
HAL Id: tel-02939539
https://pastel.hal.science/tel-02939539

Submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for evaluating forest ecological
vulnerability in tropical deforestation fronts from the

assessment of forest degradation in a landscape
approach : Case studies from Brazil and Vietnam

Clément Bourgoin

To cite this version:
Clément Bourgoin. A framework for evaluating forest ecological vulnerability in tropical deforestation
fronts from the assessment of forest degradation in a landscape approach : Case studies from Brazil
and Vietnam. Geography. Institut agronomique, vétérinaire et forestier de France, 2019. English.
�NNT : 2019IAVF0027�. �tel-02939539�

https://pastel.hal.science/tel-02939539
https://hal.archives-ouvertes.fr


NNT : 2019IAVF0027 

 

THESE DE DOCTORAT 
préparée à l’Institut des sciences et industries du vivant et de l’environnement (AgroParisTech) 

pour obtenir le grade de  

Docteur de l’Institut agronomique vétérinaire et forestier de France 

Spécialité : Géographie 

École doctorale n°581 
Agriculture, alimentation, biologie, environnement et santé (ABIES) 

 

par 

 

Clément BOURGOIN 
 

A framework for evaluating forest ecological vulnerability in tropical 

deforestation fronts from the assessment of forest degradation in a landscape 

approach: Case studies from Brazil and Vietnam 

 

Directeur de thèse : Valéry GOND 
Co-directeur de la thèse : Lilian BLANC  

 

Thèse présentée et soutenue à Montpellier, le 18.12.2019 : 

Composition du jury : 

Mme Sandra LUQUE, Directeur de Recherche, IRSTEA Montpellier Présidente 

M. Frédéric GOSSELIN, ICPEF (HDR), IRSTEA Nogent-sur-Vernisson Rapporteur 

M. Frédéric ACHARD, Chercheur, JRC Italie Rapporteur 

Mme Aurélie SHAPIRO, Chercheur, WWF Berlin Examinatrice 

M. Maxime REJOU-MECHAIN, Chargé de Recherche, IRD Montpellier Examinateur 

Mme Laurence MOY, Professeur des Universités, Université de Rennes-2 Rennes Examinatrice 

M. Yves LAUMONIER, Chercheur, CIRAD Indonésie Examinateur 

M. Valéry GOND, Chercheur, CIRAD Montpellier Directeur de thèse 

 

 
 

CIRAD UPR 105 – Forets et Sociétés  
Campus international de Baillarguet 

34398 Montpellier cedex 5 



1 
 

  



2 
 

A framework for evaluating forest ecological vulnerability 

in tropical deforestation fronts from the assessment of 

forest degradation in a landscape approach: 

Case studies from Brazil and Vietnam 

 

Clément Bourgoin 

Supervised by Valéry Gond, Lilian Blanc, Louis Reymondin, Peter Läderach and Johan Oszwald 

 

A thesis presented for the degree of Doctor at 

AgroParisTech 

  



3 
 

 

 

 

 

 

 

  



4 
 

Content 
 

CHAPTER 1 - GENERAL INTRODUCTION .......................................................................................................... 20 

1.1 BACKGROUND ........................................................................................................................................... 22 
1.2 KEY CONCEPTS LINKING FOREST DEGRADATION WITH BROADER LANDSCAPE DYNAMICS TO ASSESS FOREST VULNERABILITY ..... 26 

1.2.1 Forest degradation......................................................................................................................... 26 
1.2.2 Landscape approach of land use and land cover change dynamics to analyze forest degradation .... 29 
1.2.3 Ecological vulnerability of degraded forests to agricultural expansion ............................................. 34 

1.3 LITTERATURE REVIEW OF FOREST DEGRADATION AND LANDSCAPE APPROACH TOWARDS THE ASSESSMENT OF FOREST 

ECOLOGICAL VULNERABILITY ............................................................................................................................... 36 
1.3.1 Characterizing structures resulting from forest degradation using remote sensing .......................... 36 
1.3.2 Land use characterization and landscape temporal dynamics for vulnerability assessment.............. 41 

1.4 RESEARCH QUESTIONS AND OBJECTIVES ........................................................................................................... 43 
1.5 STUDY SITES: HUMAN-DOMINATED TROPICAL LANDSCAPES IN DEFORESTATION FRONTS ................................................ 45 

1.5.1 Paragominas municipality, state of Pará, Brazilian Amazon ............................................................ 46 
1.5.2 Di Linh district, Lam Dong province, Central Highlands of Vietnam .................................................. 49 

1.6 THESIS STRUCTURE ..................................................................................................................................... 54 

CHAPTER 2 - THE POTENTIAL OF MULTISOURCE REMOTE SENSING FOR MAPPING THE BIOMASS OF A 

DEGRADED AMAZONIAN FOREST ................................................................................................................... 56 

2.1 INTRODUCTION ......................................................................................................................................... 59 
2.2 MATERIALS AND METHODS .......................................................................................................................... 61 

2.2.1 Study Area ..................................................................................................................................... 61 
2.2.2 In Situ AGB Collection ..................................................................................................................... 62 
2.2.3 Remote Sensing Multisource Data: Image Acquisition, Pre-Processing and Biophysical Indicators 

Variables Extraction................................................................................................................................ 63 
2.2.4 Random Forest Regression Model .................................................................................................. 65 
2.2.5 Geostatistical Analysis of Random Forest Model Residuals .............................................................. 67 
2.2.6 Comparison with Avitabile et al. AGB Dataset................................................................................. 67 
2.2.7 Comparison with Degraded Forest Typology ................................................................................... 68 
2.2.8 Computational Aspects .................................................................................................................. 68 

2.3 RESULTS .................................................................................................................................................. 69 
2.3.1 Model and Indicator Performance .................................................................................................. 69 
2.3.2 Geostatistical Analysis of Random Forest Model Residuals .............................................................. 70 
2.3.3 Above Ground Biomass Map .......................................................................................................... 71 
2.3.4 Comparison with Avitabile Pantropical Biomass Map ..................................................................... 72 
2.3.5 Comparison with Degraded Forest Typology ................................................................................... 74 

2.4 DISCUSSION.............................................................................................................................................. 76 
2.4.1 Model Performance Analysis .......................................................................................................... 76 
2.4.2 AGB Spatial Distribution in the Municipality ................................................................................... 79 
2.4.3 Characterization of Degraded Forests ............................................................................................. 79 
2.4.4 How Can These Data Be Useful for Forest Management at the Regional Scale? ............................... 80 

2.5 CONCLUSION ............................................................................................................................................ 81 

CHAPTER 3 - UAV-BASED CANOPY TEXTURES ASSESS CHANGES IN FOREST STRUCTURE FROM LONG-TERM 

DEGRADATION ............................................................................................................................................... 82 

3.1 INTRODUCTION ......................................................................................................................................... 85 
3.2 MATERIALS AND METHODS .......................................................................................................................... 87 

3.2.1 Study area ..................................................................................................................................... 87 
3.2.2 Data collection ............................................................................................................................... 88 
3.2.3 Method .......................................................................................................................................... 90 



5 
 

3.3 RESULTS .................................................................................................................................................. 94 
3.3.1 Forest canopy texture metrics from grey level UAV images at 1 ha scale ......................................... 94 
3.3.2 Relationships between canopy textures and forest structure parameters at 1 ha scale .................... 95 
3.3.3 Potential of canopy texture metrics to discriminate degradation history and the resulting changes in 

forest structures at the plot scale ............................................................................................................ 96 
3.4 DISCUSSION.............................................................................................................................................. 99 

3.4.1 Potential of canopy texture metrics to assess degraded canopy structures ...................................... 99 
3.4.2 Long-term forest degradation consequences on structure explained using current canopy textures100 
3.4.3 UAV technology: from data acquisition to limitations and perspectives ......................................... 101 

3.5 CONCLUSION OF CHAPTER 3 ....................................................................................................................... 102 
3.6 PERSPECTIVES ......................................................................................................................................... 102 

3.6.1 Multi-scale analysis of canopy structures of a tropical forest degradation gradient, from UAV to 

satellite VHSR ....................................................................................................................................... 102 
3.6.2 Reconstructing forest degradation history from Landsat time series.......................................... 107 

CHAPTER 4 - PRIMARY FOREST DEGRADATION IN THE AMAZON: A LANDSCAPE APPROACH TO IDENTIFY THE 

MAIN DRIVERS ............................................................................................................................................. 112 

4.1 INTRODUCTION ....................................................................................................................................... 115 
4.2 MATERIALS AND METHODS ......................................................................................................................... 116 

4.2.1 Framing the degradation of primary forest in a landscape approach ............................................. 116 
4.2.2 Study site ..................................................................................................................................... 118 
4.2.3 Data collection and methodology ................................................................................................. 119 

4.3 RESULTS ................................................................................................................................................ 126 
4.3.1 Land use/land cover classification of forest-agriculture mosaics.................................................... 126 
4.3.2 Identification of the drivers of primary forest degradation ............................................................ 127 
4.3.3 Mapping the drivers of primary forest degradation ...................................................................... 129 

4.4 DISCUSSION............................................................................................................................................ 131 
4.4.1 Cascades of indirect and direct drivers of forest degradation in human-modified landscapes ........ 131 
4.4.2 Limitations and future outlook ..................................................................................................... 132 
4.4.3 Potential of characterizing and mapping forest degradation drivers for land use planning and 

targeted conservation actions ............................................................................................................... 134 
4.5 CONCLUSION ................................................................................................................................... 135 
4.6 PERSPECTIVES OF FOREST POTENTIAL IMPACT ASSESSMENT .......................................................................... 135 

CHAPTER 5 - ASSESSING THE ECOLOGICAL VULNERABILITY OF FOREST LANDSCAPE TO AGRICULTURAL 

FRONTIER EXPANSION IN THE CENTRAL HIGHLANDS OF VIETNAM .............................................................. 140 

5.1 INTRODUCTION ....................................................................................................................................... 143 
5.2 MATERIALS AND METHODS ........................................................................................................................ 145 

5.2.1 Study area ................................................................................................................................... 145 
5.2.2 Conceptual framework for assessing forest vulnerability ............................................................... 145 

5.3 RESULTS ................................................................................................................................................ 152 
5.3.1 Mapping LULC in 2018 ................................................................................................................. 152 
5.3.2 Defining landscape mosaics from LULC classification .................................................................... 153 
5.3.2 Mapping historical land cover using the Landsat 1973-2018 archive ............................................. 155 
5.3.4 Deriving classes of landscape trajectories ..................................................................................... 157 
5.3.5 Assessment of forest ecological vulnerability ................................................................................ 159 

5.4 DISCUSSION............................................................................................................................................ 161 
5.4.1 Potential of vulnerability assessment for land use planning and targeted conservation actions ..... 161 
5.4.2 Methodological robustness and future outlook ............................................................................. 162 
5.4.3 Landscape approaches that incorporate both spatial and temporal information are keys to 

characterizing complex agricultural frontiers ........................................................................................ 164 
5.5 CONCLUSION .......................................................................................................................................... 166 



6 
 

CHAPTER 6 – SYNTHESIS, DISCUSSION, AND CONCLUSIONS ......................................................................... 168 

6.1 SUMMARY OF THE FINDINGS ....................................................................................................................... 170 
6.2 GENERAL DISCUSSION ............................................................................................................................... 172 

6.2.1 Promising methods to characterize forest structures from degradation......................................... 172 
6.2.2 Landscape approach to analyze dynamics of land use and cover changes ..................................... 173 
6.2.3 Vulnerability assessment to guide forest management and empower decision makers .................. 175 

6.3 FUTURE PERSPECTIVES............................................................................................................................... 177 
6.3.1 Scaling-up forest ecological vulnerability assessment from localized sites to regions ..................... 177 
6.3.2 Potential addition of indicators and approaches to enhance forest ecological vulnerability 

assessment ........................................................................................................................................... 179 

MENTIONS AND NOTES TO THE READER ...................................................................................................... 182 

REFERENCES ................................................................................................................................................. 186 

ANNEXES ...................................................................................................................................................... 209 

 

  



7 
 

List of Figures 
FIGURE 1.1 (A) TREE COVER, (B) FOREST LOSS, (C) FOREST GAIN AND (D) COLOR COMPOSITE OF TREE COVER IN GREEN, FOREST LOSS 

IN RED, FOREST GAIN IN BLUE AND FOREST LOSS AND GAIN IN MAGENTA, FROM HANSEN ET AL. (2013) ............................ 23 
FIGURE 1.2 GEOGRAPHY OF CARBON DENSITY CHANGE (GAINS, LOSSES AND NO CHANGE) FROM 2003 TO 2014, FROM BACCINI ET AL. 

(2017) .................................................................................................................................................... 23 
FIGURE 1.3 THE FUTURE OF TROPICAL FORESTS ARE DETERMINED BY THE SEVERITY AND DURATION OF THE ANTHROPOCENE 

BOTTLENECK INFLUENCED BY THE CURRENT FOREST STATE, ONGOING PRESSURES AND MANAGEMENT RESPONSES, FROM (MALHI 

ET AL. 2014) ............................................................................................................................................. 24 
FIGURE 1.4 ADOPTED FRAMEWORK OF SIMPLIFIED DEGRADATION AND RECOVERY TRAJECTORIES AT THE FOREST STAND SCALE WHERE 

AN ACCUMULATION OF DIFFERENT DIRECT DRIVERS (DISTURBANCES) SUCH AS LOGGING AND FIRE TRIGGER A RAPID CHANGE IN 

THE FOREST STRUCTURE AND FUNCTION. DASHED LINES REPRESENTS VARIOUS DEGRADATION AND RECOVERY CONDITIONS 

DEPENDING ON THE RESPECTIVE DISTURBANCE TYPE AND INTENSITY AND ENVIRONMENT/ECOLOGICAL CONDITIONS. THE TIME 

BETWEEN THE STAGES A TO F CAN ALSO VARY DEPENDING A MULTITUDE OF FACTORS. THE CASCADE OF INDIRECT DRIVERS 

OPERATING AT THE LANDSCAPE AND REGIONAL SCALE ARE NOT SHOWN IN DETAIL HERE. ................................................ 29 
FIGURE 1.5 MULTI-SCALE FOREST SOCIAL-ECOLOGICAL SYSTEM WHERE LAND DYNAMICS ARE AT THE INTERSECTION BETWEEN HUMAN 

AND FOREST ECOLOGICAL SUBSYSTEMS AND UNDER THE INFLUENCE OF A CASCADE OF GLOBAL AND LOCAL DRIVERS, ADAPTED 

FROM TURNER ET AL. (2007), VIRAPONGSE ET AL. (2016) AND GARDNER ET AL. (2013). ............................................ 30 
FIGURE 1.6 TWO COMPONENTS OF SPATIAL HETEROGENEITY: COMPOSITION AND CONFIGURATION (PARAGOMINAS LANDSCAPES, 

SEPTEMBER 2017) ...................................................................................................................................... 32 
FIGURE 1.7 THE A,B,C PHOTOS REPRESENT AN INCREASING DEGREE OF FRAGMENTATION OF FOREST LANDSCAPE (PARAGOMINAS 

LANDSCAPES, SEPTEMBER 2017) .................................................................................................................... 33 
FIGURE 1.8 CONCEPTUAL FRAMEWORK OF FOREST ECOLOGICAL VULNERABILITY AS THE COMBINATION OF EXPOSURE (EXOGENOUS), 

SENSITIVITY AND ADAPTIVE CAPACITY (ENDOGENOUS), MODIFIED FROM GALLOPÍN (2006) AND THIAULT ET AL. (2018). 

VULNERABILITY ASSESSMENT HAS A DIRECT LINK WITH DECISION-MAKING AND MANAGEMENT TO REDUCE EXPOSURE RISKS AND 

ENHANCE ADAPTIVE CAPACITY......................................................................................................................... 35 
FIGURE 1.9 DIRECT AND INDIRECT APPROACHES TO CHARACTERIZE FOREST DEGRADATION/DEGRADED FOREST USING REMOTE SENSING 

AND NON EXHAUSTIVE LIST OF RELATED METHODS ............................................................................................... 36 
FIGURE 1.10 EXAMPLE OF THE TRAJECTORY OF THE NORMALIZED DIFFERENCE MOISTURE INDEX (NDMI) EXTRACTED FROM SURFACE 

REFLECTANCE LANDSAT DATA (FROM 1985 TO 2018) OVER A LOGGED FOREST IN 2005 IN PARAGOMINAS MUNICIPALITY. 

LIMITATIONS OF TIME SERIES CHANGE DETECTION APPROACH FOR THIS CASE ARE: THE DETECTION OF DEGRADATION TREND IS 

MIXED WITH NOISE AND NATURAL VEGETATION VARIATION, LARGE GAPS IN THE TIME SERIES (BEFORE 2000) PREVENT THE 

ALGORITHM TO TRAIN OVER HISTORICAL PERIOD (PRE-DISTURBANCE) AND THE SCALE OF THE DEGRADATION IS TOO SMALL TO BE 

DETECTED USING REMOTE SENSING TIME SERIES. ................................................................................................. 39 
FIGURE 1.11 OVERVIEW OF THE THESIS STRUCTURE WITH THE SUB-RESEARCH QUESTIONS AND RESPECTIVE CHAPTERS LOCATED 

ACCORDING FOREST AND LANDSCAPE SCALES OF ANALYSIS AND CURRENT AND HISTORICAL TIMELINES ............................... 44 
FIGURE 1.12 STUDY SITES LOCATED IN HUMAN-DOMINATED TROPICAL LANDSCAPES OF DEFORESTATION FRONTS. GREEN SHOWS TREE 

COVER IN 2000 AND PINK FOREST COVER LOSS FROM 2000 TO 2014, SOURCE: (HANSEN ET AL. 2010). LANDSCAPE MOSAICS 

NUMBERED BY LETTERS ARE PRESENTED IN FIGURES 1.15 AND 14. THE STAR REPRESENTS THE LOCATION OF THE MAIN CITY. .. 45 
FIGURE 1.13 ANNUAL DEFORESTATION INDEX IN PARAGOMINAS AND THE LEGAL AMAZON SINCE 2001 (2001: BASE 100). SOURCE: 

ADAPTED FROM PRODES DATA. .................................................................................................................... 47 
FIGURE 1.14 SYSTEMIC MODEL OF LANDSCAPE ELEMENTS DYNAMICS IN PARAGOMINAS IN 2018 (NON-EXHAUSTIVE). DASHED 

ARROWS REFLECT LESS PROBABLE DYNAMICS. ..................................................................................................... 48 
FIGURE 1.15 DIVERSITY OF LANDSCAPE MOSAICS AND LAND USES IN PARAGOMINAS MUNICIPALITY (2017). SEE FIGURE 1.12 FOR THE 

LOCATION OF LANDSCAPE MOSAICS WITHIN THE MUNICIPALITY................................................................................ 49 
FIGURE 1.16 AREA (HA) OF PERENNIAL CROPS IN LAM DONG PROVINCE, FROM 1990 – 2010 (SOURCE: LAND USE, FOREST COVER 

CHANGE AND HISTORICAL GHG EMISSION (USAID LEAF), LAM DONG PROVINCE, 2013) ............................................ 51 
FIGURE 1.17 SYSTEMIC MODEL OF LANDSCAPE ELEMENTS DYNAMICS IN DI LINH IN 2018 (NON-EXHAUSTIVE). DASHED ARROWS 

REFLECT LESS PROBABLE DYNAMICS. ................................................................................................................. 52 
FIGURE 1.18 DIVERSITY OF LANDSCAPE MOSAICS AND LAND USES IN DI LINH DISTRICT (2018). SEE FIGURE 1.12 FOR THE LOCATION OF 

LANDSCAPE MOSAICS WITHIN THE DISTRICT. ....................................................................................................... 53 

file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116293
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116294
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116294
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116294


8 
 

FIGURE 2.1 MAP OF PARAGOMINAS MUNICIPALITY IN THE NORTHEASTERN PART OF THE STATE OF PARA WITH THE LOCATION OF THE 

BIOMASS-COLLECTED PLOTS, THE DEGRADED FOREST TYPOLOGY AND THE MAIN ZONING AREAS (EXTRACTED FROM (HANSEN ET 

AL. 2010)). ............................................................................................................................................... 62 
FIGURE 2.2 WORKFLOW OF THE EVALUATION OF THE INDICATORS PERFORMANCE IN AGB MODELLING AND MAPPING. ................. 66 
FIGURE 2.3 EXPLAINED INDICATOR PERFORMANCE (PERCENTAGE OF INCMSE) OF THE RANDOM FOREST MODEL. ....................... 70 
FIGURE 2.4 (A) SPATIAL DISTRIBUTION OF THE MODEL RESIDUALS (BLUE, GREEN, YELLOW AND RED COLORS FOR THE RESPECTIVE FOUR 

QUARTILES); (B) HISTOGRAM OF THE MODEL RESIDUALS; (C) VARIOGRAM OF BIOMASS MODEL RESIDUALS (THE GREY SHAPE 

SHOWS THE CONFIDENCE BAND INTERVAL EXPECTED FOR EACH DISTANCE CLASS). ........................................................ 71 
FIGURE 2.5 RANDOM FOREST PREDICTED VALUES OF ABOVEGROUND BIOMASS ACROSS PARAGOMINAS MUNICIPALITY. IN THE 

WESTERN PART OF THE MUNICIPALITY (STRIPPED AREA), SENTINEL-1 DATA WAS NOT AVAILABLE. ..................................... 72 
FIGURE 2.6 OBSERVED (SEE SECTION 2.2.2.) AND ESTIMATED BIOMASS FROM AVITABILE [23] AND THE RANDOM FOREST MODEL. . 73 
FIGURE 2.7 COMPARISON OF AGB ESTIMATIONS, RANDOM FOREST, AVITABILE (2016) AND THE DIFFERENCE MAP (1–3 

RESPECTIVELY) IN A SELECTED ZONE REPRESENTING THE TRANSITION BETWEEN NON-FOREST TO FOREST AREA (SEE FIGURE 1 FOR 

PRECISE LOCATION IN PARAGOMINAS). THE SELECTIVE LOGGING AREA AND THE LOGGING ROAD WERE VALIDATED DURING THE 

FIELD TRIP. ................................................................................................................................................ 74 
FIGURE 2.8 FIVE CLASSES OF DEGRADED FOREST TYPOLOGY BASED ON THE OBSERVATION OF 140 FOREST SITES IN MAY 2015. ....... 75 
FIGURE 2.9 BOXPLOTS OF PREDICTED VALUES OF AGB CALCULATED FOR THE FIVE-CLASS TYPOLOGY OF DEGRADED FOREST WITH THE 

RANGE (1ST AND 3RD QUARTILE), THE MEAN (LINE) AND THE MEDIAN (CROSS). .......................................................... 76 
FIGURE 3.1 LOCATION OF THE STUDY SITE, PARAGOMINAS MUNICIPALITY, IN PARÁ STATE IN THE BRAZILIAN AMAZON. DISTRIBUTION 

OF THE 40 FOREST PLOTS COVERED USING UAV. ILLUSTRATIONS OF SELECTIVE LOGGING (A), OVER LOGGING (B) AND FIRE (C) 

FROM GOOGLE EARTH® 2017 ....................................................................................................................... 87 
FIGURE 3.2 FOREST DEGRADATION HISTORY OF EACH FOREST PLOT (BASED ON THE FREQUENCY OF SELECTIVE LOGGING, OVER 

LOGGING, FIRE EVENTS AND DATE OF LAST DISTURBANCE). ..................................................................................... 90 
FIGURE 3.3 WORKFLOW OF THE METHOD USED TO EVALUATE THE POTENTIAL OF CANOPY TEXTURE METRICS TO RETRIEVE THE CANOPY 

STRUCTURE ALONG THE GRADIENT OF FOREST DEGRADATION AND THEIR RELATION WITH FOREST DEGRADATION HISTORY....... 91 
FIGURE 3.4 CANOPY TEXTURE ORDINATION BASED ON THE FOTO METHOD APPLIED TO UAV-ACQUIRED GREY LEVEL IMAGES. (A) 

SCATTER PLOTS OF PCA SCORES ALONG F1 AND F2 AND WINDOWS SELECTED AS ILLUSTRATIONS. (B) HISTOGRAM OF 

EIGENVALUES EXPRESSED AS % OF TOTAL VARIANCE. (C) CORRELATION CIRCLES WITH FREQUENCIES RANGING FROM 50 TO 240 

(CYCLES/KM). ............................................................................................................................................. 94 
FIGURE 3.5 CANOPY TEXTURE ORDINATION BASED ON THE LACUNARITY METHOD. (A) SCATTER PLOTS OF PCA SCORES ALONG F1 AND 

F2 AND WINDOWS SELECTED AS ILLUSTRATIONS. (B) HISTOGRAM OF EIGENVALUES EXPRESSED AS % OF TOTAL VARIANCE. (C) 

CORRELATION CIRCLES WITH SUB-WINDOW SIZES RANGING FROM 2 TO 102 PIXELS. ..................................................... 95 
FIGURE 3.6 3D PLOTS OF DIGITAL HEIGHT MODELS OF THE (100X100 M) WINDOWS SELECTED TO ILLUSTRATE THE 6 FOREST 

STRUCTURE CLUSTERS. RADAR CHART SHOWS THE AVERAGE FREQUENCY OF OVER-LOGGING (OL), SELECTIVE LOGGING (SL) AND 

FIRE (F) DISTURBANCES DETECTED IN ALL FOREST PLOTS WITHIN A GIVEN CLUSTER. ....................................................... 97 
FIGURE 3.7 (A) SCATTER PLOT SHOWING THE DISTRIBUTION OF THE 40 FOREST PLOTS WITH COLOR BASED ON THE COLOR OF CANOPY 

CLUSTERS ON THE LINEAR DISCRIMINANT PLANE (LD1-2). INSET: PROPORTIONS OF LDA TRACE (B) CORRELATION CIRCLE OF 

CTM WITH RESPECT TO THE TWO MAIN COMPONENTS (AXES) OF THE LDA (C) CONFUSION MATRIX BETWEEN OBSERVED AND 

PREDICTED CLUSTERS FOR THE 40 PLOTS (LDA CLASSIFICATIONS) ............................................................................ 98 
FIGURE 3.8 MEAN AND SD VALUES OF CTM CALCULATED WITHIN THE 6 PREDICTED CLUSTERS USING LDA. ............................... 98 
FIGURE 3.9 A) UAV GREYLEVELS (10CM) AND B) SPOT-6 PANCHROMATIC (1.5M) .......................................................... 103 
FIGURE 3.10 METHOD WORKFLOW FROM FOREST PLOT MODEL TEXTURE/STRUCTURE CALIBRATION TO UPSCALING OF CANOPY 

STRUCTURE METRICS USING CANOPY TEXTURE ANALYSIS ...................................................................................... 104 
FIGURE 3.11 CANOPY TEXTURE ORDINATION BASED ON THE FOTO METHOD APPLIED TO SPOT GREY LEVEL IMAGES: HISTOGRAM OF 

EIGENVALUES EXPRESSED AS % OF TOTAL VARIANCE AND CORRELATION CIRCLES WITH FREQUENCIES ............................... 105 
FIGURE 3.12 PREDICTION OF STANDARD DEVIATION OF CANOPY HEIGHT (100M RESOLUTION).............................................. 106 
FIGURE 3.13 WORKFLOW FOR DETECTING LOGGING DISTURBANCES............................................................................... 108 
FIGURE 3.14 A) DETECTION OF LINEAR LOGGING DISTURBANCES IN 2009 IN CIKEL (UNDER FOREST MANAGEMENT), DETECTION OF 

NONLINEAR DISTURBANCES OUTSIDE OF CIKEL IN 2017 ..................................................................................... 109 
FIG 3.15 INDICATORS OF FOREST DEGRADATION AT THE PLOT SCALE OF A CIKEL PLOT (UNDER FOREST MANAGEMENT) AND A PLOT 

NEVER EXPLOITED (CONSERVED PRIMARY FOREST) AND A PLOT ILLEGALLY LOGGED OUTSIDE OF CIKEL ............................. 109 
FIGURE 4.1 CONCEPTUAL FRAMEWORK OF DIRECT AND INDIRECT DRIVERS OF PRIMARY FOREST DEGRADATION AT THE FOREST PATCH, 

LANDSCAPE AND REGIONAL SCALES ................................................................................................................ 117 

file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116322
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116322
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116322


9 
 

FIGURE 4.2 PARAGOMINAS MUNICIPALITY (C) AND ITS LOCATION ON THE DEFORESTATION FRONT (B) IN THE LEGAL AMAZONIA (A)

 ............................................................................................................................................................ 119 
FIGURE 4.3 WORKFLOW OF THE METHOD USED TO IDENTIFY AND MAP FOREST DEGRADATION DRIVERS AT THE LANDSCAPE SCALE. . 120 
FIGURE 4.4 ABOVEGROUND BIOMASS AND NON-PHOTOSYNTHETIC VEGETATION VARIANCE AS PROXIES OF PRIMARY FOREST 

DEGRADATION (NON-PRIMARY FOREST IS SHOWN IN WHITE)................................................................................. 121 
FIGURE 4.5 DIRECT AND INDIRECT DRIVERS OF FOREST DEGRADATION ............................................................................. 122 
FIGURE 4.6 LAND USE/LAND COVER CLASSIFICATION COMBINING CURRENT LANDSCAPE MOSAICS AND 29 YEARS OF SECONDARY FOREST 

MAPPING USING LANDSAT IMAGES (FIG 4.6B TO FIG 4.6G ARE EXAMPLES OF THE HETEROGENEITY OF LAND USE/COVER 

MOSAICS). ............................................................................................................................................... 127 
FIGURE 4.7 FOREST DEGRADATION PROXIES AND THEIR RELATIONSHIP WITH SOME DRIVERS OF FOREST DEGRADATION ................ 129 
FIGURE 4.8 MAP OF CLUSTERS OF PROXIES OF DIRECT AND INDIRECT FOREST DEGRADATION DRIVERS. GREY BARS REPRESENT THE MEAN 

INDICATOR VALUE OF ALL THE CLUSTERS, EMPTY SLOTS MEAN THE VARIABLE WAS NOT SIGNIFICANT FOR THAT PARTICULAR 

CLUSTER.................................................................................................................................................. 130 
FIGURE 4.9 CLASSES OF LANDSCAPE TRAJECTORIES (T1 TO T10) BASED ON LAND COVER COMPOSITION AND CONFIGURATION 

DYNAMICS FROM 1988 TO 2017 OBTAINED USING ACT-STATIS AND CLUSTERING METHODS ..................................... 137 
FIGURE 5.1 METHODOLOGICAL FRAMEWORK DESIGNED TO ASSESS FOREST ECOLOGICAL VULNERABILITY WITH ITS FOUR STEPS (I-IV)146 
FIGURE 5.2 LOCATION AND CLASSIFICATION OF DI LINH DISTRICT (LAM DONG PROVINCE) IN THE CENTRAL HIGHLANDS OF VIETNAM.

 ............................................................................................................................................................ 153 
FIGURE 5.3 TRANSFORMATION OF LAND USE/COVER PATCHES INTO LANDSCAPE MOSAICS USING A REGULAR 360 M X 360 M GRID AND 

SENTINEL-2 BASED CLASSIFICATION AT 10 M RESOLUTION (2018). A) HISTOGRAM OF EIGENVALUES EXPRESSED AS % OF TOTAL 

VARIANCE. B) CORRELATION CIRCLE OF THE FIRST TWO PCA COMPONENTS. C) CLASSES OF LANDSCAPE MOSAICS (L1 TO L15) 

ACCORDING TO HIERARCHICAL CLUSTERING BASED ON THE FIRST SEVEN PCA COMPONENTS: AVERAGE COMPOSITION OF LAND 

COVER/LAND USE AND LANDSCAPE INTENSIFICATION SCORE ATTRIBUTED TO EACH LANDSCAPE MOSAIC CLASS. D) LANDSCAPE 

MOSAICS DISTINGUISHED ACCORDING TO THE LANDSCAPE INTENSIFICATION GRADIENT (SEE THE LEGEND TO FIG 5.3C) ........ 155 
FIGURE 5.4 MAPS SHOWING 45 YEARS OF EVERGREEN FOREST, PINE FOREST, CROPLAND AND WATER COVER USING LANDSAT ARCHIVES 

AND RANDOM FOREST CLASSIFICATION ............................................................................................................ 156 
FIGURE 5.5 CLASSES OF LANDSCAPE TRAJECTORIES (T1 TO T15) BASED ON LAND COVER COMPOSITION AND CONFIGURATION 

DYNAMICS FROM 1973 TO 2018 OBTAINED USING ACT-STATIS AND CLUSTERING METHODS. HATCHED AREAS REPRESENT 

WATER BODIES IN 2018 (2%). ..................................................................................................................... 158 
FIGURE 5.6 FOREST ECOLOGICAL VULNERABILITY TO DEFORESTATION AND DEGRADATION (AGRICULTURAL LANDSCAPES ARE IN WHITE, 

COMMUNES ARE DELIMITED IN GREY) ............................................................................................................. 160 
FIGURE 5.7 AGREEMENT, OVERESTIMATION AND UNDERESTIMATION IN EXPERT AND SIMULATION BASED ECOLOGICAL VULNERABILITY 

ASSESSMENTS ........................................................................................................................................... 163 
FIGURE 5.8 NUMBER OF FOREST LANDSCAPE MOSAIC AND LANDSCAPE TRAJECTORY PAIRS IDENTIFIED IN THE MOST VULNERABLE 

FOREST COVER AREAS ................................................................................................................................. 165 

 

 

 

  

file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116345
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116345
file:///D:/phd/Writing_Presentations/Thesis/THESE%20DE%20DOCTORAT_16_10.docx%23_Toc22116345


10 
 

List of Tables 
TABLE 2.1 AGB COLLECTION DATA IN THE MUNICIPALITY OF PARAGOMINAS (SEE BERENGUER ET AL. 2014). ............................. 63 
TABLE 2.2 RANDOM FOREST MODEL PERFORMANCE (MEAN SQUARED RESIDUALS AND PERCENTAGE OF VARIANCE EXPLAINED FOR EACH 

OF THE 10 K-FOLD RANDOM FOREST MODELS). ................................................................................................... 69 
TABLE 3.1 RANDOM FOREST REGRESSION MODELS FOR THE PREDICTION OF CANOPY STRUCTURE METRICS (CSM) FROM CANOPY 

TEXTURE METRICS (CTM) ON GREY LEVEL IMAGES. .............................................................................................. 96 
TABLE 3.2 RANDOM FOREST REGRESSION MODELS FOR THE PREDICTION OF CANOPY STRUCTURE METRICS FROM CANOPY TEXTURE 

METRICS (FOTO AND SKEWNESS) ON SPOT GREY LEVEL IMAGES. ......................................................................... 105 
TABLE 4.1 LANDSCAPE STRUCTURE METRICS (COMPOSITION AND CONFIGURATION) ........................................................... 124 
TABLE 4.2 MULTIPLE LINEAR REGRESSION MODELS FOR THE PREDICTION OF FOREST DEGRADATION PROXIES (MEAN OF AGB, MEAN 

AND STANDARD DEVIATION OF NPVV) FROM DIRECT AND INDIRECT DRIVERS. THE POSITIVE OR NEGATIVE SIGN REFERS TO THE 

TYPE OF CORRELATION (POSITIVE OR NEGATIVE). ............................................................................................... 128 
TABLE 5.1 LANDSCAPE CONFIGURATION METRICS (MCGARIGAL 2012) .......................................................................... 150 

 

  



11 
 



12 
 

Abstract 

The conservation of tropical forest cover is a key to ensuring sustainable provision of multiple 

ecosystem services. However, increasing demography, demand for agricultural products and changes 

in land uses are affecting forest sustainability through degradation processes. A first step to tailor 

effective forest management is to identify most vulnerable forests and to characterize their drivers. 

The objective of this thesis is to develop a multidimensional approach to assess forest degradation and 

the relations with the broader dynamics of land use/cover towards the evaluation of forest ecological 

vulnerability. The thesis was applied in Paragominas (Brazil) and Di Linh (Vietnam) where large-scale 

deforestation driven by commercial agriculture shaped the landscape into land use mosaics with 

increasing degradation pressures. In Paragominas, degradation is linked with selective logging and fire 

implying changes in forest structure. We estimated the potential of multisource remote sensing to 

map forest aboveground biomass from large-scale field assessment of carbon stock and investigated 

the consequences of degradation history on forest structures. We found that canopy textures 

correlated with forest structure variability and could be used as proxies to characterize degraded 

forests using very high resolution images. Based on environmental, geographical factors and landscape 

structure metrics, we demonstrated that 80% of forest degradation was mainly driven by accessibility, 

geomorphology, fire occurrence and fragmentation. The drivers of degradation acted together and in 

sequence. The combination of current forest state, landscape dynamics and information on 

degradation drivers would be at the basis of ecological vulnerability assessment. In Di Linh, degradation 

is driven by encroachment of coffee-based agriculture. Field inventory of the different forest types and 

other landscape elements combined with Sentinel-2 images allowed to map with high precision the 

current land cover. We constructed trajectories of landscape structure dynamics from which we 

characterized the expansion of the agricultural frontier and highlighted heterogeneous agricultural 

encroachment on forested areas. We also identified degradation and fragmentation trajectories that 

affect forest cover at different rates and intensity. Combined, these indicators pinpointed hotspots of 

forest ecological vulnerability. Through the developed remote sensing approaches and indicators at 

forest and landscape scales, we provided a holistic diagnosis of forests in human-modified landscapes 

This thesis aims to pave the way for tailored and prioritized management of degraded forests at the 

landscape scale. 

Keywords : Ecological vulnerability, agricultural expansion, forest degradation, remote sensing 
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Résumé 

La conservation du couvert forestier tropical est essentielle pour assurer la fourniture durable de 

services écosystémiques. Cependant, l'accroissement de la démographie, la demande de produits 

agricoles et les changements dans l'utilisation des terres affectent leur durabilité. L'objectif de cette 

thèse est de développer une approche multidimensionnelle pour évaluer la dégradation des forêts et 

les relations avec la dynamique de l'utilisation des terres afin d’estimer leur vulnérabilité. La thèse a 

été appliquée à Paragominas (Brésil) et Di Linh (Vietnam), où la déforestation due à l'agriculture 

commerciale a façonné le paysage en mosaïques d'utilisation des terres. A Paragominas, la dégradation 

est liée à l’exploitation sélective du bois et au feu impliquant des changements dans la structure 

forestière. Nous avons estimé le potentiel de la télédétection multisource pour cartographier la 

biomasse forestière aérienne à partir de données de stock de carbone et avons étudié les 

conséquences de la dégradation sur les structures forestières. Nous avons constaté que les textures 

de la canopée étaient corrélées à la variabilité de la structure forestière et pouvaient être utilisés 

comme indicateurs pour caractériser les forêts dégradées grâce aux images à très haute résolution. En 

nous basant sur des facteurs environnementaux, géographiques et de structure du paysage, nous 

avons démontré que 80 % de la dégradation était principalement due à l'accessibilité, la 

géomorphologie, la fréquence des incendies et à la fragmentation et que ces facteurs agissaient en 

séquence. A Di Linh, la dégradation est due à l'empiètement de la culture de café. L'inventaire sur le 

terrain des différents types de forêts et d'autres éléments, combiné aux images Sentinel-2, a permis 

de cartographier avec une grande précision la couverture du sol actuelle. Nous avons construit des 

trajectoires de dynamique paysagère afin de caractériser l'expansion de la frontière agricole et mis en 

évidence l'empiétement agricole sur les zones forestières. Nous avons identifié des trajectoires de 

dégradation et de fragmentation qui affectent le couvert forestier à différentes intensités. Ensemble, 

ces indicateurs ont mis en évidence des points chauds de vulnérabilité. Grâce aux approches et aux 

indicateurs de télédétection développés à l'échelle de la forêt et du paysage, nous avons fourni un 

diagnostic holistique des forêts dans les paysages modifiés par l'homme. Cette thèse vise à ouvrir la 

voie à une gestion adaptée et prioritaire des forêts dégradées à l'échelle du paysage. 

Mots-clés : Vulnérabilité écologique, expansion agricole, dégradation des forêts, télédétection 
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Résumé substantiel 

La conservation du couvert forestier tropical est essentielle pour assurer la fourniture durable de 

services écosystémiques. Dans les paysages anthropisés, la conservation des forêts doit également 

être conciliée avec la productivité agricole. Toutefois, l'accroissement de la démographie, la demande 

de produits agricoles et les changements dans l'utilisation des terres affectent la durabilité des forêts 

à travers des dynamiques de degradation complexes. Une première étape pour adapter la gestion 

efficace des forêts par les décideurs locaux consiste à identifier les forêts les plus vulnérables et à 

caractériser ce qui la génère. L'objectif de cette thèse est de développer une approche 

multidimensionnelle utilisant la télédétection et autres analyses spatiales pour évaluer la dégradation 

des forêts et les relations avec la dynamique de l'utilisation des terres afin d’estimer la vulnérabilité 

écologique des forêts.  

L'examen des méthodes existantes illustre le manque de compréhension et de quantification des 

conséquences de la degradation à long terme sur la structure des forêts. Il met également en évidence 

les compromis à faire entre résolution, précision, superficie couverte, coût et fréquence pour 

cartographier les structures forestières dégradées et la biomasse forestière à travers des gradients de 

perturbations anthropiques. Par conséquent, un objectif de cette these est de mieux caractériser le 

large éventail de structures résultant de la dégradation via des approches de télédétection 

multidimensionnelle.  

De plus, la degradation forestière est majoritairement étudiée dans des approches centrées sur le 

peuplement forestier et non sur des approches holistiques ou paysagères. Cela limite 

considérablement la compréhension des effets de cascade des facteurs directs et indirects de la 

dégradation et des influences des changements d'utilisation et de couverture des sols sur l'état du 

couvert forestier.  Par consequent, nous avons peu de connaissances sur les moteurs de la degradation 

liés aux dynamiques complexes des changements d’utilisation des terres et des decisions de gestion 

des territoires sous-jacentes. Dans cette these, nous insistons sur le fait que la dégradation des forêts 

doit être analysée dans le cadre d'une approche paysagère afin de i) saisir les interactions entre les 

forêts et la dynamique plus large de l'utilisation de la couverture des sols qui rend compte des 

pratiques agricoles et des consequences de la gestion territoriale et ii) de caractériser les facteurs 

directs et indirects de la dégradation des forêts.  

Enfin, il n'existe pas de méthodes ou de cadre conceptuel visant à caractériser la vulnérabilité du 

couvert forestier aux impacts anthropiques. L'évaluation de la vulnérabilité écologique des forêts 

permet d'intégrer différents indicateurs à l'échelle de la forêt et du paysage afin d’informer sur la 
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localisation des forêts les plus vulnérables et ainsi de hierarchiser les priorités de gestion des forêts 

dégradées en envisageant par exemple la conservation ou la restoration forestière.  

Dans le chapitre 2 de la thèse, nous avons évalué le potentiel des sources de télédétection optique 

(Landsat, MODIS) et radar (ALOS-1 PALSAR), Sentinel-1) pour la modélisation et la cartographie de la 

biomasse forestière dans la commune de Paragominas (Brésil). Nous avons extrait un large éventail 

d'indices de végétation et de texture et les avons combinés avec des données de biomasse recueillies 

in situ au sein d’un modèle de régression pour prédire la biomasse des forêts à une résolution de 20m. 

Le modèle a expliqué 28% de la variance avec une erreur quadratique moyenne de 97,1 Mg-ha-1. Nous 

avons identifié les indicateurs les plus robustes ayant le plus grand pouvoir explicatif. La cartographie 

de la biomasses révèle que 87% des forêts restantes dans la commune de Paragominas sont dégradées, 

avec des activités d'exploitation forestière illégale et des impacts sur les lisières. Nous avons validé 

cette carte avec des inventaires terrain renseignant sur la structure forestière le long d’un gradient de 

dégradation.  

Dans le chapitre 3, nous avons évalué comment l'analyse de la texture de la canopée pouvait saisir les 

complexités de la structure forestière résultants de différentes histoires de dégradation des forêts. 

Nous avons utilisé un drone léger pour cartographier 739 ha de forêts dégradées à Paragominas et 33 

ans d'images d’archive issues de Landsat pour reconstituer l'historique de la dégradation par la 

détection des perturbations dues à l'exploitation forestière et aux incendies. Des analyses de texture 

de la canopée ont été utilisées pour évaluer la structure de la canopée forestière et pour établir une 

typologie reliant l'historique de la dégradation et l'état actuel. Les mesures de texture permettent de 

saisir le grain du couvert, l'hétérogénéité et gradients d'ouverture et sont en lien avec la variabilité de 

la structure forestière (r² : 0,58).  Nous montrons que des structures forestières similaires partagent 

une histoire commune de dégradation et peuvent être discriminées grâce aux mesures de texture de 

la canopée (précision : 55%).  

Dans le chapitre 4, nous avons identifié les facteurs directs et indirects de la dégradation des forêts en 

utilisant une approche paysagère qui permet d’aller au-delà de la détection directe des perturbations 

forestières. Nous utilisons des méthodes de regression et de clustering afin de cartographier les 

facteurs de dégradation des forêts primaires à partir d'un large ensemble de facteurs 

environnementaux et géographiques, et de mesures de la structure du paysage dérivées de la 

classification de l'utilisation/couverture des terres. Les modèles ont révélé qu'à l'échelle du paysage, 

l'accessibilité, la géomorphologie, la fréquence des incendies et la fragmentation ont été les principaux 

facteurs indirects et directs de dégradation (80% de la variance expliquée). Nous avons clairement 

montré que les facteurs directs et indirects de la degradation forestière ont agi ensemble et en 
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séquence révélant une utilisation différente des terres et donc des pratiques de gestion du couvert 

forestier différentes. Dans la partie centrale de la municipalité, les forêts sont dégradées en raison de 

la surexploitation passée du bois, qui a été indirectement renforcée par l'accessibilité aux parcelles 

forestières et au marché, et plus récemment en raison des conflits liés à l'expansion agricole et aux 

boucles de rétroaction négatives générées par la fragmentation. Dans les mosaïques de paysages plus 

complexes, les forêts sont dégradées en raison du résultat conjoint entre une degradation historique 

liée à la colonisation de cet espace et de facteurs plus recents tel que l’utilisation du feu dans les 

pratiques agricoles qui, s’il n’est pas maitrisé et controlé, peut impacter la structure des forêts. Ce 

phénomène est amplifié par le niveau élévé de fragmentation du paysage ainsi que des évenements 

de sécheresse de plus en plus intenses et longs. Connaitre et cartographier les facteurs de la 

degradation forestière à l’échelle du paysage permet d’engager des politiques de gestion du couvert 

adaptées.  

Dans le chapitre 5, nous avons élaboré un cadre méthodologique rigoureux pour évaluer la 

vulnérabilité des forêts aux impacts anthropiques. Nous avons présenté une méthode novatrice qui 

intègre la cartographie actuelle des mosaïques de paysages avec les trajectoires de 45 ans de 

structures de paysages en utilisant des images Sentinel-2 et Landsat. Nous avons extrait des indicateurs 

d'exposition à l'expansion des terres cultivées, de sensibilité liée à la dégradation et à la fragmentation 

des forêts, et la capacité d’adaptation des forêts fondée sur la composition du paysage dans le district 

de Di Linh (Vietnam). Nous avons cartographié les mosaïques forestières-agricoles actuelles avec une 

grande précision pour évaluer l'intensification du paysage (indice kappa = 0,78). Nous avons également 

cartographié l'expansion de la frontière agricole et a mis en évidence l'empiètement hétérogène de 

l'agriculture sur les zones forestières (indice kappa = 0,72-0,93). Enfin, nous avons identifié des 

trajectoires de dégradation et de fragmentation qui ont affecté le couvert forestier à des rythmes et 

des intensités différents. Combinés, ces indicateurs ont mis en évidence les points chauds de la 

vulnérabilité des forêts. Cette étude a fourni des réponses et des leviers de gestion adaptés pour pour 

les décideurs locaux afin de donner la priorité aux actions visant à prévenir la dégradation future des 

forêts. 

Enfin, nous présentons dans cette these une synthèse qui vise à discuter des méthodes les plus 

adaptées pour caractériser l’état du couver forestier resultant de la degradation et d’insister sur la 

pertinence de l’approche paysagère pour l’analyse des moteurs de la degradation conjointement avec 

la dynamique de changement d’occupation du sol. Ainsi, cette these vise à poser un cadre d’analyse 

de la vulnérabilité des forêts dans le but de guider la gestion future des forêts tropicales dans les 

paysages modifiés par l’homme où les enjeux environnementaux liés à la gestion du couvert sont 

majeurs.  
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Chapter 1 - General introduction 
 
 

 

 

Painting of the forest transition curve adapted from Mather and Needle (1998), by Giacomo Fedele 
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1.1 Background 
  

Tropical forests located between the Tropics of Cancer and Capricorn have historically covered about 

12 percent of Earth’s land area and now only make up less than 5 percent (Hansen et al. 2013). Yet, 

tropical forests are considered as the most diverse and complex biomes on Earth exerting major 

influences on weather patterns, freshwater, natural disasters, biodiversity, food and human heath 

from local to global scales (Thompson et al. 2009).  Tropical forests house approximately two third of 

the planet’s terrestrial biodiversity (Gardner et al. 2009) and provide many ecosystem services (ES) 

which are essential to human well-being (MEA 2005). Tropical rainforests in particular (e.g. evergreen 

and semi-evergreen forest) play major roles in global climate regulation acting as carbon sinks, in water 

cycle regulation, protection of ecosystems from soil erosion, and provision of many goods (timber and 

non timber products) directly used by humans (Brandon 2014).  

Tropical deforestation and forest degradation reduce or halt the flows of ecosystem goods and services 

(Seymour and Busch 2016). Collectively these two processes amount to the second largest source of 

anthropogenic emissions of carbon dioxide after fossil fuel combustion (Van Der Werf et al. 2009). 

They impact local to regional climate (Pielke 2005; Kalnay and Cai 2003), biodiversity (Barlow et al. 

2016), soil degradation and livelihood (Lambin et al. 2001; Song et al. 2018). However, changes in land 

use and land cover provide essential provisioning services to humans (e.g. food, fiber and fresh-water).  

Most of worldwide forest loss (2.3 million square kilometers) from 2000 to 2012 was located in Brazil, 

Democratic Republic of the Congo and South East Asia (mainly Indonesia),  though opposite trends of 

deforestation rates between countries are recorded (Hansen et al. 2013; Lewis et al. 2015)(Fig 1.1). 

The main driver of global forest loss in the tropics can be attributed to deforestation through 

permanent land use change for commodity production (Curtis et al. 2018). 
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Figure 1.1 (A) Tree cover, (B) forest loss, (C) forest gain and (D) color composite of tree cover in green, 
forest loss in red, forest gain in blue and forest loss and gain in magenta, from Hansen et al. (2013) 

 
Compared with deforestation, information on the rates, locations and drivers of forest degradation 

vary widely as do the estimates for carbon emissions. In 2000, it was assessed that tropical forest 

degradation ranged from 350 to 500 millions hectares (20-30% of tropical forest cover)(International 

Tropical Timber Organization 2002). Forest degradation accounts for 25% (Pearson et al. 2017) to 

68.9% (Baccini et al. 2017) of overall tropical forest carbon losses,  and accounts for at least 15% of 

total carbon emissions from land-cover and land-use changes in the tropics (Houghton 2013)(Fig 1.2).  

 

Figure 1.2 Geography of carbon density change (gains, losses and no change) from 2003 to 2014, 
from Baccini et al. (2017) 
 



24 
 

Deforestation and forest degradation shaped landscapes into a patchwork of forest, agricultural lands 

and other uses. Most remaining tropical forests experienced anthropogenic effects of logging and 

other resource extraction, wildfire and defaunation and keep experiencing increasing pressures from 

degradation and fragmentation dynamics (Malhi et al. 2014). Intact forests declined by 18% between 

2007 and 2013, particularly in old pioneer fronts of Southeast Asia, Africa and Latin America (Tyukavina 

et al. 2016). Historical land/forest-use-associated drivers (i.e. degradation, fragmentation and 

agricultural expansion) determine the large range of heterogeneous status and configuration of 

current forest landscapes. Future forest landscapes will thus be shaped by both ongoing pressures and 

management responses (Malhi et al. 2014)(Fig 1.3).   

 

Figure 1.3 The future of tropical forests are determined by the severity and duration of the 
Anthropocene bottleneck influenced by the current forest state, ongoing pressures and management 
responses, from (Malhi et al. 2014) 
 

Considering the importance of the extent and dynamics of forest degradation and their major 

consequences on the provision of forest ecosystem goods and services, there is an urgent need to 

better understand the heteregenous status of remaining forests and the pressures they are facing in 

order to plan management interventions to avoid and mitigate these pressures. However, fostering 

multiple transitions towards the improved management or restoration of forests within 

multifunctional landscapes and avoiding severe bottlenecks of degradation is only possible if there is 

a complete understanding of the vulnerability of forest cover to agricultural expansion and 

degradation.  
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Despite the potential of spatial analyses using remote sensing to monitor forests and land use/cover, 

the implementation of ecological vulnerability assessment based on the characterization of the status 

of remnant forests and the exogenous forces or pressures that affect forest cover is still rare (Malhi et 

al. 2014; Mitchell et al. 2017; Melito et al. 2018). Forest degradation is a complex multi-aspect 

phenomenon which makes the mapping of forest degradation indicators a challenge within the remote 

sensing community (Herold et al. 2011). There is a particular need to analyze forest degradation at the 

landscape scale in order to interconnect degradation and land use/cover change dynamics towards a 

better understanding of forest vulnerability. Such a spatially explicit assessment can inform decision 

makers on identifing the most vulnerable forests in order to prioritize tailored interventions through 

the direct reduction of exposition factors or through forest management and land use planning.  
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1.2 Key concepts linking forest degradation with broader 

landscape dynamics to assess forest vulnerability  
 

1.2.1 Forest degradation   
 

While deforestation refers to a rapid conversion of land use, forest degradation describes a change in 

forest quality while remaining classified as forest. The difficulty in tackling forest degradation lie in the 

definition of this change and on the construction of indicators to capture it.  

Deforestation is globally recognized as being the strict conversion of forest to other land uses (Achard 

et al. 2014). However, this definition remains reliant on the definition of forest itself, which varies in 

terms of tree size, area, and canopy density, while also depending on the perception and management 

objectives of each country or community (Chazdon et al. 2016; Sasaki and Putz 2009a; Putz and 

Redford 2010a). Nevertheless, the consensus on defining deforestation and the parallel development 

of remote sensing allowed the development of efficient methods to pinpoint and monitor 

deforestation at a large scale (Achard et al. 2007). Deforestation alert systems (Hansen et al. 2010; P. 

Potapov et al. 2019) are good example of this as they provide key near-real time information to 

decision makers for direct impact at the field (Leisher et al. 2013; Reymondin et al. 2012; Finer et al. 

2018) and institution levels (« PRODES — Coordenação-Geral de Observação da Terra »). Latest 

developments are focusing on refining data spatial resolution towards more precise and accurate 

detection and on improving more frequent data acquisition thanks to the coupling of radar and optical 

images (Reiche et al. 2015; 2018; Bouvet et al. 2018).  

By comparison, there is little agreement on the definition of forest degradation, making it more 

difficult to measure and monitor (Thompson et al. 2013; Putz and Redford 2010; Simula 2009; 

Bustamante et al. 2016). A degraded forest is the result of a process of degradation which negatively 

affects the structural and functional characteristics of that forest. Degradation triggers a reduction in 

the forest capacity to produce ecosystem services (e.g. carbon storage, wood products, soil protection, 

regulation of water supply and climate)(Vásquez-Grandón et al. 2018). Beyond this theoretical 

concept, there are more than 50 definitions of degraded forest and forest degradation (Lund 2009) 

that currently do not allow a practical understanding of the spatial and temporal complexities of 

degradation (Sasaki and Putz 2009; Putz and Redford 2010; Simula 2009). This lack of coherence in the 

definition of forest degradation is explained by several difficulties linked with the complexity of the 

phenomenon (Thompson et al. 2013a). 
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Forest degradation is a temporal process of disturbances accumulation 

Degradation is often assimilated with human-made disturbances such as selective logging and 

understory fires (Matricardi et al. 2010; Asner et al. 2009; Souza et al. 2005). Each disturbance event 

affects the status of the forest by damaging the canopy and the internal structure without triggering 

any changes in land use (Putz and Redford 2010b; Herold et al. 2011). The damages in the forest 

structure depend on the type and intensity of the disturbance and can vary from limited gaps in the 

canopy from reduced impact logging to larger opening following unsustainable logging up to large scale 

destruction of the structure following fire (Rappaport et al. 2018). Repetitive unsustainable logging 

events weakens the forest structure triggering increasing tree mortality and drying effects, which will 

increase forest structure flammability (Morton et al. 2011). At the forest stand scale, degradation is 

therefore a multidimensional process within which the accumulation in space and time of disturbances 

are key factors for explaining the resulting degraded forest structure (Chazdon et al. 2016; Malhi et al. 

2014). Moreover, the recovery (i.e. vegetation regrowth) in between disturbances is another crucial 

parameter that needs to be taken into account in forest degradation evaluation. The partial opening 

of the canopy further to selective logging or to forest fires is a transient problem that is difficult to 

detect as vegetation returns to these clearings at different rates depending on the state of the soil and 

the surrounding vegetation (Piponiot et al. 2016). At a larger scale (e.g. landscape to regional scales), 

degradation is driven by other parameters such as the increase of drought on edge areas (Briant et al. 

2010), infrastructure development (Laurance et al. 2009) or fragmentation (Broadbent et al. 2008). 

 

Forest degradation and loss of resilience  

From an ecological point of view, degraded forests are forests that have lost their resilience capacity, 

i.e. capacity to return to their stable pre-disturbance state (Holling 1973; Gunderson 2000; Folke et al. 

2004). Forests can naturally cope with “small impact disturbances” (storms, climate variability, pest 

and diseases, etc) and still retain their basic function and structure but intense and frequent 

disturbances can shift forest ecosystems into a state from which transitions back to the stable state 

are unlikely or can only occur after a long period of time (Thompson et al. 2009; Ghazoul et al. 2015). 

This definition calls for an understanding of two major concepts, the state of reference and the 

ecological threshold beyond which a forest is considered as degraded (Ghazoul and Chazdon 2017). A 

reference state or baseline may be used in the evaluation of degradation. It must be taken from forests 

located within the same edaphoclimatic zone and biome type (i.e. similar biophysical characteristics) 

with no sign of previous human-made disturbances (Tucker et al. 2008) which in practice is difficult to 

prove due to data limitation (Morales-Barquero et al. 2014). The ecological threshold or tipping point 



28 
 

is the instance where forest composition, structure and function are radically altered considering the 

reference and stable state. In practice, this boundary could be defined using a combination of 

ecological indicators (Thompson et al. 2013a) but remains at this time an unsolved limitation (Vásquez-

Grandón et al. 2018).  

 

Forest degradation and the influence of perceptions 

Perceptions of forest degradation vary according to each individual and their own understanding of 

the degradation process. Some authors consider tropical forests to be degraded once the forest has 

been logged once (Foley 2005) whereas others consider it only when the forest has been heavily 

burned and logged several times (Souza et al. 2005b). There are currently two main opposing visions:  

the conservationist vision claims that any human presence or activity in a forest ecosystem are signs 

of degradation while the vision shared by users of forest resources following sustainable forest 

management practices claim that forest production is not a degradation. This antagonism is amplified 

by the fact that the term degradation is often perceived in a pejorative way by some actors, which can 

complicate its study (Sasaki and Putz 2009b).  

Considering the different complexities linked with forest degradation raised previously, we stress the 

importance of characterizing the disturbances at the origin of degradation and identifying conserved 

forest. The adopted definition of degradation is the following:  

 

Forest degradation (process) is the accumulation in time and space of human-made disturbances 

operating at forest stand (direct disturbances such as logging and fire) and larger scales (indirect 

drivers), which affect the states of the forest by partially destroying the canopy and internal structure 

without triggering any changes in land use (Fig 1.4). Degraded forests (state) are therefore the 

consequence of complex degradation and recovery processes which radically differ in terms of 

structure and ecological functioning from a conserved forest i.e. reference state (no sign of recent 

historical disturbances). 
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1.2.2 Landscape approach of land use and land cover change 

dynamics to analyze forest degradation 
 

Among other natural resource management and environmental issues, tropical forest and its 

degradation can be analyzed using the social-ecological system (SES) approach built upon the 

dynamical and reciprocal interactions that exist between human systems and forest ecosystems 

(Ostrom 2009). Humans not only benefit from forest ecosystems but impact and shape their capacity 

to generate services (Folke et al. 2005). SES approaches allows for the dissection of complex cause-

effects relationships involving multiscale influences and feedbacks. In a SES approach, forest 

Figure 1.4 Adopted framework of simplified degradation and recovery trajectories at the forest stand 
scale where an accumulation of different direct drivers (disturbances) such as logging and fire trigger a 
rapid change in the forest structure and function. Dashed lines represents various degradation and 
recovery conditions depending on the respective disturbance type and intensity and 
environment/ecological conditions. The time between the stages A to F can also vary depending a 
multitude of factors. The cascade of indirect drivers operating at the landscape and regional scale are 
not shown in detail here.  
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degradation analysis cannot be restricted to only forest ecosystems but needs to encompass broader 

scales and be linked with land use and cover change dynamics.  

Land use and land cover changes (LULCC) are the result of the close interaction between human 

activities and their environment (Turner et al. 1995; Lambin et al. 2001; Foley 2005). Analyzing LULCC 

offer a better understanding of how decisions at the local scale affect land use change and how global 

drivers can influence these decisions (Lambin and Meyfroidt 2010; Turner et al. 2007; Geist and Lambin 

2002). More generally, understanding the drivers, trends and impacts of LULCC on social and natural 

processes helps to reveal how changes in the land system affect the functioning of the socio-ecological 

system as a whole (Verburg et al. 2015). Land use change is influenced by driving forces involving the 

complex interaction of biophysical environments, socioeconomic activities, and cultural contexts in 

time and space. Global drivers relate to economic (e.g. market prices and capital flows) and biophysical 

factors and processes, access to technology and policies. Local drivers relate to farmer choices and 

practices but also on farming systems including demographic, social and cultural factors (Lambin et al. 

2003). As a growing number of drivers at multiple spatial scales influence land use and land cover, and 

as these drivers interact in chain-linked or nested ways, they produce dissimilar land cover/use 

outcomes (Fig 1.5). 

Figure 1.5 Multi-scale forest social-ecological system where land dynamics are at the intersection 
between human and forest ecological subsystems and under the influence of a cascade of global and 
local drivers, adapted from Turner et al. (2007), Virapongse et al. (2016) and Gardner et al. (2013).  
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Characterizing forest social-ecological system throughout the interconnection of forest within land use 

and land cover dynamics are challenges closely linked with the landscape approach objectives. 

Integrated landscape approach aims at solving environmental, social and economic issues in unison 

within a geographical area composed by a variety of competing land uses and multiple stakeholders 

(Reed et al. 2016; Opdam et al. 2018). Landscape approaches show potential as a framework  for 

balancing and finding trade-offs between conservation of natural resources and development i.e. 

improve social capital (enhance community income, employment opportunities) while reducing land 

degradation (Sayer et al. 2013). However, the implementation and evaluation progress of such 

approaches are still under development, mainly due to the difficulty in engaging diverse stakeholders 

(Reed et al. 2017; 2019). 

In a spatially explicit approach, landscapes are the scale at which people and nature mesh and interact. 

The composition and configuration of a landscape both profoundly affect and are affected by human 

activities (Wu 2013). Landscape approach provides a supplementary level of understanding on LULCC 

as its scale encompasses spatial patterns that reveal the underlying social, environmental and 

ecological processes (Wu 2007; Messerli et al. 2009; Hett et al. 2012). Assessing drivers of change 

usually consists of interpretation of human–environmental interactions through the translation of land 

cover into land use information at the pixel scale. However, LULCC triggers changes at a larger scale 

where the spatial distribution and configuration of land use and cover types are key information for 

interpreting dynamics and underlying drivers (Messerli et al. 2009). Complex landscape mosaics 

resulting from long-term LULCC can be characterized using landscape approaches (Oszwald et al. 

2011).  

Spatial heterogeneity is a key concept for characterizing landscape mosaics. Spatial heterogeneity can 

refer to the quantification of the variation of a process in space. This general definition of functional 

heterogeneity can be applied to individuals, species, biological processes or other ecological variables 

(Fahrig et al. 2011; Katayama et al. 2014). Spatial heterogeneity can also refer to its structural 

dimension and becomes a measurable property of a considered landscape. Based on this concepts of 

structural heterogeneity, many methods allow quantifying the structure and spatial patterns of the 

landscape defined as the combination of landscape composition and configuration (O’Neill et al. 1997; 

1999). This structural approach of spatial heterogeneity was adopted in this thesis in order to 

disentangle landscape structure dynamics i.e. the analysis of spatial structures or spatial arrangement 

of the landscape elements in relation to others (Burel and Baudry 1999). Spatial heterogeneity is based 

on two components: the diversity of landscape elements (composition) and the complexity of their 

spatial relationships (configuration). The heterogeneity of composition increases with an increase in 
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the number of land cover types. The configuration heterogeneity increases with an increase in the 

complexity of the spatial organization of these land covers (Fig 1.6).  

 

 

 

Figure 1.6 Two components of spatial heterogeneity: composition and configuration, extracted from 

Fahrig et al. 2011. 

 

Spatial heterogeneity can be described through the concepts of fragmentation and connectivity. 

Fragmentation is the transformation of a large area of habitat into a greater or lesser number of 

fragments of varying sizes, whose total area is smaller than that of the original habitat and which are 

more or less isolated from each other (Fig 1.7). Spatial connectivity is defined by the fact that two 

patches of same land cover type are adjacent or joined in space. 
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Figure 1.7 The a,b,c photos represent an increasing degree of fragmentation of forest landscape 

(Paragominas landscapes, September 2017) 

The notion of scale in landscape approach is essential, as it will have a direct impact on the LULCC 

process that need to be characterized in both space and time dimensions (Burel and Baudry 1999). 

Here, the spatial scale refers to the resolution of the map and to the extent within which the different 

metrics related to fragmentation, connectivity and heterogeneity will be computed while temporal 

scale refers to the gap of time between the dates of the analysis. 

To conclude, forest cover is integrated within a mosaic of land use and cover types in constant mutual 

interaction. As highlighted above, there is a need to combine social-ecological system, land dynamics 

science and the quantitative aspect of landscape approaches for better characterizing forest 

degradation: 

 

 Forest degradation must be analyzed within a landscape approach in order to i) capture human-

environment interactions occurring between forests and the broader land use and land cover dynamic 

and ii) to characterize the direct and indirect drivers of forest degradation. A landscape is a 

geographical area of varying extent characterized by specific structure (i.e. composition and 

configuration of landscape units or land cover types) which transcribes specific LULCC history, human 

practices and governance.  
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1.2.3 Ecological vulnerability of degraded forests to agricultural 

expansion 
 

Analyzing forest degradation and its drivers (interacting factors and feedback loops between human 

and forest ecological systems) at the landscape level are key elements for better understanding and 

characterizing the vulnerability of forest cover within human-modified landscapes. The concept of 

vulnerability directly emerges from the social-ecological system framework as it focuses on the 

consequences of mutual interactions between exogenous and endogenous processes. Forest resilience 

is often compared with vulnerability but these two concepts are very different. Resilience refers to the 

capacity of a system to anticipate, absorb or recover from the effects of perturbations and other 

stressors, and to ensure the preservation, restoration or improvement of its structure and functions 

(Holling 1973; Folke et al. 2004). Resilience and vulnerability are both related to understanding the 

response of systems to change and share common elements but resilience is not the flip side of 

vulnerability (Adger 2006). While resilience focuses on the preservation of a system within a stable 

state, vulnerability refers to the propensity or predisposition a system to be adversely transformed. 

Moreover, resilience is an internal property of the system and does not include exposure to 

perturbations (Gallopín 2006). Vulnerability is better adapted to multidimensional degradation 

processes. In the context of old deforestation fronts where historical and current processes of forest 

degradation are active, the concept of vulnerability of forest cover is a fundamental concept for 

prioritizing sustainable forest and landscape management and reduce degradation risks.  

 

Originally formalized for climate change and the agricultural sector by the Intergovernmental Panel on 

Climate Change (IPCC), the vulnerability framework makes it possible to assess the key determinants 

of system responses to external stress and pressures (Marshall et al. 2010; Parker et al. 2019). 

Vulnerability assessments provide guidance on how to target interventions and to support decision 

making processes (Adger 2006).  Adapted from the IPCC definition, vulnerability is the degree to which 

a forest ecosystem is susceptible to, or unable to cope with, adverse effects of human-triggered 

impacts such as land use and land cover change and forest degradation (McCarthy 2001). Vulnerability 

is commonly defined as the combination of three main components where exposure relates to the 

magnitude of stress undergone by a system (exogenous processes) ; sensitivity refers to the degree to 

which the stress may affect the system, and the adaptive capacity is the system’s ability to respond to 

the stress (endogenous processes)(McCarthy 2001). This definition is widely used in the literature to 
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describe human-environment interactions and the resulting pressure and response options in the 

framework of socio-ecological systems (Thiault et al. 2018; Morel et al. 2019)(Fig 1.8). 

 

Figure 1.8 Conceptual framework of forest ecological vulnerability as the combination of exposure 

(exogenous), sensitivity and adaptive capacity (endogenous), modified from Gallopín (2006) and 

Thiault et al. (2018). Vulnerability assessment has a direct link with decision-making and management 

to reduce exposure risks and enhance adaptive capacity.  
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1.3 Litterature review of forest degradation and landscape 

approach towards the assessment of forest ecological 

vulnerability  
 

1.3.1 Characterizing structures resulting from forest degradation 

using remote sensing 
 

In human-dominated landscapes such as old deforestation fronts, the distinction between forested 

and deforested lands traditionally used to map the state of the forest does not reflect the reality of 

the situation. A whole gradient exists for these forests, spanning from well conserved to severely 

degraded. Due to the complexity of the forest degradation concept, a wide range of remote sensing 

methods exist in the literature and can be generally grouped into two main approaches: direct and 

indirect (Herold et al. 2011). These methods vary in terms of remote sensing sources (satellite and 

airborne optical, Synthetic Aperture Radar (SAR), Light Detection And Ranging (LiDAR) or fusion), 

timescales (punctual to long time-series) and spatial coverage (local to pantropical)(Frolking et al. 

2009; Herold et al. 2011; Hirschmugl et al. 2017; Mitchell et al. 2017)(Fig 1.9).  

 

 

Figure 1.9 Direct and indirect approaches to characterize forest degradation/degraded forest using 

remote sensing and non exhaustive list of related methods  
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Indirect approach 

Indirect approaches focus on the spatial distribution and evolution of human infrastructure and on the 

identification of forest disturbances along time. They are usually used as proxies for assessing 

potentially degraded forest areas. Indirect methods are thus useful for large area mapping and may 

serve as a guide to identify hotspots of degradation.  

Proximity metrics such as distance to roads, agricultural activity or infrastructure but also size and 

connectivity of forest patches are used for delineating hinterland forests and map intact forest 

landscapes (Tyukavina et al. 2016; Potapov et al. 2017; Tyukavina et al. 2017). Fragmentation of forest 

habitat could also be a proxy of degradation (Broadbent et al. 2008). For instance, Shapiro et al. (2016) 

demonstrated that forest biomass was significantly different within different fragmentation classes 

constructed on the basis of forest habitat morphological parameters (geometry and connectivity).  

The detection of logging roads, skid trails and log decks using moderate resolution optical and SAR 

provide proxy indicators of selective logging activity (Asner et al. 2002; Lei et al. 2018; Hethcoat et al. 

2019). For instance, Bourbier et al. (2013) developped semi-automatic algorithm to extract road 

network and canopy gaps using Landsat imagery.  

The detection of fire using MODIS Fire product (Justice et al. 2002; Giglio 2015) allows near-real time 

monitoring of forest and land fires but the coarse resolution of the data and the relatively high 

uncertainty of detection may be limiting. Other methods decided to focus on mapping the resulting 

burned vegetation and develop indicators of forest fire scars using Landsat images (Silva et al. 2018) 

or using multisource remote sensing such as Sentinel-1/2 (Verhegghen et al. 2016)  or 

Landsat/Sentinel-2 (Roy et al. 2019).  

 

Direct approach 

Direct approaches focus on assessing the damage of forest canopy and forest structure generated by 

human-made disturbances. To capture these subtle changes, the use of common vegetation indices 

such as the NDVI (Normalized Difference Vegetation Index) from optical data is not sufficient due to 

saturation effects in forests with abundant undergrowth (Gond et al. 2013). In addition, degradation 

is a phenomenon only visible at a very fine scale and therefore cannot be detected correctly if the 

spatial resolution of the data is too coarse.  

At the sub-pixel scale, degraded forests are mixed fractions of photosynthetic vegetation, non-

photosynthetic vegetation, and bare soil. Spectral unmixing analysis (SMA) distinguishs these three  
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fractions and is recognized as the most effective method to assess the degradation of forest canopy 

using optical images (Asner et al. 2009b; Souza, Jr et al. 2013; Tritsch et al. 2016). However, SMA 

requires the selection of calibration values named pure spectral endmembers, which can be limiting 

when not available or when the data has to be selected manually. To overcome these limitations, 

Langner et al. (2018) developed a method using the differences of the Landsat-based normalized burn 

ratio (NBR) index to monitor the disturbance in forest canopy closure with no additional input of 

calibration data. These vegetation indices can be directly used as continuous variables to assess forest 

canopy disturbance or as inputs for classifying degraded forest.  

The partial opening of the canopy further to selective logging or to forest fires is a transient problem 

that is difficult to detect through single image remote sensing analysis. Vegetation returns to these 

clearings at different rates depending on the state of the soil and the surrounding vegetation and, in 

just a few months, the opening in the canopy may no longer be detectable by satellite imagery 

(Mitchell et al. 2017). A temporal approach is therefore essential in order to analyze forest and 

degradation dynamics. It requires dense time series (several images per year, usually from Landsat 

archive), relevant vegetation indices and an efficient change detection algorithm that takes advantage 

of the seasonal and/or long-term trends in the data. A large range of methods exist in the literature 

(Zhu 2017). Break detection For Additive Seasonal Trends (BFAST)(Verbesselt et al. 2010) is a pixel 

approach that consists of modelling the expected variation in vegetation indices over a monitoring 

time and detecting breaking points where the indices deviate significantly from the models (DeVries 

et al. 2015a; DeVries et al. 2015b). The Landsat-based Detection of Trends in Disturbance and Recovery 

(LandTrendr) extracts spectral change trajectories using annual Landsat time series and applies time 

segmentation to identify slow processes (e. g. regeneration) and abrupt changes (e. g. 

harvesting)(Kennedy et al. 2010; Cohen et al. 2018). The Continuous Change Detection and 

Classification algorithm (CCDC, (Zhu and Woodcock 2014)) flags land cover change by differentiating 

the predicted and observed Landsat data and was applied at the sub-pixel scale to characterize 

degradation (magnitude of change, time of recovery…) using unmixing indices (Bullock et al. 2018). 

These three approaches are the most commonly utilized in the study of forest degradation but all face 

several difficulties. Firstly, the time series capture seasonal changes (natural variation), noise linked 

due to data quality or preprocessing inconsistencies and actual degradation trend that needs to be 

extracted and quantified. The detection of degradation is therefore a major challenge and is amplified 

by other constraints linked with the resolution of the data which is often too coarse compared with 

the small-scale impacts caused by degradation (Zhu 2017). Secondly, the density of the data used is 

restricted by cloud cover, which causes large gaps in the time series especially in tropical regions and 

thus affect the efficiency of the change detection algorithm (Fig 1.10).   
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Figure 1.10 Example of the trajectory of the Normalized Difference Moisture Index (NDMI) extracted 

from surface reflectance Landsat data (from 1985 to 2018) over a logged forest in 2005 in Paragominas 

municipality. Limitations of time series change detection approach for this case are: the detection of 

degradation trend is mixed with noise and natural vegetation variation, large gaps in the time series 

(before 2000) prevent the algorithm to train over historical period (pre-disturbance) and the scale of 

the degradation is too small to be detected using remote sensing time series.  

Thirdly, field validation of time series detection approach is a complicated and difficult task due to 

historical data availability. It often involves collection of reference observation using Google Earth but 

leads to bias and misinterpretation of disturbances (Bullock et al. 2018). 

To overcome these limitations, another direct approach consists of analyzing the structure and the 

aboveground biomass of the forest that result from long-term degradation history. Airborne Light 

Detection and Ranging (LiDAR) is the most adopted remote sensing source to retrieve three-

dimensional forest structural parameters and estimate aboveground biomass (AGB) stocks and 

changes  (Asner et al. 2012; Meyer et al. 2013). LiDAR has specifically been used to assess aboveground 

carbon density within a gradient of degraded Amazonian forest types (Longo et al. 2016) and informs 

on long term consequences of different degradation trajectories on forest structure  (Rappaport et al. 

2018). LiDAR is also used as ground inventory data for the calibration and validation of multisource 

remote sensing upscaling approaches to map regional aboveground biomass across gradients of 

degradation (Asner et al. 2018; Meyer et al. 2019). However, airborne LiDAR data are often difficult to 

access (acquisition cost) and to replicate in both time and space (Silva et al. 2017). Radar images 

provide promising alternatives to LiDAR for estimating degraded forest AGB but remains in 

development (Englhart et al. 2011; Mitchard et al. 2011).  

Canopy texture analysis using Very High Spatial Resolution (VHSR) images inform on the distribution 

of dominant tree crowns defining the forest canopy, which provides important indirect indicators of 

three-dimensional forest structure (Bastin et al. 2015; Meyer et al. 2018). The spatial distribution of 

trees, the shapes and dimensions of their crowns and characteristics of the inter-crown gaps define 
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the forest canopy grain and can be assessed through canopy texture analysis (Couteron et al. 2005). 

Many studies demonstrated the potential of texture methods (i.e. the spatial dependencies of grey-

level pixels) to characterize VHSR canopy images (Couteron et al., 2005; Frazer et al., 2005; Haralick et 

al., 1973). Among them, the Fourier transform textural ordination (FOTO) method has been used in a 

variety of tropical forests and mangrove ecosystems to characterize gradients of canopy grain, canopy 

heterogeneity and crown size distribution (Barbier et al. 2010; Bastin et al. 2014; Couteron et al. 2005; 

Ploton et al. 2012; Proisy et al. 2007; Singh et al. 2014). Case studies have shown that FOTO indices 

can correlate with forest structural parameters along gradients of natural variation (Couteron et al. 

2005) of degradation (Singh et al. 2014) or in landscapes mixing both (Bastin et al. 2014). As such, they 

can enable the assessment of AGB at large scale with reasonable predictive error (Bastin et al. 2014; 

Pargal et al. 2017; P. Ploton et al. 2017; Ploton et al. 2012; Proisy et al. 2007). 

 

 Methods that aim to map forest structure are closely related with the adopted definition of forest 

degradation. However, the review of existing methods illustrates the lack in understanding and 

quantification of the consequences of long-term degradation on forest structure and canopy texture. 

It also highlights trade-offs that need to be made between resolution, accuracy, area covered, cost and 

frequency to map degraded forest structures and forest biomass across anthropogenic disturbance 

gradients. Consequently, one objective of this thesis is to better characterize the large range of 

structures resulting from degradation through multidimensional approach.   
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1.3.2 Land use characterization and landscape temporal dynamics for 

vulnerability assessment 
 

Most approaches used to characterize forest degradation are uniquely focused at the forest patch 

scale and the overall dynamics of land use and cover change is not taken into consideration. A need 

exists to broaden the understanding of forest degradation dynamics and drivers towards a more 

integrative and holistic approach. In other words, analyzing forest and its degradation in a landscape 

approach consists of considering and characterizing the interconnections between forest cover state 

and the different land use processes at multiple scales (Melito et al. 2018). The analysis of the 

ecological vulnerability of forest cover is only possible at the landscape scale where the intrinsic state 

of the forest is documented and the dynamics of land use change are decoded, thus requiring analyzes 

of land use and cover changes and landscape dynamics.  

Remote sensing imagery provides great potential for characterizing and monitoring land cover and the 

elements of landscape matrices across spatial and temporal scales. Images with high and very high 

spatial resolutions provide greater spatial detail and precise information (Wulder et al. 2004). 

However, the low temporal resolution of such data does not enable monitoring vegetation dynamics 

and assess land cover changes at large scale. In contrast, satellite time series offers great opportunities 

for this purpose. MODIS and Landsat optical time series have been used extensively for land cover 

classification since the 1970s. Land cover derived from MODIS has low local accuracy for mapping 

complex landscape mosaics due to the maximum spatial resolution of 250 m. The Landsat constellation 

has an 8-day revisit time but has a higher spatial resolution (30 m) than MODIS. The Sentinel-2 satellite 

has even higher capacities, with a five-day revisit time and a 10 m spatial resolution (Drusch et al. 

2012). The accessibility (free and open source) of Landsat and Sentinel images has had substantial 

impact on Earth observation studies, especially on vegetation mapping purposes and operational 

applications (Zhu et al. 2019).  

The proliferation of remote sensing sources (optical, radar and fusion) and the unprecedented 

combination of spectral, spatial and temporal resolutions constitute a large volume of data that 

remains a significant challenge for the automated mapping of tropical lands. In parallel, machine 

learning techniques such as Random Forest emerged to face this difficulty and are now recognized as 

commonly utilized tools for land cover classification thanks to their a robustness and capacity to handle 

a large number of input data and variables (even those that are highly correlated)(Breiman 2001; Pal 

and Mather 2005).  
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A large range of  remote sensing approaches have been developed to identify cropping systems and 

practices (Inglada et al. 2016; Bégué et al. 2018; Picoli et al. 2018) but also to discriminate natural 

vegetation such as forests and their different successional stages (Piazza et al. 2016; Sothe et al. 2017).  

However, the identification of land cover classes in forest–agriculture mosaics distributed along 

vegetation gradients remains a challenge and often results in misclassification. Extensive fieldwork 

combined with multispectral remote sensing images and pixel-based approach classifier was preferred 

in this thesis for mapping these complex mosaics. Although object based image analysis (OBIA) 

presents many advantages over per pixel methods including a more precise delineation of landscape 

elements with similar textural and spectral properties, the pixel-based approach does not require user-

inputs making it more robust for long-term land cover reconstruction using time series.  

Based on multiple land cover classifications, landscape structure dynamics (i.e. composition of land 

cover/uses elements and the configuration of the elements within a given space) are key in 

understanding the complexity of forest-agricultural mosaics and reconstructing land use and land 

cover change history. This approach is already well referenced and some authors have highlighted its 

robustness for the analysis of spatial patterns of land use dynamics at the landscape scale and its ability 

to supply further information on human-environment processes (Wu 2007; Messerli et al. 2009). Some 

authors also demonstrated the relevance of landscape structure metrics in the characterization of 

agricultural frontiers dominated by fragmentation dynamics (Oszwald et al. 2011; Wang et al. 2014; 

Hargis et al. 1998). Furthermore, the availability of time series of remote sensing images opens up a 

wide range of perspectives to characterize agricultural frontiers through historical trajectories of 

landscape change (Lausch and Herzog 2002; Ernoult et al. 2006). In that sense, Oszwald et al. (2011) 

used multivariate statistics to reconstruct landscape trajectories defined as the changes in landscape 

structures among a group of observations entities. These trajectories informed on the relative changes 

in both composition and configuration reflecting landscape homogenization or fragmentation for a set 

of farms experiencing different deforestation history (Grimaldi et al. 2014; Lavelle et al. 2016). 

However, this approach was not generalized to study the landscape structure dynamics over a whole 

territory. 

To this date, there are no methods or conceptual framework that aim to characterize the ecological 

vulnerability of forest cover to anthropogenic impacts. Assessing forest ecological vulnerability is an 

opportunity to integrate different indicators at the forest and landscape scales in order to spatially 

inform on the location of the most vulnerable forests. Moreover, most forest degradation analyses are 

strictly focused on the forest patch scale. This greatly limits the understanding of the cascading effects 

of direct and indirect drivers of degradation and influences of land use and cover changes and 

landscape structure on the status of forest cover.  
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1.4 Research questions and objectives 
 

This research is guided by the question “how does forest degradation and the changes in land use and 

cover change affect the ecological vulnerability of forest cover in human-modified landscapes?”. 

Central to this research are the interactions between forests and human and their dynamics in a 

context of old deforestation fronts.  

The global scientific objective is to develop a multidimensional approach using remote sensing to 

assess forest degradation and the relations between the broader dynamics of land use/cover and 

landscape changes towards the evaluation of the ecological vulnerability of forest cover. The global 

operational objective is to develop a holistic diagnosis of forests based on spatial indicators of forest 

cover state, forest degradation drivers and on the identification of most vulnerable forests in order to 

provide actionable knowledge to decision makers for tailored and prioritized management of forest at 

the landscape scale. 

The main research question (RQ) was split into four sub-questions (Fig 1.11): 

RQ1 How to assess the state of forest cover across gradients of human-induced degradation using 

multisource remote sensing? 

Hypothesis: Multisource remote sensing provide relevant indicators in modelling and mapping 

aboveground biomass of degraded forests.  

RQ2 How to quantify long-term changes in forest structures from degradation?  

Hypothesis: Canopy texture analysis and derived metrics from UAV to satellite sources 

correlate with 3D forest structure parameters within a large range of degraded forest types.  

RQ3 How to identify and disentangle cascading effects of forest degradation drivers at the landscape 

scale?  

Hypothesis: A landscape approach is necessary to capture the influence of changes in 

composition (land use and land cover) and configuration onto the status of forest cover.  

RQ4 How to characterize the ecological vulnerability of forest cover?  

Hypothesis: A landscape approach combining indicators of forest cover state, drivers of forest 

degradation and landscape structure dynamics are keys to assess sensitivity, exposure and 

adaptive capacity components of ecological vulnerability.   
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Figure 1.11 Overview of the thesis structure with the sub-research questions and respective chapters 

located according forest and landscape scales of analysis and current and historical timelines 
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1.5 Study sites: human-dominated tropical landscapes in 

deforestation fronts 
 

The study sites for this research were located in two old deforestation fronts in the Brazilian Amazon 

and in the Central Highlands of Vietnam (Fig 1.12). Both sites are human-dominated landscapes where 

humid-tropical forests (state and configuration) are the result of complex colonization and land use 

change dynamics. These forests are currently threatened by agricultural expansion and related forest 

degradation risks.  

 

Figure 1.12 Study sites located in human-dominated tropical landscapes of deforestation fronts. Green 

shows tree cover in 2000 and pink forest cover loss from 2000 to 2014, source: (Hansen et al. 2010). 

Landscape mosaics numbered by letters are presented in figures 1.15 and 14. The star represents the 

location of the main city.  
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1.5.1 Paragominas municipality, state of Pará, Brazilian Amazon 
 

Geographical conditions 

The municipality of Paragominas (19,342 km²) is located within the Brazilian deforestation front in the 

northeastern part of the State of Pará (Fig 1.12). The climate is tropical with an average annual 

temperature of 26.3°C and a mean relative humidity of 81%. Average annual rainfall recorded at 

Paragominas station between 1992 and 2010 was 1,693 mm (Andrade 2011). Eighty-three percent of 

the annual precipitation falls in the rainy season from December to May. From June to November, 

mean monthly rainfall is less than 100 mm/month. Landforms consist of plateaus at an elevation of 

160–190 m above sea level, separated by valleys up to several kilometers wide. The most prevalent 

soils are Ferralsols, clayey on the plateaus and sandy in the valleys (Laurent et al. 2017). 

 

Historical colonization processes 

Colonization began in 1965 with the construction of the BR-010 road connecting Brasilia to Belém 

coupled with the rapid conversion of forest to pasture for cattle ranching mainly located in the valleys 

and lowlands. The boom in the logging industry started from the 1980s which saw the installation of 

350 sawmills along the main road, therefore accelerating the overexploitation of forest resources. In 

the 2000s, deforestation in the high and fertile lands marked the boom of the grain agro-industry 

through large-scale soybean and maize cultivation. In 2007, the municipality was red-listed by the 

federal government as one of the most deforested Amazonian municipalities (Viana et al. 2016)(Fig 

1.13). The consequences were an immediate loss of access to credit and market for any commodities. 

In response, Paragominas became the first “green municipality” in the country in 2008 in order to end 

illegal deforestation, to tend to zero net deforestation by 2014, and to promote alternative production 

systems and reforestation (Piketty et al. 2015). These colonization processes mainly occurred in the 

central part of the municipality. The eastern part of the municipality is delimited by an indigenous 

reserve (protected area). Since 2000 the western region has been owned by the private forestry 

company  CIKEL Brazil Verde Madeiras Ltda. Smallholder dominated areas can be found in the east and 

north part of the municipality. These areas were colonized at different time through government 

incentive migration (Yanai et al. 2017). Besides subsistence agriculture (mainly cassava), farmers 

practice small-scale cattle breeding and the cultivation of pepper and açai (Laurent et al. 2017).  
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Figure 1.13 Annual deforestation index in Paragominas and the Legal Amazon since 2001 (2001: base 

100). Source: Adapted from PRODES data.  

 

Landscape elements and configuration 

A range of interconnected elements can be found within Paragominas landscapes linked through 

degradation, deforestation, regrowth and conversion or intensification dynamics (Fig 1.14).  Conserved 

forest is degraded due to repetitive selective logging, which can be amplified by fire. The regrowth 

from these states to conserved forest is long and uncertain. Deforestation is the conversion of a 

degraded forest (logged or logged and burned) to pasture or for cash crop agriculture (soybean, maize). 

When pastures are not well managed, wooden vegetation can invade the land. The pasture can be 

abandoned and turn into a juquiera (e.g. fallow) characterized by a mix of grass and shrub vegetation 

which may evolve into a young secondary forest or the pasture can be cleared using fire. Pasture 

(wooden or clean), juquiera and young secondary forests can be converted to cash crop agriculture in 

areas where the soil is fertile and suitable (high plateaus). Pastures can also be converted into tree 

plantation (teak, eucalyptus or parika) if the land is not productive or if it is sold to private companies.  
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Figure 1.14 Systemic model of landscape elements dynamics in Paragominas in 2018 (non-exhaustive). 

Dashed arrows reflect less probable dynamics. 

Paragominas is composed by a large diversity of landscape mosaics (Fig 1.15). Mosaic A is dominated 

by conserved forest. Mosaic B located in the central part of the municipality is dedicated to large-scale 

cash crop agriculture (here soybean) with some isolated patches of remnant forests. The central part 

is also a patchwork of large pastureland and forest (Mosaic C).  Mosaics D, E and F are more diverse 

and complicated landscapes as they are composed by degraded forest (logged and burned), secondary 

forests at different ages, juquiera, small-scale agriculture (cassava, pepper) and wooded pasture.   
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Figure 1.15 Diversity of landscape mosaics and land uses in Paragominas municipality (2017). See figure 

1.12 for the location of landscape mosaics within the municipality.  

 

 

1.5.2 Di Linh district, Lam Dong province, Central Highlands of 

Vietnam 
 

Geographical conditions 

The district of Di Linh is located in Lam Dong province of the Central Highlands in Vietnam (Fig 1.12). 

The district has a tropical monsoon climate with varying altitude and, two distinct seasons: the rainy 

season from May to November and the dry season from December to April. The average temperature 

ranges from 18 - 25○C. Average rainfall is 1,750 - 3,150 mm / year and average humidity is 85 - 87%. 

The average sunshine per year is 1,890 - 2,500 hours. Soil in Lam Dong province is generally of high 

quality and suitable for agriculture (coffee, tea and vegetables). Lam Dong has a relatively varied 

terrain (from 0 to 1860m) mainly consisting of mountains and plateaus but also some flat small valleys.  
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Historical colonization processes 

French colonialists founded the town of Di Linh in 1899 as an administrative post located along the 

road connecting Ho Chi Minh City (Saigon) to Da Lat. The rapid development of the infrastructure 

network in the early 20th century marked the beginning of the agricultural colonization (rice cultivation 

and vegetables) associated with a flow of immigrants for administrative development. The two 

Indochina wars (1945 - 1954; 1955 - 1975) triggered an acceleration in the transformation of Di Linh 

territory through increased flows of migrants and settlements from the lowlands. This influx of 

migrants enabled the continuous development of coffee and tea as cash crops. Starting in 1975, the 

government implemented several housing and agricultural policies as incentives for migrants to settle 

in the vicinity of Di Linh city, to clear land and cultivate food crops in the valley and cash crops in higher 

lands (Déry 2000). The state-sponsored migration and the resettlement of ethnic minority groups 

relying on slash and burn agriculture on the forest margins were accompanied by the coffee boom of 

the 1980s (Trædal and Vedeld 2017; Meyfroidt et al. 2013). In the mid-1990s, Lam Dong became the 

second largest coffee producing province in Vietnam (Ha and Shively 2008). From 1990 - 2000, the 

government kept encouraging the expansion of agricultural land (mainly coffee) to meet the 

community needs (Fig 1.16). From 2001 - 2010, deforestation rates declined thanks to law 

enforcement and improved forest management and protection and reduced market demand. Since 

2006, market demand has again increased leading to further expansion of the coffee. This large-scale 

coffee production has been identified as one of the main drivers of deforestation and degradation and 

is responsible for triggering other environmental problems such as increased drought and soil erosion 

(Meyfroidt et al. 2013; Grosjean et al. 2016). In order to reduce these risks, Lam Dong province was 

the subject of a pilot study for incentive programs for environmental conservation and restoration 

(Thuy 2013). The district was also the subject of forest restoration programs with afforestation of khasi 

pine (Pinus kesiya) for watershed protection and the conversion of poor forest land (low productivity) 

into commercial plantations (higher wood yields)(Dien et al. 2013). Despite these efforts, active 

deforestation fronts are still present in the Central Highlands (Meyfroidt and Lambin 2008), and even 

though degradation caused by logging and human triggered fire have been drastically reduced since 

the 1990s, they remain present along the agricultural frontier (Dien et al. 2013; Vogelmann et al. 2017).  
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Figure 1.16 Area (ha) of perennial crops in Lam Dong province, from 1990 – 2010 (source: Land use, 

forest cover change and historical GHG emission (USAID LEAF), Lam Dong province, 2013) 

 

Landscape elements and configuration 

Conserved broadleaf forest with no signs of recent human-induced disturbance is usually classified into 

three density types, respectively high (200-300 m3/ha), medium (100-200 m3/ha) and low density (< 

100 m3.ha-1) and can be explained by natural or anthropogenic impacts (Fig 1.17). Low-density forest 

is degraded due to selective logging and fire and can be colonized by bamboo vegetation. Degraded or 

“poor” (low density) forest is converted into coffee but can also be enriched through plantation of pine 

forest for protection of the forest edge. It can also be converted into pine forest for production (wood 

for construction or transformation into processed goods). To a lesser extent, degraded forest is 

converted into maize or banana plantation. Natural pine forest is isolated in the dynamic as strictly 

protected with rare conversion into coffee. Rainfed and irrigated rice fields are not involved in the 

agricultural expansion dynamic. Finally, natural bushes are experiencing recent conversion into 

agricultural land (maize or banana plantation) and into pine forest for timber production.  
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Figure 1.17 Systemic model of landscape elements dynamics in Di Linh in 2018 (non-exhaustive). 

Dashed arrows reflect less probable dynamics. 

 

Di Linh district is characterized by very different landscapes between the north and south (Fig 1.18). 

The north is marked by large scale coffee plantation (mosaic B) and rainfed paddy rice associated with 

coffee at the beginning of slopes and pine forest in higher elevation (mosaic A). Mosaic C shows a 

gradient of old to younger coffee plantation following the elevation and mixed broadleaf and pine 

forest. This can be explained by natural alternation between both types or by a replantation of pine 

forest following deforestation in order to protect forest edge from further encroachment and soil 

erosion. Mosaic D shows a typical topographic gradient where rainfed rice is located at the bottom, 

coffee plantation positioned on the slope and degraded and fragmented forest patches due to slow 

encroachment of coffee over forest area through selective logging and fire. Mosaic E is located at a 

higher elevation and mainly shows different states of forest cover mixed with coffee and maize. Mosaic 

F shows a highly heterogeneous landscape of coffee at different ages, natural bush and degraded 

forest. Mosaic G shows interconnected coffee and pine plantation for production purposes (cycle of 

growth/harvest of 25 years).  
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Figure 1.18 Diversity of landscape mosaics and land uses in Di Linh district (2018). See figure 1.12 for 

the location of landscape mosaics within the district.  
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1.6 Thesis structure 
 

This PhD thesis is organized in six chapters. Between the general introduction (Chapter 1) and the 

conclusion (Chapter 6), the Chapters 2, 3, 4 and 5 reproduce the scientific papers (published or 

submitted) that address the different sub-research questions (RQ1 to RQ4). 

In Chapter 2, we assess the potential of multisource remote sensing and derived indicators to model 

and map the aboveground biomass (AGB) of forest across gradients of degradation in Paragominas. 

The model is calibrated and validated with field inventory data from the Sustainable Amazon Network. 

In addition, we identify a five class-typology of degraded forest types from the field and use it to 

validate the AGB map.  

In Chapter 3, we explore the use of 2D canopy texture metrics to retrieve the structure of degraded 

forests resulting from various degradation histories in Paragominas. We map 40 forest plots using UAV 

and use photogrammetry method to generate independent canopy height models and high-resolution 

images. We investigate how the different gradients of texture captured by Fourrier-based textural 

ordination and lacunarity correlate with canopy structure. We finally discuss how long-term 

accumulation of disturbances varying in type and frequency have affected current forest structure and 

how it can be measured using canopy texture analysis.  

In Chapter 4, we explore the different cascades of direct and indirect drivers of forest degradation in 

Paragominas. Based on collected field data, we map forest-agricultural mosaics and apply a landscape 

quantitative approach to derive landscape structure indicators. Additionally, we collect direct driver 

(fire occurrence) and indirect drivers (environmental and geographical factors). Linear regression 

models are then used to identify most significant dirvers of degradation and we analyze the spatial 

distribution of these drivers using clustering methods. The discussion focuses on the sequential 

interaction of forest degradation drivers at the landscape scale and identifies different forest 

management options.  

In Chapter 5, we develop a rigorous methodological framework to assess forest ecological vulnerability 

in Di Linh. We use remote sensing to characterize forest landscape dynamics in spatial and temporal 

dimensions integrating current landscape mosaic mapping with 45 years of landscape structure 

trajectories. We adapt the definition of vulnerability by the IPCC to derive indicators of forest 

sensitivity, exposure and adaptive capacity. Combined, these indicators pinpoint hotspots of forest 

vulnerability. 
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Chapter 2 - The Potential of 

Multisource Remote Sensing for 

Mapping the Biomass of a Degraded 

Amazonian Forest 
 

 

A transect through a selectively logged forest of Paragominas municipality to observe and document 
the different vegetation strata and the canopy structure (picture by Clément Bourgoin) 

 

Reproduced from the article:  

Bourgoin, C.; Blanc, L.; Bailly, J.-S.; Cornu, G.; Berenguer, E.; Oszwald, J.; Tritsch, I.; Laurent, F.; Hasan, 
A.F.; Sist, P.; Gond, V. (2018) The Potential of Multisource Remote Sensing for Mapping the Biomass of 
a Degraded Amazonian Forest. Forests 2018, 9, 303. https://doi.org/10.3390/f9060303 

https://doi.org/10.3390/f9060303
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Abstract 

In the agricultural frontiers of Brazil, the distinction between forested and deforested lands 

traditionally used to map the state of the Amazon does not reflect the reality of the forest situation. A 

whole gradient exists for these forests, spanning from well conserved to severely degraded. For 

decision makers, there is an urgent need to better characterize the status of the forest resource at the 

regional scale. Until now, few studies have been carried out on the potential of multisource, freely 

accessible remote sensing for modelling and mapping degraded forest structural parameters such as 

aboveground biomass (AGB). The aim of this article is to address that gap and to evaluate the potential 

of optical (Landsat, MODIS) and radar (ALOS-1 PALSAR, Sentinel-1) remote sensing sources in 

modelling and mapping forest AGB in the old pioneer front of Paragominas municipality (Para state). 

We derived a wide range of vegetation and textural indices and combined them with in situ collected 

AGB data into a random forest regression model to predict AGB at a resolution of 20 m. The model 

explained 28% of the variance with a root mean square error of 97.1 Mg·ha−1 and captured all spatial 

variability. We identified Landsat spectral unmixing and mid-infrared indicators to be the most robust 

indicators with the highest explanatory power. AGB mapping reveals that 87% of forest is degraded, 

with illegal logging activities, impacted forest edges and other spatial distribution of AGB that are not 

captured with pantropical datasets. We validated this map with a field-based forest degradation 

typology built on canopy height and structure observations. We conclude that the modelling 

framework developed here combined with high-resolution vegetation status indicators can help 

improve the management of degraded forests at the regional scale. 

Keywords Forest degradation, Multisource remote sensing, Modelling aboveground biomass, Random 

forest, Brazilian Amazon 
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2.1 Introduction 
 

Deforestation and forest degradation are major sources of greenhouse gas emissions (Houghton 2013; 

Simula and Mansur 2011), contributing to forest carbon losses (Baccini et al. 2017), global climate 

change, affecting biodiversity (Barlow et al. 2016) and the entire forest ecosystem. While deforestation 

refers to the rapid conversion from forest to non-forest areas, degradation implies changes in the 

forest structure with no change in land use (Thompson et al. 2013; Putz and Redford 2010). In 

Amazonia, over the last decades, deforestation and forest degradation have shaped the rural 

landscape, resulting in a complex mosaic of fragmented forests associated with agricultural lands 

(Lamb et al. 2005). A total area of 766,448.5 km2 was cleared in 2015 (« PRODES — Coordenação-Geral 

de Observação da Terra »), representing 20% of Amazonia (Hansen et al. 2010; Fearnside 2005). 

Since 2005, deforestation in Brazil has drastically decreased thanks to coercive measures taken by the 

Brazilian government associated with private initiatives (soy and beef moratoria), among other factors 

(D. Nepstad et al. 2009). However, these measures are not effective for reducing forest degradation 

(« DEGRAD — Coordenação-Geral de Observação da Terra »; « Florestas do Brasil em Resumo 2013 »). 

Most of the remaining forested lands are degraded due to the accumulation over time and space of 

severe degradation processes mainly triggered by anthropogenic impacts through unsustainable 

logging practices, fire, shifting cultivation and charcoal production (Asner et al. 2005; Souza et al. 

2013). 

Reducing forest degradation is a major challenge given the rapid need to reduce carbon emissions to 

the atmosphere, conserve biodiversity, limit soil erosion and regulate the water cycle (Thompson et 

al. 2009). Forest monitoring based on the forest/non-forest approach used to quantify deforestation 

is not relevant for providing information on the forest status (Potapov et al. 2017; Bernier et al. 2016). 

The biomass value of a forest is a relevant indicator to quantify the intensity of degradation (Berenguer 

et al. 2014). Forest biomass mapping is therefore a critical step to reach the challenge (Bustamante et 

al. 2016b). 

At the pantropical scale, two maps of biomass density that present the spatial distribution of the 

biomass of all forest types at a moderate resolution (Saatchi et al. 2011; Baccini et al. 2012) have been 

used as baselines for the tropical belt. More recently, a harmonized reference aboveground biomass 

(AGB) map has been released that significantly improves the estimation and local distribution of AGB 

using the combination of in-situ collected data, remote sensing and regional biomass maps (Avitabile 

et al. 2016).  



60 
 

At the local scale, most of the approaches integrate field-collected data with Light Detection and 

Ranging (LIDAR) to scale up forest biomass natural distribution, which normally requires spatial 

interpolation of in-situ biomass (Malhi et al. 2006). LIDAR can map the forest canopy in three 

dimensions and can retrieve accurate forest biomass through forest canopy height and structure 

(Asner et al. 2012; Asner 2009; Asner and Mascaro 2014; Fayad et al. 2017; Mascaro et al. 2011). It is 

also sensitive to the carbon density of the different types of degraded forests, from logging at a low 

impact to forest stands burned multiple times (Longo et al. 2016). Satellite LIDAR has been used in 

validating AGB maps (Baccini et al. 2008), calibrating local regressions between in situ AGB data and 

metrics derived from LIDAR footprints and extrapolating using different remote sensing sources (Fayad 

et al. 2017; Fayad et al. 2014). However, most airborne and satellite LIDAR datasets are often difficult 

to access (acquisition cost) and to replicate in both time and space (Hirschmugl et al. 2017). 

At the meso-scale (regional), many studies demonstrated the potential of optical and radar remote 

sensing-derived indicators to characterize degraded forests (Herold et al. 2011). The study of degraded 

forests requires the analysis of vertical and horizontal disturbances within the forest structure 

(Thompson et al. 2013; Hirschmugl et al. 2017; Rappaport et al. 2018; Achard et al. 2014; Lambin 1999). 

Optical images can provide information on the photosynthetic activity and moisture of the forest 

canopy (Gond et al. 2013). Spectral unmixing approaches are recognized to be the most effective 

method to assess the status of degraded forests using the percentage of active vegetation, dead 

vegetation and bare soil at the pixel scale (Souza et al. 2013; Asner et al. 2009; Tritsch et al. 2016). 

Radar images are sensitive to the texture of the impacted forest canopy (Joshi et al. 2015). Canopy 

texture-derived indicators based on co-occurrence matrices use the variance of the signal in a given 

window to spatially quantify the distribution of tree crowns structure (Kuplich et al. 2005; Luckman et 

al. 1997; Haralick et al. 1973). Estimating the biomass from the radar data generally concerns 

wavelengths up to the meter (band P or L) with signal saturation thresholds around 200 Mg.ha-1 of AGB 

(Morel et al. 2011; Mitchard et al. 2011; Englhart et al. 2011). 

This review of recent remote sensing methods illustrates the trade-off that needs to be made between 

resolution, accuracy, area covered, cost and frequency to map forest biomass. It also highlights the 

fact that there is remarkably little information at the regional scale on the potential of open access 

optical and radar remote sensing to model and map the aboveground biomass of degraded forests. 

Most of the approaches tend to capture the local variation of AGB following environmental variables, 

i.e., climate, topography and natural forest dynamic gradients, but do not particularly capture the 

distribution along anthropogenic disturbance gradients (Longo et al. 2016). 
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In this sense, there is a need to better understand how remotely sensed indicators perform with AGB 

modelling at the regional scale in order to provide relevant information to decision makers on the state 

of the resource of remnants forest.  

In order to answer this need, this paper aims (i) to assess the potential of multisource, multi-indicator 

and open access remote sensing in modelling and mapping aboveground biomass of degraded forests, 

(ii) to quantify the spatial distribution of degraded forest biomass in comparison with the pantropical 

AGB map, and (iii) to evaluate the relevance of this regional forest AGB mapping at the stand scale.  

This quantification is highly informative for forested land use planning and policy makers. Many South 

American governments and global NGOs are seeking more accurate and definitive information about 

the scale of degradation so they can propose policies and actions to ameliorate and reduce the level 

of degradation (« Imazon – Instituto do Homem e Meio Ambiente da Amazônia »). 

 

2.2 Materials and Methods 
 

2.2.1 Study Area 
 

The study was carried out in the municipality of Paragominas, located in the northeastern part of the 

State of Para, Brazil, and covering an area of 19,342 km2 with a population size of 108,547 (« IBGE, 

Paragominas »). The municipality was founded in 1965 along the BR-010 road connecting Brasilia to 

Belém (Fig 2.1). The colonization process led to a large conversion of lands into pasture, with cattle 

ranching becoming the dominant land use. The municipality went through a succession of different 

economical models that have drastically shaped the landscape (Piketty et al. 2015). The boom in the 

logging industry started from the 1980s, where most of the timber was transformed in the 350 sawmills 

located along the main road. Deforestation and forest degradation were accentuated with the grain 

agribusiness boom in the 2000s (soybean and maize cultivation) and charcoal production. In 2007, the 

municipality was red-listed by the federal government as one of the most deforested Amazonian 

municipalities. The consequences were an immediate loss of access to credit and market for any 

commodities. Many charcoal plants and illegal sawmills were shut down. In response to this 

governmental ban, Paragominas became the first “green municipality” in the country in 2008 in order 

to end illegal deforestation, to tend to zero net deforestation by 2014, and to promote alternative 

production systems and reforestation. Land management was also improved through the Rural 

Environmental Registry (Viana et al. 2016).  
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Figure 2.1 Map of Paragominas municipality in the northeastern part of the State of Para with the 
location of the biomass-collected plots, the degraded forest typology and the main zoning areas 
(extracted from (Hansen et al. 2010)). 
 

2.2.2 In Situ AGB Collection 
 

Aboveground biomass data were collected during the dry seasons in 2009 and 2010 by teams from the 

Sustainable Amazon Network (Rede Sustentavel Amazonia—RAS) (Berenguer et al. 2014; Gardner et 

al. 2012; Gardner et al. 2013). In total, 18 study sites were randomly selected in the municipality of 

Paragominas. For each site, plots of 250 m by 20 m were designed, resulting in a total of 121 plots. 

Each plot represents a homogeneous type of forest, classified into four types: undisturbed forest, 

logged forest, logged forest and burned and secondary forest. Aboveground biomass was estimated 

using Chave’s allometric equations (Chave et al. 2005) and was based on the measurements and 

identification of all live trees, palms and lianas (≥10 cm DBH). The results of this study showed 

significant differences in biomass for each type of forest (Table 1). We chose a threshold of 286 Mg·ha−1 

to distinguish between degraded and sustainably managed or conserved forests. Mazzei et al. (2010) 

showed that undisturbed forests store on average 409.8 Mg·ha−1 in the Cikel Fazenda, located in the 

western part of the municipality (Fig 2.1). The mean AGB total lost under reduced-impact logging 

operations is 94.5 Mg·ha−1, which represents around 23% of biomass lost (Mazzei et al. 2010a). The 
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threshold is thus the percentage of biomass lost applied to the undisturbed primary forest biomass 

identified by RAS. 

The aboveground vegetation that corresponds to the largest carbon storage compartment is very 

sensitive to the type of disturbance, with about a 40% of difference in ABG between mature forests 

and secondary forests. We used the RAS AGB dataset in shapefile format to calibrate the Random 

Forest model presented in Section 2.2.4. 

Table 2.1 AGB collection data in the municipality of Paragominas (see Berenguer et al. 2014). 

Forest Type 
Mean AGB 

(Mg·ha−1) 

Standard Deviation 

(Mg·ha−1) 

No. of 

Plots 

Undisturbed primary forest 371.8 96.9 13 

Logged primary forest 229.5 79.2 44 

Logged and burnt primary 

forest 
145.8 73.4 44 

Young secondary forest 1.1 0.5 2 

Intermediate secondary forest 57.6 38.3 12 

Old secondary forest 92.2 58.4 5 

Abandoned plantation 54.1 / 1 

 

2.2.3 Remote Sensing Multisource Data: Image Acquisition, Pre-

Processing and Biophysical Indicators Variables Extraction 
 

We used 38 indicators derived from passive (MODIS, Landsat-8) and active (ALOS-1, Sentinel-1) remote 

sensing sources. These indicators are correlated with different vegetation parameters such as 

photosynthesis activity and vegetation structure. All the satellite images used in this study are freely 

available and span the globe. 

MODIS 

To quantify forest canopy health and temporal dynamics, we used the enhanced vegetation index (EVI) 

from the MODIS sensor. EVI was extracted from the ‘16-Day L3 Global 250m product (MOD13Q1 c5)’ 

from January 2001 to December 2014. EVI is directly related to photosynthetic activity (Huete et al. 

2002). It does not saturate quickly for high values of chlorophyll activity and provides improved 

sensitivity for high biomass areas such as tropical forests (Gond et al. 2013). The 16-day composite was 

built by choosing within the 16 daily acquisitions the two pixels with the highest value of NDVI 
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(Normalized Difference Vegetation Index). Of these two values, the pixel with the smallest viewing 

angle was chosen in order to minimize the residual angle (Huete et al. 2002). A quality filter was then 

applied to the composite to remove clouds and reduce atmospheric contamination [38]. We extracted 

three indicators from this dataset: the mean and the standard deviation calculated for the whole time 

series based on annual average EVI and the pooled variance which is the weighted sum of annual 

variance based on the number of values available for each pixel for each year (giving more weight to 

the pixels that were not under cloud coverage during the 16 days × 14-year period). 

Pooled variance = 
∑14

𝑖=1 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑖)×𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠(𝑖)

∑14
𝑖=1 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠(𝑖) −14

 (1) 

These three indicators provide global information on the stability of the forest canopy photosynthetic 

activity. 

Landsat 8 

We used three Landsat 8 images taken during the dry season of 2014, at 30 m resolution. We acquired 

the surface reflectance data with the pre-processing already performed with the algorithm developed 

by the NASA Goddard Space Flight Center (GSFC). We used 5 spectral bands (blue, green, red, near-

infrared and short-wave infrared) and we derived 13 indicators using the Orfeo toolbox (« Orfeo 

ToolBox – Orfeo ToolBox is not a black box »). We used the Carnegie Landsat Analysis System-lite 

(Claslite) to derive the Photosynthetic Vegetation (PV), Non Photosynthetic Vegetation (NPV) and Bare 

Soil indexes (Asner et al. 2009b). 

ALOS-1 PALSAR 

We downloaded seven images ALOS-1 PALSAR (L-band) taken in 2010 from the JAXA (Japan Aerospace 

Agency, http://www.eorc.jaxa.jp/ALOS/en/index.htm) platform. These images have 25-m spatial 

resolution (“ALOS-1 mosaic 25 m” product) and are dual-polarized (HH and HV). The incidence angle 

varies between 35° (near range) to 42° (far range). The images were correctly geo-referenced, so we 

only processed the conversion from digital raw number (DN) to gamma and sigma following these two 

equations (Mermoz et al. 2014; Shimada et al. 2014): 

gamma [dB] = 10 × 𝑙𝑜𝑔10(𝐷𝑁²) − 83 (2) 

sigma [dB] = 10 × 𝑙𝑜𝑔10(𝐷𝑁²) − 83 + 10 × 𝑙𝑜𝑔10(𝑐𝑜𝑠𝜃) (3) 

We tested these two indicators, expecting a strong correlation between backscatter coefficients and 

aboveground biomass (Englhart and al. 2011). 
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Sentinel-1 

We acquired one image Sentinel-1 (C-band, dual polarization VV/VH, descending pass direction) taken 

in May 2015, at 10-m resolution and in Interferometric Wide (IW) swath mode. We performed the pre-

processing using the free software Sentinel Toolbox, which allows the derivation of backscatter 

coefficients and processing of the range Doppler terrain corrections using the 3 arc-seconds SRTM 

Digital Elevation Model. We derived 9 indicators from the grey level co-occurrence matrix (GLCM) that 

are based on the statistical relationship between the values of the pixels within a 9 × 9 pixels window 

(Ploton et al. 2017). These indicators are relevant to quantify forest canopy texture (Champion et al. 

2014). 

The source, description of the remote sensing images and the derived indicators are detailed in the 

Appendix 2.1.  

 

2.2.4 Random Forest Regression Model 
 

We used a random forest regression tree to explore the performance of the different remote sensing 

data sources and derived indicators for AGB modelling and mapping. Regression trees are particularly 

efficient for remotely sensed indicators that show unknown multivariate patterns and nonlinear 

relationships (Breiman 2001).  

2.2.4.1. Data Preparation 
 

We resampled the indicators at 20-m resolution using GRASS libraries and stacked them all together 

to make sure they are georeferenced in the same system. This resolution matches with the size of the 

plot measurements. For each indicator, we generated an automatic process to extract the mean and 

standard deviation within the extent of each plot. We then compiled all the data in a file with the 

identification of each plot (row 1 to 121) and the estimated AGB followed by the mean and standard 

deviation of the 38 indicators (columns). Finally, this dataset is randomly mixed to avoid any biases 

related to its original structure and is split into 10 folds (Fig 2.2). This number of folds (k) is often 

suggested in order to balance bias limitation (lower value of k) and variability (higher value of k) (Kohavi 

1995). 
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Figure 2.2 Workflow of the evaluation of the indicators performance in AGB modelling and mapping. 

 

2.2.4.2. Modelling AGB with Random Forest 
 

For each independent indicator, regression trees recurrently split the data into more homogeneous 

samples and identify the most significant indicator that gives best homogeneous sets of samples 

(Strobl et al. 2009). Random Forest grows multiple trees (500 trees in our study) by randomization of 

data subsampling in order to improve the predictive power of regression and to limit overfitting which 

is the most practical difficulty for decision tree models. Random forest provides for each independent 

indicator an increase in mean-squared error (Percentage of IncMSE), which quantifies how much MSE 

increases when that indicator is randomly permuted. This error measures the relative importance of 

each indicator, where a low IncMSE implies that the indicator does not have much weight on the model 

prediction and inversely (Mascaro et al. 2014). Random Forest is used as a regression and mapping 

tool, but also as an investigation tool to assess the importance of each indicator in the creation of the 

model and on its global error. Random Forest is used more and more to estimate carbon reservoirs 

and perform biomass regression (Asner et al. 2012; Goetz et al. 2009; Mutanga et al. 2012). 

Due to the limited number of AGB plots, we used the k-fold cross validation technique to estimate 

regression performance (Kohavi 1995; Borra and Di Ciaccio 2010). This technique involves reserving a 

particular sample of the dataset on which the Random Forest model will be tested, while the rest of 

the dataset is used for training. For each of the 10 folds, the Random Forest model is trained on 9 folds 

(k - 1) and the 10th fold is used to test the model and check its effectiveness. This process goes through 

each of the 10 folds until each of the kfolds has served as a test set. After the end of each loop, we 
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record the percentage of IncMSE calculated for each of the 76 indicators and the predicted value of 

AGB. The average RMSE will serve as the performance metric for the model.  

We finally invert the model using the values of the remote sensed indicators across Paragominas 

municipality to predict AGB.  

 

2.2.5 Geostatistical Analysis of Random Forest Model Residuals 
 

Geostatistical analysis is used to explore the spatial autocorrelation of the model residuals and 

evaluate whether model residuals data are independent (in the case of absence of autocorrelation) 

(Rossi et al. 1992). The presence of spatial autocorrelation or spatial structure of the model residuals 

would refer to any patterns of gradients or cluster within the data that the AGB Random Forest model 

would not have adequately been able to capture. To explore this spatial structure, we estimated an 

omnidirectional variogram at short distances (6 km) on Random Forest residuals, and we used the 

usual permutation test to compute a bi-lateral confidence band of pure spatial randomness (Gräler et 

al. 2016; Ribeiro and Diggle 2001).  

 

2.2.6 Comparison with Avitabile et al. AGB Dataset 
 

The available Avitabile et al. (2016) forest pantropical biomass map that displays aboveground biomass 

density in units of Mg·ha−1 at a 920-m spatial resolution was used to compare the spatial distribution 

of aboveground biomass of the degraded forest with the Random Forest predicted map. In the Amazon 

basin, the Avitabile AGB map provides lower RMSE and bias compared to the Baccini and Saatchi 

pantropical maps (Saatchi et al. 2011; Baccini et al. 2012; Avitabile et al. 2016). However, at the 

regional scale (e.g., Paragominas municipality), the Avitabile map can present error patterns because 

the quality reference data of the highly degraded forest were lacking and could not be used to calibrate 

the model (Avitabile et al. 2016).  
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2.2.7 Comparison with Degraded Forest Typology 
 

To conduct a field validation of the predicted aboveground biomass values, we built a degraded forest 

typology based on the observation of 140 forest sites in May 2015. Each observation is associated with 

a GPS point (Garmin 60CSx, Garmin, Olathe, U.S), a description of the forest site and illustrative photos. 

We extracted the values of the predicted AGB at the location of each forest site. We finally used one-

way ANOVA with post hoc Tukey tests to evaluate differences in predicted AGB between the different 

forest classes of the typology.  

This typology is a result of the combination of in-situ qualitative indicators of forest degradation and 

semi-quantitative observations of the forest structure. First, we noted the presence or absence of fire 

and logging marks (burned trees, strains, trunks, logging trails), of pioneer species (mainly Cecropia 

species), which may indicate a recent opening of the canopy, and of trees with a diameter at breast 

height (DBH) greater than 80 cm. Then, we measured canopy height and the number of vegetative 

strata using a laser rangefinder and estimated the forest canopy texture (roughness) and the 

percentage of gaps between emergent trees. These four forest structure indicators provide relevant 

information on the vertical and horizontal process of forest degradation.  

In order to make the typology representative of the diversity of degraded forest types (conserved, 

legally logged, illegally logged and/or burned), we made sure that the sampling covered the different 

forest landscapes and main zoning that can be found in Paragominas (see Fig 2.1). 

 

2.2.8 Computational Aspects 
 

Except for the statistics performed with the software ArcGIS (Esri, Redlands, U.S), all developments 

were programmed under the R environment. We used the Raster, Random Forest, shapefile, rgdal, 

geoR and gstat packages (Breiman 2001; Ribeiro and Diggle 2001; « CRAN - Package gstat ».; « CRAN - 

Package raster »; Stabler 2013; Bivand et al. 2019). 
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2.3 Results 
 

2.3.1 Model and Indicator Performance 
 

The mean variance explained by the random forest model is 28%, with a root mean squared residual 

error (RMSE) of 97.1 Mg·ha−1. Depending on the AGB calibrated data and the associated remotely 

sensed indictors, the random forest model performs differently with an explained variance that ranges 

between 24% and 30% and an RMSE that ranges between 75.7 and 101.2 Mg·ha−1 (Table 2.2). 

 
Table 2.2 Random Forest model performance (mean squared residuals and percentage of variance 
explained for each of the 10 k-fold random forest models). 

Random Forest 

kfold 1 
1 2 3 4 5 6 7 8 9 10 Average 

Mean of squared 

residuals 

(Mg·ha−1) 

97.8 95.5 100.5 91.8 99.6 100.3 93.9 75.7 97.8 101.2 97.1 

Percentage of 

variance 

explained 

26 24 25 30 26 22 27 30 26 25 28 

1 Number of Trees: 500, No. of Indicators Tried at Each Split: 25 

 

Six indicators (out of the 76) contribute the most to the 10 regression models, showing the highest and 

most stable IncMSE scores (Fig 2.3). Three are derived from MODIS: mean of annual standard deviation 

EVI, mean and standard deviation of annual mean EVI and three from Landsat: mean infra-red (MIR), 

mean and standard deviation of bare soils. 
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Figure 2.3 Explained indicator performance (Percentage of IncMSE) of the Random Forest model. 

 

2.3.2 Geostatistical Analysis of Random Forest Model Residuals 
 

The main spatial variability in the AGB data was captured by the Random Forest model, and no additive 

spatial variability can be explained through model residual interpolation. Figure 2.4 shows a flat 

empirical variogram contained within the confidence band which validates the absence of spatial 

structure within the Random Forest model residuals. We found similar results at smaller (0 to 1500 m) 

and larger (0–200,000 m) spatial scales. The distribution of the residuals shows an overall 

overestimation (high frequency of positive values, Fig 2.4B), which is important to consider when 

predicting AGB for the Paragominas municipality. 
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Figure 2.4 (A) Spatial distribution of the model residuals (blue, green, yellow and red colors for the 
respective four quartiles); (B) Histogram of the model residuals; (C) Variogram of biomass model 
residuals (The grey shape shows the confidence band interval expected for each distance class). 
 

 

2.3.3 Above Ground Biomass Map 
 

The range of AGB predicted values was large, spanning from 57 to 454 Mg·ha−1. AGB was unequally 

spatially distributed over the municipality (Fig 2.5). The forests in the 80-km-wide central corridor have 

the lowest AGB values and are highly fragmented. The forests in the far-eastern and western part of 

the municipality contain the highest AGB. The percentage of degraded forest (below the threshold of 

286 Mg·ha−1, see Section 2.2.2) reached 87%.  



72 
 

Figure 2.5 Random Forest predicted values of Aboveground Biomass across Paragominas municipality. 

In the western part of the municipality (stripped area), Sentinel-1 data was not available. 

 

2.3.4 Comparison with Avitabile Pantropical Biomass Map 
 

Figure 2.6 shows that our Random Forest model is more accurate than the Avitabile AGB map (R2 

higher and RMSE lower). The two models tend to overestimate for values of AGB lower than 200 

Mg·ha−1 and underestimate for values higher than 300 Mg·ha−1. Despite the fact that the Random 

Forest has a higher explained variance and lower RMSE, the Avitabile dataset has a better potential to 

capture the large variability of AGB, particularly for extreme values where the dispersion follows the 

identity line. Random forest data are overall less scattered than Avitabile but display a much lower 

deviation between estimated and observed AGB for values from 100 to 300 Mg·ha−1 (Random Forest 

R2 = 0.28, Avitabile R2 = 0.14). This result is particularly interesting in the case of degraded forests 

where biomass values are contained within this window (Table 2.1).  
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Figure 2.6 Observed (see Section 2.2.2.) and estimated biomass from Avitabile [23] and the Random 
Forest model. 
 

The Avitabile map is less detailed than the Random Forest biomass map. It can be explained by the 

difference of spatial resolution between the two datasets and also the contribution of local remotely 

sensed indicators. After aggregating the Random Forest biomass map at the resolution of Avitabile’s 

(Fig 2.7(3)), the difference between these two datasets shows similar AGB estimation in non-degraded 

areas and an overestimation of AGB values in degraded (logged) forests for Avitabile’s dataset 

(differences lower than −100 Mg·ha−1). The Random Forest map captures small-scale forest 

disturbances such as roads, i.e., skids trails and log-landing areas and canopy gaps (pictures 1 and 2). 

It also displays lower biomass values around the areas impacted by selective logging. These finely 

detailed forest disturbances are not translated into the 920-m resolution Avitabile map. In this figure, 

we can see that the forest-non forest transition is much better detailed with the Random Forest map 

than with Avitabile maps. The transect (Figure 2.7(4)) and the map show that the north forest edge is 

more degraded (probably burned with agriculture encroachment) than the south edge where the 

transition between the two land uses is much clearer and sharper (Transect A–B, see Figure 1 for its 

location). At this local scale, Avitabile data appear to stretch the values of AGB and thus smoothen the 

distribution of AGB in transition areas.  
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Figure 2.7 Comparison of AGB estimations, Random Forest, Avitabile (2016) and the difference map 
(1–3 respectively) in a selected zone representing the transition between non-forest to forest area (see 
Figure 1 for precise location in Paragominas). The selective logging area and the logging road were 
validated during the field trip. 
 

2.3.5 Comparison with Degraded Forest Typology 
 

The less degraded forest type (type F1) presents a closed canopy above 35 m, no signs of human impact 

and 4 vegetative strata defined as follows: the shrub layer below 5 m, the under canopy layer located 

around 15 m, the canopy layer at 25 m and the emergent layer that goes beyond 35 m. The most 

valuable tree species harvested first are the emergent trees with a large diameter (higher than 80 cm). 

This selective logging can cause small degradation vertically, with an impacted and lower canopy and 
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also horizontal damages generated by the extraction of the tree (type F2). When the selective logging 

becomes more intense (type F3), all the trees taller than 35 m and larger than 80 cm diameter are 

harvested, which causes a lowering of the canopy line at 25 m and big gaps inside the forest structure 

with the presence of skid tracks, broken and unrooted trees, log landing and other logging roads. 

Consequently, the degraded forest is much more sensitive to drought and fires, which can lead to 

severe disturbance, lowering the canopy at 15 m with only two remaining vegetative strata. This 

degraded forest type (F4) is often characterized by a high density of vegetative regrowth (pioneers 

species). Trees with DBH less than 80 cm are also harvested which causes an opened and destructed 

canopy. Finally, the intensification of fire leads to the most degraded type (F5) with only the shrub 

layer remaining and a few trees from the under canopy layer (Figure 2.8). 

 
Figure 2.8 Five classes of degraded forest typology based on the observation of 140 forest sites in May 
2015. 
 

The typology of the degraded forest allows us to evaluate the relevance of the regional forest AGB 

mapping at the stand scale. The boxplots of Figure 2.9 show a relationship between the intensity of 

degradation identified in the field and the Random Forest prediction. We can assume the homogeneity 

of variances in the five degraded forest types (p-value = 0.09 > 0.05). Among the five types, only type 

F1 is significantly different from the other types F2, F3, F4, F5 (ANOVA test with p-value < 0.05). 

Degraded type F1 presented the highest values of AGB (average of 270 Mg·ha−1). Types F2, F3, F4, F5 

had statistically similar values of AGB (200 Mg·ha−1), although we found a decreasing trend in the mean 

predicted AGB.  
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Figure 2.9 Boxplots of predicted values of AGB calculated for the five-class typology of degraded 
forest with the range (1st and 3rd quartile), the mean (line) and the median (cross). 
 

2.4 Discussion  
 

In this paper, we propose a novel approach to model and map AGB of degraded forests at the regional 

scale, which provides more detailed and accurate information than the pantropical dataset. We 

demonstrated that the model captures all spatial variability of the AGB data and identified the most 

robust remotely sensed indicators. Besides the model bias in underestimating AGB values greater than 

300 Mg·ha−1, this AGB map constitutes key spatial information for the future management of degraded 

forest.  

2.4.1 Model Performance Analysis 
 

Extraction and selection of suitable indicators from remote sensing and future promising 

development in AGB mapping 

There is a need to rank and prioritize the most suitable indicators to characterize degraded forests 

from multisource remote sensing (Hirschmugl et al. 2017; Herold et al. 2011; Mitchell et al. 2017; De 

Sy et al. 2012). Our results show that Landsat spectral unmixing bare soil, mid infrared and MODIS EVI 

standard deviation from the 2001 to 2014 time series were the most suitable indicators to model AGB 

and are the less data input driven. These indicators thus have the highest potential to map AGB. 

Unmixing approaches did perform well in our case, which confirms reports of other authors (Souza et 
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al. 2013; Tritsch et al. 2016) within the Amazon forest landscape. The bare soil Landsat indicator best 

translates the proportion of bare soil within a 30 × 30 m Landsat pixels while mid infrared is sensitive 

to humidity and therefore to forest structure and functioning (Hirschmugl et al. 2017). These results 

are coherent with the degradation process happening in the Paragominas forest. The emergent and 

most valuable trees are targeted first through legal and illegal selective logging which triggers a vertical 

and horizontal opening of the canopy (Ferreira et al. 2015). This type of degradation directly affects 

the internal forest structure, which leads to forest drying and a decrease in the local forest 

evapotranspiration and photosynthetic activity. Another degradation type is located along forest 

edges, which are always very degraded and impacted by local drying effect, fire or slow encroachment 

due to agriculture expansion (i.e., swidden agriculture)(Briant et al. 2010). The MODIS compiled 

standard deviation of EVI represents the stability over time of the annual mean EVI and thus annual 

photosynthetic activity. A drop in this activity in one particular year will lead to a high standard 

deviation value and information on potential degradation activity (Briant et al. 2010).  

The other indicators have a much lower performance score, which indicates a lower sensitivity to the 

AGB range of values. The usual vegetation indices extracted from Landsat such as NDVI or SAVI are not 

sensitive enough for AGB of degraded forests. This may be related to the over saturation of the signal 

in the case of a tropical forest canopy and the measured photosynthesis activity, which do not allow 

differentiation between two types of degraded forests (Huete et al. 2002).  

For radar data, one single data and related derived indicators (intensity coefficients and texture) are 

not sensitive enough to model AGB. To further develop this modelling approach, radar needs to be 

used as time series data, which would provide better information on the forest canopy status. Further 

investigation is also required on the preprocessing steps (e.g., filtering noise method) and on the 

derived texture indicators. To the extent of our knowledge, degraded forest structure and status 

remain understudied, with a lot of technical aspects (frequency of the time series, spatial resolution, 

polarizations, incident angles and frequency bands) that need to be tackled (Trisasongko 2010; 

Deutscher et al. 2013; Solberg et al. 2013). 

The integration of Sentinel-1 and Sentinel-2 time series would be an interesting way to improve the 

model performance combined with daily Planet images that can map at 3-m resolution the forest 

canopy. Very high resolution remote sensing offers a unique opportunity to characterize degraded 

forest structure using canopy texture mapping (Ploton et al. 2017; Barbier et al. 2010). These analysis 

provide perspective for future space-borne LIDAR and RADAR data satellites (US GEDI mission and ESA 

Biomass) which will enable us to provide data sets on forest structure dynamics and forest biomass 

around the pantropical belt (Le Toan et al. 2011). 
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Identification of proper algorithms to develop biomass estimation models and their related 

uncertainty analysis  

Although the model is robust because it has been trained and tested 10 times on independent and 

randomly selected datasets, we identified three potential error sources. First, the limitations can be 

linked to the large diversity of degraded forest types that are modelled and the limited number of 

ground truth data. More in-situ AGB data would help to train the model on large portion of the data 

set and better capture its underlying trend (Guitet et al. 2015). Then, a certain time gap between the 

collection of AGB and the remote sensing data needs to be noted and accounted. This gap is due to 

remote sensing data quality and availability and can be up to 5 years in the case of Sentinel-1 images. 

In the case of MODIS time series, there is also a temporal gap as we modelled single date forest status 

(i.e., AGB) with temporal indicators that are sensitive to photosynthetic activity dynamics. These 

temporal mismatches could introduce some uncertainty in the model. However, in light of the minimal 

increases in AGB within burned and illegally logged forests (representing 88 out of 121 field plots) over 

a five-year period, we do not consider this uncertainty to be meaningful (Blanc et al. 2009). Finally, the 

resampling of the remote sensing indicators to a higher resolution (20 m resolution) may introduce 

bias referring to the “ecological fallacy” problems (Robinson 2009). These problems are recurrent in 

the aggregation/disaggregation of remote sensing data and could be minimized by adapting the field 

collection protocol to the remote sensing data.  

Despite these limitations and the low variance explained, we demonstrated that all spatial variability 

of the AGB data has been captured by the model through its input indicators. This gives interesting 

insights into how to improve local models to characterize degraded forests using biomass and how to 

quantify the influence of input indicators on the final modelling result.  

 

Comparison with existing AGB maps 

When comparing with pantropical datasets such as the Avitabile AGB map, we noted differences in the 

statistical accuracy with local AGB datasets and in the levels of details which are particularly important 

for degraded forest biomass mapping. Avitabile data do not capture all the details of local AGB 

distribution in small-scale degraded and complex mosaic forest due mainly to their coarse spatial 

resolution. Transition zones from forest/non-forest areas are better and more precisely described 

using local trained models, where logging roads, degraded forest edges and other distribution are 

mapped.  
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2.4.2 AGB Spatial Distribution in the Municipality 
 

In the map produced, the spatial distribution of AGB varies depending on land-uses and landscape 

organization (Laurent et al. 2017). Degraded forests are dominant in the Paragominas forest landscape. 

The central corridor is a mosaic of agricultural lands (agribusiness) dominated by large-scale soybean 

cultivation and pasturelands and with fragmented patches of degraded forests. Forest biomass values 

range between 100 to 150 Mg·ha−1 with the lowest values within the first 200 m of forest edge which 

is consistent with previous studies (Briant et al. 2010). Forest fragmentation is even more important in 

smallholder areas (see Fig 2.1) where population density is high. These areas were major charcoal 

production hotspots (prohibited since 2008), which caused severe impacts on the forest resource. The 

transition between these areas and the indigenous protected reserve is sharp within the forest AGB 

values (with AGB higher than 250 Mg·ha−1 in the reserve).  

2.4.3 Characterization of Degraded Forests 
 

From a field point of view, degraded forests are a gradient of forest types marked by a certain canopy 

height and forest structure that vary depending on the intensity of past degradation trajectories. The 

five-class typology does not represent all the complexity of degraded forests but remains relevant in 

terms of modelled forest biomass. Besides the fact that only type F1 was significantly different from 

the four others, we found an interesting trend in the modelled biomass that requires further 

investigation. Type F3 presented the highest variability, which could be linked with an over-evaluation 

of the level of degradation in the field and the disproportionate size sample of this class. Type 5, the 

most degraded stage, presents the lowest predicted biomass (around 150 Mg·ha). These findings 

accord with those identified by the RAS team during the collection of in-situ AGB data (Table 2.1). This 

typology based on the observation of structural parameters (canopy height, number of vegetative 

strata, canopy rugosity, presence of emergent trees) constitutes a first step in the characterization of 

degraded forests which could help in the calibration and validation of other forest biomass and carbon 

stock assessment or the monitoring of forest degradation (Mitchell et al. 2017; DeVries et al. 2015). It 

also summarizes a one-shot time visualization of the status of degraded forests. From this, the next 

priority is to monitor the dynamics of degraded forest status over time using time series remote 

sensing (DeVries et al. 2015). 
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2.4.4 How Can These Data Be Useful for Forest Management at the 

Regional Scale? 
 

Besides the limitations of the proposed modelling approach and the evaluated bias, we showed the 

importance of regional AGB mapping in Paragominas human-modified forest landscapes, in particular 

with the capacity to identify patterns of different forest status values linked with degradation and 

agricultural activities at the regional scale. This agricultural frontier is characterized by fragmented 

forest impacted by the accumulation of small-scale human disturbances that cannot be captured by 

pantropical databases, by forest field inventories or by high detailed/low extent coverage remote 

sensing sources (LIDAR).  

In the context of zero deforestation commitment, this forest AGB modelling and mapping is particularly 

important in order to provide to decision makers with spatially detailed information on the status of 

the 50% remnant forest (« Climate-KIC | The EU’s main climate innovation initiative »; « Observatory 

of the dynamics of interactions between societies and environnement in the Amazon, ODYSSEA »). The 

agricultural expansion over forest areas is now severely restricted (Piketty et al. 2015). Hence, the 

sustainable management of degraded forests is becoming a priority in order to enhance forest 

resources at different levels of disturbance (Goldstein 2014) as much as the urgent obligation to 

prevent further degradation. The quantification of the forest status and the understanding of the 

drivers of degradation are necessary in order to improve the management of forest landscape.  
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2.5 Conclusion 
 

In this chapter, we proposed a rigorous evaluation of the potential of optical (Landsat-8, MODIS) and 

radar (Alos-1, Sentinel-1) remote sensing sources in modelling and mapping aboveground biomass of 

degraded forests. We combined a large dataset of plots providing abovegound biomass data with 

diverse remotely sensed indicators in a Random Forest model. The two major results we presented in 

this chapter are highly significant. First, our model captures all spatial variability of the biomass data. 

Second, the map produced for the municipality of Paragominas provides more detailed and accurate 

information than the only pantropical map proposed by Avitabile (2016).  

However, the large range of forest structures spanning from conserved to highly degraded was not 

entirely captured by the models. There is a need to better understand how forest degradation changes 

forest structures. Current degraded forest structures are the result from long-term accumulation of 

disturbances of varying intensity and frequency. In this sense, Chapter 3 proposes a zoom from 

regional scale to forest stand scale to better understand the interactions between degradation and 

forest structures. This chapter relies on canopy texture analysis and data derived from unmanned 

aerial vehicule (UAV) and 33 years of Landsat archive.  
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Chapter 3 - UAV-based canopy 

textures assess changes in forest 

structure from long-term degradation 
 

 

 

Understanding present situation to reconstruct the past: while both forest patches showed similar 
degraded structures, the fire following the 2015 El Niño event radically modified the structure of one 
patch but its propagation was stopped by the road (picture by Clément Bourgoin) 

 

Reproduced from the article:  

Bourgoin C., Betbeder J., Couteron P.,  Blanc L., Dessard H., Oszwald J., Le Roux R., Cornu G., Reymondin 
L., Mazzei L., Sist P.,  Läderach P., Gond V. (2019 submitted) UAV-based canopy textures assess changes 
in forest structure from long-term degradation. Ecological Indicators. 
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Abstract 

Degraded tropical forests dominate agricultural frontiers and their management is becoming an urgent 

priority. This calls for a better understanding of the different forest cover states and cost-efficient 

techniques to quantify the impact of degradation on forest structure. Canopy texture analyses based 

on Very High Spatial Resolution (VHSR) optical imagery provide proxies to assess forest structures but 

the mechanisms linking them with degradation have rarely been investigated. To address this gap, we 

used a lightweight Unmanned Aerial Vehicle (UAV) to map 739 ha of degraded forests and acquire 

both canopy VHSR images and height model. Thirty-three years of degradation history from Landsat 

archives allowed us to sample 40 plots in undisturbed, logged, over-logged and burned and regrowth 

forests in tropical forested landscapes (Paragominas, Pará, Brazil). Fourier (FOTO) and lacunarity 

textures were used to assess forest canopy structure and to build a typology linking degradation history 

and current states. Texture metrics capture canopy grain, heterogeneity and openness gradients and 

correlate with forest structure variability (r²: 0.58).  Similar structures share common degradation 

history and can be discriminated on the basis of canopy texture alone (accuracy: 55%). Over logging 

causes a lowering in forest height, which brings homogeneous textures and of finer grain. We identified 

the major changes in structures due to fire following logging which changes heterogeneous and 

intermediate grain into coarse textures. Our findings highlight the potential of canopy texture metrics 

to characterize degraded forests and thus be used as indicators for forest management and 

degradation mitigation. Cheap and agile UAV open promising perspectives at the interface between 

field inventory and satellite characterization of forest structure using texture metrics. 

 

Keywords Canopy structure, Forest degradation, Remote Sensing, Texture, Tropical forest, Unmanned 

Aerial Vehicle.  
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3.1 Introduction 
 

Forest degradation is a threat (Potapov et al. 2017) to the provision of  ecosystem services by tropical 

forests. Degradation causes loss of biodiversity through habitat disturbance and fragmentation 

(Barlow et al. 2016; Broadbent et al. 2008), erosion of hydrological and soil properties, the reduction 

of non-timber forest resources (Lewis et al., 2015; Thompson et al., 2009), and currently accounts for 

68.9% of overall carbon losses from tropical forests  (Baccini et al. 2017).  

The accumulation of forest disturbances such as selective logging and understory fires affects the 

states of the forest by destroying the canopy and the internal structure without triggering any changes 

in land use (Ghazoul and Chazdon 2017b; Putz and Redford 2010b). Degraded forests are therefore 

the consequence of complex degradation and recovery processes, which creates a gradient of varying 

structures within the forest landscape (Chazdon et al. 2016; Malhi et al. 2014).   

Measuring the current forest structure and its degree of degradation are crucial for effective but 

sustainable management of degraded forests to guarantee the conservation, management and 

betterment of their ecological values (Goldstein 2014). 

However, the identification, characterization and measurement of forest degradation remains a 

scientific challenge, in particular in the remote sensing community (Frolking et al. 2009; Herold et al. 

2011; Hirschmugl et al. 2017; Mitchell et al. 2017a). Among the wide range of remote sensing 

approaches, optical time series of high resolution Landsat images have been used to derive forest 

states indicators and to reconstruct forest degradation history through the detection and 

quantification of disturbances within the canopy (Asner et al., 2009; Bullock et al., 2018; DeVries et al., 

2015; Souza et al., 2013). These approaches are steps towards degradation monitoring and informing 

Reducing Emissions from Deforestation and Degradation (REDD+) systems (Goetz et al. 2014) but do 

not provide quantitative information on the forest structure which is directly related to carbon stocks. 

Airborne Light Detection and Ranging (A-LiDAR) is the most successful technique to retrieve three-

dimensional forest structural parameters and estimate aboveground biomass (AGB) stocks (Asner et 

al. 2012; Longo et al. 2016; Rappaport et al. 2018) but the data are often costly to acquire and to 

replicate both in space and over time (Silva et al. 2017).  

In addition to the spectral properties of optical remote sensing, Very High Spatial Resolution (VHSR) 

sensors also acquire information on the distribution of dominant tree crowns that define the forest 

canopy and also canopy gaps, thereby providing important indirect indicators of forest three-

dimensional structure (Meyer et al. 2018). The spatial distribution of trees, the shapes and dimensions 
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of their crowns and the characteristics of the inter-crown gaps interact to define the forest canopy 

grain and can be assessed through canopy texture analysis (Couteron et al., 2005). Several authors 

have demonstrated the potential of texture methods to characterize VHSR canopy images (Couteron 

et al., 2005; Frazer et al., 2005). Among them, the FOurier-based Textural Ordination (FOTO) method 

has been used in a variety of tropical forests to characterize gradients of canopy grain, heterogeneity 

and crown size distribution (Barbier et al., 2010; Bastin et al., 2014; Couteron et al., 2005; Ploton et al., 

2012; Singh et al., 2014). Case studies have shown that FOTO indices can correlate with forest 

structural parameters along gradients of natural variation (Couteron et al. 2005) of degradation (Ploton 

et al. 2012; Singh et al. 2014) or in landscapes mixing both (Bastin et al. 2014; Pargal et al. 2017). Other 

approaches to texture such as the lacunarity spectra also capture spatial heterogeneity of forest 

canopies and provide a quantitative measure of canopy ‘gapiness’ that correlates with canopy cover 

and gap fraction (Frazer et al. 2005; Malhi and Román-Cuesta 2008; Ploton et al. 2017). However, the 

possible links between canopy texture and forest structure parameters are context dependent (Ploton 

et al. 2017), and relationships have to be verified and calibrated using reference data from either field 

plots or airborne canopy altimetry, and such data are not available in many tropical landscapes or 

regions. Moreover, one cannot expect the variety of stand structures generated by degradation 

processes to display unequivocal relationships with canopy texture variables (Rappaport et al. 2018). 

For instance, severe degradation may result in coarse texture (e.g. because of big gaps) as well as fine-

grained aspects owing to small crowns in regenerating patches. In this sense, there is a lack in 

understanding and quantifying the consequences of forest degradation on canopy texture. Using 

unmanned aerial vehicles (UAV), the aim of this paper is to demonstrate that texture information can 

efficiently characterize degraded forest types. UAVs are thus a new promising tool to acquire altimetry 

data and very high resolution images of the canopy (Koh and Wich 2012; Zhang et al. 2016).  

Here, we used very high resolution UAV images to sample a broad range of degraded and intact forests 

conditions in an old deforestation pioneer front of the Brazilian Amazon. For each forest site, we 

combined degradation history from Landsat time series with UAV data including canopy elevation and 

grey-level images. Our large-area and diverse UAV coverage addressed two questions: (1) How do 

canopy textures correlate with forest structure parameters within a large range of degraded forest 

types? (2) How do disturbance type and frequency contribute to variability in texture metrics through 

heterogeneity, coarseness and openness canopy gradients? 

In so doing, our study aims to pave the way for interpreting canopy texture in VHSR satellite images 

from agile UAV-based ground truthing and consequently help decision makers improve the 

management of degraded forests.  
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3.2 Materials and Methods 
 

3.2.1 Study area 
 

The study was carried out in the municipality of Paragominas, located in the northeastern part of the 

State of Pará, Brazil, and covered an area of 19,342 km² (Fig 3.1). The municipality experienced 

different colonization processes since its foundation in 1965, which led to significant deforestation 

with conversion of land to pasture for cattle ranching and forest degradation through overexploitation 

of timber. Deforestation was accentuated by the grain agro-industry in the 2000s, dominated by 

intensive soybean and maize cultivation mainly in the center of the municipality (Piketty et al., 2015). 

We demonstrated in previous studies that the history and processes of colonization spatially differ 

within Paragominas (Laurent et al. 2017). This led to a mosaic of forests in very different cover states 

within heterogeneous landscape mosaics dominated by different land uses (Bourgoin et al. 2018; 

Mercier et al. 2019). In this region, forest management plans with selective logging (SL) have rarely 

been adopted except in CIKEL Brasil Verde Madeiras Ltda forestry company (Mazzei et al. 2010b). 

Forest suffered from two major anthropogenic disturbances. Unplanned logging with over logging (OL) 

intensity is marked by repeated frequencies over time. Fire alters deeply the understory and generate 

high mortality rates for canopy trees (Fig 3.1)(Hasan et al. 2019a; Tritsch et al. 2016). 

 

Figure 3.1 Location of the study site, Paragominas municipality, in Pará state in the Brazilian Amazon. 
Distribution of the 40 forest plots covered using UAV. Illustrations of selective logging (A), over logging 
(B) and fire (C) from Google Earth® 2017 
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3.2.2 Data collection  
 

3.2.2.1 UAV surveys and processing 
 

Forty forest sites were selected in various forested landscapes to cover a large variation of disturbance 

types (Fig 3.1). Using visual interpretation from Google Earth® VHRS images validated by in-situ UAV 

observations, we distinguished between sites that experienced disturbances such as logging and fire 

and intact sites with no human-induced disturbance. We also used the management plan of the Cikel 

forestry company (Fig 3.1) that provides spatial information on undisturbed and SL forests at different 

dates over the last 20 years.  

We used a Dji mavic pro UAV carrying a RGB camera of 12.71 MP resolution (4000 x 3000 pixels). The 

acquisition plan was designed with Pix4D Capture software (Pix4D, Lausanne, Switzerland). We used a 

single grid with 80% of front and side overlap between images and a constant flight altitude of 300 

meters above ground level. The objective was to maximize the overlap between each image and the 

total surface area mapped. As a result, the average surface mapped in each forest plot was 24 ha (~600 

by 400 meters) at 10 centimeters spatial resolution (Appendix 3.3) for a total of 739 ha. In order to 

generate a high quality digital height model, each flight was constrained by several conditions:  

• Flat terrain was selected with imaged areas that overlapped with roads or agricultural fields to 

allow us to retrieve the ground elevation during the preprocessing step;  

• Acquisition in the morning (9 to 11 am) and afternoon (3 to 5 pm) was preferred to avoid 

zenithal effects (halo and low image contrast);  

• Either cloud free or totally cloudy sky conditions were necessary to avoid cloud shadows;  

• Absence of wind to low wind conditions were needed to generate crisp images of the forest 

canopy. 

 

Raw image data were processed to the highest density point cloud using structure from motion (SfM) 

followed by densification using multi-view stereo algorithms in the Pix4D software (Alonzo et al. 2018; 

Westoby et al. 2012). Final point cloud densities were ~27 pts.m-3 depending on the availability of 

viable tie points, and some other acquisition parameters. Using the georectified point clouds, we 

corrected the raw images to generate RGB mosaics, which were then converted into single-band 

panchromatic grey level mosaics. Digital Surface Models (DSM) of the canopy at 0.10 m resolution 

were directly computed from the point cloud. We extracted the average ground elevation data in non-
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forest areas (e.g. roads, agricultural fields or canopy gaps) from the DSMs and derived Digital Height 

Models (DHM) for each forest plot.  

3.2.2.2 Landsat time series to detect forest disturbances and reconstruct 

degradation history 
 

We acquired Landsat data from 1984 to 2017 (Appendix 3.1) to detect forest disturbances along time 

and reconstruct degradation history for each forest site. The images at Level 1 (Tier 1 product) were 

pre-processed to surface reflectance by the algorithm developed by the NASA Goddard Space Flight 

Center (http://earthexplorer.usgs.gov/). We computed the Normalized Difference Moisture Index 

(NDMI) from the Short-Wave InfraRed (SWIR) and Near InfraRed (NIR) bands as follows (Gao 1996):  

𝑁𝐷𝑀𝐼 =  𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅⁄  

This index previously used to monitor forest degradation (DeVries et al. 2015) allowed us to identify 

disturbance type and frequency (Selective Logging, Over-Logging and fire) at forest plot scale, using 

photointerpretation (Appendix 3.2). The disturbance type was identified based on its spatial extent 

and shape and on NDMI values. SL is marked by regular and spaced logging roads (A, Fig 3.1), over 

logging (OL) is marked by irregular logging roads (B, Fig 3.1) and fire presents open canopy structure 

and low value of NDMI (Silva et al. 2018; Tritsch et al. 2016). We also recorded the date of the most 

recent disturbance (Appendix 3.3) which has a significant influence on the current forest structure 

(Rappaport et al. 2018). Figure 3.2 shows the diversity of forest degradation history of our sampling 

such as SL forests, OL forests and OL and burned forests. 

http://earthexplorer.usgs.gov/
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Figure 3.2 Forest degradation history of each forest plot (based on the frequency of selective logging, 
over logging, fire events and date of last disturbance). 
 

3.2.3 Method  
 

The data analysis was based on two steps: (1) use canopy texture metrics derived from grey-level UAV 

images to retrieve canopy structure metrics (based on canopy digital height models) derived from UAV 

structure from motion within a large range of degraded forest types at 1 ha scale and (2) potential of 

canopy texture metrics to discriminate degradation history and the resulting changes in forest 

structures at the forest plot scale (Fig 3.3). 
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Figure 3.3 Workflow of the method used to evaluate the potential of canopy texture metrics to retrieve 
the canopy structure along the gradient of forest degradation and their relation with forest 
degradation history. 

 

3.2.3.1 Computation of forest canopy texture metrics from grey level UAV 

images at 1 ha scale 
 

We performed texture analysis of grey level canopy images using FOTO (Couteron 2002) and lacunarity 

(Frazer et al. 2005) algorithms. We also used basic descriptors of statistical grey level distributions such 

as skewness and kurtosis. Each of the UAV canopy images was divided into canopy 100*100 m windows 

(fixed grid) for texture analysis. This size was shown in previous studies to be appropriate to capture 

several repetitions of the largest tree crowns (in our case 45 meters of maximum tree crown diameter) 

in forest stands (Ploton et al. 2017).  

The FOTO method is extensively described elsewhere (Couteron, 2002; Couteron et al., 2005; Ploton 

et al., 2017), hence we only give here a brief outline of the procedure. When applying FOTO, each of 

the windows originating from the UAV images is subjected to a two-dimensional Fourier transform to 

enable computation of the two-dimensional periodogram. ‘Radial-’ or ‘r-spectra’ are extracted from 



92 
 

the periodogram to provide simplified, azimuthally-averaged textural characterization. Spectra are 

systematically compared using the two first axes of a principal component analysis (FOTO_PCA1, 

FOTO_PCA2), providing an ordination along a limited number of coarseness vs. fineness gradients. In 

this process, windows are treated as statistical observations that are characterized and compared on 

the basis of their spectral profile, i.e., the way in which window grey scale variance is broken down in 

relation to Fourier harmonic spatial frequencies (ranging from 50 to 240 cycles/km for this study).  

Lacunarity was defined following Frazer et al. (2005) and Malhi and Roman-Cuesta (2008). For each 

100*100 m window, a moving square box of size ‘s’ was glided by one pixel at a time and the sum of 

all pixel spectral radiance, called the mass, was computed at each gliding position. The probability of 

distribution was calculated using the frequency distribution of the mass divided by the number of 

boxes. Lacunarity at box size ‘s’ is the squared ratio of the first and second moment of this distribution. 

This process was repeated for 100 box sizes ranging from 1 to 99 m and the resulting lacunarity 

spectrum was normalized by lacunarity at size 1. Finally, the spectra were compared using the two first 

axes of a PCA (Lacu_PCA1 and Lacu_PCA2 respectively), to provide an ordination of windows along 

inter-crown canopy openness gradients. 

Routines for both FOTO (http://doi.org/10.5281/zenodo.1216005) and lacunarity methods were 

developed in the MatLab® environment (The MathWorks, Inc., Natick, Massachusetts, USA).  

 

3.2.3.2 Computation of forest canopy structure metrics from digital height 

models at 1 ha scale  
 

From the digital height model, six Canopy Structure Metrics (CSM) were computed in the same 

100*100m window grid previously described: mean elevation (mean), minimum (min), maximum 

(max), variance (var), Standard Deviation (SD) and Coefficient of Variation (CV) defined as the ratio 

between standard deviation and mean elevation. We then compiled the six Canopy Texture Metrics, 

noted CTM, (FOTO_PCA1, FOTO_PCA2, Lacu_PCA1, Lacu_PCA2, Skewness, Kurtosis) and the 6 CSM.  

 

3.2.3.3 Relationships between canopy textures metrics and canopy structure 

metrics within a large range of degraded forest types at 1 ha scale 
 

The ability of CTM to predict forest canopy structures was tested using regression models for each 

CSM based on Random Forest machine learning (RF) (Breiman 2001).  

http://doi.org/10.5281/zenodo.1216005


93 
 

The learning set is randomly partitioned into k equal size sub-samples with k=10. Each regression 

process is then applied where k-1 sub samples are used as training data and the remaining ones for 

validation. This process is repeated by changing the training/validation sub-samples in such a way that 

all learning samples are used for validation. Cross-validation is a common and sound procedure in 

machine learning processes (Arlot and Celisse 2010; Kohavi 1995). The R-squared, average Root Mean 

Square Error (RMSE) and relative RMSE will serve as the performance metrics for the model. The 

number of trees and the number of variables used for tree nodes splitting were randomly determined 

using the tune function implemented in the randomForest package (Liaw and Wiener 2002). The 

number of tree was set to 500 to reduce computation times without notable loss in accuracy. 

 

3.2.3.4 Potential of canopy texture metrics to discriminate degradation history 

and the resulting changes in forest structures at the plot scale 
 

The forest plot scale was used to combine canopy texture and canopy structure metrics with forest 

degradation history.  

We first classified forest plots according to their canopy structures (mean CSM calculated at the plot 

scale) using PCA and hierarchical clustering (Ward’s criterion). The number of clusters was optimized 

by calculating the inter-cluster variance (Ketchen and Shook 1996). Each cluster of forest canopy 

structure was then related to forest degradation history by calculating the average disturbance 

frequency of OL, SL and fire events. 

We then used Linear Discriminant Analysis (LDA) to predict membership of forest structure clusters 

from averaged value of CTM at the plot scale. LDA algorithm tries to find a linear combination within 

the canopy textural metrics averaged at plot scale that maximizes separation between the barycenters 

of the clusters while minimizing the variation within each group of the dataset (Hamsici and Martinez 

2008; Kuhn and Johnson 2013). We used MANOVA with Pillai’s Trace tests to evaluate the significance 

of the multivariate inter-cluster difference computed from the 6 CTM. All processes were computed 

using the R packages FactoMineR (Husson et al. 2010; Lê et al. 2008) and the MASS package (Venables 

and Ripley 2002).  
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3.3 Results 
 

3.3.1 Forest canopy texture metrics from grey level UAV images at 1 

ha scale 
 

The two first factorial axes of the PCA accounted for 51.6% of the total variability of the r-spectra 

observed (Fig 3.4b). FOTO_PCA1 expresses a gradient between coarse and fine texture corresponding 

to spatial frequencies of less than 90 cycles/km and more than 120 cycles/km, respectively (Fig 3.4c). 

FOTO_PCA2 expresses a gradient leading from heterogeneous textures with the coexistence of low 

and high frequencies (negative scores) toward homogeneous intermediate frequencies in the range 

90-120 cycles/km (high scores). Fine textures correspond to homogeneous distribution of small tree 

crowns reflecting ongoing regeneration after probable over logging. Intermediate textures along axis 

1 associate large and smaller tree crowns that characterize preserved forest with the natural 

distribution of high emergent trees and lower canopy trees. The left part of the scatter plot groups 

coarse textures corresponding to large gaps in the canopy related to logging activities. Finally, the two 

examples at the bottom of the plot show mixed coarse (remaining trees) and fine (low understory or 

shrub stratum) textures that characterize OL and recently burned forests.  

 

Figure 3.4 Canopy texture ordination based on the FOTO method applied to UAV-acquired grey level 
images. (a) Scatter plots of PCA scores along F1 and F2 and windows selected as illustrations. (b) 
Histogram of eigenvalues expressed as % of total variance. (c) Correlation circles with frequencies 
ranging from 50 to 240 (cycles/km). 
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The first factorial axe of the PCA on the lacunarity spectra account for more than 70% of total variability 

(Fig 3.5b). Lacu_PCA1 expresses a gradient of gapiness with large gaps appearing in the extreme left 

part of the scatter plot (Fig 3.5a) and closed canopy forest with no gaps in the extreme right part. Large 

gaps are tree shadows projected over large canopy gaps. Homogeneous canopies, i.e. smooth grain 

and a closed canopy characterizing low degradation forests were found on the positive side of the 

second axis (Lacu_PCA2)(11% of total variability) and vice versa for heterogeneous canopies. These are 

highly degraded forests (over logged at different ages and recently burned forests) with destroyed 

canopies and patches of small crowns linked to the understory or to regeneration. Other axis did not 

reveal other structure. Substantial analogy can be observed between the main texture gradients 

provided by FOTO and by the lacunarity analyses. 

 

 

Figure 3.5 Canopy texture ordination based on the lacunarity method. (a) Scatter plots of PCA scores 
along F1 and F2 and windows selected as illustrations. (b) Histogram of eigenvalues expressed as % of 
total variance. (c) Correlation circles with sub-window sizes ranging from 2 to 102 pixels. 
 

3.3.2 Relationships between canopy textures and forest structure 

parameters at 1 ha scale 
 

The standard deviation and variance of canopy height were the CSM best explained by texture with a 

R² of 0.58 and 0.54 respectively (Table 3.1). These metrics pointing to the variability of canopy structure 

directly reflect the different processes of degradation and the associated gradients of canopy grain 
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texture. Maximum and mean canopy height and coefficient of variation show lower relationship (resp. 

R² of 0.43, 0.38 and 0.31). The minimum height showed a low R² of 0.13 with CTM. 

 

Table 3.1 Random forest regression models for the prediction of canopy structure metrics (CSM) from 
canopy texture metrics (CTM) on grey level images. 

CSM R²  RMSE  Relative RMSE  

Minimum (m) 0.13 3.49 0.94 

Maximum (m) 0.43 5.66 0.76 

Mean (m) 0.38 4.88 0.79 

Variance  0.54 13.03 0.68 

Standard deviation   0.58 1.01 0.65 

Coefficient of variation 0.31 0.17 0.83 

 

3.3.3 Potential of canopy texture metrics to discriminate degradation 

history and the resulting changes in forest structures at the plot scale 
 

3.3.3.1 Clusters of canopy structures and related degradation history 
 

The clustering method allowed identifying 6 clusters of canopy structures (Fig 3.6). Cluster 1 groups 

wide open and low canopy forests with a significantly lower average canopy height (9.9 m) than the 

other clusters and high Standard Deviation (SD) values (6.19 m). It groups forest plots that have mainly 

experienced OL (~1.4 events) and recent fire events identified between 2015 and 2017 (1.6 in average). 

Cluster 2 groups 23-year-old secondary forests characterized by a homogeneous and low canopy 

(average height of 13.86m and SD of 2.28). Cluster 3 groups forest plots with homogeneous (SD of 

5.10), low average canopy height (14.13m) mainly marked by over logging (~1.5 events). Cluster 4 has 

a heterogeneous canopy structure characterized by high standard deviation (SD of 7.03) which is 

explained by recent logging events detected in 2017 (~1.2 events) and other previous disturbances 

such as fire (~1 event). Clusters 5 and 6 have similar canopy height (~22 m) but variable canopy 

roughness (SD ranging from 6.05 to 7.59). Their degradation histories differ as cluster 5 groups recently 

SL forest (~0.6 events) or OL forests (~1 event) while cluster 6 mostly groups undisturbed forest and 

old SL forests (more than 10 years ago). However both clusters are marked by very low (~0.1 events 

for cluster 5) to none fire disturbances detected. Further explanation on the different steps of the 

method and on the statistical results can be found in Appendix 3.4 and 3.5. 
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3.3.4.2 Linear discriminant analysis at the forest plot scale 
 

The two first discriminant components (LD1 and LD2) account for 93.6% of the total proportion of the 

trace i.e. the proportion of inter-cluster discrimination of the LDA based on texture (MANOVA test with 

p-value < 0.05)(Fig 3.7a). The prominent first discriminant component is mainly correlated with 

FOTO_PCA1 (r=0.55 in LD1), FOTO_PCA2 (0.49 in LD1) and LACU_PCA2 (-0.79 in LD1) (Fig 3.7b). The 

second discriminant component is mainly correlated with LACU_PCA2. In the LD1-LD2 plane, clusters 

2 and 3 are mainly separated from the rest of clusters thanks to axis LDA1. Cluster 1, 4 and 5 are 

discriminated along LD2. Cluster 6 has less discriminating capacity, especially compared with cluster 5.  

LDA results include misclassification errors corresponding to disagreement between texture-based and 

structural classifications of the plots (Fig 3.7a). The confusion matrix shows an overall accuracy of 55% 

and kappa index at 0.44 (Fig 3.7c). The LDA classification performed well for all clusters except cluster 

6 which has the highest misclassification rate with a high rate of confusion with cluster 5. Based on 

Figure 3.6 3D plots of digital height models of the (100x100 m) windows selected to illustrate the 6 

forest structure clusters. Radar chart shows the average frequency of over-logging (OL), selective 

logging (SL) and fire (F) disturbances detected in all forest plots within a given cluster.  
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CTM, clusters 5 and 6 appeared to be similar because they mainly differ in their minimum height, which 

logically is difficult to predict from canopy texture metrics on 2D images. 

 

Figure 3.7 (a) Scatter plot showing the distribution of the 40 forest plots with color based on the color 
of canopy clusters on the linear discriminant plane (LD1-2). Inset: proportions of LDA trace (b) 
Correlation circle of CTM with respect to the two main components (axes) of the LDA (c) Confusion 
matrix between observed and predicted clusters for the 40 plots (LDA classifications) 
 

Clusters 2, 3 and 5 are distinguished along a gradient of canopy textural grain that spans from fine to 

coarse (FOTO-PCA1) (Fig 3.8). Cluster 4 mainly presents the lowest FOTO-PCA1 and Lacunarity-PCA1 

values, which correspond to the coarse texture and large gaps, respectively, typical of recent logging 

events. Cluster 1 has on average the coarse grain and homogeneous texture (FOTO-PCA1 and -PCA2) 

that characterize low vegetation strata. Finally cluster 6 (well preserved forest) has intermediate 

canopy grain (FOTO-PCA1 and 2) and canopy openness (Lacunarity-PCA2).  

 

Figure 3.8 Mean and SD values of CTM calculated within the 6 predicted clusters using LDA. 
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3.4 Discussion  
 

A better characterization of forest structure is crucial to tailoring forest management plans (Goldstein 

2014). In this paper, we show that Canopy Textural Metrics (CTM) extracted from VHRS optical images 

acquired by UAV are clearly related to forest canopy digital height models and can reveal different and 

complex degradation history. The CTM provide complementary information on degraded forest states 

compared to other remotely sensed indicators based on vegetation photosynthesis activity (Asner et 

al., 2009; Bullock et al., 2018; Mitchell et al., 2017). The CTM can also be used in multidisciplinary 

approaches such as for the assessment of forest ecosystem services that require detailed information 

on forest structure (Barlow et al. 2016; Berenguer et al. 2014).  

 

3.4.1 Potential of canopy texture metrics to assess degraded canopy 

structures  
 

We showed that CTM can assess forest structure variability that reflects both horizontal and vertical 

heterogeneity induced by degradation. Through the expression of canopy grain and heterogeneity 

gradients, CTM provides reliable estimations of canopy roughness (standard deviation of canopy 

height) at 1 ha-scale. At the forest plot scale, we demonstrated the complementary of FOTO and 

lacunarity metrics in distinguishing between the different clusters. While FOTO and lacunarity express 

similar gradients of canopy texture (Fig 3.4 and 3.5), the measure of canopy openness in lacunarity 

provide useful additional information to distinguish large canopy gaps from large crowns, as 

underlined by Ploton et al. (2017). However, the first axis of lacunarity reveals a gradient of canopy 

textures that could be influenced by sun-angle conditions during the UAV data acquisition. Early 

morning and late afternoon data acquisitions generate higher projected shadow, which drives the 

distribution of the data towards the negative values of the first axis. Data acquisition parameters (sun 

and sensor angles, clouds etc.) are known to be able to disturb grey level values and textures (Barbier 

and Couteron 2015). One advantage of using UAV is that they allow better control of acquisition 

conditions than do satellites.  
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3.4.2 Long-term forest degradation consequences on structure 

explained using current canopy textures 
 

In this study, we demonstrate the potential of single shot UAV-based canopy altimetry and texture to 

correlate with current structure that can reveal both past disturbances and recovery processes (Herold 

et al. 2011, Ghazoul and Chazdon 2017). At the forest plot scale (~24 ha), the average CSM and the 

variability of CSM enabled the identification of six forest clusters with specific degradation history. The 

link between long term degradation history and canopy structure has already been identified in 

previous studies that quantified carbon densities of Amazonian forests following successive logging 

and/or fire events (Berenguer et al. 2014; Longo et al. 2016; Rappaport et al. 2018). CTM proved to be 

able to differentiate between five types of degradation, although with some confusion between the 

less degraded forest types. 

Undisturbed forests have a high closed canopy, and are homogeneous in texture with an intermediate 

grain associating large and medium-sized tree crowns (cluster 6). Any logging event will disrupt the 

canopy and create a coarse texture with greater variation in canopy height (cluster 4). Under a 

management plan, logging intensity is moderate (< 5 to 8 trees/ha) and the recovery time (35 years in 

Brazil) is respected. In that case, the coarse texture will recover and will turn back into intermediate 

grain (cluster 5 or 6).  We showed that after 7 years, the canopy texture of a logged forest resembles 

that of undisturbed forest (Fig 3.6 and Appendix 3.3). For unmanaged forests, subject to higher uptake, 

the time for the forest to recover a canopy texture of intermediate grain will be longer (e.g. plots 23 

and 24). In the case of additional impacts (progressive disappearance of large crowns), the coarse 

canopy texture will also be maintained longer. Repetitive and intense logging have therefore triggered 

the complete harvesting of emergent trees, thereby weakening the forest structure (Asner et al. 2002). 

During the recovery process, canopy is of low height and its texture is dominated by a fine and 

heterogeneous grain (cluster 3). 

Additionally, we found that recent fire (single or multiple events) has a major impact on the damaged 

forest structure. The resulting highly degraded forests are characterized by coarse textures 

corresponding to large gaps and/or homogeneous regeneration stratum and highly damaged canopy 

(cluster 1). Moreover, most fires were detected in 2015, which correlates with the El Nino drought 

event (Berenguer et al. 2018). These findings underline the importance of the synergetic effects of 

logging and fire on forest structure (Dwomoh et al. 2019; Morton et al. 2013). We also found that fire 

was never detected (i.e. did not occur) in closed canopy and relatively low degradation forests. This 

confirms that heavily logged forests are more vulnerable to fire due to the presence of dead and dry 
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vegetation resulting from logging. At a larger scale, this vulnerability is linked with the fragmentation 

of forest patches, which facilitates access to forest resources, accentuates dry edge effects and 

increases potential pressure caused by agricultural expansion (Briant et al. 2010; Broadbent et al. 2008; 

Silva Junior et al. 2018). The mitigation of fire occurrence through improved landscape management 

is therefore a priority in order to prevent further degradation and forest carbon losses (Berenguer et 

al. 2014).  

The results of the present study reveal possible ways to address questions concerning the future 

management of primary degraded forests by analyzing the structure and texture of their canopy in 

order to better differentiate forest states and the associated degradation history. This study also opens 

the way for further analysis of secondary forests in abandoned lands which will certainly play a crucial 

role in future scenarios of landscape restoration (Chazdon et al. 2016). 

3.4.3 UAV technology: from data acquisition to limitations and 

perspectives 
 

This paper reports the first large-scale application of low cost UAV to retrieve quantitative information 

on closed canopy forest structures. The UAV used is inexpensive (<2,000 US$) and a highly efficient 

cost/time ratio was found for data acquisition in the field. In a 20 minutes flight, around 25 hectares 

of forest was mapped at a resolution of 10 centimeters. Other studies using UAV produced results that 

are comparable with LiDAR in terms of point cloud densities (Dandois et al. 2015) and estimations of 

forest structural parameters (Alonzo et al., 2018). Finally, the computation of CTM using open-source 

Matlab® routines is automatic and only requires the window size used for texture analysis as user 

input. Window size can be adapted to forest canopy crown size and distribution, although limited 

variations do not alter the results much. Consequently, the workflow described here has great promise 

for future monitoring of tropical forest at low cost, which is interesting when airborne LiDAR is not 

affordable or available.  

However, UAV remain limited by their inability to cover regions as large as those covered by satellite 

images, and climatic conditions (wind, cloud shadows) are likely to disturb the consistency of image 

texture and thus the automatic mapping process. Finally, regulations strongly limit the use of UAV in 

certain countries. Nonetheless, UAVs appears to be an efficient tool at the interface between field 

inventory and satellite characterization of forest structure (Koh and Wich, 2012). UAV-acquired 

reference data could be the basis of upscaling chains that would allow the use of spaceborne data of 

decreasing resolution yet increasing swath and affordability so as to reach broad scale, wall to wall 

mapping of forest state indicators of known accuracy.  



102 
 

3.5 Conclusion of Chapter 3 
 

In this chapter, we described the first large-scale application of low cost UAV processes to acquire 

forest structural ground truth data across a wide range of degraded forest types. Canopy texture 

analysis and very high-resolution images are major cost-efficient alternatives to the use of LiDAR 

datasets and in the long run, could enable forest structure to be mapped at optimal spatial and 

temporal scales. We provided quantitative information to better interpret the different canopy 

textures that have resulted from the cumulative impacts of various types of degradation over the last 

33 years. First, we built robust and significant correlations between Fourier, lacunarity texture metrics 

and forest structural parameters such as canopy variability and height. Second, we demonstrated that 

each type of degradation has a specific canopy grain, heterogeneity and openness signature. 

Deconstructing degradation complexities through canopy texture analysis also highlighted the 

destructive impacts of repetitive unsustainable logging and fire.  

 

3.6 Perspectives  
 

3.6.1 Multi-scale analysis of canopy structures of a tropical forest 

degradation gradient, from UAV to satellite VHSR 
 

Based on UAV acquisitions that generate 2D and 3D images of the canopy using photogrammetry 

methods, the ability of texture metrics to characterize the variation in forest cover height, and thus 

degradation, has been demonstrated (Chapter 3). However, these data do not cover large areas. VHSR 

optical satellite data, such as SPOT 6 & 7, have already demonstrated their ability to characterize 

canopy structure variations at the regional scale through canopy texture analyses (Ploton et al. 2012; 

Singh et al. 2014; Pargal et al. 2017). However, the correct interpretation and calibration of texture 

indices requires a level of field data that is often not available. How can UAV data be combined with 

VHSR optical satellite data allow to characterize the forest structure and infer the state of degradation 

of tropical forests over large areas? 

The objective of this study is therefore to evaluate the potential of VHSR optical images to analyze and 

map the structures of degraded tropical forests despite a lower resolution compared to UAV data. The 

study will therefore initially consist in carrying out a local scale analysis on reference sites using 

altimetry data derived from UAV imagery and VHSR optical satellite data (Fig 3.9). The aim will be to 
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demonstrate that the relationship between texture and structure is also significant with these data. 

Then, a large-scale analysis will be carried out in order to predict the structure of the forests and thus 

to estimate their state of degradation.  

 

 

Figure 3.9 a) UAV greylevels (10cm) and b) SPOT-6 Panchromatic (1.5m) 
 

The analysis is based on Canopy Digital Height Models extracted from 70 forest plots mapped using 

UAV in September 2017 and 2018. We also used six cloud-free SPOT-6 and 7 images to cover the 

municipality extent (1.5 spatial resolution in panchromatic mode) in 2017 dry season (from July to 

November). The scenes were mosaicked together, masked from clouds, shadows and other land 

cover/use different than primary and secondary forest (see Chapter 4).  

Within the forest plots extent, the method used is similar that the one developed in Chapter 3. It 

involves using canopy texture metrics (from SPOT images in windows of 100*100 meters) as 

explanatory variables to model the canopy structure metrics derived from the UAV using Random 

Forest (k-fold validation). Due to the different configurations in angle sensor/sun conditions between 

the different SPOT images, we used an intercalibration method based on FOTO and linear regression 

in order to homogeneize the canopy structure metrics from one image to another (Barbier and 

Couteron 2015). This first step allows to characterize the relation texture (SPOT)/ structure (UAV). 

Then, we extracted intercalibrated canopy texture metrics from primary and secondary forest and 

used the texture/structure model to map canopystructure metrics over Paragominas (Fig 3.10).  
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Figure 3.10 Method workflow from forest plot model texture/structure calibration to upscaling of 

canopy structure metrics using canopy texture analysis 

 

At the forest plot scale, we found that the PCA shows that about 48% of the information is contained 

in the first two axes (axis inertia, Fig 3.11). The 20 spatial frequencies are ordered, as expected, in an 

increasing order in plane 1 - 2 along axis 1 following a gradient of canopy grain. Low values correspond 

to canopies with large crowns typical of conserved or low degraded primary forests. High values 

correspond to canopy with small crowns rather characteristic of secondary forests or highly degraded 

canopies. Axis 2 details more precisely all the intermediate textures with an average crown size which 

may correspond to regenerating forests or to different intensities of degradation.  
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Figure 3.11 Canopy texture ordination based on the FOTO method applied to SPOT grey level images: 
Histogram of eigenvalues expressed as % of total variance and correlation circles with frequencies  

 
The standard deviation and maximum canopy height are the structural metrics best correlated to 

texture with R² of about 0.5 and 0.4 respectively (Table 3.2). The mean and Q1 are less well correlated 

with R²s of about 0.35 and 0.3 respectively. There therefore seems to be a significant relationship 

between the canopy structure and the texture determined from the SPOT scenes. Models will tend to 

overestimate low values (linear regression line in red higher than the first bisector in blue) and vice 

versa for high values.  

Table 3.2 Random forest regression models for the prediction of canopy structure metrics from canopy 
texture metrics (FOTO and skewness) on SPOT grey level images. 
 

Canopy structure metrics R² RMSE RRMSE 

Standard deviation 0.501 1.222 0.706 

Mean 0.347 5.559 0.808 

Maximum 0.388 6.794 0.782 

Q1 0.271 5.751 0.853 

 

The prediction of the standard deviation of canopy height accurately reflects the forest degradation 

gradient in Paragominas (Figure 3.12). The areas of conserved forests at the West/East parts show a 

high standard deviation in contrast with the low values (i.e. high degradation) in the central part. The 

predictions are less good for the other structure metrics. The delimitations of the SPOT mosaic scenes 
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as well as the reduction of the contrast of the values are very visible and important. Average heights 

between 10 and 15 m are predicted for the indigenous reserve, while forest are low degraded. The 

values should be of the same order of magnitude as in the CIKEL where the predicted average height 

is much higher (between about 20 and 25 m). 

 

Figure 3.12 Prediction of standard deviation of canopy height (100m resolution) 
 

This perspective demonstrated that VHSR optical satellite data can characterize tropical forest 

degradation. The use of the FOTO method makes it possible to produce canopy texture metrics 

significantly correlated to the three-dimensional structure of the forest cover. The upscaling achieved 

demonstrated the potential of the method to characterize degradation on a larger scale. By solving 

problems related to the calibration of VHSR scenes, it would be possible to produce mapping of an 

indicator of forest cover status. With the significant development of remote sensing in recent years, 

more and more satellite data with fine resolutions and high revisit frequencies are available (e.g. Planet 

Dove). It may therefore also be possible to monitor degradation over time using canopy texture 

analysis.  
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3.6.2 Reconstructing forest degradation history from Landsat time 

series  
 

The replicability in time and space of canopy texture analysis to map degraded forest structures using 

the coupled UAV/VHSR methodology can be constrained by the availability of images (due to cloud 

cover or to acquisition parameters), their extent and related cost to cover large regions of the tropics. 

Furthermore, canopy texture analysis makes it possible to characterize the current state of forests by 

studying their structure but does not directly provide information on their history even if we showed 

that these two components were linked (Chapter 3). Reconstructing the degradation history using 

dense time series of remnant primary forests is thus an alternative and complementary method to 

characterize forest degradation. Most approaches rely on direct approaches and dense time series 

(inter-annual) to analyze the behavior of pixels (breakpoint detection). However, we showed in section 

1.3.1 some limits to this approach. Spectral unmixing (direct punctual approach) informs at the sub-

pixel scale on proportion of active and dead photosynthetic vegetation and bare soil but it is dependent 

on endmembers spectral libraries.  

The objective of this perspective work is to characterize the frequency, intensity and type of the 

disturbances (logging and fire) altering the various primary forest patches of Paragominas municipality 

from annual Landsat time series (1980-2018). The method developed here is based on spectral 

unmixing to automatically identify and characterize the disturbances received by tropical forests. The 

objective is to move away from the spectral libraries and field data generally used in the selection of 

pure pixels, based in particular on unsupervised classification methods (Benhadj et al. 2012). 

For this work, the study site is the extreme west of Paragominas, where the Cikel Brasil Verde Madeiras 

Ltda, founded in 2000, is located. This private forest estate governed by a forest management plan has 

been certified by the Forest Stewardship Council (FSC) since 2001. The work also includes forest plots 

outside of CIKEL where forest is subject to illegal selective logging.  

The analysis is based on a time series of Landsat 5, 7 and 8 optical images of 30 meters spatial 

resolution (TIERS-1, Level-1), composed of one image per year between 2000 and 2017 with some data 

gaps, i.e. 15 images in total. The selection criteria for these images meets two conditions: i) cloud cover 

of less than 10% and ii) a date of acquisition between June and October (dry season), in order to respect 

the same climatic and phenological conditions.  

The method is based on unsupervised classification (Baraldi et al. 2006), spectral unmixing and a series 

of image processing processes to extract each disturbance. Firstly, Baraldi unsupervised classification 

provides 46 classes identified through different combination of spectral bands and vegetation indices. 
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We extracted 10000 pixels for each of classes of vegetation, bare soil, water and shadow and identified 

using kmeans the most stable and robust spectral signature of each class. These signatures 

corresponds to endmembers attributes and were used for linear spectral unmixing following Benhadj 

et al. (2012). The resulting water, bare soil and vegetation components are combined and a set of GIS 

processes (threshold, morphological filters, kmeans) allowed to map most probable disturbances (e.g. 

selective logging, road network)(Fig 3.13).  

 

 

Figure 3.13 Workflow for detecting logging disturbances 

Landscape metrics at the plot scale are then calculated to extract the evolution of the canopy opening 

area, and degradation indicators to identify types of forest exploitation. These indicators are: i) impact 

frequency (the number of times the forest is harvested), ii) maximum intensity (the maximum opening 

area of the canopy), iii) canopy opening frequency (the number of times the forest cover is opened 

more than 2%), iv) rotation (the average number of years between two farms). 

We found that the generic method combining Baraldi's (2006) classification with spectral unmixing 

makes it possible to accurately extract degradation impacts such as main logging roads, skidding and 

skidding roads, log yards and logging gaps (Fig 3.14).  
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Figure 3.14 A) Detection of linear logging disturbances in 2009 in CIKEL (under forest management), 

detection of nonlinear disturbances outside of CIKEL in 2017 

The evolution of the canopy's coverage area over time makes it possible to characterize forest 

degradation in terms of intensity and frequency. The combined analysis of the four degradation 

indicators makes it possible to differentiate between legal and conventional types of exploitation. In 

general, their values are higher in the case of non-legal exploitation (Fig 3.15).  

 

Fig 3.15 Indicators of forest degradation at the plot scale of a CIKEL plot (under forest management) 

and a plot never exploited (conserved primary forest) and a plot illegally logged outside of CIKEL 
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This study shows the potential of 30 m resolution Landsat satellite image time series to detect and 

identify the impacts of forest degradation in terms of canopy opening using an indirect approach. The 

method developed is semi-automatic, robust and reproducible because it is based on unsupervised 

classification and spectral unmixing to identify each impact of forest degradation such as logging roads, 

logyards and logging gaps. More study has to be made to add fire disturbances, which alters the canopy 

and thus the unmixing indicators differently. With the objective of operationality in mind, more study 

has to be made to adapt the method developed to the new Sentinel-2 data with a better spatial (10m) 

and temporal (6 days) resolution. 
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Chapter 4 - Primary forest degradation 

in the Amazon: a landscape approach 

to identify the main drivers 
 

 

A gradient of vegetation structures from clean to wooded pasture up to a logged and burned primary 
forest in Paragominas municipality (picture by Jacques Baudry) 

 

 

 

Reproduced from the article:  

Bourgoin C., Blanc L., Betbeder J., Le Roux R., Le Clech S., Rumiano F., Baudry J., Boussard H., Oszwald 
J., Mercier A., Mazzei L., Dessard H., Laurent F., Hasan A., Poccard-Chapuis R., Burel F., Sist P., Läderach 
P., Reymondin L., Gond V. (2019 submitted) Primary forest degradation in the Amazon: a landscape 
approach to identify the main drivers. Environmental Research Letters.  

  



113 
 

  



114 
 

Primary forest degradation in the Amazon: a landscape approach to identify the main 

drivers 

Bourgoin C1,2,3*, Blanc L1,2, Betbeder J1,2,4, Le Roux R1,2, Le Clech S5, Rumiano F6,7, Baudry J8, Boussard 

H8, Oszwald J9, Mercier A9, Mazzei L10, Dessard H1,2, Laurent F11, Hasan A11, Poccard-Chapuis R12,13, Burel 

F14, Sist P1,2, Läderach P3, Reymondin L3 and Gond V1,2 

1 CIRAD, Forêts et Sociétés, F-34398 Montpellier, France 
2 Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France 
3 International Center for Tropical Agriculture (CIAT), Hanoi, Vietnam 
4 Ecosystems Modelling Unity, Forests, Biodiversity and Climate Change Program, Tropical Agricultural Research and 

Higher Education Center (CATIE), Turrialba, Cartago, Costa Rica 
5 Environmental Systems Analysis Group, Wageningen University and Research, Wageningen, The Netherlands 
6 CIRAD, UMR TETIS, F-34398 Montpellier, France 
7 TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, IRSTEA, F-34000 Montpellier, France 
8 INRA, UMR BAGAP, 65 rue de St-Brieuc CS 84215, 35042 Rennes, France 
9 LETG Rennes UMR 6554 LETG, Université Rennes 2, 35042 Rennes, France 
10 EMBRAPA Amazônia Oriental, Trav. Dr. Enéas Pinheiro, Bairro Marco, CEP, 66095-903 Belém, Pará, Brazil 
11 UMR ESO (Espaces et Sociétés), CNRS, Le Mans Université, 72000 Le Mans, France 
12 CIRAD, UMR SELMET, Belém, Brazil 
13 SELMET, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France 
14 UMR 6553 ECOBIO, CNRS, Rennes, France 
 

Abstract 

Deforestation shaped tropical landscapes into mosaics of land uses within which remnant primary 

forest are patches of varying land cover status. Degradation of primary forest with changes in structure 

but no change in land use is directly driven by selective logging and by fires set by humans. However, 

our understanding of the indirect drivers of forest degradation and the complex relations between 

degradation and land use processes at multiple scales is still limited. To fill this knowledge gap, we 

used a landscape approach to analyze the direct and indirect drivers of forest degradation at the old 

deforestation front in Paragominas municipality (Pará, Brazil). We used both regression and clustering 

methods to map the drivers of primary forest degradation from a large set of e.g. environmental and 

geographical factors, and landscape structure metrics derived from land use/cover classification. 

Models of forest degradation revealed that at the landscape scale, accessibility, geomorphology, fire 

occurrence and fragmentation were the key indirect and direct drivers of degradation (50-80% of 

explained variance). We clearly show that the indirect and direct drivers of degradation acted as a 

bundle and created homogenous patterns in the municipality thereby proving their spatial covariation 

and inter-dependency and revealing different land use dynamics and management practices. This 

paper provides a more holistic understanding of drivers of degradation and their sequential 

interactions. Our results underscore the need to tackle forest management at the landscape scale. 

Keywords Forest degradation, remote sensing, land use/cover, Brazilian Amazon, landscape approach, 

fragmentation 
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4.1 Introduction  
 

Forest degradation accounts for 68.9% of overall carbon losses from tropical forests (Baccini et al. 

2017) and causes loss of biodiversity (Barlow et al. 2016; Broadbent et al. 2008), erosion of hydrological 

and soil properties and loss of non-timber forest resources (Lewis et al., 2015; Thompson et al., 2009). 

While the drivers of deforestation are well understood (Geist and Lambin 2002; Curtis et al. 2018; De 

Sy et al. 2019), knowledge of the drivers that cause gradual changes in the forest structure and 

composition with no change in land use is limited (Thompson et al. 2013; Putz and Redford 2010). 

Identifying the direct drivers (i.e. natural or human-induced factors that clearly influence forest 

ecosystems) and indirect drivers (i.e. natural or human-induced factors that are more diffuse as they 

alter direct drivers) of forest degradation is crucial for sustainable forest management and land-use 

planning (Nelson et al. 2006; Goldstein 2014).  

Since the 1960s, around 20% of the Amazonian forest has been deforested and converted into 

agricultural land for cattle ranching and large-scale cultivation of cash crops (Fearnside 2005; Y. Malhi 

et al. 2008; Barona et al. 2010). The resulting landscapes along these old deforestation fronts are a 

complex mosaic of land uses. The state of primary forests in these human-dominated landscapes 

ranges from conserved to highly degraded due to the accumulation of severe disturbances over time 

and in space. The disturbances are mainly due to unsustainable logging practices (timber harvesting), 

biomass harvesting for energy (fuelwood and charcoal production) and fire (Asner et al. 2005; 2009; 

Souza, Jr et al. 2013). In the Brazilian Amazon, between 2000 and 2010,  50,815 km² of forest was 

degraded due to illegal selective logging and fire (Souza, Jr et al. 2013). While annual deforestation 

rates declined by 46%, degradation increased by 20%.  

Although the direct drivers of forest degradation are well known (i.e. selective logging and understory 

fire) (Hosonuma et al. 2012; Asner et al. 2009b), so far, little is known about the indirect drivers of 

selective logging or forest burning in the Brazilian Amazon. There is thus a need to broaden our 

understanding of the drivers of forest degradation through a more integrative and holistic approach. 

The aim of the landscape approach is to deal with environmental, social and economic issues in unison 

in a defined geographical area characterized by a variety of competing land uses and multiple 

stakeholders (Reed et al. 2016; Opdam et al. 2018). Analyzing the forest and its degradation using a 

landscape approach consists in considering and characterizing the interconnections between the state 

of forest cover  and the different land use processes at multiple scales (Melito et al. 2018). So far, most 

authors have analyzed degradation at the forest patch scale (Tyukavina et al. 2017) but this scale 

cannot explain how land use and agricultural practices influence the state of forest cover and whether 

forest degradation is at the origin of complex feedback loops (Morton et al. 2011). The landscape 
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approach has already been used to study the relation between deforestation and fragmentation 

(Laurance et al. 2002; 2011) where forests are spatially organized in patches of varying size, shape, 

with interconnections, and are influenced by the broader land use and cover change dynamics (Godron 

and Forman 1981). There is also a large body of literature focused on the negative impacts of 

fragmentation on forest structure triggered by deforestation (Briant et al.  2010; Shapiro et al. 2016; 

Melito et al. 2018; Almeida et al. 2019).  

However, fragmentation is only one aspect of the influences land uses has on the state of forest cover. 

Land use conflicts between the protection of forest resources and growing pressure from the 

agricultural sector may trigger severe forest degradation, especially in areas where agricultural 

expansion is strictly limited (Nepstad et al. 2008). In addition, agricultural land management and 

agricultural practices may influence the state of proximate forest cover. To sum up, there is a lack of 

understanding of the different cascades of indirect and direct drivers leading to primary forest 

degradation in human-modified landscapes.  

Here, we propose an innovative framework to disentangle how land use/land cover and landscape 

structure influence the state of the primary forest cover and degradation using an integrative 

landscape approach. The objective of this work was to identify the cascade of drivers of primary forest 

degradation at the landscape scale and to analyze their spatial complementary and variability. First, 

we assessed forest degradation using two proxies that capture forest degradation state in 2015 and 

degradation history between 2000 and 2015. Second, we collected data on the direct and indirect 

drivers of forest degradation from land cover/use classification, analysis of landscape structure and 

other environmental and geographical factors. Third, we used multiple linear regression analysis and 

clustering methods at the landscape scale to identify the most important drivers of forest degradation 

and to map their spatial distribution. 

 

4.2 Materials and methods 
 

4.2.1 Framing the degradation of primary forest in a landscape 

approach 
 

Figure 4.1 depicts the interactions leading to primary forest degradation at different scales. Socio-

economic and demographic factors, land policy (from management to land tenure) and environmental 

factors drive the expansion of farming and cattle ranching that trigger land use changes at the regional 

scale (Lambin et al. 2001; Geist and Lambin 2002). At the landscape scale, land use changes trigger 
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changes in landscape structure i.e. in the composition and configuration of landscape elements that 

make up the complex forest-agricultural mosaics (Burel and Baudry 1999). Different dynamics and 

practices are associated with agricultural land types and affect proximate forest patches through 

selective logging and understory fires (direct drivers of degradation). Land use change also modifies 

the configuration of landscape elements (e.g. heterogeneity and fragmentation). Higher fragmentation 

rates facilitate access to the forest patch and consequently to selective logging, leading to degradation 

(Broadbent et al. 2008). Edge effects increase forest flammability enhanced by climatic and 

topographic conditions (Phillips et al. 2009; Briant et al. 2010). Forest degradation also triggers 

feedback effects on landscape configuration (Morton et al. 2011). 

 

Figure 4.1 Conceptual framework of direct and indirect drivers of primary forest degradation at the 
forest patch, landscape and regional scales 
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4.2.2 Study site  
 

The study area is the municipality of Paragominas located on the Brazilian deforestation front in the 

northeastern part of Pará State (Fig 4.2). The study area comprises 19,342 km² with a total population 

of 108,547 (IBGE, 2018). Colonization began in 1965 with the construction of the BR-010 road 

connecting Brasilia to Belém. The eastern part of the municipality is delimited by an indigenous 

reserve. Since 2000, the western part has been owned by a private forestry company CIKEL Brazil Verde 

Madeiras Ltda. Smallholder dominated areas can be found in the eastern and northern parts of the 

municipality. Smallholders practice small-scale cattle breeding, cultivate cash crops (pepper) extract 

acai, and practice subsistence agriculture (cassava)(Laurent et al. 2017).  

 

The municipality went through successive development models (cattle ranching in the 1960s, the 

logging industry boom in the 1980s and of the grain agro-industry in 2000s) that resulted in a 

heterogeneous landscape mosaic of conserved to highly degraded forest associated with different land 

uses, mainly pasture and cereal crops, including soybean and maize (Viana et al. 2016; Piketty et al. 

2015; Bourgoin et al. 2018; Mercier et al. 2019). Since 2008, the municipality is involved in a green 

development pact that aims to improve land and environmental regularization with a focus on 

reducing forest encroachment.  However, forest degradation continues to exert increasing pressure 

on the remaining primary forest through unsustainable selective logging and fires (Hasan et al. 2019a).  
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Figure 4.2 Paragominas municipality (C) and its location on the deforestation front (B) in the Legal 
Amazonia (A) 
 

4.2.3 Data collection and methodology 
 

We developed a framework to identify and map the direct and indirect drivers of forest degradation 

using a landscape approach (Fig 4.3): (1) collection of data for response and explanatory variables, (2) 

landscape analysis consisted in determining the appropriate scale to compute landscape structure 

metrics and zonal statistics of other explanatory variables and (3) analysis of drivers consisted in 

identifying the most significant drivers of degradation using linear regression models and mapping 

homogeneous clusters of degradation drivers.  
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Figure 4.3 Workflow of the method used to identify and map forest degradation drivers at the 
landscape scale. 
 

4.2.3.1 Proxies of primary forest degradation 
 

Two proxies of forest degradation were used as response variables in this study. They provide spatial 

information on the state of forest degradation in 2015 and on the history of degradation between 2000 

and 2015 (Fig 4.4).  

The first proxy is the aboveground biomass (AGB) and forest structure assessed at a resolution of 20m 

in 2015 (Bourgoin et al. 2018). It was produced from multisource remote sensing calibrated using in-

situ field inventory data and regression analysis (Berenguer et al. 2014). Values range from 57 to 454 

Mg·ha−1 and the AGB of 87% of primary forest is below the degradation threshold of 286 Mg·ha−1 

(specific for Paragominas)(see Bourgoin et al. 2018 section 4.2.2). Degraded forests are mainly located 

in the central part of the study area and along the edges of forest patches.  
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The second proxy is the non-photosynthetic vegetation variance (NPVV) (30m spatial resolution). It 

was produced using a time series of Landsat images (2000-2015) acquired during the dry season and 

Claslite spectral mixture analysis (Asner et al. 2009b). It is directly linked with forest degradation 

history and differentiates undisturbed forests, selectively logged forests (values between 2-5), 

overlogged forests with no management plan (values between 3-9) and burned forests (values higher 

than 8)(Hasan et al. 2019a).  

 

Figure 4.4 Aboveground biomass and non-photosynthetic vegetation variance as proxies of primary 
forest degradation (non-primary forest is shown in white). 
 

4.2.3.2 Direct drivers of forest degradation 
 

We collected inter-annual fire occurrence data from MODIS fire products (MOD14A2 and MYD14A2, 

high confidence values) between 2000 and 2018 (Giglio 2015). We resampled the data from 1km to 

100m using the nearest neighbor algorithm (Fig 4.5).  
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4.2.3.3 Indirect drivers of forest degradation 
 

Environmental factors 

We used the SRTM 90m Digital Elevation Database v4.1 (Jarvis et al. 2008), derived slope and soil 

texture (Laurent et al. 2017) as environmental factors. The plateaus (100-220m elevation) are flat and 

the clay soils are fertile and consequently suitable for agriculture, the slopes are generally too steep 

for mechanization, while the valleys (45-80m elevation) are covered by loamy sand soil that is less 

suitable for agriculture (Fig 4.5).  

 

Geographical factors 

Distance to the road network (derived from OpenStreeMap) was created using the Euclidean distance 

and assessed forest patch accessibility (30m resolution). Distance to Paragominas city (Euclidean 

distance) was used to assess forest patch accessibility and market accessibility (Fig 4.5).  

 

 

Figure 4.5 Direct and indirect drivers of forest degradation 
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Land use/land cover classification of forest-agriculture mosaics 

Land use/land cover (LULC) was classified using Landsat images acquired at different dates (1988, 1995, 

2001, 2009, 2017). These dates were chosen according to the main socio-economic phases in 

Paragominas (see Section 4.2.2). All the images presented less than 10% cloud cover, were acquired 

during the dry season (June to October), and were pre-processed to surface reflectance data using the 

algorithm developed by the NASA Goddard Space Flight Center (GSFC)(Appendix 4.1). Field data were 

collected in September 2017 to train and validate the classification algorithm. Based on 328 GPS points 

in different locations in the municipality (Fig 4.2) by visual interpretation of the 2017 image, we created 

a ground data set sub-divided into 10 classes (Appendix 4.2 and 4.3): cloud, shadow, artificial surface, 

water body, cropland, bare soil, pasture, plantation, forest and juquiera (initial stage of regrowth in 

pastures abandoned by low income owners). The ground data set for the other historical images was 

built using visual interpretation of forested and non-forested areas. 

On the date of each analysis, the classification method used Landsat features (spectral bands and 

vegetation indices, see Appendix 4.1 and 4.4)  and the ground data set (randomly separated into 50 

pairs of training and validation samples) as inputs for the Random Forest (RF) classifier (Breiman 2001). 

This method is similar to the one developed by Mercier et al. (2019). We extracted overall accuracy, 

the kappa index, user and producer accuracy of each class from the confusion matrix. We used the RF 

package in R for the classification (Liaw and Wiener 2002). The 2017 forest cover class was divided into 

primary forest (classified as forest throughout the study period) and secondary forest (conversion from 

non-forest to forest cover) based on the historical classifications. Finally, we merged secondary forests 

detected between 1988-2017 with juquiera detected in 2017 using ArcGIS (Esri, Redlands, CA, USA).  

 

4.2.3.4 Landscape analysis 
 

First, we determined the landscape scale that best captures the spatial heterogeneity of landscape 

elements in order to define the size of a regular analytical grid (Bourgoin et al. 2020). Based on the 

land use/cover (section 4.2.3.2), we calculated the Shannon diversity index (SHDI) in 100 different 

regions (regular sampling at points located 15km apart) throughout the study area. This metric 

measures the proportion of landscape elements in a given area. We calculated the SHDI in buffer zones 

whose widths ranged from 90m to 20km around each region of interest. We estimated the plateauing 

of the average curve based on the resulting profiles of SHDI and recorded a corresponding distance of 

6km. This value defines the size of the regular grid (total 504 units) applied to Paragominas municipality 

(Appendix 4.5). 
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Second, within each unit, we computed landscape structure metrics from the land use/cover to 

characterize landscape composition and configuration and hence specific spatial structures of forest-

agricultural mosaics based on the concepts of heterogeneity, connectivity and fragmentation (Burel 

and Baudry 1999). These metrics reflect land use processes and their consequences for the spatial 

distribution of landscape elements and patches such as forest fragmentation and the heterogeneity of 

mosaics (Table 4.1). The selected landscape structure metrics were calculated using the free software 

Chloe 4.0 (Boussard and Baudry 2017). 

 

Table 4.1 Landscape structure metrics (composition and configuration) 

Metric Code Formula Description 

Extent of land under 

each land use/land 

cover (i) 

pNV_i 𝑝(𝑖) Percentage of pixels for class “i”  

Interface between 

paired land uses i 

and j 

pNC_i_j 𝑝(𝑖, 𝑗) Percentage of edge pixels between paired 

land use types “i” and “j”  

Shannon diversity 

index 

SHDI  

− ∑ 𝑝(𝑖) ∗ ln (𝑝(𝑖)) 

Diversity metric that takes both the 

number of classes and the abundance of 

each class into account (Shannon and 

Weaver 1949) 

Complexity index CSHDI 𝑁𝑆𝐻𝐷𝐼 ∗ (1 − 𝑁𝑆𝐻𝐷𝐼) 

with NSHDI is the 

normalization of SHDI 

Parabolic transformation of SHDI  

Heterogeneity 

composition index 

HET_agg − ∑ 𝑝(𝑖, 𝑗) ∗ ln (𝑝(𝑖, 𝑗)) 

with i=j 

Heterogeneity for homogeneous couples 

(Burel and Baudry 1999)  

Heterogeneity 

structure index 

HET_frag − ∑ 𝑝(𝑖, 𝑗) ∗ ln (𝑝(𝑖, 𝑗)) 

with i≠j 

Heterogeneity for non-homogeneous 

couples (Burel and Baudry 1999) 

 

Finally, we extracted the average (“mean”) of other explanatory variables and the average and 

standard deviation (“std”) of forest degradation proxies to capture the extent of spatial variability of 

primary forest degradation in each grid.  
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4.2.3.5 Drivers analysis 
 

First, we analyzed the relationships between proxies of forest degradation (mean/std AGB, mean/std 

NPVV) and direct (fire occurrence) and indirect drivers (landscape structure metrics, geographical and 

environmental factors) to identify the most significant forest degradation drivers (Cornillon and 

Matzner-Løber 2007). We then applied multiple linear regression to each forest degradation proxy. 

Next, we applied stepwise selection using Cp criteria and the regsubset function of the leaps R package 

to select only the most significant explanatory variables (Mallows 1973; Le Clec’h et al. 2017; Lumley 

2017). This procedure was necessary to obtain the model with the smallest number of variables that 

fitted the data and to avoid noise and collinearity. We then applied a cross-validation procedure in 

which the learning set was randomly partitioned into k equal size sub-samples with k=5 (Arlot and 

Celisse 2010; Kohavi 1995). Each regression process was then applied in which k-1 sub-samples were 

used as training data and the remaining samples were used for validation. This process was repeated 

by changing the training/validation sub-samples in such a way that all the learning samples were also 

used for validation. The R-squared and average root mean square error (RMSE) served as the 

performance metrics for each model. To facilitate their interpretation, the scores of each explanatory 

variable were standardized. 

Second, we analyzed the spatial variability and complementarity of forest degradation drivers 

identified in the previous step. The most significant explanatory variables influencing forest 

degradation proxies were grouped into clusters using a three-step clustering method (Husson et al., 

2010). The method combined principal component analysis, hierarchical clustering using Ward’s 

criterion and k-means clustering to improve the initial partitioning. The number of clusters was 

identified using the elbow method, which calculates the total intra-cluster variation or total within-

cluster sum of squares (WSS) for a range of cluster sizes varying from 1 to 15  (Charrad et al. 2014). 

Each cluster was then linked to the most significant drivers of forest degradation (ANOVA with p < 0.05 

indicating if the mean driver value in the cluster is lower or higher than the overall mean for all 

clusters). The clustering was performed using the R package FactoMineR (Lê et al., 2008). 
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4.3 Results 
 

4.3.1 Land use/land cover classification of forest-agriculture mosaics 
 

Using Landsat-8 images, LULC classification in 2017 revealed high overall accuracy and kappa indexes 

(e.g. OA=0.87 and kappa=0.86). Most classes presented high user and producer accuracy (> 0.8). Bare 

soil, secondary forest and pasture classes presented omission and commission errors (Appendix 4.6). 

The classification errors and confusion were due to the difficulty in differentiating the complex gradient 

of vegetation structure among these three classes. Using historical Landsat images, forest/non-forest 

classifications were highly accurate (kappa= 0.9) (Appendix 4.7). 

The 2017 land use/land cover map shows heterogeneous landscape mosaics dominated by different 

land uses (Fig 4.6a). The central region is dominated by large scale homogeneous cropland, tree 

plantations and pastureland with small isolated patches of primary forest (Fig 4.6d). Smallholder areas 

accounted for a diversity of land use mosaics ranging from secondary forests associated with large 

patches of primary forest and pastures (Fig 4.6b), to small fragmented patches of primary forest in 

pasture and croplands shaped by early  deforestation in the 2000s (Fig 4.6e and Appendix 4.7) and 

secondary forests interspersed with very small patches of remnant forest (Fig 4.6g and Appendix 4.7). 

A large portion of the western part and, to a lesser extent, of the eastern and northern parts of the 

municipality, are marked by large homogeneous forest patches (Fig 4.6b and 4.6f) and highly 

heterogeneous fragmented landscape mosaics (Fig 4.6c). The eastern (indigenous reserve) and 

western (CIKEL) parts present a large homogeneous, contiguous patch of primary forest (Fig 4.6a).  
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Figure 4.6 Land use/land cover classification combining current landscape mosaics and 29 years of 
secondary forest mapping using Landsat images (Fig 4.6b to Fig 4.6g are examples of the heterogeneity 
of land use/cover mosaics). 
 

4.3.2 Identification of the drivers of primary forest degradation  
 

Following cross validation, the models showed very high goodness-of-fit between the predicted and 

observed values (Table 4.2 and Appendix 4.8). The mean AGB model explained 80% of the variance 

and the most explanatory variables were distance to Paragominas city, topography (elevation and 

slope), the proportion of primary forest patches and the interfaces between forest/pasture and 

forest/bare soil. The results of the Std-AGB model were not taken into account due to its poor 
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performance (r²: 0.31, RMSE: 5.49). The mean NPVV explained 58% of the variance and the most 

explanatory variables were distance to Paragominas city, the interfaces between forest/pasture, the 

proportion of primary forest patches, fire occurrence and the heterogeneity metric (HET_agg). The std-

NPVV explained 67% of the variance and the most explanatory variables were the proportion of 

primary forest, elevation, the interfaces between forest/pasture, the proportion of forest patches, and 

the heterogeneity metric (HET_agg).  

Table 4.2 Multiple linear regression models for the prediction of forest degradation proxies (mean of 
AGB, mean and standard deviation of NPVV) from direct and indirect drivers. The positive or negative 
sign refers to the type of correlation (positive or negative). 
 

Models R² RMSE Most significant drivers (direct and indirect) 

Mean AGB 0.80 14.26 Mg.ha-1 Distance to Pgm (+), Elevation (-), Slope (+), 

pNV_Forest (+), pNC_Forest_Pasture (-), 

pNC_Forest_BareSoil (+) 

Mean NPVV 0.58 0.85 Distance to Pgm (-), Sand_proportion (+), Fire 

occurrence (+), pNV_Forest (-), HET_agg (-), 

pNC_Forest_Pasture (+) 

Std NPVV 0.67 0.55 pNV_Forest (-), HET_frag (+), SHDI (+), CSHDI (+), 

Elevation (+), Sand_proportion (+) 

 

Proximity to Paragominas city (between 0 and 75km) had a significant negative impact on the average 

primary forest AGB (between 150 and 220 Mg.ha-1 on average). Beyond 75km, the average AGB 

stabilized around 250 and 300 Mg.ha-1 (Fig 4.7). Fire affected mean NPVV beyond the occurrence of 

two events in the period 2000-2018, with marked variability beyond this value. The length of the 

interface between forest and pastureland triggered an increase in Std-NPVV, which was interpreted as 

more variability in the extent of forest degradation. Heterogenous composition and structure of the 

landscape mosaics had a direct effect (sharp decrease) on mean AGB and (increase after 0.5) on Std 

NPVV. Finally, the proportion of forest patches representing primary forest fragmentation was 

positively correlated with mean AGB. Landscapes with less than 50% of forest area had less than 200 

Mg.ha-1 degraded forests, whereas landscapes with more than 50% of forest area had an AGB between 

200 and 300 Mg.ha-1 on average.  
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Figure 4.7 Forest degradation proxies and their relationship with some drivers of forest degradation 
 

4.3.3 Mapping the drivers of primary forest degradation  
 

The clustering method allowed us to identify six clusters of forest degradation drivers (corresponded 

to the location of a bend in the WSS curve). The resulting classification shows clusters grouped in 

distinct patches within Paragominas demonstrating that the drivers are unequally distributed in the 

municipality and that spatial covariation exists (Fig 4.8).  

Cluster 1 groups landscapes located more than 100km from Paragominas city, in elevated terrain 

compared to the overall elevation of the terrain in the municipality, very low heterogeneity and 

absence of fire. These areas are largely dominated by patches of primary forest and limited interface 

between pasture and forest. Cluster 2 has similar characteristics in terms of distance to Paragominas 

city and landscape structure to cluster 1 except that the elevation is below 80m (sandy soils). Cluster 

3 is located on elevated plateaus in the eastern and western central part of the municipality and is 

characterized by heterogeneous mosaics of large patches of primary forest interspersed with 

secondary forests and relativity longer interfaces between forest and pasture than cluster 2. Cluster 4 

groups landscapes located closer to Paragominas city (< 75km), in low areas (valleys) with considerable 

amount of interface between forest and pasture, high heterogeneity and fragmentation (proportion 

of forest < 0.5). Cluster 5 is located in the central part of the municipality and groups landscapes 

located less than 50 km from Paragominas city, on elevated plateaus (around 120m a.s.l.), 
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characterized by high heterogeneity and primary forest fragmentation and an average of one fire 

detected. Cluster 6 is specifically distributed between the northeastern and western central parts of 

the municipality where the landscapes are characterized by the longest forest/pastures interfaces and 

average fire occurrence (around three fire events detected annually between 2000 and 2018). These 

landscapes are also more fragmented and heterogeneous than average in the municipality 

(respectively HET_frag = 0.7 and pNV_Forest = 0.3 on average).  

 

Figure 4.8 Map of clusters of proxies of direct and indirect forest degradation drivers. Grey bars 
represent the mean indicator value of all the clusters, empty slots mean the variable was not significant 
for that particular cluster. 
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4.4 Discussion 
 

The aim of our study was to disentangle the drivers of primary forest degradation along an old 

Amazonian deforestation front using a landscape-level approach that was originally proposed by 

Melito et al. (2017). This approach responded to a clearly stated need for a more comprehensive 

understanding of forest degradation drivers at the landscape scale linking land use processes and the 

state of the forest cover that goes beyond the identification of direct logging and fire drivers (Nepstad 

et al. 2008; Morales-Barquero et al. 2015).  

 

4.4.1 Cascades of indirect and direct drivers of forest degradation in 

human-modified landscapes 
 

We demonstrate that the degradation of primary forest is the result of different land use processes at 

the regional scale and their multiple and combined consequences at the landscape scale. We provide 

clear evidence that the indirect and direct drivers of degradation act as a bundle and create 

homogenous patterns in this municipality. This attests to their spatial covariation and inter-

dependency and reveals different land use dynamics and management practices.   

Along the old deforestation front, a cascade of effects at multiple scales indirectly drove forest 

degradation (cluster 5). At regional level, the conversion of forest for the expansion of cattle ranching 

as part of the colonization process triggered large-scale land use change, which in turn, caused 

landscape fragmentation. Fragmentation amplified feedback loops through edge effects and fostered 

selective logging and the overexploitation of timber, causing increased fragmentation over time 

(Broadbent et al. 2008; Viana et al. 2016). More recently, agricultural expansion triggered new waves 

of deforestation but also conversion of pasture for the cultivation of cash crops (Osis et al. 2019). The 

consequences were changes in the configuration of the landscape (i.e. increased fragmentation and 

heterogeneity) that indirectly drove degradation (through edge effects and enhanced logging) but also 

changes in land use/land cover type and practices. In these heterogeneous landscape mosaics, the 

combined effects of forest fragmentation and high agricultural potential due to fertile soil suitable for 

agriculture were indirect drivers of forest degradation. Competition for land between agriculture 

(soybean and maize production) and primary forest patches located on the elevated plateaus resulted 

in increased human-set fires (three annual fire events detected between 2000 and 2018) as signs of 

agriculture expansion processes (Osis et al. 2019). These cascades were accentuated by the complex 

socio-economic, demographic and land management effects that are captured by proximity to 
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Paragominas (i.e. within a radius of 75km from the city). Indeed, this variable increased access to forest 

resources but also to areas suitable for the development of agriculture (Laurent et al. 2017).  

We also showed that specific land tenure regimes such as smallholder dominated areas generate 

unique landscape structures (cluster 6). In these landscapes, the current state of forest cover (high 

degradation) is the joint result of historical processes (deforestation, degradation) prior to the 

installation of smallholder farmers and of recent interactions between degradation drivers. Our study 

provides insights into these recent processes. We found that frequent (up to seven fire events between 

2000 and 2018) and recent fires (after 2015) were spatially coupled with high fragmentation and 

heterogeneity marked by forest and pasture interfaces. This can be explained by the use of fire in 

pasture management and in slash and burn agriculture used by smallholder farmers. Fires and their 

impact on forest structure increase due to the extreme fragmentation of forest patches (less than 30% 

of forest)(Silva Junior et al. 2018). Fragmentation triggers the desiccation of forest edges (Briant et al. 

2010; Laurance et al. 2011) and the partial destruction of the canopy structure (Almeida et al. 2019; 

Shapiro et al. 2016). The damaged structure makes the forest more vulnerable to fire (Morton et al. 

2011; Rappaport et al. 2018). The combined effects of forest edge and degraded forest structures may 

be amplified by severe and repetitive drought such as the El Niño 2015 event (Alencar et al. 2015; Le 

Page et al. 2017).  

This study also showed that distance to roads was not a significant indirect driver of primary forest 

degradation whereas it was previously considered to be one of the main indirect drivers of 

deforestation (Laurance et al. 2002). This can be explained by the predominance of land use effects on 

forest degradation over road proximity in our modeling approach. However, more parameters 

regarding the type of road (quality, public/private) need to be taken into account as they may influence 

the results.  

 

4.4.2 Limitations and future outlook 
 

Although the identification and mapping of forest degradation drivers yielded good results, we 

identified several limitations that will be overcome in further study. Firstly, all the results presented 

here rely on the accuracy and validity of forest degradation proxies. These results are themselves the 

result of complex modeling and errors in the assessment of the state of forest cover are non-negligible 

(Bourgoin et al. 2018; Hasan et al. 2019a). Secondly, in the future, limitations due to data availability 

could be overcome by including supplementary data such as direct drivers (i.e. accumulation of logging 

events) and indirect drivers of degradation such as climate (environmental factor), land tenure (policy 
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and land management factor) as well as socio-economic data. Although the main accessibility effects 

are organized along the main road of the municipality, it is worth mentioning that we considered the 

study area as an isolated area and did not take other accessibility effects in neighboring municipalities 

into account. Thirdly, some of the variables used in this study capture mixed processes and could be 

further refined: (i) distance to Paragominas city assesses accessibility but also land tenure as two land 

tenure systems in the extreme eastern and western part of the study area host conserved forests, and 

(ii) fire occurrence groups both forest and land fires and is both a direct driver of degradation and a 

proxy of agricultural practices (slash and burn agriculture or wild fires).  

Despite these limitations, our approach underlined the importance of using the landscape approach 

to characterize and map the drivers of degradation. More particularly, we reveal that the status of 

degradation of remnant forest patches is directly linked with their surrounding matrix and thus with 

land uses and land use changes occurring at that scale (Godron and Forman 1981). In this sense, we 

highlighted major benefits to be gained by characterizing degradation drivers at the landscape scale 

using land cover/land use mapping and remote sensing. Landscape structure metrics and the resulting 

indicators describing the heterogeneity of the mosaic depend on the validity and accuracy of LULC 

classifications. The remote sensing field of research is improving significantly thanks to the 

development of novel classification algorithms and the accessibility of near-real time and high 

resolution imagery (Bégué et al. 2018). The 2017 land cover/land use map was produced with a high 

degree of accuracy and required only a short processing time. Minor misclassifications were detected 

between the land cover classes that showed similar vegetation structure and were spatially difficult to 

identify in the field and to differentiate using Landsat images. Transition classes such as fallows, which 

often cause misclassification, proved difficult to map (Hett et al. 2012). High temporal resolution of 

optical and radar imagery could help describe and account for the phenology of vegetation when 

mapping forest-agriculture mosaics (Mercier et al. 2019). Furthermore, small agricultural systems can 

be mapped using combined pixel and object-based approaches and promising results have already 

been obtained with the characterization of fine cropland uses (Lebourgeois et al. 2017).  

The robust relationships between forest degradation proxies and direct and indirect drivers of 

degradation we identified offer opportunities to assess the state of forest cover at a large scale based 

on regional LULC mapping. The identification, characterization and measurement of forest degradation 

remains a scientific challenge in the remote sensing community and there is as yet no consensus 

concerning the wide range of existing methodologies to map degraded forest at large scale (Frolking 

et al. 2009; Herold et al. 2011; Hirschmugl et al. 2017; Mitchell et al. 2017). Land cover/land use, 

landscape structure metrics, geographical and environmental factors would therefore be relevant 

indicators for estimating primary forest degradation. The Mapbiomas project (http://mapbiomas.org) 
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is a good example of cloud computing of Landsat archive images that would allow mapping land 

cover/land use of Brazil from 2000 to 2016 at a resolution of 30m.  

 

 4.4.3 Potential of characterizing and mapping forest degradation 

drivers for land use planning and targeted conservation actions 
 

Our results emphasize the fact that the degradation of primary forest and the respective landscape-

level drivers are found in specific areas, and consequently require spatially targeted forest 

management in a given territory. We have highlighted the complex interconnections between the 

forest patch and landscape scales that would enable the identification of levers of action to reduce the 

effects of land use and to mitigate degradation.  For instance, policy reinforcement is crucial to prevent 

illegal logging and forest encroachment but also to support intensification of agriculture/ livestock 

activities in areas with high fragmentation and heterogeneity. Beyond fire bans which do not provide 

alternative ways of earning a living, the collective engagement of local people in improving fire 

management and control is essential to efficiently reduce fire risks, especially in highly degraded and 

fragmented landscapes (Cammelli et al. 2019).  

We wish to emphasize that targeted management of forest landscapes in the clusters of forest 

degradation drivers we identified could be one of the main principles of Paragominas municipality’s 

green development pact to ensure both production and conservation goals are reached (Griscom and 

Goodman 2015). This green development pact also involves the active engagement of stakeholders in 

sustainable land management. Despite the homogeneous clusters of forest degradation drivers, our 

study showed that in specific areas, degradation of forest patches was prevented regardless of easy 

access (proximity to Paragominas city), agricultural potential (fertile soils) and current level of 

heterogeneity of the surrounding mosaics (cluster 3). These particular areas may reflect the strategies 

of individual stakeholders who are willing to apply sustainable land management. The green 

development pact should therefore be guided by these strategies in order to reduce forest degradation 

risks.  

Understanding the drivers of forest degradation is crucial for the development of policies and 

measures for effective but sustainable management of degraded forests at the landscape scale to 

guarantee the conservation and betterment of their ecological values (Goldstein 2014). Data 

concerning both the severity of degradation and the drivers of degradation provide key information to 

enable decision makers prioritize and tailor interventions at the landscape scale (Chazdon and 

Guariguata 2018). Forest landscape restoration appears to be an effective strategy to mitigate the 
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effect of forest degradation such as positive fragmentation feedback loops (Lamb et al. 2005). Beyond 

conserving biodiversity and improving ecological functioning, forest landscape restoration by 

increasing forest mosaic connectivity would enhance their resilience and functionality (Brancalion and 

Chazdon 2017).  

 

4.5 Conclusion 
 

In this Chapter, we identified and mapped the indirect and direct drivers of forest degradation. We 

also highlighted the interconnection between land use processes and landscape structures and how 

indirect factors affect forest cover. In the central part of the municipality, forests are degraded because 

of past overexploitation of timber, which has been indirectly enhanced by accessibility to forest 

patches and markets, and more recently due to conflicts associated with agricultural expansion 

processes and negative feedback loops generated by fragmentation, therefore affecting forest 

structure. In more complex landscape mosaics, forests are degraded due to the joint result of historical 

processes and recent interactions between degradation drivers such as fire used in the management 

of agricultural lands and forest landscape fragmentation. 

 

4.6 Perspectives of forest potential impact assessment 
 

In the framework of forest ecological vulnerability assessment, the identified drivers of degradation 

can be considered as exposure factors while forest aboveground biomass and forest non-

photosynthetic vegetation variance are proxies of sensitivity. To complement the assessement of 

exposure component, another dimension that can be added is the temporal dynamic of agricultural 

expansion in terms of rates of changes in landscape composition and configuration. This would add 

additional weight to distinguish an area where the drivers of degradation are present but the dynamics 

of the deforestation front are slowed or stabilized from an area where the drivers are present and the 

dynamics of deforestation front are still active and can further accentuate the negative effects of 

degradation drivers (e.g. through increased fragmentation).  

We used the same method developed in Chapter 5 (section 5.2.2.3) in order to identify landscape 

trajectories and thus characterize agricultural expansion dynamics. For each of the historical 

classification (1988, 1995, 2000, 2009 and 2017), we extracted forest/non-forest compositon in the 

same regular grid presented in section 4.2.3.4 (6*6km). We also calculated configuration metrics to 
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quantify size, proportion and aggregation, richness and shape of the landscape (see Chapter 5). The 

resulting 3D matrix (grid units/5 dates/structure metrics) was analyzed using PCA and ACT-STATIS and 

10 classes of landscape trajectories were identified (Oszwald et al. 2011). The analysis of the average 

composition (forest and cropland) and configuration (Edge density) metrics over time showed that 

classes T1 to T5 group forest-dominated units (mainly located in the eastern and western part of the 

municipality) (Fig 4.9). Classes T9 and T10 group units where the balance between forested and non-

forest areas remained unchanged throughout the study period (with constant average edge density). 

They are scattered in Paragominas and are stabilized forest/pasture landscapes. T6 groups units 

dominated by cropland since 2000. It is mainly located in the central part and correspond to soybean 

cultivation after the boom in agro-industry. T7 groups forest dominated units characterized by a slow 

decrease in forest cover since 1995 – 2000 associated with a gradual increase in cropland and edge 

density. T7 corresponded to areas of agricultural expansion that were slowed down in 2009 following 

the green development pact. T8 groups forest dominated units experiencing a sharp decrease in forest 

cover with no stabilization at the end of the trajectory (compared with T7). T8 is mainly located in the 

northeast part of the municipality and scattered in other parts.  

Compiling indictors of forest degradation, of drivers of degradation and dynamics of agricultural 

expansion would allow assessing forest potential impact. Assessing forest adaptive capacity remains 

a perspective that needs to be developed for mapping forest ecological vulnerability.  
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Figure 4.9 Classes of landscape trajectories (T1 to T10) based on land cover composition and 
configuration dynamics from 1988 to 2017 obtained using ACT-STATIS and clustering methods 
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Chapter 5 - Assessing the ecological 

vulnerability of forest landscape to 

agricultural frontier expansion in the 

Central Highlands of Vietnam 
 

An agriculture frontier separating coffee plantation from primary evergreen forest (picture by Clément 
Bourgoin) 
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Abstract 

Forest conservation in human-dominated tropical landscapes ensures provision of major ecosystem 

services. However, conservation goals are threatened by growing demands for agricultural products. 

As the expansion of agricultural frontiers continues to exert increasing pressure on forest cover, it is 

crucial to provide indicators on forest vulnerability to improve our understanding of forest dynamics 

and prioritize management actions by local decision-makers. The purpose of this study is to develop a 

rigorous methodological framework to assess forest ecological vulnerability. We aim at evaluating the 

potential of remote sensing to characterize forest landscape dynamics in spatial and temporal 

dimensions. We present an innovative method that spatially integrates current landscape mosaic 

mapping with 45 years of landscape trajectories using Sentinel-2 and Landsat imagery. We derive 

indicators of exposure to cropland expansion, sensitivity linked with forest degradation and 

fragmentation, and forest capacity to respond based on forest landscape composition in Di Linh district 

in the Central Highlands of Vietnam. We map current forest-agricultural mosaics with high accuracy to 

assess landscape intensification (kappa index = 0.78). We also map the expansion of the agricultural 

frontier and highlighted heterogeneous agricultural encroachment on forested areas (kappa index = 

0.72-0.93). Finally, we identify degradation and fragmentation trajectories that affect forest cover at 

different rates and intensity. Combined, these indicators pinpoint hotspots of forest vulnerability. This 

study provides tailored management responses and levers for action by local decision makers. The 

accessibility of multi-dimensional remote sensing data and the developed landscape approach open 

promising perspectives for continuously monitoring agricultural frontiers.  

 

Keywords Deforestation, Forest degradation, Vietnam, Ecological vulnerability, Landscape approach 
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5.1 Introduction 
 

The conservation of forest cover is a key to ensuring sustainable provision of multiple ecosystem 

services in ecological, climate, biogeochemical and biodiversity processes (I. Thompson et al. 2009). In 

human-modified landscapes, forest conservation must also be reconciled with agricultural 

productivity, food security actions and must support the livelihoods of human populations (Chazdon 

et al. 2009). Decentralized forest management and policies play a major role in balancing conservation 

and production, and in controlling the effective use and management of the forest, notably through 

the transfer of ownership and responsibilities to local forest decision makers (Persha et al. 2011; Phelps 

et al.  2010; Agrawal et al. 2008).  

However, human-modified landscapes are often negatively impacted by the expansion and 

consolidation of agricultural frontiers, where forests are threatened by land use competition resulting 

in complex degradation and major habitat fragmentation (Foley 2005; Lambin et al. 2001). These 

effects are spatially interconnected and evolve rapidly over time. While deforestation refers to rapid 

conversion from forest to non-forest areas, degradation implies changes in forest structure following 

selective logging and fire disturbances, which also characterize progressive encroachment by 

agricultural activities (Putz and Redford 2010). Furthermore, deforestation and degradation lead to a 

feedback loop of fragmentation dynamics that facilitates access to forest habitats and hence to further 

disturbances (Broadbent et al. 2008). Historical land/ forest-use-associated drivers (i.e. degradation, 

fragmentation and agricultural expansion) determine the heterogeneous status and configuration of 

current forest landscapes. Future forest landscapes will thus be shaped by both ongoing pressures and 

management responses (Malhi et al. 2014). A first step to tailor effective management by local decision 

makers is to identify the forest areas that are most vulnerable to agricultural expansion and to 

characterize the underlying pressures (Klein et al. 2005).  

Vulnerability assessments provide guidance on how to target interventions and to support decision 

making processes (Adger 2006). Originally formalized for climate change and the agricultural sector by 

the Intergovernmental Panel on Climate Change (IPCC), vulnerability frameworks make it possible to 

assess the key determinants of system responses to external stress and pressures (Marshall et al. 2010; 

Parker et al. 2019). Adapted from the IPCC definition, vulnerability is the degree to which a forest 

ecosystem is susceptible to, or unable to cope with, adverse effects of human-triggered impacts 

(McCarthy  2001). Vulnerability is commonly defined as the combination of three main components 

where exposure relates to the magnitude of stress undergone by a system; sensitivity refers to the 

degree to which the stress may affect the system, and the adaptive capacity is the system’s ability to 
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respond to the stress (McCarthy  2001). This definition is widely used in the literature to describe 

human-environment interactions and the resulting pressure and response options in the framework 

of socio-ecological systems (Thiault et al. 2018; Metzger et al. 2006; A. Morel et al. 2019). However, 

the applicability and relevance of this approach for assessing forest ecological vulnerability in human-

modified landscapes remains hypothetical. Hence, the implementation of vulnerability using available 

spatial datasets and the constitution of relevant indicators to model exposure, sensitivity and adaptive 

capacity remains challenging (Berrouet et al. 2018; Manuel-Navarrete et al. 2007).  

Until now, agricultural frontier landscapes have never been analyzed through the vulnerability lens 

using spatio-temporal landscape indicators. In this paper, we propose an innovative method to assess 

the ecological vulnerability of forest cover at landscape scale. This methodology makes use of free and 

open source remote sensing images and combines temporal and spatial dimensions to capture the 

complexity of land use mosaics in human-modified landscapes. To characterize these complex 

landscape mosaics, we used a landscape approach, defined as an integrated framework to analyze 

competing land uses and involving local stakeholders to solve social and environmental issues (Oszwald 

et al. 2011; Reed et al. 2016). This framework is already well referenced and some authors have already 

highlighted the robustness of the framework for the analysis of spatial patterns of land use dynamics 

at the landscape scale and to provide further information on human-environment processes (Wu 2007; 

Messerli et al. 2009). Landscape structure metrics based on land use and cover information also enable 

the description of landscape patterns and variability. Some authors also demonstrated the relevance 

of indicators for the characterization of agricultural frontiers dominated by fragmentation dynamics 

(Oszwald et al. 2011; Wang et al. 2014; Hargis et al. 1998). Furthermore, the availability of time series 

of remote sensing images opens a wide range of perspectives to characterize agricultural frontiers 

through historical trajectories of landscape change (Lausch and Herzog 2002; Ernoult et al. 2006).  

Given the above background, the objective of this work was to produce spatial indicators at the 

landscape scale using multidimensional remote sensing to assess forest ecological vulnerability. The 

specific steps were to:(1) characterize current landscape mosaics using land use inventory and 

mapping; (2) reconstruct historical land cover from Landsat time series; (3) identify trajectories of 

landscape structure dynamics; and (4) develop indicators of exposure, sensitivity and adaptive capacity 

that quantifies the expansion of agriculture, degradation and fragmentation dynamics and current 

landscape intensification.  
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5.2 Materials and Methods 
 

5.2.1 Study area  
 

The study was carried out in the district of Di Linh (Lam Dong province) in the Central Highlands region 

of Vietnam. The area was chosen for two reasons: 1) The district is located in a consolidated 

deforestation front where remnant forests are exposed to degradation risks linked to the expansion 

of coffee based-agriculture (Dien et al. 2013; J. Vogelmann et al. 2017); and 2) It is part of a REDD+ ( 

Reducing Emissions from Deforestation and forest Degradation) pilot project that aim at facilitating 

forest monitoring with decisions makers such as land use planners and local forest rangers (Thuy 2013).  

The town of Di Linh was founded in 1899 along the road connecting Ho Chi Minh City to Da Lat. The 

district went through a succession of colonization waves and economic transformations during the 20th 

century, which marked the continuous development of cash crops until the coffee boom in 1980s 

(Trædal and Vedeld 2017; Meyfroidt et al. 2013; Déry 2000; Ha and Shively 2008). This large-scale 

coffee production has been identified as one of the main drivers of deforestation and degradation and 

as responsible for triggering other environmental problems such as increased drought and soil erosion 

(Meyfroidt et al. 2013; Grosjean et al. 2016). 

 

5.2.2 Conceptual framework for assessing forest vulnerability 
 

We developed a framework to assess the ecological vulnerability of forest cover to deforestation and 

degradation at the landscape scale. Figure 5.1 presents the methodology, which is divided into four 

distinct steps: i. Data preparation involving acquisition and preprocessing of remote sensing images 

and collection of ground truth data; ii. Classification and assessment of the accuracy of 2018 Land-Use 

Land Cover (LULC) using Sentinel-2 or Landsat-8 and historical LC (simplified typology) using the 

Landsat archive; iii. Analysis of current landscape mosaics and historical trajectories of landscape 

dynamics in standard unit grids, and iv. Extraction of metrics to assess adaptive capacity, sensitivity 

and exposure components and forest ecological vulnerability (at the unit grid scale). Each step is 

described in detail in the following subsections. 
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Figure 5.1 Methodological framework designed to assess forest ecological vulnerability with its four 
steps (i-iv) 
 

5.2.2.1 Data preparation and preprocessing 
 

In order to map current mosaics of LULC with high precision, data collection involved acquiring 

Sentinel-2 (S2) images and field data (Drusch et al. 2012) for 2018. For the analysis of  LC change and 

landscape dynamics throughout the colonization period, we used two Landsat-8 (2014, 2016) and nine 

Landsat-5 images acquired in 1973, 1989, 1992, 1995, 1998, 2002, 2006, 2009 and 2011. We also used 

one Landsat-8 image acquired in 2018 to assess the difference between Sentinel-2 based classification 
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and to characterize landscape heterogeneity (section 5.2.2.3). All the images present less than 10% 

cloud cover and were taken during the dry season (December to March) (Appendix 5.1).  

The Sen2Cor application developed by the European Space Agency (ESA) was used to transform S2 L1C 

tiles to surface reflectance L2A level (Main-Knorn et al. 2017). We acquired Landsat (L) surface 

reflectance data already pre-processed by the algorithm developed by the NASA Goddard Space Flight 

Center (GSFC). For each sensor, we derived vegetation indices that are related to vegetation 

photosynthetic activity, burned vegetation, soil brightness and vegetation moisture content (Appendix 

5.2). The vegetation indices and the spectral bands were used as input features for the LULC 

classification.  

Our field inventory allowed us to identify landscape elements. A set of 300 GPS points were recorded 

during a 2-week field survey conducted in Di Linh in March 2018 (Fig 5.2). Each GPS point (Garmin 

60CSx, Garmin, Olathe, KS, USA) was associated with a qualitative description of the landscape element 

identified along with illustrative photos. Sampling (involving transects from agricultural land to natural 

habitats) was designed to cover agricultural, forested and mosaic landscapes along the main 

deforestation front (Oszwald et al. 2007). A detailed typology was constructed for the 2018 LULC 

classification that sums up the major landscape elements identified in the field (Appendix 5.3). For 

each class, a score was assigned with reference to a landscape intensification gradient ranging from 

natural (score close to 0) to anthropogenic (score close to 10). Degraded forest composed of logged or 

burned evergreen forest, natural or regenerated bamboo forest and bushes were judged to be more 

natural than pine forests, which are mostly planted for timber (Jong et al. 2016; Hiep et al. 2004). We 

also identified a simplified 4-class typology, which corresponds to general LC classes, to facilitate the 

historical classification.   

Based on the field data and the detailed LULC typology, we manually discriminated polygons sampled 

around the GPS points and completed by photo interpretation of Sentinel-2 2018 images. We repeated 

this process using the simplified typology for each historical Landsat image. We created additional 

classes for cloud centers, edges and their projected shadows. We also differentiated shadowed and 

unshadowed evergreen forest due to the difference in reflectance that varied with the slope. For each 

date of the analysis, the resulting sample data sets were used as inputs for training and validating the 

classification detailed below.  
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5.2.2.2 Classification and accuracy assessment 
 

For each date of the analysis, the classification method uses remotely sensed features (spectral band 

and vegetation indices) and samples of LULC typology (polygons) as inputs for the Random Forest (RF) 

classifier (Breiman 2001). The method is similar to the one developed by Mercier et al. (2019). We 

randomly generated 50 pairs of training and validation sample subsets from the sample dataset using 

a 70/30 ratio within which 300 pixels per class were randomly selected. An RF algorithm composed of 

100 trees was applied to each selected subsample making it possible to rank the features using the 

mean decrease Gini (Calle and Urrea 2011) as well as to identify the optimal number of features using 

the kappa index (Rosenfield 1986). Then, we applied RF using the previously defined parameters and 

one training/validation sample file to generate the LULC classification. We extracted the overall 

accuracy, kappa index, user and producer accuracy of each class from the confusion matrix (Pontius 

and Millones 2011). These two steps were achieved using the RF package in R software. Finally, we 

applied an 8 x 8 pixel majority filter to reduce single pixel misclassifications using ArcGIS (Esri, Redlands, 

CA, USA).  

 

5.2.2.3 Landscape analysis was conducted using the steps detailed below: 
 

Identifying a landscape unit grid  

Based on the classification of Landsat image (simplified typology) in 2018, we calculated the Shannon 

diversity index (SHDI) in different regions located along the agricultural frontier visited during the field 

survey (Sampling points in Fig 5.2). This metric measures both the richness i.e. number of land 

cover/use classes (compositional heterogeneity) and regularity i.e. distribution of the surface area of 

the LULC classes (configurational heterogeneity) in a given area. We calculated the SHDI in buffer zones 

spanning from 50 to 8000 m surrounding each region of interest. We estimated the plateauing of the 

average curve based on the resulting profiles of SHDI and recorded the corresponding distance. This 

distance reflects the optimal unit size to capture the diversity of landscape elements and heterogeneity 

and was used to define a regular grid of X units covering the study area.  
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Classifying landscape mosaics following an intensification gradient 

Using the Sentinel-2 detailed classification, we extracted the composition as a percentage of LULC in 

each unit of the grid. We discarded units containing more than 80% of water bodies from the analysis. 

The resulting Y number of grid units were systematically compared using principal component analysis 

(PCA) and grouped in Z number of clusters using hierarchical clustering (Ward’s criterion) applied on 

the first factorial axis of the PCA (Husson et al. 2010). The number Z of clusters is determined by the 

Huntsberger index that is a function of the number of units: Z = 1 + 3.332*log10(Y) (Huntsberger 1961). 

The average composition of LULC describing each resulting cluster or landscape mosaic class is 

weighted by its respective ‘expert based’ land use score (Appendix 5.3). Each class of landscape mosaic 

is thus associated with a landscape intensification score.   

 

Classifying landscape trajectories  

For each of the historical classifications, we extracted the land cover composition in the same regular 

grid. We also calculated 11 configuration metrics to quantify size, proportion and aggregation, richness 

and shape of the landscape (Table 5.1), and in this way, characterized specific spatial structures of the 

agricultural frontier following the concepts of heterogeneity, connectivity and fragmentation (Burel 

and Baudry 2000). These metrics were computed with the R ‘landscapemetrics’ package (Nowosad and 

Stepinski 2018).   

 

  



150 
 

Table 5.1 Landscape configuration metrics (McGarigal 2012) 

Aspect Metric name Description 

Size, 

proportion, 

aggregation 

Edge density (ED) 
Equals the sum of the lengths (m) of all edge segments in the landscape in 

relation to the total landscape area (m²). 

Mean of patch area (MPA) 
Mean of all patches in the landscape, describing the patch structure and 

the overall composition of the landscape. 

Standard deviation of patch 

area (SPD) 

Standard deviation of all patches in the landscape, describing the 

differences among all patches in the landscape. 

Patch density (PD) 
Describes fragmentation (patchiness) but does not necessarily contain 

information about the configuration or composition of the landscape. 

Aggregation Index (AI) 

Equals the number of like adjacencies divided by the theoretical maximum 

possible number of like adjacencies for that class summed over each class 

for the entire landscape (He, DeZonia, & Mladenoff 1999). 

Richness 

Shannon diversity (SD) 
Diversity metric that accounts for both the number of classes and the 

abundance of each class (Shannon & Weaver 1949). 

Patch richness density (PRD) Measures the diversity of landscape composition. 

Shape 

Evergreen/Pine forest Mean 

perimeter area ratio 

(MPARF/MPARP) 

Describes patch complexity but not standardized to a particular shape. 

Evergreen/Pine forest Mean 

Shape Index (MSIF/MSIP) 

Describes the ratio between the actual perimeter of the patch and the 

hypothetical minimum perimeter of the patch if the patch were maximally 

compact (Patton 1975). 

 

The resulting 3D matrix (grid units/12 dates/LC structure metrics) was analyzed using PCA and ACT-

STATIS (Lavit et al. 1994; Oszwald et al. 2011). First, we defined the ‘compromise’ or common 

stationary spatial structures at the different dates using PCA, which provides a global description on 

the dynamics of overall spatial variability within the study area (Robert and Escoufier 1976). The 

second step allows the reproducibility of the compromise to be identified and the structure variability 

through each grid-variable table to be identified (Blanc et al. 1998). It informs on the variability of 

spatial dynamics i.e. the trajectory of each unit in the grid. Finally, we grouped these trajectories into 

Z number of classes using Hierarchical clustering (Ward’s criterion) based on the Huntsberger index, 

which is similar. Consequently, units of a certain class of landscape trajectory share similar spatial 

landscape composition and structural dynamics from 1973 to 2018. The statistical analyses were 

carried out using the ade4 package in R (Thioulouse et al. 1996; Chessel et al. 2004). 
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5.2.2.4 Assessment of forest ecological vulnerability at the landscape scale 
 

Ecological vulnerability (V) is constituted by components that include exposure to external stresses (E), 

sensitivity to perturbation (S) and capacity to cope or adapt (AC). V = S+E-AC (Fritzsche et al. 2014). 

Based on the adaptation of different conceptual frameworks, we defined indicators for each 

component to analyze the vulnerability of socio-ecological systems (Adger 2006; Gallopín 2006).  

Sensitivity is defined by Gallopín (2006) as the degree to which the system is potentially modified or 

affected by a disturbance over time. We estimated sensitivity based on the combination of evergreen 

forest (EF) and fragmentation dynamics that provide information on the level of degradation that may 

affect a forest landscape over time (Shapiro et al. 2016; Vieilledent et al. 2018). These dynamics were 

calculated using the averaged values of the proportion of evergreen forest and edged density metrics 

composing each class of the landscape trajectory from 1998 to 2018 (Oszwald et al. 2011). This period 

makes it possible to capture recent trends that may impact the current landscape.  

To capture EF dynamics, we extracted the rate of change (equation 1) and rescaled the values 

(equation 2) in order to compare EF trajectories with no change or increasing gradient (values close to 

0) to decreasing gradient (values close to 10): 

(1) Rate of change: EF2018 –EF1998, where EF2018 is the proportion of EF in 2018. 

(2) Xrescaled = 10*(X - Xmin)/(Xmax – Xmin) where X is the value of rate of change based on the 

change in EF for a given class of landscape trajectory, Xmin and Xmax are the minimum and 

maximum observed values of rate of change based on the changes in the EF in all landscape 

trajectory classes.  

Finally, we multiplied the rescaled rate of change values by the average value of EF from 1998 to 2018 

to yield a general score of EF dynamics that combines information on the rate and intensity of EF 

changes.  

To calculate fragmentation dynamics based on the edge density metric, we followed the same 

procedure as that described above. The rate of change was rescaled to compare increasing gradient 

(values close to 10) to no change or decreasing gradient (values close to 0).  

Sensitivity was obtained by combining (summing and rescaling) EF and fragmentation dynamic scores.  

Exposure refers to the length of time the forest has been subjected to external stress or perturbation 

(Turner et al. 2003; Adger 2006). In our case, the stress is caused by encroaching cropland linked to 

the agricultural expansion of coffee. We applied the same procedure as that described above to assess 
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agricultural dynamics through the changes in the proportion of agricultural land for each class of 

landscape trajectory. The exposure score is thus influenced by the average proportion and rate of 

increase in the crop cover.  

Adaptive or coping capacity refers to the ability of the system to respond to a perturbation (Smit and 

Wandel 2006). This potential is linked with the current level of intensification of a forest landscape 

(Messerli et al. 2009). We assessed adaptive capacity as the additive inverse of landscape 

intensification scores defined in section 5.2.2.3. Here we assume that high landscape intensification 

scores (i.e. fragmented coffee and degraded forest dominated landscape) correspond to low adaptive 

capacity. As the landscape intensification score is based on ‘expert’ scoring, we simulated different 

land use scores (LUS) for degraded and pine forest classes such that:  

“LUS EF = 0 < LUS degraded forest <LUS pine forest < LUS agricultural elements = 9.”  

The 28 possible combinations of LUS for both landscape elements generated 28 possible landscape 

intensification scores and thus adaptive capacity scores related to the forest landscape mosaics we 

identified. Finally we analyzed the influence of scoring on vulnerability assessment by calculating and 

mapping the agreement, overestimation and underestimation of simulation and ‘expert’ ecological 

vulnerability classifications. 

 

5.3 Results 
 

5.3.1 Mapping LULC in 2018 
 

Using Sentinel-2 images, LULC classification in 2018 revealed high overall accuracy and kappa indexes 

(e.g. OA=0.81 and kappa=0.78). Similar results were found for Landsat-8 classifications (Appendix 5.4). 

Clouds, water, projected shadow, infrastructure, irrigated rice and pine forest were the classes with 

the highest user and producer accuracy in both classifications (>0.8). Degraded forest class included 

omission errors (producer accuracy of 0.49) due to confusion between coffee and evergreen forest 

classes. Rainfed rice represents sparse vegetation cover in the dry season and can therefore be 

confused with the bare soil and infrastructure classes. Evergreen forest was correctly classified with 

little confusion between shadowed and unshadowed forest cover and degraded forest. Cropland was 

the least well classified class with 0.27 producer accuracy notably due to confusion with coffee and 

bare soil and the limited number of training samples (Appendix 5.5). Lowlands are dominated by 

irrigated rice, coffee and infrastructure. In the southern part of the district, LULC is driven by 
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topography where rainfed rice is cultivated in the valley bottoms, coffee on the slopes, degraded forest 

at the edges and evergreen forest grows on higher terrain. Pine forest is often located at the interface 

between coffee and evergreen forest (Fig 5.2). 

 

Figure 5.2 Location and classification of Di Linh district (Lam Dong province) in the Central Highlands 
of Vietnam. 
 

5.3.2 Defining landscape mosaics from LULC classification 
 

The inflexion point of the average curve summarizing 15 Shannon diversity profiles is reached at 0.85, 

which corresponds to a distance of 360 m (Appendix 5.6). This value defines the size of the landscape 

matrix grid applied to Di Linh district i.e. 12,259 units of 360 m. Similar inflexion points were found 

using Sentinel-2 based LULC classification (detailed and simplified typology).  
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The two first factorial axes of the PCA accounted for 40.2% of the total variability of the landscape 

elements composing each unit (Fig 5.3a). The first PCA axis shows an anthropogenic gradient between 

forest (evergreen and pine) and agricultural land (cropland, bare soil, coffee and infrastructure) (Fig 

5.3b). The second axis of the PCA opposes degraded forest and the other landscape elements. 

Degraded forests are mostly found at the interface between natural and mainly agricultural 

landscapes.  

Using the first seven axes of the PCA (83.4% of the total PCA variance) as inputs for hierarchical 

clustering and Huntsberger index, we obtained 15 classes of landscape mosaics (Fig 5.3c). We defined 

forest mosaics as those with between 10 and 96% evergreen forest cover and varying proportions of 

the other landscape elements. L4 landscape mosaics were mainly composed of degraded forest (71% 

on average) which corresponds to natural shrubland areas and was therefore excluded from the forest 

mosaic. Agricultural mosaics were characterized by a landscape intensification score higher than 6 in 

which the proportion of forest cover was very low (<0.07% on average). L9 landscape mosaics were 

dominated by water and consequently excluded from the analysis. Mapping the landscape 

intensification score highlights the spatial distribution of forest mosaic gradients from core evergreen 

forest landscapes (dark green) to complex landscape mosaics of fragmented elements made up of 

forest, coffee, degraded forest and pine (light green) (Fig 5.3d).  



155 
 

 

Figure 5.3 Transformation of land use/cover patches into landscape mosaics using a regular 360 m x 
360 m grid and Sentinel-2 based classification at 10 m resolution (2018). a) Histogram of eigenvalues 
expressed as % of total variance. b) Correlation circle of the first two PCA components. c) Classes of 
landscape mosaics (L1 to L15) according to hierarchical clustering based on the first seven PCA 
components: Average composition of land cover/land use and landscape intensification score 
attributed to each landscape mosaic class. d) Landscape mosaics distinguished according to the 
landscape intensification gradient (see the legend to Fig 5.3c) 
  

5.3.2 Mapping historical land cover using the Landsat 1973-2018 

archive 
 

LC historical classification from 1973 to 2018 highlights the expansion of cropland, i.e. of infrastructure, 

coffee, rice and other crops at the expense of evergreen forest. Kappa and overall accuracy indexes 

ranged from 0.95 for 2018 classification to 0.72 in 1973 (Appendix 5.7). Over the last 45 years, the 

evergreen forest cover was reduced from 100 M ha to 60 M ha to the direct benefit of cropland. Pine 

forests remained stable over the period with a slight decrease starting in 2008 (Fig 5.4). In 1973, 62% 

of the district was covered by evergreen forest and croplands were located along the main roads 
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crossing the district from east to west. Some agricultural regions were found in the south west but 

remained limited to the valley bottoms, typically rice fields. In 1989, some large patches of forest were 

deforested, mainly around Di Linh city. This trend continued until 2002 with deforestation reaching a 

peak in 1992. Starting in 2006, the cropland expansion started decreasing and became consolidated in 

the northern part of the district but continued in two main poles in the south that were previously 

inactive. In 2014, the agricultural frontier appears to have stopped advancing. Pine forest was largely 

reduced in the northern parts of the district. Along the current agricultural frontier, pine forest was 

conserved and was even still being planted at the interface between cropland and evergreen forest 

starting in 2009. The pine forest that was originally located in the central region of the district (low 

elevation, low slope) was rapidly converted into cropland.  

 

 

Figure 5.4 Maps showing 45 years of evergreen forest, pine forest, cropland and water cover using 
Landsat archives and random forest classification 
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5.3.4 Deriving classes of landscape trajectories 
 

ACT-STATIS and clustering methods generated 15 classes of landscape trajectories within which we 

analyzed the average composition (evergreen forest, pine forest and cropland) and configuration (the 

Shannon diversity index and edge density) metrics over time. Class T1 groups forest-dominated units 

were characterized by a slow decrease in EF cover from 1998 on associated with a gradual increase in 

cropland and a steep increase in edge density (Fig 5.5). Class T2 groups units in which evergreen and 

pine forest decreased starting in 1973, with a shift in 2006 when cropland started to become the 

dominating class. Since then, deforestation and fragmentation processes have decreased and 

stabilized. With a similar configuration to Class T1 in 1973, class T3 differed by a sharp decrease in EF 

cover (reduced by half) with an increase in edge density and cropland. This class underwent the biggest 

increase in edge density of all the classes. Classes T1, T2 and T3 are located along the current 

agricultural frontier. Classes T4 to T8 group units dominated by forest that have remained constant 

over the last 45 years with the exception of T4 in which EF is gradually increasing and T7, which is 

marked by a fluctuating EF cover and edge density. Classes T9 and T10 group units that were always 

dominated by croplands and remained unchanged throughout the study period. Typically, Di Linh city 

and its surrounding region belong to these groups. Classes T11 to T15 group units showing 

chronological stages of deforestation:T11 (light grey), which is located close to Di Linh city, shows a 

deforestation process that started before 1973, while T15 (dark grey), which is mainly located in the 

northern part of the district groups units that were completely deforestated in 2006. 
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  Figure 5.5 Classes of landscape trajectories (T1 to T15) based on land cover composition and configuration dynamics from 
1973 to 2018 obtained using ACT-STATIS and clustering methods. Hatched areas represent water bodies in 2018 (2%). 
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5.3.5 Assessment of forest ecological vulnerability  
 

Forest adaptive capacity is the lowest along the agricultural frontier, which corresponds to fragmented 

landscapes with mixtures of different land uses including evergreen forest, degraded forest and coffee 

plantations (Fig 5.6). These regions are mainly located along the main deforestation front and in the 

south of the district where complex forest mosaics were mapped. Forest adaptive capacity had the 

highest score in core forest regions isolated from agricultural frontiers, infrastructure networks or 

other forms of human activities; or in mixed evergreen and pine forest landscapes. Concerning 

sensitivity, a number of regions experienced a rapid decrease in forest cover over the last 20 years and 

an increase in fragmentation (high values). Exposure was highest in the eastern part of the agricultural 

frontier due to the recent rapid expansion of cropland (Appendix 5.8 and 5.9 for more details about 

the calculations).  

All negative vulnerability scores (highest AC, lowest sensitivity and exposure) were reclassified as 

lowest vulnerability. All positive values were grouped in three classes (labelled low, medium and high) 

using Jenks Natural Break classification in ArcGIS. Overall vulnerability revealed heterogeneous 

distribution of values along agricultural frontiers. Frontiers A and B (Fig 5.6) are among the most 

vulnerable due to different combinations of sensitivity, exposure and adaptive capacity. Region A is 

vulnerable mostly because of low adaptive capacity and high sensitivity. Region B includes scattered 

highly vulnerable areas and overall low adaptive capacity. However, we also identified high sensitivity 

hotspots in the western part and a high exposure hotspot in the eastern part of the region.  
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Figure 5.6 Forest ecological vulnerability to deforestation and degradation (agricultural landscapes are 
in white, communes are delimited in grey) 
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5.4 Discussion  
 

5.4.1 Potential of vulnerability assessment for land use planning and 

targeted conservation actions 
 

There is a growing consensus that integrating production and conservation is an efficient strategy to 

achieve conservation goals in human dominated landscapes (Griscom and Goodman 2015). However, 

agricultural expansion in forested areas achieved through degradation, deforestation and indirectly 

through fragmentation can jeopardize conservation goals and land use planning (Tilman 1999).  

In this study, we proposed an innovative adaptation of the vulnerability framework defined by the 

Intergovernmental Panel on Climate Change (IPCC) to forest ecosystems on the only basis of remote 

sensing and statistical analysis. We provided indicators of forest vulnerability at landscape level to 

improve our understanding of forest and agricultural dynamics. Combined, these indicators allowed 

targeting regions that are most vulnerable to agricultural frontier expansion. We also provided tailored 

management responses and levers for action by decision makers depending on the importance of 

forest adaptive capacity, sensitivity and exposure. Consequently, our approach pinpointed where 

decision makers should prioritize management actions and conservation to prevent future forest 

degradation and deforestation. Global forest cover monitoring systems usually rely on moderate 

resolution remote sensing imageries. However, improved resolution and frequency of image 

acquisition are needed in key areas such as active deforestation fronts. Our work allowed targeting 

these areas and thus orientating where higher resolution is needed for improving the efficiency of 

near-real time monitoring systems (Reymondin et al. 2012). Finally, the forest ecological vulnerability 

approach can be coupled with forest ecosystem modelling such as soil erosion, water availability, 

biodiversity or forest carbon mapping to provide even more comprehensive and informed data, 

making it all the more constructive when applied in decision making (Le Clec’h et al. 2017; Grimaldi et 

al. 2014).  

The results of this study pinpoint hotspots of vulnerability along the agricultural frontier. Most areas 

along the agricultural frontier displayed low adaptive capacity corresponding to fragmented forest 

mosaics dominated by coffee plantations, degraded forests and infrastructure. Improving the 

connectivity of forest habitat could increase the adaptive capacity of these landscapes (Ribeiro et al. 

2009). One example in Di Linh district is the association of evergreen forest with pine forest (central 

and western part of the district) to stabilize and protect the agricultural frontier and increase forest 

surface area (Dien et al. 2013). Sensitivity and exposure indicators revealed localized patterns of forest 
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degradation and agricultural expansion, respectively. The southern part of the district was identified 

as an active agricultural front recently marked by encroachment of forest cover amplified by 

fragmentation of the forest edge (trajectory T3) due to an increasing importance of cash crop 

agriculture (e.g. coffee, maize and banana plantations). The eastern region is experiencing different 

dynamics with notable opening of the forest cover in the forest habitat. Although driven by different 

factors, these two regions should both be high on the list of priorities for intervention. We demonstrate 

the need to adapt conservation and management actions, for example, slower rates of reduction in 

forest cover were detected (trajectory T1) but they were still characterized by a closed forest habitat, 

leading to a lower vulnerability index and consequently lower priority for intervention.  

It is important to stress that the ecological vulnerability index is not a measurable phenomenon but 

rather an aggregation of complex and interacting indicators (Fritzsche et al. 2014). Current landscape 

intensification scores and historical degradation trajectories are indicators that are assumed to affect 

the ecological vulnerability of forest cover to agricultural expansion, because vulnerability cannot be 

measured directly (Adger 2006). These indicators reflect human decisions through changes in land use 

and in land cover and hence indirectly provide information on social systems. Further research into 

social vulnerability and their related indicators at the household level is necessary to provide a 

complete picture of overall socio-ecosystem vulnerability as defined by Thiault et al. (2018). Our 

ecological vulnerability approach is therefore a first attempt to capture complex realities of forest 

cover vulnerability using only indicators based on free and open source data.  

5.4.2 Methodological robustness and future outlook 
 

The adaptive capacity indicator reflects a gradient of landscape intensification, which is based on the 

land use composition of each class of forest landscape and expert scoring. We evaluated the impact of 

this method of scoring on the vulnerability classification by simulating all possible intensification 

scores, adaptive capacity indexes and vulnerability scores. Figure 5.7 shows that most of the forest 

landscapes were classified as belonging to the same class of vulnerability when we compared expert 

based and simulation results. The areas of low agreement are mostly related to overestimation (i.e. 

the simulations yielded a higher class of vulnerability than the expert result). Vulnerability was rarely 

underestimated and did not concern any of the previously identified and characterized hotspots of 

vulnerability. This means that ‘expert’ qualitative inputs had no negative impacts on the ecological 

vulnerability assessment of forest cover and that the method can be used at other sites. The 

consequences of scoring are generally not assessed in studies (Lavelle et al. 2016).  
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Figure 5.7 Agreement, overestimation and underestimation in expert and simulation based ecological 
vulnerability assessments 
 

Landscape metrics, the trajectory classes obtained using the ACT-STATIS method and the resulting 

indicators of vulnerability depend on the validity and accuracy of LULC classifications. This remote 

sensing field of research is improving significantly thanks to the development of novel classification 

algortihms and the accessibility of near-real time and high resolution imagery (Bégué et al. 2018). The 

2018 land cover and land use maps were produced with a high degree of accuracy and required only a 

short processing time. Minor misclassification were detected between the land cover and land use 

classes along the agricultural frontier as these elements are highly contrasted and clearly seperated in 

the landscape. Transition classes, which often cause misclassification, proved difficult to map (Mercier 

et al. 2019; Hett et al. 2012). In our case, they were grouped in the degraded forest class, which refers 

to different land uses with the same vegetation structure. Further work is necessary to be able to 

distinguish degraded forest due to logging and fire from shrubland and fallow. Spectral unmixing 

indicators assess the proportion of active photosynthetic vegetation, dead vegetation and bare soil 

within a pixel and could significantly improve the identification and classification of forest edges 

subject to degradation risks (Asner et al. 2009b). Time series optical images could also provide useful 

information to help improve the classification of degraded forest. In continental Asia, annual 

dfferences in the normalized burn ratio revealed highly accurate patterns of canopy disturbances 

linked with encroachment and logging (Langner et al. 2018). Cropland and rice classes showed 

misclassification errors due to confusion with bare soil because mapping was based on images 
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acquired in the dry season. High temporal resolution of optical and radar imagery could help describe 

and account for the phenology of vegetation to map forest-agriculture mosaics (Mercier et al. 2019). 

Furthermore, small agricultural systems can be mapped using combined pixel and object-based 

approaches and promising results have already been obtained with the characterization of fine 

cropland uses (Lebourgeois et al. 2017).  

5.4.3 Landscape approaches that incorporate both spatial and 

temporal information are keys to characterizing complex agricultural 

frontiers 
 

Major pressures and conflicts opposing human and natural elements are concentrated along 

agricultural pioneer fronts (Lambin et al. 2001). Today, remote sensing offers unique opportunities to 

map and characterize these regions using land cover classification and its contextual transformation 

into land use information, which is often used to describe landscape mosaics (Mercier et al. 2019). The 

landscape approach has been shown to be appropriate for studying agricultural frontiers as its scale 

encompasses spatial patterns that reveal the underlying social, environmental and ecological 

processes and hence human-environmental interactions (Wu 2007). The landscape approach is 

particularly useful when degradation and deforestation are the main drivers that shape the landscape 

through complex fragmentation patterns integrating agriculture and forest systems (Shapiro et al. 

2016). Pixel-based approaches would provide limited information on the consequences of degradation 

and on their underlying drivers linked with agricultural frontier expansion (Oszwald et al. 2012). The 

landscape approach has proved to be particularly effective in complex mosaic landscapes marked by 

high heterogeneity, fragmentation and disconnection between the different landscape elements. The 

transformation of land use into landscape mosaic has been applied to different human-dominated 

landscapes such as Northern Laos where complex swidden systems have been successfully mapped 

and characterized using human-environment data (Hett et al. 2012; Messerli et al. 2009). In the case 

of Amazonian agricultural frontiers, Oszwald et al. (2011) demonstrated that the combination of 

structure metrics at both spatial and temporal dimensions are key indicators for characterizing 

landscape and for reflecting human-induced drivers of landscape change. Indeed, two landscape 

mosaics sharing similar characteristics at a given moment in time may have experienced different 

historical landscape dynamics. Our analysis demonstrates that the relationship between the spatial 

and temporal dimensions of landscape analysis is effectively verified, especially in regions that are 

highly vulnerable to agricultural expansion (Fig 5.8). Current mosaics and historical trajectories are 

complementary, providing dependent and non-redundant information to help understand landscape 

complexities. Highly vulnerable areas (brown areas in Fig 5.6) are five types of current forest landscape 
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mosaics with specific past trajectories and any given landscape can be the result of multiple types of 

dynamics.  

 

 

Figure 5.8 Number of forest landscape mosaic and landscape trajectory pairs identified in the most 
vulnerable forest cover areas 
 

So far, the multiplication of scales in landscape analysis has been applied to the spatial dimension and 

has made it possible to capture trends at different organizational levels (Ostrom 2009). In this paper, 

we emphasize the importance and added value of including the temporal scale in the landscape 

approach conceptual framework in order to reconstruct landscape dynamics and analyze underlying 

drivers and pressures that drive agricultural frontiers and other areas where competition between land 

uses is high (Sayer et al. 2013; Reed et al. 2016). With accessibility, global coverage, temporally rich 

archives and frequency of acquisition of optical remote sensing images (Landsat and Sentinel), this 

study paves the way for replicating and scaling out the proposed framework to other agricultural 

frontiers for more effective management and conservation actions of forest landscapes. 

  



166 
 

5.5 Conclusion  
 

A need exists to identify which forest areas are most vulnerable to agricultural expansion and thus 

require prioritized conservation. In light of this, this paper demonstrates the potential and robustness 

of the proposed innovative methodology based on multidimensional remote sensing and landscape 

analysis to assess forest ecological vulnerability. We successfully mapped current land uses using 

Sentinel-2 and retrospectively reconstructed land cover over a 45-year period using Landsat archive. 

Landscape structure dynamics revealed heterogeneous trajectories of cropland expansion, 

degradation and fragmentation while the composition of forest-agricultural mosaics highlighted 

different landscape intensification levels along the agricultural frontier. Most vulnerable forest areas 

were experiencing rapid and recent forest cover loss associated with landscape fragmentation, land 

use competition due to coffee production and forest degradation. Long-term landscape structure 

analysis coupled with detailed description of land uses opens up prospects for continuously monitoring 

forests within agricultural frontiers over time and space. 
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Chapter 6 – Synthesis, discussion, and 

conclusions 
 

 

 

Human-modified landscapes of Paragominas and Di Linh study sites (pictures by Clément Bourgoin) 
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6.1 Summary of the findings 
 

This thesis investigated four research questions related to the development of a multidimensional 

approach using remote sensing to assess forest degradation and the relationship between the broader 

dynamics of land use, land cover and landscape changes towards the evaluation of the ecological 

vulnerability of forest cover. The four research questions are recalled below, and the main findings are 

summarized with recommendations for improving the management of forests at the landscape scale.  

 

Sub-research question 1: How to assess the state of forest cover across gradients of human-induced 

degradation using multisource remote sensing? 

In Chapter 2, we evaluated the potential of optical (Landsat, MODIS) and radar (ALOS-1 PALSAR, 

Sentinel-1) remote sensing sources in modelling and mapping forest AGB in Paragominas municipality 

(Brazil). We extracted a wide range of vegetation and textural indices and combined them with AGB 

data collected in situ into a random forest regression model to predict AGB at a resolution of 20m. The 

model explained 28% of the variance with a root mean square error of 97.1 Mg·ha−1 and captured all 

spatial variability. We identified Landsat spectral unmixing and mid-infrared indicators as the most 

robust indicators with the highest explanatory power. AGB mapping reveals that 87% of forest is 

degraded, with illegal logging activities, impacted forest edges and other spatial distribution of AGB 

that are not captured with pantropical datasets. We validated this map with a field-based forest 

degradation typology built on canopy height and structure observations. This modelling framework 

combined with high-resolution vegetation status indicators can help improve the understanding of the 

complex gradients of forest structures as well as improving the management of degraded forests at 

the regional scale.  

Sub-research question 2:  How to quantify long-term changes in forest structures from degradation?  

In Chapter 3, we assessed how canopy textural analysis could capture forest structure complexities 

resulting from different forest degradation histories. We used a lightweight Unmanned Aerial Vehicle 

(UAV) to map 739ha of degraded forests in Paragominas and 33 years of Landsat archives to 

reconstruct degradation history through the detection of logging and fire disturbances. Fourier (FOTO) 

and lacunarity textures were used to assess forest canopy structure and to build a typology linking 

degradation history and current status. Texture metrics capture canopy grain, heterogeneity and 

openness gradients and correlate with forest structure variability (r²: 0.58).  Similar forest structures 

shared common degradation history and could be discriminated on the basis of canopy texture alone 

(accuracy: 55%). Over logging causes a lowering in forest height, which is represented by homogeneous 
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textures of finer grain. We identified the major changes in structures due to fire following logging 

which changes heterogeneous and intermediate grain into coarse textures. Our findings highlighted 

the potential of canopy texture metrics to characterize the structures of degraded forests which could 

therefore be used as indicators for forest cover status using UAV up to VHSR satellite sources.  

Sub-research question 3:  How to identify and disentangle cascading effects of forest degradation 

drivers at the landscape scale?  

In Chapter 4, we identified the direct and indirect drivers of forest degradation using a landscape 

approach, which goes beyond the direct detection of forest disturbances. We used both regression 

and clustering methods to map the drivers of primary forest degradation from a large set of 

environmental and geographical factors, and landscape structure metrics derived from land use/cover 

classification. Models of forest degradation revealed that at the landscape scale, accessibility, 

geomorphology, fire occurrence and fragmentation were the key indirect and direct drivers of 

degradation (80% of explained variance). We clearly showed that the indirect and direct drivers of 

degradation acted together and in sequence to create homogenous patterns in the municipality, 

thereby proving their spatial covariation and inter-dependency and revealing different land use 

dynamics and management practices. In the central part of the municipality, forests are degraded 

because of past overexploitation of timber, which has been indirectly enhanced by accessibility to 

forest patches and markets, and more recently due to conflicts associated with agricultural expansion 

processes and negative feedback loops generated by fragmentation, therefore affecting forest 

structure. In more complex landscape mosaics, forests are degraded due to the joint result of historical 

processes and recent interactions between degradation drivers such as fire used in the management 

of agricultural lands and forest landscape fragmentation. This holistic understanding of the drivers of 

degradation and their sequential interactions underscores the need to tackle forest management at 

the landscape scale. 

Sub-research question 4:  How to characterize the ecological vulnerability of forest cover? 

In Chapter 5, we developed a rigorous methodological framework to assess forest ecological 

vulnerability and aimed at evaluating the potential of remote sensing to characterize forest landscape 

dynamics in spatial and temporal dimensions. We presented an innovative method that spatially 

integrates current landscape mosaic mapping with 45 years of landscape structure trajectories using 

Sentinel-2 and Landsat imagery. We extracted indicators of exposure to cropland expansion, sensitivity 

linked with forest degradation and fragmentation, and forest capacity to respond based on forest 

landscape composition in Di Linh district (Vietnam). We mapped current forest-agricultural mosaics 

with high accuracy to assess landscape intensification (kappa index = 0.78). We also mapped the 
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expansion of the agricultural frontier and highlighted heterogeneous agricultural encroachment on 

forested areas (kappa index = 0.72-0.93). Finally, we identified degradation and fragmentation 

trajectories that affected forest cover at different rates and intensity. Combined, these indicators 

pinpointed hotspots of forest vulnerability. Most vulnerable forest areas were experiencing rapid and 

recent forest cover loss associated with landscape fragmentation, land use competition due to coffee 

production and forest degradation. This study provided tailored management responses and levers for 

action for local decision makers in order to prioritize actions to prevent future forest degradation.  

 

6.2 General discussion  
 

Forest degradation is a multi-aspect phenomenon requiring multiple nested scale analyses and 

multidisciplinary approaches. In this section we will discuss the different methods used in this thesis, 

their respective limitations and how the results can be used for forest management. 

6.2.1 Promising methods to characterize forest structures from 

degradation 
 

Due to the natural diversity of forest types and variety (type, intensity and frequency) of anthropogenic 

disturbances, multiple forest structures can be observed within tropical forest landscape mosaics. This 

necessitates the need for indicators that characterizes the state of the forest as well as techniques to 

reliably assess those indicators from cost-efficient monitoring schemes. Multidimensional remote 

sensing alternatives must be found when LiDAR data, used to directly assess forest structures or at the 

basis of regional AGB mapping, is not available or affordable.  

Mapping degraded forest structures through the modelling of aboveground biomass using remote 

sensing indicators showed promising results. Predicted values of AGB matched with a field established 

typology of degraded forests and provided improved accuracy and details compared with pantropical 

approaches. However, the large range of forest structures spanning from conserved to highly degraded 

was not entirely captured by the models. Beyond the contribution of each remote sensing derived 

indicator to model performance, the number of samples from field inventory was an important limiting 

factor given the large area of forest to cover and the complex gradients of degraded forest structures 

in place. Globally, forest inventories of degraded forest structures are rare as the majority of studies 

are carried out in undisturbed tropical forests or logged forests (under strict management)(Sist et al. 

2015). The forest inventory used in this research has been sampled along gradients of overexploitation 

and fire disturbances which provided another level of understanding on the effects of human-induced 
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disturbances on above and below ground carbon dynamics (Gardner et al. 2013; Berenguer et al. 

2014). However, such inventories are time consuming and expensive which makes the approach 

difficult to generalize and replicate.  

Structural analysis of forests by UAV and ‘Structure from motion’ photogrammetry are low cost, time 

effective tools for forest inventory (Wallace et al. 2016; Westoby et al. 2012; Frey et al. 2018). 

However, UAVs are presently limited to small area mapping and specific flight conditions. Texture 

canopy analysis are promising 2D proxies of 3D forest structure to characterize degraded forest 

structures through gradients of canopy grain and heterogeneity as soon as the contrast between sunlit 

and shadowed tree crowns becomes perceptible by images. This property increases with the fineness 

of image spatial resolution. We showed the potential of UAV and VHSR satellite optical images to 

assess canopy height variation through FOTO derived indices. Further studies should continue in this 

vein as the influence of acquisition parameters (i.e. multiple sun/sensor angles and cloud shadow 

effects) are still limitations to operational broad scale applications of canopy textural analysis to 

characterize degraded forest structures (Barbier and Couteron 2015).  

 

6.2.2 Landscape approach to analyze dynamics of land use and cover 

changes 
  

Remote sensing is a globally adopted tool to detect, characterize and monitor land cover/use changes. 

However, remote sensing alone is not sufficient for understanding the different dynamics of landscape 

trajectories or for the analysis of underlying drivers, particularly in the context of deforestation fronts. 

Changes in pixel labels are often interpreted as land use changes but do not depict broader dynamics 

and underlying agricultural and forestry practices (Haro-Carrión and Southworth 2018).  

In this thesis, we initially adopted a landscape quantitative approach to compute landscape pattern 

metrics based on heterogeneity and fragmentation concepts. These metrics were chosen specifically 

for studying the expansion of agricultural frontiers in both case studies. Despite a large range of 

existing landscape metrics, often closely correlating with one another, more information on isolation 

and contagion effects could have been added to improve the analysis (Wang et al. 2014). Indeed, 

connectivity between the different landscape elements is an essential factor in understanding the 

processes of landscape dynamics after disturbance or abandonment of agricultural areas (Lavelle et al. 

2016). The computation of metrics within a given area can generate different biasses linked with edge 

effects due to the windowing process (which be attenuated by using sliding windows) and with the 

selection of the appropriate window size. Defining the appropriate window size or the appropriate 
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landscape scale are unresolved issues and depend on the scale of landscape phenomena that are 

analyzed (Burel and Baudry 1999). It is important to remember that there is no single scale sufficient 

for comprehensive landscape analysis. This considered, the adopted methodology identified the scale 

that best captures the diversity of landscape elements using nested-scale approach (heterogeneity 

metrics yielded similar results). A sensitivity analysis of the impact of the landscape scale on landscape 

structure metrics capturing fragmentation and heterogeneity and on forest degradation/landscape 

relationships would help to confirm the adopted methodology and to move forward in the applicability 

of landscape approaches to land use studies. 

Secondly, remote sensing data and the derived landscape structure metrics were analyzed using 

multivariate statistics in order to generate landscape trajectories. This approach provides a 

quantitative synthesis of relative changes in both composition and configuration of elements within 

different units dividing the area of interest (Oszwald et al. 2011). Multivariate statistics (PCA and 

STATIS) were chosen in order to assign the same statistical weight to each unit (i.e. window) dividing 

the deforestation front. The rationale being that we can assume that there is a local geographical effect 

that differentiates each unit in relation to its neighbor. Common factors of evolution should be 

identified within units located in the same regions but also some units that experienced similar 

dynamics may be located in different parts of the deforestation front due to similar migration waves, 

agricultural practices or public policies. Variability in temporal dynamics of the deforestation front 

expansion and in socio-economic characteristics that are specific to each unit justified the need to use 

multivariate analysis for differentiating each unit in the analysis.  

Landscape structure trajectories were built based on a simplified typology of land cover maps whereas 

current classification aimed to be as close as possible to landscape elements identified in the field. This 

was explained by the difficulty in the photointerpretation of historical images and the obtained 

commission and omission errors using supervised classification algorithms. Consistent detailed 

mapping of historical Landsat images would provide further information on landscape trajectories. 

Hybrid supervised and unsupervised classification methods (Baraldi et al. 2006), hybrid pixel and object 

based approaches taking into account shapes and texture of objects (Phiri et al. 2019) or fully 

unsupervised classification of dense time series to extract vegetation profiles (Tan et al. 2011; Picoli et 

al. 2018) could help classify historical land cover/uses and be less dependent on field data.  
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6.2.3 Vulnerability assessment to guide forest management and 

empower decision makers 
 

Forest management in human-modified landscapes requires indicators to spatially prioritize areas of 

importance and therefore financially and efficiently optimize interventions in the field. Assessing the 

ecological vulnerability of forest cover can help to identify which forests are the most vulnerable to 

anthropogenic impacts, where they are located and what is driving this vulnerability. Due to the 

specific interpretation and construction of exposure, sensitivity and adaptive capacity components, 

vulnerability assessment can hardly be compared between Paragominas and Di Linh study sites. 

However, vulnerability mapping demonstrates to decision makers that each hotspot of vulnerability 

calls for a distinct form of management as the forest status, landscape dynamics and the drivers of 

degradation differ. Maps of forest ecological vulnerability and its components should be core elements 

in drafting scenarios of degraded forest future (Goldstein 2014). However, the development of these 

scenarios should be done using a landscape sharing approach in order to find trade-offs between forest 

conservation and the production of agriculture products (Griscom and Goodman 2015). 

In Paragominas municipality, we showed that in areas where forests are highly degraded 

(overexploitation by timber and recent fire events) there lies different drivers of degradation and 

landscape dynamics. The adopted landscape approach informed us that the mitigation of exposure 

factors should be prioritized in areas where conflicts between agriculture and forest are high, while 

other regions should be targeted for drafting different forest restoration scenarios. However, 

imagining future landscape management must be conditioned and tailored to local socio-economic 

conditions (Brancalion et al. 2019; Sayer et al. 2013). Based on our results and field experience, several 

scenarios or options of restoration are proposed here depending on geomorphological parameters, 

diversity of local stakeholders (from farming agriculture to industrial agro-business farmers) and 

whether or not conflicts with agricultural expansion are present: 

• In plateaus subject to agricultural expansion, interventions should rely on improved forest 

cover monitoring (higher spatial and temporal resolution) to prevent further encroachment 

and develop landscape strategies to prevent fire propagation in landscapes that are 

particularly prone to fire i.e. strong degradation of forest structures and high fragmentation of 

forest patches.  

• In regions subject to negative feedback loops of degradation and fragmentation, fire controls 

should rely on the landscape management such as implementation of firebreaks and on 

participatory approaches to improve awareness of local smallholders to the negative impacts 
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of fire, with objective to sustain swidden agriculture and prevent further wildfires (Carmenta 

et al. 2013; Cammelli et al. 2019). 

• In fragmented landscape mosaics where forests and soils are highly degraded and forest 

successional recoveries are often blocked therefore altering seed fluxes among forest patches, 

passive (i.e. natural) regeneration is less likely to succeed. Active regeneration through 

enrichment planting or agroforestry are possible alternatives, however only on the condition 

that preventative measures have been put in place to mitigate fire occurrences. However, 

some studies highlighted low rates of survival seedlings due to severe drought which may be 

exacerbated by the current level of fragmentation (Mangueira et al. 2018).  

• The slopes generally too steep for mechanization (i.e. no agricultural potential) should be 

prioritized areas for passive restoration with one of several objectives to restore ecological 

continuity between the different of forest patches (Tambosi et al. 2014). 

• In areas with no particular agricultural expansion dynamic (central Paragominas), enrichment 

planting to restore degraded primary and secondary forest fragments and reforestation in 

certain key areas could respectively improve the resilience of these forests to future edge 

effects and drought events and improve the connectivity of forest landscapes with minimal 

impact on current agricultural production (Rappaport et al. 2015).  

 

In Di Linh district, we showed that degraded forests are spatially associated with coffee plantation at 

the forest edges but hotspots of agricultural expansion are not located homogenously along the 

agricultural frontier. Improving the connectivity of forest habitat could increase the adaptive capacity 

of these landscapes by reducing fragmentation levels. One example is the mix of evergreen forest with 

pine forest (central and western part of the district) to stabilize and protect the agricultural frontier, 

prevent soil erosion and increase forest surface area as well as ecological continuity (Dien et al. 2013). 

In areas with direct encroachment dynamics of coffee over forest areas, high resolution and frequent 

data acquisition are needed for improving the efficiency of near-real time monitoring systems and 

reporting loops to local decision makers (Reymondin et al. 2012). 
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6.3 Future perspectives  
 

6.3.1 Scaling-up forest ecological vulnerability assessment from 

localized sites to regions 
 

Large-scale analysis provides a global picture of spatial and temporal dynamics of a given phenomenon 

which is particularly conducive for grabbing the attention of decision-makers as well as multilateral 

supports. Recent good examples of large-scale analyses includes the global tree restoration potential 

calculated by excluding existing trees, agricultural and urban areas (Bastin et al. 2019) and the global 

restoration opportunities in tropical rainforest landscapes (Brancalion et al. 2019). Data limitation (e.g. 

availability, coverage, accessibility, cost), methods and computation time are non-exhaustive issues 

that both studies had to face. Analyzing forest ecological vulnerability at the large scale would provide 

key information to help orientate restoration initiatives, particularly at deforestation fronts where 

management responses are eagerly expected. This would therefore involve identifying trade-offs in 

the large range of possible data (i.e. spatial resolution, price, scale and frequency of acquisition), 

methods and approaches. We propose to raise some points of discussion following this reflection:  

Which data and methods to evaluate forest degradation at large scale? 

In the case of large scale studies, assessing the aboveground biomass or analyzing the structures of 

degraded forests using canopy textures from UAV or VHSR remote sensing are methods limited by 

inventory data availability, coverage, image extent and costs. Considering the perspective of chapter 

3, we developed a method to semi-automatically detect forest disturbances (mainly logging gaps and 

roads associated with logging activity) using cloud-free Landsat images along a given time series. 

Instead of mapping forest structures or changes in structures (or carbon stocks) to evaluate the forest 

status, this proposed indirect approach shows promising alternatives to assess forest degradation 

defined here as the accumulation of disturbances. Moreover, the long historical depth of Landsat 

archive coupled with the frequent acquisition of Sentinel-2 images are real assets for the continuous 

monitoring of forest disturbances over large areas.  

The technological and operational barriers that prevent forest structure mapping (and other direct 

approach methods) from being applicable at a large scale could be unlocked in the very near future. 

The number of satellite observations of global forests is increasing tremendously thanks to the 

upcoming launches of the NASA GEDI (2019), ESA BIOMASS (2021), NASA-ISRO NISAR (2022), along 

with the network of existing systems, such as NASA ICESat-2 (2018), DLR TanDEM-X, JAXA ALOS 

missions, ESA Copernicus missions, NASA Landsat and Planet microsatellites. The challenge that awaits 
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is how fast, efficient and accurate methods for forest structure mapping can make the most of these 

potential large datasets in order to provide the best picture of forest cover status how this can be 

employed actionable knowledge.  

How to face data limitation?  

This thesis is a good example of methodological adjustment facing data limitation. Inventories of 

aboveground biomass did not exist for the Vietnam study site nor did the possibility (due to legislation 

constraints) to use UAV to acquire forest structural parameters. In addition, the high terrain and strong 

slopes would have generated many biases when applying canopy texture analysis of VHSR images. 

Forest degradation was therefore assessed through current mapping of forest types and by analyzing 

trajectories of forest landscape dynamics, particularly the rate of forest cover changes and 

fragmentation (edge density). A good understanding of the drivers of forest degradation are also key 

for mapping degraded forests. In this case, most forest degradation is driven by coffee encroachment 

on the slopes and in to lesser extent, slow conversion over time to maize/banana production or pine 

forest plantation. To conclude, there is no a single definition or approach to characterize forest 

degradation. Forest degradation is site specific because it is linked with underlying direct and indirect 

drivers that are partially localized. This specificity is a limit for global scale approaches. However, the 

joint analysis of forest degradation and drivers that are spatially and temporally acting at the landscape 

scale provides a framework in order to adapt or transpose methodologies from one place of the tropics 

to another. 

Limitations for applying a landscape quantitative approach at large scale 

Beyond characterizing forest degradation, scaling-up forest ecological vulnerability also requires 

applying a landscape quantitative approach at large scale. This approach needs accurate and frequent 

maps of land cover and land uses in order to analyze the succession of land use processes and events 

linked with complex human-environmental interactions over a given period of time. The main 

limitation of applying a similar landscape quantitative approach at larger scale is linked with the large 

number of landscape units to handle within the method.  First, the analysis would encompass a larger 

amount of landscape diversity and heterogeneity, which could make the identification of the unit size 

more difficult and variable among different landscapes (e.g. active or passive deforestation front, areas 

already dominated to agriculture etc). In the long-run, this variability would generate bias in the 

calculation of landscape metrics. One alternative to this issue would be to select administrative (e.g. 

villages) or farm boundaries to play the role of unit of analysis, as previously demonstrated by Oszwald 

et al. (2011) and Grimaldi et al. (2014) but this data is often missing at that scale of analysis. Second, 

the important number of units to analyze could cause some issues in the construction of unit-specific 
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landscape structure trajectories and in their classification into homogeneous and low intra-variance 

clusters. Other clustering methods better suited to large datasets has to be found in order to face these 

limitations.  

 

6.3.2 Potential addition of indicators and approaches to enhance 

forest ecological vulnerability assessment 
 

Adding forest functioning indicators to better characterize the ecological vulnerability 

assessment 

It is important to understand that forest ecological vulnerability is not a measurable phenomenon, it 

is instead a dynamic state which is the result of multiple interacting indicators (Fritzsche et al. 2014). 

As forest ecological vulnerability cannot be measured directly (Adger 2006), a number of indicators 

which are presumed to affect vulnerability are aggregated to provide an indication, or an index of 

vulnerability. Indicators of forest degradation (e.g. degraded forest structures and disturbance 

accumulation) and landscape dynamics feed the different components of forest ecological 

vulnerability. Besides changes in structures, forest degradation also implies changes in the functioning 

of the forest, which was not directly captured in this thesis (Ghazoul and Chazdon 2017b). The 

functioning of forests following degradation processes could be added to vulnerability assessment as 

an indicator of forest sensitivity. Adding this indicator would improve how we analyze the reactions of 

forest ecosystems to degradation such as tree mortality and forest succession. It would also inform on 

how photosynthesis activity of degraded forests are linked with climate and thus provide significant 

information on how degraded forest are coping with climate variability and extreme drought events. 

Hasan (2019) demonstrated that degraded forests experience a progressive decline in photosynthesis 

activity during the dry season where precipitation are sparse. This decline may due to the fact that 

degraded forests have a more superficial root system, unable to access water stored in the deep layers 

of the soil. Additionally, opening of the canopy increases the radiation and heating in the understory 

and on the surface of the ground, which accelerates the drying process (Alencar et al. 2004). 

 

Combining forest ecological vulnerability assessment with forest ecosystem services 

mapping 

To further emphasize on the prioritization of intervention areas, forest ecological vulnerability 

assessment could be combined with the evaluation of ecosystem services provided by degraded 

forests such as soil protection, water availability or biodiversity (Oszwald et al. 2012; Le Clec’h et al. 

2017). For instance, Sahraoui et al. (2017) proposed a method for assessing landscape connectivity 
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through a multi-species approach and identifying areas where conservation actions are needed to 

enhance or maintain connectivity for species at a landscape scale. These areas would gain extra 

emphasis if we were to combine this modelling with the assessment of forest ecological vulnerability 

to agricultural expansion. At the Vietnam study sites, we found that some forest areas located along 

the agricultural frontier (central part and east of the district) were vulnerable to coffee expansion and 

coincide with areas of steep slopes and therefore significant risks of soil erosion. The modelling and 

mapping of spatial patterns of soil erosion are essential for land use planning and could be strategically 

combined with the vulnerability of forest cover in order to give even more weight in the prioritization 

of decision making (Tamene et al. 2017).  

 

Building forest ecological vulnerability assessment with local actors  

The engagement of local actors in the preparation, evaluation and follow-up of the implementation of 

landscape approaches are key to their success (Reed et al. 2019). Similarly, their engagement and 

participation should be put at the forefront of forest ecological vulnerability assessment for a number 

of reasons:  

• To ensure that their perceptions of forest vulnerability are taken into account and properly 

modelled in the approach. For instance, their conceptions of forest degradation is likely linked 

to their daily use of forest resources, which could greatly add some nuance to the choice of 

forest degradation indicators and its modelling and mapping.  

• To collect feedback during the construction of the vulnerability framework and improve the 

understanding of drivers of vulnerability (especially when wider literature is missing) through 

consultation or participatory workshops.  

• To collect validation on the identified areas of forest sensitivity, exposure and adaptive 

capacity and vulnerability 

• To facilitate the discussion among actors in order to prioritize actions such as forest restoration 

and other types of management on the basis of forest ecological vulnerability assessment and 

other spatially explicit information  
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Mentions and notes to the reader 
 

We would like to mention that the two study sites were part of CIRAD and CIAT respective projects:  

• Paragominas municipality was part of Ecotera project (« ECOefficiences et développement 

TERritorial en Amazonie Brésilienne »). The project aimed at producing multidisciplinary 

knowledge and tools (e.g. eco-efficiency indicators at different scales) to enable local actors in 

a territory in reconciling their objective of sustainable development with the establishment of 

productive systems and eco-efficient land use.  

• Paragominas municipality was part of ForLand project. The ForLand-Restoration project is 

developing a forest landscape restoration decision support platform co-designed with all the 

stakeholders in a given territory. This will involve mapping geographically referenced 

socioeconomic and environmental data. The indicators generated by the tool will give local 

stakeholders greater insight into their territory and the impact of their practices and thus help 

draft future restoration scenarios. 

• Di Linh district was part of Terra-i/REDD+ project. Terra-i is a pan-tropical forest monitoring 

system that pinpoints most probable deforestation areas in near-real time. It was combined 

with a REDD+ (Reducing Emissions from Deforestation and forest Degradation) pilot project 

that aim at facilitating forest monitoring with decisions makers such as land use planners and 

local forest rangers. 

 

Several field trips were organized in Paragominas and Di Linh in the framework of this projects. Two 

field trips were undergone in Paragominas. The first one was in September 2017 (3 weeks) in order to 

collect land use/cover type data and UAV data of different forest structures and the second one was 

in September  2018 (3 weeks) in order to validate land use/cover classifications and acquire 

additional UAV data. Two field trips were undergone in Di Linh district. The first one was to participate 

in non-structured interviews with local stakeholders to know more the drivers of land use change and 

forest degradation in the area and to visit some landscapes of the study site (1 week). The second one 

was dedicated to field collection of the different land use/cover types (2 weeks).  

 

The first article (chapter 2) presented in this thesis was published in the journal Forest in 2018, the 

second (chapter 3) was submitted to Ecological Indicator in June 2019, the third (chapter 4) was 

submitted in Environmental Research Letters in October 2019 and the fourth (chapter 5) was published 

in International Journal of Applied Earth Observation and Geoinformation in September 2019.  
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It is also worth noting the oral participation in two international conferences in 2017 and 2018 where 

the general framework of this thesis and chapter 3 were presented respectively:  

• VII World Conference on Ecological Restoration (SER 2017) in Foz Do Iguassu, Brazil. C 

Bourgoin, L Blanc, J Oszwald, L Reymondin P Laderach, V Gond. Remote sensing of degraded 

tropical forest trajectories in the Brazilian Amazon: New insights for landscape restoration. Oral 

presentation.  

• Association for Forest Spatial Analysis Technologies (ForestSAT 2018) in College Park, 

Maryland, USA. C Bourgoin, J Betbeder, P Couteron, L Blanc, N Baghdadi, L Reymondin P 

Laderach, V Gond. Assessing canopy structures of degraded Amazonian forests using UAV. Oral 

presentation.  

 

It is also worth noting the participation in the supervision of two first-year master students from 

Grenoble university who worked respectively on the environmental and socio-economic conditions of 

the two study sites (related to Chapter 1) and of three second-year master students who contributed 

to the different chapter:  

• Landsat analysis of land use and land cover changes in Paragominas, Pará, Brazil by Florent 

Rumiano (2018) who contributed to the chapter 4.  

• Analysis of forest degradation trajectories from dense time series in Paragominas, Pará, Brazil 

by Sarah Vanacker (2018) who contributed to chapter 3. 

• Multi-scale analysis of canopy structures of a tropical forest degradation gradient by Etienne 

Duperron (2019) who contributed to the perspectives of chapter 3. 
 

Other studies written as co-authors and related to the thesis topic have been published (Tritsch et al. 

2016; Mercier et al. 2019; Hasan et al. 2019b).  

• The article Tritsch et al. (2016) complements chapter 3 and proposes an efficient remote 

sensing methodology based on Landsat imagery to detect and track logging activity based on 

the monitoring of canopy openings: Tritsch, Isabelle, Plinio Sist, Igor Narvaes, Lucas Mazzei, 

Lilian Blanc, Clément Bourgoin, Guillaume Cornu, et Valery Gond. 2016. « Multiple Patterns of 

Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil ». Forests 7 

(12): 315. https://doi.org/10.3390/f7120315. 

 

• The article Mercier et al. (2019) presents a robust classification method to map forest-

agricultural mosaics and assess the complementary of Sentinel-1 and 2 time series. The 

methodology and script was used in chapter 4 and chapter 5: Mercier, Audrey, Julie Betbeder, 

https://doi.org/10.3390/f7120315
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Florent Rumiano, Valéry Gond, Lilian Blanc, Clément Bourgoin, Guillaume Cornu, René 

Poccard-Chapuis, Jacques Baudry, et Laurence Hubert-Moy. 2019. « Evaluation of Sentinel-1 

and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate 

and Tropical Landscapes », 20. https://doi.org/10.3390/rs11080979. 

 
 

• The article Hasan et al. (2019) is based on one of the result of chapter 2, which identified 

spectral unmixing indicators relevant for identifying degraded forest types. The study presents 

an indicator of forest degradation used in chapter 4 and built from Landsat annual imagery 

(2000 to 2015) and non‐photosynthetic vegetation variance: Hasan, Ali Fadhil, François 

Laurent, François Messner, Clément Bourgoin, et Lilian Blanc. 2019a. « Cumulative 

Disturbances to Assess Forest Degradation Using Spectral Unmixing in the North‐eastern 

Amazon ». Applied Vegetation Science, mai, avsc.12441. https://doi.org/10.1111/avsc.12441. 

  

https://doi.org/10.3390/rs11080979
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Annexes 
 

Appendix 2.1 Remote sensing metadata and derived indicators (R=Red, G= Green, B=Blue, NIR= Near 

infrared, SWIR= Shortwave infrared ) 

Satellite 

Sources 
Links Date Resolution ID Preprocessing 

Spectral 

Bands 
Indicators 

MODIS 

http://modi

s.gsfc.nasa.g

ov/ 

2001–2014 

every 16 

days 

250 m 
MOD13Q1:

h13v09 

Georeferenced, 

removed cloud 

covered pixels, 

atmospheric 

corrections 

R (620–670 

nm), NIR 

(841–876 

nm) 

EVI mean, EVI standard 

deviation, EVI variance 

Landsat 8 

http://earth

explorer.usg

s.gov/ 

27/10/2014 

16/09/2014 

12/06/2014 

30 m 

LC82206220

14300LGN0

0 

LC82206220

14259LGN0

0 

LC82206220

14163LGN0

0 

Georeferenced and 

reflectance product 

B (450–515 

nm), G 

(525–600 

nm), R (630–

680 nm), 

NIR (845–

885 nm), 

SWIR 

(1560–1660 

nm) 

PV, NPV, Bare Soil 

(Claslite unmixing 

indicators) 

B, G, R, NIR, SWIR 

NDVI, RVI, RI, SAVI, 

NDWI, MSAVI, GEMI, 

WDVI, NDTI, TSAVI, 

NDPI, IPVI, TNDVI 

(Orfeo Toolbox derived 

indicators) 

ALOS-1 

PALSAR 

http://globa

l.jaxa.jp/ 

26/05/2010 

18/07/2010 

23/07/2010 

28/07/2010 

07/08/2010 

09/09/2010 

25 m N00W050 

Georeferenced and 

calibrated: 

1) gamma [dB] 

2) sigma [dB] 

L-band (1,27 

Ghz), dual-

polarisation 

(HH,HV) 

Gamma [dB], Sigma [dB] 

Sentinel-1 
https://scih

ub.esa.int/ 
04/05/2015 10 m 

L1 (Ground 

Range 

Detected) 

Calibration and 

georeferenced 

(Sentinel-Toolbox 

Software) 

C-band 

dual-

polarisation 

(VV,VH) 

Sigma [dB] 

Grey Level Co-

occurence matrix (9 × 9 

pixels): Contrast, 

Dissimilarity, Energy, 

Entropy, Correlation, 

Mean, Variance, 

Homogeneity, 

Maximum (Sentinel 

Toolbox derived 

indicators) 
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Appendix 3.1 Landsat archive Metadata (Product identifier) from 1984 to 2017 (3 path/row) 

 Path/row 222062 Path/row 223062 Path/row 223062 

LC08_L1TP_222062_20170731_20170811_01_T1 LC08_L1TP_223062_20170706_20170716_01_T1 LC08_L1TP_223063_20170706_20170716_01_T1 

LC08_L1TP_222062_20151201_20170401_01_T1 LC08_L1TP_223062_20160921_20170321_01_T1 LC08_L1TP_223063_20160719_20170323_01_T1 

LC08_L1TP_222062_20131109_20170428_01_T1 LC08_L1TP_223062_20150717_20170407_01_T1 LC08_L1TP_223063_20151005_20170403_01_T1 

LT05_L1TP_222062_20100626_20161014_01_T1 LC08_L1TP_223062_20150802_20170406_01_T1 LC08_L1TP_223063_20140612_20170422_01_T1 

LT05_L1TP_222062_20090810_20161022_01_T1 LC08_L1TP_223062_20130727_20170503_01_T1 LC08_L1TP_223063_20131015_20170429_01_T1 

LT05_L1TP_222062_20081010_20161029_01_T1 LT05_L1TP_223062_20090817_20161022_01_T1 LT05_L1TP_223063_20110604_20161009_01_T1 

LT05_L1TP_222062_20060615_20161121_01_T1 LT05_L1TP_223062_20080713_20161030_01_T1 LT05_L1TP_223063_20100905_20161013_01_T1 

LT05_L1TP_222062_20050714_20161125_01_T1 LT05_L1TP_223062_20070625_20161112_01_T1 LT05_L1TP_223063_20090817_20161022_01_T1 

LT05_L1TP_222062_20010804_20161210_01_T1 LT05_L1TP_223062_20060724_20161120_01_T1 LT05_L1TP_223063_20080713_20161030_01_T1 

LT05_L1TP_222062_19990714_20161217_01_T1 LT05_L1TP_223062_20040904_20161130_01_T1 LT05_L1TP_223063_20070625_20161112_01_T1 

LT05_L1TP_222062_19960705_20170104_01_T1 LT05_L1TP_223062_20030716_20161205_01_T1 LT05_L1TP_223063_20060724_20161120_01_T1 

LT05_L1TP_222062_19950719_20170107_01_T1 LE07_L1TP_223062_20020907_20170128_01_T1 LT05_L1TP_223063_20040904_20161129_01_T1 

LT05_L1TP_222062_19940918_20170112_01_T1 LE07_L1TP_223062_20010803_20170204_01_T1 LT05_L1TP_223063_20030716_20161205_01_T1 

LT05_L1TP_222062_19880816_20170206_01_T1 LE07_L1TP_223062_20000731_20170210_01_T1 LE07_L1TP_223063_20020705_20170130_01_T1 

LT05_L1TP_222062_19840618_20170220_01_T1  LE07_L1TP_223062_19990713_20170218_01_T1 LE07_L1TP_223063_20010803_20170204_01_T1 

 LT05_L1TP_223062_19990705_20161217_01_T1 LE07_L1TP_223063_20000731_20170210_01_T1 

 LT05_L1TP_223062_19970528_20161231_01_T1  

 LT05_L1TP_223062_19950710_20170107_01_T1  

 LT05_L1TP_223062_19910816_20170126_01_T1  

 LT05_L1TP_223062_19890927_20170201_01_T1  

 LT05_L1TP_223062_19880924_20170206_01_T1  

 LT05_L1TP_223062_19860615_20170217_01_T1  
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Appendix 3.2 Example of reconstruction of degradation history (1984-2017) of a logged and burned 

forest plot mapped in September 2017: photointerpretation of forest disturbances (over logging, 

selective logging and fire) using Landsat annual imageries and derived Normalized Difference Moisture 

Index (NDMI).  
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Appendix 3.3 Information on 1) UAV data collection (plot ID, surface mapped, date, hour and point 

cloud average density), 2) Landsat reconstruction of degradation history simplified in four indicators 

(number of over logging, selective logging and fire detected events, and date of the last disturbance) 

and 3) Cluster id of canopy structure 

ID 

UAV data collection Landsat reconstruction of degradation history 

Canopy 

structure 

cluster id 
Surface 

(ha) 
Date Hour 

Average 

density 

(per m3) 

Over 

logging 

events 

Selective 

logging 

events 

Fires 

events 

Last impact 

date 

1 33.5 18/09/2017 15:35 17.28 3 1 1 2015 4 

2 14.7 19/09/2017 16:58 19.27 0 0 2 2016 4 

3 53.5 21/09/2017 08:31 27.29 0 1 0 2004 6 

4 50.2 21/09/2017 09:50 29.73 0 1 0 2004 6 

5 41.1 21/09/2017 17:07 20.81 0 1 0 2010 6 

6 19.6 22/09/2017 07:35 29.85 0 1 0 2013 5 

7 41.7 22/09/2017 08:14 18.53 0 1 0 2014 5 

8 16.6 22/09/2017 08:44 13.01 0 1 0 2014 5 

9 35.0 22/09/2017 12:56 19.4 0 1 0 2017 4 

10 32.4 22/09/2017 13:21 17.65 0 1 0 2017 4 

11 36.2 22/09/2017 15:54 14.28 0 1 0 2017 5 

12 29.2 23/09/2017 09:41 17.04 1 1 0 2013 3 

13 25.1 23/09/2017 10:09 18.47 2 1 0 2013 3 

14 14.7 13/09/2017 15:04 30.18 Secondary forest since 1994 (pasture before) 2 

15 31.1 18/09/2017 15:56 18.93 2 1 0 2008 6 

16 41.4 14/09/2018 14 :43 7.42 0 1 0 2006 5 

17 37.3 14/09/2018 14 :43 7.42 Secondary forest since 1990 (pasture before) 3 

18 39.8 24/09/2018 16 :57 7.51 2 0 0 2016 5 

19 34.7 12/09/2018 11 :24 8.37 0 0 0 / 6 
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20 24.0 13/09/2017 09:07 18.68 1 0 0 1995 4 

21 33.3 18/09/2017 16:28 17.37 3 1 1 2015 4 

22 33.2 18/09/2017 16:49 18.64 2 1 0 2013 3 

23 35.8 14/09/2017 14:46 15.80 1 0 0 1999 6 

24 36.1 14/09/2017 15:52 17.65 2 0 0 1995 6 

25 33.1 14/09/2017 16:31 19.93 2 0 0 2015 3 

26 29.3 14/09/2017 17:18 23.52 3 0 2 2016 1 

27 32.1 18/09/2017 17:18 18.83 1 1 1 2015 1 

28 24.0 16/09/2017 08:44 17.33 0 0 2 2017 1 

29 25.1 12/09/2017 14:52 16.6 Secondary forest since 1995 (pasture before) 2 

30 32.3 16/09/2017 10:22 17.61 0 0 3 2017 4 

31 26.1 16/09/2017 11:20 16.02 2 0 2 2017 1 

32 23.9 17/09/2017 09:16 27.49 3 0 0 2015 5 

33 27.8 17/09/2017 10:29 13.40 3 0 1 2017 5 

34 15.8 17/09/2017 12:52 21.25 1 0 0 1999 3 

35 24.1 17/09/2017 13:52 23.80 1 1 1 2017 1 

36 25.8 17/09/2017 14:58 20.36 3 0 1 2017 4 

37 40.4 12/09/2017 15:53 15.99 1 1 0 2015 3 

38 32.1 19/09/2017 15:00 20.12 1 0 0 1997 3 

39 22.6 19/09/2017 15:34 16.58 1 0 2 2016 3 

40 26.5 19/09/2017 16:33 21.25 3 0 1 2015 3 
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Appendix 3.4 Unsupervised clustering of canopy structure 

 

 

a) Principal component analysis (PCA) of the DHM (arrows) for each of the 40 forest plots and 

representation of the 6 clusters obtained on the 1-2 factorial plane of the PCA. b) Dendrogram and 

absolute loss of inertia related to the clustering of the 6 clusters. c) Plot of the inter-cluster variance 

calculated with the kmeans clustering method as a function of the number of clusters tested (from 2 

to 30).  Beyond 6 clusters, the variance between clusters tended to saturate to a constant value of 250. 
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Appendix 3.5 Average of Canopy Height Model metrics defining each forest structure cluster. 

 

Forest 

structural 

metrics 

Cluster 

1 

Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Overall mean 

(all clusters) 

Minimum 

(m) 

0.64 6.48 2.66 0.96 2.26 6.26 2.81 

Maximum 

(m) 

27.88 20.71 30.03 32.01 39.47 39.49 33.23 

Mean (m) 9.91 13.86 14.13 14.03 20.86 22.94 16.46 

Variance 39.81 5.53 26.72 51.03 58.96 37.81 40.55 

Standard 

deviation 

6.19 2.28 5.10 7.08 7.59 6.05 6.16 

Coefficient 

of variation 

CV 

0.72 0.18 0.38 0.53 0.38 0.23 0.42 
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Appendix 4.1 Landsat images metadata (source USGS1) 

  Landsat-5 Landsat-8 

 Spectral 

resolution 

Blue (450-520), Green (520-600), Red (630-690), NIR 

(760-900), SWIR1 (1550-1750), SWIR2 (2080-2350) 

Ultra Blue (435-451), 

Blue (452-512), Green 

(533-590), Red (636-

673), NIR (851-879), 

SWIR1(1566-1651), 

SWIR2 (2107-2294) 

Path/row  1988 1995-1996 2000-2001 2009 2017 

222/062 Date  1988-08-16 1996-07-05 2001-08-04 2009-08-10 2017-07-31 

Cloud 

cover  

0% 2% 5% 2% 5.1% 

223/062 Date  1988-09-24 1995-07-10 2000-06-05 2009-08-17 2017-07-06 

Cloud 

cover  

0% 0% 4% 0% 1.39% 

223/063 Date  1988-09-24 1995-07-10 2000-06-05 2009-08-17 2017-07-06 

Cloud 

cover  

0% 1% 0% 0% 0.01% 

1 https://earthexplorer.usgs.gov/        (accessed on 7 March 2019) 
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Appendix 4.2 Landscape elements identified and the land use/ land cover typology 

Land use / Land cover typology  
Landscape elements identified in the field  

Photo (Bourgoin 

2017) 

Artificial surface Concrete road and buildings 

 

Water body Natural and anthropized lakes and rivers 

 

Cropland Maize, Soybean, Millet and sorghum 

 

Bare soil Dirt road or mining or bare soil (no crops) 

 

Pasture Managed pasture (Herbaceous layer <1m)  and 

unmanaged pasture (Herbaceous layer >1m and 

woody vegetation)  

Plantation Eucalyptus or Parika plantation of various ages 

 

Forest Forest in various states (from conserved to 

degraded) that has never been deforested 

 

Juquiera An initial stade of forest regrowth, mainly 

associated with abandoned or small-income-

owner's pastures  
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Appendix 4.3 Field inventory and visual interpretation of the different land uses (Landsat-8 2017 image 

with RGB composite color).  
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Appendix 4.4 Vegetation indices derived from Landsat images (G = Green band, R = Red band, NIR = 

Near-infrared band, SWIR1-2 = Short wave infrared spectral range) 

Vegetation 

Index 
Formulation Name Reference 

NDVI (NIR-R)/(NIR+R) 
Normalized Difference 

Vegetation Index 

(Rouse and Haas 

1974) 

NDWI (G-NIR)/(G+NIR) Normalized Difference Water 

Index 

(McFeeterts 1996) 
EVI 2,5*(NIR-R)/(NIR+6*R-7,5*B)+1) Enhanced Vegetation Index (Huete et al. 2002) 
SAVI (NIR-R)*1,5/(NIR+R+0,5) Soil-Adjusted Vegetation 

Index 

(Huete 1988) 
MSAVI (NIR-R)*(1+L)/(NIR+R+L) 

 

Modified Soil-Adjusted- (Qi et al. 1994) 
 L=1-((2*s*(NIR-R)*(NIR-

s*R))/(NIR+R)) 

Vegetation Index  
 s is the slope of the soil line from a 

plot of R/NIR near infrared 

brightness values. 

  

NBR (NIR-SWIR2)/(NIR+SWIR2) Normalized Burn Index 
(Miller and Thode 

2007) 

NBR2 (SWIR1-SWIR2)/(SWIR1+SWIR2) Normalized Burn Index 2 
(Storey et al. 2016) 

 

NDMI (NIR-SWIR1)/(NIR+SWIR1) 
Normalized Difference 

Moisture Index 

(Vogelmann and 

Rock 1988) 
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Appendix 4.5 Sampled regions, Shannon diversity index average profile and resulting grid units 

 

 

Appendix 4.6 Confusion matrix of Landsat-8 2017 based classification (user and producer accuracy, 

overall accuracy and kappa index) 

 

 

  

Actual/Predicted Artificial surfaces Water bodies Primary forest Cropland Pastures Plantation Bare soil Juquiera Cloud Shadow Total User accuracy

Artificial surfaces 258,80 1,96 0,08 1,28 0,78 0,00 16,14 0,60 0,04 0,00 279,68 0,93

Water bodies 1,18 291,90 0,00 0,00 0,00 0,00 0,08 0,00 0,70 3,02 296,88 0,98

Primary forest 2,50 0,78 250,12 0,02 1,34 20,62 0,62 17,78 0,66 1,26 295,70 0,85

Cropland 7,44 0,02 0,00 256,68 22,34 0,76 25,82 0,74 0,00 0,00 313,80 0,82

Pastures 3,82 0,14 2,34 21,58 238,22 11,78 14,14 23,82 0,00 0,00 315,84 0,75

Plantation 0,34 0,06 19,68 0,10 3,82 254,58 1,42 9,54 0,52 0,00 290,06 0,88

Bare soil 23,58 1,00 0,20 19,46 10,60 0,60 233,80 3,80 1,24 0,00 294,28 0,79

Juquiera 2,34 0,02 26,28 0,88 22,86 11,66 7,20 243,72 0,00 0,00 314,96 0,77

Cloud 0,00 0,00 0,00 0,00 0,04 0,00 0,78 0,00 296,84 0,02 297,68 1,00

Shadow 0,00 4,12 1,30 0,00 0,00 0,00 0,00 0,00 0,00 295,70 301,12 0,98

Total 300,00 300,00 300,00 300,00 300,00 300,00 300,00 300,00 300,00 300,00 3000,00

Producer accuracy 0,86 0,97 0,83 0,86 0,79 0,85 0,78 0,81 0,99 0,99

Overall Accuracy 0,87

Kappa 0,86
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Appendix 4.7 Forest non-forest classifications using historical Landsat images and overall accuracy 

(OA) and Kappa indexes. Cumulative deforestation (forest to non-forest transition), reforestation (non-

forest to forest transition) and deforested regrowth. 
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Appendix 4.8 Multiple linear regression models for the prediction of forest degradation proxies 

(mean/standard deviation of AGB, mean/standard deviation of NPVV) from landscape-level drivers. 

 

 mean AGB 

R²: 0.80, RMSE: 14.26 

Mg.ha-1 

Std AGB 

R²: 0.31, RMSE: 5.49 

mean NPVV 

R²: 0.58, RMSE: 0.85 

NPVV 

Std NPVV 

R²: 0.67, RMSE: 0.55  

 Esti

mate 

Std. 

Err

or 

pvalue Esti

mate 

Std. 

Error 

pvalue Esti

mate 

Std. 

Error 

pvalue Esti

ma

te 

Std. 

Error 

pvalue 

Intercept 219.7

3 

0.63 < 2e-16 36.57 0.24 < 2e-16 5.36 0.04 < 2e-16 2.01 0.02 < 2e-16 

Distance_Pgm 16.80 0.79 < 2e-16 3.37 0.28 < 2e-16 -0.33 0.05 1.54e-

10 

   

DEM -9.98 0.67 < 2e-16 -2.21 0.3 6.41e-13    0.15 0.03 7.55e-07 

Slope 8.78 0.68 < 2e-16 2.16 0.26 1.70e-15       

Sand_p    -1.43 0.29 1.28e-06 0.43 0.04 < 2e-16 0.14 0.03 4.82e-06 

Fire occurrence       0.25 0.05 1.54e-

10 

   

pNV_Forest 11.33 0.95 < 2e-16    -0.73 0.09 2.99e-

14 

-

0.64 

0.07 < 2e-16 

pNC_Forest_Pas

ture 

-5.89 0.83 4.92e-12    0.32 0.05 2.12e-

09 

   

pNC_Forest_Bar

eSoil 

3.62 0.64 2.16e-08 1.14 0.24 4.16e-06       

HET_agg       -0.68 0.09 5.60e-

13 

   

HET_frag          0.79 0.09 < 2e-16 

SHDI          -

0.84 

0.09 < 2e-16 

CSHDI    1.42 0.29 1.30e-06    0.18 0.04 4.81e-06 
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Appendix 5.1 Sentinel-2 and Landsat characteristics (source ESA1 and USGS2) 

 Sentinel-2  Landsat 5 and 8 

Spatial 

resolution,  
10 x 10 m 

30 x 30 m 

spectral 

resolution 

Blue (490), Green (560), Red (665) and 

NIR (842)  

Landsat 5: Blue (450-520), Green (520-600), Red 

(630-690) 
(nm) and 20 x 20 m NIR (760-900), SWIR1 (1550-1750), SWIR2 (2080-

2350) 
acquisition 

dates 

Red edge (705), B6 (740), B7 (783),  

 

znd  and 

07/02/2011, 18/12/2009, 26/12/2006, 05/01/2002, 

02/01/1998 
(Day-Month-

Year) 

B8a (865), SWIR1 (1610) and SWIR2 

(2190) 

 

10/01/1995, 22/03/1992, 09/01/1989 and 

01/01/1973 
 12/02/2018 and 07/02/2018 Landsat 8: Ultra Blue (435-451), Blue (452-512), 

Green 
  (533-590), Red (636-673), NIR (851-879), SWIR1 
  (1566-1651), SWIR2 (2107-2294) 
  25/01/2018, 20/01/2016 and 15/02/2014 

Tile size 100 x 100 km 185 x 185 km 

Tile number 48PZU and 48PZT 124/052 

1 https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi (accessed on 7 March 2019). 

2 https://earthexplorer.usgs.gov/    (accessed on 7 March 2019). 

 

Appendix 5.2 Vegetation indices derived from Sentinel-2 (S2) and Landsat (L) images (G = Green band, 

R = Red band, NIR = Near-infrared band, SWIR1-2 = Short wave infrared spectral range) 

Vegetation 

Index 
Formulation Name 

Satellite/Sensor 

(S2/L) 
Reference 

NDVI (NIR-R)/(NIR+R) Normalized Difference 

Vegetation Index 

S2 and L (Rouse et Haas 1974) 
NDWI (NIR-SWIR1)/(NIR+SWIR1) Normalized Difference 

Water Index 

S2 (Gao 1996) 
EVI 2,5*(NIR-R)/(NIR+6*R-7,5*B)+1) Enhanced Vegetation Index S2 and L (A. Huete et al. 2002) 
NDSI (SWIR-NIR)/(SWIR+NIR) Normalized Difference Soil 

Index 

S2 (Deng et al. 2015) 
DWV NDVI-NDWI Difference Water Vegetation S2 (Gond et al. 2004) 
BSI √R² + NIR² Bare Soil Index S2 (Li et Chen 2014) 
SAVI (NIR-R)*1,5/(NIR+R+0,5) Soil-Adjusted Vegetation 

Index 

S2 and L (Huete 1988) 
MSAVI (NIR-R)*(1+L)/(NIR+R+L) 

 

Modified Soil-Adjusted- L (Qi et al. 1994) 
 L=1-((2*s*(NIR-R)*(NIR-

s*R))/(NIR+R)) 

Vegetation Index   
 s is the slope of the soil line from a 

plot of R/NIR near infrared 

brightness values. 

   

NBR (NIR-SWIR2)/(NIR+SWIR2) Normalized Burn Index L (Miller & Thode 2007) 
NBR2 (SWIR1-SWIR2)/(SWIR1+SWIR2) Normalized Burn Index 2 L (Storey, Stow, & 

O’Leary 2016) 
NDMI (NIR-SWIR1)/(NIR+SWIR1) Normalized Difference 

Moisture Index 

L (J. E. Vogelmann & 

Rock 1988) 
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Appendix 5.3 Landscape elements identified in Di Linh district and 2 levels of land use/cover typologies 

Landscape components identified in the field  

Detailed land 

use / land cover 

typology  

Land use score 

following 

landscape 

intensification 

gradient [0-10] 

Simplified 

land cover 

typology 

Conserved, medium and poor evergreen forest: 2 to 4 vegetation 

layers. Basal area between 10 and 25 m3/ha. Diameter of the biggest 

trees >50 cm. Canopy between 15 to 30 m in height. Natural dead 

trees. No signs of human impacts (conserved) or old logging impacts. 

 

Evergreen 

broadleaf forest 
0 

Evergreen 

broadleaf 

forest 

 

Recent logging and/or burned forest: Located at the forest edge, signs 

of recent fire and logging. Low open canopy dominated by pioneer 

species. 

 

Bamboo forest: Evergreen broadleaf forest mixed with bamboo or 

pure bamboo forest. Between 5 to 25 m in height and 90% of tree 

cover, dense understory. 

 

Bush: Composed of 2 layers: herbaceous <1 m and 1 layer <3 m in 

height. 

Degraded forest 3 

Young pine tree plantation: 4 m in height. 50% tree cover. No 

intermediate vegetation layers. 

Natural pine forest or old plantation: 30 years maximum. Trees 

spaced (5-10 m apart), tall (25 m in height), and regular height. 

Diameter between 30 and 60 cm. No intermediate vegetation layers. 

Pine forest 6 Pine forest 

Coffee plantation: From 50 cm to maximum 3 m in height. 50% tree 

cover. No understory. 

Coffee 

 
9 

Cropland 

 

Irrigated and rainfed rice. Rice 9 

Banana plantations and/or maize: Height <3 m, mixed with a 

herbaceous layer. Sometimes intercropped with maize. Maize 

cultivated with coffee or banana. <1 m in height. 

Cropland 9 

Bare soil: In both forest and agricultural habitats. Presence of stumps, 

dead trees, trunks and sometimes limited regeneration. 
Bare soil 10 

Infrastructure: Buildings and paved roads and dirt tracks Infrastructure 10 

Water bodies: Artificial lakes and rivers Water bodies 10 
Water 

bodies 
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Appendix 5.4 Land use/cover classification of Di Linh district using Sentinel-2 (10 m) and Landsat-8 (30 

m) images 
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Appendix 5.5 Accuracy assessment of land use/cover classifications in 2018 

 Sentinel-2 Landsat-8 

Overall accuracy 0.81 0.75 

Kappa index 0.78 0.72 

 User 

accuracy 

Producer accuracy User 

accuracy 

Producer accuracy 

Cloud (center) 0.91 0.93 0.95 0.98 

Cloud (edge) 0.97 0.81 0.94 0.75 

Water 0.89 1.00 0.86 0.99 

Projected shadow 0.92 0.84 1.00 0.87 

Buildings and roads 0.86 0.83 0.66 0.88 

Young and mature coffee 0.74 0.76 0.68 0.61 

Bare soil (agriculture and 

forestry areas) 

0.59 0.84 0.56 0.75 

Degraded forest 0.78 0.49 0.82 0.49 

Young and mature pine forest 0.82 0.89 0.85 0.82 

Irrigated rice field 0.95 0.82 0.81 0.81 

Rainfed rice field 0.89 0.51 0.98 0.48 

Evergreen forest (no shadow) 0.79 0.78 0.79 0.61 

Evergreen forest (shadow) 0.93 0.61 0.84 0.59 

Cropland 1.00 0.24 0.85 0.27 
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Appendix 5.6 Shannon diversity index profiles calculated using Landsat-8 based classification (2018) 

within 50 to 8000 m buffer zones at 15 sampled points in Di Linh district (Fig. 2). The bold line shows 

the mean of the 15 curves 
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Appendix 5.7 Accuracy assessment (overall accuracy, kappa indexes, user and producer accuracy) 

 User accuracy Producer accuracy OA

  

Kappa 

 Pine 

forest             

Evergreen 

forest 

Forest 

shadow 

Cropland Urban Cloud Shadow  Water Pine 

forest             

Evergreen 

forest 

Forest 

shadow 

Cropland Urban Cloud Shadow  Water   

2016 0.92 0.96 0.96 0.93 0.92 0.95 1.00 1.00 0.98 0.85 0.82 0.91 0.95 0.95 1.00 1.00 0.95 0.93 

2014 0.93 0.93 0.85 0.89 0.90 1.00 1.00 1.00 0.95 0.86 0.83 0.89 0.92 1.00 1.00 1.00 0.93 0.91 

2011 0.86 0.92 0.90 0.96 0.93 / / 1.00 0.95 0.87 0.76 0.94 0.98 / / 0.99 0.92 0.91 

2009 0.89 0.94 0.93 0.94 0.93 1.00 0.99 0.89 0.97 0.91 0.76 0.92 0.88 0.99 0.92 1.00 0.93 0.92 

2006 0.81 0.91 0.88 0.83 0.91 0.93 0.82 0.89 0.94 0.80 0.69 0.87 0.92 0.89 0.72 0.89 0.86 0.84 

2002 0.87 0.89 0.90 0.87 0.92 1.00 / 0.96 0.86 0.90 0.724 0.92 0.94 1.00 / 0.97 0.89 0.86 

1998 0.86 0.92 0.91 0.85 0.94 1.00 1.00 1.00 0.89 0.90 0.85 0.91 0.82 0.99 0.94 0.90 0.89 0.87 

1995 0.83 0.89 0.90 0.84 0.88 / / 0.98 0.81 0.91 0.79 0.92 0.75 / / 0.98 0.87 0.83 

1992 0.89 0.84 0.87 0.91 0.94 1.00 1.00 1.00 0.87 0.89 0.77 0.95 0.85 1.00 1.00 0.98 0.89 0.87 

1989 0.83 0.85 0.82 0.84 0.95 1.00 / 0.96 0.79 0.88 0.69 0.95 0.74 1.00 / 0.83 0.85 0.80 

1973 0.78 0.81 0.72 0.79 0.71 1.00 0.67 0.83 0.70 0.83 0.65 0.87 0.76 1.00 0.29 0.89 0.79 0.72 
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Appendix 5.8 Assessment of sensitivity and exposure scores derived from landscape trajectories 

 

Sensitivity Exposure 

Forest dynamics (green curve) Fragmentation dynamics (grey dashed curve)  
Agricultural expansion 
 (yellow curve) 

 

Classes of 
landscape 
trajectory 

Forest 
2018  

Average 
composi
tion  

Rate of 
chang
e  

Score of 
rate of 
change 

Dynamic 
Score of 
forest 
dynamic 

Average 
value  

Rate of 
change  

Score of 
rate of 
change 

Dynamic 
Score of 
fragmentation 
dynamic 

Sensitivity 
Score 

Average 
composition  

Rate of 
change  

Score of  
rate of change 

Dynamic 
Exposition 
Score 

T1 1 0.7 -0.08 6.0 4.4 8.6 0.6 0.3 10 5.7 5.9 7.2 0.2 0.0 2.9 0.5 1.0 

T2 1 0.3 -0.09 6.7 2.1 4.2 1 -0.1 3.3 3.2 3.3 3.7 0.5 0.2 10 4.8 10.0 

T3 1 0.5 -0.14 10.0 5.1 10.0 1.1 0.2 8.9 9.7 10 10 0.3 0.1 8.1 2.6 5.3 

T4 1 0.6 0.00 0.0 0.0 0.0 0.7 -0.2 2.1 1.4 1.4 0.7 0.3 0.0 0.3 0.1 0.2 

T5 1 0.5 -0.01 0.7 0.3 0.7 0.8 0.1 7.2 5.5 5.6 3.2 0.3 0.0 0.0 0.0 0.0 

T6 1 0.6 0.00 0.0 0.0 0.0 1.1 0.0 5.5 6.1 6.3 3.2 0.2 0.0 1.9 0.3 0.7 

T7 1 0.8 -0.03 2.1 1.7 3.3 0.7 0.1 7.6 5.2 5.4 4.3 0.1 0.0 1.9 0.2 0.5 

T8 1 0.8 -0.01 0.8 0.6 1.2 0.4 0.1 6.4 2.6 2.7 1.9 0.2 0.0 0.7 0.1 0.3 

T9 1 0.3 0.00 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.7 0.0 0.5 0.0 0.0 

T10 1 0.3 0.00 0.0 0.0 0.0 0.2 0.0 5.1 1.3 1.3 0.6 0.6 0.0 0.8 0.5 1.1 

T11 0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 1.0 0.0 0.6 0.0 0.0 

T12 0 0.0 0.00 0.1 0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 1.0 0.0 0.7 0.0 0.0 

T13 0 0.0 -0.01 0.7 0.0 0.0 0.1 -0.1 3.2 0.0 0.0 0.0 1.0 0.0 2.0 0.0 0.0 

T14 0 0.0 -0.04 3.0 0.0 0.0 0.1 -0.2 2.6 0.0 0.0 0.0 1.0 0.1 3.9 0.0 0.0 

T15 0 0.1 -0.11 7.6 0.0 0.0 0.4 -0.3 0.0 0.0 0.0 0.0 0.8 0.2 9.7 0.0 0.0 

This table presents the average composition and rate of change for each class of landscape trajectory between 1998 and 2018, as well as the resulting dynamics for forest, fragmentation and agricultural expansion. 

Forest dynamic score clearly separates trajectory classes with a high proportion of forest that have experienced a sharp decrease in the last 20 years (values close to 10) from classes with a low proportion of forest and 

that have stabilized (values close to 0). We assigned a score of 0 to trajectory classes with no forest cover in 2018 or during the last 20 years. The fragmentation dynamic and agricultural expansion scores (i.e. exposition 

score) were obtained using the same method as for forest dynamics except that the higher the increase in the edge density (resp. cropland) indicator, the higher the score. The sensitivity score combines the two forest 

and fragmentation dynamics scores (and values resampled between 0 and 10). 
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Appendix 5.9 Assessment of adaptive capacity score derived from landscape mosaic composition 

(2018) and the agricultural intensification indicator (please refer to Fig. 3 for details on the calculation 

of landscape intensification scores) 

Adaptive capacity separates homogeneous, low fragmented and evergreen forest dominated 

landscapes (values close to 10) from heterogeneous, highly fragmented forest mosaics associated with 

coffee, degraded and pine forests (values close to 0). 

 

 

 

 

  

Classes of forest 

landscape mosaics 

Landscape intensification 

score 

Adaptive Capacity 

Score 

L1 0.2 10.00 

L2 1.4 7.78 

L3 2.1 6.38 

L5 4.3 2.07 

L6 5.3 0.03 

L7 5.4 0 
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Title : A framework for evaluating forest ecological vulnerability in tropical deforestation fronts from 

the assessment of forest degradation in a landscape approach: Case studies from Brazil and Vietnam 

Keywords : Ecological vulnerability, agricultural expansion, forest degradation, remote sensing 

Abstract: The conservation of tropical forest cover is a key to ensuring sustainable provision of multiple 

ecosystem services. However, increasing demography, demand for agricultural products and changes 

in land uses are affecting forest sustainability through degradation processes. A first step to tailor 

effective forest management is to identify most vulnerable forests and to characterize their drivers. 

The objective of this thesis is to develop a multidimensional approach to assess forest degradation and 

the relations with the broader dynamics of land use/cover towards the evaluation of forest ecological 

vulnerability. The thesis was applied in Paragominas (Brazil) and Di Linh (Vietnam) where large-scale 

deforestation driven by commercial agriculture shaped the landscape into land use mosaics with 

increasing degradation pressures. In Paragominas, degradation is linked with selective logging and fire 

implying changes in forest structure. We estimated the potential of multisource remote sensing to 

map forest aboveground biomass from large-scale field assessment of carbon stock and investigated 

the consequences of degradation history on forest structures. We found that canopy textures 

correlated with forest structure variability and could be used as proxies to characterize degraded 

forests using very high resolution images. Based on environmental, geographical factors and landscape 

structure metrics, we demonstrated that 80% of forest degradation was mainly driven by accessibility, 

geomorphology, fire occurrence and fragmentation. The drivers of degradation acted together and in 

sequence. The combination of current forest state, landscape dynamics and information on 

degradation drivers would be at the basis of ecological vulnerability assessment. In Di Linh, degradation 

is driven by encroachment of coffee-based agriculture. Field inventory of the different forest types and 

other landscape elements combined with Sentinel-2 images allowed to map with high precision the 

current land cover. We constructed trajectories of landscape structure dynamics from which we 

characterized the expansion of the agricultural frontier and highlighted heterogeneous agricultural 

encroachment on forested areas. We also identified degradation and fragmentation trajectories that 

affect forest cover at different rates and intensity. Combined, these indicators pinpointed hotspots of 

forest ecological vulnerability. Through the developed remote sensing approaches and indicators at 

forest and landscape scales, we provided a holistic diagnosis of forests in human-modified landscapes 

This thesis aims to pave the way for tailored and prioritized management of degraded forests at the 

landscape scale. 
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Titre : Un cadre d'évaluation de la vulnérabilité écologique des forêts dans les fronts de déforestation 

tropicaux à partir de l'évaluation de la dégradation des forêts dans une approche paysagère: Etudes 

de cas au Brésil et Vietnam 

Mots-clés : Vulnérabilité écologique, expansion agricole, dégradation des forêts, télédétection 

Résumé : La conservation du couvert forestier tropical est essentielle pour assurer la fourniture 

durable de services écosystémiques. Cependant, l'accroissement de la démographie, la demande de 

produits agricoles et les changements dans l'utilisation des terres affectent leur durabilité. L'objectif 

de cette thèse est de développer une approche multidimensionnelle pour évaluer la dégradation des 

forêts et les relations avec la dynamique de l'utilisation des terres afin d’estimer leur vulnérabilité. La 

thèse a été appliquée à Paragominas (Brésil) et Di Linh (Vietnam), où la déforestation due à l'agriculture 

commerciale a façonné le paysage en mosaïques d'utilisation des terres. A Paragominas, la dégradation 

est liée à l’exploitation sélective du bois et au feu impliquant des changements dans la structure 

forestière. Nous avons estimé le potentiel de la télédétection multisource pour cartographier la 

biomasse forestière aérienne à partir de données de stock de carbone et avons étudié les 

conséquences de la dégradation sur les structures forestières. Nous avons constaté que les textures 

de la canopée étaient corrélées à la variabilité de la structure forestière et pouvaient être utilisés 

comme indicateurs pour caractériser les forêts dégradées grâce aux images à très haute résolution. En 

nous basant sur des facteurs environnementaux, géographiques et de structure du paysage, nous 

avons démontré que 80 % de la dégradation était principalement due à l'accessibilité, la 

géomorphologie, la fréquence des incendies et à la fragmentation et que ces facteurs agissaient en 

séquence. A Di Linh, la dégradation est due à l'empiètement de la culture de café. L'inventaire sur le 

terrain des différents types de forêts et d'autres éléments, combiné aux images Sentinel-2, a permis 

de cartographier avec une grande précision la couverture du sol actuelle. Nous avons construit des 

trajectoires de dynamique paysagère afin de caractériser l'expansion de la frontière agricole et mis en 

évidence l'empiétement agricole sur les zones forestières. Nous avons identifié des trajectoires de 

dégradation et de fragmentation qui affectent le couvert forestier à différentes intensités. Ensemble, 

ces indicateurs ont mis en évidence des points chauds de vulnérabilité. Grâce aux approches et aux 

indicateurs de télédétection développés à l'échelle de la forêt et du paysage, nous avons fourni un 

diagnostic holistique des forêts dans les paysages modifiés par l'homme. Cette thèse vise à ouvrir la 

voie à une gestion adaptée et prioritaire des forêts dégradées à l'échelle du paysage. 


