
HAL Id: tel-02938080
https://pastel.hal.science/tel-02938080

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial characterization of asynchronous
distributed computability

Thibault Rieutord

To cite this version:
Thibault Rieutord. Combinatorial characterization of asynchronous distributed computability. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2018. English.
�NNT : 2018SACLT007�. �tel-02938080�

https://pastel.hal.science/tel-02938080
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LT
00

7

Combinatorial Characterization of
Asynchronous Distributed Computability

Thèse de doctorat de l’Université Paris-Saclay
préparée à Télécom ParisTech

Ecole doctorale n◦580 Sciences et technologies
de l’information et de la communication (STIC)

Spécialité de doctorat : Mathématiques et Informatique

Thèse présentée et soutenue à Paris, le 25 Octobre 2018, par

THIBAULT RIEUTORD

Composition du Jury :

Carole Delporte-Gallet Président du Jury
Professeur, Université Paris-Diderot
Institut de Recherche en Informatique Fondamentale

Emmanuel Godard Rapporteur
Professeur, Université d’Aix-Marseille
Laboratoire d’Informatique Fondamentale de Marseille

Maurice Herlihy Rapporteur
Professor, Brown University
Computer Science Department

Joffroy Beauquier Examinateur
Professeur, Université Paris-Sud
Laboratoire de Recherche en Informatique

Maria Potop-Butucaru Examinateur
Professeur, Sorbonne Université
Laboratoire d’Informatique de Paris 6

Petr Kuznetsov Directeur de thèse
Professeur, Télécom ParisTech
Laboratoire Traitement et Communication de l’Information

Résumé

Les systèmes informatiques modernes sont des systèmes distribués, allant de multiples pro-
cesseurs sur une même puce à des systèmes internet de large échelle. Dans cette thèse nous
étudions les problèmes de calculabilité et de complexité dans les systèmes distribués asynchrones
communiquant par mémoire partagée.

Dans la première et majeure partie de cette thèse, nous étudions la capacité des modèles
communiquant par mémoire partagée à résoudre des tâches distribuées. Notre première
contribution est une technique de simulation distribuée utilisant la capacité d’accord du
système afin de synchroniser les différents processus entre eux. Cette technique de simulation
permet de comparer la capacité de différents modèles à résoudre des tâches distribuées. À l’aide
de cet outil, nous montrons que pour les modèles d’adversaires en mémoire partagée, la capacité
à résoudre un ensemble particulier de tâches d’accord permet de déterminer sa capacité à
résoudre n’importe quelle tâche distribuée. Nous utilisons ensuite les outils issus de la topologie
combinatoire afin de caractériser la calculabilité des modèles par le biais de tâches affines:
des complexes simpliciaux extraits d’itérations finies de la sous-division colorée standard.
Cette caractérisation s’applique aux modèles dits sans-attente avec accès à des objets de
“k-test-and-set” ainsi qu’à un large ensemble de modèles d’adversaires en mémoire partagée
dits équitables. Ces résultats généralisent et améliorent toutes les caractérisations topologiques
connues de la capacité à résoudre des tâches pour les modèles communiquant par mémoire
partagée.

Dans la seconde partie de la thèse, nous étudions la complexité spatiale de l’implémentation
d’un stockage fiable, c.à.d., assurant qu’une valeur écrite en mémoire est persistante, dans
le modèle à base de comparaison où seuls les identifiants peuvent être comparés. Nos
résultats montrent l’existence d’un compromis non-trivial entre la complexité spatiale d’une
implémentation et les garanties de vivacité qu’elle apporte.

Mots Clés : calculabilité distribuée; topologie combinatoire; mémoire partagée asynchrone;
simulations distribuées; tâches affines;

Abstract

Modern computing systems are distributed, ranging from single-chip multi-processors to
large-scale internet systems. In this thesis, we study computability and complexity issues
raising in asynchronous crash-prone shared memory systems.

The major part of this thesis is devoted to characterizing the power of a shared memory
model to solve distributed tasks. Our first contribution is a refined and extended agreement-
based simulation technique that allows us to reason about the relative task computability of
shared-memory models. Using this simulation technique, we show that the task computability
of a shared-memory adversarial model is grasped by its ability to solve specific agreement tasks.
We then use the language of combinatorial topology to characterize the task computability of
shared-memory models via affine tasks: sub-complexes of a finite iteration of the standard
chromatic subdivision. Our characterization applies to the wait-free model enhanced with
k-test-and-set objects and a to large class of fair adversarial models. These results generalize
and improve all previously derived topological characterizations of the task computability
power of shared memory models.

In the second part of the thesis, we focus on space complexity of implementing stable
storage, i.e., ensuring that written values persists in memory, in the comparison-based model
using multi-writer registers. Our results exhibit a non-trivial tradeoff between space complexity
of stable-storage implementations and the progress guarantees they provide.

Keywords: distributed computability; combinatorial topology; asynchronous shared
memory; distributed simulations; affine tasks;

2

Contents

1 Introduction 5

1.1 Distributed Computability in Shared-Memory Models 6

1.2 Simulations and Iterated Models . 7

1.3 Distributed Computing through Combinatorial Topology 7

1.4 Contributions . 9

1.5 Organization . 11

1.6 Publications . 13

2 Preliminaries 15

2.1 Basic Notions . 15

2.2 Shared-Memory Models . 16

2.3 Distributed Tasks . 18

2.4 IIS Model . 19

3 Distributed Simulations 25

3.1 Relating Models via Agreement-Based Simulations 25

3.2 Safe Agreement and BG Simulation . 26

3.3 Abortable BG Simulation . 33

3.4 Round-Based Simulation . 40

3.5 Agreement-Based Simulation . 42

4 Agreement Functions 51

4.1 Definition of Agreement Functions . 51

4.2 Properties and Classification of Agreement Functions 55

4.3 Fairness through Active Resilience . 58

4.4 Agreement Functions for Adversaries . 60

4.5 Shared-Memory Models and Agreement Functions 63

5 Combinatorial Topology 65

5.1 Simplicial Complexes . 65

5.2 Basic Operations . 66

5.3 Subdivisions . 68

5.4 Characterization of the Wait-Free Model . 70

3

Contents

6 Affine Tasks 73
6.1 Preliminaries . 73
6.2 Affine Tasks for k-Test-and-Set . 77
6.3 Affine Tasks for k-Obstruction-Free Adversaries 84
6.4 Affine Tasks for Fair Adversaires . 91

6.4.1 Definition of RA . 92
6.4.2 Solving RA in the α-Model . 94
6.4.3 From R∗A to the Fair Adversarial A-Model 101

7 Stable Storage in Comparison-Based Models 107
7.1 Motivation . 107
7.2 Model . 109
7.3 Upper Bound: k-Lock-Free SWMR Memory with n+ k − 1 Registers 111
7.4 Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers . . 115

7.4.1 Proof Overview . 115
7.4.2 The Notion of Confusion . 116
7.4.3 Lower Bound Proof . 121

7.5 Related Problems . 125
7.5.1 Resilient SWMR Memory Implementation. 125
7.5.2 SWMR Allocation . 127
7.5.3 Anonymous and Adaptive Stable Storage 129

7.6 Concluding Remarks . 132

8 Conclusion and Open Questions 135
8.1 Distributed Simulations . 135
8.2 Measuring Models Relative Task Computability 137
8.3 Affine Tasks . 138

List of Figures 145

List of Algorithms 147

Bibliography 149

4

Chapter 1

Introduction

In the old days, computers were sequential systems isolated from the world. The ques-
tions of understanding what and how efficiently a sequential system can compute were the
major theoretical challenges in the field of computing. In computability, probably the most
fundamental result was the equivalence between computing systems and Turing machines,
high-level abstract models of computation that can be used instead of low-level real computing
systems. Within the Turing universal models, the limits of sequential computability were
better understood, starting from the original “halting” impossibility [Tur37].

Since then, computing systems evolved and became more elaborate. Nowadays, even the
simplest computing device is no longer a sequential machine. It possesses multiple processors
which communicate with each other. While each processor and its private memory forms a
sequential system equivalent to a Turing machine, the global system is much more sophisticated.
Modern computing systems are no longer isolated from each other and are almost always
connected through networks, allowing them to interact with each other. This evolution led to
the rise of the field of distributed computing in which multiple sequential processes evolve in a
joint distributed system.

In a distributed setting, the notion of a sequential function itself is replaced by a distributed
task. In a task, each process possesses a private input value and must output a value at the
end of the computation. The validity of an output value depends not only on all inputs but
also on the outputs of other processes. Indeed, given an input vector associating an input
to each (participating) process, the task specifies which output vectors are valid. The most
well-known example of a task is the consensus task [FLP85] where processes must agree on
one of the processes task input.

Distributed systems are very diverse. They can differ in communication abstractions
(e.g., message-passing channels, shared-memory), timing assumptions (e.g., synchrony, partial
synchrony, or asynchrony) or the type or number of possible failures (e.g., crash or Byzantine).
Perhaps one of the most influential results in distributed computability was the proof that the
task of consensus is not solvable in a crash-prone asynchronous message-passing system [FLP85],
extended later to the shared-memory context [LAA87]. Hence, not only complexity but
computability may vary across different distributed systems.

Hence, distributed computability deserves its own computability theory, distinct from
Turing computability. One of the main focuses in distributed computing is, therefore, the
search for a unified computability theory applicable to all models of distributed computing.

5

Chapter 1. Introduction

1.1 Distributed Computability in Shared-Memory Models

In this thesis, we focus on shared-memory models, inspired by modern multicore machines.
The main challenge in this domain is to harness failures and the lack of synchrony.

While a processor rarely crashes per se, it is quite common that a process (also called a
thread) running on it is interrupted, either due to the rotation of resource allocation or due
to remote memory accesses. In computing cycles, such an interruption feels like an eternity.
Hence, it is reasonable to model interruptions or failures due to programming errors as a crash
failure: a crashed process behaves according to specification until it prematurely stops taking
any more steps.

Moreover, ensuring a precise timing of operations is very costly and is only done in highly
critical systems. In general-purpose machines, the duration of a step of computation may
vary. This leads to the asynchronous model of computation where there are no bounds on the
relative process speeds or communications delays. Therefore, understanding the computational
power of an asynchronous crash-prone shared-memory system is paramount.

The communication abstractions available to the processes play a crucial role in under-
standing the system’s computational power. At a low-level, computing systems are often
provided with registers which can be used to store words that can be accessed for reading. But
guarantees provided by the registers may be very weak when they are accessed by different
processes concurrently, i.e., their executions overlap in time. Many efforts have been devoted
to show that all shared-memory communication abstractions are equivalent and thus can be
used interchangeably [Lam86,AAD+93,BG93b].

It turned out that stronger and more convenient primitives, such as atomic snapshots
objects [AAD+93] and immediate snapshots [BG93b], are computationally equivalent to the
weakest form of safe read-write communication.

In the atomic-snapshot (AS) model of communication, processes can perform update
operations on individual memory locations and take snapshots of the whole memory atomically ,
that is as if the operation took place instantaneously. The immediate snapshot model ensures,
additionally, that updates and snapshots performed by the processes are coupled : the execution
can be represented as a sequence of batches, where each batch is a sequence of updates performed
by a set of processes immediately followed by a matching set of snapshots operations.

In the following, the asynchronous read-write model with no restrictions on when and
where failure might occur will be called wait-free [Her91]. Intuitively, in an algorithm designed
for the wait-free model, a process is expected to make progress in its own steps, without
waiting for other processes to move.

After many fundamental tasks were found to be impossible to solve in the wait-free
model [BG93a,HS99,SZ00], it became appealing to explore its generalizations. Delporte et
al. [DGFGT11] introduced the notion of an adversary, a collection A of process subsets, called
live sets. Intuitively, adversaries allow for abstracting out models in which processes failures
might occur in the non-independent and non-identical manner. A run is in the corresponding
(read-write) A-adversarial model if the set of processes taking infinitely many (read-write)
steps in it is in A. Others generalizations proposed, instead of restricting possible executions,
to provide the processes with additionnal communications primitives such as test-and-set or
compare-and-swap objects commonly available in processing units.

In this thesis, we evaluate computability of a shared-memory model via the set of tasks it
allows to solve, called the model’s task computability. Our major tools are simulations and
combinatorial topology.

6

1.2. Simulations and Iterated Models

1.2 Simulations and Iterated Models

Faced with the huge variety of models in distributed computing, we can expect model
simulations to be extremely useful. Suppose that we are provided with an algorithm that
solves a task T in a model M1. If there is a way to simulate M1 in a different model M2, we
can obtain an algorithm solving T in M2. Therefore, task computability of different models
can be related via simulations. In particular, if M1 can be simulated in M2, then M2 is at
least as powerful as M1, i.e., it can solve any task solvable in M1.

One of the most influential simulation algorithms designed for this purpose is the BG sim-
ulation (for Borowsky and Gafni) [BG93a], recently awarded the Dijkstra Prize in distributed
computing. BG simulation was first used to relate colorless task solvability (particular tasks in
which processes can adopt inputs and outputs from each other) of the t+ 1-process wait-free
model and the n-process t-resilient model, for any n ≥ t + 1, in which at most t processes
may fail by crashing. Among numerous applications of this result, we should mention the
fundamental impossibility of k-resilient k-set consensus, a strict generalization of the 1-resilient
consensus impossibility [FLP85,LAA87]. BG simulation was latter refined to tackle all type of
(colored) tasks [Gaf09] or to dynamically reduce synchrony of a system [FGRR14].

Furthermore, simulations allowed us to relate conventional shared-memory models and their
iterated counterparts. In an iterated model, the processes proceed in (asynchronous) rounds,
where each round is associated with a distinct memory. Iterated models have been introduced
as simpler forms of communication model, providing one-shot communication-closed primitives
accessed in a elegant and simple recursive structure. A prominent example of an iterated
model is the iterated immediate snapshot (IIS) model, where each round is associated with a
distinct (one-shot) immediate snapshot memory. Via simulations, it was shown that the IIS
model is equivalent to the wait-free model in terms of task computability [BG97,GR10]. As
we will see, the IIS model allows for an elegant combinatorial representation.

1.3 Distributed Computing through Combinatorial Topology

The major difficulty in understanding distributed computations is the explosion of possible
permutations of steps of concurrent processes that could be observed in an execution of a
given model. It is therefore natural to use the combinatorial approach. We model sets of such
permutations allowed by the model as a combinatorial structure, and the power of the model
can be induced from the abstract properties of the structure. Below, we briefly overview the
basic elements of this approach, proposed and developed by Herlihy et al. [HS99,HKR14].

A simplex is a generalization of an edge from a graph including arbitrarily many vertices.
It can be used to express the state of a distributed system where each vertex represents the
state of a given process.

A simplicial complex is an inclusion-closed set of simplices. Using simplicial complexes to
represent possible states of a distributed system is very convenient as states indistinguishable for
a set of processes Q must share the same vertices corresponding to processes from Q. Moreover,
the sets of possible input and output vectors of a task also form simplicial complexes, i.e., the
input and output simplicial complexes, while the specification of the task defines a carrier map.

It turns out that the simplicial complex corresponding to all runs of one round of immediate
snapshot (two particular IS runs are depicted in Figures 1.1a and 1.1b), in which the processes
perform updates to the memory with their input value and takes an immediate snapshot, is

7

Chapter 1. Introduction

(a) Ordered run: {p2}, {p1}, {p3}.

(b) Synchronous run: {p1, p2, p3}.

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(c) Chr(s), the standard chromatic subdivision of a 2-simplex, the
output complex of the 3-process IS task.

Figure 1.1 – Example of IS runs on the left and the set of all IS runs represented as a simplicial
complex on the right.

precisely captured by the standard chromatic subdivision (denoted Chr) (Figure 1.1c) [BG97,
HS99,Koz12]. Moreover, the iterated immediate snapshot (IIS) model, obtained by performing
immediate snapshots iteratively, where the current iteration output is used as the input value
for the next one, is precisely captured by iterations of Chr.

Topology of wait-freedom. Recall that the wait-free model makes no assumptions on
when and where failures might occur. Herlihy and Shavit proposed an elegant characterization
of wait-free (read-write) task computability via the existence of a specific simplicial map from
geometrical structures describing inputs and outputs [HS99].

A task T has a wait-free solution using read-write registers if and only if there exists a
simplicial, chromatic map from some subdivision of the input simplicial complex, describing
the inputs of T , to the output simplicial complex, describing the outputs of T , which respect
the task specification ∆. In particular, we can choose this subdivision to be a number of
iterations of the standard chromatic subdivision Chr.

Therefore, the celebrated Asynchronous Computability Theorem (ACT) [HS99] can be
formulated as:

A task T = (I,O,∆), where I is the input complex, O is the output complex,
and ∆ is a carrier map from I to sub-complexes of O, is wait-free solvable if and
only if there exists a natural number ` and a carrier and color preserving simplicial
map φ : Chr`(I)→ O carried by ∆.

The ACT theorem can thus be interpreted as: the set of wait-free (read-write) solvable
task is precisely the set of tasks solvable in the IIS model. The ability of (iteratively) solving
the IS task thus allows us to solve any task in the wait-free model. Hence, from the task
computability perspective, the IS task is a finite representation of the wait-free model.

8

1.4. Contributions

Results derived from topology. This characterization of wait-free solvability was intro-
duced to show the impossibility to solve the k-set consensus task [Cha93]. The k-set consensus
task is a generalization of the consensus task in which processes are allowed to return at most k
distinct outputs instead of only one. Attempts to prove its impossibility when k < n using
traditional FLP-like proof schemes were unsuccessful. But using characterizations of wait-free
task solvability through combinatorial models such as the IIS model, the impossibility of k-set
consensus was straightforward to show [SZ93,BG93a,HS93]. While demonstrated by three
groups independently from each other, all took a similar approach. It consists in reducing
a solution of the k-set consensus task to a Sperner coloring, which according to Sperner’s
Lemma [Spe28], must color an odd number of maximal simplices of a subdivision using all
the colors. Hence, there is always an execution for which the output vector contains as many
distinct values as in the input vector.

The topological characterization of wait-free solvability has been also used to show other
prominent results in distributed computability. Traditional proof schemes also failed to
understand the computability of the renaming tasks. In the M -renaming task [ABND+90],
processes have arbitrary distinct input values from an arbitrary large domain and must produce
different outputs in the range {1, . . . ,M}. Finding the smallest M for which the task is wait-free
solvable turned out to be a very complicated issue. By using the topological characterization
of wait-free solvability, it was shown by Casteñada and Rajsbaum [CR10,CR12] that the best
renaming possible is for M = 2n− 1 when n is a prime power but that (2n− 2)-renaming is
possible when n is not a prime power.

1.4 Contributions

This thesis primarly focuses on the study of task computability in shared-memory models.
This subjects is approached in three complementary ways: (1) improving simulation techniques
in order to provide finer reductions between models; (2) measuring task computability of
models in order to provide a classification of their relative task computability; and (3) providing
a canonical representation of models using combinatorial topology in order to simplify task
solvability characterization.

As a complementary result, this thesis also studies complexity issues of implementing
stable storage in the comparison-based model. In particular, it exhibits the existence of a
trade-off between space complexity and liveness guarantees.

Agreement-Based Distributed Simulation

The first contribution of this thesis concerns the area of distributed simulations. Here we
build on two classic tools: BG simulation and the universal construction. The BG-simulation
technique leverages resilience of a model in order to simulate steps of other distributed
systems with a smaller concurrency level. The universal construction by Herlihy [Her91] uses
consensus objects to simulate any distributed object in a wait-free manner by simply removing
concurrency issues.

These two approaches led to the proposal of an agreement-based simulation technique,
informally sketched by Gafni and Guerraoui in a technical report [GG09]. The idea consists in
using the ability of processes to solve set-consensus tasks to provide a limited concurrency.

This thesis provides the first formalization of an agreement-based distributed simulation.
Compared to [GG09], we present here a direct and simplified simulation scheme which,

9

Chapter 1. Introduction

additionnaly, is made adaptive. Indeed, in [GG09], the simulation is described by combining
multiple constructs such as generalized state machines replication [GG11] and extended
BG-simulation [Gaf09]. By refining the base constructs of the simulation such as commit-
adopt [Gaf98] and safe-agreement [BG93a,BGLR01], we are able to construct a much simpler
and direct simulation. By also making the simulation adaptive, i.e., automatically adjusting its
synchronization power to the global state of the simulating system, the design of simulations
is made much simpler by removing the potential need of additionnal external mechanisms.

Measuring and Classifying the Task Computability of Models

A conventional way to capture the power of a model is to determine its task computability,
i.e., the set of distributed tasks that can be solved in it. But task solvability has been shown
to be an undecidable problem [GK99,HR97]. This is why we focus on trying to measure the
relative power of models with respect to each other. It has been shown that shared memory
models can be classified by their ability to solve set-consensus tasks as long as this concerns a
limited class of colorless tasks solvability [HR12].

In this thesis we try to provide a classification of shared-memory computability for all
distributed tasks. For this, we introduce the notion of an agreement function. An agreement
function stipulates, given a shared-memory model M and sets of processes Q and P , what is
the best k-set-consensus task solvable in M between processes from Q when only processes
in P might participate. We compute this function for different kinds of models, such as shared-
memory adversaries and the wait-free model enhanced with a collection of set-consensus
objects. We show that for these models, agreement functions capture their ability of solving
tasks, i.e., they are weaker as regards task solvability than any (long-lived) model with a
smaller or equal agreement function.

This provides some understanding of the classification of models by their relative com-
putability power. Moreover, the study of natural properties of agreement functions such as
fairness, when they only depends on participation, locality, when they only depends on the
targeted subset, or symmetry, when they only depends on sizes of sets P , Q and P ∩Q, provides
some insights on the computational power of the corresponding models. In particular, we
show that a large class of shared-memory adversaries, including but not restricted to super-set
closed and symmetric adversaries, have fair agreement functions and that the models defined
through collections of (potentially asymmetric) set-consensus objects have local agreement
functions.

Models as Iterated Affine Tasks

The characterization of the wait-free model of computation through the IIS model and the
standard chromatic subdivision [HS99,BG97], awarded the Gödel prize in theoretical computer
science, is a core result of the area of distributed computing. Indeed, this characterization
using combinatorial topology allowed to grasp the intrinsic properties of wait-free solvability
using compact finite objects. Given that many fundamental tasks are not solvable in the
wait-free way [BG93a,HS99,SZ00], more general models, such as shared-memory adversaries,
were considered. But, can the task computability of all shared memory models be characterized
using similar combinatorial representations?

In this thesis, we follow the proposal of Gafni et al. in [GKM14] to characterize models
using affine tasks. An affine task is a pure sub-complex of a finite number of iterations of the

10

1.5. Organization

standard chromatic subdivision. We show that the computational power of many classical
models can be grasped by iterations of affine tasks. In particular we construct affine tasks
corresponding to the wait-free model enhanced with k-test-and-set objects and to the large
class of fair adversarial models.

This result generalizes all existing topological characterizations of distributed computing
models [HS99, GKM14, SHG16], as it applies to all previously considered shared-memory
models and all tasks (and not only colorless tasks). We believe that the results can be
extended to all “practical” restrictions of the wait-free model and to all enhancements of the
wait-free model with distributed objects, which may result in a complete computability theory
for distributed shared-memory models.

Complexity of SWMR Implementations

Most shared-memory distributed systems assume the single-writer multi-reader (SWMR)
setting, where each process is provided with a unique register that can only be written
by the process and read by all. This provides processes with a stable storage mechanism,
providing the ability of sharing knowledge persistently. But in the comparison-based model,
where computation is performed by a bounded number n of processes coming from a large
scale system composed of a high number (possibly unbounded) of potential participants, the
assumption of an SWMR memory is no longer reasonable. The natural question that arise is
how many multi-writer multi-reader (MWMR) registers are required to implement a stable
storage, or equivalently, an SWMR memory.

In this thesis, we show that the answer depends on the desired progress condition. We
propose an SWMR implementation that adapts the number of MWMR registers used to
the desired progress condition. For any given k from 1 to n, we present an algorithm
that uses n + k − 1 registers to implement a k-lock-free SWMR memory, i.e., in which at
least k processes can concurrently perform operations. This generalizes previous state of the
art implementations [DFGR13], providing either lock-freedom with n MWMR registers, or
wait-freedom with 2n− 1 MWMR registers.

More interestingly, using novel covering-based arguments, we show that any 2-obstruction-
free algorithm requires n+ 1 base MWMR registers. Previously, only a trivial lower bound
of n registers was shown for lock-free implementations [DFGR13]. An interesting implication
of our results is that 2-lock-free and 2-obstruction-free SWMR implementations have the same
optimal space complexity. Curiously, our results highlight a contrast between complexity
and computability, as we know that certain problems, e.g., consensus, can be solved in an
obstruction-free way, but not in a lock-free way [HLM03].

1.5 Organization

The thesis begins with an introductory chapter recalling classical definitions about dis-
tributed computing. We then proceed with two technical chapters corresponding with our
contributions concerning simulations, reductions, and classification of shared-memory models.
Afterwards, a second introductory chapter focusing on combinatorial topology constructs used
in distributed computing is presented. It allows us to continue with our main contribution
concerning combinatorial representation of the task computability of broad classes of shared-
memory models. Our complexity results are then presented in the last technical chapter before
concluding the thesis.

11

Chapter 1. Introduction

Chapter 2: Preliminaries. The first chapter is a brief introduction to distributed com-
puting. It first recalls the basic formalism of distributed systems. Then, more details are
given about definitions of shared-memory based distributed systems models. We also focus
on the crucial notion of distributed tasks and their solvability. We terminate with constructs
concerning the iterated immediate snapshot model and its equivalence with shared memory.

Chapter 3: Distributed Simulations. The first technical chapter concerns the distributed
simulation tools. A detailed review of the classical, resilience-based, BG-simulation technique
is provided. Building on this simple simulation tool, we then provides additionnal features
such as abort mechanisms and conflict detection. This yield in more complex of powerful
simulation tools similar to the extended BG-simulation technique introduced by Gafni [Gaf09].
We terminate with the replacement of the resilience-based synchronization by an adaptive
agreement-based technique, yielding in a more widely applicable, yet simple to use, simulation.

Chapter 4: Agreement Functions. The second technical chapter revolves around the
notion of agreement functions, a measure of models computability power. Agreement functions
are introduced along with a derived natural classifaction of models. The importance of agree-
ment functions to measure task computability is then justified by their ability to characterize
task solvability of classical shared-memory models. In particular, it is shown that all shared
memory adversaries and wait-free systems enhanced by a collection of set-consensus objects are
characterized by their agreement function. Moreover, we show that many adversaries, including
super-set closed and symmetric adversary families, have nice fair agreement functions.

Chapter 5: Combinatorial Topology. The second introductory chapter focuses on the
notions from combinatorial topology used in distributed computing. Through a detailed
description of the celebrated asynchronous computability theorem [HS99], tools of combinatorial
topology specifically relevant for distributed computing are introduced. The notions presented
in this chapter will provide essential concepts used in the following and the concluding
chapters.

Chapter 6: Affine Tasks. The third technical chapter contains the main contribution
of this thesis. It starts with a formal introduction of affine tasks and shows general results
about them. As a simple illustration, it is shown how the wait-free model enhanced with
k-test-and-set objects can be captured by a small affine task. Afterwards, affine tasks for the
k-set consensus model are constructed as a step torwards defining affine tasks for the most
complex fair adversarial models.

Chapter 7: SWMR Memory Implementation. This last technical chapter is dedicated
to our complexity analysis of SWMR memory implementation in the comparison-based model.
We first motivate the study of trade-offs between space complexity and progress conditions
in this context. Then, we present a generalization of existing SWMR algorithms for refined
progress conditions. Afterwards, we present our main contribution, a lower bound showing a
necessary trade-off between space complexity and the desired progress condition. Lastly, we
discuss various partial results as well as open related questions and problems.

12

1.6. Publications

Chapter 8: Conclusion and Open Questions. The last chapter summarizes the results
of this thesis and discuss questions left open as well as possible future research directions.

1.6 Publications

The main results of this thesis appeared originally in the following papers (in the chrono-
logical order):

1. Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-Write Memory and
k-Set Consensus as an Affine Task. In 20th International Conference on Principles of
Distributed Systems (OPODIS 2016), volume 70 of LIPIcs, pages 6:1–6:17, 2016.

2. Petr Kuznetsov and Thibault Rieutord. Agreement Functions for Distributed Computing
Models. In Networked Systems (NETYS), volume 10299 of LNCS, pages 175–190, 2017.

3. Petr Kuznetsov, Thibault Rieutord, and Yuan He. Brief Announcement: Compact Topology
of Shared-Memory Adversaries. In 31st International Symposium on Distributed Computing
(DISC 2017), volume 91 of LIPIcs, pages 56:1–56:4, 2017.

4. Damien Imbs, Petr Kuznetsov, and Thibault Rieutord. Progress-Space Tradeoffs in
Single-Writer Memory Implementations. In 21st International Conference on Principles of
Distributed Systems (OPODIS 2017), volume 95 of LIPIcs, pages 9:1–9:17, 2017.

5. Petr Kuznetsov, Thibault Rieutord, and Yuan He. An Asynchronous Computability
Theorem for Fair Adversaries. In 37th ACM Symposium on Principles of Distributed
Computing (PODC 2018), pages 387–396, 2018. Co-laureate of the best student paper
award.

In parallel with working on the thesis, the author was involved in other projects, which
resulted in the following papers:

1. Pierre Fraigniaud, Sergio Rajsbaum, Corentin Travers, Petr Kuznetsov, and Thibault
Rieutord. Perfect Failure Detection with Very Few Bits. In 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS 2016), pages 154–169,
2016.

2. Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. Solving k-Set
Agreement Using Failure Detectors in Unknown Dynamic Networks. In IEEE Trans.
Parallel Distrib. Syst., volume 28, number 5, pages 1484–1499, 2017.

13

14

Chapter 2

Preliminaries

This chapter briefly recalls classical notions and results in distributed computing that will
be used in the technical chapters of this thesis.

2.1 Basic Notions

Throughout the thesis, we only consider finite distributed systems. A system is composed
of a set of n processes, denoted Π, and we assume by default that the set is known to the
processes.

States, configurations and executions. An algorithm (we also sometimes say a protocol)
assigned to each process is a (possibly non-deterministic) automaton that may accept high-level
operation requests as an application input. In each state, the process is poised to perform a
step, e.g., a read or write operations on base registers. Once the step is performed, the process
changes its state according to the result of the step operation, possibly non-deterministically
and possibly to a state corresponding to another high-level operation.

A configuration, or system state, consists of the states of all processes and the content of
all shared objects. In the initial configurations, all processes and all objects are in their initial
states.

We say that a step e by a process p is applicable to a configuration C, if e is the pending
step of p in C, and we denote Ce the configuration reached from C after p performed e.
A sequence of steps e1, e2, . . . is applicable to C, if e1 is applicable to C, e2 is applicable
to Ce1, etc. A (possibly infinite) sequence of steps applicable to a configuration C is called
an execution from C. A configuration C is said to be reachable from a configuration C ′, and
denoted C ∈ Reach(C ′), if there exists a finite execution ζ applicable to C ′, such that C = C ′ζ.
If omitted, the starting configuration is the initial configuration, and is denoted as C ∈ Reach.
Note that an execution can also be called a run of the system.

A process is called correct in a given (infinite) execution if it takes infinitely many steps in
that execution. A process is called faulty if it takes only finitely many steps in an execution.
Let Correct(ζ), respectively Faulty(ζ), denote the set of correct, respectively faulty, processes
in the execution ζ.

Atomic snapshot memory. The atomic-snapshot (AS) memory is represented as a vector
of n shared variables, where each process pi is associated with the position i. The memory

15

Chapter 2. Preliminaries

can be accessed with two operations: update and snapshot. An update operation performed
by pi modifies the value at position i and a snapshot returns the vector current state. The
atomic-snapshot memory model is known to be computationally equivalent to the more realistic
read-write shared memory model in which processes communicate by reading and writing to
shared individual memory locations [Lam86,AAD+93].

To simplify further systems in which processes have only access to an AS memory, we
consider the full information protocol. In the full information protocol, a process first shares its
initial state using the update operation. Then, processes alternate between snapshot operations
and update operations containing their complete current state. Thus, when running the full
information protocol, an execution can be reduced to the sequence of processes identifiers
performing the operations in it. If a process completed its first step in a given run, it is said
to be participating, and the set of participating processes is called the participating set. Note
that, in particular, every correct process is participating.

2.2 Shared-Memory Models

In an abstract sense, a (shared-memory) model can be seen as a combinations of a set of
runs and infinitely many copies of every elements of a set of shared objects. For simplicity, we
only considered models in which processes run the full information protocol on an AS memory
and may proceed, in between steps, to operations on other available shared objects. To solve
a problem in a model means to design an algorithm that satisfies the problem specification in
every execution which belongs to the model. Below we review classes of models considered in
this thesis and discuss their high-level properties.

Wait-free model. The simplest and least powerful shared-memory model that can be
defined is such a way is the wait-free model [Her91]. In the wait-free model, processes have
only access to an AS memory and no assumptions are made on the possible executions of the
model, execept that there is a correct process. Hence, the wait-free model is simply the set of
all infinite executions. The wait-free model is trivially the weakest possible shared-memory
model as a problem must be solved in any possible infinite execution without using any shared
objects besides the AS memory. Hence, any algorithm designed for the wait-free model can be
executed correctly in any other shared-memory model.

Adversaries

The main class of models considered in this thesis are the adversarial models introduced
by Delporte et al. [DGFGT11]. It corresponds to models defined purely on restrictions
on the set of runs without access to any objects additionally to the AS memory. Several
types of adversarial models exist in the distributed computing literature, such as message
adversaries [Gaf98] or crash-failures adversaries considered here. Note that, in this thesis, we
only focus on shared-memory crash-failures adversaries.

An adversary A is defined as a set of possible correct process subsets. Formally, A is a set
of subsets of Π, called live sets, A ⊆ 2Π. An infinite run is A-compliant if the set of processes
that are correct in that run belongs to A. An adversarial A-model is then defined as the set
of A-compliant runs.

An adversary is superset-closed [Kuz12] if each superset of a live set of A is also an element
of A, i.e., if ∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′ =⇒ S′ ∈ A. Superset-closed adversaries provide a

16

2.2. Shared-Memory Models

non-uniform generalization of the classical t-resilient model in which at most t processes may
crash, corresponding to the adversary consisting of sets of n− t or more processes.

An adversary A is a symmetric adversary if it does not depend on process identifiers:
∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A. Symmetric adversaries provide another inter-
esting generalization of the classical t-resilience condition and k-obstruction-free progress
conditions [GG09], i.e., executions where there are at most k correct processes. Such sets
of executions were previously formalized by Taubenfeld as the symmetric progress condi-
tions [Tau10].

Set consensus power. The notion of set consensus power [GK10] was originally proposed
to capture the power of adversaries in solving colorless tasks [BG93b,BGLR01], i.e., tasks that
can be defined by relating sets of inputs and outputs, independently of process identifiers.

Definition 2.1. The set consensus power of A, denoted by setcon(A), is defined as follows:
— If A = ∅, then setcon(A) = 0
— Otherwise, setcon(A) = maxS∈Amina∈S setcon(A|S\{a}) + 1. 1

Thus, for a non-empty adversary A, setcon(A) is determined as setcon(A|S\{a})+1 where S
is an element of A and a is a process in S that “max-minimize” setcon(A|S\{a}). Note that
for A 6= ∅, setcon(A) ≥ 1. It is shown in [GK10] that setcon(A) is the smallest k such that A
can solve k-set consensus.

It was previously shown in [GK11] that for a superset-closed adversary A, the set consensus
power of A is equal to csize(A), where csize(A) denotes the minimal hitting set size of A, i.e.,
a minimal subset of Π that intersects with each live set of A. Therefore if A is superset-closed,
then setcon(A) = csize(A). For a symmetric adversary A, it can be easily derived from the
definition of setcon that setcon(A) = |{k ∈ {1, . . . , n} : ∃S ∈ A, |S| = k}|.

Models of k-Active-Resilience and k-Concurrency

We now describe two models of particular interest, also defined purely on a restriction on
the set of runs of an AS memory, but that cannot be directly defined as adversaries.

k-concurrency. Technically, the model of k-concurrency is not defined as a generic restriction
on the set of valid runs but only for terminating executions in which processes eventually
complete their executions. A process is called active at the end of a finite run R if it participates
in R but did not returned at the end of R. Let active(R) denote the set of all processes that
are active at the end of R. Since only finite runs are considered, the notion of correct and
faulty processes is no longer adequate. Instead we may split processes into non-terminated
processes, i.e., active or not participating, and terminated processes.

A finite run R is k-concurrent (k = 1, . . . , n) if at most k processes are concurrently active
in R, i.e., max{|active(R′)|; R′ prefix of R} ≤ k. The k-concurrency model [GG11] is then
the set of (finite) full-information AS runs which are k-concurrent.

k-active-resilience. Similarly to adersarial models, a run R is k-active-resilient (k =
0, . . . , n− 1) if at most k participating processes take only finitely many steps in R. Note that
the difference lies in limiting the number of failures among participating processes, while a

1. A|P is the adversary consisting of all live sets of A that are subsets of P .

17

Chapter 2. Preliminaries

process that is not participating is also a faulty process. The k-active-resilient model is the
set of (infinite) k-active-resilient full-information AS runs [Kuz13].

k-Test-and-Set Model

For an integer k ≥ 1, a k-test-and-set object exports one operation, apply(), that may
be only accessed once by each proces, takes no parameters, and returns a boolean value. It
guarantees that at most k processes will get 1 as output and that not all processes accessing
it obtained 0. In the special case of k = 1 the object is simply called test-and-set.

The k-test-and-set model is then simply defined as the wait-free model with, additionnally,
access to any number of k-test-and-set objects. Hence processes run a full information
protocol on an AS memory without any restrictions on the set of possible runs, but processes
may proceed, between any operations on the AS memory, to operations on any number of
k-test-and-set objects.

Set consensus collections

A k-set consensus object is a (nondeterministic) object that can be accessed with a single
one-shot propose(v) operation (v ∈ V) that returns a proposed value and ensures that at
most k distinct values are returned. When k = 1 then the object is deterministic and is
simply called a consensus object [FLP85]. More generally, (`, k)-set-consensus objects (k ≤ `)
are defined similarly but can be accessed by at most ` processes. Note that if more than `
processes access the object, then the object may return a special value ⊥.

Let C be a set of pairs {(`0, j0), (`1, j1), . . . , (`m, jm)}, where `i, ji ∈ N. Then C can be used
to define the C-set-consensus model [DGFGK16] which correspond to the wait-free model
with, additionnally, access to any number of (`, j)-set-consensus objects such that (`, j) ∈ C.

2.3 Distributed Tasks

In order to study computability in distributed shared-memory models, a notion of distributed
problem is required. Most distributed problems are either formulated as the implementability
of a distributed object or the solvability of a distributed task. In this thesis, we focus on the
notion of distributed task which captures (most of) terminating distributed problems.

Definition. The notion of distributed task was formally introduced in [HS99]. A process
invokes a task with an input value and the task returns an output value, so that the inputs
and the outputs across the processes respect the task specification. Formally, a task is defined
through a set I of input vectors (one input value for each process), a set O of output vectors
(one output value for each process), and a total relation ∆ : I 7→ 2O that associates each input
vector with a set of possible output vectors. We require that ∆ is a carrier map: ∀ρ, σ ∈ I,
ρ ⊆ σ: ∆(ρ) ⊆ ∆(σ). Informally, a carrier map ensures that if a set that is outputs is valid for
some inputs, then a superset of these outputs are valid for a superset of the inputs. Look at
Section 5.2 or to [HKR14] for more details about carrier maps. An input value equal to ⊥
denotes a non-participating process, and an output value equal to ⊥ indicates a process that
is undecided .

18

2.4. IIS Model

Solving a task. A protocol solves a task T = (I,O,∆) in a model M , if it ensures that in
every run of M in which processes start with an input vector I ∈ I, there is a finite prefix R
of the run in which: (1) decided values form a vector O ∈ O such that (I,O) ∈ ∆, and (2) all
correct processes decide.

Agreement tasks. A classical family of tasks in distributed computing are agreement tasks.
In an agreement task, processes are given values from some set V and must output values
which are a subset of the inputs values. Additionnal requirements on the relations between
inputs and outputs are then added for specific agreement tasks.

In the k-set consensus task [Cha90], input values are in a set of values V (|V | ≥ k + 1),
output values are in V , and for each input vector I and output vector O, (I,O) ∈ ∆ if the set
of non-⊥ values in O is a subset of values in I of size at most k. The case of 1-set consensus is
called consensus [FLP85].

Renaming task. Another classical task is the renaming task [ABND+90]. The idea is that
in many distributed systems, processes are provided with unique identifiers but from a vast
set of possible names. But names are very often used by processes in their communications to
identify the messenger for example. Therefore, the size of identifiers may have a significant
impact on complexity issues. A natural question is thus whether it is possible to provide
processes with a new name from a much smaller namespace while preserving the unicity of
identifiers.

Formally, in the task of M-renaming, for M ∈ N, inputs come from a set of comparable
values V such that I is the set of vectors composed of n distinct values from V . Similarly, the
set of valid output vectors are sets of n distinct values from {1, . . . ,m}. The task specification
is trivial as any input vector from I can be mapped to any output vector of O.

A variant of renaming is called adaptive f -renaming, where the space of output values must
scale with the number of participating processes. When p processes are participating in the
task of adaptive f -renaming, then the outputs should be distinct elements from {1, . . . , f(p)}.

2.4 IIS Model

Let us introduce the iterated immediate snapshot model formally and recall its proof of
equivalence with the more traditional AS wait-free model. Indeed, elements of this equivalence
results will be later used in Chapter 6 to derive a combinatorial characterization of other
shared-memory models.

Iterated immediate snapshot model. In the iterated immediate snapshot (IIS) model,
processes proceed through an infinite sequence of independent memories M1,M2, Each
memory Mr is accessed by a process with a single WriteSnapshot operation [BG93b]: the
operation performed by pi takes a value vir and returns a set Vir of submitted values (w.l.o.g,
values of different processes are distinct), satisfying the following properties (See Figure 2.1
for IS examples):

— self-inclusion: vir ∈ Vir;
— containment: (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir);
— immediacy: vir ∈ Vjr ⇒ Vir ⊆ Vjr.

19

Chapter 2. Preliminaries

(a) Ordered run: {p2}, {p1}, {p3}. (b) Synchronous run: {p1, p2, p3}.

Figure 2.1 – Examples of valid sets of IS outputs.

Then the IIS model runs a full information protocol on this sequence of independent
memories. The first memory M1 is accessed with the initial state as argument to the
WriteSnapshot operation , and afterwards, each memory with the output of the WriteSnapshot
operation on the preceding memory. Note that in the IIS model there are no process failures,
each process complete infinitely many operations. Instead, the notion of fast and slow processes
may be used. A process is said to be fast if it is observed in all processes WriteSnapshot
operations outputs for infinitely many memories. A process is then simply said to be slow if it
is not fast.

Such models with independent memories are often denominated as communication-closed
as processes can use only once each object. Each memory object is thus simple to reason
about as it may be impacted only with a finite number of operations. Moreover, each instance
can be seen as a task and the iterated model as an infinite sequence of identical tasks, each
time using the output of a given iteration as input for the next one.

Solving the IS Task

Showing that the IIS model and the wait-free model solves the same set of tasks can be
done through simulations. Simulating the IIS model in a wait-free model is very convenient
as it consists in iteratively solving the IS task. Indeed, since memories in the IIS model are
independent, each object can be seen as a task to be solved. Moreover, in the wait-free model,
any task can be solved iteratively as any infinite sub-sequence of a wait-free execution is a
wait-free execution. This last aspect will be discussed in more details in Chapters 4 and 6
dealing with iterated solutions in more complex models.

Algorithm’s description. A level-based implementation of an immediate snapshot works
as follows [BG93b]: (1) processes write their input in memory associated with a level ` starting
at ` = n; (2) they perform a snapshot of memory; (3) if the snapshot contains ` values
associated with a level `′ ≤ ` then the process returns with the snapshot consisting of these `
values, otherwise processes re-iterate the procedure using the level `−1. The formal description
can be found in Algorithm 2.1. Figure 2.1 present a classical representation of both outputs of
an IS task and its level-based solution as the memories of decreasing sizes correspond to the
update operations of deacreasing levels. Indeed, as we will show, the bound on the number of
processes reaching the successive levels are bounded in any possible executions.

Algorithm’s proof. In Chapter 6, we will present a variation on this algorithm. Since large
part of its proof will be inhereted from this algorithm’s proof of correctness, let us recall in
detail its proof. We first show that the number of processes which may reach the successive
levels is decreasing before showing that this property can be used to show its correctness.

20

2.4. IIS Model

Algorithm 2.1: Level-based immediate snapshot implementation for pi.

1 Shared Objects: MEM [1 . . . n] ∈ V al × N), initially (⊥,⊥);
2 Init: level = n+ 1, value = InputV alue, snap = ∅;

3 Do
4 level = level − 1;
5 MEM [i].Update(value, level);
6 snap = MEM.Snapshot();

7 While |{(v, `) ∈ snap, ` ≤ level}| 6= level;
8 Return {(v, `) ∈ snap, ` ≤ level};

Lemma 2.1. In an execution of Algorithm 2.1, at most ` processes can reach the (n− `)th
iteration of the while loop.

Proof. Let us show this result by induction on the number of iterations k. If k = 1, then at
most n processes can reach the first iteration of the while loop as there is n processes in the
system. Assume that the lemma holds for iteration k, then at most n− k processes may reach
iteration k of the while loop. If there is strictly less than k iterations or if a process crashes
during iteration k, then the lemma property holds for iteration k + 1. Assume that exactly
n− k+ 1 processes reach iteration k and complete this iteration of the while loop and consider
the process p which takes last its iteration snapshot. As all n − k + 1 processes must have
previously updated their register with a value which is associated with level n− k + 1 and
which may have been replaced only with the same input value associated with a smaller level
value, and as at most n− k + 1 have updated their register with an associated value smaller
or equal to n − k + 1 (i.e., have access the kth iteration of the while loop), then p obtains
a snapshot containing exactly n − k + 1 values associated with a level smaller or equal to
n− k + 1 and thus it exits the while loop. Therefore the lemma property holds for level k + 1
which completes the induction proof.

Theorem 2.1. Algorithm 2.1 implements an immediate snapshot operation.

Proof. According to Lemma 2.1, every correct process eventually exit the while loop and thus
returns a set of input values. The immediate snapshot properties are as follows:

— self-containment : A process returns a set of input values including its own. Indeed,
a process returning at level ` (i.e., with a variable level currently set to `), returns
all input values associated with a level smaller or equal to `, thus its own, as its last
update on its register includes its input value associated with the level `.

— containment : The set of values V and V ′, returned by two processes p and p′

respectively, are such that either V ⊆ V ′ or V ′ ⊆ V . Consider that p returns at level `
and p′ returns at level `′, w.l.o.g., with `′ ≤ `. Assume that there is an input value
from a process p′′ returned by p′ but not by p. p′′ must have reached level `′ and thus
has reached level `, but as its input value is not included by p, p′ must have updated
its register in the iteration corresponding to level ` after p proceeded to its snapshot
for the same level. But p must have observed ` processes which already accessed the
iteration corresponding to level ` to exit the loop, as it does not include p′′ this implies
that strictly more than ` processes accessed to this iteration, a contradiction with the
property of Lemma 2.1.

21

Chapter 2. Preliminaries

— Immediacy : Given two processes p and p′ returning the set of values V and V ′

respectively, if V includes the input value from p′ then V ′ ⊆ V . To see that the set
returned by Algorithm 2.1 verifies this property, assume that this is not the case. By
the inclusion property we have V (V ′. Thus, with ` and `′ the levels at which p and p′

returned respectively, we have ` = |V | < |V ′| = `′. This implies that p′ only updated
its register with an associated level greater or equal to `′, and so p′ input value cannot
have been returned by p as only values associated with a level smaller or equal to ` are
returned — a contradiction.

Simulating AS Memory Operations in the IIS Model

Simulating the wait-free model in the IIS model is more complicated than solving the IS task.
Indeed, we must ensure that persistent operations are simulated on top of a communication-
closed abstraction. Therefore, a slow process cannot terminate its simulated update operations
as long as fast processes might still perform snapshot operations which should return the last
completed update operations of all processes. But since there are no failures in the IIS model,
to solve a task, all processes must produce valid outputs.

The solution to this issues consists on ensuring that some non-terminated process make
progress with its simulation, i.e., completing an unbounded number of AS memory operations.
Hence, when executing a task solution, this process will eventually terminate as correct
processes must return with a task output. Thus, as long as there are non-terminated processes,
one non-terminated process will obtain a task output and terminate its simulation, allowing
slower processes also to terminate until all processes get a task output.

Algorithm’s description. We present, in Algorithm 2.2, the simulation proposed in [GR10]
which simplifies the original simulation proposed in [BG97]. Another simulation was proposed
in [BGK14] which ensures that all fast processes make progress with the simulation. But as
any execution is a run of the wait-free model, guaranteeing that at least one non-terminated
process makes progress is sufficient.

The algorithm is relatively simple. Processes maintain in a local array of n variables,
SIM MEM , containing the value of the most recent known simulated write operation for each
process. Processes also keep an array of n integers SIM counters , associating write operations
in SIM MEM with an operation counter. At each round of the IIS model, processes share as
input to the immediate snapshot all known pending or completed update operations along with
the matching operations counter. The immediate snapshot outputs are then used to update
SIM MEM and SIM counters with the operations associated with the highest counters.

Afterwards, if the sum of all operations counters is equal to the IIS round number, the
update operation is completed along with the following simulated snapshot operation by using
the values from the SIM MEM array. If the process is still undecided, then it simulates a new
update operation. Otherwise, the process stops increasing its write operation counter and just
use a special value ⊥ instead of its pending update operation value.

Sketch of simulation’s correctness. This algorithm will not be modified, consequently,
only a rough sketch of its correctness is given. Refer to [GR10] for more details. 2

2. Note that there are some issues in the proofs and algorithm from [GR10], but they only concern stronger
assumptions that are not used in the version of the algorithm presented here.

22

2.4. IIS Model

Algorithm 2.2: Simulation of the AS memory in the IIS model for pi.

1 Shared Objects: infinite sequence of IS memories M1,M2, . . .;
2 Init: SIM MEM [1, . . . , n] initialized to ⊥, SIM counters[1, . . . , n] initialized to 0;

3 IS round = 1, SIM MEM [i] = Initial Statei, SIM counters[i] = 1;

4 Do
5 IS View ←Mround .WriteSnapshot(SIM MEM [i],SIM counters[i]);
6 forall (V,C) ∈ IS View do
7 for j = 1, . . . , n do
8 if C[j] > SIM counters[j] then
9 SIM MEM [j]← V [j], SIM counters[j]← C[j];

10 sum = 0, for j = 1, . . . , n do sum = sum + SIM counters[j];
11 if (Undecided) ∧ (IS round = sum) then
12 SimulateSnapshot(SIM MEM);
13 if Decision(SIM MEM) 6= ⊥ then
14 SIM MEM [i] = ⊥, SimulateDecision(Decision(SIM MEM));
15 else SIM MEM [i]← SIM MEM , SIM counters[i]← SIM counters[i] + 1 ;

16 IS round + +;

17 While true;

The proof of correctness needs to tackle several aspects. The primary auxiliary proof
concerns showing that the sum of operations counters made at line 10 is always smaller or
equal to the round counter for undecided processes. It comes directly from a sum increasing
with rounds, and strictly increasing in rouns where the sum is equal to the iteration counter.
As operation counters increase only with new operations completed by undecided processes,
the increase of rounds ensure the liveness of the simulation, i.e., if there is an undecided
process then at least one undecided process will eventually complete a new operation.

Showing the safety of the simulation is more intricate as it consists in providing a valid
order for the simulated operations. It is done by using the order of the simulated snapshot
operations and placing simulated update operations just before the first simulated snapshot
operation observing it. Then, showing the consistency of simulated operations boils down
to showing that the containment and self-inclusion properties are well inherited from the
immediate snapshot properties.

23

24

Chapter 3

Distributed Simulations

Comparing the computational power of models is a serious challenge. For example how
an n-process system with access to test-and-set objects compares with an adversarial model
which ensures an odd number of correct processes? In this chapter, we discuss simulations as
means of determining relative computability in the universe of models.

3.1 Relating Models via Agreement-Based Simulations

Distributed simulations were introduced to provide a generic way for a model to emulate
executions of another model. A classic simulation technique is the universal construction
by Herlihy in [Her91]. The idea consists in using the ability of a system to solve consensus
to reach agreement on all simulated operations one by one. But most distributed systems
cannot solve the consensus task. Hence, managing to produce valid simulated executions while
submitted to concurrency is an important feature for widely applicable simulation techniques.

In this thesis, we primarily focus on simulation techniques inspired by BG simulation, the
classical simulation tool invented by Borowsky and Gafni [BG93a,BGLR01]. Our goal is to
design a novel agreement-based simulation using insights from Gafni and Guerraoui [GG09].

We proceed incrementally. We start with a simple BG-like simulation. We then add
additional features, one at a time, each time yielding a more refined and powerful simulation.
This approach also helps to compare the simulations and to understand the advantages each
feature provides. The final simulation, mixing a flexible agreement-based synchronization and
a simple round-by-round structure, is widely applicable and yet very simple to use.

We start, in Section 3.2, by recalling the principles of BG simulation. In particular, we
focus on the safe-agreement protocol which allows synchronizing simulators to avoid potential
conflicts in simulated operations. It also enables us to define formally the basic structures and
properties followed by the distributed simulations presented in this chapter.

Next, in Section 3.3, we improve the simulation by providing the ability to abort pending
simulation steps, which results in a simulation similar to Extended BG simulation introduced
by Gafni [Gaf09]. We continue, in Section 3.4, by refining the use of this abort mechanism
and proposing a simpler variant of Extended BG simulation. This new simulation has a
straightforward round-by-round structure which can be used to easily prove fine properties of
the simulated executions. We proceed to the last improvement in Section 3.5, by replacing
the safe-agreement protocol with a more flexible agreement-based synchronization. This last
simulation will be instrumental in comparing models task computability in the next chapter.

25

Chapter 3. Distributed Simulations

3.2 Safe Agreement and BG Simulation

We use here a different approach than the original BG-simulation technique [BG93a,
BGLR01]. We first provide an explicit simulation of atomic update and snapshot operations
that is expected to build a valid AS (atomic snapshot) run, under the condition that the
simulation calls respect certain restrictions.

Then we introduce a non-blocking version of the safe-agreement protocol that can be used
to ensure agreement on simulated steps. Using these two constructs, we provide the simulation
scheme that meets the specified requirement and briefly discuss how it can be applied.

We assume in this chapter that an n-process (of n simulators) model intends to simulate
an m-process model (of m simulated processes). Moreover, we assume that simulated processes
run the full-information protocol, i.e., they start with an update operation using their initial
state as a parameter and then alternate between snapshot and update operations, each time
using the output of the preceding snapshot operation as a parameter for the update.

Shared Memory Simulation

The first issue in simulating another system is that multiple simulators should be able
to perform memory operations on behalf of the same simulated process. But, by default,
processes have access to a single-writer atomic snapshot memory. Hence, we first need to
simulate a multi-writer atomic snapshot memory for the simulated processes. The issue is
somewhat standard, but let us formally recall how to do so, as we will later extend it with
additional features.

Implementation description. We use an array of n×m registers SIM MEM [n][m]. Each
couple of simulator si and simulated process bj is associated with the register SIM MEM [i][j].
Each register contains a couple (c, v) where c is an operation counter and v is a process state.

Simulator si can directly simulate the cth update operation of value v from bj by updating
SIM MEM [i][j] with (c, v) (Line 3). To simulate a snapshot, simulators can take a snapshot
of SIM MEM and return, for all simulated process bj , the written value associated with
the greatest counter in SIM MEM [i][j], for all i ∈ {1, . . . , n} (Line 6). Note that maxlex

corresponds to the maximal value according to the lexicographical order, hence by comparing
first the operation counter before comparing, in case of equality, the written state. These two
operations, dealing with initializations issues, are presented in Algorithm 3.1.

Algorithm 3.1: Shared memory simulation for simulator si.

1 Shared objects: SIM MEM : Snapshot object of n×m registers initialized to ⊥;

2 simUpdate(j, c, v):
3 SIM MEM [i][j].update(c, v);

4 simSnaphot():
5 Let res be an m-dimensional array; S ← SIM MEM .snapshot();
6 forall j ∈ {1, . . . ,m} do res[j]← maxlex{snap[k][j]|∀k ∈ {1, . . . , n}};
7 Return res;

26

3.2. Safe Agreement and BG Simulation

Simulation requirements. Simulators must fulfill two requirements to ensure that opera-
tions simulated using Algorithm 3.1 produce consistent transitions of the simulated atomic
snapshot memory:

1. Unicity: For all c ≥ 0 and simulated processes bj , no two simulators may invoke
simUpdate(j, c, v) with different values v.

2. Consistency: Let a simulator si invokes simUpdate(j, c, v). If c = 0, then v must
be a valid initial state of simulated process bj . If c > 0, then v must contain the
output of a preceding simSnaphot() operation containing the value of a preceding
simUpdate(j, c− 1,).

Proof of correctness. Let us show that if simulators respect these two requirements, then
Algorithm 3.1 indeed simulate an m-process atomic snapshot memory. Formally:

Theorem 3.1. Any run in which simulators execute operations in Algorithm 3.1 respecting
the consistency and unicity properties simulates an AS run on simulated processes.

Proof. Consider a run of simulated operations simSnaphot() and simUpdate() satisfying the
consistency and unicity properties. We proceed by induction on the number of operations in
such a run. The claims of the theorem trivially hold for an empty run.

Now assume that the claim of the theorem is satisfied for a given sequence of simulated
operations and that a simulator completes a new operation. Since only update operations
modify the state of the memory, consider that this new operation is an update operation.
Moreover, since an update operation contains a single atomic operation, we do not need to
consider concurrent operations. Two cases are possible:

1) If the update operation is the first simulated update operation with a given set of
parameters (j, c,), then the new state of the simulated memory is consistent with an update
operation (c, v) from bj . Indeed, by the consistency property, this operation write a snapshot
consisting in a valid snapshot operation following the (c − 1)th update operation by bj or
writes a valid initial state of bj if no preceding operation of bj was simulated.

2) Now consider that the simulated operation follows another simulated operation for the
same update operation by bj . As the unicity property is satisfied, the other operation wrote
the same couple (c, v) to the simulated memory. If a simulated snapshot was returning (c, v)
before the update, then it still returns (c, v) afterward. If it was returning a couple (c′, v′)
for bj , then c′ must be strictly greater than c as an update operation can only replace a couple
with a smaller operation counter according to the consistency property. Hence, in both cases,
the result of a simulated snapshot is not modified. This new update operation can, therefore,
be mapped to the same operation from bj as the preceding identical simulated update.

Safe Agreement

Ensuring that simulators satisfy the (afore defined) consistency property is trivial, as it
only depends on a correct ordering of the simulator own simulated operations.

But ensuring that simulators respect the unicity property is not trivial. A naive approach
would consist in trying to ensure that no two simulators perform simulations of a given
update operation concurrently. But this would require to provide mutual exclusion [Dij65].
Unfortunately, mutual exclusion cannot be solved wait-free, even in the one-shot case. Indeed,
this would reduce to the task of test-and-set which is not solvable in most models [Her91].

27

Chapter 3. Distributed Simulations

The solution proposed by Borowsky and Gafni in [BG93a], called safe agreement, consists
in providing a consensus abstraction which may block in case of a process failure. Intuitively,
it can be used to agree on a simulation step safely with progress guaranteed in the absence of
failures. The advantage compared to mutual exclusion is that a process failure can block only
one safe-agreement protocol, and hence, at most one simulated process.

Definition. The abstraction exports one propose(v) operation which returns a value v′.
Unlike the original safe-agreement abstraction [BG93a], we assume that the operation can
return a special value ⊥.

The following properties are satisfied:
— Validity: Every non-⊥ returned value has been previously proposed.
— Agreement: All non-⊥ returned values are identical.
— Termination: Every correct process eventually returns.
— Non-Triviality: If all participating processes return, at least one returns a non-⊥

value.
The advantage of allowing processes to return ⊥ instead of blocking (like in [BG93a]) is

that we do not require processes to run multiple safe-agreement instances in parallel. With
this definition, we can use safe-agreement protocols sequentially.

Bakery-Style Safe Agreement Implementation

We propose here a novel Safe-Agreement implementation inspired by Lamport’s Bakery
Algorithm [Lam74]. We observe that the safe-agreement abstraction is close to mutual
exclusion, except that multiple processes sharing the same output value are allowed to proceed
to the critical section at the same time.

Description of the algorithm. The Bakery Algorithm consists of two stages, first selecting
a ticket number and then waiting for its turn to enter the critical section. Our safe-agreement
implementation, presented in Algorithm 3.2, is structured similarly to the Bakery Algorithm.

The first stage is used to determine the proposal that can be used for deciding. It uses a
doorway to restrict the selection to the proposals from the first processes to participate in
the protocol. If process i does not observe any proposal in the memory, then it writes its
own input to its private register RES [i], and otherwise, RES [i] is left equal to ⊥. Moreover,
processes use a guard mechanism to let other processes know they are currently trying to
share their proposal. The mechanism consists in setting a boolean register FLAG [i] to true
exclusively during this first stage. This stage ensures that at least one of the first processes to
participate shares a proposal, but that no late process does.

The second stage consists in trying to find the proposal which might be shared by the
process with the smallest identifier. As soon as a process with a raised guard is observed,
processes return the particular value ⊥ as a process may be concurrently sharing its proposal.
If there are no raised guard, then the decision value can be determined and returned. It
is sufficient for solving safe-agreement as, informally, the last process to exit the first stage
cannot see a raised guard, and hence, will not return ⊥.

Proof of Algorithm 3.2. Let us show that all properties of safe-agreement are satisfied:
— Termination: Immediate, as once pi completes the first stage (Line 6) at least one

RES [j] 6= ⊥.

28

3.2. Safe Agreement and BG Simulation

Algorithm 3.2: Safe-agreement protocol for process i.

1 Shared objects: FLAG [1, . . . , n]: Atomic binary registers initialized to false;
2 RES [1 . . . n]: Atomic registers initialized to ⊥;

3 propose(val):
4 FLAG [i]← true;
5 if ∀j ∈ {1, . . . , n} : RES [j] = ⊥ then RES [i]← val ;
6 FLAG [i]← false;

7 for j = 1, . . . , n do
8 if FLAG [j] then return ⊥;
9 if RES [j] 6= ⊥ then return RES [j];

— Non-Triviality: Assume that all participating processes return and consider the
last process, pi, to lower its flag (Line 6). Afterwards, for each process pj , we
have FLAG [j] = false, whether pj participates or not. Therefore, pi cannot successfully
pass the test at line 8 and so can only return at line 9 with a non-⊥ value.

— Validity: Processes either returns ⊥ at line 8 or else a non-⊥ value read from a register
from RES at line 9, and hence, the validity property is satisfied.

— Agreement: Let pk be the process with the smallest identifier to write a (non-⊥)
value v in RES . We claim that every process that returns a non-⊥ value must return v.
By pk definition, no process can return a non-⊥ value read in RES [j] such that j < k.
Suppose, by contradiction, that a process pi returns a non-⊥ value different from v.
By the assumption and the algorithm, pi must have read ⊥ in RES [k] in line 9. Before
that, pi read false in FLAG [k]. This can only happen if RES [k] is read by pi before pk
set FLAG [k] to true. Thus, pi completed line 6 before pk started line 4. But when pi
completed line 6, it made sure that at least one position in RES is non-⊥.
Hence, in executing lines 4-6, pk must have found a non-⊥ value in some RES and
therefore cannot write its input to RES [k]—a contradiction.

BG simulation

BG simulation uses instances of safe agreement to ensure that simulators performing the
same update operation agree on the written state. If a safe-agreement instance returns ⊥, the
simulator becomes blocked on this operation. Until another process completes simulating this
operation, the simulator can only try to simulate operations for other processes. Obtaining a
non-⊥ output from a safe-agreement protocol ensures the unicity property, hence, if it happens,
processes can proceed with simulating the corresponding update operation.

Simulating a Task Solution. As we are interested in task computability, we assume that
the simulated system runs a protocol solving a task. The simulation is then used to solve
a matching task on the simulators. In particular, the first update operation of a simulated
process must contain a valid task input computed from the simulators’ inputs. Likewise,
the simulators’ outputs should be determined based on the outputs obtained by simulated
processes. The exact relation between the task on the simulators and the task on the simulated
processes is application-specific. Hence, in the simulation framework, we specify several

29

Chapter 3. Distributed Simulations

application-specific external predicates.
Task inputs will be dealt with by the primary application function SelectOperation

selecting which operation to try to perform. But for outputs, the application must additionally
define the Undecided(S) predicate which must return the set of simulators not yet able to
compute a task output given a snapshot of the simulated memory S. Similarly, Decision(i, S)
should return the corresponding valid output when i 6∈ Undecided(S).

Note that when dealing with colorless tasks, as soon as a simulator knows a valid input
for one simulated process, it knows one for all simulated processes. Likewise, if a simulator
returns, then all simulators can return. Hence, Undecided(S) may only be equal to ∅ or Π.

Simulation protocol. Algorithm 3.3 describes the implementation of the simulation. Sim-
ulators first share their input states in the atomic snapshot object INPUT (Line 4). Then,
simulators proceed to a simulation loop repeated until the simulation advanced sufficiently to
provide a task output for the simulator. As soon as a task output can be computed, simulators
exit the simulation loop and return a valid task output (Line 14).

The simulation loop works as follows. A simulator first simulates a snapshot operation,
using the function of Algorithm 3.1, and takes a snapshot of INPUT (Line 6). Then, the
primary external function SelectOperation, described later in more detail, is used to select
which update operation to attempt performing next (Line 7). If the returned operation op
is undefined (op = ⊥), then the simulator goes back to the beginning of the simulation loop
directly. Otherwise, op should be a triplet (j, c, v) providing the simulated process, j, the
update operation counter, c, and the simulated state to write, v. A safe-agreement protocol
specific to this operation (i.e., indexed by j and c), is then executed using v as argument
of the propose operation (Line 10). If the value returned by the safe-agreement protocol is
distinct from ⊥, the simulator performs the targeted update operation with the returned
value (Line 11). If the safe-agreement protocol returns ⊥, then the simulator marks this
update operation as blocked by raising the value of the local variable blocked [j] to the update
operation counter c (Line 12). In both cases, the simulator completes the loop and, if it is still
unable to compute a task output, then it starts a new loop iteration.

Algorithm 3.3: BG simulation for simulator si.

1 Shared objects: INPUT : Snapshot object of n registers initialized to ⊥;
2 Local variables: blocked : m-dimensional array of integers initialized to −1;

3 simulate(input):
4 INPUT [i].update(input);
5 do
6 S ← simSnaphot(); I ← Inputs.snapshot();
7 op ← SelectOperation(S, I, blocked);
8 if op 6= ⊥ then
9 (j, c, v)← op;

10 v ← safeAgreement [j][c].propose(v);
11 if v 6= ⊥ then simUpdate(j, c, v);
12 else blocked [j]← c;

13 while i ∈ Undecided(S);
14 return Decision(i, S);

30

3.2. Safe Agreement and BG Simulation

Properties of SelectOperation. The primary function that has to be defined by the sim-
ulation application is SelectOperation(S, I, blocked), used on Line 7. The first parameter, S,
is a snapshot of the simulated system. The second one, I, is the set of simulators task inputs
shared so far. The last one, blocked , corresponds to the set of operations to simulate with a
blocked safe-agreement protocol for this particular simulator.

This function should fulfill three types of requirements. First, it should select non-blocked
operations respecting the consistency property.

— Op-consistency : If SelectOperation(S, I, blocked) does not return ⊥, then it should
return a triplet (j, c, v) such that: if c = 0, then v is a valid task input for bj ; and
if c > 0, then v should be equal to S with S[j] = (c− 1,).

— Availability : If SelectOperation(S, I, blocked) returns (j, c, v), then blocked [j] < c.
We assume that the two properties above are satisfied by default.

Secondly, the function should pilot the simulation to produce only valid runs of the
simulated model. Indeed, without any restrictions, the simulation will produce any valid
m-process AS run. But if we intend to simulate only specific AS runs, the selection should be
made accordingly. Since it is application-specific, proving the validity of the produced runs
requires knowing the function and the model, as we will see later.

Finally, the function should avoid returning ⊥ too often to guarantee progress with the
simulation. One way to ensure some progress is to never return ⊥ when the number of blocked
simulators is too small. For example, we may impose the following condition:

— k-selection: If there are at most k simulated processes in blocked , then the function
SelectOperation(S, I, blocked) does not return ⊥.

Correctness. Let us show some basic properties of the simulation.

Theorem 3.2. Assuming that the function SelectOperation satisfies op-consistency and
availability, then the simulated operations satisfy consistency and unicity.

Proof. It is not difficult to check that the op-consistency property directly implies the consis-
tency property of the simulated operation. Indeed, consider any simulated snapshot operation,
it is either accessed directly with the value returned by the SelectOperation function or
with the value returned to another process. Indeed, it may only be modified by adopting the
non-⊥ value returned by a safe-agreement object which therefore is a value proposed by some
simulator SelectOperation function. But the op-consistency ensures that the consistency
property is consequently verified as the first argument of the SelectOperation function is
the output of a simulated snapshot operation.

The unicity property is a direct result of the agreement property of the safe-agreement
operations. But to use it, we first need to show that processes indeed call this one-shot
abstraction only once. This results directly from the availability and op-consistency properties.
The availability property ensures that a safe-agreement protocol which returned ⊥ is never
reaccessed. The op-consistency ensures that a simulated update operation is never proposed
again in a new simulation loop. Thus, a safe-agreement protocol is not accessed twice if it
returned a non-⊥ output. Hence, all non-⊥ outputs of safe-agreement protocols are identical,
and therefore all simulated update operations having the same associated process and operation
counter are identical.

Let us now show that in a t-resilient system, the (t+ 1)-selection property is sufficient to
prove that the simulation is non-blocking:

31

Chapter 3. Distributed Simulations

Theorem 3.3. If the SelectOperation function satisfies the (t + 1)-selection, at most t
simulators may fail, and a correct simulator never returns, then infinitely many selected
operations are simulated.

Proof. Assume that all the theorem conditions are matched and assume by contradiction
that only finitely many simulated operations are completed. Simulators attempt only once
to simulate a given update operation. Hence, the correct simulator which did not return
eventually always obtains ⊥ from the SelectOperation function. Thus, there are at least t+1
blocked simulation steps according to the (t+ 1)-selection property. But recall that not all
processes participating in a safe-agreement instance may obtain ⊥ (non-triviality property).
Moreover, a simulator receiving a non-⊥ value proceed with simulating the corresponding
update operation, which once complete, results in an increase of the operation counter in
the simulated snapshot. Therefore, no simulator completes these t blocked operations, as
otherwise they would no longer be blocked. Hence, a simulator failed during each of these
safe-agreement protocols or before applying the corresponding simulated update operation.
Therefore, there are at least t+ 1 failed simulators — a contradiction.

Application Example

The original application of BG simulation consisted in showing that the task of t-set
consensus is not solvable in an n-process t-resilient model with n > t. This is a special case of
a slightly stronger result:

Theorem 3.4. For all n,m, t ∈ N such that n > t and m > t: any colorless task solvable in
the m-process t-resilient model is solvable in the n-process t-resilient model.

Proof. Consider the following simulation. The SelectOperation(S, I, blocked) returns an
operation for a non-blocked process bj among those which have one of the t + 1 smallest
operation counter in S, if possible, and ⊥ otherwise. This operation either selects a valid
input state if S[j] = ⊥ or returns an operation (j, c, S) with (c− 1,) = S[j]. Note that the
simulators and the simulated processes solve the same colorless task, hence, any input shared
in I is a valid input for bj . Therefore, SelectOperation satisfies the op-consistency and
the availability properties. Thus, according to Theorem 3.2, the simulation produces valid
simulated AS memory operations.

Moreover, SelectOperation only returns ⊥ if there are at least t+ 1 blocked processes,
so it respects the (t+ 1)-selection property. Thus, according to Theorem 3.3, the simulation
completes new selected operations until all correct simulators return.

Now assume, by contradiction, that a correct simulator never returns. Thus, there are
infinitely many selected operations which complete. Hence, at least one of the t+ 1 processes
which have infinitely often one of the t+ 1 smallest operation counters completes infinitely
many operations. Therefore, at least m− t simulated processes have infinitely many simulated
operations. Thus, we simulate a correct m-process t-resilient execution and so processes with
infinitely many simulated operations eventually obtain a task output. As soon as it happens,
all simulators may return with the task output of any simulated process — a contradiction.

Thus, we have constructed a simulation which can be used to solve any colorless task
solvable in an n-process t-resilient model (n > t) when provided with a solution to the task in
an m-process t-resilient model (m > t).

32

3.3. Abortable BG Simulation

3.3 Abortable BG Simulation

The main issue with BG simulation is that a simulator crashing while simulating a process
step may block the simulation of this process forever. If the task is not colorless, the simulators
may have different termination conditions. Hence, it may happen that a failed simulator
which, based on the current state of the simulation, can already terminate keeps blocking
a safe-agreement protocol. But correct simulators may require the output of this blocked
simulated process to compute their outputs.

Avoiding this possible deadlock is the motivation behind the Extended BG-simulation
proposed by Gafni [Gaf09]. The idea is to provide an abort mechanism which takes all processes
out of the computation and thus let only correct, non-terminated, processes come back to the
simulation. In the original extended BG-simulation, simulators can abort individual simulation
steps. For convenience, we present here a different approach where the abort mechanism is
simulation-wide.

An alternative solution was proposed by Imbs and Raynal [IR09]. Their solution consists,
intuitively, in improving the properties of the safe-agreement protocols to equip the simulators
with relative priorities. Roughly, the user defines for each safe-agreement protocol a priority
order among simulators such that a simulator cannot be blocked in a safe-agreement protocol
by another simulator with a lower priority. Implementing this extra property is relatively easy,
which produces elegant solutions. But we believe that this solution is not as flexible as the abort
mechanism. Indeed, the priorities are fixed and cannot adapt easily to the actual simulation
execution. Moreover, as we will show in the following section, the abort mechanism can be
automated, and hence, its use becomes invisible from the simulation application perspective.

Commit-Abort

The original abort mechanism uses the commit-adopt protocol [Gaf98]. A commit adopt
is another form of weak consensus protocol that is wait-free solvable. Processes propose a
value and must return with a proposed value and either a commit or an adopt flag. When all
the participants propose the same value, then commit should be returned. Moreover, when a
process obtains a commit flag with a value v, all processes should commit or adopt v.

But if our goal is to merely provide an abort mechanism, we can significantly simplify the
commit-adopt abstraction. Indeed, simulators want either to commit a unique proposal or
only to abort the operation. We call the resulting variant of commit-adopt—commit-abort.
This abstraction will prove itself to be much easier to integrate into our simulations.

Definition. A commit-abort object can be accessed by two operations. Processes using
the propose operation must all give the same value as arguments and obtain a boolean as
output. Processes using the abort operation do not provide any argument and obtain either a
proposed value (i.e., used as an argument in a propose call) or a special value ⊥. The following
properties are satisfied:

— Agreement : If a propose operation returns true, then no abort operation returns ⊥.
— Non-Triviality : If no abort operation is invoked, then no propose operation can return

false.
— Termination: Every operation invoked by a correct process eventually returns.

33

Chapter 3. Distributed Simulations

Commit-Abort implementation. Algorithm 3.4 presents a simple commit-abort imple-
mentation. Processes use a multi-value register PROP and a boolean register CLOSED . A
propose(v) operation writes v to PROP and returns the reverse of the value in CLOSED . An
abort operation writes true in CLOSED and returns the content of PROP .

Algorithm 3.4: Commit-abort object: algorithm for process i.

1 Shared objects: PROP : Atomic multi-valued MWMR register initialized to ⊥;
2 CLOSED : Atomic binary MWMR register initialized to false;

3 commit(v):
4 PROP ← v;
5 return ¬CLOSED ;

6 abort():
7 CLOSED ← true;
8 return PROP ;

Theorem 3.5. Algorithm 3.4 implements a commit-abort object.

Proof. A propose operation returns a boolean value to all correct processes. An abort operation
returns the content of the register Prop to all correct processes, thus either its uninitialized
value ⊥ or the argument of a propose operation written to it. The Termination property is
immediate.

In the absence of abort operations, every propose operation returns true, the initial value
of CLOSED–the Non-Triviality property is satisfied.

Let us show that the Agreement property is also verified. Assume that a process obtains
true from a propose operation. This process hence read false in CLOSED , and hence no abort
operation wrote to it yet. Therefore, all abort operations will return the non-⊥ value written
to PROP by processes executing propose operations.

Abortable Memory Simulation

Instead of using many one-shot one-value commit-aborts, we are going to enrich the
shared memory simulation in Algorithm 3.1 with an abort mechanism. Intuitively, the abort
mechanism should guarantee that all committed operations are at least adopted. A committed
operation is a simulated update operation which passed its check of an abort call, but it may
not have yet applied the operation to the simulated memory.

Implementation. Algorithm 3.5 depicts the abortable memory simulation. Compared to
Algorithm 3.1, here we assume that two types of modifications may be applied to the simulated
memory: a value can be adopted or committed.

A committed value can be seen as a completed operation as before in SIM MEM . Adopted
values are stored in an atomic snapshot ADOPT MEM . Note that several rounds of adoption
may be executed successively for the same operation, hence, to keep track on the order of
these rounds, the simulator equips the adopted operations with the abort counter.

The simulated snapshot operation is unchanged, as it only takes into account committed
operations. To obtain the set of adopted operations, we provide a variant of the simulated

34

3.3. Abortable BG Simulation

snapshot operation called adopted(); the only difference is that here the maximal returned
value is computed lexicographically based on the operation counter, the abort counter, and
finally the states which are shared by update operations.

Algorithm 3.5: Abortable memory simulation for simulator si.

1 Shared objects: SIM MEM : Snapshot object of n×m registers initialized to ⊥;
2 ADOPT MEM : Snapshot object of n×m registers initialized to ⊥;
3 EPOCH : Snapshot object of n registers initialized to 0;

4 simUpdate(j, c, e, v):
5 ADOPT MEM [i][j].update(c, e, v);
6 if e = epoch() then SIM MEM [i][j].update(c, v);

7 simSnaphot():
8 let res be an m-dimensional array; S ← SIM MEM .snapsot();
9 forall j ∈ {1, . . . ,m} do res[j]← maxlex{S[k][j]|∀k ∈ {1, . . . , n}};

10 return res;

11 adopted():
12 let res be an m-dimensional array; A = ADOPT MEM .snapsot();
13 forall j ∈ {1, . . . ,m} do res[j]← maxlex{A[k][j]|∀k ∈ {1, . . . , n}};
14 return res;

15 abort(e):
16 EPOCH [i].update(e+ 1);

17 epoch():
18 return max(EPOCH .snapshot());

The simulated update operation is slightly more complex. Indeed, a simulator cannot just
apply an operation as before. The operation must be first simply proposed for adoption by
updating ADOPT MEM . Then the simulator must check if another simulator performed
a conflicted abort operation by checking an abort counter. Note that the abort counter is
simulated using a snapshot object EPOCH , the abort counter is then the maximal value found
in it. If the abort counter is identical to the one tagged with the operation, then the operation
is up to date and can be committed by writing it to SIM MEM .

The abort operation takes an abort counter to be invalidated. Simulators do it by just
writing an incremented value in their EPOCH register. We also provide an epoch() function
which can be used to obtain the current value of the abort counter.

Simulation requirements. The safety of the simulation relies on similar assumptions as
for the non-abortable shared-memory simulation. The unicity property should be updated as
follows:

— Abortable-unicity : For all c ≥ 0, e ≥ 0 and simulated processes bj , no two simulators
may invoke simUpdate(j, c, e, v) with different values v.

Note that we only add the abort counter to the list of parameters required to be matched
to check for the unicity of the written state. But restricting the scope of the unicity property

35

Chapter 3. Distributed Simulations

to a subset of corresponding update operations requires to add another property about the
correct adoption of operations. We do it by updating the consistency property as follows:

— Abortable-consistency : Let a simulator si invokes simUpdate(j, c, e, v).

1. If c = 0, then v must be a valid initial state of simulated process bj ;

2. If c > 0, then v must contain the output of a preceding simSnaphot() operation
containing the value of a preceding simUpdate(j, c− 1,);

3. An adopted operation, preceding the simUpdate operation but following an epoch
operation returning e, returned A such that A[j] = (c, , v), A[j] = ⊥ or A[j] =
(c′, ,) with c′ < c.

4. The parameter e must come from an epoch operation executed after the last
simUpdate operation.

Intuitively, the abortable-consistency requires additionally that simulators, once they
selected their abort counter, check if an operation is available for adoption before proposing a
new one. Note that we also need to add a third property about the validity of abort operations:

— Abort-validity : An abort operation must use the output of an epoch operation as
argument.

Proof of correctness. Let us show that if simulators respect these three requirements,
then Algorithm 3.5 indeed simulates an m-process atomic snapshot memory. Formally:

Theorem 3.6. Any run in which simulators execute operations in Algorithm 3.5 respecting
the abortable-consistency, abortable-unicity and abort-validity properties simulates an AS
run on simulated processes.

Proof. To show the correctness of the abortable simulation, we can simply show that the
abortable-consistency, abortable-unicity and abort-validity imply the consistency and unicity
properties on the values written to SIM MEM . The consistency property is directly implied
by the first two items of the abortable-consistency property.

Hence, consider two update operations (c, v) and (c, v′) applied to SIM MEM [j] by
respectively simUpdate(j, c, e, v) and simUpdate(j, c, e′, v′) operations and let us show that
v = v′. If e = e′ then c = c′ by the abortable-unicity property. Hence, w.l.o.g., assume
that e < e′. As the simUpdate(j, c, e, v) updated SIM MEM [j], then ADOPT MEM [j] was
updated with (c, e, v) before obtaining e from an epoch() operation. But values returned
by consecutive epoch() operations must return increasing values, by a simple application
of the abort-validity property. Hence, the third condition of the abortable-consistency for
simUpdate(j, c, e′, v′) must be satisfied for the result of an adopted() operation executed after
ADOPT MEM [j] was updated with (c, e, v). Note that the couples (c, e) presents in items
from arrays returned by adopted operations can only increase. Hence, the adopted() operation
could not have returned A such that A[j] = ⊥ nor A[j] = (c′, ,) with c′ < c. Hence
A[i] = (c, ,).

Let us show that A[j] = (c, , v). Assume by contradiction that it is not the case, hence
that some simUpdate(j, c, e′′, v′′) operation with e′′ > e performed an update operation on
ADOPT MEM [j] inbetween. Without loss of generality, consider the first one to do so. This
simUpdate operation must respect all constraints that we have shown to be respected by
our simUpdate(j, c, e′, v′) operation. But since it is the first to modify ADOPT MEM [j], its
adopted operation must have returned A′ such that A′[j] = (c, , v). Hence v′′ must be equal
to v — a contradiction. Hence, A[j] = (c, , v) and thus v′ = v.

36

3.3. Abortable BG Simulation

Extended BG simulation

We can now present a variant of the extended BG-simulation [Gaf09]. Roughly, the idea
is merely to replace the simulated memory in Algorithm 3.3 with the abortable simulated
memory. Moreover, in each round, the simulation checks whether the application wants to
proceed to the abort mechanism. This straightforward extension is presented in Algorithm 3.6.

Description of the Algorithm. The algorithm is a straightforward generalization of the
standard BG-simulation from Algorithm 3.3. This time, at the beginning of each simulation
round, processes not only take a snapshot of the simulated memory but also take a snapshot
of currently adopted values as well as the abort counter. Note that the abort counter is the
first to be updated. Then, before selecting a process to try to simulate, simulators check if
an abort call should be made based on the current status of the simulation. The simulation
application should ensure that finitely many abort calls are made per simulator for a given
simulation status. If an abort call is made, then simulators skip the rest of the simulation
round.

Otherwise, simulators proceed with the selection of which process to simulate. The only
difference is that the external SelectOperation now has an extra parameter A which is
the result of the adopted operation. Moreover, the SelectOperation should now satisfy the
refined version of abortable-consistency property. Another difference lies in the fact that the
safe-agreement protocol is now additionaly indexed with abort counters. As before, if the
safe-agreement protocol is successful, then the update operation is attempted to be simulated
to the memory before moving to the next simulation round. Note that now, the update
operation may be unsuccessful due to a call to the abort mechanism. If the safe-agreement
protocol is not successful, then the local variable blocked is updated. Note that the blocked
array now store couples of an operation counter and an abort counter.

Algorithm 3.6: Abortable BG simulation for simulator si.

1 Shared objects: INPUT : Snapshot object of n registers initialized to ⊥;
2 Local variable: blocked : A m-sized array of couples of integers initialized to

(0,−1);

3 simulate(input):
4 INPUT [i].update(input);
5 do
6 e← epoch(); S ← simSnaphot(); A← adopted();
7 if SelectAbort(S, I, blocked , e) then abort(e);
8 else
9 op ← SelectOperation(S,A, I, e, blocked);

10 if op 6= ⊥ then
11 (j, c, v)← op;
12 v = safeAgreement [j][c][e].propose(v);
13 if v 6= ⊥ then simUpdate(j, c, e, v);
14 else blocked [j] = (e, c);

15 while i ∈ Undecided(S);
16 return Decision(i, S);

37

Chapter 3. Distributed Simulations

Properties of SelectOperation and SelectAbort. As before, some of the external
functions used in the in the simulation must satisfy some properties to ensure that the valid
operations are simulated. Concerning SelectOperation, it consists in ensuring abortable-
consistency by merely adapting it to the function structure:

— Op-abortable-consistency : If SelectOperation(S,A, I, e, blocked) does not return ⊥,
then it should return a triplet (j, c, v) such that:

1. If c = 0, then v is a valid task input for bj .

2. If c > 0 and A[j] = (c, e′, v′), then v should be equal to v′.

3. Otherwise, v should be equal to S with S[j] = (c− 1,).

— Abortable-availability : If SelectOperation(S,A, I, e, blocked) returns (j, c, v), then
blocked [j] < (c, e).

On the other hand, the function SelectAbort does not need to satisfy any condition to
ensure that simulated operations are valid. But it should meet some requirements to ensure
that some progress can be made:

— Abort-parsimony : If SelectAbort(S, I, blocked, e) returns true, then the preceding
SelectAbort operation to return true had a different simulated snapshot operation
output as argument.

Note that the abort-parsimony property is sufficient to ensure that the abort operations do
not prevent liveness of the simulation, but it is not necessarily required. Liveness also requires
additional properties about the limited use of ⊥ as output for the SelectOperation property.
An example of such a limitation is the k-selection property introduced in Section 3.2. But
showing the liveness of the simulation or that it simulates valid runs of the target models are
application dependent.

Correctness. Let us now show some basic properties of the simulation.

Theorem 3.7. Assuming that function SelectOperation satisfies op-abortable-consistency
and abortable-availability, then the simulated operations satisfy the abortable-consistency, the
abortable-unicity and the abort-validity properties.

Proof. Showing the validity of abortable-unicity follows the same argument as for Theorem 3.2,
deduced using the abortable-availability property and the agreement property of safe-agreement
protocols. Moreover, checking the abort-validity property is trivial.

Hence, let us show that the op-abortable-consistency property implies the abortable-
consistency property for the simulated operation. Thus, consider any simulated snapshot
operation with arguments (j, c, e, v). Using the validity property of safe-agreement protocols,
we can easily show that (j, c, v) was returned by a SelectOperation with e as an argument.
Hence, the first two conditions of abortable-consistency are provided by the first two matching
conditions of the op-abortable-consistency property. The third condition follows from the third
condition of op-abortable-consistency and the fact the abort counter e is computed from the
epoch function before the snapshot A given as an argument to SelectOperation is computed
using the adopted function. The last condition of abortable-consistency is ensured directly by
the simulation structure as e is computed from the epoch function at each round.

Let us now show that in a t-resilient system, the (t+ 1)-selection property is still sufficient
to show that the simulation is non-blocking when the abort-parsimony property is satisfied:

38

3.3. Abortable BG Simulation

Theorem 3.8. If the SelectOperation function satisfies (t+ 1)-selection, the SelectAbort
function satisfies abort-parsimony, at most t simulators may fail, and a correct simulator
never returns, then infinitely many selected operations are simulated.

Proof. Assume that all the theorem conditions are matched and assume by contradiction
that only finitely many simulated operations are completed. Hence, after some time, the
state of the simulated memory does not evolve anymore. The abort-parsimony implies that
no more SelectAbort return true and hence that no calls to the abort() function are made.
The simulation behaves then as the simulation from 3.2 and Theorem 3.3 implies that a
correct process should perform infinitely many simUpdate operations. But since the abort
counter no longer increases, all these simUpdate operations successfully apply to the simulated
memory.

Application Example

This abortable BG simulation is very similar to the extended BG simulation. Hence, it is
of no surprise that it can also be used to reduce the task solvability of the n-process t-resilient
model to the solvability of tasks in the (t + 1)-process wait-free model. Given a (colored)
task in the n-process model, the matching task in the (t+ 1)-process model is as follows. A
process knows the inputs of n− t processes from the n-process tasks such that for process i,
the smallest process identifier associated with a task input is i. Let us consider the simulation
by the (t+ 1)-process wait-free model of the n-process t-resilient model which can be used to
show that a solution to T implies a solution to T ′.

The simulation is similar to the simulation for colorless task presented in Section 3.2.
Processes try to simulate one of the t + 1 non-blocked processes with the least advanced
simulation. As for the colorless case, n − t simulated processes will make progress as long
as no simulator terminates. Hence, eventually, at least n− t simulated processes will obtain
task outputs. When it happens, at least one simulator may terminate. But now there are
only t+ 1− k active simulators, with k the number of terminated simulators. At this point,
processes can select to simulate only the t+ 1− k least advanced processes.

The issue that existed in BG simulation is that the process with a task output may still
be active if it failed, hence, not allowing to reduce the number of targeted processes. But
now, processes can make a call to the abort mechanism to make this simulator inactive. If it
resumes the simulation, it will directly terminate. But since processes do not know easily when
a simulated process is blocked by a failed simulator provided with a task output, we make
simulators preemptively proceed to an abort each time they see an increase in the number
of simulators provided with a task output. Hence, after this abort call, processes can select
to simulate only the t + 1 − k least advanced processes, with k the number of simulators
provided with a task output. As long as there is a correct non-terminated simulator, n− t+ k
simulated processes make progress. When all these processes obtained a task output, at least
k + 1 simulators are provided with a task output. Therefore, as long as there is a correct
non-terminated simulator, the number of simulators provided with a task output increases.
Hence, all correct simulators eventually terminate.

Note that this simulation is quite simple to define and showing that the calls to the abort
mechanism do not prevent the liveness of the simulation is trivial. But with other simulation
applications it could prove to be more complex. This is why we are going to show how the
abort mechanism can be removed from the application side at no cost.

39

Chapter 3. Distributed Simulations

3.4 Round-Based Simulation

In order to simplify the simulation design of the extended BG-simulation, the ability to
make abort calls can be removed. Indeed, calls can be made as often as desired as long as it does
not prevent the liveness of the simulation. In particular, no calls to the abort mechanism should
eventually be made when no new simulated update operations are successfully completed.

What can be done is to use the abort mechanism systematically each time a new update
operation is successfully completed. But we can go even further. Indeed, as long as processes
do not agree on the set of completed update operations, they can proceed to abort calls.
Indeed, either some new update operations are regularly completed or else, all processes should
eventually agree on the set of completed update operations and no longer make calls to the
abort mechanism.

This allows us to construct a round-based simulation where all simulators participating to
the same round agree on the set of completed update operations, or equivalently, on the result
of the simulated snapshot operation. But some additional mechanism is required to ensure
that all simulators entering the same round agree on their simulated snapshot. This can be
done by using conflict detectors.

Conflict Detectors

Another protocol that is used in our simulation is a conflict detector [AE14]. It was
introduced as a simplified version of Commit-Adopt. Indeed, a Commit-Adopt protocol can
be shown to be decomposable into two complementary protocols: a conflict-detector and a
commit-abort. The conflict-detector is tasked with simply answering if distinct values are
proposed or not, but does not have to deal with the adoption mechanism of a commit-adopt.

Formally, in a conflict-detector, processes access a single operation check(val) which takes
a value from some set as input and returns a boolean such that:

— If all processes propose the same value, then false must be returned.
— All processes obtaining true must share the same proposal.
— All correct processes eventually return.

Multiple implementations of a conflict detector exist and efficient implementations can be
found in [AE14].

We use this mechanism to ensure that simulators executing a round of the simulation
all agree on the current state of the simulation. This is very convenient as it allows us to
design a much simple operation selection procedure. Indeed, simulators are able to know if
the operation they select can only complete during the round with operations selected based
on the same simulation state.

Using this conflict detector, simulators may fail to agree on the simulation state. But this
may happen only finitely many times if no new update operations are completed. If a conflict
is observed, simulators can thus simply apply an abort operation and move directly to the
next simulation round.

Round-Based Extended BG simulation

The abortable shared-memory simulation presented in Algorithm 3.5 can be used for this
alternative simulation scheme with no modifications. The global structure of the simulation is

40

3.4. Round-Based Simulation

not changed much either. Simulators first share their private input before entering a simulation
loop until they are provided with a task output.

The distinction mostly comes from this loop structure. Processes compute the current
epoch before taking a snapshot of the simulated memory and of adopted operations. But then,
before continuing further, simulators proceed to a conflict dectection by using the snapshot and
the set of registers containing the simultors input values. If a conflict is observed, processes
directly launch an abort operation and proceed with a new simulation round. If simulators
do not observe any conflict, then they proceed to trying to simulate processes steps almost
as before. The main difference is that if processes fail to complete an update operation and
if the abort counter did not increase, then they go back to trying to simulate a process step
without going back to the begining of the simulation loop and hence they do not actualize
their estimation of the simulation state.

Algorithm 3.7: Round-based simulation for simulator si.

1 Shared objects: INPUT : Snapshot object of n registers initialized to ⊥;
2 Local variable: blocked : m-sized array of couples of integers initialized to (0,−1);

3 simulate(input):
4 INPUT [i].update(input);
5 do
6 e← epoch(); S ← simSnaphot(); A← adopted();
7 if (¬conflictDetector [e].apply(S, I)) ∧ (i ∈ Undecided(S)) then
8 do
9 op ← SelectOperation(S,A, I, e, blocked);

10 if op 6= ⊥ then
11 (j, c, v)← op;
12 v ← safeAgreement [j][c][e].propose(v);
13 if v 6= ⊥ then
14 simUpdate(j, c, e, v);
15 abort(e);

16 else blocked [j]← (e, c);

17 while e = epoch();

18 else abort(e);

19 while i ∈ Undecided(S);
20 return Decision(i, S);

Correctness of the simulation. Showing that simulated operations form a valid AS
run is almost identical to the Abortable simulation. As for the previous simulation, the
abortable-unicity follows directly from the fact that the states to be written by simUpdate
operations with parameters j, c and e are all identical thanks to the safe-agreement protocol.
The abortable-consistency is enforced by requiring that the SelectOperation function also
satisfies the Op-abortable-consistency and the Abortable-availability properties. Therefore,
this round-based simulation simulates steps of a valid AS run. To show that infinitely many
calls to the simUpdate operation indeed produces infinitely many simulated operations is not
complicated either. Indeed, if no new operations are completed, then the value of simulated

41

Chapter 3. Distributed Simulations

snapshots do not evolve. Moreover, eventually the INPUT array is constant and calls to the
conflict detector may only return false. Hence, the abort can only be used after simUpdate
operations are performed. Consider the first simulator to proceed to an abort operation with
e as argument. Hence, at this point the abort counter never exeeded e. Thus the simUpdate
operation performed just before by this simulator was associated with the abort counter e and
hence successfully updated the simulated memory.

Showing properties about the liveness of the simulation also depends on the selectOperation
definition. Let us show that the simulation is lock-free if the following property is verified:

— active-selection: selectOperation(S,A, I, e, blocked) may not return ⊥ if there are k or
less blocked simulated processes, with k the number of possible simulators failures
among Participating(I) ∩Undecided(S).

Indeed, assume that this property is satisfied but, by contradiction, that eventually no
new simUpdate operation is successfully completed. As we have previously shown, if infinitely
many simUpdate operations are completed, infinitely many of them are successful. Hence,
correct simulators must eventually always obtain ⊥ from the SelectOperation. This implies
that there are at least k + 1 blocked simulated processes, with k the number of possible
failures among Participating(I) ∩Undecided(S). Therefore, there are at least k + 1 failed
simulators blocking simulation steps. These simulators are participating, and so, one of them
cannot belong to Undecided(S). But this simulator must have failed the test on line 3.7 at
least for the current simulation round — a contradiction.

Simulation Application

Let us show that the definition of the simulation example from Section 3.3 can be simplified
a bit with this new simulation framework. Indeed, we can now define the selectOperation
function to simply return either ⊥ if the k + 1 processes with the smallest snapshot outputs
are blocked, where k is equal to the number of possible failures in Participating(I) ∩
Undecided(S), or else return a valid operation for the least advanced non-blocked process.
The proof of correctness can then directly show that the simulated run induces that the
number of simulators with task outputs must increase without taking into account any abort
mechanism or call.

3.5 Agreement-Based Simulation

All the simulations presented so far are based on safe-agreement protocols. While safe
agreement is a very nice synchronization tool, it can only take advantage of the resilience of
the system to lower concurrency. In this last simulation, we are going to replace it by an
agreement-based synchronization. It was originaly proposed in a technical paper by Gafni and
Guerraoui [GG09]. They have shown in [GG11] how k-set consensus operations can be used
to concurrently simulate k state machines. State machines are abstractions which maintain a
local state and can apply operations to it sequentially. In [GG09], they propose to enhance
these state machines in order to accept memory operations too. This way, a k-process system
is simulated. They then propose to use it to execute a BG simulation as a second layer of
simulation. Hence, designing simulation applications is rather complex as both layers should
be taken into account .

Instead of combining the two simulation techniques, in our simulation, we directly integrate
the agreement-based synchronization technique to replace the safe-agreement protocol.

42

3.5. Agreement-Based Simulation

The state machine replication can be seen as three main steps. The first step consists in
reducing the distinct set of proposed operations through a set consensus operation. Then, in
a second step, the set of operations selected are written in a snapshot object. This allows,
by taking a snasphot, to order the set of proposed operations with an associated rank such
that sets associated with the same rank agree on the selected set. These two steps form a
solution to the problem called k-simulataneous consensus [AGR+06]. The last step consists in
applying these selected operations using commit-adopts protocols (used as commit-aborts).
Indeed, this last step is required as processes are only aware of their selected operations but
not the one selected by other processes.

In our simulation presented in Section 3.4, we already provides a round-based step validation
with systematic abort of incomplete operations. Hence, we can integrate the synchronization
based on simultaneous agreement directly without using the third step. Still, the simultaneous
consensus select proposed operations associated with a rank from 1 to k. But in our simulation
we wis to simulate operations for a simulated system composed of more than k processes. We
therefore improve the protocol to consider operations associated from a larger set of possible
operations. This new protocol is called the dispatcher.

Dispatcher

The simulated update operations require that simulators do not propose distinct new states
to write for the same update operation in a given round of the simulation. The idea is to use
a construct similar to the one introduced in [AGR+06] to solve the problem of simultaneous
consensus. Simulators are expected to provide a large enough set of proposed operations, so
that they can be “dispatched” to operations corresponding to distinct simulated processes if
they cannot agree on the state to write for the simulated update operation.

We call this protocol a dispatcher. The dispatcher is accessed by processes with at most k
distinct sets of at least k proposed operations. Processes first write their set of operations to
an atomic snapshot object MEM [1, . . . , n]. Then they take a snapshot of MEM and select a
value from it according to the number l of distinct lists of operations which are observed. The
selected operation is the one associated with the largest simulated process identifier which is
the lth smallest of its list of proposals. This ensures (1) that if processes see a different number
of distinct sets of operations, then they select proposals associated with distinct simulated
processes, and (2), that if processes see as many distinct sets of operations, then they return
the same operation.

The detailed implementation of the dispatcher is presented in Algorithm 3.8. Note that
operations are selected using the lexicographical order, that is, comparing first the simulated
process identifier, then the operation counter, before, as a last resort, comparing the state to
be written. Comparing states to be written is not well defined but any total order may be
used as we only require that all simulators select the same state to write if there are multiple
choices for the same simulated operation.

Lemma 3.1. If processes submit at most k distinct set of operations, each set composed of at
least k operations for distinct simulated processes, then the dispatcher returns an operation
such that all processes obtaining operations for the same process have the same operation.

Proof. Consider two processes p and p′ observing a different number of distinct sets of
operations, ` and `′ respectively, and, w.l.o.g, such that ` < `′. Consider the set of operations
from which p selected its operation. As it selected the `th smallest operation, the `′th smallest

43

Chapter 3. Distributed Simulations

Algorithm 3.8: Dispatcher for process pi.

1 Shared objects: MEM , Snapshot object of n registers initialized to ∅;

2 dispatcher(L):
3 MEM [i].update(L);
4 S ← MEM .snapshot();
5 return maxlex{v|∃L ∈ S : |{v′ ∈ L|v′ ≤ v}| = |{L ∈ S|L 6= ∅}|};

operation is associated with a simulated process with a greater identifier. But the `′th smallest
operation is among the possible choices of operations for p′ according to snapshots inclusion
property. As p′ selects the greatest among the `′th smallest operations, it returns one associated
with a distinct simulated process than the operation selected by p.

If they observe the same number of distinct sets of operations, then, according to the snap-
shot inclusion property, they observe the same sets of operations. Therefore, the deterministical
operation selection returns the same operation for both processes.

Agreement Based Simulation

The structure of the simulation is very similar to the round-based simulation from Sec-
tion 3.4.

On the global structure, there are no differences. Simulators first share their private input
before executing rounds of simulation until they are able to produce a task output. In a
simulation round, simulators first update the current state of the simulation: the abort counter
e; the simulated snasphot S; the set of operations to adopt A; and, the set of known inputs I.
Then, they perform a conflict detection on I and S for the round which is indexed by e. As
before, if a conflict is detected, the round is aborted and simulators start a new round.

Differences appears if no conflicts are observed. Afterwards, simulators now select a list
of operations to simulate using the external function SelectOperationList. Processes then
reduce the number of distinct sets of operations to simulate using an externally defined set
consensus protocol. Note that this set consensus can assume that only processes which were
observed as participating and were still undecided may participate. Hence, varying levels of
agreement may reached depending on the simulation state. Note also that, if the participation
change, we interupt this protocol. This allow to define protocols that terminates if the
participation does not have to change. If the participation did not change, then this reduced
number of distinct sets of operations is then submitted to the dispatcher which returns a single
operation. As simulators obtaining an operation for the same simulated process all share
the same operation, the operation can be submitted to a simUpdate operation. As before,
processes execute an abort operation when simUpdate is completed.

Note that we assume that the SelectOperationList function returns a sufficiently large
set of operations so that the set consensus protocol can reduce the number of distinct sets
sufficiently to ensure that the dispatcher successfully returns. The only case where this
condition may not be provided is when the set of participating simulators evolved. Hence,
before applying an operation, simulators checks that it is not the case. Otherwise all processes
are provided with operations to simulate, and ⊥ may not be returned as it was the case when
using safe-agreement protocols.

44

3.5. Agreement-Based Simulation

Algorithm 3.9: Agreement-based simulation for simulator si.

1 Shared objects: INPUT : Snapshot object of n registers initialized to ⊥;

2 simulate(input):
3 INPUT [i].update(input);
4 do
5 e← epoch(); S ← simSnaphot(); A← adopted(); I ← INPUT .snapshot();
6 if (¬conflictDetector [e](S, I)) ∧ (i ∈ Undecided(S)) then
7 opList ← SelectOperationList(S,A, I);
8 try
9 opList ← SetCons(Undecided(S),Participating(I))[e](opList);

10 until I 6= INPUT .snapshot();
11 if I = INPUT .snapshot() then
12 (j, c, v)← dispatcher [e](opList);
13 simUpdate(j, c, e, v);

14 abort(e);

15 while i ∈ Undecided(S);
16 return Decision(i, S);

Properties of SetCons. The SetCons external function is an agreement-based synchro-
nization mechanism. As any agreement task, it takes inputs from some domain, here a set of
operations. It must eventually return a proposed input, that is, a set of operations that was
previously proposed. The number of distincts returned outputs is therefore smaller than the
number of distinct proposed inputs. But, the less distinct outputs may be return, the higher
the synchronization is, allowing for a wider range of possibilities for the SelectOperationList
function and hence for the simulation.

Formally, the SetCons operation must only satisfy the following properties:

— Validity : Outputs values should be a subset of the input values.
— Uninterrompted-termination: Processes must eventually return if the simulation partic-

ipation does not change.

Besides these very generic requirements of an agreement task, the number of distinct outputs
that may be returned under specific constraints is primordial to define tha properties that
must be followed by the SelectOperationList. Given set of processes (U,P) with U ⊆
P ⊆ Π, we define the synchronization power of the function SetCons(U,P), denoted as
sync(SetCons(U,P)) as the maximal number of dictinct outputs that may be returned by
processes in U in a run in which only processes in P participated 1. It can be noted that the
SetCons must always return proposed inputs, even if processes not in P might participate,
but we do not care about the number of distinct outputs that are return in such a setting
for sync(SetCons(U,P)) and hence for the simulation. Indeed, the result SetCons(U,P)
is discarded by the simulation as soon as the observed participation evolved. Note also
that, intuitively, the SetCons external function depends only on the simulators model of
computation and not on type of simulated runs we wish to perform.

1. More details on this aspect will be given in Chapter 4, we only introduce this sync function to formally
define the requirements that the SelectOperationList must satisfy in our simulation.

45

Chapter 3. Distributed Simulations

Properties of SelectOperationList. The main external function that must be defined
for a specific simulation is the SelectOperationList function. The main difference with the
previously described SelectOperation function used for other simulation schemes is that now
a set of operations must be returned and not only a single operation. Hence, it is not surprising
that we require that returned operations must follow a similar op-abortable-consistency property
that was required of operations returned by SelectOperation in previous simulations. Some
small variations on the definition follows from a list being returned:

— OpList-abortable-consistency : All items returned by SelectOperationList(S,A, I)
should triplets (j, c, v) such that:

1. If c = 0, then v is a valid task input for bj , deterministically chosen from I.

2. If c > 0 then S[j] = (c− 1,), and, either A[j] = (c, e′, v) or A[j] 6= (c, ,)∧ (v = S).

Note that, indirectly, the property ensures that a single operation is provided per simulated
process. Indeed, given two returned triplets (j, c, v) and (j, c′, v′), then the choices of c and v
depend only on the valaues of S, A and I.

We no longer have a notion of blocked simulation step, hence, we no longer need to satisfy
the abortable-consistency property. On the other hand, as synchronization is enforce by an
agreement-based mechanism, we no longer allow simulators to wait to provide proposals.
Moreover, we require simulators to provide sufficiently many proposals, in accordance with
the synchronization provided by the SetCons function. More formally, we require that the
SelectOperationList function satisfy the following setCons-selection property, that is:

— SetCons-selection: the number of operations returned by SelectOperationList(S,A, I)
is greater than or equal to sync(SetCons(Undecided(S),Participating(I))).

As we will see, this property will have an impact on both the safety and the liveness of the
simulation. In particular, it will allow us to show that, without any other assumption, that if
a correct simulator never returns, then infinitely many selected operations are simulated.

Correctness of the simulation. Let us now show that simulated operations form a valid
AS run in which only selected operations are simulated, and that if a correct simulator never
returns, then infinitely many operations are simulated.

Theorem 3.9. Assuming that function SetCons solves an agreement task with synchronization
power equal to sync(SetCons(U,P)) and that function SelectOperationList satisfies opList-
abortable-consistency and SetCons-selection properties, then the simulated operations satisfy
the abortable-consistency, abortable-unicity and abortable-validity properties.

Proof. To check that the abortable-unicity property is satisfied, consider two executions
of simUpdate operations with arguments (j, c, e, v) and (j, c, e, v′) respectively. A simu-
lator may execute only one update operation for a given epoch e. Hence, these oper-
ations are executed by distinct simulators. Moreover, both simulators did not observe
any conflict and hence agree on the value of S and I for the round associated to e. Ac-
cording to the SetCons-selection property, all such simulators return with lists of pro-
posals containing at least sync(SetCons(Undecided(S),Participating(I))) distinct pro-
posals. As I did not change, all simulators accessing the dispatcher obtained at most
SetCons(Undecided(S),Participating(I)) distinct list of proposals. Hence, the dispatcher
ensures that all simulators obtains proposed simulated steps and that processes obtaining
steps for the same simulated process obtains the same simulated step (Lemma 3.1), hence, we
have v = v′.

46

3.5. Agreement-Based Simulation

Verifying that the abortable-validity property is satisfied is trivial as the variable e used
for abort operations can only be set to the output of an epoch operation. Moreover, an epoch
operation is performed at each round, hence between any simUpdate operations, implying the
last item of the abortable-consistency property.

As concerns the first two items abortable-consistency property, it follows mainly from
the opList-abortable-consistency property. Consider any simUpdate operation with argument
(j, c, e, v). As shown for the abortable-unicity property, (j, c, e, v) must be a proposed simulation
step, hence verifying the items of the opList-abortable-consistency property. Hence, the first
item of opList-abortable-consistency implies directly the first item of abortable-consistency.
For the second item of abortable-consistency, it directly follows from the second item of
opList-abortable-consistency and the observation that e is updated using the epoch function
before the last update of A with the adopted function.

Let us now show that, we have already strong enough assumptions to ensure the liveness
of any simulation satisfying our desired properties, that is:

Theorem 3.10. Assuming that function SetCons solves an agreement task with synchro-
nization power equal to sync(SetCons(U,P)),that function SelectOperationList satisfies
opList-abortable-consistency and SetCons-selection properties, and that a correct simulator
never returns, then infinitely many selected operations are simulated.

Proof. Let us assume that all these conditions are verified and let us assume by contradiction
that eventually no new operations are simulated. Hence, all correct simulators will eventually
always obtain the same values for S and I. Therefore, they will eventually never observe a
conflict and undecided simulators will select operation lists. According to the SetCons-selection
and Lemma 3.1, as shown for the preceding lemma, a proposed operatation will be proposed
to the simUpdate operation.

Therefore, no simUpdate operation may be successful, or equivalently, an abort must be
executed with the same or a greater epoch before the simUpdate operation returned. But
as eventually all simulators perform simUpdate in every round, the first process to call an
abort for the epoch must have completed its mathcing simUpdate operation before — A
contradiction.

Application Example

We will use this simulation technique on elaborate examples in Chapter 4 to show task
computability equivalences between classes of models. Hence, let us only treat here the simple
example given for preceding abortable simulations. That is that the task solvability of the
n-process t-resilient systems reduces to the solvability of tasks in the (t+ 1)-process wait-free
model. Since we will use this simulation technique extensively, let us treat this example with
as many details as possible.

From n-processes t-resilient to t+ 1-processes wait-free

Let us first start by providing the agreement protocol, before providing a solution through
the SelectOperationList function.

47

Chapter 3. Distributed Simulations

Definition of SetCons. We first need to provide a set-consenus algorithm allowing to reduce
the number of proposal sufficiently. Solving the (t+ 1)-set-consensus task in the n-process
t-resilient system is a classical and simple algorithm. We need to generalize this solution
slightly to improve its level of agreement when the partition is low.

The usual solution consists in selecting a fixed set of t+ 1 processes and returning their
proposal. Resilience allows here to ensure that one is seen. The same solution can be applied
when the number of participating process is slower. We only need to select the set of t+ 1
processes based on the participating processes. For this, we simply select the inputs from the
|Part | − n+ t+ 1 participating processes with the smaller identifier, with |Part | the number
of participating processes. Note that the algorithm may block forever, but it is easy to see
that it correspond to runs that are not valid for a t-resilient system.

The solution is formalized in Algorithm 3.10. Processes first identify the set of participating
processes (Line 3). Then, the set of |Part | −n+ t+ 1 participating processes with the smallest
identifiers are selected as leaders. The leaders only share their inputs to a shared memory and
return it (Lines 5–7). Other processes wait to observe the input from a leader to select it and
return it (Lines 8–11).

Algorithm 3.10: Adaptive set-consensus for t-resilient systems (for process pi).

1 Shared objects: Proposals: Snapshot object of n registers initialized to ⊥;

2 setConsensus(U, I)(opList):
3 Part = {j ∈ {1, . . . , i}, I[j] 6= ⊥};
4 Leaders = {j ∈ Part : |{k ∈ {1, . . . , j}, I[k] 6= ⊥}| ≤ |Part | − n+ t+ 1};
5 if i ∈ Leaders then
6 Proposals[i] = opList ;
7 return opList ;

8 else
9 wait until {j ∈ Leaders : Proposals[i] 6= ⊥} 6= ∅;

10 let ` = min{j ∈ Leaders : Proposals[i] 6= ⊥};
11 return Proposals[`];

Correctness of SetCons. Let us show that the validity and uninterrompted-termination
properties are satisfied first. Then, we will show that sync(SetCons(U,P)) = max(0,min(|P |−
n+ t+ 1, |U ∩ I|)).

— Validity: Leaders return their own inputs, while others return the one of the inputs
shared in the shared memory by the leaders. Hence, all processes return only proposed
input values.

— Termination: In a t-resilient system, at least n− t+ 1 processes should be correct.
Hence, if the simulation participation does not evolve, all correct processes should be
running the set-consensus protocol. Therefore, at most n− |Part |+ t processes may
fail. This implies that one of the selected leaders is correct and will share its input
in the memory. Thus no correct process will be blocked waiting for a leader input on
Line 9. Thus the termination property is satisfied.

— sync(SetCons(U,P)) = max(0,min(|P |−n+t+1, |U∩I|)) : This is a direct implication
of the leader selection process. Indeed, only leaders inputs may be returned, so the

48

3.5. Agreement-Based Simulation

number of distinct returned values is smaller than the number of selected leaders. But
|P | is clearly equal to the size of Part computed in the algorithm, hence there are at
most n−|P |+ t+1 selected outputs. Leaders are also participating and non-terminated
simulators, hence there are at most |U ∩ I| of them too. We use 0 to denote a case
where no process returns as no leader is selected.

Definition of SelectOperationList. The main aspect of the simulation consists on defining
SelectOperationList as it implies which processes might be simulated. This selection is
very simple in our case as all processes are valid choices, hence, any valid simulation step is
valid. The difficulty lies in the initialization step as a valid simulated input requires n − t
simulators inputs. We skip a formal definition for SelectOperationList as it only consists
on selecting valid simulation steps available. Let us just show that there are enough available
choices to satisfy the SetCons-selection property.

Correctness. Let j be the number of participating simulators and let k the number of
terminated simulated processes. The number of simulated with valid inputs is equal to
max(0, |P | − n+ t+ 1). If k = 0, then all simulators are non-terminated, therefore there are
max(0, |P | − n+ t+ 1) available simulation steps. Enough to satisfy the SetCons-selection
property. If k 6= 0, then k + n − t − 1 simulators terminated too. Hence, the number of
available simulation steps is equal to the number of available simulators, that is |U ∩ I|. Hence,
the SetCons-selection property is also satisfied.

From t+ 1-processes wait-free to n-processes t-resilient

In this direction, no non-trivial consensus is possible. All processes simply return their own
input. Therefore, we have sync(SetCons(U,P)) = |U ∩ I|. However, we have more choices of
simulated processes steps. Given k participating simulators, we have at least n − t + k − 1
simulated processes inputs. The idea of the simulation is to simulate the processes with the
least simulated steps. But we still need to select sufficiently many.

Definition of SelectOperationList. The definition of SelectOperationList consists in
selecting as few operations to perform as possible to maintain liveness, that is |U ∩ I| of them.
Moreover, we need to ensure that sufficiently many simulated processes makes progress, hence
we select to simulate the least advanced simulated processes. Therefore, we select the |U ∩ I|
simulated processes with the least number of completed simulation steps (possibly already
terminated). All we need to show is thus that there are always sufficiently many such choice
and that the resulting simulation provides a t-resilient run.

Correctness. First, let us observe that if k ≥ 1 simulators participate, then there are at
least n− t− 1 + k simulated processes input available. Hence, we always have at least as many
available simulated processes than there are active simulators.

Let us now show that we have a valid t-resilient simulated run. For this, let j < k be the
number of non-terminated simulators and assume that a non-terminated simulator is correct.
This implies that there are at least n− t+ k − j simulated processes taking infinitely many
steps. Therefore, the simulated run is t-resilient and thus at least n − t + k − j simulated
process obtain an input value. This implies that at least j + 1 simulated process terminate —
A contradiction. Thus all correct simulators eventually terminate.

49

50

Chapter 4

Agreement Functions

The question of whether a task is wait-free solvable is undecidable when n ≥ 3 [GK99,HR97].
Thus, it may seem impossible to compare the task solvability power of models, as determining a
necessary and sufficient condition for task solvability is in general impossible. Still, comparing
the task computability of models is possible, and even for some models for which task solvability
is undecidable. One way consists in using distributed simulations to reduce the task solvability
of one model to another. But trying to produce simulations for each possible couple of models
would be tedious. Moreover, if we are not able to simulate a model M ′ in some model M ,
this does not imply that M ′ can solve tasks which are not solvable in M . Hence, additional
considerations are required. In this chapter, we investigate the possibility of measuring the
relative task computability of models through their ability to solve specific agreement tasks.

We start by introducing, in Section 4.1, the notion of agreement function. An agreement
function stipulates, for a given model M , which are the best k-set consensus tasks solvable
in M among any set of processes and under any limited participation. In Section 4.2, we
examine the properties of agreement functions. We also introduce and compare natural classes
of well-structured agreement functions. Afterwards, we study the agreement functions of
multiple models by computing them, determining their class and showing that they grasp
the relative task computability of all considered models. In Section 4.3, we focus on families
of models defined through the notion of active-resilience, i.e., when the number of possible
failures depends on the participation. In Section 4.4, we continue with adversarial models and
analyse how adversary families relate to agreement function classes. Lastly, in Section 4.5, we
discuss the partial model hierarchy, induced by models relative task computability, which is
obtained by the characterization of models by their agreement functions.

4.1 Definition of Agreement Functions

We first introduce the notion of agreement power of a model M corresponding to the
smallest k such that the task of k-set consensus is solvable in M . This notion is then generalized
to the agreement function of a model M by considering variations on the k-set consensus tasks.
A first variation weakens the k-set consensus tasks by requiring the k-agreement property to
be satisfied only when the participation is under a given threshold. Another variation looks at
the solvability of the k-set consensus task when we restrict the competition to a given set of
processes. Agreement functions solely stipulate, for all variations of the k-set-consensus tasks,
what are the k for which the task is solvable.

51

Chapter 4. Agreement Functions

Agreement Power

A model which can solve consensus is universal, i.e., it can resolve any “completable” task
(the task specification associates any set of inputs to some set of outputs) or it can implement
any deterministic object [Her91]. But what about models in which consensus is not solvable?
Unfortunately, these models are still quite heterogeneous as they may have distinct sets of
solvable tasks.

Definition. It was proposed to generalize the task of consensus by using the set of k-set
consensus tasks, for k ∈ N+ [Cha93]. Recall that in the k-set consensus task processes must
return at most k distinct input values. The task of k-set consensus is hierarchical in the
sense that a solution of the task of k-set consensus is also a solution of k′-set consensus for
any k′ > k. Indeed, sets of outputs of size at most k are sets of outputs of size at most k′

if k′ > k. Hence, given a model M , there is a natural number kM such that k-set consensus is
solvable if and only if k ≥ kM . We call this the agreement power of M , denoted as αM . Note
that if M is a model in which the set of processes is of size n, then αM ≤ n. Indeed, the task
of n-set consensus is trivially solvable in an n-process system as processes can directly output
their input without any inter-process communication to solve it.

Characterization of colorless tasks solvability. In colorless tasks, processes can adopt
the inputs and outputs of other processes. Thus, for colorless tasks, simulating an algorithm
solving a task is much more straightforward. Indeed, the simulation can terminate as soon as
one simulated process outputs. Moreover, the simulation can initiate steps of any process as
soon as it learns a single task input. Using these restrictions, Herlihy and Rajsbaum showed
in [HR12] that all shared memory models with the same agreement power share the same
ability to solve colorless tasks.

Unfortunately, this is not true for colored tasks. For example, the test-and-set model,
the wait-free model enhanced with test-and-set objects, can solve the task of perfect re-
naming [AM97]. But perfect renaming cannot be solved in the t-resilient model as soon
as t > 0 [ABND+90]. Yet, the agreement power of both is equal to 2 when n = 3 and t = 1.

Limited Agreement Scope

The agreement power of a model provides only limited information about its relative
computational power. For example, in a 3-process system, the 1-resilient, 1-test-and-set, and
2-set consensus models all share the same agreement power, 2, while solving different sets
of tasks. When comparing the test-and-set model with the others, one can observe that the
test-and-set model is the only one that can solve consensus between two processes. Thus,
looking at the ability of subsets to solve agreement tasks may prove itself useful in comparing
their relative computational power. Not all models are symmetric as the test-and-set model,
thus looking at all possible subsets of competitors and not just at their size may be relevant.

Task of k-set consensus among Q. Looking at the ability of models to solve set-consensus
among a subset can be formalized using a set of agreement tasks which we call k-set-consensus
among Q. In the task of k-set-consensus among Q, inputs come from a set of values V
(|V | > k), outputs are in V , and for each input vector I and output vector O, (I,O) ∈ ∆ if:
(1) the set of non-⊥ values in O is a subset of values in I; and (2) the set of non-⊥ values of

52

4.1. Definition of Agreement Functions

processes from Q in O is a subset of values of processes from Q in I which size is at most k.
The only particular property of this task is the second condition on elements of ∆, which
requires that processes in Q return inputs from processes in Q and at most k distinct values.

Agreement power among Q. As it is the case for k-set consensus, a solution to k-set
consensus among Q is trivially a solution to the (k + 1)-set consensus among Q. Thus the
notion of agreement power naturally generalizes to the notion of agreement power among Q:

Definition 4.1. [αQM] The agreement power of a model M among a subset Q ⊆ Π, denoted αQM ,
is the smallest k ∈ {1, . . . , n} such that the task of k-set consensus among Q is solvable.

Agreement Power Under Limited Participation

Looking at the ability to solve k-set consensus among subsets of processes allows differ-
entiating the test-and-set model from the 1-resilient and 2-set consensus models. But the
1-resilient model and the 2-set-consensus models are still not discriminated, their agreement
power among any subset is the same. The 1-resilient and 2-set consensus models mostly differ
when some processes are not yet participating. If a single process took steps, in the 1-resilient
model we can wait for another process, while in the 2-set consensus model we must already
try to produce an output. To grasp this distinction, we are looking at the ability to solve k-set
consensus according to the level of participation.

Task of k-set consensus under P . As for the variation of scope, we consider here a subset
of the system P and modify the k-set consensus task to obtain the task of k-set consensus
under P . In this task, inputs come from a set of values V (|V | > k), outputs are in V , and for
each input vector I and output vector O, (I,O) ∈ ∆ if: (1) the set of non-⊥ values in O is a
subset of values in I; and (2) the set of non-⊥ values in O is of size at most k when the set of
processes with non-⊥ values in I is a subset of P .

Agreement power under P . A solution to the task of k-set consensus under P is also a
solution to the task of (k + 1)-set consensus under P . Thus, the notion of agreement power
also naturally generalizes to the notion of agreement power under P . But additionally, it is
possible that the set of correct processes cannot be a subset of a given participation P . In this
case, the task of k-set consensus under P is solvable for any value of k, in particular for k = 0
as processes can wait for an increase in participation before returning a task output. Formally:

Definition 4.2. [αM |P] The agreement power of a model M under a subset P ⊆ Π, denoted
αM |P , is the smallest k ∈ {0, . . . , n} such that the task of k-set consensus among Q is solvable.

Equivalent formulation. Another way to consider this measure would consist in restraining
the set of runs of M to include only the executions in which the participation is a subset
of P . Let M |P be this restricted model issued from M . We can notice that, with their similar
notations, αM |P is equal to αM |P . Indeed, in M , processes can execute a solution to the
k-set consensus task in M |P while checking the participation periodically: if the participation
exceeds P , then processes can return their input; otherwise, the task solution must produce
an output that can be returned by the processes. Similarly, a solution to the task of k-set
consensus under P executed in M |P solves the task of k-set consensus. Note that when the

53

Chapter 4. Agreement Functions

set of correct processes in M cannot be a subset of P , then M |P possesses no infinite run and
thus any task is solvable, in particular, the 0-set consensus task.

The task-based definition allows us to consider always the same model and different
tasks solvability. It is particularly convenient when used for comparing the relative task
computability of models.

Agreement Functions

The agreement power under various participation levels can be used to differentiate models
such as the 3-process 1-resilient and 2-set consensus models. But it does not discriminate the
3-process test-and-set model and the symmetric adversarial model in which live sets are of
size 1 or 3. Variations on the agreement scope and participation are thus complementary.

Task of k-set consensus among Q and under P . We can combine the restrictions on
scope and participation in a single task. Given a set of processes P,Q ⊆ Π and a natural
integer k, the task of k-set-consensus among Q and under P can be defined as follows: Inputs
come from a set of values V (|V | > k), outputs are in V , and for each input vector I and
each output vector O, (I,O) ∈ ∆ if (1) the set of non-⊥ values in O is a subset of values in I
and (2) the set of non-⊥ values of processes from Q in O, is a subset of non-⊥ values from
processes from Q in O of size at most k when the set of processes with non-⊥ values in I is
a subset of P . Naturally, when P = Π, the task boils down to the task of k-set consensus
among Q. Moreover, when P ⊆ Q, the task boils down to the task of k-set consensus under P .

Agreement function. This generalized family of agreement task is then used to define the
notion of agreement power among Q and under P :

Definition 4.3. [αQM |P] The agreement power of a model M under a subset P ⊆ Π and

among a subset Q ⊆ P , denoted αQM |P , is the smallest k ∈ N such that the task of k-set
consensus among Q and under P is solvable.

This generalized agreement power is used to define what we call the agreement function
of a model. Given a model M , the agreement function of M is a map which returns for all
possible subsets P of Π and all possible subsets Q of Π the agreement power of M among Q
and under P :

Definition 4.4. [αFM] The agreement function of a model M is a map αFM : 2Π × 2Π →
{0, . . . , n} which maps each couple of sets of processes Q,P ⊆ Π to the agreement power of M
among Q and under P , i.e., ∀Q,P ⊆ Π, αFM (Q,P) = αQM |P .

Agreement Functions and Relative Task Computability. Agreement functions can
be seen as a predicate on our variations of the k-set consensus tasks, stating whether they are
solvable or not. Therefore, if a model M solves all tasks solvable by a model M ′ then alphaFM ≤
alphaFM ′ , i.e., ∀Q,P ⊆ Π, αFM (Q,P) ≤ αFM ′(Q,P). Moreover, if two models M and M ′ have
incomparable agreement functions, i.e., alphaFM 6≤ alphaFM ′ and alphaFM ′ 6≤ alphaFM , then their
task computability are also incomparable.

Unfortunately, having alphaFM ≤ alphaFM ′ does not necessarily imply that M solves all the
tasks solvable by M ′. Finding a counter-example or trying to show that agreement functions
precisely capture the relative task computability of models is an intriguing question that we
are not able to answer at this point.

54

4.2. Properties and Classification of Agreement Functions

4.2 Properties and Classification of Agreement Functions

The notion of agreement function is quite elaborate as it considers many variations of k-set
consensus tasks in its definition. We are first going to show that many possible functions do
not correspond to any model. Hence, we can make some additional restrictions on the profile of
agreement functions. After looking at the inherent constraints, we are going to look at natural
restrictions which do not apply to all models but can be used to define classes of agreement
functions. Relations between these classes are then studied, leading to a classification of
agreement functions, and hence, of models with such agreement functions.

Inherent Restrictions of Agreement Functions Profiles

The ability to solve some level of k-set consensus task among Q and under P is very often
related to the ability to solve k′-set consensus among Q′ and under P ′ when Q,Q′ and P, P ′

are similar to each other. In this section, we provide some constraints about the possible
agreement powers that a model may have.

On the agreement power among related subsets. The question here is whether a
solution to the task of k-set consensus among Q implies restrictions on the solvability of
k′-set consensus tasks among Q′. A trivial limitation comes from the fact that we can let all
processes in Q′ decide their input to solve |Q′|-set consensus among Q′. We can improve this
solution if there are more than k processes in Q∩Q′ by letting all processes in Q∩Q′ execute
the solution to k-set consensus among Q and let the rest decide as before on their input. Thus
we obtain the following constraint:

∀Q,Q′, P ⊆ Π, αQ
′

M ≤ max(|Q′|, αQM + |Q′ \Q|).
This solution can be further generalized to any set of sets S. Indeed, processes in each

subset Si can use a solution to k-set consensus among Si while processes in none of the sets
return their input. It results in the following constraint:

∀Q ⊆ Π, ∀S ∈ 2Π : αQM ≤
(

ΣQi∈Sα
Qi
M

)
− |Q \ (∪Qi∈SQi)|.

Defining lower bounds on the possible agreement power among Q is difficult. For example,
consider the wake-up adversarial model in which any set of processes may participate as long
as it includes some process p1. For any set Q which does not include p1, one can show that
the agreement power among Q is equal to |Q| as for them it can be reduced to the wait-free
model. But for any set Q which includes p1, the agreement power among Q is equal to 1
since processes can all select to output p1 input value. In this example, the agreement power
among Q when p1 ∈ Q is not related to smaller sets such as Q \ {q}.

On related participation levels. A trivial solution to the task of |P |-set consensus under P
consists in letting all processes from P return their task input. Moreover, given a solution to
k-set consensus under P , we can derive a solution to (k + |P ′ \ P |)-set consensus under P ′.
Indeed, processes in P can apply the solution to k-set consensus under P until it obtains a
task output or until it observes a process from P ′ \P . Any output provided by the solution to
k-set consensus under P and any input value from a process in P ′ \ P may be returned to
solve (k + |P ′ \ P |)-set consensus under P ′.

55

Chapter 4. Agreement Functions

This time a trivial lower bound can also be derived. Indeed, a solution to the task of k-set
consensus under P is a solution under P ′ when P ′ ⊆ P . Thus ∀P ⊆ P ′ ⊆ Π : αM |P ≥ αM |P ′ .
The following property summarizes all these restrictions:

∀P, P ′ ⊆ Π, αM |P∩P ′ ≤ αM |P ≤ max(|P |, αM |P ′ + |P ′ \ P |).

In particular for a non-empty set of processes P and any process p from P , we obtain that
αM |P\{p} ≤ αM |P ≤ min(|P |, αM |P\{p}+1). Thus we have either ∀p ∈ P, αM |P\{p} = αM |P−1
or αM |P = max{αM |P\{p}, p ∈ P}.

General restrictions. Many possible functions of the type 2Π × 2Π → {0, . . . , n} are not
the agreement function of any existing model. We can first observe that the task of k-set
consensus among Q and under P is equal to the task of k-set consensus among Q ∩ P and
under P .

Moreover, we can transpose the restrictions inherited from the agreement power among
subsets or under limited participation. In doing so, we can notice that when extending a
solution for P and Q to P ′ and Q′, processes either return using the solution for P and Q or
the input value from a process from P ′ \P or Q′ \Q. Hence, we obtain the following property:

∀P, P ′, Q,Q′ ⊆ Π, αQM |P∩P ′ ≤ α
Q
M |P = αQ∩PM |P ≤ min(|Q ∩ P |, αQ′M |P ′ + |(Q \Q′) ∪ (P \ P ′)|).

Note that as before, we can replace Q′ by a set of process sets S by replacing αQ
′

M |P ′ by
the sum of all agreement powers among elements of S and under P ′ and by replacing Q \Q′
by the set of processes from Q which are not in any element of S.

These restrictions are not necessarily exhaustive. Hence, any agreement function satisfying
these conditions does not necessarily correspond to a model. Still, we believe that agreement
functions satisfying these conditions are likely to match some shared memory model.

Classes of Agreement Functions

We can find additional restrictions which are satisfied only for a limited number of models.
It allows us to define sub-classes of agreement functions and indirectly of models.

Symmetry. Agreement functions consider the agreement power of models among any subset
and under any participation. But in many models, the behavior of processes does not depend
on their identifier. In such models, the agreement power among Q and under P should not
rely on the composition of P and Q but only on their size |P | and |Q|. If this is the case, then
we say that the agreement function is symmetric:

Property 4.1. [Symmetry] We say that the agreement function of a model M , αFM , is
symmetric if, for all P, P ′, Q,Q′ ⊆ Π such that |P | = |P ′|, |Q| = |Q′| and |P ∩Q| = |P ′ ∩Q′|
we have αFM (Q,P) = αFM (Q′, P ′).

Locality. An agreement function is local if it depends exclusively on the scope of the tasks.
Of course, the agreement power among Q and under P may not always be equal to the
agreement power among Q if P does not include all processes in Q. Thus, the natural
definition consists in requiring the agreement power among Q and under P to be equal to the
agreement power among Q ∩ P :

56

4.2. Properties and Classification of Agreement Functions

Definition 4.5. [Locality] We say that the agreement function of a model M , αFM , is local if,

for all P,Q ⊆ Π we have αFM (Q,P) = αQ∩PM .

Fairness. The natural counterpart to locality is agreement functions depending exclusively
on the participation. We say that such agreement functions are fair. The agreement power
among Q and under P is always smaller or equal to |Q ∩ P |. Therefore, for a fair agreement
function, the agreement power among Q and under P should be equal to the agreement power
under P when greater than |Q ∩ P |:
Definition 4.6. [Fairness] We say that the agreement function of a model M , αFM , is fair if,
for all P,Q ⊆ Π we have αFM (Q,P) = min(|P ∩Q|, αM |P).

Regularity. As we discussed previously, the agreement power among Q is not necessarily
smaller than the agreement power among Q′ when Q′ is a superset of Q. Such a property
seems natural for many models, and thus we call an agreement function with such a property
a regular agreement function:

Definition 4.7. [Regularity] We say that the agreement function of a model M , αFM , is regular
if, for all P,Q,Q′ ⊆ Π we have αFM (Q,P) ≥ αFM (Q′ ∩Q,P).

Plainness. We started initially by considering only the agreement power of a model without
looking at the variation on scope or participation. If an agreement function unaffected by such
variations, we say that it is plain. Thus except when Q ∩ P contains less than αM processes,
the agreement power among Q and under P should be equal to αM :

Definition 4.8. [Plainness] We say that the agreement function of a model M , αFM , is plain
if, for all P,Q ⊆ Π we have αFM (Q,P) = min(|Q ∩ P |, αM).

This class is obviously quite small. The agreement power of a model is necessarily between 1
and n. Therefore, we say that a model is k-plain if its agreement function is plain and its
agreement power is equal to k.

Comparison of Agreement Functions Classes

Let us now compare these classes of agreement functions. Let us start by showing that
plain agreement functions correspond exactly to those which are both fair and local.

Property 4.2. An agreement function is plain if and only if it is both local and fair.

Proof. Consider a model M with an agreement function which is both fair and local. Thus for
all P,Q ⊆ Π, we have αFM (Q,P) = αQ∩PM = min(|P ∩Q|, αM |P). Assume that αM |P ≥ |P ∩Q|,
in this case we have αQ∩PM = αM |P . Thus αFM (Q ∩ P,Π) = αFM (P, P). By taking P = Π,
we obtain that αFM (Q,Π) = αFM (Π,Π), the agreement power of M . Hence αFM (Q,P) =
min(|P ∩Q|, αM). Therefore an agreement function which is both fair and local is plain.

The reverse direction is even more trivial as if ∀Q,P ⊆ Π : αFM (Q,P) = min(|Q ∩ P |, αM),

then αQ∩PM = min(|(Q ∩ P) ∩ Π|, αM) and hence is equal to αFM (Q,P). Likewise, we have
αM |P = min(|P |, αM) hence αFM (Q,P) = min(|Q ∩ P |, αM) = min(|Q ∩ P |, αM |P).

A simple observation can be made that, moreover, a plain agreement function is by
definition symmetric:

57

Chapter 4. Agreement Functions

Local Fair
Plain

Agreement Functions

Regular

Symmetric

Figure 4.1 – Relations between agreement function properties.

Property 4.3. A plain agrement function is symmetric.

Let us now show that an agreement function that is either local or fair is also regular.

Property 4.4. A fair agreement function is regular.

Proof. Consider a model M with a fair agreement function. By its definition we have that
αFM (Q′ ∩ Q,P) = min(|P ∩ Q ∩ Q′|, αM |P) and αFM (Q,P) = min(|P ∩ Q|, αM |P). But since
we have |P ∩Q ∩Q′| ≤ |P ∩Q|, we obtain that αFM (Q,P) ≥ αFM (Q′ ∩Q,P).

Property 4.5. A local agreement function is regular.

Proof. Consider a model M with a local agreement function αFM . By definition we have

that ∀P,Q ⊆ Π, αFM (Q,P) = αQ∩PM . In particular αFM (Q,Q) = αQM , but it is also equal
to αFM (Q,Q) = αM |Q and hence we obtain that αFM (Q,P) = αM |Q∩P . But ∀Q,Q′ ⊆ Π,
αM |Q ≥ αM |Q∩Q′ . Hence, αFM (Q,P) = αM |Q∩P ≥ αM |P∩Q∩Q′ = αFM (P ∩Q ∩Q′, P ∩Q ∩Q′)
which is equal to αP∩Q∩PM since M is local, and hence, is equal to αFM (Q′ ∩Q,P).

These relations between classes of agreement functions are depicted in Figure 4.1. Counter-
examples required to show the completeness of Figure 4.1 will be summarized in Section 4.5.

4.3 Fairness through Active Resilience

In this section we are going to investigate the relation between fair agreement functions
and active-resilient models. We show that any fair agreement function corresponding to a
model is the agreement function of an active resilient model. We call this active resilient
model, generalizing the k-active-resilient model, the α-model. Moreover, we show that any
suffix-closed model or any wait-free model enhanced with shared objects which has a smaller
or equal agreement function can solve any task solvable in the α-model.

Let us first formally define the α-model:

Definition 4.9 (α-model). Given a fair agreement function corresponding to a model, α, the
α-model is the set of runs in which, the participating set P satisfies: (1) α(P, P) ≥ 1; and,
(2) at most α(P, P)− 1 participating processes are faulty, i.e., take only finitely many steps.

58

4.3. Fairness through Active Resilience

In an α-model, the number of possible failures adapts to the participation of the run.
But distinctively from the k-active-resilient models, the participation cannot be arbitrary,
i.e., it must be such that α(P, P) ≥ 1. Still, the k-active-resilient models are specific α-
models corresponding to plain agreement functions. Namely, the (k + 1)-active-resilient model
corresponds to the α-model associated with the k-plain agreement function.

Agreement Function of the α-Model

The α-model is defined by using an agreement function α. Let us now check that for any
P,Q ⊆ Π, the α-model does indeed solve the α(Q,P)-set-consensus task among Q and under
P .

Theorem 4.1. For all P,Q ⊆ Π, the task of α(Q,P)-set-consensus task among Q and under
P is solvable in the α-model.

Proof. Let us first note that as α is fair, we have that α(Q,P) = min(|P ∩ Q|, α(P, P)). If
α(Q,P) = |P ∩ Q|, then the task is trivially solvable by letting processes return their own
input. Therefore, let us consider any subsets P and Q of Π such that α(Q,P) = α(P, P).
First assume that α(P, P) = 0, hence, we can let processes wait to observe a participation that
is not a subset of P and then return their own input as a run is valid only if the participation
as an associated agreement power greater than 1.

Let us now assume that α(P, P) ≥ 1. Processes in Π \Q can simply return their own input
values. For processes in Q, they submit successively their input value to α(P, P) safe-agreement
instances. If a process obtains a non-⊥ output, then it write it to the shared memory and
returns it. If a process obtains ⊥ from an instance, it moves to the next, and if all were
accessed then it waits to see a shared output and returns it or to observe a participation not
including P and return its own input.

It is trivial to see that at most α(P, P) distinct outputs can be returned as safe-agreement
ensures that a single non-⊥ value can be returned. Assume now that no correct process obtains
a non-⊥ output from any of the α(P, P) safe-agreement instances and that the participation
remains a subset of P , i.e., the only condition preventing termination. It implies that in
all safe-agreement instance, a proccess accessing it crashed before sharing its non-⊥ output.
Thus that there are at least α(P, P) crashed process — A contradiction with a participation
included in P .

Task Computability

The following result is instrumental in our characterizations of fair models:

Theorem 4.2. For any task T solvable in an α-model, T is solvable in any read-write shared
memory model which solves, for all P,Q ∈ Π, the task of α(Q,P)-set-consensus among Q and
under P .

Proof. Let us use the solutions to the tasks of α(Q,P)-set-consensus among Q and under
P in an agreement-based simulation in which the selection function selects to simulate the
α(Q,P) least advanced processes. By construction such a simulation ensures that enough
processes are selected for simulation. The participation in the simulated run must be such
that its associated agreement power is not equal to 0. Moreover, there are at most α(Q,P)
participating processes in the simulated run that takes only finitely many steps, hence the

59

Chapter 4. Agreement Functions

Superset-closed Symmetrict-resilient

Adversaries

(k-OF)(WF)

Fair Adversaries

Figure 4.2 – Relations between agreement function properties.

simulated run is a valid run of the α-model. Therefore this simulation can be used to solve
any task solvable in the α-model.

Using Theorem 4.2, we can derive that:

Corollary 4.1. Let M be any model and T be any task that is solvable in the αFM -model.
Then M solves T .

4.4 Agreement Functions for Adversaries

Let A|P,Q = {S ∈ A, S ⊆ P ∧ S ∩ Q 6= ∅}, then the agreement of an adversary can be
computed as follows:

Theorem 4.3. The agreement function of adversary A is αA(Q,P) = setcon(A|P,Q).

Proof. An algorithm AP that solves αA(Q,P)-set-consensus among Q and under P , is a
straightforward generalization of the result of [GK10]. It is shown in [GK10] that setcon(A)-
set consensus is the best set-consensus solvable in A. But if we restrict the runs to assume
that the processes in Π \ P do not take a single step, then the set of possible live sets reduces
to A|P . Moreover, if we consider that only processes in Q must output, then the set of possible
live sets reduces to A|P,Q

It is immediate from Theorem 4.3 that A ⊆ A′ implies setcon(A) ≤ setcon(A′).

Fair adversaries We propose a class of adversaries which encompasses both classical
classes of super-set closed and symmetric adversaries. Informally, an adversary is fair if its
set consensus power does not change if only a subset of the processes are participating in an
agreement protocol.

More precisely, consider A-compliant runs with participating set P and assume that
processes in Q ⊆ P want to reach agreement among themselves: only these processes propose
inputs and are expected to produce outputs. We can only guarantee outputs to processes
in Q when the set of correct processes include some process in Q, i.e., when the current live
set intersect with Q. Thus, the best level of set consensus reachable by Q is defined the set
consensus power of adversary A|P,Q = {S ∈ A|P , S ∩Q 6= ∅}, unless |Q| < setcon(A|P).

60

4.4. Agreement Functions for Adversaries

Definition 4.10. [Fair adversary] An adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P)).

Property 4.6.
setcon(A|P,Q) ≤ min(|Q|, setcon(A|P))

Proof. For any P ⊆ Π and Q ⊆ P , A|P,Q = {S ∈ A|P , S ∩ Q 6= ∅} is a subset of A|P and,
thus, setcon(A|P,Q) ≤ setcon(A|P). Moreover, setcon(A|P,Q) ≤ |Q|, as |Q|-set consensus can
be solved in {S ∈ A|P , S ∩ Q 6= ∅} as follows: every process waits until some process in Q
writes its input and decides on it.

Theorem 4.4. Any superset-closed adversary is fair.

Proof. Suppose that there exists a superset-closed adversary A that is not fair , i.e., by
Property 4.6, ∃P ⊆ Π, ∃Q ⊆ P, setcon({S ∈ A|P , S ∩ Q 6= ∅}) < min(|Q|, setcon(A|P)).
Clearly A|P and A|P,Q are also superset-closed and, thus, setcon(A|P) = csize(A|P) and
setcon(A|P,Q) = csize(A|P,Q).

Since setcon(A|P,Q) < |Q|, a minimal hitting set H ′ of A|P,Q is such that |H ′| < |Q|, and
therefore there exists a process q ∈ Q, q 6∈ H ′. Also, since setcon(A|P,Q) < setcon(A|P),
H ′ is not a hitting set of A|P . Thus, there exists S ∈ A|P such that S ∩ H ′ = ∅. Hence,
(S ∪ {q}) ∩H ′ = ∅. Since A|P is superset closed, we have S ∪ {q} ∈ A|P and, since q ∈ Q,
S ∪ {q} ∈ A|P,Q. But (S ∪ {q}) ∩ H ′ = ∅—a contradiction with H ′ being a hitting set of
A|P,Q.

Theorem 4.5. Any symmetric adversary is fair.

Proof. The set consensus power of a generic adversary A is defined recursively through finding
S ∈ A and p ∈ S which max-minimize the set consensus power of A|S\{p}. Let us recall that
if A ⊆ A′ then setcon(A) ≤ setcon(A′). Therefore, S can always be selected to be locally
maximal, i.e., such that there is no live set in S′ ∈ A with S (S′.

Suppose by contradiction that A is symmetric but not fair , i.e., by Property 4.6, for some
P ⊆ Π and Q ⊆ P , setcon(A|P,Q) < min(|Q|, setcon(A|P)). We show that if the property
holds for P and Q such that A|P,Q 6= ∅ then it also holds for some P ′ (P and Q′ ⊆ Q.

First, we observe that |Q| > 1, otherwise setcon(A|P,Q) = 0 and, thus, we have A|P,Q = ∅.
Since A is symmetric, A|P is also symmetric. Thus, for every S ∈ A|P and p ∈ S such

that setcon(A|P) = 1 + setcon(A|S\{p}), any S′ such that |S′| = |S| and for any p′ ∈ S′, we
also have setcon(A|P) = 1 + setcon(A|S′\{p′}). Since we can always choose S to be a maximal
set, we derive that the equality holds for every maximal set S in A|P and every p ∈ S.

Let us recall that, by the definition of setcon, there exists L ∈ A|P,Q and a ∈ L such that
setcon(A|P,Q) = 1 + setcon((A|P,Q)|L\{a}) = setcon(A|L,Q). Since A|P is symmetric, for all
L′, |L′| = |L| and L∩Q ⊆ L′ ∩Q, we have setcon(A|L′,Q) ≥ setcon(A|L,Q). Indeed, modulo a
permutation of process identifiers, A|L′,Q contains all the live sets of A|L,Q plus live sets in
A|L′ that overlap with (L′∩Q)\(L∩Q). Since setcon(A|L,Q) = setcon(A|P,Q) and L′ ∈ A|P,Q,
we have setcon(A|L′,Q) = setcon(A|L,Q). Therefore, for any a ∈ L′, setcon(A|L′\{a},Q) <
setcon(A|L′\{a}).

In particular, for L′ with L′ ∩ Q ∈ {L′, Q}, setcon(A|L′,Q) = setcon(A|L,Q). Note that
L′ * Q, otherwise, A|L′,Q = A|L′ and, thus, setcon(A|L′,Q) = setcon(A|L′) = setcon(A|P),
contradicting our assumption.

61

Chapter 4. Agreement Functions

Thus, let us assume that Q (L′. Note that Q′ = Q \ {a} (L′ \ {a}, and since |Q| ≥ 2,
Q′ 6= ∅, we have setcon(A|P ′,Q′) < setcon(A|P ′) for P ′ = L′ \ {a} and Q′ ⊆ P ′, Q′ 6= ∅.
Furthermore, since setcon(A|P,Q) < |Q|, we have setcon(A|P ′,Q′) < |Q′|.

By applying this argument inductively, we end up with a live set P and Q ⊆ P such that
setcon(A|P) ≥ 1, Q 6= ∅ and setcon(A|P,Q) = 0. By the definition of setcon, A|P 6= ∅ and
A|P,Q = ∅. But A|P is symmetric and Q 6= ∅, so for every S ∈ A|P , there exists S′ ∈ A|P such
that |S| = |S′| and S′ ∩Q 6= ∅, i.e., A|P,Q 6= ∅—a contradiction.

Note that not all adversaries are fair. Let us consider, for example, the adversary A =
{{p1}, {p2, p3}, {p1, p2, p3}} is not fair. On the other hand, not all fair adversaries are either
super-set closed or symmetric. For example, the adversary A = 2{p1,p2,p3} \ {p1, p2} is fair but
is neither symmetric not super-set closed. Understanding what makes an adversary fair is an
interesting challenge.

Task computability in adversarial models

In this part, we show that the task computability of a adversarial A-model is fully grasped
by its associated agreement function αFA.

For this, we use the agreement-based simulation again. The goal is to show that the task
computability of an adversary is grasped by its agreement function. This is done by simulation
an adversary using its ability to solve k-set-consensus tasks among some Q and under some P .
The simulation is not too much complicated, it consists on simulating a live-set that contains
a non-terminated process if any. The structure of the adversary and its link with the setcon
function is the main tool behind the simulation.

In the simulation, up to αFA(Q,P) simulators execute the given algorithm solving T , where
Q is the number of non-terminated processes and P is the participating set of the current run.
Note that the simulated processes correspond to the simulators in this simulation. We adapt
the currently simulated live set to include processes not yet provided with a task output, and
ensure that the chosen live set is simulated sufficiently long until some active processes are
provided with outputs of T . The simulation terminates as soon as all correct processes are
provided with outputs.

The simulation is defined by the selectOperationList function that must select processes
to simulate. It consists of a recursive selection of first a live set and then a process in it.

The selection goes as follows. The first live set to be selected is a live set S1 with non-
terminated processes with the highest associated agreement power. Then, the least advanced
process p1 is selected to be simulated for the first choice. This pair (S1, p1) then drives the
choice for other selected processes to simulate. It is done recursively in the same way by
selecting a live set with non-terminated processes in A|S1\{p1} the set of live sets that are
subsets of S1 but which does not include p1. Hence, we can select a live set S2 with the highest
associated agreeement power and its least advance process in the simulation p2. We repeat
this process iteratively until the set of live sets in the restriction becomes empty.

Correctness of the simulation. The fact that the selectOperationList returns suffi-
ciently many processes to simulate directly follows from the definition of the setcon function.
Hence, the simulation ensures that infinitely many selected processes makes progress in the
simulation as long as there is a non-terminated simulator. Let us show that this corresponds
to a live set including a non-terminated simulated process.

62

4.5. Shared-Memory Models and Agreement Functions

For this, consider the simulation after all simulated process terminated in the given run.
This implies that the number of selected live sets becomes stable and all include a non-
terminated process. Condider the highest level for which the simulation makes progress. As
the selection of live sets is deterinistic, the previous level selected the same process each time
(as eventually the selected process never makes progress). This implies that the selected live
set for which the selected process makes progress is the stable. The least advanced process in
this live set is selected, hence, all processes in this live set must proceed to infinitely many
steps. Higher levels do not make any progress and lower levels simulates processes in this live
set, hence, the set of live processes is exactly equal to this live set. This live set include a
non-terminated process by construction and therefore we reach a contradiction as all process
in this live set must terminate.

4.5 Shared-Memory Models and Agreement Functions

Adversaries are regular.

Property 4.7. The agreement function of an adversary is regular.

Proof. Consider sets of processes P and Q, and assume that the participating set is P ∪Q.
Now consider the following protocol: (1) processes in P solve an setcon(A|P) set-consensus
algorithm by assuming that processes in Q \ (P ∩Q) have failed; (2) processes in Q \ (P ∩Q)
return directly their proposal; (3) processes also return any value decided by some process. A
process terminate as a process in Q is correct and some process returns according to (2), or
else every process in Q are faulty and thus (1) terminate. Moreover, it is easy to see that at
most setcon(A|P) distinct values can be returned by (1) and at most |Q \ (P ∩Q)| values can
be returned by (2). Thus we can derive that αA(P ∪Q) ≤ αA(P) + |Q \ (P ∩Q)|.

Regular vs. other classes. Symmetric models on the other hand are not necessarily
regular. Indeed, consider the 3-process model in which the first process to participate proceeds
to at least 2 update and snapshot operations before any other process takes steps. Thus, all
processes can identify this first process. In this model, it is easy to see that as long as the
participation P is distinct from Π, then processes can solve the 1-set consensus task among Q
and P , and cannot solve better if P ∩Q 6= ∅. The agreement power among a single process
under Π is 1, such as among Π, as processes can return the proposal from the first process
to participate. But if Q is of size 2, then only 2-set consensus among Q and under Π can be
solved. Indeed, the process in Π \Q might be the first to participate and may crash before
the other two execute an arbitrary 2-process wait-free run. But the 2-process wait-free model
cannot solve 1-set consensus. One can check that this model is indeed symmetric but is not
regular, since for a participation equal to Π, the argeement power among 3 processes is smaller
than the agreement power among 2.

Hence these relations can be summarized as follows:

Property 4.8. A model which is fair, local is a regular model. But not all symmetric models
are regular.

63

Chapter 4. Agreement Functions

(Active-Res)

Fair Adv
Adv(k-OF)

Agreement Functions

Regular

Symmetric

WF

Sym

t-Res SSC
Set-Cons

Collections

Asymmetric

Set-Cons

Collections

Figure 4.3 – Integration of adversary families, active resilience and collection of set-consensus
objects inside a representation of agreement function classes.

64

Chapter 5

Combinatorial Topology

The use of combinatorial topology in distributed computing was first introduced in [BG93a,
HS99,SZ00] to show the impossibility of k-set consensus in a k + 1-process wait-free model.
Since then, the use of topological methods in distributing computing has evolved to the point
where a book detailing the links between the two fields was published [HKR14]. The reader
should refer to this book for more details about distributed computing results and models
derived from combinatorial topology. In this chapter, we give a brief overview of the notions
from combinatorial topology that are used in this thesis and in some related work.

5.1 Simplicial Complexes

A configuration of a distributed system is a collection of processes and object local sates.
But in general, no process is aware of the global state of the system and processes can only
obtain outdated information about other processes states. Hence, a configuration can be
represented as a set of processes local states where processes are only aware of their own state.
But a process may have the same local state in distinct global configurations. The set of
possible configurations of the system is what is called a simplicial complex in combinatorial
topology.

Let us now recall several notions from combinatorial topology. For more detailed coverage
of the topic, please refer to [Spa66,HKR14].

Simplicial complex. A simplicial complex is a set V , together with an inclusion-closed
collection K of finite non-empty subsets of V such that:

1. For any v ∈ V , the one-element set {v} is in K;

2. If σ ∈ K and σ′ ⊆ σ, then σ′ ∈ K.

The elements of V are called vertices, and the elements of K are called simplices. We
usually drop V from the notation and refer to the simplicial complex as K directly. Indeed,
we can extract from K the set of vertices composing it. We denote as Vert(K) the set of
vertices of K. A simplicial complex K is finite if the collection K is finite. For simplicity, we
will assume that our complexes are finite.

The dimension of a simplex σ, denoted dim(σ), is its cardinality minus one, i.e., #(σ)− 1
(the use of |.| will be avoided since it is traditionally used for the geometrical representation of
a simplex). Any subset of a simplex σ is also a simplex and is called a face of σ. We denote

65

Chapter 5. Combinatorial Topology

as faces(σ) the set containing all faces of σ. Given a complex K and a simplex σ ∈ K, σ
is a facet of K, denoted facet(σ,K), if σ is not the face of any strictly larger simplex in K.
Let facets(K) = {σ ∈ K, facet(σ,K)}. The dimension of a complex is equal to the maximal
dimension of the simplices composing it.

A sub-complex of K is a subset of K that is also a simplicial complex. A simplicial complex K
is called pure of dimension n if K has no simplices of dimension > n, and every k-dimensional
simplex of K (for k < n) is a face of an n-dimensional simplex of K. Hence, equivalently, a
simplicial complex K is pure of dimension n if all its facets are of dimension n.

Chromatic complexes. We now turn to the chromatic complexes used in distributed com-
puting. Fix n ≥ 0. The standard n-simplex sn has n+ 1 vertices, in one-to-one correspondence
with n+ 1 colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}.
We view sn as a complex, with its simplices being all possible faces t.

A chromatic complex is a simplicial complex K together with a non-collapsing simplicial
map χ : K → C, C being a set of colors. See the following section for formal definitions
about simplicial maps, but informally, it corresponds to associating colors to any vertex of a
chromatic complex such that all vertices of the same simplex have distinct associated colors.
Note that therefore, K can have dimension at most #(C)− 1. We usually drop χ from the
notation and consider that vertices are couples (v, c) where v is the vertex and c its associated
color. We write χ(K) for the union of χ(v) over all vertices v ∈ Vert(K). Note that if K′ ⊆ K
is a sub-complex of a chromatic complex, it inherits a chromatic structure by restriction. In
particular, the standard n-simplex sn is a chromatic complex, with χ being the identity map.

In our setting, colors correspond by default to processes identifiers. In this case, the set of
colors of a complex is equal to χ(sn). Since most of the time the size of the system is fixed
and known from the context, we use s to denote the standard (#(Π)− 1)-simplex. Note that,
when colors correspond to processes identifiers, we use the map χ to obtain both the color of
a vertex and the process corresponding to the identifier.

5.2 Basic Operations

Let us now recall some additional notions which apply to simplicial complexes.

Maps. Let K and L be simplicial complexes. A simplicial map f : K → L is a function
from K to L such that for any face θ of a simplex σ ∈ K, then f(θ) is a face of f(σ) in L.
A simplicial map is said to be non-collapsing if for any strict face θ of a simplex σ ∈ K, then f(θ)
is a strict face of f(σ). Hence, the image of an m-dimensional simplex through a non-collapsing
map is also an m-dimensional simplex. Let K and L be chromatic complexes. A simplicial
map f : K → L is color-preserving , also called a chromatic map, if for all vertices v ∈ Vert(K),
we have χ(v) = χ(f(v)). Note that a color-preserving map is automatically non-collapsing.

A vertex map g : K → L is a function from Vert(K) to Vert(L). Any simplicial map
induces a vertex map by restricting it to the vertices. For a vertex map to produce a simplicial
map, the union of the image of vertices from a simplex in K must form a simplex in L. When
it is the case, the image of a simplex is just the union of the images of its vertices.

A carrier map Ψ : K → 2L sends simplices to sub-complexes such that a face θ of a
simplex σ ∈ K is sent to a complex Ψ(θ) which is a sub-complex of Ψ(σ). A simplicial map φ
is carried by the carrier map Ψ if φ(σ) ∈ Ψ(σ) for every simplex σ in its domain.

66

5.2. Basic Operations

Standard Construction. The k-skeleton of a complex K is the set of simplices of K of
dimension smaller than or equal to k. Note that the skeleton is also a simplicial complex of
dimension k or of the dimension of K. Moreover, if K is a pure simplicial complex, then its
skeleton is also pure.

The closure of a set of simplices S, denoted Cl(S), is the complex formed by all faces
of simplices in S, i.e.,

⋃
σ∈S faces(σ). Given a complex K, the open star of S ⊆ K in K,

denoted Sto(S,K), is the set of all simplices in K having a simplex from S as a face, i.e.,
{σ ∈ K|faces(σ) ∩ S 6= ∅}. Note that, in general, the open star is not a complex. The closed
star of S ⊆ K in K, denoted Stc(S,K), is simply the closure of the open star of S in K, i.e.,
Cl(Sto(S,K)). The star is used sometimes to refer to the open star and sometimes to refer to the
closed star. Hence, to avoid confusion, we are going to avoid using the notion of a star without
additional precisions. The link of S ⊆ K in K, denoted Lk(S,K), is the difference between the
closed star of S and the open star of the closure of S, i.e., Stc(S,K) \ (Sto(Cl(S),K)).

Given a pure complex K, we also define a new construct that we call the pure complement
of S ⊆ K in K, Pc(S,K). It is the maximal pure sub-complex of K of the same dimension
as K which does not intersect with S, i.e., Pc(S,K) = Cl({σ ∈ facets(K)|faces(σ) ∩ S = ∅}).

Continous representation. We can associate a simplicial complex K with a topological
space |K|, called its geometrical realization. The geometrical realization is defined incrementally:
first, each vertex of K is associated with points in [0, 1]dim(K) such that vertices from the same
simplex are associated with affinely independent positions; then the geometric realization of a
simplex is equal to the convex-hull of its vertices.

In continuous spaces, a homeomorphism is a bijective continuous function with a continuous
inverse between topological spaces. Two spaces are said to be homeomorphic if there exists
a homeomorphism from one space to the other. Note that a k-dimensional simplex is
therefore associated with a k-dimensional closed space homeomorphic to the k-disk. The
k-disk corresponds to the set of points of a k-dimensional space with a distance to a center
point smaller or equal to 1. The k-sphere is the set of points of a k-dimensional space at a
distance of exactly 1 to a center point.

Note that given a simplicial map f : K → L, we can extend it linearly to obtain a
continuous map |f | : |K| → |L|: a point p ∈ |K| is a linear combination of the vertices from K
and its image in |f | is the same linear combination of the images of the vertices.

Connectivity. Using the continuous representation of simplicial complexes, the notion of
path connectivity generalizes to higher dimensions. A simplicial complex K is simply connected
or 0-connected if for any couple of points p, p′ ∈ |K| there exists a path in |K| from p to p′.
Two points correspond to a 0-sphere and a path between the two points correspond to a 1-disk.
Hence, a simplicial complex K is said to be m-connected if any continuous function from
the (m− 1)-sphere to |K| can be extended to a continuous map from the m-disk to |K|.

A related notion which is particularly useful for colored simplices is the notion of link-
connectivity. A complex K is link-connected if the link of any simplex σ ∈ K, Lk(σ,K), is
(dim(K)− 2− dim(σ))-connected. A link-connected complex is necessarily pure. Intuitively, a
pure complex is link-connected if it is locally “thick”.

67

Chapter 5. Combinatorial Topology

{p1, p3}

{p1, p2}

{p1, p2, p3}

{p2, p3}

{p1} {p3}

{p2}

(a) Single iteration: Bar(s).
(b) Second iteration: Bar2(s).

Figure 5.1 – First and second iteration of the 2-dimensionnal barycentric subdivision of s.

5.3 Subdivisions

An important notion in combinatorial topology and more specifically for its application to
distributed computing is the notion of subdivision. A subdivision of a simplicial complex K,
is a simplicial complex Sub(K) such that: (1) the geometrical realization of any simplex
from Sub(K) is included in the geometrical realization of a simplex from K; and (2) the
geometrical realization of a simplex in K is the union of geometric realizations of simplices
of Sub(K). Note that the subdivision of a subdivision of K is by definition of subdivision of K.

The diameter of a simplex σ of dimension k is the smallest diameter of a k-disk embed-
ding |σ|. The mesh of a complex is the maximal diameter of any of its simplices. A subdivision
Sub(K) is said to be mesh-shrinking if the mesh of Sub(K) is strictly smaller than the mesh
of K.

Barycentric subdivision. Every complex K has a barycentric subdivision, denoted Bar(K).
Its vertices are the barycenters of simplices of K. For each set of simplices of K related by
inclusion, the set of associated barycenters forms a simplex. The barycentric subdivision is
very convenient as its definition is straightforward while being mesh-shrinking. Moreover, it
can be applied iteratively on any complex. By applying k times the barycentric subdivision
on a complex K, we obtain the kth barycentric subdivision, Bark(K). Hence, we obtain
a subdivision with an arbitrarily small mesh by just applying the barycentric subdivision
sufficiently many times. But the complexes constructed by the barycentric subdivision are not
chromatic. The first and second iterations of the 2-dimensional barycentric subdivisions are
displayed in Figure 5.1.

Standard chromatic subdivision. Every chromatic complex K has a standard chromatic
subdivision ChrK. Let us first define Chr s for the standard simplex s. The vertices of Chr s
are pairs (i, t), where i ∈ {0, . . . , n} and t is a face of s containing i. We let χ(i, t) = i.
Further, Chr s is characterized by its n-simplices; they are the (n+1)-tuples ((0, t0), . . . , (n, tn))
such that:

(a) For all ti and tj , one is a face of the other;

68

5.3. Subdivisions

Figure 5.2 – Second iteration of the 2-dimensionnal standard chromatic subdivision of s.

(b) If j ∈ ti, then tj ⊆ ti.

The geometric realization of s can be taken to be the set {x = (x0, . . . , xn) ∈ [0, 1]n+1 |∑xi =
1}, where the vertex i corresponding to the point xi with the i coordinate 1 and all other
coordinates 0. Then, we can identify a vertex (i, t) of Chr s with the point

1

2k − 1
xi +

2

2k − 1

(∑
{j∈t|j 6=i}

xj

)
∈ |s| ⊂ Rn+1,

where k is the cardinality of t. The standard chromatic subdivision, Chr s, is illustrated
for a 3-process system in Figure 1.1c from Chapter 1.

Next, given a chromatic complex K, we let ChrK be the subdivision of K obtained by
replacing each simplex in K with its chromatic subdivision. Thus, the vertices of ChrK are
pairs (p, σ), where p is a vertex of K and σ is a simplex of K containing p. If we iterate this
process m times, we obtain the mth chromatic subdivision, ChrmK.

It has been shown formally by Kozlov in [Koz12] that Chr is indeed a subdivision. In
particular, the geometric realization of Chr s, |Chr s|, is homeomorphic to |s|, the geometric
realization of s (i.e., the convex hull of its vertices).

If we iterate this subdivision m times, each time applying Chr to all simplices, we obtain
the mth chromatic subdivision, Chrm. The second iteration of the 2-dimensional standard
chromatic subdivision is depicted in Figure 5.2. Chrm s precisely captures the m-round IIS
model, ISm [BG97,HS99].

Carriers. Given a complex K and a subdivision of it, Sub(K), the carrier of a simplex
σ ∈ Sub(K) in K, carrier(σ,K), is the smallest simplex ρ ∈ K such that the geometric
realization of σ, |σ|, is contained in |ρ|: |σ| ⊆ |ρ|. The carrier of a vertex (p, σ) ∈ Chr s is σ.
In the matching IS task, the carrier corresponds to the snapshot returned by p, i.e., the set of
processes seen by p. The carrier of a simplex ρ ∈ ChrK is just the union (or, due to inclusion,

69

Chapter 5. Combinatorial Topology

the maximum) of the carriers of vertices in ρ. Given a simplex σ ∈ Chr2 s, carrier(σ, s) is
equal to carrier(carrier(σ,Chr s), s). carrier(σ,Chr s) corresponds to the set of all snapshots
seen by processes in χ(σ). Hence, carrier(σ, s) corresponds to the union of all these snapshots.
Intuitively, it results in the set of all processes seen by processes in χ(σ) through the two
successive immediate snapshots instances.

Simplicial approximation and convergence algorithm. A fundamental result in alge-
braic topology is that continuous mappings can be approximated by simplicial maps over a
sufficiently fined-grained subdivision of the topological space. It provides a relation between
simplicial complexes and their geometrical realization that can be very useful. Indeed, while
some issues might be more tractable in the discrete simplicial setting, some are easier to tackle
in the continuous environment. Formally, the simplicial approximation states the following:

Theorem 5.1. [Simplicial approximation] Given two simplicial complexes L and K and a
continuous (carrier preserving) function F from |L| to |K|, then for any mesh-shrinking
subdivision Sub, there exists an ` ∈ N such that there exists a simplicial (carrier preserving)
map from Sub`(L) to K approximating F .

Note that f is approximating F if the continuous extension of f , |f |, maps any point x ∈ |L|
to a point of |K| with the same carrier as F (x) in K.

Using the simplicial approximation theorem, one can construct a continuous map with
some desired properties between geometrical realization and then derive a simplicial map
approximating it while preserving many of the specific requirements. The other direction is
also possible as one can easily produce a continuous map matching a simplicial map by merely
taking its continuous extension |f |.

While the simplicial approximation can be useful in the distributed computing setting, it
presents one major drawback limiting its use: it does not provide color-preserving maps when
used in colored simplicial complexes. In general, providing color-preserving approximations is
unfortunately impossible. But given some additional constraints on the simplicial complexes,
it has been shown that the simplicial approximation can be extended to color-preserving
maps. A distributed algorithm solving this issue was sketched in [BG97] and was recently
formalized and proven by Saraph et al. [SHG18]. It requires that the image of the continuous
function F (|L|) is included in the geometric realization of a pure link-connected sub-complex
of K of the same dimension as L. While this restriction is rather substantial, it allows to extend
the application of the simplicial approximation to relevant cases in distributed computing
such as done in [SHG16].

5.4 Characterization of the Wait-Free Model

The characterization of wait-free task solvability proposed in [HS99] reduces the search of
a task solution to the existence of a simplicial map from a subdivision of the input complex to
the output complex which satisfies the task specification. But subdividing the input complex
can be seen as the ability to solve a task itself, called simplex agreement tasks.

Hence, one direction of the proof of the ACT consists in showing that simplex agreement
tasks are solvable while the other direction consists in showing that any protocol can be
reduced to a subdivision of the initial configuration.

70

5.4. Characterization of the Wait-Free Model

Simplex agreement task. In the simplex agreement task, processes start on vertices
of some complex K forming a simplex σ ∈ K, and they must output vertices of some
subdivision of K, Sub(K), so that outputs constitute a simplex ρ of Sub(K) respecting carrier
inclusion, i.e., carrier(ρ,K) ⊆ σ.

Such tasks are primordial for the proof of the asynchronous computability theorem
(ACT) [HS99]. Indeed, given a simplicial map from a subdivision of the task input complex
solving the task, processes must manage first to solve the simplex agreement task on the
given subdivision to be able to apply the task solution provided by the simplicial map. In the
original version of the ACT, a map could be given for an arbitrary subdivision. But using the
equivalence with the IIS model, it was shown that we could improve the result by considering
only iterations of the standard chromatic subdivision [BG97].

Asychronous computability theorem. Restricting the original Asynchronous Computabil-
ity Theorem (ACT) by considering only iterations of the standard chromatic subdivision yields
in this following formulation of the ACT:

Theorem 5.2. [Asynchronous Computability Theorem (ACT)] A task T = (I,O,∆) is
solvable in the wait-free model if and only if there exists a natural number ` and a carrier and
color preserving simplicial map φ : Chr`(I)→ O carried by ∆ (informally, respecting the task
specification ∆).

Note that ACT implies that solutions to a task are bounded in the sense that given a
task, there must exist a number of iterations after which a solution to the task always exists,
whatever the corresponding execution is. Note that this is not true in general as the length
of the prefix for which a solution exists might be unbounded and depend on the specific
execution. This restriction comes from the compactness of the IIS model, that is, intuitively,
that runs belong to the model if all its finite prefixes satisfy a given property. Then the
bounded solvability of tasks comes from the combination of the compactness of a model with
Köenig’s Lemma. The notion of compactness and its implication with bounded solvability will
be discussed in more details in Chapter 6.

Continuous ACT. It was observed by Herlihy and Shavit in [HS99], that when only specific
tasks, called colorless tasks, are considered for the characterization, ACT can be provided
with a continuous analogue. In a colorless task, processes can adopt input and outputs of
other processes while satisfying the task specification. Hence, a simplicial map providing
a task solution does not have to be color-preserving. Thus, the protocol complex, i.e., the
subdivision, does not have to be chromatic either. It can for example be replaced by the
barycentric subdivision. In turn, this allow to use the simplicial approximation theorem to
replace the existence of a carrier-preserving simplicial map by the existence of a continuous
carrier-preserving function, resulting in the following formulation of ACT:

Theorem 5.3. [Continuous ACT] A colorless task T = (I,O,∆) is wait-free solvable if and
only if there exists continuous map F from |I| to |O| carried by |∆|.

Note that the generalization of the simplicial approximation theorem implies that the
continuous version of the ACT theorem can be generalized to task with a link-connected
output complex.

71

Chapter 5. Combinatorial Topology

Sperner’s lemma and the impossibility of (n − 1)-set agreement. The topological
characterization of wait-free task solvability was introduced first to show the impossibility
of solving the (n− 1)-set agreement task. It was observed that a solution to an agreement
task with the standard simplex as input complex defines a Sperner’s coloring, that is, a map
which associates each vertex to a color from its carrier in s. Moreover, in the task of k-set
consensus, a solution must ensure that in any configuration of the system, at most k value
may be returned, or equivalently, that at most k colors may be used for any simplex of the
protocol complex.

But Sperner’s Lemma states that for any sperner coloring over a subdivision of an m-
simplex, there is an odd number of m-simplices colored with m+ 1 distinct colors. But using
ACT, a solution to an agreement task implies that there exists a Sperner coloring, and thus,
that there is always some execution for which there are as many distinct outputs as there are
processes. Therefore, the task of (n− 1)-set consensus is not solvable in the wait-free model.

72

Chapter 6

Affine Tasks

In this chapter, we provide combinatorial characterization for many shared memory models.
It is the most significant contribution of the thesis, and most of the results presented here were
published in [GHKR16,KRH18]. In Section 6.1, we introduce and study affine tasks, objects
from combinatorial topology used to characterize the task computability of shared-memory
models. In Section 6.2, a first example is given of small affine tasks used to characterize
k-test-and-set models. We continue in Section 6.3, with a characterization of k-obstruction-free
models. In Section 6.4, we generalize the characterization of k-obstruction-free models to all
fair adversarial models, or equivalently, to the active-resilient α-models.

6.1 Preliminaries

Following the proposal by Gafni et al. [GKM14], we use affine tasks to provide model
representations using combinatorial topology. We also define the notion of an affine model.
Using the compactness of affine models, we offer a simple characterization of task solvability
in affine models.

Affine Tasks and Models

We first introduce affine tasks, a generalization of simplex agreement tasks on sub-complexes
of some number of iterations of the standard chromatic subdivision. The notion of an affine
model derived from a given affine task is then formally introduced.

Affine tasks. Let us first recall the definition of a simplex agreement task, given in Chapter 5.
A simplex agreement task is defined by a (possibly chromatic) subdivision Sub. In the simplex
agreement task corresponding to Sub, the input complex is the standard n-simplex sn, and the
output complex is the corresponding subdivision of sn, i.e., Sub(sn). The task specification is
then the carrier map associated with the subdivision, that is, a face t ∈ sn must be mapped
on simplices in the subdivision of the face, i.e., Sub(t). When the subdivision is chromatic,
the map must additionally be color-preserving.

An affine task is a generalization of the simplex agreement task, where the output complex
is a pure non-empty sub-complex of some finite number of iterations of the standard chromatic
subdivision, Chr` s. Formally, let L be a pure non-empty sub-complex of Chr` sn of dimension n
for some ` ∈ N. The affine task associated to L is then defined as (sn,L,∆), where, for every

73

Chapter 6. Affine Tasks

(a) Single iteration of the affine task. (b) Two iterations of the affine task.

Figure 6.1 – A 3-processes affine task including the “interior” simplices of Chr2 s2.

face σ ⊆ sn, ∆(σ) = L ∩ Chr`(σ). Hence, processes start on vertices of their color in sn and
must eventually output vertices of L of their color such that the set of outputs forms a simplex
in L with a carrier equal to the set of observed processes. Note that L∩Chr`(t) can be empty,
in which case processes are not allowed to output views containing only the inputs from
processes in χ(t). Intuitively, this is used to guarantee that the model can provide sufficiently
large participation to be able to solve the affine task.

Note that, since an affine task is characterized by its output complex, with a slight abuse
of notation, we use L for both the affine task (s,L,∆) and its output complex.

An example of an affine task, defined as a sub-complex of Chr2 s2, is depicted in Figure 6.1a
for a 3-processes system. Facets of the output complex are displayed in blue on top of the
edges of the two iterations of the standard chromatic subdivision.

Affine model. It can be noted that an affine task can also be seen as an operator on any
pure simplicial complexes of the same dimension. Indeed, given a pure simplicial complex K, we
can construct the simplicial complex L(K) where each facet of K is replaced by an occurrence
of L. In particular, since the operation maintains purity, we can iterate this operation by
recursively replacing simplices by an occurrence of the affine task.

By running m iterations of this operation on s, we obtain Lm(s), a sub-complex of Chr`m s.
The second iteration of the 3-processes affine task of Figure 6.1a is given in Figure 6.1b. Since
the affine task is a subset of the second iteration of Chr, two iterations thus form an affine
task which is a subset of Chr4 s2. The affine model L∗ corresponding to the affine task L
is obtained by iterating infinitely often the affine task. The mth iteration of an affine task
corresponds to a subset of IS `m runs (as each of the m iterations includes ` IS rounds). Hence
the affine model L∗ corresponds to the set of infinite runs of the IIS model where every prefix
restricted to a multiple of ` IS rounds belongs to the subset of IS `m runs associated with Lm.

Note that, by construction, affine models are compact. Indeed, they are defined through a
“safety” property on the set of IIS runs: if all prefixes of an IIS run satisfy the model conditions
then the infinite run belongs to the model.

74

6.1. Preliminaries

Task Solvability in Affine Models

In an affine model L∗ associated with the affine task L, there are no possible failures.
Hence, when solving a task, all processes must eventually produce an output. By default,
a task T = (I,O,∆) is thus solvable in an affine model L∗ if there exists a protocol such
that: in every run of L∗ in which processes start with an input vector I ∈ I, there is a finite
prefix of the run in which decided values form a vector O ∈ O with only non-⊥ values and
with (I,O) ∈ ∆.

Bounded termination. The compactness of affine models can be used to show a stronger
result: that any protocol solving a task must provide outputs to all processes after a bounded
number of iterations. The primary tool to prove this result is König’s Lemma [Kön26] stating
that infinite trees must either have infinite branching or infinite paths.

Property 6.1. [Bounded termination] A task T = (I,O,∆) is solvable in L∗ if there exists a
protocol and an integer ` ∈ N for which in every prefix of size ` of a run of L∗: if processes
started with an input vector I ∈ I, then decided values form a vector O ∈ O with only non-⊥
values such that (I,O) ∈ ∆.

Proof. Showing that there must exist a bound on the length of prefixes to satisfy the condition
is a simple application of König’s Lemma stating that an infinite tree with finite branching
must contain an infinite path. An affine model can be seen as an infinite tree where the root is
the empty prefix, its children are the prefixes of length 1 of valid runs of the model (simplices
of the affine task), their children are the extensions of length 2 of their prefix which are the
prefixes of valid runs of the model (simplices of the affine task applied to the simplex of the
parent), and we can continue constructing this tree inductively to represent runs of L∗.

When we consider a protocol solving a task, every run must possess a terminated prefix.
Hence we can prune the tree at all minimal terminated prefix. If the pruned tree is finite, then
there exists a bound on the length of prefixes required for the protocol to terminate. Hence,
assume that the pruned tree remains infinite. It implies that it includes an infinite never
terminating path. Thus, there is an infinite run which does not belongs to L∗ while its prefixes
are prefix of valid runs of the model — a contradiction with the compactness of L∗.

Combinatorial characterization. The existence of a bound on the length of the executions
required to be able to produce a task output can be used to provide a more elegant formulation
of task solvability in an affine model L∗. Indeed, let ` be the maximal length of an execution
in L∗ required for the protocol to terminate. Even if processes could terminate earlier in some
executions, nothing prevents us from making processes always execute ` rounds and only then
return an output. The state of processes after these ` rounds correspond to vertices of L`(I)
forming a simplex. Given a state, the protocol must select an output to return, hence, a
protocol is equivalent with a map from L`(I) to O. Moreover, the protocol solves the task
if and only if simplices of L`(I) are mapped to simplices of ∆(I). Hence the existence of a
protocol solving the task equates with the existence of a simplicial (color-preserving) map
carried by ∆. It leads to the following formulation of task solvability in affine models:

Property 6.2. [Affine solvability] A task T = (I,O,∆) is solvable in L∗ if and only if there
exists ` ∈ N and a carrier and color preserving simplicial map φ : L`(I)→ O carried by ∆.

75

Chapter 6. Affine Tasks

Shared Memory Simulation in affine models

Most of the shared-memory models considered in this thesis can be seen as a combination
of a shared memory and other operations such as agreement protocols or access to distributed
objects. In this, simulating such models shares a common issue that is combining a shared
memory simulation with other terminating operations. Simulating a long-lived shared memory
in an affine model is not very complicated in itself. Indeed, solutions proposed for the IIS
model can be applied to any affine model as it is a restriction on the set of IIS runs. The
issue is to deal with interference that other operations may create with the shared memory
simulation.

All processes must terminate. One of the main complexity of the simulation comes
from the combination of the failure-freedom and the iterative structure of the affine models.
A process obtaining small outputs in all iterations, often denominated as a “fast” process,
may never observe the values shared by “slow” processes with larger views. But as there
are no process failures, eventually, all processes must obtain a task output. It requires that
fast processes make progress with the simulation without waiting for slower processes. Slow
processes must thus wait for faster processes to terminate their simulation before being able
to make progress themselves.

To resolve this issue, a terminated fast process must let slower processes know that it will
no longer participate to the simulation and thus that its presence may just be ignored, e.g., it
does not need to be able to read the content of completed write operations. This can be done
by making processes which obtained a task output in the simulation use a particular value ⊥
as input for all further iterations of the affine model. Slower processes are then aware that
processes using ⊥ do not interfere anymore and no longer need to witness their modifications
of the simulated system state. But this particular value ⊥ can only be used by terminated
processes. A process with no pending memory operation, waiting for some other operation to
terminate, cannot use ⊥ at this stage.

Interference on liveness. A shared memory simulation working in an iterated model can
only provide lock-free progress, ensuring that some non-terminated process makes progress.
But processes may be trying to simulate other types of operations. If the shared memory
simulation provides progress to processes without a pending memory operation, then the shared
memory simulation may be blocked. In this setting, either the shared memory simulation
should be improved to guarantee still some progress or the other operations should provide
higher liveness guarantees.

Shared memory is a long-lived abstraction, and all memory operations are dependent on
each other. Moreover, processes can write their complete current state and hence cannot
ignore preceding operations result. Thus a memory operation cannot be initiated early before
other operations terminated. But a fast process cannot let processes that it does not observe
complete new write operations that it may never be able to read. Thus, when fast processes
do not have a pending memory operation, progress cannot be ensured. Hence, all simulations
must at least provide progress to fast processes when all of them participate and possibly even
when a single fast process is performing an operation.

Dealing with waiting processes. A fast process without a memory operation must still
be able to prevent slower processes from making progress with their write operations. It can

76

6.2. Affine Tasks for k-Test-and-Set

be easily integrated into a given simulation algorithm or dealt with externally. For example in
the solution presented in [GR10], processes can increment their write counter at each round
in which they do not have a pending memory operation. This simple trick prevents slower
processes from making progress as long as some “waiting” process is observed. Intuitively,
this does not prevent progress when all fast processes have a pending operation.

For simplicity, we are going to use an even simpler approach that can be used with any
shared memory simulation scheme. A process waiting for another operation can merely re-write
its last written value as long as necessary. This dummy write operation does not affect safety
as the simulated write operation replaces a given value by itself. The liveness is not impacted
when all processes really have a pending memory operation as even if some dummy write
operations may still be ongoing, as soon a process terminates one, it replaces it with the true
pending memory operation. Hence, eventually, a true operation will be completed as infinitely
many operations are completed in a long-lived simulation.

Shared memory simulation properties. The shared memory simulation we use is not
much modified from the ones used for the characterization of wait-freedom using the standard
chromatic subdivision. Let us call this simulation the composable shared memory simulation.
The only difference is that processes keep repeating their previously completed write operations
when another type of operation is being simulated. Since the simulation algorithms are not
modified, the safety of the simulation is guaranteed.

Theorem 6.1. All operations completed by the composable shared memory simulation satisfy
atomic snaphsot properties.

The issue that may arise concerns liveness of the simulation. In itself, the simulation will
keep the liveness property of the underlying simulation. But completed operations may be
repetitions of the same operation over and over. For the liveness property, we rely on the
specific simulation proposed in [GR10]. As long as there is at least one non-terminated process,
eventually a non-terminated process with the smallest view in some iteration will complete
its memory operation. Ensuring that processes do not proceed to dummy write operations
forever is delegated to other operations, but it may use the property that a process performing
write operations infinitely often has the smallest IIS view infinitely often.

Theorem 6.2. As long as there is a non-terminated process, the composable shared memory
simulation eventually provides progress to a non-terminated process with the smallest IIS view
in some round.

6.2 Affine Tasks for k-Test-and-Set

Before looking at large classes of models and showing how they can be characterized using
affine tasks, let us first look at a simple example of the k-test-and-set models. Recall that
in the n-processes k-test-and-set model, defined in Chapter 2, processes have access to a
shared memory and to infinitely many k-test-and-set objects. Processes can access objects
in any order and there are no restrictions on the set of possible runs. Recall also that a
k-test-and-set object or task is accessed by a single input-less operation apply() which must
eventually return 0 or 1 to all correct processes and such that at least 1 and at most k out of
the participating processes return 1.

77

Chapter 6. Affine Tasks

The first step consists in defining an affine task that aims to characterize the k-test-and-
set model. Then we need to show that the corresponding affine model is weaker than the
k-test-and-set model, by showing how to solve the affine task itself. We also need to show
that the affine model is stronger and hence equivalent to the k-test-and-set model. This last
part is slightly more complicated as it consists in simulating the k-test-and-set model running
an arbitrary algorithm solving a task and which must provide outputs to all processes.

Definition of Rk−T&S

The goal is to design an affine task as simple as possible. As we will see, we can do so by
using an affine task which is a subset of one-round the chromatic subdivision.

Test-and-set is well known for its ability to be used to solve perfect renaming [AM97].
Moreover, it provides adaptive solutions where the order of processes ranks is a linearization
of their access to the renaming task. Hence a process obtaining the name j can see all
values shared previously by processes which receive a smaller name i with i < j. In terms of
immediate snapshots, this can be seen as requiring that processes are totally ordered with a
distinct rank j such that all inputs from processes with smaller ranks are observed. It implies
that the process of rank j sees precisely j inputs, its own and those of processes with a strictly
smaller rank. These particular immediate snapshot executions are often denominated as total
order executions as no two process possess the same output.

Generalizing this constraint to k-test-and-set objects is quite natural. It can be seen as
providing processes with a preorder in which a rank may be given to at least 1 and at most
k processes. Similarly, a process can observe the values previously shared by any process
obtaining a smaller or equal rank. In an immediate snapshot, this is equivalent with having at
most k processes sharing the same output. It leads to a definition of k-ordered executions or
simplices: among any set of k + 1 processes at least two have different ranks. Note that the
set of total order and 1-ordered executions are indeed identical.

The definition of the affine task proposed to characterize the k-test-and-set model follows
this restriction that executions should be k-ordered. We call this n-processes affine task
composed of k-ordered simplices Rk−T&S . Formally, Rk−T&S is the set of simplices of the
standard chromatic subdivision such that at most k of its vertices share the same carrier:

Definition 6.1.

Rk−T&S = {σ ∈ Chr(s)|∀σ′ ⊆ σ : (∀v, v′ ∈ σ′, carrier(v) = carrier(v′)) =⇒ |σ′| ≤ k}.

The definition of Rk−T&S clearly defines a subset of simplices of the standard chromatic
subdivision. But this is not enough to be an affine task. Indeed, it must be checked thatRk−T&S

is a pure sub-complex of the same dimension as s:

Property 6.3. Rk−T&S is an affine task.

Proof. The fact that Rk−T&S is a sub-complex of Chr s is trivial. Indeed, the definition is
inclusion-closed. Consider any simplex σ ∈ Rk−T&S and any subset of it σ′ ⊆ σ. Any face
of σ′ is a face of σ and hence satisfies the condition of having at most k vertices sharing the
same carrier.

Showing that Rk−T&S is pure and of the same dimension as s is less obvious. For this, we
need to show that any simplex σ ∈ Rk−T&S is a face of a simplex σ′ ∈ Rk−T&S of dimension

78

6.2. Affine Tasks for k-Test-and-Set

(a) R1−T&S (b) R2−T&S

Figure 6.2 – 3-processes affine tasks R1−T&S and R2−T&S with their facets displayed in blue.

equal to dim(s). Note that by transitivity, it is sufficient to show that any simplex of Rk−T&S

of a strictly smaller dimension is a face of a strictly larger simplex of Rk−T&S .

Consider a simplex σ ∈ Rk−T&S and any color c from Π such that c 6∈ χ(σ) and let v ∈ s
be the vertex of s of color c. Two cases may happen, either c is a color of the carrier of
all vertices in σ, or there is a vertex from σ with the largest carrier t such that c 6∈ χ(t).
In the former case, we can add the vertex (c, {v}) to σ. In the latter case, we can add the
vertex (c, {v} ∪ t) to σ. It is easy to check that the new simplex still verifies the immediacy,
self-inclusion and containment properties. Moreover, the new vertex has by construction a
carrier shared by no vertex in σ, and hence the new simplex belongs to Rk−T&S . Indeed
all vertices v ∈ σ such that χ(v) ∈ χ(t) must have a carrier which is a face of t due to the
immediacy property. Hence, as long as there are missing colors, we can find a larger simplex
including σ as a face which still belongs to Rk−T&S .

The affine tasks corresponding to 3-processes 1-test-and-set and 2-test-and-set models are
depicted in Figure 6.2. The facets of the affine tasks are displayed in blue, and thus, any
boundaries of blue simplices also belong to the affine task.

Solving Rk−T&S with k-Test-and-Set

Solving Rk−T&S using access to shared memory and access to k-test-and-set objects is
not very difficult. It was previously resolved in [MRT06, GRT07] under the name of the
k-participating-set object. The idea consists in using a level-based immediate snapshot
implementation (as the one presented in Algorithm 2.1 from Section 5) with the addition of
k-test-and-set objects to prevent more than k processes from outputting on the same level.

The modification proposed in [MRT06,GRT07] to solve Rk−T&S , consists in modifying
the level-based immediate snapshot exit condition as follows: if the snapshot contains `
values associated with a level `′ ≤ ` then the process accesses the k-test-and-set object with
identifier `; If it obtains true, then it returns with the snapshot consisting of these ` values.
Otherwise, the process resumes its loop as if it saw less than ` values with smaller or equal
levels. The formal description can be found in Algorithm 6.1.

Since the immediate snapshot algorithm is modified, we can no longer rely on the property
which was proved in Lemma 2.1. Here is an adapted version:

79

Chapter 6. Affine Tasks

Algorithm 6.1: Solving Rk−T&S for process pi.

1 Shared Objects: MEM [1 . . . n] ∈ V al × N, initially (⊥,⊥);
2 Init: level = n+ 1, exit = true, value = InputV alue, snap = ∅;

3 Do
4 Do
5 level = level − 1;
6 MEM [i].Update(value, level);
7 snap = MEM.Snapshot();

8 While |{(v, `) ∈ snap, ` ≤ level}| 6= level;
9 exit = k-Test&Set[level];

10 While ¬exit;
11 Return {(v, `) ∈ snap, ` ≤ level};

Lemma 6.1. In an execution of Algorithm 6.1, at most (n− `+ 1) processes can reach the `th

iteration of the inner while loop.

Proof. Let us show this result by induction on the number of iterations m of the inner while
loop. If m = 1, the claim is trivially verified as there are only n processes. Let us assume that
the lemma holds for iteration m, then at most n−m+ 1 processes may reach iteration m of
the while loop. If there is strictly less than n−m+ 1 processes or if a process crashes during
iteration m, then the lemma property holds for iteration m+ 1.

So let us now assume furthermore that exactly n−m+ 1 processes reach iteration m and
complete it without crashing, and consider the process p which takes the last snapshot during
this iteration. So p must see the value shared by all n−m+ 1 processes which participate to
the round. These processes may have updated their value in further rounds, but only with
a smaller associated level. Hence, p sees n− km1 processes with an associated level smaller
than or equal to n−m+ 1. Thus p exits the inner while loop.

If p obtains true as output to the k-test-and-set operation, then it exits the second while
loop and returns from the algorithm. Otherwise, if p obtains false, another process must
have accessed the k-test-and-set and either crashed or obtained true. Therefore p or another
process does not access the next round of the while loop as it crashes or exits at iteration m.
Hence, at most n−m processes access iteration m+ 1.

Theorem 6.3. Algorithm 6.1 solves Rk−T&S.

Proof. First, let us show that Algorithm 6.1 solves the immediate snapshot task. It can be
noticed that the proof of Theorem 2.1 still applies to the modified version of Algorithm 6.1,
only Lemma 2.1 proof is no longer valid, but Lemma 6.1 may be used as a replacement.

As Algorithm 6.1 solves the immediate snapshot task, all left to be shown is that at most k
processes output at the same level, i.e., are provided with the same output set and thus are
associated with vertices sharing the same carrier. It is trivial to see that this is the case.
Indeed, consider a set of processes Q all outputting on the same level `, they all accessed the
same k-test-and-set object (associated with level `) and all obtained true as output. But at
most k processes may obtain true as output from the same k-test-and-set object, hence, Q is
of a size of at most k.

80

6.2. Affine Tasks for k-Test-and-Set

Simulating Test-and-Set and Shared Memory in R∗1−T&S

Simulating k-test-and-set and read-write shared memory in R∗k−T&S is a bit more compli-
cated than solving Rk−T&S in the k-test-and-set model. We first focus on the test-and-set
model and R∗1−T&S . Only after that, we will show how to proceed for the general case.

Using the composable shared memory. For the shared memory operations we use the
composable shared memory simulation presented in Section 6.1. The shared memory simulation
can be combined with other operations, and the global simulation provides liveness as long as
other operations ensure progress to any non-terminated process obtaining the smallest view
infinitely often.

Solving a test-and-set operation in one iteration of R1−T&S is very simple: a process
seeing only itself returns 1 while others return 0. But in detail it is slightly more complicated
as processes may access distinct test-and-set operations, access them in various orders, and
initiate them at different iterations.

Fast termination. Consider a non-terminated process trying to simulate a test-and-set
operation. If this process sees infinitely often only itself as non-terminated processes, it should
eventually terminate. Moreover, it must return 1, at least when it does not see any other
process trying to compete for the same operation. But processes with the smallest view may
change arbitrarily between rounds. Hence if after some iteration a process gathered enough
information to return 1, it must be that other non-terminated processes already know that 0
has to be returned. Otherwise, if a process may still return 1 and sees only itself in following
iterations, then it will also return 1, violating the test-and-set unicity property.

Hence slow processes must fail preemptively when they see a fast process participating
in a test-and-set operation. Indeed, if they start later on their participation, they must still
remember that some other process may have won in preceding rounds. The issue is that as
soon as three processes are seen, a process cannot know if an observed process is the fastest or
only the second one. Hence it is difficult to know if it should wait more or preemptively fail
the test-and-set operation accessed by some process it sees.

Divide and conquer. To simplify the simulation of test-and-set operations and resolve our
issue of identifying the fastest process, we do not solve n-processes test-and-set directly, but
instead, we provide 2-processes test-and-set operations. Since 2-processes test-and-set can be
used to solve n-processes test-and-set by merely using a combination of 2-processes test-and-set
operations: a process accesses 2-processes test-and-set operations iteratively competing with
each other process one by one, if it wins a contest it continues but if it loses one it stops
competing to remaining operations. A process must succeed all its 2-processes test-and-set
operations to win its n-processes test-and-set operation. Indeed, assume that it is not the
case, then each process failed to another process. This forms a loop of failures. But as a
process stops participating as soon as they fail, they cannot win against a process with a
greater identifier than the one they lost to. Hence the loop must be composed of decreasing
identifiers which is absurd. Seeing that at most one process returns 1 is trivial as any two
processes compete with each other. Note that even if processes names are not known initially,
processes can proceed first to a 2n− 1 wait-free renaming before competing with the 2n− 2
possible other names, as if there is no competitor then a process can only win.

81

Chapter 6. Affine Tasks

Solving 2-processes test-and-set operations is much more straightforward. Indeed, a process
knows the only possible competitor. Hence, in a given iteration of R1−T&S , it knows whether
it is the faster one of the two (if it does not see the other process value) or else that the other
process is the fastest. This simple property can be used to solve test-and-set operation and
ensure that fast processes terminate directly without waiting for other processes to participate.

Simulation description. The simulation consists in solving 2-processes test-and-set opera-
tions and simulating shared memory operations. The 2-processes test-and-set operations are
performed by sharing through the affine task inputs, the operation calls to the 2-processes
test-and-set objects. As soon as a process sees a competitor sharing its call to a 2-test-and-set
object, it remembers it failed this operation and must return 0 without taking any step in
simulating it. If the competitor never saw its competitor accessing the operation, then it
shares its call to the operation in iterations of the affine task until either: (1) it does not see its
competitor in some iteration and returns 1; or (2) it recognizes that its competitor terminated
its global simulation and also returns 1; or (3) it sees the competitor accessing the operation
too and in this case returns 0. Seeing that the simulation is safe and live is straightforward:

Theorem 6.4. The n-processes test-and-set model and the affine model R∗1−T&S are equivalent
for task solvability.

Proof. The affine model can be simulated by using iterations of the solution to R1−T&S from
Algorithm 6.1, hence, any task solvable in R∗1−T&S is solvable in the test-and-set model.

For the other direction of the proof, let us show that our simulation of shared memory
and 2-processes test-and-set operation is safe and non-blocking. In a 2-processes test-and-set
operation, processes may only return 1 or 0. Moreover, a process which observes the other
processes participating before returning can only return 0, hence at most one process may
return 1 as the containment property ensure that at least one process see the other one. But
as processes never share the same view, one of the two processes must have a strictly smaller
view and not see the other competitor and hence returns 1. Therefore test-and-set and shared
memory operations (see Theorem 6.1) are thus safe.

The liveness of the combined simulation requires that non-terminated processes obtaining
the smallest view infinitely often must eventually terminate its test-and-set operations (see
Theorem 6.2). But a process terminates its test-and-set operation as soon as it does not
observe its competitor in some iteration, hence, in particular, the process with the smallest
view among non-terminated processes. Thus the combined simulation provides progress to a
non-terminated process. But as processes execute an algorithm solving a task, they terminate
after a finite number of simulated operations. Hence, all processes eventually terminate.

Therefore a task is solvable in the n-processes test-and-set model if and only if it is solvable
in the affine model R∗1−T&S .

Simulating k-Test-and-Set and Shared Memory in R∗k−T&S

Simulating k-test-and-set operations in R∗k−T&S is more complicated. Solving a k-test-
and-set operation when all processes participate in the same iteration is simple: processes
seeing k or less non-terminated processes return 1 while others return 0. But as processes may
access objects in any iteration and any order, even by focusing on k-test-and-set operations
among k + 1 processes, letting slow processes wait to see faster processes participating is no
longer sufficient. Indeed, when k processes participate, they may all see all k + 1 potential

82

6.2. Affine Tasks for k-Test-and-Set

participants. But a process cannot know if other processes are also waiting or saw fewer
processes and returned 1, and so, whether it should return 0 or wait. Instead, we are going to
solve the equivalent operation of k-set consensus among k + 1 processes.

From k-set consensus among k+1 processes to k-test-and-set. Using k-set consensus
among k + 1 processes to k-test-and-set operations among k + 1 processes is rather simple.
Processes can access a k-set consensus operation with their identifier. Then they write their
output to the shared-memory and take a snapshot. If a process sees that some process obtained
its identifier as output, it returns 1, and otherwise, it returns 0. As at most k distinct identifiers
may be returned by the k-set consensus, at most k processes may return 1. Moreover, the
first identifier written to the memory will be observed by all processes and hence the one with
this identifier which will return 1.

Solving n-processes k-test-and-set can then be obtained from k+ 1-processes k-test-and-set
operations. Indeed, as for test-and-set, we can make processes compete against all possible
sets of k + 1 processes in increasing order until they lose to one and return 0 and win to all
and return 1. A process must obtain 1 as processes access the sequence in the same order and
stop participating as soon as they fail to one operation. Moreover, at most k processes may
return 1 as in any set of k+1 processes, one must fail the k-test-and-set operation among them.
Hence, a solution to k-set consensus among k + 1 processes is sufficient to solve k-test-and-set
operations.

Active participation. The advantage of k-set consensus operations compared to k-test-and-
set operations is that processes can participate as soon as they see some process participating.
Indeed, since it a colorless task, processes can adopt inputs from any other process. Hence,
to solve k-set consensus operations among k + 1 processes, processes maintain a decision
estimate for all k-set consensus operations and share them in all iterations of R∗k−T&S . When
a process initiates a new operation for which it has no decision estimate yet, it simply adds a
decision estimate corresponding to its input value. Moreover, when a process sees a process
participating in a new operation, it adopts its decision estimate.

Now, at the end of each iteration of Rk−T&S , processes look at the decision estimate for all
operations. If a process sees all k+ 1 potential participants of an operation, then it replaces its
decision estimate by the decision estimate of the process with the next identifier (going back
to the first to form a loop when there are none higher). For a process to terminate, it must
see that all potential participants share a decision estimate during the same round. When this
happens, a process returns its potentially updated decision estimate as its k-set consensus
output.

Correctness of the simulatation of k-set consensus among k + 1 processes. Let us
first show that simulated operations respect the specification of k-set consensus among k + 1
processes before showing that sufficient progress is also guaranteed to simulated operations.

Lemma 6.2. The simulation safely solves k-set consensus among k + 1 in R∗k−T&S.

Proof. Processes return their decision estimate which is initially set to their input (processes
identifiers) or adopted from other processes decision estimates. Hence validity is satisfied.

Now consider the first iteration of the affine task after which the first process returns with
an output. In this iteration, all processes with the smallest view shared a decision estimate.

83

Chapter 6. Affine Tasks

Hence, all processes adopted a decision estimate at the end of the round. If at the end of the
round there are less than k distinct decision estimates, then the agreement property will be
ensured as the number of distinct decision estimates in later rounds is a subset of this one.

To see that there are at most k distinct decision estimates at the end of this first iteration
in which a process decides, consider the processes which see the k + 1 potential participants.
These processes adopt the decision estimate of the next process (relatively to identifier ranks).
But in Rk−T&S , at most k vertices may share the same carrier. Hence a process seeing all
participants must adopt the decision estimate of a process not seeing all of them. But this
process does not change its decision estimate. Thus, two processes share the same decision
estimate. The number of distinct decision estimate is, therefore, smaller than or equal to k
and hence at most k distinct outputs may be returned.

Lemma 6.3. The simulation of k-set consensus among k + 1 in R∗k−T&S provides progress to
processes having infinitely often the smallest view among non-terminated processes.

Proof. Processes participate in an operation as soon as they see another process participating.
In particular if a process with the smallest view participates in some iteration, all processes
participate in the next iteration. But if all processes observed in some iteration are participating,
then a process returns at the end of the round. Hence, a process with a k-set consensus
operation terminates at most one round after obtaining the smallest view among non-terminated
processes.

Equivalence between k-test-and-set model and R∗k−T&S. Therefore, we can conclude
with the equivalence of the two classes of models considered. Indeed, a simulation of a shared
memory model with access to k-set consensus operations among k + 1 processes can be used
to simulate the k-test-and-set model. Thus, as Algorithm 6.1 can be used to simulate the
affine model R∗k−T&S in the k-test-and-set model, we obtain the following equivalence:

Theorem 6.5. A task is solvable in the n-processes k-test-and-set model if and only if it is
solvable in the affine model R∗k−T&S.

This can lead to the following generalization of the asynchronous computability theorem
for the k-test-and-set models:

Theorem 6.6. A task T = (I,O,∆) is solvable in the k-test-and-set model if and only if
there exists ` ∈ N and a simplicial map δ : (Rk−T&S)`(I)→ O carried by ∆.

6.3 Affine Tasks for k-Obstruction-Free Adversaries

In this section, we show howaffine tasks can capture the class of k-plain models. Recall
that k-plain models correspond to the well-behaved family of k-obstruction-free, (k+ 1)-active-
resilient, k-concurrent, or equivalently, k-set consensus models. We first show why we need to
define an affine task using the second iteration of the standard chromatic subdivision. Then,
we formally introduce the candidate affine task Rk. Lastly, we show its task computability
equivalence, by solving the affine task in the (k + 1)-active-resilient model and by simulating
the k-set consensus model in the affine model. This result was published in [GHKR16] using a
different formulation, here we use a definition that more easily extends to fair models.

84

6.3. Affine Tasks for k-Obstruction-Free Adversaries

One Iteration is not Enough

According to agreement functions classes, plain models appear to be the simplest class of
models. However, it is impossible to characterized their task computability using 1-level affine
tasks. A similar impossibility result was shown for the t-resilient models in [DFRR16], but
proving this result for k-plain models is much simpler.

Strongest solvable 1-level affine task is Rk−T&S. To show the impossibility of charac-
terizing k-plain models using 1-level affine tasks, we are going to show that all 1-level affine
tasks solvable in the k-obstruction-free model include Rk−T&S .

Consider an (n− 1)-dimensional simplex σ ∈ Rk−T&S . Now, consider the m ≤ k processes
with the smallest view in σ. Indeed, at most k processes can have the same view and hence
the smallest one in particular. In the k-obstruction-free model, nothing prevents only these
m processes to take steps and any m-processes execution is valid, i.e., they essentially run
wait-free. Hence, they cannot solve a better simplex agreement task than the m-processes
wait-free model. Therefore, nothing can prevent all processes from outputting the same view
where they see each other. At this point the processes are terminated. We can then take the
next batch of processes with the second smallest view, there is always at most k of them, and
let them run wait-free hence preventing us to avoid allowing them to see each other. This
scheme can then be continued until all processes are provided with outputs and form the
set of outputs σ. Hence any first level affine task solvable in the k-obstruction-free model is
necessarily a superset of Rk−T&S .

R∗k−T&S is weaker than the k-set consensus model. The n-processes k-test-and-set
model is strictly weaker than the k-obstruction-free model when k ≤ n− 2. Hence for all these
models, there is no 1-level affine task grasping their task solvability power.

We can easily show this impossibility explicitly for the case of consensus and R1−T&S . First,
note that the task presents a path between each couple of corners (vertices of s) when n ≥ 3.
Indeed, a process seeing three process outputs cannot distinguish the two executions in which
the order of the first two processes is reversed. Hence, it has the same state in executions in
which either one of these two processes was first and thusassociated with their “corner” vertex
in R1−T&S . Hence, all corners are connected through 1-dimensional paths. When iterated,
each edge of the path can be replaced by the 1-dimensional path between the two corners of the
corresponding colors. Therefore, after any number of iterations, a 1-dimensional path remains
between all corners. But in the consensus task, processes seeing only themselves must output
their input value. Therefore, according to the 1-dimensional case of Sperner’s Lemma, there
exists an edge on these 1-dimensional path connecting corners that must have its associated
vertices colored by the two corners colors. Hence, no algorithm can solve consensus in R1−T&S

when n ≥ 3.

Definition of Rk

Since no 1-level affine task exists in general for plain models, let us define an affine task Rk
as a pure subcomplex of Chr2 s. We will later show that R∗k precisely captures the task
computability of the n-processes k-obstruction-free adversarial model, or equivalently, any
k-plain model.

85

Chapter 6. Affine Tasks

Original solution. In our original solution [GHKR16], the definition of Rk was inspired by
the k-concurrency model where at most k processes might be concurrently active. It leads to
a definition of Rk almost identical to the definition of Rk−T&S , but in Chr2 s. Indeed, if two
processes are not executed concurrently, then the first to run cannot see the other process.
Hence, they see different sets of processes, or equivalently, end up with vertices with distinct
carriers. This is why we first proposed to use the following definition for Rk:

Definition 6.2. [Definition of [GHKR16]]

Rk = {σ ∈ Chr2(s)|∀σ′ ⊆ σ : (∀v, v′ ∈ σ′, carrier(v) = carrier(v′)) =⇒ |σ′| ≤ k}.

The only difference with Rk−T&S is that Chr is replaced by Chr2. While this definition was
shown to be valid and is very appealing, it does generalize well to a broader class of models such
as fair models. The general intuition that may emerge from the original definition [GHKR16]
is that among any subsets, processes can identify at most k “leaders” which are the processes
observed with the smallest IS1 view. It can intuitively be used to solve k-set consensus
operations which can itself be used to simulate the k-set consensus model.

More flexible definition. Our issue with this definition comes from the fact that restrictions
are enforced before any process is participating. If all processes are participating in the k-
obstruction free model, we must prevent all but k of them from making any progress with the
resolution of the affine task until some process terminates. It implies that the “concurrency
level” cannot fluctuate with the system participation. Instead, we desire a more independent
property which makes as little restriction as possible while still allowing us to solve the desired
set-consensus tasks.

For this, we replace the “leader” selection by a view or carrier selection. We want processes
to be able to select at most k distinct carriers. For this, we do not need to make any restriction
on the set of first IS outputs processes that may obtain. We can restrict only their possible
outputs in the second iteration of Chr, based on the set of IS1 view they acquired. Intuitively
if k + 1 processes obtained different IS1 output, then they must be able to select at most k of
them. But no restrictions can be made on an execution where these k + 1 processes do not
execute concurrently, and hence obtain distinct views during the two IS with relative sizes
reflecting the relative execution order. In such execution, a slow process must select a smaller
IS1 view obtained by another process. But picking the smallest IS1 view observed does not
decrease the number of chosen carriers selected when processes have different views in the two
iterations of Chr, but with a reversed inclusion ordering in each. This worst execution case
leads us to the definition of contention simplices that must be avoided in our affine tasks.

Contention simplices. For a vertex v ∈ Chr2 s, let View1(v) and View2(v) be the sets
of processes seen by the process χ(v) in, respectively, the first and the second IS (we call
these View1 and View2). Formally, View2(v) = carrier(v,Chr s) and View1(v) = carrier(v′, s)
with v′ ∈ carrier(v,Chr s) such that χ(v) = χ(v′).

We formalize the intuitive description of contention simplices as follows: In a simplex
δ ∈ Chr2 s, we say that vertices v and v′ are contending if their View1 and View2 are ordered
in the opposite way: View1(v) is a proper subset of View1(v′) and View2(v′) is a proper
subset of View2(v), or vice versa. If every two vertices of δ are contending, then we say that δ
is a 2-contention simplex. Let Cont2 be the set of 2-contention simplices, formally:

86

6.3. Affine Tasks for k-Obstruction-Free Adversaries

(a) Two reversed IS ordered runs: {p2}, {p1}, {p3}
and {p3}, {p1}, {p2}. Any set of processes is con-
tending due to inverted execution orders.

(b) Two ordered runs mixed orders: {p1, p2, p3}
and {p2}, {p3, p1}. The only couple of contending
processes is {p1, p2}.

(a)

(b)

(c) The 2-contention complex shown in red.

Figure 6.3 – Representation, in a 3-processes system, of all 2-contention simplices in Chr2 s
and some detailed IS runs.

Definition 6.3. [Cont2] σ ∈ Chr2 s : ∀v, v′ ∈ σ, v 6= v′ :

((View1(v) (View1(v′)) ∧ (View2(v′) (View2(v)))∨

((View1(v′) (View1(v)) ∧ (View2(v) (View2(v′))).

Cont2 is inclusion-closed: any face of a 2-contention simplex is also in Cont2. Thus, Cont2

is a complex: the 2-contention complex (depicted for a 3-processes system in Figure 6.3c).
Particular executions of two IS rounds are also represented in Figures 6.3a and 6.3b. In these
executions, one can see that a couple of processes is contending if the execution “order” is
strictly reversed in the two IS runs.

Defining Rk. The definition of Rk follows quite directly from the notion of contention
simplices. The affine task should be the maximal pure sub-complex of Chr2(s) which does not
possess any face which is a contention simplex of a too large dimension. It corresponds to the
pure complement operator, defined in Chapter 5, applied to the set of contention simplices of
dimension greater than or equal to k:

Definition 6.4. [Affine task Rk]

Rk = Pc({σ ∈ Cont2|dim(σ) ≥ k},Chr2 s).

The definition of the pure complement ensures by construction that we obtain a pure
sub-complex of Chr2 s if at least one n− 1 dimensional simplex is valid. It can be observed
that the two rounds of simultaneous executions has contending faces of dimension 0, hence
that it belongs to all affine tasks Rk, for any k ≥ 1.

Examples of R1 and R2 for a 3-processes system are shown in Figures 6.4a and 6.4b,
respectively. Obviously, for the unrestricted 3-set consensus case, R3 = Chr2 s.

Solving Rk in the (k − 1)-Active-Resilient Model

Since (k + 1)-active-resilient, k-obstruction-free, k-concurrent and k-set-consensus models
were shown to be all equivalent in Chapter 4, we can use any of them to solve Rk, i.e., to

87

Chapter 6. Affine Tasks

(a) R1 (b) R2

Figure 6.4 – Facets of R1 and R2 in blue on top of the edges, in black, of Chr2 s.

solve the chromatic simplex agreement task on the complex Rk. For convenience, we choose
to solve it in the (k − 1)-active-resilient model. We present here a simple algorithm which
uses any immediate snapshot algorithm as a black box.

Algorithm’s description. In our solution of Rk, presented in Algorithm 6.2, every process
accesses two immediate snapshot objects: FirstIS , to which it proposes its initial state, and
SecondIS , to which it proposes the outcome of FirstIS . Hence, the outcomes of SecondIS form
a simplex in Chr2 s. To ensure that this simplex is in Rk, after finishing FirstIS , processes
wait for their turns to proceed to SecondIS .

In this waiting phase (Line 4), processes simply check a specific condition on the IS
outcomes that they share with each other in registers IS1 [1, . . . , n] and IS2 [1, . . . , n]. Each
process pi periodically checks whether the number of non-terminated processes (IS2 [j] 6= ∅)
which may have a smaller FirstIS view (j ∈ IS1 [i] and IS2 [j] 6= IS1 [i]) is smaller than k.

Algorithm 6.2: Solution to Rk in the n-processes (k + 1)-active-resilient model for
process pi.

1 Shared: Registers IS1 [1], . . . , IS1 [n] ∈ 2Π, initially ∅; IS2 [1], . . . , IS2 [n] ∈ 22Π
,

initially ∅; Immediate Snapshot Objects FirstIS , SecondIS ;

2 Solve Rk():
3 IS1 [i]← FirstIS (InitialState);
4 Wait until |{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| < k;
5 IS2 [i]← SecondIS (IS1 [i]);
6 Return(IS2 [i]);

7 End Solve Rk;

Intuitively, the waiting phase is used to ensure that processes which obtained smaller
views in the first immediate snapshot are prioritized to proceed with their second immediate
snapshot. A process may proceed to its SecondIS as soon as it knows that it has one of the k−1
smallest View1 among non-terminated processes. But processes cannot directly identify such
processes as they may not have shared yet their View1 in IS1 . Still, any such process must

88

6.3. Affine Tasks for k-Obstruction-Free Adversaries

be included in the process own View1 along with processes sharing the same View1. Hence,
if processes with the same View1 are withdrawn we obtain an over-estimation of how many
non-terminated processes have a strictly smaller View1. As soon as this count returns less
than k processes, processes are allowed to exit the wait-phase and proceed to their secondIS .

Proof of correctness. Algorithm 6.2 is quite simple and so is the proof of its correctness
in solving Rk. To do so, let us prove its safety:

Lemma 6.4. The set of values returned by Algorithm 6.2 forms a simplex from Rk.

Proof. First, since two immediate snapshot algorithms are used in a sequence and by using
the output of the first as input of the second, the set of value returned forms a simplex in
Chr2 s. Therefore, all we need to show is that this simplex belongs to Rk and hence that they
do not include a contending face of dimension greater than or equal to k. Since contending
simplices form a simplicial complex, we simply need to check the faces of dimension equal to
k. Indeed, if there is a contending face of higher dimension, its sub-faces are also contending.

Therefore, let us consider the execution of any k+ 1 processes in Algorithm 6.2 and assume
that the set of outputs of these k + 1 processes forms a contending simplex. Since they form a
contending simplex, their output vertices can be ordered in a sequence v0 . . . , vk such that:(

View1(v0) (· · · (View1(vk)
)
∧
(
View2(v0)) · · ·) View2(vk)

)
.

In particular, process χ(vk) saw all other processes in its View1 and all the k other
processes considered have distinct View1, thus they are always in the computation by χ(vk)
of {pj ∈ IS1 [χ(vk)] : IS1 [j] 6= IS1 [χ(vk)]}. Moreover, since χ(vk) has the smallest View2, it
cannot have initiated its SecondIS after any of the k other processes terminated their execution
of SecondIS and set their IS2 register to a value distinct from ⊥. Hence at the time χ(vk)
exited the wait condition, {pj ∈ IS1 [χ(vk)] : IS1 [j] 6= IS1 [χ(vk)] ∧ IS2 [j] 6= ⊥} contained all
the k other considered processes. But the size of this set must be strictly smaller than k to
satisfy the exit condition — A contradiction.

Let us now show that the solution presented Algorithm 6.2 is also live:

Lemma 6.5. All correct process eventually terminate their execution of Algorithm 6.2 in the
n-processes (k + 1)-active-resilient model.

Proof. Assume by contradiction that some correct process never completes its execution of
Algorithm 6.2. Since correct processes eventually obtain outputs from immediate snapshot
algorithms, a correct process can only be blocked by the wait condition of Line 4. Hence,
all correct process obtained a FirstIS output. Let p be the correct process which never
terminates with the smallest View1. Since p has the smallest View1 among non-terminated
correct processes, it implies that all non-terminated processes observed in the View1 of p with
a distinct IS1 (smaller or never updated) are faulty processes. As p counts at least k + 1 such
processes, there are at least k + 1 faulty processes in the execution. But there can be at most
k processes failures in the (k + 1)-active-resilient model — A contradiction.

Algorithm 6.2 can be used to solve any number of iterations of Rk, and hence to solve any
task solvable in R∗k. Hence we obtain that:

Theorem 6.7. A task T solvable in R∗k is solvable in any n-processes k-plain model.

89

Chapter 6. Affine Tasks

Simulating the k-Set Consensus Model in Rk

Now we show how to simulate in R∗k any algorithm that uses read-write memory and
k-set consensus operations among subset of processes. To do so, let us first show how to
simulate k-set consensus operations before showing that its works well with the composable
shared-memory presented in Section 6.1.

k-set consensus simulation description. Solving k-set consensus operations in R∗k is
very similar to the solution of k-set consensus operations among set of k+1 processes presented
for the affine model R∗k−T&S . Indeed, we want all processes observed in some iteration to
have a decision estimate in order to terminate. As moreover we want processes to eventually
terminate as soon as they obtain the smallest view among non-terminated processes in some
round, we also make processes adopt decision estimate of other processes as soon as a process
is observed participating in an operation. When a process initiates a k-set consensus operation
and has not updated its decision estimate yet, it simply sets its decision estimate for the
operation to its input value.

The main difference is that we want any subset to solve k-set consensus operations and
not only just sets of k + 1 processes. To do so, we are going to simply change how processes
adopt a new decision estimate at the end of each round. As sketched with the definition
of Rk, the idea consists in selecting a deterministically selected proposal from the smallest
observed View1. But not all View1 may contain a decision estimate as they may not contain
any process competing for the k-set consensus operation or all of them may not have a decision
estimate yet. Thus, we simply select a deterministically chosen estimate from the smallest
observed View1 wich contains a decision estimate. After updating its decision estimate, a
process may return a decision as soon as all observed processes which are concerned with the
k-set consensus operation shared a decision estimate in the last iteration.

Safety of the k-set consensus simulation. The validity property is trivial as processes
return their decision estimate which can only be adopted from another process decision
estimate or directly from the process input value.

The agreement property is not very difficult either. Indeed, consider the first iteration
after which a process p returns. As p returned, all competitors it observed shared a decision
estimate. Hence, in particular, all processes which obtained a View1 smaller than p and thus
in all the smallest View1 which are observed by any competitor. Indeed, competitors without
a decision estimate see a smallest View1 smaller than or identical to the one observed by p.
Therefore, at the end of the round, all competitors adopt a deterministically chosen estimate
from the smallest observed View1 containing a competitor. If we assume that there are at
most k distinct such smallest observed View1, it implies that all processes terminate the round
with at most k distinct decision estimates. But, in later rounds, processes can only adopt one
of these decision estimates, and hence can only return one of these at most k distinct values.

The fact that at most k distinct smallest View1 containing a competitor may be observed
follows from the restriction on the size of contention simplices. Let us first observe that among
all processes which observed a given View1 as the smallest containing a competitor, one of
these process obtained this View1. Indeed, if the process which has the smallest View2 among
those with this View1 observed a strictly smaller View1 containing a competitor, then all
process observing this View1 also observed this strictly smaller View1. Therefore, for all the
smallest View1 containing a competitor observed, we can select a process with this View1 for

90

6.4. Affine Tasks for Fair Adversaires

which its own View1 is the smallest observed containing a competitor. Let p1, . . . , pm be these
processes ordered by the size of their View1. For any i < j, pi has a strictly larger View2 than
pj at it saw a View1 not seen by pi. Hence, for any couple of processes in this sequence, one
has a strictly smaller View1 and a strictly larger View2 than the other: they are contending.
Hence, the processes p1, . . . , pm form a contention simplex of dimension m − 1. As it is a
simplex of Rk we have m− 1 < k, and hence at most k distinct View1 are observed.

Liveness of the simultion. The composable shared memory and the k-set consensus
simulations are both safe. To show the liveness of the combined simulation we need to show
that if a process obtains the smallest IS output infinitely often among non-terminated processes,
then it eventually terminates its pending k-set consensus operations.

This is straighforward to show. Indeed, processes can return from a k-set consensus
operation as long as it sees all non-terminated competitors sharing a decision estimate in some
round. But as soon as a decision estimate is observed, all non-terminated competitors adopt a
decision estimate if they did not have one already. In particular, if a process shares its decision
while having the smallest IS output among non-terminated process, then it will be observed
by all competitors and all competitors will have a decision estimate in the next affine task
iteration. Therefore the combined simulation guarantees progress to a non-terminated process.

Providing progress to a non-terminated process is sufficient to make all processes terminate
when simulating a terminating algorithm such as a solution to a task. Hence we obtain the
following result:

Theorem 6.8. Any task solvable in the n-processes k-set-consensus model is solvable in R∗k.

Using the equivalence of all families of plain models shown in Chapter 4, we can derive the
following equivalence:

Corollary 6.1. The n-processes k-concurrency, k-set-consensus, (k + 1)-active-resilient and
k-obstruction-free models are all equivalent to R∗k in terms of task solvability.

This equivalence result can be used to derive a generalization of the asynchronous com-
putability theorem from [HS99] in its discrete formulation:

Theorem 6.9. Plain Asynchronous Computability Theorem [PACT]:
A task (I,O,∆) is solvable in an n-processes k-plain model if and only if there exists ` ∈ N
and a color-preserving, carrier-preserving, simplicial map φ: (Rk)` → O.

6.4 Affine Tasks for Fair Adversaires

Let us now show how the affine tasks defined for plain models can be extended to all
models in the class of fair models which corresponds to the class of fair adversarial models,
or equivalently, of α-model. While much more complex than plain models, the affine task
proposed for fair models is still defined using only the second iteration of the standard
chromatic subdivision. This model and the equivalence result was published in [KRH18] and
as a brief announcement in [KRH17].

91

Chapter 6. Affine Tasks

(a) Critical simplices for the α-model with
α(P) = min(|P |, 1) (1-obstruction-freedom)

(b) Critical simplices for the adversary defined as
{p2}, {p1, p3} plus all supersets.

Figure 6.5 – Critical simplices are displayed in orange (with p2 the top vertex, p1 the bottom
left vertex and p3 the bottom right vertex).

6.4.1 Definition of RA
Given a fair adversary A and its associated fair agreement function α, we define the affine

task RA, a sub-complex of the second degree of the standard chromatic subdivision Chr2 s.
In Sections 6.4.2 and 6.4.3, we show that R∗A, i.e., the affine model of IIS runs obtained by
iterating RA, is equivalent to the α-model regarding task solvability.

Agreement vs. participation. Solving a desired level of agreement is no longer sufficient.
The agreement function of an adversary may define different levels of agreement for different
participating sets. In iterated affine tasks, participation is captured by views of the processes:
carrier(v, s) is the participating set witnessed by process χ(v).

The naive approach would consists in varying the restriction on the size of contention
simplices according to the carrier size. Such a restriction would indeed provide an affine task
which is strong enough to solve the desired level of agreement, but it would be impossible to
solve. Indeed, contention assumes that processes with the smallest View1 go first. But when
the agreement power is equal to 0, processes must be ensured to obtain larger views and hence
to let processes with larger View1 go first. But letting processes with large View1 go first
inherently creates contention.

The idea of the solution consists in switching between resilience and concurrency require-
ments. Indeed, as long as the agreement power is steady over the participation, we rely on
restrictions made by limiting contention. But when the agreement power increases due to an
increase of participation, we identify a “witness” of this new agreement power and require it
to go first and be seen by other processes. This corresponds to changing the selection of the
smallest View1 by looking first on View1 “witnessing” a new agreement level and otherwise,
by default, selecting the smallest View1. These “witnesses” of participation is what we call
critical simplices.

Critical simplices. The goal here is to identify for each increase of participation a new View1

witnessing it. An easy requirement is that this View1 should correspond to a participation
level associated with the new level of agreement power. But two issues must be solved: (1)

92

6.4. Affine Tasks for Fair Adversaires

the provided View1 may be irregular and there could be none for a given agreement power;
and (2) distinct View1 may share the same level of agreement power and the smallest one
may be different depending on the executions.

The idea is to select View1 which are minimal in the given execution for some level of
agreement power. To do so, the value of View1 is not sufficient on its own. But if we know
that multiple processes all share the same View1, we can deduce that all other processes with
a strictly smaller view must have a View1 corresponding to a lower level of agreement power.
This solves the second issue, but indirectly also the first one. Indeed, if no View1 exists for an
agreement level, it implies that the smallest view for the next level is provided to sufficiently
many processes to be able to deduce that no process with a smaller View1 may obtain a View1

corresponding to the “missing” level, hence this View1 is a witness of both agreement levels.
A critical set or critical simplex is set of processes sharing the same View1 which is

sufficiently large to ensure that their View1 is the smallest one for some level of agreement
power. Formally, a simplex σ ∈ Chr s is a critical simplex if: (1) all its vertices share the same
carrier; and (2) the set consensus power associated to carrier(σ, s) is strictly greater than the
set consensus power of χ(carrier(σ, s)) \ χ(σ).

Definition 6.5. ∀σ ∈ Chr s,Criticalα(σ) ≡

(∀v ∈ σ : carrier(v, s) = carrier(σ, s)) ∧ (α(χ(carrier(σ, s)) \ χ(σ)) < α(χ(carrier(σ, s)))) .

Examples of critical simplices for two 3-processes fair models are depicted in Figure 6.5.
The critical simplices are displayed in orange. As it can be observed, the set of critical simplices
is not inclusion-closed, hence it does not define a simplicial complex.

Given a simplex σ ∈ Chr s, we denote as CSα(σ) the set of critical simplices in σ,
that is CSα(σ) = {σ′ ⊆ σ : Criticalα(σ′)}. Moreover, identifying the set of processes
which compose some critical simplex will be useful. Thus, let CSMα(σ) (critical simplices
members) be the set of vertices of some σ ∈ Chr s which belongs to some critical simplex
in σ, formally CSMα(σ) = {σ′ ∈ Cl(CSα(σ)) : dim(σ′) = 0}. Note that critical simplices
members can be seen also as a sub-complex of Chr s. Intuitively, processes with the smallest
View2 should belong to this set. Similarly we also define the notion of the critical simplex
view, CSVα(σ), which corresponds to the set of processes observed by a critical simplex in
its View1. It can be simply obtained by taking the carrier in s of a critical simplex, that
is CSVα(σ) = carrier(CSMα(σ), s).

Concurrency level. Critical simplices provide a mechanism to select particular View1.
This can be used to solve agreement protocols with the desired k-set consensus for an observed
participation. But unfortunately this works only when the set of processes trying to solve a
set-consensus operation was observed by the critical simplices, i.e., when processes belong
to CSVα(σ). When this is not the case, processes should be able to solve set-consensus
operations by themselves. This is where the limition on the size of contention simplices will
come in. But this limitation should still be made according to the observed participation.
This is done according to the agreement power associated with the observed critical simplices.
We define this restriction using the following notion of concurrency level :

Definition 6.6. [Concurrency map] ∀σ ∈ Chr s :

Concα(σ) = max(0 ∪ {α(χ(carrier(τ, s))), τ ∈ CSα(σ)}).

93

Chapter 6. Affine Tasks

(a) For the α-model with α(P) = min(|P |, 1)
(1-obstruction-freedom)

(b) For the adversary defined as {p2}, {p1, p3}
plus all supersets.

Figure 6.6 – Simplices in black, orange and green are mapped to concurrency levels of 0, 1
and 2 respectively (with p2 the top vertex, p1 the bottom left vertex and p3 the bottom right
vertex).

Note that we add 0 to the set of agreement powers in case this set is empty. The concurrency
map is displayed in Figure 6.6 for examples of 3-processes models. Each simplex of Chr s
is associated with a concurrency level. One can observe that the set of simplices with a
concurrency level equal to k corresponds to the simplices in the star of the critical simplices
associated with an agreement power equal to k and which are not in the star of a critical
simplex associated with a greater agreement power.

Affine task RA. The affine task for a fair adversary RA ⊆ Chr2 s is defined as follows:

Definition 6.7. [RA] RA =Cl({σ ∈ facets(Chr2 s): ∀θ ⊆ (σ), P (θ, σ)} with P such that
(with τ = carrier(θ,Chr s) and ρ = carrier(σ,Chr s)):

P (θ, σ) ≡ θ ∈ Cont2 ∧ (χ(θ) ∩ χ(CSMα(ρ)) ∩ χ(CSVα(τ))) = ∅ =⇒ dim(θ) < Concα(τ).

Intuitively, a simplex σ ∈ Chr2 s is in RA if and only if any of its “non-critical” subsets that
cannot “rely” on the critical simplices in achieving α-adaptive set consensus has a sufficiently
low contention level to solve α-adaptive set consensus on its own.

Examples of affine tasks for 3-processes α-models are depicted in Figure 6.7.

6.4.2 Solving RA in the α-Model

To show that any task T solvable in R∗A is solvable in a fair A-model, we present an
algorithm solving RA in the α-model. By iterating this task, we obtain R∗A and can solve T .

Algorithm Description

In our solution of RA, presented in Algorithm 6.3, every process accesses two immediate
snapshot objects: FirstIS to which it proposes its initial state, and SecondIS to which
it proposes the outcome of FirstIS . Recall that outcomes of SecondIS form a simplex in

94

6.4. Affine Tasks for Fair Adversaires

(a) Affine task for the α-model with
α(P) = min(|P |, 1). (1-obstruction-freedom)

(b) Affine task for the adversary defined as {p2},
{p1, p3} plus all supersets.

Figure 6.7 – Some examples of affine tasks RA in blue (with p2 the top vertex, p1 the bottom
left vertex and p3 the bottom right vertex).

Chr2 s [Koz12]. To ensure that simplices are in RA, after finishing FirstIS , processes wait for
their turns to proceed to SecondIS .

In this waiting phase (Lines 5–9), processes check a specific condition on the IS outcomes
that they share with each others in registers IS1 [1, . . . , n] and IS2 [1, . . . , n]. Each process pi
periodically checks whether either (1) it belongs to a critical simplex by using the formula at
Line 7, or (2) if the number, computed at Line 8, of non-terminated processes (IS2 [j] = ∅)
which may have a smaller FirstIS output (j ∈ IS1 [i] and IS1 [j] 6= IS1 [i]) is smaller that some
“level of concurrency”. This level of concurrency is computed at Line 9 as the maximum between
(1) the agreement power associated with the View1 of the process itself (α(IS1 [i])) or (2) with
the concurrency levels shared using the Conc registers by “terminated” critical simplices, i.e.,
a critical simplex with all its processes provided with secondIS outputs (Line 12).

Algorithm 6.3: Resolution of RA in the α-model for process pi.

1 Immediate Snapshot Objects: FirstIS , SecondIS ;
2 Shared Registers: Conc[1], . . . ,Conc[n] ∈ {0, . . . , n}, initially 0;

3 IS1 [1], . . . , IS1 [n] ∈ 2Π, initially ∅ and IS2 [1], . . . , IS2 [n] ∈ 22Π
, initially ∅;

4 RA(inputi):
5 IS1 [i]← FirstIS (inputi);
6 wait until crit ∨ (rank < conc) with
7 crit = (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]}))
8 and rank = |{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}|
9 and conc = max

(
α(IS1 [i]),maxj∈{1,...,n}(Conc[j])

)
;

10 IS2 [i]← SecondIS (IS1 [i]);
11 if (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : (IS1 [j] = IS1 [i]) ∧ (IS2 [j] 6= ∅)})) then
12 Conc[i]← α(IS1 [i]);
13 return(IS2 [i]);

14 End RA;

95

Chapter 6. Affine Tasks

Intuitively, the waiting phase is used to ensure that critical processes, i.e., members of
critical simplices, are prioritized to proceed with SecondIS over non-critical ones. A process
may proceed to its SecondIS as soon as it knows that it belongs to some critical simplex
(crit = true). A non-critical process is allowed to exit its waiting phase only when the
number of potentially contending processes is smaller than the computed concurrency level
(rank < conc). The proof relies mostly on showing that there are enough critical simplices to
prevent non-critical processes from being blocked in the waiting phase.

Proof Sketch

In order to show that Algorithm 6.3 solves RA in the α-model corresponding to the fair
adversary A, we need to show that (1) every correct process eventually outputs and that (2)
the set of ouputs belongs to a simplex in RA. Note that as processes execute two consecutive
immediate snapshot protocols, all outputs belong to some simplex in Chr2 s. Let us consider
a run of the α model in which the participation is P , hence with α(P) > 0.

To show that outputs belong not only to Chr2 s but to RA and that all correct processes
terminate, we mostly rely on the distribution of critical simplices. We are interested in
showing that the number of processes failures, required to prevent critical simplices from either
appearing in IS1 or completing their IS2 computation, scales with the agreement power of
the participation. Moreover, we want to show that the less processes fail in such a way, the
higher the maximal agreement power associated with a terminated critical simplices.

A process failure may prevent multiple critical simplices to terminate. Indeed, a process
may be included in multiple critical simplices, and thus, its failure would prevent multiple
critical simplices from terminating. This is why we are interested not in the distribution of
critical processes or critical simplices, but instead, in the minimal hitting set size for the set of
critical simplices. Let us recall that an hitting set of a set of sets Q, is a set intersecting with
all sets from Q, and that csize denotes the minimal hitting set size. More precisely, we want
to know the minimal hitting set size of (1) any subset of the participation and (2) of the set of
critical simplices associated with an agreement power greater than or equal to some level l,
i.e., {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}.

Distribution of Critical Simplices

Let us first look at the case in which no participating process fails before updating its
IS1 output to the memory. In this case, the set of IS1 views forms a simplex σ ∈ Chr s
such that χ(σ) = χ(carrier(σ, s)): The observed processes include all participating processes
(inclusion property) but no others. In this setting we can show that the minimal hitting set
size of the set of critical simplices associated with an agreement power greater than or equal
to some level l, is greater than or equal to the agreement power of the participation minus
l − 1, i.e., α(χ(σ))− l + 1:

Lemma 6.6. [Distribution of critical simplices]: ∀σ ∈ Chr s,∀l ∈ N :

χ(σ) = χ(carrier(σ, s)) =⇒ α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Let us fix some integer l > 0. To show Lemma 6.6, we proceed by an induction on σ
using the lexicographical order on (α(χ(σ)), |χ(σ)|). For any simplex σ, such that α(χ(σ)) < l,
the result is trivial as for any (possibly empty) set Q, we have csize(Q) ≥ 0. Now consider

96

6.4. Affine Tasks for Fair Adversaires

a simplex σ ∈ Chr s such that χ(σ) = χ(carrier(σ)) and α(χ(σ)) = k ≥ l. Let us assume by
induction that for all σ′ ∈ Chr s, if (α(χ(σ′)), |χ(σ′)|) <lex (α(χ(σ′)), |χ(σ)|), then we have:

χ(σ) = χ(carrier(σ′, s)) =⇒ α(χ(σ′))− l+1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}).
Now consider the face τ of σ consisting of all vertices of σ with the same carrier as σ, i.e.,
τ = {v ∈ σ, carrier(v, s) = carrier(σ, s)}. Let β be the complement of τ , i.e., β = σ \ τ . Note
that τ 6= ∅, due to the containment property, and that, χ(carrier(β, s)) = χ(carrier(σ, s))\χ(τ),
due to the immediacy property. Therefore, we obtain that χ(carrier(β, s)) = χ(σ) \ χ(τ), and
so that χ(carrier(β, s)) = χ(β). As (α(χ(β)), |χ(β)|) <lex (α(χ(σ)), |χ(σ)|), we obtain that:

α(χ(β))− l + 1 ≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}). (6.1)

Two cases may arise:

1. If α(χ(β)) = α(χ(σ)), then, as β ⊆ σ we get that CSα(β) ⊆ CSα(σ), hence, we can
derive from Equation 6.1 that:

α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

2. If α(χ(β)) < α(χ(σ)), then let m = α(χ(σ)) − α(χ(β)) > 0 and let us consider any
subset τ ′ of τ such that |τ ′| > |τ | − m. By construction we have carrier(τ ′, s) =
carrier(σ, s) and by assumption we have χ(carrier(σ, s)) = χ(σ), and thus, we obtain
that χ(carrier(τ ′, s)) = χ(σ). Let us recall that ∀v ∈ τ : carrier(v, s) = carrier(τ, s),
and therefore Criticalα(τ ′) if and only if α(χ(σ) \ χ(τ ′)) < α(χ(σ)).

Given a fair adversary, for any Q ⊆ P , we have α(P) ≥ α(P \Q) ≥ α(P)−|Q|. Note that
this property was shown to be true for any fair model in Chapter 4. Note that this implies
that |χ(τ)| ≥ m. By applying the formula for P = χ(σ) \ χ(τ ′) and for Q = χ(τ) \ χ(τ ′)
we get that:

α(χ(σ) \ χ(τ ′)) ≥ α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)|.
But by construction χ(σ) \ χ(τ) = χ(β) and |χ(τ) \ χ(τ ′)| < m, thus we obtain that:

α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)| =⇒ α(χ(σ) \ χ(τ ′)) < α(χ(β)) +m.

As m = α(χ(σ)) − α(χ(β)), we obtain that α(χ(σ) \ χ(τ ′)) < α(χ(σ)), and hence,
that Criticalα(τ ′). Since by construction β = σ \ τ , we have the following inequality:
csize(CSα(σ)) ≥ csize(CSα(τ)) + csize(CSα(β)). Moreover, as α(χ(σ)) ≥ l, we obtain:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) ≥
csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ)) (6.2)

But as any subset τ ′ of τ , such that |τ ′| > |τ | −m, is critical, we have:

csize(CSα(τ)) ≥ csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}).
Moreover, since |χ(τ)| ≥ m, we have csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}) = m, and
hence, that csize(CSα(τ)) ≥ m. With m = α(χ(σ))−α(χ(β)) and Equations 6.1 and 6.2,
we obtain:

α(χ(σ))− l + 1 = (α(χ(β))− l + 1) +m

≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ))

≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l})

97

Chapter 6. Affine Tasks

The result of Lemma 6.6 can be used to generalize it for cases in which not all participating
processes shared their IS1 outputs to the memory. If so, the minimal hitting set size decreases
proportionally with the number of missing outputs:

Corollary 6.2. For any σ ∈ Chr s, we have:

α(χ(carrier(σ, s)))− l − |χ(carrier(σ, s)) \ χ(σ)|+ 1 ≤

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Consider some σ ∈ Chr s. By construction, σ is a sub-simplex of some simplex σ′ such
that χ(carrier(σ, s)) = χ(carrier(σ′, s)) = χ(σ′). Hence, we can apply Lemma 6.6 on σ′ and
obtain that:

α(χ(carrier(σ, s)))− l + 1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}). (6.3)

But CSα(σ) ⊆ CSα(σ′) and thus given H a minimal hitting set of CSα(σ′), H ∪ (χ(σ) \ χ(σ′))
is an hitting set of CSα(σ′). Therefore csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) is greater
than or equal to csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}) + |χ(σ) \ χ(σ′)|, and thus, is
greater than or equal to csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l})+ |χ(carrier(σ, s))\χ(σ)|.
Using this in Equation 6.3 gives us the property of Corollary 6.2.

Algorithm Liveness

Corollary 6.2 is a generalization of Lemma 6.6 to account for a partial set of first immediate
snapshot outputs. This can be used to show the liveness of the algorithm:

Lemma 6.7. Algorithm 6.3 provides outputs to all correct processes in any α-model.

Proof. Let P be the participating set and let us assume that there is a correct process which
never terminates. Let p be the correct processes which does not terminate with the smallest
IS1 view, let v ∈ Chr s be the vertex corresponding to its IS1 view, and let σ ∈ Chr s be the
simplex corresponding to the set of IS1outputs when IS1 has been updated for the last time.

Due to the immediacy property, processes in χ(carrier(v, s)) must be associated with a
vertex v′ such that carrier(v′, s) ⊆ carrier(v, s), and therefore, with α(χ(carrier(v′, s))) ≤
α(χ(carrier(v, s))). Hence, in any completion of σ to a simplex σ′ ∈ Chr s to include
the processes which are in χ(carrier(v, s)) but not in χ(σ), the set of critical simplices
associated with an agreement power strictly greater than α(χ(carrier(v, s))) does not change.
Thus applying Corollary 6.2 to any such completion σ′ of σ, we obtain that, for any l >
α(χ(carrier(v, s))):

α(χ(carrier(σ, s)))− l − |χ(carrier(σ, s)) \ (χ(σ) ∪ χ(carrier(v, s)))|+ 1 ≤

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).
Moreover, any process in P \ χ(carrier(σ, s)) must have failed. Thus, in χ(carrier(σ, s)) at
most α(P) − 1 − (|P \ χ(carrier(σ, s))|) processes may fail. Let us recall from the proof of
Lemma 6.6, that for the agreement function of any fair adversary, and for any Q ⊆ P , we have

98

6.4. Affine Tasks for Fair Adversaires

α(P) ≥ α(P \Q) ≥ α(P)− |Q|. Thus we can derive, by using Q = P \ χ(carrier(σ, s)), that
at most α(χ(carrier(σ, s)))− 1 processes in χ(carrier(σ, s)) may fail.

Let m1 = |χ(carrier(σ, s)) \ (χ(σ) ∪ χ(carrier(v, s)))|, be the number of processes from
χ(carrier(σ, s)) which (1) fail before updating their IS1 to the memory and (2) are not
included in the IS1 view of p. Let m2 be the number of critical processes, associated with an
agreement power strictly greater than α(χ(carrier(v, s))), which fail after updating their IS1
but before updating their IS2 .

Let us now assume that α(χ(carrier(σ, s))) − α(χ(carrier(v, s))) > m1 + m2, then by
selecting l = α(χ(carrier(σ, s)))−m2 −m1, we have l > α(χ(carrier(v, s)))), and hence, we
obtain that:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s)))−m2 −m1}) ≥ m2 + 1.

If no critical simplex in {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s))) −m2 −m1}
terminates, one process from each of these critical simplices failed after updating its IS1 but
before updating its IS2 , thus an hitting set failed. As only m2 such processes may fail and as an
hitting set must be greater than m2 + 1, a critical simplex associated with an agreement power
greater than or equal to α(χ(carrier(σ, s)))−m2−m1 terminates its IS2 . Therefore eventually
some process updates its Conc register (on line 12) to at least α(χ(carrier(σ, s)))−m2 −m1.

Now let us look back at p. It fails to terminate and thus never succeeds to pass the
test on line 6. Therefore we have that the number of processes seen by p which do not
terminate and do not have the same IS1 view as p are strictly more than the value of
max(α(IS1 [i]),maxj∈{1,...,n}(Conc[j])), with IS1 [i] equal to χ(carrier(v, s)). As p is the
correct process with the smallest IS1 view which does not terminate, it implies that there
are strictly more than max(α(χ(carrier(v, s))),maxj∈{1,...,n}(Conc[j])) failed processes with
an IS1 view strictly smaller than p. These failed processes are neither accounted in m1 nor
in m2. Therefore, as at most α(χ(carrier(σ, s))) − 1 processes in χ(carrier(σ, s)) may fail,
there are at most α(χ(carrier(σ, s))) − 1 −m1 −m2 such processes which may fail. Thus
α(χ(carrier(σ, s)))−m1 −m2 − 1 ≥ max(α(χ(carrier(v, s))),maxj∈{1,...,n}(Conc[j])).

Two cases may arise:

— If α(χ(carrier(σ, s))) − α(χ(carrier(v, s))) > m1 + m2, then some process sets its
Conc register to a value greater than or equal to α(χ(carrier(σ, s)))−m2 −m1 — A
contradiction.

— Otherwise, α(χ(carrier(σ, s)))−m1 −m2 − 1 ≥ α(χ(carrier(v, s))) and so, we obtain
a contradiction with the fact that α(χ(carrier(σ, s)))− α(χ(carrier(v, s))) ≤ m1 +m2.

Algorithm Safety

Showing the safety of Algorithm 6.3 bears some similarities with the liveness proof. In
particular, it relies on the same Lemma 6.6 on the distribution of critical simplices.

Lemma 6.8. The set of outputs provided by Algorithm 6.3 forms a valid simplex in RA.

Proof. Consider any execution of Algorithm 6.3. Except for the wait-phase, processes execute
two rounds of an immediate snapshot protocol. Therefore the set of outputs forms a simplex
in σ ∈ Chr2 s. Without loss of generality, we can assume that no process fails and thus that
dim(σ) = n − 1. Indeed, if σ 6∈ RA, then if failed processes were just slow and resumed

99

Chapter 6. Affine Tasks

their execution and terminate, it would produce σ′ 6∈ RA. Let us assume by contradiction
that σ 6∈ RA, this implies that there exists θ ⊆ σ such that (for τ = carrier(θ,Chr s)
and ρ = carrier(σ,Chr s)):

(θ ∈ Cont2) ∧ ((χ(θ) ∩ (χ(CSMα(ρ)) ∪ χ(CSVα(τ))) = ∅) ∧ (dim(θ) ≥ Concα(τ)).

As θ ∈ Cont2, we can order the processes associated with vertices from θ according to their
IS2 view (or carrier(v,Chr s)). Let q1, . . . , qk be this ordered set of processes. As q1 has the
smallest IS2 view, and as θ ∈ Cont2, q1 also has the largest IS1 view.

Consider the state of the execution at the time where q1 successfully passes the test on
Line 6. To pass this test, q1 witnessed IS1 , Conc and IS2 such that (with q1 = pi):

(α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]}))∨(
|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| < max

(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

))
If (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]})), then it implies that q1 belongs to a
critical simplex. Indeed, it would belong to a set of processes sharing the same IS1 view and
such that, removing this set of processes from their IS1 view would result in a set with a strictly
smaller agreement power. But this would contradict χ(θ) ∩ χ(CSMα(carrier(σ,Chr s))) 6= ∅
as it would include q1. Therefore we have:

|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| < max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
Two cases may arise:

— max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
6= α(IS1 [i]): In this case, a register in Conc

was set on Line 12 to a value greater than α(IS1 [i]). It implies that a critical simplex
associated with an agreement level strictly greater than |{pj ∈ IS1 [i] : IS2 [j] =
∅∧IS1 [j] 6= IS1 [i]}| terminated its computation and thus is included in carrier(θ,Chr s).
But we can observe that (χ(θ) \ {q1}) ⊆ {pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]},
and hence, that dim(θ) < Concα(τ) — a contradiction with σ 6∈ RA.

— max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
= α(IS1 [i]): Let c be the highest agreement

power associated with a terminated critical simplex (with c = 0 if there is no terminated
critical simplex). Therefore we have Concα(τ) ≥ c. Let λ ∈ Chr s be the simplex
corresponding to the set of IS1 views of processes in IS1 [i] which shared their IS1 view
at the time q1 passed the test on Line 6. Consider the simplex λ′ ∈ Chr s corresponding
to the completion of λ with the vertices corresponding to IS1 view of the processes
in χ(θ) which may be missing from λ. Note that, since q1 has the largest IS1 view
among processes from χ(θ), χ(carrier(λ′, s)) = χ(carrier(λ, s)) = IS1 [i]. Moreover,
since χ(λ) = {pj ∈ IS1 [i] : IS1 [j] 6= ⊥}, we obtain that χ(λ′) = {pj ∈ IS1 [i] : IS1 [j] 6=
⊥} ∪ χ(θ). According to Corollary 6.2 applied to λ′ with l = c+ 1, we obtain that:

α(IS1 [i])− c− |(χ(carrier(λ′, c)) \ χ(λ′))| ≤ csize({φ ∈ CSα(λ′) : α(χ(φ)) ≥ c+ 1}).

Note that, since there is no terminated critical simplex with an agreement power greater
than or equal to c+ 1, it implies that one process of each critical simplex identified in λ′

did not terminate its IS2, hence a minimal hitting set. Let Sc be this minimal hitting of
size equal to csize({φ ∈ CSα(λ′) : α(χ(φ)) ≥ c+ 1}. Note that Sc does not include any
process in χ(θ). Indeed, given a critical simplex with the same IS1 view as qi, adding qi

100

6.4. Affine Tasks for Fair Adversaires

to the critical simplex would produce a critical simplex, but by assumption processes
in χ(θ) do not belong to any critical simplex. We also have that Sc does not intersect
S∅ = {pj ∈ IS1 [i] : IS1 [j] = ⊥}. Hence, |Sc|+ |S∅ \ χ(θ)|+ |χ(θ)| = |Sc ∪ S∅ ∪ χ(θ)|.
Therefore, as |(χ(carrier(λ′, c)) \ χ(λ′))| = |S∅ \ χ(θ)| we obtain that α(IS1 [i])− c ≤
|Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|.
Let us now check that Sc ∪ S∅ ∪ χ(θ) ⊆ {q1} ∪ ST , with ST = {pj ∈ IS1 [i] : IS2 [j] =
∅∧ IS1 [j] 6= IS1 [i]}. All are clearly included in IS1 [i] by construction. For processes in
S∅, since they have their register in IS1 equal to ⊥, it is also the case for their register
in IS2 . For processes in χ(θ), they have a strictly smaller IS1 view by assumption. For
the IS2 view, they will have a strictly larger view than q1. But since q1 did not start
its second immediate snapshot protocol, processes in χ(θ) could not have terminated
it. For processes in Sc, they do not share the same IS1 view as any process in χ(θ)
since they are members of critical simplices, in particular, they thus have a distinct IS1

view from q1. By assumption, they did not terminate their second immediate snapshot
protocol, and hence also have their IS2 register still equal to ⊥.
Therefore, we have Sc ∪ S∅ ∪ χ(θ) ⊆ {q1} ∪ ST , and hence, |Sc ∪ S∅ ∪ χ(θ)| ≤ 1 + |ST |.
But since we also have |ST | < α(IS1 [i]) and α(IS1 [i])− c ≤ |Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|,
we obtain that:

|ST | < |Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|+ c ≤ |ST |+ 1− |χ(θ)|+ c.

Thus |χ(θ)| ≤ c. But recall that Concα(τ) ≥ c, and so, |χ(θ)| ≤ Concα(τ) — a
contradiction with σ 6∈ RA.

Using Lemmata 6.7 and 6.8, we can directly derive the correctness of Algorithm 6.3:

Theorem 6.10. Algorithm 6.3 solves task RA in the α-model corresponding to the fair
adversary A.

As for other solutions of affine task, we can iterate this solution in order to simulate a run
of R∗A. Using this simulation we can therefore solve any task which is solvable in R∗A:

Theorem 6.11. Any task solvable in R∗A is solvable in the A-model.

6.4.3 From R∗A to the Fair Adversarial A-Model

In this section, we show that any task solvable in the fair adversarial A-model can be
solved in R∗A. This reduction is much more intricated than in the other direction. Indeed, to
show that a model is as strong as an affine task based model, it only suffices to show that any
number of iterations of the affine task can be solved. In the general case, it is necessary to
show that any task solvable in the target model can be solved and thus that we can emulate
an algorithm solving any given task.

Simulation description. To simplify the simulation complexity, we are going to show that
we can simulate an execution of a shared memory model in which the participation P is such
that α(P) > 0 and in which α-adaptive set consensus can be solved. Using the equivalence
between the α-adaptive set consensus model, the α-model and a fair adversary with agreement

101

Chapter 6. Affine Tasks

function α shown in Chapter 4, we are able to deduce from it that any task solvable in a fair
adversarial model can be solved in R∗A.

As for other affine models, we are going to use the composable shared memory presented in
Section 6.1 in combination with other agreement operations. The main difference comes from
some extra memory operation that processes perform after each agreement operation. Indeed,
in an α-adaptive set consensus operation, the level of agreement reached must correspond to
the current participation. Hence, in order to ensure that participation is high enough, we
make processes proceed to a simulated write of all processes inputs they observed during the
execution. This operation ensures that all these processes are participating in the simulated
run. Indeed, a process is participating as soon as it shared its input state: A write operation
that may be performed for other processes as long as their input states are known. Processes
can return the value returned by our agreement protocol only after this simulated write
operation is completed.

Concerning the α-adaptive set consensus operation itself, the simulation is quite similar
to the one proposed for plain models. Indeed, we make processes adopt decision estimate
as soon as a process is observed participating. Moreover, we want to ensure that the set of
competitors in the agreement protocol can be arbitrary. As before, we make processes adopt
decision estimates from selected processes after each iteration and let them validate their
decision estimate as soon as all processes observed in some iteration shared a decision estimate.
The only differnce concerns the selection of which decision estimate to adopt at each round.
This selection and the property associated with it are detailled in the next part. Afterwards,
we will show how the property of this selection can be used to show the correctness of the
global simulation.

α-adaptive leader election in RA: the µQ map

Let us consider some α-adaptive set consensus and let Q be the set of processes which (1)
may participate in the agreement protocol, and, (2) did not terminate yet the main simulation.
Using the structure of RA, we construct a map µQ which returns to each vertex v ∈ RA,
corresponding to a process from Q (i.e., with χ(v) ∈ Q), a leader selected among Q for the
given iteration of RA. The map µQ is constructed in two stages. The first stage consists in
selecting an IS1 view which includes a process from Q. Two cases may happen depending on
whether the process observes in RA a critical simplex associated with an IS1 view including a
process from Q or not:

If the process observes such a critical simplex (i.e., χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅),
it then simply returns the smallest IS1 view of a critical simplex which includes a process
from Q, using the map δQ:

δQ = χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅)}).
Otherwise (if χ(CSVα(carrier(v,Chr s))) ∩Q = ∅), the process returns the smallest observed
IS1 view which includes a process from Q, using the map γQ:

γQ = χ(min({carrier(v′, s) : (v′ ∈ carrier(v,Chr s))∧(dim(v′) = 0)∧(carrier(v′, s)∩Q 6= ∅)}).
The second stage then simply consists in selecting, from the selected IS1 view, the process
from Q associated with the smallest identifier, let minQ(V) = min{p ∈ V ∩Q} be this map.
The map µQ is therefore defined as follows:

µQ(v) = if (χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅) then minQ ◦ δQ else minQ ◦ γQ.

102

6.4. Affine Tasks for Fair Adversaires

Let us first show that, for any vertex v ∈ RA corresponding to a process in Q, the map µQ
returns a process from Q observed in RA (i.e., a process in χ(carrier(v, s))) :

Property 6.4. [Validity of µQ] ∀v ∈ RA, dim(v) = 0, χ(v) ∈ Q :

µQ(v) ∈ χ(carrier(v, s)) ∧ µQ(v) ∈ Q.

Proof. Let us fix some vertex v ∈ RA such that χ(v) ∈ Q.

Let us assume that χ(CSVα(carrier(v,Chr s)))∩Q 6= ∅, and hence, µQ(v) = minQ ◦ δQ(v).
Let us recall that, given σ ∈ Chr s, CSVα(σ) is equal to carrier(∪σ′∈CSα(σ)σ

′, s). But due to
carriers inclusion, the carrier of a simplex is equal to the carrier of one of its vertices, and so,
of any sub-simplex which includes this vertex. Thus, as χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅,
we have:

∃σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅.

This implies that δQ has a valid choice for v and can return the minimal one, and so that:

∃σ′ ∈ CSα(carrier(v,Chr s)) : (δQ(v) = χ(carrier(σ′, s))) ∧ (χ(carrier(σ′, s)) ∩Q 6= ∅).

Since CSα(carrier(v,Chr s)) ⊆ {σ ∈ Chr s;σ ⊆ carrier(v,Chr s)}, and as µQ(v) = minQ ◦
δQ(v), we obtain that:

∃σ′ ⊆ carrier(v,Chr s) : (µQ(v) = minQ ◦ χ(carrier(σ′, s))) ∧ (µQ(v) ∈ Q).

As for any simplex σ ∈ Chr2 s, we have carrier(carrier(v,Chr s), s) = carrier(v, s), thus
Property 6.4 is verified if χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅.

Now let us assume that χ(CSVα(carrier(v,Chr s))) ∩ Q = ∅. Due to the self-inclusion
property, ∃v′ ∈ carrier(v,Chr s)) such that χ(v′) = χ(v). The self-inclusion property again
implies that ∃v′′ ∈ carrier(v′, s) such that χ(v′′) = χ(v′) = χ(v). Hence, as χ(v) ∈ Q,
∃v′ ∈ carrier(v,Chr s) such that χ(carrier(v′, s)) ∩ Q 6= ∅. Thus γQ has a valid choice for
v and can return the minimal one. As before, by the transitivity of carriers inclusion, the
set returned by γQ, and so the process returned by µQ, is a subset of χ(carrier(v, s)) which
intersects with Q.

Now that we have checked that µQ is well defined, let us show that µQ returns a number
of distinct leaders (processes) limited by the agreement power associated with processes views
in RA:

Property 6.5. [Agreement of µQ] ∀Q ⊆ Π, (∀σ ∈ RA : dim(σ) = n−1), (∀θ ⊆ σ : χ(θ) ⊆ Q) :

|{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Let us first check the following observation stating that for any simplex σ ∈ Chr s, if two
critical simplices in σ are associated with the same agreement power, then they share the
same IS1 view:

Lemma 6.9. ∀σ ∈ Chr s, ∀θ1, θ2 ∈ CSα(σ):

α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))) =⇒ carrier(θ1, s) = carrier(θ2, s).

103

Chapter 6. Affine Tasks

Proof. Let us consider some simplex σ ∈ Chr s and some critical simplices θ1, θ2 ∈ CSα(σ)
such that α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))). The inclusion property implies, w.l.o.g.,
carrier(θ1, s) ⊆ carrier(θ2, s). The immediacy property implies either that carrier(θ1, s) =
carrier(θ2, s) (and thus Lemma 6.9 is verified) or else that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅.

Let us now assume that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅. Together with carrier(θ1, s) ⊆
carrier(θ2, s), it implies that carrier(θ1, s) ⊆ carrier(θ2, s) \ θ2. Since agreement functions
are regular (i.e., the agreement power can only grow with a participation increase), we
obtain that α(χ(carrier(θ1, s)) ≤ α(χ(carrier(θ2, s) \ θ2). But as θ2 is a critical simplex
α(χ(carrier(θ2, s) \ θ2)) < α(χ(carrier(θ2, s))), and we obtain a contradiction:

α(χ(carrier(θ1, s)) ≤ α(χ(carrier(θ2, s) \ θ2) < α(χ(carrier(θ2, s))) = α(χ(carrier(θ1, s))).

Let us now prove Property 6.5:

Proof. Let σ be a maximal simplex of RA, i.e., dim(σ) = n − 1, and let θ ⊆ σ such that
χ(θ) ⊆ Q.

Note that for both γQ and δQ, processes returns the IS1 view of a vertex of carrier(θ,Chr s).
Assume that γQ and δQ return, for vertices in θ, k ≥ 0 distinct IS1 views which are not
the IS1 views of some critical simplex in carrier(σ,Chr s). As δQ only returns IS1 views
associated with a critical simplex, they have been returned by γQ. Let β be the subset of θ
including all vertices for which γQ returns such IS1 views. As they are returned by γQ, we
have CSVα(carrier(β,Chr s)) ∩Q = ∅.

Consider any two processes p1 and p2 which obtained two distinct such IS1 views, V1

and V2 respectively (w.l.o.g., let V1 (V2). As γQ returns the minimal IS1 view intersecting
with Q, a vertex from β sees V2 but not V1, and thus, p2 has a smaller IS2 view than p1.
Therefore p1 and p2 satisfy the condition to be part of a contention simplex, and so, any k
processes carrying these k distinct returned IS1 views form a contention simplex. Let τ be
this contention simplex in σ.

As a vertex in β saw all these k distinct IS1 views, therefore we have carrier(τ,Chr s) ⊆
carrier(β,Chr s). But since CSVα(carrier(β,Chr s)) ∩ Q = ∅ is satisfied, we obtain that
CSVα(carrier(τ,Chr s)) ∩Q = ∅. By assumption, these k processes are not critical simplices
members (χ(τ) ∩ CSMα(σ) = ∅). Therefore, the definition of RA implies that we have
Concα(carrier(τ,Chr s)) ≥ k, and hence, we obtain that Concα(carrier(β,Chr s)) ≥ k.

Having Concα(carrier(β,Chr s)) ≥ k, it implies that we have ∃σc ∈ CSα(carrier(β,Chr s))
such that α(χ(carrier(σc, s))) ≥ k. But, since χ(carrier(σc, s)) ⊆ CSVα(carrier(β,Chr s)), we
have χ(carrier(σc, s)) ∩Q = ∅. As the inclusion property implies that any IS1 view must be
strictly larger to intersect with Q, and as there are at most one IS1 view associated with a
critical simplex by agreement level (Lemma 6.9), all IS1 views corresponding to some critical
simplex in carrier(σ,Chr s) are associated with an agreement power strictly greater than k.

Let l ≥ 0 be the number of distinct IS1 views corresponding to some critical simplex in
carrier(σ,Chr s) which are returned by δQ or γQ for vertices in θ. Lemma 6.9 implies that they
must be associated with l distinct agreement powers. As they must also be associated with
agreement powers strictly greater than k, one of the returned IS1 views is associated with an
agreement power greater than or equal to k+ l. Therefore, we have α(χ(carrier(θ, s))) ≥ k+ l.
As the number of distinct IS1 views returned by δQ or γQ is equal to k + l, and as the

104

6.4. Affine Tasks for Fair Adversaires

deterministic selection made by minQ could only reduce the number of distinct returned values,
we finally obtain that |{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Last, let us also observe that knowing which processes terminated the main simulation is
not required to compute µQ, i.e., that the knowledge of which processes belong to Q among
the processes observed in the current iteration of RA is sufficient:

Property 6.6. [Robustness of µQ] ∀v ∈ RA, dim(v) = 0,∀Q ⊆ Π : µQ(v) = µcarrier(v,s)∩Q(v).

Proof. This is a direct corollary of the definition of δQ and γQ, that for a given vertex v ∈ RA,
to compute µQ(v), the knowledge of Q ∩ (carrier(v, s)) is sufficient. Indeed, Q is only used
to compute intersections with either CSVα(χ(carrier(v,Chr s))), a subset of carrier(v, s), or
with carrier(v′, s) for a vertex v′ ∈ carrier(v,Chr s), also a subset of carrier(v, s).

Correctness of the simulation

Let us first show that all simulated operations are safe. Since the composable shared
memory simulation is safe, we only need to show that simulated α-adaptive set consensus
operations satisfy the validity property (decision values are proposal values) and the α-
agreement property (if k distinct values have been returned, then the current participation P
is such that α(P) ≥ k).

Lemma 6.10. The shared memory and α-adaptive set consensus simulation in R∗A is safe.

Proof. For α-adaptive set consensus operations, Property 6.6 ensures that µcarrier(v,s)∩Q(v)
can be used as if it was µQ(v) and thus that processes can indeed use µQ to elect a leader in
any iteration of RA. Moreover, Property 6.4 ensures that a decision estimate is either the
process proposal value or is adopted from another process with a proposal value and thus that
the validity property of α-adaptive set consensus is verified.

At the earliest iteration R of R∗A at which a process commits a decision estimate for an
α-adaptive set consensus, since a committing process only observed processes from Q with
decision estimates, all processes in Q adopt a decision estimate. Moreover, Property 6.5 states
that among any k processes adopting k distinct decision estimates at this iteration R, one
must have observed a set of processes associated with an agreement level greater or equal to k.

Before completing an α-adaptive set consensus operation, processes make sure that all
processes they observed are participating in the simulated run (by simulating for them a write
operation of their initial states). Therefore, at the time a kth distinct value is returned for
some α-adaptive set consensus, the participation in the simulated run is associated with an
agreement power greater than or equal to k, hence, the α-agreement property is verified.

As we have shown that the simulation is safe, let us also show that it is live, i.e., that it
provides outputs to all processes. For this, we only need to show that a process obtaining
the smallest IS view among non-terminated processes eventually completes its α-adaptive set
consensus operation.

Lemma 6.11. In the shared memory and α-adaptive set consensus simulation in R∗A, all
processes eventually terminate.

Proof. as soon as they observe a process with a decision estimate, processes adopt a decision
estimate for any α-adaptive set consensus operation they may participate to. Hence, if a

105

Chapter 6. Affine Tasks

process has a pending α-adaptive set consensus operation and has the smallest IS view among
non-terminated processes, all competitors will have a decision in the next iteration of the affine
task. But since a process commits a decision estimate when all non-terminated processes which
participate in an operation share a decision estimate during some iteration, a process obtaining
the smallest IS view among non-terminated processes eventually commits its operation in the
following affine task iteration and hence resume its shared-memory simulation.

By Lemmata 6.10 and 6.11, the simulation that we provide can be used to solve in R∗A any
task solvable in a shared memory model with access to α-adaptive set consensus. But it was
shown in Chapter 4 that the α-adaptive set consensus model, the α-model and a corresponging
fair adversarial model are all equivalent in term of task solvability. Hence, since we have
shown in Theorem 6.11 that all task solvable in R∗A are solvable in the A-model, we obtain
the following equivalence result:

Theorem 6.12. A task is solvable in the adversarial A-model if and only if it is solvable in
R∗A.

We thus obtain the following generalization of the ACT [HS99]:

Theorem 6.13. [Fair Asynchronous Computability Theorem [FACT]] A task T = (I,O,∆)
is solvable in the fair adversarial A-model if and only if there exists a natural number ` and a
simplicial map φ : R`A(I)→ O carried by ∆.

106

Chapter 7

Stable Storage in
Comparison-Based Models

This chapter deals with complexity issues in implementing a stable storage in the comparison-
based model. Most of the results of this chapter were published in [IKR17]. We first
discuss, in Section 7.1, the model and motivate the problem of stable storage implementation.
Characteristics of the problem are formalized in Section 7.2. Then, in Section 7.3, we
generalize existing implementations to provide alternative liveness guarantees, with variable
space complexity costs. Afterwards in Section 7.4, we show our main result, a lower bound of
n+ 1 registers required for a 2-obstruction-free stable storage implementation. This shows
the existence of a trade-off between progress conditions and space complexity. Lastly, in
Section 7.5, we discuss and show coarse results concerning multiple related problems. Some
concluding remarks are provided in Section 7.6.

7.1 Motivation

We consider a distributed computing model in which at most n participating processes
communicate via reading and writing to a shared memory. The participating processes come
from a possibly unbounded set of potential participants: each process has a unique identifier
(IP address, RFID, MAC address, etc.) which, without loss of generality, are integer values.

Given that processes do not have an a priori knowledge of the participating set, it is
natural to assume that they can only compare their identifiers to establish their relative order,
otherwise they essentially run the same algorithm [Ram30]. This model is therefore called
comparison-based [ABND+90]. In the comparison-based model with bounded shared memory,
we cannot assume that the processes are provided with a prior assignment of processes to
distinct registers. The only suitable assumption, as is the case for anonymous systems [Yan16],
is that processes have access to multi-writer multi-reader registers (MWMR).

In this chapter, we study the space complexity of comparison-based implementations of an
abstract single-writer multi-reader (SWMR) memory. The abstract SWMR memory allows
each participating process to write to a private abstract memory location and to read from
the abstract memory locations of participating processes. The SWMR abstraction can be
further used to build higher-level abstractions, such as renaming [ABND+90] and atomic
snapshot [AAD+93].

To implement an SWMR memory, we need to ensure that every write performed by a

107

Chapter 7. Stable Storage in Comparison-Based Models

participating process on its abstract SWMR register is persistent : every future abstract read
must see the written value, as long as it has not been replaced by a more recent persistent
write. To achieve persistence in a MWMR system, the emulated abstract write may have to
update multiple base MWMR registers in order to ensure that its value is not overwritten by
other processes. A natural question arises: How many base MWMR registers do we need?

In this chapter, we show that the answer depends on the desired progress condition. It is
immediate that n registers are required for a lock-free implementation, i.e., we want to ensure
that at least one correct process makes progress. Indeed, any algorithm using n− 1 or less
registers can be brought into the situation where every base register is covered, i.e., a process
is about to execute a write operation on it [BL93]. If we let the remaining process pi complete
a new abstract write operation, the other n− 1 processes may destroy the written value by
making a block write on the covered registers (each covering process performs its pending
write operation). Thus, the value written by pi is “lost”: no future read would find it. It
has been recently shown that n base registers are not only necessary, but also sufficient for a
lock-free implementation [DGFGR15].

A wait-free SWMR memory implementation that guarantees progress to every correct
process can be achieved with 2n− 1 registers [DGFGR15]. The two extremes, lock-freedom
and wait-freedom, suggest an intriguing question: is there a dependency between the amount
of progress the implementation provides and its space complexity: if processes are guaranteed
more progress, do they need more base registers?

Contributions

In this chapter, we give an evidence of such a dependency. Using novel covering-based
arguments, we show that any 2-obstruction-free algorithm requires n+1 base MWMR registers.
Recall that k-obstruction-freedom requires that every correct process makes progress under
the condition that at most k processes are correct [Tau09]. The stronger property of k-lock-
freedom [BG15] additionally guarantees that if more than k processes are correct, then at
least k out of them make progress.

We also provide, for any k = 1, . . . , n, a k-lock-free SWMR memory implementation that
uses only n+ k − 1 base registers. Our lower bound and the algorithm suggest the following:

Conjecture 7.1. It is impossible to implement a k-obstruction-free SWMR memory in the
n-process comparison-based model using n+ k − 2 MWMR registers.

An interesting implication of our results is that k-lock-free and k-obstruction-free SWMR
implementations, for k = 1, k = 2 and k = n (in this latter case they coincide with wait-
freedom), have the same optimal space complexity. Hence, we expect that, for all k = 1, . . . , n,
k-obstruction-free and k-lock-free (and all progress conditions in between [BG15]) require the
same number n+ k − 1 of base MWMR registers. Curiously, our results highlight a contrast
between complexity and computability, as we know that certain problems, e.g., consensus, can
be solved in an obstruction-free way, but not in a lock-free way [HLM03].

We also provide a discussion of variants of the SWMR implementation problem. The
stronger variant of SWMR allocation, in which processes are associated with a single register is
such that, once allocated, it is prohibited from being written by any other process. If SWMR
allocation is possible, then SWMR implementation can be easily resolved with emulated
write operations consisting in a single write operation of the allocated register. A wait-free
SWMR implementation is thus trivially constructed. We also consider how the problem is

108

7.2. Model

affected when we remove assumptions on the system such as the bound on the number of
participants n or identifiers availability, i.e., an anonymous system. In particular we show that
if both assumptions are removed, then the space complexity no longer depends on the number
of participating processes but instead on the number of distinct written values.

Related Work

Jayanti, Tan and Toueg [JTT96] gave linear lower bounds on the space complexity of
implementing a large class of perturbable objects (such as CAS and counters). For atomic-
snapshot algorithms, Fatourou, Ellen and Ruppert [FFR06] showed that there is a tradeoff
between the time and space complexities, both in the anonymous and non-anonymous cases.
Zhu [Zhu16] showed that n− 1 MWMR registers are required for obstruction-free consensus.

Delporte et al. [DFKR15] studied the space complexity of anonymous k-set agreement
using MWMR registers, and showed a dependency between space complexity and progress
conditions. In particular, they provide a lower bound of n− k +m MWMR registers to solve
anonymous repeated k-set agreement in the m-obstruction-free way, for k < m. Delporte et
al. [DFGR13] showed that obstruction-free k-set agreement can be solved in the n-process
comparison-based model using 2(n− k) + 1 registers. This upper bound was later improved to
n− k +m for the progress condition of m-obstruction-freedom (m ≤ k) by Bouzid, Raynal
and Sutra [BRS15]. In particular, their algorithm uses less than n registers when m < k.

To our knowledge, the only lower bound on the space-complexity of implementing an
SWMR memory has been given by Delporte et al. [DGFGR15] who showed that lock-free
comparison-based implementations require n registers.

Delporte et al. [DGFGR15] proposed two SWMR memory implementations: a lock-free
one, using n registers, and a wait-free one, using 2n− 1 registers. These algorithms are used
in [DGFGL13] to implement a uniform SWMR memory, i.e., assuming no prior knowledge on
the number of participating processes.

7.2 Model

We consider the asynchronous shared-memory model, in which a bounded number n > 1
of asynchronous crash-prone processes communicate by applying read and write operations to
a bounded number m of base atomic multi-writer multi-reader atomic registers. An atomic
register i can be accessed with two memory operations: write(i, v) that replaces the content
of the register with value v, and read(i) that returns its content. The processes are provided
with unique identifiers from an unbounded name space. Without loss of generality, we assume
that the name space is the set of positive integers.

Comparison-Based Algorithms

We assume that the processes are allowed to use their identifiers only to compare them
with the identifiers of other processes: the outputs of the algorithm only depend on the inputs,
the relative order of the identifiers of the participating processes, and the schedule of their
steps. Formally, we say that an algorithm is comparison-based, if, for each possible execution α,
by replacing the identifiers of participating processes with new ones preserving their relative
order, we obtain a valid execution of the algorithm. Notice that the assumption does not

109

Chapter 7. Stable Storage in Comparison-Based Models

preclude using the identifiers in communication primitives, it only ensures that decisions taken
in the algorithm’s run are taken only based on the identifiers relative order.

In this model, m MWMR registers can be used to implement a wait-free m-component
multi-writer atomic-snapshot memory [AAD+93]. The memory exports operations Update(i, v)
(updating position i of the memory with value v) and Snapshot() (atomically returning the
contents of the memory). In the comparison-based atomic-snapshot implementation, easily
derived from the original one [AAD+93], Update(i, v) writes only once, to register i, and
Snapshot() is read-only. For convenience, in our upper-bound algorithm we are going to use
atomic snapshots instead of read-write registers.

SWMR Memory

A single-writer multi-reader (SWMR) memory exports two operations: Write() that takes
a value as a parameter and Collect() that returns a multi-set of values. It is guaranteed that, in
every execution, there exists a reading map π that associates each complete Collect operation C,
returning a multi-set V = {v1, . . . , vs}, with a set of s Write operations {w1, . . . , ws} performed,
respectively, by distinct processes p1, . . . , ps such that:

— The set {p1, . . . , ps} contains all processes that completed at least one write operation
before the invocation of C;

— For each i = 1, . . . , s, wi is either the last write operation of process pi preceding the
invocation of C or a write operation of pi concurrent with C.

Note that our definition does not guarantee atomicity of SWMR operations. Moreover, we
do not require that processes are allocated with a unique MWMR register that can be used as
a single writer register (this additionnal restriction will be discussed in Section 7.5). Instead,
we simply require that processes are able to emulate the use of single writer registers through
implementing the SWMR memory.

Intuitively, a collect operation can be seen as a sequence of reads on regular registers [Lam86],
each associated with a distinct participating process. Such a collect object can be easily
transformed into a single-writer atomic snapshot abstraction [AAD+93].

Progress Conditions

In this paper we focus on two families of progress conditions, both generalizing the wait-free
progress condition, namely k-lock-freedom and k-obstruction-freedom. These two progress
conditions are particular cases of a more general definition of (`, k)-freedom which was proposed
in [BG15].

An execution α satisfies the property of k-lock-freedom [BG15] (for k ∈ {1, . . . , n}) if at
least min(k,Correct(α)) correct processes make progress in it, i.e., complete infinitely many
high-level operations (in our case, Writes and Collects). The special case of n-lock-freedom is
called wait-freedom.

The property of k-obstruction-freedom [HLM03,Tau09] requires that every correct process
makes progress, under the condition that there are at most k correct processes. (If more
than k processes are correct, no progress is guaranteed.)

In particular, k-lock-freedom is a stronger requirement than k-obstruction-freedom (strictly
stronger for 1 ≤ k < n). Indeed, both require that every correct process makes progress when
there are at most k correct processes, but k-lock-freedom additionally requires that some
progress is made even if there are more than k correct processes.

110

7.3. Upper Bound: k-Lock-Free SWMR Memory with n+ k − 1 Registers

7.3 Upper Bound: k-Lock-Free SWMR Memory with n+k−1
Registers

Consider a full-information algorithm in which every process alternates atomic snapshots
and updates, where each update performed by a process incorporates the result of its preceding
snapshot. Every value written to a register will persist (i.e., will be present in the result of
every subsequent snapshot), unless there is another process poised to write to that register.
The pigeonhole principle implies that k processes can cover at most k distinct registers at the
same time. Thus, if, at a given point of a run, a value is present in n registers, then the value
will persist. This observation implies a simple n-register lock-free SWMR implementation in
which a high-level Write operation alternates snapshots and updates of all registers, one by
one in the round-robin fashion, until the written high-level value is present in all n registers.
A high-level Collect operation can simply return the set of the most recent values (defined
using monotonically growing sequence numbers) returned by a snapshot operation.

The wait-free SWMR memory implementation in [DGFGR15] using 2n − 1 registers
follows the n-register lock-free algorithm but, roughly, for each participating process, replaces
register n with register n− 1 + pos, where pos is the rank of the process among the currently
observed participants. This way, there is a time after which every participating process has a
dedicated register to write, and each value it writes persists. In particular, every written value
will be seen by all processes and will eventually be propagated to the n− 1 first registers.

To implement a k-lock-free SWMR memory using n + k − 1 registers, a process should
determine, in a dynamic fashion, to which out of the last k − 1 registers to write. In our
algorithm, by default, a Write operation only uses the first n registers, but if a process observes
that some of its previous writes have been overwritten by other processes which did not observe
its value, it uses extra registers to propagate its value. The number of these extra registers
depends on how many other processes have been observed making progress.

Overview of the Algorithm

Our k-lock-free SWMR implementation, which uses n+ k − 1 base MWMR registers, is
presented in Algorithm 7.1.

In a Write operation, the process adds the operation to be performed to its local view (line 5).
The process then attempts to add its local view, together with the outcome of a snapshot, to
each of the first WritePosMax , initially n, registers (lines 8–15). At each loop, WritePosMax
is set to the smaller value between the number of processes observed as concurrently active
and the number of available registers (line 14). The writing process continues to do so until
its Write operation value is present in at least n registers (line 15).

In this algorithm, the k − 1 extra registers are used according to the liveness observed
by blocked processses. In order to be allowed to use the last register, a process must fail to
complete its write while observing at least k − 1 other processes completing their own. This
ensures that when a process accesses this last register, a kth process is able to be observed by
processes completing operations and thus will be helped to eventually complete its write.

The Collect operation is rather straightforward. It simply takes a snapshot of the memory
and, for each participating process observed in the memory, it returns its most recent value
(selected using associated sequence numbers, line 22).

111

Chapter 7. Stable Storage in Comparison-Based Models

Algorithm 7.1: k-lock-free SWMR implementation using n+k−1 MWMR registers.

1 View : list of triples of type (ValueType, IdType,N), initially set to ∅;
2 opCounter ∈ N, initially set to 0;

3 Write(v):
4 ActiveProcs = {id};
5 View = View ∪ (v, id , opCounter);
6 WritePos = 0;
7 WritePosMax = n;
8 do
9 Snap = MEM .snapshot();

10 ActiveProcs = ActiveProcs ∪ {pid : ∃(, pid , c) ∈ Snap,∀(, pid , c′) ∈ View , c >
c′};

11 View = View ∪ Snap;
12 Update(MEM [WritePos],View);
13 WritePos = WritePos + 1 (mod WritePosMax);
14 WritePosMax = min(n+ |ActiveProcs| − 1, n+ k − 1);

15 while |{m ∈ {1, . . . , n+ k − 1}, (v, id , opCounter) ∈ Snap[m]}| < n;
16 opCounter = opCounter + 1;

17 End Write;

18 Collect():
19 Reads = MEM .snapshot();
20 V = ∅;
21 forall pid such that (, pid,) ∈ Reads do
22 V = V ∪ {v} with v such that

(v, pid ,max{c ∈ N, (, pid , c) ∈ Reads}) ∈ Reads;

23 Return V ;

24 End Collect;

112

7.3. Upper Bound: k-Lock-Free SWMR Memory with n+ k − 1 Registers

Algorithm Safety

At a high level, the safety of Algorithm 7.1 relies on the following property of register
content stability:

Lemma 7.1. Let, at some point of a run of the algorithm, value (v, id, c) be present in some
register r and such that no process is poised to execute an update on r (i.e., no process is
between taking the snapshot of MEM (line 9) and the update of r (line 12)), then at all
subsequent times (v, id, c) ∈ r, i.e., the value is present in the set of values stored in r.

Proof. Suppose that at time τ , a register r contains (v, id, c) and no process is poised to execute
an update on r. Suppose, by contradiction, that r does not contain it at some time τ ′ > τ .
Let τmin, τmin > τ , be the smallest time such that (v, id, c) is not in r. Therefore, a write
must have been performed on r, by some process q, at time τmin with a view which does not
contain (v, id, c). Such a write can only be performed at line 12, with a view including the last
snapshot of MEM performed by q at line 9. Process q must have performed this snapshot
at some time τS < τ as (v, id, c) is present in r between times τ and τmin and as τS < τmin.
Thus q is poised to write on r at time τ — a contradiction.

The persistence of the values in a specific uncovered register (Lemma 7.1) can be used to
show the persistence of the value of a completed Write operation in MEM:

Lemma 7.2. If process p returns from a Write operation (v, id(p), c) at time τ , then for any
time τ ′ ≥ τ there is a register containing (v, id(p), c).

Proof. Before returning from its Write operation, p takes a snapshot of MEM at some time τS ,
τS < τ (line 9), which returns a view of the memory in which at least n registers contain the
triplet (v, id(p), c). As p is taking a snapshot at time τS , at most n− 1 processes can be poised
to perform an update on some register at time τS . As a process can be poised to perform
an update on at most one register, there can be at most n− 1 distinct registers covered at
time τS . Therefore, at time τS , there is at least one uncovered register containing (v, id(p), c),
let us call it r. By Lemma 7.1, (v, id(p), c) will be present in r at any time τ ′ > τS , and thus,
any time τ ′ > τ .

With Lemma 7.2, we can derive the safety of our SWMR memory implementation (Sec-
tion 7.2):

Theorem 7.1. Algorithm 7.1 safely implements an SWMR memory.

Proof. It can be easily observed that a triplet (v, id, c) corresponds to a unique Write operation
of a value v, performed by the process with identifier id. Therefore, a Collect operation returns
a set of values proposed by Write operations from distinct processes, and thus the map π is
well-defined.

By Lemma 7.2, the value (v, id, c) corresponding to a Write operation completed at time τ
is present in some register r for any time τ ′ > τ . Thus, the set of values resulting from any
snapshot operation performed after time τ contains (v, id, c). Hence, for any complete Collect
operation C, π(C) contains a value for every process which completed a Write operation before
C was invoked. Also, as each value returned by a Collect is the value observed associated to
the greatest sequence number for a given process, it comes from the last completed Write or
from a concurrent one.

113

Chapter 7. Stable Storage in Comparison-Based Models

Algorithm Liveness

We will show, by induction on k, that Algorithm 7.1 satisfies k-lock-freedom. We first
show, as in [DGFGR15], that Write operations of Algorithm 7.1 are 1-lock-free:

Lemma 7.3. Write operations in Algorithm 7.1 satisfy 1-lock-freedom.

Proof. Suppose, by contradiction, that Write operations do not satisfy 1-lock-freedom. Even-
tually, all n first registers are infinitely often updated only by correct processes, unsuccessfully
trying to complete a Write operation. Thus, eventually each of the n first registers contains
the value from one of these incomplete Write operations. As there are at most n− 1 covered
registers when a snapshot is taken, one of these value is eventually permanently present in
some register (Lemma 7.1). So, this value is eventually added to the local view of all correct
processes, and hence, to every update of the registers. Thus, the correct process with this Write
value eventually passes the test on line 15 and completes its operation — a contradiction.

Higher progress conditions are obtained through a helping mechanism: a process making
progress ensures that the processes it observes with a pending operation also make progress.

Lemma 7.4. If a process q performing infinitely many operations sees (v, id(p), c), and if p
is correct, then p eventually completes its cth Write operation.

Proof. By Lemma 7.2, if process q returns from a Write operation with value (v, id(q), c′)
at time τ , then for any time τ ′ ≥ τ there is a register containing (v, id(q), c′). But note
that (v, id(q), c′) is written to a register only associated with q’s local view. Thus, as q
completes an infinite number of Write operations, each local view of q will eventually be forever
present in some register, in particular (v, id(p), c). Thus (v, id(p), c) is eventually observed in
every snapshot taken by correct processes, and, therefore, included in their local view. This
implies that it will eventually be present in every register written infinitely often, in particular
in the first n registers. As p is correct, it eventually sees (v, id(p), c) in n registers for the test
at line 15 and, thus, completes its corresponding cth Write operation.

By a simple inductive proof on k, we can show that k-lock-freedom is satisfied:

Lemma 7.5. Write operations in Algorithm 7.1 satisfy k-lock-freedom.

Proof. We proceed by induction on k, starting with the base case of k = 1 (Lemma 7.3).
Suppose that Write operations satisfy `-lock-freedom for some ` < k. Consider, by ways of
contradiction, a run in which at least ` + 1 processes are correct, but only ` of them make
progress (if such a run doesn’t exist, the algorithm satisfies (`+ 1)-lock-freedom). In this run,
at least one correct process is eventually blocked in performing a Write operation. According
to Lemma 7.4, the ` processes performing infinitely many Write operations eventually do not
observe new values written by other processes. Therefore, by the algorithm, these processes
eventually never write to the last k − ` > 0 registers.

A correct process that never completes a Write operation will execute the while loop
(lines 8–15) infinitely many times, and thus, will infinitely often take a snapshot and update its
local view (line 9). In particular, it will eventually observe a new Write operation performed
by each of the ` processes completing infinitely many Write operations. It will then eventually
include at least `+ 1 processes in its set of active processes (i.e., the ` processes performing
infinitely many Write operations and itself). It will therefore eventually write to the (n+ `)th

114

7.4. Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers

register infinitely often. In the considered run, this register is written infinitely often only by
correct processes which do not complete new Write operations. The value from at least one of
such processes will then be observed by the ` processes making progress. By Lemma 7.4, this
process will eventually complete its Write operation — a contradiction.

Collect operations in Algorithm 7.1 clearly satisfy wait-freedom as there are no loops and
MWMR snapshot operations are wait-free. Thus Lemma 7.5 and the wait-freedom of Collect
operations imply that:

Theorem 7.2. Algorithm 7.1 is a k-lock-free implementation of an SWMR memory for n
processes using n+ k − 1 MWMR registers.

7.4 Lower Bound: 2-Obstruction-Free SWMR Memory Re-
quires n+ 1 Registers

The algorithm in Section 7.3 gives an upper bound of n+ k − 1 on the number of MWMR
registers required to implement an SWMR memory satisfying the k-lock-free progress condition
in the comparison-based model. In this section, we present a lower bound on the number of
MWMR registers required in order to provide a 2-obstruction-free, and hence also a 2-lock-free,
SWMR memory implementation.

7.4.1 Proof Overview

Our proof relies on the concepts of covering and indistinguishability.

A register is covered at a given point of a run if there is at least one process poised to write
to it (we say that the process covers the register). Hence, a covered register cannot be used to
ensure persistence of written data: by awakening the covering process, the adversarial scheduler
can overwrite it. This property alone can be used to show that n registers are required for
an obstruction-free (and hence also for a 1-lock-free) SWMR memory implementation [BL93],
but not to obtain a lower bound of more than n shared resources as there is always one which
remains uncovered.

Indistinguishability captures bounds on the knowledge that a process has of the rest of the
system. Two system states are indistinguishable for a process if it has the same local state in
both states and if the shared memory includes the same content. Thus, in an SWMR memory
implementation, a Write operation can safely terminate only if, in all indistinguishable states,
its value is present in a register that is not covered (by a process unaware of that value).

In our proof, we work with a composed notion of covering and indistinguishability. The
idea is to show that there is a large set of reachable system states, indistinguishable to a given
process p, in which different sets of registers are covered. Intuitively, if a set of registers is
covered in one of these indistinguishable states, p must necessarily write to a register outside
of this set in order to complete a new Write operation. Hence, if such indistinguishable states
exist for all register strict subsets, then p must write its value to all registers. To perform
infinitely many high-level Write operations, p must then write infinitely often to all available
registers. But then any other process p′ taking steps can be masked by the execution of p
(i.e., any write p′ makes to a MWMR register can be scheduled to be immediately overwritten
by p). This way we establish that no 2-obstruction free implementation exists, as it requires
that at least two processes must be able to make progress concurrently.

115

Chapter 7. Stable Storage in Comparison-Based Models

7.4.2 The Notion of Confusion

Assume, by contradiction, that there exists a 2-obstruction-free SWMR implementation
using only n registers. To establish a contradiction, we consider a set of runs by a fixed
set Π of n processes in which every process performs infinitely many Write operations with
monotonically increasing arguments. Let R denote the set of n available registers.

Indistinguishability. A configuration C is said to be indistinguishable from a configuration
C ′ for a set of processes P , if the content of all registers and the states of all processes in P
are identical in C and C ′. Given a set of configurations D, let I(D, P) denote that any two
configurations from D are indistinguishable for P .

We say that an execution is P -only, for a set of processes P , if it consists only of steps
by processes in P . We say that a set of processes P is hidden in an execution α if all writes
in α performed by processes in P are overwritten by some processes not in P , without any
read performed by processes not from P in between. Given a sequence of steps α and a set of
processes P , let α|P be the sub-sequence of α containing only the steps from processes in P .
Let us denote as Dα the set of all configurations reached by applying α to all configurations
in D (note that α must be applicable to all configurations in D).

Observation 7.1. If a P -only execution α is applicable to a configuration C from a set of
configurations D indistinguishable for P , i.e., C ∈ D and I(D, P), then α is applicable to any
configuration C ′ ∈ D, and it maintains the indistinguishability of configurations for P , i.e.,
I(Dα, P).

A similar observation can be made concerning hidden executions:

Observation 7.2. Given an execution α applicable to C, with C from a set of configurations D
indistinguishable for P. If processes in Π \ P are hidden in α, then α|P is applicable to
any C ′ ∈ D, and I((Dα|P) ∪ {Cα}, P).

Coverings and confusion. We say that a set of processes P covers a set of registers R in
some configuration C, if for each register r ∈ R, there is a process p ∈ P such that the next
step of p in C is a write on r (the predicate is denoted Cover(R,P,C)).

Our lower bound result relies on a concept that we call confusion. We say that a set
of processes P are confused on a set of registers S in a set of reachable configurations D,
denoted Confused(P, S,D), if and only if:

1. I(D, P).

2. |S|+ |P | = n+ 1.

3. For any process p ∈ Π \ P , there exists two registers rp, r
′
p ∈ S such that, for any

configuration D ∈ D, there exists D′ ∈ D, such that p covers rp in D and r′p in D′, or
vice versa, and D and D′ are indistinguishable to all other processes:

∀p ∈ Π \ P,∃rp, r′p ∈ S, ∀D ∈ D,∃r ∈ {rp, r′p} :

Cover({r}, {p}, D) ∧ (∃D′ ∈ D, I({D,D′},Π \ {p}) ∧ Cover({rp, r′p} \ {r}, {p}, D′)).

4. For any strict subset R of S, there exists D ∈ D such that R is covered by Π \ P in D:

∀R (S,∃D ∈ D : Cover(R,Π \ P,D).

116

7.4. Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers

p1 p2 p3 p4

r1 r2 r3 r4 r5 r6 r7 r8

Figure 7.1 – A view of 8 registers and processes with couples of independantly covered registers
by processes p1, . . . , p4.

p1 p2p3 p4

r1 r2 r3 r4 r5 r6 r7 r8

Figure 7.2 – A possible covering of r1, r2, r3 and r5 induced by the couples of independantly
covered registers from Figure 7.1.

Intuitively, processes in P are confused on S in D, if D is a set of indistinguishable
configurations for P , such that any strict subset of S is covered by Π\P in some configuration of
D (Conditions 1 and 4). We require that as much processes are confused as possible (Condition
2). Additionally, the property must hold for a set of configurations D in which processes not
in P may cover only one out of 2 given registers, and may cover them independently of other
processes states in D (Condition 3).

Figure 7.1 shows a set of 8 registers r1,. . . ,r8, and processes associated with a couple of
registers they might cover independantly of others. The set of indistinguishable configurations
D for {p5, p6, p7, p8} are defined via composition of states for p1, p2, p3 and p4 in which they,
respectively, cover registers in {r1, r2}, {r2, r3}, {r2, r4} and {r4, r5}. Considering the 24

possible combinations of resulting configurations in D, one can check that the example shows
a confusion of {p5, . . . , p8} on {r1, . . . , r5}. Indeed, by construction, Conditions 1, 2 and 3 are
satisfied and for any strict subset of {r1, . . . , r5} one can associate a process in {p1, . . . , p4}
to cover each register in the selected subset. A possible selection to cover r1, r2, r3 and r5 is
shown in Figure 7.2.

Confusion and graph connectivity.

In Figure 7.3, we propose an alternative representation of the confusion displayed in
Figure 7.1. Registers are represented as nodes, and pairs of registers that a process might
be covering are represented as edges. An example of a covering of {r1, r2, r3, r5} for some
particular execution is presented on the right side of Figure 7.3. The representation as a graph
is interesting as it allows to easily check the validity of Condition 4. Indeed, we are going to
show that Condition 4 is verified if and only if the corresponding graph is connected.

Intuitively, to show that it implies Condition 4, the proof consists in showing that any
strict subset may be covered by taking one of the non-covered register as root of a spanning
tree and making processes cover their edge child (see the right part of Figure 7.3). The reverse
direction leverages the fact that if a non-intersecting cut is possible then, due to Condition 2,
one part cannot be all covered at once. Formally, we show that Condition 4 is satisfied if
and only if, for any partition of S into two non-empty subsets S1 and S2, there is a process
in Π \ P for which the two registers it may be covering in D intersect with both S1 and S2:

117

Chapter 7. Stable Storage in Comparison-Based Models

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

(a) A confusion of {p5, . . . , p8} on {r1, . . . , r5}

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

(b) A covering of {r1, r2, r3, r5} by {p1, . . . , p4}.

Figure 7.3 – Graph representation of processes {p5, p6, p7, p8} confused on {r1, r2, r3, r4, r5}.
A configuration corresponding with the covering from Figure 7.2 is given on the right.

Lemma 7.6. ∀P ⊆ Π,∀S ⊆ R,∀D ⊆ Reach satisfying Conditions 1, 2 and 3 of the confusion
definition, we have ∀R (S, ∃D ∈ D : Cover(R,Π \ P,D) if and only if:

∀S1, S2 ⊆ S, (S1 6= ∅ ∧ S2 6= ∅ ∧ S1 ∪ S2 = S ∧ S1 ∩ S2 = ∅) :

∃r1 ∈ S1, r2 ∈ S2, p ∈ Π \ P,D1, D2 ∈ D : (Cover({r1}, {p}, D1) ∧ Cover({r2}, {p}, D2)) .

Proof. Let us fix some P ⊆ Π, S ⊆ R, and D ⊆ Reach satisfying Conditions 1, 2 and 3 of the
confusion definition.

First, let us assume that Condition 4 is also satisfied and consider any partition of S
into non-empty subsets S1 and S2 (i.e., S1 6= ∅, S2 6= ∅, S1 ∩ S2 = ∅ and S1 ∪ S2 = S).
Assume now that there does not exist any process p ∈ Π \ P such that p might be covering
a register from S1 or a register from S2 in D. This implies that processes in Π \ P can be
partitioned into two subsets Q1 and Q2 (with Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Π \ P) such that
processes in Q1, respectively Q2, may cover registers from S1, respectively S2, in D. By
construction of the partitions, we have |Q1| + |Q2| = |Π \ P | and |S1| + |S2| = |S|. Using
the fact that Condition 2 is satisfied by P and S we obtain from |S| + |P | = n + 1 that
|S1|+ |S2|+ (n − (|Q1|+ |Q2|)) = n + 1, and thus, that |S1|+ |S2| = |Q1|+ |Q2|+ 1. This
implies that either |Q1| < |S1| or |Q2| < |S2|, w.l.o.g., let |Q1| < |R1|. Now consider r ∈ S2,
S \ {r} is a strict subset of S, and therefore Condition 4 implies that there exists D ∈ D such
that Cover(S \ {r},Π \ P,D). As registers in S1 can only be covered by processes from Q1,
then we have Cover(S1, Q1, D). Recall that, by the pigeonhole principle, a set of processes
cannot cover more registers than processes it contains. But |Q1| < |R1| — a contradiction.

Now let us assume that given any partition of S into non-empty subsets S1 and S2, there
exists a process p ∈ Π \ P such that p might be covering a register in S1 or a register in S2

in D. Let us show that any strict subset R of S is covered in some configuration from D
and, hence, that Condition 4 is satisfied. This is done by inductively restricting the set of
configurations from D, by selecting the maximal subset in which some process from Π \ P
may cover only one register. The idea is to select a process which may cover only one not-yet
covered register in R, and to select the subset in which this process covers this register.

Let S0 be a non-empty subset of S. Let p0 be a process from Π\P which might be covering
a register r0 in S0 or a register r′0 in S \S0 in D. Let us assume that such a process exists and
consider D0 to be the subset of D including all configurations in which p0 is covering r′0. Now
let S1 = S0 ∪ {r′0} and repeat this procedure using S1 to select some p1 and compute D1, etc...

118

7.4. Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

Figure 7.4 – Reduced confusion from Figure 7.3 by removing r5 and p4.

As long as a process can be selected satisfying the condition, the sets Si keep increasing with
i. Consider the round j at which the procedure fails to find such a process. This implies that
there is no process which might be covering a register from either Sj or S \ Sj in Dj−1. Note
that by construction Dj−1 is a non-empty subset of D.

If Sj 6= S, then Sj and S \ Sj forms a partition of S into two non-empty subsets. Thus,
by assumption, there exists a process q which might be covering a register rq in Sj or a
register r′q in S \ Sj in D. Consider some configuration D ∈ Dj−1. According to Condition 3
of the confusion definition, as D ∈ D, q is covering either rq or r′q in D, and there exists
a configuration D′ in which q is covering the other register in {rq, r′q}, relatively to D, and
such that D and D′ are indistinguishable to all other processes. As I({D,D′},Π \ {q}), if D
was kept in some restriction of Di−1 towards Di, then D′ was also kept unless q was the
corresponding selected process pi. But if q was selected in an earlier iteration, both rq and r′q
would be included in Sj . Thus D and D′ belong to Dj−1 and therefore q is a valid selection
for pj . This contradiction implies that Sj = S.

By construction, all registers in Sj \ S0 are covered in all configurations in Dj−1. As
this is true for any non-empty S0 and as Sj = S, any strict subset of S is covered in some
configuration of D and therefore Condition 4 is satisfied.

Extracting smaller confusions. Using the representation of the confusion as a connected
graph, it is now relatively simple to extract a confusion on one less register. Intuitively, one of
the edges of a connected graph can always be found such that its removal maitains connectivity
of at least all but one node.

On acyclic graphs as for confusions (due to Condition 2), it corresponds to removing a leaf
and its connecting edge. Figure 7.4 shows for example the confusion of Figure 7.3 where r5 is
removed and p4 is no longer used, alternatively r1 and p1 or r3 and p2 could have been used.

Formally, given any confusion for some P distinct from Π, S and D, we can identify a
process p ∈ Π \P and a register r ∈ S such that P ∪{p} is confused on S \ {r} for a subset D′
of D which includes any given C ∈ D:

Lemma 7.7. Given P (Π, S ⊆ R, D ⊆ Reach: Confused(P, S,D) =⇒
∃p ∈ Π \ P,∃r ∈ S, ∀C ∈ D, ∃D′ ⊆ D : (C ∈ D′) ∧ Confused(P ∪ {p}, S \ {r},D′).
Proof. According to Condition 3, a process may be covering exactly two registers from S
in D, thus, the sum over S of how many distinct processes may cover each register is equal
to 2|Π \ P | = 2(n− |P |). Note that any register r ∈ S may be covered by at least one process
in Π \ P in D as any strict subset of S may be covered (Condition 4). Therefore, there exists
a register rc ∈ S which can be covered by a single process pc ∈ Π \ P in D. Indeed, if all

119

Chapter 7. Stable Storage in Comparison-Based Models

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

p5

Figure 7.5 – Extended confusion from Figure 7.3 by making p5 indistinguishably cover r4 or
r6.

registers in S might be covered by two distinct processes, then, the sum over S of how many
distinct processes may cover each register (equal to 2(n−|P |)), would be greater than or equal
to 2|S|, or n− |P | < |S| as |P |+ |S| = n+ 1 (Condition 2).

Let Dc be the subset of D which includes all configurations in D that are indistinguishable
to pc from any configuration C ∈ D. Let us show that Confused(P ∪ {pc}, S \ {rc},Dc).
Condition 1 holds as by construction all configurations in Dc are indistinguishable to pc and
as they are indistinguishable to all processes in P , since Dc is a subset of D. It is immediate,
as we remove a register from S and add a process to P , that Condition 2 holds.

Now consider any process p ∈ Π\(P∪{pc}) and any configuration D ∈ Dc. As p ∈ Π\P and
D ∈ D, Condition 3 of the confusion definition implies that there exists D′ ∈ D, I({D,D′},Π\
{p}), such that p covers rp and r′p in D and D′ (or vice-versa). Since I({D,D′},Π \ {p}), we
have D′ ∈ Dc. Moreover, as pc is the only process which may cover rc in D, rp and r′p must
belong to S \ {rc}. Condition 3 is therefore verified for P ∪ {p}, S \ {rc} and Dc.

Lastly, let us consider some partition of S \ {rc} into two non-empty subsets S1 and S2.
Both (S1 ∪ {rc},S2) and (S1,S2 ∪ {rc}) form a partition of S in two non-empty subsets. Thus,
as Confused(P, S,D), we can apply Lemma 7.6 and obtain that ∃p1, p2 ∈ Π \ P such that p1,
respectively p2, might cover registers from either S1 ∪ {rc} or S2, respectively either S1 or
S2∪{rc}, in D. It follows that pc cannot be both p1 and p2 as pc might cover only two registers
in D, one of which is rc. W.l.o.g, assume that p1 6= pc. As pc is the only process which may
be covering rc, this implies that p1 might be covering a register from either S1 or S2.

Furthermore, since Conditions 1, 2 and 3 applies to P ∪{p}, S \ {rc} and Dc, we can apply
Lemma 7.6 to obtain that Condition 4 is also verified.

Extending confusions. Increasing the size of the confusion can be done similarly to its
reduction. We need to show that a couple of executions can be applied to all configurations
of the confusion. This executions must be indistinguishable to all but one of the confused
processes, and, moreover, lead this process to be covering a register from the confusion in
one case and outside of the confusion in the other. Indeed, adding an edge from one node of
the connected graph to a non-connected node both maintains connectivity of the edges and
connects a new node. Figure 7.5 shows an example of an extended confusion from Figure 7.3.

Lemma 7.8. Let P (Π, S ⊆ R and D ⊆ Reach such that Confused(P, S,D).

Given C ∈ D, if ∃p ∈ P, r1 ∈ S, r2 ∈ R \ S and if there exists P -only executions α1 and α2

which are applicable to C, and such that I({Cα1, Cα2},Π \ {p}), Cover({r1}, {p}, Cα1) and
Cover({r2}, {p}, Cα2), then we have Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)).

120

7.4. Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers

Proof. Following Observation 7.1, as α1 and α2 are P -only, and as D satisfies Condition 1
for P , (Dα1) ∪ (Dα2) satisfies Condition 1 for P \ {p}. Condition 2 trivially holds for P \ {p}
and S ∪ {r} as it holds for P and S and we remove a process from P and add a register to S.

Condition 3 is satisfied for all processes in Π \ P and configurations in (Dα1) ∪ (Dα2)
as α1 and α2 are P -only, and as D satisfies Condition 3 for any process in Π \ P . Moreover,
as configurations in D are indistinguishable to p ∈ P , p may only cover r1 if D ∈ Dα1 and
cover r2 if D ∈ Dα2. But as given any D ∈ D we have I({Dα1, Dα2},Π \ {p}), Condition 3 is
also satisfied for p.

Since Conditions 1, 2 and 3 are satisfied, we can apply Lemma 7.6 and obtain that
Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)). Indeed, a partition of two non-empty subsets
of S ∪ {r2} can be reduced, unless the partition is (S, {r2}), to a partition of two non-empty
subsets of S. In this case, Lemma 7.6 can be applied for P , S and D, which provides us,
for any partition of S, with a process that may cover in D a register from either set of the
partition. As α1 is P -only, it still holds for Dα1. For the partition (S, {r2}), p may cover
either r1 ∈ S or r2 in (Dα1) ∪ (Dα2).

7.4.3 Lower Bound Proof

To establish our lower bound, we show that there is a set of reachable configuration D in
which there is a process confused on all n registers. Intuitively, we proceed by induction on
the number of “confusing” registers.

Initialization. For the base case, we show that the initial configuration can lead to a
confusion of all but one process on two registers:

Lemma 7.9. ∃D ∈ Reach,∃p ∈ Π,∃S ⊆ R : Confused(Π \ {p}, S,D).

Proof. Consider any two processes p1 and p2. Since the algorithm is comparison-based, the
first write that the two processes perform in a solo execution is on the same register, let us
call it r. Let p1 execute solo until it is about to write to r and then do the same with p2, let
C be the resulting configuration. Consider the execution α from C in which p1 executes until
it is poised to write to a register r′ 6= r and then p2 executes its pending write on r. This
execution is valid as p1 must eventually write to an uncovered register.

We obtain Confused(Π\{p1}, {r, r′}, {Cα,Cα|{p1}}). Indeed, as p1 is hidden in α, following
Observation 7.2, we have I({Cα,Cα|{p1}},Π \ {p1}) (Condition 1). We have |Π \ {p1}| +
|{r, r′}| = n + 1 (Condition 2). As p1 covers r′ in Cα and p1 covers r in Cα|{p1}, we have
Condition 4. Condition 3 directly follows from Conditions 1 and 4 in this setting.

Induction step. We now prove our inductive step: That, given a set of configurations in
which a set of processes, P 6= Π, is confused on a set of registers, S 6= R, we can obtain a
set of configurations in which a set P ′ of processes are confused on a set S′ of strictly more
than |S| registers. To do this, we can show how to construct two executions applicable to D,
indistinguishable to all but one of the confused processes and such that this process covers a
“confusing” register after one of the executions and a non “confusing” register after the other
execution. Then Lemma 7.8 can be applied to obtain the desired extended confusion.

Lemma 7.10. ∃D ⊆ Reach, P (Π, S (R : Confused(P, S,D)
=⇒ ∃D′ ⊆ Reach, P ′ ⊆ Π, S′ ⊆ R, S (S′ : Confused(P ′, S′,D′).

121

Chapter 7. Stable Storage in Comparison-Based Models

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3

p4

(a) Selecting a cover of |S|−1 “confusing” registers.

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3

p4

p5

p6p7 p8

(b) Covering the rest with confused processes.

Figure 7.6 – Covering registers outside of the covering with all but one of the confused
processes.

Proof. Given Confused(P, S,D), consider C ∈ D such that exactly |S| − 1 registers in S
are covered by processes in Π \ P . See for example the selected configuration illustrated in
Figure 7.6a for the confusion from Figure 7.3. Then we can reach a configuration in which
all registers not in S are covered by processes in P . Indeed, when executed solo starting
from C, a process must eventually write to a register that is not covered in C. Thus, it must
eventually write either to a register in R \ S or to the uncovered register in S. Recall that, as
|S|+ |P | = n+1, we have |R\S| = |P |−1. Thus, by concatenating solo executions of processes
in P until they are poised to write to uncovered registers, we reach a configuration Cα in
which all registers are covered. In our example case, we obtain a setting such as the one
illustrated in Figure 7.6b.

Let p be the process in P covering a register from S in Cα (e.g., p7 in Figure 7.6). Note
that, as α is P -only, we have Confused(P, S,Dα). Thus:

Cover(R \ S, P \ {p}, Cα) ∧ Confused(P, S,Dα).

We now extend this set of configurations to make P confused on two distinct sets of
registers. By Lemma 7.7, there exists pc ∈ Π \ P and r ∈ S such that for any C ′ ∈ D we have
Confused(P ∪ {pc}, S \ {r},D′) with C ′ ∈ D′. Let us select C ′ ∈ D to be a configuration in
which pc covers rc ∈ S \ {r} (Since we have Confused(P, S,D), pc ∈ P may cover two registers
from S in D and so at most one can be r). The selection of a reduced confusion is illustrated
in Figure 7.7a, where r5 is removed from the confusion and thus p4 is no longer used.

If p is executed solo from C ′α, it must write infinitely often to all registers in S to ensure
that it writes to an uncovered register. Hence, in a {p, pc}-only execution from C ′α, pc can be
hidden for arbitrary many steps as long as pc does not write to a register outside of S. But, as
the algorithm satisfies 2-obstruction-freedom, pc must eventually write to a register outside of
S in such an execution. Consider the {p, pc}-only execution β from C ′α in which pc is hidden
and such that pc executes until it is poised to write to some register r′ ∈ R \ S. Thus, we get
two configurations C ′αβ and C ′αβ|{p}, indistinguishable to all processes but pc, in which pc
covers, respectively, r′ ∈ R \ S and rc ∈ S. Thus, the conditions of Lemma 7.8 hold for D′, pc,
αβ and αβ|{p} and so we obtain Confused(P, (S ∪ {r′}) \ {r}, (D′αβ) ∪ (D′αβ|{p})).

We therefore manage to obtain an alternative cover of size |S| for the same set of confused
processes but with a distinct set of registers. This new scenario is illustrated in Figure 7.7b,
where r5 is replaced by r6. Note that the initial confusion is still valid after the {p}-only

122

7.4. Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+ 1 Registers

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3
p4

p6

p5

p8

(a) Selecting a reduced covering.

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3
p4

p4

p6 p8

(b) Constructing an alternative cover.

Figure 7.7 – Addition of an alternative covering of the same size and for the same processes.

execution β|{p}. Thus, we obtain the following result:

Cover(R \ S, P \ {p}, Cαβ) ∧ Confused(P, S,Dαβ|{p})∧

Confused(P, S ∪ {r′} \ {r}, (D′αβ) ∪ (D′αβ|{p})).
Moreover, all configurations in the formula above are indistinguishable to processes in P ,

since D′ ⊆ D, I(D, P), αβ is P ∪ {pc}-only and pc is hidden in it (Observation 7.2).
Let p′ be the process from P that covers r′ in Cαβ (e.g., p5 in Figure 7.7). According to p

or p′, every proper subset of S or S ∪{r′} \ {r} may be covered in the current configuration by
Π \ (P ∪ {p, p}) and all other registers covered by P \ {p, p′}. Thus, from Cαβ, to complete a
Write operation, p or p′ must write to all registers in one of the sets S, S ∪{r′} \ {r} or {r, r′}.

Consider any {p, p′}-only extension of Cαβ. If one of {p, p′} covers a register in S \ {r}, r
or r′, then the other process, in any solo extension, must write respectively to all registers
in {r, r′}, S or (S ∪ {r′}) \ {r}. In particular, since p′ covers r′ in Cαβ, p running solo
from Cαβ must eventually cover a register in S \ {r} (Note that S \ {r} 6= ∅, since |P | < n
and |P |+ |S| = n+ 1). Then p′ executes solo afterwards and hence must write to r and r′.
Let us stop p′ when it covers a register r′′ 6= r for the last time before writing to r. Let γ be
the resulting execution, and E = Cαβγ be the resulting configuration.

Let E and E ′ denote the sets of configurations indistinguishable from E to P defined
as Dαβ|{p}γ and (D′αβγ) ∪ (D′αβ|{p}γ) respectively. Note that as γ is P -only, we still have
Confused(P, S, E) and Confused(P, S ∪ {r′} \ {r}, E ′).

Now the following two cases are possible:

1. r′′ 6∈ S ∪ {r′}: In this case, we let p continue until it is poised to write on r, and then,
we let the process from P \ {p, p′} which covers r′′ to proceed to its pending write on r′′.
Let δ be this P -only execution from E in which p′ is hidden. As p′ covers r ∈ S in Eδ
and r′′ ∈ R \ S in Eδ|P\{p′}, as I({Eδ,Eδ|P\{p′}},Π \ {p′}), and as Confused(P, S, E),
we can apply Lemma 7.8 and obtain Confused(P \ {p′}, S ∪ {r′′}, (Eδ) ∪ (Eδ|P\{p′})).
This case where the initial confusion can be extended is illustrated in Figure 7.8a (in
which p′ = p5, r = r5 and r′′ = r8).

2. r′′ ∈ S ∪ {r′}, and so r′′ ∈ (S ∪ {r′}) \ {r}: Then we have the following sub-cases:
— Some step performed by p in a solo execution from E makes p′ to choose a register

other than r to perform its next write in resumed solo extension of p′. Clearly, this
step of p is a write. From the configuration in which p is poised to execute this
“critical” write, let p′ run solo until it is poised to write to r and then let p complete
its pending write. Let Eδ be the resulting configuration.

123

Chapter 7. Stable Storage in Comparison-Based Models

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3
p4 p5

(a) Extension with initial confusion.

r1

r2

r3

r4

r6

r7r5

r8

p1

p2

p3

p4

p5

(b) Extension using alternative confusion.

Figure 7.8 – Two possible extensions of confusion size, either with initial or alternative
confusions.

Now consider the execution in which p completes its “critical” write, then p′ runs solo
until it covers a register r′′′ 6= r. Let Eδ′ be the resulting configuration. Note that as
the states of the memory in Eδ and Eδ′ are identical, we have I({Eδ,Eδ′},Π \ {p′}).
Note that δ and δ′ are P -only executions, and that p′ covers r in Eδ and r′′′ in Eδ′.

(a) If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 7.8,
we obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δ) ∪ (E ′δ′)). In this case the initial
confusion is extended as shown in Figure 7.8a.

(b) If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 7.8, we obtain
Confused(P \ {p′}, (S ∪{r′′′}), (Eδ)∪ (Eδ′)). In this case the alternative confusion
is extended as shown in Figure 7.8b.

— Otherwise, no write of p is “critical”, and we let it run from E until it covers r (recall
that, as p′ covers r′′ ∈ (S ∪ {r′}) \ {r}, p must eventually write to all registers in S
or {r, r′} and, thus, to r). Let then p′ run until it covers r, as p, and let δ be this
execution. From Eδ, let p′ run until it becomes poised to write to a register r′′′ 6= r,
and then let p perform its pending write on r. Let λ be this extension. Note that as
p′ is hidden in λ, we have I({Eδλ,Eδλ|{p′}},Π \ {p}). Note also that δλ and δλ|{p}
are P -only executions such that p′ covers r in Eδλ|{p} and covers r′′′ in Eδλ.
As before, depending on where r′′′ is situated, either the initial confusion or the
alternative confusion may be extended (both cases are illustrated in Figure 7.8):

(a) If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 7.8, we
obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δλ) ∪ (E ′δλ|{p})).

(b) If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 7.8, we obtain
Confused(P \ {p′}, (S ∪ {r′′′}), (Eδλ) ∪ (Eδλ|{p})).

Proof conclusion. Our lower bound directly follows from the initialization case proved in
Lemma 7.9 and the inductive step proof shown in Lemma 7.10:

Theorem 7.3. Any n-process comparison-based 2-obstruction-free SWMR memory implemen-
tation requires n+ 1 MWMR registers.

Proof. By contradiction, suppose that an n-register algorithm exists. We show, by induction,
that there is a reachable configuration in which a process is confused on all registers. Lemma 7.9
shows that there exists a reachable configuration in which n− 1 processes are confused on two

124

7.5. Related Problems

registers. We can therefore apply Lemma 7.10 and obtain a configuration with a confusion
with strictly more registers. By induction, there exists then a set of configurations D and
p ∈ Π such that Confused({p},R,D).

Thus, any strict subset ofR is covered by the remaining n−1 processes in some configuration
in the (indistinguishable for p) set of configurations D. But p may complete a Write operation
if and only its write value is present in a register which is not covered (by a process not aware
of its value) in any of the configurations indistinguishable to p. Therefore, in an infinite solo
execution, p must write infinitely often to all registers. But then, any arbitrary long execution
by any other process can be hidden by incorporating sufficiently many steps of p, violating
2-obstruction-freedom—a contradiction.

7.5 Related Problems

In this section, we provide a brief look at a couple of related problems. We first show how
resilience can be used to use less registers. Then, we introduce a stronger problem of SWMR
allocation, necessary to solve for time optimal implementations. Lastly, we study the problem
of stable storage in an anonymous system with an unbounded number of participants.

7.5.1 Resilient SWMR Memory Implementation.

Our algorithm presented in Section 7.3 works in a wait-free system in which all (but one)
of the participating processes may fail by crashing. As we are going to show, if resilience
assumptions are made, then less than n registers are sufficient. We consider here that at most t
out of the n participants may fail by crashing. We show that in this setting, (n−t)-lock-freedom
can be achieved using only t+ 1 registers.

Algorithm description. The Algorithm is presented in Algorithm 7.2. An operation is
represented as a quadruplet (ValueType, IdType, IdType,N), corresponding respectively with,
the written value, the identifier of the process which issues operation, the identifier of the
process which propagated the operation and an operation counter. Processes go through a
loop until the following condition is satisfied: If a write operation is known to have been
propagated by m processes and if it is present in a snapshot in ` registers, then m+ ` must be
strictly greater than n.

In each loop, processes first take a snapshot of the memory. Each operation quadruplet
that was not observed before is added to their view, along with the same operation in which
the “propagator” is replaced by the process own identifier. Then, processes check whether
there is a register which does not contain their own view. If so, the smallest such register
is updated with the process current view. Otherwise, processes end the loop without any
modification of the memory.

Note that it is assumed that processes must perform write operations infinitely often. This
assumption is not meaningless, it restricts its use when dealing short lived problems. Indeed,
(n− t) processes make progress, thus not necessarily all correct processes. But, if they do not
stop participating, then other processes cannot be guaranteed progress afterwards.

Algorithm’s proof sketch. Let us give a proof sketch of the algorithm safety first. A
process terminates only when it has observed m processes “propagating” their own write

125

Chapter 7. Stable Storage in Comparison-Based Models

Algorithm 7.2: (n− t)-lock-free t-resilient SWMR memory using t+ 1 registers.

1 View : list of quadruplets of type (ValueType, IdType, IdType,N), initially set to ∅;
2 opCounter ∈ N, initially set to 0;

3 Write(v):
4 View = View ∪ (v, id , id , opCounter);
5 do
6 Snap = MEM .snapshot();
7 forall (v, id1 , id2 , opCounter) ∈ Snap do
8 View = View ∪ {(v, id1 , id2 , opCounter), (v, id1 , id , opCounter)};
9 if ∃j ∈ {1, . . . , t+ 1}|Snap[j] 6= View then

10 writePos = min ({j ∈ {1, . . . , t+ 1}|Snap[j] 6= View});
11 Update(MEM [writePos],View);

12 while |{j ∈ {1, . . . , t+ 1}|(v, id , , opCounter) ∈ Snap[j]}|+
13 |{k ∈ IdType|∃j ∈ {1, . . . , t} : (v, id , k, opCounter) ∈ Snap[j]}| ≤ n;
14 opCounter = opCounter + 1;

15 End Write;

16 Collect():
17 Reads = MEM .snapshot();
18 V = ∅;
19 forall pid such that (, pid, ,) ∈ Reads do
20 V = V ∪ {v} with v such that (v, pid , ,max{c ∈ N, (, pid , , c) ∈ Reads}) ∈ Reads;
21 Return V ;

22 End Collect;

operation (including itself). Therefore, at most n−m processes may not have observed the
write value. But, the write operation value is present in strictly more than n−m registers.
Thus one is not covered by a process unaware of the operation. This register will therefore
always contain the operation value. In a read operation, processes will thus see this write
value and return it, unless a value corresponding to a latter write operation is observed and
returned. Thus the set of write operations returned is always valid.

Let us now give a proof sketch of liveness properties. By assumption, there are at least n−t
correct processes. Let us show that, if processes proceed to infinitely many write operations,
then at least n− t processes terminate infinitely many such operations. Assume that this is
not the case. Thus, eventually, only m < n− t processes complete new operations.

First, assume that m > 1. Let p be a process terminating infinitely many write operations.
Each time p terminates an operation, p must have seen its operation propagated by at least
n − t processes. Indeed, the value can be observed in at most all the t + 1 registers. Thus
one of the processes propagating p operations must be eventually blocked. But this process
propagates p operations only associated to its own blocked operation. As p operations complete,
then all processes must see p values in any latter read. Thus all registers written infinitely
often eventually always contain q blocked write operation and the fact that it is propagated
by processes propagating p values infinitely often. Thus q must eventually pass the test, a
contradiction.

Now assume that m = 0. Thus, eventually no new write operations are completed. It
implies that processes views stop being modified eventually. At this point, a process cannot
learn new information. Thus all processes with the less information stop writing the registers.

126

7.5. Related Problems

This implies that, if a correct process has more information, then it cannot be over-written.
Thus its information will be seen by other processes with less information, a contradiction. All
correct processes thus have the same information. There are at least n− t correct processes.
Each knows its current write operation. Thus all correct processes know all correct processes
current operations. But once a process learns of an operation, it propagates it. Thus all correct
processes know that all correct processes propagated their own value. Moreover, as the same
information is present in all registers, all correct processes see their own operation present in
the t+ 1 registers. Thus correct processes pass the test of the while loop and complete their
current operation, a contradiction.

Remarks. It is not too difficult to see that the t-resilient algorithm can, as it is done in
Algorithm 7.1, use extra registers to provide extra liveness. Indeed, this time, the kth extra
register is used only if at least n− t+ k − 1 processes are observed as making progress. This
way, using t + k + 1 registers, we can provide a (n − t + k)-lock-freedom SWMR memory
implementation. In particular, if 2t + 1 registers are available, then a progress can be
guaranteed to all correct processes in a t-resilient system. Thus, if t < (n− 1)/2 we obtain an
implementation providing progress to all correct processes with less registers than the number
of participating processes.

When dealing with task solvability issues, using only t+ 2 registers may be sufficient to
provide outputs to all processes. Indeed, the t-resilient algorithm can be used on the first t+ 1
registers while the last register is used only by non-terminated processes. In this setting at
least n− t processes make progress, including a non-terminated one which must thus eventually
terminate. Note that for colorless tasks, t+ 1 registers are sufficient since a terminated process
is guaranteed to proceed to infinitely write operation, hence its output can be returned by all
processes. Thus, in particular, (t+ 1)-set consensus can be solved in a t-resilient system with
only t+ 1 registers.

7.5.2 SWMR Allocation

Now, instead of wondering if less registers can be used in a stronger system, let us consider
the time complexity of SWMR memory implementation. A natural question that arises when
implementing an SWMR memory is whether or not writing to multiple registers to ensure
persistence is a necessary requirement. If 2n− 1 registers are available, one could be tempted
to apply a renaming algorithm and then use the register associated with the new name as a
SWMR register. But applying a renaming algorithm already requires some communication.
While 2n− 1 registers are sufficient to implement an SWMR memory, nothing ensures that
when a process is attributed a name j, the renaming algorithm will not use anymore the
register of rank j. This leads to an interesting problem of SWMR allocation.

Definition. In the SWMR allocation problem on m MWMR registers, processes have access
to a single one-shot operation Allocate(Id) accessed with the process unique identifier. The
operation returns an integer j in {1, . . . ,m} such that the following properties are satisfied:

— Unicity : No two processes obtain the same integer as output.
— Avaibility : If j is returned to some process at time τ , then no process can write to

register j after time τ in the allocation algorithm.
— Termination: All correct processes must eventually terminate.

127

Chapter 7. Stable Storage in Comparison-Based Models

Contrary to the SWMR memory problem, this is a one-shot problem. Yet, it is not too
difficult to see that a solution to the SWMR allocation problem with a linear number of
registers implies a time optimal, wait-free, SWMR memory implementation. Indeed, processes
can use the allocation algorithm and then use the allocated register as an SWMR register.
Write operations thus consists in a single write to the allocated registers, collect operations
can just collect the content of all registers.

SWMR allocation vs. renaming. The SWMR allocation problem can be trivially solved
if 3n− 1 registers are available. Indeed, processes can use the n first registers to implement
a lock-free SWMR memory. Using this emulated SWMR memory, processes can execute a
renaming algorithm providing all processes with distinct names in the range {1, . . . , 2n− 1}.
Processes can then simply return the name obtained plus n to solve the SWMR allocation
problem. Note that lock-freedom is sufficient to ensure that all correct processes terminate.
Indeed, a terminated process will no longer compete to proceed to write operations. Moreover,
as allocated registers and registers used for the SWMR memory implementation do not
intersect, there are no possible conflicts.

Concerning lower bounds, it is easy to see that a solution to the allocation problem on M
registers implies a solution to the renaming task on M names. Indeed, the renaming task on
M names is identical except for the removal of the avaibility property. This implies that the
allocation problem requires at least 2n− 2 register or 2n− 1 registers depending on the value
of n. Still, a gap of n registers remains between the lower and upper bounds trivially provided
by the bounds known on the renaming task.

SWMR allacation vs. splitters. A splitter [MA95] is a very simple abstraction, which
partitions participating processes in several groups. Formally, a splitter can be accessed
by a single operation Split(Id) which returns right , down or stop and satisfies the following
properties:

— Solo-stop: If a single process participates, stop must be returned.
— Stop-unicity : At most one process can return stop.
— Partition: If two or more processes participate, not all participating processes can

return the same value.
— Termination: All correct processes must eventually terminate.

Splitters are pertinent as one can be implemented with only two MWMR registers, one of
which may even be a boolean register. A sequence of m splitters can even be implemented
using m+ 1 registers, by combining the use of the second register of a splitter with the first
register of a subsequent splitter.

Using a single splitter, two processes can solve the SWMR allocation problem using only
three registers. The solution is presented in Algorithm 7.3. Processes first put their identifier
in the first register. Then they check if the second register is already written. In this case
they return 2 for the SWMR allocation problem (corresponding with down for the splitter).
Otherwise, the process writes the second register and after reads the first register. If the first
register contains the process identifier, then 3 is returned (case stop), otherwise 1 is returned
(case right).

Showing that Algorithm 7.3 solves the allocation problem is not very difficult. For two
processes, a splitter can provide only distinct outputs. Thus the unicity property is verified
(the proof of the splitter is assumed, see [MA95]). Termination is trivial. Now for Avaibility,

128

7.5. Related Problems

Algorithm 7.3: Optimal splitter-based SWMR allocation for 2 processes.

1 Allocate(Id):
2 Write(MEM [1], Id);
3 closed = Read(MEM [2]);
4 if closed 6= true then
5 Write(MEM [2], true);
6 winner = Read(MEM [0]);
7 if winner = Id then Return 3;
8 else Return 1;

9 else Return 2;

10 End Allocate;

only the first two registers may be written to. If a process obtains 1, then the other process
already wrote to it as its identifier is read from it. If 2 is obtained, the process does not write
it and the register has been already written, hence by the other process.

Unfortunately, splitter-based renaming algorithms use a quadratic number of splitters and
provide as many distinct names. Thus even if it can be used for an optimal 2 process SWMR
allocation using only three registers, it does not seem to be generalizable to more. The 2
process case just provides evidence that allocating registers used by the allocation algorithm
is feasible and that the upper bound is not tight.

7.5.3 Anonymous and Adaptive Stable Storage

Now, instead of increasing assumptions on the system or increasing the problem difficulty,
one can look at how much the system can be weaken while still being able to implement a
stable storage.

Adaptive SWMR memory. One way to weaken further the model assumptions is to
assume that no bound on the number of potential participants is known. A finite number of
processes may participate, but there can be arbitrary many of them. Such a system is called
the unknown comparison-based model. A solution in this model is necessarily adaptive, the
number of used registers depends on the actual execution.

This problem was recently studied in [DGFGL13]. They manage to provide an adaptation
which uses a linear number of registers, relatively to the level of participation p. They first
provide a participation estimation using at most p+ 1 registers. This estimation ensures that
all processes which observe the same participation size have the same estimated participation.
Then, the true participation is computed by sharing the estimated participation sets to register
corresponding to their size. Hence at most p additional registers may be used. Using the known
participation, processes then execute an SWMR memory implementation for the participation
size such as Algorithm 7.1. But each time an operation is about to complete, processes must
check the participation to verify it has not evolved. If it changed, the operation is cancelled
and tried again for the new participation size.

This adaptive implementation working in unknown comparison-based systems use 3p+ k
registers when k-lock-freedom is provided. No results exists for lower bounds on the number
of required registers. It can be trivially shown that p registers are not sufficient, even for
lock-freedom. But stronger lower bounds are much complex to derive.

129

Chapter 7. Stable Storage in Comparison-Based Models

Anonymous stable storage. Another way to weaken the system model consists in removing
the assumption that processes have a unique identifier. In the worst setting, processes all have
the same identifier, or equivalently, have no identifiers at all. If processes do not have any
identifier, the system is said to be anonymous.

In an anonymous system, the SWMR memory problem is not well defined as it assumes
that write operations are associated with processes. But two processes with the same write
operation may not be identifiable. Yet, the notion of stable storage can still be provided.
Yanagisawa introduced in [Yan16] the problem of weak-set implementation. The problem is
defined using two operation addToSet(v) which take a value and return nothing and getSet()
which takes no argument and must return a set of values. Each returned values must correspond
to the argument of a previously initiated addToSet operation. Moreover, the set must contain
all values corresponding with previously terminated addToSet operations.

In [DGFRY18], an optimal lock-free implementation using n registers is provided. It is
almost identical to the comparison-based implementation, the use of identifiers is simply
removed. Providing better liveness guarantees is not much more complicated. The principle of
Algorithm 7.1 can be applied. The only difference concerns the detection of active processes.
Without identifiers, counting processes is not possible and counting new added values can
count the same process multiple times. Thus, processes need to share all their operations
history. Then new added values are counted only if they correspond to distinct histories. Note
that only the longest non-conflicting histories must be counted (they conflict if one is a prefix
of another). Contrary to k-lock-free implementations, the algorithm improved for resilient
systems does not generalize to anonymous systems. Indeed, correct processes may attempt to
add the same value and therefore cannot be counted.

Unknown and anonymous value-based implementation. Difficulties arrive if the sys-
tem is assumed to be anonymous and unknown at the same time. In this setting, implementing
a weak-set abstraction is much more difficult. We provide here a very costly algorithm which
adapts to the range of added values.

Algorithm 7.4: Weak-set implementation for unknown and anonymous systems.

1 addToSet(v):
2 Write(MEM [rank(v)], v);
3 forall j ∈ {1, . . . , dlog2(rank(v))e} do
4 Write(INDEX [j], true);

5 End addToSet ;

6 getSet():
7 indexCount = 1;
8 while Read(INDEX [indexCount]) do indexCount+ = 1 ;
9 view = ∅;

10 forall j ∈ {1, . . . , 2indexCount} do
11 if Read(MEM [j]) 6= ⊥ then view = view ∪ {Read(MEM [j])} ;
12 else Return view ;

13 End getSet ;

The solution is presented in Algorithm 7.4. The principle is as simple as it can be. A
process trying to add value v simply writes v in the register indexed with the rank of v among
possible values. For example, if values are natural integers, processes adding k simply write k

130

7.5. Related Problems

to register k. A written value cannot be overwritten as all writes to the register have the same
value. Yet, this is not sufficient as getSet() operations do not know when to stop searching
for values. For this, a process which wrote to the register with index k, then write true to
the first dlog(k)e registers of another array of MWMR registers called INDEX . As for other
registers, all write operations put the same value, thus once a write is complete, the content
does not change anymore.

A getSet() can thus simply read the INDEX array until a non-initialized register is found.
Let k be this register. Then all registers with an index between 0 and 2k return the set of all
values found in the registers.

Registers instability. The difficulty in anonymous systems is the possible presence of
clones, i.e., multiple processes with the same input and the same execution. Clones are
undetectable in an execution, until they start behaving distinctly from each other. If a bound
on the number of participants is known, then a bound on the number of clones is known. In
an unknown system, there can be arbitrary many clones of any process. In particular, each
time a register is written, with some value v, then an arbitrary large number of clones may be
stopped poised to write v to the register. This leads to the following observation:

Observation 7.3. In an anonymous and unknown system, a value may persist in memory
only if it is written to a non-written and non-covered register (not covered by processes unaware
of the written value).

This observation can be used to simply show that the number of registers used in an
implementation must scale linearly with the number of distinct values added to the weak-set.

Theorem 7.4. A weak-set implementation in an anonymous and unknown system requires at
least ` registers to complete ` addToSet operation of distinct values.

Proof. Let us show this by induction on `. Initialization is trivial for ` = 0. Now assume that
it is verified for ` = k. Assume that a process starts from this point a new addToSet operation
of a non-previously proposed value. According to Observation 7.3, a not-previously written
register must be written in order to complete the operation. As by assumption k registers are
already been written, after completion at least k + 1 registers have been written.

The fact that the number of used register must scale with the number of distinct added
values, shows that the solution of Algorithm 7.4 is almost optimal when added values are
dense, i.e., if the added value with the greatest rank has rank k then most of values with a
smallest rank are added to the weak-set.

Solo-space complexity. We have shown that the number of used register must scale
with the number of distinct added values. But, if added values are very sparse, a better
implementation which adapts to the number of added values could still be possible. We are
going to see that it is not the case by showing that a single addToSet operation by a single
process requires an unbounded number of registers.

A classical complexity metric is the solo-step complexity which counts how many steps
a process execution solo must perform. Here we consider the solo-space complexity which
counts how many distinct registers must be written in order to complete an operation.

131

Chapter 7. Stable Storage in Comparison-Based Models

Lemma 7.11. The solo-space complexity of an operation is not constant, it depends on the
rank of the written value.

Proof. Assume by contradiction that ` registers are always sufficient when a single addToSet
operation is performed by a single process. Let αv be a solo execution of a process p performing
addToSet(v). Let v1, . . . , vmv be the sequence of all registers written in αv, ordered by the
first write performed on them. The sequence forms a word of size at most ` on an alphabet of
` letters. Thus, if arbitrary many values may be added to the weak-set, there must exists two
values v and v′ with the same sequence, i.e., with mv = mv′ and v1, . . . , vmv = v′1, . . . , v

′
mv .

Let us decompose the executions in mv + 1 parts, αv = α1
v . . . α

mv+1
v , each part stopping

just before a register is about to be written for the first time. We observed that clones can be
stopped covering all written registers with the same value to write to it. Thus we can add in
the execution, in between each part, a block write of clones which overwrite previously written
registers with the last written value in the execution. Let βiv be the block write of all written
registers in α1

v . . . α
i
v. Thus α1

vβ
1
v . . . β

mv
v αmv+1

v is indistinguishable from αv.

Now, consider the following mix of these executions with block writes by clones for v and v′.
First α1

v, then α1
v′ followed by alternating sequences of βivα

i+1
v and βiv′α

i+1
v′ . In α1

v and α1
v′ , no

registers are written, then before each αi+1
v and αi+1

v′ a block write of all previously written
registers is made by clones in order to restore the memory state to the case in which only v
or v′ is added to the weak-set. Thus both v and v′ are added successfully to the weak-set.
Thus, a getSet operation should return both values. But the memory is in the same state as
after αv′ alone, in which a getSet operation should return only value v′ — A contradiction.

While our algorithm is probably far from optimal, the two lower bounds shows the inherent
large complexity of the problem of implementing a stable storage in an anonymous and
unknown system. Improving algorithms and lower bounds appears to be an interesting issue,
but already with our partial results, it seems that in practice, providing a deterministic stable
storage implementation is too costly. A probabilistic implementation may be more adequate
in such systems.

7.6 Concluding Remarks

This chapter shows that the optimal space complexity of SWMR implementations depends
on the desired progress condition: lock-free algorithms trivially require n registers, while
2-obstruction-free ones (and, thus, also 2-lock-free ones) require n+ 1 registers. We also extend
the upper bound to k-lock-freedom, for all k = 1, . . . , n, by presenting a k-lock-free SWMR
implementation using n+k−1 registers. A natural conjecture is that the algorithm is optimal,
i.e., no such algorithm exists for n + k − 2 registers for all k = 1, . . . , n. Since for k = 1, 2
and n, k-obstruction-freedom and k-lock-freedom impose the same space complexity, it also
appears natural to expect that this is also true for all k = 1, . . . , n.

An interesting corollary to our results is that to implement a 2-obstruction-free SWMR
memory we need strictly more registers than to implement a 1-lock-free one. But the two
properties are, in general, incomparable: a 2-solo run in which only one process makes progress
satisfies 1-lock-freedom, but not 2-obstruction-freedom, and a run in which 3 or more processes
are correct but no progress is made satisfies 2-obstruction-freedom, but not 1-lock-freedom. The
relative costs of incomparable progress properties, e.g., in the (`, k)-freedom spectrum [BG15],
are yet to be understood.

132

7.6. Concluding Remarks

We also introduced related problems and showed that the stronger problem of SWMR
allocation is an intriguing problem with interesting links to the classical problem of renaming.
Moreover, as SWMR allocation is the key to a step optimal SWMR memory implementation,
understanding the subtleties of SWMR allocation is an interesting question to study further.

We also provide an interesting first glimpse at the inherent costly space complexity of a
stable storage implementation in an unknown and anonymous system. In this setting, we saw
that providing large registers is not very useful as they can be more or less only used as a
one-shot object, and binary registers may prove to be as convenient. The most interesting
question in such systems is how efficient a weak-set implementation can be when only a small
number of values from a large set are added.

133

134

Chapter 8

Conclusion and Open Questions

This thesis studied task computability of a wide variety of shared-memory models. In
particular, we suggested a simple combinatorial way to characterize task computability of
a model via iterations of affine tasks, pure sub-complexes of finitely many iterations of the
standard chromatic subdivision.

The last part of the thesis dealt with the space complexity of a class of comparison-based
algorithms. In particular, we exhibited a tradeoff between the progress conditions satisfied by
a stable-storage implementation and its memory requirements. See Chapter 7 for more details
about these complexity issues and Section 7.6 for related concluding remarks.

Below we list implications and open questions that can be drawn from our work on the
computability issues in shared-memory models.

8.1 Distributed Simulations

Distributed simulations are crucial tools when dealing with computability issues. Indeed,
we can leverage the ability of a model to simulate another to reduce task computability issues
of the former model to the latter. In Chapter 3, we reviewed existing simulation techniques
available for shared memory models and generalized the agreement-based simulation prototypes
proposed earlier [GG09,GG11]. It provides us with a compelling simulation technique that is
relatively simple to apply, as shown in its applications in Chapter 4.

Universal simulation. With the improvement of the simulation techniques and their
increased range of possible applications, a natural question arises: is there a universal and
optimal simulation scheme?

A first issue lies in a proper formal definition of what is a distributed simulation. Intuitively,
it is not too difficult to grasp what is a distributed simulation, relying on the ability to execute
steps for simulated processes and an underlying synchronization protocol. But providing a
formal framework is much more intricate. In Chapter 3, we relied on an approach consisting
in having simulators selecting operations to try to simulate by choosing a set of suitable
candidates based on the known state of the simulated system.

Another issue relies on a definition of what is a distributed model. One way can consist in
considering infinite regular languages over the full information protocol on an atomic snapshot
memory. But does it indeed grasp all classical models that we may wish to consider such
as models enhanced with distributed objects? We also need to define what is a distributed

135

Chapter 8. Conclusion and Open Questions

problem. On this issue, recent work from Castañeda et al. [CRR15, CRR17] proposed a
formal definition of a notion of long-lived tasks and an equivalent implementation notion for
distributed objects called interval-linearizability that may prove itself to grasp all pertinent
distributed problems.

Only with a formal definition of distributed problems and models we can give a proper
formalization of what does it means for a model to simulate another one: M simulates M ′ if
M can solve any problem given a solution to it in M ′. Note that in this thesis we already
weaken this condition by only considering distributed tasks. Given this notion, a first natural
requirement of a universal simulation should be that any model can simulate itself. While
this may appear trivial, given an abstract layer of simulation, this is already a very complex
issue. Moreover, if a model M can solve any problem solvable in M ′, then it is only natural to
require that M should be able to simulate M ′.

While showing that a simulation technique is optimal may be too optimistic, with so many
complicated issues to resolve, a more straightforward yet still pertinent question would be to
compare simulations techniques. For example, we believe that our agreement-based simulation
is strictly stronger than all other simulations presented in this thesis. But formally showing
such a claim requires to construct reductions between simulation techniques and their possible
applications that is interesting but simple to do.

Simulations and topological reductions. Another interesting issue with simulations
concerns their topological interpretations. As discussed in this thesis, the possible executions
of a model lead to sets of possible configurations of the system which can be represented
as a simplicial complex. In this setting, a simulation can be seen as transforming a set of
configurations into another one. Hence, a simulation can be seen as merely a simplicial map
from a base model to the simulated model. Trying to understand the type of mapping which can
be constructed by a simulation technique and trying to understand topological transformation
tools regarding them as distributed simulations are compelling issues to investigate.

Trying to interpret the simplicial approximation and the convergence algorithms as sim-
ulations may provide interesting insights about the possible simulation techniques. In the
latter case, the construction in an algorithmic fashion can already help the interpretation. The
convergence algorithm is implemented in the wait-free model, and an interesting issue could
be to understand what can be solved using a combination of a distributed simulation with the
convergence algorithm or how the convergence algorithm can be improved with resilience-based
or agreement-based synchronization capabilities.

Similarly, trying to understand what type of topological transformation can be carried out
using our agreement-based simulation is an intriguing issue. Probably, the structure of the
solvable affine task can shed some light about the possible topological transformations. But
whether such a simulation can be used directly or if some additional layer should be used to
transform simplicial complexes is yet to be determined.

Reduction to wait-free solvability. Traditional applications of distributed simulations
concern the reduction of task solvability issues from one model to another. In this thesis, we
focused on showing that different models can solve the same set of tasks. Hence, the reduction
is direct as the simulated model is used to solve the same task in another model. A more
generic approach can be used to show that the solvability of one task in a given model can be
reduced to the solvability of another task in the simulated model. It allows for example to

136

8.2. Measuring Models Relative Task Computability

reduce task computability issues between models corresponding to distinct system sizes.

In particular, task computability issues have been reduced to the wait-free model. For
example, in [Gaf09], the solvability of a task in the n-process t-resilient model is reduced to
the solvability of another task in the n− t-process wait-free model. Surprisingly, this reduction
is made for all tasks and not just colorless tasks which may be defined independently of the
system size. As reducing computability issues to a single class of models is very convenient,
trying to use the improved simulation technique to reduce task solvability of other models
such as adversaries or collections of set-consensus objects to a wait-free model is an interesting
issue. But it is not clear whether such a reduction is even possible in general, yet it can
probably be done for more adversaries than just the small class of t-resilient adversaries.

8.2 Measuring Models Relative Task Computability

In Chapter 4, we introduced the notion of an agreement function. Agreement functions
express the ability of models to solve variations of set consensus tasks. Compared to our original
proposal [KR17], the definition of an agreement function proposed in this thesis accounts for
both restrictions on (1) the set of participating processes in the non-trivial executions and,
additionally, (2) the set of processes which may compete for agreement. Agreement functions
are then used, through our agreement-based simulation, to relate the computational power of
models such as adversaries, active resilience and collections of set-consensus objects.

We believe that agreement functions can be a pertinent notion in search of a measure
of the relative task computability power of shared-memory models. Unfortunately, many
questions are left to answer to understand what can be shown as regards this issue.

Computability of agreement functions. A first issue that should be resolved is to
understand if agreement functions are computable. The solvability of a task is undecidable
in general, but we believe that the solvability of the set consensus tasks considered in the
computation of agreement function is likely decidable. But while the solvability of set consensus
tasks has been studied in many models, no results are known for generic model definitions.
Hence, showing that agreement functions are computable and, even more, providing an
algorithm providing them for any shared-memory model is an interesting problem to investigate.

Agreement functions of affine models. A probably more straightforward issue to resolve
would be to compute the agreement function of affine models. We believe that this should be
a much simpler issue than computing agreement functions for models defined as restrictions of
sets of AS runs for example. For example, computing the agreement power under a limited
participation P can be reduced to the sub-complex intersecting the face of s correspond
ing to P . When dealing with a limited set of competitors, one can merely remove vertices
corresponding to other processes and thus obtain a lower dimensional simplex.

The issue is then to show how solutions to the distinct agreement tasks can be combined
in a global simulation. We think that such a simulation could be constructed, at least when
the agreement tasks can be solved using a single iteration of the affine task. Given such a
generic construction could then help to simplify the proof of equivalence from an affine model
to a model with the same agreement function. For affine tasks defined for fair adversarial
models, we showed that the operations of a complex adaptive set-consensus protocol can be
simulated. Instead, we could merely have to prove that some agreement tasks are solvable.

137

Chapter 8. Conclusion and Open Questions

Relations between simulations and agreement functions. The main issue with our
definition of agreement functions and their implication concerning the measure of the relative
task computability of shared-memory models is its correspondence with the agreement-based
synchronization of our simulation technique. In this thesis, we did not resolve this issue
satisfyingly, as we focused on suffix-closed models with possible accesses to infinitely many
copies of some shared objects. Hence, if a task is solvable, it is solvable with external inputs
provided at any time.

In general, this is not the case. For example for a model ensuring that the participating
set includes at least two processes, we cannot solve (n− 1)-set agreement with external inputs
provided after the first steps of the processes. But solving operations with external inputs
is stronger than what is required to run our agreement-based simulation. Indeed, while any
number of set-consensus operations with inputs that are not initially known to the processes
must be solved, the inputs are not external but based on the result of preceding operations.
Hence, it is possible that the agreement function of a model determines its synchronization
power in the simulation protocol. Determining whether this is the case or not is a crucial issue
that is not answered in this thesis.

Answering this question is primordial in understanding if the agreement function measure
can indeed be used to compute at least a partial order on models relative task computability
power or not. Only once this first question is answered, one will be able to investigate
another question: Are models with the same agreement power indeed equivalent regarding
task solvability? Or, does a refined measure should be provided to reach this goal?

8.3 Affine Tasks

In Chapter 6, we generalized all existing topological characterizations of distributed com-
puting models [HS99,HR12,GKM14,GHKR16,SHG16]. It applies to all tasks (not necessarily
colorless) and all fair adversarial models (not necessarily t-resilience or k-obstruction-freedom).
Additionally, we considered models beyond the scope of conventional adversaries: k-test-and-
set models. Just as the wait-free characterization [HS99] implies that the IS task captures the
wait-free model, our characterization equates considered models with a (compact) affine task
embedded in the second degree of the standard chromatic subdivision.

We believe that our work is merely a first glimpse at affine tasks and their pertinence for the
study of task computability of shared-memory models. We know that affine tasks can be used
to grasp the task computability of shared-memory models beyond our examples. Moreover,
we think that studying their structures may yield a better understanding of distributed
computability. In particular, they can be used to determine whether the general undecidability
of task solvability also applies to the question of models relative task computability.

Affine Tasks for all Shared-Memory Models?

In this thesis, we have shown that affine tasks can be used to characterize large classes of
shared-memory models. But the main issue is left open, that is, whether affine tasks apply to
all shared-memory models or just to well-behaved families of models.

Limits of the affine models. A first issue lies in the definition we provide for affine models.
We only considered models defined by iterating a single affine task. But it can be checked

138

8.3. Affine Tasks

(a) One iteration of the affine task (b) Second iteration of the affine task

Figure 8.1 – First and second iteration of the candidate affine task for the wake-up adversarial
model with participation equal to {p1, p2}, {p1, p3} or {p1, p2, p3}.

relatively easily that such affine models cannot grasp all shared-memory models. One can
look at the wake-up adversarial model, stating which set of processes may form the set of
participating processes in a valid run. For example, the t-resilient wake-up adversary stipulates
that the participating set must include at least n− t processes.

Let us consider the 3-process wake-up adversarial model where the participating set might
be equal to {p1, p2}, {p1, p3} or {p1, p2, p3}. Runs in which p1 takes the first step and crash
followed by a wait-free execution of {p2, p3} are valid runs for the model. By reduction to the
2-process wait-free model, it is easy to see that consensus among {p2, p3} is not solvable. But,
it is easy to see that an affine task capturing the task computability of this model should have
no vertices with a carrier equal to {p2, p3} or {p1} since they are not valid participating sets.
But the weakest affine task with this property, depicted in Figure 8.1a, can solve consensus
among {p2, p3}. Indeed, if we iterate the affine task twice, as depicted in Figure 8.1b, we
obtain a disconnected affine task for which there is a trivial solution to this agreement task.
Therefore, no affine models can be defined to capture this model in our current definition.

Generalized Affine Models. One way to resolve this issue brought by models with short-
lived properties is to replace the definition of affine models to use two affine tasks instead
of one. A first affine task is used initially once, while the other is used afterward in an
iterated manner. The definition is similar to constructs used in [SHG16], which shows that
iterating the t-resilient affine task is equivalent to the model consisting on a single iteration
of this affine task followed by iterations of the standard chromatic subdivision. It leads to a
generalized definition of an affine model by a couple of affine tasks R and Q and the of IIS
runs corresponding to RQ∗.

It can be observed that the composition of affine tasks of the same dimension also forms an
affine task. Hence, allowing the combination of one iteration of an affine task with infinitely
many iterations of another one is equivalent to allowing any finite prefix followed by a repeating
pattern. It does not necessarily correspond to all infinite sequences of affine tasks, but it is
close to matching any regular infinite sequence.

We believe that such a generalized affine model is likely to grasp most if not all shared-
memory models. A first point of interest is to determine if such a definition indeed captures
any possible infinite affine task, that is an infinite regular language over possible IIS runs.

139

Chapter 8. Conclusion and Open Questions

Composition and extrapolation of affine tasks. As we observed, composing two affine
tasks of the same dimension creates an affine task. Hence, a natural way to construct elaborate
affine tasks is to compose a finite set of “basic” affine tasks.

Another complementary way to construct affine tasks can be done by “extrapolating” on
lower dimension affine tasks. Given an m-process affine task, one can build an n-process affine
task for m > n by merely taking all simplices for which the face corresponding to the m
particular processes belongs to the provided affine task.

We believe that using this two operations should result in a simple construction of affine
tasks corresponding to many models. For example, it is relatively easy to be convinced
that by extrapolating an affine task corresponding to the 2-process test-and-set model to a
3-process affine task, we obtain an affine task corresponding to a wait-free model enhanced
with test-and-set objects among a single selected couple of processes. But we can create three
affine tasks, each one corresponding to the wait-free model with test-and-set objects among a
given possible couple of processes. Lastly, by combining these three affine tasks, we should
obtain an affine task corresponding to the 3-process test-and-set model. While this example
can be rather easily shown to be correct and indeed capture the 3-process test-and-set model, it
does not provide a solution more straightforward than the one proposed in this thesis. Indeed,
this would produce by construction an affine task corresponding to the third iteration of Chr
instead of a single iteration. But this approach could be applied to more complex models.

Affine task for local models. We believe that the composition and extrapolation of affine
tasks could provide a simple way to define affine tasks corresponding to at least the class of
local models. Indeed, similarly to the test-and-set model, local models are defined by their
ability to solve set consensus tasks among any given subset. As we have shown, such models
can be reduced to the class of models defined through a collection of set consensus objects.
Hence, it should be sufficient to construct affine tasks corresponding to each set consensus
object in the collection (providing some level of agreement among a given set of processes).
Given such affine tasks, there are good reasons to think that their composition should produce
an affine task corresponding to the model defined by the collection of objects.

Moreover, to construct an affine task corresponding to the wait-free model with access
to objects solving k-set consensus among a given subset Q, one could use the extrapolation
method. Indeed, when we restrict the executions to steps of processes in Q, we are provided
with a classical k-plain model for which we have proposed an equivalent affine model. Then,
extrapolating this affine task defined on Q to the full system should indeed produce an affine
task corresponding to the wait-free model enhanced with k-set consensus objects among Q.
The composition of these affine tasks, providing an affine task sub-complex of many iterations
of Chr, is then a very likely candidate to characterize the collection of set-consensus objects
model. We hope that this methodology may even go further in providing an affine task
characterizing all regular models, such as generic adversarial models.

Reduction to Wait-Free Solvability

Similarly to distributed simulations, affine tasks could provide us with a way to reduce the
task computability issue in a given model to a task computability issue in the wait-free model.

Reduction for t-resilience. The characterization of t-resilience by Saraph et al. in [SHG16]
can be used to reduce task solvability issues to the wait-free model. They showed that a task

140

8.3. Affine Tasks

is solvable in the t-resilient model if and only if it is solvable in the model where RAt−res is
applied once and is then followed by iterations of the standard subdivision. Hence, a task
T = (I,O,∆) is solvable in the t-resilient model if and only if the task T ′ = (RAt−res (I),O,∆)
is wait-free solvable.

We can apply this reduction to any generalized affine model RQ∗, by merely applying R to
the input complex. It allows reducing the solvability of any task to the affine model Q∗. Hence,
for a generalized affine model under the form RChr∗, this method enables to reduce task
solvability issues to the wait-free model. Consequently, determining shared-memory models
can be captured by such generalized affine models is an important issue to investigate.

The case of link-connected affine tasks. We believe that this could be achieved for all
models which can be characterized by link-connected affine tasks. The approach from [SHG16] is
likely to apply to all “stable” affine tasks, i.e., affine tasks conserving their carrier connectivities
under iterations. One way to define stability could be for example to require that any variations
of set consensus tasks considered in Chapter 4 solvable with iterations of the affine task should
be solvable after a single iteration. An example of “unstable” affine task was given for our
previous example, with the first and second iterations depicted in Figure 8.1. Moreover, we
also believe that any affine task can be made stable by iterating it a computable number
of times. Note that the decidability of stability could be determined as a corollary of the
decidability of computing agreement functions for affine models.

The case of link-disconnected affine tasks. We believe that this reduction to a gener-
alized affine model with iteration of the standard chromatic subdivision applies also to models
which cannot be characterized by link-connected affine tasks such as k-plain models. We
believe that for these affine tasks, applying the affine task Rk once, followed by iterations of
the standard chromatic subdivision, is indeed equivalent to R∗k. Intuitively, the reason is that
the link-disconnectivity is somehow “orthogonal” to the mininal carrier-preserving continuous
retraction of the affine task. We believe that this is also the case for fair adversarial models.

Unfortunately, this is not true for all models as it cannot be achieved for the test-and-set
model. Consider the 3-process test-and-set model. Its matching affine task creates paths
between each couple of corners through link-disconnected points. When iterated, the path gets
longer and longer, and the number of link-disconnected vertices in the path strictly increases.
The second and third iterations of the affine task are illustrated in Figure 8.2, and we can
see the stable path with growing link-disconnectivity between the corners. But the image
through a simplicial map of a link-connected component must be a link-connected component.
Moreover, for a carrier-preserving map, the image of a path connecting two corners must also
be such a path. Hence, RkT&S Chr∗ cannot solve the task Rk+1

T&S .
While this is not sufficient to prove that task solvability cannot be reduced to wait-free

solvability, it cannot be achieved through this technique. Understanding the limits of this
methodology and the limits of reductions to wait-free solvability is a relevant issue that may
also share insights about the possibilities and limits of distributed simulations.

Decidability of Affine Tasks

The last issue that we would like to point out is about whether the simulation or solvability
of one affine model by another is a decidable question or not. It has been shown that
in general, the problem of whether a task is solvable in a model or not is unfortunately

141

Chapter 8. Conclusion and Open Questions

(a) Second iteration of Rk−T&S (b) Third iteration of Rk−T&S

Figure 8.2 – Second and third iterations of the affine task characterizing the 3-proces test-and-
set model.

undecidable [GK99,HR97]. But we believe that the solvability of the restricted class of affine
tasks is decidable, and hence, the comparison of the relative task computability of models
characterized by affine tasks.

Decomposing by connected components. The first observation that can be made is to
see that the computability of affine tasks can be studied for each of their connected components.
Indeed, a task is solvable in an affine model if and only if it is solvable in all affine models
corresponding to a single of its connected component. Showing that it is a necessary condition
is trivial as a single connected component is a subset of the global affine task. The reverse is
not more complicated as after each iteration, processes know to which connected component
the execution corresponds. Hence, processes can split their executions into smaller executions
matching the restricted affine models. All executions must advance at the same pace in all
projected models, and thus they agree on which model provide the first solution to the task.

The issue of stability. As illustrated by the example of Figures 8.1a and 8.1b, iterations
of an affine task can modify its shape. We believe that computing a “stable” equivalent affine
task is a decidable question. Solving this issue is likely to be required to show whether the
solvability of affine tasks in affine models is a decidable problem. Providing an equivalent
affine task which can solve all solvable variations of set consensus tasks among different subsets
and under a varying participation in a single round can indeed be much helpful.

Link-connected affine tasks. For a single-component link-connected affine task, the
decidability issue is very likely to be decidable. Indeed, we believe that the geometric
realization of a single-component link-connected affine task can be continuously retracted in a
carrier-preserving manner to a unique minimal sub-complex of the barycentric subdivision.
Moreover, if the affine task is stable, iterations of it should retract to the same minimal
sub-complex.

If this is shown to be the case, then one affine task can solve another affine task if and
only if its minimal retraction is a subset of the other affine task retraction. Indeed, if it is the
case, then the convergence algorithm provides a solution as the affine tasks are link-connected.

142

8.3. Affine Tasks

If it is not the case, then showing that no solution exists would come from the fact that a
solution would imply a continuous map which can continuously retract in a carrier-preserving
manner to a subset of the other affine task continuous retraction. Hence, contradicting the
initial assumption.

Link-disconnected affine tasks. A first approach could consist in, as for link-connected
affine tasks, to compute the minimal carrier-preserving continuous retraction to a sub-complex
of the barycentric subdivision of the geometric realization of its connected components. It
would correspond to considering the weaker link-connected affine model stronger of the affine
task. Hence, it can be used to show that an affine task is not stronger than another, but it
cannot be used to confirm the existence of a solution.

We think that some information about the type of link-disconnectivity can be added
to the minimal retraction to a sub-complex of the barycentric subdivision of s. It would
have to provide information about whether the link-disconnectivity is “orthogonal” or if it
presents a link-disconnectivity pattern repeating under iterations. We believe that if sufficient
information is computed about the type of disconnectivity, then the existence of a solution
could be computed by determining if the relative link-disconnectivity is weaker, stronger or
incomparable.

While this question is somewhat complicated to tackle, we believe that it is a tractable
issue and that the relative task computability power of models is a decidable question. Showing
such a result would provide great insight about distributed computability of shared-memory
models, especially if affine models can be used to characterize the task computability of all
shared-memory models.

143

144

List of Figures

Chapter 1: Introduction

1.1 Example of IS runs on the left and the set of all IS runs represented as a
simplicial complex on the right. 8

Chapter 2: Preliminaries

2.1 Examples of valid sets of IS outputs. 20

Chapter 4: Agreement Functions

4.1 Relations between agreement function properties. 58

4.2 Relations between agreement function properties. 60

4.3 Integration of adversary families, active resilience and collection of set-consensus
objects inside a representation of agreement function classes. 64

Chapter 5: Combinatorial Topology

5.1 First and second iteration of the 2-dimensionnal barycentric subdivision of s. . 68

5.2 Second iteration of the 2-dimensionnal standard chromatic subdivision of s. . 69

Chapter 6: Affine Tasks

6.1 A 3-processes affine task including the “interior” simplices of Chr2 s2. 74

6.2 3-processes affine tasks R1−T&S and R2−T&S with their facets displayed in blue. 79

6.3 Representation, in a 3-processes system, of all 2-contention simplices in Chr2 s
and some detailed IS runs. 87

6.4 Facets of R1 and R2 in blue on top of the edges, in black, of Chr2 s. 88

6.5 Critical simplices are displayed in orange (with p2 the top vertex, p1 the bottom
left vertex and p3 the bottom right vertex). 92

6.6 Simplices in black, orange and green are mapped to concurrency levels of 0, 1
and 2 respectively (with p2 the top vertex, p1 the bottom left vertex and p3 the
bottom right vertex). 94

145

List of Figures

6.7 Some examples of affine tasks RA in blue (with p2 the top vertex, p1 the bottom
left vertex and p3 the bottom right vertex). 95

Chapter 7: Stable Storage in Comparison-Based Models

7.1 A view of 8 registers and processes with couples of independantly covered
registers by processes p1, . . . , p4. 117

7.2 A possible covering of r1, r2, r3 and r5 induced by the couples of independantly
covered registers from Figure 7.1. 117

7.3 Graph representation of processes {p5, p6, p7, p8} confused on {r1, r2, r3, r4, r5}.
A configuration corresponding with the covering from Figure 7.2 is given on
the right. 118

7.4 Reduced confusion from Figure 7.3 by removing r5 and p4. 119
7.5 Extended confusion from Figure 7.3 by making p5 indistinguishably cover r4 or

r6. 120
7.6 Covering registers outside of the covering with all but one of the confused

processes. 122
7.7 Addition of an alternative covering of the same size and for the same processes. 123
7.8 Two possible extensions of confusion size, either with initial or alternative

confusions. 124

8.1 First and second iteration of the candidate affine task for the wake-up adversarial
model with participation equal to {p1, p2}, {p1, p3} or {p1, p2, p3}. 139

8.2 Second and third iterations of the affine task characterizing the 3-proces test-
and-set model. 142

146

List of Algorithms

Chapter 2: Preliminaries

2.1 Level-based immediate snapshot implementation for pi. 21
2.2 Simulation of the AS memory in the IIS model for pi. 23

Chapter 3: Distributed Simulations

3.1 Shared memory simulation for simulator si. 26
3.2 Safe-agreement protocol for process i. 29
3.3 BG simulation for simulator si. 30
3.4 Commit-abort object: algorithm for process i. 34
3.5 Abortable memory simulation for simulator si. 35
3.6 Abortable BG simulation for simulator si. 37
3.7 Round-based simulation for simulator si. 41
3.8 Dispatcher for process pi. 44
3.9 Agreement-based simulation for simulator si. 45
3.10 Adaptive set-consensus for t-resilient systems (for process pi). 48

Chapter 4: Agreement Functions

Chapter 6: Affine Tasks

6.1 Solving Rk−T&S for process pi. 80
6.2 Solution to Rk in the n-processes (k + 1)-active-resilient model for process pi. . 88
6.3 Resolution of RA in the α-model for process pi. 95

Chapter 7: Stable Storage in Comparison-Based Models

7.1 k-lock-free SWMR implementation using n+ k − 1 MWMR registers. 112
7.2 (n− t)-lock-free t-resilient SWMR memory using t+ 1 registers. 126
7.3 Optimal splitter-based SWMR allocation for 2 processes. 129
7.4 Weak-set implementation for unknown and anonymous systems. 130

147

148

Bibliography

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. Atomic snapshots of shared memory. Journal of the ACM, 40(4):873–890,
September 1993.

[ABND+90] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an
asynchronous environment. Journal of the ACM, 37(3):524–548, 1990.

[AE14] James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory
of Computing Systems, 55(3):451–474, 2014.

[AGR+06] Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, and Corentin Travers.
Simultaneous consensus tasks: A tighter characterization of set-consensus. In
ICDCN, pages 331–341, 2006.

[AM97] James H Anderson and Mark Moir. Using local-spin k-exclusion algorithms to
improve wait-free object implementations. Distributed Computing, 11(1):1–20,
1997.

[BG93a] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for
t-resilient asynchronous computations. In STOC, pages 91–100. ACM Press, May
1993.

[BG93b] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renam-
ing. In PODC, pages 41–51, New York, NY, USA, 1993. ACM Press.

[BG97] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characteri-
zation of wait-free computation (extended abstract). In PODC ’97: Proceedings
of the sixteenth annual ACM symposium on Principles of distributed computing,
pages 189–198, New York, NY, USA, 1997. ACM Press.

[BG15] Victor Bushkov and Rachid Guerraoui. Safety-liveness exclusion in distributed
computing. In 34th ACM Symposium on Principles of Distributed Computing,
PODC ’15, pages 227–236, 2015.

[BGK14] Zohir Bouzid, Eli Gafni, and Petr Kuznetsov. Strong equivalence relations for
iterated models. In OPODIS, pages 139–154, 2014.

[BGLR01] Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG
distributed simulation algorithm. Distributed Computing, 14(3):127–146, 2001.

[BL93] James E Burns and Nancy A Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171–184, 1993.

[BRS15] Zohir Bouzid, Michel Raynal, and Pierre Sutra. Anonymous obstruction-free (n,
k)-set agreement with n-k+1 atomic read/write registers. In 19th International
Conference on Principles of Distributed Systems, OPODIS ’15, pages 18:1–18:17,
2015.

149

Bibliography

[Cha90] Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems
in totally asynchronous systems. In Proceedings of the 9th ACM Symposium
on Principles of Distributed Computing, pages 311–324, Québec City, Québec,
Canada, August 1990.

[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus problems in
totally asynchronous systems. Information and Computation, 105(1):132–158,
1993.

[CR10] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds
for renaming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010.

[CR12] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds
for renaming: The upper bound. J. ACM, 59(1):3:1–3:49, 2012.

[CRR15] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Specifying concurrent
problems: beyond linearizability and up to tasks. In International Symposium
on Distributed Computing, pages 420–435. Springer, 2015.

[CRR17] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Long-lived tasks. In
International Conference on Networked Systems, pages 439–454. Springer, 2017.

[DFGR13] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum.
Black art: Obstruction-free k-set agreement with |mwmr registers| < |proccesses|.
In 1st International Conference on Networked Systems, NETYS ’13, pages 28–41,
2013.

[DFKR15] Carole Delporte-Gallet, Hugues Fauconnier, Petr Kuznetsov, and Eric Ruppert.
On the space complexity of set agreement. In 34th ACM Symposium on Principles
of Distributed Computing, PODC ’15, pages 271–280, 2015.

[DFRR16] Carole Delporte, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal.
t-resilient immediate snapshot is impossible. In International Colloquium on
Structural Information and Communication Complexity, pages 177–191. Springer,
2016.

[DGFGK16] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr Kuznetsov:.
Set-consensus collections are decidable. In OPODIS, 2016.

[DGFGL13] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Leslie Lamport. Adap-
tive register allocation with a linear number of registers. In 27th International
Symposium on Distributed Computing, DISC ’13, pages 269–283, 2013.

[DGFGR15] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum.
Linear space bootstrap communication schemes. Theoretical Computer Science,
561:122–133, 2015.

[DGFGT11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas
Tielmann. The disagreement power of an adversary. Distributed Computing,
24(3-4):137–147, 2011.

[DGFRY18] Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Nayuta Yanag-
isawa. A characterization of t-resilient solvable colorless tasks in anonymous
shared-memory model. In SIROCCO, page 15, 2018.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569–, September 1965.

150

Bibliography

[FFR06] Panagiota Fatourou, Faith Ellen Fich, and Eric Ruppert. Time-space tradeoffs for
implementations of snapshots. In 38th ACM Symposium on Theory of Computing,
STOC ’06, pages 169–178, 2006.

[FGRR14] Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, and Matthieu Roy. Automatically
adjusting concurrency to the level of synchrony. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014.
Proceedings, pages 1–15, 2014.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[Gaf98] Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying syn-
chrony and asynchrony. In Proceedings of the 17th Symposium on Principles of
Distributed Computing, 1998.

[Gaf09] Eli Gafni. The extended BG-simulation and the characterization of t-resiliency.
In STOC, pages 85–92, 2009.

[GG09] Eli Gafni and Rachid Guerraoui. Simulating few by many: Limited concurrency
= set consensus. Technical report, UCLA and EPFL, 2009.

[GG11] Eli Gafni and Rachid Guerraoui. Generalized universality. In Proceedings of
the 22nd international conference on Concurrency theory, CONCUR’11, pages
17–27, Berlin, Heidelberg, 2011. Springer-Verlag.

[GHKR16] Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-Write Memory
and k-Set Consensus as an Affine Task. In 20th International Conference on
Principles of Distributed Systems (OPODIS 2016), volume 70 of LIPIcs, pages
6:1–6:17, 2016.

[GK99] Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable. SIAM
J. Comput., 28(3):970–983, 1999.

[GK10] Eli Gafni and Petr Kuznetsov. Turning adversaries into friends: Simplified, made
constructive, and extended. In OPODIS, pages 380–394, 2010.

[GK11] Eli Gafni and Petr Kuznetsov. Relating L-Resilience and Wait-Freedom via
Hitting Sets. In ICDCN, pages 191–202, 2011.

[GKM14] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous
computability theorem. In ACM Symposium on Principles of Distributed Com-
puting, PODC ’14, Paris, France, July 15-18, 2014, pages 222–231, 2014.

[GR10] Eli Gafni and Sergio Rajsbaum. Distributed programming with tasks. In
Principles of Distributed Systems - 14th International Conference, OPODIS
2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings, pages 205–218, 2010.

[GRT07] Eli Gafni, Michel Raynal, and Corentin Travers. Test & set, adaptive renaming
and set agreement: A guided visit to asynchronous computability. In SRDS,
pages 93–102, 2007.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):123–149, January 1991.

[HKR14] Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing
Through Combinatorial Topology. Morgan Kaufmann, 2014.

151

Bibliography

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchro-
nization: Double-ended queues as an example. In ICDCS, pages 522–529, 2003.

[HR97] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision
tasks (extended abstract). In STOC, pages 589–598, 1997.

[HR12] Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless
tasks. In PODC, pages 253–260, 2012.

[HS93] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for
t-resilient tasks. In Proceedings of the 25th ACM Symposium on Theory of
Computing, pages 111–120, May 1993.

[HS99] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous
computability. Journal of the ACM, 46(2):858–923, 1999.

[IKR17] Damien Imbs, Petr Kuznetsov, and Thibault Rieutord. Progress-Space Tradeoffs
in Single-Writer Memory Implementations. In 21st International Conference on
Principles of Distributed Systems (OPODIS 2017), volume 95 of LIPIcs, pages
9:1–9:17, 2017.

[IR09] Damien Imbs and Michel Raynal. Visiting gafni’s reduction land: From the bg
simulation to the extended bg simulation. In SSS, pages 369–383, 2009.

[JTT96] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for
non-blocking implementations (preliminary version). In 15th ACM Symposium
on Principles of Distributed Computing, PODC ’96, pages 257–266, 1996.

[Kön26] Dénes König. Sur les correspondances multivoques des ensembles. Fundamenta
mathematicae, 1(8):114–134, 1926.

[Koz12] Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology,
Homotopy and Applications, 14(1):1–13, 2012.

[KR17] Petr Kuznetsov and Thibault Rieutord. Agreement functions for distributed
computing models. In Networked Systems (NETYS), volume 10299 of LNCS,
pages 175–190, 2017.

[KRH17] Petr Kuznetsov, Thibault Rieutord, and Yuan He. Brief Announcement: Compact
Topology of Shared-Memory Adversaries. In 31st International Symposium on
Distributed Computing (DISC 2017), volume 91 of LIPIcs, pages 56:1–56:4, 2017.

[KRH18] Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability
theorem for fair adversaries. In 37th ACM Symposium on Principles of Distributed
Computing, PODC ’18, pages 387–396, 2018.

[Kuz12] Petr Kuznetsov. Understanding non-uniform failure models. Bulletin of the
EATCS, 106:53–77, 2012.

[Kuz13] Petr Kuznetsov. Universal model simulation: Bg and extended bg as examples.
In Stabilization, Safety, and Security of Distributed Systems, pages 17–31, 2013.

[LAA87] M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163–183,
1987.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, 1974.

152

Bibliography

[Lam86] Leslie Lamport. On interprocess communication; part I and II. Distributed
Computing, 1(2):77–101, 1986.

[MA95] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived
renaming. Science of Computer Programming, 25(1):1–39, 1995.

[MRT06] Achour Mostéfaoui, Michel Raynal, and Corentin Travers. Exploring gafni’s
reduction land: From mega to wait-free adaptive (2p-[p/k])-renaming via k-set
agreement. In DISC, pages 1–15, 2006.

[Ram30] Frank P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, 30:264286, 1930.

[SHG16] Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability
theorems for t-resilient systems. In DISC, pages 428–441, 2016.

[SHG18] Vikram Saraph, Maurice Herlihy, and Eli Gafni. An algorithmic approach to the
asynchronous computability theorem. Journal of Applied and Computational
Topology, pages 1–24, 2018.

[Spa66] Edwin H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[Spe28] Emanuel Sperner. Neuer beweis für die invarianz der dimensionszahl und des
gebietes. In Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, volume 6, pages 265–272, 1928.

[SZ93] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible:
The topology of public knowledge. In Proceedings of the 25th ACM Symposium
on Theory of Computing, pages 101–110. ACM Press, May 1993.

[SZ00] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible:
The topology of public knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

[Tau09] Gadi Taubenfeld. Contention-sensitive data structures and algorithms. In 23rd
International Conference on Distributed Computing, DISC’09, pages 157–171,
2009.

[Tau10] Gadi Taubenfeld. The computational structure of progress conditions. In DISC,
2010.

[Tur37] Alan M Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society, 2(1):230–265,
1937.

[Yan16] Nayuta Yanagisawa. Wait-free solvability of colorless tasks in anonymous shared-
memory model. In 18th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, SSS ’06, pages 415–429, 2016.

[Zhu16] Leqi Zhu. A tight space bound for consensus. In 48th ACM Symposium on
Theory of Computing, STOC ’16, pages 345–350, 2016.

153

154

Titre: Caractérisation Combinatoire de la Calculabilité Distribuée Asynchrone
Mots clés: calculabilité distribuée; topologie combinatoire; mémoire partagée asynchrone; simulations
distribuées; tâches affines;

Résumé: Les systèmes informatiques modernes
sont des systèmes distribués, allant de multiples
processeurs sur une même puce à des systèmes
internet de large échelle. Dans cette thèse nous
étudions les problèmes de calculabilité et de com-
plexité dans les systèmes distribués asynchrones
communiquant par mémoire partagée.
Dans la première et majeure partie de cette thèse,
nous étudions la capacité des modèles commu-
niquant par mémoire partagée à résoudre des
tâches distribuées. Notre première contribution
est une technique de simulation distribuée utilisant
la capacité d’accord du système afin de synchro-
niser les différents processus entre eux. Cette
technique de simulation permet de comparer la
capacité de différents modèles à résoudre des
tâches distribuées. À l’aide de cet outil, nous
montrons que pour les modèles d’adversaires
en mémoire partagée, la capacité à résoudre un
ensemble particulier de tâches d’accord permet
de déterminer sa capacité à résoudre n’importe
quelle tâche distribuée. Nous utilisons ensuite

les outils issus de la topologie combinatoire afin
de caractériser la calculabilité des modèles par
le biais de tâches affines: des complexes sim-
pliciaux extraits d’itérations finies de la sous-
division colorée standard. Cette caractérisation
s’applique aux modèles dits sans-attente avec
accès à des objets de “k-test-and-set” ainsi qu’à
un large ensemble de modèles d’adversaires
en mémoire partagée dits équitables. Ces
résultats généralisent et améliorent toutes les car-
actérisations topologiques connues de la capacité
à résoudre des tâches pour les modèles commu-
niquant par mémoire partagée.
Dans la seconde partie de la thèse, nous étudions
la complexité spatiale de l’implémentation d’un
stockage fiable, c.à.d., assurant qu’une valeur
écrite en mémoire est persistante, dans le modèle
à base de comparaison où seuls les identifiants
peuvent être comparés. Nos résultats montrent
l’existence d’un compromis non-trivial entre la
complexité spatiale d’une implémentation et les
garanties de vivacité qu’elle apporte.

Title: Combinatorial Characterization of Asynchronous Distributed Computability
Keywords: distributed computability; combinatorial topology; asynchronous shared memory; dis-
tributed simulations; affine tasks;

Abstract: Modern computing systems are dis-
tributed, ranging from single-chip multi-processors
to large-scale internet systems. In this thesis, we
study computability and complexity issues rais-
ing in asynchronous crash-prone shared memory
systems.
The major part of this thesis is devoted to char-
acterizing the power of a shared memory model
to solve distributed tasks. Our first contribution
is a refined and extended agreement-based sim-
ulation technique that allows us to reason about
the relative task computability of shared-memory
models. Using this simulation technique, we show
that the task computability of a shared-memory
adversarial model is grasped by its ability to solve
specific agreement tasks. We then use the lan-
guage of combinatorial topology to characterize

the task computability of shared-memory models
via affine tasks: sub-complexes of a finite iteration
of the standard chromatic subdivision. Our charac-
terization applies to the wait-free model enhanced
with k-test-and-set objects and a to large class
of fair adversarial models. These results general-
ize and improve all previously derived topological
characterizations of the task computability power
of shared memory models.
In the second part of the thesis, we focus on space
complexity of implementing stable storage, i.e., en-
suring that written values persists in memory, in
the comparison-based model using multi-writer
registers. Our results exhibit a non-trivial tradeoff
between space complexity of stable-storage im-
plementations and the progress guarantees they
provide.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de lOrme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Distributed Computability in Shared-Memory Models
	Simulations and Iterated Models
	Distributed Computing through Combinatorial Topology
	Contributions
	Organization
	Publications

	Preliminaries
	Basic Notions
	Shared-Memory Models
	Distributed Tasks
	IIS Model

	Distributed Simulations
	Relating Models via Agreement-Based Simulations
	Safe Agreement and BG Simulation
	Abortable BG Simulation
	Round-Based Simulation
	Agreement-Based Simulation

	Agreement Functions
	Definition of Agreement Functions
	Properties and Classification of Agreement Functions
	Fairness through Active Resilience
	Agreement Functions for Adversaries
	Shared-Memory Models and Agreement Functions

	Combinatorial Topology
	Simplicial Complexes
	Basic Operations
	Subdivisions
	Characterization of the Wait-Free Model

	Affine Tasks
	Preliminaries
	Affine Tasks for k-Test-and-Set
	Affine Tasks for k-Obstruction-Free Adversaries
	Affine Tasks for Fair Adversaires
	Definition of RA
	Solving RA in the alpha-Model
	From RA* to the Fair Adversarial A-Model

	Stable Storage in Comparison-Based Models
	Motivation
	Model
	Upper Bound: k-Lock-Free SWMR Memory with n+k-1 Registers
	Lower Bound: 2-Obstruction-Free SWMR Memory Requires n+1 Registers
	Proof Overview
	The Notion of Confusion
	Lower Bound Proof

	Related Problems
	Resilient SWMR Memory Implementation.
	SWMR Allocation
	Anonymous and Adaptive Stable Storage

	Concluding Remarks

	Conclusion and Open Questions
	Distributed Simulations
	Measuring Models Relative Task Computability
	Affine Tasks

	List of Figures
	List of Algorithms
	Bibliography

