are
executed in separate threads to enable parallel learning. Our training setup
can be seen in Figure 2.7. The asynchronous actor-critic (blue box) is run
on a central PC where the learner threads can asynchronously update the
weights of a globally shared network. The environment (green box) is run
on other PCs (two additional PCs in our case). Each learner thread (agent)

2.4. Method 27

16x20x20
32x9x9

256

Conv(s=4)-ReLU
Conv(s=2)-ReLU

FC-ReLU

LSTM

3x84x84

Input Image FC: 𝛑

FC: V

32

1

256

(a) Mnih et al. (2016)

32x39x39
32x18x18

32x7x7

Conv(s=1)-Pool-ReLU

Conv(s=1)-Pool-ReLU
Conv(s=1)-ReLU

3x84x84

Input Image

256

FC-ReLU

LSTM

FC: 𝛑

FC: V

32

1

289

vt

t-1a

(b) Ours

Figure 2.8: Comparison of the two used state encoders. (a) The
CNN+LSTM architecture as proposed by Mnih et al. (2016) with a stride of
four in the first convolutional layer and a stride of two in the second convolu-
tional layer. (b) Our slightly deeper network consists of three convolutional
layers with stride one. After each layer follows a 2x2 maxpooling operation.
The LSTM takes the last action at−1 and the current speed vt as additional
inputs.

communicates with its assigned instance of the simulator (WRC6 game) over
LAN with an API created for this purpose using the TCP/IP protocol. In
our case, we trained with nine agents (and nine game instances), uniformly
distributed over three tracks. This multi-PC learning setup is necessary for
our case, because WRC6 requires much more computation than comparable
RL simulators, e.g. Atari games, and it would not be possible to run a high
number of WRC6 instances on a single PC. Furthermore, this approach of
parallelization allows training on different tracks (snow, mountain, coast) at
the same time to foster generalization capabilities of the resulting policy.

2.4.2 Learning strategy

State encoder. The neural networks used in DRL are often extremely
shallow, usually comprising only two or three convolutional layers (Mnih
et al., 2016; Lillicrap et al., 2016), as compared to the deep networks com-
monly used in perception. For instance, the popular ResNet architecture
(He et al., 2016) features versions with 18 to 152 layers. The reason why
DRL limits itself to small architectures is twofold. First, training oftentimes
already takes a long time, i.e. several days, and using a larger network would
increase training time even further. Second, the simulators like Atari 2600
or TORCS (Wymann et al., 2000) are graphically very simple, so that small
networks are sufficient to extract the necessary visual information. Even the
road following task can in fact be achieved thanks to simple image features
(road detection).

To encode the image, Mnih et al. (2016) use only two convolutional layers
with strides 4 and 2 respectively, followed by one fully-connected layer. The
resulting features are fed into a long short-term memory (LSTM) that can
learn sequences of data. Using a recurrent network such as an LSTM is

28 End-to-End Driving with Deep Reinforcement Learning

control commands

num. of classes steering throttle brake hand brake

27 {−1.,−0.75, ..., 1.} {0.0, 0.5, 1.0} {0} {0}
4 {−1.,−0.5, 0.5, 1.} {0.0} {0} {1}
1 {0.0} {0.0} {1} {0}

Table 2.1: The 32 classes output for the policy network. First column
indicate the number of classes with possible set of control values. Note the
prominence of throttle commands.

beneficial for the driving task, because it can account for motion. The
network of Mnih et al. (2016) is shown in Figure 2.8a.

In our network, depicted in Figure 2.8b, we add an additional convolu-
tional layer as compared to Mnih et al. (2016), because WRC6 is visually
more complex than TORCS, used by Mnih et al. (2016). Our network is
a modified version of Kempka et al. (2016), using one-strided convolution
and 2x2 max-pooling for downsampling as is common in perception net-
works. Our intuition behind one-strided convolution is that it should allow
finer-grained vision and decision making. On top of the architecture from
Kempka et al. (2016), we add an LSTM, which different from Mnih et al.
(2016), takes the last action at−1 and the current velocity vt as additional
inputs to facilitate temporal consistency in the network output. Note, that
giving this additional information to the network does not amount to cheat-
ing as a human driver also has a speedometer and knows what the last action
was.

Action space. Continuous control with Deep Reinforcement Learning
(DRL) is possible (Lillicrap et al., 2016; Duan et al., 2016; Gu et al., 2016),
but we use a discrete action space for simpler implementation of the loss
function and action sampling. For the rally driving task, the agent needs to
learn the control commands for steering [−1, 1], throttle [0, 1], brake {0, 1}
and hand brake {0, 1}. Note that the brake and hand brake commands
are binary. Hand brake was added for the car to learn drifts in hairpin
bends, since brake implies slowing down rather than drifting. The combi-
nation of all control commands at different step sizes yields 32 classes listed
in Table 2.1. For example, one combination is {steering = 0.75, throttle =
0.5,brake = 0,hand brake = 0}. Although the total number of actions is
arbitrary and usually plays little role in the final performance, two choices
should be highlighted. First, hand brake is associated with different steer-
ing commands to favor drifting. Second, there is a majority of actions for
acceleration to encourage speeding up (18 classes with throttle > 0 vs. 5
classes with brake or hand brake = 1). This prevents the problem of the
agent never moving from its initial position, especially at the beginning of

2.4. Method 29

(a) Metadata

-rw 0 rw
Lateral pos

min

max

R
e
w

a
rd

Mnih et al.
Ours
Ours - w/ margin
Ours - sigmoid

/2 /2

(b) Reward functions

Figure 2.9: Reward shaping. (a) In order to compute the reward, we use the
following metadata that is provided at each time step by the simulator: the
velocity of the car v, the angle α between the road direction and the car’s
heading, the distance from the center of the road d. (b) Different reward
functions with respect to varying lateral position of the car. At 0, the car
is at the track center and the road boarder is at ±rw/2. For this plot, we
assume constant velocity.

the training. The static friction, genuinely modeled in WRC6, requires to
apply the accelerator during some time before the car starts to move.

The probabilities of the 32 actions are predicted by the softmax output
from the policy branch π of the network in Figure 2.8b.

Reward. The time needed to complete the track is the only “score” in
race driving and is too sparse to be used as reward to learn vehicle control.
Reward shaping addresses this problem by computing a reward at each time
step with a reward function. Metadata, received at each time step from the
simulator, can be leveraged to compute this frame-wise reward.

Lillicrap et al. (2016) and Mnih et al. (2016) use a reward function that
projects the velocity of the car onto the direction of the road that writes:

R = v cosα (2.16)

where α is the angle between the road and the direction of the car and v the
car’s velocity, as depicted in Figure 2.9a. We refer to this reward function
as Mnih et al. In order to constrain the reward in the interval [−1, 1], we
normalize by the empirically observed maximum value, i.e. we divide the
velocity v by 150 km/h. We clip the resulting reward between -1 and 1.

In empirical tests we have found that the reward function from Mnih et
al. does not prevent the car from sliding along the guardrail. This makes
sense since the guardrail follows the road angle. To address this issue we
added the distance from the road center d, shown in Figure 2.9a, as a linearly

30 End-to-End Driving with Deep Reinforcement Learning

Start

Checkpoint 1

Checkpoint 2

Checkpoint 4 Finish

Checkpoint 3 Checkpoint 0

Figure 2.10: Instead of initializing the agents always at the beginning of
the track, we propose to spawn them at different checkpoints to diversify
training examples.

increasing penalty to Equation 2.16. In the following, we refer to this reward
function as Ours:

R = v(cosα− |d|). (2.17)

Note that we divide the distance d by 5m for normalization purposes. Sim-
ilarly to Lau (2016), our conclusion is that the distance penalty enables the
agent to rapidly learn how to stay in the middle of the track.

Moreover, we propose two additional rewards that leverage the road
width rw. Ours w/ margin penalizes only with distance from track center
when the car is off the road:

R = v(cosα−max(|d| − 0.5rw, 0)). (2.18)

Ours sigmoid applies a smooth penalty as the agent deviates from road
center:

R = v(cosα− 1
1 + e−4(|d|−0.5rw)). (2.19)

We set the road width to rw = 3.5m. A visualization of the four rewards as
a function of the car’s lateral position is displayed in Figure 2.9b, assuming
a constant speed for simplification.

Ours w/ margin and Ours sigmoid penalize more when the car leaves
the road and Ours sigmoid is smooth. Both of these reward designs are
an attempt to decrease steering oscillations that can be seen in the video
https://youtu.be/e9jk-lBWFlw?t=15s that we observed when using the
reward Ours.

Agent initialization In previous DRL works in end-to-end driving (Mnih
et al., 2016; Lau, 2016), the agents are always initialized at the beginning
of the track. Such a strategy will lead to overfitting to the beginning of the
training tracks. Instead, we choose to (re-)initialize the agents at random
positions on the tracks after a crash or at training start. Due to technical
constraints in WRC6, we are limited to five checkpoints (including start
checkpoint) along the track as depicted in Figure 2.10. We think that it
would be even better to initialize the agents at continuous locations (also

https://youtu.be/e9jk-lBWFlw?t=15s

2.5. Experiments 31

outside discrete checkpoints) to further increase diversity in experience. Ide-
ally, also the lateral position and initial speed should be varied, but it was
not possible in WRC6.

2.5 Experiments

This section describes our architecture setup and reports quantitative and
qualitative performance in the World Rally Championship 6 (WRC6) racing
game. Compared to the commonly used TORCS platform, WRC6 features
a more realistic physics engine (grip, drift), graphics (illuminations, anima-
tions, etc.) and a variety of road shapes (sharp turns, slopes) as depicted
in Figure 2.3. Additionally, the stochastic behavior of WRC6 makes each
episode unique which is harder but closer to real conditions, i.e. two episodes
never play out the same even when using a deterministic policy.

For better graph visualization all plots are shown as rolling mean and
with standard deviation over 1000 steps. Qualitative driving performance is
best seen in our video: https://youtu.be/AF0sryuSHdY?t=118.

2.5.1 Training setup

To speed up the pipeline and match the CNN input resolution, we disable
several costly graphical effects and use a narrower field of view compared to
the standard view in the game, as shown in Figure 2.6. The game’s clock
runs at 30 frames per second and the physical engine is on hold as it waits
for the next action. Note that in practice, the simulator can be run faster
than the simulated time and we reach approximately 100 frames per second
during training, a speed-up of 3.33x. This means that in one day real-time,
using 9 game instances, we can simulate ∼ 30 driving days.

We use only front view images and speed for testing to allow for a fair
comparison with a human driver. Likewise, images do not contain usual
in-game info as done in RL with Atari games. Precisely, the head up display
is disabled. This removes clutter, but also deprives the agent from infor-
mation that a human player would have access to (percentage of the track
completed, upcoming turns, etc.).

Although we think that initialization at random speeds would yield more
diversity in training samples, we start agents (cars) always with velocity
0 km/h, because it is not possible otherwise in WRC6 due to technical lim-
itations.

2.5.2 Metrics

To evaluate our approach, we define multiple new metrics that are inde-
pendent from the reward and specific to the driving task. The metrics are

https://youtu.be/AF0sryuSHdY?t=118

32 End-to-End Driving with Deep Reinforcement Learning

computed per episode. In our case, an episode starts at agent initializa-
tion at the beginning of the track or at a checkpoint and terminates when
the agent reaches the finishing line or, more often, crashes, gets blocked or
goes in the wrong direction (off road, wrong way); we refer to any of these
terminal events as ‘crash’. The metrics are defined as follows:

• Covered distance: Distance on the track outline that the agent pro-
gressed from the point of initialization to the point of crash or finish
line.

• Average speed: Mean velocity obtained by dividing the covered dis-
tance by episode duration.

• Collisions (car’s hits per km): The number of collisions of the car
with objects of the environment (guardrail, obstacles, etc.), divided
by covered distance. We do not distinguish between violent and small
hits.

• Track exploration: The percentage of the total track length that has
been visited by the agents. For example, this metric improves when
the agent learns to get past a difficult turn and can thus go farther,
exploring unseen parts of the track.

While covered distance and track exploration are indicators during train-
ing for how fast the agents learn to master the track, average speed and
collisions can be used to distinguish driving styles.

2.5.3 Performance evaluation

Plots in Figure 2.11 show mean (dark) and standard deviation (light) for
the three training tracks over 140 million steps. During training, the agents
progress along the three very different tracks simultaneously. Overall, the
agents successfully learned to drive despite the challenging track appearances
and physics at an average speed of 72.88km/h and cover an average distance
of 0.72km per run. We observe a high standard deviation for the covered
distance as it depends on the difficulty of the track part where the car is
initialized.

The bottom plot reports collisions (car’s hits per km). Despite not being
explicitly penalized in the reward function, the hits decrease as training pro-
gresses, probably because collisions lead to a speed decrease. After training,
the car hits scene objects 5.44 times per kilometer. Note that such collision
behavior is impractical for later adaptation to normal driving. However, our
reward is still appropriate for racing, favoring fast over cautious driving.

Crash locations, binned into five meter segments along the track, are
colored from black to yellow in Figure 2.12. The latter highlights difficult

2.5. Experiments 33

0 20 40 60 80 100 120
steps in millions

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Snow (SE)
Mountain (CN)
Coast (UK)

0 50 100
steps in millions

0

20

40

60

80

100

av
g

sp
ee

d
[k

m
/h

]

0 50 100
steps in millions

0

5

10

15

20

25
#

 c
ar

's
 h

its
 p

er
 k

m

di
st

an
ce

 c
ov

er
ed

 [k
m

]
di

st
an

ce
 c

ov
er

ed
 [k

m
]

di
st

an
ce

 c
ov

er
ed

 [k
m

]

Figure 2.11: Training performance reported as rolling mean (dark) with
standard deviation (light). The agent had more difficulty to progress on the
mountain and snow tracks as they exhibit a greater number of sharp turns
and the snow track has a slippery road.

Snow (SE) 11.61km Mountain (CN) 13.34km Coast (UK) 4.59km

C
ra

s
h
e
s
 f

re
q
u
e
n
c
ie

s

Figure 2.12: Crash frequencies for the three training tracks. Crashes, drawn
in yellow, are usually concentrated at difficult locations such as turns. There
is also an unexplored part at the end of the challenging Snow track (in gray).
Some difficult hairpin bends are mastered with no or few crashes by the
learned policy.

34 End-to-End Driving with Deep Reinforcement Learning

Figure 2.13: Visualization of back-propagation where positive gradients for
the chosen actions are highlighted in blue. Despite various scenes and road
appearances the network learned to detect road edges or lane markings and
relies on them for control.

locations on the tracks, but also shows that the agent can even pass some
hairpin bends.

From a qualitative point of view, the agent drives rather smoothly and
even learned how to drift with the hand-brake control strategy. However,
the policy does not achieve optimal trajectories from a racing aspect (e.g.
taking turns on the inside) which is possibly because the car will always try
to remain in the track center because of the deviation penalty in our reward
function. For the snow track, where the road is very slippery, we observe
that the car often diverts from the road when it goes too fast. Although
on all tracks the average number of hits is relatively high, the context of a
racing game is very complex and we found that even the best human players
collide with objects such as the guardrail.

To visualize how the input image influenced the driving decisions of the
neural network, Figure 2.13 shows guided back propagation (Springenberg
et al., 2015) for several scenarios. The visualization is computed as follows:
given an action, positive gradients are backpropagated through network un-
til the input space. It thus highlights regions in the image that have been
important for the actual control prediction. Despite the various scene ap-
pearances the agent consistently uses the road edges and curvature as a
strong indicator. This makes sense, as it helps to follow the road.

2.5.4 Ablation studies

In the following we evaluate our design choices of state encoder, reward
function and agent initialization strategy.

State encoder. Figure 2.14 compares the performance of our CNN against
the smaller network from Mnih et al. (2016), shown in Figure 2.8a. Looking
at the average speed in Figure 2.14a, the performance is similar for both
networks, but the smaller network from Mnih et al. (2016) converges faster
than for ours (80 versus 130 million steps). Both networks also lead to simi-
lar exploration of the track, as depicted in Figure 2.14b. The crash locations

2.5. Experiments 35

(a) Performance

B

A

Mnih et al. Ours

B

A

C
ra

sh
es

 f
re

q
u
en

ci
es

(b) Locations of episode terminations

Figure 2.14: Evaluation of our state encoder versus the encoder of Mnih
et al. (2016). (a) The small CNN from Mnih et al. (2016) (blue) converges
faster than ours (orange). (b) Locations where crashes occur. Both networks
are comparable, but our network has slightly more crashes at location A and
explores a little more of the track at locations B.

(highlighted in yellow) are similar even on such a difficult track, except in
the region labeled as section A where Mnih et al. (2016) crashes less often
and section B only explored by our network.

Despite the longer convergence, the performance of our network is better
compared to the smaller network with +89.9m average covered distance
(+14.3%) and −0.8 average car’s hit per kilometer (−13.0%). Such analysis
advocates that our network performs better, but at the cost of doubling
training time. In light of these results, we argue that there is little interest
in using our architecture, at least with the simple road following task.

Reward functions. In the following, we compare the reward function of
Mnih et al. (2016) of Equation 2.16 against the three variants of our reward
function of Equations 2.17, 2.18 and 2.19, referred to as Ours, Ours w/
margin and Ours sigmoid, respectively. For this experiment, we use the
network architecture of Mnih et al. (2016) and train on a single track to
minimize variance and enhance interpretability.

Figure 2.15a shows the collisions (hits/km, lower is better) during the
training, and report the average speed and collisions in Table 2.15b. Our
three rewards using the distance from track center lead to a significant drop
in hits, precisely Mnih et al. 9.26hits/km versus Ours sigmoid 2.24hits/km.
Out of our three rewards, Ours w/ margin performs worst in terms of colli-
sions, probably because it does not teach the agent to center on the road, as
the reward function is piecewise constant within the road width, as depicted
in Figure 2.9b. Furthermore, we observe that fewer collisions come at the
cost of lower speed: Mnih et al. 106.9km/h versus Ours sigmoid 89.8km/h.
In conclusion, the reward from Mnih et al. (2016) leads to faster, but rougher
driving.

Note that we observed faster convergence with our rewards than with

36 End-to-End Driving with Deep Reinforcement Learning

0 20 40 60 80
Steps in millions

0

5

10

15

20
C
a
r'
s

h
it
s

p
e
r

km Ours

Ours sigmoid
Ours w/ margin

Mnih et al.

(a) Training performance

speed collisions
[km/h] [hits/km]

Mnih et al. 106.9 9.26
Ours 91.4 2.25
Ours w/ margin 100.3 5.95
Ours sigmoid 89.8 2.24

(b) Mean values

Figure 2.15: Quantitative comparison of different reward functions.
(a) Training curves using collisions (hits per km) as performance metric.
Our three proposed reward function lead to less collisions as compared to
Mnih et al.
(b) Mean over all training episodes for speed (higher is better) and number
of collisions (lower is better). Our reward functions lead to less crashes at
the expense of a decrease in speed.

the reward from Mnih et al. (2016), as they bootstrap learning by explicitly
teaching the agent to center laterally on the road with distance penalty d.
We qualitatively observed less oscillations with Ours sigmoid; we hypothe-
size that this is because of its smoothness around the track center as shown
in Figure 2.9b. As Ours sigmoid was implemented at the very end of this
work, we use Ours in the rest of the experiments.

Agent initialization. To compare the performance of the start and check-
point initialization strategies, we carry out two trainings from scratch. In
the first training we use our random initialization at different checkpoints
and in the second one initialization at the beginning of the track.

When the agents start at different positions, covered distance (as defined
in Section 2.5.2) is not a valid metric during training, because an agent
starting half way through the track can not cover more than 50% of the
track length2. Instead, we use track exploration as metric. In Figure 2.16,
our random checkpoint strategy (plain lines) exhibits a significantly better
exploration than the usual start strategy (dashed lines). For the easiest
coast track (green), both strategies reach full exploration of the track, but
random checkpoint initialization converges faster. For complex snow (blue)
and mountain (green) tracks, our strategy improves the exploration by large
margins, +32.20% and +65.19%, respectively.

The improvement due to our strategy is easily explained as it makes full
use of asynchronous learning of A3C. A wide variety of track sections can be

2The tracks in WRC6 do not loop.

2.5. Experiments 37

0 20 40 60 80 100
steps in millions

0

25

50

75

100

T
ra

ck
 e

xp
lo

ra
ti
o
n
 [

%
]

Start
Checkpoint

Snow (SE)
Mountain (CN)
Coast (UK)

Figure 2.16: Comparison of training performance with different initialization
methods. The agents are spawned at the start (dashed line) of the track
or at random checkpoints (plain line) as depicted in Figure 2.10. We use
the metric of track exploration which corresponds to the percentage of track
seen by the agent. The experiment is run on three different tracks: Snow
(SE), Mountain (CN) and Coast (UK).

explored in parallel at the same time which benefits experience decorrelation.
Figure 2.16 shows that track exploration increases in a non-linear fashion

with sudden jumps. Indeed, some track segments (e.g. sharp turns) are
particularly difficult to pass and require many attempts before the policy
succeeds, leading to a segment-by-segment training progress.

2.5.5 Generalization

WRC6 is somewhat stochastic (physics, object animations, illumination
changes, etc.). Therefore, the performance reported on the training tracks
already includes some generalization to slight perturbations in the environ-
ment. Still, we want to answer the following questions: Can the agent drive
on unseen tracks? Can it drive respecting the speed limit? How does it
perform on real images?

Unseen tracks. We tested the trained policy on tracks in WRC6 with
different road layout. The agent could successfully follow the road in those
test scenarios. This shows that the network incorporated general driving
concepts rather than learned a track by heart. Qualitative performance
on an unseen test track in the mountain region is shown in video https:
//youtu.be/AF0sryuSHdY?t=131.

Racing VS Normal driving. As the reward favors speed without direct
penalization of collisions, the agent sometimes collides with objects such
as the guardrail. This can occasionally avoid a slowdown of the car as it
“bounces” off the guardrail, but is inappropriate for normal driving. In
the following, we evaluate how our policy could be transposed to normal

https://youtu.be/AF0sryuSHdY?t=131
https://youtu.be/AF0sryuSHdY?t=131

38 End-to-End Driving with Deep Reinforcement Learning

50 70 90 110 130
Speed Limit (km/h)

0

1

2

3

4

C
ar

's
 h

its
 p

er
 k

m
Road-adaptive
Constant

Snow (SE)
Mountain (CN)
Coast (UK)

Speed limits

Tracks

Figure 2.17: Influence on the number of collisions (hits per km) of imposing
segment-wise road-adaptive (dashed lines) and whole track constant speed
limits (plain lines) on the three training tracks.

Figure 2.18: Prediction of longitudinal and lateral commands on real videos.
Note that the agent can handle situations never encountered (other road
users, multi-lanes).

driving by imposing speed limits. We implement it such that if the car goes
faster than the speed limit, we eliminate the actions containing throttle ≥ 0
from the predictions and select the action with maximum probability among
the remaining ones. We test different constant whole track speed limits
(50 km/h, 70 km/h, etc.), depicted as continuous lines in Figure 2.17, and
road-adaptive speed limit computed individually for each road segment3,
shown as dashed lines in Figure 2.17.

As one could expect, the number of collisions significantly decreases when
imposing lower speeds. Even though this shows that test time speed limits
help to reduce collisions as compared to rally driving, this is by far not
sufficient to achieve normal driving. An alternative approach could be to
re-train with a reward function that directly incorporates speed limits.

3In order to compute our road-adaptive speed limit, we used the so-called design speed
which is used to decide the speed limit on real road infrastructure. It is computed as a
function of local curvature and superelevation using American infrastructure standards
(Hancock and Wright, 2001).

2.6. Discussion 39

Real videos. Finally, we tested our agent on real videos, in open-loop, i.e.
predicting the control actions without applying them. We selected publicly
available dash cam videos of country roads that feature similar viewpoints to
WRC64,5,6, cropped and resized. Figure 2.18 shows the control output of our
policy and guided backpropagation of three frames. Results on sequences can
be seen in our video https://youtu.be/AF0sryuSHdY?t=154. Although the
results are preliminary as we cannot act on the video (i.e. control commands
are never applied), the decision performance, such as the road following and
avoidance of oncoming traffic, is acceptable for such a shallow network.

Note that these experiments are limited, because as they are conducted
only qualitatively in open loop, i.e. the possibly bad control commands are
never applied in the video. There is still a large gap between predicting
reasonable frame-wise actions and reliable control over a whole sequence
with recovery from difficult situations, e.g. stable lateral control without
oscillation or re-centering in the lane after deviation. The ideal way to
evaluate our model would have been in a real car. However, this is costly and
difficult from a safety perspective. Simpler options for evaluation that could
be considered in future research are the following. First, conduct open loop
testing on a dataset where the real action (steering angle, throttle, etc.) has
been registered (e.g. Udacity7), to compare quantitatively between a human
driver and the model’s predictions. Second, and more interesting, carry out
a closed loop experiment in another simulator such as CARLA (Dosovitskiy
et al., 2017) or GTA V8.

2.6 Discussion

Choice of WRC6. WRC6 certainly has better graphics and physics than
TORCS and even more recent CARLA. However, there are some major
drawbracks to it. Working with a game such as WRC6 was complex and re-
quired a significant amount of engineering work. As it is proprietary it is not
possible to make changes to the game engine directly9. Moreover, because
it was designed as a video game, it lacks functionalities that are important
to an RL research platform such as adjusting the game clock (frequency
at which frames are produced), running multiple agents in the same envi-
ronment, initializing agents at arbitrary locations, etc. We thus advise to
use research-oriented driving simulators, among which CARLA (Dosovit-

4USA mountain dash cam: https://youtu.be/52vaq3dqTk4?t=3437
5Croatia mountain dash cam: https://youtu.be/HjNxDC5ftG8?t=16s
6India tea fields dash cam: https://youtu.be/KCVhK8QJujk?t=59s
7https://github.com/udacity/self-driving-car
8https://github.com/aitorzip/DeepGTAV
9Valeo paid the game developer Kylotonn to design an API to access their game for

the purpose of a Deep Learning demo at the Consumer Electronics Show 2017. This API
was then used to conduct further research.

https://youtu.be/AF0sryuSHdY?t=154
https://youtu.be/52vaq3dqTk4?t=3437
https://youtu.be/HjNxDC5ftG8?t=16s
https://youtu.be/KCVhK8QJujk?t=59s
https://github.com/udacity/self-driving-car
https://github.com/aitorzip/DeepGTAV

40 End-to-End Driving with Deep Reinforcement Learning

skiy et al., 2017) – released posterior to our work – appears to be the best
option and is largely used in the community today. Note that CARLA was
specifically designed for research, and features complex urban driving with
traffic lights and other road users (pedestrians, bikes and cars). Other inter-
esting simulators include AirSim (Shah et al., 2018) and GTA V. However,
AirSim misses moving objects and GTA V is a commercial video game and
research usage relies on a plugin8. Thus, the proprietary game itself can
not be changed and adapted to research purposes, e.g. it does not support
multiple agents.

Choice of A3C. A3C (Mnih et al., 2016) facilitated the implementation
of distributed learning and thereby sped up our experiments. Still, train-
ing time was long with around 4 to 5 days on 3 machines even though we
disabled high quality image rendering, a limitation of our approach. The
more recent actor-critic algorithm PPO (Schulman et al., 2017) should be
preferred to A3C as it has better performance and more stable training than
A3C. However, the drawback of actor-critics is that they are ‘on-policy’: new
trajectories need to be sampled after each policy update, while old trajec-
tories are discarded. This is acceptable when simulation time is negligible
compared to the time needed to update the parameters of the model through
backpropagation. This is typically the case in simple Atari games, but less
so for complex WRC6. To improve data efficiency, off-policy value-based al-
gorithms such as Rainbow (Hessel et al., 2018) should be investigated, where
trajectories are stored in a replay memory and can be re-used several times
for training instead of being discarded immediately after the first parameter
update.

2.7 Conclusion

In this chapter we used the deep reinforcement learning (DRL) method
A3C to learn a race driving policy in the video game WRC6. Therefore, we
adapted the network architecture, action space, reward function and agent
initialization strategy to our specific needs and implemented distributed
learning. Also thanks to significant engineering efforts in our work, we were,
to the best of our knowledge, the first to demonstrate that DRL can be used
in complex realistic simulators to learn full control of the car.

We achieved fast rally driving with our approach on three race tracks
shown in the videos. Moreover, we introduced new metrics to thoroughly
evaluate and justify our design choices. Our policy was trained in parallel on
three different tracks and shows some degree of generalization to other tracks
in the game and open-loop action prediction on real driving videos. While
generalization was lightly evaluated, the preliminary results are promising
especially given the large domain gap between the synthetic and real data.

2.7. Conclusion 41

In this chapter, we tackled the whole chain of autonomous driving from
raw data input to vehicle control. This work is only weakly related to the
core of this thesis that focuses on 2D-3D scene understanding as we only
used the image as input and no 3D point cloud. DRL training is very time-
consuming and we have observed that using only slightly larger networks to
encode the images drastically increases training time even more. Therefore,
it is highly impractical to study 2D-3D scene understanding in the RL setting
and we will focus solely on the perception part in the remaining chapters.

Complétion de cartes de
profondeur éparses via fusion

avec RGB dense

French Summary of the Chapter “Fusing sparse depth
and dense RGB for depth completion”
Dans ce chapitre, nous projetons des nuages de points LiDAR 3D dans
l’espace image 2D, résultant en des cartes de profondeur éparses. Nous
proposons une nouvelle architecture encodeur-décodeur qui fusionne les in-
formations de l’image et la profondeur pour la tâche de complétion de carte
de profondeur, améliorant ainsi la résolution du nuage de points projeté dans
l’espace image.

Chapter 3

Fusing sparse depth and
dense RGB for depth

completion

The contributions of this chapter were published in (Jaritz et al., 2018b):

Jaritz, M., de Charette, R., Wirbel, E., Perrotton, X., and Nashashibi, F.
(2018b). Sparse and dense data with CNNs: depth completion and semantic
segmentation. In 3DV 2018.

Contents
3.1 Introduction . 46
3.2 Related Work . 49
3.3 Method . 54

3.3.1 Network Architecture 54
3.3.2 Sparse Data Training 56
3.3.3 Analysis of Validity Mask 58

3.4 Experiments . 59
3.4.1 Datasets . 59
3.4.2 Implementation . 60
3.4.3 Depth completion . 60
3.4.4 Semantic Segmentation 65

3.5 Discussion . 69
3.6 Conclusion . 72

46 Fusing sparse depth and dense RGB for depth completion

project

3D point cloud image

sparse depth map

Figure 3.1: Projection of a 3D LiDAR point cloud into a camera image
space. The coloring is based on the depth. Data from Kitti (Geiger et al.,
2013).

3.1 Introduction

In Chapter 2 it was shown that it is possible to train a neural network
that takes raw sensor data as input and directly outputs the vehicle con-
trol commands. From this chapter on, we study multi-modal inputs and for
simplicity exclusively focus on perception, rather than the whole end-to-end
pipeline. In particular, we investigate the fusion of camera and LiDAR which
have much higher resolution than radar and ultrasonic sensors. While Li-
DAR actively measures with laser beams producing a sparse 3D point cloud,
camera passively captures the scene using external light sources yielding a
dense 2D image. The complementarity of sparse but precise 3D geometry
information from LiDAR and the dense visual appearance information from
camera makes them good candidates for fusion.

In order to combine 2D-3D data, a joint representation space is needed.
A practical choice, because it allows for the usage of off-the-shelf 2D CNNs,
is to project all 3D points into the 2D camera image space using extrinsic
and intrinsic calibration. A sparse depth map can be obtained by assigning
the corresponding depth value to each projected 2D pixel (see Figure 3.1).

Once the 3D data has been projected into the 2D camera image space,
the task of depth completion suggests itself. It consists in filling the holes
in a sparse depth map (see Figure 3.2a) in order to densify the sparse 3D
data. This is similar to image inpainting which, before the arrival of deep
learning, was achieved through sophisticated interpolation of valid data,
for instance via patch-based synthesis (Efros and Leung, 1999) or sparse
dictionary learning (Mairal et al., 2008), though failing at completing large
holes. Deep learning on the other hand, can complete large chunks of missing
data from learned appearance priors (Yu et al., 2018).

Uhrig et al. (2017) have introduced the depth completion task on the
Kitti dataset (Geiger et al., 2013). The sparse input depth map comes
from a LiDAR point cloud that is projected into the camera frame (see

3.1. Introduction 47

predict

sparse depth map dense depth map

(a) sparse depth input

sparse depth map

image

predict
dense depth map

(b) fusion of sparse depth and RGB input

Figure 3.2: Depth completion is the task of filling the empty holes in the
sparse input. It is possible to predict the dense depth map only based on
sparse depth input (a) or to fuse with the dense image (b). Data from Kitti
(Geiger et al., 2013).

Figure 3.1). The dense ground truth is obtained by accumulating 11 LiDAR
frames through projection of the 5 preceding and 5 following LiDAR frames
into the current one. Then a comparison with the disparity from stereo
camera is performed and inconsistent depth pixels from accumulated LiDAR
are eliminated. Hence, depth completion is a task where ground truth can
be gathered in an inexpensive, automated manner.

There are multiple challenges in depth completion. The most important
is, that the input depth map is sparse. As 2D CNNs have been designed and
optimized for dense images, their application to sparse data requires adapta-
tion. For instance, due to sparsity, object boundaries are not clearly visible
and the sparsity is heterogeneous depending on the location in the image
and the distance of the objects. In order to guide the depth completion
with RGB data from the dense camera image, an effective fusion mecha-
nism is necessary, where the high resolution and visual appearance context
of the image can be leveraged to support the dense depth prediction, as
depicted in Figure 3.2b. Besides the question of a suitable architecture, test
time robustness to changes in the density (e.g. lower LiDAR resolution), is
critical.

In order to address these challenges, we propose a new encoder-decoder
architecture, a camera image + sparse depth (RGB+sD) fusion strategy and
a sparse training scheme.

We derive a U-Net like architecture (Ronneberger et al., 2015) as used in
semantic segmentation, that allows us to incorporate context aware depth

48 Fusing sparse depth and dense RGB for depth completion

predictions due to a large receptive field, which is particularly helpful in low-
density regions. We employ the powerful, but efficient NASNet encoder to
learn effective features and design a decoder with transposed convolutions for
feature map upsampling that finally produces a dense depth map prediction
of same size as the image. Skip connections between encoder and decoder
allow the preservation of details.

For RGB+sD fusion, we propose an early fusion strategy where we use
separate encoders for each modality. RGB and sD features are then con-
catenated and fed into a joint depth decoder. The incorporation of dense
RGB data allows us to recover sharp object boundaries and make a better
informed depth completion.

Furthermore, we present a sparse training scheme, where we vary the
input sparsity during training in order to guarantee test-time robustness.
This can be seen as an alternative to sparse convolution as proposed by
Uhrig et al. (2017) who employ validity masks (binary masks that indicate
available and unavailable pixels). We analyze validity masks and experiment
with varying sparsity using synthetic and real data.

Finally, we extend to the task of semantic segmentation to validate our
architecture and investigate if dense segmentation can be predicted from
sparse depth and how RGB+sD fusion can improve performance.

Our contributions can be summarized as follows:

• We design an encoder-decoder architecture that is well-adapted to the
depth completion task.

• We introduce an RGB+sD late-fusion strategy to effectively combine
information from the complementary modalities of sparse depth and
RGB.

• We analyze how CNNs behave at different densities in synthetic (ran-
dom sampling) and real data (varying number of LiDAR layers) and
find that best performance is obtained when a network is specialized in
a certain density, that a validity mask is not needed and that robust-
ness at test time can be achieved through data augmentation during
the training.

• We extend to the task of semantic segmentation.

We achieve state-of-the-art results on the Kitti Depth Completion bench-
mark at the time of submission, and showcase the benefit of sparse depth +
RGB fusion for semantic segmentation. Since the publication of our work
(Jaritz et al., 2018b), numerous works with improved scores have been sub-
mitted to the Kitti depth completion benchmark. We chose to provide the
reader with a complete review of the literature but separate posterior work
to our contributions for clarity.

3.2. Related Work 49

Figure 3.3: The U-Net architecture (Ronneberger et al., 2015). The architec-
ture consists of an encoder (downsampling part) and a decoder (upsampling
part). Skip connections between encoder and decoder are realized by copy-
ing and concatenating the downsampled encoder features to the upsampled
decoder features. Source: Ronneberger et al. (2015).

3.2 Related Work

Our contribution mainly answers the question of how to predict a dense
depth map of same spatial resolution as the input – by fusing a sparse depth
map and a dense image with a neural network. Therefore, we divide the
related works by input type: dense, sparse and dense + sparse. The latter
focuses on recent works in depth completion that have been published since
our contribution discussed in this chapter.

Dense Inputs. While depth completion is a regression and semantic seg-
mentation a classification problem, they are both pixel-level predictions with
similar spatial structure. More precisely, for both tasks the output is of
equal spatial resolution (or aspect ratio) as the input, which is why both
tasks share similar architectures.

For semantic segmentation, Long et al. (2015a) proposed Fully Convolu-
tional Networks (FCNs) where they remove feature map reshaping and fully
connected layers from classification networks and instead upsample lower-
resolution features after the third and fourth convolutional layer using bilin-
ear upsampling or transposed convolution to obtain a high resolution output.
Ronneberger et al. (2015) and Badrinarayanan et al. (2017) introduce deeper
architectures with mirrored encoder (CNN backbone with downsampling)
and decoder (upsampling). The U-Net architecture (Ronneberger et al.,
2015) is depicted in Figure 3.3, where skip connections convey fine-grained
details from the encoder to the decoder. PSPNet (Zhao et al., 2017) uses

50 Fusing sparse depth and dense RGB for depth completion

(a) Structured (b) Patches (c) Uniform

Figure 3.4: Different sparsity patterns from sensors such as LiDAR (a),
stereo camera (b) or synthetic data (c).

Pyramid Pooling, where the multi-scale feature maps are upsampled to the
same resolution and concatenated. An alternative to downsampling feature
maps is to dilate the convolutional kernels (Chen et al., 2018). In this way,
skip connections can be omitted as the same resolution is kept throughout
the network.

For depth estimation from a single RGB image, priors on object and
scenes are learned, for example with VGG (Eigen et al., 2014) or deeper
ResNet-50 (Laina et al., 2016) networks. Kuznietsov et al. (2017) learn to
predict depth in a supervised manner with sparse LiDAR measurements.
Godard et al. (2017) leverage self-supervised learning with stereo camera
data by using the predicted depth to warp the left camera image to the
right camera image and then compute a loss between them.

Sparse Inputs. The nature of sparse data varies with the sensor and sce-
nario, as can be seen in Figure 3.4. For instance, LiDAR data exhibit struc-
tured sparsity due to the scanning behavior with discrete angles in spherical
coordinates (Figure 3.4a). Stereo vision or structured light sensors deliver
dense data with patches of missing data (Figure 3.4b). Data can also be
sparsified artificially, commonly through uniform sampling (Figure 3.4c).
Classically, sparse 2D inputs are considered for inpainting of uniform spar-
sity using local interpolation (Ku et al., 2018) or guided optimization (Sil-
berman et al., 2012) for patches sparsity.

As CNNs are designed to operate on dense data, a common strategy is
to transform sparse data to a 2D (Uhrig et al., 2017; Ren et al., 2018) or 3D
(Riegler et al., 2017) grid with holes. A validity mask can be given as addi-
tional input to express valid or missing data (Uhrig et al., 2017; Ren et al.,
2018). Uhrig et al. (2017) – who established the groundwork of CNN based
sparse depth completion – propose sparsity invariant convolution to tackle
the problem (see Figure 3.5b). It consists of a normal dense convolution,
but the result is then normalized by the number of valid pixels as stored in
the validity mask. However, it can blur the predicted output due to dila-
tion of the validity mask, as discussed in Section 3.3.3. Also, the network
might be too small to learn effective features and incorporate context (see
Figure 3.5a).

3.2. Related Work 51

(a) Network (b) Sparse Convolution

Figure 3.5: CNN based depth completion with sparse convolution proposed
by Uhrig et al. (2017). (a) The network is rather shallow with 5 convolutions
and small receptive field as there is no downsampling. Along with the sparse
depth, a validity mask (red) is provided as input to the CNN. (b) Definition
of sparse convolution, where the dense convolution result is normalized using
the validity mask. Source: Uhrig et al. (2017).

Figure 3.6: Zhang and Funkhouser (2018) predict surface normals and oc-
clusions boundaries from RGB image only. Then they use the predictions
and the sparse sensor depth jointly in a global optimization to obtain the
dense depth. Source: Zhang and Funkhouser (2018).

If the aim is to reduce computation, a validity mask is necessary to define
where convolution should take place (valid locations). Whereas Ren et al.
(2018) define valid blocks, Graham and van der Maaten (2017) use hash
Tables for pixel-wise indexing. A different approach to handle sparse data,
surpassing grids altogether, is to define order-invariant operations on lists,
such as a 3D point cloud (Qi et al., 2017a). These methods specifically focus
on sparse data, but unfortunately their output is also sparse which makes
them unsuitable for depth completion, where the goal is to predict a dense
output.

Sparse + Dense Inputs. The problem of fusing dense and sparse data
was little addressed at the time of our contribution. Zhang and Funkhouser
(2018) predict surface normals and occlusion boundaries from dense RGB
which are then used in a non-learned global optimization scheme to com-

52 Fusing sparse depth and dense RGB for depth completion

Figure 3.7: Ma et al. (2019) use early fusion, where sparse depth and im-
age and concatenated after the first convolution. The encoder is a ResNet
backbone and skip connections between encoder and decoder are depicted
by dashed lines. Source: Ma et al. (2019).

plete the sparse depth input (see Figure 3.6). Since our contribution, depth
completion has become a hot research topic, sparking many new approaches
that improve over our score on the Kitti benchmark (Uhrig et al., 2017).

Our contributions (Jaritz et al., 2018b), presented in this chapter, in-
clude fusing sparse depth and dense RGB with a late-fusion strategy. Our
architecture is inspired by U-Net (Ronneberger et al., 2015) with skip con-
nections, but using an individual encoder for each modality (RGB and sparse
depth) and a common decoder to predict the dense depth.

As expected, all recent works fuse sparse depth and dense RGB which is
logical as dense RGB data can efficiently guide completion of missing data in
the sparse input depth map. Yang et al. (2019) chose to use our late-fusion
architecture, while replacing our NASNet encoder blocks (Zoph et al., 2018)
by ResNet blocks which is a good choice, as it simplifies implementation and
does not hurt performance. Eldesokey et al. (2019) similarly show that our
late-fusion approach leads to better performance than early-fusion where
RGB and sparse depth are concatenated in the beginning. Both works ex-
periment with confidence prediction in order to improve performance. Ma
and Karaman (2018) simply concatenate RGB and sparse depth, resulting
in a 4-channel tensor that is input into an encoder-decoder network. In more
recent work, Ma et al. (2019) also use a ResNet based encoder-decoder with
early-fusion (see Figure 3.7). While they achieve good performance with
self-supervised learning using a photometric loss, obtained through warping
the right to the left stereo camera image using the predicted depth map,
it does not help to outperform supervised learning, even when supervised
and self-supervised losses are combined. Ma et al. (2019) also present a
purely supervised setup and can increase performance by optimizing design
choices such as clipping the output depth at a user-defined threshold, us-
ing a different loss function, employing skip connections and by removing
downsampling to retain fine-grained details. Van Gansbeke et al. (2019)
present an approach with a local and global network branch. The outputs
of both branches are weighted by a confidence prediction and then summed.
Xu et al. (2019) use the same ResNet based early-fusion U-Net as Ma et al.

3.2. Related Work 53

Figure 3.8: Tang et al. (2019) use a similar U-Net like architecture and
independent encoders for RGB and sparse depth like in our work (Jaritz
et al., 2018b), but introduce an additional decoder for RGB guidance (in
dark orange), which features are then used in the sparse depth encoder
leading to a sequential processing of RGB and sparse depth. Source: Tang
et al. (2019).

(2019) to predict coarse depth, surface normals and a confidence map. Then,
the three predictions are fused in an iterative approach to obtain the final
refined depth. Qiu et al. (2019) modify our late-fusion U-Net by using sum-
mation instead of concatenation for the skip connections which allows to
reduce the number of parameters. Furthermore, they estimate dense depth
and surface normals in a 2-branch architecture. Both branch outputs are
combined to obtain the final result. Tang et al. (2019) is the current state-
of-the-art and use a similar architecture with late-fusion as us, but add RGB
guidance in the depth encoder (see Figure 3.8).

All the preceding works presented so far, project the 3D point cloud
into the 2D camera space and then input it into a standard 2D CNN. An
important problem due to projection is that two points can be neighbors
in 2D, although they are far apart in 3D, which occurs especially at object
boundaries. Chen et al. (2019b) address this problem by building a 2D-3D
fusion block where a dense 2D convolution is computed in parallel to a
continuous convolution in 3D space. For the latter, the neighboring points
are sampled with kNN in 3D space for each pixel, which effectively excludes
2D neighbors that are far away in 3D. After that, the two resulting feature
maps are merged together again. By stacking multiple of those 2D-3D fusion
blocks, a deep network is created.

In summary, while recent methods outperform ours, they re-use several
of our findings and confirm our design choice of fusing sparse depth and
dense RGB inputs with a U-Net based architecture.

54 Fusing sparse depth and dense RGB for depth completion

RGB

sparse depth

dense depth

modality specific
encoders joint decoder

Figure 3.9: Our late fusion encoder-decoder architecture with modality-
specific encoders for RGB and sparse depth. The final feature maps from
both encoders are fed into a joint decoder where they are concatenated, then
we apply convolution to mix features followed by transposed convolution to
produce fused upsampled features at each resolution stage. Skip connections
from both encoders are used to preserve high resolution details.

3.3 Method

Our goal is to efficiently fuse sparse depth and dense RGB data for the task
of depth completion.

We first detail our encoder-decoder architecture and RGB+sD late-fusion
strategy. Then, we introduce our sparse data learning scheme, where test
time robustness against varying input sparsity can be achieved simply through
training with varying sparsity, a form of data augmentation.

3.3.1 Network Architecture

Our network architecture is depicted in Figure 3.9. Each modality has its
own encoder based on NASNet (Zoph et al., 2018). In the bottleneck at the
lowest resolution, the feature maps of the two encoders are concatenated,
then follows a convolution with ReLU activation to mix the features and a
transposed convolution with ReLU activation for upsampling, resulting in
fused upsampled features. For the next stages, the fused upsampled features
are concatenated with the RGB and sparse depth features (skip connections
like in U-Net(Ronneberger et al., 2015)) and again followed by convolution
and transposed convolution until the final spatial resolution is reached. The
last layer consists of a 1x1 convolution to regress the pixel-wise depth value.
It is also followed by a ReLU activation to cap negative depth values. Note,
that the last layer can be easily adapted to predict semantic segmentation
by setting the output channel size to the number of classes.

3.3. Method 55

(a) Early fusion (b) Late fusion (ours)

Figure 3.10: Visualization of early fusion (a) as opposed to our late fusion
framework (b).

Encoder-Decoder. For dense data, state-of-the-art methods in semantic
segmentation use encoder-decoder networks or dilated convolutions (Chen
et al., 2018). While the latter significantly reduces the number of param-
eters, they are ill-conditioned for sparse data as dilated kernel with zeros
between weights can miss available pixels in sparse data. In (Uhrig et al.,
2017), a network without any downsampling is used with at most 11x11 ker-
nels, leading to a rather small receptive field. As a consequence, Uhrig et al.
(2017) perform similarly as classical local interpolation (Ku et al., 2018). As
Zhang and Funkhouser (2018), we opt for an encoder-decoder with a larger
receptive field, thus enabling the use of context for better data completion.
Recent works since our publication have also adopted the encoder-decoder
approach (Yang et al., 2019; Eldesokey et al., 2019; Xu et al., 2019).

The encoder part of our network is an adaptation of NASNet (Zoph
et al., 2018) which is flexible and very efficient in terms of parameters vs.
performance. We use the mobile version to fit real-time constraints and
slightly modify it by removing batch normalization after the first strided
convolution layer for the sparse depth branch. The latter is necessary be-
cause zero values of missing pixels falsify the mean computation of the batch
norm layer. This was confirmed by Ma et al. (2019) after the publication of
our work.

We build our own custom decoder with transposed convolutions for up-
sampling, normal convolutions, and copy and concatenate skip connections
between the encoder and decoder stages of equivalent resolution like in U-
Net (Ronneberger et al., 2015).

Late fusion of sparse depth and RGB. The scene is sensed with a
camera and a depth sensor and we want our network to learn to use dense
RGB and sparse depth information jointly for better prediction. A naive

56 Fusing sparse depth and dense RGB for depth completion

(a) Fixed density of 0.1 (b) Varying density]0, 1]

Figure 3.11: Fixed vs. varying density in example training batches of 4. In
(a) the density is fixed to 0.1, while in (b) the density is varied image-wise
between 0 and 1, to increase test time robustness to different densities. In
synthetic data, here on Synthia, we can artificially create different densities
through uniform sampling.

strategy consists of averaging separate predictions from each modality, but
it is preferable to fuse features at an earlier stage to benefit from the com-
plementarity of the modalities. One possibility, is to apply an early fusion
like in (Ma and Karaman, 2018), where modalities are simply concatenated
channel-wise and fed to the network (Figure 3.10a).

However, the modalities are different in nature (RGB intensities, dis-
tance values) and in order to reason from both at the same time, it ap-
pears preferable to transform them to a similar feature space before fusing
them (known as late fusion, Figure 3.10b). A joint representation can be
enforced by using element-wise addition of features coming from modality
specific encoder networks (Chen et al., 2017b). However, we chose instead
to use channel-wise concatenation with a following convolution to allow the
two branches to provide information of distinct nature as in (Valada et al.,
2017).

3.3.2 Sparse Data Training

Varying density. Existing research surprisingly only uses fixed density
during training, although we found that training with varying density within
a range of]0, 1] naturally helps networks to be invariant to different densities,
as experimented with synthetic data in Section 3.4.3.1. In our implementa-
tion, the density is spatially uniform, but differs from frame to frame in one
batch (see Figure 3.11).

Another interesting proposal from DeVries and Taylor (2017) is to apply
rectangles cut-out on the sparse depth input data. While this should force
the network to use farther away features and thus greater context, it barely
improved results in our experiment.

3.3. Method 57

Synthia Kitti

(a) observed O (b) unobserved U (c) observed O (d) unobserved U

Figure 3.12: Examples of observed pixels O and unobserved pixels U for
Synthia and Kitti. We call the available pixels in the sparse depth input
the set of observed pixels O and define as unobserved pixels U the ones that
are available in the ground truth, but not in the sparse input. While an
inversion of the observed pixels gives us the unobserved pixels in the dense
example of Synthia, the ground truth is sparse in Kitti. Thus, even though
we predict a depth value for all pixels we can only compute the loss on the
unobserved pixels U depicted in (d).

Losses. In depth completion, we observe only a subset O of all pixels in
the sparse depth input. We predict the dense depth and then compute the
loss on unobserved pixels U , available in the ground truth, but not in the
input. We show examples for Synthia and Kitti in Figure 3.12. Thus, we
write the total loss Ltotal for a depth map as the mean pixel-wise error Epix
over unobserved pixels U :

Ltotal = 1
|U|

∑
u∈U

Epix(u). (3.1)

Other strategies, such as computing the loss on all pixels (unobserved and
observed) or using a weighted sum of observed and unobserved pixels losses,
worked less well. The interest of our choice is to favor learning to predict
the depth at unknown pixels over learning to reproduce already measured
data.

In accordance with Uhrig et al. (2017), we found the L1 loss to reach
slightly better results than L2 for depth prediction. Like Ummenhofer et al.
(2017), we train using inverse depth, measured in [1/km], because like this,
we are able to represent infinity (e.g. the sky) as 0. We apply the L1 loss to
the inverse depth output which is equal to the Kitti metric of inverse Mean
Average Error (iMAE).

In order to obtain the values for depth d, we reverse the inverse depth
dinv where dinv > 0 and set the output value to the maximum representable
depth dmax where the network regresses to dinv = 0 (non-activation). It

58 Fusing sparse depth and dense RGB for depth completion

reads:

d =
{
d−1
inv, for dinv > 0
dmax, for dinv = 0.

(3.2)

Following recent practices, we now think that a better choice would have
been clip the maximum resulting value of depth d to 85m to stabilize train-
ing, inspired by newer related works (Van Gansbeke et al., 2019). Similarly,
Ma et al. (2019) clip at a minimum of 0.9m. These values can be phys-
ically motivated, because LiDAR measurements become noisy above 85m
and below 0.9m is too near to the sensor.

3.3.3 Analysis of Validity Mask

A validity mask (Uhrig et al., 2017; Luo et al., 2016) is a binary matrix of
same size as the input data, with ones indicating available input data and
zeros elsewhere. To propagate the mask through the network, Uhrig et al.
(2017) use a max pooling of same kernel size k and stride s as the corre-
sponding feature convolution (see Figure 3.5b). Intuitively, the resulting
mask expresses whether the current input data seen by the filter contains at
least one valid pixel. The authors further normalize convolution by the num-
ber of valid input pixels to rescale valid outputs accordingly. The drawback
of such an approach is that the scaling can over-activate highly-upscaled
features at lower density, e.g. when there is only one valid pixel.

In Figure 3.13a, we can see that the mask saturation (the percentage
considered as valid) increases with input density as expected, but reaches
almost full saturation after only a few layers. This means that the validity
information is not useful in the later layers which is visible in Figure 3.13b,
showing an example of such a validity mask and how it is transformed after a
few layers. Another consequence is that the network tends to produce blurry
outputs as seen in Figure 3.14. We interpret that this is a consequence of
the normalization phase on the number of valid pixels, which processes a
mask with only one valid pixel in the same way as a fully valid mask. In an
attempt to address this issue, we tested average pooling to preserve the ratio
of valid/invalid pixels in the filter. However, this did not improve results.

We tested to let the network learn how to use the validity mask by
concatenating the actual validity mask channel-wise to the features before
each convolution. While it improves performance on small networks, we
observed no improvement with validity masks for large networks such as
NASNet.

Tests confirmed our analysis that, without any validity mask, large net-
works still manage to learn effective features on sparse data. Consequently,
we do not use any validity mask.

3.4. Experiments 59

0.00 0.25 0.50 0.75 1.00
Input density

0.0

0.5

1.0

M
as

k
sa

tu
ra

tio
n

Layer 1
Layer 2
Layer 3

(a) Mask saturation

Input Layer 1 Layer 2 Layer 3

(b) Mask at 0.1 density

Figure 3.13: Saturation of the validity mask for different input densities
with max pooling as Uhrig et al. (2017) (here 3 convs: stride 1, kernel size
3). (a) For density ≥ 0.3, the mask is saturated after first conv. (b) Even
at only 0.1 density, the validity mask is mostly saturated from layer 2 and
thus not informative.

3.4 Experiments

To evaluate our method we carried out experiments on two tasks: depth
completion (Section 3.4.3) and semantic segmentation (Section 3.4.4). For
both tasks we used either sparse depth (sD) LiDAR input, dense RGB input,
or a fusion of both, and tested on both synthetic (Synthia) and real data
sets (Kitti, Cityscapes).

We introduce the data sets in Section 3.4.1. On synthetic dataset Syn-
thia, we benchmark the early vs. late fusion, described in Section 3.4.3.1. In
Section 3.4.3.2, we first compare the performance of our approach to others
on Kitti Depth Completion benchmark and then carry out a low-resolution
LiDAR ablation study, where we reconstruct high quality depth maps from
as few as 8 LiDAR layers. Finally in Section 3.4.4, we extend to semantic
segmentation and prove that our method can segment in the camera image
space based on sparse depth input only. Furthermore, we show that seg-
mentation performance significantly improves when fusing RGB and sparse
depth compared to the RGB only baseline.

3.4.1 Datasets

Synthia. Ros et al. (2016) use the Unity game engine and provide RGB,
depth and semantics for urban and highway scenarios with pedestrian and
cars. We use summer sequences 1, 2, 4 and 6 for training and sequence 5
for testing (all views). With our split the training/validation/testing sets
contain 28484/1500/6296 frames, (bottom/center) cropped and rescaled to
320x160 pixels.

Sparse depth input is simulated through uniform sampling, by setting
different ratios of pixels to zero, which results in different densities. A density

60 Fusing sparse depth and dense RGB for depth completion

of 0.1 means that 10% of the pixels are available and 90% are not.

Kitti. The Kitti depth completion dataset provides RGB, raw LiDAR data
(64 layers HDL-64E) projected into the image plane, and sparse ground truth
from the accumulation of LiDAR point clouds with stereo consistency check
(Uhrig et al., 2017). Comparison against other methods (Section 3.4.3.2) is
performed at full-resolution (1216x352), but cropped (bottom/center) and
rescaled to 608x160 to reduce training time elsewhere.

Depth being sparse, we use max pooling to downsample it to avoid loos-
ing any points (common resize methods such as nearest interpolation would
take zeros into account and corrupt the output).

Cityscapes. Cityscapes (Cordts et al., 2016) provides RGB and stereo
disparity from German cities, with 20000 coarse and 3000 fine semantic
annotations for training. We resized the data from 2048x1024 to 512x256
to reduce computation.

3.4.2 Implementation

We use the Tensorflow library for implementation and provide architecture
details in Appendix A. As optimizer we use Adam with learning rate of
0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

All experiments have been carried out on a GTX 1080 Ti (11GB), except
the experiments for the Kitti benchmark at full resolution which have been
trained on a Tesla V100 (16GB) in order to fit into memory.

3.4.3 Depth completion

We first evaluate on synthetic data (Synthia) and then on real data (Kitti).
The metrics are from the Kitti benchmark: Mean Average Error (MAE, L1
mean over all pixels), Root Mean Square Error (RMSE, L2 over all pixels),
both in mm, as well as their inverse depth counterparts iMAE and iRMSE in
1/km between prediction ŷ and ground truth y averaged over the number N
of evaluated pixels. For the experiment on synthetic data in Table 3.1 we also
report the δ-metric as defined by Eigen et al. (2014), which is the percentage
of relative errors inside a certain threshold ε = {1.05, 1.10, 1.25, 1.50}:

δ = 1
N

∑
i

(δi < ε), δi = max
(
ŷi
yi
,
yi
ŷi

)
. (3.3)

3.4.3.1 Synthetic Data (Synthia)

Fixed Density. For this experiment we train and evaluate our method
on a very low input pixel density of 0.02 (only 2 percent of pixels avail-
able). While the density is fixed during training, the valid pixel positions

3.4. Experiments 61

Synthia Kitti

RGB input

sD input

Sparse Conv Uhrig et al. (2017)

IP-Basic Ku et al. (2018)

Ours sD

Ours RGB + sD

Ground truth

Figure 3.14: Qualitative results for depth completion on Synthia (synthetic)
at 0.02 density and Kitti (real) validation set with 64 layers LiDAR.

62 Fusing sparse depth and dense RGB for depth completion

Input iMAE δ1.05 δ1.10 δ1.25 δ1.50

RGB 13.56 0.56 0.69 0.85 0.92
sD 4.05 0.86 0.91 0.95 0.97
RGB + sD (Early fusion) 4.37 0.82 0.89 0.95 0.97
RGB + sD (Late fusion) 2.96 0.87 0.92 0.96 0.98

Table 3.1: Depth completion on Synthia at input depth density of 0.02. For
iMAE lower is better, for δ-metric higher is better, indicated numbers are
thresholds. While sparse depth is clearly the most important modality for
depth prediction, late fusion can considerably improve the results.

are uniformely sampled. We train for 30 epochs and cherry-pick the best
weights and report the iMAE as well as the δ-metric in Table 3.1. While
sparse depth (sD) alone (4.05) performs better than RGB alone (13.56),
proving that our network handles sparse data efficiently, the best results
are obtained with the late fusion of RGB + sD (2.96). This is probably
because the network can use the learned visual features from RGB to fill the
holes in the sparse depth map, combining those complementary modalities
efficiently. Late fusion clearly outperforms early fusion confirming that one
network branch per modality is needed to map modalities to a similar feature
space before fusion. Early fusion performs approximately as good as sparse
depth only suggesting that the network simply ignores the less informative
input modality. Qualitative results in Figure 3.14 exhibit sharp and precise
completion for sD and even better for RGB+sD (notice the pedestrians).
While Uhrig et al. (2017) perform decently, the result of Ku et al. (2018)
is sharp but chaotic due to the very low density. Note that sparse depth
is much more important as modality than RGB, even at this low sparsity
level, because the input is a subset of the ground truth and depth prediction
from RGB is a challenging task. This effect is even stronger in the case
of the Kitti dataset, because the ground truth is constructed with imper-
fect LiDAR measurements instead of perfect synthetic data as in Synthia.
Thus, giving LiDAR as input enables the network to overfit to errors in
the LiDAR-based ground truth. Another consequence is that the network
cannot be trained to perform depth completion outside of the field of view
of the depth sensor, because ground truth is never available in this area (see
sparse ground truth for Kitti in last row of Figure 3.14). This is why in
Section 3.4.3.2 we conduct an ablation study: LiDAR layers are removed to
test the robustness to lower density and the extrapolation capabilities of the
network.

Varying Density. We further investigate the influence of different input
densities at test time and plot results in Figure 3.15 for sparsity invariant
CNNs (Uhrig et al., 2017) trained as in the paper with a fixed density (here
of 0.1), our method trained at fixed density of 0.1, and our method trained at

3.4. Experiments 63

0.02 0.05 0.1 0.3 0.5 0.7 0.9
Pixel Density

2

4

6

8

10

12

iM
AE

sparse conv, 0.1
ours, 0.1
ours, varying

Figure 3.15: Test results on Synthia for depth completion with sparse depth
only input at different densities. We compare sparse convolution (Uhrig
et al., 2017) trained at fixed density of 0.1 (blue), our network trained at
fixed density of 0.1 (orange) and our network trained at varying densities
between 0 and 1.

varying density randomly chosen in]0, 1] per image. Despite being trained
at fixed density, the performance of Uhrig et al. (2017) is almost perfectly
stable over different densities at test time, except for the lowest of 0.02. Our
method trained at fixed density of 0.1 achieves much better test results close
to the training density. However, the error increases drastically at lower
or higher density. The network thus specializes in densities seen during
training. However, when we train our network at varying density between
0 and 1, it gets very robust and we obtain better results than Uhrig et al.
(2017) at all densities including at the lowest density of 0.02.

Results demonstrate that our method with varying training density could
perform under a large variety of sensor densities which has great implications
for LiDAR applications. For the other experiments, where train and test
data have the same density, we use a fixed density to obtain the best results
at test time.

3.4.3.2 Real Data (Kitti)

Depth Completion benchmark. In Table 3.2 we report the best pub-
lished methods from the Kitti benchmark. At the time of submission, we
ranked first. Note that previous methods from Uhrig et al. (2017) and Ku
et al. (2018) do not use additional dense RGB input. We outperform them,
even when not using RGB. Since our publication, many more methods have
been published, as described in Section 3.2. All but one of these recent
methods outperform us in terms of RMSE. However, we are still compa-
rable to the state-of-the-art on the other metrics. Training directly with
RMSE as loss function, as done by other works, would certainly help to
optimize for this metric. While Eldesokey et al. (2019), Xu et al. (2019),
Van Gansbeke et al. (2019) and Qiu et al. (2019) explicitly use confidence

64 Fusing sparse depth and dense RGB for depth completion

Method Input iRMSE iMAE RMSE MAE

Pre-submission

Uhrig et al. (2017) sD 4.94 1.78 1601.33 481.27
Ku et al. (2018) sD 3.78 1.29 1288.46 302.60

Our submission

Jaritz et al. (2018b) sD 2.60 0.98 1035.29 248.32
Jaritz et al. (2018b) RGB+sD 2.17 0.95 917.64 234.81

Post-submission

Cheng et al. (2018) RGB+sD 2.93 1.15 1019.64 279.46
Yang et al. (2019) RGB+sD 2.10 0.85 832.94 203.96
Eldesokey et al. (2019) RGB+sD 2.60 1.03 829.98 233.26
Ma et al. (2019) RGB+sD 2.80 1.21 814.73 249.95
Xu et al. (2019) RGB+sD 2.42 1.13 777.05 235.17
Van Gansbeke et al. (2019) RGB+sD 2.19 0.93 772.87 215.02
Qiu et al. (2019) RGB+sD 2.56 1.15 758.38 226.50
Chen et al. (2019b) RGB+sD 2.34 1.14 752.88 221.19
Cheng et al. (2019) RGB+sD 2.07 0.90 743.69 209.28
Tang et al. (2019) RGB+sD 2.25 0.99 736.24 218.83

Table 3.2: Depth completion performance on the Kitti benchmark. For
all metrics, lower is better. We split into methods before and after our
submission to establish chronological order and highlight the best results at
submission time in blue and the best post-submission results in red.

RGB input sD input

Sparse Conv Uhrig et al. (2017) IP-Basic Ku et al. (2018)

Ours RGB+sD

Figure 3.16: Qualitative results from public Kitti Depth Completion bench-
mark (recolored).

3.4. Experiments 65

or the auxiliary task of surface normal prediction to improve performance,
Chen et al. (2019b) and Tang et al. (2019) make pure network architecture
improvements with 2D-3D fusion blocks and an encoder-decoder late-fusion
approach similar to ours, but, among other changes, with a second decoder
which purpose is to guide the dense depth decoder.

Figure 3.16 displays the visual output (recolored) from the benchmark
website (test set). Classical morphological interpolation as IP Basic (Ku
et al., 2018) is favored by the dense input of the 64 layers LiDAR. It pro-
duces very sharp output but fails logically to reconstruct shapes when the
density is low. Sparse convolution (Uhrig et al., 2017) does better on shapes
by integrating learned priors, but the output is rather blurry. These are
expected counterparts as explained in Section 3.3.3.

Because the ground truth is sparse and only inside the LiDAR field of
view, the network is never supervised regarding its prediction at the top of
the image. This is better understood looking at results from the validation
set (Figure 3.14) as we can display the ground truth along with the results.
We use full resolution 1216x352, batch size 8 and train 20 epochs.

LiDAR Ablation Study. As the ground truth is obtained from LiDAR
and because inferring the depth from monocular vision is an ill-posed task
as stated by Eigen et al. (2014), the depth modality is much more important
than RGB. To compensate for that and to give a clue which depth map pre-
cision can be obtained with fewer layer LiDARs, we subsample the 64 layers
of Velodyne LiDAR data to simulate LiDARs with 8, 16 and 32 layers1. This
study is valuable to explore possible applications for low-resolution, low-cost
LiDARs such as the Valeo Scala series, produced for the mass market.

In Figure 3.17a we can see that by decreasing the number of input layers
the dense depth map prediction deteriorates as expected. The RGB input
always improves, especially at lower densities. Qualitative results in Fig-
ure 3.17b are remarkable, even with only 8 layers, i.e. 0.008 density. Note
reconstruction of the bike in the foreground.

3.4.4 Semantic Segmentation

In this section we investigate how sparse depth input can improve seman-
tic segmentation by evaluating our method on synthetic data (Synthia, 13
classes) and real data (Cityscapes, 19 classes). We do not use the Kitti
segmentation benchmark, because the corresponding LiDAR point clouds
are not provided and the number of frames for segmentation ground truth
is very small (200).

1We subsampled every 2nd, 4th, and 8th layer to simulate 32, 16 and 8 layers, un-
twisted data linearly using the car speed from IMU, and projected into the camera image
plane.

66 Fusing sparse depth and dense RGB for depth completion

8 16 32 64
Number of lidar layers

1.5

2.0

iM
AE

sD
RGB+sD

(a) iMAE error

8 layers (6 visible) 16 layers (12 visible)

sD input

Ours sD

Ours RGB+sD
32 layers (23 visible) 64 layers (45 visible)

sD input

Ours sD

Ours RGB+sD

(b) Qualitative results

Figure 3.17: Depth completion with simulated fewer layer LiDARs (down-
sampling of 64 layers input). The graph in (a) shows that fusion (RGB+sD)
is always better than depth only (sD). At only 8 layers, RGB+sD fusion
improves by a large margin over depth only. Qualitatively, shown in (b),
even with only 8 layers our method completes the depth map remarkably
well.

3.4. Experiments 67

Input mIoU

RGB (baseline) 63.47
sD 57.10
RGB + sD (Early Fusion) 65.68
RGB + sD (Late Fusion) 70.74

(a) Synthia (synthetic)

Input mIoU

RGB (baseline) 50.13
sD 44.18
RGB + sD (Early Fusion) 50.10
RGB + sD (Late Fusion) 57.82

(b) Cityscapes (real)

Table 3.3: Semantic segmentation on (a) Synthia (0.3 uniform sparse depth)
and (b) Cityscapes (stereo depth) exhibit similar performance. RGB is the
most important modality, but fusion with sparse depth always improves
performance.

Note that our goal is not to improve state-of-the-art results in segmenta-
tion, but rather to compare against a RGB-only baseline. In the literature,
semantic segmentation is usually carried out with RGB only and we prove
that our method outperforms the baseline using additional sparse depth data
as input.

To adapt our network to semantic segmentation, we modify the last
layer by simply setting the number of output channels equal to the number
of classes, instead of the 1-channel depth regression, and train with a cross
entropy loss. Note, that we do not investigate the multi-task setting with
semantic segmentation and depth regression at the same time, i.e. when
we train our network on the semantic segmentation task, we do not let it
predict dense depth. We report the mean Intersection over Union (mIoU),
first computed per class and then averaged over classes.

3.4.4.1 Synthetic Data (Synthia)

For sparse depth, we use a pixel density of 0.3, close to the 64 Velodyne
LiDAR (0.27 inside the FOV) and trained for 30 epochs with a batch size
of 16. The results in Table 3.3a indicate, as expected, that texture and
intensity from RGB data carry more semantic information than depth. As
for depth completion, RGB+sD late fusion works best while early fusion
fails to integrate depth features and reaches only slightly better output as
RGB only. In Figure 3.18, sparse depth only shows very acceptable results
but fails as expected on lane markings and far away buildings. With our
late RGB+sD fusion the network better reconstructs the shape of cars.

3.4.4.2 Real Data (Cityscapes)

On real data (see Table 3.3b), we obtain similar results relatively to Synthia,
although the nature of the depth data provided in Cityscapes is different:
sparsity in patches, unscaled disparity from stereo camera instead of metric
distance. We trained 50 epochs on coarse labels and then 50 epochs on fine

68 Fusing sparse depth and dense RGB for depth completion

Synthia Cityscapes

RGB baseline

Ours sD

Ours RGB+sD

Ground truth

Figure 3.18: Qualitative results for semantic segmentation on the synthetic
Synthia and the real Cityscapes dataset. In Synthia, we use a fixed sparse
depth map density of 0.3. Note, that the network is, as expected, not able to
predict lane markings using only sparse depth (sD) input. For Cityscapes,
the input is of different nature and very dense (unscaled disparity from
stereo camera). For both datasets, it is interesting to note that semantic
segmentation from depth only (sD) has comparable performance as the RGB
baseline and that fusion (RGB+sD) leads to the best results.

3.5. Discussion 69

ground truth using a batch size of 16. The qualitative results in Figure 3.18
are satisfying, although thin structures like light poles are never segmented.
Again RGB+sD fusion yields the best results.

Our findings demonstrate that sparse depth can directly be input into a
network for semantic segmentation and possibly other tasks such as object
detection without first generating the dense depth map like is commonly
done in RGB-D networks as for example in (Gupta et al., 2014). Addition-
ally, our method works with various densities and sparsity types (Figure 3.4)
given that the latter does not change between train and test.

3.5 Discussion

Review of our work. In retrospect, our design choices of using a U-Net
style encoder-decoder network and fusing with RGB have been confirmed
by the recent state-of-the-art (Yang et al., 2019; Eldesokey et al., 2019; Ma
et al., 2019; Xu et al., 2019; Tang et al., 2019).

The late-fusion strategy has been used in multiple works (Yang et al.,
2019; Eldesokey et al., 2019) and extended by the currently first ranking
method (Tang et al., 2019). However, early fusion (Ma et al., 2019) and
continuous fusion (Chen et al., 2019b) also achieve very good performance.
In general, we can say that there is not one best fusion strategy; it depends
on the network architecture.

While the common choice for the encoder backbone is ResNet (He et al.,
2016), we were the only ones using NASNet (Zoph et al., 2018), which
we chose because of its better performance in classification benchmarks.
However, today we think that ResNet is a good choice as it is much simpler
to implement and the state-of-the-art has shown superior results with the
ResNet backbone.

A limitation of our approach was that we sometimes encountered diver-
gence of the loss. Other authors have apparently solved this problem by
clamping the maximum predicted depth to 85m, as the LiDAR measure-
ments become noisy above this threshold. We hypothesize that this bounds
the loss and stabilizes training.

Data challenges. The ground truth data is generated automatically which
can induce bias. In Kitti, the ground truth is obtained by accumulating 11
LiDAR frames: the current frame, the 5 preceding and the 5 succeding
frames. In post-processing, the dense accumulated depth map is compared
to the disparity map, obtained from stereo camera, and inconsistent pixels
are removed from the ground truth depth map. This creates a bias: The
current LiDAR frame is used as input data, but also in the ground truth.
Thus, overfitting to the LiDAR can improve performance and on the con-
trary, learning the depth in a self-supervised fashion with left-to-right stereo

70 Fusing sparse depth and dense RGB for depth completion

(a) Camera image

(b) Sparse depth from LiDAR (points are dilated for better visualization)

(c) "Dense" ground truth for learning depth completion

(d) Unprojection of depth maps to 3D, zoomed view from the right side of the bus.

Figure 3.19: Errors in dense ground truth due to accumulation. Although
the 2D depth map on the bus seems consistent in (c), the errors become
visible in (d) the unprojection to 3D. The locations of the bus at the pre-
ceding and succeeding time frames are still clearly visible, probably because
the consistency check with stereo camera is limited to shorter distances up
to ∼30m.

3.5. Discussion 71

warping can not match the performance of supervised learning (Ma et al.,
2019).

Apart from this bias, moving objects are problematic, because they lead
to traces in the 3D data due to accumulation over several time steps. Al-
though, when constructing the Kitti depth completion dataset, Uhrig et al.
(2017) removed inconsistent pixels using stereo vision, there are limitations
to that. One important case is distances beyond ∼30m, where the precision
of stereo sharply decreases due to limited image resolution as was stated in
(Wang et al., 2019a; You et al., 2020). We show such an example in Fig-
ure 3.19. One sees that if a moving object is far away, the 3D traces are still
present in the ground truth which negatively influences training and induces
a bias in evaluation. Solutions to that problem would be to remove moving
objects from ground truth altogether. It would still be possible to learn
depth, for instance from static cars (e.g. parked or waiting at red light).
Another possibility is to use a second depth sensor for ground truth only.
We could imagine wanting to densify a low cost, low resolution LiDAR, fus-
ing with the dense camera image, where a high resolution LiDAR provides
the depth completion ground truth.

Beyond depth completion. Depth prediction is an important low-level
task, but usually not the final goal. Pseudo-LiDAR++ (You et al., 2020)
focuses on 3D object detection: first, a depth map is predicted from stereo
vision and refined using the point cloud from a 4-layer low-resolution Li-
DAR. Second, the refined depth map is unprojected to a 3D point cloud
and fed into a 3D objection detection framework such as (Shi et al., 2019).
The innovation lies in the connection of existing works in dense depth map
prediction and 3D object detection from point clouds, as well in the analysis
that if the final prediction space is 3D, the data should be lifted from 2D to
3D first. It is also very interesting from an industrial view point, because
it possibly allows for a low-cost 3D perception system by combining camera
and low-resolution low-cost LiDAR. We think that a possible disadvantage
of (You et al., 2020) is that the 3D point cloud is an information bottleneck
where visual appearance features from the image are lost. Lifting 2D image
features to 3D can help to improve 3D final object detection as we show in
the next chapter.

While depth completion is usually done in the 2D camera space in out-
door environments, scene completion of 3D point clouds uses indoor datasets,
typically obtained from many RGBD frames. Therefore, one can either un-
project a single depth map to 3D (Song et al., 2017) and then complete
it in 3D, or construct a point cloud using many RGBD scans (Dai et al.,
2018, 2019). Similar to depth completion, Dai et al. (2019) use incomplete
ground truth, but use an even more incomplete input, obtained from fewer
RGBD scans. We think that also for the outdoor setting it would be inter-

72 Fusing sparse depth and dense RGB for depth completion

esting to extend from 2D depth completion to 3D scene completion, as the
scene understanding tasks for applications such as autonomous driving are
ultimately in 3D space.

3.6 Conclusion
We presented a network that fuses RGB and sparse depth with a late-fusion
approach, using a U-Net inspired encoder-decoder network with NASNet
encoder blocks. Following our study of sparse data, we do not use a validity
mask, as we have found imperically that it does not help. On the opposite,
removing batch norm led to improvements.

Our results on depth completion were better than those of the other pub-
lished methods on the Kitti benchmark at the time of submission, but since
have been outperformed by approaches that are often similar in architecture
design, i.e. that use U-Net style encoder-decoder with fusion of RGB and
sparse depth.

A study on low resolution LiDAR has shown that a qualitatively remark-
able performance can be achieved with only 8 layer LiDAR which advocates
for data-driven sensor fusion with RGB. Changing only the last layer, we
also performed semantic segmentation and demonstrated important perfor-
mance gains on synthetic and real datasets with our late fusion approach
compared to RGB only.

With their 2D-3D fusion blocks, Chen et al. (2019b) drew attention to
the problem of projecting 3D data into 2D space. Indeed, neighboring pixels
in 2D are not necessarily close in 3D. Typically, pixels can be neighbors in
2D even though an occlusion boundary lies between them, which means that
they are far apart in 3D. We address this problem in the next chapter, where
we fuse data in 3D space by lifting 2D data to 3D, rather than projecting
3D data to 2D.

Compréhension 3D de scènes
avec PointNet multi-vues

French Summary of the Chapter “Multi-view Point-
Net for 3D scene understanding”
Dans ce chapitre, nous fusionnons un nuage de point 3D et l’image 2D
directement dans l’espace 3D pour éviter la perte d’informations dû à la
projection. Pour cela, nous calculons les caractéristiques d’image issues de
plusieurs vues avec un CNN 2D, puis nous les projetons dans un nuage de
points 3D global pour les fusionner avec l’information 3D. Par la suite, ce
nuage de point enrichi sert d’entrée à un réseau "point-based" dont la tâche
est l’inférence de la sémantique 3D par point.

Chapter 4

Multi-view PointNet for 3D
scene understanding

The contributions of this chapter were published in (Jaritz et al., 2019):

Jaritz, M., Gu, J., and Su, H. (2019). Multi-view PointNet for 3D scene
understanding. In ICCV Workshop 2019.

The code is publicly available at:

https://github.com/maxjaritz/mvpnet.

This work was done while visiting Hao Su’s lab1 at University of Cal-
ifornia, San Diego for 5 months. The lab’s main research goal is to learn
to perceive the 3D physical world and interact with it. Core areas of re-
search are computer vision and graphics (large-scale dataset construction,
3D object/scene understanding), machine learning and generic AI (reinforce-
ment and imitation learning) and robotics (object manipulation and realistic
physical robot simulators).

The method presented in this chapter is applied to indoor instead of au-
tonomous driving data with the motivation of exploring new 3D perception
datasets.

1https://cseweb.ucsd.edu/~haosu/

https://github.com/maxjaritz/mvpnet
https://cseweb.ucsd.edu/~haosu/

76 Multi-view PointNet for 3D scene understanding

Contents
4.1 Introduction . 77

4.1.1 Outdoor vs. indoor data 79
4.2 Related Work . 81
4.3 MVPNet . 85

4.3.1 Overview . 85
4.3.2 View Selection . 86
4.3.3 2D Encoder-Decoder Network 87
4.3.4 2D-3D Feature Lifting Module 87
4.3.5 3D Fusion Network . 88

4.4 Experiments on ScanNet 89
4.4.1 ScanNet Dataset . 89
4.4.2 Implementation Details 89
4.4.3 3D Semantic Segmentation Benchmark 90
4.4.4 Robustness to Varying Point Cloud Density 93

4.5 Ablation Studies . 93
4.5.1 Number of Views . 95
4.5.2 Feature Aggregation Module 95
4.5.3 Fusion . 97
4.5.4 Stronger Backbone . 97

4.6 Experiments on S3DIS 98
4.6.1 S3DIS Dataset . 98
4.6.2 3D Semantic Segmentation 98

4.7 Conclusion . 99

4.1. Introduction 77

(a) Camera image (b) Depth map (projected 3D point cloud)

(c) 3D point cloud

Figure 4.1: Problems with regard to neighborhood definition in 3D-2D pro-
jection. In (a) we show the image and in (b) the projection of the 3D
point cloud into the 2D image space, resulting in a (sparse) depth map. In
(a) and (b), the van and the bike are neighbors, as highlighted by the red
square. However, in (c), where the 3D point cloud is depicted, the objects
are naturally separated. Data from Kitti (Geiger et al., 2013).

4.1 Introduction

In th previous chapter, we have proposed an architecture to fuse 2D images
and 3D point clouds in 2D image space. The projection of the 3D point cloud
into 2D image space represents a loss of information, because the neighbor-
hood definition is richer in 3D than in 2D, which we show with an example
in Figure 4.1. If the square in Figure 4.1a would be a convolutional kernel,
then the local features of the van and the bike would be mixed which can
lead to confusion and decrease the performance of semantic segmentation.
This does not happen in 3D in Figure 4.1c, because the objects are well
separated. In this chapter, our goal is to perform fusion of images and point
clouds in 3D, rather than 2D space, to leverage the more exact neighborhood
definition. This is especially helpful if the final task is three-dimensional,
such as 3D object detection or 3D semantic segmentation, depicted in Fig-
ure 4.2. Those tasks are crucial to applications such as virtual reality and
autonomous cars, because they need to operate in the 3D world.

The field of 3D perception is evolving at a fast pace driven by the in-
troduction of new datasets – for example ScanNet (Dai et al., 2017), Stan-

78 Multi-view PointNet for 3D scene understanding

point cloud semantic label
prediction

MVPNet+

multi-view images

Figure 4.2: Our MVPNet (Multi-View PointNet) takes dense multi-view
images and a sparse point cloud as input and fuses them to predict the
semantic labels for each point.

ford Indoor 3D (Armeni et al., 2017), Semantic3D (Hackel et al., 2017),
SemanticKITTI (Behley et al., 2019) – and powerful 3D networks – for in-
stance PointNet++ (Qi et al., 2017b) or SparseConvNet (Graham et al.,
2018).

However, efficiently fusing data from the 2D and 3D domains remains
challenging, because there is no discrete one-to-one mapping between 2D
and 3D data, and also the neighborhood definitions in 2D and 3D are differ-
ent for convolution. More critically, while neighboring pixels are defined by
the discrete grid, 3D points are defined at unstructured continuous locations.
Additionally, there can be a discrepancy in resolution, usually occuring with
3D to 2D projection. For example, we have seen in Chapter 3 for the Kitti
dataset, that when the point cloud from a Velodyne HDL-64 Lidar is pro-
jected into the camera image, it covers only 5.9% of the pixels.

In indoor datasets, 3D scenes are usually reconstructed from a sequence
of frames (a video) that represents different views. While it is beneficial to
incorporate detailed local information from partial views of the scene, it is
challenging, because those views must be lifted into a canonical space where
they can be fused in the global context and because the frames need to be
selected so as to maximize information. Additionally, the number of views
which we are able to process is limited by computational resources.

Point cloud based neural networks have been shown to generate power-
ful geometry cues for 3D scene understanding. However, some objects lack
geometric saliency and cannot be distinguished by their shape, for exam-
ple when they have flat surfaces such as doors, refrigerators and curtains.
Therefore, additional color information should be leveraged, but recent re-
sults from Wu et al. (2019b) have shown that naively feeding colored point
cloud (XYZRGB) to point cloud based networks does only marginally im-
prove the performance over simple point cloud input (XYZ).

We argue that, because RGB cameras have much higher spatial resolu-
tion than 3D sensors in most realistic settings, it is better to compute image
features in 2D first before lifting the 2D information to 3D. In this manner,

4.1. Introduction 79

it is possible to gather additional information from higher resolution images
and it is also natural from a sensor fusion perspective, to push modality
centric features from different sources to 3D for their combination.

As different representations in 3D exist (voxel, point-cloud, multi-view,
etc.), their respective scene understanding methods evolve in parallel. For
voxel-based methods, there has been work on how to fuse geometry and
image data coherently by unprojecting image features to 3D space (Dai
and Nießner, 2018). However, for the point cloud domain, the common
practice is to sparsely copy RGB information to points and there lacks a
systematic exploration of how to conduct the fusion more effectively. In
order to address this significant drawback of point cloud based methods, we
propose MVPNet (Multi-View PointNet), where we first compute 2D image
features on multiple, heuristically selected frames, then lift those features
to 3D and adaptively aggregate them into the original point cloud (XYZ).
Finally, the multi-view augmented point cloud is fed into PointNet++ (Qi
et al., 2017b) for semantic segmentation.

The are four advantages of our method. First, the lifted 2D features
contain contextual information thanks to the receptive field of the 2D net-
work. Second, the complementary RGB and geometry features are jointly
processed in natural, canonical 3D space. Third, thanks to lifting multiple
views to 3D space, we are able to process multiple views at the same time
in a local-to-global approach. And fourth, our framework is general as it is
independent from the architecture of the 2D and 3D network backbone.

In summary, the key contributions are as follows:

• We design an architecture that first computes 2D features for each
view, then lifts those features to canonical 3D point cloud space and
is followed by a 3D network to carry out the task of 3D semantic
segmentation. This allows the fusion of complementary features from
RGB and point cloud, and to jointly exploit multiple local views in a
global context.

• We provide insights to the design choices in dense-2D/sparse-3D point
cloud fusion based on extensive experiments, and showcase its excellent
robustness to very sparse point clouds.

For the task of 3D semantic segmentation, our method outperforms all
other 2D-3D fusion methods on the ScanNet dataset (Dai et al., 2017) and
reaches competitive results on S3DIS (Armeni et al., 2017).

4.1.1 Outdoor vs. indoor data

In this chapter we focus on indoor datasets, as opposed to the rest of this
thesis, where we use outdoor data from driving datasets. In Figure 4.3
and Table 4.1, we compare between the ScanNet indoor (Dai et al., 2017)

80 Multi-view PointNet for 3D scene understanding

(a) ScanNet (Dai et al., 2017)

(b) SemanticKITTI (Behley et al., 2019)

Figure 4.3: Global point clouds, colored with semantic labels and obtained
from (a) reconstruction using many RGB-D frames, (b) 360° LiDAR. The
projected RGB frames are shown in image colors. While there are (a) mul-
tiple views in ScanNet (only 3 out of 5577 views are shown), (b) there is
only a single view in SemanticKITTI.

4.2. Related Work 81

Characteristic ScanNet SemanticKITTI

Space indoor outdoor
Moving objects 7 3
3D semantic segmentation scene-wise frame-wise

3D sensor Depth camera (Structure) LiDAR (Velodyne HDL-64E)
Max. distance (specs) 5m 120m
Field of View (FOV) same as RGB camera overlap with RGB camera
3D points in RGB camera FOV ∼300k ∼20k

Table 4.1: Comparison of 3D semantic segmentation datasets ScanNet (Dai
et al., 2017) and SemanticKITTI (Behley et al., 2019).

and SemanticKITTI outdoor dataset (Behley et al., 2019). Both are popu-
lar benchmarks for 3D semantic segmentation. While the 3D geometry in
ScanNet was collected with a depth camera, in SemanticKITTI the 3D data
comes from LiDAR that has much lower resolution. As ScanNet features
scenes of apartment rooms and offices that are spatially bounded and static,
it is comparably simple to reconstruct a dense mesh from the whole scene.
SemanticKITTI on the other hand, consists of spatially unbounded driving
scenes where reconstruction is much more complex, because of changing loca-
tion of moving objects across frames. Scene-complete point clouds sampled
from the reconstructed 3D mesh in ScanNet contain many different viewing
angles of the same object, while scans in the SemanticKITTI benchmark are
evaluated frame-wise and thus just show objects from a single perspective.
When designing a 2D-3D fusion algorithm, ScanNet is thus more complex,
as one has to take into account multiple 2D views to cover the 3D point
cloud. As there are many views (in Figure 4.3a we only show 3 out of 5577),
relevant ones have to be selected so as to maximize the information in them.

Despite those important differences between indoor and outdoor data,
we think that it is beneficial to exploit them both, because it allows gaining
a deeper understanding of general problems such as fusion. Moreover, there
can be knowledge transfer, i.e. an algorithm developed in the indoor setting
can be adapted to the outdoor setting and vice versa.

4.2 Related Work

2D to 3D Lifting. Several works have shown that lifting 2D features to
3D leads to better performance than just lifting RGB values (Liang et al.,
2018; Dai and Nießner, 2018; Su et al., 2018; Chiang et al., 2019). They
do so by establishing 2D-3D pixel-to-point correspondences to lift low-level
features to 3D, as opposed to Qi et al. (2018) where only high-level 2D object
proposals are lifted to 3D frustums.

Liang et al. (2018) gather 2D image features at nearest neighbor lo-
cations defined by a LiDAR point cloud to build a dense bird view map.

82 Multi-view PointNet for 3D scene understanding

Figure 4.4: (Dai and Nießner, 2018) propose 3DMV where multiple views are
selected and the corresponding RGB images fed into a 2D network. The 2D
features are then individually unprojected (synonymous to backprojected)
into a global 3D voxel representation of the scene. In order to combine the
resulting 3D tensors, voxel max pooling is used. Then, a dense 3D CNN
that takes RGB and geometry features as input produces the 3D semantic
segmentation. Source: Dai and Nießner (2018).

3DMV (Dai and Nießner, 2018), as depicted in Figure 4.4, consists in un-
projecting multiple 2D image feature maps to 3D voxel-volumes which are
combined by max-pooling and then fed into a dense 3D CNN. One drawback
of this approach is that it is limited in resolution and has a long runtime,
because it uses dense voxels. SPLATNet (Su et al., 2018) takes point clouds
and images as input and projects them on a permutohedral lattice for con-
volution and 2D-3D fusion. In our approach, we focus on fusing multi-view
features with an aggregation module directly in the canonical point cloud
space. As opposed to voxel (Dai and Nießner, 2018), permutohedral lat-
tice (Su et al., 2018) and birdview (Liang et al., 2018) representation, we
use point cloud space in this work. The advantage is that once all modali-
ties are represented in a 3D point cloud, correspondence between two data
points is precisely defined by distance in the continuous domain without dis-
cretization errors. Furthermore, operating directly on point clouds, a sparse
representation, guarantees fast runtime and low memory consumption.

Concurrently with our work, Chiang et al. (2019) published a method
similar to ours. While they share the basic idea with us – lifting 2D image
features from local views to the global point cloud – their approach differs
from ours in other aspects. In particular, Chiang et al. (2019) re-render
multiple images with different viewing angles from the mesh which are fed
into the quite large DeepLab network (Chen et al., 2018). On the contrary,

4.2. Related Work 83

Figure 4.5: PointNet++ (Qi et al., 2017b) directly takes point clouds as
input and uses downsampling, akin to CNNs, represented in the figure as
the ‘sampling & grouping’ operation. For segmentation, the architecture
follows an encoder-decoder approach with skip connections and interpolation
for upsampling. Source: Qi et al. (2017b).

(a) Dense convolution (b) Sparse convolution (Graham et al., 2018)

Figure 4.6: Comparison of dense and sparse convolution. (a) Dense convolu-
tion. On the left is sparse input data, in the middle the result after applying
standard 3x3 convolution with constant weights 1/9 and on the right the
result after again applying that convolution. (b) Submanifold sparse con-
volution (Graham et al., 2018) is applied at three different locations. The
red pixels are ignored and only the pixels shown in green contribute to the
result. Source: Graham et al. (2018).

we use the original images with higher quality and feed it into a smaller,
more efficient architecture that we derived from U-Net (Ronneberger et al.,
2015). While Chen et al. (2018) use the mesh to propagate the unprojected
2D features into the 3D point cloud, we use a module that adaptively learns
to aggregate features and handles overlapping views. Like us, Chen et al.
(2018) use PointNet++ (Qi et al., 2017b) as 3D network.

3D Semantic Segmentation. The aim of 3D semantic segmentation is
to predict a class label for every point in a 3D point cloud. While images are
dense tensors, 3D point clouds are sparse and can be represented in multiple
ways which leads to competing network families that evolve in parallel.

In voxel-based networks the raw point cloud data is transformed into a

84 Multi-view PointNet for 3D scene understanding

discrete grid of cells. In practice, most of the cells are empty and only vox-
els that lie on the object surface are occupied. Given this sparsity, applying
dense 3D convolution (Çiçek et al., 2016; Kamnitsas et al., 2017; Dai and
Nießner, 2018) is not efficient. To speed up computation, reduce memory
needs and in consequence allow for higher resolution grids, efficient sparse
voxel representation can be leveraged. Therefore Riegler et al. (2017) use
octrees and Graham et al. (2018) hash tables. The latter, which we denote
as SparseConvNet in the following, defines a very efficient way to deal with
sparsely populated voxels by restricting computations to active voxels. In
Figure 4.6, we show a comparison of dense (standard) and sparse convolu-
tion. Dense convolution in Figure 4.6a dilates sparse data, similar to the
dilation of the validity mask for depth completion in Figure 3.13. On the
contrary, submanifold sparse convolution (Graham et al., 2018), shown in
Figure 4.6b, only produces an output prediction on the original valid loca-
tions which, in the segmentation case, permits to restrict the prediction of
labels to active locations.

Point cloud based networks directly consume point clouds. PointNet (Qi
et al., 2017a) leverages shared Multi Layer Perceptrons (MLPs) to compute
point-wise features and uses max-pooling to obtain features for the global
point cloud. This works very well for part segmentation of single objects
in the ShapeNet dataset (Chang et al., 2015). For whole scene analysis,
PointNet++ (Qi et al., 2017b), shown in Figure 4.5, is more suited, because
it has set abstraction layers using local neighborhood aggregation to create
a hierarchical network structure akin to CNNs which scales much better
to larger point sets. Wang et al. (2018), Li et al. (2018), Hermosilla et al.
(2018) and Wu et al. (2019b) redefine convolution in continuous space, while
still using MLPs as function approximator. On the other hand, convolution
kernels can be defined with polynomials (Xu et al., 2018), linear functions
(Groh et al., 2018), or by points (Thomas et al., 2019).

Lastly, graph-based networks convolve on the edges of a point cloud (Wang
et al., 2019b; Verma et al., 2018). Although similar to convolution on the
points, the intuition is here that the networks learn the relationships between
points instead of associating features to the points themselves.

Let us compare SparseConvNet (Graham et al., 2018) and PointNet++
(Qi et al., 2017a). As SparseConvNet is highly efficient, it allows for very
high resolution with typically only one point per voxel. Hence, discretiza-
tion errors are small and computation is only carried out on the sparse
voxels that are roughly equivalent to the points. Similarly in PointNet++,
MLPs are applied directly (and only) on points. However, while SparseC-
onvNet (Graham et al., 2018) has the advantage of a spatial kernel, e.g. of
size 3x3x3, that is applied to the current voxel and its neighbors inside the
kernel dimensions, PointNet (Qi et al., 2017a) first applies point-wise MLP,
and only aggregates information across points in the following max-pooling.

In this chapter, we use point cloud based networks because of their in-

4.3. MVPNet 85

2D Encoder-
Decoder

RGB images 2D feature mapsview selection

view 1

view 2

view 3

view 1

view 2

view 3

Depth maps

view 1

view 2

view 3

chunk (1.5m x 1.5m)

dense unprojected
feature maps

sparse input
point cloud

3D PointNet++

semantic label
prediction

2D-3D
unprojection

feature
aggregation

multi-view feature
augmented point cloud

(points in chunk)

Figure 4.7: MVPNet pipeline overview. First, a fixed number of 2D views
are selected so that the current region of interest (chunk) in the 3D scene
is maximally covered. Then, the respective RGB images are fed into a 2D
encoder-decoder to obtain feature maps of same size as the input images.
The 2D feature maps are unprojected to 3D using the corresponding depth
maps to form a dense point cloud. Then, the dense unprojected feature maps
are aggregated into the sparse input point cloud to augment each point with
2D image features from nearby points. This feature augmented 3D point
cloud is input into PointNet++ which predicts the final semantic labels.

herent sparsity. Precisely, we use PointNet++ (Qi et al., 2017b).

4.3 MVPNet

Our MVPNet is designed to effectively fuse complementary information from
multiple RGB-D frames and 3D point cloud in order to achieve better 3D
scene understanding on real-world data, like ScanNet (Dai et al., 2017). The
primary task is 3D semantic segmentation, where the goal is to predict a
semantic label for each point in the input point cloud.

4.3.1 Overview

An overview of our architecture is shown in Figure 4.7. The data of each
scene consists of a sequence of RGB-D frames and a point cloud. The input
point cloud, denoted as Ssparse, is sparse compared with the resolution of
images. This can be seen in Figure 4.8 by comparing the density of the
sparse point cloud with the unprojected views. Following Qi et al. (2017b),
we divide the whole scene into chunks (around 90 chunks for an average

86 Multi-view PointNet for 3D scene understanding

(a) sparse PC (b) 1st view (c) 2nd view (d) 3rd view

Figure 4.8: View selection: (a) visualizes the sparse input point cloud Ssparse
of a chunk and its even coarser version (red points) used to compute the
overlap with the RGB-D frames. (b), (c) and (d) show the 1st, 2nd and
3rd greedily selected view, respectively. Note that we call the point cloud
from all unprojected RGB-D frames Sdense, shown in (d), because it is much
denser than the the original input point cloud Ssparse, shown in (a).

scene). For each chunk, the M most informative views (RGB-D frames) are
selected to maximize the coverage of the input point cloud (Section 4.3.2).
Those views (RGB) are then fed into a 2D encoder-decoder network in order
to compute M feature maps (Section 4.3.3). To augment the sparse input
point cloud Ssparse, pixels with valid depth in each 2D feature map are
first unprojected to a 3D point cloud and then a dense point cloud Sdense
is obtained by concatenating all the M unprojected point clouds. Given
the image features associated with Sdense, our feature aggregation module
samples the k nearest neighboring points in Sdense and adaptively combines
them to form the new feature for the point in Ssparse (Section 4.3.4). Finally,
we feed the multi-view feature augmented point cloud to PointNet++ to
process it from a 3D geometric perspective.

4.3.2 View Selection

In ScanNet (Dai et al., 2017), the RGB-D frames come as video stream
with strong overlap between consecutive frames. It would be redundant
and computationally expensive to process them all. Therefore, we make a
selection of 1 to 5 views, which maximize contained information, to fuse
with the point cloud of the scene.

In the preprocessing step, the overlaps between the scene point cloud and
all the unprojected RGB-D frames of the video stream are computed. To
reduce computation, we uniformly downsample the point cloud (red points
in Figure 4.8). During training we use the overlap information to select
the RGB-D frames on-the-fly with a greedy algorithm. The image which
overlaps with the most yet uncovered points is selected. We found that this

4.3. MVPNet 87

straightforward but efficient method can achieve very high coverage even
with few frames.

4.3.3 2D Encoder-Decoder Network

We feed the selected RGB images into a 2D encoder-decoder network based
on U-Net (Ronneberger et al., 2015) to compute image feature maps. Note
that it would be possible to add the depth channel as additional input.
However, for effective RGB-D fusion a more sophisticated architecture such
as the one for depth completion presented in Chapter 3 would have to be
applied. For simplicity and faster run-time we decide to only use RGB in
this chapter.

In our implementation, the size of the input image is equal to that of
the output feature map, and fixed to 160 × 120. With this relatively low
resolution, we found U-Net to be better suited in terms of memory, speed,
and performance than other 2D semantic segmentation architectures such as
DeepLabv3 (Chen et al., 2017a) and PSPNet (Zhao et al., 2017), optimized
for a much higher resolution. We pretrain the 2D encoder-decoder network
on the task of 2D segmentation on ScanNet in order to bootstrap the training
of the whole pipeline. More details can be found in Section 4.4.2.

4.3.4 2D-3D Feature Lifting Module

In order to obtain the 3D coordinates for the feature maps that have been
computed with the RGB images and the 2D encoder-decoder network, we
unproject the corresponding depth maps using the camera instrinsics and
poses. Consider M 2D feature maps of size H ×W × Cfeat, then each one
is lifted to a point cloud of size NRGB × Cfeat, where NRGB ≤ HW is a
hyperparameter that corresponds to the number of unprojected pixels in
each RGB image. By concatenating all the M unprojected points together,
we yield a dense point cloud Sdense of size MNRGB × Cfeat.

For semantic segmentation, the labels have to be predicted for the in-
put point cloud Ssparse. Thus, we have to transfer the features from the
unprojected point cloud Sdense to Ssparse. Therefore, we use our feature
aggregation module which includes a shared MLP inspired by Liang et al.
(2018) in order to distill a new feature hi for each point in Ssparse from its
k nearest neighbors in Sdense

hi =
∑

j∈Nk(i)
MLP(concat [fj , fdist (xi,xj)]) (4.1)

where hi is the distilled feature at point xi in Ssparse, fj the semantic feature
at one of the k nearest neighbors points xj in Sdense defined by the neigh-
borhood Nk(i), and fdist(xi,xj) the distance feature between the two points

88 Multi-view PointNet for 3D scene understanding

C

C

C
C

C
C

C

Intermediate

geometric image upsamplemixC concatenate

Early Late

Figure 4.9: Proposed architectures to fuse geometric features and image fea-
tures with PointNet++. We adopt early fusion, where the geometry (XYZ)
and image features are concatenated at the input layer. The network fuses
them which leads to mixed features for the remaining network. In the late
fusion architecture, geometric and image features are concatenated in the
last layer of PointNet++. In intermediate fusion, there are two PointNet++
expert encoders for geometric and image features, but a common decoder,
similar to the architecture in Chapter 3.

which we define as

fdist (xi,xj) = concat [xi − xj , ‖xi − xj‖2]. (4.2)

We name multi-view feature augmented point cloud as the resulting point
cloud augmented with the described features. Note that the whole 2D-3D
feature lifting module is differentiable, which enables end-to-end training of
our MVPNet.

4.3.5 3D Fusion Network

To fuse multi-view image features and geometry information, we employ
PointNet++ (Qi et al., 2017b) as backbone. The original PointNet++ con-
sumes both the coordinates and its corresponding features, such as normal
or color. For 3D semantic segmentation, it encodes the input point cloud
with set abstraction layers hierarchically, and decodes the output semantic
prediction through feature propagation layers. The 3D coordinates of input
points are concatenated to the output features of each set abstraction layer.

We adopt early fusion, depicted in Figure 4.9, where the image features
are concatenated to the geometry (XYZ) and then given as input to Point-
Net++. Thus, the network is able to fully exploit the image features from
a geometric perspective. We also investigated intermediate fusion and late
fusion. In late fusion, the image features are concatenated after the final fea-
ture propagation layer in PointNet++, right before the segmentation head.

4.4. Experiments on ScanNet 89

In intermediate fusion, we introduce separate encoder branches for geome-
try and image features whose outputs are then concatenated and fed into
the decoder. Additionally, the decoder leverages the intermediate outputs
of two encoder branches through skip connections.

4.4 Experiments on ScanNet

In this section we cover experiments on the ScanNet (Dai et al., 2017)
dataset.

4.4.1 ScanNet Dataset

The ScanNet dataset (Dai et al., 2017), depicted in Figure 4.3a, features in-
door scenes like offices and living rooms for which a total of 2.5M frames were
captured with the internal camera of an iPad and an additionally mounted
structure depth sensor (specifications detailed in Table 4.1). The data for
each scan consist of an RGB-D sequence with associated poses, a whole
scene mesh, as well as semantic and instance labels. There are 1201 training
and 312 validation scans that were taken in 706 different scenes; most scenes
were captured more than once. The test set contains 100 scans with hidden
ground truth, used for the benchmark.

4.4.2 Implementation Details

For the task of 3D semantic segmentation, we follow the same chunk-wise
pipeline as PointNet++ (Qi et al., 2017b). During training, one chunk
(1.5m × 1.5m in xy-plane, parallel to ground surface) is randomly selected
from the whole scene if it contains more than 30% annotated points. Ran-
dom rotation along the up-axis is applied for data augmentation. During
testing, the network predicts all the chunks with a stride of 0.5m in a sliding-
window fashion through the xy-plane. A majority vote is conducted for the
points that have predictions from multiple chunks.

We downsample the images and depth maps to a resolution of 160×120.
Random horizontal flip is applied to augment images during training. We fix
the number of unprojected points per RGB-D frame to 8,192. This means
that only 43.6% of a total of 19,200 pixels (for a resolution of 160 × 120)
are lifted to 3D. Note that the unlifted pixels are still essential for the 2D
feature computation as they lie in the receptive field of lifted pixels in the
2D CNN that computes the features. Indeed, we will see in Section 4.5.3
that using only sparse RGB information, i.e. directly lifting color to 3D
points which yields in a colored point cloud (XYZRGB), performs much
worse than MVPNet which takes all dense RGB pixels into account through
feature lifting.

90 Multi-view PointNet for 3D scene understanding

Method mIoU bath bed shf cab chair cntr curt desk door floor otherpic fridg show sink sofa table toiletwall win

Su et al. (2018) 39.3 47.2 51.1 60.6 31.1 65.6 24.5 40.5 32.8 19.7 92.7 22.7 0.0 0.1 24.9 27.1 51.0 38.3 59.3 69.9 26.7
Dai and Nießner (2018) 48.4 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9
Chiang et al. (2019)1 63.4 61.4 77.8 66.7 63.3 82.5 42.0 80.4 46.7 56.1 95.1 49.4 29.1 56.6 45.8 57.9 76.4 55.9 83.8 81.4 59.8

Ours 64.1 83.1 71.5 67.1 59.0 78.1 39.4 67.9 64.2 55.3 93.7 46.2 25.6 64.9 40.6 62.6 69.1 66.6 87.7 79.2 60.8
1 Published posterior to submission of our contributions.

Table 4.2: Comparison of methods which use 2D-3D fusion on ScanNet 3D
semantic label benchmark (hidden test set).

The backbone of the 2D encoder network is an ImageNet-pretrained
VGG16 (Simonyan and Zisserman, 2015) with batch normalization and
dropout. For ablation studies and submissions, we also experiment with
VGG19 (Simonyan and Zisserman, 2015) and ResNet34 (He et al., 2016).
The custom 2D decoder network is a lightweight variant of U-Net (Ron-
neberger et al., 2015). Batch normalization and ReLU are added after each
convolution layer in the decoder.

For each chunk, 8,192 points are sampled from the input point cloud and
augmented by the views selected by the method described in Section 4.3.2.
For the feature aggregation module, we use a two-layer MLP with 128 and
64 channels. To predict the semantic labels for the multi-view feature aug-
mented point cloud, we use PointNet++ with single-scale grouping (SSG)
as our 3D backbone. However, note that our MVPNet strategy can be used
with any point-based 3D network.

Each epoch consists of 20,000 randomly sampled chunks, and the batch
size of chunks is 6. The network is trained with the SGD optimizer for 100
epochs. We use a weight decay of 0.0001 and a momentum of 0.9. The
learning rate is 0.01 for the first 60 epochs, and then divided by 10 every 20
epochs. MVPNet is trained on a single GTX 1080Ti.

4.4.3 3D Semantic Segmentation Benchmark

The evaluation metric in ScanNet is the mean IoU (mIoU) over 20 classes.
For submission to the benchmark, we ensemble 4 models of MVPNet, which
consumes 5 views and uses ResNet34 as 2D backbone.

Comparison to 2D-3D Fusion Methods. In Table 4.2 we compare
to methods that also fuse with 2D image features by showing performance
on the hidden test set of ScanNet with per-class IoU. Our MVPNet out-
performs all other methods that fuse with 2D data. Precisely, we achieve
better performance (+24.8 mIoU) than SPLATNet (Su et al., 2018), which
projects to a permutohedral lattice for convolution, and similarly (+15.7
mIoU) 3DMV (Dai and Nießner, 2018), which is limited in resolution and
model size due to the memory-hungry dense 3D voxel representation.

We obtain slightly better results (+0.7 mIoU) than Chiang et al. (2019),
who have a similar approach to us, but use re-rendered images from the

4.4. Experiments on ScanNet 91

Method Fuses 2D Representation mIoU

Qi et al. (2017b) PointNet++ 7 Point cloud 33.9
Su et al. (2018) SPLATNet 3 Point cloud 39.3
Dai and Nießner (2018) 3DMV 3 Dense Voxel 48.4
Huang et al. (2019) TextureNet (3)2 Mesh 56.6
Jiang et al. (2019) HPEIN 7 Point graph 61.8
Hermosilla et al. (2018) MCCNN 7 Point cloud 63.3
Chiang et al. (2019)1 joint point-based 3 Point cloud 63.4

Ours MVPNet 3 Point cloud 64.1

Wu et al. (2019b)1 PointConv 7 Point cloud 66.6
Thomas et al. (2019)1 KP-FCNN 7 Point cloud 68.4
Graham et al. (2018) SparseConvNet 7 Sparse Voxel 72.5
Choy et al. (2019)1 MinkowskiNet 7 Sparse Voxel 73.6
1 Published posterior to submission of our contributions.
2 Samples 10x10 pixel surface texture patch from mesh for each point.

Table 4.3: Comparison of 2D-3D fusion and 3D only methods on Scan-
Net 3D semantic label benchmark (hidden test set). Note that the original
PointNet++ results (Qi et al., 2017b) are very low. We have obtained much
better results with our re-implementation which we report in Table 4.7.

mesh, while we take higher-quality original images as input. In summary,
these results advocate for the use of continuous sparse point cloud as canon-
ical 2D-3D fusion space, because it is precise and efficient.

Comparison to all Benchmark Entries. Table 4.3 lists more entries
in the ScanNet benchmark, also showing methods that use point cloud only
as input. Note that we only exclude some lower-ranked and unpublished
methods. At the time of our submission, we outperformed all methods,
except SparseConvNet (Graham et al., 2018) that uses sparse voxels with
hash table indexing.

Since publication, several new works have been submitted. Minkowsk-
iNet (Choy et al., 2019) has slightly improved (+1.1 mIoU) over SparseC-
onvNet (Graham et al., 2018) by using a 3D variant of their 4D Minkowsk-
iNet34 and can be seen as improved re-implementation of SparseConvNet.
Additionally, two point-cloud only methods now outperform us. Wu et al.
(2019b) use a continuous convolution definition and weight the kernel func-
tion with the inverse point density. Thomas et al. (2019) propose a point-
based network with spatial kernels that are more powerful than the MLP-
based point-wise convolutions of PointNet++ (Qi et al., 2017b). Addition-
ally, they use an implementation that can collate point clouds with varying
number of points in a single batch, similarly as Graham et al. (2018). In our
implementation, we are constrained to sample a fixed number of points dur-
ing training. Although it seems like an insignificant implementation detail,
sampling point clouds with a fixed number of points while surface area varies
can negatively impact training, as it leads to varying point cloud density to

92 Multi-view PointNet for 3D scene understanding

Method mIoU batch size train time forward time/scene*#parameters

SparseConvNet (light) 57.5 32 18h 0.194s 2.7M
SparseConvNet (heavy) 68.2 4 >12d 2.21s 30.1M

ResNet (2D) - 32 8h - 23M
MVPNet (3-view) 65.9 32 12h 2.22s 0.98M
MVPNet (5-view) 67.3 32 18h 3.35s 0.98M

* Preprocessing time not included.

Table 4.4: Runtime comparison with SparseConvNet on a GTX 1080Ti
(11GB). The mIoU is reported on the validation set of ScanNet. Note that,
in order to fit the heavy version of SparseConvNet into 11GB GPU memory,
we needed to use a smaller batch size, leading to a lower score than in the
benchmark in Table 4.3.

which networks are sensitive.
Another advantage of MVPNet is its robustness to low resolution point

clouds as detailed in Section 4.4.4. This is relevant to robotic applications,
where point clouds are always much sparser than images due to sensor lim-
itations.

Runtime Analysis. The top scores of Choy et al. (2019) and Graham
et al. (2018) are achieved with point cloud input only, very deep networks
and GPUs with 24GB of RAM and 16GB, respectively. In order to fit
ours into a single 11GB GPU, while jointly processing 2D and 3D data, we
use rather light networks (ResNet34 based U-Net and PointNet++). We
compare with SparseConvNet – the only published work that outperformed
us at the time of our contribution – in terms of training/inference time and
number of parameters in Table 4.4. Therefore, we used the publicly released
code of SparseConvNet2. They provide two versions in their code, referred
to as light and heavy in Table 4.4: a small U-Net with 5cm voxels that
fits into 11GB GPU memory (light) and a large network with 2cm voxels
that requires 16GB (heavy). The table shows that MVPNet is comparable
to SparseConvNet regarding performance on the validation set. However,
MVPNet is able to converge in 20 hours on a GTX 1080Ti (incl. pretrain of
2D encoder-decoder), while it takes 12 days for heavy SparseConvNet with
GTX 1080Ti, or 4 days with a Tesla V100.

MVPNet also compares favorably in terms of runtime to other 2D-3D
fusion methods. For example, 3DMV (Dai and Nießner, 2018) takes much
longer to evaluate than ours, probably due to their column-wise evaluation
(500 s/scene vs. 3.35 s/scene). This shows that it is challenging to make
2D-3D fusion efficient, but that our approach and implementation are rather
competitive.

2https://github.com/facebookresearch/SparseConvNet

https://github.com/facebookresearch/SparseConvNet

4.5. Ablation Studies 93

Qualitative Results. In Figure 4.10, we show qualitative results from our
3D baseline (PointNet++ taking only colored point cloud (XYZRGB) as in-
put), our 2D baseline (predictions from our 2D network unprojected to 3D),
and MVPNet (2D-3D fusion). MVPNet produces the best results and one
can see that cues from 2D images especially improve classes with flat shapes,
i.e. refrigerator, picture, curtain, which lack discriminative geometric cues.
A failure case is depicted in Figure 4.11.

4.4.4 Robustness to Varying Point Cloud Density

Real-world 3D sensors such as LiDARs and depth cameras have much lower
resolution than 2D RGB cameras and the point cloud density also varies with
view point angle, lighting conditions, object-to-sensor distance and object
surface reflectivity. Thus, it is important for algorithms to be robust to
varying point cloud density at test time, because training data can hardly
cover all cases. To examine robustness to sparsity, we uniformly subsample
the whole scene point cloud and feed it to the networks that were trained
on full resolution. We report the results in Figure 4.12. While our MVPNet
is hardly affected at lower resolutions, the performance of the light version
of SparseConvNet (Graham et al., 2018) suffers severely. Note that we
only compare to the light version of SparseConvNet here due to our GPU
limitations. Even though this leads to lower overall performance, we assume
that the robustness to decreasing resolution behaves similarly as for the
heavy version of SparseConvNet.

We attribute the performance difference between MVPNet and Spar-
seConvNet mainly to two factors. First, the quality of our image features
is not deteriorated when the point cloud is downsampled, because they are
computed in the original dense 2D image. During 2D-3D lifting, even if few
unprojected image pixels are finally used at coarse point cloud resolution,
the image features can maintain their quality thanks to the receptive field of
the 2D encoder-decoder. This is not the case for SparseConvNet where only
the sparse RGB information at each 3D point is used. The second factor
is related to the different neighborhood definition in voxel grids and point
clouds. Voxel-based methods such as SparseConvNet have fixed neighbors
defined by the discrete grid. Point-based methods on the other hand, use
continuous locations and in each network layer neighbors are sampled, e.g.
with ball query, that adapt naturally to the local point distribution. This
enables our PointNet++ based approach to cope well with varying point
cloud density.

4.5 Ablation Studies
To analyze our design choices and provide more insights, we conduct ablation
studies on the validation set of ScanNet and report the mean IoU (mIoU)

94 Multi-view PointNet for 3D scene understanding

ignore wall floor cabinet bed chair sofa table door window bookshelf picture
counter desk curtain refrigerator shower curtain toilet sink bathtub otherfurniture

Ground Truth PointNet++
XYZRGB

Ours (2D) Ours (2D + 3D)

Figure 4.10: Qualitative results of 3D semantic segmentation for our 3D
baseline (PointNet++), our 2D baseline (Multi-view 2D CNN) and MVP-
Net which reach an mIoU of 57.9, 57.2 and 65.0, respectively. A common
error mode of PointNet++ is to misclassify similarly shaped objects (shower
curtain, refrigerator, etc.) as the most prevalent door category while MVP-
Net succeeds.

Ground Truth PointNet++
XYZRGB

Ours (2D) Ours
(2D + 3D)

color mesh
(no input)

Figure 4.11: Failure case of our method for 3D semantic segmentation. On
the right hand side in the image is an open door next to a bookshelf. Both
have very similar "wooden" appearance and are spatially close which leads
our method – which also relies on appearance information – to misclassify
the bookshelf as door.

4.5. Ablation Studies 95

0.010.10.250.51.0
downsampling ratio

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
m

Io
U

Ours
SparseConvNet light

Figure 4.12: Robustness to input point cloud density of our method com-
pared to the light version of SparseConvNet (Graham et al., 2018). Normal-
ized mIOU equals 1.0 at full resolution (at downsampling ratio 1.0). The
x-axis shows the ratio of points that are kept and the y-axis shows the mIoU
on the validation set of ScanNet.

views 1 3 5

Average coverage 68.1 92.9 97.4

mIoU 62.8 64.5 64.8

Table 4.5: Average coverage and mIoU as a function of the number of un-
projected views. Results on validation set of ScanNet.

over 20 classes. The 2D encoder-decoder network is frozen in order to accel-
erate training, since we observe no significant improvement with end-to-end
training. Unless stated otherwise, our 2D backbone is VGG16 (Simonyan
and Zisserman, 2015). Our 3D backbone, PointNet++, contains 4 set ab-
straction (downsampling) and 4 feature propagation layers (upsampling).
The numbers of centroids, points that are sampled at each layer, are 1024,
256, 64, 16 respectively.

4.5.1 Number of Views

We refer to coverage as the ratio of points in the input point cloud that have
at least one unprojected neighbor point with image features at a distance
less than 0.1m. Table 4.5 shows how the number of views affects coverage
and mIoU. We removed the feature aggregation module for this experiment
to get results that are independent from this design choice. With 1 view the
coverage reaches 68.1%, and with 3 views already exceeds 90%. More views
lead to higher mIoU, but introduce more computation. We choose 3 frames
as default in this trade-off.

4.5.2 Feature Aggregation Module

In the following we study the parameters of our Feature Aggregation Module,
defined in Equation 4.1, which distills features from the unprojected point

96 Multi-view PointNet for 3D scene understanding

views k-nn MLP Aggregation mIoU

1 1 w/o none 61.7
1 3 w/o sum 62.8
1 3 w/ sum 62.5

3 1 w/o none 64.5
3 3 w/o sum 64.5
3 3 w/ sum 65.0
3 3 w/ max 64.7

Table 4.6: Effect of feature aggregation. Results on validation set of Scan-
Net.

Method mIoU

PointNet++ (XYZ) [baseline] 54.5
PointNet++ (XYZRGB) [baseline] 57.8

Multi-view 2D CNN 57.2
Ours (late fusion) 58.4
Ours (intermediate fusion) 64.8
Ours (early fusion) 65.0

Ours (w/o xyz) 62.8

Table 4.7: Effect of multiple modalities and different strategies of fusion.
Results on validation set of ScanNet.

cloud Sdense, obtained from multiple views, into the input point cloud Ssparse.
We report our results in Table 4.6 for 1 and 3 views, 1 or 3 nearest neighbors
(k-nn) feature sampling, with or without MLP, and we also try maximum
instead of sum as aggregation operation.

For the 1-view case, using 3 nearest neighbors instead of only 1 increases
the performance by at least 0.8 mIoU. Due to the limited coverage of a single
view, far-away image features are sampled for uncovered points and multi-
ple neighbors might alleviate this problem by analyzing feature consistency
between them.

For the 3-view case, we find that the number of nearest neighbors does
not affect performance. This might be because coverage is already very high
(92.9%) which means that, as opposed to the 1-view case, features can always
be sampled from close-by. We also try summation instead of maximum to
pool the features which does not significantly change the results. Using
an MLP can slightly improve, maybe because it can transform 2D image
features to an embedding space more consistent with the 3D representation.
Our final choice for all other experiments is 3 nearest neighbors with MLP
and sum aggregation.

4.5. Ablation Studies 97

4.5.3 Fusion

In this section we want to answer the question how to best fuse geometry and
image features with point cloud based networks and give an insight about
the strength of each modality. In Table 4.7 we report our quantitative results
on the validation set. The point cloud only baseline, PointNet++, yields
54.5 mIoU with XYZ only and 57.8 mIoU with additional color information
(XYZRGB).

In order to assess the strength of multi-view vs. geometry features, we
conduct an experiment with 3 views where we unproject the output semantic
labels of the pretrained 2D encoder-decoder to 3D and attribute the nearest
neighbor 2D label to each 3D point in the point cloud. This multi-view 2D
CNN approach can already achieve similar performance as PointNet++ on
colored point clouds, which confirms the benefit of features computed on
dense 2D images before 2D-3D lifting.

Moreover, we evaluate the three fusion strategies introduced in Sec-
tion 4.3.5. We could yield slightly better performance with the late fusion
approach (+1.2 mIoU) than with the 2D CNN baseline. Intermediate fusion
leads to much better results (+7.6 mIoU) than late fusion. Early fusion can
reach the best score (+7.8 mIoU), and uses fewer parameters and compu-
tation compared to intermediate fusion. The observation is different from
the voxel-based method 3DMV (Dai and Nießner, 2018), where geometric
features and image features are concatenated late, at roughly 2/3 in the net-
work. We conclude, similar as in Chapter 3, that the optimal fusion strategy
depends on the architecture.

Moreover, we investigate whether it is necessary to add geometric fea-
tures (XYZ coordinates) in the early fusion approach or if the image features
are sufficient. In fact, PointNet++ already induces a geometric hierarchy
due to neighborhood sampling at each layer. Also, the unbalanced dimen-
sions when concatenating the XYZ coordinates (dimension 3) with the image
features (dimension 64) at the PointNet++ input could lead to a neglection
of geometric features (XYZ coordinates). Nonetheless, the obtained result
(-2.2 mIoU without XYZ) proves the contrary and indicates that MVPNet
actually benefits from geometric features as complementary information to
images.

4.5.4 Stronger Backbone

To investigate the effect of stronger 2D backbones, we replace VGG16 with
VGG19 and ResNet34. Table 4.8 shows the results of 2D CNN baselines
and our MVPNet with different backbones on the validation set. Intuitively,
stronger backbones lead to higher mIoU, and ResNet34 performs best. Due
to runtime performance we choose VGG16 as backbone for ablation experi-
ments and ResNet34 for best performance.

98 Multi-view PointNet for 3D scene understanding

Method mIoU

2D CNN (VGG16) 57.2
2D CNN (VGG19) 58.3
2D CNN (ResNet34) 59.6

2D CNN (VGG16) + PointNet++(SSG) 65.0
2D CNN (VGG19) + PointNet++(SSG) 65.5
2D CNN (ResNet34) + PointNet++(SSG) 65.9

2D CNN (VGG16) + PointNet++(MSG) 65.0
2D CNN (VGG16) + PointNet++(SSG, more centroids) 66.4

Table 4.8: 2D CNN baselines and our MVPNet with different backbones.
Results on validation set of ScanNet.

To test a stronger 3D backbone, we double the numbers of sampled
centroids to (2048, 512, 128, 32), which increases the mIoU by 1.4. We
also try to replace single-scale grouping (SSG) with multi-scale grouping
(MSG) in PointNet++, but observe no improvement. As the image features
already contain contextual information, it might not be necessary to process
multiple scales explicitly with the MSG version.

4.6 Experiments on S3DIS
In order to validate our approach on a different dataset, we apply our
pipeline to Stanford Indoor 3D (S3DIS) (Armeni et al., 2017).

4.6.1 S3DIS Dataset

Stanford Indoor 3D (S3DIS) is captured with the Matterport camera that
is mounted on a tripod and collects RGB-D data at 360° by rotating its
three structured light sensors that are mounted at three different angles
(top, middle, bottom). The data was collected in three different buildings of
educational and office use and the resulting scans are split floor-wise into six
areas. Initially, the data only comprised 3D point clouds and classification
ground truth (S3DIS), but was then amended with 2D images and xyz-maps
in a second publication, named 2D-3D Semantics (2D-3D-S) (Armeni et al.,
2017).

4.6.2 3D Semantic Segmentation

We evaluate MVPNet on S3DIS using the xyz maps from 2D-3D-S (Armeni
et al., 2017). We use area 5 for testing and the rest for training. To simplify
data processing and speed up training, we carry out a first pre-processing
step, where we compute the 2D features and save them to disk. Therefore,
we first compute the 2D features from 32 RGB-D views per room. The
images are resized to 360x360. Then, the 2D feature maps are unprojected

4.7. Conclusion 99

Method mIoU mAcc OA

Li et al. (2018) 57.26 63.86 85.91
Landrieu and Simonovsky (2018) 58.04 66.50 86.38
Wang et al. (2018) 58.27 67.01 -
Thomas et al. (2019)1 67.1 72.8 -

Qi et al. (2017b) [our implementation] 56.19 64.09 85.26
Ours 62.43 68.68 88.08
1 Published posterior to submission of our contributions.

Table 4.9: Segmentation results on S3DIS Area 5. We report mIoU, mean
over class accuracies (mAcc) and overall accuracy (OA).

to 3D and propagated to the nearest point in the point cloud. We take the
mean of the 2D feature vectors at each 3D point before saving them to disk
room-wise. The chunk-wise training procedure is the same as for ScanNet,
described in Section 4.4.

The final score is obtained by ensembling an MVPNet and a PointNet++
(point cloud only) model. Results are shown in Table 4.9. At the time
of contribution, we achieved above state-of-the-art performance, but since
then, Thomas et al. (2019) have outperformed us. Unfortunately, the dataset
is not as diverse as ScanNet. This leads to overfitting, especially when
training the 2D network.

4.7 Conclusion

We have proposed a framework to fuse 2D multi-view images and 3D point
clouds in an effective way by computing image features in 2D first, lifting
them to 3D, and then fuse complementary geometry and image informa-
tion in canonical 3D space. Extensive experiments are conducted on the
ScanNet Semantic Segmentation benchmark which prove the advantage of
fusing features from multiple local views into a global point cloud, because
they help to obtain more informative point-wise features. Note that these
MVPNet features could also benefit other tasks. One example is 3D instance
semantic segmentation, a different task on the ScanNet benchmark, that is
more precise than object detection: instead of regressing boxes, point masks
which describe the exact shape of each object are to be predicted. Such
an instance segmentation approach could operate on top of MVPNet fea-
tures and preliminary experiments in our publication Jaritz et al. (2019)
look promising.

While we outperform all other 2D-3D fusion methods, we do not reach
the score of the best 3D point cloud only networks. We observe that very
large models (Graham et al., 2018; Choy et al., 2019) and implementa-
tions that collate whole scenes with a varying number points into one batch
(Graham et al., 2018; Choy et al., 2019; Thomas et al., 2019) perform par-

100 Multi-view PointNet for 3D scene understanding

ticularly well. In our current implementation the number of input points
must be fixed to collate multiple examples into a batch. To test whole scene
processing, we sample a fixed number of 32k points in the input point cloud.
This leads to low point density in large scenes and high point density in
small scenes which can negatively influence performance as neural networks
are sensitive to varying sparsity. Although extending to a varying number
of points is more complicated to implement in the 2D-3D multi-view setting
than when using 3D only, it could be integrated in the future to improve
results.

Like in Chapter 3, we found that sparsity plays a crucial role. We show
in our robustness analysis in Section 4.4.4 that the lower the point cloud
resolution, the more important multi-view fusion becomes, because dense
2D images can compensate for point cloud sparsity. In ScanNet, the point
clouds are rather dense. This is natural, because the whole scene point cloud
is obtained by reconstruction from a highly redundant RGB-D sequence. In
outdoor settings on the other hand, point clouds are typically much sparser
compared to image resolution. In the next chapter, we carry out 2D-3D
fusion in the outdoor scenario and draw from our experience gained on 3D
semantic segmentation in this chapter.

Adaptation de domaine non
supervisée inter-modalités

2D-3D

French Summary of the Chapter “2D-3D Cross-
modal Unsupervised Domain Adaptation”
Dans ce chapitre, nous introduisons la nouvelle tâche d’adaptation de do-
maine non supervisée inter-modalités où on a accès à des données multi-
capteurs dans une base de données source annotée et une base cible non an-
notée. Nous proposons une méthode d’apprentissage inter-modalités 2D-3D
via une imitation mutuelle entre les réseaux d’images et de nuages de points
pour résoudre l’écart de domaine source-cible. Nous montrons en outre que
notre méthode est complémentaire à la technique unimodale existante dite
de pseudo-labeling.

Chapter 5

2D-3D Cross-modal
Unsupervised Domain

Adaptation

The contributions of this chapter were published in (Jaritz et al., 2020):

Jaritz, M., Vu, T.-H., de Charette, R., Wirbel, E., and Pérez, P. (2020).
xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D semantic
segmentation. CVPR 2020.

We plan to publish the code and dataset splits.

Contents
5.1 Introduction . 104
5.2 Related Work . 106
5.3 xMUDA . 110

5.3.1 Architecture . 111
5.3.2 Learning Scheme . 112

5.4 Experiments . 114
5.4.1 Datasets . 114
5.4.2 Implementation Details 115
5.4.3 Main Experiments . 116
5.4.4 Extension to Fusion 118

5.5 Ablation Studies . 121
5.5.1 Segmentation Heads 121
5.5.2 Cross-modal Learning on Source 122
5.5.3 Cross-modal Learning for Oracle Training 122

5.6 Conclusion . 123

104 2D-3D Cross-modal Unsupervised Domain Adaptation

5.1 Introduction

In Chapter 4, we investigated how to improve 3D semantic segmentation
through 2D-3D fusion. In this chapter, we want to build on this, but now
focus on exploiting 2D-3D modalities to address the problem of Unsuper-
vised Domain Adaptation (UDA).

Annotating a point cloud for 3D semantic segmentation is particularly
tedious and took up to 4.5 hours for a 100m by 100m birdview tile for the
SemanticKITTI dataset (Behley et al., 2019), because the annotator needed
to inspect the scene from multiple points of view. As this labeling process
is so costly, we can oftentimes not afford the annotation of a new dataset.
Alternatively, we can train a model on a similar, labeled source dataset and
then deploy this model on our unlabeled target dataset. Let us consider that
the source dataset was collected during the day and the target dataset during
the night. In this case, we will encounter a significant performance drop of
the model’s test performance when switching from day to night, because
the daylight images seen during training are visually very different from the
dark night images. In other words, we encounter a domain shift between
the distributions of the day source domain and night target domain from
which the two datasets were sampled respectively. The goal of unsupervised
domain adaptation is to improve our model’s performance on the unlabeled
target set from which unannotated samples are available at train time.

Existing work in domain adaptation concerns mostly 2D semantic seg-
mentation (Hoffman et al., 2018; Zou et al., 2019; Vu et al., 2019a; Li et al.,
2019) and rarely 3D (Wu et al., 2019a). We also observe that previous do-
main adaptation work focuses on single modality, whereas 3D datasets are
often multi-modal, consisting of 3D point clouds and 2D images. While the
complementarity between these two modalities is already exploited by both
human annotators and learned models to localize objects in 3D scenes (Liang
et al., 2018; Qi et al., 2018), we consider it through a new angle, asking the
question: If 3D and 2D data are available in the source and target domain,
can we capitalize on multi-modality to address Unsupervised Domain Adap-
tation (UDA)?

We coin our method cross-modal UDA, ‘xMUDA’ in short, and con-
sider three real-to-real adaptation scenarios with different lighting condi-
tions (day-to-night), environments (country-to-country) and sensor setups
(dataset-to-dataset). It is a challenging task for various reasons. The hetero-
geneous input spaces (2D and 3D) make the pipeline complex as it implies
to work with heterogeneous network architectures and 2D-3D projections.
In fusion, if two sensors register the same scene, there is shared information
between both, but each sensor also has private (or exclusive) information.
One modality can be stronger than the other in a certain case, but it can
be the other way around in another, depending on class, context, resolu-
tion, etc. This makes selecting the “best” sensor based on prior knowledge

5.1. Introduction 105

xMUDAUDA Baseline
Cross-Modal LearningUni-Modal Learning

Car not recognized

Vehicle Pedestrian

False prediction

Errors

2D image

3D point cloud

Target
(night)

Figure 5.1: Advantages of cross-modal UDA (xMUDA) in presence of do-
main gap (day-to-night). On this 3D semantic segmentation example, the
UDA baseline on the left side of the figure (Li et al., 2019) does not detect
the car on the right in the 2D camera image due to the day/night domain
shift. With xMUDA on the right side of the figure, 2D learns the appear-
ance of cars in the dark from information exchange with the 3D LiDAR
point cloud, and 3D learns to reduce false predictions.

unfeasible. Additionally, each modality can be affected differently by the
domain shift. For example, camera is deeply impacted by the day-to-night
domain change, while LiDAR is relatively robust to it, as shown on the left
in Figure 5.1.

In order to address these challenges, we propose the xMUDA framework
where information can be exchanged between 2D and 3D in order to learn
from each other for UDA (see right side of Figure 5.1). We use a disentan-
gled 2-stream architecture to address the domain gap individually in each
modality. Our learning scheme allows robust balancing of the segmentation
and cross-modal objectives. In addition, xMUDA is complementary to self-
training with pseudo-labels (Li et al., 2019), a popular UDA technique, as
it exploits a different source of knowledge. Finally, it is common practice
to use feature fusion (e.g., early or late fusion) when multiple modalities
are available (Hazirbas et al., 2016; Valada et al., 2019; Liang et al., 2018):
our framework can be extended to fusion while maintaining a disentangled
cross-modal objective.

Our contributions can be summarized as follows:

• We define new UDA scenarios and propose corresponding splits on
recently published 2D-3D datasets.

• We design an architecture that enables cross-modal learning by disen-
tangling private and shared information in 2D and 3D.

• We propose a novel UDA learning scheme where modalities can learn
from each other in balance with the main objective. It can be ap-

106 2D-3D Cross-modal Unsupervised Domain Adaptation

Figure 5.2: Adversarial training is achieved with the gradient reversal layer,
where the gradient to train the domain classifier, which discriminates be-
tween source and target, is multiplied by -1, so that the gradient has the
opposite effect on the feature extractor: to produce features that are domain-
invariant. Source: Ganin et al. (2016).

plied on top of state-of-the-art self-training techniques to boost per-
formance.

• We showcase how our framework can be extended to late fusion and
produce superior results.

On the different proposed benchmarks we outperform the single-modality
state-of-the-art UDA techniques by a significant margin. Thereby, we show
that the exploitation of multi-modality for UDA is a powerful tool that can
benefit a wide range of multi-sensor applications.

5.2 Related Work

Unsupervised Domain Adaptation (UDA). The past few years have
seen an increasing interest in unsupervised domain adaptation techniques
applied to image-based tasks such as classification and semantic segmenta-
tion. The initial intuition behind those methods is the following. As the
classifier (or segmentor) can only be trained on the source dataset where la-
bels are available, we could enforce the features that are fed to this classifier
to be domain-invariant, such that the classifier can also perform well on the
target dataset, i.e. the feature extractor should be trained such that source
and target features are aligned. Examples to measure the distance between
source and target feature distributions that have been used in the context
of UDA are maximum mean discrepancy (MMD) (Tzeng et al., 2014; Long
et al., 2015b) and covariance (Sun and Saenko, 2016). In the same spirit,
Ganin et al. (2016) propose adversarial training, depicted in Figure 5.2,

5.2. Related Work 107

Figure 5.3: CyCADA (Hoffman et al., 2018) translates images from source to
target to be able to use the labels in the target domain. In the following we
summarize the losses. Cycle consistency (red) is enforced on the mapping
from source to target and back to source to train the generators GS→T
and GT→S . Adversarial loss is applied on image (green) and feature-level
(orange). Semantic consistency is imposed between the features of the source
image and its mapped target version (black). Finally, the task loss is used
to train for semantic segmentation (purple). Source: Hoffman et al. (2018).

where a ‘domain classifier’ predicts if the features originate from a source or
target example. The gradient to train the domain classifier to discriminate
correctly between source and target is multiplied by -1 in the ‘gradient re-
versal layer’ to train the feature extractor with the opposite objective, i.e.
to produce domain-invariant features that can not be distinguished by the
domain classifier.

The methods introduced above exclusively focus on the classification
task. In order to extend UDA to semantic segmentation, Hoffman et al.
(2016) employ a fully-convolutional network (FCN) architecture and carry
out region-wise domain-adversarial adaptation. Instead of using gradient
reversal from Ganin et al. (2016), Hoffman et al. (2016) adopt the Genera-
tive Adversarial Net (GAN) approach (Goodfellow et al., 2014), where the
feature extractor and domain discriminator are trained in an alternating
procedure with two different losses. While the first loss optimizes the dis-
criminator to correctly classify domains, the second loss trains the feature
extractor with the objective of confusing the discriminator.

The work described so far aligns source-target distributions in feature-
space. A different line of work explores alignment in input-space, where
source images are translated to the target domain (Hoffman et al., 2018; Liu
et al., 2017; Murez et al., 2018; Wu et al., 2018b).

Feature-space alignment is limited, because it does not enforce semantic
consistency. For example, the target features of a cat can be mapped to
source features of a dog. CyCADA (Hoffman et al., 2018), a representative
example of input-space alignment methods, shown in Figure 5.3, addresses
this limitation by promoting cycle-consistency: the generator GS→T trans-

108 2D-3D Cross-modal Unsupervised Domain Adaptation

lates a source image to target, and a second generator GT→S translates an
image from target back to source. The cycle-consistency loss is then ap-
plied between the original source image IS and the back and forth mapped
source image GS→T (GT→S(IS)). Additionally, the adversarial (GAN) losses
enforce alignment on image-level with discriminator DT (green) and feature-
level with discriminator Dfeat (orange). The feature extractors fS and fT
operate on source and target, respectively, and fS is pretrained and fixed,
used to impose semantic consistency (black). Finally, the task loss optimizes
for the prediction of the final semantic segmentation.

While image-translation methods allow for visual inspection of the adap-
tation quality, they have since been outperformed by adversarial approaches
that align source-target distributions in output-space (Tsai et al., 2018; Vu
et al., 2019a). These techniques take scene structure into account while
carrying out alignment which benefits the highly structured segmentation
task.

Curriculum learning (Zhang et al., 2017) is a different approach where
simple things are learned first, such as global label distributions over images.

Revisited from semi-supervised learning (Lee, 2013), self-training with
pseudo-labels has recently been proven effective for UDA (Li et al., 2019; Zou
et al., 2019). In a first step, a model is trained only on the source dataset
and then used without adaptation to generate predictions on the target
dataset. These target predictions are called pseudo-labels. Li et al. (2019)
refine the pseudo-labels by discarding less confident ones (below the class-
wise median threshold), where the confidence is measured as probability of
the most probable class. Zou et al. (2019) investigate different confidence
regularizers to improve pseudo-label quality. In a second step, the pseudo-
labels are used to ‘self-train’ the model on the target dataset. In this work,
we employ self-training with pseudo-labels and label refinement as proposed
by Li et al. (2019). Note that it is also possible to achieve pseudo-labeling
in one-stage training as recently done by Pizzati et al. (2020).

While most existing works consider UDA in the 2D world, very few
tackle the 3D counterpart. Wu et al. (2019a) adopted activation correlation
alignment (Morerio et al., 2018) for UDA in 3D segmentation from LiDAR
point clouds. In this work, we investigate the same task, but differently: our
system operates on multi-modal input data, i.e., RGB + LiDAR.

To the best of our knowledge, there are no previous UDA works in 2D/3D
semantic segmentation for multi-modal scenarios. Only some consider the
extra modality, i.e. depth, solely available at training time on source do-
main and leverage such privileged information to boost adaptation perfor-
mance (Lee et al., 2019; Vu et al., 2019b). As depicted in Figure 5.4, in
(Vu et al., 2019b) the depth serves as ground truth to train a subnetwork
to predict the depth from RGB, trained supervisedly on the source dataset.
The depth aware features from the subnetwork are then fused with the main
features, after which the final layer to predict the semantic segmentation fol-

5.2. Related Work 109

Figure 5.4: Vu et al. (2019b) use depth as privileged information. Specif-
ically, as shown in the architecture on top, the depth is predicted by a
small subnetwork and trained in a supervised fashion on the source dataset.
The subnetwork produces depth-aware features that are then fused with the
main features, followed by the segmentation layer. The depth ground truth
is supposed to be absent in the target dataset and can thus not be used for
unsupervised learning. Source: Vu et al. (2019b) (modified).

lows. This approach seems to regularize the output and benefit performance
on the target domain. However, in many datasets the extra modality (e.g.
depth) is also available in the target domain and Vu et al. (2019b) do not
exploit this fact. In this chapter, we assume all modalities to be available
at train and test time on both source and target domains. This allows the
usage of the additional modality as independent input, as opposed to using
it only as privileged information, and thereby exploits multi-modality as
unsupervised learning signal for domain adaptation.

Multi-Modality Learning. In a supervised setting, performance can
naturally be improved by fusing features from multiple sources. RGB-Depth
fusion is a geometrically simple case as there is dense pixel-to-pixel corre-
spondence (Hazirbas et al., 2016; Valada et al., 2019). It is harder to fuse a
3D point cloud with a 2D image, because they live in different metric spaces.
In Chapter 3, we projected the point cloud into 2D camera space for the
task of RGB-guided depth completion. Another solution is to project 2D
and 3D features into a 2D ‘bird eye view’ for object detection (Liang et al.,
2018). In Chapter 4, we lift 2D features from multi-view images to the 3D
point cloud to enable joint 2D-3D processing for 3D semantic segmentation.
Here, we share the same goal of 3D semantic segmentation as in Chapter 4.
However, we focus on how to exploit multi-modality for UDA instead of

110 2D-3D Cross-modal Unsupervised Domain Adaptation

Camera Image

Features Probabilities

(||)�KL �3D �2D→3D

(||)�KL �2D �3D→2D

Lidar Point Cloud

2D Network

dense
pixel

3D Network

(�,)�2D

Feature Map
(�, � ,)�2D

(�, � , 3)

(�, 3)

sample
classify

(�, �)

project

classify
(�, �)

(�, �)

(�, �)

classify

classify

(�,)�3D

Cross-Modal loss

sparse
voxel

�2D→3D

�3D→2D

�2D

�3D

�, �

�

image size
num. points

num. classes
num. feature channels�2D,3D

�

Figure 5.5: Overview of our xMUDA framework for 3D semantic segmen-
tation. The architecture comprises a 2D stream which takes an image
as input and uses a U-Net-style 2D ConvNet (Ronneberger et al., 2015),
and a 3D stream which takes the point cloud as input and uses a U-
Net-Style 3D SparseConvNet (Graham et al., 2018). Feature outputs of
both streams have same length N , equal to the number of 3D points. To
achieve that, we project the 3D points into the image and sample the 2D
features at the corresponding pixel locations. The 4 segmentation out-
puts consist of the main predictions P2D, P3D and the mimicry predictions
P2D→3D, P3D→2D. We transfer knowledge across modalities using KL diver-
gence, DKL(P3D||P2D→3D), where the objective of the 2D mimicry head is
to estimate the main 3D output and vice versa, DKL(P2D||P3D→2D).

supervised learning and only use single view images from the front camera
and the corresponding point clouds.

5.3 xMUDA

The aim of cross-modal UDA (xMUDA) is to enable information exchange
between modalities so that they can learn from each other in a way that
benefits domain adaptation. This is difficult to investigate with the fusion
architectures presented in Chapters 3 and 4, because they pick the most
informative features of each modality with regard to optimizing an overall
objective (e.g. the segmentation loss) rather than explicitly modeling the
interaction between the modalities. In this chapter, we therefore focus on
a co-learning approach where two independent networks are trained jointly;
and we define a loss between those networks to explicitly model cross-modal
learning. Specifically, we let the two networks mutually mimic each other’s
outputs, so that they can both benefit from their counterpart’s strengths.

We investigate xMUDA using point cloud (3D modality) and image (2D

5.3. xMUDA 111

modality) on the task of 3D semantic segmentation. An overview is depicted
in Figure 5.5. We first describe the architecture in Section 5.3.1, our learning
scheme in Section 5.3.2. After having validated our xMUDA framework
in the co-learning setup with two independent 2D/3D predictions, we also
showcase how xMUDA can be extended to fusion networks with a single
fused prediction.

In the following, we consider a source dataset S, where each sample
consists of 2D image x2D

s , 3D point cloud x3D
s and 3D segmentation labels

y3D
s as well as a target dataset T , lacking annotations, where each sample

only consists of image x2D
t and point cloud x3D

t . Images x2D are of spatial
size (H,W, 3) and point clouds x3D of spatial size (N, 3), where N is the
number of 3D points within the camera field of view.

5.3.1 Architecture

To allow cross-modal learning, it is crucial to extract features specific to each
modality. Opposed to 2D-3D architectures where 2D features are lifted to
3D (Liang et al., 2018), we use a 2-stream architecture with independent 2D
and 3D branches that do not share features (see Figure 5.5).

In this work, we select SparseConvNet (Graham et al., 2018) as 3D net-
work, because, as we have seen in Chapter 4, SparseConvNet is the state-of-
the-art on 3D semantic segmentation on the ScanNet benchmark (Dai et al.,
2017). As expected, we could confirm the superiority of SparseConvNet over
PointNet++ (Qi et al., 2017b) on the driving dataset NuScenes (Graham
et al., 2018). For more details, please refer to the introduction of related
work in the preceding chapter (cf. Section 4.2).

As 2D network, we employ a modified version of U-Net (Ronneberger
et al., 2015) with ResNet34 (He et al., 2016) as already proposed in Chap-
ter 4.

Even though each stream has a specific network architecture, it is im-
portant that the outputs are of same size to allow cross-modal learning. We
provide implementation details in Section 5.4.2.

Dual Segmentation Head. We call segmentation head the last linear
layer in the network that transforms the output features into logits followed
by a softmax function to produce the class probabilities. For xMUDA, we
establish a link between 2D and 3D with a ‘mimicry’ loss between the output
probabilities, i.e., each modality should predict the other modality’s output.
This allows us to explicitly control the cross-modal learning.

In a naive approach, each modality has a single segmentation head and
a cross-modal optimization objective aligns the outputs of both modalities.
Unfortunately, this leads to only using information that is shared between
the two modalities, while discarding private information that is exclusive
to each sensor (more details in the ablation study in Section 5.5.1). This

112 2D-3D Cross-modal Unsupervised Domain Adaptation

is an important limitation, as we want to leverage both private and shared
information, in order to obtain the best possible performance.

To preserve private information while benefiting from shared knowledge,
we introduce an additional segmentation head to uncouple the mimicry ob-
jective from the main segmentation objective. This means that the 2D and
3D streams both have two segmentation heads: one main head for the best
possible prediction, and one mimicry head to estimate the other modality’s
output.

The outputs of the 4 segmentation heads (see Figure 5.5) are of size
(N,C), where C is equal to the number of classes such that we obtain a
vector of class probabilities for each 3D point. The two main heads produce
the best possible predictions, P2D and P3D respectively for each branch. The
two mimicry heads estimate the other modality’s output: 2D estimates 3D
(P2D→3D) and 3D estimates 2D (P3D→2D).

5.3.2 Learning Scheme

The goal of our cross-modal learning scheme is to exchange information
between the modalities in a controlled manner to teach them to be aware of
each other. This auxiliary objective can effectively improve the performance
of each modality and does not require any annotations which enables its use
for UDA on target dataset T . In the following we define the basic supervised
learning setup, our cross-modal loss LxM, and the additional pseudo-label
learning method. The loss flows are depicted in Figure 5.6.

Supervised Learning. The main goal of 3D segmentation is learned
through cross-entropy in a classical supervised fashion on the source data.
We can write the segmentation loss Lseg for each network stream (2D and
3D) as:

Lseg(xs,y3D
s) = − 1

N

N∑
n=1

C∑
c=1

y(n,c)
s log P (n,c)

xs
, (5.1)

where xs is either x2D
s or x3D

s .

Cross-modal Learning. The objective of unsupervised learning across
modalities is twofold. Firstly, we want to transfer knowledge from one
modality to the other on the target dataset. For example, let one modality
be sensitive and the other more robust to the domain shift, then the robust
modality should teach the sensitive modality the correct class in the target
domain where no labels are available. Secondly, we want to design an auxil-
iary objective on source and target, where the task is to estimate the other
modality’s prediction. By mimicking not only the class with maximum prob-
ability, but the whole distribution, more information is exchanged, leading

5.3. xMUDA 113

seg

y
3D
�

PL

PL

x
3D

�

x
2D

�

x
3D
�

x
2D
�

 2D net

 3D net

xM

Figure 5.6: Proposed UDA setup. xMUDA learns from supervision on
the source domain (plain lines) and self-supervision on the target domain
(dashed lines), while benefiting from the cross-modal predictions of 2D/3D
modalities.

to softer labels. As shown by Zou et al. (2019) soft labels perform better
than their hard-label counterpart.

In order to achieve both objectives, we choose KL divergence to align the
mimicking probability distribution of one modality with the truly predicted
probability distribution of the other modality. We define the cross-modal
loss LxM as follows:

LxM(x) = DKL(P (n,c)
x ||Q(n,c)

x) (5.2)

= − 1
N

N∑
n=1

C∑
c=1

P (n,c)
x log P

(n,c)
x

Q
(n,c)
x

, (5.3)

with (P ,Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P is the target distri-
bution from the main prediction which is to be estimated by the mimicking
prediction Q. This loss is applied on the source and the target domain as it
does not require ground truth labels and is the key to our proposed domain
adaptation framework. For source, LxM can be seen as an auxiliary mimicry
loss in addition to the main segmentation loss Lseg.

The complete optimization objective for each network stream (2D and
3D) is the combination of the segmentation loss Lseg on source and the
cross-modal loss LxM on source and target:

min
θ

 1
|S|

∑
xs∈S

(
Lseg(xs,y3D

s) + λsLxM(xs)
)

+ 1
|T |

∑
xt∈T

λtLxM(xt)

 , (5.4)

where λs, λt are hyperparameters to weight LxM on source and target re-
spectively and θ are the network weights of either the 2D or the 3D stream.

114 2D-3D Cross-modal Unsupervised Domain Adaptation

There are parallels between the cross-modal learning and model distil-
lation which also adopts KL divergence as mimicry loss, but with the goal
to transfer knowledge from a large network to a smaller one in a super-
vised setting (Hinton et al., 2014). Recently Zhang et al. (2018) introduced
Deep Mutual Learning where an ensemble of uni-modal networks are jointly
trained to learn from each other in collaboration. Though to some extent,
our cross-modal learning is of similar nature as those strategies, we tackle
a different distillation angle, i.e. across modalities (2D/3D) and not in the
supervised, but in the UDA setting.

Self-training with Pseudo-Labels. Cross-modal learning is complemen-
tary to the pseudo-labeling strategy (Lee, 2013) used originally in semi-
supervised learning and recently in UDA (Li et al., 2019; Zou et al., 2019).

Once we have optimized a model with Equation 5.4 on the source dataset,
we generate pseudo-labels offline for the whole target dataset. We then
select highly confident labels with the thresholding method proposed by
Li et al. (2019). Precisely, in a loop over all classes, we gather all the
predictions where the current class was the most probable one and extract
the probabilities of that class. Then, we compute the median value over all
gathered probabilities. The median value is used as threshold below which
the labels of that class are discarded, assumed not to be confident enough.
This process is repeated for each class.

After that, a second training is carried out, initializing the network
weights from scratch, using the produced pseudo-labels for an additional
segmentation loss on the target training set. Consequently, the full opti-
mization problem writes:

min
θ

[
1
|S|

∑
xs

(
Lseg(xs,y3D

s) + λsLxM(xs)
)

+ 1
|T |

∑
xt

(
λPLLseg(xt, ŷ3D) + λtLxM(xt)

)]
, (5.5)

where λPL is weighting the pseudo-label segmentation loss and ŷ3D are the
pseudo-labels.

5.4 Experiments

5.4.1 Datasets

To evaluate xMUDA, we identified three real-to-real adaptation scenarios. In
the day-to-night case, LiDAR has a small domain gap, because it is an active
sensing technology, sending out laser beams which are mostly invariant to
lighting conditions. In contrast, camera has a large domain gap as its passive

5.4. Experiments 115

sensing suffers from lack of light sources, leading to drastic changes in object
appearance. The second scenario is country-to-country adaptation, where
the domain gap can be larger for LiDAR or camera: for some classes the
3D shape might change more than the visual appearance or vice versa. The
third scenario, dataset-to-dataset, comprises changes in the sensor setup,
such as camera optics, but most importantly a higher LiDAR resolution on
target. 3D networks are sensitive to varying point cloud density, as shown
in the robustness study in Section 4.4.4, and the image could help to guide
and stabilize adaptation.

We leverage recently published autonomous driving datasets nuScenes
(Caesar et al., 2019), A2D2 (Geyer et al., 2019) and SemanticKITTI (Behley
et al., 2019) in which LiDAR and camera are synchronized and calibrated
allowing to compute the projection between a 3D point and its corresponding
2D image pixel. The chosen datasets contain 3D annotations. For simplicity
and consistency across datasets, we only use the front camera image and the
LiDAR points that project into it.

For nuScenes, the annotations are 3D bounding boxes and we obtain the
point-wise labels for 3D semantic segmentation by assigning the correspond-
ing object label if a point lies inside a 3D box; otherwise the point is labeled
as background. We use the meta data to generate the splits for two UDA
scenarios: Day/Night and USA/Singapore.

A2D2 and SemanticKITTI provide segmentation labels. For UDA, we
define 10 shared classes between the two datasets. The LiDAR setup is
the main difference: in A2D2, there are three LiDARs with 16 layers which
generate a rather sparse point cloud and in SemanticKITTI, there is one
high-resolution LiDAR with 64 layers.

We provide more details about the data splits in Appendix C.1.

5.4.2 Implementation Details

2D Network. We use a modified version of U-Net (Ronneberger et al.,
2015) with a ResNet34 (He et al., 2016) encoder where we add dropout af-
ter the 3rd and 4th layer and initialize with ImageNet pretrained weights
provided by PyTorch. In the decoder, each layer consists of a transposed
convolution, concatenation with encoder features of same resolution (skip
connection) and another convolution to mix the features. The network takes
an image x2D as input and produces an output feature map with equal spa-
tial dimensions (H,W,F2D), where F2D is the number of feature channels.
In order to lift the 2D features to 3D, we sample them at sparse pixel lo-
cations where the 3D points project into the feature map, in the same way
as in MVPNet in Chapter 4, and obtain the final two-dimensional feature
matrix (N,F2D).

116 2D-3D Cross-modal Unsupervised Domain Adaptation

3D Network. For SparseConvNet (Graham et al., 2018) we leverage the
official PyTorch implementation1. We use a U-Net architecture with 6 times
downsampling and a voxel size of 5cm which is small enough to have only
one 3D point per voxel.

Training. For data augmentation we employ horizontal flipping and color
jitter in 2D, and x-axis flipping, scaling and rotation in 3D. Due to the wide
angle image in SemanticKITTI, we crop a fixed size rectangle randomly on
the horizontal image axis to reduce memory needs during training. There
is severe class imbalance in nuScenes as most of the points do not belong to
any object and are in consequence labeled with the background class. We
address this problem using log-smoothed class frequencies as weights in the
cross-entropy loss in all experiments. For the KL divergence for the cross-
modal loss in PyTorch, we detach the target variable to only backpropagate
in either the 2D or the 3D network. We use a batch size of 8, the Adam
optimizer with β1 = 0.9, β2 = 0.999, and an iteration based learning schedule
where the learning rate of 0.001 is divided by 10 at 80k and 90k iterations;
the training finishes at 100k. We jointly train the 2D and 3D stream and at
each iteration, accumulate gradients computed on source and target batch.
All trainings fit into a single GPU with 11GB RAM.

There are two training stages. First, we train with Equation 5.4, where
we apply the segmentation loss using ground truth labels on source and
cross-modal loss on source and target. Once trained, we generate pseudo-
labels as in (Li et al., 2019) from the last model. Note, that we do not select
the best weights on the validation set, but rather use the last checkpoint
to generate the pseudo-labels in order to prevent any supervised learning
signal. In the second training with objective of Equation 5.5, an additional
segmentation loss on target using the pseudo-labels is added; the networks
weights are reinitialized from scratch. The 2D and 3D network are trained
jointly and optimized on source and target at each iteration.

5.4.3 Main Experiments

We evaluate xMUDA on the three proposed cross-modal UDA scenarios and
compare against a state-of-the-art uni-modal UDA method (Li et al., 2019).

We report mean Intersection over Union (mIoU) results for 3D segmen-
tation in Table 5.1 on the target test set for the three UDA scenarios. We
evaluate on the test set using the checkpoint that achieved the best score on
the validation set. In addition to the scores of the 2D and 3D model, we show
the ensembling result (‘softmax avg’) which is obtained by taking the mean
of the predicted 2D and 3D probabilities after softmax. While the baseline
is trained on source only without UDA and represents the lower bound in

1https://github.com/facebookresearch/SparseConvNet

https://github.com/facebookresearch/SparseConvNet

5.4. Experiments 117

Day/Night USA/Singapore A2D2/SemanticKITTI

Method 2D 3D softmax avg 2D 3D softmax avg 2D 3D softmax avg

Baseline (source only) 42.2 41.2 47.8 53.4 46.5 61.3 36.0 36.6 41.8

UDA Baseline (PL) (Li et al., 2019) 43.7 45.1 48.6 55.5 51.8 61.5 37.4 44.8 47.7
xMUDA w/o PL 46.2 44.2 50.0 59.3 52.0 62.7 36.8 43.3 42.9
xMUDA 47.1 46.7 50.8 61.1 54.1 63.2 43.7 48.5 49.1

Oracle 48.6 47.1 55.2 66.4 63.8 71.6 58.3 71.0 73.7

Table 5.1: mIoU on the respective target sets for 3D semantic segmentation
in different cross-modal UDA scenarios. We report the result for each net-
work stream (2D and 3D) as well as the ensembling result (‘softmax avg’).
PL = Pseudo-labeling.

terms of performance, the ‘oracle’ in Table 5.1 is trained supervisedly having
access to labels on the target set and can be referred to as upper bound. We
train the oracle on target set only, except the Day/Night oracle, where we
used batches of 50%/50% Day/Night to prevent overfitting. Pseudo-labels
(PL) are applied separately on each modality (2D pseudo-labels to train 2D,
3D pseudo-labels to train 3D).

In all three UDA scenarios xMUDA outperforms both normal and UDA
baselines significantly, which proves the benefit of exchanging information
between modalities. We observe that cross-modal learning and self-training
with PL are complementary as the best score is always achieved combining
both (‘xMUDA’). This is expected as they represent different concepts: uni-
modal self-training with pseudo-labels reinforces confident predictions while
cross-modal learning enables knowledge sharing between modalities and can
be seen as auxiliary task.

We observe that cross-modal learning consistently improves both modal-
ities. Thus, even the strong modality can learn from the weaker one, thanks
to decoupling of main and mimicking prediction.

Qualitative results are presented in Figure 5.7 where we only display the
softmax average result to easily compare against the uni-modal UDA base-
line (PL). As shown in Figure 5.7, xMUDA exhibits better segmentation
across all three UDA scenarios which highlights the general benefit of cross-
modal learning. Additional qualitative results are shown in Figure 5.8, de-
picting the individual 2D/3D outputs to illustrate their respective strengths
and weaknesses. In Figure 5.8, we observe in ‘A2D2 - SemanticKITTI’ for
the uni-modal ‘UDA baseline (PL)’, that while 2D tends to mistake the
road as a building, 3D correctly predicts the road which is perhaps easier
to classify based on the 3D geometry, but 3D can be fooled by classes with
similar 3D shapes, e.g. it labels a building as truck. Note that in ‘xMUDA’,
2D and 3D are both much closer to the ground truth. Also in Figure 5.8 in
the ‘Day - Night’ scenario, the 2D network of ‘UDA baseline (PL)’ performs
poorly, because there is such a large large domain shift between day and
night images. However, in ‘xMUDA’ both modalities perform well, even 2D

118 2D-3D Cross-modal Unsupervised Domain Adaptation

U
S

A
 -

 S
in

g
ap

o
re

D
ay

 -
 N

ig
h

t
A

2D
2-

S
em

K
IT

T
I

Target input Ground truth UDA Baseline (PL) xMUDA

Sidewalk Parking Nature Building Other objects UnlabeledCar Bike Person RoadTruck

Vehicle Pedestrian Bike BackgroundTraffic Boundary

Figure 5.7: Qualitative results on the three proposed splits. We show the
ensembling result obtained from averaging the softmax output of 2D and
3D on the UDA Baseline (PL) and xMUDA.
A2D2/SemanticKITTI: xMUDA helps to stabilize and refine segmenta-
tion performance when there are sensor changes (3x16 layer LiDAR with
different angles to 64 layer LiDAR).
USA/Singapore: Delivery motorcycles with a storage box on the back
are common in Singapore, but not in USA. The 3D shape might resemble
a vehicle. However, 2D appearance information is leveraged in xMUDA to
improve the recognition.
Day/Night: The visual appearance of a car at night with headlights turned
on is very different than during day. The uni-modal UDA baseline is not
able to learn this new appearance. However, if information between camera
and robust-at-night LiDAR is exchanged in xMUDA, it is possible to detect
the car correctly at night.

at night which seems to have learned how to recognize cars by their head-
lamps. We also provide a video of the ‘A2D2 - SemanticKITTI’ scenario at
http://tiny.cc/xmuda.

5.4.4 Extension to Fusion

In the previous section we showed how each modality can be improved with
xMUDA and consequently, the softmax average also increases. However,
how can we obtain the best possible results by 2D and 3D feature fusion?

A common fusion architecture is late fusion where the features from dif-
ferent sources are concatenated (see Figure 5.9a). However, in this case there
is only a single fused prediction head where it is not possible to apply cross-
modal learning. Therefore, we propose xMUDA Fusion (see Figure 5.9b)
where each modality has an additional uni-modal prediction output which
is used to mimic the fusion prediction.

http://tiny.cc/xmuda

5.4. Experiments 119
Im

ag
e

U
D

A
 B

as
el

in
e

(P
L

)

2D
3D

xM
U

D
A

2D
3D

G
T

A2D2 - SemanticKITTI Day - Night

Parking Nature Building Other objects Unlabeled
SidewalkCar Bike Person RoadTruck Vehicle Pedestrian Bike

BackgroundTraffic Boundary

Figure 5.8: Qualitative results on two UDA scenarios. For UDA
Baseline (PL) and xMUDA, we separately show the predictions of the 2D
and 3D network stream.
A2D2/SemanticKITTI: For the uni-modal UDA baseline (PL), the 2D
prediction lacks consistency on the road and 3D is unable to recognize the
bike and the building on the left correctly. In xMUDA, both modalities can
stabilize each other and obtain better performance on the bike, the road,
the sidewalk and the building.
Day/Night: For the UDA Baseline, 2D can only partly recognize one car
out of three while the 3D prediction is almost correct, with one false positive
car on the left. With xMUDA, the 2D and 3D predictions are both correct.

120 2D-3D Cross-modal Unsupervised Domain Adaptation

2D
Features

3D
Features

concat
�fuse

Vanilla Fusion

2D
Features

3D
Features

�fuse

�3D→fuse

�2D→fuse

concat

(||)�KL �fuse �2D→fuse

(||)�KL �fuse �3D→fuse

xMUDA Fusion

Figure 5.9: Architectures for late fusion. (a) In Vanilla Fusion the 2D and
3D features are concatenated, fed into a linear layer with ReLU to mix the
features and followed by another linear layer and softmax to obtain a fused
prediction Pfuse. (b) In xMUDA Fusion, we add two uni-modal outputs
P2D→fuse and P3D→fuse that are used to mimic the fusion output Pfuse.

Vanilla Fusion (no UDA) 59.9
xMUDA Fusion w/o PL 61.9

Vanilla Fusion + PL 65.2
Distilled Vanilla Fusion 65.8
xMUDA Fusion 66.6

Oracle 72.2

Table 5.2: mIoU for fusion, USA/Singapore scenario.

5.5. Ablation Studies 121

(||)�KL �2D �3D

(||)�KL �3D �2D

2D
Features

�2D

�3D

3D
Features

Single head architecture

Baseline Single
Head

xMUDA
0.0

0.2

0.4

0.6

0.8

1.0

2D
3D

Mean probabilities (vehicle)

Figure 5.10: Single vs. Dual segmentation head. In (a), main and mimicry
prediction are not uncoupled as in xMUDA of Figure 5.5. In (b), we compare
mean predicted probabilities on points where the true label is vehicle. In
the naive single head approach, 2D/3D probabilities are simply aligned,
slightly decreasing the performance of the stronger 3D prediction, while the
disentangled architecture of xMUDA with 2 segmentation heads uncouples
the 2D improvement from the 3D result. Day/Night scenario.

In Table 5.2 we show results for different fusion approaches. ‘xMUDA
Fusion w/o PL’ outperforms Vanilla Fusion thanks to cross-modal learn-
ing. We can improve over ‘Vanilla Fusion + PL’ with ‘Distilled Vanilla
Fusion’ where we use the xMUDA model of the main experiments reported
in Table 5.1 to generate pseudo-labels from the softmax average and train
the Vanilla Fusion network. The best performance can be achieved with
‘xMUDA Fusion’, combining cross-modal learning and PL, analogously to
the main experiments.

5.5 Ablation Studies

5.5.1 Segmentation Heads

In the following we justify our design choice of two segmentation heads
per modality stream as opposed to a single one in a naive approach (see
Figure 5.10a).

In the single head architecture the mimicking objective is directly applied
between the two main predictions, which leads to an increase of probabil-
ity in the weaker and a decrease in the stronger modality, as can be seen
for the vehicle class in Figure 5.10b. There is shared information between
2D/3D, but also private information in each modality. An unwanted solu-
tion to reduce the cross-modal loss LxM is that the networks discard private
information, so that they both only use shared information making it easier

122 2D-3D Cross-modal Unsupervised Domain Adaptation

Single head w/o PL xMUDA w/o PL

λt 2D 3D softmax avg 2D 3D softmax avg

0.001 52.8 47.9 60.5 51.4 47.9 59.1
0.01 52.4 48.8 58.4 52.4 49.1 60.4
0.1 43.9 40.8 46.5 59.3 52.0 62.7
1.0 24.7 23.1 21.5 54.6 49.1 57.0

Table 5.3: mIoU without PL of Single head and xMUDA (Dual head), while
varying the weight of the cross-modal loss on target λt. USA/Singapore
scenario.

to align their outputs. However, we can obviously achieve the best perfor-
mance if the private information is also used. By separating the main from
the mimicking prediction with dual segmentation heads, we can effectively
decouple the two optimization objectives: The main head outputs the best
possible prediction to optimize the segmentation loss, while the mimicking
head can align with the other modality.

The experiments only include the first training step without PL as we
want to benchmark the pure cross-modal learning. From results in Table 5.3,
xMUDA has much better performance than the single head architecture and
is also much more robust when it comes to choosing a good hyperparameter,
specifically the weight of the cross-modal loss λt. As the loss weight λt
becomes too large, single head performance decreases as the network resorts
to the trivial solution of predicting the most frequent class to align 2D/3D
outputs, while xMUDA performance is robust. Note that we fix λs optimally
for each architecture, 0.1 for single head and 1.0 for xMUDA.

5.5.2 Cross-modal Learning on Source

In Equation 5.4, cross-modal loss LxM is applied on source and target, al-
though we already have supervised segmentation loss Lseg on source. We
observe an improvement of 4.8 mIoU on 2D and 4.4 mIoU on 3D when
adding LxM on source as opposed to applying it on target only. This shows
that it is important to train the mimicking head on source, stabilizing the
predictions, which can be exploited during adaptation on target.

5.5.3 Cross-modal Learning for Oracle Training

We have shown that cross-modal learning is very effective for UDA. How-
ever, it can also be used in a purely supervised setting. When training the
oracle with cross-modal loss LxM, we can improve over the baseline, see Ta-
ble 5.4. We conjecture that LxM is a beneficial auxiliary loss and can help
to regularize training and prevent overfitting.

5.6. Conclusion 123

Method 2D 3D softmax avg Method fusion

w/o LxM 65.8 63.2 71.1 Vanilla Fusion 71.0
with LxM 66.4 63.8 71.6 Fusion + LxM 72.2

Table 5.4: Cross-modal loss in supervised setting for oracle training. mIoU
on USA/Singapore.

5.6 Conclusion
In this chapter we propose xMUDA, Cross-modal Unsupervised Domain
Adaptation, where modalities learn from each other to improve performance
on the target domain. For cross-modal learning we introduce mutual mim-
icking between the modalities, achieved through KL divergence. We design
an architecture with separated main and mimicking head to disentangle the
segmentation from the cross-modal learning objective. Experiments on 3D
semantic segmentation on new UDA scenarios using 2D/3D datasets, show
that xMUDA largely outperforms uni-modal UDA and is complementary to
the pseudo-label strategy.

Different from feature fusion in preceding Chapters 3 and 4, we demon-
strate here that performance can be improved on each modality without any
feature fusion, i.e. just by exchanging information in output-space between
the 2D and 3D branch. However, we also showcase how feature fusion can
further boost performance, and that it benefits from the additional unsu-
pervised mimicking loss.

We think that cross-modal learning could be useful in a wide variety
of settings and tasks, not limited to UDA. For example, one could extend
to other modalities, supervised learning or, as recently shown by Alwassel
et al. (2019), to self-supervised learning. Specifically, Alwassel et al. (2019)
leverage cross-modal pseudo-labels, obtained through feature clustering, to
train feature encoders for the modalities of audio and video. In the case
of representation learning for action recognition, they obtain better perfor-
mance with their self-supervised method than with supervised pretraining
on large-scale datasets.

Conclusion

French Summary of the Chapter “Conclusion”
Dans ce chaptire nous résumons nos contributions en conduite de bout en
bout basé sur apprentissage par renforcement, la fusion de données pour
l’amélioration d’apprentissage supervisé, ainsi que l’adaptation de domaine
non-supervisé par l’apprentissage inter-modalités. De futures extensions de
ces travaux sont aussi envisagées.

Chapter 6

Conclusion

6.1 Contributions

In this thesis, besides our work on end-to-end driving with reinforcement
learning, we presented different approaches that aimed at jointly exploiting
images and point clouds to improve performance in supervised learning as
well as unsupervised learning. This was achieved through the design of
architectures fusing features in 2D and 3D space, as well as the technique
of mutual mimicking between modalities.

We applied state-of-the-art reinforcement learning techniques to end-to-
end driving, designing driving specific reward functions and developing novel
training strategies. To reduce the gap between simulation and real world
driving, we trained in a simulator with realistic graphics and physics which
are more demanding in computation. Therefore, to speed up training, we
implemented distributed learning on multiple machines.

We proposed architectures to fuse images and point clouds in either 2D
space or 3D space and carried out the tasks of depth completion and 2D/3D
semantic segmentation. In both, we show that 2D-3D fusion leads to better
performance than their uni-modal baselines and that dense image guidance
is especially helpful for robustness against low-resolution point clouds.

We proposed a method to fuse multiple views into a global point cloud
which consists of RGB feature computation in 2D, lifting features to 3D,
fusing them and computing the final 3D semantic segmentation with a 3D
network. This 2D-3D lifting strategy allows the aggregation of temporal data
(multiple local views) in a natural global 3D point cloud representation.

We introduced the novel task of cross-modal Unsupervised Domain Adap-
tation (UDA) where one has access to multi-modal data on the source and
target set. Furthermore, we provided new splits on existing datasets that
represent interesting UDA scenarios for 3D semantic segmentation.

We proposed mutual mimicking between images and point clouds to
address source-target domain shift, formalized as KL-divergence between
output predictions of networks that take different modalities as input. We
show the efficiency of this approach in terms of domain adaptation on our
newly provided UDA scenarios. As our method operates differently on the
data compared to existing uni-modal UDA techniques, it can be applied in a
complementary fashion on top of these. We showcase above the state-of-the-
art performance when combining cross-modal learning with the uni-modal

128 Conclusion

UDA technique of pseudo-label self-training.
We design an architecture that enables cross-modal learning by separat-

ing the 2D and 3D network streams and disentangles the mimicking from
the main segmentation head. We showcase how this dual head strategy can
also be applied on top of a fusion architecture, making it possible to address
the domain shift separately in each modality.

6.2 Future Work

In the last work of this thesis we aimed at reducing the dependence on la-
bels while focusing on the UDA task. I think that cross-modal learning be-
tween images and point clouds can potentially be extended to self-supervised
learning of representations. Such “pretraining” on large amounts of unla-
beled data can, in my opinion, lead to better performance than commonly
practiced pretraining on ImageNet (Deng et al., 2009). The latter strategy
has its limitations: for instance, the object-centered classification examples
in ImageNet are different in layout, lighting conditions and content than
images of outdoor driving or indoor scenes and there is no annotated point
cloud dataset that likens the size of ImageNet. In contrast, self-supervised
training on large-scale data could be performed on data that is closer to
the target distribution. Indeed, recording data is usually simple and cheap
compared to its annotation.

Existing works in self-supervision build on exploiting different constrains
as learning signal, e.g. geometry constraints for monocular depth estimation
using stereo camera pairs (Godard et al., 2019) or monocular video (Zhou
et al., 2017). Another possible learning signal stems from co-registration
of multiple modalities, e.g. for feature learning using audio-visual corre-
spondence (Arandjelovic and Zisserman, 2017). Similarly, and somewhat
related to our work presented in Chapter 5, Alwassel et al. (2019) generate
cross-modal pseudo-labels from audio and video data to learn informative
feature representations. In the same multi-modal spirit, interesting results
have been shown in maximizing mutual information between modalities, i.e.
depth, segmentation, luminance and color channel of an image (Tian et al.,
2019). The underlying principles in the discussed works rely on either ex-
ploiting geometric constraints or cross-modal correspondence between image
representations or image and audio. I think that in the multi-modal case
of point clouds and images, we could combine both types of constraints, i.e.
enforce geometric consistency as for instance between image-based depth
estimation and point cloud, and at the same time semantic consistency of
the learned features, e.g. through letting the network classify if a 2D and
3D point or an image and a point cloud correspond or not.

Our work on cross-modal learning for unsupervised domain adaptation
deals with the case where absolutely no labels are available on the target set.

6.2. Future Work 129

Another interesting research lead is weakly-supervised domain adaptation,
where one considers to have access to a small number of annotations on the
target set. In reality, this case is often encountered as one can usually afford
to annotate a tiny portion of the data.

In UDA, one has access to data in the target domain and the network
can be adapted to this kind of data. However, this still leaves the net-
work totally unprepared for out-of-distribution events, for example unseen
situations (the long tail of the data distribution) or sensor degradation (de-
calibration, soiling or failure). It is very important for perception systems
to function or to detect such unforeseen adversary events when performance
can be impacted. A promising way forward is to predict uncertainty of a
network output as proposed by Kendall et al. (2017). Recent work from
Tian et al. (2020) proposes to train three different expert networks (RGB-
D, RGB, D) which outputs are combined based on different uncertainty
measures. However, Tian et al. (2020) need to run three models in parallel
which increases computation. It would be of high interest to learn a single
robust fusion model.

Finally, we only looked at our data in a frame-wise fashion in this thesis.
However, in reality data often comes as a sequence and fusing information
across the temporal domain is a major avenue for performance improve-
ment in scene understanding via the exploitation of causality. This could
also help forecasting, because temporal data can provide clues about inten-
tions of drivers, bikers and pedestrians, important to perform planning in
autonomous driving.

Publications

This thesis led to the following publications:

• Perot, E., Jaritz, M., Toromanoff, M., and de Charette, R.
End-to-end driving in a realistic racing game with
deep reinforcement learning.
CVPR Workshop 2017.

• Jaritz, M., de Charette, R., Toromanoff, M., Perot, E.,
and Nashashibi, F.
End-to-end race driving with deep reinforcement learning.
ICRA 2018.

• Jaritz, M., de Charette, R., Wirbel, E., Perrotton, X.,
and Nashashibi, F.
Sparse and dense data with CNNs: depth completion and
semantic segmentation.
3DV 2018.

• Jaritz, M., Gu, J., and Su, H.
Multi-view PointNet for 3D scene understanding.
ICCV Workshop 2019.

• Jaritz, M., Vu, T.-H., de Charette, R., Wirbel, E., and Pérez, P.
xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D se-
mantic segmentation.
CVPR 2020.

Bibliography

Alwassel, H., Mahajan, D., Torresani, L., Ghanem, B., and Tran, D. (2019).
Self-supervised learning by cross-modal audio-video clustering. arXiv
2019.

Arandjelovic, R. and Zisserman, A. (2017). Look, listen and learn. In ICCV
2017.

Armeni, I., Sax, S., Zamir, A. R., and Savarese, S. (2017). Joint 2d-3d-
semantic data for indoor scene understanding. arXiv 2017.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A
deep convolutional encoder-decoder architecture for image segmentation.
TPAMI 2017.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss,
C., and Gall, J. (2019). SemanticKITTI: A dataset for semantic scene
understanding of LiDAR sequences. In ICCV 2019.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End
to end learning for self-driving cars. arXiv 2016.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Kr-
ishnan, A., Pan, Y., Baldan, G., and Beijbom, O. (2019). nuScenes: A
multimodal dataset for autonomous driving. arXiv 2019.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., et al. (2015). Shapenet: An
information-rich 3d model repository. arXiv 2015.

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015). Deepdriving: Learn-
ing affordance for direct perception in autonomous driving. In ICCV 2015.

Chen, D., Zhou, B., Koltun, V., and Krähenbühl, P. (2019a). Learning by
cheating. CoRL 2019.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.
(2018). Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. TPAMI 2018.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017a). Rethinking
atrous convolution for semantic image segmentation. arXiv 2017.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017b). Multi-view 3d
object detection network for autonomous driving. In CVPR 2017.

134 Bibliography

Chen, Y., Yang, B., Liang, M., and Urtasun, R. (2019b). Learning joint
2D-3D representations for depth completion. In ICCV 2019.

Cheng, X., Wang, P., Guan, C., and Yang, R. (2019). CSPN++: Learning
context and resource aware convolutional spatial propagation networks
for depth completion. arXiv 2019.

Cheng, X., Wang, P., and Yang, R. (2018). Depth estimation via affinity
learned with convolutional spatial propagation network. In ECCV 2018.

Chiang, H.-Y., Lin, Y.-L., Liu, Y.-C., and Hsu, W. H. (2019). A unified
point-based framework for 3D segmentation. In 3DV 2019.

Choy, C., Gwak, J., and Savarese, S. (2019). 4D spatio temporal convnet:
Minkowski convolutional neural networks. In CVPR 2019.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger,
O. (2016). 3d u-net: learning dense volumetric segmentation from sparse
annotation. In MICCAI 2016.

Codevilla, F., Miiller, M., López, A., Koltun, V., and Dosovitskiy, A. (2018).
End-to-end driving via conditional imitation learning. In ICRA 2018.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,
R., Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset
for semantic urban scene understanding. In CVPR 2016.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018). Implicit
quantile networks for distributional reinforcement learning. ICML 2018.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner,
M. (2017). ScanNet: Richly-annotated 3D reconstructions of indoor
scenes. In CVPR 2017.

Dai, A., Diller, C., and Nießner, M. (2019). Sg-nn: Sparse generative neural
networks for self-supervised scene completion of rgb-d scans. arXiv 2019.

Dai, A. and Nießner, M. (2018). 3dmv: Joint 3d-multi-view prediction for
3d semantic scene segmentation. In ECCV 2018.

Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., and Nießner, M.
(2018). Scancomplete: Large-scale scene completion and semantic seg-
mentation for 3d scans. In CVPR 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).
Imagenet: A large-scale hierarchical image database. In CVPR 2009.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolu-
tional neural networks with cutout. arXiv 2017.

Bibliography 135

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual rep-
resentation learning by context prediction. In ICCV 2015.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017).
Carla: An open urban driving simulator. arXiv 2017.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016).
Benchmarking deep reinforcement learning for continuous control. In
ICML 2016.

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric
sampling. In ICCV 1999.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from
a single image using a multi-scale deep network. In NeurIPS 2014.

Eldesokey, A., Felsberg, M., and Khan, F. S. (2019). Confidence propagation
through CNNs for guided sparse depth regression. TPAMI 2019.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,
F., March, M., and Lempitsky, V. (2016). Domain-adversarial training of
neural networks. JMLR 2016.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets
robotics: The kitti dataset. IJRR 2013.

Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung,
A. S., Hauswald, L., Pham, V. H., Mühlegg, M., Dorn, S., Fernandez,
T., Jänicke, M., Mirashi, S., Savani, C., Sturm, M., Vorobiov, O., and
Schuberth, P. (2019). A2D2: AEV autonomous driving dataset. http:
//www.a2d2.audi.

Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Unsupervised
monocular depth estimation with left-right consistency. In CVPR 2017.

Godard, C., Mac Aodha, O., Firman, M., and Brostow, G. J. (2019). Digging
into self-supervised monocular depth estimation. In ICCV 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial
nets. In NIPS 2014.

Graham, B., Engelcke, M., and van der Maaten, L. (2018). 3D semantic
segmentation with submanifold sparse convolutional networks. In CVPR
2018.

Graham, B. and van der Maaten, L. (2017). Submanifold sparse convolu-
tional networks. arXiv 2017.

http://www.a2d2.audi
http://www.a2d2.audi

136 Bibliography

Groh, F., Wieschollek, P., and Lensch, H. P. (2018). Flex-convolution
(million-scale point-cloud learning beyond grid-worlds). In ACCV 2018.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates.
In ICRA 2017.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep
Q-learning with model-based acceleration. In ICML 2016.

Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learning rich
features from rgb-d images for object detection and segmentation. In
ECCV 2014.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv 2018.

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., and
Pollefeys, M. (2017). SEMANTIC3D.NET: A new large-scale point cloud
classification benchmark. In ISPRS 2017.

Hancock, M. W. and Wright, B. (2001). A policy on geometric design of
highways and streets. The American Association of State Highway and
Transportation Officials.

Hazirbas, C., Ma, L., Domokos, C., and Cremers, D. (2016). Fusenet: In-
corporating depth into semantic segmentation via fusion-based cnn archi-
tecture. In ACCV 2016.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In CVPR 2016.

Hermosilla, P., Ritschel, T., Vázquez, P.-P., Vinacua, À., and Ropinski, T.
(2018). Monte carlo convolution for learning on non-uniformly sampled
point clouds. In SIGGRAPH Asia 2018 Technical Papers.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., Horgan, D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow:
Combining improvements in deep reinforcement learning. In AAAI 2018.

Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling the knowledge in a
neural network. In NIPS Workshop 2014.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros,
A., and Darrell, T. (2018). CyCADA: Cycle-consistent adversarial domain
adaptation. In ICML 2018.

Bibliography 137

Hoffman, J., Wang, D., Yu, F., and Darrell, T. (2016). FCNs in the wild:
Pixel-level adversarial and constraint-based adaptation. arXiv 2016.

Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nießner, M., and Guibas,
L. J. (2019). Texturenet: Consistent local parametrizations for learning
from high-resolution signals on meshes. In CVPR 2019.

Jaritz, M., de Charette, R., Toromanoff, M., Perot, E., and Nashashibi, F.
(2018a). End-to-end race driving with deep reinforcement learning. In
ICRA 2018.

Jaritz, M., de Charette, R., Wirbel, E., Perrotton, X., and Nashashibi,
F. (2018b). Sparse and dense data with CNNs: depth completion and
semantic segmentation. In 3DV 2018.

Jaritz, M., Gu, J., and Su, H. (2019). Multi-view PointNet for 3D scene
understanding. In ICCV Workshop 2019.

Jaritz, M., Vu, T.-H., de Charette, R., Wirbel, E., and Pérez, P. (2020).
xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D semantic
segmentation. CVPR 2020.

Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.-W., and Jia, J. (2019). Hier-
archical point-edge interaction network for point cloud semantic segmen-
tation. In CVPR 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E.,
Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., et al. (2018).
Qt-opt: Scalable deep reinforcement learning for vision-based robotic ma-
nipulation. CoRL 2018.

Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D.,
Menon, D. K., Rueckert, D., and Glocker, B. (2017). Efficient multi-scale
3d cnn with fully connected crf for accurate brain lesion segmentation.
MEDIA 2017.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W.
(2016). Vizdoom: A doom-based ai research platform for visual rein-
forcement learning. CIG 2016.

Kendall, A., Badrinarayanan, V., and Cipolla, R. (2017). Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder architectures for
scene understanding. BMVC 2017.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam,
V.-D., Bewley, A., and Shah, A. (2019). Learning to drive in a day. In
ICRA 2019.

138 Bibliography

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classifi-
cation with deep convolutional neural networks. In NIPS 2012.

Ku, J., Harakeh, A., and Waslander, S. L. (2018). In defense of classical
image processing: Fast depth completion on the cpu. CRV 2018.

Kuznietsov, Y., Stückler, J., and Leibe, B. (2017). Semi-supervised deep
learning for monocular depth map prediction. In CVPR 2017.

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., and Navab, N. (2016).
Deeper depth prediction with fully convolutional residual networks. In
3DV 2016.

Landrieu, L. and Simonovsky, M. (2018). Large-scale point cloud semantic
segmentation with superpoint graphs. In CVPR 2018.

Lau, B. (2016). Using Keras and Deep Deterministic Policy Gradient to
play TORCS.

Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In ICML Workshop 2013.

Lee, K.-H., Ros, G., Li, J., and Gaidon, A. (2019). Spigan: Privileged
adversarial learning from simulation. In ICLR 2019.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training
of deep visuomotor policies. JMLR 2016.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018).
Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. IJRR 2018.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. (2018). Pointcnn:
Convolution on x-transformed points. In NeurIPS 2018.

Li, Y., Yuan, L., and Vasconcelos, N. (2019). Bidirectional learning for
domain adaptation of semantic segmentation. In CVPR 2019.

Liang, M., Yang, B., Wang, S., and Urtasun, R. (2018). Deep continuous
fusion for multi-sensor 3D object detection. In ECCV 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2016). Continuous control with deep reinforcement
learning. ICLR 2016.

Liu, M.-Y., Breuel, T., and Kautz, J. (2017). Unsupervised image-to-image
translation networks. In NIPS 2017.

Long, J., Shelhamer, E., and Darrell, T. (2015a). Fully convolutional net-
works for semantic segmentation. In CVPR 2015.

Bibliography 139

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015b). Learning transferable
features with deep adaptation networks. In ICML 2015.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). Understanding the
effective receptive field in deep convolutional neural networks. In NeurIPS
2016.

Ma, F., Cavalheiro, G. V., and Karaman, S. (2019). Self-supervised sparse-
to-dense: Self-supervised depth completion from lidar and monocular
camera. In ICRA 2019.

Ma, F. and Karaman, S. (2018). Sparse-to-dense: Depth prediction from
sparse depth samples and a single image. ICRA 2018.

Mairal, J., Sapiro, G., and Elad, M. (2008). Learning multiscale sparse
representations for image and video restoration. Multiscale Modeling &
Simulation.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,
Silver, D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep
reinforcement learning. In ICML 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing Atari with deep reinforcement
learning. NIPS Workshop 2013.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger,
S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., et al. (2008). Ju-
nior: The stanford entry in the urban challenge. Journal of Field Robotics
2008.

Morerio, P., Cavazza, J., and Murino, V. (2018). Minimal-entropy correla-
tion alignment for unsupervised deep domain adaptation. In ICLR 2018.

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., and Kim, K. (2018).
Image to image translation for domain adaptation. In CVPR 2018.

Perot, E., Jaritz, M., Toromanoff, M., and de Charette, R. (2017). End-to-
end driving in a realistic racing game with deep reinforcement learning.
In CVPR Workshop 2017.

Pizzati, F., de Charette, R., Zaccaria, M., and Cerri, P. (2020). Domain
bridge for unpaired image-to-image translation and unsupervised domain
adaptation. WACV 2020.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural
network. In NIPS 1989.

140 Bibliography

Qi, C. R., Liu, W., Wu, C., Su, H., and Guibas, L. J. (2018). Frustum
pointnets for 3d object detection from rgb-d data. In CVPR 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning
on point sets for 3d classification and segmentation. CVPR 2017.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In NeurIPS
2017.

Qiu, J., Cui, Z., Zhang, Y., Zhang, X., Liu, S., Zeng, B., and Pollefeys,
M. (2019). Deeplidar: Deep surface normal guided depth prediction for
outdoor scene from sparse lidar data and single color image. In CVPR
2019.

Ren, M., Pokrovsky, A., Yang, B., and Urtasun, R. (2018). Sbnet: Sparse
blocks network for fast inference. In CVPR 2018.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards
real-time object detection with region proposal networks. In NIPS 2015.

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017). Octnet: Learning deep
3d representations at high resolutions. In CVPR 2017.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. In MICCAI 2015.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016).
The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In CVPR 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015).
Trust region policy optimization. In ICML 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv 2017.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018). Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and
service robotics 2018.

Shi, S., Wang, X., and Li, H. (2019). Pointrcnn: 3d object proposal gener-
ation and detection from point cloud. In CVPR 2019.

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmen-
tation and support inference from rgbd images. In ECCV 2012.

Bibliography 141

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al. (2016). Mastering the game of go with deep neural networks
and tree search. Nature.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks
for large-scale image recognition. ICLR 2015.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T.
(2017). Semantic scene completion from a single depth image. In CVPR
2017.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015).
Striving for simplicity: The all convolutional net. ICLR 2015 Workshop.

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.-H., and
Kautz, J. (2018). SPLATNet: Sparse lattice networks for point cloud
processing. In CVPR 2018.

Sun, B. and Saenko, K. (2016). Deep coral: Correlation alignment for deep
domain adaptation. In ECCV 2016.

Sun, Z., Bebis, G., and Miller, R. (2006). On-road vehicle detection: A
review. TPAMI 2006.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learn-
ing. MIT press Cambridge.

Tang, J., Tian, F.-P., Feng, W., Li, J., and Tan, P. (2019). Learning guided
convolutional network for depth completion. arXiv 2019.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and
Guibas, L. J. (2019). KPConv: Flexible and deformable convolution for
point clouds. In ICCV 2019.

Tian, J., Cheung, W., Glaser, N., Liu, Y.-C., and Kira, Z. (2020). Uno:
Uncertainty-aware noisy-or multimodal fusion for unanticipated input
degradation. ICRA 2020.

Tian, Y., Krishnan, D., and Isola, P. (2019). Contrastive multiview coding.
arXiv 2019.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for
model-based control. In IROS 2012.

Toromanoff, M., Wirbel, E., and Moutarde, F. (2020). End-to-end model-
free reinforcement learning for urban driving using implicit affordances.
CVPR 2020.

142 Bibliography

Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., and Chan-
draker, M. (2018). Learning to adapt structured output space for semantic
segmentation. In CVPR 2018.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep
domain confusion: Maximizing for domain invariance. arXiv 2014.

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., and Geiger, A.
(2017). Sparsity invariant CNNs. In 3DV 2017.

Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A.,
and Brox, T. (2017). Demon: Depth and motion network for learning
monocular stereo. In CVPR 2017.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.,
Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al. (2008). Autonomous
driving in urban environments: Boss and the urban challenge. Journal of
Field Robotics 2008.

Valada, A., Mohan, R., and Burgard, W. (2019). Self-supervised model
adaptation for multimodal semantic segmentation. IJCV 2019.

Valada, A., Vertens, J., Dhall, A., and Burgard, W. (2017). Adapnet: Adap-
tive semantic segmentation in adverse environmental conditions. In ICRA
2017.

Van Gansbeke, W., Neven, D., De Brabandere, B., and Van Gool, L. (2019).
Sparse and noisy lidar completion with rgb guidance and uncertainty.
MVA 2019.

Verma, N., Boyer, E., and Verbeek, J. (2018). Feastnet: Feature-steered
graph convolutions for 3D shape analysis. In CVPR 2018.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czar-
necki, W., Dudzik, A., Huang, A., Georgiev, P., Powell, R., Ewalds,
T., Horgan, D., Kroiss, M., Danihelka, I., Agapiou, J., Oh, J., Dal-
ibard, V., Choi, D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy, J.,
Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T.,
Pohlen, T., Yogatama, D., Cohen, J., McKinney, K., Smith, O., Schaul,
T., Lillicrap, T., Apps, C., Kavukcuoglu, K., Hassabis, D., and Silver,
D. (2019). AlphaStar: Mastering the Real-Time Strategy Game Star-
Craft II. https://deepmind.com/blog/alphastar-mastering-real-
time-strategy-game-starcraft-ii/.

Vu, T.-H., Jain, H., Bucher, M., Cord, M., and Pérez, P. (2019a). Advent:
Adversarial entropy minimization for domain adaptation in semantic seg-
mentation. In CVPR 2019.

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Bibliography 143

Vu, T.-H., Jain, H., Bucher, M., Cord, M., and Pérez, P. (2019b). DADA:
Depth-aware domain adaptation in semantic segmentation. In ICCV 2019.

Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., and Urtasun, R. (2018). Deep
parametric continuous convolutional neural networks. In CVPR 2018.

Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., and Wein-
berger, K. Q. (2019a). Pseudo-lidar from visual depth estimation: Bridg-
ing the gap in 3d object detection for autonomous driving. In CVPR
2019.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon,
J. M. (2019b). Dynamic graph cnn for learning on point clouds. Trans-
actions on Graphics 2019.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 1992.

Wu, B., Wan, A., Yue, X., and Keutzer, K. (2018a). Squeezeseg: Convolu-
tional neural nets with recurrent crf for real-time road-object segmentation
from 3D LiDAR point cloud. In ICRA 2018.

Wu, B., Zhou, X., Zhao, S., Yue, X., and Keutzer, K. (2019a). Squeezesegv2:
Improved model structure and unsupervised domain adaptation for road-
object segmentation from a lidar point cloud. In ICRA 2019.

Wu, W., Qi, Z., and Fuxin, L. (2019b). PointConv: Deep convolutional
networks on 3D point clouds. In CVPR 2019.

Wu, Z., Han, X., Lin, Y.-L., Gokhan Uzunbas, M., Goldstein, T., Nam Lim,
S., and Davis, L. S. (2018b). DCAN: Dual channel-wise alignment net-
works for unsupervised scene adaptation. In ECCV 2018.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., and
Sumner, A. (2000). Torcs, the open racing car simulator.

Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. (2018). Spidercnn: Deep
learning on point sets with parameterized convolutional filters. In ECCV
2018.

Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., and Li, H. (2019). Depth
completion from sparse lidar data with depth-normal constraints. In ICCV
2019.

Yang, Y., Wong, A., and Soatto, S. (2019). Dense depth posterior (ddp)
from single image and sparse range. In CVPR 2019.

144 Bibliography

You, Y., Wang, Y., Chao, W.-L., Garg, D., Pleiss, G., Hariharan, B., Camp-
bell, M., and Weinberger, K. Q. (2020). Pseudo-LiDAR++: Accurate
depth for 3D object detection in autonomous driving. ICLR 2020.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). Gen-
erative image inpainting with contextual attention. In CVPR.

Zhang, Y., David, P., and Gong, B. (2017). Curriculum domain adaptation
for semantic segmentation of urban scenes. In ICCV 2017.

Zhang, Y. and Funkhouser, T. (2018). Deep depth completion of a single
rgb-d image. CVPR 2018.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018). Deep mutual
learning. In CVPR 2018.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene
parsing network. In CVPR 2017.

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Unsupervised
learning of depth and ego-motion from video. In CVPR 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning trans-
ferable architectures for scalable image recognition. CVPR 2018.

Zou, Y., Yu, Z., Liu, X., Kumar, B. V., and Wang, J. (2019). Confidence
regularized self-training. In ICCV 2019.

Appendix A

Fusing sparse depth and
dense RGB for depth

completion

In the following we will detail the network architecture used in Chapter 3.

A.1 Architecture details
We use the Tensorflow library. For the encoder, we use the original imple-
mentation of NASNet with the slim package1. We choose the mobile version
(4@1056) of NASNet with the ImageNet stem and remove batch norm for
the sparse depth branch. For the skip connections between encoder and
decoder, we always took the highest level features at each resolution stage
of the encoder, which are numbered in the original implementation as (from
small to large resolution) [’Cell_7’, ’Cell_3’, ’Stem_1_Reduction_Cell_0’,
’Stem_0_Strided_Conv’].

Our custom decoder is detailed in Table A.1. Note that for semantic
segmentation the number of output channels for the last convolution is set
to the number of classes.

1https://github.com/tensorflow/models/tree/master/research/slim

https://github.com/tensorflow/models/tree/master/research/slim

146 Fusing sparse depth and dense RGB for depth completion

Input Output Up-/Down-
Operation channels channels sampling

Encoder (NASNet 4@1056),
duplicated for each modality (sD and
RGB)
conv (s=2, k=3)
(Stem_0_Strided_Conv)

1 (sD) or 3 (RGB) 32 1/2

reduction cell
(Stem_1_Reduction_Cell_0)

32 44 1/2

reduction cell 44 88 1/2
normal cell (Cell_0) 88 264
normal cell (Cell_1) 264 264
normal cell (Cell_2) 264 264
normal cell (Cell_3) 264 264

reduction cell 264 352 1/2
normal cell (Cell_4) 352 528
normal cell (Cell_5) 528 528
normal cell (Cell_6) 528 528
normal cell (Cell_7) 528 528

reduction cell 528 704 1/2
normal cell (Cell_8) 704 1056
normal cell (Cell_9) 1056 1056
normal cell (Cell_10) 1056 1056
normal cell (Cell_11) 1056 1056

Custom Decoder
concat features from RGB + sD
branch Cell_11

2x1056 2112

conv (s=1, k=3) 2112 1056
transposed conv (s=2, k=3) 1056 528 2x

concat features from RGB + sD
branch Cell_7

2x528 1056

conv (s=1, k=3) 1056 528
transposed conv (s=2, k=3) 528 264 2x

concat features from RGB + sD
branch Cell_3

2x264 528

conv (s=1, k=3) 528 264
transposed conv (s=2, k=3) 264 132 2x

concat features from RGB + sD
branch Stem_1_Reduction_Cell_0

2x132 264

conv (s=1, k=3) 264 132
transposed conv (s=2, k=3) 132 66 2x

concat features from RGB + sD
branch Stem_0_Strided_Conv

66 132

conv (s=1, k=3) 132 66
transposed conv (s=2, k=3) 66 33 2x

conv (s=1, k=1) [depth regression] 33 1

Table A.1: Details of our encoder-decoder architecture. The encoder is
NASNet mobile 4@1056, where 4 refers to the number of ‘normal cell’ rep-
etitions and 1056 to the output channel size of the last layer. We report
the layer names of the official NASNet implementation in Tensorflow slim,
e.g. Cell_0. In our custom decoder, we use ReLU activations after each
convolution and transposed convolution.

Appendix B

Multi-view PointNet for 3D
scene understanding

3 64

128

256

512 1024

512

256

128 64

vgg block

max	pool	2x2

copy

transpose	conv

conv

Figure B.1: The architecture of the 2D encoder-decoder network.

To supplement Chapter 4, we here show a detailed figure of our 2D network
architecture and provide additional results for our submission to the ScanNet
benchmark.

B.1 2D Encoder Decoder Architecture
Figure B.1 illustrates the architecture of the 2D encoder-decoder network
inspired by U-Net (Ronneberger et al., 2015). We use VGG16 as encoder and
initialize with ImageNet pre-trained weights. In the decoder, convolution is
used to fuse concatenated features from skip connections, and transposed
convolution for upsampling.

B.2 Additional Ablation Studies
For the ScanNetV2 3D semantic label benchmark, we employ MVPNet with
5 views and use ResNet34 as the 2D backbone. The numbers of centroids

148 Multi-view PointNet for 3D scene understanding

Method mIoU

MVPNet(VGG19) 66.6
MVPNet(ResNet34) 67.3

MVPNet(ResNet34) + class weights 68.0

MVPNet(ResNet34) + ensemble 68.3

Table B.1: The variants of MVPNet. The results are reported on the vali-
dation set of ScanNetV2.

are 2048, 512, 128, 64 respectively.
Table B.1 shows the comparison among several variants of the submission

version. The stronger 2D backbone (ResNet34) improves the mIoU by 0.7
against the weaker 2D backbone (VGG19). Moreover, we also experiment
with training MVPNet with class weights, which boosts the mIoU (+0.7) as
the evaluation metric favors more balanced predictions. To achieve the best
performance (68.3), we ensemble 4 models of MVPNet with ResNet34.

Appendix C

2D-3D Cross-Modal
Unsupervised Domain

Adaptation

In the following, we give details for the dataset splits of our Unsupervised
Domain Adaptation (UDA) scenarios proposed in Chapter 5.

C.1 Dataset Splits

C.1.1 nuScenes

The nuScenes dataset (Caesar et al., 2019) consists of 1000 driving scenes,
each of 20 seconds, which corresponds to 40k annotated keyframes taken at
2Hz. The scenes are split into train (28,130 keyframes), validation (6,019
keyframes) and hidden test set. The point-wise 3D semantic labels are
obtained from 3D boxes like in (Wu et al., 2018a). We propose the follow-
ing splits destined for domain adaptation with the respective source/target
domains: Day/Night and USA/Singapore. Note that the USA data was
captured in Boston. We use the official validation set as test set and di-
vide the training set into train/val for the target set (see Table C.1 for the
number of frames in each split). As the number of object instances in the
target split can be very small (e.g. for night), we merge the objects into 5
categories: vehicle (car, truck, bus, trailer, construction vehicle), pedes-
trian, bike (motorcycle, bicycle), traffic boundary (traffic cone, barrier)
and background.

source target

Split train test train val test

Day - Night 24,745 5,417 2,779 606 602
USA - Singapore 15,695 3,090 9,665 2,770 2,929
A2D2 - SemanticKITTI 27,695 942 18,029 1,101 4,071

Table C.1: Number of frames for the 3 splits. Day-Night and USA-Singapore
are splits on nuScenes.

150 2D-3D Cross-Modal Unsupervised Domain Adaptation

C.1.2 A2D2 and SemanticKITTI

The A2D2 dataset (Geyer et al., 2019) features 20 drives, which corresponds
to 28,637 frames. The point cloud comes from three 16-layer front LiDARs
(left, center, right) where the left and right front LiDARs are inclined. The
semantic labeling was carried out in the 2D image for 38 classes and we
compute the 3D labels by projection of the point cloud into the labeled
image. We keep scene 20180807_145028 as test set and use the rest for
training.

The SemanticKITTI dataset (Behley et al., 2019) provides 3D point
cloud labels for the Odometry dataset of Kitti (Geiger et al., 2013) which
features large angle front camera and a 64-layer LiDAR. The annotation of
the 28 classes has been carried out directly in 3D.

We use the scenes {0, 1, 2, 3, 4, 5, 6, 9, 10} as train set, 7 as validation and
8 as test set. We select 10 shared classes between the 2 datasets by merging
or ignoring them (see Table C.2). The 10 final classes are car, truck, bike,
person, road, parking, sidewalk, building, nature, other-objects.

C.1. Dataset Splits 151

A2D2 class mapped class SemanticKITTI class mapped class
Car 1 car unlabeled ignore
Car 2 car outlier ignore
Car 3 car car car
Car 4 car bicycle bike
Bicycle 1 bike bus ignore
Bicycle 2 bike motorcycle bike
Bicycle 3 bike on-rails ignore
Bicycle 4 bike truck truck
Pedestrian 1 person other-vehicle ignore
Pedestrian 2 person person person
Pedestrian 3 person bicyclist bike
Truck 1 truck motorcyclist bike
Truck 2 truck road road
Truck 3 truck parking parking
Small vehicles 1 bike sidewalk sidewalk
Small vehicles 2 bike other-ground ignore
Small vehicles 3 bike building building
Traffic signal 1 other-objects fence other-objects
Traffic signal 2 other-objects other-structure ignore
Traffic signal 3 other-objects lane-marking road
Traffic sign 1 other-objects vegetation nature
Traffic sign 2 other-objects trunk nature
Traffic sign 3 other-objects terrain nature
Utility vehicle 1 ignore pole other-objects
Utility vehicle 2 ignore traffic-sign other-objects
Sidebars other-objects other-object other-objects
Speed bumper other-objects moving-car car
Curbstone sidewalk moving-bicyclist bike
Solid line road moving-person person
Irrelevant signs other-objects moving-motorcyclist bike
Road blocks other-objects moving-on-rails ignore
Tractor ignore moving-bus ignore
Non-drivable street ignore moving-truck truck
Zebra crossing road moving-other-vehicle ignore
Obstacles / trash other-objects
Poles other-objects
RD restricted area road
Animals other-objects
Grid structure other-objects
Signal corpus other-objects
Drivable cobbleston road
Electronic traffic other-objects
Slow drive area road
Nature object nature
Parking area parking
Sidewalk sidewalk
Ego car car
Painted driv. instr. road
Traffic guide obj. other-objects
Dashed line road
RD normal street road
Sky ignore
Buildings building
Blurred area ignore
Rain dirt ignore

Table C.2: Class mapping for A2D2 - SemanticKITTI UDA scenario.

MOTS CLÉS

segmentation sémantique 3D, fusion 2D-3D, adaptation de domaine non supervisée, complétion de pro-
fondeur, nuage de points, conduite de bout en bout

RÉSUMÉ

Dans cette thèse, nous abordons les défis de la rareté des annotations et la fusion de données hétérogènes tels que les
nuages de points 3D et images 2D.

D’abord, nous adoptons une stratégie de conduite de bout en bout où un réseau de neurones est entraîné pour di-
rectement traduire l’entrée capteur (image caméra) en contrôles-commandes, ce qui rend cette approche indépendante
des annotations dans le domaine visuel. Nous utilisons l’apprentissage par renforcement profond où l’algorithme
apprend de la récompense, obtenue par interaction avec un simulateur réaliste. Nous proposons de nouvelles stratégies
d’entraînement et fonctions de récompense pour une meilleure conduite et une convergence plus rapide. Cependant, le
temps d’apprentissage reste élevé. C’est pourquoi nous nous concentrons sur la perception dans le reste de cette thèse
pour étudier la fusion de nuage de points et d’images.

Nous proposons deux méthodes différentes pour la fusion 2D-3D. Premièrement, nous projetons des nuages de
points LiDAR 3D dans l’espace image 2D, résultant en des cartes de profondeur éparses. Nous proposons une
nouvelle architecture encodeur-décodeur qui fusionne les informations de l’image et la profondeur pour la tâche
de complétion de carte de profondeur, améliorant ainsi la résolution du nuage de points projeté dans l’espace
image. Deuxièmement, nous fusionnons directement dans l’espace 3D pour éviter la perte d’informations dû à
la projection. Pour cela, nous calculons les caractéristiques d’image issues de plusieurs vues avec un CNN 2D,
puis nous les projetons dans un nuage de points 3D global pour les fusionner avec l’information 3D. Par la suite, ce
nuage de point enrichi sert d’entrée à un réseau "point-based" dont la tâche est l’inférence de la sémantique 3D par point.

Sur la base de ce travail, nous introduisons la nouvelle tâche d’adaptation de domaine non supervisée inter-modalités où
on a accès à des données multi-capteurs dans une base de données source annotée et une base cible non annotée. Nous
proposons une méthode d’apprentissage inter-modalités 2D-3D via une imitation mutuelle entre les réseaux d’images et
de nuages de points pour résoudre l’écart de domaine source-cible. Nous montrons en outre que notre méthode est
complémentaire à la technique unimodale existante dite de pseudo-labeling.

ABSTRACT

In this thesis, we address the challenges of label scarcity and fusion of heterogeneous 3D point clouds and 2D images.

We adopt the strategy of end-to-end race driving where a neural network is trained to directly map sensor input (camera
image) to control output, which makes this strategy independent from annotations in the visual domain. We employ deep
reinforcement learning where the algorithm learns from reward by interaction with a realistic simulator. We propose new
training strategies and reward functions for better driving and faster convergence. However, training time is still very long
which is why we focus on perception to study point cloud and image fusion in the remainder of this thesis.

We propose two different methods for 2D-3D fusion. First, we project 3D LiDAR point clouds into 2D image space,
resulting in sparse depth maps. We propose a novel encoder-decoder architecture to fuse dense RGB and sparse depth
for the task of depth completion that enhances point cloud resolution to image level. Second, we fuse directly in 3D space
to prevent information loss through projection. Therefore, we compute image features with a 2D CNN of multiple views
and then lift them all to a global 3D point cloud for fusion, followed by a point-based network to predict 3D semantic labels.

Building on this work, we introduce the more difficult novel task of cross-modal unsupervised domain adaptation, where
one is provided with multi-modal data in a labeled source and an unlabeled target dataset. We propose to perform 2D-3D
cross-modal learning via mutual mimicking between image and point cloud networks to address the source-target domain
shift. We further showcase that our method is complementary to the existing uni-modal technique of pseudo-labeling.

KEYWORDS

3D semantic segmentation, 2D-3D fusion, unsupervised domain adaptation, depth completion, point cloud,
end-to-end driving

	Introduction
	Goals
	Autonomous driving context
	Thesis Structure

	End-to-End Driving with Deep Reinforcement Learning
	Introduction
	Reinforcement learning background
	Related Work
	Method
	Reinforcement learning framework
	Learning strategy

	Experiments
	Training setup
	Metrics
	Performance evaluation
	Ablation studies
	Generalization

	Discussion
	Conclusion

	Fusing sparse depth and dense RGB for depth completion
	Introduction
	Related Work
	Method
	Network Architecture
	Sparse Data Training
	Analysis of Validity Mask

	Experiments
	Datasets
	Implementation
	Depth completion
	Semantic Segmentation

	Discussion
	Conclusion

	Multi-view PointNet for 3D scene understanding
	Introduction
	Outdoor vs. indoor data

	Related Work
	MVPNet
	Overview
	View Selection
	2D Encoder-Decoder Network
	2D-3D Feature Lifting Module
	3D Fusion Network

	Experiments on ScanNet
	ScanNet Dataset
	Implementation Details
	3D Semantic Segmentation Benchmark
	Robustness to Varying Point Cloud Density

	Ablation Studies
	Number of Views
	Feature Aggregation Module
	Fusion
	Stronger Backbone

	Experiments on S3DIS
	S3DIS Dataset
	3D Semantic Segmentation

	Conclusion

	2D-3D Cross-modal Unsupervised Domain Adaptation
	Introduction
	Related Work
	xMUDA
	Architecture
	Learning Scheme

	Experiments
	Datasets
	Implementation Details
	Main Experiments
	Extension to Fusion

	Ablation Studies
	Segmentation Heads
	Cross-modal Learning on Source
	Cross-modal Learning for Oracle Training

	Conclusion

	Conclusion
	Contributions
	Future Work

	Publications
	Bibliography
	Fusing sparse depth and dense RGB for depth completion
	Architecture details

	Multi-view PointNet for 3D scene understanding
	2D Encoder Decoder Architecture
	Additional Ablation Studies

	2D-3D Cross-Modal Unsupervised Domain Adaptation
	Dataset Splits
	nuScenes
	A2D2 and SemanticKITTI

