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For a few decades, many experimental research teams have been able to isolate
and control individual quantum objects. These objects can be particles belonging
to the field of AMO physics, where the trapping of atoms, molecules or ions has
been successfully demonstrated. They can also be solid-state devices, where complex
systems such as superconducting circuits, NV centers in diamond, quantum dots
or semiconductor-based microcavities were proven to behave as individual multi-
level systems, and consequently can be seen as “artificial atoms”. On these different
platforms, local high-fidelity state manipulations and long coherence times have been
reported, so that single quantum objects are nowadays available at an exquisite
level of control. After the demonstration of the isolation of single particles, the next
major experimental breakthrough was the observation of entanglement between a few
particles; for example, in the pioneering work of Aspect, Grangier, and Roger [1982]
with correlated pairs of photons, or with two interacting ions [Schmidt-Kaler et al.,
2003].

These experimental demonstrations triggered a huge investigation effort in view
of developing quantum technologies. They consist in using the coherent control of
quantum objects, implementing genuine quantum features such as state superposition
or entanglement, in view of outperforming their classical counterparts in a wide range
of applications. For instance, at the single-particle level, the coherent manipulation of
the isolated quantum objects allows for the local probing of external fields, leading
to the development of the quantum sensors field [Kitching, Knappe, and Donley,
2011]. Along these lines, the measurement of magnetic fields on the nanometer
scale with NV centers in diamond was reported [Rondin et al., 2014]. For another

application, quantum metrology, engineering highly entangled GHZ states enhances
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the measurement sensitivity to reach the Heisenberg limit (one example with three

entangled ions is reported in [Leibfried et al., 2004]).

In most of these applications, a two-level system is encoded considering only two
states of the controlled individual quantum object. This single two-level system, often
called qubit for quantum logical bit, would be the elementary building block of a
quantum computer. For this application also, taking advantage of state superpositions
and entanglement would enable operations impossible with classical algorithms. The
most famous example is the factoring problem, basis of most of the currently in-use
encryption procedures, which could be solved with a quantum machine implementing
Shor’s algorithm [Shor, 1994]. The computation would be based on a sequence of
one- and two-qubit logical operations, the latest being realized in practice using
interactions between the single quantum objects. These quantum computing, or
quantum information, tasks are hard, long-term applications, requiring the challenging
increase of the number of quantum objects under control, with tailored interactions,

and the implementation of fault-tolerant protocols [Barends et al., 2014].

Controlling the interactions within an ensemble of qubits has another, mid-term,
application. Hamiltonians of interest in condensed-matter physics or high-energy
physics can in that way be implemented on an experimental platform in view of
mimicking real-world matter with artificial systems. Simulating real matter with
a controlled experimental quantum system is called quantum simulation, and was
first proposed by Richard P. Feynman [1982]. Progress in the field was recently
reviewed by Georgescu, Ashhab, and Nori [2014]. Quantum simulation is expected to
be a reliable way to study quantum many-body dynamics as compared to numerical
simulations. Indeed, due to the exponential growth of the Hilbert space with N the
number of interacting particles, the current limit is N = 40 for the best classical
computers, whereas it could be larger for quantum simulators (see the very recent
experimental comparison, for a specific computational task, between a programmable

superconducting quantum processor and a classical computer [Arute et al., 2019]).

The aim of this manuscript is to report a few quantum simulation experiments
realized during my Ph.D thesis. They were performed on a platform based on neutral
87Rb atoms, trapped in a versatile configuration of micron-sized optical tweezers, and
brought to highly-excited states known as Rydberg states. In this Introduction, I will
first present a few exciting many-body phenomena, hosted by two types of model
Hamiltonians, in condensed-matter physics. These two types of Hamiltonians have
been both studied on our platform during my Ph.D thesis. Then, I will give a few

examples of quantum simulation realized on different experimental platforms. Finally,

12



1.1

1.1 Quantum many-body phenomena in condensed-matter physics

I will focus on Rydberg-based quantum simulators.

Quantum many-body phenomena in condensed-matter physics

One of the goal of condensed-matter physics is to explain the properties of (macroscopic)
matter from one- and two-body operators acting at the particle (microscopic) level.
Solid-state materials can be described as an ensemble of electrons (spin-1/2 particles)
localized at the nodes of a crystalline structure, having the ability to hop between
lattice sites, and with an on-site interaction energy. These two elementary processes,

hopping and on-site interaction, results in the Fermi-Hubbard model, written

H= =t 3 (ot + 8,050 + U i (1.1)
(i.),0 i
where 4, j are the indexes of the lattice sites (the brackets indicate that the sum
runs over neighbouring lattice sites), o the spin degree of freedom 7, |, t the hopping
amplitude, U the on-site interaction energy, ¢, and 6}; the fermionic annihilation
and creation operators, and n, = éLé the number operator. Although this model is
simple to write, it is extremely hard to solve. Then, the usual way to treat this model
is to study the regimes where one of the two processes is the most prominent. For
t < U, only the spin degree of freedom remains, and we can write spin Hamiltonians.
On the contrary, for U = 0, we recover the tight-binding model. These two types
of Hamiltonians, spin or hopping Hamiltonians, can be implemented with Rydberg
atoms, as we shall see in this manuscript. Now, I describe a few interesting many-body

phenomena associated to these Hamiltonians.

Spin Hamiltonians Spin Hamiltonians were proposed to understand the magnetic
behaviour of matter, and are the central objects of study in the quantum magnetism
field [Blundell, 2001]. The simplest models involve spins-1/2 localized on lattice sites.
The quantum operators acting on spin-1/2 are usually written in terms of Pauli
matrices, 6%, 6¥, and ¢°, with z the quantization axis. Then, the interaction between
two spins localized on the lattice sites ¢ and j is formally written as a product of
Pauli matrices acting on both spins. Few examples of interacting models are: the
Heisenberg Hamiltonian, where the interaction between two spins reads J;; &; - 6;; the
planar XY-model, where it is written J;; ([ff&;’ + 6?6?); or the uni-axial Ising model,

N2 AZ

written J;;0707. The XY model, by the use of the spin raising 6% and lowering 6~
=6 +i6Y and 67 = 6° —i6”, can also be written J;; (6765 + 6767 ).

operators, & ;

13



Chapter 1: Introduction

I mention also the XXZ model, a combination of the Ising and the XY models, written
Jij (&f&? + 676 + 5&?&;). When 6 = 1, we recover the Heisenberg model. In this
manuscript, I will focus on the Ising and the XY models.

These simple microscopic spin models may have different physical origins. For
example, when derived from the Fermi-Hubbard model (1.1), spin Hamiltonians
originate from the combination of the Coulomb interaction and the Pauli exclusion
principle. They can be interpreted classically as the tendency for spins, pictured as
elementary magnets, to orient themselves with respect to each other to reduce the
global energy of the system. Consequently, they explain the macroscopic spin-ordered
magnetic phases of matter from the interaction at the particle level, which is the
goal of quantum magnetism. The interplay between the lattice structure and the
geometrical dependence of the interaction gives rise to a rich variety of phases, even if
the interaction is simply written in terms of two-body operators. Some of these phases
still lack a complete characterization, for example frustrated phases [Moessner and
Ramirez, 2006], and are hot topics in condensed matter physics.

In the presence of a strong enough external magnetic field, all spins tend to
align into its direction, constituting what is called a paramagnetic phase. A spin
system will be in a paramagnetic phase rather than in the interacting spin-ordered
phase as soon as the energy it gains due to the coupling to the magnetic field,
given by the single-particle Hamiltonian — (1/2) ug & - B, overcomes the energy
gained due to the interaction. Varying the amplitude of the external field, the
system undergoes a quantum phase transition, a phenomenon actively studied both
theoretically and experimentally [Sachdev, 2011]. Other phenomena of interest originate
from the out-of-equilibrium physics occurring in these systems while abruptly tuning
external parameters, which can in some cases be seen as a dynamical quantum phase
transition [Heyl, 2019].

Hard-core boson Hamiltonian Another important kind of Hamiltonians of interest
in condensed-matter physics are hopping Hamiltonians (the tight-binding model is
the limit U = 0 of the Fermi-Hubbard model). They capture most of the transport
properties of materials, accounting for the distinction between conductors and insulators
by computing the dispersion relation (band structure). Among insulators, new sort of
phases are intensively being explored, topological insulators [Qi and Zhang, 2011], for
their unique transport properties [Moore, 2010].

Rather than the Fermi-Hubbard model, I focus on the (spinless) Bose-Hubbard

model, describing the hopping physics for bosons in a lattice. The quantum operators
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1.1 Quantum many-body phenomena in condensed-matter physics

acting on bosons are the creation l;j and annihilation b; operators. As in the fermionic
case, the hopping of a boson from site 7 to j simply reads in terms of operators l;zls;t,
and the hopping term in the Bose-Hubbard Hamiltonian is written J;; (Bjaj + lA)j @),
with J;; the hopping amplitude. In addition to the hopping term, the Bose-Hubbard
Hamiltonian takes into account the chemical potential ;1 and the on-site interaction
U between bosons with the single-site term —un; and Un; (n; — 1), with n; = IA)ZTZAJZ
gives the number of bosons on site i. This Hamiltonian is known to describe the
transition between a superfluid and a Mott insulator. In the peculiar case of an infinite
on-site interaction energy, each lattice site can host either zero or one boson, and the

Bose-Hubbard model reduces to a hard-core boson Hamiltonian.

Actually, the XY and the hard-core boson Hamiltonians reduce to the same physical
situation. Indeed, the XY interaction term acting on the pair state of spins |1])
transforms it into |} 1), which means that the two spins have exchanged their states. This
is why the XY Hamiltonian is sometimes referred to as a spin-exchange Hamiltonian.
Rather than spins, we can see |1) as being a lattice site occupied by one particle and
|1} as being an empty lattice site. The spin-exchange process is then equivalent to the
hopping of one effective particle between the two sites. As there are only two levels
involved, no state corresponds to a lattice site occupied by two or more particles, so
two bosons cannot be on the same lattice site, they have infinite on-site interaction
energy. As a consequence, implementing the XY Hamiltonian for spins allows also for

the study of hopping hard-core bosons.

Finally, adding a magnetic field acting on these hopping particles extends even more
the range of exotic phenomena potentially exhibited by this model, the most famous
one being the quantum Hall effect [Klitzing, Dorda, and Pepper, 1980]. The action of
the magnetic field can be taken into account directly in the hopping term, by writing
complex hopping amplitudes. Then, having complex hopping amplitudes mimics the
effect of an external magnetic field, even in the case of uncharged particles, and gives

rise to an artificial gauge field [Aidelsburger, Nascimbene, and Goldman, 2018].

I have presented two types of Hamiltonian, enabling for the explanation of several
many-body phenomena and promising the understanding of other exotic ones. I am
now going to describe examples of their implementation on three different kinds of

platforms, allowing for their study on a controlled artificial system.
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A short overview of quantum simulation

In order to engineer the aforementioned Hamiltonians, a quantum simulator needs to
fulfill several constraints. The first requirement is to have an ensemble of particles in a
controlled geometrical configuration, mimicking the lattice structure. The ability for
the particles to tunnel between lattice sites leads to the engineering of some hopping
Hamiltonians. To mimic spin-1/2 physics, one should define a two-level system, i.e. a
qubit, considering two quantum states of the particle. Then, if the interaction only
involves the two considered states of the particles, the Hamiltonian of the controlled
system can be mapped into a spin Hamiltonian. For the one-body operator of spin
Hamiltonians, driving transitions between the two states of the qubit imitates the
behavior of an external magnetic field on the effective spin-1/2. Indeed, both the
driving of a qubit and the coupling of a spin-1/2 to a magnetic field can be formally
written as rotations of the two-level system. Finally, to perform quantum simulations,
the experimentalists must have access to the populations, for each qubit, in the two
levels.

Quantum simulation then relies on rewriting the engineered interaction within the
system under control in terms of spin or bosonic operators, in such a way that a
mapping exists between the physical situation in the laboratory and the targeted
model. To be more precise on the quantum simulation field, this is known as analog
quantum simulations, where an artificial system, albeit physically quite different,
obeys the same equation of evolution as the modeled system. In the experiments
presented in this manuscript, we perform this kind of quantum simulation. Actually, it
exists two other more abstract approaches, known as digital and variational quantum
simulations.

Digital quantum simulation relies on the possible formal decomposition, referred to
as the Trotter formula [Lloyd, 1996], of the evolution operator of a many-body system
into a series of one- and two-body operators. The asset of this approach is that many
different Hamiltonians can be studied that way, in a close correspondence to Richard
Feynman’s original idea. The drawback of this approach is that it requires the piling
of a lot of quantum gates. Even if the single- and two-body operations show very
high fidelity in ion- or superconductor-based platforms, the increasing complexity of
the series of gates that must be performed would eventually be detrimental to the
efficiency of this approach.

Another hybrid approach has been developed more recently, variational quantum

simulation. It is expected to simulate as complex Hamiltonians as digital quantum
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simulation but requiring less quantum operations. It is based on a feedback loop
between an analog quantum simulator providing entangled trial wavefunctions and
classical optimization algorithms to determine in an iterative way the solution to a
given problem.

I now briefly explain how several experimental teams have succeeded in implementing
the aforementioned Hamiltonians using degenerate quantum gases [Bloch, Dalibard,
and Nascimbene, 2012; Tarruell and Sanchez-Palencia, 2018], trapped ions [Blatt and
Roos, 2012] or superconducting circuits [Houck, Tiireci, and Koch, 2012]. The few

examples I describe are not an exhaustive list.

Ultracold quantum gases [ start this short overview by the quantum simulators
based on degenerate quantum gases. To get the particles in a controlled spatial
configuration, experimental groups mostly use periodic trapping potential, coming
from standing waves of off-resonant light, known as optical lattices [Bloch, 2005]. The
lattice is filled by making the degenerate gas undergo the phase transition between a
superfluid and a Mott insulator [Greiner et al., 2002]. Using high-numerical aperture
optics, some experimental groups are nowadays able to reach single-site resolution
and locally probe the occupancy of each lattice site. These platforms are referred to
as quantum gas microscopes [Bakr et al., 2009]. They provide the largest controlled
systems, as compared to the other platforms I will describe. The ability to perform
local operations on the encoded qubits inside an optical lattice by using addressing
light-shifts was demonstrated [Wang et al., 2015].

By playing on the relative phase and amplitude of the beams generating the
optical lattice, complex lattice structure can be engineered. Varying the lattice depth
controls the tunneling amplitude of the particles between neighboring sites, resulting
in tunable quantum simulators of hopping Hamiltonians. Based on the imaging of the
quasi-momentum distribution, several groups have been able to measure characteristic
properties of the implemented Hamiltonian. The group of Prof. Tilman Esslinger, for
example, was able to produce a honeycomb lattice, and observe signatures of the Dirac
points [Tarruell et al., 2012], an emblematic feature of the band structure associated
to this geometry. The group of Prof. Immanuel Bloch measured the Zak phase related
to the band structure for a dimerized chain [Atala et al., 2013]. The Zak phase, or
in higher dimensions the Chern numbers, are topological invariants classifying the
different phases with respect to their topological properties.

On these platforms, the interaction are mainly limited to the on-site range, whose

amplitude can be easily tuned, for instance, via Feshbach resonances [Chin et al., 2010].
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This leads to the engineering of nearest-neighbour spin-spin interaction via a tunnelling
assisted super-exchange process [Duan, Demler, and Lukin, 2003]. Nearest-neighbor
spin-spin interaction can also be implemented using doublon-hole excitations of a
Mott insulator in a tilted 1D optical lattice [Sachdev, Sengupta, and Girvin, 2002].
Following this approach, the group of Prof. Markus Greiner was able to observe 1D
Ising antiferromagnets [Simon et al., 2011]. Longer-range interaction may emerge using
particles exhibiting a permanent dipole moment, such as magnetic atoms [Lepoutre
et al., 2019] or polar molecules [Gorshkov et al., 2011; Goban et al., 2018].

The platforms described so far rely on a “top-down” approach. Starting with a
macroscopic, quantum degenerate assembly of indistinguishable particles, the system
reduces to effective spins interacting on a lattice, or hopping particles. The loading of
an optical lattice is necessary to imitate the Hamiltonians described in Section 1.1,
but actually, other phenomena can be simulated without performing this experimental
high-demanding task. For example, some groups have explored the propagation of
matter waves in disordered potential [Billy et al., 2008], or studied exotic phases of
matter, such as the BEC-BCS crossover [Navon et al., 2010; Ku et al., 2012], quantum
droplets [Ferrier-Barbut et al., 2016; Cabrera et al., 2018] or supersolids [Léonard
et al., 2017; Bottcher et al., 2019; Chomaz et al., 2019]. The advantage of this top-down
approach is that it intrinsically provides a system with a large number of particles, in
a thermal equilibrium. Using a quantum gas microscope leads to the control of the
thermodynamic properties at an exquisite level. Indeed, the group of Prof. Markus
Greiner succeeded in getting a higher fraction of the entropy on the edges of an optical
lattice, in order to generate in the bulk of the lattice the largest antiferromagnetic
correlations ever observed on a artificial state [Mazurenko et al., 2017].

The two other platforms I am going to describe, and the platform I worked on
during my Ph.D. are on the contrary based on a “bottom-up” approach. They consist
in first controlling a single quantum object, and then adding more and more objects
to have an assembly of interacting qubits. They involve fewer interacting particles
than the quantum-gas platforms, but at a better level of single-particle control and a

wider range of possible types of interactions.

Trapped ions I now turn to ion-based quantum simulators. Most of these platforms
rely on ionic crystals in a linear Paul trap [Raizen et al., 1992], exhibiting very high
fidelity single- or two-qubit operations [Blatt and Wineland, 2008]. The largest systems
are 1D chains of a few tens of qubits, but the extension to higher dimensions or

to larger number of interacting particles is extremely challenging. The spin-spin
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interactions are engineered using a laser coupling between the internal states of the
ions and the collective vibrational modes of the ionic crystals [Cirac and Zoller, 1995;
Porras and Cirac, 2004; Kim et al., 2011]. They were shown to decay as 1/R®, R being
the inter-ion distance, where o can be tuned between 0 and 3, potentially leading to
very long-range interactions.

The high fidelity of two-qubit operations on ion-based platforms allows the group of
Prof. Rainer Blatt to perform digital [Lanyon et al., 2011] or variational [Kokail et al.,

2019] quantum simulations.

Superconducting circuits Finally, I briefly mention the case of superconducting
qubits. They triggered a lot of interest since they have been proved to behave as artificial
atoms [Nakamura, Pashkin, and Tsai, 1999; You and Nori, 2005]. The technology
has considerably improved so that nowadays, superconducting qubits are available
at an excellent level of control [Paik et al., 2011; Barends et al., 2013]. Inter-qubit
coupling have been implemented using either the exchange of microwave photons in
cavity [Wallraff et al., 2004; Dalmonte et al., 2015] or the mutual inductance [Chen
et al., 2014]. On these solid-state devices, the interactions can be highly tunable as they
do not rely on the geometrical arrangement of the qubits, but on the inter-connecting
wiring. Nevertheless, tailoring these interactions for an increasing number of qubits
while keeping the same level of control is quite challenging.

The performance of the superconductor- and ion-based platforms are then similar :
they exhibit an outstanding fidelity for single- or two-qubit operations, but the scaling
to larger number of qubits has not been proven yet. Their potential integrability and
on-chip compactness makes them promising candidates for the future of quantum
information [Devoret and Schoelkopf, 2013], and attracted world-leading companies
such as Google or IBM to invest in this technology. On these platforms, some groups
have already explored the digital quantum simulation of spin dynamics [Salathé et al.,
2015], the variational calculation of molecular energies [O'Malley et al., 2016], or the

analog quantum simulation of hopping Hamiltonians [Roushan et al., 2017b].

Figure 1.1 compares the numbers of qubits involved in these different types of
quantum simulators. The ones based on degenerate quantum gases provide the largest
number of interacting particles whereas the two bottom-up approaches show the
best fidelity for one- or two-qubit operations, and highly-tunable interaction at the
single-particle level. Another criterion to compare these platforms is the cycling

experimental time. For ultracold gases, the cycling experimental time is usually a
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Rydberg atoms
Optical tweezers
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1 100 10000

Figure 1.1: Experimental platforms for quantum simulation. The color patches indi-
cate the typical number of qubits involved in different types of quantum simulators. The
near-by images with an associated color frame are representative pictures of the platform.
The purple one is a sketch of a quantum gas microscope®. The green one is a picture of a
nine-superconducting-qubit device?. The yellow one is a sketch of an ion Paul trap3. The
blue one represented sixteen atoms trapped in optical tweezers and excited to Rydberg

states.

few tens of seconds. On the contrary, for ions, the time limiting factor comes from
the read-out of the ion state, which can be as fast as a few milliseconds, leading to a
cycling experimental rate close to 100 Hz. The cycling rate can even be higher for

superconducting circuits.

Rydberg-based quantum simulators

I now turn to Rydberg-based platforms, the type of platform I worked on during my
Ph. D. thesis. I will give a complete description of our experimental apparatus, one of
the first Rydberg-based quantum simulators that have been built, in Chapter 2. In a

few words, these platforms combine the trapping of several single neutral atoms in

Thttps://news.harvard.edu/gazette /story/2009/11/quantum-gas-microscope-created /
2https://web.physics.ucsb.edu/ martinisgroup/
3https://quantumoptics.at /en /research /quiqs.html
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1.3 Rydberg-based quantum simulators

configurable arrays of optical tweezers and the coupling to Rydberg states. These states
are highly excited states corresponding to a large principal quantum number n 2 20,
exhibiting exaggerated properties [Gallagher, 1994]. In particular, their enhanced
electric dipoles lead to large and tunable interactions, and their extended lifetimes

ensure long coherence times.

Interacting Rydberg gases The first proposals aiming at performing quantum gates
with Rydberg atoms relied on the Rydberg blockade [Jaksch et al., 2000; Lukin et al.,
2001]. T will detail its mechanism in the beginning of Chapter 4. Its origin is the
distance-dependent energy shift experienced by neighbouring interacting Rydberg
atoms, which prevents the simultaneous excitation of several atoms to the Rydberg
states, as one atom being in the Rydberg state brings its neighbours out of resonance.
This results in the generation of entangled states with one Rydberg excitation shared
among mesoscopic atomic assemblies. The first experiments were performed on dilute
gases, and showed signatures of the Rydberg blockade by measuring a reduced number
of excited atoms [Tong et al., 2004; Singer et al., 2004; Vogt et al., 2006]. Then, some
evidence of the coherence of the collective excited states were reported, still on dilute
gases platforms [Heidemann et al., 2007; Raitzsch et al., 2008; Pritchard et al., 2010].
A review on these studies of interacting Rydberg gases can be found in [Low et al.,
2012].

Using optical tweezers In order to get a better control on the interaction, the team I
joined for my Ph. D. chose to work with single atoms loaded in optical tweezers instead
of dilute gases. Optical tweezers are tight confining optical dipole traps, and they were
proven to be reliable single-atom sources in pioneering experiments performed at the
Institut d’Optique, by the team of Prof. Philippe Grangier [Schlosser et al., 2001].
Then, it is possible to control the interatomic distance, hence the interaction, between
single atoms. This led the hosting team to observe the Rydberg blockade between
two atoms [Gaétan et al., 2009], jointly with the group of Prof. Mark Saffman in a
similar setup [Urban et al., 2009]. The two groups then improved their control of this
two-atom system, and reported the generation of entangled states [Wilk et al., 2010],
or the realization of the two-qubit C-NOT gate [Isenhower et al., 2010].

Towards quantum simulation with Rydberg atoms Since these first experimental
demonstrations, arrays of Rydberg atoms were considered as a promising platform for

quantum simulation experiments [Weimer et al., 2010]. The use of a versatile array of
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optical tweezers enables for the engineering of any lattice geometry, whose lattice
constant can be as small as a few microns. The interatomic distance is larger than in
the case of optical lattices, which eases the single-site resolution of the lattice and
local operations on the encoded qubits. Even for an interactomic distance of a few
tens of microns, the interaction between Rydberg atoms can be on the MHz range,
whereas their lifetimes is around a hundred of microseconds. Consequently, the typical
timescale of the interacting dynamics is much smaller than the coherence time of the

system, leading to its observation in a laboratory.

One of the advantages of using Rydberg atoms for quantum simulation purposes is
that they can interact within different regimes, in such a way that they naturally
implement different kinds of Hamiltonians. I refer to Appendix A for a detailed
description of these regimes of interaction, and their links to the Hamiltonians
presented in Section 1.1. In a few words, we have used in the experiments presented in
this manuscript the van der Waals and the resonant dipole-dipole regimes. We can
choose to work within one of the two regimes by encoding the qubit into a specific set

of two atomic levels.

If the encoded qubit basis is {|g),|r)}, with |g) the electronic ground state and
|r) a Rydberg state, the atoms interact within the van der Waals regime. In that
case, the interaction results in an energy shift of the doubly excited pair state |rr),
which is at the origin of the Rydberg blockade mechanism I mentioned above. Then,
the interaction between two atoms labeled ¢ and j reads U;;jn;n;, with n; = |r), (r|,
the local projector on the Rydberg state, and Uj;; is the van der Waals energy shift.
Considering |g) = |[{) and |r) = |1) leads to rewrite the interaction in terms of spin
[,
implementing an Ising-like model. Combined with a laser field coupling the two qubit

operators. As nn = (1 + %) /2, the interaction between two atoms is in the end o &

states |g) and |r), we can simulate an Ising-like model in the presence of effective

transverse and longitudinal magnetic fields.

If the qubit is encoded into two dipole-coupled Rydberg states, for example a nS
state and a n'P one, the correct regime is in that case the resonant dipole-dipole
interaction. Under the influence of this interaction, a pair of Rydberg atoms in
the [nS,n'P) state will evolve back and forth between this state and the |n’'P,nS)
one [Barredo et al., 2015], in the same kind of spin-exchange process I mentioned above
(Section 1.1). This is why this interaction implements the XY model, or hard-core
boson Hamiltonians. The use of a microwave field coupling |n.S) and |n’P) imitates
the behavior of a magnetic field in the context of spin Hamiltonians, or a chemical

potential in that of hard-core boson Hamiltonians.
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Our group first characterized the aforementioned different regimes of interaction
between a few Rydberg atoms, resulting in several publications reviewed in [Browaeys,
Barredo, and Lahaye, 2016]. Then, the team studied Hamiltonians involving a few
tens of Rydberg atoms, with the implementation of an Ising-like model [Labuhn
et al., 2016]. The limitation at that time of Rydberg-based platforms was due to the
stochastic loading of the optical tweezers by single atoms. I will come back to that
point in Chapter 2. The basic idea is that our loading protocol of the optical tweezers
implied that only half of them were randomly loaded by single atoms, preventing us
to work with a targeted atomic configuration. We developed then an atom-by-atom
assembling technique, consisting in moving the atoms in the array to fully load a
targeted sub-array of optical tweezers [Barredo et al., 2016]. A similar assembling
process was developed at that time by the group of Prof. Mikhail Lukin [Endres et al.,
2016] and by the one of Prof. Jaewook Ahn [Kim et al., 2016]. Very recently, a similar
approach was implemented in the group of Prof. Gerhard Birkl [Ohl de Mello et al.,
2019].

Current Rydberg-based quantum simulators Figure 1.2 summarizes the basic
ingredients used on Rydberg-based platforms to perform quantum simulation: defect-
free atomic structures, one- and two-qubit operations and tunable interaction. The
coherence and fidelity of the one- and two-qubit operations have considerably improved
recently, as demonstrated by the group of Prof. Mikhail Lukin [Levine et al., 2018,
2019], reaching a level of control closer and closer than those shown by ion- or
superconductor-based platforms. It is now possible to generate entangled states
involving up to 20 qubits [Omran et al., 2019]. To compare these platforms to the
other ones described in Section 1.2 (see Figure 1.1), they provide a similar number of
qubits than ion- or superconductor-platforms, but in a more versatile configuration
(we demonstrated the generation of 3D atomic structures [Barredo et al., 2018]). The
cycling experimental rate, limited by the necessary loading of the optical tweezers and

the imaging time, is on the order of a few Hz.

The tunability of Rydberg-based platforms allowed us to study a bosonic version of
the Su-Schrieffer-Heeger model and to observe signatures of a topological phase with
interactions [de Léséleuc et al., 2019], which would be extremely hard in other types
of quantum simulators. This is why Rydberg-based experimental apparatuses are
nowadays very attractive and competitive platforms to perform quantum simulation of

many-body physics.
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Figure 1.2: Quantum simulation with Rydberg atoms. Key ingredients to perform
quantum simulation with Rydberg atoms. (Top) Single-shot fluorescence images of defect-
free assemblies of single atoms [Barredo et al., 2016]. (Left) High-fidelity one- and
two-qubit operations. The one-qubit operation is a Rabi oscillation between the electronic
ground state and a Rydberg state, showing high contrast and coherence [Levine et al.,
2018]. The two-qubit operation is the logical C-NOT gate [Levine et al., 2019]. (Right)
Interaction energies as a function of the distance between two Rydberg atoms, for different
regimes [Browaeys, Barredo, and Lahaye, 2016]. The green disks correspond to the van der
Waals regime, whereas the blue disks correspond to the resonant dipole-dipole one, the

two regimes used in this manuscript.

Thesis outline During my time at the Institut d’Optique, I participated in a few
projects which I will report in this manuscript. Some of them were dedicated to the
improvement of our experimental apparatus (Part I). I will detail the assembling
technique, extended to the generation of 3D atomic structures (Chapter 2). I will also
report our ability to trap atoms excited to the Rydberg states in Chapter 3. The other
projects concerned quantum simulation. In Part II, I will describe our observation
of spin-ordered phases, in the Ising case (Chapter 4) and the XY one (Chapter 5).
Finally, Part III is dedicated to the study of hopping Hamiltonians, and I will report
our implementation of complex hopping amplitudes using the intrinsic spin-orbit
coupling of the dipole-dipole interaction (Chapter 6), leading to the emergence of a

gauge field.
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In the Introduction, arrays of Rydberg atoms were presented as one of the best
platforms to perform quantum simulation. The aim of the present chapter is to
describe the experimental procedures we follow to obtain the starting point of quantum
simulation experiments, an assembly of qubits in a well-controlled initial state. Our
experimental setup was built by Lucas Béguin and Aline Vernier, and then was
upgraded by the following generations of Ph.D. students and post-doc : Sylvain Ravets,
Henning Labuhn, Sylvain de Léséleuc and Daniel Barredo. I will briefly recall the
working principles of the different steps of our experimental protocol, referring to their
Ph.D. theses for further information. Most of the experimental results shown in this

chapter were already presented in the thesis of Sylvain de Léséleuc [2018].



2.1

Chapter 2: Overview of the experimental apparatus

I will first describe in Section 2.1 the elementary building block of our experimental
apparatus, the trapping of a single atom in an optical tweezers. Then, I will explain in
Section 2.2 how we generate fully-loaded arrays of atoms. Finally, in Section 2.3, I will
present the Rydberg excitation scheme in the single-atom regime, i.e. without taking

into account interaction which will be the topic of the following chapters.

A single atom in an optical tweezers

One of the requirements for quantum simulation is to isolate and control one single
quantum object. To do so, the tool we are using in our experiment is an optical
tweezers [Ashkin et al., 1986], to trap a single ¥’Rb atom. Optical tweezers are now
commonly used to trap various types of objects [Jones, Marag, and Volpe, 2015],
and its application for single-atom trapping was first demonstrated in our lab, in a
pioneering work of the team led by Philippe Grangier [Schlosser et al., 2001]. In this
section, I will first explain how we load and detect a single atom in an optical tweezers.
Then, I will describe the different steps of the experimental sequence after loading,
enabling the preparation of the atom in a specific hyperfine level of the electronic
ground state. For this preparation we need to control the magnetic field inside the
chamber. I will show in a third part how we measure the generated magnetic field

using microwave manipulation of the electronic ground state.

2.1.1 Loading of an optical tweezers and single-atom imaging

The usual way to trap matter using light is to shine a far off-resonance red-detuned
laser beam on particles. Indeed, light induces an electric dipole on the particle, which
tends, to minimize its energy, to seek high-intensity regions. The trapping potential
created that way U is such that U o< I /A, where [ is the laser beam intensity and A
is the (negative) detuning. When such a dipole trap is focused on a small volume, on

the order of ~ 1 um?, we create a so-called optical tweezers.

Tight focusing of a dipole trap beam In order to obtain an optical tweezers,
one needs to focus light near the diffraction limit. Our group has been working on
optical tweezers for about twenty years, and their generation has been successfully
demonstrated with different techniques. At first, the careful design of a home-made

microscope objective [Vigneron, 1998] allowed the team to achieve this goal in their
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pioneering experimental setup, MIGOU. Then, the experimental effort was focused
on simplifying the optical setup using a single large-numerical-aperture aspheric
commercial lens [Sortais et al., 2007; Fuhrmanek, 2011}, in the second generation
of the experimental platform, ASPHERIX. I have been working during my Ph.D.
on the third setup generation, CHADOQ. Here, the light is also focused using a
large-numerical-aperture aspheric lens (NA = 0.5, focal length f = 10 mm), which was
designed by Lucas Béguin [2013]. From now on, I will only consider this experimental
apparatus.

Describing it in a few words, the part under vacuum of the experimental setup
is composed of two chambers connected by a Zeeman slower. The first one acts as
an atom source. It contains solid Rubidium crystals heated up by an oven. A small
aperture in one wall of the first chamber generates a directive atomic beam at room
temperature inside the Zeeman slower. The Zeeman slower decelerates the atoms to a
few mK, and the atoms arrive in the second, ultra-high vacuum, chamber. There, in
addition to the aspheric lenses, the vacuum chamber contains coils and electrodes to
control the magnetic and electric fields. The aspheric lenses are coated with a thin layer
of ITO to avoid the accumulation of charges. In combination with the under-vacuum
electrodes, these two ingredients allow for the cancellation of the electric field near
the atoms, which was not the case in the previous experimental apparatuses. This

significantly improved the coherent excitation of the atoms towards Rydberg states.

Loading of single atoms in an optical tweezers Now, I explain how our experimen-
tal setup enables the trapping of single atoms. The experimental setup is represented
in a simplified way in Figure 2.1. A far off-resonance red-detuned 852-nm dipole
trap beam (represented in red) is focused by the aspheric lens inside the vacuum
chamber on a cloud of ' Rb atoms at ~ 100 uK, created thanks to the combination of
a Magneto-Optical Trap (MOT) and a Zeeman slower (not shown in Figure 2.1 and
along the y-axis on the experimental apparatus). The MOT light, consisting of six
counterpropagating beams (represented in orange) slightly red-detuned from the Dy
line of the 8"Rb, slows down the atoms in the three directions of space via a resonant-
light-induced friction force. As in most of the cold atoms experiments, the MOT light
whose frequency is set on the cycling transition |5Sl 2, F' = 2> — ’5P3 2, = 3> comes
along with a repumper light set on the transition }551/2, F= 1> — |5P3/2, F= 2>. A
pair of coils inside the vacuum chamber, in an anti-Helmholtz configuration, generates
a magnetic field gradient. Outside the chamber, six compensation coils make it possible

to adjust the position of the magnetic field zero, and are used to tune the position of
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Figure 2.1: Trapping and imaging a single atom. The dipole trap beam at 852 nm (red)
is focused inside a vacuum chamber using aspheric lenses (ALs). Six counterpropagating
beams (orange) constitute the MOT light. The light scattered by the atom at 780 nm
(green) is reflected by a dichroic mirror (DM) and imaged on the EMCCD camera. Top-left
inset, zoom inside the vacuum chamber, where the tight focusing of the laser beam into
an optical tweezers is shown. The orange cloud represents the atomic cloud. The 2D-cuts
of the spatial intensity distribution of a Gaussian laser beam are shown in the bottom left
corner. The spatial profile is Gaussian in the radial direction (yz plane), and is a Lorentz

function in the longitudinal one (x direction).

the atomic cloud.

The dipole trap beam tight focusing results in an optical tweezers. The intensity
profile is Gaussian, with a 1/e? radius w ~ 1 um and Rayleigh length 2g ~ 4 um (see
inset of Figure 2.1). Then, for about 5mW of laser power, we obtain a trap depth
Up/kp ~ 1 mK. Once the position of the atomic cloud is properly set near the optical
tweezers, the atoms are cooled enough to fall in the dipole trap. The tight confinement
resulting from the optical tweezers trapping potential, in addition to the MOT light
shone on the atoms, make the system enter the collisional blockade regime, which
prevents two atoms to be in the optical tweezers at the same time. Indeed, in this
regime, two atoms inside one trap undergo fast inelastic light-assisted collisions, and

the energy the atoms gain during this type of collisions is enough to expel both of
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Figure 2.2: Stochastic loading of single atoms. (a) Two loading states of the optical
tweezers: empty (dark frame) or occupied by one atom (green frame). The tweezers toggles
between these two states due to the same phenomenon, an atom from the atomic cloud
entering the trapping region. Once the atom is inside the optical tweezers, it scatters
780 nm fluorescence light (green circles). The two-body loss process due to light-assisted
collisions is represented in a schematic way. (b) Fluorescence signal emitted from the

optical tweezers area. The red line is a threshold allowing us to discriminate between the
two loading states of the tweezers.

them out of the trap (see for example [Fuhrmanek et al., 2012]). The loading of the
optical tweezers then works as follows: When it is empty, an atom from the atomic
cloud enters the trap and the tweezers becomes loaded by one atom; on the contrary,
when the optical tweezers contains one atom, another atom from the atomic cloud can
enter the trap and due to the inelastic collisions the tweezers becomes empty very
quickly (see Figure 2.2(a)). Consequently, the optical tweezers only has two possible
loading states, it holds zero or a single atom. As the same probabilistic event, an atom
from the atomic cloud entering the optical tweezers, makes the optical tweezers toggle
between its two possible loading states, both loading states are equally probable, or, in
other words, the optical tweezers has a 50% chance to be loaded by a single atom.

To sum up, the combination of the atomic cloud and the optical tweezers enables a
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stochastic loading of the latest by single atoms.

Imaging of a single atom Once an atom is loaded in the optical tweezers, it scatters
the MOT light in all directions. Part of this fluorescence light is collimated by the very
same aspheric lens, separated from the dipole trap beam using a dichroic mirror, and
imaged on an electron multiplying CCD camera (EMCCD Andor iXon Ultra 897). The
fact that we are using the same optics for trapping and imaging is very convenient in
terms of optical access, and was a strong constraint while designing the optics, which
have to work at two different wavelengths, 852nm and 780 nm [Béguin, 2013]. The
imaging optical setup was designed in such a way that the radial size of one optical
tweezers (about 1 pum) matches the size of one pixel of the Andor Camera (16 um), to
improve the signal to noise ratio. A typical fluorescence signal corresponding to the
image of one optical tweezers (only a few pixels of the EMCCD camera were taken
into account) is shown on Figure 2.2(b). We clearly see two levels of fluorescence,
corresponding to the only two possible loading states of the optical tweezers: when the
signal is low, the trap is empty, when it is high, the trap contains a single atom. The
red line in Figure 2.2(b) corresponds to the threshold level, allowing us to discriminate
between the two loading states by measuring the fluorescence signal. The fact that we
cannot see a higher third level of fluorescence means that the optical tweezers cannot
hold two atoms at the same time. In fact, the timescale of the light-assisted two-body
losses (1 ms) is way shorter than the imaging exposure time (20 ms). Single atom
loading in optical tweezers within this collisional blockade regime was demonstrated
observing this typical two-level fluorescence signal [Schlosser et al., 2001; Schlosser,

Reymond, and Grangier, 2002].

Atomic motion inside an optical tweezers Due to its finite temperature T', which
can be as low as a few tens of K using additional cooling procedures described in the
next subsection, the trapped atom oscillates around the peak intensity of the optical
tweezers. As kgT' < Uy, the atom stays near the bottom of the trap. We can then
approximate the trapping potential as a harmonic potential, characterized by two
different frequencies, the radial w, / (27) and longitudinal wy/ (27) frequencies. The
expressions of these frequencies can be written as a function of the trap depth Uy and

the typical length scales of the Gaussian beam profile, w and zg

4U0 2UO
5 and w) = 5
mw mag

W, = (2.1)
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where m is the mass of a Rb atom.

The statistical distributions of positions and velocities of single atoms loaded in
the tweezers follow a Maxwell-Boltzmann distribution. The standard deviation of
the velocity distribution is o, = \/m, and in this harmonic approximation,

the standard deviations of the distributions of the radial and longitudinal positions

are o || = \/kBT/ (mwi ”>. As we shall see in the next subsection, this statistical

description enables us to measure the temperature of the trapped single atoms via a

release and recapture experiment (see [Tuchendler et al., 2008]).

2.1.2 Typical experimental sequence

So far, I described the experimental apparatus in its steady state, an optical tweezers
stochastically loaded by single atoms. I now present the successive manipulations
we do in order to prepare our system in the right initial state to perform quantum
simulation experiments, that is to say our typical experimental sequence. This will
allow me to introduce the principle of the measurements we do, and to give the main
characteristics of the trapped atom (lifetime, temperature, position dispersion inside

the tweezers).

Overview of the experimental sequence Figure 2.3 sums up the different steps of
the experimental sequence. We start by dispersing the atomic cloud, by turning off the
magnetic field gradient shutting down the inner coils current, and switching off the
MOT, repumper and Zeeman slower lights. Dispersing the atomic cloud stops the
stochastic loading of the optical tweezers. We then take a first fluorescence image of
the optical tweezers region in order to check on the presence of the atom. This is done
in the same way as in the steady state regime, we shine MOT and repumper lights on
the optical tweezers for 20 ms and look at the fluorescence signal on the EMCCD. The
next step is the assembly of the atomic array, in the case where we are working with
several optical tweezers. This step will be described in Section 2.2.

We then perform a first additional cooling procedure: after setting the values of
the currents inside the compensation coils in order to cancel out the magnetic field,
we increase the absolute value of the negative detuning of the MOT light to lower
the limit temperature of the polarization gradient cooling process [Tuchendler et al.,
2008]. The detuning dyjor is ramped down from dyor = —5I" to dyor = —8I, with
27w x T' the natural linewidth of the MOT transition. After this first additional cooling
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Figure 2.3: Experimental sequence. (a) Summary of the performed actions through the
experimental sequence, with their respective durations. (b) Time evolution of the currents
inside the different coils, compensation coils (lcomp), inner coils along z (l,) and outer
coils along = (lx). We tune the currents in order to control the magnetic field inside the

chamber. (c) Orientation of the magnetic field through the sequence.

step, we toggle the inner coils in a Helmholtz configuration in order to create a
magnetic field along the vertical axis. This field, whose value ranges from a few Gauss
up to 50 G, defines our quantization axis and lifts degeneracy between the Zeeman
levels. Thanks to the defined quantization axis, we can optically pump the atom
in a stretched Zeeman level of the |5Sl 2, F = 2> Zeeman manifold sending circular
polarized light along the vertical direction. The optical pumping beam is resonant with
the Dy ‘551 12, = 2> — ‘5P1 12, = 2> transition. During optical pumping, repumper
light is also shone on the atom to avoid letting it in one of the |5Sl 12, F = 1> Zeeman
levels. In the latest chapter of this manuscript, it will be necessary to change the

direction of the quantization axis along the aspheric lenses direction. We do it after
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2.1 A single atom in an optical tweezers

the optical pumping step, by simultaneously decreasing the current in the inner coils
and increasing the current in another pair of coils outside the chamber, positioned
along the z-axis. Therefore, the norm of the magnetic field stays different from zero
and, the atom following adiabatically the orientation of the magnetic field, we do not
lose its polarization. After optical pumping, we perform a second additional cooling
process by adiabatically decreasing the trap power to a few percents of its initial
value [Tuchendler et al., 2008].

The previously described steps have two purposes: the additional cooling of the atoms
and their preparation into the state ’551/2, F=2mp= j:2>. At this specific stage of
the experimental sequence, we may perform quantum simulation experiments, where
the atoms are excited to a Rydberg state (further described in the single-atom case in
Section 2.3) and interaction between atoms may play a role. Nearly all the experiments
described in the further chapters of this manuscript take place at this precise stage. At
the end of the sequence, we take again an image of the atom fluorescence, to determine
if the atom is still there. We end the sequence by reforming the atomic cloud and the

experimental setup returns back to its steady state regime.

Working principle of the measurement The quantity we are measuring is the
fluorescence light emitted from the optical tweezers area. Thanks to the threshold
level introduced in Figure 2.2, by measuring the quantity of light we can check on the
presence of the atom, at the beginning and at the end of the sequence (see Appendix
A of Sylvain de Léséleuc [2018] thesis for more details). Repeating the sequence for a
given number N of iterations allows us to measure the probability p for the atom to
be recaptured. The error bar on this probability is the standard error on the mean
(s.e.m), which is equal to \/m The error is the biggest for p = 0.5. To reach
the 5% level of error for this probability we need 100 iterations, and if we want to
reach the 2% level of error we need more than 500 iterations. Hence the necessity to
have a cycling experimental time as short as possible to be able to repeat a great
number of times the experimental sequence and perform more precise measurements.
Thanks to recent improvements of the experimental apparatus, we now reach a cycling
rate of 3 to 4 Hz.

We can then measure the recapture probability as a function of a varying parameter
of the experimental sequence. As we shall see in the next paragraph, this will allow
us to measure some trapping characteristics, such as the single-atom lifetime and
temperature, and the trapping frequencies. In the case where the recapture depends on

the state of the atom, we infer the occupation of the different states via the recapture
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probability measurement. For example, atoms in the Rydberg states are not trapped
in the optical tweezers, so the probability to lose an atom is the probability to excite
it to the Rydberg state. Therefore, our measurement protocol relies on a partial loss of
the atoms, it is a destructive measurement. This is why we need to start again the

stochastic loading of the optical tweezers at the end of each sequence iteration.

Measurement of the trapping characteristics using the recapture probability
The simplest experiment we can perform is to vary the total duration of the sequence,
and measure the recapture probability as a function of this time. The lifetime of the
single atom in the optical tweezers is inferred that way, it is measured to be around
20s. The losses of the single atoms in that case are due to collisions with particles
from the background gas at room temperature, and represent the ultimate limit for
the possible duration of an experiment. This lifetime would considerably increase in
a cryogenic environment, one of the major improvements expected from the next
generation experimental apparatus currently developed in our team [Magnan, 2018].

Another quantity that can be inferred from recapture probability measurements is the
trapping frequency, via a parametric heating experiment. Indeed, for a precise frequency
of the modulation of the trap depth (twice the trapping frequency), we parametrically
excite the atom out of the trap, and measure a drop of the recapture probability. Their
values were found to be equal to w, / (27) = 50.2 (3) kHz and wy/ (27) = 8.3 (1) kHz.
For the same trap, we measure spectroscopically its depth Uy/h = 5.5 (1) MHz (see
Sylvain de Léséleuc [2018]’s thesis) and deduce from Equation (2.1) the dimensions of
the Gaussian beam w = 1.01 (2) um and zg = 4.31 (8) pum, which are on the expected
order of magnitude.

Figure 2.4 shows how we can also determine the temperature of the single atoms using
the measurement of the recapture probability in a release and recapture experiment.
The experimental sequence is displayed in Figure 2.4(a): starting with an atom in the
optical tweezers, we switch off the trap leaving the atom fly away due to its finite
temperature (release); and switch on the trap again (recapture) after a time 7. An
atom is still trapped in the optical tweezers after a flight of duration 7 if the absolute
value of the trapping potential at its final position is greater than its kinetic energy.

We measure the recapture probability as a function of the release time 7 in three
different cases (see Figure 2.4(b)). First (Exp 1), we do it without performing any
additional cooling of the atoms. For Exp 2, we cool the atoms using the ramping of the
trap power, and for Exp 3 we perform both additional cooling processes, the ramping of

the trap power and MOT detuning. The cooler the atoms, the longer they stay around
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Figure 2.4: Measurement of the single-atom temperature. (a) Principle of the release
and recapture experiment. The atom is in free flight for a duration 7. (b) Measured
recapture probabilities as a function of 7 (solid disks, squares or diamonds) for various
cooling procedures. The experimental curves are compared with Monte Carlo simulations
for different temperatures. The red dashed vertical line highlights the usual time of flight
we use in order to quickly check the temperature of the atoms. (c) Snapshots of the
ballistic evolution of atoms in free flight for 1000 different initial conditions (here, only the
dynamics in the zy plane was taken into account). Atoms in green would be recaptured
after a time of free flight 7, whereas atoms in red would be lost. Right, trapping potential
of the optical tweezers in the zy plane, for Up/kp = 1mK, w = 1 pym and zg = 4 pm.
Solid lines are equipotential lines for 100, 50 and 20 uK (from black to grey).

the trapping region during their free flight, and the larger the recapture probability.
These curves thus confirm the efficiency of our additional cooling procedures.

In order to be more quantitative, we infer from these curves the atomic temperature
using Monte Carlo simulations. We compute the ballistic spreading of a set of atoms
(see Figure 2.4(c)), whose initial conditions are chosen according to the temperature-
dependent statistical distribution of the atomic position and velocity introduced
before. We determine as a function of 7 which fraction of the atoms are recaptured. If
the atom is represented in green, its kinetic energy is lower than the absolute value

of the local trapping potential and it is recaptured, otherwise it is represented in
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red. Figure 2.4(c) also shows the spatial dependence of the trapping potential in
the zy plane, and the equipotential lines corresponding to an energy of 100, 50 or
20 uK. We repeat this Monte Carlo simulation for different temperatures, and compare
with the experimental results to infer the temperature of the atoms (Figure 2.4(b)).
The temperature of the coolest atoms we can produce is 3 uK, whereas if we do not
perform additional cooling procedures their temperature is on the order of 100 uK.
We have improved the cooling by ramping down the MOT detuning in the very last
months of my Ph.D. thesis, so in most of the experiments presented in this work, the
atomic temperature was around 20 uK. In practice, when we check on a daily basis
the temperature of the atoms, we measure the recapture probability for one given
time, usually 20 us (red dashed line in Figure 2.4(b)).

During the quantum simulation step, the atoms are in free flight. Indeed, the
dipole trap is switched off in order to excite the atoms to a Rydberg state without
any lightshift induced by the 852-nm laser beam. As all the recapture curves on
Figure 2.4(c) start with a plateau at probability 1, we can perform this free flight for a
given amount of time without losing too many atoms. Typically for T ~ 20 uK, we
only have a 3% probability to lose an atom for a 10-us experiment.

The temperature of the atoms and the trapping frequencies allow us to estimate the

statistical spreading in position around the peak intensity of the optical tweezers,

oL = \/kBT/ <mwi H)' These spreading are on the order of 0, ~ 100nm and
o ~ 500nm. They will be of interest further in this manuscript to understand in
details the dynamics of interaction between Rydberg atoms, as the latest is affected

by shot-to-shot fluctuations of the interatomic distance.

Control of the experimental sequence The experimental sequence reported above
is realized in practice by sending a collection of TTL signals and analog voltages.
They are generated by two National Instruments cards. At the time when I joined the
team, a LabWindows interface was used to control the cards. My first task in the lab
was to convert this program into a Python program. It was made possible thanks
to a Python package dedicated to write on National Instruments cards, PyDAQmz,
developed by Pierre Cladé. Since then, all the operating programs of our experimental
setup are written in Python: the camera program acquiring the fluorescence images
and triggering the experiments, the experiment control program writing the sequence,
and the program analysing the images and computing the recapture probabilities.
This uniformity of programming language will enable us to implement more easily

in the near future some automatized optimization protocol [Caneva, Calarco, and
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Figure 2.5: Measurement of the magnetic field using microwave spectroscopy. (a)
Zeeman structure of the ground-state manifold. The transition we probe is indicated with
a green arrow. (b) Typical spectroscopic signal, allowing us to point the position of the
transition. (c) and (d) Magnitude of the magnetic field as a function of the current in the

coils, along the z and x directions.

Montangero, 2011], where a master program could test a set of parameters, measure a
figure of merit, and test a new set of parameters in view of improving it iteratively. We
may use the same type of feedback loop protocols to implement variational quantum

simulation [Kokail et al., 2019] in the near future.

2.1.3 Ground-state microwave manipulation

In the previous subsection, I insisted on the required control of the magnetic field
inside the vacuum chamber. We need it to be cancelled out during the polarization
gradient cooling process, and to be along the z direction to define a quantization axis
for optical pumping. Taking into account the Zeeman effect, measuring the transition
frequencies between two levels of the two ground-state hyperfine states, |5Sl 2, B = 1>

and |5Sl 12, F = 2>, allows us to determine the value of the magnetic field.
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Probing transitions in the electronic ground state The experiment consists in ex-
citing the atom in the level ’551/2, F=1mrp= 0> to the level {551/2, F=2mp= 1>,
using a microwave field generated with an antenna outside the vacuum chamber (see
Figure 2.5(a)). The difference AE/h between the frequency of this transition and the fre-
quency of the clock transition insensitive to magnetic fields ‘551 2, =1, mp = 0> —
‘551 2, F=2,mp = O> is proportional to the magnetic field B, with a sensitivity
0.70 MHz/G [Steck, 2003].

The experiment then works as follows. We prepare the atom in the !551 2, F = 1>
state by shining some MOT light without any repumper light. We then send a microwave
pulse at a controlled frequency and look at the atomic population in the !551 12, F = 2>
state. This alone would not allow us to determine in which hyperfine state an atom is
because it would be recaptured in both cases. Therefore, we shine on the atom before the
final image a “push-out” beam, set on the resonance ’55’1/2, F= 2> — ‘5P3/2, F= 3>,
to expel the atom out of the trap if it is in the |5Sl/2, F= 2> state, whereas it will
stay trapped if it is in the ‘551 12, F = 1> state. Consequently, when the frequency
of the microwave field matches the transition frequency, we observe a drop in the
recapture probability (see Figure 2.5(b)), allowing us to determine the position of the

line.

Calibration of the magnetic fields By measuring the frequency of the transition as
a function of the current inside the coils, we calibrate the amplitude of the generated
magnetic field. Figure 2.5 (¢) and (d) show that the quantization field (along z or
x) reach values on the order of 40 G. The larger the magnetic field, the larger the
splitting of the Zeeman structure. This will be used to isolate two levels in the Rydberg
manifolds for quantum simulation purposes, as we shall see later in this manuscript.
Repeating the same measurement for the compensation coils enables us to find the
current corresponding to the cancellation of the magnetic field, as already introduced

in the previous subsection.

Time evolution of the generated magnetic fields When we switch on the current
in a pair of coils outside the vacuum chamber, compared to a pair of coils inside, it
will take longer for the generated magnetic field to reach its stationary value because
it will have to overcome the induced eddy currents in the vacuum chamber. Using
the spectroscopic experiment described above, we have estimated that we need to
wait 20 ms for the quantization field along x to reach its final value, whereas 5ms are

enough in the case of the z direction, as in that case the magnetic field is generated
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2.2 Generation of fully-loaded arrays of atoms

Figure 2.6: Trapping, sorting and imaging many atoms. Schematic representation of

the experimental apparatus, where the devices required to go from a single atom to many
were added. The Spatial Light Modulator (SLM) imprints a phase on the 852-nm beam,
resulting in a controlled intensity pattern at the focus of the aspheric lens, imaged on the
CCD camera. The purple beam is the moving optical tweezers beam, whose focus point in
the focal plane is set using Acousto-Optic Deflectors (AODs). Three Electrically Tunable
Lenses (ETL) enable the tuning of the focal plane of the different optical setups, in order

to access the third dimension along the optical axis .

with the coils inside vacuum. We have to take into account those different time scales
when we change the direction of the quantization field to keep the value of its modulus

different from zero.

Generation of fully-loaded arrays of atoms

So far, I presented how we can isolate a single atom in a confined region of space
thanks to an optical tweezers. In this section, I will describe how we generalize this

technique in order to obtain arrays of single atoms in a tunable configuration. This
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requires a collection of devices represented in Figure 2.6. The roles of the Spatial
Light Modulator (SLM) and the CCD camera will be reported in a first part, where I
will explain how we generate a controlled pattern of many optical tweezers. Then,
I will depict how we reach a targeted loading configuration from a random initial
configuration via the atom sorting technique (purple optical path on the figure).
Finally, I will describe how we improved our trapping and sorting protocol to extend
it to three dimensions, using among other things Electrically Tunable Lenses (ETL).

The work briefly reported here are described in details in the original publica-
tions: [Barredo et al., 2016] and [Barredo et al., 2018].

2.2.1 Versatile trapping configuration using holographic techniques

The first requirement to fulfill to reach the generation of fully-loaded arrays of atoms
is to multiply the number of optical tweezers, in a controlled geometry. This is realized
using a Spatial Light Modulator (SLM). This device imprints a phase pattern on
the dipole trap beam, resulting in an intensity pattern consisting of several optical
tweezers in the focal plane of the aspheric lens via diffraction. Its first implementation
on our experimental setup is reported in [Nogrette et al., 2014] and in the thesis of
Henning Labuhn [2016].

Computation of the phase pattern The algorithm we use to compute the required
phase pattern to get a targeted lattice of optical tweezers is reported in [Leonardo,
lanni, and Ruocco, 2007], and its implementation is explained in the thesis of
Sylvain de Léséleuc [2018]. It works in an iterative way, adapted from the Gerchberg-
Saxton algorithm. The whole set of optical tweezers is considered as a collection of
coherent point-like light sources, of uniform amplitudes and random phases. The
propagation of the interfering light field, resulting from this collective emission and
depending on the geometrical arrangement, is computed at the position of the SLM
plane. We then take as a phase pattern for the SLM the phase of the interfering
light field and compute at the positions of the optical tweezers the amplitude and
phase of the light propagating from the SLM, i.e. in the reversed direction. The
computed amplitudes are inhomogeneous. In order to compensate for that, we repeat
the same procedure with the new computed distribution of phases, and, instead of
considering a uniform distribution for the amplitudes of the traps, we choose a smaller
amplitude for the stronger traps, and on the contrary, a larger amplitude for weaker

ones. Moreover, to achieve a more homogeneous trap intensity distribution, we replace
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the step consisting in calculating the amplitudes at the position of the optical tweezers
by measuring using the CCD camera the actual intensities of each of the generated
traps. That way, repeating this process for a few tens of iterations, we create the

targeted configuration of traps with a standard deviation in their intensities smaller

than 3%.

Global phase masks In addition to the phase pattern required to obtain the targeted
intensity pattern, we can sum other phase masks that will have a global effect. A linear
evolution of the phase modulo 27 is a blazed grating, acting as a mirror, so applying
this kind of phase mask allows us to displace at will the trap pattern in the focal
plane of the aspheric lens. A quadratic evolution of the phase modulo 27 is a (Fresnel)
lens, so this kind of phase mask makes it possible to adjust the position of the trap
pattern on the optical axis. Finally, the modifications of the wavefront induced by
the SLM can be used to compensate the ones due to aberrations. By measuring the
deformations of the wavefront due to aberrations with a Shack-Hartmann sensor, we
are able to reduce them thanks to an adapted phase mask. Consequently, the three
global phase masks described above allow us to tune in the three spatial dimensions
the position of the array of optical tweezers, and to generate more confined optical

tweezers by reducing aberrations.

Fluorescence imaging of the array of traps We follow the same procedure as the
one reported in the single-atom case to take a fluorescence image of the trapped
single atoms. As the radial size of an optical tweezers matches the size of one pixel
of the EMCCD camera, and that two traps are not imaged on the same pixel, the
fluorescence coming from each trap is spatially resolved. In Figure 2.7, the phase
pattern on the SLM, the related trap intensity image and atom fluorescence image are
displayed for two different configurations. Due to the collisional blockade regime, as an
optical tweezers is loaded by a single atom half of the time, on average the array of
optical tweezers is half loaded. As a consequence, we cannot work with a controlled
atomic configuration, which is detrimental for quantum simulation purposes. I will
explain in the next subsection how we overcome this drawback. Nevertheless, for
single-atom measurements, working with partially loaded arrays of optical tweezers
has already the advantage to decrease the s.e.m. using several atoms instead of one at

each sequence iteration.
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a) Phase pattern b) Intensity c) Fluorescence

Triangle

Figure 2.7: Tuning the lattice geometry using a SLM. (a) Computed phase pattern
to generate a 8 x 9 square matrix of traps or a triangular lattice of 75 traps. The colormap
represents the phase imprinted by the SLM, ranging from 0 (black) to 27 (white). (b)
Intensity images of the array of traps. (c) Single-shot fluorescence images of the trapped

atoms. The trap array is not fully-loaded, illustrating our stochastic loading protocol.

To conclude, a SLM-based holographic technique allows us to tune at will the
geometry of the array of optical tweezers. The typical distance between traps in the
focal plane in the experiments presented in this manuscript is 10 gm, and can be as
small as 3 pum. The limitation in terms of number of generated traps comes from the
total dipole trap beam power, we are able to generate up to about 150 traps; and
ultimately, it comes from the total field of view of the aspheric lens, approximately
100 x 100 pm?.

2.2.2 The atom-by-atom assembler

As mentioned above, in the collisional blockade regime, the array of optical tweezers is
on average half loaded with single atoms. As one optical tweezers has a probability
p = 0.5 to be occupied by one single atom, the probability to get a fully loaded array
of N optical tweezers is 0.5". We can still perform the stochastic loading of the trap

array and wait for getting the fully loaded configuration, but this waiting time grows
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2.2 Generation of fully-loaded arrays of atoms

exponentially with N. In practice, in our team, it was possible to perform experiments
with up to N = 9 traps using the stochastic loading protocol. A possible solution
would be to increase p, by tailoring the light-assisted inelastic collisions in view of
expelling one atom instead of two after the collision [Griinzweig et al., 2010; Lester
et al., 2015; Brown et al., 2019]. This allowed some experimental research teams to
reach up to p &~ 0.9, but in the end we still have to face the exponential growth with
N of the required time to fully load the trap array.

In this subsection, I will describe the procedure we follow to get a controlled loading
configuration. It consists in choosing an initial bigger array of 2N traps half loaded
with single atoms, and then to move the atoms one by one to fill the traps we want to
be occupied. That way, we generate a fully-loaded configuration of N optical tweezers.
I will first explain how a single atom is transferred from one trap to another, and then
I will depict the whole procedure to assemble a targeted sub-array of optical tweezers.
This work was already reported in details in [Barredo et al., 2016] and in the thesis of
Sylvain de Léséleuc [2018].

Transferring one atom The idea is to use another optical tweezers (purple beam
in Figure 2.6) whose position in the focal plane of the aspheric lens is dynamically
changed using Acousto-Optic Deflectors (AODs). The moving optical tweezers is
combined with the dipole trap static beam using a PBS, and imaged on the same
CCD camera. We can then calibrate the position of the moving tweezers as a function
of the frequencies of the RF signal feeding the AODs. These frequencies are set using
Arduino Due controlled by the master computer program, so in the end, by analysing
the image of the static traps and of the moving tweezers, the position of the moving
tweezers can be automatically set to point to any of the traps, and to go from one
trap to another. The depth of the moving optical tweezers is also tuned dynamically
changing the amplitude of the RF signal feeding the AODs.

An atom stays trapped in the moving optical tweezers for slow enough motion,
as previously demonstrated in our team [Beugnon et al., 2007]. The transfer of one
atom works as follows (Figure 2.8 (a)). The moving optical tweezers is pointed on an
occupied trap with no power. Then, we gradually increase the depth of the moving
tweezers Uy in 300 us to Uyr/kg = 10mK. The position of the moving tweezers
is then shifted on an empty trap, steering the atom away, at a maximum speed of
10 pm/ms to avoid heating up the atom and lose it. The atom is then released in the
empty static trap by decreasing the moving tweezers depth to zero in another 300 us.

We are able to realize that way the transfer of a single atom with a 99.3% efficiency in
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Figure 2.8: Atom-by-atom assembly. (a) Transfer of an atom from one trap to another.
The trapping potentials of the static SLM traps are in red, whereas the one of the moving
tweezers is in purple. (b) Overview of the sorting protocol. Single-shot fluorescence images
are displayed, representing the initial random distribution of atoms in a 8 x 9 square matrix

of traps, and the final targeted configuration of atoms ordered in a 6 x 6 square matrix.

approximately 1ms.

Sorting of an array of atoms Repeating the described transfer of one atom allows
us to get a targeted loading configuration from any initial random configuration,
provided that there are enough atoms at the beginning. The sorting sequence, depicted
on Figure 2.8 (b), works as follows. We take a first initial image to know which traps
are occupied. Then, we compute on the fly which atoms we need to move in order to
fully fill the targeted sub-array of traps. To find a suitable series of sorting moves, our
algorithm computes the distances between an empty trap to fill and the available
atoms, and chooses to move the atom corresponding to the smallest distance. Then,
we perform the atomic transfer one after the other, and end the sorting sequence by
taking another fluorescence image to check on the loading state of the trap array. This
whole process is the assembling step on Figure 2.3.

Our assembling technique enables the generation of fully loaded configuration of up

to N = 50 traps, with a 98% filling fraction. In practice, we produce one defect-free
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2.2 Generation of fully-loaded arrays of atoms

7 x 7 square matrix of atoms every second sequence iteration, that is to say at a
1 — 2 Hz rate. As we take a fluorescence image after the assembling process, we can
post-select the sequence iterations in order to consider only the ones where we had

obtained a defect-free configuration.

2.2.3 Extension to 3D

The assembling technique presented before allowed us to explore quantum many-body
physics in different 2D configurations (square, triangle, dimerized chain) as we shall see
later in this manuscript. Extending this technique to the third space dimension would
increase even more the complexity of the physical phenomena which could be studied in
our experimental apparatus. [ report in this subsection this latest improvement, which
led to the publication [Barredo et al., 2018]. I refer to the thesis of Sylvain de Léséleuc
[2018] for more details.

Generation of 3D array of optical tweezers The advantage of the algorithm we
use to compute the SLM phase pattern [Leonardo, lanni, and Ruocco, 2007] is that it
can be naturally extended to 3D configuration of traps. As already mentioned, the
underlying idea to access the third dimension is to imprint a quadratic phase on the
wavefront in order to mimic the propagation through a lens. This ability to pile up
traps on the optical axis means that we can that way overcome the limitation of the
number of generated traps coming from the finite field of view of our fluorescence

imaging setup. The total available trapping volume is now of size 100 x 100 x 100 pm?3.

Intensity and fluorescence imaging To image the intensity or the fluorescence of
the whole 3D structure, one needs to change the object focal plane of both imaging
optical setups in a controlled way. For that purpose, we use Electrically Tunable Lenses
(ETL), whose focal lengths depend on applied control currents. We then take images
for a range of focal lengths, and piling up this set of 2D images we reconstitute the 3D
intensity or fluorescence distribution (Figure 2.9(a) and (b)). The Eiffel Tower array
in Figure 2.9(b) looks fully loaded, as fluorescence light is emitted from every trap.
Actually, it is not the case, we have performed the assembling only for multi-planar
geometries (see next paragraph). Therefore, what is shown in Figure 2.9(b) is a stack

of averaged fluorescence images.
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Figure 2.9: Imaging and sorting in three dimensions. (a) 3D reconstitution of the
intensity of a Mdbius strip composed of 180 traps. (b) Stack of the average fluorescence
images for a 126-atom Eiffel Tower. (c) Assembly of a pyrochlore-like lattice (42 atoms).
The displayed images are single-shot fluorescence images, for the three different planes of
the lattice. The positions of each plane on the optical axis = are indicated. The inset is a
sketch of the 3D structure, to help visualizing the pyrochlore geometry (sharing-corner

tetrahedrons).

Assembly of multi-planar configurations The assembling technique can also be
extended to 3D, by repeating the same sorting procedure for each plane of a multi-
planar set of optical tweezers (Figure 2.9(c)). We need to change the focusing plane
of the moving tweezers in order to do so. We then use another ETL for the moving
tweezers optical setup. The 3D assembling procedure is as follows: we take one
fluorescence image per plane to know the initial random atomic distribution in each
plane. We then perform the sorting of each plane one after the other, changing the
focus plane of the moving tweezers between two sorting processes. We finally take
another set of fluorescence images to know the loading states of the traps. Our sorting
procedure is for the moment limited to multi-planar geometries, and in order to avoid
the moving tweezers to affect other planes while acting on a specific one, the distance

between planes must be larger than 17 pym.
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2.3 Excitation to Rydberg states

As a conclusion, I have reported in this section how we generate any 2D configurations
of N atoms, and 3D configurations taking into account some constraints (multi-planar
geometries and minimal inter-plane distance). I have thus described all the steps
mentioned in Figure 2.3, except the quantum simulation one which will be the topic
of the further chapters of this manuscript. At this stage, we have an assembly of
qubits in a controlled initial state via optical pumping, and in a controlled spatial
configuration. The necessary element which is still missing to perform quantum
simulation experiments is interaction between atoms. We reach such an interacting
regime by transferring the atoms to Rydberg states: highly excited orbitals with
principal quantum number n ranging from 50 to 100. The aim of the next section,
completing the overview of our experimental platform, is to describe how we transfer

the atoms to this state.

Excitation to Rydberg states

Rydberg states are highly excited orbitals, whose exaggerated properties (enhanced
dipole-dipole interactions and extended lifetimes) are of interest for quantum simulation
purposes, as we shall see later in this manuscript. I will describe in this section how
we excite an atom to a Rydberg state. After showing the two-photon transition we

use, I will present the two regimes we have explored to prepare a Rydberg excitation.

2.3.1 Two-photon transition

For Rubidium, the frequency of the direct transition from the electronic ground state
|g) to a Rydberg state |r) is in the UV range. As coherent sources at that wavelength
are not easily available, it is more convenient to use a two-photon transition. The
excitation to the Rydberg state then consists, in our case, in a first transition close to
the D line at 795 nm (red) coupling to the intermediate state |e) = |5P;/2), and a
second transition around 475 nm (blue) coupling to the Rydberg state. Our two-photon
scheme enables the preparation of a n.S;/» or nDs/, excitation. After describing the
different two-photon schemes used in this work, I will present the excitation lasers

setup and explain how we detect the atom transfer to a Rydberg state.

Different excitation schemes Depending on the targeted state, or on the direction

of the quantization axis, we have used different orientations and polarizations for the
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Figure 2.10: Two-photon excitation schemes used in this work. Quantum numbers
of the states |g), |e) and |r). The hyperfine structure of the Rydberg states, although being
indicated, cannot be resolved by spectroscopy, and in practice we consider only the fine
structure for the Rydberg |n.S /5,y = 1/2) and [nDjj5,m; = 3/2). In c), we cannot
use circular polarized light because the excitation beams cannot be sent along the x axis.
The sketches below the energy level structures show the orientation of the red and blue

excitation beams with respect to the atomic plane (yz plane), and the quantization axis B.

excitation beams (Figure 2.10). We chose the excitation scheme in order to have the
maximum Rabi frequencies for given red and blue laser powers. Consequently, we chose
to use circular polarized light when it is possible, as the angular part of the electric

dipole matrix element is the largest for transitions between Zeeman stretched states.

In addition to the dependence on the mp of the states involved (angular part of
the dipole matrix element), the blue Rabi frequency also depends on the principal
quantum number n of the targeted Rydberg state (radial part), and decays as n~%/2.
In practice, as the dipole matrix element is much weaker for the transition |e) — |r)
than it is for the transition |g) — |e), the blue laser power is the one limiting us to
reach the largest coupling. For maximal power we obtain blue Rabi frequencies on the

order of 50 MHz for the 60D3/; state and on the order of 20 MHz for the 605/, state.
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Frequency locking of the excitation lasers Both excitation beams are generated by
Toptica Diode Lasers. Sending a small portion of the excitation beams to a high finesse
ultrastable cavity allows us to stabilize their frequencies using the Pound-Drever-Hall
(PDH) technique. I refer to the thesis of Sylvain Ravets [2014] for further details.
A careful analysis reported in the thesis of Sylvain de Léséleuc [2018] describes the
origins of the laser phase noise when locked, which will be of interest to understand

the damping of the laser-driven Rabi oscillations (see Subsection 2.3.2).

Optical setup for the excitation lasers In order to shape the time evolution of the
amplitude and frequency of the excitation beams, we use an EOM and an AOM. The
EOM allows us to switch on and off the excitation beams in a fast time scale (10 ns)
to apply laser pulses as in the next subsection. The AOM, fed with a RF signal sent
by an Arbitrary Waveform Generator (AWG), enables the generation of a tunable
time profile for the amplitude or frequency of the excitation beams. For example, we
use it to create a Gaussian amplitude time profile (Subsection 2.3.3), or to perform

optical detuning sweeps (Chapter 4).

The experiments involving Rydberg excitations reported in this manuscript are
limited to 2D configurations. In such a planar geometry, we can maximize the Rabi
frequencies by focusing the excitation beams into sheets of light, using cylindrical
lenses for the red laser, or the original ellipticity of the blue laser. For example in the
excitation scheme on the left of Figure 2.10, the dimensions (1/e? radius) of the beams
are: w, = 20 ym and w, = 50 pum for the blue laser; w, = 70 pm and w, = 230 yum for
the red laser. Extending the waists of the exciting beams in the atomic plane direction

allows us to reduce inhomogeneities of the Rabi frequencies over the atomic array.

Detection of a Rydberg atom To excite an atom to the Rydberg state, we first
switch off the dipole trap to avoid the light-shift it induces, then send the red and
blue laser pulses, and finally switch on the dipole trap again. If the atom is in |g) at
the end of this sequence, it will be recaptured, if it is in |r), it will be lost. Indeed,
Rydberg atoms are expelled from high-intensity regions via the ponderomotive force.
We have used such a force to trap the Rydberg atoms in bottle beam traps, as we
shall see in Chapter 3. Consequently, the final fluorescence image informs us on the
state of the atom, and a high probability to excite an atom to the Rydberg state

corresponds to a drop of the recapture probability.
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In the experiments presented in this manuscript, we have used two different ways
to excite an atom to a Rydberg state, depending on the Hamiltonian we want to
simulate. Indeed, as stated in the Introduction, we must encode an effective spin-1,/2
into the levels |g) and |r) to study the Ising model. In that case, the detuning A
from the intermediate state |e) must be large to treat the atom as a two-level system
{lg) ,|r)} while being driven by the two excitation lasers. This regime where we
perform laser-driven Rabi oscillations is described in Subsection 2.3.2. On the contrary,
in the XY-case, the spin-1/2 is encoded in the Rydberg manifold. Therefore, what only
matters is to excite the atoms to the Rydberg state, and we do it using a stimulated
Raman adiabatic passage in the small A regime (Subsection 2.3.3).

For both processes, using laser-driven Rabi oscillation or a stimulated Raman
adiabatic passage, the intermediate state |e) must not be populated. Indeed, as it is
short-lived (26 ns), populating it would induce spontaneous emission. In the following
subsections, I will show how we succeed in avoiding this induced spontaneous emission

in both cases.

2.3.2 Laser-driven Rabi oscillations

A common solution to avoid populating the intermediate state is to choose a detuning
A from this state much larger than the red and blue Rabi frequencies €2, {2,. In this
subsection, I will first describe how we can restrict ourselves to the two-level system
|g),|r) under this condition, and then I will present the typical spectrum and Rabi

oscillation we obtain.

Reduction to a two-level system When A > Q. ), we can consider that the
population in |e) is always zero. The time evolution of the population in the two-level
system |g), |r) when the red and blue excitation laser beams are shone is then given
by the effective Hamiltonian

A hQd.
Heff - d

(Ir) (gl +1g) (r[) + degt |r) (1] (2:2)

where the effective Rabi frequency and detuning are

_ QrQb Q? — Q%
N 4A
with 0 the detuning from the Rydberg state |r) (see Figure 2.11(a) for the three-level

system scheme). The additional detuning appearing in e is the AC-Stark shift due

Qe and S = 0 +

(2.3)
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Figure 2.11: Optical Rabi oscillation. (a) Three-level system {|g), |e), |r)} showing the
one-photon detuning A and the two-photon detuning d, and its simplification to a two-level
system when A > Q,, Q. (b) Typical spectroscopic signal obtained for a pulse duration
of 200ns, a Rabi frequency 2/ (2r) = 2.47MHz, and |r) = |62D3/5,m; = 3/2). The
solid line is a fit to measure the position of the Rydberg line. (c) Typical Rabi oscillation
measured for § =0 and |r) = ‘62D3/2,mj = 3/2). The solid line is a fitting damped sine
allowing us to infer the value of the Rabi frequency 2/ (27) = 2.47 MHz.

to the red and blue lasers. In practice, the blue power is set to its maximal value
and we tune the value of Q).¢ by varying the red power. The intermediate detuning
is A/ (2m) = 740 MHz. We can then obtain an effective Rabi frequency up to about
5 MHz.

Our optical drive to the Rydberg state can then be seen as a two-level transition of
Rabi frequency Q. and detuning d.¢ which will be written from now on in a simplified
way €2 and ¢. This reduction to a two-level system will be mostly used in Chapter 4,

about our study of an Ising-like model.

Spectroscopy of the Rydberg line Shining the laser beams for a duration ¢, = 7/
and at resonance § = 0 allows us to coherently excite an atom prepared in |g) to |r).
Figure 2.11(b) shows the typical spectroscopic signal we obtain when we measure the
recapture probability varying the detuning 0.

Pointing the position of the Rydberg line via spectroscopy for various power of
the red laser enables the measurement of the light-shift induced by the latest. The
estimation of this light-shift will be of interest in Chapter 4, and it is a way to measure
the red Rabi frequency.

Due to their exaggerated polarizability, the Rydberg energy levels are quite sensitive
to electric fields via the DC-Stark effect. As already presented in the very beginning
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of this chapter, a combination of eight electrodes inside the vacuum chamber, in
addition to an ITO coating on the aspheric lenses, allows us to cancel out the electric
fields, which is crucial to have an efficient Rydberg excitation and a coherent driving.
In practice, to compensate the electric fields, we scan the voltages on the different

electrodes and choose the values that cancel out the measured DC-Stark shift.

Laser-driven Rabi oscillations When the detuning is set to § = 0, shining the laser
beams for a varying duration coherently drives the system between the states |g)
and |r). Figure 2.11(c) shows such a typical Rabi oscillation, fitted with a damped
sine. The imperfections of the Rabi oscillation in terms of contrast and damping were
carefully analysed in our publication [de Léséleuc et al., 2018al. I recall here its main
results. The contrast is smaller than unity because of the detection errors ¢ and ¢’
(detailed in the paragraph below); and an imperfect initial preparation in the correct
Zeeman sub-level during the optical pumping process. The damping mainly comes
from the Doppler effect, the laser phase noise, and the still non-zero population in the
intermediate state |e) resulting in spontaneous emission.

I give now more detail about the detection errors ¢ and ¢'. I recall that our state
detection protocol relies on the fact that ground-state atoms are recaptured whereas
Rydberg atoms are not. Nevertheless, as we have seen in Figure 2.4, there is a (small)
non zero probability to lose an atom during the experiment. In this unlikely case, an
atom in the ground state will be mistaken as a Rydberg atom. We call the probability to
make this detection error €, and its typical value ranges between 2 and 5%, depending
on the atom temperature and the total duration of the performed experiment. On the
contrary, due to the limited lifetime of the Rydberg state, a Rydberg atom can decay
back to the ground state before being expelled away from the trapping region, and
then would be misleadingly considered as a ground-state atom. This detection error is
called €, and its typical value is also a few percent. More details on our detection

errors can be found in the thesis of Sylvain de Léséleuc [2018].

2.3.3 Stimulated Raman adiabatic passage (STIRAP)

Another possible solution to avoid the spontaneous emission from the intermediate
state is to use stimulated Raman adiabatic passages (STIRAP), a widely used solution
recently reviewed in [Vitanov et al., 2017]. Its working principle is the following. For
A =0, in the presence of the two couplings 2. and €2}, one of the three eigenstates of

the three-level system |g),|e), |r) has no projection on the short-lived state |e). This
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Figure 2.12: Rydberg excitation via STIRAP. (a) Gaussian time evolution of the red
and blue Rabi frequencies. For an optimal excitation to the ‘6051/2,771] = 1/2>, we chose
the following parameters: 0 = 360 ns, At = 400ns and €, = Qp, = 27 x 20 MHz. (b)
Comparison of the Rydberg transfer efficiency via the m-pulse (grey) or the STIRAP

(purple) methods for different positions on the y axis.

cigenstate is equal to |g) for £, > Q,, and is equal to |r) for €, < Q,. The idea is
then to sweep the parameters €2, and €2}, between these two regimes, i.e. shining first
the blue laser then the red one, to transfer the atom from |g) to |r) without populating
le). The variation of €2, and €, must be slow enough to stay in the targeted eigenstate
with no component in |e), which is the adiabatic condition to fulfill.

I will first describe in this subsection how we can measure the blue Rabi frequency
by doing some manipulation at A = 0. Then I will present the implementation of
the STIRAP process on our experimental apparatus, and the opposite deexcitation

protocol.

Autler-Townes splitting When it is in the |e) state, an atom can decay back to |g) or
other Zeeman levels of the electronic ground state. In the end, shining the red laser at
resonance A = 0 depumps the atom from |g) to Zeeman levels of ‘551 12, F = 1>, which
can be seen on the recapture probability using the push-out beam (see subsection 2.1.3).
Shining at the same time the blue laser at resonance splits the line into two parts
separated by €y, via the Autler-Townes effect [Autler and Townes, 1955]. We will
measure in that case a depumping in ‘551/2, = 1> at A =—Q,/2 and A = Q,,/2,

allowing us to infer the value of the blue Rabi frequency.

Implementation of STIRAP Figure 2.12(a) shows the Gaussian time evolution of
the red and blue lasers amplitude. We optimize the value of the different parameters

(delay between the two Gaussian pulses At, width of the pulses o, amplitude of the
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two lasers €2, €2},) in order to have the most efficient Rydberg excitation. In practice,
we set the blue laser power to its maximum value, and the red laser power in order to
have Qy, = €),. After optimization, we reach a STIRAP transfer efficiency of about
90% for the 605/, state in 2 ys.

The very valuable advantage of using STIRAP is that it stays efficient for a wide
range of parameters. To illustrate that point, Figure 2.12(b) shows the measured
Rydberg excitation probability as a function of the position on the y axis using the
two different excitation protocols described in this section, a Rabi 7-pulse (grey) or a
STIRAP (purple). The STIRAP is more efficient in a wider region, this is why we
will use it in Chapters 5 and 6 when we will want to initialize the atomic array in a
Rydberg nS state.

Deexcitation protocol To transfer an atom in |r) back to |g), we could use an
inverse STIRAP process (shining first a red pulse then a blue pulse). To perform the
deexcitation faster, we shine instead a pulse of blue light at resonance to couple back
the atom into |e), and then it will spontaneously decay back to the electronic ground

state. This allows us to transfer back the atom in approximately 400 ns.

I have shown in this section that we can excite the atoms to a Rydberg state with
an efficiency of &~ 90%, depending on the targeted state. Our analysis conducted
in [de Léséleuc et al., 2018a] led us to conclude that the weak dipole matrix element
between |e) and |r) is the limitation to achieve a better transfer efficiency. In order to
improve it, our team plans to adopt the inverted scheme, successfully implemented in
the group of Prof. M.D. Lukin [Bernien et al., 2017; Levine et al., 2018]. The idea
is to choose the ’6P3 /2> state as an intermediate state. Then, the wavelength of the
transition from the intermediate state to the Rydberg state is around 1013 nm, for
which we can use amplifying doped fibers to reach larger Rabi frequencies. Moreover,
the new excitation laser setup the team plans to use is expected to exhibit a reduced
phase noise, as it will involve Ti-sapphire lasers instead of diole lasers, resulting in an

even more coherent laser-driven Rabi oscillations.

Conclusion

In this chapter, I presented our experimental platform: arrays of optical tweezers in a
controllable configuration loaded by single atoms which can be excited to Rydberg

states in order to implement some interaction. This presentation allowed me to
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introduce the quantity we can measure, the recapture probability. As being recaptured
depends on the state of the atom (|g) or |r)), the occupation of these states can be
inferred from this probability. More interestingly, as the fluorescence emitted from
each trap can be resolved independently, we can measure spatial correlations of these
occupations, which will be of interest in the second part of this manuscript.

I also showed in this chapter that most of the experimental parameters, such as the
magnetic and electric fields, the red and blue Rabi frequencies, can be measured in
situ using single atoms as probes. The generation of arrays of single atoms allows us
to measure in parallel the spatial dependence of these parameters, eventually leading
to a complete characterization of the experimental parameters.

The latest improvement of our experimental platform, the trapping of Rydberg
atoms, will be described in the next chapter. The following chapters will be dedicated
to the quantum many-body physics arising from the interaction between Rydberg

atoms.
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Rydberg arrays are an attractive platform to perform quantum simulation thanks
to the exaggerated properties of Rydberg atoms, namely large interaction energies
and extended lifetimes. These properties make them also suitable for more general
quantum information tasks, and I already mentioned the realization of two-qubit
logic gates using Rydberg atoms [Wilk et al., 2010; Isenhower et al., 2010; Jau et al.,
2016; Levine et al., 2018]. Moreover, combining their strong interactions and the
coupling to light fields, Rydberg atoms can be used to engineer non-trivial states of
light and effective photon-photon interactions. Along those lines, the experimental
realizations of strong optical non-linearities [Pritchard et al., 2010], single-photon
sources [Dudin and Kuzmich, 2012], attractive photon-photon interactions [Firstenberg
et al., 2013] and single-photon transistors [Tiarks et al., 2014; Gorniaczyk et al., 2014]
have been demonstrated, extending the range of possible applications of Rydberg

atoms in quantum technologies.
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In order to improve the performance of Rydberg-based platforms, a missing in-
gredient so far is the trapping of single Rydberg atoms. Indeed, in the experimental
demonstrations mentioned above, or in the quantum simulation experiments described
in this manuscript, the Rydberg atoms are in free flight. As a consequence, due to
their finite temperature or the mechanical forces induced by interactions, they slightly
move during the experiments, which was proven to be a limitation for quantum gate
fidelities [Saffman and Walker, 2005; Saffman, 2016] or to induce some dephasing
processes in the evolution dynamics [Barredo et al., 2015; de Léséleuc et al., 2018a).
Moreover, trapping single Rydberg atoms would be necessary to perform precision
measurements of fundamental constants using circular Rydberg states [Jentschura
et al., 2008; Ramos, Moore, and Raithel, 2017] or positronium [Cassidy, 2018].

To date, the three dimensional confinement of Rydberg atoms has been limited
to the case of mesoscopic ensembles trapped in millimetre-size regions using static
magnetic [Choi et al., 2005] or electric fields [Hogan and Merkt, 2008]. To reach the
tight confining regime required to generate traps for Rydberg atoms of micrometre-size,
one should use the ponderomotive potential. It is the potential experienced by the
weakly-bound Rydberg electron at position r in an AC electric field whose frequency
is far from any internal transition frequency of the Rydberg atom, such as an infra-red
laser-light field, for example. This potential is equal to the time-averaged kinetic
energy of the electron oscillating in this field. It is then repulsive and proportional to
the field intensity. The ponderomotive potential reads Vp (r) = €21 (r) / (2meeocw?),
with e and m, the charge and mass of the electron, respectively, and w;, the angular
frequency of the electric field. Consequently, ponderomotive potentials can be used
to laser trap single Rydberg atoms in three dimensions, by creating a dark region

surrounded by light in all directions.

Ponderomotive potentials have already been used to confine Rydberg atoms in
optical lattices [Anderson, Younge, and Raithel, 2011; Li, Dudin, and Kuzmich, 2013],
but only in one dimension so far. In this chapter, I will show how we trapped a single
Rydberg atom in three dimensions, by transferring them from a regular Gaussian
optical tweezers into a holographically generated bottle beam (BoB) trap, consisting
in the required dark region surrounded by light. I will first describe how we create
such traps and the experimental signature of single Rydberg atom trapping. Then, I
will analyse in more detail the trapping potential and study our trapping efficiency,
combining measurements and numerical simulations of the classical atomic motion
inside the trap. Finally, I will show that these traps are compatible with the quantum

simulation tasks we have already performed with Rydberg atoms in free flight, namely
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microwave Rabi oscillations between neighbouring Rydberg levels and spin-exchange
interaction. The results presented in this chapter led to the publication [Barredo et al.,
2019].

Upgraded apparatus for Rydberg trapping

To achieve the trapping of single Rydberg atoms via the ponderomotive potential,
we need to create a dark region surrounded by light. This so-called bottle beam
(BoB) trap can be generated with different techniques [Chaloupka et al., 1997; Ozeri,
Khaykovich, and Davidson, 1999; Zhang, Robicheaux, and Saffman, 2011]. Here we
use holography, and I will describe how we adapted our experimental apparatus to do
so in the first subsection. Then, I will show how we combine the ground-state optical

tweezers with the BoB trap to obtain a single trapped Rydberg atom.

3.1.1 Holographic generation of bottle beam traps

I show in Figure 3.1 the required elements to trap single Rydberg atoms on our
experimental platform. We use two laser beams at 852 nm, whose wavefronts are
controlled by two Spatial Light Modulators (SLM). The red beam in Figure 3.1 creates
optical tweezers at the focus of the aspheric lens, in the same way as explained in the
previous chapter (see Subsection 2.1.1). It acts as a single ground-state atom source.
On these tweezers we superimpose another beam, represented in blue in Figure 3.1.
The second SLM imprints a m-phase offset on this beam, on a central disk of radius rg,
whereas the phase is not modified on the outer shell, see top-left inset of Figure 3.1.
The total area of the beam, a disk of radius a, is controlled via an iris. The top-left
inset illustrates how such a w-phase mask creates a BoB trap. The outer part of
the beam, as it is wider, will create a tighter optical tweezers (in the radial and
longitudinal directions) than the inner part of the beam. Since these two light fields
are out of phase, they interfere destructively at the focus of the aspheric lens, and
the subtraction of the two fields, shown on the left of the inset, is composed of a
dark region surrounded by light. This is how we generate holographically a BoB trap.
The simple argument used here does not lead to the correct intensity distribution
near the focus of the aspheric lens. For this, one should solve the Fresnel diffraction
integral [Chaloupka et al., 1997; Ozeri, Khaykovich, and Davidson, 1999].

Figure 3.1 shows two-dimensional cuts of the measured light intensity distribution of
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Figure 3.1: Simplified representation of the experimental apparatus for single
Rydberg atom trapping. Two 852-nm laser beams are superimposed with a polarization
beam splitter (PBS) to trap single Rydberg atoms. The red one creates the regular optical
tweezers at the focus of the aspheric lens, as introduced in the previous chapter, and is a
trap loaded by single ground-state atoms. A SLM (SLM1) imprints a phase on this beam to
control the configuration of the array of optical tweezers. The beam represented in blue is
reflected on another SLM (SLM2), which imprints a 7 phase on the inner part of the beam.
This creates a BoB trap at the focus of the aspheric lens. The top-left inset illustrates the
principle of the holographic generation of a BoB trap. Measured two-dimensional cuts of

the light intensity distribution of the BoB trap are shown.

the BoB trap, indeed revealing a dark region surrounded by light. This measurement
was performed using our trap imaging setup described in the previous chapter,
with which we can record the light distribution on different planes perpendicular
to the optical axis by electrically tuning the focal length of the imaging lens (see
Subsection 2.2.3).

Figure 3.2 shows the phase pattern imprinted by the SLM and the associated
intensity distribution in the zz plane. On the left, the phase pattern is the combination

of a linear gradient of phase and a Fresnel lens, enabling for the control of the position
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Figure 3.2: Creation of BoB traps. (Top) Phase patterns for regular optical tweezers
or BoB traps. The dashed green circles indicate the border of the 7-phase masks. (Middle)
Intensity distribution in the xz plane associated to the different phase patterns. The typical

radial and longitudinal dimensions are indicated. (Bottom) Trapping potentials along the

radial (2) or longitudinal (z) directions.
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of the optical tweezers. On the right, the phase patterns feature an added m-phase
mask in a central disk of radius rg, highlighted by a dashed green circle, leading to the
generation of a BoB trap. The larger the beam impinging on SLM 2 (radius a), the
smaller the BoB trap, and we have to adapt rg in order to always have a destructive
interference condition at the focal point. On our range of parameters, this condition is
r2 ~ 0.5a?, such that the central disk and the outer shell have approximately the
same area. This is why the m-phase mask radius is the largest for the smallest BoB
trap. All the maxima of intensity distributions are normalized to one.

The bottom of Figure 3.2 allows to compare the trapping volume of the regular
optical tweezers (red, attractive potential normalized to —1) and the ones of BoB traps
(blue, repulsive potential normalized to +1), both attractive and repulsive potentials
being proportional to light intensities. The trapping regions have approximately the
same size. The typical radial and longitudinal dimensions for the regular optical
tweezers zot X Tor are given by the 1/e* radius and the Rayleigh length, extracted
from fits of the intensity spatial profile. We measured a trapping size 1.0 pm x 5.0 pm.
For the BoB trap, we define the radial and longitudinal dimensions zg,g X Tg.p as
the distance between the two local maxima in the radial and longitudinal cuts of the
intensity profile. These dimensions are indicated in the legend of Figure 3.2.

Since the regular optical tweezers and the BoB trap have approximately the same
size, one way to trap a single Rydberg atom is the following: starting with a ground-
state atom held in an optical tweezers, we release it and excite it to a Rydberg state
while being in free flight, and then we trap it by shining the BoB trap. This transfer
of the atom from one type of trap to the other is possible if the two traps are correctly
overlapped, and if the atom does not move too far away while being in free flight. The
two SLMs enable for the precise alignment of the traps with respect to one another,

by tuning the direction of the imprinted linear gradient of phase.

3.1.2 Signature of Rydberg atom trapping

Once we have observed that we generate BoB traps, we should transfer single atoms
excited to Rydberg states inside them and measure how long we are able to keep them.
This experiment is described in Figure 3.3 (Exp 3). To confirm the trapping of single
Rydberg atoms, we actually compare this experiment with two other ones, consisting
in measuring the recapture probability after a varying time for a Rydberg atom in free
flight (Exp 1) and for a ground-state atom in the presence of the BoB trap (Exp 2).

Exp 1 is the same kind of release and recapture experiment introduced in the
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Figure 3.3: Trapping of single Rydberg atoms. Three kinds of experiment were
performed to look for the signature of Rydberg trapping. The first one consists in letting a
Rydberg atom in free flight for a varying time 7. The second one consists in shining for a
duration 7 the BoB trap on a ground-state atom. The third one is similar except that we
shine the BoB trap on a Rydberg atom. For the tree experiments, the recapture probability

as a function of 7 is plotted.

previous chapter (see Figure 2.4) which allows us to infer the atomic temperature.
Here, in addition to let the atoms in free flight for a varying duration 7, we excite them
to a Rydberg state (in that case it was the 845/, state) using a STIRAP process, and
we deexcite them back to the electronic ground state with a blue pulse at the end
of the free flight (see subsection 2.3.3 for more detail on the excitation/deexcitation
protocols). Measuring the recapture probability as a function of the free flight duration
(green disks in Figure 3.3), we infer an atomic temperature of 130 K, and we have
not noticed any heating due to the excitation to the Rydberg states.

In a second set of experiments, labelled as Exp 2, we let a ground-state atom
in free flight and shine the BoB trap on it. For a ground-state atom, as the BoB
trap is generated with an 852-nm light, i.e. a red-detuned light with respect to the
transition to the first excited states, it will be attracted by high-intensity regions. As
the high-intensity regions of the regular optical tweezers and the ones of the BoB trap
do not overlap, the ground-state atom will be quickly attracted away from the final

recapture region of the regular optical tweezers, and the recapture probability drops
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drastically (red disks in Figure 3.3).

Finally, the third kind of experiment is the combination of the two previous one. It
consists in exciting the atoms to a Rydberg state (still 84,5/, in that case), shining
the BoB trap for a varying duration 7, deexciting the atom to the ground state and
recapturing it. The recapture probability of a Rydberg atom is enhanced thanks to
the presence of the BoB trap (comparing the results of Exp 3 with the ones of Exp 1
in Figure 3.3), which is the signature of the trapping of single Rydberg atoms. Exp 2
allows us to confirm that the observed extended trapping time in Exp 3 is due to
the excitation to Rydberg states, and not only the presence of the BoB trap. The
measured signal in Exp 3 allows us to optimize the experimental parameters in order
to obtain the best trapping. We vary the 852-nm laser power, the size of the BoB
trap, and the position of the BoB trap with respect to the regular optical tweezers
to have the largest recapture probability after 30 us in the BoB trap. This led us to
choose a laser power of 400 mW and the medium-sized BoB trap (see Figure 3.2).
With these parameters, we observed an enhanced recapture probability if the principal
quantum numbers of the Rydberg states involved is such that 60 < n < 90. We will
describe in more detail the trapping efficiency as a function of the principal quantum

number in the next section.

I have shown here how transferring a single Rydberg atom inside a BoB trap
allows us to recapture it for an extended time compared with the free flight case,
demonstrating our ability to trap single Rydberg atoms. Although the trapping time
is extended, the recapture probability in Exp 3 slightly decays. The aim of the next

section is to understand the origins of this decay.

Trap characterization

Now that we have demonstrated our ability to trap single Rydberg atoms, we need to
characterize quantitatively the BoB trapping features. I will first derive the expression
of the trapping potential, leading to the computation of a minimal energy barrier
which must be high enough to keep the Rydberg atoms trapped. Then, I will show
that the characteristic lifetime inside a BoB trap depends on the principal quantum
number n of the Rydberg state involved. More precisely, it is related to the Rydberg
state lifetime in a 300 K environment. Finally, I will estimate the trapping frequencies

in such traps.
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3.2 Trap characterization

3.2.1 Trapping potential

So far, I have only mentioned the ponderomotive potential Vp (r) experienced by the
nearly free Rydberg electron to explain the repulsive potential trapping the single
Rydberg atom. I recall that it reads Vp (r) = €I (r) / (2meeqcw?), with e and m, the
charge and mass of the electron, and wy, the angular frequency of the 852-nm trapping
laser. This potential is proportional to the light intensity I (r), with r the position of
the electron.

In fact, for the trapping potential experienced by a Rydberg atom at position R, we
must take into account the extension of the electronic wavefunction ¢y, ;. Then, in a
Born-Oppenheimer-like approximation, the trapping potential for the Rydberg atom is
given by the following convolution [Dutta et al., 2000]

Upijm, (R) = / Ve (R + 1) [$ntjm, (r)|* d®r. (3.1)

For an hypothetical zero-extension Rydberg atom, |wnljmj (r)‘2 is the Dirac func-
tion, and the potential experienced by the Rydberg atom U, (R) reduces to the
ponderomotive potential Vp (R).

I will then present the result of a numerical calculation of convolution (3.1) in order
to derive the value of Uyjm, (R). This will allow us to extract the minimum energy

barrier confining the Rydberg atom.

Convolution with the Rydberg wavefunction Only Rydberg nS;/, were involved
in the experiments described in this section. In that case, the electronic wavefunc-
tion depends on n and r = |r| (it is isotropic), which simplifies the treatment of
equation (3.1). First, we focus on the relative effect of the convolution, we will be
interested in the absolute value of the potential later. Therefore, we compare U, s (R)
with the ponderomotive potential, represented in the xz plane in Figure 3.4(a). For
this comparison, we compute the ratio U,s (R) /Vi, where V} is the maximum value of
the ponderomotive potential.

The effect of the convolution can be interpreted as the average of the ponderomotive
potential over the spatial range of the radial density probability of the n.S orbital
72 |1hs (r))?. This spatial range scales as n2. These orbitals are plotted to scale in
Figure 3.4(a). For n > 100, the spatial extent of the radial wavefunction is on the same
order of magnitude as the typical length scale of the BoB intensity distribution, that
is to say about 1 um. Consequently, we expect that for such high principal quantum

numbers the potential created by the BoB light will not be confining any more, the
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Figure 3.4: From the light intensity to the Rydberg trapping potential. (a) Pon-
deromotive potential in the xz plane. The size of the electronic Rydberg orbital is shown
for different principal quantum numbers to be compared with the ponderomotive potential
length scale. (b) and (c) Longitudinal and radial profiles of the trapping potentials for
different principal quantum numbers, normalized to Vj, which is the maximum value of

the ponderomotive potential for the same trapping laser power.

dark region surrounded by light will be totally averaged out.

This is indeed what is revealed by the result of the convolution, where the trapping
potentials are plotted along the longitudinal (Figure 3.4(b)) and the radial (Fig-
ure 3.4(c)) directions. The larger n, the shallower the trapping potential, until the

limit case of n = 120 where the potential is even anti-trapping in the radial direction.

Minimal energy barrier Now, we want to estimate the numerical value of the
potential in order to retrieve the height of the potential barrier, to be compared with
the trap depth of a regular optical tweezers. As the atom is confined in dark regions,
it is repelled from the regions where it could experience the light-shift induced by
the BoB trap light. Consequently, unlike the case of the regular optical tweezers,
we cannot use spectroscopic measurements to deduce the BoB trapping potential
energy. Then, to estimate this potential energy, we followed an indirect procedure.

For the same incoming power of the 852-nm laser beam, we measured the strength
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Figure 3.5: Potential barrier. (a) Trapping potential in the zz plane, for the 845/,
Rydberg state and 400 mW of laser power. (b) Potential barrier crossed when following a
line with a given direction 6, for different principal quantum numbers and a 400 mW laser

power.

of the signal on the CCD camera for trap imaging in the case where no m-phase
mask is applied (regular optical tweezers), and when it is applied (BoB trap). For
regular optical tweezers, we know from light-shift measurement that a laser power of
5mW corresponds to a trap depth of 1 mK. Taking into account the ratio between the
measured CCD signals in both cases, the ratio between the power used to generate the
BoB trap and these calibration 5mW, and the ratio between the polarizabilities of the
Rydberg atom and the ground-state atom a = (w3 — w?) /w? & 0.17, where wy is the
angular frequency of the transition between the ground state and the first excited

state, we can estimate the value of the trapping potential.

This trapping potential is plotted in the xz plane in Figure 3.5(a) for an incoming
laser power of 400 mW and for the 845, Rydberg state. The potential barrier around
the central dark region of the BoB trap is not at the same height for all directions, as
we could already expect from the intensity imaging (see Figure 3.2). It is the highest
in the longitudinal direction, then it is approximately five times as small in the radial
direction (for low enough Rydberg states n < 90) and finally it is even more reduced
along a cone near the longitudinal direction.

In order to be more quantitative, we measure the maximum potential energy we
cross while following a line from the center of the dark region and with a specific
direction 6 (see Figure 3.5(a)). This potential barrier is plotted in Figure 3.5(b), for
different principal quantum numbers. For low enough n, the potential barrier is the
smallest for a specific angle near the longitudinal direction 6 =~ 15°. For larger n, these
spatial details of the BoB trapping potential are averaged out as explained above, and
for n = 120, the potential barrier is zero in the radial direction, so the BoB potential
is actually anti-trapping.

This study allows us to extract the minimal energy barrier seen by the atom while

moving around the center of the dark region of the BoB trap. For a 400 mW laser
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power and n < 90, this minimal barrier is about 1 mK, that is to say on the same
order of magnitude as the trap depth of the regular optical tweezers for 5mW. For a
BoB trap, we then need a large laser power to generate high enough potential barriers
in all directions to confine atoms at 130 K. Decreasing the atomic temperature (we
proved later that we can reach atomic temperature as low as a few pK), and using
the smallest BoB trap, we have achieved to trap Rydberg atoms with 20 mW laser
power, holding the promise for scalability. We may also work on more elaborate phase
patterns to generate a more homogeneous surrounding potential barrier. In that case,

we could use even less laser power per BoB trap.

3.2.2 Lifetime in the BoB trap

Now that we have understood in more detail the trapping potential, in terms of spatial
dependence where we have seen the effect of the convolution by the Rydberg radial
wavefunction, and in terms of minimal energy barrier, we can see for how long we can
keep a Rydberg atom inside a BoB trap. To do so, we repeat Exp 3 introduced in
Figure 3.3, still for a laser power of 400 mW and the medium-sized BoB trap, and for

a varying principal quantum number of the Rydberg state involved.

Trapping lifetime Figure 3.6(a) shows the result of such an experiment (solid disks),
for the four Rydberg states 6051 /2, 7551 /2, 8451 /2 and 92,5} /5. The recapture probability
decays roughly in an exponential manner, and the dashed lines are fit to extract
the exponential mean lifetime. We compare the fitted lifetimes with the Rydberg
state lifetimes in a 300 K environment [Beterov et al., 2009; Archimi et al., 2019] (see
Figure 3.6(b)). The lattest are radiative lifetimes, computed in our case using the
Alkali Rydberg Calculator (ARC) software [Sibali¢ et al., 2016].

This radiative lifetime gives the mean duration before a Rydberg atom is transferred
into another state. Either it spontaneously decays to low-lying states, either it
transitions into neighbouring Rydberg states via black-body radiation from the
environment. As shown in Figure 3.6(c), both types of radiative process lead to a
loss of the atom. If the atom decays to a low-lying state, the atom is now attracted
away, by the BoB light, from the final recapture region, and the recapture probability
drastically drops as already explained for Figure 3.3 Exp 2. If the atom is transferred
into a neighbouring Rydberg state, it stays trapped as it experiences almost the same
trapping potential (its principal quantum number has only been changed by a few

units). But the deexcitation pulse is not at resonance any more to transfer the Rydberg
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Figure 3.6: Measuring the lifetime in the BoB trap. (a) Recapture probability as a
function of the time 7 spent in the BoB trap (solid disks), for four different Rydberg
levels. The dashed lines are fit to extract the mean lifetime of the exponential decay, and
the solid lines are classical Monte-Carlo simulations. (b) Lifetimes extracted from the
measured exponential decays (solid disks), to be compared with the radiative Rydberg
lifetime in a 300 K environment (dashed line). (c) Scheme of the atomic loss mechanism
due to radiative processes, if the atom spontaneously decays to a low-lying state (left) or

is transferred into a neighbouring Rydberg state (right).

atom back in the electronic ground state, so the atom will be expelled by the regular
optical tweezers as it is still in a Rydberg state. In the end, the atom is lost in both
cases. This is why the lifetimes fitted on the measured recapture probabilities are in
very good agreement with the computed radiative lifetimes in a 300 K environment.
The agreement is less good for n = 92. It turns out that both lifetimes do not coincide
for n > 90 due to additional losses called mechanical losses, which will be detailed

below.

Classical Monte-Carlo simulations The insets on the plots in Figure 3.6(a) show a
discrepancy at short times from this exponential decay behaviour. There, the decay
is faster. To understand this point, we perform classical Monte-Carlo simulations,
inspired by the ones we ran to infer the atomic temperature in release and recapture
experiments (see Figure 2.4). These simulations consist in computing the atomic

trajectory, with a set of initial conditions deduced from the thermal distributions in
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position and velocity of the atoms at 130 4K inside the regular optical tweezers. After
setting the initial conditions, we compute the motion first in free flight for the STTIRAP
duration, then inside the BoB trapping potential derived in the previous subsection
for a time 7, and then again in free flight for the deexcitation duration. If the kinetic
energy is larger than the potential trapping energy of the regular optical tweezers at
the final position of the atom, the atom is not recaptured. In the end, repeating the
same procedure one thousand times, we compute the recapture probability.

In addition to the atomic motion, we take into account the finite STIRAP excitation
efficiency (about 10% of the atoms are not excited). If the STIRAP does not succeed,
the atom stays in the electronic ground state. We also compute the atomic motion in
that case, where the BoB potential is now attractive, which leads to a fast decay of
the recapture probability as expected from Exp 2 in Figure 3.3.

Finally, the last ingredient we include in our classical computation of the atomic
trajectory is the Rydberg lifetime in a 300 K environment. For each trajectory
simulation, we pick up a time according to the exponential law whose time constant is
the radiative lifetime introduced above. At this specific time, the atom is transferred
to neighbouring Rydberg states or to low-lying states, and in both cases, the atom is
lost (see Figure 3.6(c)). Therefore, for an easier numerical treatement of the Rydberg
lifetime effect, we consider in our simulation that the atom is transferred back to the
electronic ground state. Back in the ground state, the recapture probability drops, so
in the end this simplification of the radiative loss mechanism leads to the same result.

The results of the simulations taking into account all the elements listed above are
plotted as solid lines in Figure 3.6(a). The agreement with the measured recapture
probabilities is good, especially, the simulation reproduces quite well the behaviour
at short times (see insets). In our simulations, we do not take into account the
photoionization effect (ionization of Rydberg atoms due to the absorption of trapping
light photons), which leads to additional losses [Saffman and Walker, 2005; Zhang,
Robicheaux, and Saffman, 2011].

Mechanical losses The advantage of our simulation is that we can artificially remove
the effect of the Ryderg state decay to other states, to see only the effect of the
trapping potential on the recapture probability. Indeed, as a function of the peculiar
set of initial conditions, a Rydberg atom may escape the BoB trap. This results in a
reduced recapture probability defined as mechanical losses. This is what is shown
in Figure 3.7(a), where I computed the recapture probability as a function of 7 for

different Rydberg states, without taking into account any decay of the Rydberg state.
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Figure 3.7: Dynamical leaking of the Rydberg atoms. (a) Computed recapture prob-
abilities as a function of the time 7 spent in the BoB trap if we neglect any radiative loss
process, for different Rydberg states. (b) Atomic trajectories inside the BoB trap. They were
computed in three dimensions (x (t),y (t),z (t)), and are represented here in two dimen-
sions using a cylindrical system of coordinates (x (), 7 (t)), with r (t) = \/y2 (t) + 22 (t).

The colormap indicates the trapping potential in this plane.

For low n Rydberg states, most of the atoms stay trapped, and we only notice a slow
decay in the recapture probability. For n = 100 a larger fraction of the atoms escape
from the trap at short times, and for n = 120, all the atoms escape in a few tens of us.
This result could be anticipated thanks to our study of the effect of the convolution
(Figures 3.4 and 3.5).

This numerical simulation neglecting the radiative decay allows us to understand
why the measured trapping lifetime coincides with the radiative Rydberg lifetime only
for 60 < n < 90, by distinguishing between mechanical and radiative losses. For higher
n, the losses due to the vanishing trapping potential are more important than the ones
due to the radiative decay, and therefore completely explain the observed trapping
lifetime.

The computed atomic trajectories, shown as solid lines in Figure 3.7(b), reveal the
spatial dependence of the trapping potential we described in the previous subsection.
For n = 60, most of the atoms stay trapped, and the ones escaping leak from the BoB
trap through the minimal energy barrier at 6 ~ 15° (see Figure 3.5(b)). For higher n,

the atoms escape in the radial direction.
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To sum up, we observed that the mean trapping lifetimes of Rydberg atoms in
BoB traps coincide with their radiative lifetimes in a 300 K environment, for principal
quantum numbers such that 60 < n < 90. Classical Monte-Carlo simulations agree
with the observed recapture probabilities, especially they show that the faster decay at
short times is due to the quick loss of atoms which were not excited to Rydberg states,
and to mechanical losses. In the end, these mechanical losses result in a finite trapping
efficiency of Rydberg atoms. For low enough Rydberg states, n < 90, it saturates at
70 — 80%, and it vanishes for higher Rydberg states (see Figure 3.7(a)). According to
the simulation, working with colder atoms would improve the trapping efficiency as it

reduces the mechanical losses.

3.2.3 Trapping frequencies

Finally, the last trapping characterization lacking is the trapping frequency, already
introduced in the previous chapter in the context of regular optical tweezers (see
Subsection 2.1.1). In that case, these frequencies are derived using the approximation
considering the light Gaussian profile as a harmonic profile, which is valid if the atom
stays at the bottom of the trap. Here, the BoB light profile cannot be considered
as a harmonic profile, it is quartic in the radial direction and harmonic only in the
longitudinal one. Nevertheless, the convolution smoothes the quartic profile (see
Figure 3.4(c)), and we are able to extract trapping frequencies.

Figure 3.8(a) describes the sequence we use to measure the trapping frequencies. It
consists in exciting the breathing modes of the trapped atoms, as already explained in
the thesis of Lucas Béguin [2013] in the context of regular optical tweezers. We first
transfer the atoms in the BoB trap for 30 us, in order to get rid of the hottest atoms.
Then, we let them in free flight for 4 us, shine the BoB trap for a varying duration 7,
let them fly away for another 10 us, and finally recapture them. For a harmonic trap
of frequency w, the recapture probability is expected to oscillate at 2w.

Figure 3.8(b) shows the measured recapture probabilities for the medium-sized
BoB trap and the 845/, Rydberg state, for two different laser powers. The dashed
lines are fitting damped sine to extract the trapping frequencies. The solid lines
are the results of the same kind of Monte-Carlo simulations as the ones introduced
in the previous subsection, taking into account the whole sequence of alternating
free flight and trapping steps. They are in qualitative agreement with the measured
recapture probabilities, especially at short times. The finite atomic temperature and

the remaining anharmonicity of the BoB trap could explain the damping of the
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Figure 3.8: Trapping frequencies. (a) Experimental sequence used to excite the breathing
modes of the trapped atoms and extract the trapping frequencies. (b) Measured oscillations
in the recapture probability (solid disks). The dashed lines is a fitting damped sine to
extract the trapping frequency, the solid line is a Monte-Carlo simulation with no adjustable
parameters. (c) Measured trapping frequencies (solid disks) for different laser powers and
sizes of the BoB trap. The dashed lines are the trapping frequencies extracted from the

Monte-Carlo simulations.

observed oscillations.

Finally, we repeat the same kind of experiments for different sizes of the BoB trap,
and different powers (Figure 3.8(c)). The measured trapping frequencies show the
expected qualitative behaviour, the more power or the smaller the BoB trap, the
larger the trapping frequency. The trapping frequencies extracted from Monte-Carlo
simulations (dashed lines) is in a qualitative agreement with the measured ones. To
generate a larger BoB trap, we have to clip a larger fraction of the laser beam in order
to reduce a (see Figure 3.2). This is why we cannot probe the high power range with

the largest BoB trap.

To conclude, I have demonstrated our ability to trap single Rydberg atoms. The
trapping is efficient for Rydberg states such that 60 < n < 90, and the trapping
lifetime is in that case limited by the radiative Rydberg state lifetime in a 300 K
environment. The numerical analysis of the trapping potential and the computation of
the atomic trajectories allowed us to understand these trapping features. After these
demonstrations at the single-particle level, we go one step further in the next section

by studying the case of interacting Rydberg atoms while being trapped.
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Rydberg trapping and quantum simulation

The aim of this last section is to demonstrate that the Rydberg trapping technique we
have implemented is compatible with the quantum simulation tasks we usually perform
while the Rydberg atoms are in free flight. I will even show that new phenomena
are likely to emerge with the use of Rydberg trapping. In the Introduction, when I
presented the quantum simulation projects we are able to perform on our platform, I
insisted on the fact that depending on the Hamiltonian we want to mimic, the qubit
must be encoded in different levels. The BoB trap we use is only suitable to confine
Rydberg atoms and not ground-state atoms (see Figure 3.3 Exp 2), so using the
Rydberg trapping technique described in this chapter, we can only perform quantum
simulation of the XY Hamiltonian, where the qubit is encoded into two neighbouring

Rydberg levels.

We are going to focus on two ingredients we use when studying the quantum
simulation of the XY model: first, the microwave Rabi oscillation between the
neighbouring Rydberg levels encoding the qubit, and second, the spin-exchange
process. These two experiments, and their role with respect to the study of spin or
hard-core boson Hamiltonians, will be described in more detail in the following of
this manuscript (Chapter 5 for the microwave Rabi oscillation and Chapter 6 for the

spin-exchange).

3.3.1 Microwave Rabi oscillations

Rabi oscillation The first experiment I describe is the microwave Rabi oscillation
between neighbouring Rydberg levels. The Rydberg levels involved in the following are
represented in Figure 3.9(a). Using two different excitation schemes (see Figure 2.10),
we can prepare via STIRAP either |82D3/2,mJ = 3/2> or }8431/2, my = 1/2>. Then,
applying a microwave pulse at the frequency of the transition (i) between |1) =
82D3/5, my = 3/2> and |]) = ‘83]31/2, my = 1/2> (around 3.87 GHz), we can induce
a Rabi oscillation between the two encoded spin states |1) and |]). The experimental
sequence we followed to observe this Rabi oscillation is shown in Figure 3.9(b). We
transfer the Rydberg atom prepared in state |1) inside the BoB trap for a fixed
duration of 50 us, and apply while the atom is inside the BoB trap a microwave
pulse at resonance of varying durations. When the BoB trap is switched off, if the

atom is in [1), it will be deexcited back to the electronic ground state and then
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Figure 3.9: Microwave qubit driving. (a) Rydberg levels used in the following
experiments. With our STIRAP protocol, we either prepare the Rydberg states
82D3/5,my = 3/2) or |84S;/5,m;=1/2), and we probe the transitions to (i)
83P1 /9, my =1/2), (i) |84P; )9, m; =1/2) or (iii) |855; 5, m; = 1/2) (two-photon
transition). (b) Experimental sequence used to measure the Rabi oscillations. (c) Rabi
oscillation between |82D3 5, m; = 3/2) and |83P; j5,m; = 1/2), corresponding to a Rabi
frequency 27 x 1.51 MHz, deduced from the fitting damped sine (solid line). (d) Microwave
spectroscopy of the single-photon transition (ii) for a varying pulse duration. Dashed lines
are gaussian fits to extract the spectrum linewidth. (e) Same as (d) for the two-photon
transition (iii). (f) Fitted spectrum linewidth as a function of the microwave pulse duration.

The dashed lines indicate the expected narrowing as the inverse of the pulse duration.

will be recaptured, otherwise, it will stay in the Rydberg state ||) and will be lost.
Measuring the recapture probability after the deexcitation pulse allows then to infer
the population in the [1) and ||) states.

Figure 3.9(c) shows the measured recapture probability, indeed revealing a Rabi
oscillation between the states 1) and ||). We chose to work with a constant total BoB
trap duration not to induce any damping due to the mechanical losses of the hottest
atoms, described in the previous section. Consequently, whatever the duration of the
microwave pulse, we will have the same amount of mechanical losses, resulting in a
reduced contrast (approximately 60%) but no induced damping. The fitting damped

sine (solid line) gives a measured Rabi frequency of 27 x 1.51 MHz, for an almost
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vanishing damping rate (4kHz). As the BoB potentials seen by the two different
Rydberg states are approximately the same (the principal quantum numbers only
differ by one), and as the atom stays in the dark region at the center of the BoB
trap, we are not able to measure any state-dependent light-shift induced by the BoB
trap, whereas it was the case in an experiment performed in a ponderomotive optical
lattice [Younge et al., 2010]. The expected difference between the state-dependent
light-shifts of two neighbouring Rydberg states is on the order of one percent of the
ponderomotive potential.

Performing the same kind of experiment without any BoB trap, that is to say
operating with a constant time of free flight and a varying microwave pulse duration,
we would also observe an almost undamped Rabi oscillation (see Chapter 5), but
with a reduced contrast (only 20% for atoms at 30 uK and for a 50 us duration of
free flight). The reason is the loss of atoms during free flight, they escape from the

trapping region due to their finite temperature.

Long-duration spectroscopy Thanks to Rydberg trapping, we can then perform
microwave manipulation of the Rydberg states for longer durations, with reasonable
contrast with respect to the free-flight case. Consequently, we can probe spectroscopi-
cally transitions between Rydberg states for longer durations, that is to say with less
microwave power. Then, the power broadening of the linewidth can be reduced to a
few tens of kHz. This is what is shown at the bottom of Figure 3.9.

We first probe transition (ii) (see Figure 3.9(a)) with different microwave pulse
durations. When increasing the pulse duration, we decrease its amplitude in order to
always have the same pulse area. The resulting spectra are shown in Figure 3.9(d).
The dashed lines are Gaussian fits to extract the spectrum linewidth. For the longest
pulse durations, the linewidth stops decreasing. This is because the Zeeman shifts
experienced by the }8431/2, my = 1/2> state and the |84P1/2,mJ = —1/2> state are
not the same, leading to a homogeneous broadening of the line proportional to the
magnetic field fluctuations. This broadening is estimated to be approximately 40 kHz,
as it is the minimal spectrum width we measured. Consequently, the shot-to-shot
fluctuations of the magnetic field are about 30 mG. For an applied magnetic field
of nearly 50 G, this means fluctuations below 0.1%, which is the expected order of
magnitude.

We then probe the two-photon transition (iii) following the same procedure, and
represent the different spectra in Figure 3.9(e). The fitted linewidth as a function of
the pulse duration is plotted in Figure 3.9(f), while probing the one- or two-photon
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transitions. In the two-photon case, the linewidth decreases as the inverse of the
pulse duration (green dashed line) for longer pulse durations. The linewidth does
not saturate in this case because the two-photon transition is insensitive to the
magnetic field shot-to-shot fluctuations. Indeed, the Zeeman shifts experienced by the
‘8451/2,771] = 1/2> state and the |85Sl/2, my = 1/2> state are the same, so there is
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