
HAL Id: tel-02983222
https://pastel.hal.science/tel-02983222

Submitted on 29 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building identification within a connected object
ecosystem
Tahar Nabil

To cite this version:
Tahar Nabil. Building identification within a connected object ecosystem. Signal and Image process-
ing. Télécom ParisTech, 2018. English. �NNT : 2018ENST0001�. �tel-02983222�

https://pastel.hal.science/tel-02983222
https://hal.archives-ouvertes.fr


T

H

È

S

E

2018-ENST-0001

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Signal et Images »

présentée et soutenue publiquement le 9 janvier 2018 par

Tahar NABIL

Identification de modèle thermique de bâtiment

dans un environnement d’objets connectés
Directeurs de thèse : François ROUEFF

Éric MOULINES
Encadrants : Alexandre GIRARD

Jean-Marc JICQUEL

Jury
M. Stéphane DERRODE, Professeur, LIRIS, UMR 5205, Ecole Centrale de Lyon Rapporteur
M. Stéphane PLOIX, Professeur, GSCOP, Grenoble INP Rapporteur
M. Karim ABED-MERAIM, Professeur, PRISME, Université d’Orléans Examinateur
Mme Émilie CHAUTRU, Enseignant-chercheur, Centre de Géosciences, Mines ParisTech Examinatrice
M. Éric MOULINES, Professeur, CMAP, UMR 7641, Ecole Polytechnique Directeur de thèse
M. François ROUEFF, Professeur, LTCI, Télécom ParisTech Directeur de thèse
M. Alexandre GIRARD, Ingénieur-chercheur, Centre de Chatou, EDF R&D Invité
M. Jean-Marc JICQUEL, Ingénieur-chercheur, Centre des Renardières, EDF R&D Invité

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr





Remerciements
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liberté accordée par EDF R&D à ses doctorants. Je remercie en particulier mon cher chef de projet,
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Résumé

Cette thèse s’intéresse au développement de méthodes d’identification de modèles de comportement
thermique dynamique d’un bâtiment, en saison de chauffe. Le problème est classiquement décrit
de la façon suivante. Soit un bâtiment représenté par un modèle expliquant l’évolution temporelle
de la température intérieure en fonction de sollicitations externes (température extérieure, gains
solaires) et internes (puissance de chauffage, apports internes gratuits). Les paramètres du modèle
étant inconnus, l’identification de bâtiment cherche à les estimer à partir de données d’observation
de chaque entrée et sortie du système, mesurées à un pas de temps de l’ordre de quelques minutes.
Le problème d’identification est donc un problème d’estimation statistique, qui dépend fortement
de la disponibilité réelle des données.

Dans un premier temps, on se donne un modèle de bâtiment sous forme de circuit électrique
équivalent, et on suppose que toutes les grandeurs sont correctement observées. Plutôt que de
modéliser la régulation de la température intérieure, nous proposons d’estimer directement les
paramètres du système en boucle ouverte, bien que les données d’exploitation soient en fait générées
en boucle fermée. Cette approche est étayée par des arguments statistiques et empiriques.

Cependant, en pratique, l’accès aux données n’est pas garanti pour l’énergéticien, puisqu’il ne
mesure a priori que la consommation totale du bâtiment. L’idée de la thèse est de se placer dans le
cadre d’un ”bâtiment intelligent”, dont les objets connectés permettent d’améliorer l’observation de
son comportement thermique, sans toutefois supprimer toute incertitude. Nous remettons donc en
cause successivement la disponibilité effective de chaque entrée ou sortie du modèle, et proposons des
méthodes d’identification adaptées, validées sur des données simulées et réelles, issues d’expériences
à EDF R&D. En particulier, pour la température intérieure, une démarche non-intrusive, se passant
de la mesure, est présentée. Pour la température extérieure, des capteurs connectés sont aujourd’hui
largement répandus dans le commerce : la méthode proposée permet de corriger le biais induit
par l’emplacement inconnu dudit capteur pour l’énergéticien. Puis, le flux solaire n’étant pas
mesurable en raison du coût prohibitif du capteur associé, nous suggérons d’intégrer une seconde
sonde connectée de température, volontairement exposée au rayonnement solaire. L’algorithme
associé exploite l’idée que la différence de mesure entre ce capteur exposé au soleil et un capteur
de référence, protégé du rayonnement, est liée à l’intensité du rayonnement. Enfin, en utilisant les
informations On/Off des objets connectés du bâtiment, le dernier algorithme permet l’identification
du bâtiment à partir de la courbe de charge totale du bâtiment, sans distinction entre les charges
qui représentent ou non des apports thermiques.
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Abstract

This thesis aims at developing methods for identifying dynamic thermal building models. The
problem can be described as follows. The thermal behaviour of a building is given by a model,
which explains the dynamics of the indoor air temperature in terms of weather conditions (outdoor
air temperature, solar gains) and internal excitations (controlled heating power, free heating gains).
Since the parameters of the chosen model are unknown, the purpose of building identification is to
estimate them given some measurements of every input and output of the system. The identification
is therefore an algorithmic task that strongly depends on the actual availability of the data.

In a first part, we assume that the building model takes the form of an equivalent electrical
network and that the inputs and output are accurately measured. Although the system operates in
closed loop, with a controlled indoor temperature, we suggest to estimate directly the parameters
of the open-loop model. This approach allows us not to model the nonlinear regulation, whereas
statistical and empirical arguments are provided in order to justify it.

However, an energy utility has a limited access to the data in practice, the only guaranteed
measurement being the total energy consumption of the building. The main idea developed in the
thesis is to consider a ”smart building”, whose connected objects make possible an enhanced ob-
servation of the building’s thermal behaviour. In order to address the uncertainty inherent to this
framework, we question successively the availability of every input and output of the model, before
suggesting adapted algorithms validated on artificial and real data stemming from experiments at
EDF R&D. We begin with a non-intrusive closed-loop identification procedure that does not re-
quire any measurement of the indoor temperature. Next, we use the already wide-spread connected
weather stations for measuring the outdoor temperature. Yet, the lack of accuracy of such sensors
may provide misleading measurements. Hence, we propose an estimation algorithm able to correct
the possible temperature bias and account for the latent uncertainty. Then, we suppose that the
solar radiation is not directly measured, because the corresponding sensor comes with a prohibitive
cost. We recommend instead to replace it with another connected temperature sensor, intentionally
left exposed to the sun. The estimation algorithm exploits the idea that larger values of the dif-
ference between the measurements provided by this sensor on one hand and a reference, sheltered,
temperature sensor on the other hand, are caused by larger values of the solar flux. Finally, by
taking advantage of On/Off information given by the connected objects of the building, the last
algorithm enables the identification from the total consumption of the building, without having to
disaggregate between heating and non-heating loads.
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Introduction en français

Identification de bâtiment et données manquantes

Contexte de l’identification de bâtiment

Le secteur du bâtiment représente actuellement un enjeu de taille, au cœur aussi bien des poli-
tiques énergétiques mondiales que de nombreux efforts de recherche. Deux facteurs en particulier
expliquent cette tendance. Le premier est le coût environnemental élevé de ce secteur : il représentait
37% de la consommation finale d’énergie au sein de l’Union Européenne (UE) en 2004 [PLOP08],
44% en France en 2012 [ADE13]. La Figure 1(a) montre ainsi que cette part a toujours été élevée
en France depuis 1970, et est même à son paroxysme en 2015. Ces consommations s’accompagnent
en outre d’émissions de gaz à effet de serre : 19.6% du total des émissions de l’UE sont dûs aux
bâtiments résidentiels uniquement, selon Eurostats. On observe une proportion similaire en France,
comme indiqué en Figure 1(b). Par ailleurs, la grande majorité de ces émissions (77% en France
en 2009, [ADE13]) sont générées par le chauffage. Par conséquent, ces éléments combinés aux
faibles taux de renouvellement du parc de bâtiments (typiquement 1% par an en France) mettent
en lumière la nécessité de mettre en œuvre des actions d’efficacité énergétique des bâtiments, afin
de promouvoir une transition vers une demande énergétique plus soutenable.

Le second facteur quant à lui est lié à l’émergence des nouveaux réseaux, dits ”intelligents”, de
distribution de l’électricité, les Smart Grids [FMXY12]. Un concept clé de ces réseaux est la notion
de flexibilité, avec le défi de débloquer et exploiter la flexibilité de la demande afin de garantir
l’équilibre avec une offre toujours plus intermittente, en raison de l’essor des énergies renouvelables.
Les bâtiments apparaissent alors comme des acteurs centraux des Smart Grids. En effet, alors qu’il
reste difficile de stocker l’énergie électrique, la forte consommation du secteur du bâtiment représente
un gisement significatif de flexibilité de la demande, capable de maintenir l’équilibre du réseau. Des
actions comme l’effacement de consommation électrique ou la gestion active de la demande essaient
d’exploiter au mieux ce gisement. L’effacement vise par exemple à réduire le pic journalier de
consommation afin de lisser la demande. Lorsque ce pic est trop important, notamment en hiver, la
production d’électricité est assurée par des centrales thermiques, qui sont parmi celles contribuant
le plus aux émissions de dioxyde de carbone. Ainsi, les technologies associées aux Smart Grids
permettraient également de réduire le coût environnemental des bâtiments. Ces solutions reposent
notamment sur des méthodes avancées de gestion et de contrôle du système de chauffage, afin de
tirer profit des capacités de stockage thermique des bâtiments.

En outre, le nouvel écosystème digital, transformé par l’irruption des smartphones, du cloud
et de l’internet des objets (Internet of Things, IoT), représente une opportunité pour relever ces
défis. Par exemple, des études de cas exposées dans [VNB+16] ou [GAO+16] suggèrent qu’un
retour d’information en temps réel via le smartphone pourrait abaisser la température de la pièce,
et donc la consommation en énergie, sans affecter significativement le confort des occupants. Citons
également le développement des thermostats connectés, qui pourraient aussi économiser l’énergie
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Figure 1: (gauche) Consommation finale annuelle par secteur en tonne équivalent pétrole (tep) en
France, 1970− 2015. Source: Service de l’observation et des statistiques, 2015. (droite) Emissions
de gaz à effet de serre en tonne équivalent CO2 (teCO2) par secteur en France métropolitaine en
2015. Source: Citepa/Format SECTEN - april 2017.

en ajustant la température de consigne dès que la pièce contrôlée n’est plus occupée, sans non-plus
altérer le confort thermique [PWM16]. Les fournisseurs d’énergie sont donc pressés de créer de
nouveaux services énergétiques, voire de nouveaux objets, afin de répondre à ces enjeux tout en
faisant face à la compétition, autrefois inattendue, des acteurs des technologies de l’information et
de la communication tels les géants du Web.

Ce contexte marque donc un changement de paradigme, comme signalé dans [SBPW16]. Les
approches antérieures en énergétique du bâtiment s’intéraissaient avant tout à la phase de concep-
tion, c’est-à-dire que les thermiques détaillés étaient simulés préalablement à l’occupation réelle
du bâtiment, en s’appuyant par exemple sur des scénarios standardisés d’occupation. Le nouveau
paradigme implique au contraire que l’utilisateur doit être au cœur des services, via des intéractions :
en échange des informations qu’il/elle fournit, par exemple à travers la mesure de certaines grandeurs
d’intérêt, comme la température intérieure, l’utilisateur a accès à un service l’aidant à contrôler et
à réduire sa consommation énergétique.

Conformément à ce contexte, des méthodes avancées d’automatique, telle que la commande
prédictive (voir e.g. [HGP14]), sont appliquées au système de chauffage, ventilation et climati-
sation. Leur impact sur la consommation du bâtiment est potentiellement élevé : des expériences
détaillées dans [PŠFC11] et [ŠOCP11] atteignent des économies d’énergie respectives de 17-24% et
15-28%. De même, l’effacement de charge est réalisé grâce à des méthodes de pilotage dynamique de
l’énergie du bâtiment par commande optimale, sous des contraintes de confort thermique [Mal12].
Ces différentes actions dépendent en premier lieu d’un bon modèle de bâtiment [PCV+13], capa-
ble d’évaluer leur potentiel et limites, ainsi que les performances énergétiques dudit bâtiment. Ainsi,
dans [Mal12], la méthode d’effacement dépend d’une représentation fiable de la dynamique de la
température intérieure, afin de garantir que la stratégie de pilotage respecte bien les contraintes de
confort thermique. Le modèle de bâtiment constitue donc un prérequis à la création de ces services.
Cette thèse s’intéresse ainsi plus particulièrement à la démarche d’estimation de tels modèles.
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Figure 2: Schéma bloc d’un système de bâtiment avec régulation de la température intérieure.
Sollicitations externes : gains internes gratuits liés aux autres appareils électriques et à l’occupation,
conditions météorologiques incluant e.g. la température extérieure et le flux solaire.

Par modèle de bâtiment, on entend plus précisément un modèle représentatif de l’état thermique
du bâtiment et capable d’expliquer la dynamique de la température intérieure. Cette dynamique
s’explique en général par trois classes de facteurs, à savoir les facteurs liés à la structure même
du bâtiment (composition, géométrie, etc.), ceux liés aux conditions météorologiques (température
extérieure, flux solaire, vitesse du vent, etc.) et enfin les intéractions des occupants avec le bâtiment
[Zay11, AAC+15]. Ces intéractions peuvent être contrôlables (température de consigne, système de
chauffage) ou non-contrôlables et considérées alors comme des perturbations (gains métaboliques
liés à la présence, gains internes gratuits causés par exemple par les ordinateurs, l’éclairage, etc.
[PRMS08]). Nous étudions plus spécifiquement le bâtiment en saison de chauffe, typiquement en
hiver. Le bâtiment évolue alors en boucle fermée, la température intérieure étant asservie afin de
suivre un certain signal de consigne. Voir la Figure 2 pour une représentation du modèle de bâtiment
d’un point de vue ”système”.

Plusieurs approches de modélisation existent afin d’expliquer la dynamique de la température
intérieure à partir de ces facteurs. Il y a essentiellement deux paradigmes, avec d’un côté les modèles
physiques détaillés reposant sur une connaissance experte, et de l’autre les modèles statistiques,
construits uniquement à partir des données de fonctionnement du bâtiment. Nous optons dans la
suite de la thèse pour la seconde catégorie. Ce choix est déterminé par le contexte précédemment
décrit et par les usages potentiels du modèle de bâtiment. En effet, la commande prédictive nécessite
des modèles avec un faible nombre de paramètres et pouvant simuler la dynamique du bâtiment pour
un faible coût calculatoire. Ainsi, l’approche statistique est particulièrement adaptée, au contraire
des modèles physiques d’ordre élevé. Les différences entre ces deux approches sont décrites dans le
Chapitre 2 de ce document.

La construction des modèles statistiques repose sur des méthodes d’identification de systèmes, et
donc sur des expérimentations, comme définit par L. Ljung dans son ouvrage de référence [Lju87]
consacré au sujet : ”Les signaux entrée/sortie du système sont enregistrés et soumis à de l’analyse
de données afin d’inférer un modèle”. Les principales étapes de la démarche d’identification sont
le choix d’une classe de modèles, la planification d’une campagne de mesure des facteurs explicatifs
les plus pertinents, le choix d’un critère pour la sélection du modèle, la construction (estimation)
d’un modèle à partir des données mesurées, et enfin la validation [Zay11]. Se référer e.g. à [Lju87]
pour une étude approfondie de cette démarche. Dans la section suivante, nous soulignons le fait
que les observations des signaux entrée/sortie sont déterminantes pour l’identification du modèle
thermique d’un bâtiment.
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De l’importance des données

Etant fixée une certaine classe de modèles de bâtiment, l’identification est un problème statistique,
et, par suite, algorithmique, qui dépend fortement de la disponibilité des données entrée/sortie du
modèle. Plutôt que de se concentrer uniquement sur l’aspect algorithmique de la démarche, auquel
une grande partie de l’état de l’art est déjà consacrée, cette thèse étudie plus particulièrement les
contraintes pratiques qui surviennent dans l’implémentation de tels algorithmes. Ces contraintes
sont dues au second aspect de l’identification, c’est-à-dire la disponibilité réelle des données.

Cette question de la disponibilité et de la qualité des données est souvent négligée dans la
littérature relative à l’identification de bâtiment. Dans beaucoup de publications, les données sont
obtenues soit par une instrumentation spécifique de laboratoire (e.g. [BM11, Zay11, Mej11]), soit
par un mélange de bases de données météorologiques historiques moyennées et de la réponse simulée
du bâtiment à ces sollicitations moyennes (e.g. [MCPF10, HGP12]). Ces deux approches supposent
ainsi que chaque entrée et sortie du modèle thermique est disponible à une précision suffisante : en
ce sens, elles sont déterministes. Nous pouvons toutefois illustrer qu’elles ne sont pas adaptées à
un contexte industriel. La seconde approche ne convient de toute évidence pas à une mise en œu-
vre pratique, puisque la simulation de la dynamique s’obtient alors nécessairement par un modèle
physique détaillé, alors que ces modèles sont précisément écartés de notre démarche en raison de la
lourdeur de modélisation qu’ils représentent : c’est un travail peu adapté aux besoins industriels,
car spécifique à chaque bâtiment, et qui requiert l’intervention d’un expert.

Prenons ensuite l’exemple du flux solaire pour motiver notre propos et montrer que la première
approche, reposant sur une instrumentation complète du bâtiment, n’est pas non plus réalisable en
pratique. Une mesure de cette quantité est nécessaire notamment pour estimer correctement les
constantes de temps qui caractérisent l’inertie du bâtiment. Cette entrée représente de plus une
source substancielle d’apports thermiques gratuits que les récents bâtiments basse consommation
tendent à maximiser. Cependant, l’instrumentation associée a un coût prohibitif, elle est donc
difficilement déployable à grande échelle pour un grand nombre de bâtiments. En effet, le flux solaire
est mesuré par un pyranomètre dont le coût capteur excède typiquement 100e, hors installation : il
semble peu envisageable d’équiper chaque utilisateur d’une telle instrumentation. Par conséquent,
la première approche qui suppose une observation parfaite du bâtiment semble de fait illusoire en
pratique.

Remarquons également que les deux approches ne permettent pas de prendre en compte les ap-
ports thermiques gratuits dûs à l’occupation du bâtiment, ces derniers étant fortement intermittents
par essence et difficile à mesurer avec précision.

Plutôt que de supposer que chaque entrée et sortie du modèle est un signal déterministe, cette
thèse explore donc une troisième option, en adoptant le point de vue du fournisseur d’énergie.
Celui-ci dispose a priori de la mesure d’une unique grandeur, grâce au déploiement des compteurs
intelligents, à savoir la consommation totale d’énergie à un pas de temps infra-horaire (typiquement
10 minutes), appelée courbe de charge. Il y a cependant des nuances selon le type de bâtiment
considéré :

� une maison ou un appartement dont le vecteur d’énergie est uniquement l’électricité : alors
la mesure correspond à la consommation agrégée de l’ensemble des usages;

� une maison ou un appartement dont le vecteur d’énergie sont l’électricité et le gaz : alors il y
a généralement une mesure agrégée du chauffage et de l’eau chaude sanitaire d’un côté (gaz),
et une mesure agrégée des autres usages de l’autre (électricité);
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Figure 3: Disponibilité effective des entrées et sorties principales d’un modèle thermique de
bâtiment, pour le fournisseur d’énergie. En rouge, les grandeurs non-mesurées. En orange, celles
mesurées avec une incertitude non-négligeable. En vert, les grandeurs mesurées avec précision.

� pour le secteur tertiaire (bâtiments de bureaux, ...) ou industriel, la mesure est généralement
l’agrégation de toutes les consommations.

Quoiqu’il en soit, les données mesurées ont besoin d’être séparées entre les apports thermiques et
les autres charges, les premiers étant intégrés au modèle tandis que les secondes en sont écartées.
Une approche possible pour y parvenir serait d’implémenter un algorithme de désagrégation de type
NILM (Non Intrusive Load Monitoring, i.e. surveillance non-intrusive de la charge des appareils, voir
[ZGIR12, EG09]). Cependant, ces méthodes reposent typiquement sur une mesure à haute-fréquence
de la courbe de charge totale, en supplément du compteur déjà installé. Elles s’accompagnent donc
d’un coût d’implémentation significatif.

Nous choisissons une méthode alternative, appliquée à toutes les entrées du modèle : on suppose
que les données mesurées sont incomplètes ou imprécises, et on cherche à intégrer l’incertitude
résultante dans la démarche d’identification. Les autres grandeurs, notamment les températures
et les gains solaires, ne sont pas disponibles a priori pour le fournisseur d’énergie, comme indiqué
en Figure 3. Ainsi, l’identification n’est plus menée dans un contexte d’observation parfaite du
comportement du bâtiment, mais au contraire dans un environnement d’observation incomplet et
dégradé : les données sont soit manquantes, soit mesurées avec un certain degré d’imprécision. Cela
exige donc un cadre stochastique, plus que déterministe comme pour les autres approches. De par
ce parti-pris, cette thèse est donc en accord avec certaines contributions précédentes, telle [FABG14]
qui prend en considération l’incertiude sur la température intérieure et les apports internes gratuits,
ou encore [BHZ14] qui intègre les données incertaines dans une approche de modélisation par des
processus Gaussiens.

Pour améliorer l’observation du bâtiment, notre hypothèse première est alors que le fournisseur
d’énergie a accès aux données fournies par les objets connectés du bâtiment, et qu’il utilise ces
données pour l’identification. Cette hypothèse est détaillée dans la section suivante.

Bien que les objets connectés complètent utilement l’observation du bâtiment, nous ne sommes
néanmoins toujours pas dans le contexte d’observation parfaite du bâtiment, comme pour les deux
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Figure 4: La maison intelligente (smart home) : un écosystème connecté.

méthodes mentionnées précédemment. L’idée de la thèse est donc de modéliser les informations
apportées par les objets connectés, et de les intégrer dans l’identification. Supposons par exemple
que nous disposons d’un côté d’une mesure agrégée de la consommation d’une maison, et des
informations fournies par une machine à laver connectée de l’autre. Comment utiliser un tel appareil
connectée pour retirer les consommations impropres (usages non-thermiques) de la courbe de charge
totale ? Ce travail cherche à répondre à ce genre de questions.

L’internet des objets, source de données et d’incertitude

L’idée de recourir aux objets connectés se justifie par leur prépondérance croissante dans la
société. Si on considère en particulier le cas d’un logement, le thermostat connecté commence
à être largement répandu : 4.9M d’unités ont été vendues en 2015 d’après IoT Analytics, dont
70% en Amérique du Nord, soit une croissance de 123% entre le quatrième trimestre 2014 et le
quatrième trimestre 2015. Ce marché est encore en naissance, mais la multiplicité des entreprises
proposant des thermostats connectés ou encore des stations météorologiques connectées (en France,
Sowee, Netatmo, Qivivo, Hector, Atlantic, Schneider Electrics, Ween,...) illustre le potentiel de
développement de ces produits.

A propos du logement individuel, les objets connectés forment un écosystème définissant la
Smart Home, ou maison connectée. Ces objets peuvent être classés en six catégories, comme
représenté Figure 4. La classe smart grid regroupe les compteurs communicants donnant accès
à la consommation globale du bâtiment à un pas de temps de quelques minutes. Des compteurs
dédiés peuvent aussi mesurer la production locale d’énergie renouvelable, ou la charge d’un véhicule
électrique. Ensuite, la classe des objets liés au confort thermique englobe le thermostat et la station
météorologique conectés. Ces objets contrôlent la température et la qualité de l’air intérieurs.
Comparé aux anciens thermostats programmables, le thermostat connecté vise à accroitre la fiabilité
du gain d’économies d’énergie, avec de nouvelles fonctionnalités telle l’interface smartphone pour
l’utilisateur, le retour sur l’utilisation de l’énergie, la détection de présence, la détection de défauts,
la gestion active de la demande ou encore le contrôle multizone [PWM16]. Les produits blancs, i.e.
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le gros électroménager, forment la troisième catégorie. Ces appareils (lave linge, etc.) commencent
à être connectés, avec en application notamment le contrôle distant ou le suivi de consommation.
Le ballon d’eau chaude, potentiellement connecté (voir [Bee16] pour une étude) est également inclus
dans cette catégorie. La quatrième classe concerne tout ce qui a trait à la domotique : contacts sans
fils pour la détection d’ouverture des portes et fenêtres, éclairage connecté, etc. Puis, les appareils
liés à la sécurité regroupent les caméras d’intérieur ou même les serrures connectées. Certaines
caméras connectées intègrent par exemple des fonctionnalités de reconnaissance faciale, envoyant
des notifications d’identification en conséquence. Enfin, l’objet connecté le plus répandu est tout
simplement le smartphone, qui peut servir notamment d’interface entre l’utilisateur et ses autres
objets connectés.

Suivant cette brève description de l’écosystème formé par les objets connectés, l’hypothèse clé
formulée dans cette thèse est que l’énergéticien peut utiliser les informations fournies par ces ob-
jets, afin d’améliorer les conditions d’observation du comportement thermique du bâtiment et ainsi
identifier un modèle plus précis. Plus précisément, en commençant par les apports thermiques,
le compteur communicant fournit au moins une borne supérieure à cette contribution. De plus,
les informations des autres objets connectés peuvent permettre de diminuer cette borne, comme
détaillé au Chapitre 7. Comment obtenir des informations sur les autres grandeurs du modèle ?
Si l’énergéticien équipe également ses clients d’une station météorologique connectée, il aura alors
accès à une mesure - qui n’est pas la mesure - de la température extérieure. De même pour la
température intérieure. A noter qu’une station météorologique connectée ne mesure pas le flux
solaire incident, de sorte que cette quantité est complètement cachée a priori. Finalement, les ob-
jets liés à la domotique, voire même la sécurité, peuvent fournir une information sur le nombre
d’occupants dans le bâtiment à un instant donné, renseignant ainsi sur les gains métaboliques. Cela
reste cependant très prospectif à l’heure actuelle (voir le Chapitre 7).

Du point de vue du fournisseur d’énergie, il semble donc raisonnable de supposer que la seule
grandeur mesurée avec précision est la courbe de charge totale, tandis que le flux solaire et les gains
métaboliques sont eux au contraire inconnus, et que les apports thermiques et les températures
intérieure et extérieure sont mesurées avec un certain degrée d’incertitude. Cet état des lieux
correspond à la représentation simplifiée entrées/sortie du modèle de bâtiment donnée en Figure
3. Les contraintes pratiques altèrent donc considérablement les conditions d’application des algo-
rithmes classiques d’identification de bâtiment. Trouver des solutions à ces problèmes soulève par
conséquent de nouvelles questions pour l’identification de bâtiment. Quelles sont les informations
appportées par les objets connectés pour limiter les contraintes pratiques ? Comment modéliser
mathématiquement ces informations ? Comment peut-on adapter la démarche de l’identification
afin qu’elle intègre un certain niveau d’incertitude portant sur les entrées du système ? Peut-on
estimer précisément un modèle de bâtiment à partir d’un ensemble réduit et peu onéreux de cap-
teurs, malgré l’incertitude intrinsèque de ce dispositif ? Quels sont les capteurs clés d’une bonne
estimation ? L’objet de cette thèse est de répondre à de telles interrogations. Les sections suivantes
décrivent succinctement les contributions principales de la thèse pour résoudre la problématique
exposée dans cette introduction, en suivant l’ordre des chapitres dans le reste du document. Nous
présentons donc d’abord la modélisation retenue tout au long de ce travail pour représenter le com-
portement dynamique d’un bâtiment, puis étudions l’identification de ce modèle d’une part lorsque
toutes les grandeurs sont correctement observées, d’autre part lorsque chaque entrée ou sortie du
modèle est supposée incertaine.
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Figure 5: Modèle de bâtiment : le circuit électrique équivalent R3C2.

Modélisation du bâtiment

Le modèle qui sert de support à cette thèse est un circuit électrique équivalent à trois résistances et
deux capacités, dénoté R3C2. Il est représenté en Figure 5. Les circuits électriques ont en effet sou-
vent été utilisés pour représenter de manière simplifier la dynamique thermique des bâtiments, voir
par exemple [AAC+15, Ber13, FVLA02, LMDP14]. Le modèle R3C2 en particulier a été présenté
par EDF en 1991 [MR91] et repris récemment dans la thèse de C. Zayane, [Zay11]. Il fait intervenir
trois températures : la température intérieure ϑi, la température extérieure ϑo et une température
de structure ϑs représentative de l’état thermique de l’enveloppe du bâtiment. Il y a donc une hy-
pothèse sous-jacente de modèle monozone thermique, c’est-à-dire que ϑi est représentative de l’état
thermique de l’ensemble des zones du bâtiment. C’est une hypothèse classique en identification
de bâtiment. L’air intérieur est chauffé directement par le flux Qr qui rassemble le système de
chauffage Qh et les gains internes gratuits Qfg, tandis que le chauffage par gains solaires Qs est
injecté indirectement au nœud de température de structure du bâtiment.

L’avantage de la représentation R3C2 est qu’elle cumule interprétabilité physique et faible
coût calculatoire, ce qui justifie son choix dans la thèse, conformément aux éléments de contexte
précédemment évoqués. En effet, le modèle est d’ordre 2, ordre minimal suffisant pour repro-
duire la dynamique thermique [MCPF10]. Il comporte cinq paramètres regroupés dans le vecteur
θ :=

(
1/Cr 1/Cs 1/Rf 1/Ro 1/Ri

)
, à partir desquels deux constantes de temps peuvent être

calculées, une lente τ1 et une rapide τ2, ainsi que deux paramètres statiques, le coefficient de
déperditions thermiques UA et la transmittance solaire g. Ces calculs sont présentés dans le Chapitre
2. On parle en ce sens de modèle ”bôıte grise”, hybride entre les modèles purement physiques (”bôıte
blanche”) ou purement statistiques (”bôıte noire”). A noter cependant que le propos de la thèse
n’est pas d’affirmer que le modèle R3C2 est le ”meilleur” modèle de bâtiment. Il s’agit avant tout
de montrer comment adapter l’estimation d’un modèle classique de bâtiment lorsque les données
sont manquantes ou partielles. En particulier, les outils présentés dans la suite de la thèse sont
valables pour tout type de modèle électrique équivalent.

Dans le Chapitre 2, on montre également que le circuit R3C2 se met en équation sous la forme
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d’une représentation d’état discrète linéaire Gaussienne de la forme

Xt = A(θ)Xt−1 +B(θ)Ut + Vt, (1)

Yt = CXt +Wt, (2)

où X :=
(
ϑi ϑs

)ᵀ
est le vecteur des états cachés, non-observés, Y := Ti est une mesure bruitée

de la température intérieure de modèle ϑi, U :=
(
ϑo Qr Qs

)ᵀ
le vecteur des entrées mesurées

du modèle, et V et W sont des bruits blanc Gaussiens indépendants. t désigne l’indice temporel
discret. Les matrices A et B sont paramétrées par θ, mais pas la matrice d’observation C (simple
retour d’état).

Etant donnée la classe de modèle fixée par le circuit R3C2, l’enjeu de l’identification de bâtiment
est donc le suivant : être capable d’estimer les paramètres θ du modèle à partir de données
d’observation des grandeurs d’entrée Ut et de sortie Yt du modèle, et malgré la non-connaissance de
l’état Xt du système. Un jeu de données typique est représenté en Figure 6. Le Chapitre 3, présenté
ci-après, traite cette problématique lorsque toutes ces grandeurs sont effectivement observées, tan-
dis que les chapitres 4 à 7 proposent des solutions lorsque les données sont seulement partiellement
observées.

Identification boucle ouverte d’un bâtiment observé en boucle fermée

Lorsque toutes les grandeurs d’entrée/sortie du système sont correctement observées, une difficulté
pratique subsiste malgré tout : la question se pose de savoir si le bâtiment doit être identifié en
boucle ouverte ou en boucle fermée, ce que la littérature sur l’identification de bâtiment ne tranche
pas véritablement. L’identification boucle fermée correspond à l’exploitation réelle du bâtiment en
saison de chauffe, comme illustré Figure 2. Cependant, la boucle fermée implique que le contenu
informatif du signal de commande (la puissance de chauffe) est moindre comparé à un signal choisi
librement en boucle ouverte : cette dernière situation constitue par conséquent de manière générale
l’approche préférentielle pour l’identification de modèle. Elle reste toutefois difficile à mettre en
œuvre en pratique dans le cas particulier d’un bâtiment habité ou occupé, puisqu’elle est intrusive
(le fournisseur détermine la séquence de chauffage à la place de l’utilisateur) et génère un inconfort
thermique (la température intérieure ne suit plus une certaine consigne).

Nous montrons ainsi dans le Chapitre 3 que cette problématique est peu traitée dans l’état de
l’art, avec soit des approches reposant sur des expérimentations en boucle ouverte (e.g. [BM11]),
soit le recours à un modèle physique détaillé du bâtiment pour obtenir des données simulées en
boucle ouverte (e.g. [HGP12]), soit des approches en boucle fermée (e.g. [Zay11]) qui peinent à
intégrer la saturation de la commande de chauffage.

Dans le Chapitre 3, on se place donc dans le cas où les données sont générées en boucle fermée, cas
le plus probable en pratique. La contribution principale de ce chapitre est de justifier l’estimation des
paramètres du modèle de bâtiment comme si les données étaient en fait générées en boucle ouverte,
bien que ce ne soit pas le cas en réalité. Cette approche est appelée approche directe en identification.
L’argumentation repose sur les propriétés de l’estimateur du maximum de vraisemblance (MLE,
Maximum Likelihood Estimator). Si les données sont générées en boucle ouverte, alors les propriétés
statistiques asymptotiques (consistance, normalité) du MLE d’un système linéaire tel que le circuit
R3C2 sont déjà établies dans la littérature, voir notamment [HD88, Cai87]. Ce n’est plus le cas
lorsque les données sont générées en boucle fermée, en raison de la nouvelle structure de dépendance
des variables, illustrée en Figure 7 : le processus d’entrée Ut n’est plus exogène, mais dépend de
l’observation passée de {Yt−1}.
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Figure 6: Exemple de données pour l’identificiation. De haut en bas : température intérieure Ti,
température extérieure ϑ0, consommation du système de chauffage Qh, gains solaires at apports
internes gratuits Qfg. Données mesurées sur le site d’EDF R&D Les Renardières, laboratoire
BESTLab.
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Figure 7: Graphe de dépendance d’un modèle de Markov caché avec données générées en boucle
fermée. Le processus {Yt} est l’observation, {Xt} est l’état caché, et le processus d’entrée {Ut} est
généré à partir de la mesure passée de {Yt−1}. Le cas boucle ouverte correspond à la suppression
du noyau Hη

t+1(Yt, Ut+1).

Pour ces raisons, il faut redémontrer les propriétés asymptotiques du MLE dans le cadre de la
boucle fermée. Cependant, établir de tels résultats va au-delà du sujet de la thèse. Sous l’hypothèse
que la boucle de régulation ne dépend pas des paramètres θ du système en boucle ouverte, le
Chapitre 3 montre toutefois que si la consistance et la normalité asymptotique du MLE en boucle
fermée sont admises, alors

1. maximiser la vraisemblance des observations générées en boucle fermée revient à maximiser
la vraisemblance obtenue avec les mêmes données mais sous l’hypothèse boucle ouverte;

2. le calcul de la covariance asymptotique du MLE en boucle fermée utilise la même statistique
que celle du MLE sous hypothèse boucle ouverte (à savoir la Hessienne de la log-vraisemblance
sous hypothèse boucle ouverte).

Ainsi, malgré l’exploitation réelle du bâtiment en boucle fermée, il semble raisonnable d’estimer par
maximum de vraisemblance les paramètres θ du circuit R3C2 comme s’il était en boucle ouverte, et
d’utiliser le théorème central limite pour calculer des intervalles de confiance. Une telle procédure
d’estimation est décrite dans le Chapitre 3, en utilisant l’algorithme espérance-maximisation (EM,
Expectation-Maximization). Les résultats numériques, aussi bien sur données simulées que réelles,
confirment la validité de l’approche. Différentes conditions expérimentales sont testées afin de
quantifier la qualité des estimations en fonction du contenu informatif des données. Il apparait
qu’une estimation précise des paramètres statiques et dynamiques du modèle thermique du bâtiment
est possible à partir de 10 à 14 jours d’expérimentation, pourvu que la température de consigne
présente (au moins) deux niveaux séparés de quelques degrés.

Ce chapitre montre ainsi de manière empirique qu’il n’est pas nécessaire de modéliser la régulation
pour l’identification d’un bâtiment observée en conditions réelles d’exploitation, lorsque les signaux
d’entrée/sortie sont bien tous mesurés.

Prise en compte des contraintes pratiques

Le reste de la thèse est ensuite consacré aux contraintes qui empêchent la mise en œuvre pratique
de l’algorithme d’identification du Chapitre 3. Nous remettons ainsi successivement en cause la
disponibilité effective de chaque entrée et sortie du modèle, et proposons des algorithmes adaptés.
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Température intérieure cachée

Supposons dans un premier temps que la température intérieure n’est pas mesurée, tandis que
toutes les entrées du modèle le sont. C’est une hypothèse contraignante, puisque cette grandeur est
la sortie du modèle thermique de bâtiment. En particulier, l’approche boucle ouverte du Chapitre
3 ne s’applique plus, et il faut déterminer un modèle pour la régulation de la température à partir
d’une consigne. Une solution proposée dans la thèse de C. Zayane [Zay11] est donc d’adopter un
modèle boucle fermée dont la sortie est la commande de chauffage, et les entrées sont les conditions
météorologiques, les apports thermiques internes gratuits, i.e. autres que le système de chauffage,
ainsi que la température de consigne. Cependant une limite du travail [Zay11] est que la régulation
prend la forme d’un correcteur Proportionnel Intégral (PI) linéaire. Or la commande est en réalité
non-linéaire, car saturée : elle est forcément positive (pas de refroidissement) et bornée (limitation
par la puissance nominale du système de chauffage). La méthode semble donc perfectible, notam-
ment dans l’optique de la création de services énergétiques tels que la prédiction de consommation
ou le lissage de la courbe de charge.

Pour mieux prendre en compte cette contrainte, et la non-linéarité qu’elle génère, nous proposons
dans le Chapitre 4 d’appliquer une méthode d’inversion Bayésienne, avec un algorithme de type
Markov Chain Monte Carlo, l’échantillonneur de Monte Carlo à dynamique Hamiltonienne (HMC,
[Nea11]). Cette méthode a déjà été étudiée pour un circuit R1C1 dans [Laj11], et le Chapitre 4
étendons donc l’étude dans le cas du R3C2.

Pour cela, la régulation Qh est représentée par un correcteur PI dont la sortie est saturée par
une fonction sigmöıdale, approximation C∞ de la fonction de saturation classique :

Qh = Φ

[
K

(
Tr − ϑi +

1

τ

∫
(Tr − ϑi)

)]
, (3)

où K et τ sont respectivement le gain et la constante de temps du PI, Tr est la température de

consigne, ϑi la température intérieure et Φ : x ∈ R 7→ Qmax
h

1+exp(−λ(x−Qmax
h /2)) ∈ (0, Qmaxh ), pour une

puissance limitante Qmaxh , avec λ := 4/Qmaxh . Le modèle du bâtiment est donc une représentation
d’état non linéaire avec sept paramètres, les paramètres θ du circuit R3C2 étant augmentés de K
et τ . Ses états cachés sont X :=

(
ϑi ϑs d

)ᵀ
, où d := 1

τ

∫
(Tr − ϑi), tandis que les entrées et

la sortie observés sont respectivement U :=
(
ϑo Qfg Qs Tr

)ᵀ
et Y := Qh. Les notations sont

celles utilisées lors de la description du modèle R3C2. Le Chapitre 4 détaille la méthode Bayésienne
d’apprentissage du modèle, en utilisant l’algorithme HMC. L’avantage de cet algorithme est qu’il
utilise des informations de gradient pour explorer plus efficacement la distribution a posteriori des
paramètres. De manière originale, nous proposons d’estimer conjointement les paramètres et les
états cachés du système, notamment la température intérieure ϑi, par l’algorithme HMC. Ainsi,
la densité a posteriori considérée est p(θ, x0:T|y1:T), où T désigne le nombre d’observations. De
plus, des priors sur la trajectoire des états sont également ajoutés. En particulier, le prior sur la
température intérieure pénalise fortement les écarts à la température de consigne, que la température
intérieure est supposée suivre. Ce prior très informatif favorise la convergence de l’algorithme.

Les résultats numériques sur des données simulées sont encourageants, avec une bonne estima-
tion des constantes physiques du modèle R3C2. La régulation est plutôt bien estimée également,
notamment la constante de temps τ . Ainsi, la prédiction de la température intérieure sur des
données de test est précise, avec par exemple une erreur quadratique moyenne de 0.35◦C pour la
trajectoire représentée en Figure 8.
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Figure 8: Exemple de prédiction de la température intérieure sur données test.

Réduction du biais sur la température extérieure

Après avoir envisagé dans le Chapitre 4 que la sortie du modèle de bâtiment n’est pas mesurée,
les chapitres 5 à 7 examinent le cas des trois entrées du modèle R3C2, à savoir la température
extérieure, les apports solaires et les gains thermiques internes. La démarche est similaire pour ces
trois grandeurs : contrairement au cas de la température intérieure, nous disposons ici d’une version,
certes incertaine, de la grandeur d’intérêt. Cela signifie en particulier que nous pouvons appliquer
le résultat du Chapitre 3. Ainsi, bien que les données soient toujours générées en boucle fermée,
nous proposons dans la suite des algorithmes d’estimation du modèle R3C2 en boucle ouverte.

Le Chapitre 5 traite plus spécifiquement le cas de la température extérieure. Dans le contexte
des bâtiments connectés, la mesure de cette grandeur peut s’obtenir de deux façons différentes. La
première possibilité est de disposer d’un capteur de température, par exemple dans le cadre d’une
station météorologique connectée, capteur situé au niveau du bâtiment en question. En l’absence
de mesure in-situ, on peut envisager de prendre la mesure du plus proche capteur dans une base
de donnée accessible en open-source (voir par exemple la Weathermap de Netatmo). Dans les deux
cas, le fournisseur d’énergie a accès à une mesure de la température extérieure, cette mesure n’étant
pas forcément la mesure représentative du micro-climat local au niveau du bâtiment étudié. Cela se
comprend aisément dans le cas de la seconde solution proposée : le champ de température extérieure
n’est pas uniforme, même sur des distances de quelques kilomètres seulement. Cela reste valable
dans le premier cas également. En effet, bien que le capteur connecté soit situé au niveau même du
bâtiment, le fournisseur d’énergie ne connait pas la position exacte du capteur, qui est déterminée
par l’utilisateur final. Or, il est nécessaire de placer le capteur à l’ombre, pour ne pas mélanger
l’influence du rayonnement solaire. Ainsi, un capteur exposé au soleil présentera un fort biais de
mesure. La Figure 9 montre que ce biais peut être élevé, jusqu’à 6◦C, même au mois de novembre.

Du point de vue du fournisseur d’énergie, la mesure disponible de la température extérieure est
donc possiblement trompeuse. Pour prendre en compte cette incertitude, nous introduisons une
représentation dynamique de la température extérieure, au pas de temps 10 minutes, sous la forme
d’une représentation d’état :

ϑo,t = ϑo,t−1 + εt, (4)

ϑb,t = ϑb,t−1 + εt, (5)

To,t = ϑo,t + Itϑb,t + ηt, (6)
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Figure 9: Exemple d’écart de mesure entre deux capteurs de température extérieure. (a) Capteur
de référence protégé du rayonnement (gris clair) et capteur sur une façade orientée Sud, sans cache
(rouge). (b) Ecart entre ces deux mesures. Laboratoire EDF R&D BESTLab, novembre 2015.

où, To est la mesure disponible de la température extérieure, ϑo est la température extérieure de
référence du modèle R3C2, ϑb est le processus représentatif du biais et It est une indicatrice valant
0 ou 1. εt, εt et ηt sont ici des bruits blanc Gaussiens indépendants. Ainsi, l’observation To est
une version bruitée de la température de référence ϑo, éventuellement corrigée par le biais ϑb. Au
pas de temps 10 minutes, on suppose que les états cachés ϑo et ϑb sont des marches aléatoires
indépendantes. Deux hypothèses sont examinées dans le Chapitre 5 concernant It:

1. de façon déterministe, on fixe It = 0 la nuit, et It = 1 le jour. On observe en effet, au moins
dans le cas d’un capteur placé au niveau du bâtiment mais non-protégé du rayonnement
solaire, que l’écart de mesure est très réduit durant la nuit (voir par exemple la Figure 5.1).

2. It est un processus non-stationnaire, indépendant, à deux états, avec à chaque instant t
les probabilités a priori πj(t) := P (It = j), j = 0, 1. Le système alterne donc de façon
stochastique entre les deux configurations It = 0 ou It = 1. L’enjeu est alors de calculer les
probabilités filtrées πj(t|t) := P (It = j|Y1, . . . , Yt), j = 0, 1. Il s’agit d’une relaxation de la
première hypothèse.

Dans les deux cas, le modèle dynamique de la température extérieure est ajouté au modèle R3C2 du
bâtiment, formant une représentation d’état linéaire ou conditionnellement linéaire, selon l’hypothèse
sur It, ayant pour sorties et entrées observées Y :=

(
Ti To

)ᵀ
et U :=

(
Qr Qs

)ᵀ
, respectivement,

et pour états cachés X :=
(
ϑi ϑs ϑo ϑb

)ᵀ
. L’avantage de la modélisation choisie est qu’elle

n’introduit pas de paramètres supplémentaires aux 5 paramètres du circuit R3C2, tout en permet-
tant une estimation de la température extérieure de référence ϑo via le filtrage-lissage de l’état. Les
deux modèles sont appris par l’algorithme EM [SS91].

Les résultats numériques, sur des données simulées, mettent en avant les bénéfices des deux ap-
proches suggérées dans cette thèse, par rapport à une approche näıve, qui reproduirait l’estimation
décrite au Chapitre 3 (observation parfaite du bâtiment) en considérant que la mesure disponible est
une entrée exogène du modèle de bâtiment. En particulier, quelque soit l’hypothèse fait sur It, le bi-
ais d’estimation du coefficient de déperditions statiques UA est bien réduit par rapport à la méthode
näıve, qui le surestime. Cette surestimation est par ailleurs cohérente avec l’interprétation physique
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de UA : à consommation de chauffage constante, le modèle est identifié avec une température
extérieure plus chaude qu’en réalité, ce qui veut dire que le bâtiment estimé est moins performant
thermiquement qu’en réalité, donc UA augmente. De manière générale, l’hypothèse stochastique sur
It permet la meilleure identification des paramètres R3C2. Enfin, la trajectoire de la température
extérieure de référence ϑo est bien estimée par les deux méthodes, avec les valeurs extrêmes du biais
qui sont éliminées.

Apprentissage de la dynamique du flux solaire

Le Chapitre 5 montre notamment que la température extérieure de référence peut être déduite
de la donnée d’un capteur possiblement mal orienté, ainsi que de la mesure du flux solaire et de
l’observation du comportement thermique du bâtiment. Dans le Chapitre 6, nous proposons de ren-
verser le raisonnement pour le cas des gains solaires. En se donnant deux capteurs de température
extérieure, un volontairement exposé au soleil, au niveau des surfaces vitrées, et un second volon-
tairement abrité et protégé du rayonnement solaire, on cherche alors à estimer le modèle thermique
du bâtiment sans mesure directe du flux solaire, i.e. sans pyranomètre. L’idée sous-jacente est que
la différence entre les deux températures extérieures est essentiellement due au flux solaire : plus
le rayonnement solaire incident est fort, plus cette différence est grande. L’intérêt de la démarche
est donc de remplacer le coûteux pyranomètre par un second capteur de température extérieure, au
coût réduit.

L’approche développée dans le Chapitre 6 est similaire à celle du Chapitre 5. Il s’agit par
conséquent de construire un modèle du flux solaire à partir de l’observation du biais ∆To de
température extérieure (i.e. la différence entre les deux capteurs de température extérieure), ce
modèle étant ensuite intégré dans la représentation d’état du circuit R3C2. Les principales étapes
de la modélisation sont les suivantes :

1. Représentation physique du flux solaire global horizontal Gcld avec correction par la couverture
nuageuse :

Gh,cld = Gh,clr(1− aN b), (7)

où Gh,clr est le flux solaire global horizontal par ciel clair, qui ne dépend que des coordonnées
géographiques et temporelles du bâtiment, N ∈ [0, 1] est la couverture nuageuse, ou nébulosité.
Dans cette thèse, on choisit le modèle de Perrin de Brichambault [PdBV82, RW99] pour
calculer Gh,clr.

2. Reconstruction de la nébulosité à partir du biais ∆To de température extérieure :

N = φ(∆To), avec φ : x ∈ R 7→ 1− 1

1 + exp(−α(x− x0))
∈ (0, 1). (8)

Ce modèle est paramétré par x1 et x2, où α = 4/(x2−x1) et x0 = (x1 +x2)/2. Il assimile ∆To
à un indice de clarté, dans le sens où les grandes valeurs ∆To > x2 correspondent aux ciels
les plus clairs (N proche de 0), et les faibles valeurs ∆To < x1 aux ciels les plus sombres (N
proche de 1).

3. Estimation des paramètres a, b, x1 et x2. Ces paramètres peuvent être fixés a priori (valeurs
par défaut valables pour de larges zones géographiques) ou appris si des mesures in situ du
rayonnement solaire sont disponibles.
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4. Représentation d’état de ∆To :

ηt = ηt−1 + (qη + σt)vη,t, (9)

∆To,t = ηt + wη,t, (10)

où vη est un bruit blanc Gaussien unitaire indépendant du bruit blanc Gaussien d’observation
wη de variance r2

η, ∆To,t est l’observation bruitée de l’état caché ηt. La dynamique de l’état η
est une marche aléatoire dont la variance des incréments vaut q2

η au minimum, sauf à quelques
instants inconnus, où cette variance vaut (qη + σt)

2, pour σt ≥ 0. On suppose en effet que
le processus σ vaut exactement 0 pour une majorité d’instants, tandis que quelques valeurs
positives modélisent les sauts dans la dynamique de η. Cette hypothèse permet de représenter
plus finement l’instabilité climatique au pas de temps 10 minutes (voir la Figure 9(b)), avec
ponctuellement des phases de plus grande variabilité.

5. Estimation de β := {qη, rη, σ1, . . . , σT} en pénalisant la log-vraisemblance logLβ du modèle
d’état (9):

β̂(λ) := arg min
β

{
−2 logLβ(∆To,1, . . . ,∆To,T) + λ

T∑
t=1

|σt|

}
. (11)

En choisissant soigneusement le coefficient λ, la pénalité λ
∑T

t=1 |σt| assure une structure
parcimonieuse à la série des σt.

Une fois connus les coefficients a, b, x1, x2 et β, le modèle global est formé en ajoutant le modèle
(9) aux équations du circuit R3C2. Cela résulte en un modèle d’état conditionellement linéaire et
Gaussien, puisque conditionnellement à la dynamique du flux solaire, non-linéaire, la dynamique
du bâtiment est linéaire. Les entrées et sorties observées du modèle sont respectivement U :=(
ϑo Qr Qclr

)ᵀ
et Y =

(
Ti ∆To

)ᵀ
, les états cachés sont X =

(
ϑi ϑs η

)ᵀ
. Il reste alors à estimer

les 5 paramètres du circuit R3C2. Bien que non-linéaire, la structure de linéarité conditionnelle est
exploitée pour appliquer l’algorithme EM et résoudre l’étape E le plus efficacement possible en
utilisant un lissage particulaire Rao-Blackwellisé [LS10b, Lin11]. Cet algorithme de la littérature
fournit une approximation numérique des densités de filtrage et de lissage des états cachés, avec
une réduction de la variance par rapport au lissage particulaire simple appliqué aux modèles non-
linéaires; il est détaillé dans le Chapitre 6.2.

Les résultats numériques, sur des données simulées et réelles, montrent l’intérêt de la démarche
présentée dans ce chapitre. En particulier, ils confirment qu’une bonne estimation du flux solaire
reçu peut être déduite à partir de ∆To. Un exemple d’estimation est reproduit en Figure 10.
A noter que l’estimation de la trajectoire lissée de η se fait dans le modèle global, et non pas
uniquement à partir de la représentation purement ”météorologique” (9), ce qui permet de bénéficier
du contenu informatif lié à l’observation du comportement thermique du bâtiment. De même,
l’estimation des paramètres physiques du circuit R3C2 est largement améliorée par cette méthode, en
comparaison à des approches classiques de la littérature. En particulier, la variance des estimations
est significativement réduite grâce au lissage particulaire Rao-Blackwellisé. L’ensemble de l’étude
numérique conforte donc l’idée qu’une solution simple au coût prohibitif du pyranomètre consiste
à le remplacer par un capteur de température extérieure, sous réserve de l’exposer volontairement
au rayonnement solaire et de conserver le capteur de température extérieure de référence.
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Figure 10: Exemple d’estimation du flux solaire: en noir la mesure réelle (non utilisée pour
l’apprentissage du modèle R3C2), et en rouge la trajectoire obtenue à partir de l’état lissé η.

Incertitude sur la courbe de charge

Le dernier chapitre de la thèse est consacré à la prise en compte de l’incertitude sur les apports
thermiques internes du bâtiment, du point de vue du fournisseur d’énergie. Celui-ci mesure la
consommation totale du bâtiment, à un pas de temps infra-horaire, voire de quelques minutes.
Cette donnée constitue ainsi une borne supérieure des apports thermiques internes, puisque la
consommation totale correspond à des usages qui contribuent ou non au chauffage. Pour un meilleur
apprentissage du modèle, l’énergéticien cherche donc à estimer les apports non-thermiques, afin de
les retirer de la consommation totale et obtenir une courbe de charge utile. A noter que d’après
les résultats du Chapitre 3, il n’est pas nécessaire de distinguer parmi les apports thermiques,
notamment entre système de chauffage et apports gratuits, le modèle R3C2 pouvant être identifié
directement en boucle ouverte, avec l’ensemble des contributions thermiques internes agrégées dans
le terme noté Qr. Par ailleurs, les gains métaboliques, liés à l’occupation effective du bâtiment, ne
sont pas étudiés dans ce chapitre.

Sans information supplémentaire, la courbe de charge totale est une première approximation de
la courbe de charge utile, et peut donc être utilisée telle quelle dans un algorithme d’identification
tel que celui développé dans le Chapitre 3. Pour aller plus loin, nous nous plaçons dans le Chapitre
7 dans le cas d’un bâtiment connecté. Nous considérons plus précisément le cas d’une maison
connectée. En s’appuyant sur une typologie des objets connectés d’après le niveau actuel de ma-
turité des technologies correspondantes, nous formulons alors plusieurs hypothèses dont les deux
principales sont les suivantes :

1. l’énergéticien mesure la courbe de charge totale à un pas de temps infra-horaire;

2. l’énergéticien a accès à une chronologie spécifiant les événements de type Marche/Arrêt des
charges qui ne représentent pas un apport thermique.

Il apparait en effet que contrairement aux apports thermiques, les autres charges correspondent
surtout à des usages ponctuels, et ne sont pas continuellement présentes. C’est le cas par exemple
du lave-vaisselle, de la machine à laver ou encore du ballon d’eau chaude. Ainsi, la seule information
requise consiste à savoir à quels moments ce type de ce charge est activé puis désactivé.

D’après ces hypothèses, l’énergéticien sait à chaque instant si la consommation agrégée corre-
spond uniquement à des apports thermiques, quels qu’ils soient, ou à un mélange d’apports ther-
miques et non-thermiques, en proportions inconnues. Il existe donc des intervalles de temps connus
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pour lesquels la courbe de charge mesurée est la courbe de charge utile. L’algorithme d’estimation
exploite cette connaissance.

Dans un premier temps, l’algorithme classique d’estimation du modèle R3C2 tel que présenté
au Chapitre 3 s’applique aux instants où il n’y a pas de charges non-thermiques.

Cela fournit une première estimation des paramètres θ du circuit, à partir de l’observation exacte
du système. Nous suggérons cependant de corriger cette estimation, en tirant profit de toutes les
données. En particulier, les données mesurées en présence d’apports non-thermiques n’ont pas
encore été exploitées. Le schéma correctif consiste alors à apprendre un modèle de régulation, puis
à simuler une trajectoire de température intérieure à partir de la connaissance de la température de
consigne, du modèle de bâtiment et de la régulation. Il suffit ensuite de mettre à jour l’estimation de
θ en comparant d’un côté la simulation de la température avec la trajectoire observée, et de l’autre
les puissances de chauffage simulée et observée (en se restreignant toutefois aux instants où la courbe
de charge totale est exactement la courbe utile). La démarche globale est itérative, en alternant
correction locale des paramètres θ du circuit R3C2 et estimation d’un modèle de régulation. Ces
différentes étapes sont détaillées en Section 7.2.

L’un des éléments clés réside dans l’apprentissage de la régulation. Nous proposons une stratégie
en deux étapes :

1. Pour chaque intervalle de temps durant lequel la courbe de charge mesurée est la courbe de
charge utile, apprentissage d’un correcteur PI par moindres carrés. Cette étape fournit donc
un ensemble d’estimateurs de la régulation.

2. Agrégation à poids exponentiels des modèles PI calculés lors de l’étape 1.

L’agrégation procède par analogie avec la théorie d’agrégation séquentielle d’experts [CBL06, Gai15].
Dans la théorie classique, les experts sont des ”bôıtes noires” proposant uniquement une séquence
de prédictions, et l’agrégation vise à former une nouvelle prédiction par mélange des prédictions
expertes. Ici, les experts sont de structure connue, ce sont les modèles PI appris lors de la première
étape, et les prédictions sont les températures intérieures simulées à partir des PI experts et de
l’estimation du R3C2. Cependant, plutôt que d’obtenir une nouvelle prédiction agrégée, l’objectif
est de fournir en étape 2 un nouveau modèle PI dont les paramètres se rapprochent des paramètres
du meilleur PI expert. L’idée sous-jacente est d’être capable de sélectionner à chaque instant le
meilleur expert PI, sachant que certains experts peuvent être très mal appris. En effet, le PI est
estimé à partir de la courbe de charge utile, alors qu’il faudrait l’apprendre à partir de la courbe
de charge chauffage, i.e. retirer les apports gratuits, non-contrôlés. Chaque PI expert est donc
plus ou moins bien appris, en fonction notamment de la qualité des données, i.e. du taux d’apports
internes gratuits sur l’intervalle considéré. Le modèle agrégé est calculé comme mélange des modèles
experts, où les poids de mélange sont ceux obtenus pour l’agrégation des prédictions. Les résultats
théoriques de l’agrégation d’experts présentés dans [CBL06, Gai15] ne sont donc plus valables dans
ce contexte. Toutefois, les résultats empiriques obtenus au Chapitre 7 valident la démarche.

Plus spécifiquement, l’étude numérique porte sur des données simulées et réelles. L’analyse d’une
expérience sur un jeu de données simulé montre que la méthode proposée dans ce chapitre améliore
significativement l’estimation des quatre paramètres physiques du modèle R3C2, tant par rapport à
une approche classique de l’état de l’art que par rapport à l’estimation näıve sans le schéma correctif
précédemment décrit. Les trajectoires simulées de la courbe de charge utile et de la température
intérieure, reproduites en Figure 11 correspondent également aux observations. Enfin, l’analyse
de l’agrégation illustre la capacité de la méthode à sélectionner les meilleurs modèles PI à chaque
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Figure 11: Exemple d’identification de bâtiment à partir de la courbe de charge totale. (a) En
rouge, la courbe de charge utilie équivalente simulée par l’algorithme présenté au Chapitre 7, en
gris la courbe de charge utile réelle et en noir les autres charges non-thermiques. (b) En rouge,
estimation de la température intérieure, en nour gris la donnée observée. Données simulées.

instant. La répétition de plusieurs expériences avec données simulées confirme ces conclusions, et
montre que la qualité d’estimation du PI impacte directement la qualité d’estimation du modèle
final. Enfin, les données réelles permettent un test dans un cas limite, lorsque la courbe de charge
contient une grande proportion d’apports internes gratuits et une faible part due à la commande :
bien que dégradées, les estimations restent plausibles.

Ainsi, ce Chapitre 7, encore prospectif, propose d’anticiper le flux d’informations qui pourraient
être disponibles prochainement grâce aux objets connectés du bâtiment, et de tirer profit de ces in-
formations pour limiter l’instrumentation nécessaire à l’identification de bâtiment. Cette démarche
est celle de l’ensemble de la thèse, et a été appliquée à chaque entrée et sortie du système, en
donnant des résultats prometteurs. Parmi les perspectives à ce travail, présentées au Chapitre
8, la plus évidente consiste à étendre les résultats dans le cas où plusieurs entrées sont simul-
tanément incertaines. Par exemple, en se plaçant dans la situation d’un bâtiment équipé d’une
station météorologique connectée, avec deux capteurs de température, ainsi que d’un termostat
connecté et d’un compteur communicant, il faudrait alors adapter les démarches des Chapitres 6 et
7 pour prendre en compte l’incertitude sur le flux solaire et les apports internes.
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Chapter 1

Introduction

1.1 The context of building identification

The building sector is currently at the heart of global energy policies as well as many research
efforts. This is motivated by at least two reasons. The first one is the elevated environmental
cost of this sector: it represented 37% of the final energy consumption in the European Union
(EU) in 2004 [PLOP08], 44% in France in 2012 [ADE13]. Figure 1.1(a) shows that this proportion
has always been elevated in France since 1970, and actually is at its highest in 2015. Moreover,
these consumptions trigger also greenhouse gases emissions: 19.6% of the total EU emissions for
the households only, according to Eurostats. A similar proportion is also observed in France, see
Figure 1.1(b). Most of them (77% in France in 2009, [ADE13]) are actually due to space heating.
As a consequence of this, and because the building renewal rate is small (for example, 1% per year
in France), there is a need for building energy efficiency actions in order to foster the transition
towards a more sustainable energy demand.

The second reason has to do with the raise of the new Smart Grids [FMXY12]. One of the core
concepts of these grids is the notion of flexibility, with the challenge of unlocking and exploiting the
flexibility of the demand in order to maintain a balance with an increasingly intermittent supply,
due to the penetration of renewables. As such, the buildings are emerging as key interactive actors
of the Smart Grids. Indeed, while it is still difficult to store the electrical energy, the elevated
consumption of the building sector represents a significant potential of flexibility of the demand
likely to keep the grid in balance, that actions like load shifting and demand response try to take
advantage of. Load shifting aims for instance at reducing the daily electricity peak-demand in order
to smoothen the demand. Whenever the peak is substantially high, the supply is ensured by thermal
power plants, which contribute for most of the carbon dioxide emissions compared to other types of
power stations. Hence, the Smart Grid technologies may also reduce the environmental cost of the
building sector. In particular, advanced management and control techniques applied to the space
heating system are at the center of such solutions, by exploiting the thermal storage capacities of
the building.

Furthermore, the new digital ecosystem, with disruptions caused for instance by the smartphone,
the cloud-based models and the Internet of Things (IoT) represents an opportunity to meet these
challenges. As such, the software-based optimization of the energy consumption of the buildings ap-
pears as an efficient way of addressing these issues. For instance, field studies reported in [VNB+16]
or [GAO+16] suggest that a smartphone-based real-time context-aware feedback could lower the
room temperature, and thereby the energy consumption, without significantly affecting the thermal
comfort. Another example is the spread of occupancy-responsive learning thermostats, which may
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Figure 1.1: (left) Annual final energy consumption in tons of oil equivalent (toe) by sector in
France, 1970− 2015. Source: Service de l’observation et des statistiques, 2015. (right) Greenhouse
gases emissions in tons equivalent carbon dioxide (CO2e) by sector in metropolitan France in 2015.
Source: Citepa/Format SECTEN - april 2017.

also save energy by automatically adjusting the setpoint temperature whenever the room under
control is vacant, without altering the thermal comfort [PWM16]. As a result, the energy utilities
are urged to create new energy services, information services or electrical devices, in order to tackle
these challenges and face the formerly unexpected competition of information and communication
technology actors such as the Web giants.

As pointed out in [SBPW16], this leads to a change of paradigm. Previous approaches in
building energy dealt mainly with the conception phase of the building, with detailed thermal
models simulated beforehand with some standardized occupation scenarios. On the contrary, the
new paradigm implies that the user should be at the center of the services, by way of interactions: in
exchange for the information he or she provides, for instance through measuring some quantities of
interest, the user has access to a service that helps lowering or monitoring its energy consumption.

In conformity with this context and in order to address these challenges, advanced control tech-
niques, such as model predictive control (MPC, see e.g. [HGP14]) applied to the heating, ventilation
and air conditioning (HVAC) system are being investigated. Their impact on the building energy
consumption is indeed potentially high: some experiences reported in [PŠFC11] and [ŠOCP11]
achieved 17-24% and 15-28% energy savings, respectively. Similarly, actions such as load shifting
can be accomplished through the dynamic control of the building energy, under some thermal com-
fort constraints [Mal12]. These actions depend first of all on a good building model [PCV+13],
able to evaluate their potential and limitations, as well as the energy performances of the building.
For instance, the load shifting in [Mal12] depends on a reliable model of the dynamics of the indoor
temperature in order to make sure that the thermal comfort constraint is always respected by the
optimal control strategy. The building model is thus a prerequisite for these services. Hence, this
thesis is interested more particularly in the estimation procedure of such models.

By a building model, we mean more precisely a model representative of the thermal behaviour
of the building and able to explain the dynamics of the indoor temperature. These dynamics are
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Figure 1.2: Block representation of a building system with regulated indoor temperature and other
exogenous explaining factors (weather conditions including e.g. outdoor temperature and solar
radiations, free internal gains including other electric appliances and occupancy profile).

usually explained by three classes of factors, namely the factors related to the intrinsic structure of
the building (composition, geometry, etc.), the factors related to the weather conditions (outdoor
temperature, solar radiation, wind speed, etc.) and the user’s interactions with the building [Zay11,
AAC+15]. These interactions are either controllable (setpoint temperature, heat flux) or non-
controllable and seen as perturbations (metabolic heat gains due to the occupancy, free internal gains
due to other appliances such as the computers, lighting, ventilation, etc. [PRMS08]). Considering
more specifically the heating case, typically during winter periods, the building usually operates in
closed loop, the indoor temperature being regulated such that is follows a certain setpoint signal.
This is depicted in Figure 1.2.

Accordingly, several modelling approaches exist in order to explain the dynamics of the indoor
temperature in terms of these factors. There are mainly two paradigms, with either the detailed
physics-based or the statistically-based, data-driven, models. We opt in the sequel for the latter
category. This choice is determined by the aforementioned context and the potential uses of the
building model. Indeed, actions such as model predictive control require lightly parameterized
models which can simulate the dynamics of the indoor temperature at a cheap computational cost
[HGP12, PCV+13]. Hence, unlike the high-order detailed models, the data-driven approach is
particularly relevant. The differences between these two types of models are further described in
Chapter 2.

The construction of the data-driven model is thus based on system identification techniques,
and therefore on experimentations: ”Input and output signals from the system are recorded and
subjected to data analysis in order to infer a model”, as defined by L. Ljung in his reference textbook
devoted to system identification [Lju87]. The main steps in the system identification procedure
are the choice of a class of models, the planification of a measurement campaign of the most
significant explaining factors, the choice of a criterion for the model selection, the construction
(estimation) of a model from the measured data, and the validation [Zay11]. An in-depth study of
the identification procedure is provided in [Lju87]. In the next section, we emphasize the fact that
the actual observation input and output signals are key to the building identification.

1.2 On the importance of the data

Given a certain class of building models, the identification is an algorithmic task that strongly
depends on the availability of the data. Rather than focusing on the purely algorithmic aspect of the
identification procedure, to which a significant part of the literature is already dedicated, this thesis
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studies more particularly the practical constraints arising in the implementation of such algorithms.
These constraints are due to the second side of system identification, namely data availability.

The issue of data availability and quality is often overlooked in the literature on building identifi-
cation. In many publications, the data are either obtained from a specific accurate instrumentation
in a laboratory (e.g. [BM11, Zay11, Mej11]) or by a mix of averaged historical weather records and
simulated indoor climate (e.g. [MCPF10, HGP12]). Both approaches assume that every input and
output of the thermal model is available with good enough precision: they are deterministic. We
can illustrate how inadequate to an industrial context these two choices are. The latter approach
is obviously not suited to practical cases because the simulated indoor climate is then necessar-
ily obtained from a physical model, whereas such detailed models were precisely discarded in our
methodology due to the cumbersome modelling effort that they represent: a tiresome task, not
reproducible because specific to each building, that requires the intervention of an expert.

To motivate our point and show that the former appproach, based on a comprehensive instru-
mentation of the building, is not feasible in practice either, let us take the example of the solar flux.
Having a measurement of the solar flux is necessary in order to have a good estimation of the time
constants of the building, that characterize its inertia. This input represents moreover a substantial
free heating source in low-energy buildings which tend to maximize this contribution. Yet, resorting
to a specific instrumentation is costy, hence hardly reproducible at large scale for every building.
Indeed, the solar flux is measured by a pyranometer, an expensive sensor (typically at least 100
e). As a result, the first approach, which assumes a perfect observation of the building is actually
rather illusory in practice.

As a second example, we may remark that both approaches fail into taking into account the
free heating gains due to the occupancy of the building which are highly stochastic by nature and
difficult to measure with precision.

Consequently, instead of assuming that every input of the model is a deterministic signal, this
thesis explores a third option and adopts the standpoint of an energy utility. From this standpoint,
a unique data is available at first sight and thanks to the deployment of the smart meters, namely
the overall energy consumption, called load curve. Note that there are differences according to the
type of building:

� a house or a flat whose energy vector is purely electricity: then, the only measurement is the
aggregated overall consumption;

� a house or a flat whose energy vector is electricity and gas: then, there is usually an aggregated
measurement of the consumption of the heating system and hot water tanks (gas) and an
aggregated measure for the other uses (electricity);

� for the tertiary sector (office buildings, industries, ...) the measurement is usually the aggre-
gated overall consumption.

Yet, in any case, the collected data need to be disaggregated between heating and non-heating
loads, the former being integrated in the thermal model whereas the latter are discarded. One way
of dealing with this challenge would be to implement a Non-Intrusive Load Monitoring (NILM)
algorithm (see [ZGIR12, EG09] for instance). However, such methods typically require a high-
frequency measurement of the global load curve, in addition to the smart meter already installed.
They come thus with a significant implementation cost.
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Figure 1.3: Availability of the main inputs and output of a thermal building model, from the
standpoint of an energy utility. In red, quantities that are not measured, in orange, quantitites
measured with some non-negligible uncertainty, in green, quantities that are accurately measured.

We opt here for a different method, that will be applicable to the other inputs: we suppose
that the measured data is either incomplete or inaccurate, and we want to integrate the resulting
uncertainty into the identification procedure. The other inputs, namely the temperatures and solar
gains, are not available a priori to the energy utility (see Figure 1.3). Our primary hypothesis
is then that the energy utility has access to the data supplied by the connected objects of the
building, and that the utility will use these data for the building identification. This is further
detailed in the next section. This is a change of paradigm, in the sense that the identification is no
longer carried out in a context of perfect observation of the building, but rather in an incomplete,
degraded context of observation: the data are either missing or collected with a certain degree
of inaccuracy. This calls for a stochastic framework, rather than for the standard deterministic
approach. As such, this thesis is in line with some previous contributions, such as [FABG14], which
takes into consideration the uncertainty on the indoor temperature and the free internal gains, or
[BHZ14] which integrates uncertain data in a Gaussian process modelling approach.

Although the connected objects help improving the observation of the building, we are neverthe-
less not in the perfect context of the two methods mentioned above. The idea is therefore to model
the information the connected objects bring, and integrate them in the identification procedure.
For instance, assume that we have a measurement of the aggregated consumption of a house on
one hand, and a connected smart washing machine or hot water tank on the other hand. How can
we use these smart appliances in order to discard their specific consumption from the aggregated
consumption? Our aim is to answer this type of questions.

1.3 The Internet of Things, source of data and of uncertainty

The idea of resorting to the connected objects is justified by the fact that these objects are
being increasingly ubiquitous in the society. In particular, if we consider a single house, the smart
thermostat is starting to be wide-spread: 4.9M devices were sold in 2015 according to IoT Analytics
(70% of them in North America), representing a 123% growth from Q4/2014 to Q4/2015. The
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Figure 1.4: The smart home: a connected ecosystem.

market is still emerging, but the multiplicity of companies proposing smart thermostats or connected
weather stations (in France, Sowee, Netatmo, Qivivo, Hector, Atlantic, Schneider Electrics, Ween,...)
shows the potential of such products.

Regarding the specific case of individual housing, the connected objects form an ecosystem
defining the so-called Smart Home. As represented in Figure 1.4, these objects can be grouped
into six categories. The smart grid category encompasses the smart meters, which give access to
the overall energy consumption of the building every few minutes. Dedicated meters might also
measure specifically the local production of renewable energy or the consumption of an electric
vehicle charging station. Then, the class of objects related to the thermal comfort covers the
smart thermostats and the connected weather stations. These items usually monitor the indoor
temperature and indoor air quality. Compared to the former programmable thermostat, the ”smart”
thermostat aims at reliably save energy through new features, such as smartphone user interfaces,
energy-use feedback, occupancy sensing, fault detection, demand response or control of multiple
zones [PWM16]. The white goods, i.e. the large domestic electrical goods such as a refrigerator
or a washing machine, form the third category. These appliances are starting to get connected,
with applications such as distance control or energy monitoring. We include also a potentially
smart electric hot water tank (see an investigation in [Bee16]) in this category. The fourth category
involves the items that enable the home automation: wireless door or window contacts, smart
light bulbs, etc. The security appliances include indoor security cameras or even connected locks.
Some connected cameras are for instance able to handle face recognition and send notifications
accordingly. Finally, the most widely spread connected object is simply the smartphone, which may
serve as an interface between the user and other connected appliances.

Following this brief description of the ecosystem of the connected objects, the key assumption
of the thesis is that an energy utility may use the information brought by these objects in order to
improve the observation of the thermal behaviour of the building and perform a model identification.
Starting with the heating loads, the smart meter gives at least an upper bound of this contribution.
Moreover, connected electrical appliances may help lower this bound. This is further detailed in
Chapter 7. Should the utility decide to provide the client with a connected weather station, they
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would then have access to a measurement - not the measurement - of the outdoor temperature, and
similarly for the indoor temperature. Note that the connected weather stations do not measure the
received solar radiation, which is therefore completely unobserved a priori. Finally, the devices in
relation to the automation or the security may give information about the number of occupants in
the building, and thereby about the metabolic heat gains. However, this seems very tentative at
this time (see Chapter 7).

Hence, from an energy utility perspective, it seems reasonable to assume that only the total load
curve is accurately measured, that the solar radiation and the metabolic gains are not measured at
all, whereas the heating load curve as well as the outdoor and indoor temperatures are measured with
some degree of uncertainty. This results in the simplified input-output represention of a building
model in Figure 1.3. The constraints that arise in practice alter thus considerably the conditions of
application of the standard building identification algorithms. Therefore, tackling these challenges
raises a set of new questions for the building identification. What information do the connected
objects bring in order to help mitigating the practical constraints? How to model these information
mathematically? How can one adapt the identification procedure such that it accounts for some
level of uncertainty of the inputs of the system? Can we perform an accurate identification from a
reduced set of cheap connected sensors, despite their inherent uncertainty? What sensors are key
to a good estimation? The purpose of the thesis is to address such questions. The next section
describes the outline of the document and the main contributions to solving the issues raised in this
introduction.

1.4 Outline of the document and contributions

As a preamble, the structure of the building model and the data that support the numerical
experiments throughout the different chapters are presented in Chapter 2. Consistently with the
chosen data-driven approach, this model is a low-order R3C2 equivalent electrical network, made of
three resistors and two capacitors. From a mathematical point of view, the corresponding modelling
framework is that of state-space models in closed loop. We emphasize the fact that our purpose
in this thesis is not to find the best representation of a building, but instead to show how to
adapt the identification procedure depending on some practical constraints. Hence, the algorithms
suggested in the following chapters could easily be adapted to some refinements of the R3C2 model.
Subsequently to this introductory chapter, the contributions of the thesis are two-fold.

First of all, Part I of the document assumes that every input and output of the R3C2 network
is accurately measured, and looks into the algorithmic side of the identification process. Indeed,
although many estimation algorithms are suggested in the literature, it is not clear whether the
model should be identified in open loop, or within a control loop, the latter case corresponding to the
real exploitation of buildings (see Figure 1.2). Hence, Chapter 3 gives some statistical and empirical
arguments supporting the claim that an open-loop building model may be identified from on-site
measurements and with a maximum likelihood estimator, even if the R3C2 system actually operates
in closed loop. This result enables us not to model the feedback loop in general, which simplifies
the problems studied in the second part of the thesis. We choose then a maximum likelihood
identification procedure of the open-loop R3C2 network, with the Expectation-Maximization (EM)
algorithm.

The second part deals more specifically with the issues raised in this introduction, related to
the actual availability of the data in practice. Consequently, the different chapters of Part II are
dedicated to the adaptation of the model and algorithm presented in Chapters 2 and 3 whenever
each one of the inputs or output of the building model is successively assumed to be inaccurately
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observed or not observed at all. To begin with, we assume in Chapter 4 that the indoor temperature
measurements are not available at all, whereas the other data are available. This is a challenging
framework, because the indoor temperature is the actual output of the building system. Since this
quantity is not measured, we aim instead at identifying a closed-loop model whose observed output
is the load curve. Relying in particular on the information contained in the setpoint temperature,
we suggest a Bayesian estimation algorithm, based on the Hamiltonian Monte Carlo sampler. The
numerical simulations show that the chosen algorithm achieves a good accuracy, which makes it
possible for an utility to consider least intrusive identification methods.

Then, Chapter 5 introduces an estimation procedure that takes into account the uncertainty on
the outdoor temperature. The underlying hypothesis is that the utility does not know the specific
location of the temperature sensor, which is up to the end-user. Depending on its actual position,
the sensor might thus give a misleading measurement. By appending a linear dynamic model of
the outdoor temperature to the R3C2 network, we are able to reduce the possible bias part of
the measurement provided by the sensor, and integrate thus the uncertainty inherent to connected
weather stations. This hints moreover at the fact that the ”true” outdoor temperature may be
recovered from the measurements of an arbitrary temperature sensor and of the solar radiation.

Reversing the reasoning, we propose in Chapter 6 to replace the expensive pyranometer measur-
ing the solar flux by a cheap temperature sensor purposefully exposed to the sun. Our assumption
is thus that the temperature bias between this sensor and a second sheltered sensor is an indirect
observation of the solar flux. The estimation procedure is adapted consequently, and includes in
particular a nonlinear representation of the solar flux dynamics. The resulting model is a condi-
tionally linear Gaussian state-space, whose identification is based on a Rao-Blackwellised version
of the EM algorithm. Interestingly and despite this undirect observation of the solar flux, we are
able to correctly learn both the dynamics of the solar flux and the physical parameters of the build-
ing. This confirms that ordinary connected objects may usefully replace the regular, cumbersome,
instrumentation .

Thereafter, Chapter 7 addresses the case of the heating load curve. We use the information
provided by the connected objects of the building in order to model the load curve. The main
assumption is that the connected objects give access to a timeline of non-heating events, such
that it is known whenever the measured aggregated load curve contributes either entirely or not
to heating the building. We modify therefore the estimation of the R3C2 network such that it
accounts precisely for the heating loads only. Besides, we design a statistical aggregation strategy
for learning the parameters of the regulation as well as an iterative updating procedure of the R3C2
parameters. In the end, although still prospective, the suggested algorithm is shown to improve the
naive identification that does not use the information of the connected objects.

Finally, we conclude and discuss the perspectives of this work in Chapter 8.
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Chapter 2

Modelling framework and available
data

This chapter is devoted to the introduction of the open-loop building model that will be used in the
subsequent chapters of this document. The chosen framework is that of the grey-box models based
upon the analogy between electrical and thermal quantities. The building model is thus an electrical
network, made only of resistors and capacitors. This network is usually denoted RxCy, where x
and y are the number of resistors and capacitors, respectively. In the analogy, the temperatures
(�) are associated to the potentials of the network, whereas the heat fluxes (W) are represented
by electric currents. Electrical resistances stand for heat transmission resistances, and electrical
capacities for thermal capacities. These linear models with lumped parameters have been widely
used in the literature, see for instance the review [AAC+15], T. Berthou’s thesis [Ber13], or other
articles such as [FVLA02, JMA08, LMDP14, NGRC15].

The first part of this chapter justifies thus the use of simplified RxCy models in the thesis,
before describing more precisely the chosen model, putting emphasis on the physical meaning of
its parameters. This chosen model is a R3C2 network, although all the algorithms derived in the
subsequent chapters may easily be extended to other RxCy networks. Hence, we insist on the fact
that we do not claim that the R3C2 network is the ”best” building model: instead, Section 2.1.2
shows that it is a ”good enough” model, suitable to our application. We show moreover how to
translate mathematically this model into a linear discrete-time state-space representation.

Besides, defining a modelling framework entails defining a set of physical quantities that ought to
be measured. Here, the indoor temperature is seen as the outcome of three factors, whose influence
is mediated by the building characteristics, namely the outdoor temperature, the solar gains and
the internal gains (heating, occupancy, etc). In order to validate the identification algorithms, it is
necessary to have access to real or simulated datasets. We will use two kind of datasets: on one
hand, a dataset corresponding to a physical experiment that has been conducted at EDF R&D Lab
Les Renardières in order to provide on-site records of every input and output of the R3C2 model,
and on the second hand, an hybrid dataset, with on-site measurements of the weather conditions,
but numerical simulation of the indoor temperature and heating power. The second part of this
chapter describes more specifically both the experiment and the data generating process for the
simulated dataset.
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2.1 A low-order builing model

2.1.1 The choice of a grey-box model

In this paragraph, we motivate the focus of this thesis on the class of models represented by
electrical networks. In general, the building models are categorized as purely physics-based models
(white box models), purely empirical models (inverse, black box models) and in-between models
(grey box models). The advantages and drawbacks of each approach are well studied in the building
identification literature. We review briefly these properties, and refer to [ZM12, LW14, Ber13,
AAC+15] for a thorougher description.

The white box models are based on detailed physics equations. They require thus an accurate
description of the building, in terms of geometry, materials, etc. This approach is developed in
many softwares such as Energy-Plus or TRNSYS. Their main assets lie in the fact that they can
capture precisely the building dynamics and that the model is physically interpretable. However,
these models are of high order, which results in a poor computation time. Besides, they are heavily
parameterized and their inputs are complex to obtain in practice, since they include detailed specific
information about the building structure, such as the thermal properties of its materials.

The black box models on the other hand adopt an opposite standpoint, relying on the inverse
modelling. Examples of such models are the artificial neural network [MZ04] or the ARX model
[JMA08, MCPF10]. Contrary to the white box models, they are purely data-driven and require a
set of historical on-site measurements over a certain period of time, but no a priori knowledge about
the building. These empirical models are easier to build with fewer parameters and a reduced com-
putational cost. Nevertheless, their physical interpretability is less obvious, and their performances
depend heavily on the training dataset. In particular, the training period must be sufficiently long
in order for the training data to cover the forecasting range.

It follows from this description that choosing a class of building models depends first of all on
the targeted application of the model. Here, given the context developed in the Introduction, our
interest is not on the building model per se, but rather on one hand on the thermal characteristics
(e.g. well or poorly insulated) and on the other hand on the services and actions that can be designed
from the identified model (e.g. model predictive control, load shifting, etc). As a consequence, the
white box models are discarded, because of their high complexity and computational cost. Moreover,
the black box models lack of physical interpretability, which is why we choose a third option, called
grey box models, which are hybrid methods in between the white and black box models. Grey box
models are semi-physical models, that use simplified physical descriptions to represent the thermal
behaviour of the buildings. They are also learned from empirical input-output data. They offer
thus a good trade-off between the previous two methods, and are consequently widely used for
energy efficiency or optimal control purposes. The equivalent electrical RC network is an example
of such semi-physical modelling combining computational efficiency and physical insights. Another
advantage of the RC network that will be illustrated in Part II is the flexibility offered by the
modelling framework of the chosen grey box model.

2.1.2 Model description

We consider in this thesis that a building is modelled as a R3C2 network, depicted in Figure
2.1. This model was initially presented by EDF in [MR91], and is used more recently in [Zay11].
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Figure 2.1: Building model: a single-zone equivalent R3C2 electrical network.

The first characteristic of the model is that it represents the indoor air of the building as a unique
thermal zone. This is a standard approximation which implies that the model indoor temperature
at node ϑi of the network should be representative enough of the indoor climate. A second feature
is that the only climatic variables considered in the model are the outdoor temperature and the
solar radiation. This is consistent with the findings of [Gof13], which shows on a case study that
the two meteorological variables that explain most of the variance of the thermal model are the
outdoor temperature and the direct solar radiation. Regarding the meaning of the parameters,
[BM11] emphasizes the fact that, depending on the network, the resistances and capacities may
have different physical interpretations. Here, the thermal resistances of the heavy materials forming
the walls of the building are captured by Ri and Ro. A third resistance Rf represents the thermal
losses through the lighter components of the envelope, as well as the losses due to ventilation
[Zay11]. Moreover, the indoor air mass has capacity Cr while the envelope has its own capacity Cs,
in order to account for the slow dynamics of the building. Hence, in general, one expects that the
order relation Cs > Cr holds. This envelope separates the indoor temperature ϑi from the outdoor
temperature ϑo. It has also its own temperature ϑs, that is representative of the thermal state of
the structure. Finally, the building is heated by two fluxes: on one hand, the internal gains Qr (in
W), including the heating system Qh and the free internal gains due to the occupancy (metabolic
Qm as well as appliance-related Qfg gains), and on the other hand, the solar gains Qs through the
windows. Usually, we have Qs = Awφs, where φs is the solar flux, in W/m2, and Aw is the effective
window area, in m2. The controllable input is the heat flux Qh only. A summary of the inputs and
the output of the building model is given in Table 2.1.

Pursuing the analogy with electrical quantities, we may apply Kirchhoff’s laws to the R3C2
network, and derive the following linear continous-time differential equations:

Qr = Cr
dϑi
dt

+
1

Ri
(ϑi − ϑs) +

1

Rf
(ϑi − ϑo), (2.1a)

Qs = Cs
dϑs
dt

+
1

Ri
(ϑs − ϑi) +

1

Ro
(ϑs − ϑo). (2.1b)

Equations (2.1a)-(2.1b) are the dynamic equations of the system, representative of its thermal
behaviour according to the R3C2 model.
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Table 2.1: Inputs and output of the R3C2 open loop model.

Inputs Output

solar gains

indoor temperature
heating flux

internal gains
outdoor temperature

This model has the advantages of any grey-box model, that is low-order (2) and small number
of parameters (5). The order 2 has been repeatedly reported to be the minimal sufficient order
required to reproduce the dynamics in an accurate fashion [MCPF10, Zay11, HGP12]. For instance,
[MCPF10] highlights the fact that two time scales, a fast one and a slower one, drive the dynamics
of the indoor temperature. For computational purposes, the network is parameterized by θ formed
by the inverse of the resistances and capacities:

θ =
(
zr zs zf zo zi

)ᵀ
, (2.2)

with zr := 1/Cr, zs := 1/Cs, zf := 1/Rf , zo := 1/Ro and zi := 1/Ri. We will assume in the rest of
this thesis that the effective window area Aw is known. In addition, this model is also convenient
because four physical parameters can be extracted from the representation. The first one, called the
heat transfer coefficient, denoted UA and expressed in W/K, is representative of the static behaviour
of the buidling. In the field of thermal science, UA quantifies the heat losses in a building. However,
it is a tedious task to compute it for the thermician, since it requires the comprehensive knowledge
of the geometry of the building, all its materials and their thermal properties, etc. On the other
hand, one of the benefits of RC networks is that they provide a simple formula for UA, as the total
conductance of the network, that is here

UA :=
1

Rf
+

1

Ri +Ro
= zf +

zozi
zo + zi

. (2.3)

Let us briefly explain the reasoning leading to this formula. Suppose that the system is in steady-
state. Using the representation (2.1) at equilibrium, such that the derivatives are set to 0, we obtain
the steady-state equation

Qr = UA(ϑi − ϑo)−
Ro

Ro +Ri
Qs, (2.4)

where UA is defined as in (2.3). This indeed corresponds to the definition of UA as the static
coefficient for the amount of losses through the envelope of the building per unit of the temperature
difference between the indoor air and the outdoor air ϑi−ϑo. Hence, larger values of UA correspond
to worse energy performances of the buildings. Likewise, the static equation (2.4) shows that, under
the RC network model, the dimensionless ratio

g :=
Ro

Ro +Ri
=

zi
zo + zi

(2.5)

defines the solar energy transmittance. By construction, we have 0 < g < 1, with values closer to 1
characterizing those buildings that maximize the free heat gains received from the solar radiation.
These efficient buildings are such that Ri < Ro, that is the heat transfers between the indoor air
and the envelope are facilitated, compared to the transfers between the envelope and the outdoor
air which shall be avoided.
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Finally, two time constants respectively denoted τ1 and τ2 can be computed from the represen-
tation (2.1a) - (2.1b). They are also some physical parameters of interest, since they charaterize the
inertia of the building, that is its dynamic behaviour. These four coefficients UA, g, τ1 and τ2 allow
one to compare the R3C2 network with other models, whether they are other types of networks
(see e.g. [BM11, BSSM14]) or higher-order physical models for instance.

2.1.3 Linear discrete-time state space representation

In order to derive the mathematical representation of the R3C2 network, we assume in this
chapter that both the indoor temperature and the inputs U :=

(
ϑo Qr Qs

)ᵀ
are measured. The

measured indoor temperature Ti is a noisy observation of the model temperature ϑi, which is not
observed. Let Y = Ti denote the observed output and X =

(
ϑi ϑs

)ᵀ
the latent (hidden) state

vector. (2.1) can be written as a linear continuous time state-space equation:

dXt

dt
= A(θ)Xt +B(θ)Ut + Vt, (2.6)

Yt = CXt +Wt, (2.7)

where Vt is a model noise and Wt an observation noise. Vt and Wt are independant white Gaussian
processes of respective covariance matrices Q and R. The state matrices are

A(θ) =

[
−zr(zf + zi) zrzi

zszi −zs(zo + zi)

]
, B(θ) =

[
zrzf zr 0
zszo 0 zs

]
, C =

[
1 0

]
. (2.8)

Applying the constant variation method and the theory of stochastic differential equations (see e.g.
[Øks03]), it is standard to discretize the state equation (2.6) and obtain for a time step δ and at
time t = tδ:

Xt = Aδ(θ)Xt−1 +Bδ(θ)Ut + Vt, (2.9)

with Vt ∼ N (0, Qδ), Qδ =
∫ δ

0 e
sAQesA

ᵀ
ds, Aδ = eδA, Bδ = A−1(eδA − I)B. [VL78] gives an exact

computation of Qδ. Unless otherwise stated, the index t refers to a discrete time index in the rest
of the thesis. Finally, the observation equation (2.7) is straightforward to discretize. In particular,
the C matrix remains unchanged.

The R3C2 network is therefore written as a discrete time-invariant linear Gaussian state-space
model (LGSSM), in open loop, with five parameters. For a given building, the five parameters in θ
are unknown and estimated from historical on-site measurements of the inputs U and the output
Y . The estimation procedure corresponding to the case where all the quantities in U and Y are
correctly observed is postponed to Chapter 3, whereas alternative algorithms taking into account
practical constraints are suggested in Part II. In the next section, we present the dataset that
supports the evaluation of all these algorithms in the thesis.

2.2 Available data

2.2.1 BESTLab experiment

Presentation of the laboratory

An experiment was conducted during the thesis at BESTLab (Building Envelope & Solar Tech-
nologies) laboratory (EDF R&D, Les Renardières), from the end of 2015 to 2017. This laboratory
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Figure 2.2: Location of the two cells used in our experiment, with western (CBL-Ouest) and southern
(CBl-S1) orientations, respectively.

is a two-storey building (ground level and attic) made for testing envelope components and solar
components integrated systems. Each level is therefore made of six cells, and each cell is made of
one removable outside wall and five over-insulated walls. The removable wall is vertical for the cells
at ground level, and tilted (30° inclination) for the attic. It was created in order to test for the
thermal properties of innovative materials forming the envelope of a building. Consequently, the
cells are identical, well insulated, and independent of the others, with heat losses occurring only
through the removable outside wall, in contact with the outdoor air.

Two cells from the attic are used in the thesis, with a southern and a western orientation respec-
tively. Their location inside the building is depicted in Figure 2.2, and several changes have been
operated in order to adapt the cells to the context of the thesis. These changes enable to account
for the influence of the solar radiation on the indoor climate, and increase the eventual heat losses
of the cells:

1. a 1340 mm× 978 mm skylight with an electric shutter is installed on the outside wall of each
cell. A small tablet controls the angle of the window opening and the percentage of occultation
caused by the shutter;

2. an air duct is placed between the two cells, with a ventilation of controllable intensity.

In terms of instrumentation, the laboratory is equipped with a climate station, called ETNA
and located a few meters away from the main building BESTLab. The main measured variables
are summarized in Table 2.2. This station measures the direct beam (pyrgeometer, accuracy 5%),
sky diffuse (pyranometer CM11, accuracy 0.5%) and total solar radiations (pyranometer CM21,
accuracy 0.2%), as well as the outdoor temperature and other meteorological variables not used in
the thesis (atmospheric pressure, hygrometry, wind speed and direction, rainfall), at a one-minute
resolution. The outdoor temperature sensors are Pt100 1/3 Din sensors, with a 0.15◦C accuracy.
Each cell possesses also its own set of indoor and outdoor temperature sensors, as well as solar
radiation sensors alongside the tilted removable wall surface (pyranometer CMP21, accuracy less
than 2%). There is also a flow meter inside the air duct between the two cells. All these data are
collected on a daily basis with a one-minute time-step.
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Table 2.2: Measured variables at BESTLab and sensor characterics. The top section corresponds
to the native instrumentation in the nearby climate station ETNA, the middle one to the native
instrumentation in the cells, the bottom one to additional sensors installed in the cells.

Measured variable Unit Sensor Range of device Accuracy

Outdoor temperature ◦C Pt 100 1/3 Din −100 to +200◦C ±0.15◦C
Global solar flux W/m2 pyranometer CM21 0 to 4000 W/m2 0.2%

Outdoor temperature ◦C Pt 100 4-wire −100 to +200◦C ±0.1◦C
Tilted solar flux W/m2 pyranometer CMP21 0 to 4000 W/m2 < 2%

Indoor temperature ◦C Pt 100 4-wire −100 to +200◦C ±0.1◦C

Outdoor temperature ◦C Thermokon SR65 −20 to +60◦C 1%
Indoor temperature ◦C Thermokon SR04 0 to +40◦C ±0.4◦C

Heating consumption Wh Pulse counter 0 to 105 kWh 1 Wh

Command and control of the indoor temperature

However, the initial setup of the laboratory does not allow for the simulation of the real exploita-
tion of a building by controlling the indoor temperature. In particular, it is not possible to force
the indoor temperature to follow a user-defined setpoint signal. As a result, two 500W electric
radiators are installed in each cell. For each cell, one radiator will have to maintain the setpoint
temperature while the other will be used to model the free internal gains. Since these radiators do
not come with any thermostat, we built our own, as described by the scheme in Figure 2.3(b). The
key tool in this architecture is the multi-purpose controller and gateway from Schneider Electrics’
SmartStruxure�Lite solution. This box has a web interface that enables one to manage the heat-
ing, ventilation and cooling system, the lighting and the other metering applications. Moreover,
the manager is able to establish wired or wireless communications with different types of sensors
and actuators, and includes the possibility for the user to control and monitor these apparatuses
by writing its own code in programming language Lua.

Our architecture is therefore the following: on one hand, a wireless temperature sensor sends
its measurement to the manager, while on the other hand the user specifies its prefered setpoint.
Then, by comparing the setpoint to the measurement, at the level of the web interface, a program
computes the required amount of power. This power is converted into a proportion of time during
which the radiator is On at full power. We use two-minute intervals: if the control signal is 250W,
then the radiator will be On during the first minute and off during the second. The manager sends
thus an On/Off command to a Thermokon actuator located ahead of the radiator.

The measurement of the indoor temperature is provided by a set of 12 wireless and autonomous
temperature sensors Thermokon SR04 in each cell (see Figure 2.3(a)). These sensors have an
accuracy of ±0.4◦C at 21◦C. They communicate minutely using the EnOcean protocol, while their
energy is provided by a photovoltaic cell. The sensors are distributed along three levels, and we use
the average of the four sensors on the bottom level as feedback for the command.

Regarding the command, we choose a saturated PI controller with a simple anti-windup strategy
[PR15]:

cmdt+1 = sat(Kpεt + Σt),
Σt+1 = Σt + (Kiεt +Ks(cmdt+1 −Kpεt − Σt)) ,

(2.10)
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Figure 2.3: (a) Distributions of the 12 EnOcean temperature sensors (small spheres) inside each
cell of the BESTLab experiment. The first level is at a height of 0.84m, the second at 2.44m, the
third at 4.04m. (b) Infrastructure for the flexible command of the indoor temperature.

where cmdt is the command (in W) at time t, εt is the difference between the setpoint and the
measured indoor temperature at time t, Σt is the sum of these errors from 0 to t, sat is the saturation
function between 0 and 500W, and Kp, Ki and Ks are the gains of the controller. The parameters
Kp and Ki are tuned heuristically, using the Ziegler-Nichols method. Ks is chosen empirically such
that KsKp > Ki, as recommended in [PR15].

The versatility of the manager enables one to monitor the status of the skylights (open vs
closed), by mounting a wireless window sensor on the skylights. Moreover, two additional wireless
temperature sensors are used to measure the outdoor air temperature. These sensors are not located
at the climate station, but directly on the building, with a southern and northern orientation,
respectively. Their specific feature is that they are exposed to the solar radiation, unlike the
reference sensor from the laboratory instrumentation which is sheltered. The interest is that we
may thus study the influence of the quality of the measurement of the outdoor temperature on the
identification procedure (see Chapter 5).

Finally, prior to the BESTLab experiment, the free internal gainsQfg of an office building located
at EDF Lab Les Renardières were recorded during 27 days. They correspond to the aggregated
consumption of all the computers in the offices. An example of BESTLab measurements of every
input and output of the R3C2 model is given in Figure 2.4. The top plot in particular shows that
the regulation strategy is efficient, since the indoor temperature follows closely the setpoint signal,
without bias.

2.2.2 Simulated data

The BESTLab experiment provides a controlled environment as well as the meteorological data
suitable for testing our algorithms. However, it will not be possible to compare the estimated models
to some ”ground truth” data. This is why we choose first to validate our algorithms on a set of
(semi-)simulated data: the meteorological data (outdoor temperature, solar radiation) are provided
by BESTLab, but the indoor temperature and the heating power are simulated.
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Figure 2.4: Example of one-week measurements at BESTLab. From top to bottom: indoor temper-
ature Ti in the western cell, outdoor temperature ϑ0, consumption Qh of the radiator in the western
cell, solar gains and free heating gains Qfg from an office building located at Les Renardières. All
the data, except Qfg, are measured in December 2015, 23-29.
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The generating process of the heating load and the internal temperature consists in selecting the
true values of the five parameters of the R3C2 building model, adding a control loop and simulating
a closed-loop model from the definition of a temperature setpoint sequence. This simulates the real
exploitation of a building. Similarly to [Zay11], we use a Proportional-Integral controller coupled
with a non-linear saturation function and an anti-windup strategy, such that the heating power
is always positive and bounded. The setpoint has typically two levels (for instance cooling, 16◦C,
heating, 21◦C, and matches the diurnal activity hours of the free internal gains Qfg.

The semi-simulated dataset will be used for evaluating the performances of the algorithms in
Chapters 3 to 7, whereas the real dataset from BESTLab will serve for evaluating the algorithms
in Chapters 3, 6 and 7.

2.3 Summary

In this chapter, we have presented the building model that will be used in the rest of this thesis.
Note that it will not be the purpose of the thesis to claim that the chosen model is the ”best”
representation of the thermal behaviour of a building. The R3C2 network was chosen and described
in this chapter, mainly because of its low order and small number of parameters. This model, or any
equivalent electrical network, takes the form of a discrete linear Gaussian state-space representation.

We have also presented the dataset that will be used for testing the algorithms in the rest of the
thesis. Whether it be on simulated or real data from the BESTLab experiment, the data generating
process is in closed loop, with the indoor temperature that follows a certain setpoint signal. This
corresponds to the real exploitation of a building, in winter.
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Chapter 3

Open-loop identification of a building
observed in closed loop

In this thesis, we are mainly interested in the identification of a thermal building model under
practical constraints. The first implicit constraint is that the building operates in closed loop. This
means that the R3C2 open-loop representation of its thermal behaviour introduced in Chapter 2 is
included in a feedback loop (see also Figure 1.2), the indoor temperature following a certain setpoint
signal. It corresponds to the real exploitation of most buildings during the heating (or cooling)
periods. Several types of estimation methods are suggested in the system identification literature,
depending first of all on the available dataset and knowledge about the feedback [Lju87, FL99]. In
particular, if the command (input) and the output of the open-loop system are measured, knowing
the controller does not bring any additional information. The system should therefore be identified
in open loop from input/output data, this is the so-called direct approach.

The direct approach is preferable in the context of building identification, because it ignores the
feedback mechanism. This indeed is an advantage, because the controller would in fact introduce a
non-linearity in the model (see Chapter 4): the heating power is saturated. Yet, in Section 3.1, we
highlight the fact that this discussion is often circumvented in the building identification literature.
Most contributions estimate either an open-loop model from open-loop generated data, which is
unfeasible in practice, while the closed loop approaches face the problem of the nonlinearity.

In this chapter, we suggest in line with the system identification literature, that although the
system operates in closed-loop, an open-loop identification algorithm is suitable, provided that the
inputs and output are recorded. Hence, our purpose is to identify straightforwardly the open-loop
R3C2 model, and study the performances of the estimator. Consequently, Section 3.2 is then devoted
to the estimation procedure of the R3C2 network: this open-loop model will be identified directly
from the data actually collected in closed loop by a maximum likelihood estimator (MLE). Some
statistical arguments regarding the asymptotic properties of the MLE and numerical experiments
supporting this approach are also given respectively in Section 3.3 and Section 3.4.

3.1 Literature review

Grey-box building models are widespread in the literature, their diversity lying mostly in the
implicit physical phenomena that are taken into account. This is visible on one hand through
the order and the number of parameters of the models, and on the other hand on the inputs and
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Table 3.1: Comparison of different grey-box approaches towards building identification in terms of
model class and data.

Model Number of Time step
Days

Data generation Number of
order parameters (minutes) process variables

[BSSM14] 2 10 6 14 closed loop 7
[BM11] 1 to 5 6 to 23 5 6 open loop 4

[HGP12] 2+white box 6 1 60 closed loop 4
[MCPF10] 2 9 or 21 60 365 open loop 5

[Zay11] 2 7 10 14 closed loop 5

outputs of the model. In other words, the identification procedure is not only an algorithmic task,
but depends also on the availabilty of the measurements.

In order to strengthen the link between the building model and the data at hand, some authors
have for instance studied the influence of the number of days required for the identification and
the discrete time step ([Ric91, BSSM14]). Here, we focus rather on the data generating process.
In particular, the indoor temperature may be generated either in open loop, for a given heat load
sequence, or within a feedback loop, with a controlled heat load sequence, which corresponds to the
real exploitation of buildings. Other inputs, such as the weather conditions (outdoor temperature,
solar radiation), are not controllable, and therefore merely seen as measurable perturbations.

From the perspective of optimal system identification, it is advisable to collect the data in open
loop. In such case, it is indeed possible to choose and tune the heat load signal. Setting this as a
Pseudo Random Binary Sequence (PRBS) enables to maximize the amount of information contained
in the data. In [Ric91], it was shown that the heat load sequence should be such that the indoor
temperature is highly unsteady. The system is therefore sufficiently excited at all frequencies, which
means that it is identifiable [Zay11]. Regarding our application, this approach was for instance used
in [BM11], where the authors propose a model selection procedure based on experiments in open
loop for empty buildings. However, the drawback is that this method is intrusive and causes thermal
incomfort whenever the building is inhabited.

More subtly, in [HGP12], the authors use a grey-box building model and include moreover a
control loop for the heat load, based on the water inlet temperature of the radiator. Yet, they
acknowledge that comfort conditions on inhabited buildings prevent the use of PRBS sequences for
the setpoint. They resort then to use in parallel a detailed, white-box, building model in order
to generate the input-output records corresponding to a pseudo random binary setpoint. This
cosimulation approach is also used in [PCV+13]. Hence, the identification depends entirely on the
white-box model, whereas the grey box model is kept for control purposes. The drawbacks are those
of any white box model, as outlined in introduction: an indepth physical knowledge is needed and
the computation time is significantly increased. We understand thus that using a very informative
input signal, whether it is directly the heat flux or the temperature setpoint, is theoretically the
best choice but meets with some practical limitations.

On the other hand, recent works have focused on closed loop approaches, without assuming
any structure on the input signals. Closed loop implies to model the controller. The difficulty is
essentially due to the fact that the controller is not linear: the heat flux is saturated, being upper
bounded by the subscribed power - it is also necessarily positive, since only heating, and not cooling
is considered in this thesis. This saturation has two consequences, namely the poorer informative
content of the heat flux, and the algorithmic complexity induced by the overall nonlinearity. A first
promising approach to tackle closed loop identification was based on a linear Proportional-Integral
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(PI) controller [Zay11]. The global model is thus kept linear, and the estimation procedure, based on
a Bayesian algorithm, gives fine results on simulated data. However, it lacks accuracy when taking
into account the saturation of the controller. Another line of work, in T. Berthou’s thesis [Ber13]
(see also [BSSM14]), uses a simplified, ideal, regulation: the temperature reaches the setpoint as
soon as the required power is available. This is a strong assumption, especially at small time steps,
such as 6 minutes in [BSSM14]. Hence, closed-loop models are faced with algorithmic obstacles.

In Table 3.1, we summarize this quick literature review, and provide a few more examples. The
table illustrates the heterogeneity of different grey box approaches for building identification, with
an emphasis on the experimental conditions.

3.2 A maximum likelihood estimator

Given the above literature view, we suggest to adopt an open-loop identification strategy but
without constraining the data generating process: the building system may operate in closed loop.
The statistical rationale behind this choice is postponed to Section 3.3. In this section, we show
first how to estimate the parameters R3C2 network described in Chapter 2, provided that every
input and output is correctly measured. As previously shown in Section 2.1.3, the R3C2 network
can be written as a discrete-time linear Gaussian state space model of the form

Xt = A(θ)Xt−1 +B(θ)Ut + Vt, (3.1)

Yt = CXt +Wt, (3.2)

where θ is the parameter vector, X :=
(
ϑi ϑs

)ᵀ
the hidden state, U :=

(
ϑo Qr Qs

)ᵀ
the input

vector, Y the noisy observation of ϑi and under the assumption that the initial state is normally
distributed. Recall that ϑi (respectively ϑo) is hidden indoor (respectively structure) temperature
of the building, whereas ϑo is the observed outdoor temperature. Qr denotes the heating power,
inluding free internal gains, Qs the solar gains.

Standard statistical estimation methods already exist in the literature for such linear systems.
We choose the Expectation-Maximization (EM) algorithm, spread by the seminal paper [DLR77],
to estimate the parameters θ. In-depth studies of the EM algorithm are provided for instance. in
[DMS14, Appendix D] or [MK08]. EM is a standard maximum likelihood approach for estimation
in the special case of a linear Gaussian state-space models, as described in [SS82]. This means that
the estimator θ̂ of the parameter vector θ is such that

θ̂ = arg max
θ
Lθ(y1:T), (3.3)

where Lθ(y1:T) is the log-likelihood of the T observations y1, . . . , yT:

Lθ(y1:T) = log pθ(y1:T) = log

(
pθ(y1)

T∏
t=2

pθ(yt|y1:t−1)

)
. (3.4)

Note that in the rest of this thesis, the generic notation Xk:l stands for the set {Xi}lk=i. Besides,
with a slight abuse of notation, p will be a generic notation for any probability density, in this
chapter and the subsequent ones.

The strategy of the EM algorithm consists in iterating two steps, sketched in Algorithm 3.1.
Firstly, the Expectation step calculates lnLθ(X,Y ) the log-likelihood of the complete data problem,
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Algorithm 3.1 EM for linear Gaussian state space models

0. Initialize the parameters to θ0 and set k = 0.

1. E-step: compute

Q(θ, θk) := Eθk [lnLθ(X,Y )|Y = y1, . . . , yT] . (3.5)

2. M-step: compute θk+1:

θk+1 = arg max
θ
Q(θ, θk). (3.6)

3. If convergence is reached, terminate, otherwise set k ← k + 1 and return to step 1.

adding the state to the observations. The states X being actually hidden, the true log-likelihood
lnLθ(Y ) is approached under the hypothesis θk by the quantity

Q(θ, θk) := Eθk [lnLθ(X,Y )|Y = y1, . . . , yT] . (3.7)

This expectation is computed with a standard Kalman smoother (see e.g. [DMS14, Chapter 2])
applied to the model parameterized by θk. The detailed computations involved in solving the E-
step are described in Algorithm 3.2. Equation (3.7) suggests then the iterative nature of the EM
algorithm. Instead of maximizing directly the log-likelihood function (3.4), the M-step maximizes
Q(θ, θk), which is an approximation of Lθ(x1:T, y1:T).

A closed-form solution to the Maximization step can be derived when no constrain applies to
the structure of the state matrices, see e.g. [DMS14]. Yet, the matrices A and B corresponding to
the R3C2 network are structurally defined by θ =

(
zr zs zf zo zi

)ᵀ
, as can be seen from (2.8).

In order to guarantee that the structure of these matrices is kept invariant by the M-step, we need
thus to use a general optimization solver such as Matlab’s nonlinear programming solver fminunc.
In practice, fminunc implements the trust-region algorithm, which requires the computation of
∇θQ(θ, θk). Moreover, we choose to express the parameters θ as θ = exp(γ) and optimize with
respect to γ. This is a simple way to make sure that estimated resistors and capacitors are positive
while keeping the problem solved by fminunc unconstrained.

Finally, EM terminates either when a maximum number of iterations (here, 100) is reached or
when a stopping criterion is satisfied. We decide that the normalized slope of the likelihood function
being under a specified threshold is this criterion.

Evidently, in order for this strategy to be valid, there must be a ”good” relationship between
Q(θ, θk) and Lθ(y1:T). Hence, it can be shown that an increase in the Q quantity induces that
the likelihood increases too: Q(θ, θk) ≥ Q(θk, θk) ⇒ Lθ(y1:T) ≥ Lθk(y1:T). See e.g. [DMS14,
Proposition D.2] for a proof. Though it does not prove the convergence of the algorithm, it indicates
that at least EM guarantees a non-decreasing likelihood at each step.

3.3 Asymptotic properties of the maximum likelihood estimator

In this section, we consider the class of maximum likelihood estimators (MLE) of θ. For the
terminology, we are interested in linear hidden Markov models (HMMs), with additional inputs.
See for instance the ARMAX model [DMS14, Chapter 2]. An extensive study of HMMs without
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Algorithm 3.2 Resolution of the E-step for the R3C2 model

Inputs: series {Qr(t), ϑ0(t), Qs(t), Ti(t)}Tt=1, hypothesis θ′, initialization x0
0 = µ0, P 0

0 = Σ0.

1. Kalman filtering equations, recursively forward in time for t = 1, . . . ,T:

xt−1
t = A(θ′)xt−1

t−1 +B(θ′)ut, (3.8)

P t−1
t = A(θ′)P t−1

t−1A(θ′)ᵀ +Q, (3.9)

Kt = P t−1
t Cᵀ(CP t−1

t Cᵀ +R)−1, (3.10)

xtt = xt−1
t +Kt(yt − Cxt−1

t ), (3.11)

P tt = (I −KtC)P t−1
t , (3.12)

where xst := Eθ′ [xt|y1:s] and P st := covθ′(xt|y1:s) for any 1 ≤ s, t ≤ T.

2. Kalman smoothing equations, recursively backward in time for t = T− 1, . . . , 0:

Jt−1 = P t−1
t−1A(θ′)ᵀ(P t−1

t )−1, (3.13)

xT
t−1 = xt−1

t−1 + Jt−1(xT
t − xt−1

t ), (3.14)

PT
t−1 = P t−1

t−1 + Jt−1(PT
t − P t−1

t )Jᵀ
t−1, (3.15)

initialized with the outputs xT
T and PT

T of the Kalman filter.

3. Lag-one covariance smoother:

PT
t−1,t−2 = P t−1

t−1 J
ᵀ
t−2 + Jt−1(PT

t,t−1 −A(θ′)P t−1
t−1 )Jᵀ

t−2 (3.16)

initialized with PT
T,T−1 = (I −KTC)A(θ′)PT

T−1, where P st1,t2 := covθ′(xt1 , xt2 |y1:s)

4. With tr denoting the trace operator, compute

−2Q(θ, θ′) = ln |Σ0|+ tr
{

Σ−1
0

(
PT

0 + (xT
0 − µ0)(xT

0 − µ0)ᵀ
)}

+ T ln |Q|+ tr
{
Q−1S(θ, θ′)

}
+ T ln |R|+ tr

{
R−1

T∑
t=1

(
CPT

t C
ᵀ + (yt − CxT

t )(yt − CxT
t )ᵀ
)}

, (3.17)

with S(θ, θ′) := S00 − S01A(θ)ᵀ − A(θ)S10 + A(θ)S11A(θ)ᵀ − Φ01B(θ)ᵀ − B(θ)Φ10 +
B(θ)Φ11B(θ)ᵀ +A(θ)Ψ11B(θ)ᵀ +B(θ)Ψᵀ

11A(θ)ᵀ and

S00 :=
∑T

t=1

(
xT
t (xT

t )ᵀ + PT
t

)
, Φ01 :=

∑T
t=1 x

T
t u

ᵀ
t ,

S01 :=
∑T

t=1

(
xT
t (xT

t−1)ᵀ + PT
t,t−1

)
, Φ10 :=

∑T
t=1 ut(x

T
t )ᵀ,

S10 :=
∑T

t=1

(
xT
t−1(xT

t )ᵀ + PT
t−1,t

)
, Φ11 :=

∑T
t=1 utu

ᵀ
t ,

S11 :=
∑T

t=1

(
xT
t−1(xT

t−1)ᵀ + PT
t−1

)
, Ψ11 :=

∑T
t=1 x

T
t−1u

ᵀ
t .

Outputs: E-quantity Q(θ, θ′).
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Xt Xt+1

Yt Yt+1

X X· · · · · ·
Qθ

Gθ

Figure 3.1: Graphical representation of the dependency structure of a hidden Markov model with
observable process {Yt}, hidden chain {Xt}, transition kernels Qθ and Gθ parameterized by some
vector θ.

additional input is provided in the reference textbook [CMR05]. Let us introduce some general
notations and framework. The parameter space Θ is such that Θ ⊆ Rd, for some positive integer d.
Apart from being a subspace of Rd, no further assumption is made on the structure of Θ. The true
parameter vector is denoted θ0. For a model parameterized by θ ∈ Θ, lθn denotes the log-likelihood
function of θ given n observations of the latent system. Moreover, the symbol ∇θ is the gradient
operator (differentiation with respect to θ), and similarly ∇2

θ forms the Hessian. Hence, ∇θlθn forms
the so-called score function.

We let {Xk}∞k=0 be a Markov chain on the measurable space (X,X ). X is a separable state space,
X the associated Borel σ–algebra. We denote by {Qθ(x,A), x ∈ X, A ∈ X} the Markov transition
kernel of the chain. {Yk}∞k=0 is a sequence of random variables taking values in the measurable
space (Y,Y). Y is a subset of Rny and Y the associated Borel σ–algebra. Conditional on {Xk}∞k=0,
the Yk are independent, with a conditional density gθ(xk, yk) with respect to some dominating
measure µ. This model is usually graphically depicted as in Figure 3.1, with arrows representing
the dependencies between the different variables.

In this section, we are more particularly interested in the statistical properties of the maximum
likelihood estimator (MLE) of the parameters θ of the model, namely the (strong) consistency
(convergence to the true parameters as the sample size grows to infinity) and asymptotic normality
(via a Central Limit Theorem, CLT). Proving these properties is an involved task that depends
on both the model structure and the data generating process, and several contributions in the
litterature already prove them in certain contexts. For instance, the asymptotic properties of the
MLE of hidden Markov models without input process have been extensively studied, starting from
the seminal papers [BP66, Pet69] (finite state and observation spaces) till more recent articles such
as [DM01] (separable and compact state space), [GCL06] (state variable evolving in an open interval
of the real line).

However, adding a random exogenous input to this general setup of HMMs complicates the
establishment of the asymptotic properties of the MLE. Yet, some results exist in case of a linear
model, which is the case of the R3C2 network. Hence, the next section mentions the open loop
case, whereas the following one will address the closed loop case.

3.3.1 Data generated in open loop

The dependency structure in the open loop case is depicted in Figure 3.2. It is such that the
data generating process is not known, and assumed to be independent of the state space at study.
Whenever the model is linear, the statistical properties of the MLE have already been studied,
for instance in [HD88, Cai87]. See also [DMS14, Chapter 2]. In particular, the consistency and
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Xt Xt+1

Ut Ut+1

Yt Yt+1

X X· · · · · ·

Gθ

Qθ

Figure 3.2: Graphical representation of the dependency structure of a hidden Markov model with
observable process {Yt}, hidden chain {Xt} and exogenous input process {Ut}.

asymptotic normality of the MLE hold, under some general assumptions. One key assumption is
the stability of the filter, which is ensured if the eigvenvalues of the state matrix A are inside the
unit circle.

3.3.2 Data generated in closed loop

We are now interested in the statistical asymptotic properties of the MLE of state space models
that are commanded. Accordingly, and unlike Section 3.3.1, the input process is not uncorrelated
with the observable output of the system. On the contrary, the input process is generated from the
past measurement(s) of the output. This new dependency structure of the variables is represented
in Figures 1.2 and 3.3.

Model and hypotheses

The model at study here belongs to a parameterized family of state space models with com-
manded input and parameter space Θ. The state space model is not necessarily linear. The input
process {Ut}∞0 , a real-valued random variable defined on the measurable space (U,U), conditions
the transition dynamics of the regime {Xt}∞0 , such that the transition kernel Qθ is actually defined
on (U × X) × X rather than (X × X ). However, {U} does not affect the observation equation,
and the conditional density with respect to some dominating measure µ of Yt given the state Xt is
gθ(Xt, Yt). Several additional hypotheses are made:

(CL1) The model is fully dominated: there exists a probability measure λ on (X,X ) that dominates
Qθ(u, x, · ) for all (u, x) ∈ U×X. The corresponding transition density is denoted qθ(u, x, x′).

(CL2) The parameters of the model are supposed to be separated between θ ∈ Θ for the system
and η ∈ Ξ for the feedback loop (see Figure 3.3). That is the control is parameterized
independently from the state space model.

(CL3) The controlled input Ut depends upon the past states and measurements of the output only
through Yt−1. The (possibly time-heterogeneous) conditional density with respect to some
dominating measure ν of Ut given Yt−1 is hηt (Yt−1, Ut).

In (CL3), we assume that the input Ut is generated only from the last measurement of the output
Yt−1. This is because it simplifies the notation, neverthess the discussion that follows in this
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H
η
t+

1

Qθ

Figure 3.3: Graphical representation of the dependency structure of a hidden Markov model with
observable process {Yt}, hidden chain {Xt} and input process {Ut} generated from the past mea-
surement of {Yt}.

section would apply all the same if Ut depended on Ys:t−1, s < t. Similarly, we could have added a
dependency on past inputs U1:t−1. Note also that if the controlled input does depend upon the past
observable process {Y }, it does not depend upon the past hidden chain {X}: on Figure 3.3, the
feedback arrow is from Yt to Ut+1, and not from Xt to Ut+1. Indeed, should we have for instance
Ut = f(Xt−1), then the form and the asymptotic properties of the maximum likelihood estimator
would be different.

Some properties

Our interest is in the maximum likelihood estimation of the parameters θ of the system with
the data generated in closed loop, as described in the previous section. In the considered context,
the parameters η of the feedback loop need not to be estimated due to the chosen direct approach
for the identification. Proposition 3.3.1 justifies the use of the direct approach when the data are
generated in closed loop.

Proposition 3.3.1. Consider a state space model with observed inputs generated in closed loop.
Assume that conditions (CL1)-(CL2)-(CL3) hold true. Let θ0 be the true parameter value of the
system and θ̂n be the maximum likelihood estimator from the n data y1, . . . , yn. Then whether or
not the data y1, . . . , yn have been generated in closed loop, θ̂n can be computed from the likelihood
function obtained from the same data, as if they were generated in open loop.

Proof. For t = 1, . . . , n, let zt := {ut, xt, yt} and z0 = {x0, y0}. For t = 0, . . . , n−1, the dependencies
of the model imply that

pθ,η(zt+1|z0:t) = hηt+1(yt, ut+1)qθ(ut+1, xt, xt+1)gθ(xt+1, yt+1). (3.18)

Moreover, it is straightforward to write

pθ,η(z1:n|z0) =
n−1∏
t=0

pθ,η(zt+1|z0:t), (3.19)

and by marginalizing out x1:n

pθ,η(u1:n, y1:n|x0, y0) =

∫
pθ,η(z1:n|z0)λ(dx1:n). (3.20)
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Hence, combining these three expressions, we get a formula for the joint log-likelihood:

pθ,η(u1:n, y1:n|x0, y0) =

∫ n−1∏
t=0

{
hηt+1(yt, ut+1)qθ(ut+1, xt, xt+1)gθ(xt+1, yt+1)λ(dxt)

}
(3.21)

=

{
n−1∏
t=0

hηt+1(yt, ut+1)

}
× pθo(y1:n, u1:n|x0), (3.22)

where pθo(y1:n, u1:n|x0) =
∫ ∏n−1

t=0 q
θ(ut+1, xt, xt+1)gθ(xt+1, yt+1)λ(dxt) is the density that would be

obtained if the data were actually generated in open loop. Therefore, the joint log-likelihood is

ln pθ,η(u1:n, y1:n|x0, y0) =
n−1∑
t=0

lnhηt+1(yt, ut+1) + lθo,n(y1:n, u1:n|x0) (3.23)

= C + lθo,n(y1:n, u1:n|x0). (3.24)

Here, the term C does not depend on θ and lθo,n denotes thus the log-likelihood for the open loop
model only. (3.24) shows that we do not need to deal with the control loop model when computing
the MLE: maximizing in θ the log-likelihood for data generated in closed-loop is the same as
maximizing in θ the log-likelihood lnLθo(y1:n, u1:n, x0) of the open loop state space model.

The point of the proof of Proposition 3.3.1 is to show how under assumptions (CL2)-(CL3),
the densities hηt for the control function are excluded from the objective function. Notice the
importance of assumption (CL3): if the controlled input depends on past state variables, then
(3.21) is intractable, since in particular the densities hηt remain under the integral sign. Nevertheless,
proving the asymptotic properties of the MLE in this context remains beyond the scope of the thesis.
We will therefore posit that these properties hold true.

(CL4) the true parameter θ0 is an interior point of Θ, and its MLE θ̂n verifies:

i) θ̂n is strongly consistent;

ii) θ̂n is asymptotically normal with covariance matrix the inverse of the Fisher information
I(θ) defined by

I(θ) = lim
n→∞

1

n
Eθ
[
−∇2

θ lnLθ(y1:n)
]

; (3.25)

iii) there is a law of large numbers for the observed information matrix.

These properties hold whether the data are generated in open or closed loop.

Although (CL4) could appear as a strong assumption, it seems appropriate, because the statistical
asymptotic properties of the MLE have been demonstrated for many different models, as highlighted
by this document: input-ouput system in [FL99], general hidden Markov models (without input
process), linear state space models with exogenous inputs,... Besides, in order to justify furthermore
this hypothesis, we may show that under assumptions (CL1) to (CL4), the empirical approximations
of the score function and of the Fisher information matrix I(θ) is the same regardless of the data
generating process (open or closed loop). The computations are similar to the proof of Proposition
3.3.1.
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Consider thus a state-space model with observed inputs generated in closed loop, and assume
that conditions (CL1)-(CL2)-(CL3)-(CL4) hold true. We have:

pθ,ηn (y1:n|x0, y0) =
pθ,ηn (y1:n, u1:n|x0, y0)

pθ,ηn (u1:n|x0, y0:n)
(3.26)

=
n−1∏
t=0

{
pθ,ηn (yt+1, ut+1|x0, y0:t, u1:t)

hηt+1(yt, ut+1)

}
. (3.27)

Hence the marginal-log likelihood is

lθn =
n−1∑
t=0

ln
pθ,ηn (yt+1, ut+1|x0, y0:t, u1:t)

hηt+1(yt, ut+1)
. (3.28)

Its gradient is therefore

∇θlθn =

n−1∑
t=0

∇θ ln pθ,ηn (yt+1, ut+1|x0, y0:t, u1:t), (3.29)

which does not depend on the control loop. Similarly for the Hessian matrix, we obtain ∇2
θl
θ
n =

∇2
θl
θ
o,n. We conclude that, under conditions (CL1) to (CL4),

1. θ̂n can be computed as

θ̂n = arg max lθo,n; (3.30)

2. the central limit theorem reads
√
n(θ̂n − θ0)

d−−→ N (0, I(θ0)−1); (3.31)

3. and moreover

1

n
∇2
θl
θ
o,n

P−−→ −I(θ0). (3.32)

In other words, although the data is generated in closed loop, the system parameter can be identified
as if in open loop, and its asymptotic covariance estimated using the Hessian of the open-loop
likelihood. Observe, however, that this asymptotic covariance I(θ)−1 is different from the open-
loop case.

3.4 Numerical experiments

3.4.1 Case 1: simulated dataset

The numerical experiments are conducted on several datasets, with length varying from 7 to 14
days. The data are generated in closed loop, according to the procedure described in Chapter 2. In
the sequel, the base scenario is when the data are generated in closed loop, with a cooling setpoint
of 16 ◦C. M = 50 initializations are performed, uniformly in [0, 1] for every parameter (all true
values are smaller than 1), except for zs which is drawn between 0 and zr. The EM algorithm is
iterated until convergence, with a maximum number of iterations set to 100. Besides, we check
at iteration that the Kalman filter is stable, and reinitialize the procedure if one eigenvalue of the
state matrix A(θk) is outside the unit circle. Similarly, if A(θk) appears to be ill-conditioned, the
procedure is also reinitiliazed.
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Table 3.2: Estimated parameters of the R3C2 network and twice their standard errors (2SE), from
the best estimator among M = 50 initializations. The data are generated in closed loop, for 14
days at time step 10 minutes.

Parameter True value Estimation (± 2SE) Error (%)

zr 0.1 0.090 (±0.001) 10
zs 0.01 0.0070 (±0.0023) 30
zf 0.2 0.207 (±0.006) 3.5
zo 0.4 0.430 (±0.080) 7.5
zi 0.25 0.221 (±0.012) 11.6

UA 0.354 0.352 (±0.009) 0.6
g 0,385 0.346 (±0.040) 10.1
τ1 33.7 49.9 (±6.0) 48.1
τ2 3.6 4.2 (±0.2) 16.7

An example of point and standard error estimates is given in Table 3.2. Given the relative small
amount of data (14 days), we see that the EM algorithm can perform well on estimating all four
physical parameters. UA and g are accurately estimated, whereas the time constants are harder to
retrieve, but their order of magnitude is good enough from a thermicist point of view. Besides, the
closed-loop simulation of the indoor temperature and heating power on a test dataset and with these
estimated parameters is shown in Figure 3.4. It emphasizes the good agreement between the model
and the observations. Furthermore, Table 3.3 shows that compared to a Monte-Carlo procedure on
100 experiments, using the CLT gives similar but narrower intervals. It seems therefore legitimate
to make the approximation of using the CLT even for closed-loop generated data.

In order to further illustrate the performances of our approach, we also implemented a standard
algorithm of the literature. A widespread approach consists for instance in identifying an open-
loop Multi-Input Single-Output (MISO) discrete transfer function by means of the least squares
algorithm, as in [HGP12]. The transfer function takes the form

H(z−1) =


b11z−1+b12z−2

1+a1z−1+a2z−2

b21z−1+b22z−2

1+a1z−1+a2z−2

b31z−1+b32z−2

1+a1z−1+a2z−2

 . (3.33)

In such case, the physical parameter UA and the time constants can be defined from the coefficients
a1, . . . , b32. Indeed, the two time constants of the system are classically obtained from the poles
of the transfer function, whereas the parameter UA is the inverse of the static gain with respect
to the input Qr. Confidence intervals can also be constructed for the identified parameters of the
transfer function (see e.g. [Lju87]) The δ−method is used to derive the confidence intervals for UA,
τ1 and τ2 from those of a1, . . . , b32. The different approaches shall therefore be compared through
the accuracy of the estimated physical parameters.

We performed the identification with this approach on the same data set generated in closed
loop. The point estimates and twice their estimated standard errors are given in Table 3.4, together
with the estimation errors. It turns out that this simpler approach gives good results regarding the
accuracy of the static parameter UA. However, it fails to reproduce the dynamic behaviour of the
system, the two time constants being largely underestimated.
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Figure 3.4: Closed loop simulation of the heating power (top) and the indoor temperature (bottom)
with the true (red) and estimated (grey) parameters, with true regulation parameters.

Table 3.3: Estimated standard errors of the parameters, compared to a Monte-Carlo procedure on
N = 100 data sets. The data are generated in closed loop, for 14 days at time step 10 minutes.

Parameter CLT Monte-Carlo

zr 0.0004 0.0013
zs 0.0012 0.0015
zf 0.0030 0.0073
zo 0.040 0.0871
zi 0.0058 0.0084

UA 0.0046 0.0059
g 0.0201 0.0496
τ1 2.98 19.21
τ2 0.1106 0.127
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Table 3.4: Estimated parameters (± 2 SE) and their corresponding absolute errors for the EM and
the least squares algorithms. The data are generated in closed loop, for 14 days at time step 10
minutes.

Parameter EM Transfer function

UA
0.352±0.009 0.318±0.005

(0.6%) (10%)

τ1
49.9±6.0 6.2±13.0
(48.1%) (82%)

τ2
4.2±0.2 0.18±0.04
(16.7%) (95%)
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Figure 3.5: Boxplots of the N = 1000 estimations of UA (left), the fast time constant (center) and
the slow time constant (right), against the number of days in the learning data set at sample rate
10 minutes. The true values are the horizontal dashed lines.
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Figure 3.6: Boxplots of the N = 100 estimations of UA (left), the fast time constant (centerr) and
the slow time constant (rights), against the cooling setpoint. The heating setpoint is 21 ◦C, and
the data length is 7 days. The true values are the horizontal dashed lines.
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Finally, some simulations are conducted in order to quantify the influence of the inputs on the
quality of the estimation procedure. Indeed, it is well-known that a necessary condition for the
identification to be efficient is that the inputs of the system comprise as much information as
possible. In this view, we explored the influence of the data length and of the gap between the
cooling and heating setpoint. The intuition behind the latter point is that under nonlinear control,
the bigger the gap is between the two setpoints, the more useful information there is, and the better
the time constants are estimated. Figure 3.5 and Figure 3.6 confirm this intuition, since at least
10 days of data sampled at rate 10 minutes and a gap greater than 2 ◦C are needed to estimate
the slow time constant. Whereas UA and g (not displayed) are robustly estimated, the slow time
constant estimate may indeed explode when violating these conditions. Table 3.2 reinforces the
fact that it is difficult to get a very accurate estimate of this parameter in any case, while a small
bias remains for the fast time constant. The time-scaled method [MCPF10] is a promising track to
address this issue.

3.4.2 Case 2: BESTLab data

Real data from BESTLab are used in this section. In particular, the indoor temperature and
heating power are no longer simulated from nominal values of the R3C2 model, but measured in
the two cells of the BESTLab experiment described in Section 2.2.1. Note that these real data are
also generated in closed loop. The setpoint follows a predetermined schedule, and switches between
4 possible discrete levels, respectively at 19◦C, 20◦C, and 24◦C. Furthermore, the dataset contains
an 18-day period during which the setpoint is constant at 22◦C. Several R3C2 models are identified
with the EM algorithm, where each model corresponds to a random excerpt of BESTLab’s database
with varying length, from 3 days to 17 days.

Figure 3.7 shows the estimated physical parameters of the western cell. There are 80 datasets,
each of them with 14 days of measurements. The results are displayed against the proportion of time
during which the setpoint remains constant at 22◦C: respectively less that 10% of the time, between
10% and 30%, 30% and 60%, 60% and 100%. Although there is no ground truth data to which our
results can be compared, some conclusions may still be drawn. Indeed, the five-over insulated walls
of either one of the two cells have very small heat transfer coefficients U < 0.1 W/(m2.K). Hence,
the thermal losses of the cells are caused mostly by the removable outside wall. This is why we
report the U coefficient, which is simply the UA coefficient divided by the surface S = 13.5m2 of
the tilted wall. Then, Figure 3.7 emphasizes the fact that the temperature setpoint needs to vary
in order to get a plausible estimation. Indeed, the training set contains a long period of constant
setpoint, the estimation of g degenerates (values very close to 1), whereas the slow time constant
is unreasonably high. On the other hand, when the setpoint alternates frequently between several
levels, the variance of the estimations decreases significantly. Moreover, the estimated parameters
are physically plausible in such case. For instance, the estimated U value of a simple homogeneous
wall range from 1.5 W/(m2.K) to 2.3 W/(m2.K) in [NBR+14], or from 1.62 W/(m2.K) to 2.17
W/(m2.K) in [NGRC15]. Given that BESTLab was originally created to design solutions for low-
energy buildings, characterized by a small U−value, our estimation of U seems therefore credible
and is typical of high energy performance buildings. Besides, the fact that the estimated solar
transmittance coefficients g are closer to 1 than to 0 is consistent with the presupposed high energy
performances of the cells, since g represents the proportion of the solar flux transmitted inside the
cell. Finally, we note that the estimated time constants are somewhat elevated, which characterises
a cell with strong inertia. This seems conceivable, because the high level of insulation of the cell
makes it quite slow to cool the indoor air. Similar trends are observed for the southern cell (plots
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Figure 3.7: Estimation of the physical parameters of a R3C2 network for BESTLab’s western cell,
against the proportion of time during which the setpoint remains constant at 22◦C: From left to
right, top to bottom: heat loss coefficient U , solar transmission g, slow time constant τ1, fast time
constant τ2. 80 experiments of duration 14 days.
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Figure 3.8: Estimated parameters of BESTLab’s cells against length of the dataset. The error bars
are centered around the mean estimations, their length is twice the standard deviation.

not shown).

The comparison between the estimated physical parameters of the western and southern cells is
shown in Figure 3.8, with for datasets of varying length and with a setpoint that does not remain
constant for a long time. Consistently with our findings on the simulated dataset, we find that at
least one week of measurements are necessary before getting reliable estimations. Moreover, Figure
3.8(a) is in agreement with the physical intuition that the U value of the southern cell should be
slightly lower than that of the western cell, since its orientation optimizes the received free solar
gains. Finally, Figure 3.9 3.10 show the average of the simulated trajectories of the heating power
and indoor temperature on a test data set for the western cell, in two different settings: with closed
or open shutter, i.e. with or without solar radiation. These trajectories are simulated in closed loop
from the estimated R3C2 model and the true parameters of the regulation. Whenever the solar
flux does not affect the thermal behaviour of the cell, the simulated trajectories are accurate: root
mean square error (RMSE) of 0.11◦C for the average trajectory of the indoor temperature, total
amount of energy consumed during the seven days overestimated by 6.1%. Figure 3.10 tends to
indicate that these performances are degraded to a certain extent when adding the effect of the solar
flux. In particular the estimated R3C2 models are too slightly slow when the building is in cooling
mode. Nevertheless, the RMSE is 0.27◦C for the indoor temperature, whereas the total amount of
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Figure 3.9: Simulated heating power and indoor temperature on test data without solar flux (closed
shutter), BESTLab West.

energy consumed during the seven days is overestimated by 3.4%, which is even more accurate than
without solar flux.

In conclusion, and although the BESTLab environment is a simplification of the real behaviour of
an occupied building, the results presented in this section tend to validate the open-loop estimation
of a R3C2 model for a building operating in closed loop.

3.5 Summary

In this chapter, we have investigated the first constraint limiting building identification in practice.
Even if every input and output of the building model is correctly recorded, it remains indeed to
take the data generating process into consideration. Although the data are generated in closed
loop, we have given statistical and empirical arguments supporting the idea that the open-loop
building model, ”ignoring” the regulation. As such, we propose to learn the R3C2 model (or any
equivalent electrical network) with a maximum likelihood estimator, obtained from the Expectation-
Maximization algorithm. The numerical experiments, on both simulated and real data, confirm that
this is a sensible approach. More specifically, in order to examine further the practical constraints,
we have shown that a good estimation of the physical parameters of the R3C2 network requires at
least 10 to 14 days of data, and as much variability as it may be on the setpoint signal.

In the next part, we will consider new constraints, directly linked to the actual availability of
the inputs and output of the building model: how to collect these data, and how to adapt the
identification procedure whenever some of them are partially or totally hidden?
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Figure 3.10: Simulated heating power and indoor temperature on test data with solar flux (open
shutter), BESTLab West.
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Chapter 4

Missing observations of the indoor
temperature

In this chapter and the subsequent ones, we adopt the standpoint of an energy utility and examine
the constraints that arise regarding the application of the identification method described in Chapter
3. This method relies primarily on the availability of on-site measurements of the inputs and output
of the model. Yet, this perfect observability of the building is far from being obvious in practice.
Hence, our aim is to question this availibility for each input and output of the building model, and
adapt the identification procedure consequently.

To begin with, building identification relies first on the availability of the indoor temperature,
which characterizes the thermal behaviour of the building. However, from the standpoint of an
energy utility, this measure might not be available at all, since it requires a connected dedicated
sensor not included in the electricity or gas meter. We assume thus in this chapter that the actual
indoor temperature is hidden (while all the inputs of the building model are correctly measured).
This implies that the model cannot be identified in open loop. Instead, a closed-loop model with
the load curve as an alternative output is suggested. It is based on the availability of the setpoint
temperature. Having access to the setpoint temperature but not to the actual indoor temperature
is a reasonable hypothesis in some cases, corresponding for instance to a non-intrusive approach of
the utility. It was suggested first in C. Zayane’s thesis [Zay11].

The counterpart of not measuring the indoor temperature is that unlike the open loop identi-
fication described in Chapter 3, it is now necessary to assume that the regulator is of a certain
structure, with unknown parameters. In the context of building identification, this introduces a
non-linearity in the model, because of the saturation of the heating power, which is upper-bounded
by the subscribed power and necessarily positive since heating only and not cooling is considered
in this work. This non-linearity was not accounted for in [Zay11], which is why we suggest a new
estimation algorithm. This is developed, together with the global closed loop model, in Section
4.1. We choose a Bayesian framework in order to solve the identification problem. The algorithm,
described in Section 4.2, is based on the Hybrid Monte Carlo (HMC) sampling technique which
belongs to the class of Markov chain Monte Carlo (MCMC) sampling methods. We apply HMC to
the building identification problem, and show some numerical experiments, in Section 4.3.
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Figure 4.1: Building indoor temperature regulated in closed loop, with saturation of the heating
power via the sigmoid function. The indoor temperature is not observed, and the saturated power
is seen both as an input of the building model and the observed output of the closed loop system.

4.1 A modified closed loop model

Since the indoor temperature is not observed, an open-loop estimation of the building thermal
model, such as suggested in Chapter 3, is not possible. Moreover, the building is actually exploited in
closed-loop, the indoor temperature being regulated such that it follows a given setpoint signal. This
would suggest thus to use a closed-loop identification technique as advocated in [FL99]. However,
those methods are precluded because they depend on the availability of the output of the open-loop
system, that is precisely the missing indoor temperature.

In order to account for the missing observation of the indoor temperature, we need thus to change
our interpretation of a building system. Similarly to the previous work in [Zay11], our method
consists thus into considering the system in its entirety, that is the building model, the feedback
loop and the controller. The measured heating load curve Qh is now the observed output of the
sytem, and is explained by the setpoint temperature, the weather conditions (outdoor temperature,
solar gains) and the free internal gains. This is depicted in Figure 4.1. The building model is the
R3C2 network described in Chapter 2. The regulation is modelled as a Proportional - Integral (PI)
controller, whose output is saturated via the sigmoid function:

Qh = Φ

[
K

(
Tr − ϑi +

1

τ

∫
(Tr − ϑi)

)]
, (4.1)

where Tr is the known setpoint signal, ϑi the hidden indoor temperature and the gain K and the
time constant τ are the unknown parameters of the PI controller. The sigmoid function Φ is

Φ : x ∈ R 7→
Qmaxh

1 + exp(−λ(x−Qmaxh /2))
∈ (0, Qmaxh ), (4.2)

with Qmaxh the limiting power and λ := 4/Qmaxh . Φ is a continuously differentiable approximation
of the saturation function. The coefficient λ is such that the approximation is exact at x = Qmaxh /2,
that is for the linear regime (see Figure 4.2). Note that the anti-windup effect is not included in
this model.

4.2 Hybrid Monte Carlo sampling method

4.2.1 Hamiltonian dynamics

Hybrid Monte Carlo, also named Hamiltonian Monte Carlo (HMC), is a Markov chain Monte
Carlo (MCMC) method for sampling from complex high-dimensional distributions, introduced re-
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0 Qmaxh /2 Qmaxh

Figure 4.2: Sigmoid (solid line) and saturation (dashed line) functions.

cently in [DKPR87]. MCMC algorithms are iterative strategies aiming at generating samples from
a target distribution, known up to a normalizing constant, in which the samples are the state of
a Markov chain. The key is to construct a transition kernel whose invariant distribution is the
distribution of interest. See e.g. [ADFDJ03] for a comprehensive introduction to the different state-
of-the-art MCMC strategies, [PSC+16] for a survey of stochastic simulation methods for Bayesian
inference. The main advantage of HMC over other standard MCMC techniques such as Metropolis
- Hastings is that it generates non-local moves, avoiding thus the random-walk behaviour of the
simulated trajectories. For simulating such trajectories, HMC uses an auxiliary variable and is
based first of all on an analogy between the target probability distribution and the potential energy
of a mechanical system. Let us thus consider a mechanical system of position q ∈ Rnq and impulsion
p ∈ Rnq , with total energy H(q, p) given as the sum of a potential U(q) and a kinetic term K(p)

H(q, p) = U(q) +K(p). (4.3)

With ∇ denoting the gradient operator, the Hamiltonian equations describing the evolution of the
sytem in the phase space are: 

dq
dt = ∂H

∂p = ∇K(p)

dp
dt = −∂H

∂q = −∇U(q)
. (4.4)

The t−flow ϕt of (4.4) is the map (q(0), p(0)) ∈ R2nq 7→ (q(t), p(t)) ∈ R2nq . It can be shown (see
e.g. [Liu08]) that this flow is time-reversible (ϕt is one-to-one and has an inverse), preserves the
volumes dq dp in the (q, p) space and keeps the Hamiltonian invariant in time (dHdt = 0). These
three properties are key to the HMC sampling method (see Section 4.2.2).

Next, (4.4) is approximated by time discretization for the numerical simulation of the dynamics.
The time step, herafter denoted ε, induces a small error, and consequently the Hamiltonian is not
preserved anymore. The integrator must be chosen so that it does satisfy the other two properties,
time reversibility and volume preservation. Here, we employ the standard Verlet/leapfrog method,
which consists of a half-step for the impulsion variable followed by a full step for the position and
a second half-step for the impulsion:

p(t+ ε/2) = p(t)− ε
2∇U(q(t))

q(t+ ε) = q(t) + ε∇K(p(t+ ε/2))

p(t+ ε) = p(t+ ε/2)− ε
2∇U(q(t+ ε))

. (4.5)
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Volume preservation is easily checked by computing the jacobians of the three steps in (4.5): each of
them is 1. The global error of the leapfrog method is O(ε2), and so is the error on H (see [Nea11]).
This method is difficult to beat in practice, and easy to implement, which motivates our choice. See
e.g. [Laj11] for other discretization schemes.

4.2.2 MCMC using Hamiltonian dynamics

Consider now a Rnq -valued random variable q with probability density π(q) which we wish to
sample from. Notions in statistical physics (see e.g. [BB06]) help us to relate the target density
π(q) to a potential energy U(q): π(q) = 1

ZU
exp(−U(q)). Ignoring the normalization constant, that

cancels out in MCMC algorithms, we get

U(q) = − log(π(q)). (4.6)

It is assumed in the sequel that U is differentiable and non-zero for all q. An HMC-like algorithm
includes then three elements: an enlarged phase space with a Hamiltonian flow, a geometrical
numerical integrator with suitable properties and an accept/reject rule.

Hamiltonian flow In the analogy with a mechanical system, the random variable q is our position
vector, and an enlarged phase system is formed by artificially adding a corresponding impulsion
vector p. Its total energy is separable H(q, p) = U(q) +K(p). The Hamiltonian flow is then given
by (4.4). The kinetic energy is chosen to be of the form

K(p) =

nq∑
i=1

p2
i

2mi
. (4.7)

That is p is Gaussian with zero mean and a diagonal covariance matrix M , with diagonal elements
m1, . . . ,mnq to be selected by the user (see below). Moreover, given the volume and Hamiltonian
preservation properties of ϕt, the flow preserves also the probability measure in the phase space
R2nq , with density the joint one Π(q, p)

Π(q, p) =
1

ZH
exp(−H(q, p)) =

1

ZU
exp(−U(q))

1

ZK
exp(−K(p)) = π(q)π(p). (4.8)

(4.8) emphasizes the fact that by construction, the position q and the impulsion p are independent.
A sample of q can thus be obtained simply by marginalizing out p when sampling from π(q, p).
Hence, if q(0) ∼ π(q) and p(0) ∼ N (0,M) then q(t) ∼ π(q).

Numerical integrator In practice, the Hamiltonian flow is simulated from the Verlet/leapfrog
scheme (4.5). Given the form of K(p), the full step in position reads more specifically

q(t+ ε) = q(t) + εM−1p(t+ ε/2). (4.9)

Accept/reject rule Since the leapfrog scheme does not preserve the Hamiltonian value, an ac-
cept/reject rule is introduced to remove this bias. Consequently, the HMC algorithm is hybrid in
the sense that it combines a Gibbs step and a Metropolis update:

1) Draw p from π(p|q) = π(p) (by independence (4.8)). This step is easy to perform, since p is
Gaussian.
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Algorithm 4.1 Hybrid Monte Carlo

Inputs: M , ε, L, target density π(q).

0. Initialize q(0) and set k = 1.

1. Gibbs step: draw p(k−1) ∼ N (0,M).

2. Metropolis update:

a) draw ε(k) uniformly from [ε− δ, ε+ δ], δ > 0 small;

b) Perform L leapfrog steps with stepszie ε(k) according to (4.5) or Algorithm 4.2. Label
the new state (q∗, p∗).

c) Set (q(k), p(k)) = (q∗, p∗) with probability r computed from (4.10), or (q(k), p(k)) =
(q(k−1), p(k−1)) with probability 1− r.

3. If convergence is reached, terminate, otherwise set k ← k + 1 and return to step 1.

Output: samples q(k) of π(q).

2) From the current state (q, p), simulate L steps of the Hamiltonian dynamics using the leapfrog
method (4.5) with stepsize ε to reach the proposal (q∗, p∗). Negate p∗ and accept the new
state (q∗,−p∗) with probability

r = min [1, exp(H(q, p)−H(q∗,−p∗))] . (4.10)

Negating p∗ ensures time reversibility. It is however skipped in pratice, since K(p∗) = K(−p∗) and
p∗ is then replaced at the first step of the next iteration. It is shown in [Liu08] that this hybrid
procedure is valid, in the sense that it leaves the joint canonical distribution of (q, p) invariant
(detailed balance condition).

We see also from (4.10) that the proposals are more likely to be accepted if they tend to decrease
the total energy, which means with (4.6) that the algorithm does look for regions of high densities
for q. (4.5) shows that the trajectory of q follows ∇K(p) ∝ p and p is directed according to ∇U .
HMC avoids thus the inefficient random walk behaviour of the Metropolis algorithm. However, the
drawbacks of the method is that it has more parameters to be tuned than Metropolis. Indeed, the
mass matrix M , the time step ε and the length L must be chosen carefully.

4.2.3 Practical improvements

The HMC algorithm is summarized in Algorithm 4.1. This standard procedure may be improved
in several ways. For instance, [BPSSS11] suggests to improve the acceptance rate in high dimensions
by generalizing Algorithm 4.1 to an infinite-dimensional Hilbert space. Here, we will focus on the
ergodicity of the algorithm, the tuning of the step size ε and the mass matrix M , and the handling
of constraints in q.

Ergodicity

The question of the ergodicity of the algorithm has been raised in [Mac89, Nea11]: the chain
should asymptotically converge to the target distribution, and not be trapped in some subset of the
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state space. In order to ensure it in practice, the solution is to randomly choose ε from some small
interval around a given nominal value at the beginning of each Hamiltonian trajectory.

Tuning ε and M

Tuning ε is the crucial point when applying the HMC procedure (see e.g. [BPR+13]). Too
large an ε would lead to a very small acceptance rate, whereas too small an ε would either waste
computational time or generate a random walk behaviour [Nea11]. ε should not be larger than
the typical length of the most constrained direction of q. Yet other directions might be much less
constrained, resulting in a slow exploration of the latter. This can be alleviated by an appropriate
choice of the diagonal elements of the mass matrix M : if qi, i = 1, . . . , nq scales with si, set
mi = 1/s2

i . (4.5) is then equivalent to a leapfrog scheme with stepsize εi = εsi in each direction
i = 1, . . . , nx and mass matrix identity. [Nea11] indicates that L and ε are not so intricated, and it
is possible to tune them by trial-and-error.

Handling constraints

An advantage of HMC is that it can be easily adapted to handle constraints of the form qi ≤ ui
or qi ≥ li for any i ∈ {1, . . . , nq}. The method, taken from [Nea11], can be named ’billiard HMC’: if
a leapfrog step is such that qi violates the limit, then qi bounces off the boundary, and pi is negated.

The principle is the following. First of all, note that the leapfrog scheme (4.5) is a special case
of the discretization by splitting scheme. In this more general setting, the Hamiltonian H(q, p) is
written as the sum of k terms

H(q, p) = H1(q, p) + · · ·+Hk(q, p), (4.11)

where each Hl, l = 1, . . . , k is twice differentiable and Hl(q, p) = Hk−l+1(q, p). The discretization
by splitting is obtained by applying successively the dynamics (4.4) to each subsystem with energy
Hl, l = 1, . . . , k. Applying the scheme with k = 3 and H1(q, p) = H3(q, p) = U(q)/2 and H2(q, p) =
K(p) yields the leapfrog scheme (4.5).

Assume now that a constraint qi ≤ ui for some i ∈ {1, . . . , nq} holds. The idea is to propose
a new splitting scheme close to the one leading to the leapfrog. The constraint is included in the
potential energy:

U(q) = lim
r→∞

[U∗(q) + Cr(qi, ui)], where Cr(qi, ui) :=

{
0 if qi ≤ ui

rr+1(qi − ui)r if qi > ui
. (4.12)

U∗ is the unconstrained potential, while the term Cr(qi, ui) tends to infinity if the constraint is
broken. In such case, U tends also to infinity, and the acceptance probability of this state is null.
The Hamiltonian is then split in three terms according to

H(q, p) =
1

2
U∗(q) + [K(p) + Cr(qi, ui)] +

1

2
U∗(q). (4.13)

The first and last terms yield the same half-step in p as the leapfrog scheme. If the full step for q
leads to qi(t+ ε) ≤ ui then necessarily Cr = 0 along the trajectory and the position update is also
unchanged: (4.13) is equivalent to the leapfrog scheme. On the other hand, if the position update
scheme leads to qi(t+ ε) > ui, then the trajectory ’bounces off’ the limit, and returns with opposite
impulsion (see [Nea11]). This variation of the leapfrog scheme is described in [Nea11].
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Algorithm 4.2 Leapfrog scheme with constrained state space

1. Half impulsion update: p(t+ ε/2) = p(ε)− ε
2∇U∗(q(t)).

2. Position update : for each variable i = 1, . . . , nq:

(a) let p′i = pi(t+ ε/2);

(b) let q′i = qi(t) + εp′i/mi;

(c) if qi is constrained, repeat the following until q′i satisfies all the constraints:

i. if qi has an upper constraint ui and q′i > ui,

let q′i = ui − (q′i − ui) and p′i = −p′i;
ii. if qi has a lower constraint li and q′i < ui,

let q′i = li + (li − q′i) and p′i = −p′i;
(d) let qi(t+ ε) = q′i and pi(t+ ε/2) = p′i

3. Half impulsion update: p(t+ ε) = p(ε/2)− ε
2∇U∗(q(t+ ε)).

4.3 Application to building identification

4.3.1 Principle

The idea of applying HMC sampling techniques to the problem of building identification was
suggested in [Laj11], with application to a R1C1 network with saturated Proportional controller.
We extend therefore its application to the higher-order R3C2 network. In this chapter, we set
θ =

(
Cr Cs zf zo zi K zτ

)ᵀ
, where K and zτ := 1/τ are the parameters of the controller.

Moreover, we define d := zτ
∫

(Tr − ϑi), which is the integrator component of the PI controller.

The estimation of θ is treated as a Bayesian inversion problem [KS05, Sär13]. We assume thus
that θ is a random variable with prior distribution π(θ). In our state-space framework, the full
posterior distribution is, using Bayes’ theorem and ignoring the normalizing term:

p(x0:N , θ|y1:T) ∝ p(y1:T|x0:T, θ)p(x0:T|θ)π(θ), (4.14)

where the hidden state is Xt :=
(
ϑti ϑts dt

)ᵀ
, with ϑs the hidden structure temperature of the

R3C2 network, and the observation is Yt := Qth. Given the Markovian properties of the model,
the potential U associated to the full posterior distribution p(x0:T, θ|y1:N ) (4.14) is the sum of the
following terms, where Qfg represents the free heating gains, Qs the solar gains and ϑo the outdoor
temperature:

U1(θ, ϑi, ϑs, d) =
1

2σ2
1

T−1∑
t=0

{Φ[K(T t+1
r − ϑti + dt)] +Qt+1

fg − Cr(ϑ
t+1
i − ϑti)− zi(ϑti − ϑts)

− zo(ϑti − ϑt+1
o )}2, (4.15a)

U2(θ, ϑi, ϑs) =
1

2σ2
2

T−1∑
t=0

{Qt+1
s − Cs(ϑt+1

s − ϑts)− zi(ϑts − ϑti)− zo(ϑts − ϑt+1
o )}2, (4.15b)
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U3(θ, ϑi, d) =
1

2σ2
3

T−1∑
t=0

{
−(dt+1 − dt))− zτ (ϑti − T t+1

r )
}2
, (4.15c)

U4(θ, ϑi, d) =
1

2σ2
4

T∑
t=1

{
Qth − Φ(K(T tr − ϑti + dt))

}2
, (4.15d)

U5(θ) = − log(π(θ)), (4.15e)

where t denotes a discrete time index and Yt, T
t
r , ϑ

t
o, Q

t
fg and Qts are measured for t = 1, . . . ,T. The

first two potentials in (4.15a)-(4.15b) correspond to a first-order (instead of exact) discretization
of Kirchhoff’s equations (2.1), with stepsize δ omitted for sake of clarity, and state noise process

vt ∼ N
(

0,

(
σ2

1 0
0 σ2

2

))
. Similarly, the third potential U3 (4.15c) corresponds to a first-order dis-

cretization of the state equation in d, and U4 (4.15d) to the observation equation.

In this work, we suggest to estimate jointly the parameters θ and the hidden states. Hence, the
potentials U1 to U5 are seen as functions not only of θ, but also of the trajectories ϑti, ϑ

t
s and dt, for

t = 0, . . . ,T, and the gradient ∇U is a vector of dimension 3(T + 1) + 7, where T is the number of
observations (the noise variances σ2

1, . . . , σ
2
4 are not learned).

Moreover, we add a potential corresponding to the priors on the trajectories of the hidden states.
In particular, the knowledge of the setpoint temperature, a supposedly good approximation of the
indoor temperature, informs a priori accurately on ϑi. We choose therefore to penalize strongly
the deviations of ϑi to the setpoint Tr with an a priori potential of the form

∑
t(T

t
r − ϑti)4. On the

other hand, the priors on θ, ϑs and d are less accurate and choosen Gaussian, which corresponds
to quadratic potentials. Ultimately, the potential U is thus the sum of the five potentials (4.15a)-
(4.15e), and of the priors on the trajectories. We note that U is differentiable and ∇U is well-defined
everywhere, because of the C∞ smooth sigmoid saturation function Φ (4.2).

4.3.2 Numerical illustration

Validation procedure

This method is applied to solving the building identification with missing observations of the
indoor temperature problem for several one-week datasets. The data are generated according to
the procedure described in Chapter 2. In particular, meteorological records from January 2016
are used, as well as free internal gains corresponding to an office building. For each simulation,
θ is initialized randomly with initial error between -100% and +25%. The Gaussian prior on θ
has a mean which is also randomly drawn within [−100%,+25%] of the true value, and a diagonal
covariance with standard deviations set to 35% of the true values of the parameters. The initial
series of the hidden states are drawn randomly around fixed values: for all t ∈ {0, . . . , N}, we set

ϑ
t,(0)
i ∼ N (16, 0.02), ϑ

t,(0)
s ∼ N (10, 0.2) and dt,(0) ∼ N (3, 0.2). The prior on ϑti is defined by the

setpoint temperature, whereas the priors on ϑs and d are their initial distributions N (16, 0.02) and
N (10, 0.2), respectively.

The key parameters ε (step-size) and L (number of steps) are tuned by trial and error to
ε = 5.10−5 and L = 150. The diagonal coefficients of the mass matrix M are tuned according to
the scale of the parameters θ, and the square roots of the scales of the hidden state. Indeed, the
parameters θ have a strong influence on the whole time series and need therefore smaller impulsion
compared to each hidden state xt, which affects only one instant t [Laj11]. Finally, we add the
constraint that θ ∈ (R∗+)7. We used Niter = 1000 iterations, and the point estimates of the

70



CHAPTER 4 4.3. APPLICATION TO BUILDING IDENTIFICATION

Table 4.1: Estimated parameters with twice their standard errors for HMC, on 100 experiments. 5
outliers are not taken into account.

Parameter True value HMC

UA 0.354 0.338± 0.007
g 0.385 0.288± 0.106
τ1 33.7 38.3± 14.3
τ2 3.6 3.5± 0.9

K 2.79 1.33± 0.14
zτ 0.02 0.019± 0.0085

parameters are the averages over the last 100 iterations. This procedure is repeated 100 times, with
the same set of true parameters but different weather conditions.

Results

Table 4.1 shows the mean of the estimated physical parameters of the R3C2 model and of the
parameters of the controller. The performances are encouraging, with a good accuracy on the heat
loss coefficient UA and on the two time constants. The estimation of the solar transmission g is
less accurate, although the order of magnitude remains correct. However, the average acceptance
rate is 48% (see Figure 4.4 for the distribution), which means that slightly decreasing the stepsize
ε would improve the accuracy of the leapfrog scheme. By way of comparison, [BPR+13] identifies
the asymptotically optimal acceptance probability, which is 0.651.

For each of the 100 estimations of the parameters, we simulated the heating power and the indoor
temperature with the setpoint and meteorological data contained in the training set. The averages
of these simulated trajectories are plotted in Figure 4.3. The root mean square error (RMSE) of
the heating power is 7% of the average power, whereas the estimated energy consumption over the
week is 1.2% higher than the actual consumption. Hence, although the parameters of the regulation
estimated in Table 4.1 are less accurate than those of the R3C2 network, the simulated trajectories
are in agreement with the observations. Most of the divergence between the two heating loads
occurs at saturation (see Figure 4.3(a)), which is consistent with the saturation function used to
generate the data in Chapter 2 by the sigmoid function in Figure 4.2. For an increased accuracy,
we suggest therefore to replace the sigmoid function by the convolution of the saturation function
with a Gaussian kernel, as in [Laj11]. Similarly, the simulated indoor temperature is closed to the
actual trajectory, with a normalized root mean square error less than 4% of the average indoor
temperature.

In order to further validate the estimation, we used the Monte Carlo average of the estimated
parameters on the 100 experiments to simulate the heating power and the indoor temperature under
different weather conditions. Indeed, we use data from November 2015, whereas the parameters
were learned with data from January 2016. The simulated and true trajectories are shown in Figure
4.5. The predicted power has an RMSE representing 20% of the average heating power, but the
estimated total consumption over the entire simulation period is only 6% smaller than the true
consumption. The predicted indoor temperature is in close agreement with the true measure, with
an RMSE of 0.35◦C, corresponding to a normalized RMSE of 1.9%.

These results accentuate thus the good performances of the estimation procedure suggested in
this chapter. This is partly due to the inclusion of the informative prior based on the setpoint signal
for the indoor temperature. Hence, the joint estimation of the hidden states and of the parameters
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Figure 4.3: In red, average of (a) the heating power and (b) the indoor temperature simulated with
the 100 estimations of the parameters on the training set (meteorological data from BESTLab,
January 2016). The true data are in grey.

Figure 4.4: Histogram of the acceptance rates of the HMC sampler, 100 experiments.
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Figure 4.5: In red, (a) heating power and (b) indoor temperature simulated with the mean of the
100 estimations of the parameters on a test set with meteorological data from BESTLab, November
2015. The grey curves are generated with the true parameters.

of the R3C2 network and of the controller based on the HMC sampling technique is an efficient
way of handling the missing observations of the indoor temperature and the nonlinearity of the
controller. The main difficulty consists in tuning carefully the parameters of the HMC algorithm,
in particular the stepsize ε and the number L of leapfrog steps.

4.4 Summary

In this chapter, we start investigating the application of building identification in a constrained
context of missing or partially observed data. We have assumed that the output of the thermal
building model, namely the indoor temperature, was not recorded. This corresponds to a non-
intrusive approach of the energy utility, which does not have access a priori to a thermometer
inside the building. Since the output of the model is not measured, we suggest a closed loop model
whose new output is the regulated heating power. This model includes a nonlinear regulation,
with the saturation of the command. We suggest to estimate jointly the hidden states and the
parameters of this nonlinear system by means of the Hybrid Monte Carlo (HMC) algorithm. The
numerical evaluation shows promising results on simulated data, with a good estimation of the
physical constants of the R3C2 model. The main difficulty lies in the tuning of the key parameters
of the HMC algorithm, which requires further examination.

In the next chapters, we continue the analysis of the practical constraints that limit the appli-
cation of building identification for an energy utility. Chapter 5 is more particularly devoted to
handling the uncertainty inherent to the measurement of the outdoor temperature.
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Chapter 5

Bias reduction of the outdoor
temperature

We address in this chapter the problem of the uncertainty of the measure of the outdoor tem-
perature, a key input to any thermal building model. Indeed, the context of the smart homes and
buildings prevents us from assuming that the measured outdoor temperature is the ”true” noise-free
input of the building system. Instead of having access to the accurate measure provided by a con-
trolled climate station, an energy utility may only have access in practice to a measurement from a
connected object, such as a connected weather station. This measurement lacks accuracy, as further
exemplified in Section 5.1. Hence, the aim of this chapter is to adapt the estimation procedure of
the open loop R3C2 model described in Chapter 2, in order to account for this uncertainty. The
other inputs (solar radiation, heating flux) and the indoor temperature are supposedly correctly
measured in this chapter.

5.1 Motivation

To the best of our knowledge, the outdoor temperature is seen as a known, correctly measured,
input of the thermal model in the rest of the building identification literature. This means that in
the literature, the identification algorithms are tested either with an average outdoor temperature
in order to generate a simulated dataset (see e.g. [MCPF10, HGP12]), or with a measure from
an on-site climate station (see e.g. [BM11, FABG14]). In both cases, the measured or statistical
outdoor temperature is regarded as the noise-free input of the system, and neither the availability
or the quality of the data are questioned.

Yet, it is unlikely, at a more global scale and for any building, to have access to a scientific climate
station nearby, while an actual measurement, and not a statistical signal, is required. Consequently,
the two aforementioned solutions meet with practical limitations, and the building microclimate
remains unavailable. An answer to the issue of the data availability may come from the emerging
context of the Internet of Things (see Introduction). One may thus have access to a measurement
of the outdoor temperature, whether it is directly via a connected weather station for instance, or
via an open access database such as the Weathermap. However, compared to the fully controlled
climate station, the quality of this measurement suffers two drawbacks:

1. the temperature sensor is less accurate than a scientific probe (for instance the Netatmo
weather station has an accuracy of ±0.3◦C, whereas the sensors from the EDF R&D laboratory
BESTLab have an accuracy of ±0.1◦C);
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Figure 5.1: Measurements of the dry-bulb outdoor temperature with a sensor with a (a) western
or (b) southern orientation, compared to a reference temperature measured at the same location
(data from November 2015 to February 2016).

2. an energy utility does not know the precise location of the sensor, which is up to the user.
Hence, the sensor may either be well placed or exposed to the sun, or under cover,... or
may not be located at the exact same location as that of the building (for instance if we use
a temperature from an open access database). In comparison, the temperature sensor of a
climate station is necessarily protected from the solar radiation.

In order to illustrate the second point, we conducted a simple experiment at EDF R&D labo-
ratory BESTLab: we measured a reference dry-bulb air temperature (sensor with 0.15◦C accuracy,
at a controlled climate station a few meters aways from BESTLab) on one hand, and two other
dry-bulb air temperatures, from sensors located in the immediate vicinity of BESTLab’s cells, that
is in particular with a southern and a western orientation respectively (accuracy 0.1◦C). A brief
description of the characteristics of these sensors is given in Table 2.2 in Chapter 2. Figure 5.1
shows that there is indeed a bias in the measurements from the two unprotected sensors. Inter-
estingly, this discrepancy between the two measurements occurs during the whole range of winter
outdoor temperatures, from about −5◦C to 20◦C. Moreover, it appears that this bias may be up
to 8◦C during day time whereas it is much closer to zero at night. This confirms the influence of
the solar radiation on an on-site but exposed temperature sensor. Hence, if the building model is
identified according to the method described in Chapter 3 with the southern sensor instead of the
reference sensor, the gap between the indoor and outdoor temperature would be less important than
it actually is and one might expect for instance the heat loss coefficient UA to be overestimated to
a certain extent.

A typical screenshot of the Weathermap by Netatmo, which maps the outdoor temperatures
measured by the personal weather stations of Netatmo’s clients, as in Figure 5.2 confirms the
disparity of the measures in a restricted area, due to an average accuracy (0.3◦C) and probably
to mislocated sensors: the average temperature lies probably between 13◦C and 14◦C, but two
adjacent sensors might give measurements as different as 13◦C and 17◦C or 15◦C and 20◦C.

In this chapter, we assume thus that the observed outdoor temperature is possibly biased, the
noise-free outdoor temperature being actually hidden. This suggests that the outdoor temperature
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Figure 5.2: Screenshot of the measurements of the outdoor temperatures from the Weathermap by
Netatmo in Paris.

may be seen as a stochastic process rather than a deterministic input, as it is only an approximation
of the true temperature. Accordingly, the building system belongs here to the so-called class of
errors-in-variables dynamic models [Söd07].

With these elements in mind, our purpose is to propose a new method for identifying dynamic
thermal building models, that takes into account the uncertainty inherent to the outdoor temper-
ature records, and investigate whether this uncertainty significantly affects the estimation of the
physical parameters of the model. Assuming that the other inputs and the output of the R3C2
model are correctly measured, we show how to include a state-space representation of the outdoor
temperature in the reference framework. The estimation procedure in this constrained context is
based on the EM algorithm, similarly to Chapter 3.

5.2 State space representation

In order to account for the possible bias of the measurement of the outdoor temperature, we
decide to model this measurement as a state-space system. Two modeling steps are therefore
required in addition to the open loop R3C2 building model from Chapter 2 that explains the indoor
temperature in terms of weather conditions and heating flux. We must first specify the dynamics of
the hidden outdoor temperature, at time-step 10 minutes. Secondly, the bias model is contained in
an observation equation. The global model is thus also a state space system, with noise-free inputs
and the noisy outputs summarized in Table 5.1 (compare to Table 2.1).

5.2.1 Dynamics and observation of the outdoor temperature

First of all, at time-step δ = 10 minutes and over a span of a few days only, we suppose that the
actual outdoor temperature ϑo evolves according to a one-dimensional random walk. At discrete
time t := tδ, we have

ϑo,t = ϑo,t−1 + εt, (5.1)
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Table 5.1: Inputs and outputs of the R3C2 representation with biased outdoor temperature.

Inputs Outputs

solar gains (Qs) indoor temperature (Ti)heating flux (Qh)
outdoor temperature (To)internal gains (Qfg)

where εt is a Gaussian white noise process with constant variance σ2
ε . This is the simplest dynamic

model possible, which assumes that the current value ϑo,t of the outdoor temperature is in the
neighborhood of the past value ϑo,t−1, this neighborhood being characterized by σε. In particular,
we do not include any periodic component in the model, because such component is already included
in the observation To.

The observed outdoor temperature To is a biased version of the hidden state ϑo, where the bias
remains to be specified. In accordance with our dataset (BESTLab experiment), let us consider
the case of a temperature sensor close to the building but not necessarily protected from the solar
radiations. An example of the corresponding series is given in Figure 5.3. It illustrates in partic-
ular the fact that the difference between the two sensors does not depend on the actual outdoor
temperature: high values of the bias may occur even for cold climates. This represents typically
the situation where an energy utility has access to the measurements of the end-user’s temperature
sensor but does not know its precise location around the building. We suggest to represent the bias
as another hidden state, denoted ϑb, with a random walk behaviour:

ϑb,t = ϑb,t−1 + εt, (5.2a)

To,t = ϑo,t + Itϑb,t + ηt, (5.2b)

where To,t is the noisy observation of the ”true” outdoor temperature ϑo,t, εt a Gaussian white
noise process with time-invariant variance σ2

ε , ηt a Gaussian observation white noise process with
time-invariant variance σ2

η and independent of εt and It is an indicator function, set to 0 at night
and 1 during day time in order to account for the effect of the solar radiation, in accordance with
our remark subsequent to Figure 5.1.

We note finally that the model (5.1)-(5.2) of the outdoor temperature does not introduce any ad-
ditional parameter to the R3C2 network, keeping thus the dimensionality of the estimation problem
to a low level. In particular, this model assumes that the switching times of δt are known.

5.2.2 Global model

The global model is a time-varying errors-in-variables linear state-space representation of the build-
ing. We choose to augment the initial state-space representation of the R3C2 model (2.1a)-(2.1b)

Qr = Cr
dϑi
dt

+
1

Ri
(ϑi − ϑs) +

1

Rf
(ϑi − ϑo), (5.3a)

Qs = Cs
dϑs
dt

+
1

Ri
(ϑs − ϑi) +

1

Ro
(ϑs − ϑo), (5.3b)

with the model given by eqs (5.1)-(5.2). Observe that ϑi, ϑs and ϑo are respectively the hidden
indoor, structure and outdoor temperatures, whereas Qr := Qh + Qfg is the total heating power,
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Figure 5.3: (a) Example of a nine-day record of the outdoor temperature using a reference sensor
under cover (ϑo, light grey) and a sensor with southern orientation and exposed to the sun (To,
red). The data come from the BESTLab measurement campaign of November 2015. (b) Difference
ϑb between the measures of To and ϑo during the same period of time.

wiht notations consistent with Table 5.1. This latter model is appended to the R3C2 network as
follows. Let U :=

(
Qr Qs

)ᵀ
denote the measured input vector, X :=

(
ϑi ϑs ϑo ϑb

)ᵀ
the hidden

state vector and Y :=
(
Ti To

)ᵀ
the noisy observation of

(
ϑi ϑo

)ᵀ
. The state equation is deduced

from the discretization of (5.3) and from the random walk models (5.1) and (5.2a). At time t := tδ,
where δ is the sampling time, we have

Xt = Aδ(θ)Xt−1 +Bδ(θ)Ut + Vt, (5.4)

Yt = CtXt +Wt, (5.5)

where Vt is a model Gaussian white noise process with time-invariant covariance matrix Qδ, Wt is
an observation Gaussian white noise with time-invariant covariance matrix Rδ uncorrelated with
V , Aδ(θ) = exp(δA(θ)), Bδ(θ) ' δB(θ) and

A(θ) =


−zr(zf + zi) zrzi zrzf 0

zszi −zs(zo + zi) zszo 0
0 0 0 0
0 0 0 0

 , B(θ) =


zr 0
0 zs
0 0
0 0

 , (5.6)

Ct =

{
M1 if t is a diurnal index
M2 otherwise

, M1 =

(
1 0 0 0
0 0 1 1

)
, M2 =

(
1 0 0 0
0 0 1 0

)
. (5.7)

5.3 Estimation of the parameters

5.3.1 EM for a time-varying linear state-space

We choose the EM algorithm in order to estimate the parameters of the augmented model, un-
der the assumption that the initial state is normal. See [SS82] and Chapter 3 for a more detailed
description of the algorithm in the case of linear Gaussian time-invariant state space models, and
[WHHF16] for another approach of errors-in-variables models estimated with EM. The main dif-
ference with the reference case in Chapter 3 is that the model is now a time-varying system, to
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which EM and the Kalman smoother involved in the procedure adapt easily. This is prensented
e.g. [DMS14, Chapter 2]. Hence, the estimation procedure of the global model is essentially the
same as the one described in Chapter 3. We merely focus on the estimation of the inverse of
the resistors and capacitors, and are not interested in estimating the initial state, nor the noise
covariances. The closed-form solution of the Maximization step is discarded, because the state
matrices are structurally defined by θ. Instead, we use thus the Matlab routine fminunc with the
trust-region algorithm, which requires a gradient computation of the EM cost. In order to keep the
problem unconstrained, the five parameters of the R3C2 network are expressed as θ = exp(γ) and
the optimization is carried out with respect to γ.

5.3.2 EM for a switching linear state-space

In this section, we suggest to adapt the estimation procedure to a weaker version of the observation
equation (5.2b) of the outdoor temperature. Indeed, it is assumed in (5.2) that the bias is necessarily
null at night, with It = 0 at night. This hypothesis may be relaxed in the following manner. We
suppose that the system has two possible configurations, or states, depending on the value of It in
(5.2b). These two configurations are the states of a nonstationary independent process defined by
the time-varying a priori probabilities

πj(t) := P(Ct = Mj), j = 1, 2, (5.8)

with M1 and M2 given in (5.6). Hence, the system has a dynamic, stochastic switching behaviour,
instead of the deterministic switching of the initial model.

Algorithm 5.1, reproduced from [SS91], details how to adapt the EM algorithm to this case. In
particular, the Kalman filter necessary to solve the Expectation step is modified to account for
the multiple possible states of the system. Standard notations, such as xlk := E[xk|y1, . . . , yl] and
P lk := cov(xk|y1, . . . , yl) are used. It is based on the computation of the filtered probabilities

πj(t|t) := P(Ct = Mj |Y1, . . . , Yt). (5.18)

One obtains

πj(t|t) =
πj(t)fj(t|t− 1)

π1(t)f1(t|t− 1) + π2(t)f2(t|t− 1)
, (5.19)

where fj(t|t−1) is the conditional density of Yt given Ct = Mj and the past observations y1, . . . , yt−1.
fj(t|t−1) is a mixture of normal distributions which has an exponentially increasing computational
cost. Consequently, fj(t|t−1) is approximated by a single normal density, with mean vector Mjx

t−1
t

and covariance matrix MjP
t−1
t Mᵀ

j +R (see [SS91] and the corrections therein; this density is optimal
in the sense of the Kullback-Leibler distance).

If the covariance matrix Rδ is estimated, Algorithm 5.1 is a ”pseudo-EM” algorithm, since solving
for Rδ involves the smoothed probabilities πj(t|T), where T is the total number of measurements,
which are very expensive to compute. In such case, they are replaced by πj(t|t), hence the name
”pseudo-EM”. However, in this application and the numerical experiments in the next section, we
choose not to estimate Rδ and the only smoothed probability that is required is πj(T|T) in (5.16).
This one can be computed exactly by the filtering equations (5.10).
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Algorithm 5.1 EM for switching linear state-space

Inputs: θ0, a priori probabilities πj(t), j = 1, 2, t = 1, . . . ,T.

0. Initialize θ = θ0 and set k = 1.

1. E-step: compute

Q(θ, θk) := Eθk [lnLθ(X,Y )|Y = y1, . . . , yn] (5.9)

based on (a) the filtering scheme

xt−1
t = Aδx

t−1
t−1 +Bδut, (5.10)

P t−1
t = AδPt−1|t−1A

ᵀ
δ +Qδ, (5.11)

Ktj = Pt|t−1M
ᵀ
j (MjP

t−1
t Mᵀ

j +Rδ)
−1, (5.12)

xtt = xt−1
t +

2∑
j=1

πj(t|t)Ktj(yt −Mjx
t−1
t ), (5.13)

P tt =

2∑
j=1

πj(t|t)(I −KtjMj)P
t−1
t , (5.14)

where the filtered probabilities are, with fj(t|t− 1) := p(Yt|Ct = Mj , Y1, . . . , Yj−1),

πj(t|t) =
πj(t)fj(t|t− 1)

π1(t)f1(t|t− 1) + π2(t)f2(t|t− 1)
, j = 1, 2, (5.15)

(b) the standard Kalman smoother, and (c) the lag-one covariance smoother initialized with

PT
T,T−1 =

2∑
j=1

πj(T|T)(I −KTjMj)AδP
T−1
T−1 . (5.16)

2. M-step: compute θk+1 :

θk+1 = arg max
θ
Q(θ, θk). (5.17)

3. If convergence is reached, terminate, otherwise set k ← k + 1 and return to step 1.

Output: maximum likelihood estimator θ̂.
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5.4 Numerical illustration

5.4.1 Validation procedure

In order to avoid the convergence of the EM algorithm 5.1 towards a local minimum, M = 50
random initializations are drawn uniformly in [0, 1] for every parameter (all true values are smaller
than 1), except for zs which is drawn between 0 and zr. We obtain thus M estimators, and select
the one with the greatest log-likelihood. Moreover, we require that the sub-state matrix defined
corresponding to the system (5.3a)-(5.3b) is well-conditioned, since its inverse appears both in the
discretization and for the resolution of the M-step. We also check that the Kalman filter is stable,
which is needed for the asymptotic study of the estimates. Hence, if the eigenvalues of Aδ are outside
the unit circle, we reinitialize the procedure. This is the same procedure as the one described in
Chapter 3 for the estimation of the R3C2 model alone. Besides, for a given dataset, three models
are estimated:

1. M0 is the naive estimation of the R3C2 network uniquely, with the recorded outdoor temper-
ature as a deterministic input; the estimation procedure is that of Chapter 3;

2. M1 is the R3C2 network combined with eqs. (5.1)-(5.2), estimated with the standard EM
algorithm (deterministic switching times, see Section 5.3.1)

3. M2 is the R3C2 network combined with eqs. (5.1)-(5.2), estimated with Algorithm 5.1 (prob-
abilistic switching).

In the latter case, the probabilities πj(t) are set to the uninformative prior π1(t) = π2(t) = 0.5, for
all time instant t. All three models are estimated successively with three outdoor temperatures:
a reference outdoor temperature as well as the measurements of two sensors with a western and
southern orientation, respectively (see Chapter 2). The length of the learning data set is two weeks.
This procedure is iterated 25 times, each simulation with its own set of true parameters.

5.4.2 Smoothed outdoor temperature

We check first that the smoothed outdoor temperature ϑ̂o, estimated once Algorithm 5.1 has
converged, is consistent with the observation To. In average over the N simulations, the Root Mean
Square Error (RMSE) is significantly reduced for the southern sensor, from 1.2◦C to 0.7◦C. This
error is more slightly reduced for the western sensor, from 0.6◦C to 0.5◦C. The bias generated on
the true data is also reasonably low (0.4◦C). These results tend to indicate that the chosen model
(5.1)-(5.2) is relevant. This is confirmed graphically by inspecting the histograms of the relative
errors, in Figure 5.4. In particular, the extreme values have been removed, and the errors are much
more centered.

5.4.3 Estimation of the R3C2 model

The results are summarized in Table 5.2 and Figure 5.5. For a given parameter θ, the computed
error is (θ? − θ̂)/θ?, where θ? and θ̂ denote respectively the true and estimated value. We observe
first that the heat loss coefficient UA is robustly estimated regardless of the estimation method, M1
and M2 yielding a slight improvement in average (see Table 5.2). The estimated UA is most often
larger than the corresponding true value (see Figure 5.5(a)). This is consistent with the physical
interpretation of UA. Indeed, UA is estimated with warmer temperatures than the true excitation
of the building. Since the input corresponding to the heating load is unchanged, this means that
the identified building is less efficient, and thus UA increases.
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Figure 5.4: Histograms of the temperature difference between the reference and (a) southern (b)
western sensors. The darker bars correspond to the raw data, the lighter to the smoothed temper-
ature estimated by Algorithm 5.1 and averaged over the 25 data sets.
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Figure 5.5:
Boxplots of the 25 estimation errors of the heat loss coefficient UA (top left corner), the solar

transmittance g (top right corner), the slow (bottom left corner) and fast (bottom right corner)
time constants, against the estimated model.

83



5.5. SUMMARY CHAPTER 5

Table 5.2: Quadratic mean of the estimation errors (%) of the physical parameters of the R3C2
network for the three models M0, M1, M2. Average over 25 data sets.

Parameter M0 M1 M2

UA 9.4 6.4 6.0
g 40.2 31.6 26.8
τ1 109 100 44.3
τ2 24.4 29.8 19.1

The estimation of the solar transmittance g illustrates the benefits of the errors-in-variables
models M1 and M2 over the noise-free approach M0. Hence, these models are capable of reproducing
the static thermal behaviour of the building more precisely than the noise-free approach M0. The
dynamic behaviour is more difficult to estimate, which is in agreement with the numerical study
in Chapter 3. This is partly due to the non-informative temperature setpoint used to generate the
data which switches only twice a day, similarly to the real exploitation of a building. It appears
nevertheless that the model M2, with stochastic switching, is much more efficient than the other
two. In particular, the slower time constant is more accurately estimated, with a lower variance,
whereas the faster time constant is rather correctly estimated in average, but the values are more
dispersed.

5.5 Summary

In the context of smart buildings, it is reasonable to assume that an energy utility has access
to a measurement of the outdoor temperature. However, we have questioned in this chapter the
standard assumption of a noise-free measurement of this quantity. In practice, this measurement is
indeed possibly biased, because the location of the sensor is unknown and up to the end-user: the
sensor may for instance be left exposed to the solar radiation. Assuming that every other input
and output of the building model is well measured, this chapter aimed at handling this uncertainty
on the measurment of the outdoor temperature. To address this issue, we suggested to represent
the possible outdoor temperature bias with an empirical discrete linear state-space model, without
adding new parameters. A key feature of this model is that the temperature bias is accounted for
by term which switches either deterministically or stochastically. When appending this model to
the R3C2 model, this forms a global time-varying linear state-space model, which may be learned
by the Expectation-Maximization algorithm with Kalman smoothing.

The numerical evaluation on simulated data shows the ability of the method to reduce the bias
on the outdoor temperature. Moreover, the suggested algorithms improve the naive estimation of a
R3C2 model with no bias correction for the outdoor temperature. This chapter shows therefore that
the R3C2 model, and more generally and equivalent electrical network, may easily be transformed
into an errors-in-variables representation that accounts for the uncertainty.
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Chapter 6

Learning the dynamics of the
unobserved solar gains

In the Introduction to this thesis, we took the example of the solar flux to motivate our work
and emphasize the practical constraints that degrade the observation of the building. The solar
radiation Qs being measured by an expensive specific sensor, the pyranometer, it seems therefore
unreasonable to assume that such a measurement would be available for any building. For instance,
the pyranometer is not included in the new generation of connected weather stations. Besides, the
naive estimation of the open-loop R3C2 network with Qs ≡ 0 is not advocated, because Qs is a
non-negligible gain. It is all the more true in the emerging context of the smart and low-energy
buildings, which aim at maximizing such free gains for improved energy efficiency performances
[CDRR12]. We suggest therefore two ways of overcoming this difficulty:

� either estimating the solar radiation prior to the identification of the R3C2 network, typically
from other meteorological data, and including then this estimation and its uncertainty in the
identification process;

� or modelling the solar radiation as a hidden quantity estimated jointly with the other states
and parameters of the R3C2 network.

The first approach is very challenging, because most statistical models of the solar radiation are
based on supervised learning algorithms. That is, a dataset with records of the solar radiation must
be available at every location of interest, which is precisely not our case. For instance, 33 out of the
35 references cited in the review [TLH+17, Table 9] of solar irradiance prediction models require a
measurement of the direct or global solar irradiance as an input, while the other two require a cloud
cover record. In Appendix A, we suggest a new method, which constructs a statistical spatial model
of the cloud cover, and is based on open access records of this quantity at given, fixed, locations (for
example, in France). The solar radiation at any location can in turn be estimated from the cloud
cover index by means of a simple physical model. This method is promising because it requires no
ground instrumentation, but still lacks accuracy and the studied standard spatial models are largely
perfectible.

On the other hand, the second approach is similar to the idea developed in Chapter 5, and it
is the focus of this chapter. The main difference with Chapter 5 is that we do not have access
to a biased measure of the quantity of interest: the system is not an errors-in-variables model.
Nevertheless, Chapter 5 suggests that there is a link between the solar radiation, the reference air
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Table 6.1: Inputs and outputs of the R3C2 representation with undirectly observed solar gains.

Inputs Outputs

internal gains
indoor temperature

heating flux
clear sky radiation

outdoor temperature bias
outdoor temperature

temperature and a biased measure of the air temperature from a sensor exposed to the sun, the
reference temperature being estimated from the other two. This leads naturally to the following
question: can we estimate the solar radiation from the measurements, respectively biased and
unbiased, of the outdoor temperature? The underlying idea is that larger differences between these
two measurements are caused by larger values of the solar radiation. We will investigate the question
by assuming throughout the chapter that these two measurements of the outdoor temperature, as
well as the indoor temperature and the internal gains, are measured at the location of interest.
Although it requires an additional temperature sensor compared to the standard setting of Chapter
3, the associated cost is negligible compared to the pyranometer’s one, since such sensors are wide-
spread and much more affordable now, especially in the new context of the smart buildings and the
Internet of Things. This limits thus the practical constraints.

The rest of this chapter is organized as follows. Section 6.1 describes the chosen state-space
representation of the solar flux. In particular, this model accounts for the variability of the weather
conditions (cloud movements, etc.) by allowing for occasional high variance increments of the
hidden state. The magnitude of the high values and the times at which they occur are unknown
and estimated with an `1-regularized maximum likelihood approach, and this model is then included
into the R3C2 framework. The resulting model is nonlinear with a linear substructure, which calls for
a new smoothing scheme within the EM algorithm. An adapted solution, called Rao-Blackwellised
particle smoothing is therefore presented in Section 6.2. Finally, we conclude the chapter with a
numerical evaluation of the model in Section 6.3.

6.1 Nonlinear modelling

The modelling step is two-fold. First of all, the open loop thermal building model is the R3C2
network described in Chapter 2. The second step, which we focus on in this section, entails a
physical representation of the solar radiation, written under state space form. This model is then
appended to the R3C2 network, forming a global state space model whose inputs and outputs are
summarized in Table 6.1. This is to be compared to the standard setting described in Table 2.1.

6.1.1 Solar radiation model

Rather than modelling directly the dynamics of the solar flux, we suggest first to use a physical
model. Indeed, there exist simple physical models, depending only on time and geographical coor-
dinates, that estimate the solar radiation. These models are accurate enough provided that they
are corrected by a measure of the cloud cover. In this work, we consider Perrin de Brichambaut’s
model in [PdBV82, RW99]:

Gh,clr = κG0(cos θz)
1.15 (6.1)
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Figure 6.1: A one-week record of ∆To, the difference of outdoor temperatures measured respectively
by a sensor exposed to the sun and second sensor under cover (BESTLab, November 2015).

where Gh,clr is the global horizontal solar flux under clear sky conditions, κ is a constant set in the
literature to κ = 0.81 [RW99], θz is the azimuth angle (that depends only on the latitude, longitude
and solar time) and G0 the extraterrestrial solar constant (theoretical radiation at the top of the
atmosphere, depends on the day number). [DB13, Chapter 1] gives the formulas to compute these
quantities. In [RW99], it is shown that this model is a first reasonable approximation, with errors
decreasing when the Linke turbidity decreases. This means that the model works better for a dry
and clean atmosphere. This model is corrected by a measurement N ∈ [0, 1] of the cloud cover
according to

Gh,cld = Gh,clr(1− aN b). (6.2)

If the sky is completely clear (N = 0), 100% of the initial model Gh,clr is kept, whereas a fraction
(1− a) remains even if the sky is totally overcast (N = 1). In the sequel, we presuppose that a and
b are known, with a = 0.67 and b = 1.08. Those values were obtained from the kriging model of the
cloud cover detailed in Appendix A.

Hence, we consider that the latent quantity to be estimated is the cloud cover index N , instead
of the solar flux. The cloud cover model is formulated as a discrete-time state-space model, with
observation and dynamic equations to specify. First of all, we cannot assume that the cloud cover is
directly measured at the location of interest. Instead, we suppose that a good approximation is given
by the difference ∆To between two measures of the outdoor temperature, namely a measure from
a biased sensor, in the sense that it is exposed to the sun, and a second measure from a reference
sensor, under cover. The latter sensor is the usual sensor measuring the outdoor air temperature.
This requires therefore two distinct outdoor temperature sensors. A one-week record of this outdoor
temperature bias is plotted in Figure 6.1. The underlying idea is that smaller values of ∆To are
caused by higher values of the cloud cover since in such case the sensors under cover and exposed to
the sun give similar outdoor temperatures. This echoes back to the model in Chapter 5, where the
reference outdoor temperature is reconstructed from a biased measure as well as the solar radiation.
The relation between the cloud cover and ∆To is modelled as follows:

N = φ(∆To), where φ : x ∈ R 7→ 1− 1

1 + exp(−α(x− x0))
∈ (0, 1), (6.3)

with x0 = (x1 + x2)/2, α = 4/(x2 − x1), where x1 and x2 are some parameters to estimate. In this
model, clearest skies correspond to ∆To > x2 whereas overcast skies on the other hand correspond
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Figure 6.2: (a) Estimated solar flux from the measured outdoor temperature bias ∆To and model
(6.2)-(6.3). (b) Two-day zoom.

to ∆To < x1. (6.3) is inspired by the estimation of the cloud cover from the clearness index data
(the ratio of the received global solar radiation during a given period to the extraterrestrial global
horizontal radiation for this period - we do not have access to it) in [FXM+09]. In this sense, the
bias ∆To may be seen as a surrogate clearness index. It remains to select the thresholds x1 and x2

(in �). We used the data from BESTLab to minimize the mean square error of the predicted solar
flux (using (6.2)-(6.3)). A cross-validation procedure with a one-week BESTLab record data from
November 2015 yields for instance x1 = 0.44 ◦C and x2 = 1.77 ◦C. An example in Figure 6.2 shows
that this model provides a sensible guess of the received solar radiation, able to catch the periods
of high and low intensities.

We derive now the discrete-time state-space representation of the cloud cover. Let us assume first
that ∆To is the noisy observation of a hidden state η:

∆To,t = ηt + wη,t, (6.4)

where wη is a Gaussian white noise with constant variance herafter denoted r2
η. The hidden cloud

cover is therefore given by Nt = φ(ηt), with φ as in (6.3), and the estimated solar radiation is
Qs = Gh,clr(1− aφ(η)b).

The last step consists in specifying the dynamics of η. At a time-step of 10 minutes, we may
suppose that this dynamics is accurately represented by a random walk. However, the high vari-
ability of the weather (cloud movements, etc) produces some jumps in the series, as exemplified by
Figure 6.1. Hence, we choose to represent the dynamics of η by a discrete-time random walk with
time-varying variance:

ηt = ηt−1 + (qη + σt)vη,t (6.5)

where vη is a Gaussian white noise with unitary variance. The constant qη is the minimum standard
deviation of the additive noise, while σt is either null, or positive whenever a change in the variability
occurs. We suppose that most σt’s are null, whereas a few positive values account for the jumps
in the dynamics of η. Accordingly, the series is a random-walk with increments’ variances all equal
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Figure 6.3: Example of a grid search for the best penalty coefficient λ, with (a) the AIC and
(b) the number of parameters n(β̂) displayed. The red square denotes the selected coefficient
λ = 22.75 ' 6.7.

to the minimal variance q2
η except for a few of them which are higher, at unknown times and

with unknown values. Estimating the sequence of σt’s is treated as a variable selection problem,
similarly to the approach in [LLH08] (which deals with additive jumps in the mean). The parameters
β := {qη, rη, σ1, . . . , σT} are found by minimizing a `1−penalized log-likelihood criterion:

β̂(λ) := arg min
β

{
−2 logLβ(∆To,1, . . . ,∆To,T) + λ

T∑
t=1

|σt|

}
, (6.6)

where Lβ, the likelihood of the linear Gaussian state space model (6.4)-(6.5), is a by-product of the
Kalman filter equations. For a given λ, there exist already many optimization algorithms solving
the problem (6.6). In the sequel, we have used Mark Schmidt’s toolbox for Matlab, with algorithms
detailed in [SFR07, Sch10]. λ is a trade-off coefficient, balancing the predictive power of the model
and the total number of parameters, with larger values of λ penalizing more strongly the non-
zero σt’s. λ is selected by testing different values and retaining the one minimizing the Akaike
Information Criterion (AIC):

AIC := 2n(β̂)− 2 log(L
β̂
), (6.7)

where n(β̂) is the number of non-zero parameters in β̂ and L
β̂

is the maximized value of the likelihood

function Lβ(∆To,1, . . . ,∆To,T). More precisely, λ is generated as a power of 2 during a two-step grid
search, where the first grid is 2−6, 2−5, . . . , 25, 26 and the second grid is centered around the best
node of the former grid, with a step-size of 1/4. In practice, we choose fixed values qη = 0.15 and
rη = 0.15, and estimate only the σt’s. An example is provided in Figures 6.3 and 6.4, with selected
penalty coefficient λ = 22.75 ' 6.7. In this example, there are 89 out of 1008 (8.8%) identified
high variance increments such that σt > 0. Figures 6.3(b) confirms that smaller values of λ result
in a very large number of parameters n(β̂). On the other hand, larger values of λ do not yield a
significant reduction of n(β̂). Note that the problem (6.6) is unconstrained, and in particular the
estimated σt’s could be negative. Yet, by fixing in practice qη to a sufficiently small value, the
estimated σt’s are always positive (in Figure 6.4 as well as in any of the other simulations in this
chapter).
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Figure 6.4: (a) One-week and (b) two-day zoom of the smoothed dynamics of the temperature
bias process. The vertical lines locate the estimated changing points of the variance. Data from
November 2015, BESTLab.

6.1.2 Global state-space model

The building thermal model is made of two blocks, namely the building dynamics given by the
R3C2 network presented in Chapter 2, and the solar radiation model given by (6.4)-(6.5). Let
U :=

(
ϑo Qr Gh,clr

)ᵀ
be the observed input vector, Y :=

(
Ti ∆To

)ᵀ
the noisy observation of(

ϑi η
)
, and X :=

(
ϑi ϑs η

)ᵀ
the hidden state vector. Moreover, we split the state vector into

ξ := η and α :=
(
ϑi ϑs

)ᵀ
. Indeed, while the global model in X is nonlinear because of the solar

radiation model, we have that, conditionally on ξ, the dynamics of α is linear: conditionally on the
solar radiation model, the thermal building model, that is the R3C2 network, is a linear model.
This conditional linearity will be exploited in the estimation process.

The modelling hypotheses result thus in a discrete-time conditionally linear Gaussian state-space
(CLGSS) model, with for t = 1, . . . ,T:

ξt = fξ(ξt−1) + vξ,t, (6.8a)

αt = fα(ξt−1, ut, θ) +Aα(θ)αt−1 + vα,t, (6.8b)

Yt = h(ξt) + Cαt + wt, (6.8c)

where Vξ, Vα and W are pairwise-independent Gaussian white noises with respective covariances
(qη+σt)

2 (time-varying), Qα and R (time independent). Besides, θ =
(
zr zs zf zo zi

)ᵀ
denotes

the parameter vector of the R3C2 network, and

fξ : x ∈ R 7→ x ∈ R, (6.9a)

fα : (x, u, θ) ∈ R× R3 × R5 7→
(

θ(1)θ(3)u(1) + θ(1)u(2)
θ(2)θ(4)u(1) + θ(2)u(3)(1− aφ(x)b)

)
∈ R2, (6.9b)

h : x ∈ R 7→
(

0
x

)
∈ R2, (6.9c)
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Aα(θ) =

[
1− zr(zf + zi) zrzi

zszi 1− zs(zo + zi)

]
, C =

[
1 0
0 0

]
(6.9d)

where fα and Aα are obtained from a first-order discretization of Kirchhoff’s equations (2.1) with
stepsize δ = 1 omitted for sake of clarity. Finally, the initial state x1 is assumed Gaussian with

x1 ∼ N
([
ξ1|0 0

0 α1|0

]
,Σ1

)
. (6.10)

ξ1|0, α1|0 and Σ1 are unknown but not learned in the sequel.

For notational convenience, an alternative notation of the state equation (6.8a)-(6.8b) is

xt = f(ξt−1, ut, θ) +A(θ)αt−1 + vt, (6.11)

with vt ∼ N (0, Qt), where (with σξ,t := qη + σt from (6.5))

Qt :=

[
σ2
ξ,t 0

0 Qα

]
, f(ξt−1, ut, θ) :=

[
fξ(ξt−1)

fα(ξt−1, ut, θ)

]
, A(θ) :=

[
0

Aα(θ)

]
. (6.12)

In this work, we suppose that the parameters of the solar flux model, that is mainly the function
φ and the high variance increments σt, are learned beforehand, such that the global model is
parameterized by θ only.

The model (6.8) is a special case of the so-called class of mixed linear/nonlinear state space
models, whose inference via a particle filter based version of the EM algorithm has been studied in
some recent publications, such as [LS10a]. We reproduce this method in the next section. From a
statistical point of view, the key point of the model (6.8) is that unlike the more general framework
of [LS10a], the dynamics of the nonlinear state ξ in (6.8a) does not depend on the conditionally
linear state α.

6.2 Rao-Blackwellised particle smoother EM algorithm

6.2.1 Problem formulation

The parameters θ of the R3C2 network are estimated via a maximum likelihood procedure, relying
on the EM algorithm. EM was previously introduced in Algorithm 3.1. It necessitates to compute
the quantity

Q(θ, θ′) = Eθ′ [Lθ(X1:T, Y1:T)|Y1:T] . (6.13)

Given the Markovian properties of the model, we have

Lθ(X1:T, Y1:T) = log pθ(Y1:T|X1:T) + log pθ(X1:T) (6.14)

= log pθ(X1) +
T−1∑
t=1

log pθ(Xt+1|Xt) +
T∑
t=1

log pθ(Yt|Xt). (6.15)

Hence,

Q(θ, θ′) = I1(θ, θ′) + I2(θ, θ′) + I3(θ, θ′), (6.16a)
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where

I1(θ, θ′) = E [ log pθ(X1)|Y1:T] , (6.16b)

I2(θ, θ′) =
T−1∑
t=1

E [ log pθ(Xt+1|Xt)|Y1:T] , (6.16c)

I3(θ, θ′) =
T∑
t=1

E [ log pθ(Yt|Xt)|Y1:T] . (6.16d)

The crucial step is therefore to compute the expectations in (6.16). This requires in particular the
computation of the smoothing densities, such as pθ(Xt|Y1:T). This is achieved in several possible
ways, depending on the model structure:

� in the case of a linear Gaussian state-space, a closed-formed solution exists and is given by
the Kalman smoother, see Chapter 3 and Algorithm 3.2;

� in the nonlinear case however, the analytical computation is infeasible, and numerical ap-
proximations are needed. An in-depth investigation of this task is proposed in [DMS14]. A
standard solution is provided by the class of Sequential Monte Carlo (SMC) methods, which
computes Monte Carlo based empirical averages of the expectations in (6.16).

SMC methods approximate a sequence of target distributions by a set of weighted particles that are
updated recursively, hence the names particle filters and particle smoothing. The idea has been intro-
duced first by [GSS93], and has been extensively studied since. See e.g. [DGA00, GDW04, CGM07,
DJ09] for Monte Carlo smoothing based on particle filters, and [ADST04, KDSM09, WSN08] for
its use for parameter identification of a nonlinear state-space model. More specifically, a maximum
likelihood estimation of a general nonlinear system based on the EM algorithm and particle filter
based approximations is described in [SWN11].

Here, the conditional linearity of the model (6.8) can be exploited in order to improve the particle
filtering and smoothing approximations. The idea is that the computations involving the conditional
linear state α can be carried out analytically, thereby reducing the dimension of the nonlinear state
space. This filtering technique is presented in Section 6.2.2, while its inclusion within the EM
algorithm is explained in Section 6.2.3.

6.2.2 Rao-Blackwellised particle filtering and smoothing

Background on particle filtering and smoothing

This brief overview of the particle filtering and smoothing methods is based on [LBS+16]. For
comprehensive tutorials, see e.g. [GDW04, DJ09, Gus10]. Standard references include [DGA00,
CGM07, DGM+11]. The principle is the following. Given a general nonlinear state-space model of
the form

xt+1 ∼ p(xt+1|xt), (6.17a)

yt ∼ p(yt|xt), (6.17b)

with arbitrary probability density function p, latent state xt ∈ Rnx and observation yt ∈ Rny , a
particle filter (PF) approximates the joint filtering distribution p(x1:t|y1:t) by a set of M1 weighted
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particles {xj1:t, w
j
t}
M1
j=1. Consequently, the joint filtering distribution is represented by the point-mass

approximation

p̂M1(x1:t|y1:t) :=

M1∑
j=1

wjt δxj1:t
(x1:t), (6.18)

where δx( · ) is the Dirac distribution at x. In order to compute this weighted system, the target
distribution is factorized using conditional probabilities and the Markovian properties of the model
(6.17) into

p(x1:t|y1:t) ∝ p(yt|x1:t, y1:t−1)p(x1:t|y1:t−1) = p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1). (6.19)

Since we cannot sample directly from this target, SMC assumes instead that M1 particles are
drawn from a known instrumental (importance) distribution q(x1:t|y1:t). Assuming that the im-
portance distribution factorizes into q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|x1:t−1, yt), the weights wjt
and the particles xj1:t, j = 1, . . . ,M1, are then generated sequentially. xj1:t−1 is sampled from the

previous distribution p̂M1(x1:t−1|y1:t−1) (resampling step), while xjt is sampled from the proposal
q(xt|x1:t−1, yt). The weights wjt are computed such as to account for the discrepancy between the
proposal and target distributions:

wjt :=
p(xj1:t|y1:t)

q(xj1:t|y1:t)
∝ wjt−1

p(yt|xjt )p(x
j
t |x

j
t−1)

q(xjt |x
j
1:t−1, yt)

, (6.20)

where we have used (6.19). Due to the systematic resampling step, we have at time t, wjt−1 = 1/M1,
meaning that it can be discarded in (6.20). The PF is thus a sequential importance sampling
scheme, with resampling. The simplest choice for q is q(xjt |x

j
1:t−1, yt) := p(xjt |x

j
t−1), which leads

to the so-called bootstrap filter [GSS93]. It is a non-optimal choice, because the information from
yt is lost, yet it is commonly used in practice since all the densities are easy to compute and the
weights simplify to wjt = p(yt|xjt ). Finally, note that a representation of the marginal filtering
density p(xt|y1:t) is obtained straightforwardly by marginalization of (6.18), that is by discarding
the past trajectories xj1:t−1.

The smoothing step approximates the distributions p(x1:t|y1:T) for all t = 1, . . . ,T. The first idea
would be to marginalize the joint filtering distribution p(x1:T|y1:T). However, this methods suffers
from path degeneracy: p(x1:t|y1:T) would be approximated by a single particle for t � T, due to
the resampling step in the PF [DJ09]. Several strategies have been designed in order to mitigate
this effect, see e.g. [LS13]. One such strategy is the forward filtering/backward simulation (FFBSi)
algorithm reported in [GDW04], which generates states successively in the reverse-time direction,
conditioning upon future states. It is based on the factorization

p(x1:T|y1:T) = p(xT|y1:T)
T−1∏
t=1

p(xt|xt+1:T, y1:T) (6.21)

of the joint smoothing density. The Markovian properties of the model (6.17) and Bayes’ theorem
yield

p(xt|xt+1:T, y1:T) = p(xt|xt+1, y1:t) ∝ p(xt+1|xt)p(xt|y1:t). (6.22)

93



6.2. RBPS-EM ALGORITHM CHAPTER 6

Hence, using the particle approximation {wjt , x
j
t}
M1
j=1 of the marginal filtering density obtained from

the forward filtering pass (6.18), we obtain the representation

p̂M1(xt|xt+1:T, y1:T) =

M1∑
j=1

wjt|t+1δxjt
(xt), (6.23)

with smoothing weights

wjt|t+1(xt+1) ∝ p(xt+1|xjt )w
j
t . (6.24)

The backward simulation consists thus, given a sample x̃t+1:T of p(xt+1:T|y1:T), into sampling x̃t
from p(xt|x̃t+1:T, y1:T) using (6.23) and (6.24). The scheme is initialized with x̃T sampled from the
point-mass marginal filtering distribution p(xT|y1:T). Repeating the scheme M2 times, we obtain a
collection of backward trajectories {x̃i1:T}

M2
i=1 and a point-mass approximation of the joint smoothing

distribution, according to

p̃M2(x1:T|y1:T) :=
1

M2

M2∑
i=1

δx̃i1:T
(x1:T). (6.25)

Note that we do not need to have M1 = M2. [LS13] discusses the design of these parameters,
advocating M1 > M2, that is more computational effort on the forward pass.

Rao-Blackwellisation

The general FFBSi algorithm may be applied to our nonlinear model in (6.8a)-(6.8c). However,
the tractable substructure in this model may be exploited to improve the performances and ob-
tain better estimates than the PF. Indeed, the linear substructure may be treated analytically,
instead of resorting to a particle approximation. This variance-reduction technique is called Rao-
Blackwellisation, see [DGA00, CGM07] and F. Lindsten’s PhD Thesis [Lin11] for an extensive
treatment of the topic. [SGN05] derives the Rao-Blackwell particle filter (RBPF) for the class of
mixed linear/nonlinear models that includes the model (6.8).

Regarding the filtering pass, the Rao-Blackwellisation exploits the factorization

p(ξ1:t, αt|y1:t) = p(αt|ξ1:t, y1:t)p(ξ1:t|y1:t), (6.26)

with, given the model in (6.8a)-(6.8c),

p(αt|ξ1:t, y1:t) = N (αt; ᾱt|t, Pt|t) (6.27)

for some mean and covariance functions ᾱt|t(ξ1:t) and Pt|t(ξ1:t) and where N ( · ;µ,Σ) denotes gener-
ically the Gaussian density with mean vector µ and covariance matrix Σ. Hence, the PF may be
applied to estimate the nonlinear state joint filtering distribution p(ξ1:t|y1:t) by a weighted system
{wjt , ξ

j
1:t}

M1
j=1, while the moments ᾱt|t(ξ

j
1:t) and Pt|t(ξ

j
1:t) of the conditionally linear state are esti-

mated from a Kalman filter run for each particle ξj1:t. The approximated joint filtering distribution
is therefore

p̂M1(ξ1:t, αt|y1:t) =

M1∑
j=1

wjtN (αt; ᾱ
j
t|t, P

j
t|t)δξj1:t

(ξ1:t). (6.28)

The mean and covariance of the conditionally linear state are obtained analytically by a straight-
forward application of the Kalman filter, since the linear state does not bring information on the
nonlinear state.
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Lemma 6.2.1. For the CLGSS model given by (6.8), the conditional density functions for αt|t−1

and αt|t are

p(αt|y1:t−1, ξ1:t) = N (ᾱt|t−1, Pt|t−1), (6.29a)

p(αt|y1:t, ξ1:t) = N (ᾱt|t, Pt|t), (6.29b)

where

ᾱt|t−1 = fα(ξt−1, ut, θ), Aα(θ)ᾱt−1|t−1, (6.30a)

Pt|t−1 = AαPt−1|t−1A
ᵀ
α +Qα, (6.30b)

and

ᾱt|t = ᾱt|t−1 +Kt(yt − h(ξt)− Cᾱt|t−1), (6.31a)

Pt|t = (I −KtC)Pt|t−1, (6.31b)

St = CPt|t−1C
ᵀ +R, (6.31c)

Kt = Pt|t−1C
ᵀS−1

t . (6.31d)

Proof. See [SGN05].

The particle filtering step, targeting p(ξ1:t|y1:t) is similar to the general scheme previously de-
scribed. The main difference lies into the fact that now p(yt|ξ1:t, y1:t−1) 6= p(yt|ξt), that is the
Markovian property is lost. As a consequence, instead of (6.19), the target distribution is factorized
into

p(ξ1:t|y1:t) ∝ p(yt|ξ1:t, y1:t−1)p(ξ1:t|y1:t−1) = p(yt|ξ1:t, y1:t−1)p(ξt|ξ1:t−1, y1:t−1)p(ξ1:t−1|y1:t−1).
(6.32)

If the importance density is chosen such that it factorizes into

q(ξ1:t|y1:t) = q(ξt|ξ1:t−1, y1:t)q(ξ1:t−1|y1:t−1), (6.34)

then the Rao-Blackwellised weights are

wjt ∝ w
j
t−1

p(yt|ξj1:t, y1:t−1)p(ξjt |ξ
j
1:t−1, y1:t−1)

q(ξjt |ξ
j
1:t−1, y1:t)

. (6.35)

With a proposal density q(ξt|ξ1:t−1, y1:t) := p(ξt|ξ1:t−1, y1:t−1) and a systematic resampling scheme,
(6.35) shrinks down to wjt ∝ p(yt|ξj1:t, y1:t−1). The task is therefore to sample from the density

p(ξt|ξ1:t−1, y1:t−1) and to compute p(yt|ξj1:t, y1:t−1). These densities are normal and given by Lemma
6.2.2.

Lemma 6.2.2. For the CLGSS model given by (6.8), the densities p(ξt|ξ1:t−1, y1:t−1) and p(yt|ξj1:t, y1:t−1)
are given by

p(ξt|ξ1:t−1, y1:t−1) = N
(
fξ(ξt−1), σ2

ξ,t−1

)
, (6.36)

p(yt|ξj1:t, y1:t−1) = N
(
h(ξt) + Cᾱt|t−1, CPt|t−1C

ᵀ +R
)
. (6.37)

Proof. See [SGN05].
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Algorithm 6.1 Rao-Blackwellised particle filter

Inputs: M1, ᾱ0, P̄0, initial distribution pξ0(ξ0).

� Initialize M1 particles ξj0|−1 ∼ pξ0(ξ0), set {αj0|−1, P
j
0|−1} = {ᾱ0, P̄0}, j = 1, . . . ,M1.

� Forward pass: for t = 1, . . . ,T,

1. Compute the importance weights

wjt ∝ p(yt|ξ
j
1:t, y1:t−1), j = 1, . . . ,M1 (6.33)

via Lemma 6.2.2 and normalize.

2. Measurement update of the linear state: use Lemma 6.2.1 to compute ᾱjt|t and P̄ jt|t such

that p(αt|y1:t, ξ1:t) = N (ᾱjt|t, P̂
j
t|t), for j = 1, . . . ,M1.

3. Time update (prediction) of the nonlinear state: for j = 1, . . . ,M1, use Lemma 6.2.2 to
sample ξjt+1|t ∼ p(ξt+1|y1:t, ξ

j
1:t) and set ξj1:t+1 := {ξj1:t, ξ

j
t+1|t}.

4. Time update (prediction) of the linear state: use Lemma 6.2.1 to compute ᾱjt+1|t and

P jt+1|t such that p(αt+1|y1:t, ξ1:t) = N (ᾱjt+1|t, P
j
t+1|t), for j = 1, . . . ,M1.

Output: a particle representation {ξjt , w
j
t , ᾱ

j
t , P̄

j
t }

M1
j=1 of the joint filtering distribution.

Finally, the RBPF consists thus into sampling from the nonlinear state ξ and propagating the
sufficient statistics of the conditionally linear state α. The main steps are sketched in Algorithm
6.1.

Let us focus now on the more challenging smoothing task. Similarly to the general nonlinear case,
the Rao-Blackwellised particle smoother (RBPS) is a FFBSi algorithm, with forward filtering given
by the RBPF. It remains to construct a backward simulator, which samples only the nonlinear state
ξ. The target density is

p(ξ1:T|y1:T) = p(ξ1:t|ξt+1:T, y1:T)p(ξt+1:T|y1:T). (6.38)

If a backward simulator has been run from time T to time t + 1, resulting in a trajectory ξ̃t+1:T,
and sufficient statistics α̃t+1|T, P̃t+1|T of the linear state, the strategy is two-fold:

1. Sampling: append a new state ξj0t to ξ̃t+1:T, where ξj0t is drawn from the collection of particles
{ξj1:t}

M1
j=1 obtained from the RBPF, ξj01:t−1 being discarded. The updated trajectory is then

ξ̃t:T := {ξj0t , ξ̃t+1:T}.

2. Smoothing: update the expressions α̃t|T and P̃t|T of the sufficient statistics of the smoothed
linear state αt.

This scheme is then iterated backward in time until t = 1, while it is initialized at t = T by
resampling from the filtering distribution at time t = T, that is {ξ̃T, α̃T, P̃T} = {ξjT, α

j
T|T, P

j
T|T}

with probability wjT.
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The difficulty is to compute the backward sampling probabilities that generate ξj0t . Such compu-
tations are given in [LBS+16]. Here, we opt for a second option, described in [LS10a], according to
which it is actually easier to sample from the joint distribution

p(ξ1:t, αt+1|ξt+1:T, y1:T) = p(ξ1:t|αt+1, ξt+1:T, y1:T)p(αt+1|ξt+1:T, y1:T). (6.39)

The idea is to sample α̃t+1 from the marginal density p(αt+1|ξ̃t+1:T, y1:T), and then sample ξ̃1:t

from the conditional density p(ξ1:t|α̃t+1, ξ̃t+1:T, y1:T), discard ξ̃1:t−1 and set ξ̃t = ξj0t . The marginal

p(αt+1|ξ̃t+1:T, y1:T) is normal and simply given by:

p(αt+1|ξ̃t+1:T, y1:T) = N
(
αt+1; α̃t+1|T, P̃t+1|T

)
(6.40)

The first factor p(ξ1:t|αt+1, ξt+1:T, y1:T) of (6.39) is approximated using the particle representation
{wjt , ξ

j
1:t}

M1
j=1 obtained from the forward filtering pass. The resulting point-mass approximation

p(ξ1:t|α̃t+1, ξ̃t+1:T, y1:T) =

M1∑
j=1

wjt|Tδξj1:t
(ξ1:t), (6.41)

is given in Lemma 6.2.3. Hence, we have ξ1:t = ξj1:t with probability wjt|T, for j = 1, . . . ,M1.

Lemma 6.2.3. For the CLGSS given by (6.8), the density p(ξ1:t|α̃t+1, ξ̃t+1:T, y1:T) is approximated
by

p(ξ1:t|α̃t+1, ξ̃t+1:T, y1:T) =

M1∑
j=1

wjt|Tδξj1:t
(ξ1:t), (6.42)

where

wjt|T(ξ̃t+1) ∝ wjtp(ξ̃t+1, α̃t+1|ξj1:t, y1:t), (6.43)

and

p(ξt+1, αt+1|ξj1:t, y1:t) = N
((

ξt+1

αt+1

)
; f(ξjt ) +Aᾱjt|t, AP

j
t|tA

ᵀ +Q

)
. (6.44)

Proof. See [LS10b].

Once the sampling step is completed, and a new particle ξ̃t is appended to the nonlinear state
trajectory ξ̃t+1:T, it remains to update the sufficient statistics of the linear state, i.e. to compute
the mean α̃t|T and the covariance P̃t|T. The cross-covariance

Mt|T := cov
{
αtα

ᵀ
t+1

∣∣∣ξ̃t:T, y1:T

}
(6.45)

is also needed in order to compute I2(θ, θ′) in (6.16c). The updating equations are provided by
Lemma 6.2.4.
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Algorithm 6.2 Rao-Blackwellised particle smoother

Inputs: M1, ᾱ0; , P̄0, pξ0(ξ0),M2

� Forward pass: run a forward pass of the RBPF Algorithm 6.1, and store the particles, the
weights and the sufficient statistics for the linear state {ξjt , w

j
t , ᾱ

j
t|t, P

j
t|t}

M1
j=1

� Initialize: Resample M2 particles {ξ̃iT, α̃iT|T, P̃
i
T|T}

M2
i=1 at time t = T, that is with probabilities

wjT, j = 1, . . . ,M1.

� Backward simulation: for t = T− 1, . . . , 1, for i = 1, . . . ,M2

1. Sampling: for each trajectory ξ̃it+1:T and associated sufficient statistics α̃it+1|T, P̃
i
t+1|T,

i = 1, . . . ,M2,

(a) sample α̃it+1 ∼ p(αt+1|ξ̃it+1:N , y1:N ) (6.40);

(b) for j = 1, . . . ,M1, compute wjt|T(ξ̃it+1) using Lemma 6.2.3, and set ξ̃it = ξjt with

probability wjt|T(ξ̃it+1).

2. Smoothing: update the sufficient statistics according to Lemma 6.2.4.

Output: sample trajectories {ξ̃it|T, α̃
i
t|T, P̃

i
t|T}

M2
i=1 approximating the smoothing distribution.

Lemma 6.2.4. For the CLGSS given by (6.8) and under the assumption that

p(αt+1|ξjt , ξ̃t+1:T, y1:T) ≈ p(αt+1|ξ̃t+1:T, y1:T) = N
(
αt+1; α̃t+1|T, P̃t+1|T

)
, (6.46)

the sufficient statistics and the cross-covariance for αt are

α̃t|T = Σj0
t|tWαα̃t+1|T + cj0t|t(ξ̃t+1), (6.47a)

P̃t|T = Σj0
t|t +Mt|T(Wα)ᵀΣj0

t|t, (6.47b)

Mt|T = Σj0
t|tWαP̃t+1|T, (6.47c)

(6.47d)

where j0 refers to the index of the forward filtering particle that corresponds to the appended state
ξ̃t and [

Wξ Wα

]
:= AᵀQ−1, (6.48a)

Σj
t|t := P jt|t − P

j
t|tA

ᵀ
(
Q+AP jt|tA

ᵀ
)
AP jt|t, (6.48b)

cjt|t(ξt+1) := Σj
t|t

(
Wξ(ξt+1 − fξ(ξjt ))−Wαfα(ξjt )) + (P jt|t)

−1ᾱjt|t

)
. (6.48c)

Proof. See [LS10b].

The main steps of the RBPS are sketched in Algorithm 6.2. They are repeated M2 times, in
order to obtain M2 smoothed trajectories.
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6.2.3 Algorithm

Computing the integrals in the Expectation step

Assuming that the RBPS of Algorithm 6.2 has been run, yielding a particle approximation
{ξ̃it|T, α̃

i
t|T, P̃

i
t|T}

M2
i=1 of the smoothing densities p(x1:t|y1:T), it is now possible to evaluate theQ−function

in (6.16). We reproduce here the computations of [LS10a]. Let us start with the term I2(θ, θ′) in
(6.16c). We have

−2 log pθ(Xt+1|Xt) = −2 log pv,θ(xt+1 − f(ξt)−Aαt)
= log |Q|+ (xt+1 − f(ξt)−Aαt)ᵀQ−1(xt+1 − f(ξt)−Aαt)
= log |Q|+ tr

{
Q−1`2(ξt:t+1, αt:t+1)

}
, (6.49)

where we have ignored the constant term in the normal density, and defined `2(ξt:t+1, αt:t+1) :=
(xt+1 − f(ξt)−Aαt)(xt+1 − f(ξt)−Aαt)ᵀ. It follows that

I2(θ, θ′) = −1

2

T−1∑
t=1

Eθ′
[
log |Q|+ tr

{
Q−1`2(ξt:t+1, αt:t+1)

}∣∣Y1:T

]
. (6.50)

Using the RBPS approximation of the smooting densities, the particle-based estimation of the
integral I2(θ, θ′) is

I2(θ, θ′) ' Î2(θ, θ′) := − 1

2M2

T−1∑
t=1

M2∑
j=1

(
log |Q|+ tr

{
Q−1 ̂̀j

2,t

})
, (6.51)

where ̂̀j2,t is an expectation over the α−variable only:

̂̀j
2,t := Eθ′

[
`2(ξ̃jt:t+1, αt:t+1)

∣∣∣ ξ̃jt:t+1, Y1:T

]
(6.52)

Since

E[αtα
ᵀ
t |ξ̃

j
t:t+1, Y1:T] = α̃jt|Tα̃

jᵀ

t|T + P̃ jt|T, (6.53a)

E[αtα
ᵀ
t+1|ξ̃

j
t:t+1, Y1:T] = α̃jt|Tα̃

jᵀ

t+1|T +M j
t|T, (6.53b)

with α̃jt|T, P̃ jt|T and M j
t|T given in Lemma 6.2.4, straightforward calculations yield, with x̃jt :=(

ξ̃jt α̃j
ᵀ

t|T

)ᵀ
,

̂̀j
2,t = (x̃jt+1 − f(ξ̃jt )−Aα̃

j
t|T)(x̃jt+1 − f(ξjt )−Aα̃

j
t|T)ᵀ+ (6.54)

AP̃ jt|TA
ᵀ −

[
0 AM j

t|T

]
−
[
0 M jᵀ

t|TA
ᵀ
]ᵀ

+

[
0 0

0 P̃t+1|T

]
, (6.55)

where the 0’s are matrices of appropriate dimensions.

Similar particle-based approximations are derived for the integrals I1(θ, θ′) and I3(θ, θ′) respec-
tively:

I1(θ, θ′) ' Î1(θ, θ′) := − 1

2M2

M2∑
j=1

(
log |Σ1|+ tr

{
Σ−1

1
̂̀j
1,t

})
(6.56)
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and

I3(θ, θ′) ' Î3(θ, θ′) := − 1

2M2

N∑
t=1

M2∑
j=1

(
log |R|+ tr

{
R−1 ̂̀j

3,t

})
, (6.57)

where

̂̀j
1,t :=Eθ′

[(
x1 − x1|0

) (
x1 − x1|0

)ᵀ∣∣ ξ̃j1, Y1:T

]
(6.58)

=
(
x̃1|T − x1|0

) (
x̃1|T − x1|0

)ᵀ
, (6.59)

with, following (6.10), x1|0 :=
[
ξ1|0 α1|0

]ᵀ
, and

̂̀j
3,t :=Eθ′

[(
yt − h(ξ̃jt )− Cαt

)(
yt − h(ξ̃jt )− Cαt

)ᵀ∣∣∣ ξ̃jt , Y1:T

]
(6.60)

=
(
yt − h(ξ̃jt )− Cα̃

j
t|N

)(
yt − h(ξ̃jt )− Cα̃

j
t|T

)ᵀ
+ CP̃t|TC

ᵀ. (6.61)

Finally, the particle-based approximation of the Q−function (6.16) is

Q̂(θ, θ′) = Î1(θ, θ′) + Î2(θ, θ′) + Î3(θ, θ′), (6.62)

where Î1(θ, θ′), Î2(θ, θ′) and Î3(θ, θ′) are respectively given by (6.56), (6.51) and (6.57). This
concludes the Expectation step of the EM algorithm.

Initialization

In order to facilitate the convergence of the algorithm, we use as initial value a naive estimation
of the open-loop R3C2 network, with solar radiation Qs ≡ 0 as a deterministic input. This first
estimator is computed using Algorithm 3.1 described in Chapter 3. Hence, the three main steps of
the overall estimation procedure, sketched in Algorithm 6.3, are:

1. learning of the high variance increments with a `1− penalized criterion;

2. naive estimation of θ with Qs ≡ 0;

3. estimation of θ starting from the naive estimator and using the RBPS-EM algorithm.

6.3 Numerical illustration

6.3.1 Simulated data

Validation procedure

The method described in this chapter is tested on several one-week datasets. The data are
generated according to the procedure described in Chapter 2. In particular, meteorological records
from November 2015 to January 2016 are used, as well as free internal gains corresponding to an
office building. We use 200 iterations of Algorithm 6.3, with M1 = 30 and M2 = 10 particles
for the forward filtering and backward smoothing, respectively. The number of particles is limited
by the computing time: it typically requires around an hour and a half to run the 200 iterations
with M1 = 30 and M2 = 10 on a laptop with an IntelCore i7 2.80Ghz processor - while the
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Algorithm 6.3 EM for R3C2 with undirectly observed solar flux

Inputs: M1,M2, observed series {∆To(t), ϑo(t), Ti(t), Qr(t)}Tt=1.

1. Estimate the series of variances of the dynamics of the nonlinear state (6.6).

2. Initialize the parameters to θ0 and set k = 0, where θ0 is the standard open-loop estimator of
the R3C2 network with obtained by setting Qs ≡ 0 in Algorithm 3.1.

3. E-step:

(a) smoothing: run the RBPS Algorithm 6.2 under the hypothetised model θ = θk and store
the particles and the sufficient statistics for the linear state;

(b) approximate the Q−function, using

Q̂(θ, θk) = Î1(θ, θk) + Î2(θ, θk) + Î3(θ, θk), (6.63)

with Î1(θ, θk), Î2(θ, θk) and Î3(θ, θk) respectively given by (6.56), (6.51) and (6.57).

4. M-step: compute θk+1:

θk+1 = arg max
θ
Q̂(θ, θk). (6.64)

5. If convergence is reached, terminate, otherwise set k ← k + 1 and return to step 3.

Outputs: estimated R3C2 parameters θ̂, smoothed trajectories of the solar flux.
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initial estimation θ0 is obtained in around one minute and a half with the same machine. The
Maximization step is carried out with Matlab’s routine fminunc, based on the BFGS quasi-Newton
method. Moreover, we choose fixed values qη = 0.15 and rη = 0.15, and estimate only the σt’s
at the first step of the algorithm. This procedure is repeated 85 times, with the same set of true
parameters but different weather conditions. In order to evaluate the benefits of our approach, we
compare the estimated θ̂ obtained by the end of Algorithm 6.3 to the initial value θ0 as well as
an ARX model of order 2, both being representative of standard approaches of the literature with
unobserved solar radiation.

Smoothed solar flux

We check first that the smoothed solar flux, estimated once Algorithm 6.3 has converged, is
consistent with the (actually hidden) observations. The accurate smoothed trajectory of the hidden
state η as well as the location of the high variance increments, shown in Figure 6.5 (top line)
validates the state-space model (6.4)-(6.5). This smoothed trajectory is computed as the average of
the M2 = 10 backward trajectories of the RBPS. However, the estimation of the solar flux (Figure
6.5, bottom line) is less accurate, with a slight overestimation and an average root mean square error
of 0.29 over all the particle trajectories. Nevertheless, the estimated dynamic trajectory reproduces
the periods of low and high intensities of the solar radiation. This confirms that higher values of
the outdoor temperature bias ∆To are indeed caused by higher values of the solar flux.

Moreover, this error on the solar flux is the combination of several errors: the estimation errors
as well as the modelling errors in (6.1), (6.2) and (6.3). In particular, the physical model (6.1)
of the solar radiation is among the simplest in the literature. Its advantage is that it is based
on the geographical and time coordinates of the building location only, which are easily obtained
data. Hence, despite its simplicity, the model still provides a good approximation of the solar gains
entering into the building, and supports our approach.

The comparison to standard algorithms and models developed in the literature is made difficult
due to the dissimilarities in the experimental conditions. Indeed, as highlighted in the introduction
to this chapter, most of the literature is devoted to the problem of predicting future values of
the solar radiation based on past measurements, while we do not measure the solar flux at all.
However, the problem addressed in [OS14] is somewhat similar to our context. This paper aims at
estimating the hourly solar radiation during long-term missing gaps in the measured series, with the
application to building performance simulation as a motivation. Their results vary with the length
of the missing gaps. For a gap of five days, the best technique is the singular spectrum analysis,
achieving normalized root mean squared errors (NRMSE) varying in the range 30.83%-70.35%
between November and February in Oklahoma City North (Oklahoma, warm and humid climate),
where the NRMSE is the RMSE normalized by the mean of the observations, and is furthermore
averaged on a monthly basis. For a gap of ten days however, the NRMSE varies between 49.98%
and 78.91%, where their best algorithm is the temperature-based approach.

On the other hand, the NRMSE obtained with the algorithm suggested in this chapter, and
averaged over the all the particle trajectories at time-step 10 minutes is 67.56%. When aggregating
the series at the hourly time-step used in [OS14], the averaged NRMSE is 56.43%. Note that
when only the diurnal data are taken into account in the computation, the average NRMSE is then
35.14%. Although the regions and climate differ, this value compares rather well with [OS14], which
further validates the model.
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Figure 6.5: From top to bottom, examples of smoothed trajectories of ∆To, three-day zoom,
smoothed trajectories of the solar flux, three-day zoom. The vertical lines locate the estimated
high variance increments.
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Table 6.2: Estimated parameters with twice their standard errors for the naive method (θ0), RBPS-
EM (Algorithm 6.3, θ̂) and an ARX model of order 2. 85 experiments, of which 5 outliers are not
taken into account for the naive estimator, 6 for RBPS-EM.

True value Naive estimator RBPS-EM (Alg. 6.3) ARX

UA 0.370 0.354± 0.083 0.367± 0.021 0.326± 0.025
g 0.400 0.376± 0.338 0.390± 0.162 -
τ1 41.4 37.9± 26.3 33.0± 17.6 5.8± 1.3
τ2 3.6 4.5± 1.6 3.8± 0.4 0.20± 0.15

Accuracy of the estimates

The estimations of the four physical parameters of the R3C2 network (heat loss coefficient UA,
solar transmission g, slow and fast time constants τ1 and τ2) are summarized in Table 6.2 and Figure
6.6. Figure 6.7 shows that the convergence of the EM algorithm is reached by the end of the 200
iterations. We observe first that θ̂, the output of Algorithm 6.3, yields a significant reduction of the
variance of the estimation of the four physical parameters, compared to the naive estimation θ0. The
estimations of UA and of the fast time constant τ2 are thus much more accurate. This emphasizes
the importance of including the Rao-Blackwellisation within the particle filters and smoother, in
accordance with the experimental results in [LS10a]. Besides, our method reduces also the bias on
g, consistently with its physical interpretation as the proportion of the solar flux transmitted inside
the building. This illustrates the benefits of learning the dynamics of the solar flux. Finally, the
slow time constant τ1 is underestimated, although θ̂ provides the correct order of magnitude. This
bias may be partly explained by the length of the training dataset, i.e. seven days only whereas the
numerical simulations in Chapter 3 show that adding a few more days significantly improves the
estimation.

Furthermore we simulated the indoor temperature and heating power on a test dataset, with the
85 estimations of the R3C2 network. The temperature is simulated in closed loop, with parameters
of the regulation set to their true values. The simulated trajectories, and the one obtained with
the true parameters, are displayed on Figure 6.8. The predicted power in Figure 6.8(a) has a
normalized RMSE ranging between 4.9% and 17.8%, with an average of 7.9%, while the absolute
error on the energy consumption lies between 0.2% and 13.8%, with an average of 3.8%. The
temperature trajectories are in closer agreement, even for the less accurate parameter estimations.
The RMSE ranges between 0.16◦C and 0.82◦C, with an average of 0.26◦C, corresponding to a
normalized RMSE’s of 0.9%, 4.8% and 1.4%, respectively.

The results of Algorithm 6.3 are also compared in Table 6.2 to a state-of-the-art identification
model, an ARX model. Such a model has been used for instance in [JMA08, HGP12] and in
[MCPF10] for benchmarking. For a fair comparison with the R3C2 network, we choose a model
of order 2, such that two time constants can be computed from the poles of the model. The auto-
regressive output is the indoor temperature, while the exogenous inputs are the outdoor temperature
ϑo, the heating power Qr, the outdoor temperature bias ∆To and the clear-sky radiation Qclr. Hence,
the model is identified from the same dataset as θ̂. The orders with respect to the exogenous inputs
are set to 2, as in [MCPF10, HGP12]. The parameters of the resulting ARX(2,2,2,2,2) model are
estimated by minimization of the one-step ahead prediction error, using ordinary least squares.
In addition to the two time constants, a heat transfer coefficient can also be computed from the
identified ARX representation, see e.g. [JMA08]. However, the solar transmission g cannot be
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Figure 6.6: From left to right, top to bottom: boxplots on 85 experiments of the estimated UA,
solar transmission, slow and fast time constants, with true values as horizontal dashed lines. Left
boxes of each plot are for the naive estimator, right for Algorithm 6.3.
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Figure 6.7: From top to bottom, estimation of the heat loss coefficient UA, the solar transmission g,
the slow and fast time constants τ1 and τ2, as a fonction of the number of iterations of the RBPS-EM
algorithm. Each line represents one of the 85 estimations. The true values are the horizontal black
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Figure 6.8: Closed loop simulation of the heating power (top) and the indoor temperature (bottom)
with the true (red) and the 85 estimated (grey) parameters, on a test set with meteorological data
from BESTLab and true regulation parameters.

computed, since the solar radiation is not measured.

Table 6.2 shows that the estimator based on Algorithm 6.3 largely outperforms the ARX model.
Indeed, the ARX model can approximate the UA coefficient, but largely underestimates the time
constants of the building. This confirms the relevancy of reconstructing the dynamics of the solar
flux from the observation of the outdoor temperature bias, rather than using a black box model
such as an ARX. These numerical experiments support thus the idea that a simple way to reduce
the implementation cost of building identification algorithms consists in replacing the pyranometer
by a cheap outdoor temperature sensor exposed to the sun. In the next section, we analyze the
performance of Algorithm 6.3 on real data from the BESTLab experiment described in Section
2.2.1.

6.3.2 BESTLab data

Algorithm 6.3 is also tested with BESTLab data, with parameters tuned identically to those for
the simulated dataset: 200 iterations, M1 = 30 particles for the forward filtering step, M2 = 10 for
the backward smoothing, 7 days of data. The sheltered temperature sensor is located at climate
station ETNA, whereas the sun-exposed sensor is alongside the southern or western cell (see Table
2.2). We repeated 35 independent estimations for the southern and western cells, each of them with
a random excerpt of BESTLab data.

The convergence of the four physical parameters is shown in Figure 6.9 for the southern cell.
More experiments are necessary before drawing unequivocal conclusions, yet the findings agree
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Table 6.3: Estimated parameters with twice their standard errors for the naive method (θ0) and
RBPS-EM (Algorithm 6.3), for BESTLab’s cells, with 35 experiments for each cell.

Southern cell Western cell

Naive estimator RBPS-EM Naive estimator RBPS-EM

U 0.847± 0.182 0.986± 0.049 0.920± 0.252 1.016± 0.066
g 0.738± 0.406 0.607± 0.200 0.682± 0.443 0.596± 0.270
τ1 75.9± 46.8 43.4± 13.3 71.4± 37.5 47.9± 17.4
τ2 13.5± 9.8 7.5± 5.8 14.6± 8.2 9.6± 6.9

already with those of the simulated dataset. In particular, the naive estimator give plausible but
much widespread estimates. On the contrary, the RBPS-EM estimations converge also to plausible
values, but within narrower intervals (see also Table 6.3). For instance, the 35 estimated heat loss
coefficients U converge to values within the bounds of the error bars in Figure 3.8. These results
are all the more promising given that there are only 7 days of data in the learning sets.

The smoothed trajectories of the solar flux are not shown, since the environmental data also are
identical to those used in the previous section: we obtain plots similar to those already displayed in
Figure 6.5. Finally, the same conclusions can be drawn from Table 6.3 for the identification of the
western cell, with sun-exposed temperature sensor alongside this cell. This illustrates the fact that
the method can be used regardless of the orientation of the glazed wall, and not only for southern
facades. The advantage of our method is therefore that it is very local, corresponding as much as
possible to the microclimate of the building.

6.4 Summary

In this chapter, we have proposed a new model and learning algorithm such that it is not necessary
to measure directly the solar radiation. The motivation was that local solar radiation measurements
are most of the time missing for an energy utility. On the contrary, our approach is based on the
availability of two measurements of the outdoor temperature, respectively with a sheltered and an
exposed sensor. These measurements are easy to obtain for utilities. Hence, the main hypothesis
is that the difference between the two measurments, called outdoor temperature bias, replaces the
observation of the solar flux. The identification procedure is adapted consequently, by appending
an ad hoc ”meteorological” model to the R3C2 building model. This meteorological model links
the solar radiation to the outdoor temperature bias by means of a simplified physical solar flux
model, a cloud cover correction, and an ad hoc mapping of the outdoor temperature bias to the
cloud cover index. This forms globally a conditionally linear Gaussian state space model, whose
identification may be performed by a state-of-the-art algorithm, the Expectation-Maximization with
Rao-Blackwellised Particle Smoothing.

The numerical evaluation of the model, both on simulated and real data, shows that it is
possible to retrieve the received solar flux, at a time-step of 10 minutes, with a reasonable accuracy.
Besides, the algorithm allows a good estimation of the physical constants of the building model,
with a reduced bias and variance. Its limiting aspect is the computational time, although the code
written in this work did not optimize it. It is in particular possible to execute the code on parallel
workers for the time-consuming particle filtering.

Because thermometers are much more affordable and easily deployed than pyranometers, we
believe that this chapter supports the idea that the microclimate of any given building may be
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Figure 6.9: Estimation of (a) the heat loss coefficient U , (b) the solar transmittance g, (c) the slow
time constant τ1, (d) the fast time constant τ2, for BESTLab Southern cell, as a fonction of the
iterations of the RBPS-EM algorithm. Each line represents one of the 35 estimations. Left squares
denote the naive estimation θ0 (iteration = 0), right squares (iteration = 200) θ̂ obtained with
RBPS-EM.
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accessed in this convoluted manner, while not deteriorating the process of building identification.

110



Chapter 7

Uncertainty on the heating load curve

This chapter is devoted to the last input of the R3C2 building model, namely the heating power.
The deployment of the smart electricity and gas meters - for instance, 35 millions of them are
to be installed in France by 2021 for the electricity, 11 millions by 2022 for the gas, whereas a
complete rollout is expected by the end of 2020 for the United Kingdom - makes it reasonable to
assume that an energy utility has access to the measurement of the overall energy consumption
of a given building, at a dynamic time-step typically less than an hour. However, the open-loop
identification of the R3C2 model described in Chapter 2 requires more especially the extraction
from this total load curve of the consumption attributable only to the specific loads that contribute
to heating. Equivalently, this means that the measured total load curve contains non-heating loads
that must be discarded, i.e. substracted from the initial measurement. Hence, the quantity of
interest remains hidden. Nevertheless, the total load curve constitutes at least an upper bound.
Besides, the metabolic heat gains due to the occupancy of the building are not measured at all,
whereas they should also be taken into account for the identification.

In this context, the problem of building identification seems difficult to solve without any addi-
tional information about the building. As previously stated in the Introduction to this thesis, the
idea developed in this chapter consists thus into considering the more specific case of a connected
building, that is to say a building equipped with connected objects. Moreover, the main assumption
is that the energy utility has an access to the information supplied by these connected objects. Our
purpose is therefore to use these information to help reduce the uncertainty on the actual heating
power, which we call the useful load. Note that how the utility obtains these information in practice
goes beyond the scope of the thesis, and is not discussed furthermore.

Consequently, the first task is to characterize more precisely the connected objects of the build-
ing. In the following Section 7.1, we establish a typology and review the information provided by
the connected objects. This typology helps us formulate a set of work hypotheses, consistent with
the current technology. Then, the resulting mathematical model is described in Section 7.2. Before
evaluating numerically the model in Section 7.4, a new data generating process is introduced in
Section 7.3. Indeed, the former dataset used in Chapters 3 to 6 contains only heating loads, which
is unfit for this chapter. Section 7.3 presents thus a method for generating stochastic domestic load
curves, with appliance specific consumptions including heating and non-heating loads.
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7.1 Characterization of the connected objects

7.1.1 Typology

In this section, we review the loads that contribute most to the total electric energy consumption,
in a domestic building. Our purpose is to characterize the information that smart or connected
versions of these appliances bring - or would be likely to bring in a near future - for improving
the observation of the thermal behaviour of the building. The loads are categorized depending on
whether or not they contribute to heating.

Heating loads

Heaters The heating system represents most of the load curve during winter times. For instance,
heating represented an average of 61% of the total consumption during an experiment carried out
internally at EDF R&D over 22 dwellings. Moreover, an electrical heater requires a maximum
power that ranges typically between 500 W and 2000 W. This explains why in the absence of
any information and as a first approximation, the measured aggregated load curve may be seen as
contributing entirely to heating, and is thus used as input of the R3C2 building model.

In France, about a third of the housing market is dominated by the electrical heaters (CEREN
2014), which we focus on from now on. A typical connected solution already on the market provides
the daily consumption of the heaters, together with a measurement of the indoor temperature.
However, it is not clear whether this daily consumption is actually measured, or if it is estimated
by the heater. This underlying uncertainty of the information provided by the connected object
is shared by many other devices. From an internal test at EDF R&D, it seems nevertheless that
these consumptions are accurate. Unfortunately, the daily consumption does not say much of the
fine-grained consumption that would be representative of the power regularly injected during the
day. Hence, this fine-grained consumption remains hidden, although it is necessary for identifying
a dynamic thermal model with a 10-minute resolution.

Refrigerator, oven Although couterintuitive at first sight perhaps, we consider that both the
refrigerator and the oven contribute to heating. As a first approximation, we suppose that the
heat gains of these two appliances amount to their respective electrical consumptions. Typical
one-day load curves for the refrigerator and the oven are shown in Figure 7.1, top left and center
plots respectively. These data come from an experiment performed at EDF R&D, in an actual
dwelling. As can be seen from these plots, both appliances represent non-negligible heat gains in
this approximation: the refrigerator through a cyclic component including a peak and a low plateau,
the oven through occasional high peak values.

The development of connected refrigerators and ovens aims mainly at providing remote moni-
toring and control to the user. For instance, a typical solution allows one to control the internal
temperature and functioning mode of both appliances, via an application. Nevertheless, the actual
temperature is not necessarily returned to the user. One additional feature is a feedback on the
daily consumption of the appliance. However, as of today, this feedback takes the form of discrete
levels: either low, medium or high. Furthermore, internal tests at EDF R&D showed that these
consumptions were inaccurate, thereby indicating that the technology is not ready yet.

Lighting The weight of lighting in the total load curve is admittedly low, with power ratings
ranging from 10W for a LED lamp to 100W and more for incandescent lamps. However, lighting
represents a use with strong repetability, typically several hours everyday during the heating season.
A typical one-day measurement of the lighting units in a given dwelling is shown in Figure 7.1,
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top right plot. We can consider that lighting contributes to heating, whatever the underlying
technology. Moreover, we may assume that the heat generated by the lamp amounts to its total
electrical consumption.

There are already some connected lights on the market. For instance, a standard solution
typically integrates a wireless lighting system and smart controls via an application. Another
way of having a connected lighting system is to install a (wireless) relay and integrate it in a
home automation system (see e.g. EnOcean products, similarly to our experiment at BESTLab).
However, both solutions do not make available the electrical consumption of the lamps, which is
the quantity of interest.

Computers, TV apparatus,... We assume that various electronic appliances such as a tele-
vision, a computer, etc. contribute to heating. It seems unlikely however to have access to any
information related to their consumption or use.

Occupancy Finally, the last main source of heat inside a building is linked to the occupancy
itself, with the metabolic heat gains emitted by each human being. These gains depend on the
ongoing activity of the person, but we may first assume a constant gain of 50 W per person on
average. This free heat gain depends then solely on the number of occupants of the building. Yet,
estimating this number is a difficult task, and much research effort is devoted to this problem. The
generic approach consists in choosing a set of on-site sensors, selecting the relevant features, and
then training a classifier from real experiments, before evaluating and validating its performances.
The task can either be the estimation of the number of people in a given room, or the separation
between two states of the room, namely unoccupied and occupied. As an example, an entire line of
work consists in infering the occupancy from a set of connected environmental sensors. For instance,
[AAP+16] suggests to combine several sensors such as CO2 concentration sensors, motion detection
and power consumption, in order to robustly infer the number of occupants. Most methods in the
literature have in common a supervised learning approach for solving this problem. This means
that the real occupation of the room has to be recorded for some time, either via video recording,
questionnaires, etc.

Non-heating loads

Hot water tank The consumption of the hot water tanks is a significant part of the aggregated
load curve, but it does not represent a heat gain for the building, since in the end, the water is
drained away. It is therefore necessary to have an estimation of this consumption, in order to
substract it from the main load curve.

The first connected versions of the domestic hot water tanks on the market provide the user
with a feedback on the daily consumption: the fine-grained consumption is still unavailable. The
context of smart electric hot water tanks (EHWT) is studied more thoroughly in N. Beeker-Adda’s
thesis [Bee16]. In the latter reference, it is suggested that a ”smart EHWT” should embed a flow
meter and means for measuring and recording the injected power. However, such appliances are
not available yet on the market.

As of today, it seems therefore difficult to specify the information a smart EHWT would bring.
However, at a dynamic time step, the shape of the EHWT load curve is very specific: it is a rectangle
of constant height equal to the nominal power. A typical load curve from individual housing is
given in Figure 7.1, bottom left plot. This plot highlights the fact that the EHWT represents a
non-negligible electric consumption, both in magnitude and frequency, which strenghtens the need
for estimating it. Moreover, given the strong repetability of the draining patterns, which may in
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Figure 7.1: Typical domestic non-heating load curves at sampling time one second. From left to
right, top to bottom: refrigerator, oven, lighting, electric hot water tank, washing machine, dish
washer.

particular be synchronised with the electricity price signal, some algorithms have been designed
internally at EDF R&D to successfully identify these consumptions, both in residential and office
buildings. At sampling time 10 minutes, the HWT consumption presents more spikes, but some
algorithms are also emerging, see e.g. [BdSACM16]. These algorithms should be even more efficient
for those houses using both gas and electricity as energy vectors, since in such cases the gas meter
measures the consumptions related to space heating and domestic hot water heating only, whereas
the remaining loads are measured by the electricity meter.

We might therefore assume that even if no smart EHWT exists yet, an accurate estimation of
the consumption is available in practice.

Washing machine, dish washer Washing machines and dish washers do not represent a heat
gain in buildings, since the water is drained away, similarly to the hot water tank. Moreover, as
shown in Figure 7.1, bottom center and right plots, these loads are also non-negligible, with nominal
power of magnitude greater than 1 kW. Their use is also regular, with at least one use per week
(depending on the family size). Connected washing machines and dish washers are emerging on
the market. They essentially provide monitoring functions and remote control. Yet, no fine-grained
consumption seems to be available at the moment. Furthermore, unlike the hot water tank, the
electric consumption of the washing machine has different levels, as shown in Figure 7.1 (bottom
center plot), corresponding to several functioning cycles. Extracting its consumption from the total
load curve is therefore more challenging, and not discussed here. The random occurrence of starting
times of the dish washer makes it also difficult to extract the related consumption.
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Hybrid loads

Mechanical ventilation The ventilation in buildings is either natural (opening windows) or
mechanical (driven by fans). We are interested here in the latter form. There are three types
of mechanical ventilation: supply-only (not discussed here) / extract-only / supply and extract
(balanced). In the extract-only case, the fan draws the air from the indoor spaces, whereas fresh
air enters naturally through the openings in the building envelope. The extracted air represents
a thermal loss that is accounted for separately in the model (not in the load curve but with the
infiltrations instead), which means that it is not equivalent to a cooling system. We may thus
consider that the measured consumption of the fan does not contribute to heating and has to be
substracted from the main load curve. On the other hand, a balanced ventilation system uses a
supply fan and an exhaust fan, both fans moving similar volumes of air, i.e. having the same power
demand. The system includes moreover the possibility of heat recovery, with an exchanger (the
extracted indoor air heats the supplied air). In that case, we may assume that the supplied air is
at the same temperature as that of the indoor air. Consequently, the consumption of the extract
fan needs to be substracted from the total load curve, but that of the supply fan may be considered
as a heat gain, and kept in the total load curve. Therefore, half the consumption of the balanced
ventilation system should be substracted from the total load curve.

Regarding the impact of the associated consumption, the power ratings range typically from
10W to less than 100W, depending on the speed of the fan. The ventilation system is a permanent
use, but its load curve shows variability due to the variations of the speed of the fan. However, no
”smart ventilation” system, able to report its consumption or functioning times for instance, seems
to be available at the moment. Besides, from a practical point of view, we note that whenever the
building is a block of flats, the consumption of the mechanical ventilation is not included in the
counter of the flat, but in a counter common to the block instead.

Other connected objects

For the sake of completeness, let us mention three other objects that may bring information about
the thermal state and energy consumption of the building.

� The recent development of connected plugs makes it possible for one to measure the specific
consumption attached to a given plug. Although not generalizable to each and every plug of
a building, because of the cost and the related privacy issues, it may be possible to monitor
at least a specific appliance, such as a radiator for instance.

� There exist also connected window/door contacts such that it is possible to monitor the
state (open vs closed) of any window or door inside the building. This opens the possibility
to study time-varying models, instead of the time-invariant R3C2 network. See for instance
the model suggested in [SBPW16].

� Finally, the smartphone is the most widely spread connected object. It may provide informa-
tion about the position of the user, and serve as an interface between the different connected
appliances of a building.

7.1.2 Main hypotheses

The hypotheses for taking into account the connected objects into the building identification
framework are built from the above typology. First of all, we consider a building whose energy vector
is exclusively gas and/or electricity, heating oil being therefore excluded. Secondly, the typology
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shows that the current state of development of the technology does not allow one to assume that
the non-heating loads are precisely known at each time, at a non-prohibitive cost. However, a more
reasonable hypothesis would be to have access to a timeline of events. More particularly, we have
seen that most non-heating loads are recurring and irregular loads, rather than permanent base
loads. Hence, these loads may be first characterized by the time instants at which they are switched
ON and OFF. The main hypothesis consists thus in assuming that the energy utility has access to
this timeline of events. The global set of hypotheses used in this chapter is formulated below.

Observation with connected objects - main hypotheses

(H1) The aggregated total load curve Q is available at a dynamic resolution.

(H2) A timeline of events, specifying at which instants a non-heating load is either
switched ON or OFF, is available.

(H3) The specific consumption of the hot water tank is either measured or accu-
rately estimated.

(H4) The occupancy schedule and the metabolic heat gains are unknown.

(H5) The indoor and outdoor temperatures Ti
1and ϑo and the solar gains Qs are

accurately measured.

(H6) The setpoint temperature Tr is also known.

(H7) The maximum power Qmaxh of the installed heating system is known.

7.2 Estimation procedure

7.2.1 Notations

Given the aforementioned hypotheses, we derive now an estimation procedure of the R3C2 net-
work. Let us introduce some notations first. The measured total load curve, denoted Q, is at every
moment the sum of the contributions of the useful heating loads Qu and of the non-heating loads
Qnh. The useful load Qu is the sum of two contributions, namely the regulated heating system,
denoted Qh, and the uncontrolled free heating gains, denoted Qfg. Finally, the resulting heating
power Qr is the sum of the useful load Qu and of the metabolic heat gains Qm. Consistently with
the notation used in the rest of this thesis, Qr is thus the input of the R3C2 model. Hence, we
observe Q while the quantity of interest is Qr. Assuming that Q is measured between the time
instants t0 and tf , t0 < tf , we have the relationships:

∀t, t0 ≤ t ≤ tf ,


Q(t) = Qu(t) +Qnh(t),
Qu(t) = Qh(t) +Qfg(t),
Qr(t) = Qu(t) +Qm(t).

(7.1)

1Remainder: Ti is the noisy observation of the model indoor temperature ϑi, ϑo is the model outdoor temperature.
See Figure 2.1.
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Figure 7.2: Measured total load curve and timeline of non-heating events. The non-heating events
appear in light grey.

Let then χnh be the indicator function of the non-heating events:

∀t, t0 ≤ t ≤ tf , χnh(t) =

{
0 if Qnh(t) = 0
1 if Qnh(t) > 0

. (7.2)

χnh is thus piecewise constant on the time interval [t0, tf ], as examplified in Figure 7.2 on simulated
data - see Section 7.3 for the description of the data generating process. Considering that the
continuous interval [t0, tf ] is discretized in T instants {ti}Ti=1, with t1 := t0 and tT := tf , {ti}Ti=1 is
the disjoint union I0 t I1 of two sets such that

I0 := {ti, i = 1, . . . ,T|χnh(ti) = 0} =

n0⊔
j=1

I0j , (7.3)

I1 := {ti, i = 1, . . . ,T|χnh(ti) = 1} =

n1⊔
j=1

I1j , (7.4)

with n0 +n1 = T and where each I0j (respectively I1j) is a set of consecutive instants for which the
measured load curve contributes entirely (respectively not entirely) to heating. More particularly,

we write for all 1 ≤ j ≤ n0, I0j = {tk}
kj+lj−1
k=kj

, where kj (resp. lj) is the first instant (resp. total

number of consecutive instants) included in I0j .

7.2.2 Overview of the algorithm

The estimation procedure is as follows. The first step consists in estimating the parameters θ of
the R3C2 network from the data for which the measured load curve contributes totally to heating.
This means that the EM algorithm described in Chapter 3 is adapted to the data corresponding to
the time instants included in I0. Let θ̂1 denote this estimator. In parallel with the estimation of
θ̂1, we suggest as a second step to estimate the parameters η of the regulation model of the heating
power Qh. n0 estimators η̂(j), j = 1, . . . , n0 are build, where each η̂(j) is computed exclusively
from the measurements during the time interval I0j , respectively. This step results thus in a set
of estimators of the regulation sub-system. There are actually K ≤ n0 estimators η̂(k) in this set,
because time invervals I0j with small amounts of data are not taken into account.
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1 Learn θ̂1 2 Learn η̂(k)

3 Select η̂1

4 Simulate T̂i, Q̂u

5 Compare Qu and Q̂u, Ti and T̂i

6 Termination test

7 Update θ̂1

END

no

yes

Figure 7.3: Flowchart of the learning procedure with an aggregated load curve.

The third step involves the selection, in some sense, of the ”best” estimator η̂1 amongst the
η̂(k), k = 1, . . . ,K. This selection procedure depends also on the estimator θ̂1. Indeed, the indoor
temperature being by hypothesis accurately measured at all times, the candidates η̂(k) are tested by
simulation of the indoor temperature of the building and comparison to the actual measurements.
This simulation depends thus on the estimation θ̂1 of the R3C2 network.

Then, the indoor temperature and heating power are simulated in closed loop from the parame-
ters (θ̂1, η̂1). We compare the simulated trajectories of the indoor temperature and useful load with
the observed ones. If this comparison satisfies a certain test, the algorithm ends with (θ̂1, η̂1) as
the estimators of the building model. Otherwise, we suggest to update θ̂1, and then η̂1, and repeat
until satisfaction of the termination criterion.

A flowchart recapitulating this algorithm is given in Figure 7.3, whereas the different steps are
described in detail in the next section.

7.2.3 Detailed description

Step 1/7: first identification of the R3C2 network

For each time interval I0j , j = 1, . . . , n0 during which it is known that the measured load curve
contributes entirely to heating, the inputs (heating power, solar gains, outdoor temperature) and
output (indoor temperature) of the building model are supposed to be deterministic, i.e. known with
certainty. This means in particular that the effect of the metabolic heat gains is neglected. Hence, we
are in the standard case of a linear Gaussian state space model, and we may apply straightforwardly
the EM equations, as in Chapter 3. More specifically, if xI0j := {xk|k = kj , . . . , kj + lj − 1}, and
yI0j := {yk|k = kj , . . . , kj + lj−1} denote respectively the hidden states and observed output during
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the time interval I0j , the complete data log-likelihood reads

−2 lnLj,θ(xI0j , yI0j ) = ln |Σ0j |+ (x0j − µ0j)
ᵀΣ−1

0j (x0j − µ0j)

+ lj ln |Q|+
kj+lj−1∑
t=kj

(xt −Axt−1 −But)ᵀQ−1(xt −Axt−1 −But)

+ lj ln |R|+
kj+lj−1∑
t=kj

(yt − Cxt)ᵀR−1(yt − Cxt), (7.5)

and the associated cost is E
[
−2 lnLj,θ(xI0j , yI0j )

∣∣ yI0j]. See Algorithm 3.2 for solving this E-step.

Adding the n0 contributions, the estimator θ̂1 of the R3C2 network is found by minimizing the total
cost J1(θ), where

J1(θ) :=

n0∑
j=1

E
[
−2 lnLj,θ(xI0j , yI0j )

∣∣ yI0j] . (7.6)

Estimating the parameters θ is thus very similar to the standard case, except that we need to apply
the Kalman smoother n0 times (with data of length lj instead of T). The minimization step can be
achieved with a standard unconstrained optimization solver, such as fminunc from Matlab.

Step 2/7: build a set of PI estimators

We consider a regulation model of the indoor temperature that takes the form of a Proportional-
Integral (PI) controller with saturation at 0 and Qmaxh and anti-windup strategy, where Qmaxh is
the limiting power of the heating system. In the following, it is assumed that Qmaxh is known, as
well as the anti-windup gain. It remains thus to estimate the gain zK and the time constant τ of
the PI controller. To do so, we consider each interval I0j , j = 1, . . . , n0 separately. Eliminating
those intervals that contain less than 2 hours of data, the remaining intervals are re-labeled I0k, k =
1, . . . ,K0 for some K0 ≤ n0. For the time instants included in each I0k, the measured load curve
contains only heating loads. However, the proportion of free gains, i.e. uncontrolled heating power,
is not known. As a first approximation, we assume that the measured load curve is the regulated

heating power. The estimation of z
(k)
K and τ (k) on each interval I0k, k = 1, . . . ,K uses a simple least

squares formulation. If Qt denotes the load curve at time t ∈ I0k and εt := T tr − T ti the difference
between the setpoint and measured temperatures, we have during the linear regime of the controller:

Qt = Qt−1 + z
(k)
K

(
εt − εt−1 +

1

τ (k)
εt

)
. (7.7)

In practice, we estimate z
(k)
K and z

(k)
τ := 1/τ (k) by ordinary least squares, using the data measured

during I0k and such that they verify α < Qt < (1−α)Qmaxh , t ∈ I0k, for some small α > 0, in order
to make sure that the controller is not saturated. For instance, we may use α = 5% or α = 10%.
Again, we restrict ourselves to the intervals I0k that contain sufficiently many data. Hence, we

obtain a set of K ≤ K0 ≤ n0 estimators η̂(k) := (z
(k)
K , z

(k)
τ ) of the PI controller.

Step 3/7: EWA aggregation strategy

In order to select the best estimator from the set of the estimated η̂(k), k = 1, . . . ,K, we suggest
here to apply an aggregation strategy of the expert advice, where the experts are η̂(k), k = 1, . . . ,K.
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Indeed, each η̂(k) is biased, with bias depending in particular on the unknown proportion of free heat
gains in the load curve measured at the time instants in I0k. By using an aggregation strategy, the
aim is to approach the performances of the (unknown) best, least unbiased, estimator. An introduc-
tion to the context of prediction with expert advice is provided in the reference textbook [CBL06].
Moreover, we refer also to P. Gaillard’s thesis, [Gai15], which contains several contributions to
online robust aggregation and applications to electricity load forecasting. Briefly, the formalism
is the following. The purpose is to predict any arbitrary time series yt ∈ Rd, t = 1, . . . ,T, based
on available expert forecasts. At each time t, the statistician has access to the past observations
y1, . . . , yt−1, as well as to the current and past predictions {xk,s}ts=1 of the K experts. Note that
a key feature of this framework is that it does not rely on any stochastic assumption on the time
series yt and xk,t: they are arbitrary. A typical aggregation strategy solves the prediction problem

by computing a weighted average ŷt :=
∑K

k=1wk,txk,t of the expert forecasts. Then, the statistician
observes the actual yt, which enables the sequential computation of the cumulative loss, or its aver-
age L̂T := 1

T

∑T
t=1 `(ŷt, yt), with ` : Rd×Rd → R the chosen nonnegative loss function. Aggregation

strategies aim at minimizing this cumulative loss. One such strategy is the Exponentially Weighted
Average (EWA), presented in [LW94, CBL06, Gai15], for which the weights are computed according
to

wk,t :=
exp

(
−ρ
∑t−1

s=1 `(xk,s, ys)
)

∑K
j=1 exp

(
−ρ
∑t−1

s=1 `(xj,s, ys)
) , (7.8)

where ρ is a learning parameter, called learning rate, that has to be tuned.
In our application, the K experts are therefore the PI models η̂(k) learned at Step 2., and

the prediction xk,t is the indoor temperature obtained at time t in closed loop simulation of the

building model θ̂1 with regulation η̂(k). The generation of this estimation is the same as the one
described in Step 4. However, here, we are mostly interested in the aggregated model, rather than
the prediction of the indoor temperature. Nevertheless, the standard framework of aggregation
of forecasts does not assume any model on the experts, since they are seen as black boxes. This
problem is theoretically involved, and our aim is not to solve it analytically in this work. Instead,
we suggest two ”natural” ad hoc solutions. Both are based on the EWA strategy:

1. aggregation of the predictions, and apply the weights wt,k to each component of η̂(k);

2. aggregation of the models directly, i.e. at each time instant t, the weights wt,k affect the model
η̂(k) directly: the predicted indoor temperature is the prediction of an exponentially weighted
average model η̂.

The computational difference between the two strategies is emphasized in Algorithm 7.1. The
first approach is the standard EWA strategy, where the weights are subsequently applied to the
parameters of the expert models. Should the model be linear in its parameters, this approach
would be exact. Here, the model is nonlinear in the parameters, which is why this first method
is an approximation. In the second approach, on the other hand, the weights are applied directly
to the experts η̂(k) before generating the prediction ŷt, which is a different context from the one
studied in [CBL06, Gai15]. Hence, the nice performance bounds of the standard algorithms, not
discussed here, are not available anymore a priori.

Both approaches result in an aggregated model η̂t. The index t emphasizes the time-dependency
of the solution, since the weights are updated sequentially in time. In order to form a time-invariant
model η̂1, we propose to use the model obtained once the mixture of weights has stabilized. In
practice, we compute the temporal mean of the η̂t during the last n instants, where n is determined
manually.
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Algorithm 7.1 Aggregation of the PI models

Inputs: Experts {η(k)}Kk=1 = {z(k)
K , z

(k)
τ }Kk=1, R3C2 model θ̂, EWA learning rate ρ, n, loss function

`, observations {ϑ0(t), Qs(t), Ti(t), Tr(t)}Tt=1, limiting power Qmaxh , anti-windup.

1. For each k, simulate T̂
(k)
i from the system (θ̂, η(k)) and the observations

{ϑ0(t), Qs(t), Tr(t)}Tt=1.

2. Initialize wk,1 = 1/K, k = 1, . . . ,K.

3. For t = 1, . . . ,T:
Strategy 1

(a) prediction: compute T̂i(t) :=
∑K

k=1wk,tT̂
(k)
i (t);

(b) aggregated model: set ẑK(t) :=
∑K

k=1wk,tz
(k)
K (t) and ẑτ (t) :=

∑K
k=1wk,tz

(k)
τ (t);

(c) weight update: for each k, compute wk,t+1 ∝ exp
(
−ρ
∑t

s=1 `(T̂
(k)
i (s), Ti(s))

)
.

Strategy 2

(a) aggregated model: set ẑK(t) :=
∑K

k=1wk,tz
(k)
K (t) and ẑτ (t) :=

∑K
k=1wk,tz

(k)
τ (t);

(b) prediction: simulate T̂i(t) from the system (θ̂, η̂(t)) where η̂(t) := (ẑK(t), ẑτ (t));

(c) weight update: for each k, compute wk,t+1 ∝ exp
(
−ρ
∑t

s=1 `(T̂
(k)
i (s), Ti(s))

)
.

4. Time average of the aggregated model: compute ẑK :=
(∑T

T−n+1 ẑK(t)
)
/n and ẑτ :=(∑T

T−n+1 ẑτ (t)
)
/n, set η̂ := (ẑK , ẑτ ).

Outputs: aggregated PI parameters η̂.
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Step 4/7: Simulated trajectories of the indoor temperature and heating power

Once θ̂1 and η̂1 have been estimated, the fourth step requires the simulation of the indoor tem-
perature and heating power under the model hypothesis. Similarly to Step 2., it is assumed that the
limiting heating power Qmaxh and the anti-windup gain zks are known. Then, the indoor tempera-

ture T̂i and heating load curve Q̂u are simulated from a given setpoint temperature, the measured
outdoor temperature and solar radiation, and free internal heat gains Qfg constantly set to 0 since

they are unknown. As such, the estimated load curve Q̂u is an equivalent useful load. Generally
speaking, one expects that at time t ∈ I0, the order relation Q̂u(t) > Qh(t) holds, except if there is
saturation at Qmaxh , since the simulated useful load curve should compensate for the unknown free
gains.

Step 5/7: Accuracy of the simulated trajectories

The accuracy of the simulated indoor temperature may be evaluated by computing the root mean
square error (RMSE) alongside the entire trajectory. It is classically defined by the quantity

Eti :=

√√√√ 1

T

T∑
t=1

(
Ti(t)− T̂i(t)

)2
. (7.9)

Regarding the useful load, the RMSE may be computed by restricting the comparison to the time
instants included in the set

T := {t|t ∈ I0, Q(t) ≤ Qmaxh }, (7.10)

which yields the following defintion

Equ :=

√
1

|T |
∑
t∈T

(
Q(t)− Q̂u(t)

)2
, (7.11)

where |T | is the cardinality of the set T . Indeed, the first condition is that t ∈ I0, such that
the measured load curve Q(t) contains only heating loads, i.e. Q(t) = Qu(t). Moreover, we have
necessarily Q̂u(t) ≤ Qmaxh at any time t, such that the comparison is not relevant whenever Qu(t) =
Q(t) > Qmaxh . In other words, if t ∈ I0 and Q(t) > Qmaxh , we know that Q(t) contains uncontrolled

free heat gains that cannot be accounted for by any model {θ̂1, η̂1}.

Step 6/7: Termination condition

For the evaluation of the convergence of the algorithm, we check whether or not the quantity

δ =

∣∣∣(Eti(θ̂1, η̂1) + Equ(θ̂1, η̂1)
)
−
(
Eti(θ̂2, η̂2) + Equ(θ̂2, η̂2)

)∣∣∣
Eti(θ̂1, η̂1) + Equ(θ̂1, η̂1)

(7.12)

falls below a certain threshold, where we have emphasized the dependency of Eti and Equ on the

parameters of the system, while θ̂2 and η̂2 are the new parameters defined in the next step. This
criterion takes thus into account both stabilizations of the trajectories of the indoor temperature
and heating power.
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Step 7/7: Potential update of θ̂1

If the termination condition is not satisfied, we propose to update the estimation θ̂1 of the R3C2
model according to the following scheme. The new parameters θ̂2 are found by minimizing the cost
J2(θ), where

J2(θ) := λ1
Eti(θ, η̂1)

T̄i
+ λ2

Equ(θ, η̂1)

Q̄u
+

1

2

∣∣∣∣∣∣θ − θ̂1

∣∣∣∣∣∣2
Λ−1
3

, (7.13)

where Eti and Equ are defined respectively in (7.9) and (7.11), T̄i (resp. Q̄u) is the mean value of
the observed series Ti (resp. Qu, computed on T ), || · || denotes the norm ||x||2Λ := xᵀΛx for any
vector x and matrix Λ of appropriate dimensions. Hence, the first two terms are the normalized root
mean squared errors computed respectively for T̂i and Q̂u. Note that the computation of Eti and
Equ requires the closed loop simulation of the system (θ, η̂1) according to the procedure described
in Step 4.

The third term is a regularization term, that can be seen as a prior density in a Bayesian context:
the values of θ that do not lie a neighborhood of the previous θ̂1 are penalized. Consistently with
this idea, we choose a diagonal matrix Λ3, with diagonal elements λ3,i = (αθ̂1,i)

2, with for instance
α = 0.2. Finally, the scalars λ1 and λ2 are also tuned manually. We set λ1 = λ2 = 100 such that

λ1
Eti(θ,η̂1)

T̄i
and λ2

Equ(θ,η̂1)

Q̄u
are expressed in %.

This cost J2(θ) may be minimized by an unconstrained solver, such as Matlab’s fminsearch,
which uses a simplex, derivative-free, search method.

Once θ̂2 is computed, the next step consists in updating the new PI parameters η̂2, according to
the aggregation procedure of Step 3. The algorithm is then iterated until convergence, as defined by
Step 6. The detailed description of the estimation procedure suggested in this chapter is summarized
in Algorithm 7.2.

7.3 Stochastic generation of domestic load curves

In the previous chapters, we have used a hybrid dataset, made of ground measurements of the
meteorological conditions and of the free internal gains on one hand, and of closed loop simulations of
the indoor temperature and of the heating power on the other hand. This procedure is described in
Chapter 2. However, this hybrid dataset is not entirely suitable to the numerical exploration of the
methods suggested in this chapter. Indeed, its total load curve is always the sum of two contributions
only, namely the heating system consumption (controlled power) and the aggregated consumptions
of the laptops of an office building (free heating gains). The main drawback is therefore that both
consumptions do contribute to heating while there is no non-heating load: Q(t) = Qu(t) at all times.

In this section, we suggest thus an alternative way of generating a simulated electric demand in
an individual domestic building. Our purpose is to be able to generate a domestic load curve such
that

1. it contains heating and non-heating loads;

2. it is representative, ”in some sense”, of the behaviour of an actual household;

3. the generating process accounts for the diversity of the patterns of electricity use in an indivual
dwelling.

Hence, the method should in particular be stochastic. The idea behind the notion of representativity
is that the respective proportions of the heating and non-heating loads as well as the total load curve

123



7.3. STOCHASTIC GENERATION OF DOMESTIC LOAD CURVES CHAPTER 7

Algorithm 7.2 Estimation of a R3C2 model with uncertain heating load curve

Inputs: observed series {Q(t), ϑ0(t), Qs(t), Ti(t), Tr(t), I0(t)}Tt=1, limiting power Qmaxh , anti-
windup effect zks, EWA learning rate ρ, threshold δ0.

1. Set l = 1, estimate the parameters θ̂l of the R3C2 network according to an EM procedure,
with θ̂l = argθ min J1(θ), J1(θ) given in (7.6).

2. ComputeK estimators η̂(k), k = 1, . . . ,K of the parameters of the PI controller on the intervals
I0k with sufficiently many data, using an ordinary least squares algorithm based on (7.7).

3. Compute η̂l, aggregated from the K experts η̂(k), using an exponentially weighted average
procedure that depends on θ̂l, with learning rate ρ, see Algorithm 7.1.

4. Simulate T̂i and Q̂u in closed loop from the system (θ̂l, η̂l), using the observed series ϑ0, Qs,
Tr as well as null free gains.

5. Compute the root mean square errors of T̂i and Q̂u according to (7.9) and (7.11).

6. Termination condition: compute the quantity δ defined in (7.12)

7. if δ > δ0, where δ0 is a chosen threshold, then set l← l+ 1, update θ̂l by minimizing the
cost function J2(θ) given in (7.13), and return to step 3;

8. otherwise, set θ̂ = θ̂l, η̂ = η̂l and terminate.

Outputs: estimated R3C2 parameters θ̂, estimated PI parameters η̂.
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Figure 7.4: Probability profile of the merged activities whilst people are at home, French TUS 1998,
screenshot of [WHSR13, Figure 1].

shape should be ”reasonable” and correspond to likely situations. A literature review reveals that
recent research efforts are currently suggesting such stochastic models. Indeed, it is well-known
that there is a gap between the estimated energy performances of a building at the conception
phase and those actually observed, the latter potentially largely exceeding the former. This gap
is partly explained by the simplistic way the occupants behaviour is accounted for in the building
simulation tools. New approaches, based on a stochastic representation of the occupants behaviour
are therefore being proposed [TPH+]. An extensive treatment of the topic, as well as detailed
models, are provided in E. Vorger’s thesis [Vor14]. Recent contributions include amongst others
the work of J. Widén et al. [WLV+09, WW10, WME12], J. Page et al. [PRMS08] and U. Wilke
[WHSR13]. A review is also provided in [Tor14].

In this thesis, we choose to reproduce the work of I. Richardson et al., Center for Renewable
Energy Systems Technology (CREST), Loughborough University. This choice is motivated by the
simplicity of their approach, which is consistent with our purpose, and the open-source availability
in [RT10] of their model and data. The model consists of several submodels, the first one aiming
at generating a daily active occupancy pattern of the dwelling, which we describe next.

7.3.1 Domestic building occupancy model

A Markov chain based method for generating daily active occupancy data is presented in [RTI08].
For a given household composition, with n ∈ {1, . . . , 6} persons, the chain at time t of the day has
n+ 1 possible states (empty house, 1 active occupants, ..., n active occupants). The model has two
states per occupant: at home and active (state 1) and not at home or at home and not active (state
0). A time-dependent transition probability matrix is therefore computed at each time t of the
day, with 10 minutes increments. The start state is generated at midnight with relevant probability
distribution (i.e. most likely asleep). Then, the subsequent states till t = 23:50 are generated from
the inhomogeneous Markov chain previously defined.

The construction of the transition matrices relies on the statistics of the Time Use Survey
(TUS). The TUS is a large survey conducted periodically on a country scale by the respective
National Statistical Institutes of the European Union countries. It is based on more than 10 000
households completing questionnaires that describe their daily activities at time-step 10 minutes,
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Figure 7.5: (a) Simulated active occupancy profile of a two-resident household on a weekday. (b)
Simulated weekday aggregated active occupancy profile on 2000 two-resident households.

where these activities are assigned from a predefined list. When merging the activities by type,
one obtains a probability profile such as the one depicted in Figure 7.4 (French TUS, 1998). By
aggregating then the activities, one can retrieve the information of active occupancy in the house
for each individual in the TUS database. Moreover, the TUS database indicates which people live
in the same house, leading to an active occupancy pattern per day per household. This accounts for
the correlation between the patterns of different individuals in the same household. Hence, the final
dataset consists of the daily active occupancy profiles per household, with a distinction between
weekdays and weekends. The data are aggregated according to the size of the household, which
enables one to estimate the empirical transition matrices of the Markov chain.

The model is calibrated using the Time-Use Survey conducted in 2000 in the United Kingdom.
The validation procedure in [RTI08] shows that the model is capable of generating series with
statistics consistent with the TUS data, while being computationally efficient. An example of a
simulated weekday active occupancy profile of a two-resident household is given in Figure 7.5(a),
and the average over 2000 independent simulations in Figure 7.5(b). A limitation of the method
is that it is based on the TUS data which provides information for individual days only, and not
consecutive days. Hence the model might be used to generate occupancy patterns of multiple days,
but without taking into account the likely correlations between two consecutive days. Furthermore,
we mention an extension of the model to a four-state Markov chain, (at home and active - at home
and not active - not at home and active - not at home and not active) provided in [MKT15]. This
refinement enables one to account more precisely for the metabolic heat gains, through the state
”at home and not active”.

7.3.2 Generation of domestic electric load curves

Once the occupancy profile of a given dwelling is randomly generated, it remains to determine
the electric demand related to the activities of the occupants. We begin with a specific submodel
for the lighting demand.
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Lighting load curves

The generation of domestic lighting load curves at a one-minute resolution is described in [RTID09].
Consider a given dwelling with n occupants. In order to simulate its demand related to the use of
electric lighting, the main steps are:

1. Preliminary steps:

� determine the active occupancy pattern, as in Section 7.3.1, and disaggregate to a one-
minute time-step;

� allocate the lighting units to the dwelling. This is based on some statistics (mean number
of installed bulbs, relative proportion of the different technologies) provided by The
Lighting Association. In [RTID09], the number of units is first randomly assigned, before
randomly determining the associated technologies;

� provide measurements of the received solar irradiance. Moreover, it is assumed that the
occupants are likely to switch the light on below a certain level of outdoor irradiance. A
threshold normally distributed around 60 W/m2 is suggested.

2. Switch-on event: at each time step, i.e. every minute, compute the probability of a switch-on
event. See [RTID09] for the computations. The model is such that a switch-on event cannot
occur if the house is empty or the outdoor irradiance level too high. It accounts for the fact
that several people in the same house will share the lighting demand, such that the demand is
not proportional to the number of active occupants. A relative weight is also computed, such
that some units are used more frequently than others (e.g. kitchen vs cellar);

3. On-duration: each time a switch-on event occurs, a random duration is drawn from an em-
pirical distribution provided by [SRL04].

Other loads

The generation of one-minute resolution domestic electric load curves is described in [RTIC10].
It consists of generating specific load curves for each use, and aggregating these consumptions in
order to obtain the total load. Similarly to the case of lighting demand, each dwelling is randomly
assigned an active occupancy pattern and a set of appliances among a list of 33. The probabilities of
allocation are determined according to some national statistical ownership rate data. In [RTIC10],
these statistics are taken from the UK department of Energy and Climate Change (2009), the UK
Market Transformation Program (2008), the Environmental Change Institute, University of Oxford,
UK (2000, 2005) and the UK Ofcom (see cited references in [RTIC10]). The remaining steps are as
follows:

1. annual energy use: determine the mean annual energy use per appliance, using the statistics
of the aforementioned references;

2. power characteristics: each appliance is either on or off. At the time resolution of 1 minute,
the daily profile is either constant during cycles or time-varying. In [RTIC10], the only time-
varying load curve is that of the washing machine, where the profile is based on some measured
data.

3. appliance-activity mapping: each appliance is mapped to one of the daily activity profiles
in the Time Use Survey database. Several appliances may be mapped to the same activity.
Seven activities are included in the original paper [RT10], namely ”sleeping”, ”watching TV”,
”cooking”, ”doing laundry”, ”washing or dressing”, ”ironing” and ”house cleaning”.
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Algorithm 7.3 Stochastic generation of a domestic load curve

Inputs: number of days D, number of occupants n, weather conditions, temperature setpoint, true
R3C2 parameters.

1. Allocate a set of appliances and lighting units to the dwelling.

2. For each day d in 1, . . . , D,

(a) determine the active occupancy pattern, e.g. as in [RTI08];

(b) compute the lighting demand, e.g. as in [RTID09];

(c) compute the appliance-specific demand, e.g. as in [RTIC10].

3. Concatenate the D days and disaggregate the demand between heating and non-heating loads.

4. Compute the metabolic gain by counting 50W per active occupant.

5. Generate the heating power from the closed loop simulation of the building system, with the
sum of the heating loads and of the metabolic gains as free internal gains.

Outputs: disaggregated domestic load curve, indoor temperature.

4. switch-on events: the probability of activation of each appliance at time time t is the product
of the activity probability at time t (determined from the associated activity profile) and an
appliance-specific calibration scalar. The calibration scalar determines the average number
of times an appliance is used in a year. It is adjusted such that over a very large number of
stochastic simulation runs, the mean annual consumption of the appliance will be according
to the national statistics.

5. demand: when a switch-on event occurs, use the power characteristics of the appliance to
determine its electricity demand.

This method results thus in 33 one-minute appliance-specific daily load curves per dwelling, while
adding these loads gives the total power consumption, for one day.

Heating system

The heating system is not fully represented in the model [RTIC10], which is why its power
consumption is computed separately in our implementation. The method is the same as the one
described in Chapter 2, namely:

1. generate the lighting and other appliances demand, and add the specific load curves of those
appliances that contribute to heating;

2. select the true values of the five parameters of the R3C2 network;

3. choose a temperature setpoint signal and simulate the indoor temperature and the heating
power from the closed-loop building system, using the free heating gains obtained at step 1,
as well as the actual measurements of the outdoor temperature and solar gains.

This step concludes the overall data generating process, which is summarized in Algorithm 7.2.
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Figure 7.6: Simulated average daily electricity demand of 100 two-occupant dwellings (a) ranked
in increasing order (b) grouped in a histogram. The heating power and electric hot water tank are
not included in the demand.

7.3.3 Validation of the model

Some numerical experiments are conducted in order to verify that the stochastic generation of
domestic load curves presented in Algorithm 7.3 is consistent with the main issues raised in Section
7.3. The second step in Algorithm 7.3 is carried out using our own translation from Excel-VBA to
Matlab of the freely available code in [RT10]. In particular, the power ratings of the appliances are
drawn for each dwelling around the nominal values used in [RT10], which increases the variability
between dwellings. Moreover, since it is assumed in this chapter that the consumption of the hot
water tank may be reliably estimated, we do not include this appliance in the list of equipments
of the building. The domestic specific load curves of 100 two-person dwellings are simulated for
one week. The stochastic nature of this process is shown for instance by computing the mean daily
total electricity demand, as in Figure 7.6. This hints thus at the fact that the generating process
does account for the diversity of the patterns of electricity use in an individual dwelling. Note that
the shape of Figure 7.6(a) is similar to the results described in [RTIC10].

Figure 7.7 illustrates then the difference between the simulated heating and non-heating loads,
where the heating load is the aggregation of the loads of the appliances that contribute to heating,
excepting the heating system which is not simulated yet. Satisfactorily for our application, the
model is capable of generating non-heating and heating loads both of significant contribution to
the total load curve. The more fluctuant nature of the non-heating loads is also visible on Figure
7.7(a), while it appears that the heating load on the other hand is the sum of cyclic contributions
and punctual events.

Finally, the demand of the heating system is simulated three times for each of the 100 datasets,
with the same meteorological conditions and setpoint temperature, but different nominal values
of the parameters of the R3C2 network. In particular, the first R3C2 model has a nominal UA
value of 0.18, the second 0.25 and the third 0.37, corresponding to increasingly poorly insulated
buildings. Figure 7.8 shows the repartition of the average daily heating demand for each of the
three experiments. It can be noted that regardless of the experiment, this demand varies highly
depending on the dwelling, between 22.0 kWh/day and 26.9 kWh/day for the first experiment, 37.8
kWh/day and 46.1 kWh/day for the second, 58.9 kWh/day and 65.9 kWh/day for the third. This
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Figure 7.7: (a) Disaggregation of the demand of a dwelling between heating and non-heating loads,
and (b) average over 100 dwellings. The heating power and electric hot water tank are not included
in the demand.
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Figure 7.8: Mean daily heating demand for three dwellings, each with 100 occupancy scenarios.

discrepancy may only be explained by the specific appliance demands of the dwellings, since the
other factors are all equal. Nevertheless, the three histograms do not overlap, which means that
the level of insulation of the building defined by the UA value is key to the heating demand. These
two remarks confirm the good behaviour of the data generating process defined by Algorithm 7.2,
since they yield load curves where the dominant contribution is that of the space heating system,
consistently with the national statistics, see e.g. [ADE13], and where the user behaviour explains
also the energy performances of the building.

As such, the data generating process is adequate to our application. It enables one to generate
domestic load curves at a dynamic time-step of one minute, and covers a significant amount of appli-
ances. As highlighted by the numerical experiments, its intrinsic stochasticity produces diversified
patterns of electricity use. Although unnecessary for our application, the level of diversity might be
further increased, for instance by taking the socio-demographic characteristics of the dwellings into
account as discussed and suggested in [Vor14]. A key feature of the model is to separate the TUS
data according to the number of occupants in the active occupancy submodel so as to represent the
correlated use of appliances. One improvement, on the other hand, would be to allow for correlations
between consecutive days instead of having static parameters and independent simulations.

Moreover, the approach is representative of the behaviour of an actual dwelling, because it is
based on a large-scale statistical Time-Use Survey and national ownership rate statistics. However,
the raw data are extracted from the UK 2000 TUS and UK statistics collected between 2000 and
2009, which raises several issues. First of all, we mention that since these statistics are country-
specific, there should be some differences between the UK and France. Nevertheless, we posit that
these differences are minor compared to the fact that the activities, appliances and uses have evolved
substantially since 2000. For instance, Figure 7.9 depicts the trends in terms of equipment rates
of mobile and fixed-lines phones, computers, and home internet access for the French population
between 1998 and 2016. Clearly, the activities related to some equipments such as a smartphone
or a tablet were not included in the UK 2000 TUS, whereas there has been a meaningful surge in
the ownership of home internet access. Recent trends involve thus a diversification of the uses and
media. Besides, the development of the Internet of Things (IoT) comes with a new energy demand,
by creating new uses and connecting devices that didn’t use to be. Yet, this enhanced connectivity
represents also an opportunity for energy efficiency actions, whose extent is difficult to evaluate.
Overall, the energy implications of this new trend are therefore largely unpredictable.

Finally, we emphasize the fact that the metabolic heat gains are generated in a simplified manner,
with a constant rate of 50 W per active occupant of the dwelling. This is another limitation of the
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Figure 7.9: Equipment rates in France: telephony, computer, home internet access. Source: CRE-
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accuracy of the model.

7.4 Numerical experiments

7.4.1 Implementation

The estimation procedure described in Algorithm 7.2 is tested on several datasets, where the
data are generated according to the random process in Algorithm 7.3. More precisely, Section 7.4.2
is devoted to the analysis of a single experiment, while multiple (Monte Carlo) experiments are
performed in Section 7.4.3. In both cases, the data are simulated for several days, at time-step 10
minutes, and 10 days are used in the training set. Regarding the implementation, we have used
Matlab, with the gradient-based trust-region routine fminunc for solving Step 1. of the algorithm
and the gradient-free simplex search fminsearch for solving Step 6. The code for the aggregation
strategy in Step 3. is much inspired by P. Gaillard and Y. Goude’s R package opera [GG16]. The
aggregation weights are initialized at t = 1 with a uniform prior: wk,1 = 1/K, k = 1, . . . ,K.

The results obtained by Algorithm 7.2 are compared to a naive estimator, obtained by applying
the standard EM algorithm with total load curve Q seen as a deterministic input of the open-loop
R3C2 model, instead of Qu (i.e. by improperly including the non-heating loads in the heating
power). This naive model is estimated by Algorithm 3.1. A second comparison is provided by
estimating an ARX model of order 2 with respect to every input and output of the open-loop
building system. The ARX model is learned with ordinary least squares.

In the single experiment analyzed in the subsequent Section 7.4.2, the dwelling has two occupants
and the weather conditions are extracted from BESTLab measurements in January 2016. The
purpose of this section is to study in details the different steps of the suggested algorithm, on a
given random example. The chosen aggregation strategy is Strategy 1 in Algorithm 7.1, that is the
weights computed classically by aggregation of the predictions of the indoor temperature are then
applied to the PI parameters of the experts η(k). After a few trial-and-error tests, the learning rate
ρ of the EWA strategy is set to ρ = 1/2. An alternative would be to design a grid-based calibration
of ρ, a feature included for instance in the package opera [GG16].
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Table 7.1: Estimated parameters by Alg. 7.2 on a single experiment, compared to a naive estimation
and an ARX model of order 2. The parameters zK and zτ = 1/τ of the PI controller are not learned
by the naive method and ARX model.

Parameter True value Naive ARX(2) Alg. 7.2

UA 0.249 0.262 0.240 0.243
g 0.429 0.200 0.135 0.390
τ1 16.7 60.9 6.4 28.3
τ2 2.9 4.8 0.17 3.4

zK 2.76 - - 2.27
zτ 0.020 - - 0.025

7.4.2 Analysis of a single experiment

The estimated physical parameters of the R3C2 network are reported in Table 7.1, whereas the
corresponding trajectories, on the learning set, of the useful load Q̂u and indoor temperature T̂i are
depicted in Figure 7.10. In order to avoid overfitting, the trajectories simulated with the estimated
parameters at each step of Algorithm 7.2 are obtained without any model nor observation noise; this
explains their smoother shape. The results show that the algorithm presented in this chapter yields
a substantial improvement in the estimation of the parameters, compared to the naive standard
approach. In similarity with the results obtained in Chapter 6, the ARX identification also fails
into catching the dynamic time constants of the model, even if its estimation of UA is accurate.
Likewise, the solar transmittance g given by the identified ARX model is largely underestimated.
In the end, the results emphasize the fact that the ARX model is not adapted to a small amount
of closed-loop generated data. Moreover, the simulated trajectories Q̂u and T̂i are also consistent
with the actual observations. Although it cannot - and should not - account for the sudden peaks
caused by some uncontrollable free gains, the simulated heating power matches the observed useful
load rather well, with a RMSE Equ = 0.32 kW (normalized RMSE: 16.3%). The indoor temperature
agrees even more closely with the actual measurements, with a RMSE of Eti = 0.31◦C (normalized
RMSE: 1.7%).

Furthermore, the progression of the root mean square errors Eti and Eqr is represented in Figure
7.10(c), starting from the estimated parameters at Step 1 till the convergence of the algorithm.
Similarly, Figure 7.10(d) shows the improvement of the estimation of the parameters of the R3C2
network over the iterations of Algorithm 7.2. Both plots illustrate the benefit of introducing the
correction of θ̂1 obtained at Step 1, although this improvement is not monotonic. Besides, it can be
noted that the RMSE computed on the trajectory of the indoor temperature is hardly improved,
being already quite small. Hence, the second term Equ in the cost J2(θ) in (7.13) is key to enable
the improvement of the estimation.

The estimated useful load amounts to an energy consumption of 527 kWh over the time intervals
covered by T (1140 instants out of 1440). On the other hand, the actual consumption of the heating
system during this same period is 478 kWh so that we have Q̂u > Qh in average, as expected. More
interestingly, the difference between these two consumptions is 49 kWh, whereas the actual free
heating gains are 51 kWh. This confirms the good performances of our algorithm also at a static
time-scale, since it is able to accurately estimate the total amount of energy used for space heating.
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Figure 7.10: Estimation from an uncertain load curve of (a) the heating load and (b) the indoor
temperature. The actual measurements are in light grey, the simulated trajectories in red. The
non-heating loads are in black, the dotted line represents the limiting power Qmaxh . Evolution over
the iterations of Algorithm 7.2. (c) of the RMSE of the estimated indoor temperature (circles) and
of the useful load (diamonds), and (d) of the estimation errors of the physical parameters of the
R3C2 network.
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Figure 7.11: (a) Accuracy of the 11 expert models and associated aggregation weights at the (b)
first (c) last iteration of Algorithm 7.2. The least important weights are in light grey and not visible
on these last two plots.

Regarding the estimation of the PI parameters, note that the naive and ARX models do not
model the regulation, so that no comparison can be made with Algorithm 7.2 for zK and zτ . Hence,
in the following, we analyze more specifically the aggregation of the expert models suggested at
Step 3 of Algorithm 7.2. In this experiment, we obtain a set of K = 11 experts η̂(k), computed at
Step 2, whereas the number of intervals for which the load curve contributes entirely to heating is
n0 = 18. The accuracy of these experts varies greatly, although there is no apparent relationship
between the proportion of free heating gains in I0k and the accuracy of η̂(k), as shown in Figure
7.11(a). The best expert however has a good accuracy for both PI parameters zK (11.5%) and
zτ := 1/τ (20.6%) and is estimated from the time interval with lowest amount of free heating gains
(bottom left points in Figure 7.11(a)). Other experts may be more accurate on either one of the two
parameters, but much less on the other. For instance, one expert has an accuracy of 4.1% on zK
but only 65.3% on zτ . Another has an accuracy of 2.2% on zτ but 94.5% on zK . This emphasizes
the need for an efficient aggregation strategy able to target the best experts.

The weight of this best expert in the aggregation strategy is depicted in black in Figures 7.11(b)
and (c), where Figure 7.11(b) (respectively 7.11(c)) depicts the time-evolution of the sequential
weights estimated from the model θ̂ obtained at the first (respectively the last) iteration of Algorithm
7.2. In both plots, the effect of the uniform initialization of the weights requires several iterations
before being forgotten, between one and two days. The best expert is distinctly given the most
important weight after this ”burn-in” phase. The final time-independent weights are the average
of the weights in Figures 7.11(c) over the last two days. They yield an aggregated model η̂, given
in Table 7.1, with accuracy 17.8% on zK end 25.5% on zτ , which is close to the best expert. These
results validate thus the first aggregation strategy described in Algorithm 7.1.

Although each step of Algorithm 7.2 may be improved, the results presented for this single
experiment are already promising. The identification of the PI parameters on distinct intervals
and their aggregation into a single estimator seems relevant, whereas in the end, the information
brought by the connected objects contribute to better estimations of the R3C2 network.

7.4.3 Multiple experiments

In order to further validate our approach, we proceed now to the analysis of 50 experiments.
Each experiment has a randomized set of nominal parameters of the R3C2 network, as well as a
randomized starting time between November 2015 and January 2016 for the weather conditions
extracted from the BESTLab database. Similarly to the previous results, the estimation θ̂ provided
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Figure 7.12: Estimation of the physical parameters of the R3C2 network from an uncertain load
curve, 50 experiments. Black squares: naive EM algorithm, grey diamonds: ARX model of order
2, red circles: Algorithm 7.2.

by Algorithm 7.2 is compared to a naive EM estimation and an ARX model of order 2, where in
particular both the naive and ARX methods use the aggregated load curve Q as input.

The 50 estimations of the parameters UA, g, τ1 and τ2 are plotted in Figure 7.12 agains their
respective nominal values, and the corresponding boxplots of the estimation errors are in Figure
7.13. These plots confirm that the algorithm suggested in this chapter outperforms a naive EM
estimator or an ARX model of order 2. In particular, the gain is significant for the heat transfer
coefficient UA, with an accurate estimation with reduced bias and variance of the estimation error.
Algorithm 7.2 brings also a consequential improvement of the fast time constant τ2: the ARX
model constantly largely underestimates it, whereas the naive EM overestimates it. The fact that
the naive EM overestimates it was already noticed in Chapter 3: the improved is here due to the
correcting step 7 in Algorithm 7.2. The estimations of the slow time constant τ1 and of the solar
transmittance g seem more difficult for all three algorithms, although Algorithm 7.2 behaves more
robustly and yields a reasonable order of magnitude of these two quantities. Hence, these first
simulations illustrate the benefits of the method suggested in this chapter.
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Figure 7.13: Estimation errors of the physical parameters of the R3C2 network from an uncertain
load curve, 50 experiments.
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Figure 7.14: Estimation error of UA against (left) the frequency of non-heating events, (right) the
proportion of non-heating loads in the aggregated load curve. Black squares: naive EM algorithm,
grey diamonds: ARX model of order 2, red circles: Algorithm 7.2. 50 experiments.
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Figure 7.15: Estimation error of the aggregated ẑK (left) and ẑτ (right), against the best expert
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Figure 7.16: RMSE of the estimated trajectories of Ti (red circles) and Qu (black diamonds), against
the estimation error of the gain zK (left) and the time constant zτ (right) of the PI controller; 50
experiments.

Besides, Figure 7.14 displays the absolute estimation error of UA in terms of frequency of non-
heating events (left plot) and total proportion of non-heating loads in the aggregated load curve
(right plot). From these plots, it seems that the estimation of UA by Algorithm 7.2 and by the ARX
model is robust to the experimental conditions, since it does not depend on the actual frequency
or volume of non-heating loads. On the contrary, the performances of the naive EM algorithm
deteriorate strongly whenever non-heating events occur more than 10% of the time, or whenever
the proportion of non-heating loads exceeds 4% of the total energy consumption. When there is
almost no non-heating load, then the naive EM algorithm performs better than Algorithm 7.2, as
can be expected since in such case the approximation Q ' Qu is valid. Similar trends are observed
for the other parameters g, τ1 and τ2, although the corresponding plots are not displayed here.

Finally, we focus more specifically on the behaviour of Algorithm 7.2 presented in this chapter.
Regarding the estimation of the regulation η̂, Figure 7.15 depicts the estimation error of the gain

ẑK (resp. the inverse of the time constant ẑτ ) against the estimation error of the best expert ẑ
(k)
K
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Figure 7.17: Estimation errors of (a) UA, (b) g, (c) τ1 and (d) τ2 as a fonction of the final RMSE
Equ of the estimated trajectory of the indoor temperature Ti; 50 experiments.

(resp. ẑ
(k)
τ ). These plots emphasize the importance of the estimation of the experts η̂(k), since the

aggregation strategy does not outperform the best expert. Note that as explained in the analysis

of the single experiment, the best η̂(k) may not combine both the best ẑ
(k)
K and the best ẑ

(k)
τ , which

is why some aggregated ẑK or ẑτ lie above the main diagonal in Figure 7.15.

Furthermore, poorly estimated PI parameters lead naturally to less accurate estimated trajec-
tories of the indoor temperature and the useful load, as shown in Figure 7.16. Since Figure 7.17
confirms on the other hand that smaller values of the RMSE Eti do correspond to an increased
accuracy of the estimation of UA, g, τ1 and τ2, this highlights thus the impact of the estimation of
the PI experts at Step 2. of Algorithm 7.2. Similar results are obtained with Equ (plots not shown).
Another consequence of Figure 7.17 is that the quality of the estimation of the R3C2 model may
be assessed through the final values of Eti and Equ.

139



7.4. NUMERICAL EXPERIMENTS CHAPTER 7

Table 7.2: Identified physical parameters for the western BESTLab cell, with unknown free heating
and non-heating gains in the aggregated load curve.

Parameter U τ2 τ2 g

Estimation 0.73 37.8 8.7 0.45

7.4.4 BESTLab data

Similarly to the numerical study in Chapter 6, the suggested Algorithm 7.2 is tested against
BESTLab data. Indeed, both cells used in the experiment have two radiators, a controlled one for
heating and a second one that represents free heating gains. The first radiator is therefore regu-
lated such that the measured indoor temperature of the cell follows a predetermined setpoint. On
the other hand, the second radiator is not regulated: it is activated according to a predetermined
schedule. When activated, this second radiator heats at full power, provided that the indoor tem-
perature does not exceed 27◦C. Note that in this situation, the weight of the free heating gains
represented by the latter radiator is too important compared to the controlled heating system, since
both radiators have the same nominal power (500 W). Finally, there is no non-heating load in the
cells. We choose to simulate such loads for a given cell by randomly picking the free heating gains
from the other cell. In the sequel, we analyze the results of the estimation for a 10-day experiment
in the western cell.

Figure 7.18 shows the estimated trajectories of the heating power and indoor temperature.
This case study emphasizes the limits of Algorithm 7.2, with total load curve containing a small
proportion of controlled heating power. In this example, the energy consumed by the heating system
represents only 30% of the total consumption whereas the free heating gains account for 49%, and
the other loads for 21%. Hence, most of the load curve is explained by uncontrollable loads, as
can be seen from Figure 7.18. Note that this experimental scenario is much unlikely for an actual
building. The performances of the algorithm may therefore be seen as being relative to a limit
case. In these conditions, the notion of setpoint temperature becomes paradoxical and Algorithm
7.2 faces a contradiction: on one hand, it is asked to minimize the RMSE on the trajectory of the
indoor temperature, which clearly does not follow the setpoint, and on the other hand, Algorithm
7.2 should generate a saturated command equivalent to the useful load curve Qu and adapted to
the setpoint signal. Figure 7.18(b) shows that the estimated indoor temperature follows closely the
setpoint, rather than the actual measurement. This may be exploited in the following manner: the
difference between the observed and estimated trajectories may be attributable to the free heating
gains only, such that an estimation procedure of the Qfg could be considered. This is a promising
track for future work, that has not been explored in the thesis.

Table 7.2 gives the point estimates of the four physical parameters of the identified R3C2 model.
The U value is slightly underestimated compared to the findings of Chapter 3. Yet, this value still
corresponds to a low-energy building, which shows that the method is able to correctly characterize
the building. The slow time constant seems also to be underestimated. However, the estimated fast
time constant τ2 and solar transmittance coefficient g fall within the bounds of the error bars in
Figure 3.8 (10 days of data), which reassures of the good behaviour of Algorithm 7.2 in a highly
degraded context of observation.
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Figure 7.18: Estimated trajectories of (a) the heating power and (b) the indoor temperature in
BESTLab western cell, with unknown free heating and non-heating gains in the aggregated load
curve. (c) The unknown free heating gains.
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7.5 Summary and discussion

This chapter, mostly prospective, is a first attempt to account for the uncertainty of the heating
load curve in the identification of building models. The uncertainty is caused by the fact that an
energy utility may only measure the total load curve, instead of the heating loads only. Given the
main assumption that the connected objects of the building enable one to observe a timeline of all the
non-heating events, we suggest an iterative procedure, summarized in Figure 7.3 and Algorithm 7.2,
to estimate both the open-loop building model, here the R3C2 network, and the indoor temperature
controller. Even if the results described in the previous sections are promising, each step of the
algorithm may be improved. We have thus highlighted the impact of the accuracy of the PI experts
η̂(k) on the accuracy of the aggregated η̂, and thereby also on the parameters of the R3C2 network.
Here, we have used an ordinary least squares identification of η̂(k), improperly since we include the
uncontrolled free heat gains in the output of the controller. One might therefore want to explore
alternative strategies, accounting for this stochasticity. For instance, censored models could be worth
investigating. Similarly, the updating step 7 in Figure 7.3 may be performed differently, for instance
with a more suitable cost or a finer optimizer. Our experience suggest that the key ingredient is the
inclusion of a term penalizing the difference between the observed useful load Qu and the simulated
one Q̂u in the cost J2(θ) (7.13), rather than only the difference between the obseved and simulated
indoor temperatures. However, the estimation with BESTLab data illustrated the fact that this
makes sense mostly when the free heating gains are not overrepresented in the load curve. The
termination test could also involve the stabilization of the estimated parameters rather than the
stabilization of the costs.

Moreover, the suggested algorithm depends on the modelling framework defined by the hypotheses
given in Section 7.1.2. The advantage of this framework is that it does not require any knowledge
about the specific consumptions of each and every appliance in the building. We have only assumed
that the consumption of the hot water tanks is known, yet this might be relaxed: if it is hidden, then
it is sufficient to know when the water drains occur and stop, similarly to other non-heating loads.
Different assumptions would lead naturally to other algorithms. For instance, still in the context of
the connected objects, one could assume that the consumption Qh of the regulated space heating
space could be available at a dynamic time step, whether it be by a smart heater or a dedicated
connected plug. Then, the information is more accurate compared to our framework, since at all
times t, the inequalities Qh(t) ≤ Qu(t) ≤ Q(t) hold, with known and accurate lower and upper
bounds.

Future work should also investigate the issue of metabolic heat gains. Indeed, those are neglected
in this work, with numerical experiments corresponding to dwellings with 2 occupants only (sim-
ulated data) or no occupant at all (BESTLab data). However, the occupation of office buildings
is much more consequent, representing thus a substantial heat gain. It seems unlikely to count
precisely the number of occupants at a dynamic time step. One idea would be to include a prob-
ability distribution on the number of occupants, with moments given by an algorithm infering the
occupancy given a set of connected environmental sensors, see [AAP+16] for an example.
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Conclusion and perspectives
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Chapter 8

Conclusions and perspectives

In this thesis, we have developed a modelling framework, as well as a set of estimation algorithms,
in order to address the issue of data availability for building identification. We believe that this is a
question of interest, because building identification is often prevented in practice due to the lack of
measurements of the physical quantities involved in the model. The main question that underlies
the thesis is the following: how can an energy utility create building identification based energy
services, such as thermal diagnostic or optimal control, considering that the only data known with
certainty is the total load curve of the building? The emerging solution sees the utilities providing
their clients with connected smart thermostats and weather stations. It becomes thus plausible
to have access to dynamic measurements of the indoor and outdoor air temperatures. Yet, these
sensors come with some uncertainty, while other quantities such as the useful heating load curve or
the solar gains remain hidden.

The framework elaborated in the thesis, and based first of all on a state-space representation of
a building by an equivalent R3C2 electrical network and the Expectation-Maximization algorithm,
has proven to be flexible enough to account for this uncertainty. We have shown in Chapter
3 that although being actually exploited in closed loop, the open-loop building model may be
accurately identified without explicitly modelling the regulation. However, if the indoor temperature
is not measured at all, a closed loop model becomes necessary. Consequently, Chapter 4 presents
an estimation algorithm that uses the Hamiltonian Monte Carlo sampler to solve the underlying
nonlinear identification problem. Although the indoor temperature is getting more accessible with
the spread of connected thermostats, this result may be of interest for an utility, since it can be
seen as non-intrusive.

On the other hand, if the indoor temperature is measured, open-loop approaches are thus ap-
propriate. They are employed in Chapters 5 to 7, where different versions of the EM algorithm are
designed successively for the different inputs of the R3C2 model. Firstly, the uncertainty related
to the connected outdoor temperature sensor is caused by the fact that the energy utility does not
know the exact placement of the sensor. This leads to a possible bias of the measurements, which
is addressed in Chapter 5 by appending a dynamic model of the outdoor temperature to the R3C2
model. The resulting switching linear state space is identified by an EM algorithm almost identi-
cal to the reference one presented in Chapter 3. Next, Chapter 6 focuses on the solar radiation.
Since this quantity is often unknown in practice, due to the prohibitive cost of the pyranometer, we
suggest to replace this sensor by a cheap connected temperature sensor intentionally left exposed
to the sun. The Rao-Blackwellised Particle Smoother EM algorithm exploits then the difference of
measurements between this temperature sensor and the reference sheltered one to accurately esti-
mate both the building model and the received solar radiation. Ultimately, we assume in Chapter
7 that a timeline of events specifying when the non-heating loads are either switched On or Off
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is available. This enables the joint identification of the open-loop building model and the indoor
temperature regulation from the aggregated total load curve that improperly contains non-heating
loads.

This work shows thus promising results on simulated and real datasets. This opens many per-
spectives. Amongst others, the following ones may be considered.

1. In order to get closer to the practical constraints of an energy utility, the next modelling step
consists in assuming that several inputs or outputs of the building model are simultaneously
uncertain. For instance, we may consider a dwelling equipped with a smart thermostat,
two connected outdoor temperature sensors and a smart electricity/gas meter. Then, the
deterministic variables would be the indoor and outdoor air temperatures, whereas the solar
gains and the useful heating load curves are hidden. Since the energy utilities already equip
their clients with smart thermostats and connected weather stations, the only additional sensor
would be the outdoor temperature sensor. Besides, we believe that solving this identification
problem should come at little effort, by suitably mixing the strategies introduced in Chapters
6 and 7. In particular, the EM algorithm used in the first step of Algorithm 7.2 may be
replaced by the Rao-Blackwellised Particle Smoother EM of Algorithm 6.3.

2. Another line of work, consistent with the context of smart buildings, consists in taking into
account time-varying nature of the building structure. Indeed, opening doors and windows
alter the thermal properties of the building. By using connected contacts, or detection algo-
rithms based for example on the gradient of the indoor temperature, we may extend the R3C2
network such that it includes electrical switches. Such a model has been suggested recently
in [SBPW16] and is worth exploring further.

3. Similarly, we may question the hypothesis that the model comprises a unique thermal zone.
Cheap connected temperature sensors make it possible to consider multizone models. The
R3C2 network adapts easily to the multizone context, by adding other nodes, resistances
and capacitors. This results in an augmentated linear state-space model, whose order can be
reduced using aggregation techniques, as for instance in [DBMM10]. The methods designed
in this thesis should apply likewise to this higher-order model.

4. Should the future development of the connected objects meet with the elevated expectations
they provoke, more detailed models of some subcomponents of the building are also worth
considering. For instance, [CSM+13] identifies an equivalent electrical network representing
a refrigerator. Such models could either be appended to the R3C2 network, or studied sepa-
rately.

146



Appendix A

Estimation of the solar radiation:
kriging model

A.1 Introduction

Estimation and prediction of the solar radiation has gained growing attention from researchers in
the past few years, due to the great number of applications, for instance in the design of solar plants.
Most articles in the litterature address the problem of prediction, that is given past measurements
at one site, predict the forthcoming irradiations at the same site. Here, our problem is slightly
different: we want to reconstruct the radiations formerly received at any given location in a given
area, typically in France. The difficulty lies first in the availability of the data. Indeed, solar
radiations are measured by pyranometers, which are expensive sensors. Hence, it is not conceivable
that past measurements would be available everywhere, and we shall typically assume that no
measurement at all is available. We face thus the following problem:

how to construct a statistical model for the solar radiation at a given location, without the
corresponding learning dataset?

To address this issue, we shift our focus from estimation of the solar radiation to estimation of
the cloud coverage. This is due to the fact that there exist simple physical models, depending on
time and geographical coordinates, that estimate the solar radiation. These models are accurate
enough provided that they are corrected by a measure of the cloud coverage. Similarly to the
approach described in Chapter 6, we consider Perrin de Brichambaut’s model in [PdBV82]:

Gh,clr = κG0(cos θz)
1.15 (A.1)

where Gh,clr is the global horizontal solar flux under clear sky conditions, κ is a constant set in
the litterature to κ = 0.81 ([RW99]), θz is the azimuth angle (that depends only on the latitude,
longitude and solar time) and G0 the extraterrestrial solar constant (theoretical radiation at the top
of the atmosphere, depends on the day number). This model is corrected by a measure N ∈ [0, 1]
of the cloud coverage according to

Gh,cld = Gh,clr(1− aN b). (A.2)

If the sky is completely clear (N = 0), 100% of the initial model Gh,clr is kept, whereas a fraction
(1 − a) remains even if the sky is totally overcast (N = 1). For example, the values a = 0.75 and
b = 3.4 are obtained from a fit to a 10-year hourly record at Hambourg in [KC80]. The benefit in
considering cloud coverage rather that solar radiation is that there exist open access records of the
former in many locations in the world (see Section A hereafter and Figure A.1). It suggests therefore
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the idea of using historical cloud cover data at a given number of locations in order to estimate
their dependency in space and time through a correlation model. This allows one to subsequently
estimate the cloud coverage at any new location, at any time. This technique is called kriging, and
has been applied first in the context of mining, see [Cre91] for a reference textbook.

The underlying idea that some data are ”closer” in a certain sense to a subset of the dataset
has been mainly considered in the solar prediction litterature in a temporal context. Indeed, many
contributions (e.g. [BC13, AGG16, JPML16]) operate a preliminary classification step with a clus-
tering algorithm, and separate models may be fitted within each cluster. Yet, using spatial patterns
and/or applying kriging techniques to the field of solar estimation and prediction is not so common.
We review briefly some of the contributions of the literature in this line of work. [GFDD16] is a first
example, in which the authors aim at improving the performances of Numerical Weather Prediction
(NWP) models in Spain, by downscaling them in space and time, using machine learning tech-
niques. The prediction at a given location is based on the SVR algorithm with the forecasts of the
total cloud cover and of the solar radiation at 4 nearby corner points in the NWP grid as features.
More closely related to this work, a sophisticated kriging method is implemented in [YGD+13]. the
authors analyze the spatio-temporal covariance structure of the solar radiation measured at 10 loca-
tions in the island of Singapore. They show how to transform the data in order to make reasonable
the assumptions of time stationarity and space isotropy. Their results are encouraging, all the more
given that Singapore has an unstable climate, making it tricky to address the prediction of the solar
flux. Compared to our framework, the limit is that their study does require the mesure of the solar
radiation at known locations. Moreover, they benefit from a dense network in space, which is not
our case here, as shown by Figure A.1 afterwards. A second article in this framework is [ISW12],
which uses also a dense network of measurement of the solar radiation around Osaka, Japan: their
spatial resolution is < 5 km, the time resolution is 5 minutes. They model the space-time covari-
ance matrix originally, with an exponential function that decays with a Mahalanobis distance, and
spatial anisotropy is included in the model to take the cloud movement into account.

In this work, we suggest a way to reconstruct the solar radiation received at a given location
using open access data only, rather than expensive on-site measurements. We use the framework
of isotropic ordinary kriging. Our aim is not to provide the ”absolute best” model, but rather
to show that the methodology is suitable for this constrained context. We will therefore present
some simple, standard isotropic spatial models, and future works can include a refinement of those
models.

The rest of this appendix is organized as follows. After describing the dataset in Section A.2,
we study two classes of models. Both are purely spatial models, relying on the assumption of time
independence, and are analyzed in Section A.3. Finally, we provide a comparison of those models
in Section A.5, and we discuss our findings in Section A.6.

A.2 Data

We use some open source data from METAR (METeorological Aerodrome Report) weather re-
ports of past observations in 100 stations in France; see positions in Figure A.1. One can find
such archived reports emitted from various locations in the world for instance from the website
mesonet.agron.iastate.edu.

The chosen dataset consists of half-hourly measurements of several meteorological variables,
including cloud cover, air temperature, dew point, relative humidity, atmospheric pressure, wind
speed and wind direction. They were collected during two months, in November and December
2015. There are therefore up to 48 observations per day per station and per variable. Yet, the
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Figure A.1: Positions of 100 weather stations delivering Metar reports in Metropolitan France (blue
dots) and of EDF Lab Les Renardières (red cross). The numbered stations form the test set.

number of daily observations is very often smaller than 48, due to numerous missing reports. In
total, there are 62% of missing cloud coverage data, and 36% for the other variables. The cloud
coverage is actually reported under the form of an abbreviation that corresponds to oktas (eighths),
it corresponds to the fraction of the sky occupied by the clouds (from 0/8 to 8/8). The following
transformation is applied: the value is set to 0 when there is no significant cloud, 1 for a full
coverage, whereas ”FEW” corresponds to 1.5/8, ”SCT” to 3.5/8, ”BKN” to 6/8. Hence, these data
take a finite number of values between 0 and 1. However, for the prediction, we will consider that
the index varies continuously between 0 and 1 since it makes more sense physically.

A second dataset consists of records at time step 1 minute of the global, direct and diffuse solar
irradiances at a specific location, namely EDF Lab Les Renardières, with latitude 48.38 N and
longitude 2.83 E (see Figure A.1). The air temperature, relative humidity, atmospheric pressure
and wind speed were also collected at the same rate.

A.3 Spatial models

In this section and the following, we consider a regionalized variable Y ( · ), that is a random
variable that depends on the space and time coordinates. If Y is univariate, it represents the cloud
cover process. In the multivariable case, Y includes the cloud cover and other covariables, such as
the wind speed for instance. s1 ∈ D, . . . , sn ∈ D denote a set of n ≥ 1 locations in D ⊂ R2 where
the variable Y (si, t) has been measured at time t ∈ R. s0 ∈ D is the site at which we wish to predict
the cloud cover. |.| denotes the Euclidian norm of a vector, whether it be s ∈ D or t ∈ R.

A.3.1 Univariate case

As a first approach, we consider a purely spatial model for the cloud cover data only. That is, we
assume that the data are independant both in time and of other covariates. The model assumption
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is the following:

Y (s) := µ+ δ(s), s ∈ D, (A.3)

where Y ( · ) is scalar µ is an unknown constant mean, and δ( · ) a zero-mean random process with
second-order moments, called correlated error process. We assume that for all (s1, s2) ∈ D2, the
variogram

2γ(|s1 − s2|) := var [Y (s1)− Y (s2)] (A.4)

is well defined (and depends therefore only on the space increment). The aim is to predict Y (s0)
according to the weighted average

Ŷ (s0) =
n∑
i=1

λiY (si),
n∑
i=1

λi = 1. (A.5)

The latter condition guarantees the uniform unbiasedness of the predictor. This procedure is called
ordinary kriging, and is described in details in [Cre91]. The main task is to obtain a valid variogram
model. In particular, we need to make sure that the variogram is conditionally negative definite.
Consequently, the variogram fitting process is usually carried out in two steps:

1. estimate an experimental variogram, according to the formula

γ(h(k)) =
1

2|N(h(k))|
∑

N(h(k))

(y(si)− y(sj))
2 , (A.6)

where N(h(k)) =
{

(si, sj) ∈ D2|(si, sj) ∈ h(k)
}

and |N(h(k))| is the cardinal of the set
N(h(k));

2. fit a valid parametric model to the experimental variogram. Standard models, including the
Gaussian, exponential, linear, etc. families are given in [Cre91].

Here, we estimated an averaged experimental variogram. This means that an experimental vari-
ogram was computed at each time step for the same spatial blocks h(k). The averaged variogram is
made of averages in time within each block. The center of the block is the average distance between
the pairs of data in the block. Due to erratic missing data, this center varies slightly in time, hence
the averaged variogram also has averaged block centers. The fitted model is exponential, of the
form

γ(h) := b

(
1− exp

(
−|h|
a

))
, h ∈ R2, (A.7)

for some a > 0, b > 0, with an additional nugget effect (discontinuity at the origin, with a non-zero
right value). a is called the range of the model, b the (partial) sill. The model is nonlinear in the
parameters a, b and the nugget effect. Those are estimated by minimizing a weighted least square
criterion, with weights wk ∝ |N(h(k))|

|h(k)|2 , by an iterative gradient descent algorithm (Gauss-Newton

algorithm). Figure A.2 displays the experimental variogram and the fitted Gaussian model.
Once the variogram model γ( · ) is fitted, the kriging equations [Cre91] give the prediction at

any location s0. The weights λi, i = 1, . . . , n are found by minimizing the error variance estimation

E

[(
Y (s0)− Ŷ (s0)

)2
|Y1, . . . , Yn

]
= E

(Y (s0)−
n∑
i=1

λiY (si)

)2
 . (A.8)
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Figure A.2: Averaged experimental variogram of the cloud coverage data in December 2015, and
fitted exponential model.

With m the Lagrange multiplier associated to the constraint
∑n

i=1 λi = 1 and

λ := (λ1, . . . , λn)T , (A.9)

γ := (γ(s0 − s1), . . . , γ(s0 − sn))T , (A.10)

Γ := [γ(si − sj)], 1 ≤ i, j ≤ n, (A.11)

one obtains

λT =

(
γ + 1

(1− 1Γ−1γ)

1TΓ−11

)T
Γ−1, m = −(1− 1Γ−1γ)

1TΓ−11
. (A.12)

(A.13)

The minimized mean-squared prediction error, called the kriging variance, is

σ2
k(s0) = λTγ +m = 2

n∑
i=1

λiγ(s0 − si)−
n∑

i,j=1

λiλjγ(si − sj). (A.14)

For numerical evaluation of the model, we randomly split the data from December 2015 between
training set (85 stations) and test set (15 stations, with location shown in Figure A.1). The code
is written in R, using more particularly the package gstat with the functions fit.variogram for
variogram fitting and krige for the ordinary kriging. We perform leave-one-out cross validation
(LOOCV) on the training set, with gstat::krige.cv. The relative errors are plotted in Figure
A.3. The total RMSE (root mean squared error) over the 15 test stations is 0.3339, whereas the
total MAE (mean absolute error) is 0.2805. These performance indicators vary depending on the
station, see Figure A.4(c) and A.4(d): it seems that the estimation is more accurate when there
are closer neighbours in the training set. However, this dependency is less obvious from a boxplot
perspective, see Figure A.4(b).
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Figure A.3: (Left) Histogram of the relative errors for the 15 test locations. (Right) Histogram of
the relative errors for the 85 LOOCV predictions for the training set.

A.3.2 Multivariate model

A first improvement of the univariate spatial model consists in keeping the time independency
assumption, but adding one or several covariables to the model. Let q denote the number of
covariables, resulting in a random vector Y of dimension q + 1 when adding the cloud cover data.
The theory of ordinary kriging adapts easily to the multivariate case, see e.g. [VHC93]. First of all,
the variogram is extended to a cross variogram according to:

2γij(|s1 − s2|) := E [(Yi(s1)− Yi(s2)) (Yj(s1)− Yj(s2))] , (A.15)

for 1 ≤ i, j ≤ q+1 and for all s1, s2 ∈ D, and where it is implicitly assumed that each component Yi
has a constant mean. In the multivariate case, it is more difficult to define a valid cross-variogram
model. The cross-structures between variables are not independent of the simple structures of these
variables. Hence, the cross-variograms γij( · ) cannot be modeled independently. A standard class
of valid models is the linear model of coregionalization (LMC, see [GV92]): all simple and cross
structures are linear combinations of the same (univariate) variogram models. For Y with constant
mean, the LMC is

Γ(h) := E [(Y (s+ h)− Y (s))(Y (s+ h)− Y (s))ᵀ] =
m∑
k=1

Skgk(h), (A.16)

where m is the number of known variogram structures gk (for instance spherical, Gaussian, expo-
nential, etc.) and the Sk’s are non-negative unknown matrices of sills.

Similarly to the univariate case, the task of fitting the cross-variogram is processed in two steps:
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Figure A.4: Prediction of the cloud cover by univariate ordinary kriging. (a) An example of esti-
mation at fixed time. Each circle is centered at sample point with radius proportional to the actual
cloud cover. Test predictions are the filled discs, the red circles represent measured values. (b)
Boxplot of the relative estimation errors for the test set, computed (c) RMSE and (d) MAE at test
locations, depending on the number of close neighbours (< 150 km) in the training set.
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Figure A.5: Averaged experimental cross-variogram of the cloud cover, relative humidity and wind
speed data (points) in December 2015, and fitted linear model of coregionalization (line) (a) with
unconstrained and (b) positive semidefinite matrices of partial sills. The basic components of the
LMC are Nug, Exp(50), Exp(500).

estimation of the experimental cross-variogram, according to the formula

γij(h(k)) =
1

2|N(h(k))|
∑

N(h(k))

(yi(sa)− yi(sb)) (yj(sa)− yj(sb)) , (A.17)

and then fit a model cross-variogram. This fitting step is not trivial, because of the constraint that
each Sk must be non-negative definite. [GV92] suggests a method to estimate the matrices Sk in the
LMC (A.16), by minimizing a weighted sum of squares in an iterative procedure. They emphasize
that it is important to choose an appropriate combination of the elementary models gk. The range
of the elementary models is also a key parameter (it is chosen a priori and not fitted). We refer to
[PDLF04, Eme10] for a study of other iterative algorithms.

An example of fitted cross-variogram is given in Figure A.5(b), with vector Y including the cloud
cover, the hygrometry (normalized between 0 and 1) and the wind speed (normalized between 0 and
1). We used our own version of the function gstat::fit.lmc in order to handle missing values.
This function uses a simple fitting procedure: first, each variogram model is fitted to a direct or
cross variogram, by minimizing a weighted sum of squares; next each of the partial sill coefficient
matrices is approached by its closest positive semidefinite matrix in least square sense. The matrices
of partial sills are therefore the projections of the fitted models on the cone of positive semidefinite
matrices. In Figure A.5, the model is the sum of three components: a nugget effect, an exponential
model with short range (50 km) and a second exponential model with longer range (500 km). The
difference between Figures A.5(a) and A.5(b) shows how the constraints of positive semidefiniteness
deteriorates the fit.

The cokriging equations are obtained in the multivariate case similarly to the univariate case,
that is by looking for the best linear unbiased predictor that minimizes the variance of the error
prediction. Finally, the estimator is not constrained to the segment [0, 1]. Hence, in order to make
the estimations physically plausible, we simply projected them onto [0, 1].
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Figure A.6: Prediction of the cloud cover by multivariate ordinary kriging. (a) Boxplot of the
relative estimation errors for the test set with the multivariable model with components cloud
cover, hygrometry, wind speed. (b) Overall corresponding histogram. (c) An example of estiamtion
at fixed time. Each circle is centered at sample point with radius proportional to the actual cloud
cover. Test predictions are the filled discs, the red circles represent measured values.

We evaluated numerically the multivariate spatial model with the same learning and test sets as
in the univariate case. The covariables are the hygrometry and the wind speed, with cross-variogram
model given in Figure A.5. The distributions of the relative prediction errors are given in Figure
A.6(a) (by station) and Figure A.6(b) (global histogram). Compared to the univariate case, the
errors are still high. The global RMSE is actually 0.3486, the global MAE is 0.2778, that is the
multivariate model has (slightly) worse performances than the univariate model, in terms of RMSE.
The effect of resorting to covariates in this case is more visible on the variance of the prediction error.
Indeed, this variance is much smaller in the multivariate case than in the univariate: in average, we
obtained a variance of 0.1147 for the univariate model against 0.0422 for the multivariate model.

Given these first results, we see that the multivariable model needs improvement. An in-depth
study of the multivariate spatial model would investigate some of the following issues:

� the impact of the choice of covariables: there are probably other meteorological variables that
are more strongly correlated to the cloud cover data;

� the comparison of the LMC obtained via our simple procedure to those obtained using the
methodology described in either [GV92] or [PDLF04, Eme10];

� the comparison of the LMC to other theroretical multivariate variogram models.

A.4 Comparison of the models

Several spatial models for the cloud cover were presented in Section A.3. They were tested in
several Metar stations against the actual value of the cloud cover. Yet, our primary goal is the
estimation of the global solar radiation. Hence, this section details how to obtain a prediction of
the global solar radiation from the cloud cover data, and compares the different spatial models
against measurements of the solar radiation at Les Renardières.
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Table A.1: Perrin de Brichambault’s model with parameter kappa = 0.81, cloud correction with
a = 0.67 and b = 1.08, evaluated at Les Renardières in Dec. 2015. The RMSE and MAE are given
in W/m2. S-U is the spatial univariate kriging model, S-M the spatial multivariate. GT is the
approximate ground truth, with cloud cover directly estimated from the clearness index.

Model RMSE NRMSE MAE NMAE R2

S-U 29.4 0.51 23.4 0.40 0.54
S-M 30.5 0.53 23.7 0.41 0.55

GT 3.92 0.20 1.94 0.10 0.98

A.4.1 Prediction of the solar irradiance at Les Renardières

To infer solar radiation from cloud cover, we adopted the strategy of correcting a clear-sky model
by an adjustment factor that takes into account the effective cloudiness of the sky. The chosen
clear-sky model, denoted PdBV after Perrin de Brichambaut and Vauge [PdBV82, RW99] uses the
solar zenithal angle as a unique input and reads

Gh,clr = κG0(cos θz)
1.15 (A.18)

with the same notations as in the introduction to this appendix. The model is corrected by a
measure N ∈ [0, 1] of the cloud cover according to

Gh,cld = Gh,clr(1− aN b). (A.19)

Note that the same clear-sky and cloud correction model are employed in Chapter 6. Our approach
combines thus two types of errors, namely the cloud cover estimation error and the model error, due
to the assumption that the horizontal global solar flux is accurately described by eq. (A.18)-(A.19).
Unfortunately, no measure of the cloud cover is available at Les Renardières, such that it is difficult
to evaluate the second error. However, there are some models that interpolate linearly the cloud
cover N from the clearness index k. k is defined as the ratio of the received global solar radiation
during a given period to the extraterrestrial global horizontal radiation for this period, such that it
can be computed at Les Renardières. Such linear models have a simple structure, N being set to
1 for k ≤ kcld, 0 for k ≥ kclr and linearly interpolated inbetween. Good values of kcld and kclr are
explored in [FXM+09], we can use for instance kcld = 0.25 and kclr = 0.8.

Here, we have chosen kcld = 0.2 and kclr = 0.7. Then, the parameters a and b from (A.19)
were computed using a least square fit to the data recorded in November 2015. This gives a = 0.67
and b = 1.08. These values are lower than the values a = 0.75 and b = 3.4 obtained from a fit to
a 10-year record at Hambourg in [KC80], or to the values a = 0.79 and b = 3.21 fitted to hourly
measurements at the lowland site of Baumgarten, Germany, in [IM02].

We then compared the estimations of the global solar radiation at Les Renardières in December
2015 (during daytime hours only), with cloud cover given by the different kriging models and fitted
correction parameters a = 0.67 and b = 1.08. The results are summarized in Table A.1 and in
Figure A.7. Additionally to the RMSE and MAE that were already used in the previous sections,
we propose the normalized RMSE (NRMSE), the normalized MAE (NMAE) and the goodness of
fit (R2) as error metrics for evaluating the different models. The NRMSE (respectively the NMAE)
is the RMSE (respectively the MAE) divided by the mean of the observed global solar radiation
during daytime.
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Figure A.7: Solar radiation predicted in December at Les Renardières by the PdBV model combined
with cloud correction, against actual values. The cloud cover is estimated from the actual solar
radiation (red points) or from (a) the univariate, (b) the multivariate, spatial ordinary kriging
technique (blue points).

Figure A.7 justifies the choice of PdBV’s model. Indeed, if it is corrected by a good estimation
of the cloud cover (red points), then the estimation of the global solar radiation follows closely the
actual measure (red points close to the main diagonal, correlation coefficient R2 = 0.98). This
is confirmed by Table A.1: the PdBV model with experimental cloud cover data has good error
metrics, NRMSE of 20% and NMAE of 10%. Hence, resorting to predicting the cloud cover rather
than the solar radiation directly is a reasonable strategy.

We have seen previously that all three kriging models suffered from severe bias. This remains
true here, with NRMSE over 50% and NMAE over 40%. This means that the kriging models for
estimating the cloud cover need to be further explored in order to achieve better results.

A.4.2 Comparison to the literature

Standard non-kriging learning methods of the literature, based on available records of the global
horizontal solar radiation, largely outperform our approach. For instance, [JPML16] typically ob-
tains NRMSE of 23% and 25%, and gives similar values from other algorithms (between 22% and
37% depending on the studies). In [GFDD16], the best models for hourly predictions have MAE
between 14.84 W/m2 and 21.79 W/m2. Usually, these studies use data from very sunny locations
(Spain and Mediterranean countries), which is a rather favorable context.

[YGD+13] uses anisotropic space-time simple kriging for hourly time-forward predictions of the
solar radiation in 10 stations deployed in Singapore. Their results are given in terms of RMSE of
the hourly clearness index data at 10 stations for two weeks of predictions in late November 2012
(and from two weeks of learning data in early Nov. 2012). Their best covariance model achieves
an overall RMSE of 0.144, whereas the simple persistance method yields 0.193. In our setting,
different because we do not predict the future but reconstruct the present, we obtained RMSEs
of 0.175 (univariate spatial ordinary kriging), 0.184 (multivariate spatial ordinary kriging) for the
half-hourly clearness indices.
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Interestingly, some articles address the issue of estimating the solar radiation in the context of
building performance simulation. For instance, [OS14] compares different method for restoring
missing gaps in solar radiation measurements. Given a sequence of hourly measurements of the
solar radiation, they want to fill gaps of several days in these records. Hence, for a given gap,
measurements of the solar radiation prior to and posterior to the gap are still available. In Oklahoma
City North, which has a warm and humid climate, and for a gap of 20 days the different methods
had NRMSE between 52.7% and 60.3%, NMAE between 28.0% and 36.0%, R2 between 0.76 and
0.88. Those results are more in line with our findings, and illustrate the difficulty of estimating the
solar radiation in the absence of measurements.

A.5 Discussion and conclusion

The aim of this work was to propose a statistical model for the global solar radiation at a given
specific location that takes the spatial dependence structure into account. Moreover, we added the
constraint that a proper learning set, with historical records of the solar radiation, was not available.
The underlying idea being to build an estimator that requires a minimal specific instrumentation.
This is why we chose to estimate the cloud cover instead, and correct a simple clear-sky model to
obtain the estimated solar radiation. Our approach combines thus two sources of errors, the physical
model and the cloud cover adjustment model. Moreover, the cloud cover data itself is difficult to
measure, resulting in a dataset with poor accuracy, combined with a loose spatial resolution (100
stations in France). Hence, a reasonable target was to obtain a first ”rather good” estimation, with
evaluation of the uncertainty, rather than the ”best” estimator.

Beyond the intrinsic constraints of the problem, we emphasize the fact that the kriging method
depends on several modelling choices. First of all, at time step 30 minutes, we assumed that a purely
spatial model was sufficient for the cloud cover estimating. Nevertheless, it would be worthwhile
investigating the influence of the time-step on the model, although higher frequency measurements of
the cloud cover do not exist yet to the best of our knowledge. We also chose a model with constant
unknown mean and isotropic regionalized error process, which corresponds to the framework of
ordinary kriging. Other models exist (e.g. universal kriging), and in particular we might question
the assumption of spatial isotropy. We have already noted that anisotropy was indeed taken into
account in similar studies such as [ISW12] or [YGD+13], for denser spatial networks.

From a practical point of view, kriging requires also to select carefully several parameters: the
space (and, possibly, time) resolution and the cutoff of the experimental variograms, the initial-
ization of the parameters for variogram fitting. We have chosen them ”manually”, but one could
include a cross-validation procedure to select them more accurately.

As a conclusion, this work shows that it is difficult to estimate the solar radiation without
resorting to supervised learning. Using cloud cover data, freely accessible, within the kriging frame-
works looked promising. However, the first basic models are still largely perfectible, and this short
discussion highlights the main steps that could be improved in the estimation process.
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de Paris, 2011.

[ZGIR12] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-
jasegarar. Non-intrusive load monitoring approaches for disaggregated energy sensing:
A survey. Sensors, 12(12):16838–16866, 2012.

[ZM12] Hai-Xiang Zhao and Frédéric Magoulès. A review on the prediction of building energy
consumption. Renewable and Sustainable Energy Reviews, 16(6):3586–3592, 2012.

167



168





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building identification within a connected object ecosystem
Tahar NABIL

RESUME : Cette thèse s’intéresse au problème de l’identification de modèle thermique d’un bâtiment
intelligent, dont les objets connectés pallient la non-mesure des grandeurs physiques d’intérêt. Un premier
algorithme traite de l’estimation boucle ouverte du système de bâtiment exploité en boucle fermée. Cet
algorithme est ensuite modifié pour intégrer l’incertitude de mesure des données. Nous suggérons ainsi
une méthode en boucle fermée, non-intrusive car s’affranchissant de la nécessité de mesurer la température
intérieure. Puis, nous revenons à des approches en boucle ouverte. Les différents algorithmes permettent re-
spectivement de réduire le biais contenu dans la mesure de température extérieure par une sonde connectée,
de remplacer le coûteux capteur de flux solaire par un capteur de température extérieure, et enfin d’utiliser la
courbe de charge totale, et non désagrégée, en tirant profit de signaux On/Off des objets connectés.

MOTS-CLEFS: Identification de bâtiment, objets connectés, systèmes boucle ouverte et boucle fermée,
modèles d’état linéaire et non-linéaire, Espérance-Maximisation.

ABSTRACT: This thesis is devoted to the problem of the identification of a thermal model of a smart
building, whose connected objects alleviate the lack of measurements of the physical quantities of interest.
The first algorithm deals with the estimation of the open-loop building system, despite its actual exploitation in
closed loop. This algorithm is then modified to account for the uncertainty of the data. We suggest a closed-
loop estimation of the building system as soon as the indoor temperature is not measured. Then, we return
to open-loop approaches. The different algorithms enable respectively to reduce the possible bias contained
in a connected outdoor air temperature sensor, to replace the costly solar flux sensor by another connected
temperature sensor, and finally to directly use the total load curve, without disaggregation, by making the
most of the On/Off signals of the connected objects.

KEY-WORDS: Building identification, connected objects, open and closed loop systems, linear and non-
linear state space models, Expectation-Maximization.
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