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Granular media are ubiquitous throughout the world and developing a comprehensive understanding of their behaviour is a pressing challenge. Of particular importance is accounting for the localisation of deformation into thin bands that feature intense grain crushing. This thesis develops a framework that predicts the formation of these bands and the grain size evolution, using experimental, theoretical and numerical approaches.

Our experimental approach uses spatio-temporal plotting and Fourier analysis to extract information from photographs, allowing a sub-grain resolution of the velocity field. We investigate the effect of grain size polydispersity on the width of shear bands.

) by an elastic upscaling that includes Cosserat state variables. This regularises Breakage Mechanics, allowing it to predict strain localisation phenomena such as shear bands, and adds physical fidelity to Cosserat models.

Our numerical approach uses linear stability analysis and the finite element method to determine the conditions that result in strain localisation. The linear stability analysis gives the expected initial thickness and the initial postlocalisation tendencies of the system. This information informs the finite element analysis, which is used to perform a rigorous post-localisation analysis.

This thesis provides a framework which can be used to explore and further model the evolution of systems that experience strain localisation accompanied by intense grain crushing, ranging from standard laboratory tests to seismogenic faults. tendue et les tendances post-localisation initiale du système. Cette information façonne l'analyse des éléments finis, qui est utilisée pour réaliser une analyse post-localisation rigoureuse.

Cette thèse fourni un cadre pour le développement de modèles plus raffinés qui permettront l'étude des systèmes présentant de forte localisation des déformations accompagnées d'une fragmentation intense des grains. Ce modèle permet ainsi une meilleur compréhension de nombreux phénomènes, des tests de laboratoire aux séismes.

Résumé

Les matériaux granulaire sont omniprésent dans la nature, et le développement d'une compréhension complète de leur comportement est un défi pressant. L'explication de la localisation de la déformation en bandes minces, qui présentent un écrasement important des grains, est d'une importance particulière. Cette thèse contribue à développer un modèle prévoyant la formation des bandes et l'évolution des tailles des grains, expérimentalement, théoriquement et numériquement.

Notre approche expérimental utilise les graphiques spatio-temporels et l'analyse de Fourier pour extraire les informations des photos, ce qui permettent une résolution des champs de meilleure que le diamètre des grains individuels. Cela permet l'étude de l'effet du polydispersité sur le largeur des bandes de cisaillement.

Notre approche théorique développe une nouveau modèle constitutif qui combine deux formulations existant. Nous enrichissons Breakage Mechanics (Einav, 2007a,b) avec le continuum de Cosserat [START_REF] Cosserat | Diffuse and localized deformation of a porous Vosges sandstone in true triaxial conditions[END_REF] par un upscaling élastique qui inclut les variables d'état de Cosserat. Cette approche régularise Breakage Mechanics, permettant de prédire les phénomènes de localisation de déformation comme les bandes de cisaillement, et ajoute une fidélité physique aux modèles Cosserat.

Notre approche numérique utilise l'analyse de stabilité linéaire et la méthode des éléments fini pour déterminer les conditions conduisant à la localisation des déformations. L'analyse de stabilité linéaire donne l'épaisseur initiale at-4 Formulating Breakage Mechanics in the Cosserat 
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Chapter 1

Introduction

Granular media are pervasive throughout nature, and something that everyone interacts with in some way, every single day. From a morning bowl of cereal, to the asphalt underfoot when crossing the road, granular media are absolutely impossible to ignore. Perhaps surprisingly, for something so widely-spread, the behaviour of these media are relatively poorly understood, and there is a large global scientific community including (but certainly not limited to) engineers, physicists, mathematicians, geologists, computer scientists and biologists working to progress our understanding of how they behave. Such a wide and diverse community expressing their interest in this topic is indicative that understanding granular media is not merely an abstract academic exercise, but something that has real-world implications. Indeed, if we restrict ourselves to consider only the intersection of civil engineering and granular media, we are still left with some of the most pressing challenges in the world. Many sedimentary rocks are composed of collections of distinct grains that have been gradually cemented together over time, making them a classic example of a granular material. Sydney itself is underlain by a strong sandstone formed in the Triassic period, meaning that every building in the city relies on engineers being able to able to model the deformation of a granular medium under external loads to at least tolerable accuracy. Even in the event that we find ourselves in a city lying on rock that would not be considered a granular material, for example Paris, which is underlain by limestone, we still cannot escape the influence of granular media. Concrete, the world's most popular construction material is yet another example of a granular medium, being composed of both grains of sand and aggregate, joined together into an artificial rock by cement.

Simply by improving our understanding of granular media, we could design more efficient structures that better utilise one of the world's most carbon-intensive materials, and thus make a not-insignificant contribution to climate change mitigation efforts. Improving our understanding of granular media does not just have an impact on designed structures. Inevitably, society must interact with geological phenomena that for the time being, are well beyond our control. Some of the most prominent examples of these are immensely destructive phenomena such as earthquakes and landslides, which we cannot yet accurately model or predict. At a less destructive, but nonetheless societally consequential level, the formation and internal structure of subsurface reservoirs for both water and hydrocarbons, has important implications for where, how, and how much of a resource can be extracted.

An interesting and important feature of each of the aforementioned examples is that we may observe the formation of narrow bands where the grains have undergone extensive crushing. Using a wide variety of evidence gathered from field observations, experiments, numerical simulations, and theoretical models, workers in granular media, particularly those concerned with geological band structures, have come to the conclusion that these structures exercise an important effect in controlling the overall behaviour of the systems of which they form a part.

It is a a consistent feature of physical systems that the behaviours at larger scales are controlled by the smallest elements, in what is labelled emergent behaviour. Indeed, the large-scale structure of the universe has been attributed by physicists to the properties of the smallest sub-atomic particles in the first moments after the Big Bang. This general pattern of emergent behaviour is as applicable to geomaterials as to any other system studied by scientists. While fluids flow through it or the rate at which chemical reactions can happen. In particular, all of these properties have important roles to play when attempting to model the bands in geological structures that we previously mentioned. As these bands are typically only on the order of ten to one hundred times bigger than their constituent grains, there is a very intense feedback loop from changes in the grains, which causes changes in their emergent properties, in turn causing changes in the overall system which induce further changes in the grains. This breakdown of the scale-separation principle poses difficult problems for us in attempting to model granular media, which is part of what leads to it being such a rich and interesting field of study.

Since the 1970s, a variety of sophisticated and powerful techniques have been developed that allow the modelling of granular media as a system, while attempting to account for the underlying grains themselves in some systematic way. Broadly speaking, these developments fall within the field of "higher-order continua", where by adding additional complexity to the mathematical structure of our models, we may account for additional complexity in the physical reality that we are trying to understand. A pioneer in extending these techniques to geomechanics, i.e. the intersection of granular media, civil engineering and geology, is Ioannis Vardoulakis. This thesis lies squarely within the tradition developed by Vardoulakis and his coworkers. In particular, he exploited and refined a conceptual framework known as the Cosserat continuum that adds complexity by including particle rotations within the model, and we will make extensive use of this continuum in this thesis.

While the application of the Cosserat continuum in geomechanics has been steadily refined over time, the models arising out of this tradition have taken the size of the grains and their corresponding emergent properties as fixedin-time system parameters. This approach has been sufficient to develop models that can quite accurately predict band formation in certain systems, but in systems where grains can extensively crush, the limitations of this approach become evident. Hence, the core aim of this thesis is to develop a Cosserat model of a granular system that takes into account the size of the underlying grains, as well as how the size of those grains evolve over time. In order to build this model we use the theory of Breakage Mechanics, that accounts for and predicts grain crushing, and we expand the theory to account for Cosserat effects. There is much that we still do not understand about the interaction of the grains with the band, for example whether the presence of a wide range of grain sizes (i.e. the polydispersity) matters for the overall behaviour. As such the development of experimental techniques that we can use to begin

to answer questions such as this is another important part of the thesis. It is also important to understand how grain size evolution and band formation interact with a variety of different conditions that may represent standard laboratory tests from which engineers infer information for design, or conditions that are encountered in geological structures. As such, applying our model to these conditions can give us insight into what we do understand about the underlying physics, and what we do not understand and need to include in future models. We illustrate this coupled experimental-theoretical-numerical approach to the research in Figure 1.1.

By conducting this research, we hope that we will make at least a small contribution towards solving some of the difficult and important problems that we have mentioned above.

This thesis is laid out as follows: In Chapter 2 we outline the current state of the art in terms of field and laboratory observations of band structures that we categorise as shear, compaction or dilation bands, higher order continuum theories that can be used to predict band formation, and material models that describe the evolution of crushable granular media. In Chapter 3 we present a set of experiments in an annular shear apparatus, in order to explore the effect of polydispersity of the grain size distribution on the thickness of shear bands. In Chapter 4, we outline an energetic upscaling procedure and develop a Cosserat Breakage Mechanics constitutive model that can predict band formation and thickness in crushable granular media. In Chapter 5, we implement the model numerically and analyse its performance in a variety of load conditions relevant to geomechanics. Finally, in Chapter 6 we present our conclusions and perspectives for future work.

Field-scale observations

Compaction bands

The formation of pure compaction bands (that is to say, bands where there is no or negligible shear present) appears to be quite rare in nature, until recently being attested in the literature only in two major areas in the south-western United States, Buckskin Gulch and the Valley of Fire State Park. Both of these sites consist of Jurassic aeolian sandstones, denoted the Navajo and Aztec sandstones, respectively.

The presence of deformation bands in the Navajo sandstone was first reported by [START_REF] Aydin | Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone[END_REF]. They reported the presence of three classes of structures that they labelled "deformation bands" (single bands), "zones of deformation bands" (clusters of bands) and "slip surfaces" (surfaces of discontinuous displacement), by which deformation in the rock was preferentially accommodated. Importantly, they noted that the average grain size in the deformation bands was reduced by approximately an order of magnitude relative to the parent rock. The same authors later introduced the techniques of constitutive modelling to account for the development of deformation bands, and also distinguished between the discontinuous deformation of a "slip surface" and the continuous deformation in other deformation bands (Aydin and Johnson, 1983). The authors however do not distinguish between the different types of bands (namely compaction and shear in this context). [START_REF] Mollema | Compaction bands: A structural analog for anti-mode I cracks in aeolian sandstone[END_REF] provided a closer study of the compaction bands, which are characterised by an absence of in-plane shearing, reduction in volume, some fracturing of the constituent grains but very little crushing and comminution. The compaction bands they identified occurred in rock with grain sizes of 0.3-0.8 mm and porosities of 20-25%. They also identified "deformation band faults" which occurred in layers with grain sizes 0.05-0.25 mm and porosity of less than 20%. We recognise these structures as being shear bands (or shear-enhanced compaction bands), so we will adopt this terminology from hereon. They noted that compaction bands developed in the compressive quadrant at the tips of the shear bands, from which they inferred that the compaction bands form perpendicular to the largest compressive stresses, resulting in this case in bands at a high angle to the bedding planes. They also offered a simple crack-closing model to explain the presence of the compaction bands on a qualitative level. Review papers [START_REF] Fossen | Deformation bands in sandstone: a review[END_REF] highlighted the different mechanisms of band formation (namely disaggregation, phyllosilicate, cataclastic and dissolution-cementation) and noted that the accumulation of clay within the compaction bands reduced porosity to 10% or less and preferentially cemented them relative to the surrounding sandstone, explaining the higher resistance of the compaction bands to erosion [START_REF] Holcomb | Compaction localization in the Earth and the laboratory: State of the research and research directions[END_REF]. It has been argued that disaggregation bands formed by grain rearrangement occur at low confining pressures while cataclastic bands formed at greater depths [START_REF] Beke | Deformation band formation as a function of progressive burial: Depth calibration and mechanism change in the Pannonian Basin (Hungary)[END_REF][START_REF] Fossen | Deformation bands formed during soft-sediment deformation: Observations from SE Utah[END_REF].

Parallel to the study of the Navajo sandstone, [START_REF] Hill | Analysis of deformation bands in the Aztec Sandstone, Valley of Fire, Nevada[END_REF] extended the study of deformation banding in sandstones to the Aztec sandstone. The bands studied range from 0.5-2 cm thick, and some of them show sinuous but angular structures that result in a chevron pattern. These chevron-type formations appear significantly more frequently than the more conventional band-type structures. The deformation banding appeared in well-bedded sandstone, but not in structureless sandstone, from which we can infer that anisotropy may play a role in band formation, a conclusion later supported by other authors [START_REF] Deng | Distribution of compaction bands in 3D in an aeolian sandstone: The role of cross-bed orientation[END_REF]. [START_REF] Aydin | Bed-parallel compaction bands in aeolian sandstone: Their identification, characterization and implications[END_REF] confirmed that the porosities in the bands in the Aztec sandstone could be less than half that of the surrounding rock mass and the corresponding reduction in permeability could be of one order of magnitude. Their study was focused on compaction bands that are parallel-to-moderately-inclined (20 • ) to the bedding plane. Higher angle bands showed increasing indications of grain fracture and shearing behaviour. [START_REF] Eichhubl | Pure and shear-enhanced compaction bands in Aztec Sandstone[END_REF] reported the existence of shear-enhanced compaction bands in the Aztec sandstone (illustrated in Figure 2.2). They distinguished between shear-enhanced compaction bands, forming at 38 -53 • to the maximum compressive stress, and compactive shear bands that form at lower angles, and which accommodated much larger shear deformations. They noted that bedding-parallel compaction bands may be difficult to distinguish from the bedding planes themselves. [START_REF] Fossen | Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA[END_REF] also found wiggley pure compaction bands, shear enhanced compaction bands in planes and cataclastic compactive shear bands that formed after the compaction bands based on their cross-cutting behaviour. A comparison of the structure of the compaction bands in the Aztec sandstone noted that the compaction bands are thinner near to their tips and the tip areas generally feature we exclusively use the notion of stability rigorously defined by Lyapunov in his doctoral thesis (and translated into English one century later). Explanations with the explicit mathematical framework are available (see [START_REF] Rattez | Couplages Thermo-Hydro-Mécaniques et localisation dans les milieux de Cosserat : Application à l'analyse de stabilité du cisaillement rapide des failles[END_REF] and [START_REF] Stefanou | Fundamentals of bifurcation theory and stability analysis[END_REF] and citations therein), but for our purposes it is sufficient to say that a system is unstable if, when subjected to a small perturbation, the perturbation continues to grow in time. A bifurcation occurs when the behaviour of a system changes at a bifurcation point (for our purposes, the system changes from stable to unstable in the Lyapunov sense). In geomechanics, this corresponds to a system deforming uniformly experiencing a bifurcation from an unstable uniform deformation mode to stable localised deformation.

When bifurcation analysis is conducted in the classical continuum, it can be shown that softening behaviour favours localisation. Localisation can also occur in hardening material provided it demonstrates sufficiently strong non-associative behaviour [START_REF] Ord | Shear band formation in Gosford Sandstone[END_REF]. Under these conditions, the governing equations change from an elliptic system to a hyperbolic system [START_REF] Vardoulakis | Stability and bifurcation of undrained, plane rectilinear deformations on water-saturated granular soils[END_REF](Vardoulakis, , 1986)), resulting in an ill-posed problem. At this point, the homogeneous solution is unstable and is replaced by the localised band solution. In classical and rate-independent models we find that the predicted thickness of any localisation using techniques derived from bifurcation analysis will be zero (i.e. the perturbation with wavelength zero grows the fastest). Numerical implementation will lead to the observation of mesh-dependency of the results, with deformation typically concentrating in a band of one element width.

The root of this behaviour can be traced back to the absence of a length scale in the constitutive formulation.

There are two principal ways to repair this deficiency in models:

1. Rate-dependent regularisation. In these theories some sort of rate-dependent term is added, often related to viscosity, temperature or both [START_REF] Heeres | A comparison between the Perzyna viscoplastic model and the consistency viscoplastic model[END_REF][START_REF] Olszak | On thermal effects in viscoplasticity[END_REF]Sulem, 2010). The length scale arises from the dimension of the viscosity material parameter(s). Importantly, in order for this form of regularisation to work the analysis must be dynamic.

2. Use of a higher order continuum such as Cosserat, second gradient, or non-local. In these theories, the continuum is enriched with either additional kinematic variables (Cosserat) [START_REF] Cosserat | Diffuse and localized deformation of a porous Vosges sandstone in true triaxial conditions[END_REF]Vardoulakis, 2019), a dependence on higher gradients of the deformation (second gradient) [START_REF] Triantafyllidis | A gradient approach to localization of deformation. I. Hyperelastic materials[END_REF]Vardoulakis, 2000;[START_REF] Voyiadjis | A theory for grain boundaries with strain-gradient plasticity[END_REF], or a dependence on a weighted average of the neighbouring points [START_REF] Eringen | Nonlocal polar elastic continua[END_REF](Eringen, , 1981;;[START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF]. All of these choices have the effect of introducing a material length scale.

In order to further explore the range of possible constitutive models that can be used to solve the problem of predicting deformation band formation and evolution, we examine some constitutive models of particular interest for this thesis.

Constitutive models

The introduction of the notions of bifurcation and stability to geomechanics is traceable to the pioneering works of Rice and Rudnicki [START_REF] Rice | On the Stability of Dilatant Hardening for Saturated Rock Masses[END_REF](Rice, , 1976;;[START_REF] Rice | A note on some features of the theory of localization of deformation[END_REF][START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. In particular, they highlighted the destabilising effects of non-associated plastic flow such as that associated with friction, which all models which hope to accurately model geomaterials must include.

However the understanding of the deeper underlying mathematical problem (as described above) and the diffusion of this knowledge to the geomechanics community must be attributed to Ioannis Vardoulakis and co-workers, building on the work of the Cosserat brothers [START_REF] Cosserat | Diffuse and localized deformation of a porous Vosges sandstone in true triaxial conditions[END_REF], that had been re-formulated and re-popularised by [START_REF] Germain | The Method of Virtual Power in Continuum Mechanics -Part II: Microstructure[END_REF]. In a series of pioneering works in the 1980s, they introduced the Cosserat continuum (illustrated in Figure 2.15) as a means of regularising the problem and supplied a constitutive model that allowed them to predict the orientation of shear bands and their evolution in terms of thickness [START_REF] Mühlhaus | Oberflächen-Instabilität bei geschichtetem Halbraum mit Biegesteifigkeit[END_REF](Mühlhaus, , 1986;;[START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Vardoulakis | Stability and bifurcation of undrained, plane rectilinear deformations on water-saturated granular soils[END_REF]Vardoulakis, , 1986)). In these works the internal length scale was taken to be a material parameter equal to the average grain size, based on experiments showing that the thickness of shear bands scales with d 50 [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF].

of grain cataclasis in localisation bands highlights the inadequacy of this assumption. In addition, the mechanical properties, hydraulic permeability, thermal conductivity and chemical reactivity all have a strong dependence on the grain size distribution, emphasising the importance of gaining access to this information at the modelling level. Recent work has also argued that ultra-cataclastic material plays an important role in the formation of injection veins surrounding faults [START_REF] Lin | Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones[END_REF]. While there has been some recent attempts to include the idea of an evolving length scale in second gradient theories [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] and non-local damage mechanics [START_REF] Pijaudier-Cabot | Non-local damage model with evolving internal length[END_REF][START_REF] Rastiello | From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length[END_REF], or to account for system evolution by changing the non-local weighting function [START_REF] Nguyen | A damage model with evolving nonlocal interactions[END_REF], length scale is not attached to any particular micro-mechanical quantity that could give it physical meaning, and the expressions for the length scale and its evolution must be imposed as a constitutive choice. Some recent work has included length scales that depend on the size of the unit cell used for homogenisation [START_REF] Poh | Localizing gradient damage model with decreasing interactions[END_REF][START_REF] Wang | A homogenized localizing gradient damage model with micro inertia effect[END_REF], and that decrease the interaction length as damage increases, which has been applied successfully to the case of one-dimensional shock loading a quasi-brittle bar. The micro-mechanics of the model are based on interactions between cracks that occur during very fast loading, and the accelerations and micro-inertial effects play a key role. In this thesis we are primarily interested in localisations that occur across a range of shear rates, meaning we focus on techniques that are also suitable for quasi-static loading cases. However, extending micro-inertial effects to three dimensions could be a fruitful area of future research, particularly in cases of fast shear such as during seismic slip.

By contrast to some of the non-local formulations, the rigid-body rotations of the Cosserat continuum have a clear physical analogue in the quasi-rigid rotations experienced by particles in shear bands (see e.g. [START_REF] Hall | Discrete and continuum analysis of localised deformation in sand using X-ray µCT and volumetric digital image correlation[END_REF]), and as we shall show in Chapter 4 of this thesis, an expression for the internal length can be obtained as a natural consequence of energetic upscaling procedures.

Some recent works [START_REF] Bauer | Simulation of the Influence of Grain Damage on the Evolution of Shear Strain Localization[END_REF][START_REF] Bauer | Hypoplastic Constitutive Modelling of Grain Damage Under Plane Shearing[END_REF][START_REF] Bauer | Modelling Grain Damage Under Plane Strain Compression Using a Micro-polar Continuum[END_REF] have included an empirically based evolution equation for the mean grain size using a hypoplastic Cosserat formulation that is indifferent to thermodynamics, and thus cannot be used to correctly capture thermal processes in fault physics.

As such, we now introduce the Breakage Mechanics family of models, which provide a framework to evaluate the evolution of the grain-size distribution under mechanical loading.

Breakage Mechanics

The theory of Breakage Mechanics was introduced by Einav (Einav, 2007a,b) with the intention of modelling the effect of grain breakage on the bulk constitutive behaviour of brittle granular media. The model is constructed within the framework of hyperplasticity [START_REF] Houlsby | Principles of Hyperplasticity[END_REF], guaranteeing that it is thermodynamically admissible. The essential point of the model is that an internal Breakage variable can be defined, denoted B, that ranges from 0 to 1 and tracks the grain size distribution's progression from its initial state to an assumed ultimate state. Based on extensive field observations of fault gouge grain size distributions [START_REF] Chester | Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California[END_REF][START_REF] Sammis | The kinematics of gouge deformation[END_REF] and experimental evidence under arbitrarily large shearing [START_REF] Coop | Particle breakage during shearing of a carbonate sand[END_REF], as well as theoretical considerations about confined comminution and the limits of particle breakage [START_REF] Kendall | The impossibility of comminuting small particles by compression[END_REF][START_REF] Turcotte | Fractals and Fragmentation[END_REF], the ultimate grain size distribution was argued to follow a power law with a fractional exponent. It should be noted that the mathematics of the model behave equally well if some other ultimate distribution is substituted, but all the papers implementing Breakage Mechanics that we have cited adopt this hypothesis about the nature of the ultimate grain size distribution.

In concert with the breakage index that defines the relative position of the current grain size distribution between the initial and ultimate distributions, a new grading constant θ (in this thesis denoted θ γ ) was introduced in the initial paper (Einav, 2007a) that describes "how far apart" the initial and ultimate grain size distributions are. A larger value of θ γ (≈0.8-0.9) indicates that the initial and ultimate distributions are very different.

In the context of studying unsaturated granular media, another material constant θ H that regulates hydraulic energy has been introduced [START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF], as well as the concept of the "universal initial distribution", that implements a mathematically favourable expression for the calculation of θ γ and B. This model has been further refined to describe the couplings between the breakage processes and the water retention curve [START_REF] Zhang | Prediction of breakage-induced couplings in unsaturated granular soils[END_REF].

The inclusion of porosity as a state variable was first outlined in the context of a finite-strain formulation of Breakage Mechanics [START_REF] Rubin | A large deformation breakage model of granular materials including porosity and inelastic distortional deformation rate[END_REF] and further refined in a small-strain context that enables the accurate modelling of dilating behaviour and explains the critical-state dependence on grading (Tengattini et al., 2014a(Tengattini et al., , 2016)). The linkage between grain-size polydispersity and the porosity has recently been clarified [START_REF] Guida | Linking micro grainsize polydispersity to macro porosity[END_REF]. The modelling of cemented granular materials was accomplished by introducing a new state damage variable D that models the process of cement bridges being broken and crushed, using similar principles to the definitions of breakage [START_REF] Das | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II -Validation and localization analysis[END_REF][START_REF] Tengattini | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory[END_REF]. It should also be noted that breakage and damage have been combined to model the transition from a solid rock to a crushed granular media (Lyakhovsky and Ben-Zion, 2014a,b) and the dynamic rupture behaviour of the rock [START_REF] Kurzon | Dynamic Rupture and Seismic Radiation in a Damage-Breakage Rheology Model[END_REF][START_REF] Lyakhovsky | Dynamic rupture in a damage-breakage rheology model[END_REF], but that this model treats the behaviour as one similar to a phase transition between undamaged rock and entirely uncemented granular media, whereas the model outlined in [START_REF] Tengattini | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory[END_REF] models cemented granular media as a distinct material in and of itself.

The combination of the cemented and porous models is outlined in the thesis of Alessandro Tengattini [START_REF] Tengattini | A micro-mechanical study of cemented granular materials[END_REF]. Recent work has extended the theory to transversely isotropic granular rocks (Marinelli and Buscarnera, 2019b).

Parallel to further research on the bulk constitutive laws modelled with Breakage Mechanics, research has been conducted to provide a clear link with the micro-mechanics of the grains themselves and the emergent macro-scale properties, principally the crushing energy E c . Experiments [START_REF] Sulem | Thermal and chemical effects in shear and compaction bands[END_REF], theory [START_REF] Zhang | Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics[END_REF] and Discrete Element Modelling (DEM) [START_REF] Cil | DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils[END_REF] have all shown that the grain-breakage process is best modelled by a (three parameter) Weibull distribution and there is an approximately linear scaling between the energy required to break individual grains and that required to begin crushing grain assemblies.

One of the fundamental strengths of Breakage Mechanics is its ability to provide a clear link between the underlying fabric of the material (the grains) and the macroscopic behaviour through an internal variable that is always measurable without knowledge of the material's history, an important feature that is necessary for physically accurate modelling [START_REF] Rubin | Physical reasons for abandoning plastic deformation measures in plasticity and viscoplasticity theory[END_REF]. The subsequent development of additional features of Breakage Mechanics such as the breakage energy and the critical breakage energy arise directly from thermodynamics and mathematical integration respectively. This renders the model family capable of elucidating the true underlying physics of processes such as localisation more clearly than phenomenological parameters based on macroscopic curve fitting are able to. Approaches based on curve fitting are also only valid within the range that they were calibrated, which can pose difficulties when passing from the laboratory to situations such as deep faults.

To conclude, the theory of Breakage Mechanics has been used to model brittle granular media with great success.

Increasingly sophisticated models have been adopted that account for more physics and linkages have been drawn

between the micro-mechanics of the grains and the macroscopic constitutive laws. While there have been some instances of using non-local [START_REF] Nguyen | Nonlocal regularisation of a model based on breakage mechanics for granular materials[END_REF] or viscous regularisation [START_REF] Das | A theoretical study of grain crushing induced compaction localization in porous sandstones[END_REF][START_REF] Das | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II -Validation and localization analysis[END_REF] to enable Breakage Mechanics to predict strain localisations, the nature of this regularisation is ad-hoc and not related to any specific physical quantities of the medium. However, recent work has related rate dependence at the continuum scale to crack growth within the individual grains (Zhang and Buscarnera, 2017) which has been used to explain creep and delayed grain breakage [START_REF] Sohn | Measurement of comminution rate in granular materials subjected to creep tests[END_REF]. Rate-dependence may also result from chemical changes induced by surface-reactive environments (Zhang and Buscarnera, 2018). A rate-dependent Breakage model has also been implemented numerically with two different algorithms, with an algorithm based on consistency viscoplasticity

shown to be more efficient (Marinelli and Buscarnera, 2019a). A comparison of higher-order regularisation with viscous regularisation for Breakage Mechanics may provide an interesting future avenue to explore.

Numerical implementations

Any constitutive model of any significant complexity must be implemented numerically in order to derive results from it, as the underlying Partial Differential Equations (PDEs) will not be tractable analytically.

One approach is the Finite Difference method, which is frequently used to discretise the time-coordinate in PDEs.

Refined versions such as the Runge-Kutta method [START_REF] Butcher | Coefficients for the study of Runge-Kutta integration processes[END_REF][START_REF] Fehlberg | Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme[END_REF] or Crank-Nicolson [START_REF] Crank | A practical method for numerical evaluation of partial differential equations of the heat-conduction type[END_REF] are frequently implemented in practice. Implicit methods such as backwards-Euler are unconditionally numerically stable, at the cost of being more computationally expensive per time step.

Another approach is the Finite Element Method, which is typically used to discretise the spatial coordinate. Extensive treatments of various higher order continua implemented in finite elements for the solution of a range of geotechnical problems have been outlined in other works (see [START_REF] Collin | Numerical modelling of Multiphysics couplings and strain localization[END_REF], [START_REF] Papamichos | Numerical modeling of bifurcation: Applications to borehole stability, multilayer buckling, and rock bursting[END_REF] and Papanastasiou and Zervos ( 2016) and citations therein for comprehensive treatments). Due to the enormous range of techniques and modifications to this method that have been published, dealing with a wide array of different problem types, we highlight only a select few publications illustrating the essential points for this thesis.

Various authors have highlighted the utility of the Cosserat continuum in ensuring that a unique solution is converged upon with appropriate mesh refinement [START_REF] Borst | Simulation of Strain Localization: a Reappraisal of the Cosserat Continuum[END_REF]Papanastasiou andVardoulakis, 1989, 1992;[START_REF] Rattez | Numerical Analysis of Strain Localization in Rocks with Thermo-hydro-mechanical Couplings Using Cosserat Continuum[END_REF][START_REF] Vardoulakis | Bifurcation analysis of deep boreholes: I. Surface instabilities[END_REF][START_REF] Zervos | Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity[END_REF]. In particular, the utility of a mixed-element formulation has been argued [START_REF] Godio | Dynamic finite element formulation for Cosserat elastic plates[END_REF][START_REF] Li | A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials[END_REF] for Cosserat finite elements, although it is not essential, as has been demonstrated in the recent thesis of Hadrien Rattez [START_REF] Rattez | Couplages Thermo-Hydro-Mécaniques et localisation dans les milieux de Cosserat : Application à l'analyse de stabilité du cisaillement rapide des failles[END_REF] and associated works (Rattez et al., 2018a,b,c) performed using the REDBACK framework [START_REF] Poulet | Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems[END_REF].

Using material models that are based on enforcing a consistency condition on a yield surface demands a numerical implementation that allows the condition to be met, within numerical tolerance. There are multiple possible ways of doing this (see [START_REF] Einav | Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces[END_REF]), and recently a robust projection algorithm has been implemented and validated for the Cosserat continuum (Godio et al., 2016).

It should also be noted that it is possible to retain the formal benefits of hyperplastic modelling while eliminating the yield surface, easing numerical integration (Einav, 2012).

Numerical techniques can be applied in order to model localisations without the underlying constitutive model featuring an internal length scale. Amongst these are the Enhanced Assumed Strain (EAS) method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]) and the related Galerkin embedded strong discontinuity algorithm [START_REF] Borja | Finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation[END_REF][START_REF] Borja | Strain localization in frictional materials exhibiting displacement jumps[END_REF], and the Extended Finite Element Method (XFEM) [START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Sukumar | Extended finite element method for three-dimensional crack modelling[END_REF]. However, the performance and accuracy of these solutions can depend on exactly how the enhancement is implemented (Borja, 2008), and mean the problem can only be studied using the methodology the enhancement has been performed on (for example, no comparison with a linear stability analysis is possible). These techniques do not convey any additional information about the underlying physics that we are concerned with, and are mostly of interest from the perspective of obtaining better performance from classical models during localisation.

Conclusion

It is clear that the formation of localisation bands, particularly shear bands, is a significant failure mode for granular rocks observed in the field. Field observations highlight the importance of high porosity and large grain sizes, par-ticularly in the formation of compaction bands. It appears to be exceedingly rare to encounter a shear band formed in the field that does not feature extensive grain cataclasis, emphasising that the microstructure changes extensively inside shear bands.

In the laboratory the formation of compaction bands occurs at high confining pressures (substantially higher than the pressure inferred from field measurements), while at low confining pressures, the failure of samples by shear band formation appears to be a pervasive mechanism. These shear bands can either be accompanied by extensive dilation and minimal grain fragmentation, or compaction and with extensive grain cataclasis.

While not being the sole tool used to model band formation, the theory of localisation of deformation based on bifurcation analysis is by far the most popular and well-developed method. It has been shown that in the absence of some regularisation that endows the constitutive model with an internal length, the predicted localisation width will be zero. The most popular method to regularise the problem in geomechanics is the use of the Cosserat continuum, but the imposition of the average grain size as a fixed internal length associated (up until now) with this method is clearly not viable given the extensive evidence for grain size evolution by cataclasis. It is also not clear from reported experimental results whether the polydispersity of the grain size distribution has a role to play with respect to the width of the shear band formation.

This absence in the literature suggests the need to perform some experiments focusing on the effect of polydispersity to obtain some insight for future modelling efforts. Thus, in the following chapter we present a series of experiments that we conducted to determine whether we need only to model the evolving mean grain size, or whether we must take into account the entire grain size distribution in some way.

Chapter 3

Continuous annular shear experiments with two-dimensional rod particles

Summary

In this chapter we present a series of experiments conducted in the Appareil Cisaillement Simple Annulaire (ACSA), with the aim of developing experimental techniques that in the future can be used to evaluate the success of models for polydisperse media, in particular their predictions of shear band formation. By selecting three mixtures with a constant mean grain size but different maximum grain sizes we develop the technique while also gaining insight into whether the mean grain size is an adequate descriptor of the micro-structure for the purposes of shear band modelling.

In order to achieve this, we use techniques from image analysis to extract barycentric tangential velocity profiles over the radial coordinate, which are numerically differentiated to present strain rate profiles. By carrying out this analysis we are able to conclude that the mean grain size is inadequate to fully describe the continuum behaviour, and that some measure of polydispersity must be used to accurately represent the material. We are unable to conclude exactly what measure of polydispersity should be taken into account, as doing so would require carrying out an extensive experimental campaign that is beyond the scope of this thesis.

Introduction

In Chapter 2, we discussed the progression of Cosserat models intended to be able to predict the shear band thickness in granular media. These developments were motivated by the observation that the behaviour of granular media, particularly with respect to shear band formation, is strongly influenced by the size of the constituent grains [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF]. Previous developments in the theory of Cosserat modelling of geomaterials, in particular the classic works of Vardoulakis and coworkers [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF]Vardoulakis and Sulem, 1995), have treated the mean grain size as a material parameter that is sufficient to capture the relevant behaviour based on observed experimental behaviour. In particular, the mean grain size plays a critical role in determining the thickness of shear and compaction bands in these models, by acting as the internal length of the Cosserat continuum that regularises the equations and allows the prediction of their characteristic width.

While these theories have been very successful and have been implemented in various extended models, particularly in the context of multi-physical coupling for fault mechanics (Rattez et al., 2018a,b,c), they rely on the assumption that the mean grain size is a fixed material parameter. However, a wide variety of evidence, from the laboratory scale [START_REF] Coop | Particle breakage during shearing of a carbonate sand[END_REF][START_REF] Bied | Microstructure of shear zones in Fontainebleau sandstone[END_REF][START_REF] Sulem | Shear banding in drained and undrained triaxial tests on a saturated sandstone: Porosity and permeability evolution[END_REF] all the way to the fault scale [START_REF] Chester | Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California[END_REF][START_REF] Sammis | The kinematics of gouge deformation[END_REF][START_REF] Sulem | Stress orientation evaluated from strain localisation analysis in Aigion Fault[END_REF] clearly demonstrates that when subjected to significant loading, grains undergo breakage and shear band structures form where the intensity of this breakage behaviour is particularly intense. As a consequence of the constituent particles of the media being crushed, the mean grain size must also change.

We prepared a range of PVC plastic cylinders, of height 60 mm (with some small variance), and diameters 1.6, 3, 4, 6, 8 and 10 mm. The larger cylinders were sanded so they were slightly rougher. We left the smaller cylinders as they are, as they already had a slightly roughened surface.

We then spray-painted the upper surfaces of the cylinders in a matte-white paint to aid the ability to accurately distinguish them from the surrounding void space. Any cylinders that were stuck together by the process of spraypainting were separated to avoid the formation of any compound grains.

The samples were prepared by including the desired grain size fractions in the appropriate weights to maintain the target mean grain size. The cylinders were placed in a series of moulds, shown in Figure 3.2 that prevent them from falling due to their slenderness (a factor which is particularly important for the smaller grain sizes), aided by the application of tape to the end and one of the open sides of the mould. The tape on the open side was removed as the mould was placed in the ACSA. Once all of the moulds that could be fit into the ACSA were placed, the gaps between them were filled with the cylinders, and the moulds removed.

Cylinders continued to be placed until the sample was sufficiently dense that no further cylinders could be inserted, or all of the prepared sample was placed.

confining pressure p and the same shearing rate v for all the experiments, ensuring the only variable aspect is the polydispersity of the material that we test.

Data analysis

While the ACSA does have the capacity to measure the applied torque, in the geometry we use the data produced is unreliable, and so we turn to image analysis techniques to measure the velocity field. These techniques, namely spatio-temporal plotting, Fourier analysis and geometric fitting, are performed in order to obtain the tangential angular velocity over the radial coordinate.

Image treatment

We start with our original image in colour, shown in Figure 3.5. The image is 3888 by 2592 pixels and is obtained with a Canon EOS 400D digital camera, saving the file in JPEG format. The exposure time is 1/100th of a second, the f-number is f/5.0, the ISO value is 100 and the focal distance is 25 mm. A new image is taken every 5 seconds. We convert the original image to greyscale and crop out the outer edge to reduce file size and increase processing efficiency (i.e. we remove the top 270 pixels). The greyscale is obtained by converting the red (R), green (G) and blue (B) colours into a single value using the ITU-R 601-2 luma transform:

L = R × 299/1000 + G × 587/1000 + B × 114/1000 (3.1)
This produces a greyscale image Figure 3.6 where all of the pixels values are transformed into values between 0 (absolute black) and 255 (absolute white): 

Fourier analysis

The spatio-temporal plots demonstrate a clear stripey pattern. The slope of this pattern in Figure 3.8 is a measure of the velocity, v θ . The slope is more-or-less constant in time, with some degree of noise, and different radii will have different slopes, representing the decay of velocity as the radius increases.

The method we select in order to measure the slope is drawn from the work of [START_REF] Faug | Standing jumps in shallow granular flows down smooth inclines[END_REF], based on the two dimensional fast Fourier transform (FFT). The FFT is a way to detect patterns in the image as well as their frequency and orientation. This will effectively collapse all of the slopes we observe in the stripey pattern into one set of data points that we will be able to apply fitting techniques to.

We wish to obtain a reliable statistical mean of the velocity that we measure using the FFT method. To this end, rather than performing an FFT of the entire spatio-temporal plot, which is extremely expensive numerically, we select a square sub-window at the left-most edge and perform the FFT analysis on that sub-window. We then slide the window along, such that the operation is performed 20 times and we have a well-defined statistical mean.

In order to aid the clarity of the signal, we can also pass the spatio-temporal plot through a threshold so that we treat values above the threshold as all equal to 255, and values below the threshold as equal to zero. This means that all shades of grey above the threshold will contribute equally, removing some of the effect of uneven paint application, overshadowing due to slightly unequal particle heights or slight tilting of the particles. This all adds to a "sharper" signal than present if we do not apply a binary threshold. We outline the specific details of the process in Appendix A. This produces a plot of the two dimensional FFT, as shown in Figure 3.9. Clearly visible on Figure 3.9 are a series of white lines, with the brightest of those being at the centre. The slope of this line is a measure of the slope of the pattern in the spatio-temporal plot.

Velocity analysis

The slope of the line in Fourier space is more distinct and easier to measure than the pattern in the spatio-temporal space. We measure the slope of this line with two methods, linear best fit using orthogonal distance regression, and equivalent image moments.

The first step is to threshold the image, discarding any points that fall below the threshold value, so we retain only those points that display as "bright" on the image. We use 20 different threshold values, t = 0.60, 0.61, . . . , 0.80, and discard any points less than t × I max .

In general, some points belonging to the fainter secondary lines will clear the thresholds. Although these lines have the same slope as the principal signal, their presence will serve to skew the fit. Hence, we apply a second threshold to discard any points that lie greater than n pixels distance away from the centre of the image (i.e. we discard high frequency information and seek the fundamental frequency). We set n = 300.

Finally, we binarise all the points that clear the threshold, setting the value of all points to either one or zero.

Then we can perform our two fitting methods.

Orthogonal distance regression

Orthogonal distance regression (ODR) works similarly to classical linear regression. The essential difference is that rather than using only the vertical distance between the data point and the regression line, the ODR method takes the orthogonal distance between the data point and the regression line. This class of model is classically used to account for when there are errors in both the "independent" (x) and "dependent" (y) variables. This is suitable for our case as

If we characterise the presence of the shear band by the region in which the velocity drops to zero, there is no apparent difference between Sets 2 and 3, while there is a difference between these two and Set 1. Further, if we characterise it by the kink in the velocity distribution, using the gradient of the strain rate to more precisely characterise it, there is some indication that the kink occurs at a slightly larger radii for Set 3 than for Set 2. The reason for this may be related to the nature of the particles that make up the distributions. Both Sets 2 and 3 feature "unnatural" grain size distributions in the sense that they are quite far from what would typically be found in nature (whereas Set 1 features a distribution that is consistent with natural soils). Both sets have grain size distributions with (close enough to) the same average, but this is achieved by using a bulk of smaller particles with relatively few much larger particles and nothing in between. The effect of this distribution may be to cause the behaviour to be governed largely by an "effective average grain size" that is the average of the bulk of smaller particles. This would explain why the behaviour of Sets 2 and 3 are largely very similar, because they are both sparse enough in large grains to trigger this sort of behaviour, whereas Set 1 has a smoother continuum type behaviour that engages all of the large particles in carrying the force chains. However, the difference between Sets 2 and 3 may be explained purely by the size of the largest particle present. These particles may disrupt the continuum flow and cause an even sharper decline than what may otherwise be the case. The kink may then occur at a larger radii for Set 3 than for Set 2 purely due to the largest particle size being slightly larger.

Finally, we note that in general, the decay in velocities that we observe is imposed by our choice of a cylindrical test geometry. However, given that we impose the same boundary conditions on all of our tests, but do not observe the same rate of velocity decay, we may infer that the rate of decay which determines the shear band thickness is governed in some way by the polydispersity. Our data does not allow us to determine whether the polydispersity affects only the plastic behaviour, or whether the elastic behaviour is also significantly changed. Future experiments could use techniques such as photoelasticimetry [START_REF] Zadeh | Enlightening force chains: a review of photoelasticimetry in granular matter[END_REF] to trace the micro-mechanical origins of the bulk behaviour, and determine whether and to what extent inter-particle force distributions are changed by increasing the polydispersity of the medium. Further investigations in other geometries (such as the Stadium Shear Device [START_REF] Miller | The kinematics of dense granular materials under indefinite plane-shear[END_REF]) would strengthen our conclusions by demonstrating that the behaviours we observe are truly micro-mechanical in origin and are not legacies of our experimental geometry. Experiments of this nature would allow modellers significant insight into how to include measures of polydispersity in their models.

Conclusion

These experiments were conducted in the context of inferring information that would be relevant to the construction of sophisticated models for granular media. In particular, Cosserat continuum models that are endowed with an internal length scale have used the average grain size as this length scale, and we wished to see whether this parameter was sufficient to characterise the material behaviour. By performing three sets of experiments, each of which used media with the same mean grain size, but different grain size distributions, we can conclude with confidence that the mean grain size is insufficient to fully characterise material behaviour. We may draw this conclusion on the basis that although the mean grain size was identical, different materials demonstrated different behaviours with respect to shear band formation. The material where the largest particle was 6 mm demonstrated a quasi-linear decline of velocity and in two out of the three experiments reached zero velocity at significantly smaller radii than the experiments with larger maximum grain size. Although the materials with maximum grain sizes of 8 mm and 10 mm declined to zero velocity at larger radii, they also demonstrated a distinct kink in their velocity profiles where they changed from an initial extremely rapid velocity decline to a much more gradual decline. In addition, the velocity profiles of these two experimental sets are very similar, with possibly the only difference being a kink point at a larger radius for the set with maximum grain size 10 mm compared to that for the set with maximum grain size 8 mm.

From this analysis we may infer that under constant mean grain size, increasing polydispersity increases the thickness of shear band, but perhaps only to a point. However, the increase of this thickness is significant, with the distributions with 8 and 10 mm maximum particle sizes being on the order of 25-33% thicker than the distribution with 6 mm maximum particle size.

Based on the similar results returned by both the ODR and image moment methods for the velocity, and the size of the data spread we observe both within the experiments and over each set of experiments, we may conclude that these results are robust for these grain size distributions. However, as previously noted, this chapter serves mostly to develop a method by which we can validate future models for their predictions of shear bands, which required a large range of grain sizes. In order to develop truly robust experimental inferences about the interplay of grain size and polydispersity in forming shear bands, a much wider range of materials must be tested. In particular, more "realistic" grain size distributions with a smoother transition from large to small grains should be explored. It is possible that the observed difference in behaviour between Set 1 and Sets 2 and 3 could be explained as the difference between a polydisperse distribution (Set 1) and two relatively homogeneous distributions with occasional large intruder particles (Sets 2 and 3). However, if Sets 2 and 3 could be characterised in this way, we would expect smaller shear bands than those demonstrated in Set 1, given the well-known scaling of shear bands with mean grain size. While we could also imagine that it is in fact the larger grain sizes that dominate the behaviour, we would then expect an approximately 25% thicker shear band in Set 3 than in Set 2, which we do not observe. Hence we conclude that the most likely explanation is that all three sets are behaving as truly polydisperse distributions, and the observed differences in behaviour are due to the differences in polydispersity.

As the results of these experiments indicate, the effect of polydispersity on the size of shear bands may be less than that of the mean grain size, but it is not negligible. While a full experimental exploration of the exact relationship is beyond the scope of this thesis, the behaviour we have observed in these experiments contains important insights for modelling, namely that not only should modellers track the evolution of the mean grain size, they should also include measures of the polydispersity when developing models to predict deformation bands. With this in mind, in the following chapter we develop a model that includes information on the entire grain size distribution as well as the enriched kinematics that will allow it to predict shear band thickness.

Chapter 4

Formulating Breakage Mechanics in the Cosserat continuum

Summary

In this chapter we present the development of a model that combines Breakage Mechanics and the Cosserat continuum.

The Breakage model chosen is that outlined in [START_REF] Nguyen | The Energetics of Cataclasis Based on Breakage Mechanics[END_REF], as the simplest current model capable of being extended to the Cosserat continuum. Although there are currently a number of more general Breakage models, notably ones that include porosity and dilation [START_REF] Tengattini | A micro-mechanical study of cemented granular materials[END_REF], in the following we proceed with a simpler Breakage model to ease the implementation and understanding, as the Cosserat continuum introduces additional complexity due to the additional degrees of freedom. The benefit of this additional complexity is the ability to predict not only the existence but also the thickness of localisations such as shear bands. As discussed in the literature review, these structures are pervasive in both the field and the laboratory, meaning that any complete model of brittle granular media must be able to account for them. The model that we outline in this chapter can serve as a foundation for more complicated future models that take into account porosity, damage and pressure-dependent elasticity [START_REF] Das | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II -Validation and localization analysis[END_REF]Tengattini et al., 2016[START_REF] Tengattini | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory[END_REF].

Introduction

This chapter is organised as follows: first, the definitions of strain γij and curvature κij rate tensors are introduced, and then the definitions of the stress τ ij and couple-stress µ ij tensors, as well as the breakage index B. An elastic upscaling procedure is detailed that allows the definition of two new material constants related to grading, θ κ and θ I , and a study of their limiting behaviours is conducted. A material length scale that arises naturally from the elastic upscaling is also defined. The constitutive model is then outlined, including a generalised definition of the second deviatoric invariants and methods to calibrate the Cosserat elastic stiffnesses as functions of the classical bulk and shear stiffnesses, assuming linear isotropic elasticity.

Definitions

Strain and curvature rates

In a Cosserat continuum, the material points have six degrees of freedom, those of translation that exist also in the classical continuum, and three degrees of rotational freedom.

The infinitesimal (non-symmetric) strain rate tensor is defined as

γij =     ∂ u1 ∂x1 ∂ u1 ∂x2 + ωc 3 ∂ u1 ∂x3 -ωc 2 ∂ u2 ∂x1 -ωc 3 ∂ u2 ∂x2 ∂ u2 ∂x3 + ωc 1 ∂ u3 ∂x1 + ωc 2 ∂ u3 ∂x2 -ωc 1 ∂ u3 ∂x3     , (4.1)
where ui and ωc i are the translation and rotation rates along and about the x i axes.

The strain rate tensor can be split into symmetric and anti-symmetric parts, denoted γ(ij) and γ[ij] respectively.

The symmetric part of the tensor is identical to the infinitesimal strain rate tensor in the classical continuum, so the equation may also be written

γij = εij + γ[ij] , (4.2) where εij =       ∂ u1 ∂x1 1 2 ∂ u1 ∂x2 + ∂ u2 ∂x1 1 2 ∂ u1 ∂x3 + ∂ u3 ∂x1 1 2 ∂ u2 ∂x1 + ∂ u1 ∂x2 ∂ u2 ∂x2 1 2 ∂ u2 ∂x3 + ∂ u3 ∂x2 1 2 ∂ u3 ∂x1 + ∂ u1 ∂x3 1 2 ∂ u3 ∂x2 + ∂ u2 ∂x3 ∂ u3 ∂x3       , (4.3) and γ[ij] =       0 1 2 ∂ u1 ∂x2 -∂ u2 ∂x1 + ωc 3 1 2 ∂ u1 ∂x3 -∂ u3 ∂x1 -ωc 2 1 2 ∂ u2 ∂x1 -∂ u1 ∂x2 -ωc 3 0 1 2 ∂ u2 ∂x3 -∂ u3 ∂x2 + ωc 1 1 2 ∂ u3 ∂x1 -∂ u1 ∂x3 + ωc 2 1 2 ∂ u3 ∂x2 -∂ u2 ∂x3 -ωc 1 0       . (4.4)
In a Cosserat continuum, there also exists a curvature rate tensor, defined as

κij =     ∂ ωc 1 ∂x1 ∂ ωc 1 ∂x2 ∂ ωc 1 ∂x3 ∂ ωc 2 ∂x1 ∂ ωc 2 ∂x2 ∂ ωc 2 ∂x3 ∂ ωc 3 ∂x1 ∂ ωc 3 ∂x2 ∂ ωc 3 ∂x3     . (4.5)
As with the strain rate tensor, the curvature rate tensor may also be decomposed into symmetric and anti-symmetric parts:

κij = κ(ij) + κ[ij] . (4.6)
The total strain rate and curvature rate tensors (4.1) and (4.5) can also be compactly written respectively as γij = ui,j + ǫ ijk ωc k , (4.7) and κij = ωc i,j , (4.8)

where the Einstein summation convention was used, which we follow from this point onward, and where ǫ ijk is the Levi-Civita symbol, given by

ǫ ijk =          +1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2), -1 if (i, j, k) is (3, 2, 1)
, (1,3,2) or (2, 1, 3), 0 otherwise.

(4.9)

Both strain and curvature rate tensors can also be split into trace and deviatoric parts:

γij = 1 3 εkk δ ij + ėij , (4.10) κij = 1 3 κkk δ ij + kij , (4.11)
where δ ij is the Kronecker delta, given by

δ ij =    0 if i = j, 1 if i = j.
(4.12)

The summation εkk is equivalent to the volumetric strain rate εv . The deviatoric parts can be further decomposed into symmetric and anti-symmetric components

ėij = ė(ij) + ė[ij] , (4.13) kij = k(ij) + k[ij] . (4.14)

Plasticity framework

Later in this chapter, we develop a constitutive model within the context of rate-independent plasticity. The strain and curvature rates are decomposed into elastic (recoverable) and plastic (non-recoverable) parts:

γij = γe ij + γp ij , (4.15) κij = κe ij + κp ij . (4.16)
The decompositions of the elastic and plastic parts into their respective volumetric and deviatoric, symmetric and anti-symmetric parts follow as for the total rate tensors above.

We hold to the convention that constitutive models must not rely on arbitrary reference-dependent variables [START_REF] Rubin | Physical reasons for abandoning plastic deformation measures in plasticity and viscoplasticity theory[END_REF]. As such, the elastic strain and curvature tensors, γ e ij and κ e ij , are used as state variables in the model, but not the plastic and total strain and curvature tensors.

Stresses and couple-stresses

The stress tensor in a Cosserat continuum is, in general, non-symmetric like the strain rate tensor. The tensor can be decomposed into symmetric and anti-symmetric parts, and the symmetric part is identified with the Cauchy stress tensor of the classical continuum:

τ ij = σ ij + τ [ij] .
(4.17)

In the Cosserat continuum, there is also a couple-stress tensor, that can be decomposed similarly:

µ ij = µ (ij) + µ [ij] . (4.18)
Both of these tensors can also be decomposed into volumetric and deviatoric parts:

τ ij = 1 3 τ kk δ ij + s ij , (4.19) µ ij = 1 3 µ kk δ ij + m ij . (4.20)
and the corresponding probability density function is given by

p u (x) = (3 -α) x 2-α d M ax 3-α -d min 3-α , (4.26)
where α is a material constant defining the power law, with typical values between 2.5 and 2.7.

Using these definitions for the initial and ultimate grain size distributions, the current cumulative grain size distribution is defined as a function of the breakage:

F (x, B) = F 0 (x)(1 -B) + F u (x)B. (4.27)
The corresponding probability density function is now given by

p(x, B) = p 0 (x)(1 -B) + p u (x)B. (4.28)
The introduction of the breakage variable requires the introduction of its thermodynamic conjugate E B , the breakage energy, that is a physical expression of how much energy can be liberated by the entire process of grain crushing from the initial GSD to the ultimate GSD.

Upscaling procedures

Elastic upscaling

The previous models of Breakage Mechanics that we discussed in the literature review have been formulated in either the classical continuum, or a non-local continuum. To formulate Breakage Mechanics in a Cosserat continuum, a statistical homogenisation process is undertaken that takes account of the contribution of the stored energy of the elastic curvatures when upscaled from the granular medium to the continuum formulation. That is to say, the total Helmholtz free energy density is the Helmholtz free energy density at a given grain size x, weighted by the grain size distribution p(x, B), integrated over the entire distribution.

The energy density is assumed to be further decomposed into a summation of elastic strain contributions and elastic curvature contributions: ψ(γ e ij , κ e ij , x) = ψγ (γ e ij , x) + ψκ (κ e ij , x). (4.30)

Now we use the assumption of fractional independence from Einav (2007a) to make a separation of variables. This process was motivated by Discrete Element Method (DEM) simulations of granular media that revealed the underlying relationship between grain size and stored energy. The Helmholtz free energy contribution for a grain size x due to the strains is ψγ (γ e ij , x) = where the subscript r represents a reference grain size fraction.

We can apply the same assumption of fractional independence to the contribution of the curvatures. However, in order for the energy density to have the correct dimensionality to contribute correctly to the Helmholtz free energy the elastic curvature terms must be further multiplied by some length scale ℓ 2 . Micro-mechanically, smaller particle sizes have fewer particle contacts and so participate in fewer force chains. They are also typically less angular, meaning there is less particle interlocking [START_REF] Andò | Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach[END_REF]. Hence, we expect that the rotation rate of the grains and thus ultimately the elastic curvatures will scale with the grain size x. We also note that there is no information-passing mechanism that would allow an individual grain's behaviour to rely on any size other than its own. Hence, we set ℓ 2 = x 2 and state that the Helmholtz free energy contribution for a grain size x due to the elastic curvatures is As the maximum grain size is the only one present in all the GSDs, from the initial to the ultimate, we select that as the reference grain size x r :

ψκ (κ e ij , x) = x x r 2 x 2 ψrκ (κ e ij ) = x x r 4 x r 2 ψ rκ (κ e ij ).
x r = d M ax . (4.34)
We can split (4.33) into two integrals and insert (4.34):

Ψ = Ψ γ + Ψ κ = ψ rγ (γ e ij ) x r 2 d M ax dmin x 2 p(x, B) dx + x r 2 ψ rκ (κ e ij ) x r 4 d M ax dmin x 4 p(x, B) dx. (4.35)
Now, we note that the statistical moments of the distributions (about the origin) are defined by

J n (B) = d M ax dmin x n p(x, B) dx. (4.36)
Simple inspection of (4.35) shows that the two integrals give the second and fourth moments of the current grain size distribution. We first turn our attention to the strain integral Ψ γ . Substituting in (4.28) and evaluating the integral returns the moments of the initial and ultimate grain size distributions. Conveniently, because of our choice of F 0 , the nth statistical moment of the initial distribution J n 0 = x r n . Introducing the material constant θ γ by

θ γ = 1 - J 2 u x r 2 , (4.37)
allows us to re-arrange Ψ γ to obtain

Ψ γ = (1 -θ γ B)ψ rγ (γ e ij ), (4.38) 
which is the classical Breakage Mechanics expression for the Helmholtz free energy per Einav (2007a), noting however that the strain tensor is not symmetric here.

This expression can be further separated into symmetric and anti-symmetric contributions:

Ψ γ = Ψ (γ) + Ψ [γ] = (1 -θ γ B)(ψ r(γ) (γ e (ij) ) + ψ r[γ] (γ e [ij] )). (4.39)
This process can be repeated for the curvature integral Ψ κ in (4.35), once again substituting in (4.28) and evaluating the integral to obtain the fourth moments of the initial and ultimate distributions. We can introduce a new material constant θ κ defined by

θ κ = 1 - J 4 u x r 4 , (4.40)
which allows us to rewrite Ψ κ in the form

Ψ κ = (1 -θ κ B)x r 2 ψ * rκ (κ e ij ). (4.41)
This formulates the stored energy due to the elastic curvatures in a manner consistent with classical Breakage Mechanics.

Hence, the total Helmholtz free energy can be written

Ψ = (1 -θ γ B)(ψ r(γ) (γ e (ij) ) + ψ r[γ] (γ e [ij] )) + (1 -θ κ B)x r 2 ψ rκ (κ e ij ).
(4.42)

We now compare this expression for the total elastic energy with that given in the extensive treatment of Cosserat continuum mechanics by Vardoulakis (2019) for isotropic linear Cosserat elasticity:

Ψ = 2νG 1 -2ν ε e ii ε e jj + Gε e ij ε e ij + η 1 Gγ e [ij] γ e [ij] + 6η 1 Gγ * k γ * k + 1 2 Gℓ 2 (κ e (ij) κ e (ij) + η 2 κ e (ii) κ e (jj) + η 3 κ e [ij] κ e [ij]
).

(4.43)

The elastic length terms multiplying the terms associated with the elastic curvatures can be directly identified in the form given by Vardoulakis (2019), and this comparison makes explicit the identification of the elastic length when Breakage Mechanics is upscaled as above:

ℓ e = x r 1 -θ κ B. (4.44)
We highlight here that the elastic length scale we have derived depends on the entire grain size distribution through the new material constant θ κ , and evolves as the Breakage variable evolves.

It should also be noted that as a consequence of the length scale being multiplied out of the expression for the energy due to curvature, the elastic parameters will have units solely of stress, and not couple-stress unlike other authors (Rattez et al., 2018a).

Inertial upscaling

The momentum balance equations of the Cosserat continuum are given by

τ ij,j -ρ ∂ 2 u i ∂t 2 = 0, (4.45) µ ij,j -ǫ ijk τ jk -I ∂ 2 ω c i ∂t 2 = 0. (4.46)
Importantly, at the level of the Representative Volume Element (RVE), the rotational momentum balance is included, and hence the moment of rotational inertia, I, of the medium must be defined in order to fully specify the continuum.

Previously, this has been taken as the moment of inertia associated only with the average particle size (Rattez et al., 2018a,b,c;[START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF]. However, Breakage Mechanics enables consideration of the entire grain size distribution, and so the average of the moments of inertia of all the particles is selected, and how it changes as a function of grain breakage must be modelled.

An upscaling on the three dimensional case is performed, as it necessitates the definition of a new material parameter, whereas the two dimensional case does not.

The rotational moment of inertia of a solid sphere of diameter x about its own axis is given by

I = π 60 ρx 5 , (4.47)
where ρ is the density of the particle.

As particle breakage progresses, more (and smaller) particles appear inside the RVE. It is assumed that each of these particles rotates around its own proper axis, but not around any other point. Now, to find the average of the moments of inertia, the integration is performed over the continuous particle size distribution:

I(B) = π 60 ρ d M ax dmin x 5 p(x, B) dx = π 60 ρx r 5 d M ax dmin x x r 5 p 0 (x)(1 -B) + p u (x)B dx. (4.48)
Evaluating the integral and using the definitions of the fifth moments J 5 0 and J 5 u results in

I(B) = π 60 ρx r 5 (1 -B)J 5 0 + BJ 5 u x r 5 . (4.49)
Once again exploiting that J 5 0 = x r 5 and introducing another material constant:

θ I = 1 - J 5 u x r 5 , (4.50)
the expression for the rotational inertia can be re-arranged to (4.51) in three dimensions.

I(B) = π 60 (1 -θ I B)ρx r 5 ,
It should be noted that the rotational moment of inertia for a disc of diameter x in two dimensions is

I = π 32 ρx 4 (4.52)
If the above analysis were repeated in two dimensions, there would be identical definitions between θ I and θ κ . Hence, the rotational inertia is 

I(B) =    π 32 (1 -θ κ B)ρx r 4 in two dimensions,

Limit values

The expressions for θ γ , θ κ and θ I can be written by evaluating the integrals in their explicit forms. Using the universal initial distribution (4.24) and the ultimate fractal distribution (4.26) consistent with [START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF] and Einav (2007d), the expressions are 

θ γ = 1 - 3 -α 5 -α 1 -(d min /d M ax ) 5-α 1 -(d min /d M ax ) 3-α , (4.54) θ κ = 1 - 3 -α 7 -α 1 -(d min /d M ax ) 7-α 1 -(d min /d M ax ) 3-α , (4.55) θ I = 1 - 3 -α 8 -α 1 -(d min /d M ax ) 8-α 1 -(d min /d M ax ) 3-α . ( 4 

Dissipation

The total dissipation rate can always be written as the sum of the products of the dissipative variables and their respective conjugate stresses, i.e.

Φ( Ḃ, εp

v , γp ) = E B Ḃ + p εp v + q γp . (4.64)
However, the dissipation pseudo-potential can be written in a more specific form, namely (4.65) where each of D B , D v and D s are homogeneous first order functions of the dissipative rates.

Φ( Ḃ, εp v , γp ) = [D B ( Ḃ)] 2 + [D v ( εp v )] 2 + [D s ( γp )] 2 ,
The Legendre transformation and some re-arranging are used to pass from the dissipation pseudo-potential to the yield surface in dissipative stress space.

First, (4.65) is substituted into (4.64), and differentiated with respect to the dissipative variables. This gives

E B = ∂Φ( Ḃ, εp v , γp ) ∂ Ḃ = D B ( Ḃ) Φ( Ḃ, εp v , γp ) ∂D B ( Ḃ) ∂ Ḃ , (4.66) p = ∂Φ( Ḃ, εp v , γp ) ∂ εp v = D v ( εp v ) Φ( Ḃ, εp v , γp ) ∂D v ( εp v ) ∂ εp v , (4.67) q = ∂Φ( Ḃ, εp v , γp ) ∂ γp = D s ( γp ) Φ( Ḃ, εp v , γp ) ∂D s ( γp ) ∂ γp . (4.68)
As the total dissipation potential (4.64) is first order in the dissipative rates, the Legendre transform is degenerate and hence can be written

λy Φ (E B , p, q) = E B Ḃ + p εp v + q γp -Φ( Ḃ, εp v , γp ) = 0, (4.69)
where λ is an undetermined scalar (the plastic multiplier), and the transformation is from Ḃ, εp v , γp to a function entirely in E B , p, q.

This function is found by first re-arranging (4.66), (4.67) and (4.68):

E B ∂D B ( Ḃ)/∂ Ḃ = D B ( Ḃ) Φ( Ḃ, εp v , γp ) , (4.70) p ∂D v ( εp v )/∂ εp v = D v ( εp v ) Φ( Ḃ, εp v , γp ) , (4.71) q ∂D s ( γp )/∂ γp = D s ( γp ) Φ( Ḃ, εp v , γp ) . (4.72)
Squaring each equation and then adding them together gives

E B ∂D B ( Ḃ)/∂ Ḃ 2 + p ∂D v ( εp v )/∂ εp v 2 + q ∂D s ( γp )/∂ γp 2 = [D B ( Ḃ)] 2 + [D v ( εp v )] 2 + [D s ( γp )] 2 [Φ( Ḃ, εp v , γp )] 2 . (4.73)
Inserting the specific form of dissipation potential given in (4.65) leads naturally to

E B ∂D B ( Ḃ)/∂ Ḃ 2 + p ∂D v ( εp v )/∂ εp v 2 + q ∂D s ( γp )/∂ γp 2 -1 = 0. (4.74)
This relationship satisfies the requirements for y Φ , i.e. that it is identically equal to zero and expressed solely in terms of the (generalised) stresses and not the dissipative variables. It should be noted that equations (4.66), (4.67) and (4.68) are true only when dissipation is active i.e. when the generalised stress state is on the yield surface. We re-write the equation with a less than or equal to in order to account for when the state is inside the yield surface, to obtain the yield function in the generalised stress space:

y Φ (E B , p, q) = E B ∂D B ( Ḃ)/∂ Ḃ 2 + p ∂D p v ( εp v )/∂ εp v 2 + q ∂D p s ( γp )/∂ γp 2 -1 ≤ 0. (4.75)
The mathematical form of the dissipation potentials can now be specified:

D B ( Ḃ) = √ E B E c (1 -B) cos(ω)
Ḃ, (4.76)

D p v ( εp v ) = p (1 -B) sin(ω) E c E B εp v , (4.77) D p s ( γp ) = M p| γp |, (4.78)
where E c is the critical breakage energy, M is the critical state parameter satisfying q = M p in triaxial compression and ω is a coupling angle between dissipation due to breakage and dissipation due to plastic volumetric straining, as per Einav (2007a,d).

The evolution of the breakage state variable B, and the rates of the plastic strains and plastic curvatures are given by the flow rules:

Ḃ = λ ∂y Φ ∂E B = λ 2E B ∂D B ( Ḃ)/∂ Ḃ 2 = λ 2(1 -B) 2 cos 2 (ω) E c , (4.79) γp ij = λ ∂y Φ ∂τ ij = λ ∂y Φ ∂p ∂p ∂τ ij + ∂y Φ ∂q ∂q ∂τ ij = λ   2p ∂D p v ( εp v )/∂ εp v 2 1 3 δ ij + 2q ∂D p s ( γp )/∂ γp 2 1 q (h * 1 s ij + h * 2 s ji )   = λ 2E B (1 -B) 2 sin 2 (ω) 3pE c δ ij + 2(h * 1 s ij + h * 2 s ji ) (M p) 2 , (4.80) κp ij = λ ∂y Φ ∂µ ij = λ ∂y Φ ∂q ∂q ∂µ ij = λ 2q ∂D p s ( γp )/∂ γp 2 1 ℓ e 2 q (h * 3 m ij + h * 4 m ji ) = λ 2(h * 3 m ij + h * 4 m ji ) ℓ e 2 (M p) 2 . (4.81)
It should be noted that the yield surface is not a function of the trace part of the couple-stress tensor, simplifying the full expansion of the flow rule in the curvatures (4.81) by allowing us to set the trace part of the derivatives to zero.

It may also be noted that these flow rules are associated to the yield surface in the generalised stress space, but will appear non-associated if viewed only in the true stress space.

As a matter of convenience, a change from the yield surface in dissipative stress space to the yield surface in mixed stress-breakage-energy space can be achieved by directly substituting (4.76), (4.77) and (4.78) into (4.75) to obtain

y mix = E B (1 -B) 2 E c + q M p 2 -1 ≤ 0. (4.82)

Elasticity

The elastic behaviour can be recovered by specifying the Helmholtz free energy density in the reference grain fraction so that linear Cosserat elasticity is recovered from the generic potential (4.42). This can be specified by (4.83) where Now the thermodynamic stresses can be derived from the Helmholtz free energy (4.83): (4.86)

Ψ = 1 -θ γ B 2 C e ijkl γ e ij γ e kl + x r 2 1 -θ κ B 2 D e ijkl κ e ij κ e kl ,
C e ijkl = K - 2 3 G δ ij δ kl + (G + G c )δ ik δ jl + (G -G c )δ il δ jk , (4.84) D e ijkl = L - 2 3 H δ ij δ kl + (H + H c )δ ik δ jl + (H -H c )δ il δ jk . ( 4 
τ ij = ∂Ψ ∂γ e ij = (1 -θ γ B)C e ijkl γ e kl ,
µ ij = ∂Ψ ∂κ e ij = x r 2 (1 -θ κ B)D e
ijkl κ e kl , (4.87)

E B = - ∂Ψ ∂B = θ γ 2 C e ijkl γ e ij γ e kl + x r 2 θ κ 2 D e ijkl κ e ij κ e kl .
(4.88)

Plastic multiplier

The model is completely specified by determining an explicit expression for the plastic multiplier λ. λ is obtained by applying the consistency condition, i.e. when the stress state is on the yield surface y = 0, so for any further inelastic loading ẏ = 0. By expansion of any expression for ẏ, such as ẏmix , an expression in terms of the rates of the state variables γe ij , κe ij and Ḃ is obtained. The rates of elastic strains and curvatures are replaced with the rates of total and plastic strains and curvatures via (4.15) and (4.16). Finally, the rates of the plastic strains and curvatures and the rate of breakage are replaced with their flow rules (4.79), (4.80) and (4.81) in which λ appears as an unknown variable. Rearrangement gives an explicit expression for λ in terms of the state variables and the rates of total strains and curvatures, closing the model. This process gives

λ = A 1 γkl + A 2 κkl A 3 × A 4 + A 5 + A 6 × A 7 + A 8 , ( 4 

.89)

where

A 1 = -2q 2 3M 2 p 3 δ ij + 2 (M p) 2 h * 1 s ij + h * 2 s ji 1 -θ γ B C e ijkl + (1 -B) 2 E c θ γ 2 C e ijkl γ e ij , (4.90) A 2 = 2 (M p) 2 1 ℓ q 2 h * 3 m ij + h * 4 m ji (1 -θ κ B) D e ijkl + (1 -B) 2 E c x r 2 θ κ 2 D e ijkl κ e ij , (4.91) A 3 = -2q 2 3M 2 p 3 δ ij + 2 (M p) 2 h * 1 s ij + h * 2 s ji , (4.92) A 4 = 1 -θ γ B C e ijkl 2E B (1 -B) 2 sin 2 (ω) 3pE c δ kl + 2 (h * 1 s kl + h * 2 s lk ) (M p) 2 + θ γ C e ijkl γ e kl 2 (1 -B) 2 cos 2 (ω) E c , (4.93) A 5 = 2 (M p) 2 1 ℓ q 2 h * 3 m ij + h * 4 m ji (1 -θ κ B) D e ijkl 2 (h * 3 m kl + h * 4 m lk ) ℓ q 2 (M p) 2 + θ κ D e ijkl κ e kl 2 (1 -B) 2 cos 2 (ω) E c
, (4.94)

A 6 = (1 -B) 2 E c , (4.95) A 7 = θ γ 2 C e ijkl γ e ij 2E B (1 -B) 2 sin 2 (ω) 3pE c δ kl + 2 (h * 1 s kl + h * 2 s lk ) (M p) 2 + x r 2 θ κ 2 D e ijkl κ e ij 2 (h * 3 m kl + h * 4 m lk ) ℓ q 2 (M p) 2 , (4.96) A 8 = 2E B (1 -B) E c 2 (1 -B) 2 cos 2 (ω) E c . (4.97)
For the purposes of performing numerical integrations, a smoothing can be achieved by implementation in the framework of h 2 plasticity (Einav, 2012). This framework allows the evolution equations to be smooth and continuous while ensuring compatibility with the laws of thermodynamics. Some some small modifications to the flow rules (4.79), (4.80) and (4.81) result in:

Ḃ = λ (1 + y) ξ 2(1 -B) 2 cos 2 (ω) E c , (4.98) γp ij = λ (1 + y) ξ 2E B (1 -B) 2 sin 2 (ω) 3pE c δ ij + 2(h * 1 s ij + h * 2 s ji ) (M p) 2 , (4.99) κp ij = λ (1 + y) ξ 2(h * 3 m ij + h * 4 m ji ) ℓ e 2 (M p) 2 , (4.100)
where • are Macaulay brackets, y is the yield function (any expression of y will work as they all have the same scalar value, so we use y mix as the most compact form), and ξ is a parameter controlling the stiffness of the response.

As ξ → ∞, the classical hyper-plastic model is recovered. Smaller values of ξ represent "softer" behaviours with dissipation being more significantly activated at lower values of load.

Incremental constitutive response

In order to complete the description of the model, the expression for the incremental stiffness relationship is required.

Even though the expressions for τ ij and µ ij are independent of κ e ij and γ e ij respectively, there is coupling present in the incremental relationship due to λ being a function of both γkl and κkl . A linear decomposition of (4.89) is performed

to obtain λ = λ γ kl γkl + λ κ kl κkl . (4.101)
Using (4.101), the incremental constitutive relationship under increasing load in a compact differential form is given by: 

τij μij =    ∂τij ∂γ e kl -λ γ kl (1 + y) ξ ∂yΦ ∂τij - ∂τij ∂B ∂yΦ ∂E B -λ κ kl (1 + y) ξ ∂yΦ ∂τij - ∂τij ∂B ∂yΦ ∂E B -λ γ kl (1 + y) ξ ∂yΦ ∂µij - ∂µij ∂B ∂yΦ ∂E B ∂µij ∂κ e kl -λ κ kl (1 + y) ξ ∂yΦ ∂µij - ∂µij ∂B ∂yΦ ∂E B    γkl κkl . ( 4 

Invariants

The formulation of the first stress and strain invariants in a Cosserat continuum is the same as for the classical continuum, as outlined above in §4.3.1 and §4.3.3. However, the formulations of the second deviatoric stress and strain invariants are not trivial in the Cosserat continuum. Micro-mechanical arguments have been advanced by several different authors [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF]Rattez et al., 2018a;Vardoulakis and Sulem, 1995), allowing the invariant for plastic shear strain to be defined by consideration of kinematics, or the invariant for the deviatoric stress to be defined by consideration of statics. They are respectively

γp = g * 1 ėp ij ėp ij + g * 2 ėp ij ėp ji + ℓ γ 2 (g * 3 kp ij kp ij + g * 4 kp ij kp ji ), (4.104) q = h * 1 s ij s ij + h * 2 s ij s ji + 1 ℓ q 2 (h * 3 m ij m ij + h * 4 m ij m ji ). (4.105)
Certain weighting factors are given to the values of g * i in the kinematic expression of γp , and h * i in the static expression of q, in order to recover the classical expressions when the Cosserat effects vanish. Two pairs of values are defined, q -γp kinematic and q -γp static, with different weighting factors g * i and h * i . The length scale ℓ γ is identified with the grain size in the micro-mechanical derivations. It is essential to note here that the definition of these invariants in the work of Vardoulakis and co-workers implicitly takes ℓ γ = ℓ q = R, that is to say that both lengths are equal to some constant multiple of the mean grain radius [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF]Vardoulakis and Sulem, 1995). As a consequence, the derivation of the weighting factors relies on all particles having the same diameter. In a medium featuring grain breakage, this will certainly not be the case, and so the invariants must be at least partially re-visited to determine appropriate expressions for the medium.

By relaxing the assumption that the internal length is the same for the stress and strain invariants, but retaining the assumption of coaxiality (that is to say that the stress and strain increments act in the same direction), and taking the weighting factors h * i in the static formulation and g * i in the kinematic formulation on an ad-hoc basis, new expressions can be determined. Now, we apply the flow rule to obtain the plastic strain and curvature rates (see (4.80) and (4.81) for the application of the chain rule). We only require the deviatoric parts of the rates:

ėp ij = λ ∂y Φ ∂q ∂q ∂τ ij , = λ ∂y Φ ∂q 1 q (h * 1 s ij + h * 2 s ji ), (4.106) 
and similarly, the deviatoric plastic curvature rate by

kp ij = λ ∂y Φ ∂q ∂q ∂µ ij , kp ij = λ ∂y Φ ∂q 1 ℓ q 2 q (h * 3 m ij + h * 4 m ji ). (4.107)
Now, the plastic strain rate invariant is defined to be the derivative of the dissipative yield surface with respect to the stress invariant: γp = λ ∂y Φ ∂q .

(4.108)

Using the assumption of coaxiality detailed above, the strain rate terms in the strain rate invariant (4.104) can be replaced with their equivalent expressions phrased in terms of stresses, i.e. (4.106) and (4.107). Cancelling and re-arranging transforms the expression of the strain invariant into an expression of the stress invariant:

q = g * 1 (h * 1 s ij + h * 2 s ji )(h * 1 s ij + h * 2 s ji ) + g * 2 (h * 1 s ij + h * 2 s ji )(h * 1 s ji + h * 2 s ij )+ ℓ γ 2 ℓ q 4 (g * 3 (h * 3 m ij + h * 4 m ji )(h * 3 m ij + h * 4 m ji ) + g * 4 (h * 3 m ij + h * 4 m ji )(h * 3 m ji + h * 4 m ij ))
.

(4.109)

There are now two expressions for the stress invariant, (4.105) and (4.109) which must be equivalent, but the constants g * i are present only in (4.109), allowing the formation of relationships between g * i and h * i . The deviatoric stress is expanded into its symmetric and anti-symmetric parts, per (4.21). By exploiting that the product of a symmetric and anti-symmetric tensor is identically zero, that s (ij) = s (ji) and that s [ij] = -s [ji] , both (4.109) and (4.105) can be written in terms of the symmetric and anti-symmetric parts:

(h * 1 + h * 2 )s (ij) s (ij) + (h * 1 -h * 2 )s [ij] s [ij] + 1 ℓ q 2 ((h * 3 + h * 4 )m (ij) m (ij) + (h * 3 -h * 4 )m [ij] m [ij] ), (4.110) 
when considering (4.105), and

(h * 1 + h * 2 ) 2 (g * 1 + g * 2 )s (ij) s (ij) + (h * 1 -h * 2 ) 2 (g * 1 -g * 2 )s [ij] s [ij] + ℓ γ 2 ℓ q 4 ((h * 3 + h * 4 ) 2 (g * 3 + g * 4 )m (ij) m (ij) + (h * 3 -h * 4 ) 2 (g * 3 -g * 4 )m [ij] m [ij] ) , (4.111) 
when considering (4.109). Now, the coefficients of the symmetric and anti-symmetric parts on each side can be directly equated to arrive at two sets of simultaneous equations:

h * 1 + h * 2 = 1 g * 1 + g * 2 , (4.112) h * 1 -h * 2 = 1 g * 1 -g * 2 , (4.113) 
for the stress weighting factors, and

h * 3 + h * 4 = ℓ q ℓ γ 2 1 g * 3 + g * 4 , (4.114) 
h * 3 -h * 4 = ℓ q ℓ γ 2 1 g * 3 -g * 4 , (4.115) 
for the moment weighting factors. These expressions differ from other authors (Rattez et al. (2018a) for example) in leaving open the possibility that ℓ γ = ℓ q , and hence give a slightly more general expression.

We identify ℓ q with ℓ e , defined as per (4.44). However, there is no immediately obvious identification to make that will give an explicit expression for ℓ γ . As such, it is supposed that it may also evolve with breakage in a similar way to the elastic length, and the ratio between the elastic and plastic length is a fixed ratio ζ, which acts as a new material property.

It should also be noted that the definition of q used in previous examples of Breakage Mechanics is consistent with q = σ a -σ r , that is to say with the difference between the axial and radial stresses in a triaxial test. This leads to a tensorial definition of The values listed in Table 4.1 are compatible with previous works [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Sulem | Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect[END_REF], adjusted appropriately to account for the slightly different definition of the stress invariant.

q = 3 2 s ij s ij (4.
* i = {1/2, 1/6, ζ 2 /3, 0} g * i = {8/15, 2/15, 8ζ 2 /15, 2ζ 2 /15} h * i = {9/4, -3/4, 3, 0} h * i = {2, -1/2, 2, -1/2} Kinematic model g * i = {1, -1/3, 4/3, 0} g * i = {8/9, -2/9, 8/9, -2/9} h * i = {9/8, 3/8, 3ζ 2 /4, 0} h * i = {6/5, 3/10, 6ζ 2 /5, 3ζ 2 /10}

Model calibration 4.6.1 Cosserat stiffness relationships

Before specifying the parameter values, it is convenient to derive some relationships between the stiffnesses present in the classical continuum and the new Cosserat stiffnesses. As the stiffnesses are those of the unbroken material, we set B = 0, which also has the benefit of simplifying the analysis somewhat. In order to do this, we derive the Gibbs free energy, Γ, by performing a Legendre transform from the Helmholtz energy

Γ = Ψ -τ ij γ e ij -µ ij κ e ij , = - 1 2 C el ijkl γ e ij γ e kl -x r 2 D el ijkl κ e ij κ e kl , = - 1 2 C comp ijkl τ ij τ kl - 1 2x r 2 D comp ijkl µ ij µ kl , (4.117) 
where C comp ijkl and D comp ijkl are the isotropic linear elastic compliance tensors, that are obtained by inverting (4.84) and (4.85).

We now write the energy in terms of the stress invariants:

Γ = - 1 2 p 2 K + q 2 3G . (4.118)
The elastic strains and curvatures are given by differentiating with respect to the stresses:

γ e ij = - ∂G ∂τ ij = - ∂Γ ∂p ∂p ∂τ ij - ∂Γ ∂q ∂q ∂τ ij , = 1 2 2p K 1 n δ ij + 2q 3G 1 q (h * 1 s ij + h * 2 s ji ) , = p nK δ ij + 1 3G (h * 1 s ij + h * 2 s ji ), (4.119)
where n is the dimension of the problem (n = 2 or n = 3).

The relationship must be expressed in terms of τ kl to obtain a compliance tensor. Where appropriate, the substitution

τ ij = δ ik δ jl τ kl is made: γ e ij =   1 n 2 K δ ij δ kl + 1 3G h * 1 δ ik δ jl - 1 n δ kl δ ij + h * 2 δ jk δ il - 1 n δ kl δ ij   τ kl , = 1 n 2 K - 1 3nG (h * 1 + h * 2 ) δ ij δ kl + 1 3G h * 1 δ ik δ jl + h * 2 δ jk δ il τ kl . (4.120)
This compliance relationship expressed in terms of K, G, h 1 * , h * 2 may be compared with that in (4.117), which is expressed in terms of K, G, G c . This allows the derivation of a formula for the value of G c . Comparing the results considering the 1212 and 2112 entries of the two compliance relationships gives:

h * 1 3G = G + G c 4GG c , (4.121) h * 2 3G = -G + G c 4GG c , (4.122) h * 1 -h * 2 3G = (G + G c ) -(-G + G c ) 4GG c = 1 2G c , (4.123) 
G c = 3G 2(h * 1 -h * 2 ) (4.124)
Now turning to the curvatures, the expressions can be derived in a similar way:

κ e ij = ∂Γ ∂µ ij = ∂Γ ∂q ∂q ∂µ ij , = 1 2 2q 3G 1 qℓ e 2 (h * 3 m ij + h * 4 m ji ), = 1 3Gℓ e 2 (h * 3 µ ij + h * 4 m ji ), = 1 3Gℓ e 2 (h * 3 δ ik δ jl + h * 4 δ jk δ il )µ kl . (4.125)
As B = 0, ℓ e = x r . Once again, by comparing the compliance relationship with that in (4.117), specifically the 1212 and 2112 entries, we may derive two relationships:

h * 3 3x r 2 G = H + H c 4x r 2 HH c , (4.126) h * 4 3x r 2 G = -H + H c 4HH c , (4.127) 
h * 3 + h * 4 3x r 2 G = (H + H c ) + (-H + H c ) 4x r 2 HH c = 1 2H , (4.128) 
H = 3G 2(h * 3 + h * 4 ) , (4.129) 
and

h * 3 -h * 4 3x r 2 G = (H + H c ) -(-H + H c ) 4x r 2 HH c = 1 2H c , (4.130) 
H c = 3G 2(h * 3 -h * 4 ) . (4.131) 
Finally, it should be noted that the Gibbs free energy expression excludes any contribution from the trace part of the elastic curvatures, similarly to how the flow rules for the plastic curvatures ignore the trace component. This is equivalent to stating that there are no twisting motions contributing to the model, and hence the material parameter L makes no contribution to the model.

This series of differentiations has allowed the definition of three additional Cosserat stiffnesses directly as a function of the shear stiffness G, and the choice of static or kinematic model in two or three dimensions.

Experimental methods

In order to apply the model to a real geomaterial, certain experiments must be carried out in order to determine the values of the various parameters in the model.

By measuring the granulometry, x r is immediately obtained as the largest grain size present. Either the particular material can be placed in some sort of apparatus that allows arbitrarily large shear, in order to determine an ultimate grading, or one may select values of the power law coefficient from the literature. Hence, the full initial granulometry either allows calculation of θ γ , θ κ , θ I by taking the appropriate moments of the initial distribution and setting B = 0, or they may be calculated using the universal initial distribution and the ratio of the areas under the initial and ultimate granulometries calculated to give an initial value of B ≥ 0.

The density of the material can be easily measured using standard techniques (i.e. measuring the mass of a known volume of material), or if the composition of the grains is known, their solid density divided by the initial solid volume fraction will give the bulk density.

The bulk and shear moduli K and G can be measured using standard techniques such as shear wave measurements.

While in reality, these moduli are pressure dependent, we assume isotropic linear elasticity for this model, meaning that the calibration should be done at as low a pressure as practicable. We may calculate G c , H, H c from these values after selecting the kinematic or static model and the choice of dimension.

The critical state parameter M is the slope of the critical state line in p -q space, typically obtained in a triaxial test.

The critical breakage energy can be found by subjecting a sample to isotropic compression until grain crushing starts. By rearranging (4.82) with q = 0, an expression for E c is straightforwardly obtained. It should be noted that this value can also be inferred from scaling laws based on the grain size [START_REF] Zhang | Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics[END_REF].

The only parameter of the model which can be adjusted to fit the plastic response is the coupling angle ω. Calibration may be performed by seeing which value of ω best matches the stress-strain response after plasticity.

Conclusion

In this chapter, we first expanded the upscaling procedures of Breakage Mechanics consistent with Einav (2007a) to the Cosserat continuum. This allows us to include the contributions of the elastic curvatures to the total stored energy, by making use of a new material constant θ κ that can be measured without making any constitutive assumptions about the material. This material constant and the upscaling procedure allow us to define a new internal length for the system, ℓ e , that takes into account the entire grain size distribution, and evolves as that distribution evolves.

The upscaling techniques were further extended to account for the moment of rotational inertia, allowing the definition of another new material constant θ I that allows the entire grain size distribution and its evolution to be taken into account when analysing the momentum balance equations of the Cosserat continuum.

A limit analysis of the new granulometry parameters was undertaken, which confirmed the necessity of including all of the parameters in the model in order to retain sufficient information about the grain size distribution.

We then outlined a constitutive model, expanding a previously developed model into the Cosserat continuum using our newly developed upscaled relationships. In doing so, we derived certain relationships between the second deviatoric stress and strain invariants that are slightly more general than in previous works, and consistent with the definition of the deviator stress used in triaxial tests.

Finally, we derived relationships between the bulk and shear moduli of the classical continuum and three additional Cosserat stiffness moduli and presented methods to calibrate the values of all parameters. We emphasise here that the change to the Cosserat continuum requires no additional calibration over the same model expressed in the classical continuum, as all new material parameters can be calculated with the same information necessary to calculate their classical equivalents.

However, in order to draw conclusions about the thickness of localisations predicted by the model, which is the principal reason to develop a Cosserat model, we must explore it numerically. These explorations are conducted by means of linear stability analyses and finite element modelling, presented in the following chapter.

Linear stability analysis

The linear stability analysis is conducted on the momentum balance equations for the Cosserat continuum:

τ ij,j -ρ ∂ 2 u i ∂t 2 = 0, (5.1) µ ij,j -ǫ ijk τ jk -I ∂ 2 ω c i ∂t 2 = 0. (5.2)
We assume that there is a homogeneous solution obeying the governing balance equations and following the above constitutive laws, and perform a perturbation about said solution. We may re-write the kinematic fields as u(x i , t) = u 0 (x i , t) + ũ(x i , t), (5.3) ω c (x i , t) = ω c0 (x i , t) + ωc (x i , t), (5.4) where the 0 superscript denotes the homogeneous solution and ˜the perturbation term. We assume that the resultant perturbations in stresses, strains, couple-stresses and curvatures follow the incremental constitutive relationships (4.103), linearised around the homogeneous solution.

The governing equations are satisfied by the homogeneous field, and hence by subtraction they must also be satisfied by the perturbation terms. In order to obtain an appropriate linear system allowing a bifurcation analysis, we insert the incremental constitutive relationships (4.103) and the definitions of the strain and curvature rates (4.7) and (4.8) into the perturbations of (5.1) and ( 5.2) to obtain

E ep jklm (ũ l,mk + ǫ lmo ωc o,k ) + F ep jklm ωc l,mk -ρ ∂ 2 ũk ∂t 2 = 0, (5.5) 
K ep jklm (ũ l,mk + ǫ lmo ωc o,k ) + M ep jklm ωc l,mk -ǫ jkl (E ep klmo (ũ m,o + ǫ mop ωc p ) + F ep klmo ωc m,o ) -I ∂ 2 ωc j ∂t 2 = 0. ( 5.6) 
We now have a set of 6 equations with 6 unknowns, ũj and ωc j . Within the framework of linear stability analysis we seek solutions for the unknowns in time and space with the following form:

U * j (x k , t) = Ūj e st+ 2πi Λ x k n k , (5.7 
)

Ω * j (x k , t) = Ωj e st+ 2πi Λ x k n k , (5.8) 
where Ūj and Ωj are vectors of coefficients, s is the growth coefficient in time of the perturbation (also known as the Lyapunov exponent), i is the imaginary unit, Λ is the perturbation wavelength, n k the polarisation direction and U * j (x k , t) and Ω * j (x k , t) are vectors that contain the unknown perturbation fields. We can insert (5.7) and (5.8) into (5.5) and (5.6) to obtain (5.10) This is a linear system for the coefficients Ū1 , Ū2 , Ū3 , Ω1 , Ω2 , Ω3 . We are interested in when the system becomes singular, and after removing the common factor of the exponential (which can never be equal to zero) from all equations, urations.

E ep jklm 4π 2 i 2 Λ 2 n m n k Ūl e st+ 2πi Λ xono + ǫ lmo 2πi Λ n k Ωo e st+ 2πi Λ xpnp +F ep jklm 4π 2 i 2 Λ 2 n m n k Ωl e st+ 2πi Λ xono -ρs 2 Ūj e st+ 2πi Λ x k n k = 0, (5.9) K ep jklm 4π 2 i 2 Λ 2 n m n k Ūl e st+ 2πi Λ xono + ǫ lmo 2πi Λ n k Ωo e st+ wπi Λ xpnp + M ep jklm 4π 2 i 2 Λ 2 n m n k Ωl e st+ 2πi Λ xono -ǫ jkl E ep klmo 2πi Λ n o Ūl e st+ 2πi Λ xpnp + ǫ mop Ωp e st+ 2πi Λ xqnq + F ep klmo 2πi Λ n o Ωm e st+ 2πi Λ xpnp -Is 2 Ωj e st+ 2πi Λ x k n k = 0.
It should also be noted that beyond the point of initial bifurcation, the homogeneous solution we assume for the linear stability analysis is no longer valid. However, by continuing to integrate the model (assuming homogeneity), we can explore the tendencies of the system close to the homogeneous state by continuing to integrate the mathematical equations (assuming homogeneity) beyond the bifurcation point.

Finite element method

The finite element method permits the exploration of the post-localisation regime in a rigorous fashion as there is no need for any part of the system to be assumed to be homogeneous.

The system to be integrated with the FEM consists of the (static) momentum balance equations of the Cosserat continuum, namely τ ij,j = 0, (5.12) µ ij,j -ǫ ijk τ jk = 0.

(5.13)

The boundary of the system ∂Ω can be partitioned into two parts, ∂Ω D where Dirichlet boundary conditions are applied, and ∂Ω N where Neumann boundary conditions are applied, noting that ∂Ω = ∂Ω D + ∂Ω N .

The Dirichlet conditions on ∂Ω D are

u i = u d i , (5.14) 
ω c i = ω c i d , (5.15) 
where u d i and ω c i d are the prescribed displacements and Cosserat rotations respectively.

The Neumann conditions on ∂Ω N are (5.16) (5.17) where t d i and m d i are the prescribed tractions for the stresses and couple-stresses respectively.

τ ij n j = t d i ,
µ ij n j = m d i ,
The weak form of the balance equations can be written as (5.19) where ψ i are test functions.

- Ω τ ij ψ i,j dΩ + ∂Ω N τ ij n j ψ i dS = 0, (5.18) - Ω µ ij ψ i,j dΩ + ∂Ω N µ ij n j ψ i dS - Ω ǫ ijk τ jk ψ i dΩ = 0,
The system is integrated in the Numerical Geolab framework, which provides a generalised continuum layer on top of the finite element solver FEniCS [START_REF] Stefanou | Numerical Geolab[END_REF]. We use an implicit backwards Euler method, and select quadratic test functions for the displacements and linear test functions for the Cosserat rotations [START_REF] Godio | Dynamic finite element formulation for Cosserat elastic plates[END_REF]. This general formulation allows us to implement our model and compare with results obtained from experiments and field observations.

Parameter values

Calibrated values

We take the values of the Breakage model that we explore from those used in [START_REF] Das | Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics[END_REF] modelling Bentheim sandstone, which in turn were calculated from [START_REF] Baud | Compaction localization in porous sandstones : spatial evolution of damage and acoustic emission activity[END_REF][START_REF] Baud | Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones[END_REF], [START_REF] Tembe | Stress conditions for the propagation of discrete compaction bands in porous sandstone[END_REF] and [START_REF] Wong | Localized failure modes in a compactant porous rock[END_REF].

Following these papers, we also set the ultimate fractal parameter α = 2.6 and take 0.105 mm as the maximum grain size. Consistent with [START_REF] Buscarnera | The yielding of brittle unsaturated granular soils[END_REF] and [START_REF] Kendall | The impossibility of comminuting small particles by compression[END_REF] and the arguments therein, we set the minimum grain size to 0.001 mm. These choices set the values for θ γ , θ κ and θ I . We have additional sets of model parameters associated with our re-framing of the model in the Cosserat continuum, which are calculated as per §4.6.1.

The kinematic model in three dimensions is selected, and the model parameter relating the elastic and plastic length scales is set ζ = 1. We treat the h 2 parameter ξ merely as a numerical smoothing parameter that allows the system to be numerically integrated more easily. Hence, we set ξ = 100 so that we are close to the response of the underlying hyper-plastic model. Finally, the total set of physical parameters in units of grams/millimetres/milliseconds is Unless otherwise specified, all calculations in this thesis use the values listed in Table 5.1 and start from B = 0.

Sensitivity analyses

Here, we focus on the coupling angle ω and the breakage variable B. Both of these parameters are not available to models outside of the Breakage Mechanics framework, and hence we can gain new understanding of the importance of different physical processes that cannot be inferred from other model families. We focus on these two parameters because they reveal important information about the underlying physics of the process. ω characterises whether grain breakage or pore collapse is the favoured method of energy dissipation in the system. B tells us about the grain size distribution and how much energy is available to be dissipated in grain crushing. Both of these aspects of the system are particularly salient to our focus on the formation of cataclastic shear bands, making an analysis of the system sensitivity to changes in these parameters potentially illuminating for both our understanding of the physics, and the strengths and limitations of our model.

Load conditions

We can in principle use our methods to explore a wide variety of load conditions. First we use the LSA to determine where on the yield surface bifurcation is likely to occur. We do this by fixing a value of B (hence determining the yield surface) and setting κ e ij = 0 as we remain in the Cauchy continuum up until localisation. We then find the set of elastic strains that apply to the load conditions and lie on the yield surface. For each member of this set of elastic strains, we check to see if there is a positive value of the growth coefficient s at a very large wavelength (Λ = 10000 mm). If so we conclude that this region of the yield surface supports a localisation.

We then simulate an individual load path using with a single element implementing the h 2 plasticity version of the model, and pass the set of state variables at each step in time to the analysis code, which returns whether there is a In Figure 5.9 we can see the different behaviour of the system following a given load path, for various values of ω. When considering the τ 21 -γ 21 plot we can see that the for smaller ω the apparent softening is smaller. When we consider the localisation behaviour, we observe that increasing the value of ω results in localisation at a smaller value of shear strain, and the localisation is thinner relative to the constituent grains. The thickness of the band grows faster as ω increases.

Finite element method

Using the analysis from the LSAs, we may size our finite element system. We select a system that is 35 mm in total, which is slightly more than 5 times the widest initial localisation that we expect. We simulate the system with 641 elements. The choice of these two values is discussed in Appendix G. We also make use of a rescaling factor (1000 or 10000) that is applied to the displacements and strains. The displacements are multiplied by the factor, while the strains are divided. This has the effect of increasing the number of time steps, while reducing the number of iterations required to converge at each time step. The net effect is a slight loss in accuracy relative to an unscaled system, which is more than made up for by a significant calculation speed-up.

For our boundary conditions, we fix zero Cosserat rotations at both boundaries. The physical meaning of this choice is that at the boundaries of the system, the Cosserat effects are eliminated. We then compress one side of the system until the displacement associated with our target strain is reached. The displacement in this direction is then fixed, and shear displacement is applied in the other direction, up until the target displacement is reached.

The calculation times of the system depend on a variety of factors, including the exact parameter values, the amount of scaling, how much deformation is applied and how the computing resources are allocated within the cluster carrying out the computations. Certain parameter values can lead to the system being relatively stiffer than other possible systems. The scaling factors change the number of Newton iterations at a given time step, which is an expensive operation. The calculation will run much faster for elastic and homogeneous plastic deformations, but once localisation starts will require very small time steps. However, once the localisation is well established, the calculation speeds up again. Computing on multiple nodes of a cluster adds a certain amount of overhead cost as at least one CPU core on each node must devote part of its run time to allocating the distribution of calculations between the other cores on that machine, and passing information back and forth between the machines. For the same amount of computing resources, calculations on one node will be more efficient as no CPU time needs to be dedicated to passing information between nodes. While we ran a variety of different simulations, varying all of these factors, we take as being approximately representative a simulation that we ran using 8 CPUs on two nodes, with 641 elements, scaling factor of 1000, and targeting a homogeneous strain value of γ 21 = 0.2. The simulation completed in 13 hours, 22 minutes and 6 seconds, with CPU utilisation at 92.2% and 89.3% on the two nodes. This gives a computational efficiency of 375.4 seconds per element per unit of strain i.e. at the rate that the overall system was calculated, a single element system could be calculated to a strain of γ 21 = 1.0 in just over six minutes. We note also that this calculation time can be considerably reduced by forcing the system to converge towards a particular bifurcation state, but the result will then obscure the true behaviour of the underlying system.

We start by considering the calibrated values listed in Table 5.1 and starting from B = 0. To illustrate the behaviour of the system as we increase shear, we can plot the values of B across the spatial coordinate and observe the signal of the shear band. We select B as the variable that we use to indicate the shear band formation (as opposed to other possible choices such as γ p 21 or λ (Rattez et al., 2018c)) as the primary interest of this thesis is the formation of cataclastic shear bands. B is a unique feature of Breakage Mechanics models that allows us to track this form of localisation.

Constant volume shearing

Firstly considering the results we have obtained under constant volume shear in §5.5.1, we observe certain trends across both our analyses using the calibrated values, and the sensitivity analyses we have also conducted. Importantly, we note that the linear stability analysis provides a reasonably accurate prediction for the initial thickness of the shear band that we observe in the finite element implementation, albeit after following a different stress-strain curve than predicted. We speculate that this is because the Cosserat rotations are not taken into account in the LSA or in the calculation of the homogeneous shear strain. The effect of accumulating elastic curvatures results in yield after less apparent straining in certain elements, softening the overall response. However, these curvatures also contribute to making the τ 21 -γ 21 curve soften at a slower rate.

Turning to our sensitivity analyses, we may observe that the initial value of B does not have a very strong effect on the system behaviour. We observe good agreement between the linear stability analysis and finite element method results, with increasing initial values of B leading to very similar shear band structures, despite substantial changes in the value of the mean grain size. This trend in behaviour may be able to explain why researchers are yet to determine a constant scaling between d 50 and the band thickness, as it also depends on the polydispersity of the grain size distribution. Figure 5.7 indicates that for the initial band width, d M ax is actually a more indicative value, while for increasing strains, the evolving internal length scale ℓ e converges more rapidly than any other length. However, the indications from this plot are that no single length scale is sufficient to accurately and fully characterise the predicted shear band width once the polydispersity in the system involves a continuous distribution of grain sizes that are constantly changing.

By contrast to the behaviour as we change the initial value of B, we see that the value of ω has a very strong effect on the overall behaviour. The LSA predicts the trend of diminishing initial thickness with increasing ω. However, the LSA consistently predicts an initial rapid increase in band thickness post localisation. However, this is largely not what we observe in the FEM system. We see that in the case of ω = 0/20/45 • , two separate and smaller shear bands form on either side of the initial shear band. Once one of these bands becomes dominant, we observe that the tendency of the band is to become significantly narrower than its initial thickness. This band thickness also stabilises, with little to no change and a value of B very close to 1. These smaller values of ω appear to exhibit the essential behaviour that we observe in ultra-cataclastic shear bands in seismic faults, which is to say that there is a band of stable thickness with extremely crushed grains, surrounded by a band of less broken grains, which is in turn surrounded by the broader damage zone. However, when considering the behaviour at larger values of ω, we can see there is a qualitative change in the post-localisation behaviour of the material. For some (as yet undetermined) value of ω, the system transitions between a single stable shear band that grows slowly (for high values of ω), and an unstable band that degenerates into firstly two bands, and then one thin band where the centre moves in space.

These results are at least suggestive that it is the porosity which is the true controlling factor of the behaviour that we observe, with systems that are capable of exhibiting pore collapse behaving very differently to those that are not. Nevertheless, while ω represents in some sense this behaviour, the reality is that the evolutions of the pore space and the grain size distribution are closely tied together, and our simple model that poses them as competing processes is not refined enough to accurately determine the role of porosity.

The ability of the model to predict the formation of double-bands in material that strongly favours grain crushing is paralleled by the observations that field geologists have made.

grains. This minimum size prevents the system from becoming stuck in a feedback loop of grain crushing resulting in a smaller length scale which results in a smaller band which in turn results in more intense grain crushing and so on. Our length scale is not only based in a rich physical description, but also demonstrates mathematically favourable properties, which are particularly useful when considering multi-physical couplings.

Constant confining stress shearing

Turning now to our results on the system under constant confining stress rather than constant volume elaborated in §H, we have observed some unexpected behaviours. The first behaviour that we note is that when varying the value of B, the predicted localisation widths collapse onto a single curve, indicating that d M ax is a better indication of localisation width than d 50 under these load conditions. The second behaviour we observe is that the system consistently produces bands that form at an angle relative to the shear plane, namely Riedel shear bands. As discussed in §H, the consequence of this behaviour is that we can study this load case using LSAs, but studying it using the FEM is more difficult as we are unable to apply the appropriate boundary conditions.

Our model predicts the formation of the antithetic Riedel band that is at a high angle to the shear plane. We note that in this model, synthetic Riedel bands demonstrate ill-posed behaviour, most likely due to their featuring a dilating component, something that this model cannot implement. Once again, the inclusion of porosity in the model enables the exploration of a wider range of possibilities, specifically dilative shear bands all the way up to pure dilation bands (although we note that much like pure compaction bands, pure dilation bands would require some additional method of regularisation to be implemented). Exploring the formation of these bands using a more sophisticated model would be an interesting route for further research, albeit still restricted to the LSA technique only.

OEdometric compression

Now, considering our analysis of the system under oedometric compression in §I, we can see that the behaviour imparts information about which regularisation technique is most appropriate under these conditions. Essentially, the Cosserat continuum fails to regularise under oedometric compression, suggesting that at least for the regularisation of pure compaction or dilation bands, we require either a full first-order micromorphic theory, or some form of viscous regularisation. An interesting and important aspect to explore in future research is whether the viscous rate-dependent effects that arise from the internal grain damage processes (Marinelli and Buscarnera, 2019a;[START_REF] Sohn | Measurement of comminution rate in granular materials subjected to creep tests[END_REF]Zhang andBuscarnera, 2017, 2018) predict a sufficiently thick compaction band, or whether the full first order micromorphic continuum must be adopted for continuum modelling of granular media.

In spite of the Cosserat continuum's failure to regularise in the pure compaction band limit, the breakage mechanics model still conveys important information about the conditions that enable band formation. [START_REF] Cashman | Cataclasis and deformation-band formation in unconsolidated marine terrace sand, Humboldt County, California[END_REF][START_REF] Papazoglou | Localized Compaction in Tuffeau de Maastricht: Experiments and Modeling[END_REF][START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF][START_REF] Wong | Localized failure modes in a compactant porous rock[END_REF], and that rocks with narrower grain size distributions are more likely to generate compaction bands than those with broader distributions [START_REF] Cheung | Effect of grain size distribution on the development of compaction localization in porous sandstone[END_REF].

We may conclude from our model and the results of other authors [START_REF] Das | A theoretical study of grain crushing induced compaction localization in porous sandstones[END_REF][START_REF] Das | Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics[END_REF] that the essential conditions for band formation are that the material has the capacity for both extensive pore collapse and grain crushing, with these two processes being intertwined. We would further suggest that the apparent discrepancy between the conditions in which bands form in the laboratory (and in our model), i.e. under relatively high pressure, and that which geologists have inferred to be the field conditions during band formation can be explained by the transformation of the material over time as it underwent lithification. At the time of the band formation, we expect that these aeolian sands were extremely loose and with large grains, creating a material that formed compaction bands at very low absolute pressures, but which nevertheless corresponded to pressures near p crit for the material at that time. The lithification process that transformed the sand into sandstone has served to expand the range of pressures over which the material acts elastically, leading to the discrepancy in band formation pressures.

Biaxial compression

Our biaxial results presented in §J demonstrate the importance of ω in determining whether a localisation forms.

For systems that favour grain crushing (or even that are balanced between grain crushing and pore collapse) we see that the system fails to localise, as the hardening tendency of the system is sufficient to overwhelm any tendency to localise that may be induced by the non-associated evolution laws. For those systems that do localise, we observe that using the LSA, the band width appears to be stable, growing only very slowly and with only gradual angular change predicted. This behaviour is also true for systems that start with more broken grains, however these systems also take longer to converge on a stable localisation width than those with initially unbroken grains. The ultimate predicted localisation width also demonstrates very little variation with changing values of B, indicating once again that d M ax is a better indication than d 50 .

It should be noted that other theories have been able to successfully predict localisation in biaxial tests with dilatant shear bands [START_REF] Zervos | Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity[END_REF][START_REF] Zervos | Influence of nonassociativity on localization and failure in geomechanics based on gradient elastoplasticity[END_REF], which is not possible in our model. This further points to the necessity of equipping future models with a porosity state variable which can be used to model dilative behaviour.

Recent workers using digital image correlation have observed deformation in a biaxial test being accommodated by a series of intermittent shear bands [START_REF] Lanatà | Full-field experimental characterization of mechanical behaviour and failure in a porous rock in plane strain compression : homogeneous deformation and strain localization[END_REF][START_REF] Bouil | A biaxial apparatus for the study of heterogeneous and intermittent strains in granular materials[END_REF], although the reported tests eventually demonstrate permanent shear bands. There have also been similar results reported by workers making use of threedimensional X-ray tomography [START_REF] Desrues | How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on[END_REF] on a triaxial compression test.

However, for tests performed on Gosford sandstone [START_REF] Ord | Shear band formation in Gosford Sandstone[END_REF], the presence of a single through-going shear band is visible on specimen-scale experimental photographs, and scanning electron micrographs reveal a narrow region of intense cataclasis surrounded by a region of cracked grains which is in turn surrounded by undamaged matrix. These tests also feature a through-going crack, which provides an indication of the limitations of our model. Future modelling attempts on cohesive granular rocks require us to include some form of damage variable that can replicate a cracking process, which will also have the effect of easing the convergence issues our model suffered at low pressures by expanding the elastic region [START_REF] Das | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II -Validation and localization analysis[END_REF][START_REF] Tengattini | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory[END_REF]. A damage model must either be appropriately constructed to account for interfaces [START_REF] Guiamatsia | A thermodynamics-based cohesive model for interface debonding and friction[END_REF] and re-meshed as needed, or be integrated in a framework capable of supporting discontinuities such as the extended finite element method (XFEM) [START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Sukumar | Extended finite element method for three-dimensional crack modelling[END_REF] if it is to be able to predict true through-going cracks and model the motion along them.

Conclusion

To conclude, we have implemented two distinct methods for examining localisations predicted by our constitutive model. Linear stability analyses are able to provide a description of which areas of the yield surface are capable of supporting localisation, as well as indicating the expected initial localisation width. Finite element methods for constant volume shearing have been able to confirm the general accuracy of the predictions of the linear stability analyses with respect to the initial width of the localisation. However, the finite element studies reveal that we require more strain to trigger localisation than predicted by the stability analyses, and that the shear band width either grows considerably more slowly (in the case of strong tendency to pore collapse) or actually localises further (in the case of strong tendency to crush grains), rather than increasing rapidly.

Using linear stability analyses of the system undergoing shear with constant confining stress have revealed that the model does not predict ultra-cataclastic shear bands parallel to the shear plane, as would be found in faults, but does predict Riedel shear bands with a stable width. However, the nature of these bands relative to the geometry of the problem means that we are unable to apply the appropriate boundary conditions to generate them using the finite element method.

Our linear stability analyses have shown that the Cosserat continuum does not regularise the system under oedometric compression, but these analyses can nevertheless be used to draw conclusions about the behaviour that confirm experimental and field observations of compaction bands, namely that their formation is favoured in rocks with high porosity and narrow grain size distributions.

Finally, our analysis of the system under biaxial loading conditions reveals that localisation in our model only occurs in systems that exhibit a strong preference for pore collapse over grain crushing, and that the band behaviour is stable in terms of its width and angle.

We have demonstrated that our model is capable of successfully modelling conditions corresponding to fast undrained shearing. By considering different load conditions, we have obtained predictions of Riedel band formation, while also highlighting possibilities for future work by expanding the model.

Chapter 6

Conclusions and Perspectives

Conclusions

This thesis has investigated the importance of grain sizes and their distribution to the macroscopic response of brittle granular media, in particular the formation of localised bands of deformation. We structured this thesis by considering the cycle of experiments, model development and numerical implementation. Each step of this cycle provides important insights for the next, as well as indicating possible future research directions to further progress our understanding of brittle granular media.

We described in Chapter 3 a series of experiments that were performed in the Appareil Cisaillement Simple Annulaire, typically referred to as ACSA. These experiments were conducted for two reasons:

1. To develop a method of image processing that can reliably extract velocity distributions and be used for the verification of future models, and 2. To provide some indicative evidence of whether shear band thickness varied only with the mean grain size, or if there was a more complex relationship at work that depended on the polydispersity.

The method that we developed involves performing a series of transformations on the photographs of the experiments that ultimately allow the extraction of time-averaged velocities with sub-particle resolution, which is more than sufficient to test the predictions that models may make about the spatial distribution of radial velocities in the ACSA device.

Using our image processing method, we examined the set of experiments and came to the conclusion that they were insufficient to formulate a strong claim about the laws that govern shear band width formation with respect to their constituent grains. However, they did show that materials with identical mean grain size but different levels of polydispersity produced shear bands of differing thickness.

We then moved to the development of a constitutive model that would be suitable for the prediction of localisations in brittle granular material, taking account of the evolving grain size distribution as the material undergoes crushing, described in Chapter 4. We accomplished this by developing a model that combined two distinct formulations of constitutive models, the Cosserat model formulation, and the Breakage Mechanics model formulation, to create a new Cosserat Breakage Mechanics model that combines the strengths of both model families while ameliorating some of their respective weaknesses. The general framework for the model was obtained by performing an elastic upscaling that was consistent with Breakage Mechanics in the classical continuum, but that included the energetic contributions of the elastic curvatures. As a natural consequence of this upscaling, we obtained a new internal Cosserat length that evolves as the grain size distribution does, and that includes information from the entire grain size distribution, aligning with the insights we gained from our experiments.

In this chapter we also defined and analysed some new granulometry parameters, made a slight generalisation of the second deviatoric stress and strain invariants for the Cosserat continuum, and defined relationships between the stiffnesses in the classical continuum, and three new stiffnesses introduced with the Cosserat continuum. The final outcome of this is that we were able to specify an enriched Cosserat constitutive model that requires no additional calibration relative to the same model in the classical continuum, but also has additional predictive power due to the equations remaining well-posed during localisation processes.

Our model offers some theoretical justifications for the behaviour we observed in our experiments in Chapter 3, noting however that we are modelling a different type of material. This is further indication that conducting a more systematic set of experiments to determine precisely the effect of polydispersity would be a useful future research direction.

In Chapter 5, we studied the behaviour of the model with respect to its predictions of localisation behaviour. We used two methods to do so, linear stability analyses, typically referred to as LSA, and the finite element method, typically referred to as FEM. Using the combination of these methods, we were able to study a number of different loading conditions that related to common experimental or field conditions. The LSA enabled us to study how changing the material parameters, in particular the tendency of the model to dissipate energy either via grain crushing or pore collapse, would affect the loads required to induce a localisation. This method allowed us to obtain insights even in systems which the Cosserat continuum does not regularise, such as oedometric compression.

We also applied LSA to material-point integrations of our model. This method allowed us to predict the initial width of localisation thicknesses, and their predicted post-localisation tendency, which could be subsequently compared to the results obtained using the FEM. Of particular note is that under constant confining pressure, the model predicts Riedel shear bands that lie at an angle to the shear plane. This prediction offers a significant clue to how these cataclastic bands form as co-seismic structures. Similarly, when analysing the system under biaxial conditions, we observe that our model predictions agree with experimental observations of cataclastic bands forming at an angle to the applied tractions.

The FEM results showed generally good agreement with those of the LSA, and also enables the rigorous study of the post-bifurcation behaviour. This revealed the tendency of the system to form thin bands of ultra-cataclastic material in those systems that favoured grain breakage, when sheared at constant volume. This load condition is analogous to the fast undrained shearing observed in faults, and the formation of these thin ultra-cataclastic bands is consistent with field observations of the structure of faults.

Perspectives

In this thesis, we provided the foundations for further detailed study of a number of different questions that arose.

Firstly, and most obviously, the method of image analysis that we developed to study localisation in the ACSA can be applied to any number of experimental geometries, and can be used to inform further model development, or to test the predictions given by future models.

To the first end, a much more comprehensive series of experiments with different sets of grain sizes, different confining pressures and different velocities can be explored in order to experimentally determine the effect of polydispersity on the shear band thickness. As the ACSA is a large device featuring difficult-to-prepare samples, a comprehensive suite of experiments may well be a thesis-worth of work in and of itself. An alternative possibility is constructing a much smaller ACSA and scaling the particles down appropriately. This may also allow the extension of the experimental techniques from conventional photography to X-ray imaging, as well as from two to three dimensions [START_REF] Guillard | Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow[END_REF]. The potential of this technique to obtain a full and rich experimental understanding of the dependence of the system behaviour on polydispersity could underpin the development of not only new Cosserat Breakage Mechanics models, but also segregation models and refinements of well-known granular flow models such as the µ(I)-rheology [START_REF] Gdr Midi | On dense granular flows[END_REF].

Secondly, there is significant scope for refinement in the model that we have presented. The upscaling that we presented is almost entirely general for Cosserat Breakage Mechanics models, in the same way that the original Breakage Mechanics paper framed a general upscaling procedure in the classical continuum (Einav, 2007a). The only constitutive assumption our upscaling makes is that the energetic contributions of the elastic strains and curvatures are uncoupled. Hence, within this framework we can develop significantly more refined models.

In developing our model, we made a choice to use the most simple already existing Breakage Mechanics model that is capable of being re-framed in the Cosserat continuum [START_REF] Das | Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics[END_REF][START_REF] Nguyen | A damage model with evolving nonlocal interactions[END_REF]. This choice was made so that the model and its behaviour could be understood despite the additional complexity that the Cosserat continuum necessarily introduces. However, now that we understand the behaviour of the simplest Cosserat Breakage Mechanics model, there is ample possibility to add in the wide variety of additional physics that have been accounted for in recent years by a wide variety of workers in classical Breakage Mechanics.

The most important additional physical feature to include in the model is the porosity. This inclusion would allow both a description of the dilative behaviour that is impossible in the current model, and a much more refined compressive and shear behaviour that may have the benefit of numerically stabilising the model. In addition to the porosity, non-linear elasticity due to Hertzian contacts must be included for accurate representation of material behaviour, particularly at small strains (Tengattini et al., 2016). The model can be made to more accurately account for the presence of cement bridges between grains via the addition of a damage variable [START_REF] Das | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II -Validation and localization analysis[END_REF][START_REF] Tengattini | A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory[END_REF], which can further refine our ability to model tests on granular rocks. Breakage Mechanics has also been framed in a finite strain framework [START_REF] Rubin | A large deformation breakage model of granular materials including porosity and inelastic distortional deformation rate[END_REF] that would be more appropriate for the large shear strain simulations we have undertaken in this thesis, and for fault modelling in general. Finally, phenomena arising from fracture behaviour at the grain scale such as grain-size dependence of yielding [START_REF] Zhang | Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics[END_REF] and rate-dependence (Zhang and Buscarnera, 2017) may also be included in the model to increase its physical fidelity.

Hence, it is possible for us to imagine that simply by combining the state-of-the-art aspects of various models, we could straightforwardly arrive at an extremely comprehensive model that would be accurate at small strains and low confining pressures all the way to geological confining pressures and arbitrarily large strains, while also being well-regularised in shear due to Cosserat effects, and in compaction/dilation due to rate-dependent effects. It is conceivable that it may be necessary to move from Cosserat to a full-first order micromorphic continuum (i.e. one that includes second-gradient terms) in the event that the rate-dependent regularisation is insufficient, but in any event the possibility of an extremely physically rich and predictively powerful constitutive model would appear to be in reach.

Finally, we may wish in future to implement our models in conjunction with thermo-hydro-chemo-mechanical coupling.

Recent research [START_REF] Rattez | Couplages Thermo-Hydro-Mécaniques et localisation dans les milieux de Cosserat : Application à l'analyse de stabilité du cisaillement rapide des failles[END_REF]Rattez et al., 2018a,b,c) has revealed the importance of these couplings in localising behaviour, particularly within the physical context of seismogenic faults. There are a range of ways in which the information that we can in principle access through Cosserat Breakage Mechanics can significantly improve the modelling of these processes. The collapse of pore space and subsequent decrease in permeability, the amount of dissipation attributable to grain crushing and hence unavailable for frictional heating, and the amount of grain surface area for chemical reactions to take place, are all tightly intertwined with the overall behaviour of faults. Cosserat Breakage Mechanics offers the promise of greatly improving the physical fidelity and thus modelling accuracy of each component of these mathematically and physically complex systems. Even in typical laboratory situations such as undrained tri-axial tests, researchers have witnessed the interaction of crushed grains with water pressure to form drainage channels [START_REF] Sulem | Shear banding in drained and undrained triaxial tests on a saturated sandstone: Porosity and permeability evolution[END_REF]. Modelling complex systems such as these may necessitate a corresponding increase in the complexity of the numerical method we use to model it, such as extended finite element method (XFEM), material point method (MPM) or smoothed-particle hydrodynamics (SPH).

Overall, we may conclude that this thesis has formed a solid framework that advances both the experimental study of polydispersity in granular media, and the development of rich constitutive models that can capture a wide variety of physical phenomena.
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Figure 3

 3 Figure 3.2: An example of rods (in this picture exclusively 10 mm rods) placed in a mould.

Figure 3 . 5 :

 35 Figure 3.5: The original image in colour.

Figure 3

 3 Figure 3.8: A spatio-temporal plot showing the continuity of the behaviour over time. Each column of pixels represents a five second time increment. Each row of pixels represents the same point in space, covering a region of 0.021 mm width. We label A and B the rows of pixels corresponding to the points A and B in Figure 3.7.

Figure 3

 3 Figure 3.9: An image of the two dimensional fast Fourier transform after being appropriately phase-shifted and rescaled for visualisation. The phase shifting (by half the image size) moves the low-frequency signal content to the centre of the image, while the re-scaling increases the contrast level. The horizontal axis is the frequency component of the pattern lying along the horizontal axis of the spatio-temporal plot, and the vertical axis is the frequency component of the pattern lying along the vertical axis of the spatio-temporal plot.

Ψ

  This process starts by considering the Helmholtz free energy density per unit volume. The function is given by

  .85) K and G are the bulk and shear elastic moduli as per the classical continuum, and G c , L, H and H c are additional elastic parameters introduced for the Cosserat continuum. As previously noted in §4.4.1, the parameters L, H, and H c have units of stress in this work.

  Figure I.3 demonstrate that only the systems which strongly favour pore collapse (i.e. have high values of ω) and have low to moderate values of B are able to form compaction bands. Similarly, Figure I.4 illustrates that the maximum grain size also has a strong effect on the size of localisation zone on the yield surface. These two behaviours alignwith the observations made by geologists both in the field and experimentally, that highly porous rocks favour the formation of compaction bands[START_REF] Cashman | Cataclasis and deformation-band formation in unconsolidated marine terrace sand, Humboldt County, California[END_REF][START_REF] Papazoglou | Localized Compaction in Tuffeau de Maastricht: Experiments and Modeling[END_REF][START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF][START_REF] Wong | Localized failure modes in a compactant porous rock[END_REF], and that rocks with narrower grain size distributions are more likely to generate compaction bands than those
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  116) in the classical continuum, which the definition must collapse to in the absence of Cosserat effects. A table of weighting

	factors for the invariants (4.104) and (4.105) is arrived at:
		2D model	3D model
	Static model	g

Table 4 .

 4 1: Values of the coefficients for stress and plastic strain rate invariants in a Cosserat continuum made consistent with Breakage Mechanics
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Numerical applications

Summary

In this chapter we apply the model developed in the previous chapter to predict the thickness of localisation phenomena.

The two principal methods that we implement are the linear stability analysis (LSA) and the finite element method (FEM). Using these two methods we focus our investigation on constant volume shearing. We also use the LSA to examine the system tendencies under constant confining pressure shearing, oedometric compression and biaxial compression. By investigating a range of load paths equivalent to well-understood experimental tests or important field phenomena, we develop understanding of the strengths and limitations of the model in explaining the physics of the processes that we are interested in.

Introduction

This chapter is organised as follows: first, we present the methods used to predict localisation thickness. Then we apply these methods to a range of different load cases and compare between the two methods for each case. Finally, we discuss the results in the context of what they reveal about the underlying physical mechanisms of each system.

Methods

We will use two different methods to determine the localisation thickness predicted by the new Cosserat Breakage Mechanics model. The first method is the linear stability analysis (LSA). This method is semi-analytical, and involves perturbing an assumed homogeneous system then studying the evolution in time of those perturbations to determine if strain localisation can occur, and if so what the localised zone width and orientation angle are. This technique is applied to a single element implementing the material model in Mathematica or Python that takes strain and curvature rates as inputs.

The second method is the finite element method (FEM). Displacements or tractions are applied to the boundaries of the system and a numerical solution for the evolution of the system is searched for by implementing the material model at each node while maintaining equilibrium in the system. The displacements and Cosserat rotations are interpolated between the nodes with basis functions. The finite element system simulates the response of a structure that can deform inhomogeneously.
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Appendix A

Fast Fourier transform algorithm

In order to present the FFT as an image that shows distinct features, we must perform a standard set of rescalings.

The algorithm to obtain a two dimensional FFT image (with a specific implementation using scipy's fftpack) then becomes:

1. Threshold the spatio-temporal plot, then 2. Extract the square window that we are performing the FFT on, then 3. Perform the FFT, then 4. Phase-shift the FFT so that the zero-component appears at the centre rather than the edge of the image, then 5. Take the absolute value of the FFT (we include both the real and imaginary parts of the transform), then 6. Take the log 10 of every value, then 7. Find the contrast range i.e. the difference between the maximum and minimum values present, then 8. Subtract the minimum value from each value and divide that value by the contrast range, and multiply by 255.

Appendix B Orthogonal distance regression algorithm

To perform the fitting by orthogonal distance regression, we exploit scipy's ODR module. We assume that the observed data (x i , y i ) are expressible as deviations from the values (x * i , y * i ) that lie on the regression line:

)

We define a parameter δ that is the ratio of their variances:

As the method for generating the x and y data is the same, the variances can be assumed the same and hence δ = 1.

We define a line of best fit that must pass through the origin

and then seek to minimise the weighted sum of squared residuals

This will return a value of β that results in the line of best fit from the ODR method.

Appendix C

Image moment algorithm

In order to calculate the equivalent ellipse, first we must calculate the area (the total number of pixels), where x and y are the coordinates of the pixel, and P is the set of those coordinates:

The normalised moments (i.e. the mean positions in the horizontal and vertical directions) are then given by

The respective horizontal, vertical and mixed second order moments are calculated by

x 2 y 0 -x2 , (C.4)

x 0 y 2 -ȳ2 , (C.5)

The covariance matrix of the set of pixels is then given by

The eigenvectors of the covariant matrix give the major and minor axis lengths, and the orientation of the major axis:

It should be noted that the angle returned is the angle between the major axis of the ellipse and the nearest Cartesian axis, so it may require adjustment to return a consistent value with respect to the x-axis.

Appendix D

Data robustness

We first note that the slope of the line in the frequency space is orthogonal to the slope of the pattern in the spatiotemporal plot, so the returned angles, tan(β) and θ from the ODR and image moment analyses respectively need to be subtracted from π/2 in order to correctly give the angle on the spatio-temporal plot. Now, in order to determine the specific velocity value that we measure, we consider the different threshold values. In general the quality of the fit increases with the value of the threshold, up to the point at which it collapses due to an insufficient number of points. In this instance our method numerically returns a 'NaN' value.

We also have to be careful that the analysis does not return unreasonable values. Occasionally, due to taking the tan(θ) of angles close to π/2, we can experience rapid blow up. Hence, we must implement a procedure to discard unreasonable values. We start by discarding any obviously wrong values (greater than 20, when maximal values are otherwise of order eight), setting these to NaN. We then take the average of the highest threshold value that returns a non-NaN value for a given radius, averaging across the number of separate FFT images produced. We calculate the standard deviation σ and if it is greater than five (already much larger than what the "true" value would be), we set it to five.

We then select a z-score (in this case two), and set any value that is greater than z × σ to NaN.

Finally, for a given experiment at a given radial distance, we search for the value associated with the maximal threshold value that does not return a NaN, and select that as the velocity returned for that point.

Appendix E

Savitzky-Golay smoothing algorithm

A window of m data points (x i , y i ) is selected (where m is odd) and the order of a fitting polynomial is specified (where the order is less than m). The filter slides the window along the full set of data, fitting the data with the expression

where the window is centred on y j , and C i are convolution coefficients that act to more heavily weight data closer to the centre of the fitting window. The convolution coefficients are determined by the least squares method (which has an analytical solution if the x i are evenly spaced, which is the case with our data).

We then select a window size of 13 points, and a fitting polynomial of order one. We perform the smoothing by exploiting scipy.signal's savgol filter algorithm.

Because the method of determining the velocity by ODR is slightly more prone to generating NaNs, we pass through our matrix of velocities and replace all NaNs with zeros (failure to replace with a real number means that the Savitzky-Golay method will not work). The method only returns NaNs for small velocities which are very close to zero anyway, and these velocities occur outside the window that we plot, and so have no effect on the region of interest.

As the filter does not respect the need to retain a normalised velocity of one at a radius of one, we renormalise by the smoothed velocity at this radius to produce the final result.

Appendix F

Numerical differentiation

In the classical continuum the strain rate entries denoting shear are symmetric ( εrθ = εθr ) and are given by εrθ

In the Cosserat continuum the corresponding entries are given by γrθ

The geometry of ACSA is perfectly rotationally symmetric, and hence the system must be invariant in θ. We also have no capacity to track the Cosserat rotations ω c z , so we will ignore these in the formulations. We are left with εrθ = 1 2 We need to establish a method to determine the velocity gradient. We choose the central-difference method as its accuracy is greater than the forward-and backward-difference methods (which we use only for the gradient at the first and last points). Hence we have ∂v 0

for the last point, and

for all the points in between.

Considering Figure H.7, we can see that changing the value of ω changes the specifics of the behaviour, but not the overall tendencies, with larger ω being more favourable to early localisation and a more slowly growing band angle.

The nature of the bands predicted by these LSAs is different to the principal shear bands we observe in faults, which are typically parallel to the shear plane. These bands are consistently at a high angle to the shear plane, which indicates that they are in fact the antithetic Riedel bands often observed around faults in the field [START_REF] Davis | Conjugate Riedel deformation band shear zones[END_REF][START_REF] Lin | Riedel shear structures in the co-seismic surface rupture zone produced by the 2001 Mw 7.8 Kunlun earthquake, northern Tibetan Plateau[END_REF][START_REF] Rao | Co-seismic Riedel shear structures produced by the 2010 Mw 6.9 Yushu earthquake, central Tibetan Plateau, China[END_REF]. The fact that these are the bands predicted by the model is unexpected, and poses a challenge for finite element analysis, because in constructing our analysis we have assumed the system is invariant in the x 2 direction, so only bands that are parallel to the layer can be modelled. We thus continue our analysis considering other boundary conditions.