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1.1 The role of photovoltaic (PV) power in the energy trans-

ition
1.1.1 Current environmental issues

One of the major challenges of the coming years is to define a society model that can address
the many environmental problems that have emerged in recent decades. These problems
are all somehow related to the overexploitation of the Earth’s natural resources. Although
they have been identified since more than a century ago (see [1] or [2]), it is only in the

recent decades that their effects have become noticeable.

However, these problems are interrelated and it seems difficult to solve one without
affecting the others. The main major environmental problems are briefly presented in the

next parts.

1.1.1.1 Global warming

Global warming is one of the main consequences of the large-scale combustion of fossil fuels.
This combustion releases large amount of greenhouse gases (GHGs), and in particular carbon
dioxide, CO3. The increased proportion of CO3 in the atmosphere contributes significantly

to its warming.

This warming has been measured for several decades. Figure 1.1 represents the evolution
of temperature anomalies, defined as the difference between the average temperature of the
current year and the "smoothed” average temperature over several years. It is clear that

there has been a significant increase in temperature since around the 1960s.

The consequences of global warming are numerous. They include rising ocean water
levels, increased frequency of extreme weather events, and biodiversity loss. According to a
2007 report from the United Nations Environment Programme (UNEP), many geopolitical
consequences should be expected [3], partly caused by increased pressure on resources, and

the risk of civil migration associated with environmental change.

While the human contribution to global warming was discussed for a long time, it is now
proved that the observed temperature variations are directly caused by human activities
and the scientific consensus is unequivocal, as summarized in the latest report from the
Intergovernmental Panel on Climate Change (IPCC) [4]. Tt seems therefore necessary to

drastically reduce greenhouse gas emissions in all arecas of human activity.

2
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1.0 Global Mean Estimates based on Land and Ocean Data
—a— Annual Mean
0.8} |= Lowess Smoothing

Temperature Anomaly (°C)

NASA/GISS/GISTEMP/v3
_01%80 1900 1920 1940 1960 1980 2000 2020

Figure 1.1: Temperature anomalies. Source: Hansen et al., 2010 [5]

1.1.1.2 Biodiversity loss

Biodiversity loss is the increased rate of disappearing of living species, both in term of
population and number of species. According to a 2018 report from the World Wide Fund
for Nature (WWF), vertebrate population sizes have seen a decline of 60% in the last 50

years [6]. Figure 1.2 compares the number of animal species extinction during different eras.

Biodiversity loss is also linked to human activity. It is partly caused by global warming,
but also by the loss of natural habitats due to the transformation of natural environments
into agricultural land, by pollution of the existing natural habitats and finally by the ap-
pearance of invasive species with the development of trade and travel. These different causes

were identified in a report commissioned by the United Nations (UN) [7].

Apart from the natural heritage or moral value that can be attributed to biodiversity,
it is also undeniable that biodiversity provides many services to human society. These are
referred to as ecosystem services. Ecosystem services provide material resources: food, raw
materials, water or medical resources. They also include regulation services that contribute
to maintaining conditions favorable to life on Earth: oxygen production, soil fertility main-
tenance, pollination or CO4 trapping. The value of these services was estimated in 2014 in
reference [8] between $125 and $145 trillion/yr.

As a consequence, feedback loops are emerging. Increasing global warming reduces
biodiversity and therefore the capture cycle of COg, which further increases global warming,

and so on. This shows that it is impossible to deal with these subjects separately.

3
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S
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0.1

Marine Mammals Mammals Birds Amphibians All species
species

Figure 1.2: Animal species extinctions. Source: Hassan et al., 2005 [7]

1.1.1.3 Air, soil and water pollution

Various types of pollution are also caused by human activities and interrelated with the

above-mentioned problems. Among the most problematic, we can cite:

¢ Air pollution, which is mainly caused by the excessive emission of toxic gases, particles
and biological molecules in the atmosphere. Air pollution is a major health issue. A
2015 paper published in Nature estimated that air pollution causes 3.3 billion prema-

ture deaths per year, predominantly in Asia [9].

¢ Soil pollution, mainly caused by contamination of the soils with chemicals from in-
dustrial activity or intensive agriculture. This type of pollution is detrimental to
human health through direct contact or consumption of groundwater contaminated
from soils, and to ecosystems by modifying the chemical composition of the ground,

thus perturbing the local food chain.

e« Water pollution. This pollution has several causes, including industrial and agricul-
tural waste, oil combustion wastes, untreated used waters or plastic waste. This type

of pollution affects greatly the biodiversity loss for marine life, and causes significant

4
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human health issues, especially in developing countries.

1.1.2 The energy transition

The growing pressure caused by all the issues described in section 1.1.1 pushes numerous
governments to develop more sustainable policies. Many of these issues are somehow related
to the increases in energy production and consumption. For example, global warming and air
pollution are accelerated by the combustion of hydrocarbons for electricity production and
transport. Biodiversity is under pressure from oil-intensive agricultural techniques, which
also cause soil pollution. The same applies to plastic production, which has historically
been linked to the development of the oil sector and is one of the main contributors to water
pollution.

Therefore, many countries set up policies to limit the impact of our energy consumption
on the ecosystem. These policies are commonly referred to as energy transition policies.
They include many components, both on the energy production and consumption sides.
The main objectives of such policies are to slow the depletion of Earth’s natural resources
and to lower the COy emissions by moving to a system where energy production is based
on renewable resources. They also push to lower the overall consumption by having more
energy-efficient technologies and be globally more sober in terms of energy consumption.

Among all sources of energy, the electricity production sector plays a significant role in
these environmental issues and should be performed in the most environmentally friendly
possible manner. Conventional electricity production methods based on coal, oil or natural
gas are a major source of COs emissions. However, they developed strongly throughout
the 20" century thanks to the abundance of hydrocarbon reserves. They still provide the
majority of the world’s electricity today, as represented in Fig. 1.3.

However, the increasing awareness of environmental problems and the gradual depletion
of deposits contribute to disadvantage these production methods. Low-carbon alternatives
to these means of production exist, each with their advantages and disadvantages. They

are different levers of the energy transition for the electricity production sector.
1.1.3 Low-carbon electricity production: the role of PV power

1.1.3.1 Low-carbon electricity production

One objective of the energy transition is to produce low-carbon electricity to avoid COg,
while minimizing the production’s impact on the environment. It is also necessary to take
into account the cost of electricity production and the easy access to resources in order to

achieve the production from an economic point of view. Figures 1.4a and 1.4b represent
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Figure 1.3: Proportion of different energy sources in the world electricity production.
Total: 25,720 TWh.

Source: International Energy Agency [10]

some of these characteristics. On Figure 1.4a, COy emissions from different production
sources are compared. On Figure 1.4b, the Levelised Cost of Electricity (LCOE) is shown.
It is a calculation of the total cost of production of an energy unit, taking into account
investment costs (CAPEX), maintenance costs (OPEX), as well as fuel costs if necessary,
and the discount rate over the lifetime of the generation. Nuclear power is included in the
category "fossil-fueled” in Fig. 1.4b. Low-carbon electricity production sources are briefly

presented in the following parts.

1.1.3.2 Nuclear power

Nuclear power generation based on fission is a mature technology for producing electricity
with very low COg emissions. The main advantages of this sector are the very low CO,
emissions and its low production cost, although there is some controversy over the cost of
decommissioning old nuclear power plants.

However, nuclear power has several disadvantages. Producing electricity by nuclear
fission generates pollution with radioactive wastes, for which there are no known treatments.
For the time being, radioactive waste is buried or stored. Another problem is the risk of
accidents. While accidents are in fact very rare, their consequences are dramatic. For
example, the nuclear incident at the Fukushima Daiichi power plant caused the evacuation
of more than a hundred thousand people and a large radioactive pollution of sea water [13]

and had lasting effects on the local wildlife [14], [15]. Besides, the impacts on ecosystems

6
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-
o
o
o
1

a

o

o
1

Hydro—- Nuclear Onshore Biomass Solar Natural Oil Hard  Lignite
power power  wind and photo—  gas coal
waste voltaics

kg of emitted CO, per output MWh

o
1

(a) Range of CO4 emissions for different electricity production sources.
Source: Adapted from Turconi et al., 2013 [11]
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Figure 1.4: LCOE and CO3 emissions for different sources of electricity production
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and the radioactive pollution generated from nuclear power plants are undeniable, making
some areas affected for decades.

There are also many geopolitical risks surrounding nuclear power generation, as it re-
quires a resource, that is uranium. Access to this resource could become a problem if the
proportion of nuclear energy in the global energy mix increases. In addition, uranium is
not widely distributed throughout the world, with some countries providing most of the
production. This can contribute to geopolitical instability, especially if there is a lot of
pressure on the access to the resource, as was the case for oil in the oil crisis in 1973, 1979
or the oil price shock of 1990 [16]. Finally, there is also the risk of nuclear proliferation.
Indeed, nuclear energy can also be used for weapon production, and there is concern that
the growth of nuclear energy could globally increase the presence of extremely destructive

nuclear weapons in the world.

1.1.3.3 Renewable energy sources

Renewable Energy Sources (RES) are another option for producing low-carbon electricity.
They are electricity production methods where the initial source of energy that is converted
into electricity is not a fossil source such as coal, oil derivatives or uranium (to be more
precise, these resources are also renewable in the sense that they are naturally produced,
but on extremely long time scales compared to those of renewable resources). RES refers

to a large number of electricity production techniques. Among the most developed are:

e Hydroclectricity relying on the water cycle to produce electricity using the flow of

rivers.
e Wind energy that converts the wind’s kinetic energy into electricity.
o Photovoltaic energy, that converts solar irradiance into electricity.

e Concentrated Solar Power CSP that powers a heat engine using heat from the Sun

concentrated through lenses or mirrors.
¢ Cogeneration using biomass that produces both heat and electricity.
o Geothermal energy, that converts heat from the inner parts of the Earth into electricity.

o Tidal energy that converts cinetic energy from the tide into electricity.

These energies have different levels of maturity. Hydroelectricity is one of the oldest

sources of electricity production and is well controlled. Wind and solar energies have an

8
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advanced technological and commercial maturity, and these two sources of energy have
experienced particularly high growth rates since the last decade (see section 1.4). Biomass
usage has developed in the recent years, although there is a risk of overexploitation of the
natural resource. Tidal and geothermal power, although mature technologies, can generally
only be developed in specific parts of the world where the resource is significant. Other RES

are also only at the demonstration scale of their development.

Wind energy allows electricity production with very low COs emissions. In addition,
the resources specific to the manufacture of wind turbines are not sparse, except for direct-
drive systems that use rare-earth components [17]. However, direct-drive systems represent
only 2% of the wind turbines in the US [18]. The main disadvantages of wind power are the
variability of the production and the visual pollution. Wind power production is not or only
partially controllable, since it is driven by wind speed. To ensure the stability of the power
grid, it is thus necessary to ensure in real time the balance between supply and demand,
which is usually made by activating controllable means of production that can be started
up quickly (typically gas turbines) to compensate for the variations in the production.
This represents a cost that is difficult to estimate since it depends on the variability of
production, the available backup production means, as well as the way the electricity grid
manages the supply/demand balance in real time. Due to the complexity of these costs, they
are rarely included in LCOE calculations. The spatial smoothing effect refers to the fact
that a collection of spatially distributed wind turbines have an overall smaller variability
than a single turbine, and can mitigate the variability’s cost. Offshore wind power can also

mitigate the variability, but it still suffers from relatively high production costs.

Photovoltaic energy has also low CO2 emissions, although they are higher than wind
and nuclear power. This is mainly due to the manufacturing process of solar panels, which
includes the extraction of silica, which is polluting, and an energy-intensive step of purifying
silica, to the point that solar panels can take a few years to "refund” their initial energy cost,
which is the Energy Payback Time (EPBT). In southern Europe, recent studies estimate
the EPBT to roughly 1.5 years [19]. However, if the panels are manufactured using a
low-carbon energy mix, the CO3 emissions of the photovoltaic sector greatly reduce. One
of the major advantages is that the initial energy source (solar radiation), as well as the
resources needed to manufacture the panels (mainly silica) are present in most regions of
the world. Besides, in areas with high solar irradiation, the LCOE of PV power is very
competitive. The disadvantages of this sector are its high COy emissions compared to other
RES and nuclear energy, but also the large area required to capture solar radiation (around

lha per MWp in 2019 for ground-mounted PV), the unavailability of the resource during
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night hours, and the variability of production. CSP shows less variability since it primarily
produces heat, which can easily be stored. However, it also suffers from higher costs than
PV as shown in Fig. 1.4b.

In the end, wind and solar energy are expected to develop at an increased rate, as they
have low impacts in terms of CO2 emissions and pollution and their costs steadily decrease.
One of the biggest challenge for their integration remains the management of the variability
of their production. In this thesis, we focus on the photovoltaic sector, and particularly on
large (> 10 MW) ground-mounted PV plants. Such plants have the lowest LCOE in the

photovoltaic sector, and thus are expected to grow significantly in the coming years.

1.2 Characteristics of PV power production

1.2.1 Photovoltaic effect

The production of electricity by photovoltaic panels is based on the photoelectric effect that
occurs in each of the photovoltaic cells that compose in the panel. Simply put, an incident
photon with sufficient energy can separate an electron within the material, creating an
electron/hole pair. By an assembly of so-called "doped” layers, the electron and the hole
separate, each moving towards one end of the material, thus creating a potential difference.
Finally, by inserting conductive metal contacts at both ends, a direct electrical current can

flow.

The physical phenomenon that generates the current is the number of incident photons,
and therefore production is primarily dependent on solar irradiance, defined as the power
per unit area received from the Sun, in W/m?. However, the components of photovoltaic
cells are also affected by temperature: the lower the temperature, the more efficient the
panels. In addition, photovoltaic cells have a spectral sensitivity, that is, their efficiency is
different according to the wavelength of the incident photons, which itself depends mainly

on the radiative transfer in the atmoshpere.

More precisely, the basic quantity that is frequently used to explain and characterize
photovoltaic production is the Global Horizontal Irradiance (GHI). This quantity represents
the power received from the Sun per unit of horizontal surface area. It is composed of the
direct solar radiation BHI (Beam Horizontal Irradiance) and the diffuse radiation resulting
from the multiple reflections taking place in the atmosphere, the DHI (Diffuse Horizonal

Irradiance), as shown in Fig. 1.5.
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Figure 1.5: Illustration of the different components of solar irradiance
Source: De Simon-Martin et al., 2016 [20]

1.2.2 Predictability of photovoltaic power

The variability of photovoltaic production is strongly related to that of solar irradiance. This
variability is present at different time scales and is caused by different physical phenomena.
These variabilities generate uncertainty on the upcoming PV power generation and thus
limit its predictability. Variability on long-time scale i.e. daily or seasonal is important for
maintenance planning of the plants or prospective generation assessment for new projects.
Variability on short-time scale i.e. a few minutes to a few hours is important for grid
operation or market participation. There are different causes for the variability depending
on the time scale.

There are two causes of variability for long time scales: the day/night alternation related
to the Earth’s rotation on a daily scale, and the seasonal cycle related to the Earth’s
revolution around the Sun on an annual scale. However, the equations describing the motion
of the Sun are very precise, and thus this variability does not limit much the predictability
of PV power [21]. Irradiance in clear sky conditions (”Clear-Sky”) is a useful quantity to
characterize this variability. It refers to the irradiance that would be received at Earth’s
surface if there were no clouds. Many models exist to calculate it, and although it depends
mainly on the position of the Sun, models are often enhanced to take into account the
composition of the atmosphere or other relevant quantities. In the rest of the manuscript,
we will always use the McClear model [22].

Variability on short time scales is mainly caused by the movement of clouds. These

movements can be very quick and consequently, because PV production has no inertia, it
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can exhibit strong ramps, i.e. very rapid power variations, when a cloud passes over the
plant. On an intra-day scale, the proportion of water vapour, the composition of aerosols
i.e. fine particles suspended in the atmosphere, or temperature variations can also cause
power variations, although in a much less significant manner than cloud movements. The
variability caused by clouds is the one that generates the most uncertainty about PV pro-
duction, as it is difficult to accurately predict the formation and movement of clouds over a
long forecast horizon.

Therefore, cloud movements and formations strongly limit the predictability of PV
power. As for wind power, the variability of PV power can be mitigated by the spatial
smoothing effect: cloud movements are a very local phenomenon. Thus, when the output
of several power plants is summed, the overall uncertainty is reduced since an unexpected
event only affects one power plant at a time, and therefore only a part of the output.

Another important characteristic of the PV power predictability is the autocorrelation
of forecast errors. This refers to the fact that PV power forecast error is highly correlated
with itself, shifted over time. This is caused by the persistence of climatic conditions, which
is the tendency that the weather has to remain the same over consecutive time steps. Simply
put, it reflects the fact that if the PV production is lower than expected at a time ¢, it is
more likely that the production at the time ¢ + 1 is also lower than expected. This effect
can be problematic if we try to reduce the variability of production using a storage system
with limited capacity, as we will see in the next chapters.

Finally, the movement of the clouds from one plant to another creates a correlation
between the production from a specific plant and a distant one shifted in time. The further
away these plants are from each other, the lower the correlation. This effect can be used to
generate production forecasts from the production observed in other plants. However, it is

not exploited in this thesis, where we consider only individual power plants.

1.3 Regulated context, electricity market

1.3.1 Support mechanisms for PV power

There are numerous ways of valorizing the energy produced by PV sources. Historically,
PV power was largely subsidized as for most of renewable energies, to help its development.
However, the costs for installing PV power systems reduced greatly in the recent years,
due to the decrease of PV modules costs which still represents roughly one third of the
total installation cost [12]. Consequently, financial support from government reduced also

in many countries. There are three common kind of financial incentives for PV power:
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investment subsidies, feed-in tariffs and Solar Renewable Energy Credits (SRECs).

The earliest form of financial incentive for solar power was in the form of investment
subsidies. That is, PV power plants developers used to recover a part of the capital they
invested from their government. This mechanism proved an efficient way of increasing the
share of PV power, but it was criticized for not providing to the PV plant developers an
incentive to build efficient plants since the remuneration was only based on the investment

and not on the actual energy output of the plant.

To solve this problem, another form of financial incentive was introduced with feed-in
tariffs. With this system, national entities have to buy the output of PV power producers at
a fixed price that is either set by the authorities, or negotiated between the PV producer and
the entity. Since the PV producer is paid proportionally to the energy output of their plant,
they are encouraged to build and operate efficient plants. However, a problem arised from
this mechanism. The buying price is usually set at a price higher than the grid electricity
price, which results in the overpayment of the PV plant owner. Thus, it is a very strong
incentive to develop new PV plants. These buying prices reduced to follow the reduction
of PV modules costs. However, the LCOE of PV power plants has reduced in the recent
years, and in many countries it is now approaching the real market electricity prices. As a
result, there is no point in having dedicated feed-in tariffs systems.

A more subtle mechanism was introduced, mostly in the United States [23] with the
development of SREC. This was introduced to imitate an electricity market, so that the
actual price for PV power energy was based on a market mechanism that pushes PV power
producers to be cost-effective. The principle is that each PV power producer is awarded a
SREC for every MWh of electricity they produce, and each electricity utility has to buy a
fixed amount of SREC, set by the authorities. Then, the SRECs are negotiated through a

market system, with the price depending on the actual demand and offer for PV power.

There is still a problem caused by these mechanisms, which is that the financial costs
caused by the variability of the PV power generation are entirely left to the Transmission
System Operator (TSO). Since the PV producers are either remunerated at a fixed price
with feed-in tariffs, or with SRECs generated for each MWh, they do not have any incentive
to mitigate the variability of the PV generation, and thus they are not financially responsible
for the cost it entails for TSOs.

Recent support mechanisms tend to make the PV plant owners responsible for the vari-
ability of their production. For example, with the last tender in France [24], PV plant
owners have to sell their energy in the French electricity market, where they are financially

responsible for any difference between the amount of energy they sold the day before and
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their actual energy output. Afterwards, they get from the authorities a payment to com-
pensate the difference between the mean electricity price on the electricity market and a
fixed tariff negociated through the tender. In that way, PV plant owners must tackle the

issue of the variability of PV power generation.

1.3.2 Electricity production valorization

Usually, there are three options to valorize the electricity produced by a power plant.

The first option is to distribute directly the electricity to the consumers. This is fre-
quently the case for large electricity utilities that are both producers and distributors of
electricity (e.g. EDF, E.ON or British Gas). The selling price is determined by a contract
between the consumer and the utility. This option is not relevant for a PV plant operator
that has no intention to become an electricity distributor.

The second option is to sell the electricity directly to a specific consumer through so-
called OTC (Over The Counter) contracts, or PPA (Power Purchase Agreements). These
contracts are negotiated in agreement between the parties (buyer and seller of electricity),
as opposed to the standard contracts with mandatory clauses that are signed between the
parties in an organized market. Usually, these contracts are negotiated between an electri-
city producer and a large consumer such as a factory or an electricity distributor without
production resources. It is a possible option for selling PV power, however both parties
have to consider the fact that the PV plant will not produce during night hours, and have a
variable production on daylight hours. For the moment, such contracts are rare in Europe.
For example, in France, the first PPA was signed between the companies Voltalia and SNCF
Energies, which is the main French railway company, in May 2019.

Finally, the last option is to sell the electricity in an organized market. This is the
default option, since the other options require either to have consumer clients, or to find
a party that is interested in signing a PPA. In this thesis, we assume that these specific
conditions are not fulfilled and we focus on the most general case of market participation
as the only mean of PV production valorization. A first introduction to electricity markets

is provided below.

1.3.3 Electricity markets

On day-ahead electricity markets, energy producers and consumers submit their selling or
buying bids to the market operator. A bid is constituted of an energy volume, a Market
Time Unit (MTU) and a price in €/ MWh. A positive (resp. negative) energy volume means
that the bidder is willing to sell (resp. buy) the specified volume at the time indicated by
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the MTU for a price higher (resp. lower) or equal than the specified price.

All the actors can submit bids until a specified time called the GCT (Gate Closure
Time). After this time, all the selling and buying bids are aggregated to build the offer and
demand curves, and their intersection defines the market price. The selling (resp. buying)
bids that have a price lower (resp. higher) than the market price are accepted. The entity
that calculated the market prices organizes the financial flows and usually retrieves a fee for
that.

Based on these general principles, several variations of these markets exist. The way
the prices are calculated, the time resolution of the MTUs (hourly, half-hourly or less), the
GCT can vary a lot. Furthermore, on electricity markets, actors are usually responsible for
matching the electricity production and consumption over a given perimeter that includes
their production and consumption resources. Therefore, if they are not able to actually
produce (resp. consume) the volume they sold (resp. bought) on the market, they must pay
a compensation to the TSO that manages their perimeter. Thus, the limited predictability
of PV power generation can incur significant losses for PV power producers participating in
electricity markets. These costs are called the balancing costs, and the way they are calcu-
lated also depends on the TSOs. In the end, the valorization of the PV power production

depends on both the electricity market and the T'SO.

1.4 Motivation and objective of the thesis

1.4.1 Motivation

From the industry perspective, several governments voted laws promoting the energy trans-
ition to renewable sources, while PV installation costs are decreasing steadily. This creates
very favorable conditions for development of new PV plants projects. For example, in France,
the "Programmation Pluriannuelle de I’Energie” (PPE) was published in 2018 according to
the 2014 law "Loi relative a la Transition Energétique pour la Croissance Verte” (LTECV).
This document specifies the French strategy regarding the energy transition. Regarding PV
power, the objectives are to install 20.6 GW of PV power by 2023 and between 35.6 and
44.5 GW by 2028 [25]. These objectives set a sharp trajectory for the development of PV
power plants since there was only 8.5 GW of PV power installed in 2018 in France. This
is, however, a worldwide tendency. Figure 1.6 shows the growth in the installation of solar
power in the world.

However, PV plants are now expected to bear the costs caused by the balancing of their

production, since it is variable and has a limited predictability. New support mechanisms
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Figure 1.6: PV power growth in the world. Source : Murdock et al., 2019 [26]

force PV plant operators to participate in electricity markets instead of benefiting from
feed-in tariffs or similar support schemes. Thus, the return on investment of PV plants
becomes variable, as it depends from market prices. Besides, the penalties mentioned above

depend on forecast errors, which makes the revenue also dependent on PV power variability.

1.4.2 Objectives

Considering these elements, the overarching goal of this thesis is to maximize the revenue
obtained from the production of PV power with regard to electricity market prices and PV
generation variability. To do so, we will study the value chain of PV generation, that is the
chain of data streams, models and decision-making tools that a PV power producer has to
consider to generate revenue from its production.

This chain is summarized on figure Fig. 1.7. In the literature, most attempts to increase
the PV power value do so by incrementally improving parts of the chain. For example,
there is a significant research activity in improving Numerical Weather Prediction (NWP)
forecasts quality, PV power forecasting models or trading strategies in electricity markets.
Although such attempts certainly increase the value of PV power, we propose a different
approach by directly addressing systematical issues in the chain itself. These issues are
represented on Fig. 1.7.

We identified four main systematical issues in the value chain, that each constitute a
scientific objective to overcome in the thesis. The solutions we propose to address these

issues are presented in the next section.

1. The first issue is a lack of adequacy between the PV power forecasting models used

in the scientific literature and the forecasting products required in electricity markets.

16



CHAPTER 1. INTRODUCTION

PV plant

|

‘ In situ measurements ‘

(Irradiance, temperature,
electricity production...)

2 e

PV power | ¢
forecasting Satellite imagery

model <
All-sky imagers

) data

Need for forecasts
combining heterogenous
inputs

Need for forecasts
adapted to market
timeframes

—J

Gap between forecast
accuracy and market

Price value
forecasting
models | |
TSO data
A,
Decision aid
modelS | Lo N

JT1
[ , |

RSk defie‘:t?\ll'es ::r(\:/lilcltaeg iy
market markets
market market

Valorization options are
numerous and multiply the
number of decision-aid and
price forecasting models
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The main problem is that generally, different models are used depending on the forecast
horizon in the literature. At the same time, electricity markets require forecasts with
heterogeneous time frames. For example, spot electricity markets usually require day-
ahead forecasts, while intra-day continuous markets can require forecasts from a few
minutes up to a few hours ahead. Thus, participating in all these markets requires
developing and maintaining different models, and thus causes continuity issues in the

forecasts, with discrepancies at the horizon threshold between models.

. The second issue is linked to the first one, in the sense that models in the scientific
literature use different sources of data as input depending on their forecast horizon.
Thus, the models are not only dependent on the horizon but also on the source of data,

and they lack the ability to combine information from all available data. Since more
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and more data sets and resources can be found online, we think that is important that
PV power forecasting models can deal with large amounts of data and combine them

to provide forecasts for all horizons without continuity issues.

3. The third issue is the gap between the PV power forecasting part of the value chain
and the market trading part. In the literature, these two parts are usually developed
and trained separately, and it is thus not clear how an improvement in the PV power
forecast quality can improve the revenue generated from the PV power production.
However, we expect that taking into account the market mechanisms and the value
of the forecasts from the beginning of the value chain, that is, when developing and
training the PV power forecasting models would naturally lead to an increase in the

value of the forecasts.

4. Finally, the last issue is that there is a large number of ways to valorize the PV
power, which makes the value chain more complex as it multiplies the number of
price forecasting and decision-aid models, which in turn increases the variability of
the revenue. In Fig. 1.7, we reported three major markets types, that are the spot
market, the power derivatives market and the ancillary services market. However,
there are many variations of these markets depending on the country or the TSO in
charge of the grid where the plant is connected. It is not unusual for a power plant to
be able to participate in several instances of the same kind of market. Besides, local
markets operated by the TSO to help him ensure the supply/demand balance exist in
many countries. Finally, some countries can offer tenders for developing PV power,
which have specific remunerations conditions. Since the revenue is also dependent on
the PV power variability, we can also consider decisions that hedge this variability

such as the operation of a storage system as another trading option.

1.5 Methodology and contributions

We aim to improve the value of the PV power, but the term "value” can have different
meanings depending on the valorization options that the PV plant operator uses to sell its
production. Thus, the first step of the methodology of this thesis is to define a formalism
that allows modeling the participation of a PV plant operator in any series of valorization
options in a generalized manner, so that any ”value function” can be used to estimate the
revenue generated by the PV plant operator, and so the participation of the PV plant
operator on any subset of the existing valorization options can be evaluated. Using this

formalism, we explore different approaches for generating revenue with contributions that
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address the scientific objectives of the thesis. These contributions are the following:

e We propose a seamless PV power forecasting model, that is, a model that provides
forecasts that are consistent across time scales, with the same modelling for all forecast
horizons. To do so, an automatic weighting of the input features of the model is
performed for each forecast. The weighting process takes into account both the start
time of the forecast and the forecast horizon, so that the model provides consistent
results across all start times and forecast horizons. Finally, the model can use multiple
data sources as input e.g. measurements, NWP, or satellite data. This seamless model
addresses the objectives 1. and 2. of the thesis. This work was published in a journal
article [27].

e We combine this PV power forecasting model with appropriate price forecasting mod-
els and decision-aid models to have a first approach for generating revenue on the mar-
ket. However, to address objective 3. of the thesis, we propose a different paradigm to
train the model. Instead of training each model to maximize its own performance, we
train all the models involved at once to maximize the revenue. This effectively creates
a link between the forecasting model and the trading models, ultimately increasing

the revenue. This work was published in a journal article [28].

o We propose an alternative approach where we generate the revenue in a systematic
manner by using appropriate Artificial Neural Networks (ANN). For each of the de-
cision required in the value chain, an ANN performs a Policy Function Approximation
in order to directly learn an efficient policy from the data, effectively using the comput-
ing power and generalization abilites of ANNs. This drastically reduces the number of
models involved in the value chain and bypasses the need for intermediate forecasting
models. Besides, the ANNs can be trained directly to maximize the value associated
with their decision. Thus, this contribution addresses the objectives 3. and 4. of the
thesis. This work was also published in the same article as the above contribution
[28].

1.6 Outline of the thesis

This thesis is divided in five chapters, considering this introduction as the first chapter.
The second chapter details the operation of the different ways of valorizing PV power.
Then, we propose a generic notation of the value chain for PV power as a series of decision-

making processes, which allows for defining the different solutions that we propose to address
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the third and fourth objectives of the thesis. These solutions include two different approaches
for trading PV power, using either dedicated forecasting models (approach 1) or a single
ANN model learning to trade PV power from historical data (approach 2).

In the third chapter, we present the seamless forecasting model that we developed to
address the first and second objective of the thesis. This model is required to perform
approach 1. This model combines in situ measurements, satellite data and weather forecasts,
and can be used at any time of the day for any forecast horizon ranging from 5 minutes to
36 hours.

In the fifth chapter, we apply the different solutions presented in the previous chapters
for selling the PV production on a day-ahead electricity market and a balancing market
where the PV plant operator must financially compensate the balancing costs caused by its
variable production. This first test case requires no additional investment, since the access
to all the options considered in the value chain is free.

In the fourth chapter, we add a storage system to the PV plant and the possibility to
participate in an intra-day market, which adds two decision-making processes to the value
chain. However, since there are a lot of constraints associated with the usage of a storage
system with limited capacity, the implementations of the different solutions for providing
the decision are more complex. For the specific models approach, we have to develop a
controller for operating the storage system based on the updates of PV power forecasts
and the state-of-charge of the storage system. Since these constraints involve temporal
interdependencies, we reflect them in the second approach by using a Recurrent Neural
Network (RNN) instead of a simple ANN. The added value of storage systems is studied
and compared to their investment costs, and a sensitivity analysis on the storage system
sizing and market prices is proposed.

Finally, the last chapter summarizes the content of the thesis and draws the conclusion

of the studies.

1.7 Publications of the thesis

Parts of this thesis have been published in the following journal articles:

[A] T. Carriere and G. Kariniotakis, ‘An Integrated Approach for Value-Oriented Energy
Forecasting and Data-Driven Decision-Making Application to Renewable Energy Trad-
ing’, in IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6933-6944, Nov.
2019. doi: 10.1109/TSG.2019.2914379, https:/ /iceexplore.icee.org/document /8706264,

Post-print available at https://hal.archives-ouvertes.fr/hal-02124851.
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B]

T. Carriere, C. Vernay, S. Pitaval, F.P. Neirac and G. Kariniotakis, ‘Strategies for
combined operation of PV /storage systems integrated into electricity markets’, in
IET Renewable Power Generation, vol. 14, iss. 1, pp. 71-79, May 2019. doi:
10.1049/iet-rpg.2019.0375, https:/ /iceexplore.iece.org/document /8957899, Post-print
available at https://hal.archives-ouvertes.fr/hal-02124855/.

T. Carriere, C. Vernay, S. Pitaval and G. Kariniotakis, ‘A Novel Approach for Seam-
less Probabilistic Photovoltaic Power Forecasting Covering Multiple Time Frames’, in
IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2281-2292, May 2020. doi:
10.1109/TSG.2019.2951288, https://iceexplore.icce.org/document /8890659. Post-print
available at https://hal.archives-ouvertes.fr/hal-02369413/.

Parts were also communicated in conferences:

D]

T. Carriere, C. Vernay, S. Pitaval and G. Kariniotakis, ‘Strategies for Combined Op-
eration of PV /Storage Systems Integrated to Electricity Markets’, in 11th Mediter-
ranean Conference on Power Generation, Transmission, Distribution and
Energy Conversion (MEDPOWER), Dubrovnik, November 2018.

T. Carriere, C. Vernay, S. Pitaval and G. Kariniotakis, ‘Probabilistic photovoltaic fore-
casting combining heterogenous sources of input data for multiple time-frames’, in 6th
Internation Conference on Energy and Meteorology (ICEM), Copenhagen,
June 2019.

T. Carriere, C. Vernay, S. Pitaval and G. Kariniotakis, ‘Sizing of a PV /Battery System
through Stochastic Control and Plant Aggregation’, in 36th European PV Solar
Energy Conference and Exhibition (EU PVSEC), Marseille, September 2019.

T. Carriere, and G. Kariniotakis, ‘Towards a seamless approach for photovoltaic fore-
casting’, in EGU General Assembly 2020, Online, 4-8 May 2020, EGU2020-21753,
https://doi.org/10.5194 /egusphere-egu2020-21753,2020
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Chapter summary in French

Contexte

L’activité humaine crée de nombreux problémes environnementaux qui ont des impacts
négatifs a la fois sur les écosystemes locaux mais aussi sur la société dans son ensemble.

Parmi eux, on trouve :

e Le réchauffement climatique;
o La disparition de la biodiversité;

e La pollution de l’air, de ’eau et des sols.

Ces différents problémes sont tous liés d'une certaine fagon a l'activité humaine, et
plus précisément a l'augmentation de la production et de la consommation d’énergie a
échelle mondiale. Dans ce contexte, la transition énergétique cherche a développer des
alternatives durables et a faible impact sur I’environnement au model actuel de production
et de consommation d’énergie. Cette transition se caractérise par des changements profonds
d’un point de vue social et comportemental, mais aussi des solutions techniques pour réduire
Iempreinte énergétique des différentes activités humaines.

Parmi elles, la production d’électricité est une activité qui participe a de nombreux
problemes environnementaux, et en particulier au réchauffement climatique. En effet, la
plupart de I’électricité produite dans le monde est produite par combustion de combustibles
fossiles, ce qui émet d’importantes quantités de gaz a effet de serre.

De nombreux moyens de production d’électricité ayant un plus faible impact environ-
nemental que les moyens traditionnels existent. Parmi eux, les moyens de production d’én-
ergie renouvelable, c’est-a-dire qui utilisent une source d’énergie dont le renouvellement
naturel est rapide, connaissent un développement rapide depuis les années 2000. Dans cette
these, nous nous intéresserons particulierement a la filiere photovoltaique, qui convertit
Iirradiation solaire en électricité par le moyen de 'effet photoélectrique.

L’un des défauts de la filiere photovoltaique est que la production est dépendante de
I’ensoleillement, et donc présente une importante variabilité. Cette variabilité est présente
a plusieurs échelles de temps. La mouvement périodique de la Terre sur son orbite génere
une variabilité saisonniere et sa rotation sur elle-méme une variabilité journaliere avec ’al-
ternance jour/nuit. Finalement, la formation et le passage de nuages au-dessus des centrales
photovoltaiques créent une variabilité intra-journaliere. Le mouvement de la Terre est bien

connu et génere peu d’incertitudes sur la production, mais la formation et le mouvement
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des nuages est un phénomeéne complexe et local qu'il est difficile de prévoir. Ceci génere une
importante incertitude sur la variabilité intra-journaliére de la production photovoltaique,
et limite finalement la prévisibilité de la production.

En paralléle, les subventions accordées a la production photovoltaique diminuent gradu-
ellement pour accompagner la baisse des colits de cette filiere. Les tarifs d’achat ont main-
tenant disparu dans de nombreux pays et les producteurs d’énergie photovoltaique doivent
maintenant vendre leur production sur les marchés de 1’électricité comme pour toute autre
filiecre. Cependant, les participants au marché de 1’électricité doivent payer des pénalités
financieres pour tout écart entre leur production et la quantité vendue sur le marché, ce qui

est problématique pour ’énergie photovoltaique puique sa prévisibilité est limitée.

Motivation

Du point de vue industriel, la filiere photovoltaique a bénéficié de fortes réduction des coiits
dans les dernieéres années, acompagnée par une forte volonté politique de développement
de cette filiere. Cependant, elle doit maintenant assumer elle-méme les cofits crées par sa
variabilité, ce qui génere une importante incertitude sur le revenue.

L’objectif de cette these est donc de maximiser le revenu géneré par une centrale photo-
voltaique sur le marché de I’électricité, en tenant compte de 'incertitude de la production et
celle des prix de I'électricité. La chaine de valorisation qui conduit a la géneration de revenu
sur les marchés est complexe et implique de nombreux modeles de prévisions fonctionnant
& divers horizons temporels (voir figure 2.4). La plupart des approches existantes tentent
d’améliorer le revenu lié a la vente de la production en améliorant incrémentalement cer-
taines parties de la chaine, par exemple en améliorant la performance du modele de prévision
de la production. Dans cette these, nous explorons d’autres perspectives d’amélioration en
étudiant les problemes structurels de la chaine de valorisation. Nous avons identifié quatre

problemes structurels, qui constituent chacun un objectif scientifique de la these a surmonter

e Le manque d’adéquation entre les modeles de prévision proposés dans la littérature
scientifique qui sont géneralement différents selon ’horizon de prévision, et les besoins
de la vente de la production photovoltaique qui fonctionnent de fagon continue sur

une multiplicité d’horizons de prévisions.

e Le besoin de modeles de prévision de la production capables d’exploiter des sources
d’information diverses, telles que les mesures, les prévisions météorologiques ou les

images satellites.
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¢ Le manque de lien entre la performance des modeles de prévisions (prix ou production)
individuels et le revenu géneré. Les modeles sont géneralement entrainés pour avoir la
meilleure performance de prévision, ce qui ne garantit pas qu’ils génerent le meilleur

revenu possible.

o La complexité de la chaine de valorisation qui nécessite une grande variété de modeles

et de données d’entrée, ce qui complique son utilisation de fagon opérationelle.

Méthodologie

Nous proposons différentes approches pour traiter les problémes structurels de la chaine
de valorisation de la production photovoltaique. Le terme ”valeur” peut avoir un sens
différent selon les options de valorisation choisies : le calcul du revenu est différent selon
que I’électricité est vendue sur un marché day-ahead uniquement ou day-ahead et intra-day,

selon que la centrale PV est couplée a une batterie ou non, et ainsi de suite.

La premiere étape de la méthodologie de la these est donc de proposer une notation
générique qui permet de modéliser n’importe quelle option de valorisation de la production.
Cette notation permet de définir facilement les différentes solutions proposées pour traiter

les objectifs scientifiques de la these.

Pour traiter les deux premiers objectifs, nous développons un modele de prévision de
la production photovoltaique exploitant une procédure automatique de pondération des
données d’entrées selon ’horizon, de facon a ce que le modeéle puisse étre utilisé facilement

pour n’importe quel option de valorisation.

Pour traiter le troisieme objectif, nous proposons de prendre en compte le revenu géneré
par les modeles de prévision en les entrainant pour maximiser ce revenu au lieu de maximiser

leur performance de prévision.

Pour traiter le quatrieme objectif de la these, nous proposons une approche alternative
a I’approche classique qui consiste a combiner des prévisions issues de nombreux modeles de
prévision individuels pour obtenir la décision optimale pour chaque option de valorisation.
Cette approche alternative utilise des réseaux de neurones artificiels. IL’avantage de ces
modeles est qu’ils sont capables d’apprendre directement a maximiser le revenu en fonction
de I'historique de données et de la forme de la fonction de calcul du revenu. Ils permettent
ainsi de traiter n’importe quelle option de valorisations de fagon systématique, sans avoir a

développer de nombreux modeles de prévisions individuels.
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Plan

Le chapitre 2 présente en détail le fonctionnement des marchés de 1’électricité, puis introduit
les notations géneriques utilisées pour définir les différents solutions proposées. Le chapitre
3 présente en détail le modele de prévision photovoltaique développé dans cette these. Le
chapitre 4 est une premiere application des solutions proposées pour le cas de la vente
d’¢électricité sur le marché day-ahead seul, ce qui est une simplification de la chaine de
valorisation. Ce cas d’étude permet cependant d’identifier certaines caractéristiques des
différents solutions proposées. Le chapitre 5 est une seconde application sur la chaine de
valorisation compleéte, incluant la possibilité de participer a un marché intra-day, et la
possibilité de coupler une centrale avec un moyen de stockage. Finalement, le chapitre 6

tire les conclusions de la thése et propose des directions de recherche.
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Chapter 2

A generic formulation for PV
power valorization in electricity

markets
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In this chapter we describe the different electricity markets, and propose generic nota-
tions to describe the participation in any market. From these notation, we state explicitly
the different solutions that we propose to improve the PV power value chain. Parts of this

chapter were published in the article [A] in section 1.7.
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2.1 Overview of electricity market mechanisms

As explained in chapter 1, we consider PV power trading only through electricity markets,
because we do not assume that the producer has consumer clients, or enough clients to cover
his production with PPAs. However, electricity markets can differ by several criteria.

The purpose of electricity markets is to anonymously exchange commodities based on
electricity generation or power depending on the market, through buying or selling bids.
They are defined by their products, that is the definition of the exchanged commodity, but
also their timings and their pricing rules. We can broadly define three types of markets for

electricity generation:

o Long-term energy exchanges where electricity is sold from a few days up to a few years

in the future.
¢ Day-ahead markets where electricity is sold for the following day.

¢ Intra-day markets where electricity is traded for the current day.

There are also markets for providing power instead of actual energy generation. The
provisions of a given amount of available power are called ” Ancillary services” and help TSOs
manage the power grid. Markets for ancillary services are also differentiated depending on
their timings.

In this section, we propose a detailed explanation of these markets operations.

2.1.1 Long-term energy exchanges

Long-term energy exchanges allow for the trading of electricity derivatives. Derivatives are
contracts that derive their value from a given indicator called the underlying. In the case of
electricity derivatives, the underlying is generally the electricity spot price. Such markets
include EEX in Europe, NYMEX or NASDAQ in the USA, PXE (part of EEX group) in
castern Europe, OMIP in the Iberian Peninsula or KPX in South Korea.

There are usually two major kinds of contracts for electricity derivatives: futures and
options. Some other derivatives exist, but they are less commonly traded, such as swaps,
strike spread or swing options, tolling and load-serving full-requirement contracts [29].

Futures are the agreement between two parties, the buyer and the seller, to buy (resp.
sell) a specific amount of a given product at a specific time in the future and for a price
specified in the contract. In most cases, these contracts are cash-settled, which means that

at the expiration of the contract, the buyer pays to the seller the difference between the
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price specified in the contract and the underlying value. This difference can be positive
in which case the seller is paid by the buyer, or negative in which case the buyer is paid.
When the contracts are cash-settled, there is no real exchange of goods. As a result, these
contracts are generally used as hedging options to be less vulnerable to price variations. For
example, an electricity producer could be concerned by a potential decrease of energy spot
price. Thus, he would sign a future contract with a buyer to the amount of its production
for the minimum price that he would accept to sell its electricity, called the contract price.
If the spot price falls lower that this minimum price, the buyer would pay him the difference,
and so the seller is guaranteed to get at least the contract price for its electricity, no matter
the spot price variations. On the contrary, if the spot price increases, the seller pays the
buyer the difference between the spot price and the contract price, and thus gets a lower
revenue that if he had not contracted a future. Essentially, power futures are a bet on the

variation of the electricity price.

Options are similar to futures. The owner of an option pays a premium to get the right
to buy (”call” option) or to sell ("put” option) a specified amount of goods at a future time.
They are again hedging options. If an electricity producer suspects that the spot price will
decrease, he can buy a "put” option on its production for the minimum price he can sell
its electricity, that is the contract price. Then, at the expiry of the option, if the spot price
did decrease, he can use the option to sell its electricity at the contract price. Otherwise,
if the spot price increased, he can abandon the option to sell the electricity at the spot
price. The difference between futures and options is mainly that with an option, the owner
of the option always pays a premium, but gets in return the right to choose if he sells the
goods for the spot price or the contract price. As for the futures, these contracts are usually

cash-settled, and so there is no actual delivery of electricity.

Futures and options are usually traded for periods ranging from one day to one year.
In other words, the product that is sold with such contracts is a constant output of a given
amount of power during a one-day to one-year period. This is not convenient for variable
energies such as PV power since a constant output requires a storage system and an accurate

PV power forecasting model.

There is a possibility to contract physically-settled futures where the fulfilment of the
contract is conditioned on the actual delivery of electricity on the grid, but in such cases the
future is converted to bids on the day-ahead market for each day of the delivery period. Thus,
contracting either a physically-settled future or a cash-settled future then participating in

the day-ahead market are equivalent options.

In any case, both futures and options do not give the right to inject the electricity into
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the grid. In the end, they are not really a way to valorize the production but a way to hedge
the risk for electricity price variations; the only way to get the right to inject energy in the

grid is trough physical markets such as the day-ahead or intra-day markets.

2.1.2 Day-ahead markets

Day-ahead markets allow for the trading of electricity for the next day, on an hourly or
sub-hourly basis depending on the market. Day-ahead markets are physical, so that any
electricity sold on day-ahead market must be injected on the grid. Otherwise, the market
participant must pay financial penalties (see 2.1.4). Day-ahead markets usually exist at a
national level, or at least at the TSO level. In Europe, the EPEX SPOT market operates
the day-ahead market in most of Western European countries. Similarly, the MIBEL market
operates the day-ahead market in the Iberian Peninsula, while NORDPOOL operates it in
Northern Europe. Examples of national-level day-ahead markets include APX in the UK,
CROPEX in Croatia or IEX in India or JEPX in Japan. Examples of day-ahead markets
at the T'SO-level can be found in the USA with PJM in the East or ERCOT in Texas.

On day-ahead markets, each participant must submit buying or selling bids before the
GCT. Then, all the buying and selling bids are combined to derive aggregated demand and
supply curves for each MTU of the following day. The intersection of these curves defines
the spot market price, which is usually the underlying for power derivatives such as futures
and options (see 2.1.1). The calculation of the spot price after the GCT is called the market
clearing.

After the spot prices have been calculated, the market participants are nominated for
injection on the grid if their bid has been accepted. All selling bids with a price lower than
the spot price are fully accepted, and all buying bids with a price higher than the spot price
are fully accepted. Since we are interested in the selling of energy, we will always adopt the
point of view of an energy producer in the remaining of the thesis.

In any case, all accepted transactions are settled with the spot price, independently of
the initial bid. For example, if a market participant accepts to sell up to 1 MWh for 20
€/MWh and then the spot price is 40 €/MWh after clearing, the participant’s bid is fully
accepted and he gets
1 MWh x40 €/MWh = 40 €. Thus, the revenue of a market participant that sells energy

can be written:

R =rmn,FE, (2.1)
where 74 is the spot price and FE, is the amount of energy contracted on the spot market.
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Figure 2.1: Effect of a price taker participant on the clearing price

This revenue is then subject to financial penalties if the actual energy injected is different
than the amount sold (see 2.1.4).

In these kinds of markets, it is usual to sell electricity for a price higher or equal to
the marginal cost i.e. the unitary cost required to increase the production. In such a case,
a participant that sells electricity always generates profit from an accepted bid. However,
the marginal cost has no sense for a fatal energy, since there is no cost associated with
the production increase because production is completely dependent on the weather. Thus,
most variable electricity producers bid following a "price-taker” strategy, that is bid at the
minimum allowed price. Thus, they are sure to be accepted since they necessarily have the
lower bid, and they are still paid for the spot price. However, bidding at the minimum
allowed price lowers the spot price calculated at the clearing because it shifts the supply
curve to the right as illustrated on Fig. 2.1. This is why prices tend to be lower when

conditions are favorable to renewable energy production resources.

2.1.3 Intra-day markets

Intra-day markets are physical markets that allow trading electricity after the GCT of the
day-ahead market. They are especially useful for variable energy sources that can use

updated forecasts to correct the positions they took on the day-ahead market.
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As for day-ahead markets, intra-day markets are characterized by a MTU, and a closure
time. For example, on the EPEX SPOT intra-day market in France, the MTU is the same
as the day-ahead market i.e. one hour, and the closure is five minutes before the start of
the delivery period.

The pricing can be the same as for day-ahead markets, with an auction mechanism and
a settlement price that applies for all participants. However, it is also very common to have
continuous markets, where buying and selling bids are matched as they appear, directly
using the bid price. This is for example the case on the EPEX SPOT intra-day market in
France. Recent research suggested that the penetration of RES on these markets have a

non-linear effect on the intra-day market price, and also tend to increase its volatility [30].

2.1.4 Balancing mechanism

At any time, electricity production must match consumption. Thus, after the intra-day
market closes, the TSO takes the responsibility to ensure the supply/demand balance by
activating or stopping production resources, so that any discrepancy between the consump-
tion and the production at the TSO level is compensated. The period between the closure
of the intra-day market and the delivery is called the operational window.

The term ”balancing mechanism” refers to the method used by the TSO to ensure
the supply/demand balance. The term “balancing market” define the different market-
based tools that the TSO can use to perform the supply/demand balancing. Therefore,
the balancing markets implement the balancing mechanism. The balancing markets usually

include two major components:

e The imbalance settlement rules for the Balance Responsible Parties (BRPs). A BRP
is an actor that has to ensure that the supply/demand balance is met on a given
perimeter i.e. a set of production and consumption resources. The imbalance settle-
ment rules define the financial penalties that the BRPs have to pay for each difference
between production and consumption, called imbalance, on their perimeters. Typic-
ally, day-ahead market participants have to be BRPs and their transactions in the
electricity market are accounted for in the supply/demand balance of their perimet-
ers (buying energy is counted as an additional production, selling as an additional

consumption).

e The balancing service provision, which defines the different markets in which indi-
vidual actors can offer balancing capacity to the TSO. They include ancillary services,

balancing energy or balancing capacity markets.
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We will give a brief overview of these components in the following sections.

2.1.4.1 Imbalance settlement

Imbalance settlement rules are different for all TSOs. Still, there are two broad categories:
single-pricing and dual-pricing.

In both cases, the penalties are proportional to the imbalance of the BRP, as measured by
the TSO. For an electricity producer, the imbalance is the difference between the energy sold
and the actual energy produced. The imbalance can be positive when the actual injection
is higher than the amount sold. It can also be negative in the opposite situation, that is
when the injection is lower than the amount sold. The proportionality coefficient between
the imbalance and the penalty is a price derived by the TSO called the imbalance price. As

a general rule, the penalties Pen can write:

Pen =7np(E — E.) (2.2)

where 7p is the imbalance price, F is the actual energy injected into the grid and F. is
the energy contracted in the day-ahead and intra-day electricity markets.

With single-pricing rules, the balancing price is independent of the sign of the imbalance.
On the opposite, with dual-pricing, the balancing price is different for positive and negative
imbalances. This has important consequences when combining the penalty formula with

the revenue generated on the electricity market from 2.1:

R=mn,E.+np(E — E,) (2.3)
R=n,E— (E—E.)(ns —7B)

We can see that penalties can be negative, which means having imbalances can increase
the revenue. For example, if 7y < 7p, then any positive imbalance £ — E. > 0 would
increase the revenue. So when a producer expects the balancing price to be higher than
the spot price, then the most profitable bid would be the lowest possible bid allowed by
the market. However, this would be very risky because if the balancing price ends up lower
than the spot price, the penalties would be very important. Since the balancing prices are
very uncertain, it seems difficult to have a trading strategy that relies that much on the
balancing price forecast.

With dual-pricing rules, there are actually two balancing prices: one for positive imbal-
ances and one for negative imbalances. Usually, the method used to calculate the balancing

prices prevents the situation described previously when penalties are negative. To do so,
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Figure 2.2: Imbalance settlement rules in some European countries.

Source: Study from CE Delft and Microeconomix [31]

the balancing price is usually higher than the spot price for negative imbalances and lower
than the spot price for positive imbalances, so that the penalty term (E — E.)(7ms — 7p) is
always positive. Figure 2.2 shows the rules used by several TSOs to derive the balancing
prices depending on the volumes used for regulation in the operating phase.

When making a transaction on the intra-day market, the revenue from the transaction
adds to the amount initially sold, and the volume bought or sold adds to the actual produc-
tion for calculating the imbalance penalty. The complete revenue of a producer that sells
an energy FE. on the day-ahead market, then makes a transaction on the intra-day market
of an energy volume E;p (positive when energy is bought, negative when energy is sold) for

a price myp is:

R=mnsE. —mipEip + (E+ Eip — E.)p (2.4)
R=mn,E+ (s —mrp)Eip — (E+ Erp — E.)(ms — ™R)
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2.1.4.2 Balancing service provision

Balancing service provision is organized by most TSOs with markets, where energy producers
can offer available power for the TSO during the operational window for remuneration.
There is a wide diversity of balancing service provision markets among the TSOs and to
avoid focusing on a specific scheme, we do not consider them in this thesis.

Similarly, ancillary services markets are markets where participants can sell supporting
services to the T'SO called ancillary services. These services are usually categorized between
frequency and voltage ancillary services. Frequency services consist in providing the TSO the
opportunity to increase or decrease the injection of active power in the grid depending on the
grid’s frequency deviation. Voltage services consist in providing the TSO the opportunity
to increase or decrease the injection of reactive power in the grid depending on the grid’s
voltage deviation. Voltage ancillary services are not commonly provided with markets, but
are often mandatory and remunerated for a fixed price or obtained through yearly tenders.

Ancillary services "products” are defined at a TSO-level and thus are dependent on the
localization of the market participants. Still, based on the existing services as defined by

TSOs, we can broadly distinguish ancillary services in three categories:

e Frequency Containment Reserve (FCR). This service consists in implementing an auto-
matic control of the active power, proportional to the grid’s frequency deviation to its

nominal value. The control is made in real-time.

o Automatic Frequency Restoration Reserve (aFRR). This service consists in allowing
the TSO to increase or decrease the production of the power plant in a matter of
minutes to restore the grid’s frequency nominal value when the FCR is not enough.
The nomination of the actual service providers that must increase or decrease their

power plants injection is generally made by merit-order and is automatic.

e Manual Frequency Restoration Reserve (mFRR). This service is similar to the aFRR,
but service providers must increase or decrease their production in a matter of a dozen
of minutes. The nomination of the service providers that must modify their production

is also made by merit-order and is manual.

o Replacement Reserve (RR). This service is the service that has the longest time of ac-
tivation, from 15 minutes up to hours. It is intended to release the activated Frequency

Restoration Reserves after an incident occurred.

The decision to use an organized market to buy the ancillary services, to buy them

through a tender, or to make them mandatory for energy providers and remunerate them at
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a fixed price is up to the TSO. Thus, there are no standard ancillary services market, and
the procurement mechanisms are very diverse [32]. Still, there is an effort coming from the
European Union to standardize ancillary services definitions to allow for implementation of
international ancillary services market at the European level. One example of a successful
unification of ancillary services products in an European market is the FCR reserve market
operated on the platform regelleistung.net. On this platform, participants can participate
to weekly tenders to provide a given volume of FCR at the FEuropean level. However, it is
difficult to derive a value for this service for variable sources, because FCR was historically
provided by spinning machines operators with a controllable production. Thus, it was very
uncommon for the service providers to be unable to provide FCR at a given time. As a
result, there are no clear rules on how the participants are penalized if they fail to provide

FCR, which gives this system low visibility for variable electricity production resources.

The integration of variable resources in power systems increases the need for ancillary
services [33]. Besides, the provision of such services from variable energy sources is difficult
because of their uncertainty and their distributed nature, which makes the use of an optimal
centralized controller difficult. Still, it is possible for variable energy sources to participate
in electricity markets with limited periods of failure [34]. In [35], the authors studied the
possibility for a wind power plant to participate in both energy and frequency reserve
markets. They found that the relative profitability of energy and reserve markets is the
main driver of the wind power plant strategy. Thus, under the current market framework,
a profit-driven wind power plant would not always provide ancillary services even if it has
the technical possibility to do so. In [36], the authors studied the participation of a Virtual
Power Plant (VPP) in a similar joint market. They found that participating in both markets
provides an higher revenue, but the probability of failing to provide reserve is still higher for
variable energies, especially when going for more profit-driven participation strategies. In
[37] and [38], the authors showed that the combination of a variable resource with a storage

system can significantly improve the revenue obtained from ancillary services markets.

The penalty price for failing to provide ancillary services is generally estimated using
the current penalties for providers of ancillary services that fail to comply with the TSO
rules after a technical fault was observed. However, current electricity markets are not
quite adapted to variable energies [39], [32]. These markets are still maturing and the
future penalty prices or market designs could be different. In [40], the authors find that
scheduling the reserve as close to real-time as possible would improve the capability of wind
power to provide reserve. Studying the participation of resources with variable production

to ancillary markets would then require a supplementary effort of prospective modeling of
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the ancillary services market design. Since we want to avoid prospective studies and only
consider actual existing valorization processes for PV power, we do not consider ancillary

services in this thesis.

2.1.5 Scope

Figure 2.3 summarizes the different markets from long-term exchanges and reserve contrac-
tualization up to the balancing market. In this thesis, we will not consider the long-term
exchange because it is used as a financial hedging tool and not as a tool to valorize the
actual energy with physical injection to the grid.

Ancillary services and balancing service provision markets are also not considered in the
thesis, because they lack maturity and clear rules adapted to variable electricity production
sources. Thus, we will focus on the combination of day-ahead, intra-day and balancing

markets to valorize the energy.

2.2 Generic formulation of the PV energy valorization pro-

cess

2.2.1 Value chain for PV power trading

At this point, we identified all the market options that are in the scope of the thesis.
However, we will also consider storage systems in the value chain as a mean for hedging
financial risk. Although it is not a market option per se, it can contribute to maximizing
PV power value in two ways.

On day-ahead markets, a storage system can increase the PV power value by shifting
the production to times where the electricity price is higher. Typically, day-ahead prices
are higher at times where the demand is high i.e. in the evening in European countries.
They are also low during the day, when demand is generally lower. As a result, a benefit
can be obtained by storing PV power in the storage system during the day and discharge
the storage in the evening.

During imbalance settlement, the storage system can be used to compensate an imbal-
ance, and thus reduce the penalties paid by the producer. However, this usage of the storage
system is concurrent with the usage on the day-ahead market, and so the comparative be-
nefit of these two usages has to be estimated at all times, based on the expectation of both
day-ahead and imbalance electricity prices.

Considering all the options that are in the thesis, the value chain for PV production

trading can be represented as in Fig. 2.4.
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Figure 2.3: Consecutive markets leading to the supply/demand balance for electricity.

Several offers can be proposed for the same MTU except on the day-ahead market.
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On this value chain, the systematic issues identified in chapter 1 for trading PV power
are clear. The first issue, which is the requirement for seamless PV power forecasting
models that can provide good forecasts for any horizon independently from the start time
is justified by the need for three different forecast products: one at D-1 for the day-ahead
market, one at M-30 for the intra-day market and one a M-5 for the storage system control.
This naturally leads to the second issue, which is that the PV power forecasting models
must use heterogeneous sources of data in order to have state-of-the-art performance for all
required forecast horizons.

The third issue is the gap between individual models performance and overall value
generated from PV power. On Fig. 2.4, it is represented by the numerous models that are
involved in each decision process, and the fact that each decision relies on the result from the
previous decision processes. Besides, decision-aid models can be complex and significantly
transform the information given by each of the models they require. Thus, the link between
individual models forecast and value of the related decision process is unclear.

Finally, the fourth issue, which is the complexity of the model chain, is represented by
the number of required models. Even considering that the PV power forecasting model is
seamless, there is still eleven models required (one for PV power forecasting, 7 for market
quantities forecasts and three for decision-making).

We identified the issues with the PV power trading value chain that we aim to solve in
this thesis. In chapter 3 we will introduce the seamless forecasting model that we developed
in order to address the first and second objective of the thesis.

To address the two other objectives, the first step is to introduce a generic notation of
the different decision processes so that we can precisely explain how we aim to solve the

issues.

2.2.2 Notations

We consider each of the decision processes as an application where a decision D(X) has to
be taken conditionally to a set of inputs X. The notation we propose imitates the shape
of the decision processes represented in Fig. 2.4, which is always constituted of a set of
forecasting models that arc combined in a decision-making model. We note as M ., cach
of these m models and X; . ,. The models can share some of their inputs. Finally, we
assume that there is a function T that combines the outputs to obtain the optimal decision.

The decision-making process is thus modeled by:

D(X1, ..., Xn) = T(My(X1), ..., M (X)) (2.5)
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To completely define each decision process, we propose to add three characteristics:

e A time frame, that is, the time at which the decision must be made and the horizon

of the decision.

e The shape of the output, that is the size of the input and output vectors of each

process.

e An objective function that can evaluate the reward or penalty obtained from a specific

decision.

This notation is generic and can potentially represent any value chain as long as the
models M; and T are defined appropriately. For example, for trading on the French day-
ahead market EPEX SPOT without a storage system, the market requires to make a decision
everyday at 12 a.m., which is the GCT. Assuming a price taker strategy, the output is a
R?* vector corresponding to the offered volume for each hour of the following day. Thus,
the decision horizons range from 13 hours to 36 hours. Its objective function is the actual
revenue generated from the output defined by equation (2.3). The models M; are a PV power
forecasting model, a positive imbalance price forecasting model and a negative imbalance
price forecasting model. The model T is a trading strategy such as the ones proposed in
[41] or [42].

The modeling of this value chain with these notations is the first step of the stochastic
optimization problem that we have to solve in order to obtain the optimal decision-making
function (also called policy). The second step is the design of the policy, that is, how we de-
rive a policy that maximizes the value of the decision. Obtaining efficient policies accounting
for uncertainties of the problem is a complex problem for which significant literature exists.
Reference [43] proposes an overview of the existing methods to solve such stochastic optim-
ization problems. Recent popular options for stochastic optimization include Reinforcement
Learning [44], [45], Approximate Dynamic Programming [46], Robust Optimization (RO)
[47], Stochastic Programming [48], or Model Predictive Control (MPC) using a sampled
future [SchildBach2016].

In this thesis, we will study the participation of a PV power producer in an electricity
market. In chapter 4, only the participation in a day-ahead market is considered. In such
a case the problem is simple enough that an optimal policy can be derived analytically
[41] and so we do not need advanced stochastic optimization methods. We will use either
the analytically optimal policy, or a simple Policy Function Approximation (PFA) with a

standard ANN to evaluate an alternative modeling of the optimization problem. In a second
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case study we will study the participation of a coupled PV /storage system in both an intra-
day and a day-ahead market. In this case the policy we want to learn is state-dependent,
and so we must use more advanced techniques, that are either MPC with a sampled future or
PFA using a Recurrent Neural Network RNN so that the state-dependency can be captured.

In both case studies, the contribution of the thesis is not the stochastic optimization
method, since all the methods used are already found in the literature. It is rather in the
modeling of the sequential optimization problem that we need to solve. Specifically, we
propose two contributions that aim to rely as much as possible on observed data rather

than on the problem formulation, and so have data-driven policies.

2.2.3 Reducing the gap between forecast accuracy and value

In the literature, the models involved in a decision process are generally trained to maximize
their own performance instead of the value of the related decision. Although some articles
studied the link between accuracy and value [49] or proposed indicators taking value into
account to evaluate the forecasting performance [50], they did not include the value as an
objective during the training phase of the models. In papers proposing data-driven methods
with advanced optimization techniques, the actual value of the decision is systematically
used to perform the optimization [51], [52], [53]. However, they do not consider how they
obtain the forecast state that they use for the optimization method, and so the first step of
obtaining the forecast state is not considered in the optimization problem. In this thesis,
we propose an alternative training method where we take directly into account the value of
the decision during the training, which creates a link between the individual models and the
whole decision process. In other words, we include the parametrized function that forecasts
the next state in the policy instead of considering only the last step of decision-making as
the policy.

To describe this new training approach, we consider that each of the n dedicated models
uses a set of parameters ©1__ 5, and we note as Mi@i the output of the ¢-th model using the
parameters O;.

The standard method where each model is individually trained and the alternative

method that we propose in the thesis are represented on figure 2.5.

2.2.3.1 Standard training method

This method, that we call Method 1, consists in separately optimizing the consecutive models
M;. This is the most intuitive approach, as it seems natural that the whole process would

perform better if the specific performance of each element of the process were optimized.
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Figure 2.5: Schematic representation of the different methods

To assess the performance of each model M;, we use the Root Mean Square Error
(RMSE) for deterministic quantities and the Continuous Ranked Probability Score (CRPS)
for probabilistic quantities. Considering that we have a set of n point forecasts z; or n
cumulative distribution function forecasts £}, i € [1: n] of a random variable X, along with

their verification values x;, these criteria are defined as follows:

f— 1 S PRp— A. 2
RMSE = — Z (z; — 1) (2.6)

(B - 1> ) dy (2.7)

where function 1 outputs 1 if the condition in parenthesis is met, and 0 otherwise.

The optimization of the parameters of the whole chain is then performed by identifying
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the optimums separately. We note the evaluation function g, which is the RMSE if the
evaluated model is deterministic, and the CRPS otherwise. The CRPS and the RMSE are

negatively oriented i.e. a lower value indicates a better model.
O] = argminy {g (Mf (Xi), Y,)} (2.8)

2.2.3.2 Second method: simultaneous optimization

With this method, that we refer to as Method 2, we optimize the whole process globally,
using the value of the decision process as the objective function. The rationale behind this
optimization is that the individual forecasting models could adapt to each other’s forecast
errors. For example, if a given model is biased, another model could also acquire a bias to
compensate the former. The adaptations that the models could perform on each other are
highly dependent on the final objective of the decision process. We assume that we have a
function Ewval that evaluates the value associated with the decision D(X; ).

Noting as © = {©1,...,0,} the set of parameters that gathers all of the parameters of

the individual models, the optimization problem we must solve in this method is thus:

" = argmare—je,,...0, {Eval(D(X1, . n))} (2.9)
0" = argmaze_e,. o, {Eval (T (Mlel (X1), ..., MO" (Xn)))}

n

2.2.4 Simplifying the model chain

The last objective of the thesis is to simplify the chain value, which involves a lot of models.
To do so, we propose an alternative approach for providing the decision. In the literature, the
stochastic optimization problems rely on an informed modeling of the decision process, by
defining sequential forecasting models that provide a forecast state based on which the policy
derives the optimal decision. We propose an alternative modeling where all the sequential
models leading to the policy are dropped, and the state used by the policy is directly the
union of the inputs used originally by the sequential forecasting models. Instead of using
the forecasting models M; and the decision-aid model T' introduced in 2.4, we use a single
model M. This model plays both the role of the individual models M; and the decision-aid
T, and so directly provides the decision. In this case, the decision-making is only made

based on data, which makes This unique model M should then:

e Use the union of all the inputs X; as input.
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Figure 2.6: Schematic representation of the alternative approach

e Provide a decision with the appropriate shape.

e Be trained using the decision evaluation function Ewval since it directly provides the

decision.

This setup suggests using an ANN as the unique model, since ANNs are very flexible in
terms of input and output shape, and can learn any nonlinear function and thus maximize
the value of any decision-making process.

Note that in that case, the two proposed training approaches are the same, since the
individual model performance is the same as the decision-process value. This is represented

on Fig. 2.6 that represents the alternative we propose for trading PV power.

2.3 Summary

In this chapter we gave an overview of the electricity market mechanisms that exist, and
identified the ones that are in the scope of this thesis to define the value chain for trading
PV power. This value highlighted the systematic issues that we identified in chapter 1 for
RES power trading.

The first and second issues are the need for a seamless PV power forecasting model, which
will be presented in chapter 3. We proposed some generic notations to precisely explain how
we propose to tackle the third and fourth issues, that are a different method for training the
forecasting models involved in the decision processes, and an alternative decision-making
approach that bypasses the need for individual forecasting models by performing the whole

decision-making with an ANN.
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Chapter summary in French

Marchés de I’électricité

Comme nous l’avons présenté dans le chapitre précedent, nous étudions la valorisation de
I’énergie PV via les marchés de ’électricité. Ce terme génerique désigne plusieurs types de
marchés, chacun défini par leurs horaires ou la nature exacte des produits échangés. On
peut définir globalement trois types de marchés pour l’énergie : les marchés a terme, les
marchés "day-ahead” et les marchés ”intra-day”. Il existe également des marchés de services

systeme déstinés a échanger de la réserve de puissance.

Les marchés long-termes ne permettent pas a proprement parler d’échanger de I’énergie,
mais d’échanger des dérivés financiers indexés sur le prix de 1’électricité, permettant de
mitiger le risque lié a la variation imprévue du prix de l’électricité. En ce sens, ils ne
permettent pas de valoriser la production dans le sens ou ils n’autorisent pas a injecter
la production, les transactions étant purement financieres. Il est néanmoins possible de
vendre des contrats long-terme avec obligation de livraison physique, auquel cas le contrat
long-terme est simplement traduit automatiquement jour par jour en offre sur le marché
day-ahead. Autrement dit, il est équivalent de vendre un contrat long-terme pour un mois
donné, ou de vendre jour par jour la quantité équivalente au contrat long-terme sur ce méme

mois sur le marché day-ahead.

Sur le marché day-ahead, 1’électricité est vendue pour le lendemain. C’est un marché
organisé, ce qui signifie que les offres de vente et d’achat de tous les participants du marché
sont receuillis avant une certaine heure pour construire les courbes d’offre et de demande.
L’intersection de ces deux courbes détermine le prix spot. Les offres de vente a un prix
inférieur au prix spot et les offres d’achat a un prix supérieur au prix spot sont acceptées,
et toutes ces transactions sont effectuées au prix spot. Les participants sont en géneral
financierement responsable de 1’écart entre leur production vendue et réalisée. Le prix
auquel cet écart est pénalisé est défini par le gestionnaire de réseau en fonctions des moyens
d’équilibrage qu’il a du mettre en ocuvre pour compenser les écarts, et ne dépend donc pas

du marché.

Finalement, il existe un marché intra-day sur lequel les participants peuvent soumettre
des offres de vente ou d’achat d’énergie a tout moment pour la journée en cours, jusqu’a
une certaine durée avant I’heure de livraison (30 minutes en France). A la différence du
marché day-ahead qui est un marché organisé, le marché intra-day fonctionne en ”continous
trading” : des qu’une offre d’achat et de vente se correspondent en termes de volume et de

prix, la transaction est acceptée, au prix d’offre.
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De fagon génerale, le revenu d’un partipant qui a vendu une quantité E. en day-ahead

et une quantité Ejp sur le marché intra-day au prix nyp s’écrit :

RZ?TSE+(71'5—W]D)E]D—F(E—FE[D—EC)(TFB—T('S) (2.10)

Ou 7y est le prix spot calculé par le marché, et mp le prix de réglement des écarts calculé
par le gestionnaire de réseau.

Bien que des marchés de service systeme existent, il n’existe pas de définition stand-
ardisée pour les produits échangés et les horaires. Par conséquent, nous ne les étudions
pas dans la these, bien que le formalisme proposé pour étudier les autres options se préte

également a 1’étude de marchés de service systeme.

Notations

Nous introduisons ici des notations pour expliciter les solutions que nous proposons pour
traiter les problemes strucurels de la chaine de valorisation identifiés dans I'introduction.
De facon génerale, on peut remarquer que chacune des options de valorisation est définie

par trois éleménts:

e Un cadre temporel, c’est-a-dire I’heure a laquelle la décision doit étre prise et I’horizon
de la décision. Par exemple pour la vente en day-ahead, la décision doit étre prise a
midi le jour précédent, avec un horizon de +12h & +36h selon I'heure de la journée

suivante pour laquelle on vend de 1’énergie.
e La taille du vecteur de décision d.

e La fonction de valeur de la décision, qui associe a un vecteur d la valeur de la décision
Eval(d).

De cette fagon, on peut noter chaque processus de prise de décision comme la combinaison
d’une série de n modeles prédictifs, de sorte que la sortie ait la taille adéquate. La fonction
qui combine la sortie des différents modeles est notée T. Chaque modele étant paramétré
par un ensemble de parametres ©, on les note Mi@i, la décision optimale s’obtient depuis
les données d’entrée X; par:

d = T(MP"(X1), My*(Xa), o, M (X)) (2.11)

n

On peut alors expliciter les solutions que nous proposons pour traiter les objectifs de la
these. La premiere solution est d’entrainer les modeles individuels pour maximiser la valeur

de leur décision au lieu de leur performance de prévision :
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0" = argmarg_jp,,... 0, {1 EFval(d)} (2.12)

Cette méthode d’entrainement se substitue a la méthode classique qui consiste & max-

imiser la performance des modeles de prévision individuels :

©F = argming {G (Mf (Xi) ,Y,)} (2.13)

Ou G désigne une fonction d’évaluation de performance des modeles de prévision e.g. le
RMSE pour les prévisions déterministes ou le CRPS pour les prévisions probabilistes.

La seconde solution que nous proposons dans cette these consiste a remplacer les différents
modeles de prévision individuels M; par un unique réseau de neurones artificiel noté M qui
prend a la fois le réle des modeles de prévision individuels et celui du modele de prise de
décision T. Dans ce cas, les deux méthodes d’entrainement sont équivalentes, puisque le
modele donne directement le vecteur de décision d et donc I'entralner pour sa performance
individuelle ou la valeur génerée par sa décision revient au méme.

Pour traiter les autres objectifs de la these, il est également nécessaire de développer
un modele spécifique de prévision de la production photovoltaique. Ce modele est présenté

dans le chapitre suivant.
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Seamless PV power forecasting
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In this chapter we introduce the seamless forecasting model that we developed to tackle
the first and second objectives of the thesis. This model can start at any time of the day
for any horizon, and thus can be used seamlessly in a chain of decision-making processes for

trading PV power. Parts of this chapter were published in article [C] in section 1.7.

3.1 Required properties of the PV power forecasting model

Since the different decision-making processes involved in the PV power trading value chain
have different timings, our goal is to have a seamless PV power forecasting model, that is a
model that can provide forecasts for several different time frames. More precisely, the model
should provide forecasts at any time of the day, for horizons ranging from quasi-real-time
to day-ahead, and with any forecast resolution. The algorithm should also be as fast to
compute as possible, so that it suffers few operational constraints and thus can be used in
any part of the value chain.

Besides, the PV power forecasting model should also reflect the uncertainty of the upcom-
ing PV power in some way, because knowing this uncertainty gives additional information to
the decision-aid model and ultimately results in better trading performance, and so forecasts
accompanied by uncertainty evaluation is generally recommended [54]. Early examples of
trading considering uncertainty can be found in [55] or [56]. Using probabilistic (upcoming
PV power as a probability distribution) forecasts rather than deterministic is a convenient
way to convey information on the uncertainty. Probabilistic forecasts have more properties
than deterministic ones e.g. reliability, sharpness or resolution. Different properties can be
required depending on the actual application of the forecasts [57].

The evaluation of probabilistic forecasting models is more complex than deterministic
ones, since they have more characteristics and properties. In [58], the authors proposed
a first approach for evaluating forecasts with uncertainty. In [59], the authors proposed a
paradigm to evaluate probabilistic forecasting models, which is of "mazimizing the sharpness
of the predictive distributions subject to calibration”. Here, calibration refers to a property
that is also frequently called "reliability” in the literature. In the remainder of the thesis,
we will always use the term “reliability” to refer to this notion. Reliability and sharpness
have been extensively studied in the literature (see references [59], [60], [61] or [62]).

Reliability is defined as the consistency between the quantiles obtained from a forecast
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distribution and the actual quantiles obtained from the data. For example, if we have a
forecast Cumulative Distribution Function (CDF) ﬁ’, we can define the §, quantile of level

a€0,1] CR as:

Go=EFY(a) (3.1)

Then a probabilistic forecasting model is reliable if the proportion of observations that
fall below ¢, is exactly « given a theoretically infinite set of historical observations.

Sharpness relates to the ability of the model to differ from climatological forecasts.
Climatological forecasts provide as forecasts the empirical quantiles, which are observed
from an historical set of observations. The need for defining the sharpness characteristic
arises from the fact that a climatological forecast is reliable. However, the Probability
Distribution Function (PDF) is always the same since the empirical quantiles are always the
same given a set of observations. Thus, climatological forecasts convey almost no predictive
information.

On the other hand, a sharp model can concentrate the probability information that is
uniformly distributed on the set of possible values in a climatological forecast. Thus, a sharp
model have smaller Prediction Intervals (PIs) i.e. an interval in which a future observation
is expected to fall with a given level of confidence, than a climatological forecast. The
sharpness characteristic relates to the size of the PIs of the predictive PDF, which in turn
relates to the confidence one can have in a given forecast.

The resolution is another notion used for the evaluation of the forecasts. Resolution
refers to the ability of the model to provide different forecasts when the predictors are
different. It is easy to see that a climatological forecast has no resolution since the empirical
quantiles are not conditioned by any predictors.

It is always possible to recalibrate the forecasting models to be reliable, while sharpness
and resolution are inherent properties of the model. Besides, calibration methods to make a
model reliable can alter its sharpness and resolution properties. Thus, reliability is often seen
as a pre-requisite for probabilistic forecasts, while sharpness and resolution are indicators of
the value of the models. In the remainder of the thesis, we will only consider the reliability
and sharpness characteristics, following the paradigm of maximizing the sharpness subject
to calibration [59].

There are two examples that illustrate the properties of reliability and sharpness fairly
well: climatological forecast and deterministic forecasts.

Climatological forecasts provide the empirical quantiles as the forecasts. Fmpirical

quantiles are the quantiles directly estimated from observations. Formally, assuming that
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we have a set of n observations Iy, ..., I, of the solar irradiance, and noting I(y), ..., I(,,) these
same observations sorted in ascending order, the quantile of level o € [0, 1] estimated by

clim

the climatological forecast, noted g

, is given by :

(3.2)

el — { Iy if na is an integer
«

I(jnaj+1) otherwise

clim

& is referred to as the

With [na] being the integer part of naw € R. The quantile ¢
empirical quantile of level a.

Since empirical quantiles converge exponentially with respect to n towards the real
quantile of the distribution, this model has excellent reliability when the number of obser-
vations is high. However, by definition, climatological predictions have no sharpness.

On the other hand, an unbiased deterministic forecast can be considered as an example of
a model with good sharpness but no reliability. We assume that we have forecasts obtained

from a regression model as follows:

A

I=1+¢ (3.3)
(3.4)

Where € denotes the residuals of the model. These forecasts can be considered to also
provide predictive distributions with f () =d(x— I ), where ¢ is the Dirac distribution. The
estimated quantiles are therefore all equal to the deterministic forecast I. For any quantile

o of level a € [0,1], we have:

P(I < q,) = P(I <I)=P(e > 0) (3.5)

Since the model is unbiased, the residuals distribution is symmetric around 0, and thus
P(e > 0) = 0.5. The reliability of the model is therefore extremely low, since for a reliable
model, we must have P(I < q,) = . However, the sharpness of the model is very high by

definition.

3.2 Model choice

The state of the art in solar power forecasting developed rapidly in recent years. It benefited
from the wind power forecasting field, which is more mature [63], with a wealth of methods

being proposed since the 1980s (see for example [64], [65] or [66]). Wind power and PV
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power forecasting shares a lot of methods and algorithms, as they both have close links with

meterorology and weather forecasting.

In [67], the authors provide a fairly complete literature review of research in the PV
power forecasting field. Generally, the features used as inputs are largely dependent on
the forecast horizon. Short-term forecasting (0-6 hours) mostly employs endogenous data,
although input from Numerical Weather Predictions (NWP) and meteorological records can
be used [68]. Works considering satellite imagery have been appearing for several years, e.g.
[69] and[70], while data from neighboring PV plants can be employed in spatio-temporal
models [71], [72]. Data from sky imagers are also useful for the very short term (up to
a few minutes) [73], but harder to apply as they require significant preprocessing work.
For the medium-term (up to few days ahead), forecasts mostly rely on NWPs. However,
NWP tend to overestimate solar irradiance, resulting in biased forecasts. Alternative NWP
models are sometimes proposed to correct this effect [74]. To produce probabilistic fore-
casts, an increasing number of papers use ensemble forecasts, that provide several possible
weather trajectories by perturbing the initial conditions [75], [76]. The relevance of the
different sources of data depending on the temporal and spatial resolution of the forecasts

is represented on figure 3.1.

Regarding forecasting techniques, linear auto-regressive models are popular, as they are
fast to train, are not computationally intensive, and can issue forecasts at any time of the
day without multiplying the number of models [78]. Numerous machine learning models are
also used, such as ANNs [78], Support Vector Machines (SVM) [79], or gradient boosting
(GB) [80]. Recently, several new methods have emerged. The Extreme Learning Machine
(ELM) is a fairly popular variant of ANN [81], [82], [83]. Gaussian Process Regression
(GPR) [84] and Markov Chain (MC) [85] models are also becoming more frequent in the
literature. Another approach is to combine the output from different forecasting techniques
in order to get a more accurate forecast [86]. This usually results in higher accuracy and
uncertainty representation, at the cost of a higher computational and maintenance cost to

train all the models.

The global forecasting competition GEFCOM 2014 [87] showed that the most efficient
algorithms were often non-parametric, such as Quantile Regression Forests (QRF) [88] and
GB [89]. This tendency is also observed in [90]. However, [91] performed a comparison
of several non-parametric models and found that the performance difference between each
other was low. Thus, there are now other criteria than accuracy that matter in the model
choice. Among the trending models for both wind and PV power forecasting, we can cite

approaches based on analogy that offer a high computational performance [92], [93], hier-
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Figure 3.1: Relevance of the different sources of data for PV power forecasting depending
on the temporal and spatial resolution of the forecasts.

Source: Antonanzas et al., 2016 [77]

archical forecasting methods that can provide consistent forecasts accross time resolutions
[94], [95], and Stochastic Differential Equations (SDE) that offer a high flexibility and ad-
aptative behavior [96], [97], [98].

To achieve our goal of attaining good performance for any time frame, the proposed
model must be able to use all of the data mentioned above, depending on the forecast hori-
zon. Regarding the choice of the model, we based our approach on models from the Analog
Ensemble (AnEn) family, which have the dual advantage of being lightweight compared to
other models and of naturally providing non-parametric probabilistic forecasts.

The baseline AnEn model that is extended in this thesis was described in [99], where
past NWPs are used to forecast 10-m wind speed and 2-m temperature. In [100], the authors
implemented a model in which they also looked for analogs using NWPs, but applying a
different metric than that of [99]. In [101], the authors used the AnEn model to forecast
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probabilistic PV power for three large power plants. They emphasized the very low com-
putational time needed to produce the forecasts compared to other models. Several papers
have also proposed corrections or adaptations of the AnEn model to obtain better forecasts.
In [102], the authors proposed a modification of the Euclidian distance frequently used as a
metric to evaluate analogs and used measures along with NWP to search for analogs. This
reduced the forecast horizon, making it necessary to run the model multiple times to obtain
a complete forecast. In [103], a 20% improvement over the standard AnEn model with
a brute-force optimization of the parameters was demonstrated. Several algorithmic vari-
ations of the AnEn ensemble, along with a dynamic way of selecting the number of analogs
to be retained in the ensemble, and a wrapper method to dynamically optimize the model
parameters, were proposed in [104]. In [105], the authors extended the AnEn model with an
ANN which significantly improved the forecasts. Finally, [70] proposed an Analog method
to produce short-term forecasts of solar irradiance using geostationary satellite images only.

In this thesis, we contribute to the research on AnEn models by addressing several
drawbacks of the current implementations. In previous works, most of the time only NWPs
are used, and thus forecasts are always the same until a new NWP run is available. It is thus
not possible to use state-of-the-art model settings in an intra-day configuration. Besides,
although some papers have used data other than NWP in an AnEn setting, no model has
used both NWP and other sources of data. Moreover, previous works do not present how

they generate probabilistic forecasts from analogs.

3.3 The proposed PV power forecasting model

3.3.1 Model description

The aim of the AnEn model is to generate a set of past observations considered similar to
the situation we want to forecast, and use this set to build the forecast density. Initially we
generate an Ny,-member ensemble for a given lead-time by computing a metric between
the situation to forecast and all of the past situations. Then we select the N4, most
similar to past situations and look for the PV power measured at the time of these similar
situations. These N4, measures constitute the analog ensemble, and each analog can be
seen as a sample from the probability density function of the PV power. In the most general
formulation of the metric taken from [99], only NWPs were used as inputs. The metric used
in this thesis is based on the one defined in [99] but it is adapted to allow different sources of
data to be considered. The distance between an instant ¢ for which a forecast is requested

and another instant ¢ in the past is written as follows:
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0

D anpn(Xy, H E:Uﬁi Y XKy —HE, )P (3.6)

j=—k

where N, is the number of features used as input, h is the forecast horizon (that is, the
difference between the time ¢ and the time when the forecasting model is run) and k is a
parameter that indicates the length of the time window over which the metric is computed.
The parameter p controls the penalization of large differences in the predictors at times ¢
and t'. H" and X are two sets containing the features and input of the model. The set H”
contains features from NWP and clear-sky data, along with the measures and the satellite
data lagged h times. This set is dependent on the horizon of the forecast. When we make
a forecast with horizon h, the latest measurements and satellite data were observed h time
steps ago, and this should be reflected in the historical data set. Following through, X
contains the NWP for time ¢ and the latest measures and satellite data, observed at time
t —h. H" and X are scaled and centered, so that each variable contributes to the metric
with the same proportion. Thus, only the weights wlh can control the relevance of each
feature. The weight calculation takes into account the forecast horizon and is presented in
the next sub-section.

To our knowledge, previous papers did not present how they generated the PDF from
the analogs. In this thesis, the PDF is built with a weighted Kernel Density Estimation
(KDE), using the metric value of cach member as its weight in the distribution. Given
a set of N4, AnEn members e;, which are energy generation observations made at a time
when forecasts from the past were similar to the current observations according to the AnEn

distance, and their distance values D 4,gy i, the PDF fI;V is estimated by:

frv(z) = ﬁ%;_;[[{ (ml;wei) +K(x;;uei>

o (3.7)
& <x+e;; 2En)]

5 = (WY (3.8)

K(x) = 2(1 —?)i(ja] <= 1) (3.9)

b — (JA\IfZi)l/S (3.10)

where E, is the maximal energy generation of the plant over a time step, the s; terms are

similarity measures inversely proportional to the distances, K is the Epanechnikov kernel,
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and bw is the bandwidth of the kernels, derived by the Silverman’s rule of thumb [106]. & is
the empirical standard deviation of the AnEn members. The first Epanechnikov evaluation
corresponds to the kernel centered around the i-th AnEn member value, and the two others
are there to ensure that the integral of the distribution is 1 between 0 and E,,. Outside this
range, the PDF is set to 0.

As can be seen from Figure 3.1, the different sources of data that must be considered
in order to have good performance in both intra-day and day-ahead forecasts are variables
from NWP, in situ measurements, clear-sky profile, and spatial data derived from satellite
imagery. We should also have used images from sky-imagers but such data was not available.
The clear-sky profile is an estimation of the solar irradiance on the ground assuming that
there are no clouds. Following these notations, the integration of a clear-sky profile and
local measurements is pretty straightforward. However, satellite data is more complex
because they have many more features, which require pre-processing in order to reduce
their dimension. The required additional processing work will be detailed in Section 3.3.2.

The calculation of the feature-weights is critical. In previous works [103], [107], [104],
these were obtained from an off-line optimization for each power plant and remained the
same throughout the testing period. In these cases, a measure of the probabilistic perform-
ance of the models was used as the optimization objective. In this thesis, we do not use
the final performance as a criterion, but we propose a dynamic way to estimate weights
based on the most recent data, since the model operates in a sliding window scheme and the
weight of the latest measurements will not be the same for a forecast started at noon as for
one started at midnight. The criterion used to quantify the weights is Mutual Information
(MI), which comes from the information and communication theory [108]. It has been used
in machine learning for feature selection [109]. This is a measure of how much the fact
of knowing a variable reduces the uncertainty of another variable. The MI between two
random variables X and Y, knowing their respective marginal density distributions px and

py and their joint density distribution px y, is:

MI(X,Y)= / /pxy(a:,y)log(}%>dxdy (3.11)

The main reason for choosing this criterion rather than simpler ones, e.g. Pearson’s
correlation, is because it can identify non-linear relationships between random variables.
As we are dealing with both features that are strongly and almost linearly correlated to
the production (clear-sky profile, last production measurement), and features that are not
(temperature from NWP), using a linear correlation criterion would overestimate the weight

of the former over the latter. On the other hand, the MI calculation identifies the non
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linear information contained in the variables and thus avoids giving significant weights only
to variables that are linearly correlated with the PV production such as solar irradiance
forecasts.

The weight calculation is carried out in two steps. The first step evaluates the relevance
of each variable individually by calculating its MI with the measured power according to
(3.11). Computing the MI is not trivial, since it requires formulation of both the marginal
and joint distributions of the random variables. We implemented a simple method involving
a discretization of the random variables prior to calculating the MI. The discretization

algorithm is described in [110]. The MI is finally computed as follows:

o First, discretize the random variables X and Y in n bins, so that each bin has the

same number of observations.

o Then, compute the discrete probabilities of the couple of events (A;, B;), with the
events being defined as A;: "X is in the i-th bin” and Bj: ”Y is in the j-th bin”, for all
possible values of i and j. These probabilities are simply computed by counting the

occurrence of the events.

e Finally, apply the discrete formula for computing the MI:

MI(X,Y) =33 p(4s, By)log (%)) (3.12)
i=1j=1 i j

The second step sets a limit on the total cumulative weight of each source of data. If
such a limit is not set and all the weights are computed independently for each feature, some
features are over-represented, because they are highly colinear. In particular, the features
from the satellite data are highly redundant. If we compute their weights independently,
they all have significant weights. This strongly overestimates the relevance of these features.
By reorganizing the features into groups, we can first compute a global weight for each
group that will represent the total allowed contribution from this group. Then, the weights
computed independently for each feature are normalized so that the cumulated contribution
of each group of features does not exceed the global weight for this group.

In a more formal way, the weights are computed as follows. In the first step, intermediate
weights w’; j, are obtained by equation (3.13), for each feature 7 and forecast horizon h. Epy
is the time series of energy generation measurements.

Then, the weights are normalized. In practice, the features variables are organized into
N, subsets depending on their source (NWP, measures, satellite data, clear-sky profile).

The sets Sy, v € {1, ..., Ns} contain the indexes of the features contained in each of the Nj
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sets, corresponding to each data source. A global weight W, j, is attributed to each of these

sets, and for each horizon. We then obtain the final weights with (3.14).

w'ip = MI(HE, Epy) (3.13)

(w'ip)? Ns
e | 1 € S,)W. 3.14
" (zﬁzlw < s ) 2 L€ S Ws, (3.14)

The parameter g controls the relative contribution of the different weights to the metric
and is optimized during the training. The computation of Wy, ;, should be done taking into
account redundancy between variables from the same source. This is especially important

for satellite data where the variables are strongly colinear. We propose to use:

Ws, n = mazies, {w'in} (3.15)

This means that each source of data contributes to the metric as much as the weight
of its most informative feature does. As a result, we may underestimate the information
conveyed by variables that are not strongly correlated to the PV production, but we will
not overestimate the global contribution of a source of data that contains numerous colinear
variables, since the individual weights of the redundant features will not add up to more
than the weight Wy, ;, of their source.

Fig. 3.2 shows the average weights obtained for each type of data and for different time
horizons. For every forecast, all features that have non-zero weights for the given forecast
horizon are used. The weights represented on Fig. 3.2 are averaged over all starting times
but, when observing forecasts always made at the same time as on Fig. 3.3, they are
different. For example, when focusing on the forecasts made at 12 a.m. only, the weight
given to the latest measurement is near zero, as it is not informative.

The values of the weights of the different sources correspond well with results reported
in the literature concerning which source of data is informative for which horizon. The most
recent power measurement is very informative for the first few time steps, but its weight
decreases quickly. NWPs are always relevant, but even more for day-ahead purposes. For
horizons shorter than 4 h, they carry less information than the latest measurements and the
satellite data. Satellite data are very useful up to 6 h, even though their value decreases
steadily. Equally of interest, the clear-sky profile is useful almost only for the beginning and
end of the day, when it becomes the most important feature as can be seen on 3.3. It is not
surprising to see that for these instants with very low incoming irradiance even in clear-sky
conditions, the amount of solar power is not dominated by the presence of clouds, but by

the Sun’s path.
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Also, there is an increase in the proportion of the in situ measurements and satellite data
around the horizon +24 hours. This is caused by the fact that the weather has a tendency
to remain similar on consecutive days, and thus obtaining some information on the state
of the atmosphere by measuring the PV production or getting a satellite image also gives

some information on the state of the atmosphere for the following day.

3.3.2 Preprocessing of the satellite images

In the proposed model, estimated GHI time series are derived from the Metosat Second
Generation (MSG) satellite images for each pixel using the HelioSat-2 method [111], [112].
‘We propose to use these time series as conditioning features for the AnEn model when it
looks for analogs. Since the model looks for analogs by matching features on several time
steps as described by the parameter k from equation (3.6), and since the pixels used to
condition the forecasts are in the neighborhood of the plant, we use both the spatial and
temporal information from the images. Still, this method is simpler than standard ones e.g.
Cloud Motion Vector [113], as it does not try to anticipate the future state of the cloud layer.
The choice of taking a purely “data-driven” approach rather than including a preprocessing
step for the images to derive cloud motion information is one of the design requirements
set here in order to maintain simplicity in the proposed model chain. The mechanism
of the AnEn model, where a series of past images is linked to future situations through
the analogs, is a process that is expected to reflect the mechanism according to which the
temporal variations in the images that reflect cloud motion impact PV production. Section
3.3.3 demonstrates that the inclusion of satellite images as conditioning features is beneficial
to the model. This section describes the selection process for the pixels we use to compute
the model.

Two parameters must be estimated before including the satellite-estimated GHI. The
first one is the maximal distance D,,q, between the power plant and the points for which
we use the GHI estimation in the model. Theoretically, the greater this distance, the
longer the time horizons for which the estimated GHI time series can be useful. However,
increasing D4, quadratically increases the number of pixels to be considered. To avoid
computational issues, we have to set a limit on this distance D,,4,. The second parameter is
the number Np;, of pixels we select to derive the features, within the area defined by Dypqq-
The selection of a specific pixel from the satellite image results in a GHI time-series from
consecutive images. We propose to keep the most informative Ny, time-series according to
their MI with PV production.

To define D;yq;, we first obtained features estimated from pixels within a 150 km radius
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as an upper-bound. Then, for different time horizons h, we computed the MI between the
GHI time series derived from each pixel lagged h time and the PV production over one year.
We could then visualize the location of the most informative time series for each horizon,
as shown in Fig. 3.4. From visualizing the data, we found that for time horizons below
90 min, the global level of the information of the estimated GHI time series is significant
compared to other horizons. There is also a significant difference between the most and the
least informative time series, the most informative ones being located within a 50 km radius
from the plant. On the contrary, for greater horizons, the information is scant. Thus, it
does not seem necessary to have a large Dy,q, for longer time horizons, or to use satellite
data at all. In the end we kept a 50 km value for D,,qq-

In order to further reduce the dimension of this input, we use the averages of GHI
estimations over several pixels as features instead of using a single pixel per feature. The
initial images are reduced to a grid of 10 x 10 equally spaced zones in the latitude/longitude
grid, which reduces the 317 pixels contained in the D,, ., radius to 100 features.

We defined the number of features to keep within a D, radius by fitting Least Absolute
Shrinkage and Selection Operator (LASSO) models [114] with a 10-fold cross-validation,
using all the estimated GHI time series as features to predict the production for horizons
ranging from +30 minutes to +36 hours with a half-hourly time step, that is, for 72 different

horizons. For a given horizon h, we obtained the LASSO models with:

Epveen, = 60+ BrGHIL, (3.16)

Bh = argming ((Epv — Epy)? + > \,Bzh\) (3.17)
where GH I ; is the estimated GHI for the i-th pixel for time ¢, and B" are the parameters
of the model.

LASSO models have an intrinsic tendency to produce a sparse feature selection, and
to randomly drop features when they are strongly correlated. As our estimated GHI time
series are indeed correlated, we took the feature selection performed by the LASSO models
as a measure of the redundancy in the time series, instead of actually selecting the most
relevant features. We then obtained N, by averaging the number of features kept by the

LASSO models over the 72 forecast horizons:

72 _
Nyio = 75> 1(5: #0) (3.18)
=1

Finally, we obtain Ny, = 12 features, which represent roughly 12% of the total number

of features considered. This value is retained for the forecasts in Section 3.5. Fig. 3.5 shows
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Figure 3.5: Probability for each pixel to be selected for different forecast horizons using

non-averaged satellite images

the average selection probability for each feature within the area defined by D4, using non-
averaged satellite images, for all forecasts started at 12 p.m. For the 30-minute horizon, the
selected pixels are concentrated in an area east of the plant. This suggests that the weather
conditions propagate from east to west, which could be explained by the Sun’s path, but
also by local weather conditions (e.g. a systematic east wind). For the 90-minute forecast,
a slight concentration persists to the east of the plant. After this horizon, no recognizable

pattern can be found.

3.3.3 Contribution of each source of data

Before performing a thorough evaluation of the AnEn model to other benchmark models,
we verified that the different methods we implemented resulted in improved performances.
To do so, we evaluated the CRPS introduced in chapter 2 to evaluate whether including the

different sources of data had a significant effect on the model performance.
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Figure 3.6: Comparison of the performance of the AnEn model depending on the inputs

Figure 3.6 shows how CRPS performance increases when adding incrementally different
sources of data. The addition of the last measurement significantly increases performance for
time steps up to 5 h. This is self-explanatory, as the last measurement is very informative
about the current meteorological situation, but carries little predictive information. The
addition of satellite data slightly increases performance up to the 3-hour forecast horizon.
This confirms that the added value from satellite data extends up to a few hours, as expected

from the literature.

This result is quite interesting, as it shows that the model is able to process both temporal
and spatial information from very different sources of data. It could be extended by other
features, that are known to improve solar power forecasting, such as measurements from
neighboring PV plants or weather stations. However, this would require further work when
assigning global weights to each source of data. In our case, using the maximal feature weight
as the global weight of the whole source was efficient as the information between each source
of data was not redundant. When increasing the sources of data, the chances are higher
that two sources of data will carry correlated information. This should be considered for

the global weight assignment.
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3.3.4 Parameters of the model

In the end, the AnEn model is characterized by few parameters that control the behavior
of the metric: p penalizes significant differences between the inputs, while ¢ controls the
relative importance of each feature. k is introduced so that an instant ¢ in the morning

(resp. evening) cannot be considered similar to an instant ¢’ in the evening (resp. morning).

Finally, two remaining parameters allow us to control the behavior of the model. The
first is the number of most similar historical situations N4, that we retain for estimating
the PDF, and the second is the length Lpy of the period preceding the instant to be forecast
that we use to search for analogs. Thus, the vector of parameters ©; introduced in 4.1 is

constituted of the parameters [p, q, &k, Nan, Lpy].

According to our results, the higher the parameters N4, and Lpy, the lower the bias of
the model. The bias, or Mean Bias Error (MBE) is defined as the average error for a series

of n pairs of forecast/verification values g;, y;:

MBE= 13" () (3.19)

When the time period over which the analogs are searched increases, the model looses
some of its conditionality on recent weather conditions, since old data is used. In addition,
increasing the number of analogs also has the effect that the model’s conditionality on the
actual weather forecasts is lost, because as the number of analogs increases, each additional
analog used is observed in a situation that is less similar to the actual weather forecasts.
Ultimately, as these parameters increase in number, the model tends to produce an uncon-
ditional climatological average of the power as a forecast, which would be perfectly reliable,

and thus have no bias, but lower sharpness.

Some illustrative probabilistic forecasts for a given plant are reported on Fig. 3.7 along
with a quantification of the model’s MBE in Table 3.1 with varying Ny, and Lpy values to
illustrate this effect. To isolate the effect of these parameters, all the other parameters keep
the same value. Each shade of grey represents a PI, with increasing confidence levels from
2% to 98%. Using a longer time period to identify the analogs, or increasing the number of
analogs, results in a curve that looks more like the typical "bell” curve of PV production,
neglecting the intra-day variability. Ultimately, this results in a lower MBE when using the

expectancy of the forecast distributions as deterministic estimates of the production.

65



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

Energy (kWn)

1000 2000 3000 4000 5000
Energy (kW)

1000 2000 3000 4000 5000

.. .. .

T T T T T T T T T T
01:00 06:00 11:00 16:00 21:00 01:00 06:00 11:00 16:00 21:00

0
0

Hour of the day (hhrmm) Hour of the day (hhmm)

(a) Na, = 240 analogs, Lpy = 50 days (b) Napn = 240 analogs, Lpy = 150 days

Energy (kWh)
1000 2000 3000 4000 5000

0

T T T T T
01:00 06:00 11:00 16:00 21:00

Hour of the day (hh:mm)

(¢) Nan = 720 analogs, Lpy = 50 days

Figure 3.7: Example of PV probabilistic forecasts for a given day

Table 3.1: MBE of the PV power forecasting models for varying N4, and Lpy values

MBE (%)
Nan = 240, Lpy = 50 0.15
Nan = 240, Lpy = 150 0.09
Nan = 720, Lpy = 50 0.03

3.4 Benchmark models

To compare the AnEn model with the literature, several benchmark models were also im-
plemented depending on the forecast horizon and resolution. The computing times required
by the different models, including the AnEn, are reported on table 3.2. These times include
the preprocessing of the data.

3.4.1 Persistence

The persistence model is often used as a simple benchmark for PV power forecasting models.
In this thesis, we use two variants of the persistence, depending on the forecast horizon. We

refer to them as "Persistence 1”7 and "Persistence 2” in the remainder of the thesis.
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The Persistence 1 model simply states that the power forecast Epv for all future times

is the power Epy observed at the time of the forecast, that is:

Epvsn = Epyy,Vh €N (3.20)

The Persistence 2 model states that the power forecast for a given time is the power

observed the day before at the same time:

Epve = Epyy—an (3.21)

The Persistence 1 model is a benchmark more suited to short-term forecasts, while the

Persistence 2 model is a benchmark for day-ahead forecasts.

3.4.2 ARIMA model for short-term forecast

For the 5-minute resolution forecasts, we used an Auto Regressive Integrated Moving Av-
erage (ARIMA) model [78], which is best suited to short-term forecasts, using only the
production data as input.

For an ARIMA model fitted with order (pa,da,qa), where p4 is the number of auto-
regressive terms, d4 the order of differentiation, and g4 the number of moving average

components, a deterministic forecast of the solar output Epy is readily computed as follows:

PA qa

£d d d £

Epy, = a0+ Z a;Epy,_; + Z bj (EP?/J—]' - EP?/J—j) (3.22)
i=1 j=1

where E%“/ is the time series Epy differentiated d4 times:

d da— da— :
Epy, = EPJ%/,t1 - EP?Atl—l with E??V,t = Epvy (3.23)

The vectors of parameters a and b are estimated by maximizing an objective such as
the conditional sum of squares of the Akaike Information Criterion (AIC) [115] on the most

recent data for each forecast, following a sliding window scheme as for the AnEn.

3.4.3 First state-of-the-art benchmark: quantile regression forests model

The AnEn approach was compared with two state-of-the-art models. The first is the QRF
model, because it is widely used and featured several times in the leaderboard of the GEF-
COM 2014 [87].

This is a modification of the random forest algorithm [116] that can provide quantile

forecasts, and was first proposed by reference [117]. In the original random forest model, a
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large number of regression trees are grown over the training set, and the conditional mean
of the distribution is obtained by a weighted average of the output of the trees. More
specifically, each tree is grown on a random sample with replacement (”bagged version”)
of the training set, and each split of the trees is done on a random subset of the predictor
variables. This prevents the trees from being correlated, and finally avoids overfitting on
the training set. For quantile regression, a random forest is grown over the training set, but
instead of the conditional mean, the full distribution is estimated from the observations in
the output of the trees.

Here, it is trained using the same variables as the AnEn except for the satellite data
that caused computational time of the QRF to be too long, along with their one-time-
step lagged values. Note that what we call the QRF model is actually a collection of 72
models, each trained to forecast a specific horizon, because the models have to treat the
relative importance of the last measurement differently regarding the horizon. This process
is automated in the AnEn model, so that there is a single model for all of the horizons.
This argument supports the fact that the AnkEn model is seamless, as a single model gives

consistent forecasts from +4-5-minute to +36-hour horizons.

3.4.4 Second state-of-the-art benchmark: bayesian ARD model

The second model we used is a Bayesian regression with an Automatic Relevance Determin-
ation (ARD) prior [118]. This prior is known to introduce sparsity into the feature selection.
The Bayesian ARD approach models the output Epy as a normal distribution, with the

mean being a linear combination of the inputs X, and the precision being a parameter +:

Epy ~ N(Xwarp, 7 ") (3.24)

The ARD prior on the weights, which introduces sparsity to the approach, models them

as centered standard deviations with precisions A:

warp, ~N(0, \; 1) (3.25)

Then, the parameters v and A are obtained by maximizing the likelihood of the data
with respect to them. Once they are obtained, the PDF of the output conditionally to the
input is entirely defined, and the model can be used with new inputs.

Since this model also provides an automatic derivation of the relevance of each feature
similar to the AnEn, and naturally provides a probabilistic output, it is a good comparison

model for the AnEn.
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Table 3.2: Computation time required for providing PV forecasts for a given horizon, in

seconds
30-minute resolution 5-minute resolution
Training Forecasting | Training Forecasting
AnEn - 1.9 - 8.8
Persistence 1 - 5e-3 - 6e-3
Persistence 2 - 5e-3 - 6e-3
ARIMA 9.2e-2 2.5e-7 10e-2 3.7e-3
QRF 4.3 1.3e-2 68.0 4e-2
ARD 10.8 10e-3 154 le-3

3.5 Evaluation of the AnEn model performance

The proposed AnkEn model was used to forecast the power output of twelve PV plants located
in southwest France. The plants are noted P1 to P12 and have nominal powers ranging
between 2 and 12 MWp. The available measurements cover the period from January 2014 to
September 2018. NWPs are obtained from the European Center for Medium-range Weather
Forecasts (ECMWF). The ECMWF forecasts are made on a 0.1°x0.1°latitude/longitude
grid every 12 hours. The NWP variables used as features are the Surface Solar Radiation
Downwards (SSRD), 10-m U- and V-wind speed (10U and 10V), 2-m temperature (27T),
Total Cloud Cover (TCC) and Total Precipitations (TP). In situ measurements come from
the power plants’ monitoring systems. The measurements taken into account are PV power,
ambiant temperature, and Global Tilted Irradiance (GTI) i.e. irradiance in the plane of
array. The clear-sky profile is computed using the McClear model [22]. Lastly, features
obtained from the MSG satellite imagery are computed using the HelioClim-3 database
with the HelioSat-2 method [111], [112]. The images are converted into a time series of
estimated GHI for each pixel. At the location of the plants, each pixel approximately
corresponds to a 5 kmx5 km surface.

Since the measurements were available from January 2014 to September 2018, all of the
data necessary to perform the simulation were collected for the same period. All of the data
were then converted to 30-minute time series to obtain an uniform time-step. The clear-
sky profile and in situ measurements have a native 5-minute resolution and the satellite
images have a 15-minute resolution. These variables were summed over 30-minute intervals
to obtain the 30-minute time series. The NWP have a native 1-hour resolution. All NWP

fields were linearly interpolated to obtain the 30-minute time series. However, numerous
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applications, such as real-time control of a combined PV and storage power plant, also
require short-term forecasts with horizons lower than 30 minutes. Using the exact same
model but feeding it with the native 5-minute data, and with 5-minute interpolated NWPs
and satellite data, we could provide forecasts with a 5-minute resolution.

The period from May 2016 to April 2017 is used to estimate the structural parameters
of the AnEn, QRF and ARD models with an heuristic optimization. The ARIMA order was
also obtained by minimizing the AIC on the testing set. Then, to assess the performance
of the models, PV power was forecast from May 2017 to April 2018 with the AnEn and
QRF models, from 30 minutes to 36 hours ahead with a 30-minute resolution. The forecasts
were updated every 30 minutes following a sliding window scheme. For each new forecast,
the set X was updated using the latest in situ measurements, NWP, and satellite-derived
GHI estimations. In addition, the set H was updated with the most recent data available
at the time to identify the analogs. We also performed the same evaluation for the ARIMA
and AnEn models with the 5-minute resolution forecasts, forecasting from +5-minute to
460-minute horizons, and updating the forecasts every 5 minutes.

Probabilistic forecasts are more complex to evaluate than deterministic ones for which
standard procedures are common [119]. Numerous properties are required for predictive
densities, while identifying some aspects of the forecasts may fail when using only proper
scoring rules. The main required properties are reliability and sharpness as explained in
section 3.1. Deterministic criteria are also presented for comparison purposes with results
from standard deterministic models in the state of the art.

Since all plants showed similar performance (see Table 3.3), all the figures in the following
parts are obtained from a single plant, namely P3. Reliability and sharpness properties of
the probabilistic approaches are analyzed, especially when conditioned by the forecast lead-

time or horizon.

3.5.1 Reliability

For a perfectly reliable model, the empirical quantile level should be the same as the nominal
one, and thus the reliability diagram should be a diagonal line. Figure 3.8 shows the
reliability diagram of the three probabilistic models, averaged over all forecast horizons.
Consistency bars are also added following [120] to indicate a range within which even a
perfectly reliable model could be situated due to the finite size of the testing set with a 90%
confidence level. All models fall within the range defined by the consistency bars, and so
we cannot reject the hypothesis that they are reliable. Overall, the deviations are limited.

For the AnEn and QRF models, the absolute deviations are lower than 2%, which is usually
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Figure 3.8: Reliability diagram of the three models including consistency bars

considered in the literature as sufficient to have good reliability properties [61]. However, the
ARD shows larger deviation from the diagonal compared with the AnEn and QRF models.
We explain this by the parametric representation of the uncertainty of PV production. It
is difficult to make any assumption on the shape of the distribution of PV power, because
it might be skewed and varies over time, thus making the Gaussian assumption from the
ARD model highly detrimental to the reliability. In Table 3.3, Reliability (R) reports the
mean absolute reliability deviations from the diagonal over several forecast horizons.

However, models should be reliable not only on average over all horizons, but for any
subset of the forecasts. Thus, we also studied the reliability conditionally to the forecast
horizon and the lead-time. On Figure 3.9, the reliability diagrams are shown individually
depending on either their forecast horizon or their lead-time.

The reliability conditional to the horizon is quite good for the three models, rarely
exceeding the consistency bars. However, this conditional reliability is difficult to obtain:
for several horizons, the reliability exceeds the consistency bars, and so the hypothesis that
the model is reliable for this forecast horizon and quantile level must be rejected. Note
that the consistency bars are larger since there are a lower number of forecasts when the
evaluation is conditional to the forecast horizon. The ARD and AnEn models show larger
deviations that were not suggested by the averaged reliability on Figure 3.8. However, it is
possible that some of the deviations observed are in fact due to the serial correlation of the
data instead of a reliability issue. Using consistency bars that take serial correlation into
account such as in [121] could be helpful in identifying this effect.

Besides, the AnEn and QRF have a better reliability conditional to the lead-time of the
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Figure 3.9: Conditional reliability of the three probabilistic models

forecast, especially for forecasts that are made early in the evening or late in the afternoon,

where the ARD has large deviations.

Globally, even if we cannot say that the models are reliable no matter the subset of the
forecasts, the AnEn and QRF models still show good reliability properties, being reliable
on average and conditionally to the forecast horizon and lead-time for most quantile levels.
The ARD model is not as reliable as the others, but we will still include it in the rest of the

evaluation for comparison purposes.
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3.5.2 Sharpness

In this thesis, sharpness is assessed using the Prediction Interval Normalized Averaged Width
(PINAW) metric. The lower the PINAW, the sharper the model. Noting I; , the width of

the PI with coverage rate o, PINAW can be written as follows:

Y Lia
E,
FE,, is the maximum amount of energy that can be produced in a time step, taken as

PINAW (a0, h) = (3.26)

the nominal power of the PV plant multiplied by a time step duration. Fig. 3.10 shows the
PINAW for different forecast horizons and nominal coverage rates . Similar to reliability,
the PINAW related to the representation of uncertainty is worse for the ARD model. The
PINAW are very similar for the AnEn and QRF models, although the AnEn model is slightly
sharper.

When looking at the sharpness conditionally to the forecast on Fig. 3.11, it is clear
that the AnEn and ARD approaches have a higher sharpness variability depending on the
forecast horizon compared to the QRF. The AnEn is especially sharper than the other
approaches for forecasts with a 30 minutes horizon. In Table 3.3, Sharpness (S) reports the
mean PINAW over all horizons and all nominal coverage values.

Regarding the parameter k from equation (3.6), we found that when using k > 1, the
forecast lost considerable sharpness, moving increasingly closer to a climatological forecast.
Using k& = 0 also led to significant errors for short-term forecasts where the model relies
heavily on the last observation. Since the generation is the same in the morning or in
the evening, past observations in the evening were deemed similar to upcoming situations
in the morning and vice-versa. With k = 1, the pattern of increasing (for the morning)
or decreasing (for the evening) generation is included, and the problematic behavior is

prevented without loosing too much sharpness.

3.5.3 CRPS score

At this stage, it is difficult to tell which model performs better, since they show very similar
results for both reliability and sharpness. The overall performance of the models is evaluated
using the CRPS introduced in 2.

Fig. 3.12 presents the CRPS of the three models depending on the horizon, normalized
by the nominal power of the plant. As expected from the reliability and sharpness results,
the ARD model performs worse than the two other models for all horizons. The QRF
model outperforms for forecast horizons longer than 3 hours. For shorter horizons, the

AnEn model performs better. However, as can be seen from Table 3.3, the overall CRPS
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Figure 3.12: CRPS of the three models

differences between the AnEn and QRF models are very low, and they both show state-of-
the-art performance.

As the CRPS difference is very low between the QRF and AnEn models, we implemented
a Diebold-Mariano (DM) test [122] using the CRPS as the measure of performance, to see
if the difference in the forecasts between the models was statistically significant.

Given two sets of forecast CDFs and their matching observations {FPVM, Epy;}, and

{Fpuw7 Epy,i}, we note the loss differential d:
d; = CRPS(Fpva;, Epv,) — CRPS(Fpv,, Epv.) (3.27)

The Diebold-Mariano test tests the null hypothesis Hy : E(d) = 0 versus the adverse
hypothesis Hy : E(d) # 0. To do so, it can be shown that under the null hypothesis the

DM statistic follows the standard normal distribution:

DM = J(1m) ==L a0, 1) (3.28)

V2rfal0)

Where f4(0) is the spectral density of d at frequency 0 which can be approximated from
the data, and n is the number of forecast/verification pairs available. On Fig. 3.13 we plot
the DM statistic between the AnEn and QRF models for different forecast horizons. We
choose a standard 5% significance level, and thus values of the DM statistic lower than the
2.5% quantile or higher than the 97.5% quantile of the normal distribution (respectively
-1.96 and +1.96, materialized by horizontal red lines on Fig. 3.13) allow us to reject the
null hypothesis.

75



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

Diebold—Mariano statistic

-6

0 10 20 30
Forecast horizon (hours)

Figure 3.13: DM statistic between the QRF and AnEn model

From Fig. 3.13 we can see that for horizons between 2 and 5 hours, we cannot reject the
null hypothesis that the expected value of the CRPS difference between the ANN and QRF
models is null, which supports the claim that the two models have similar performance.
However, for horizons lower than two hours and higher than 5 hours, the null hypothesis is
rejected. Thus, for these horizons, the expected value of the CRPS difference between the
model is not null. This supports the claim that the AnEn performs better for short forecast

horizons, and that the difference for long forecast horizons is generally slight.

3.5.4 Root mean square error

The RMSE is also computed, taking the densities medians as a deterministic forecasts.
This allows us to compare the model with standard deterministic ones. We compared the
AnEn and QRF with two variants of the classic persistence models. The first variant, noted
Persistence 1, gives the power measurement of the day before at the same time of the day
as the forecast. The second, noted Persistence 2, gives the power observed at the starting
time of the model as the prediction for all horizons.

The RMSE of the models depending on the forecast horizon is presented on Fig. 3.14.
All models consistently outperform Persistence 1 and 2 for all horizons. For the ARD model,
although the uncertainty representation is not as good as the AnEn and QRF, as can be
seen from the reliability, PINAW and CRPS scores, the deterministic forecasts are good,
with RMSE scores similar to the AnEn and QRF. For day-ahead forecasts, the ARD model
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Figure 3.14: RMSE of the models depending on the horizon

is better than the AnEn.

3.5.5 Intra-hourly forecasts

Figure 3.15 shows the average MBE of the three short-term forecasting approaches. The
figure shows that the mean forecast error is lower than 0.5% for all models and all hori-
zons. However, the ARIMA model develops a positive bias when the horizon increases, and
the AnEn model has a constant positive bias. As expected, the persistence is essentially
unbiased.

Figure 3.16 shows the average RMSE conditioned to the forecast horizon for the AnEn,
ARIMA and Persistence 2 models for the 5-minute resolution forecasts. The AnEn model is
consistently more accurate than the two other models for intra-hourly forecasting. Besides,
even though it is not shown with the RMSE criterion, the AnEn provides uncertainty

information since it gives a probabilistic estimate of the production.

3.5.6 Overall results

In addition to the previous analyses, overall results are summarized in Table 3.3. Except
for the reliability (R) and sharpness (S) scores, which are naturally percentages, all other
scores are given in percentage, relative to the installed power of the plant FE,.

The results for intra-hourly forecasts are reported in Table 3.4. Since it is quite long to
perform a whole year of 5-minutes forecasts with a rolling window scheme, we only obtained

the results for b-minute forecasts for one plant, P3.
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Figure 3.16: RMSE of AnEn, ARIMA and Persistence 2 models for intra-hourly forecasts
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Table 3.3: Evaluation Results for 30-minute Resolution Forecasts for 12 PV plants

AnEn QRF ARD Persistence 1|Persistence 2

Plant| R S CRPS RMSE| R S CRPS RMSE| R S CRPS RMSE RMSE RMSE

% % of Pn %|  %otPn % % of Pn %of Pn | %of Pn

P1 |1.20 13.47 5.18 11.48 |0.95 13.47 5.08 11.29 |2.13 15.15 5.59 11.70 19.80 32.70
P2 [1.30 14.08 5.81 13.32 [1.31 13.89 5.63 12.88 [1.96 1598 6.12 13.03 23.40 35.20
P3 0.52 11.58 4.88 11.78 |1.27 11.53 4.57 11.10 [3.41 14.89 5.43 11.84 20.40 38.00
P4 |1.54 14.06 5.57 12.43 |0.68 13.82 5.41 12.12 [1.76 14.94 5.70 12.24 20.70 33.30
P5 12.29 15.30 5.93 13.51 |2.47 14.83 5.67 12.99 (297 16.25 6.11 13.38 22.30 33.40
P6 |1.02 14.08 5.45 12.17 |0.97 14.16 5.36 11.92 |2.27 15.28 b.77 12.17 20.90 34.10
P7 10.99 12.88 5.00 11.34 |0.64 12.69 4.78 10.90 |2.26 13.67 5.19 11.26 19.00 31.60
P8 10.97 14.11 5.74 13.28 |0.57 14.00 5.40 12.67 |2.02 15.25 5.80 13.04 19.70 31.60
P9 |1.29 13.71 5.40 12.27 |0.67 13.85 5.28 11.88 |1.76 14.82 5.69 12.29 20.20 32.80
P10 (2.26 14.74 5.51 12,52 (2.22 14.36 5.30 11.90 |3.37 15.43 5.83 12.60 21.84 33.43
P11 ]0.42 13.13 5.25 12.39 |0.93 1293 4.96 11.64 [0.91 14.48 5.64 12.24 20.36 33.00
P12 10.63 13.45 5.32 12.13 |0.76 13.26 4.99 11.46 [1.63 14.32 5.54 11.89 19.10 31.90

Table 3.4: Evaluation results for plant P4 and 5-minute resolution Forecasts

Forecast Horizon from 5 minutes to 1 hour

MBE
MAE

RMSE

AnEn  ARIMA Persistence 2
% of Pn = % of Pn % of Pn
-0.25 0.27 7.5e-3
5.68 6.29 7.88
9.65 10.8 12.7

3.5.7 Conditional evaluation of the AnEn performance

In this section we focus on the performance of the AnEn conditional to different weather

conditions. We propose two studies. In the first, we compare the AnEn model performances

conditionally to the season. In the second one, we classify the days in three categories of

variability, representing sunny days, cloudy days, and intermediate days. This allows for

extrapolating the AnEn model performances to new locations, given that we know the

typical weather variability of the new location.

In the evaluation of the AnEn model, we used the CRPS relative to E,,. In this section,

we use the CRPS relative to the actual measurements nCRPS. For a set of ny forecast

CDFs FZ and verification values x;, this relative CRPS is defined as follows:
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Figure 3.17: CRPS conditional to the production variability

1 L1 oo,
nCRPS = oy ; o /_OO (F (y) —1(y> xz—)) dy (3.29)

The cases were x; = 0 are ignored to avoid dividing by zero. The reason for using this
indicator is that we will compare the CRPS of the model for different seasons. Since the
overall production is different for the different seasons, normalizing by the PV plant installed
power which remains the same over the seasons would favor seasons with low production
i.e. Autumn and Winter. On the contrary, normalizing by the actual measures follows the

seasonal variability of the PV plant production.

3.5.8 Performance conditional to the production variability

We classified the days of the study for each plant in three broad categories: sunny, cloudy,
and intermediate. We used the Morphological Clustering Method from [123] to obtain the
classifications.

Fig. 3.17 shows the result. As expected, sunny days have lower average CRPS, then
intermediate days, and finally cloudy days. It also seems that the nCRPS is lower for bigger
plants, at least for cloudy days. This can be explained by a smoothing effect: the larger the
plant, the smaller the part of the plant that is affected by a cloud when its shadow area is
smaller than the plants’ area. Thus, larger plants have a lower variability and ultimately a
better performance.

The AnEn model performance has a range between 25 and 175%, which gives conser-

vative upper and lower bounds of the AnEn model performance. To reduce these bounds,
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Figure 3.18: CRPS conditional to the season

we propose to also evaluate the performance conditionally to the season, so that we use a

real meteorological variability.

3.5.9 Performance conditional to the season

For all the plants, we evaluated the CRPS conditionally to the season. The results are
reported on Fig. 3.18. They suggest that the AnEn model typically has better performance
during Summer and Spring, while Winter and Autumn have lower performances, which is
consistent with France’s climate.

The seasonal upper and lower bounds are less conservative in this case, with nCRPS
values ranging between 25 and 125%. These values can give an idea of how the model would

perform at a different location that has another climate.

3.6 Conclusions

The AnEn model showed similar or better results than all the benchmark models in all
forecast ranges. It is slightly less accurate than the QRF model for day-ahead forecasts,
but compensates with a lighter computational time, especially for forecasts with a 5-minute
temporal resolution. As such, it can be used seamlessly over all time frames. Besides, it
shows a better performance regarding computing time than the ARD and QRF models:
although the forecasting time is longer, there is no training. The ARD and QRF models

require training for each forecast in order to have the same seamless behavior as the AnEn
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model. The AnEn showed good performances compared to the ARD and QRF models. Al-
though it has a slightly lower performance for day-ahead forecasts, it has better performance

than all benchmark forecasts for the short-term.
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Chapter summary in French

Pour répondre aux objectifs identifiés dans 'introduction, le modele doit étre capable de
fournir des prévisions a toutes les échelles temporelles possibles le plus rapidement possible.
A cela, nous ajoutons la contrainte que les prévisions doivent étre sous forme probabil-
iste, suivant les recommandations de la plupart des publications étudiant la vente d’énergie
provenant de sources a production variable. En effet, quantifier I'incertitude associée a une
prévision apporte plus d’information, et permet d’utiliser des méthodes de trading avancées
prenant en compte la distribution complete de la production d’énergie photovoltaique, ce
qui finalement géneére des revenus plus importants en s’exposant a moins de risques.

Une revue de D'état de l'art identifie les modeles issus de la famille des ”Analog En-
sembles” comme un bon point de départ pour répondre aux contraintes identifiées. En
effet, ces modeles fournissent naturellement des prévisions probabilistes avec un temps de
calcul faible puisqu’ils s’appuient sur la méthode des plus proches voisins qui a une faible
complexité algorithmique i.e. O(nd) avec n le nombre d’échantillons et d la dimension d’un
échantillon.

Malgré cela, certaines limitations du modeéle AnEn restent a surmonter. Le modele
tel que proposé dans la littérature ne s’appuie que sur des données issues des modeles de
prévision météorologiques (Numerical Weather Prediction, NWP), et démarre toujours &
heure fixe lorsqu’une nouvelle prévision est disponible. Or, nous souhaitons avoir un modele
qui fonctionne de fagon continue et a horizon de prévision variable, ce qui nécessite d’autres

données que les NWPs. Pour cela, nous effectons les modifications suivantes :

o Modifier le calcul de la distance entre les échantillons pour pouvoir utiliser de nou-
veaux types de données pour la prévision a horizon intra-journalier : derniere mesure

effectuée, images satellite.

o Implémenter une procédure automatique pour le calcul du poids de chaque variable
d’entrée dans la distance, de sorte que l'algorithme identifie les données pertinentes

en prenant en compte I’heure de démarrage de 'algorithme et 1’horizon de prévision.

Ces deux contributions permettent ainsi d’avoir un modeéle de prévision adaptatif capable
de fournir des prévisions avec un horizon de prévision allant de quelques minutes a 36 heures.
Ces besoins répondent a ceux des marchés de ’électricité.

La modification du calcul de la distance est liée a 'ajout de données d’entrées qui ne
sont pas des prévisions comme les NWPs mais plutét une mesure de 1’état actuel comme

la derniere mesure de production ou la dernicre image satellite. Cela oblige a modifier
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I’ensemble d’entrainement selon ’horizon de prévision. Lorsque l'on réalise une prévision
a l'instant ¢ pour l'instant ¢ + 1h, la variable d’entrée du modele ”derniére mesure” pour
I'instant ¢ 4+ 1h correspond a la mesure observée il y a une heure. Par conséquent, dans
I’ensemble d’entrainement, la variable ”derniére mesure” de chaque échantillon doit cor-
respondre aussi a la mesure observée 1 heure avant. L’ensemble d’entrainement est donc
dépendant de I’horizon de prévision, ce qui est traduit dans la nouvelle formulation de la

distance. Cette distance entre deux instants ¢ et ¢’ peut alors s’écrire :

N, 0
D anpn(Xe, H szhﬂ Y Kigej —HE, )P (3.30)
j=—k

Ou N, est le nombre de variables des données d’entrée, h est ’horizon de prévision et k
est un parametre qui définit la longueur de la fenétre sur laquelle cette distance est calculée.
Puisque 'ensoleillement "clear-sky” calculé (c’est-a-dire en absence de nuages) est utilisé,
évaluer la distance sur une fenétre au lieu d’un point unique permet d’éviter de confondre
deuxs instants ayany la méme production mais 'un étant le matin (le "clear-sky” augmente)
et 'autre étant ’apres-midi (le "clear-sky” diminue). Le paramere p contrdle la pénalisation
des grandes différences entre les variables d’entrée entre ¢ et ¢, de méme que le RMSE
pénalise plus fortement les larges erreurs que la MAE. H” and X sont les deux ensembles
qui contiennent les variables d’entrée du modeéle & comparer entre les instants t et ¢/. H"
et X sont centrés et réduits, de sorte que la contribution de chaque variable d’entrée a la
distance soit uniquement controlée par les poids wzh.

Le calcul automatique des poids s’appuie sur U'information mutuelle (Mutual Informa-
tion, MI), qui mesure a quel point la connaissance d’une variable réduit l'incertitude d’une
autre variable. Pour deux variables aléatoires X et Y, et leurs lois de probabilités marginales

et jointes px, py and px y, la MI s’écrit :

I1(X,)Y) //pxy T,y log( pX(Y)( (;))dxdy (3.31)

Les lois de probabilités sont évaluées empiriquement sur ’historique de données. Le
calcul des poids s’effectue en deux temps. Dans un premier temps on calcule la MI de la
variable avec la production PV. Les poids sont donc également dépendants de I’horizon de
prévision, puisque la variable issue de ’ensemble d’entrainement en dépent aussi comme
indiqué précedemment. Seuls les échantillons observés a la méme heure de la journée que
I’heure pour laquelle on souhaite faire la prévision sont utilisés, de sorte que le calcul des
poids soit également dépendant de I’heure de démarrage de I'algorithme. Dans un second

temps, un poids maximal est attribu¢ a chaque source de données et les poids sont normalisés
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de sorte que la somme des poids issus d’une méme source de donnée ne dépasse pas ce poids
maximal. Ceci permet de ne pas surestimer les poids des variables issues d’une méme
source de données et fortement corrélées entre elles e.g. les estimations de rayonnement

solaire issues des images satellite.

En outre, nous avons proposé une méthode pour réduire la dimension des images satel-
lites, qui est plus importante que les autres variables et alourdit par conséquent le temps
de calcul. Une observation d’image satellite correspond pour notre modele a ’estimation
du rayonnement solaire sur les pixels de 'image qui correspondent a un carré de 300 km de
coté centré sur la centrale. Pour réduire cette dimension, nous avons d’abord constaté que
la MI entre le rayonnement estimé et la production PV était importante uniquement dans
un rayon de 50 km autour de la centrale quelque soit I’horizon de prévision, ce qui réduit
le nombre de variables a 317. Cela reste toujours important comparé aux 1 a 6 variables
provenant des autres sources. Cette dimension a donc été réduite en utilisant le nombre N
de variables retenues par un modele de type LASSO comme mesure de la redondance des
données d’entrée, et pour chaque calcul nous ne gardons qu'un échantillon représentatif de
I'image composé¢ des N pixels ayant la plus grande MI avec la production. Ceci permet de

réduire le nombre de variables & seulement 12.

Le modele a été évalué sur un échantillon de douze centrales ayant des puissances in-
stallées allant de 2 & 12 MW. Plusieurs modeles de benchmark ont également été développés
pour comparer le modele AnEn a 1’état de I'art a la fois en termes de performance et de
temps de calcul. Pour les prévisions a court-terme (horizon de +5 minutes & +2 heures), nous
avons comparé notre modele & un modele auto-regréssif de type ARIMA, spécialisé pour la
prévision court-terme, ainsi qu’a la persistance, qui prédit systématiquement la production
future comme étant la production observée actuellement. Pour le long-terme (prévisions
de 4+2h & 436h), le modeéle AnEn est comparé a deux modéles non-paramétriques issus de
I’état de art, le Quantile Regression Forest (QRF) et le modeéle Automatic Relevance De-
termination (ARD) model. Les diférents modeles ont été entrainés sur la période couvrant

Mai 2016 a Avril 2017, puis ont été évalués sur la période couvrant Mai 2017 & Avril 2018.

Les résultats ont montré que le modeéle AnEn a des performances comparables voire
supérieures a celle des autres modeles. En terme de temps de calcul, il est comparable pour
le long-terme & celui des modeéles QRF et ARD, mais bien inférieur a celui de ces mémes
modeles pour les prévisons a résolution 5 minutes. Cependant, le temps de calcul du modele

ARIMA est systématiquement inférieur.

En terme de performances, 1’évaluation a été faite selon les recommandations pour les

prévisions probabilistes : T'objectif est de minimiser la ”sharpness” du modele sous con-
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trainte de conserver sa fiabilité, et par conséquent la fiabilité est d’abord vérifiée avant de
mesurer la "sharpness”. La fiabilité traduit la calibration du modeéle : pour un modele par-
faitement fiable, la grandeur prédite est inférieure au quantile de niveau « exactement a %
du temps. Cette propriété est fondamentale pour les prévisions probabilistes. La ”sharp-
ness” représente a quel point la distribution de probabilité est concentrée : une distribution
tres large et uniforme apporte peu d’information sur la situation a venir, tandis qu'une
distribution concentrée porte plus d’information.

Les modeles AnEn, QRF et ARD ont des propriétés de fiabilité satisfaisantes en moyenne.
Cependant, lorsque nous évaluons la fiabilité des modeles conditionnellement a ’horizon de
prévision ou I'heure de la prévision, tous les modeles présentent des déviations de fiabilité.
Malgré cela, les déviations restent cohérentes : nous avons calculé 'amplitude des déviations
causées par la taille finie de I’échantillon d’évaluation pour un modeéle parfaitement fiable.
Dans la plupart des cas, les modeles restent dans cette plage d’amplitude. Il y a cependant
une exception pour I’évaluation de la fiabilité conditionnellement & ’heure de prévision pour

les heures autour du lever et du coucher du soleil, et particulierement pour les modeles QRF
et ARD.

Le modcle ARD a par ailleurs une moins bonne ”sharpness” que AnEn et QRF qui ont
une ”sharpness” comparable. Cependant, le modele AnEn a une meilleure “sharpness” pour
les prévisions a court-terme, tandis que le modele QRF est meilleur a long-terme. A niveau

de fiabilité comparable, cela suggere que le modéle AnEn est plus performant a court-terme.

Pour comparer les modeles QRF et AnEn de facon plus précise, nous utilisons également
le CRPS, qui est un score probabiliste qui prend en compte a la fois la fiabilité et la sharpness.
Le CRPS confirme que le modeéle AnFEn est plus précis a court-terme tandis que le modele
QRF est meilleur a long-terme. Le modele ARD, comme les scores de fiabilité et ”"sharpness”
le laissaient présager, a un moins bon CRPS quelque soit ’horizon. Selon nous, ceci est dii a
I’hypothese faite par le modele ARD que la distribution de la production est paramétrique,
et plus précisément gaussienne. Cette hypothese est tres discutable, parce que la production
photovoltaique est bornée et asymétrique, contrairement a une distribution gaussienne.

Pour les prévisions de court-terme a résolution 5 minutes, ’évaluation a été faite de fagon
déterministe car les modeles de benchmark n’offraient pas de prévisions probabilistes. Les
résultats montrent que le modéle ARIMA et AnEn ont de bien meilleurs performances que
la persistance. D’autre part le modele présente de meilleures performances que le modele
ARIMA.

Finalement, concernant les temps de calculs, le modele AnEn est avantageux. Le modele

AnEn suit le paradigme dit de "lazy learning”, c¢’est-a-dire que tous les calculs du modele sont
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effectués a chaque requéte de prévision. Le temps de prévision du modele AnEn est donc plus
long que celui des modeles QRF et ARD, mais il ne nécessite pas d’entrainement. En outre,
pour obtenir un comportement adaptatif similaire & celui du modele AnEn, les modeles ARD
et QRF doivent étre entrainés pour chaque prévision, de fagon a s’adapter a I’horizon de
prévision et I’heure de démarrage du modele. Pour les prévisions a résolution 30 minutes,
le temps d’entrainement+prévision des modeles ARD et QRF est comparable a celui de
prévision du modele AnEn. Cependant, pour les prévisions a résolution cing minutes, les
modeles ARD et QRF sont longs & entrainer, ce qui rend leur utilisation opérationnelle
impossible. Au contraire, le modele AnEn conserve un temps de calcul raisonnable.

Pour les prévisions a court-terme, le modele AnEn est cependant plus long a calculer
que la persistance, qui ne fait que consulter ’historique de données, et le modeéle ARIMA.
Le gain de performance reste justifie cependant cette augmentation du temps de calcul qui
ne remet pas en cause son utilisation opérationnelle.

Le modele AnEn est donc une bonne option pour concentrer tous les besoins de prévision
de la chaine de valorisation de I’énergie photovoltaique en un seul modele. Bien qu’il souffre
d’une performance légerement moindre que le QRF pour la prévision a horizon J+1, cela
est compensé par ses avantages opérationnels, c¢’est-a-dire son temps de calcul faible et son

absence d’entralnement.
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Chapter 4

Trading of PV power on the
French EPEX SPOT market
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In this chapter we apply the solutions we proposed to tackle the systematic issues of the
PV power trading value chain in a simplified case where the PV producer participates in a
day-ahead market only. This simplified value chain does not consider intra-day markets and
hedging with storage systems, and thus is only a proof of concept of the different approaches

we introduced. However, analysis of the results on this simplified value chains already
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highlights some comparative results on the different approaches and trading methods. Parts

of this chapter were published in article [A] in section 1.7.

4.1 Description of the case study and the trading approaches

4.1.1 Case study

In this case study, we study the participation of a PV power plant as a BRP on a day-ahead
market with a dual-pricing balancing mechanism, using the generic notations of the PV
power value chain described in chapter 2. This market structure describes several European
markets such as EPEX SPOT in France or NordPool in Northern Europe. The market

structure assumed is:

¢ A day-ahead market where each participant has to submit buying or selling orders the

day before delivery.

e A balancing mechanism where each BRP has to take financial responsibility for its

imbalances.

These two markets are sequential, as explained in 2. First, the producer submits its
bids for the next day. Then after delivery, the producer, which is also a BRP, pays the
TSO for its imbalances through the balancing market. Intra-day markets that can correct
the producer’s position during the delivery day are not considered at this stage but will be
studied in chapter 4.

A dual-pricing electricity market refers to the case where imbalances are settled through
two different prices depending on their sign. Usually, if the producer produces more energy
than it has sold, then the excess energy is sold at a price lower than the spot prices for this
market time unit. On the contrary, when the producer produces less than it has sold, it has
to buy the lacking energy at a price higher than the spot price for this market time unit.

This case study is well known and several papers propose solutions for trading in such
a market structure. In [124] and [125], the authors proposed to minimize the expected
balancing costs based on scenarios of wind power generation and imbalance prices. In [41],
the authors propose a closed-form solution to the optimal bidding problem, assuming that
the spot price is independent from the bids. Some refinements over this methodology were
proposed in [126] and [127]. More recently, authors considered also game theory [128] or
strategic reserve purchase [129] to improve the revenue, however in this case study we restrict
ourselves to a day-ahead electricity market only. In this thesis, as explained in chapter 1, we

do not aim to improve the trading strategy but rather to improve the revenue by addressing
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two issues. The first is the gap between the accuracy of the individual forecasting models
and the actual value of their forecasts, and the second is the overall complexity of the value
chain. Therefore, we use this case study to show how using the value function to train the
models and replacing the complex series of forecasting models by a single ANN can lead to
different bidding behaviors and improved revenue.

Under the assumed market structure, the revenue of a producer for a given market time

unit is obtained with equation (2.3):

7 (E - E,)if E> E,

(4.1)
r_(E—FE,)if E<E,

R(E.) =msE. + {

where F, is the energy sold by the producer, E is the actual delivered energy, 75 is the
spot price that is given by the market clearing after the bids from all market participants
have been submitted, and 74 and 7_ are the imbalance prices for positive and negative
imbalances, computed by the TSO, depending on the cost it had to meet to compensate the
producer’s imbalances.

We propose two approaches for trading the PV power as depicted in Fig. 4.1.

4.1.2 First approach

In this approach, we keep the standard model chain for RES energy trading on electricity
markets, where RES power and market quantity forecasts are first produced, then used by a
trading strategy that estimates the optimal bids. However, we propose a global optimization
loop that optimizes the whole model chain using the revenue generated on the electricity
market as the objective function following the Method 2 for training the models introduced
in chapter 2. This approach is called A1-M2, and it is compared to the standard approach
called A1-M1, where we optimize the models separately to maximize their performance
following the training method Method 1, then inject their forecasts into the trading strategy.

In this test case, following the notations from section 2.2, we have four individual models:

. M16 !, which forecasts the PV power with parameters ©

MQ(_)Z, which forecasts the spot price with parameters ©5

M:? 3, which forecasts the imbalance price for negative errors with parameters Og

« M f 4 which forecasts the imbalance price for positive errors with parameters ©4

Approach 1 is the most frequent approach in the literature. In most cases, deterministic

or probabilistic forecast of the variable resource and electricity market prices are produced,
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an then an optimal bid is derived. To perform this approach, numerous works focused on
the three required components that are intermittent resources forecasts, electricity price

forecasts, and deriving optimal bids.

4.1.3 Second approach

The second approach that we propose is called Approach 2. It consists in bypassing the
individual forecasting models, and replace them with a unique ANN model that directly
provides the decision, as shown in Fig. 2.5. The inputs and outputs of this unique model
are the same as the inputs and outputs of the global decision-making process.

In this case, the only way of training the model is to use directly the loss function i.e. the
revenue on the electricity markets, since there are no intermediary models. Thus, Methods
1 and 2 for training the models are equivalent. To our knowledge, no work proposed sim-
ilar approaches, that allow participating in electricity markets without required production
forecasts.

We also compare the three approaches with an even simpler one referred to as A0, where
the bids on the electricity market are simply the expectation of the PV power generation.
Approaches A1-M1, A1-M2 and A2 are represented on Fig. 4.1.

4.2 Approach 1: dedicated forecasting models

4.2.1 PV power forecasting model

In this chapter as in the remainder of the thesis, we always use the seamless forecasting

model presented in chapter 3 to obtain the PV power forecasts.

4.2.2 Trading strategy

Along with PV power forecasts, a trading strategy that requires price forecasts is also
required to perform the approach Al. The strategy we used is described in [41]. It relies
on the hypothesis that the RES producers’ bids have no influence on the spot price (”price
taker” hypothesis). This hypothesis is true at the national level when the penetration of
price takers is low. However, since increasing numbers of RESs are participating in electricity
markets, usually following a price-taker strategy, the influence of RES bids on the spot price
can become significant. However, since we deal with individual power plants, their output
is small compared to the volume of electricity traded on the market and thus we neglect
this effect.

Based on equation (4.1), we can rewrite the revenue of a producer as follows:
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Figure 4.1: Flowchart of the different approaches

R(EC) = 7T3EPV - (7TS — WB)(EPV — EC) (42)

it Epy > E,
TR = T+ 1 PV ¢ (43)
n_ if Epy < E,

With this formulation, we can see that the first term in (4.2) is independent from the
bid, as the price-taker hypothesis states that n is independent from E., and so is the actual
energy produced by the PV plant Epy. Thus, maximizing the revenue is equivalent to
minimizing the penalty function Pen(Epy,E.) = (75 — m5)(Epy — E.). Generally, the
prices 74 and m_ are bounded by the spot price ms; so that the penalty term is always

positive. The optimization problem that gives the optimal bid E} is then:

E? = argmini, eio.5,, {EIPen(Epy. E.)]} (44)
En

E; = argming,¢jo, g, {/Pen(w,Ec)fpV(x)dx (4.5)
0
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Replacing Pen(Epy, E.) by its actual value, we obtain:

En
E¢ = argming, e B, {/(Ws —7p)(z - Ec)fPV(l')dx} (4.6)
0
This problem is known as the newsvendor optimization problem. The exact solution is
given by [41]:
* —1 Ts — T4
E. = Fpy (h) (4.7)

where Fpy is a forecast CDF of the energy production of the plant. The application of
this strategy for an RES power plant then requires input from a probabilistic RES power

forecasting model, and from spot and imbalance price forecasting models.

4.2.2.1 Forecasting market quantities

At the time of the bids, we are not yet aware of the three prices 75, 74 and 7_. Therefore,
we have to implement a forecasting model for these three market quantities.

We use Support Vector Regression (SVR) to obtain a deterministic estimate of the spot
price, using as inputs the day of the week, time of day, a forecast of the national energy
demand provided by the TSSO, and the spot price observed the day before at the same time.
SVR models are a machine learning technique commonly used for energy price forecasting
[130]. The SVR model uses a radial kernel with a parameter v and we use a parameter C
to penalize the constraint violations.

The other prices 71 and 7_ are forecast with a simple k-Nearest Neighbor (kNN) estim-
ator, using the predicted spot price as a feature. The only parameters we use are then n,
the number of neighbors we retain, and Lp,;. the length of the period over which we look
for neighbors. Depending on whether these parameters relate to the positive or negative
imbalance price-forecasting model, they are noted {n4, Lpyice, } or {n_, Lppice_}. As for
the AnEn model, these parameters allow us to control the bias-variance trade-off.

In many electricity markets, the rules for deriving the imbalance prices are also de-
pendent on the state of the power grid. For example in the Nord Pool electricity market,
the imbalance prices are equal to the spot price depending on whether the power grid is
in excess or in shortage of electricity at the national level. For example, if the grid is in
shortage of electricity at the national level, the price for positive imbalances is equal to the
spot price. For an independent producer in positive imbalance, everything happens as if
it had no imbalance: its excess energy is paid at the spot price. In the first case study

in France, there are no such rules under the French TSO rules and so we do not consider
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forecasting the power grid state. For the second test case in Danemark, these rules exist, but
for consistency with the method used in the first test case, we do not consider forecasting
the power grid state. Besides, many TSOs are planning to move to single-pricing schemes
for balancing energy. In such cases, the prices 7, and 7m_ and the forecast of the power
grid state is implicit depending on whether the forecast imbalance price is higher or lower
than the forecast spot price, and so it should not be detrimental to not consider explicitly

forecasting the state of the power grid.

4.3 Approach 2 : direct bidding through neural networks

With approach A2, we do not use any intermediary model as with A1l. We use a single
model M whose output is directly the decision for each decision process. Thus, according

to the notations from 2, the decision model T' is simply the identity.

For each decision process, the model M that we use to provide the decision is an ANN.
Models from the ANN family are generally trained using the backpropagation algorithm.
This algorithm makes the training of the network very efficient. However, it can only be
used when the objective function of the network is differentiable. This is not usually the case
in this thesis since the network is trained using an arbitrary function to derive the value of
the decision e.g. the revenue generated from the bids. However, in most parts of the value
chain, the objective function is a multiplication of the forecast error by the penalty price,
which is easily differentiable with respect to the bid. There is sometime a non-linearity
caused by the dual-pricing rule. In that case, the objective function is dependent on the
sign of the forecast error which adds a sign check in the objective function. However, the
gradient of such an operation is easily defined outside of 0, which allows implementing an

ANN without much complications.

The main risk with this model is overfitting. Since the typical number of parameters of
ANNSs is significant, they can easily memorize the entries from the training set to achieve
high accuracy on the training without developing the ability to generalize. However, many
machine-learning techniques exist to limit the overfitting of these models such as cross-

validation, regularization or dropout layers.
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4.4 Trading results from the two approaches

4.4.1 Overall trading results

We present results from the two proposed approaches for the participation of twelve PV
power plants located in France. In-situ measurements of power injected into the grid, local
temperature, and solar irradiance are available for the twelve plants from January 2014 to
January 2018.

For approaches A1-M1 and A1-M2, the model chain is optimized by solving the optim-
ization problems formulated in Section 2.2 over the training set. Then, the optimal chain
is used to obtain bids for the testing set. For approach A2, we used the machine learning
library PyTorch [131] to implement and train an ANN for each of the plants considered
in the study. The ANN models use as input the union of the inputs of the AnEn power
forecasting model (i.e. measurements, NWPs and clear-sky profile) and the price quantities
forecasting models (i.e. TSO forecasts of the national demand and RES power generation,
and spot price observed the day before at the same time). This represents a total of eleven
input features. The ANN model uses a single hidden layer of 20 artificial neurons, and an
output layer of one neuron since only a single value is expected from the ANN. The models
were trained using a 10-fold cross-validation on the period from May 2015 to May 2016 with
the Adam optimizer [132] on 100 epochs, a learning rate of 0.001 and a batch size of 16.
The trading evaluation was made for the period from May 2016 to May 2017.

Fig. 4.2 shows the results from the different approaches for a given trading day. This
specific day is chosen for illustrative purposes. Approach A2 is much more conservative
than the other ones. This results in a negative MBE that will be studied in Section 4.4.3.
Besides, it is interesting to note that approaches A1-M1 and A1-M2, which use a PV power
forecast model, tend to produce bids that are more volatile, while A2 tends to produce
smoother bids. Finally, while A1-M1 and A1-M2 both use market information and thus
do not only rely on PV power forecasts, A2 proposes bids that deviate comparatively more

from the PV power expectancy, because of its revenue-focused optimization.

4.4.2 FEvaluation of the trading approaches

The whole results are summarized in table 4.1. The performances of the different approaches
for the different plants are compared on Fig. 4.3. The strategy that generates the best
revenue varies considerably between all of the plants studied, although all approaches seem
to generate very similar revenues.

On the 12 plants, none obtained the best revenue with approaches A0 or A1-M1, 7 with
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Table 4.1: Complete results

Plant Approach | Imbalance Penalties Net revenue Penalty per imbalance
% € € €/MWh
A0 30.59 2.23 41.87 7.30
P1: Al1-M1 30.97 2.25 41.86 7.26
9 828 kWp Al1-M2 31.20 2.11 41.97 6.77
A2 33.69 2.44 41.64 7.24
A0 27.57 1.99 40.37 7.21
P2: Al1-M1 27.72 1.96 40.39 7.08
2 694 kWp Al1-M2 27.44 1.84 40.52 6.70
A2 30.39 1.76 40.61 5.79
A0 22.88 1.82 41.25 7.94
P3 A1-M1 22.91 1.77 41.30 7.72
10 009 KWp A1-M2 22.95 1.61 41.44 7.00
A2 25.80 1.43 41.66 5.54
A0 28.18 2.01 39.07 7.12
P4: A1-M1 28.66 2.02 39.06 7.05
6 876 kWp Al1-M2 28.44 1.87 39.20 6.59
A2 30.04 1.96 39.12 6.52
Ao 31.53 2.28 36.98 7.23
P5: Al-M1 32.08 2.29 36.96 7.15
4 296 kWp Al-M2 31.83 2.16 37.09 6.80
A2 34.78 2.33 36.93 6.69
Ao 30.70 2.14 39.37 6.97
P6: Al1-M1 31.06 2.16 39.35 6.96
11 994 kWp Al-M2 31.18 2.04 39.48 6.53
A2 33.35 2.56 38.96 6.45
Ao 28.56 1.83 38.84 6.41
PT: Al-M1 28.99 1.86 38.81 6.42
5 064 kWp Al-M2 29.02 1.73 38.94 5.97
A2 31.72 1.90 38.77 5.98
A0 32.26 2.20 37.37 6.82
P8: Al1-M1 32.30 2.17 37.40 6.72
9 504 kWp A1-M2 32.81 2.10 37.46 6.41
A2 39.94 1.89 37.68 4.74
Ao 29.58 2.18 39.35 7.37
PY: Al1-M1 30.03 2.19 39.34 7.29
9 504 kWp Al1-M2 29.85 2.06 39.47 6.89
A2 32.97 2.17 39.35 6.59
A0 28.09 1.88 38.49 6.68
P10: Al-M1 28.38 1.87 38.50 6.58
4 224 kWp Al1-M2 28.32 1.76 38.61 6.21
A2 31.94 1.73 38.64 5.41
A0 28.68 1.84 36.81 6.42
P11: A1-M1 28.84 1.80 36.85 6.25
3 300 kWp Al1-M2 28.82 1.69 36.96 5.86
A2 33.41 1.90 36.75 5.69
A0 28.94 1.83 36.88 6.31
P12: A1-M1 28.92 1.81 36.90 6.24
2 610 kWp Al1-M2 29.31 1.74 36.97 5.93
A2 31.17 1.74 36.97 5.58
A0 17.46 1.44 40.41 8.26
Aggregation:  A1-M1 17.9 1.44 40.41 8.06
79 903 KWp A1-M2 18.78 1.23 40.59 6.69
A2 21.83 1.43 40.69 6.56
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Figure 4.2: Example bids from the approaches A0, A1-M1, A1-M2 and A2 for day
2016-05-16

approach A1-M2, and 4 with approach A2, and approaches A1-M2 and A2 tied on the last
plant. No approach stands out significantly from the others in terms of net revenue. A1-M2
and A2 produced the best results for all plants, which suggests that it is worth using revenue
as the objective function.

Overall, method A1-M1 seems more efficient. However, it is interesting that approach A2
systematically causes the highest imbalances, yet produces the lowest penalty per imbalance.
Thus, it seems that the ANN model involved in this approach focuses more on reducing errors
when the imbalance prices are significant than on reducing the total amount of errors.

More generally, the more market information the approaches include, the more imbal-
ances they generate, but with fewer penalties per imbalance as can be seen from Fig. 4.3
and table 4.1. A1-M1 generates a low error but a high penalty per imbalance. When using
A1-M2 instead of A1-M1, and thus incorporating market information in the PV power fore-
casting model, the imbalances increase but the penalties per imbalance decrease. Finally,
A2 results in the most imbalances but the lowest penalties per imbalance.

The participation of the 12 aggregated plants is also studied and represented on Fig. 4.3.
It is clear from the figure that the aggregation of the 12 plants has a better predictability
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Table 4.2: Comparison of the revenue generated from the aggregation and the average

revenue of the individual plants weighted by their nominal power (€/MWh)

A0 Al-M2 Al1-M2 A2
Weighted average revenue 39.28  39.29 39.41  40.69
Aggregation 40.41  40.41 40.59  39.3

thanks to the smoothing effect, as it achieves the lowest relative amount of imbalances and
penalties. However, it seems that the penalties decrease less than the imbalances, since the
average penalties per imbalance is high compared to individual plants. In the end, it is
still beneficial to operate the 12 plants together: table 4.2 shows that for all approaches,
the revenue of the aggregation is approximately 3% higher than the mean revenue of the

individual plants weighted by their nominal power.

4.4.3 Behavior of trading strategies

To understand the reason why the different approaches perform differently, we analyze the
bidding behavior of the different approaches. First, we analyze the MBE in the bids to
understand how the different approaches use the market information. Table 4.3 shows the

average MBE of the approaches over all of the IV, plants.

Np

MBEZLZM (4.8)

NP i=1 En,i

From the bids’ error statistics, we can see that adding market information to PV power
forecasts without considering the value creates a significant MBE, because the bids are not
the expected outcome of the distribution, but a given quantile that depends on market
information. Depending on how often positive or negative errors are penalized, the bids can
then show a tendency to prefer positive or negative errors. In general, positive errors were
more often penalized than negative errors during our testing period. However, the negative
errors were penalized by 21.2 €/ MWh on average, while the positive errors were penalized
by only 10.3 €/MWh. This is consistent with the fact that the power grid is more often
in excess of energy since the TSO has to hedge against worst cases of production, but the
impact of a negative error when the power grid is in shortage of energy has a higher impact.
Approach A1-M1 uses this first effect to propose aggressive bids, while A1-M2 prefers the
second effect to have conservative bids. For approach A2 however, the bids acquire a small

positive MBE, which suggests that it has a slightly conservative bidding policy.

99



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

P1 .
P2 40_4Aggrega‘uon A0

A1-M1
35.8
A1-M2
P3 a4 P12 a2
| 26& _
P4 o P11
|
P5 \\ . / P10
~—/
P6 P9
P7 P8
(a) Average imbalance
(%)
P1 )
P2 55 Aggregation AO
) A1-M1
P12 A1-M2
A2
A\ P11
/ P10

(c) Average penalties
(€/MWh)

P1 .
P2 Nggreganon Q?_N”

4098 A1-M2
P8 399 P12 %
\ 38.8
P4 o P11
. S
P5 1\\/ \\4 P10
P6 P9

P7 P8

(b) Net revenue
(€/MWh)

P1
P2 g3 Agdgregation A0
N A1-M1
P12 A1-M2
A2

P6 P9
P7 P8

(d) Average penalty per imbalance
(€/MWh)

Figure 4.3: Results comparison of the different approaches

Table 4.3: Average MBE of the different trading approaches

A0  Al-M2 Al-M2 A2

MBE (%) -0.09 -0.15

0.22  0.04
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Table 4.4: Trading results on the testing period (Jan 2009 - October 2009)

Forecast RMSE ~ Absolute Bids Error  Penalties Net Revenue Penalty per Imbalance
% MWh DKK DKK DKK/MWh
P1 A0 14.0 654 14 969 334 704 22.4
A2 - 657 14 317 335 357 21.8
P2 A0 15.6 746 17 896 379 988 22.9
A2 - 775 17645 380 239 22.8
P3 A0 15.0 705 15 303 323 179 21.2
A2 - 720 14 874 323 608 20.7
P4 A0 16.6 785 17 279 367 804 22.2
A2 - 57 16 841 368 242 22.3
P5 A0 16.3 764 18 681 365 797 23.8
A2 - 797 18 784 365 695 23.6
P6 A0 19.0 946 22 711 438 805 23.2
A2 - 970 21 043 440 473 21.7
P7 A0 16.5 774 19 055 358 754 23.2
A2 - 814 18 322 359 487 22.5
P8 A0 15.6 752 15 473 386 620 21.6
A2 - 751 15 193 386 900 20.2
P9 A0 16.1 757 17 082 352 124 22.3
A2 - 762 17 279 351 928 22.7

Another effect can also be identified when looking at the evaluation results. We looked
at the spread of the errors over the magnitude of the imbalance prices for both positive
and negative imbalances, in order to understand how the second approach could generate
lower penalties with higher imbalances. The results are shown on Fig. 4.4 for plant P4 as
an illustration, and show that the errors with approach A2 are concentrated on low penalty
levels, especially for negative errors. So even if approach A2 generates more imbalance, it
is better at understanding at what time the imbalance prices are high, and so can still be

competitive regarding the actual penalties.

4.5 Extension to wind power in the NordPool market

In this section, we aim to illustrate the fact that the solutions we propose for solving the
systematic issues of PV power trading can be used in a large variety of settings, since they
are generic. Here we apply them to the participation of a wind producer in the electricity
market NordPool. This test case is intended to illustrate the common case of a RES producer

that does not have the means to produce its own forecast, and thus buys forecasts from a
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Figure 4.4: Cumulated errors depending on imbalance price magnitude
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third party. The goal is to show that even with limited input, the replacement of the chain
of models by a single ANN can improve the energy value.

All data relative to the wind power come from [133]. The forecasts are obtained using
regression forests and are deterministic. Therefore, in the following methodology, the CDF
of the wind power forecasts F,, are considered to be a Heaviside function centered on the

deterministic forecast F,,:

F,(x) =1if x > E,, 0 otherwise (4.9)

Note that in this case, market quantity forecasts cannot be used since they are used to
derive an optimal quantile of the CDF to bid on the electricity market, which will always
reduce to the deterministic forecast of the wind power.

Besides, since we do not dispose of our own forecast model, we cannot apply the different
training methods since there are no models to train. Thus, only two strategies can be
evaluated: strategy A0, where the deterministic wind power forecast is bid on the electricity
market, and strategy A2, where the deterministic wind power forecasts are used as inputs
for the ANN.

We study the output from nine wind power plants located in Denmark. In situ meas-
urements of energy generation are available from January 2008 to October 2009. The year
2008 was used as the training period, and the period from January to October 2009 as the
test period.

Approach AO is implemented by bidding the deterministic wind power forecasts. For
Approach A2 the ANN uses only the deterministic wind power forecasts as inputs. Results
from the two approaches are summarized in Table 4.4. In this study, Approach 2 consistently
produces more imbalances again, however it almost always outperforms the benchmark.

This study consolidates the fact that the second approach produces bids that cause more
imbalances, but lowers the average amount of penalties paid for any imbalance. With PV
power on EPEX SPOT, this did not systematically generate a higher revenue, however with
wind power in NordPool, the revenue was higher with the second approach for 7 out of the

9 plants.

4.6 Conclusions

Overall, the models adapt in different ways to minimize revenue. A1-M2 tends to re-calibrate
the bidding process after incorporating market information. A2 behaves differently, as it

tends to offer lower bids than the expected production. This is because negative errors are
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usually penalized more heavily than positive ones. This approach is also much better at
identifying instants when the imbalance prices are high, with most of its errors occurring
when the imbalance price is low. However, since it does not rely on PV power forecasts, it
creates more imbalances than A1-M2.

The difference between approaches A1-M1 and A2-M2 highlights the impact of training
the individual models for value instead of accuracy. This difference is similar to the difference
between A1-M2 and A2: model A1-M2 usually generates more imbalance than A1-M1 but
less penalties, which ultimately generates a better revenue.

The choice of a given approach depends highly on the context. The difference in revenue
is not significant and should not be a sufficient incentive for the energy producer to choose
one approach rather than another. However, the actual bidding behavior could be relevant
for choosing an approach. In a system where the difference between imbalance prices and
spot prices can be very large, A2 would be preferable, since it concentrates the imbalances
when this difference is low. On the other hand, when this difference is almost always low,
any of the other approaches would be more beneficial: all approaches would try to bid the
exact forecast, but approaches Al seem to be more efficient at this. If the imbalance prices
correctly translate the most preferable approach for the grid, the amount of penalties would
be a sufficient criterion to decide on the best approach, because in that case, the approach

that is the most supportive of the grid would also be subject to fewer penalties.
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Chapter summary in French

Description du cas d’étude

Dans ce chapitre, nous présentons 1’étude d’un premier cas d’étude en appliquant les solu-
tions proposées pour traiter les problemes structurels de la chaine de valorisation de la
production PV présentées dans les chapitres précedents. Ce cas d’étude est celui d’un pro-
ducteur PV vendant son énergie dans un marché day-ahead tout en étant financierement
responsable de ses écarts aupres du gestionnaire de réseau.

La regle de pénalisation des écarts est celle du "dual-pricing”, c’est-a-dire qu’il y a deux
prix de réglément des écarts : un pour les écarts positifs (la production est supérieure a la
quantité vendue) et un pour les écarts négatifs (la production est inférieure). Cette régle
est par exemple celle du gestionnaire de réseau francais RTE et de nombreux gestionnaires
de réseau en Europe du nord comme Statnett en Norvege ou Energinet au Danemark.

Ce cas d’étude a été étudié a de nombreuses reprises dans la littérature. Dans cette these,
il sert a évaluer la capacité d’amélioration du revenu des solutions que nous proposons dans

une chaine de valorisation simplifiée. Ces solutions comprennent :

o L’utilisation du modeéle AnEn présenté au chapitre 3 pour obtenir les prévision PV.

o L’implémentation de deux approches pour obtenir les offres pour le marché de 1’élec-
tricité. La premiere notée A1l conserve la chaine classique de modeles de prévisions de
prix et de production individuels, la deuxiéme notée A2 utilise un réseau de neurones

artificiels de fagon a simplifier la chaine de valorisation.

e L’implémentation de deux méthodes d’entrainement pour les modeles, la premiere
notée M1 visant & maximiser leur performance de prévision individuelle, la deuxieme
notée M2 visant a maximiser la valeur de la décision associée sur le marché de 1’élec-

tricité.

On obtient finalement quatre possibilités selon qu’on utilise I’approche Al ou A2, et
la méthode d’entrainement M1 ou M2. En pratique, les deux méthodes d’entralnement
sont identiques pour 'approche A2 puisque il n’y a qu’un seul modele, dont la sortie est
directement la décision optimale, ce qui laisse finalement les possibilité A1-M1, A1-M2 et A2.
Par ailleurs, nous comparerons également ces possibilités avec un solution de réference AOQ,
pour laquelle I'offre soumise au marché de 1’électricité est simplement la meilleure estimation

de la production PV.
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Approche 1

Pour I'implémentation de cette approche, quatre modeles sont nécessaires:

. Mle ! qui prévoit la production PV
. M29 2 qui prévoit le prix spot de 1'électricité
. Mge 3 qui prévoit le prix de réglement des écarts négatifs

« M 49 * qui prévoit le prix de réglement des écarts positifs

Les bonnes propriétés du modele AnEn en terme de performance comme de cofit de calcul
nous ont incité a le garder comme modele pour effectuer la simulation de la participation
de la centrale PV au marché de I'électricité. Les prévisions de prix spot ont été réalisées
par un modele de type SVM fréquemment utilisé, en exploitant en données d’entrée des
prévisions de consommation nationale et de production d’énergie intermittente réalisées par
le gestionnaire de réseau. Le prix de réglement des écarts a été calculé par une approche
des k plus proches voisins. Finalement, la combinaison de la sortie des différents modeles a
été calculée en utilisant un résultat de la littérature qui montre que l'offre de vente optimale

dans le sens ou elle minimise les pénalités est donnée par:

Er=F! (%) (4.10)

Ou F est la fonction de répartition de la production PV, 7, le prix spot et m_ et 7 les

prix de réglement des écarts négatifs et positifs.

Approche 2

L’approche A2 consiste a utiliser directement un modele ANN pour obtenir les offres de
vente d’énergic. 11 n’y a donc qu’un seul modéle M® impliqué. Le réscau a été entrainé
pour maximiser le revenu géneré sur le marché day-ahead. Pour cela il dispose en données
d’entrée des mémes variables que pour la prévisions de production PV et de prix utilisées
dans ’approche Al.

L’objectif est que le modeéle apprenne par la fonction de revenu les tendances sys-
tématiques du marché et parvienne a offrir des offres de vente stratégiques, conditionnelles
a la prévision de la situation en termes de production PV et de consommation et production

intermittente nationale.
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Résultats

Les deux approches on été effectuées sur la période allant de Mai 2016 a Mai 2017. La
différence entre les approaches A1-M1 et A1-M2 sont assez faibles, tant en terme de com-
portement que de résultats. L’approche A2 au contraire présente un comportement assez
différent en développant un biais assez marqué comparé aux autres approches, ce qui génere
des offres de ventes conservatrices.

Ceci s’explique par le fait que le prix moyen de pénalisation des écarts négatifs est plus
élevé que celui des écarts positifs. L’approche A2 semble avoir appris cette tendance et
propose donc des offres conservatrices pour éviter d’étre en situation d’écart négatif. Cela
génere naturellement un volume d’écart plus important mais un montant de pénalités plus
faible. Cela devient encore plus évident lorsque 1’on regarde le montant moyen de pénalités
par volume d’écart : D'approche A2 est sytématiquement celle ayant le montant moyen le
plus bas. A l'inverse les approches A1-M1 et A1-M2 générent un volume moyen d’écart plus
faible, mais ont un montant de pénalités similaire et paient en moyenne plus de pénalités
pour chaque volume d’écarts.

Au final, le meilleur revenu a été obtenu avec ’approche A1-M2 pour 7 des 12 centrales,
avec approche A2 pour 4 centrales et les deux approches A1-M2 et A2ont obtenu le méme
résultat pour la derniere centrale. Les différences de résultat sont assez faibles, ce qui
rend difficile le choix d’une approche par rapport a I'autre. Il est cependant rassurant de
constater que toutes les approches exploitant des informations de prix génerent de meilleurs
revenus que I’approche de benchmark A0. Finalement, le choix de ’approche doit étre guidé
par le comportement que ’on souhaite favoriser. Si 'on souhaite minimiser les erreurs de
production PV dans un contexte ou les erreurs sont pénalisées uniformément e.g. 'appel
d’offres AO CRE ZNI 3 en France [24], 'approche A1l semble plus pertinente. Si au contraire
on est dans un contexte ou les variations de prix sont importantes et qu’on s’attend a ce que
les informations de marché soient plus déterminantes que les informations météorologiques,
il peut étre judicieux de choisir 'approche A2.

Remarquons finalement qu’avec une regle de pénalisation des écarts idéale, les com-
portements bénéfiques pour le résecau (offrir le montant le plus proche de ’estimation de
la prévision PV) devraient étre ceux qui sont les plus incités financierement pour le pro-
ducteur PV, et donc que les deux approches Al et A2 devraient converger vers le méme

comportement.
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Trading with a storage system
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In this chapter we apply the solutions we proposed in chapter 2 to the whole PV power

value chain. We do not restrict ourselves to the bidding phase as in chapter 4, but we

also consider the operation phase with both intra-day trading and hedging with a storage

system. Parts of this chapter were published in article [B] in section 1.7.

We trained all individual models with method M2 i.e. by maximizing the value of the

related decision-making process. Thus, we do not compare the two training methods M1

and M2 introduced in chapter 2, since the study from 4 suggested that training method M2
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was more efficient regarding revenue. Therefore, we only study the difference between the

approaches based on individual forecasting models (approach 1) and ANNs (approach 2).

5.1 Description of the case study

In this chapter, we propose to extend the case study from chapter 4 by also considering
the operation phase that was described in chapter 2. To have more degrees of freedom in
the operation phase, we consider the addition of a Battery Energy Storage System (BESS)
coupled with the PV power plant. This choice is also motivated by the fact that such
systems are expected to play a big role for power grids, since they can balance forecast
errors from uncertain energy generation sources and TSOs are forbidden to own or manage
storage facilities for this purpose [134]. We evaluate through this case study the profitability
of PV/BESS systems in current market conditions.

The market structure considered in this section is an extension of the case study from
chapter 4. We still have a day-ahead market where each participant has to submit buying or
selling orders the day before delivery and a balancing market where each BRP has to take
responsibility for its imbalances, but we also consider an intra-day market in the operation
phase.

On the intra-day market, each participant can submit an offer up to 30 minutes before
delivery in order to compensate its imbalance. As described in chapter 2, intra-day markets
usually follow a continuous trading paradigm. That is, a selling (resp. buying) offer is
accepted whenever a matching buying (resp. selling) offer is submitted by another party.
This generates additional uncertainty on the revenue, since there is no way to know for sure
if an offer would have been accepted when simulating using past time series. This was not
the case with the day-ahead market where the price taker hypothesis could guarantee that
the offers were accepted. As a result, the simulation of the intra-day market participation
requires modeling the acceptation or rejection of the intra-day offers.

In the end, there are three consecutive decisions to make:
e How much energy to offer on the day-ahead market at D-1, 12 a.m.
e How much energy to offer on the intra-day market at M-30.

e How much energy to charge/discharge from the BESS. This decision should be taken
as close to real-time as possible. Given the available data, we can run simulations

with a 5-minute time step and thus this decision is taken at M-5.
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Given the market structure of this case study, we can derive the revenue of a producer. As
explained previously, the revenue of a producer that participates in a day-ahead and intra-
day market with a dual-pricing balancing mechanism follows equation (2.4). We reformulate
it by differentiating the part of the production E that comes from the PV panels Epy and
the part that comes from the BESS Egggg.

We also introduce a term C(Epgss), that reflects the cost due to the ageing of the
BESS when used to deliver the amount of energy Eprgs. This cost is obtained with the
rainflow counting algorithm [135], [136]. The ageing of the BESS can be divided into two
components: cycling ageing which is caused by the actual usage of the BESS and calendar
ageing, which is the degradation caused by time. In the remainder of the thesis, we will
focus on the cycling ageing of the BESS and consider its calendar ageing as a given life time.
The end-of-life of the BESS is thus defined as the minimum life time given by the cycling
and calendar ageing. As an example, if the calendar ageing gives a life time of 20 years, and
the cycling ageing a life time of 50 years, we consider that the actual life time of the BESS
is 20 years. We penalize the revenue with the cost associated with the life-loss of the BESS.
Note that the penalized revenue R’ is not an actual cash flow, and that the cost associated
with the life-loss is only here to make the control of the BESS more conservative regarding

the life time. The penalized revenue R’ then writes:

R =n(Epy + Eggss) — (Epv + Eggss + Eip — E.)(7s — ) + (s — mrp)Erp (5.1)
— C(EBEss)

Regarding the day-ahead participation of the PV/BESS, works based on stochastic pro-
gramming are frequent, for example in [137], [138], [139] or [140]. In [141], the authors pro-
pose to control the risk-aversion of the operator using the conditional-value-at-risk. With
such stochastic control, it is very important to use a representation of the uncertainty based
on production scenarios, derived from the forecasts. Using a sequence of forecast distribu-
tions fails to account for the temporal correlation of the forecast errors, which is critical to
the good operation of a storage system. Robust Optimization (RO) is also a popular choice
for such applications [142], [143].

Some authors also propose an MPC approach to bid on intra-day market auctions [144],
[145]. However, in our setting the intra-day market is a continuous trading market, which
complicates the modeling of the participation. In reference [146], the authors proposed a
systematic way to trade on such continuous market, using real historical data on which

offers were available on the intra-day market at each time. In [45], the authors proposed a
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method based on the same inputs but using Reinforcement Learning (RL). However, in this
thesis we did not have such data.

Many works use Model Predictive Control (MPC) for real-time control of PV/BESS.
This consists in optimizing the control of the BESS on a receding horizon, in order to take
into account the forecast future state of the system when optimizing the next time step.
Different objective functions can be optimized on the receding horizon. In most cases, the
optimized function is either the producer’s profit [147], [148] or the energy imbalance [149],
without considering profit. However, in many cases the uncertainty of the upcoming PV
production is overlooked in MPC approaches, that is, the future is not considered based on
sampled scenarios but rather on deterministic forecasts. Alternatively, in [150], the authors
propose to use linear rules for the real-time operation of the PV/BESS, considering the
uncertainty with scenarios. In [143], the real-time operation of the BESS is performed using
RO for computational simplicity. Recently, some authors proposed to use RL to control
single storage systems that perform energy arbitrage [151], [152], [153].

In this thesis, we use different strategies for the control of the PV/BESS. For the day-
ahead participation we use stochastic programming, and for the real-time control of the
BESS we use either a MPC approach with sampled scenarios as representation of the un-
certainty, or analytical solutions based on simplifying assumptions of the problem. For the
participation on the continuous intra-day market, we propose a novel method for offering
intra-day bids in the absence of an history of available bids, which is mandatory in the
literature. However, it is difficult to evaluate the quality of this method since we do not
dispose of this history to confront it with our intra-day bidding strategy. Deterministic
forecasts of both day-ahead and imbalance prices are performed with the same models as
in chapter 4, along with probabilistic forecasts of the PV power production using the AnEn
model. In Approach 2, we use ANN at every stage to perform directly a Policy Function
Approximation. The literature suggests that using a RL paradigm could be more efficient
for this task. However, the contribution of the thesis is not in the models developed for
performing the approaches, but in the proposal of an alternative combination and training

of existing elements in order to obtain data-driven and value-oriented tools.

5.2 Approach 1: dedicated models and MPC controller

Following the revenue formulation from equation (5.1), PV power and price forecasting
models are required again. We also need decision-making models for each of the three
consecutive decisions. Using the first approach with dedicated models, the workflow can be

summarized as in Fig. 5.1.
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Different MPC controllers are required for day-ahead bidding of the PV/BESS, for intra-
day market participation and for real-time control of the system. In the following sections

we present the different algorithms we compared.

5.2.1 Day-ahead offering strategy

The aim of the day-ahead controller is to provide the bids of the combined PV/BESS for
the forthcoming day. We propose a first benchmark where the BESS is not used at the
day-ahead level, and a second where the BESS is considered along with its usage cost. In

all the day-ahead algorithms, the PV /BESS is considered as a price taker.

5.2.1.1 Benchmark: No BESS in the day-ahead planning (DAO)

For the benchmark, we do not use the BESS at the day-ahead level, and thus, all the terms

related to the BESS are ignored. To derive the optimal bids E, we must then solve:

Nyru

E: = argmarp crNuru Z 7Ts,iEli - (ﬂ-Bﬂ' - Ws,i)(Ei - Ec,i) (52)
i=1

where Npry is the number of market time units in a day. In these conditions, the
optimal bids that minimize the penalties for the producer are given by [41] as already

mentioned in chapter 4:

T s — T4 s
Ef = ol [ D8t T 5.3
X PV (7_(._71_ — Ty ( )

where Fpy; is a forecast CDF of the energy production of the plant for the i-th market
time unit. This benchmark strategy is referred to as strategy DAO in the remainder of the

thesis.

5.2.1.2 Optimal bidding using the BESS (DA1)

When the BESS is used at both the day-ahead and real-time levels, then the entire formula-
tion of the revenue from equation (5.1) is optimized. Once again, we separate the bids into
a first part accompanied by uncertainty from the PV plant E. py, and the output from the
battery E. prss which has no uncertainty: since the BESS is controllable, we assume that
the actual output of the BESS Eggsg is always equal to the amount of the bid E. grss.
This assumption allows us to avoid formulating a second-stage problem optimizing the
real-time control of the BESS once the day-ahead schedule is set based on scenarios of PV

production to perform stochastic programming. Thus, this approach might give sub-optimal
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solutions for the day-ahead planning. However, since we will perform the real-control of the
BESS during the simulation, we will still consider the opportunity to deviate from the day-
ahead schedule, and so we do not expect that neglecting it at the day-ahead stage will
negatively affect the revenue.

With these assumptions, the optimization problem that needs to be solved to derive the

optimal bids is:

E:,PVaE:,BESS = argmazx [Ec.pv €RNMTU B, ppss€RNMTU (5.4)
7si(Epvi+ EeBEss,i) — (Msi — 7B,i)(Epvi — Ec pv,i)

E
i=1 — C(E¢,BESS,i)

However, to ensure that we can assume that Egppgs = E. prss, and to correctly simulate

the operation of a BESS, we must add the three following constraints where SOC (State
of Charge) is the amount of energy in the battery at a given time step, relative to its full

capacity Cap in MWh.

1

o Cap(1 — SOC;) < Ec pEss,i+1 < NpisCapSOC; (5.5)
Ch
—EcBrss < Epv (5.6)
Cap|SOC; — SOC;_1| < Enm (5.7)
SOCi.1 — SOC; = ——CBESSIHL 4¢ ., ppoginy > 0, LCRZCBESSIHL (i rise  (5.8)
npisCap npisCap

The first constraint ensures that the energy in the BESS is never lower than 0 or higher
than the capacity of the battery Cap, taking into account the charge and discharge efficien-
cies of the BESS, respectively 1o, and np;s. The second constraint ensures that the BESS
can only be charged from the PV plant, and not from the grid. Finally, the third constraint
is a limitation on the power rating of the BESS, defined by the parameter F,,, that is
the maximum energy that can that the BESS can charge or discharge during consecutive
time steps. This method is referred to as method DA1. The last constraint states that the
variation of the SOC is the power flow of the BESS divided by its capacity.

5.2.2 Intra-day offering strategy

5.2.2.1 Intra-day market model

As stated before, the intra-day market allows buying or selling additional energy up to 30

minutes before the time of delivery. At the intra-day stage, the bids E. and the spot prices
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7 are already known, thus the decision that the energy producer must take is the amount
of energy to buy or sell and for what price.

The intra-day market follows a continuous bidding scheme. This means that whenever
a matching buying and selling offer are submitted to the intra-day market, the transaction
is accepted at the price of the offer. Thus, when simulating the operation of the intra-
day market, the only way to know if a given offer would have been accepted is to have a
complete list of the intra-day offers, along with their time of submission and acceptation if
they were accepted. Then, one can check if a given offer would have found a counterpart in
the historical offers data.

However, we did not have access to such data in this thesis. Thus we propose a particip-
ation strategy based only on price and power production forecasts, by modeling continuous
trading mechanism of the intra-day market. Without access to historical data of accepted
and rejected intra-day offers, it is impossible to compare the model to reality and thus to
validate it. Still, we propose to base the behavior of the intra-day market on real mar-
ket considerations, so that the intra-day market model is consistent with the economy of
electricity markets.

As we are not acting on the BESS at this stage, we drop the distinction between Epy
and Epggs and only consider the total amount of production E, except for the ageing cost
of the BESS which only depends on Epggs. Using equation (2.4), the penalized revenue at

the intra-day stage writes:

R:TD =nsE+ (ms —mp)Erp — (E+ Erp — Ec)(ms — mB,1p) — C(EBESS) (5.9)

Where 7 rp is the imbalance price considering that a bid of volume E7p was accepted:

ny if B+ Erp > E.
TB,ID = (5.10)

m_ it B+ Ep < E,

So the goal of the intra-day participation is to maximize the difference AR between the

revenue with the intra-day bid and the revenue without:

AR = (mg,;p — m1p)Eip + (7B, 1p — 7B)(E — E.) (5.11)

We propose to define a probability p;p that the offer is accepted. We assume that the
intra-day market is liquid enough so that the probability of acceptation of the offer p;p only
depends of the price m;p. In other words, if an offer is economically interesting based on its
price 7rp, then it will find a counterpart no matter its volume E;p. We propose to define

prp as follows:
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MifEID>O
mT_ — T
PID=9N oo (5.12)
— it Eip <0
T — T4

Consider for example the case when one wants to buy energy Erp > 0. No one should
be willing to sell energy at a lower price than 74 since it is the price given by the TSO
for excess energy. Thus, the probability of acceptation for a buying offer with price 7
should be 0. Besides, anyone would be willing to sell at a price higher than 7_, since the
benefit from selling would more than compensate the penalty for missing energy given by the
TSO. Thus, the probability of acceptation with price m_ should be 1. Then, the probability
prp is linearly interpolated between 7, and m_. The same rationale is used to derive the
probability when selling energy i.e. Erp < 0.

To keep mrp independent from the volume E;p, we will always treat separately the case
Erp > 0and Erp < 0. Thus, the acceptation of the offer is a Bernoulli trial with probability

prp. We can then rewrite AR as:

AR=1B [(WB,ID — TFID)EID + (E — EC)(TFBJD — 7TB)] (5.13)

Where B is a Bernoulli trial with success probability prp, that is a random variable that
takes the value B = 1 (the offer is accepted) with probability p;p and B = 0 (the offer is
not accepted) with probability (1 — p;p).

5.2.2.2 Offering strategy

The objective of the offering strategy is to maximize the expectation of AR, which is a

function of w;p and Ejp. This expectation can be written as follows:

En
EAR = Y / AR o frv (€)pide (5.14)
ie{0,1} 7 ¢=0
with:
. PID ifi=1
pi=pB=1i)= (5.15)
1-— PID ifi=0

When the offer is rejected, AR = 0, and thus:

117



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

E,
. PIDAR|p—1 p—cfpPv(e)de (5.16)

Emm:/

e=

=pIp /En (78,10 — D) Erp + (e — E¢) (7,10 — 7B)] frv(e)de (5.17)

It Erp > 0, when e < E. — Erp we have mg ;p = mg = m_. Similarly when e > E,. we

have g ;p = mp = m4. Otherwise, 7 ;p = 74 and mp = 7_. Thus:

E.~Erp
E[D(ﬂ'_ —7T]D) /:0 fpv(e)d€+...
E,
E[AR} =DpIiD E[D(T('+ — 7T]D) /:E fpv(e)de + ... (5.18)
Ee
/:E e (e — Ec)(my —7-) + Erp(my — 7rp)] fpv(e)de

Using [ fe(e)de = Fpy(x) and F(E,) = 1 where Fpy is the CDF of the energy

production:

Erp ((7T_ — 7T+)va(EC - E[D) + (7T+ — 7T]D)) + ...
E[AR} = PpIiD E. (5.19)
Ty — ) /e:E o (e — E.)fpv(e)de

Using the same calculation method, we find exactly the same result when Erp < 0. To

simplify the equations we note:

G(mip, Erp) =Eip (- — 74 )Fpv(E. — Erp) + (74 — Trp)) (5.20)
E.
+W+—mj/ (e — E.) fpv(e)de (5.21)
e=E.—FEip
And so:
E[AR] = pipG(nip, Erp) (5.22)

Where prp is a function of 7;p only and G a function of both 7;p and Ejp. Now to
identify a possible maximum of the additional revenue, we have to perform a second partial

derivative test. Using the Leibniz rule for derivation under the integral sign, we get:

8E[AR] . deD

i G(mrp, Erp) —pipErp (5.23)
OF|AR
OEIAR] pip(Fpy(Ee — Erp)(n— — my) + (74 — mIp)) (5.24)
OFErp

(5.25)
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And the second derivatives are given by:

O’E[AR]  &pip dpip
= FE —2F 5.26
o, a2, G(7rp, Erp) L (5.26)
O’E[AR
[2 < = —pip(r— —74) fpv(Ee — EIp) (5.27)
0E7,

82E[AR] _ 82E[AR] - dp[D

= = F E.— F _ - - — 5.28
sl — de( Py ( p)(n— —7y)+ (7 — 7)) —pip  (5.28)

These expressions are independent on the actual model for the probability p;p and
could thus be used to perform this test for various possible models, as long as they are
independent on the volume Ejp. However, given the model we proposed in section 5.2.2.1,

we can simplify it to find possible critical points. All the following calculations are made

with Erp >0, prp = M. The calculations are similar for the other case. We have:
T — T4
6E[AR} % % _ TIpD — T4
mzo — Trp = T4 Or EID:EC_FPé <H) (529)

The determinant Det(mp, Erp) of the Hessian matrix of E[AR)] is given by:

™ — T
Det(nrp, Erp) = 2EID%fPV(Ec — Eip) — Fpv(E. — Erp)? (5.30)
+

For the possible critical point at 77, = 74, we have:

Det(m_,E]D) = —va(Ec — E]D)2 <0 (5.31)

The critical point, if it exists, can only be a saddle point i.e. a maximum for one variable
and a minimum for the other. Therefore, we only focus on the second possible critical point
to find a maximum. We already have:

O’E|AR] 2E;p

= — <0 5.32
oy T — Ty (5:32)

TIpD — T4+

So to prove that the critical point at E7 equals to E. — FIS‘l/ ( , we still have

T — T4
to prove that the determinant D is positive at this critical point. At this critical point, the

determinant writes:
Det(nip,Eip) = Fpv(E. — E1p) 2Epfpv(E. — E;p) — Fpy(E. — Erp)) (5.33)
Given that Fpy is a CDF and thus always positive, we must show that:
2Erpfpv(E. — Erp) — Fpv(E:. — Erp) >0 (5.34)
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Without more assumptions on fpy, it is difficult to show that this critical point is a local
maximum. To simplify the control of the PV/BESS for the intra-day market, we simplify
it by stating that m;p = s, so that any accepted trade is at best beneficial for the revenue,
at worst neutral, as long as it reduces the imbalance. In such a case, the additional revenue

is a function of Ejp only. By replacing m;p by 75, we get:

dE[AR] . 1 [ Ts— Ty
m—o =4 EID_EC_FPV (H) (535)
2E[A
! [Q_R] = —(ms — 1) fpv(E: — Erp) (5.36)
dE7,

The second derivative is negative when 7y > 7. As stated in chapter 2, this is usually
the case, otherwise positive imbalances could generate revenue through negative penalties.
In this chapter’s test case, the market structure is the same as in 4 where negative penalties
did not appear. However, the training and testing period are more recent, and so positive
imbalance prices higher than the spot price or negative imbalance prices lower than the spot
price appear. In these cases, the optimal intra-day offer E;p becomes a local minimum of

AR. However, these cases remain less frequent than the usual case where 74 < my < m_,
Tg — T4
mT— — T4
revenue on average. Therefore the offering strategy is to offer the volume E7, given at

and so we expect that the critical point Ef,, = E. — Fppr ) generates additional

equation (5.35) at the price 7.

5.2.3 Real-time control

In real-time control of the PV/BESS, the day-ahead prices and energy sold on the day-ahead
and intra-day market are known, and the only sources of uncertainty come from the PV
power generation and imbalance prices. Following the offering strategy for the intra-day
market, the price 7rp is set at 75 and thus everything happens as if the energy sold at the
day-ahead stage was E. — Erp, whether Ejp is positive, negative, or null. Thus, in this
section, F, designs the sum of the volumes sold in the day-ahead and real-time electricity
market instead of the day-ahead market only.

Along with the benchmark strategy, which is not to use the BESS at all, we define
two additional real-time control strategies. The first one is purely analytical and tries
to minimize the penalties for the next market time unit, without taking into account the
BESS ageing cost or the near future after the next market time unit. In contrast, the second

strategy takes all of these factors into account.
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5.2.3.1 First strategy: analytical solution (RT1)

The first algorithm minimizes the term arising from imbalances between the bids and
PV/BESS production. Since we are in real time, the bids E, have already been submitted
and the market has been cleared. Thus, the day-ahead prices 7 are known and the only
design variable is the BESS output Egggsg. The BESS is allowed to deviate from its plan-
ning E. prss to compensate deviations coming from the PV power forecast error, thus we
do not necessarily have Epgss = E. prss anymore. At this stage, the only design variable
is the amount of energy we charge or discharge from the BESS Epggs. In this case, we can

write the real-time penalized revenue Ry as a function of Eppgs only and get:

Rypr(Epgpss) =Epyms — (Epy + Eppss — E.) (1s — 7B)
+ Eppssms — O(EBESS) (5.37)

For the first method, we focus on reducing the penalties, so we do not consider the
term Epy7s and we neglect the terms msEppss and the BESS usage costs C(FEpgss)-
The first neglected term represents a profit that can be obtained from the difference in
day-ahead prices during the day. However, this profit is supposed to have already been
realized at the day-ahead level. Besides, the profit alternates between positive and neg-
ative values depending on the charge or discharge of the BESS. Its impact should thus
be reduced when summed over several time steps. On the other hand, the penalty term
Pen = (Epy + Eggss — E.) (ms — wp) is generally positive. Finally, neglecting the BESS
usage costs allows us to propose a closed-form solution to the revenue maximization problem.

The expectation of the penalty term Pen for the next time step writes:

E(Pen) = /OEn (p+ Eppss — E¢)(ms — w) fpy (p)dp (5.38)

Since mp is dependent on the sign of the imbalance, the expectation of the penalty term

must be rewritten:

E.—EpEgss

E(Pen) = / (p+ Epgss — Ec)(ms — ) fpv(p)dp
0
Ep

+ / (p+ EBess — Ec)(ms — ny) fev (p)dp (5.39)

E.—EpEss
As mentioned before, in our test case the penalties can be negative. In order to avoid a

divergent solution, we bound the imbalance prices by the spot prices, so that the algorithm

121



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

can not try to seize revenue by increasing a supposedly remunerated imbalance. In other
words, if the grid is short (resp. in excess of) energy, the positive (resp. negative) imbalance
price is at maximum (resp. minimum) equal to the spot price, so that positive (resp.
negative) imbalances are not remunerated. This assumption is used to derive the strategy,
however it is of course not enforced when evaluating the strategy on the testing period.

which gives:

E.—EpEgss

E(Pen) = (r—7-) [ (p+ Enpss — B fev(p)dp
0
En

+ (7 — 1) / (p+ EBess — Ec) frv(p)dp (5.40)

E.—FEppss

Using the variable change x = p — E., we get:

—EBEss
E(Pen) = (ms —W—)/O (x + Eppss)fpv(x + Ec)dx

E,—E.
+ (7‘(8 — 7T+) / (.73 + EBEss)fpv(JZ + Ec)d:c (5.41)

—EpEss

Finally, using the Leibniz rule for differentiating under the integral sign, we obtain:

dE(Pen
dE(Den) =(ms —n_)Fpy(E. — EBgss)
dEBEss
+ (75 — 7+ )(1 — Fpv(E: — EpEss) (5.42)
The second derivative is:
d’E(Pen)

=—(ms —7_)fpv(E: — EBEss)
dE}pss

+ (ms — m4) frv (Eec — EBEpss) (5.43)

This second derivative is negative provided that 7, < 7y < m_. As discussed before, this
is not always the case, but given that it is the most frequent case we expect this strategy
to generate additional revenue. Thus, by making the first derivative equal to 0, we find the

minimum:

y [ Ts—T
Egpss = Be — Fpy <—7T_ — Wi) (5.44)
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The first method thus consists in computing a forecast distribution of the PV power,
deterministic forecasts of the imbalance prices, and to inject them into this optimal solution.
Although the solution is in a closed form, the BESS constraints prevent the use of this
solution more than one time step ahead, and the BESS usage cost is neglected. This is
referred to hereafter as the RT1 method.

5.2.3.2 Second strategy: numerical optimization (RT2)

The second method is very similar to the offering strategy including the BESS from section
5.2.1.2; however it is performed using a MPC approach, to adapt it to the real time. This
means that the whole revenue formulation is maximized over the Njspc next time steps,
then the result of the optimization from the first time step is used as the command for the
BESS for the next market time unit. This allows us to take into account the future forecast
state of the system in the real-time control.

Since we are in a real-time setting, the day-ahead prices and bids are known, as for
the first real-time strategy. As a result, the only design variable is the BESS command.

Therefore, the optimization problem to solve for each time step is:

EEESS = argmal‘EBESSeRNJWPC
E Nfc (Epvi + EBEss,i)msi — (Epvi + Egss,i — Eeci) (Ts; — TB,i) (
i=1 — C(EBESS,i)

5.45)

subject to the same constraints as in section 5.2.1.2.

We change Nj;pco at each time step, depending on the time of day, so that all of the
remaining day is included in the optimization. This is especially important because day-
ahead planning often results in full discharge of the BESS in the evening when day-ahead
prices are usually high due to high demand. As such, the whole day must be included in the
optimization loop. If Nyspc is too low, the BESS could discharge itself entirely during the
day to compensate forecast errors, and thus be unable to provide the energy in the evening.
This second method is referred to as RT2.

5.2.4 Forecasting and optimization tools

To implement these different algorithms, we use the same forecasting models as in chapter
4.
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5.2.5 Optimizer

To solve the different optimization problems that appear in DA1 and RT2, we decide to
employ stochastic optimization. It is important to use scenarios to represent the uncertainty
because of the temporal dimension of the PV/BESS management problem [154]. This
temporal dimension can be seen from the second constraint formulated in equation (5.6).
One of the essential characteristics of PV power forecasts is the positive correlation between
the forecast errors at consecutive time steps. In other words, if a forecast error is positive
(resp. negative) for a given time step, the forecast error for the following time step is also
likely to be positive (resp. negative). This is a problem for BESSs, because since a BESS
can compensate forecast errors, a significant error present on several consecutive time steps
would quickly either charge the BESS to its maximum or discharge it to its minimum,
depending on the sign of the error. Due to the temporal correlation of the errors, this
worst-case scenario is much more likely than the consecutive distributions might suggest
if they were considered independent. During the simulation, the energy remaining in the
BESS is tracked to ensure that the second constraint from equation (5.6) is respected.

A large number of PV production scenarios are generated following [155]. The scenarios
are then reduced using a Partitioning Around Medoids (PAM) algorithm, and the median of
the objective over the scenarios is optimized. The resulting non-linear optimization problem
is solved using the COBYLA algorithm [156].

The PAM algorithm reduce the scenarios by partitioning the whole set of scenarios in a

fixed number of classes n¢o. The algorithm can be summarised as follows:

o Compute the distance between each pairs of scenarios. We used the sum of the euc-
lidean distances between the realizations as the distance. In other words, given two
scenarios Ei N, pe and Ej the distance between the scenarios is given by

OB~ B

- Nmpe?

¢ Find n¢ scenarios that are representative of the whole scenarios, called medoids. To do
so, the sum of the distances between each scenario and its closest medoid is minimized

using an heuristic optimization algorithm.
o Associate each scenario to its closest medoid.

Then, the medoids are used as probable scenarios, and the probability of each medoid is
estimated by the number of scenarios populating this medoid’s class compared to the total

number of scenarios.
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5.2.6 Results

A simulation of the control of the aggregated PV/BESS made from the twelve plants is
performed for four months (January to May 2018). We used this period because these
months correspond to the times when the forecasting algorithm performance is lower, and
thus there are more opportunities for the BESS to reduce the uncertainty and add value to
the PV power. The total peak power of the aggregated plant is 91 897 kWp.

For each time step of the simulation, the PV power and market quantity forecasts are
updated based on the inputs known at the time. Then, if the day-ahead market closes for
the considered time step, bids are submitted for the next day using one of the two methods
from section 5.2.1 i.e. either with or without considering a BESS. Then, the optimal offer for
the intra-day market is derived. The control set-point for the BESS for the next time step is
obtained using one of the two methods from section 5.2.3 i.e. either with an exact solution
to the simplified problem or a numerical optimization for the whole problem. Then, the
process goes to the next time step, updates the SOC, the PV power, and market quantities
forecast, and continues the algorithm until the final time step. A flowchart of the algorithm
is represented on Fig. 5.2.

The NWPs required for the AnEn model are obtained from the ECMWF, along with
measurements and satellite data to improve short-term forecasts as in chapter 3. Forecasts
of the national demand and renewable energy generation required for the day-ahead price
forecasts are provided by RTE, the French TSO.

The BESS considered in the test case is a lithium-ion storage system, since it is an already
mature technology, and also because the investment costs of this technology are expected
to decrease in the coming years. However, both the operational and economical values of
the storage system are parameters, and studying any other battery storage technology is
possible by changing these parameters.

Ageing parameters for the rainflow counting algorithm are taken from [157] and [158].
Regarding costs, prospective values for the year 2030 from [158] are used in the base case,
that is a 200 €/kWh investment cost. Besides, in all simulations, we set the parameter F,,
from equation (5.7), which controls the power rating of the BESS so that the BESS can fully
charge or discharge in two hours. This is to simulate a BESS with a power rating of 0.5C,
which is common in commercial lithium-ion storage systems. We used a BESS with a 91
897 kWh storage capacity, which corresponds to a 1:1 ratio with the installed peak power.

The simulation is performed using the software R along with the packages 1071 [159]
for the SVR model and nloptr [160] for the implementation of the COBYLA algorithm.

Different combinations of day-ahead and real-time methods are evaluated. The sensit-
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Table 5.1: Evaluated strategies for imbalance minimization

Strategy Overall objective Intra-day participation Control methods
10 (benchmark) Imbalance No DAO/RTO
1 Tmbalance No DA1/RT1
12 Imbalance No DA1/RT2
13 Imbalance Yes DA1/RT1
14 Imbalance Yes DA1/RT2

Table 5.2: Evaluated strategies for revenue maximization

Strategy Overall objective Intra-day participation Control methods
RO (benchmark) Revenue No DAO/RTO
R1 Revenue No DA1/RT1
R2 Revenue No DA1/RT2
R3 Revenue Yes DA1/RT1
R4 Revenue Yes DA1/RT2

ivity of the results to the installed capacity of the BESS and electricity market prices is
studied, providing guidelines on the sizing of the BESS for trading in electricity markets.
The different method combinations tested are summarized in tables 5.1 and 5.2.

Examples of the typical output of the different strategies are represented on Fig. 5.3
(imbalance minimization) and 5.4 (revenue maximization). We can see that when using
market information, the benchmark for revenue maximization RO is more variable than for
imbalance minimization 10. Besides, when only minimizing imbalance, the BESS is not used
in the day-ahead planning in strategies 10 to 14, while it is used with strategies RO to R4
with spikes at times when the spot price is higher. For strategies 10 to 14, the intra-day
market participation modifies the bids, but it is unclear on the figure whether it actually
contributes to reducing the imbalance. Its effect on revenue maximization is also hard to
understand without knowing the forecast imbalance and spot prices at the time. However,
results reported in table 5.3 reveal that the intra-day market participation contributes to
reducing the imbalance or maximizing the revenue over the testing period.

Regarding the control methods, there are not much differences between methods RT1
and RT2 for imbalance minimization or revenue maximization. The main difference is that

sometimes strategy RT2 prefers not to compensate a forecast error in order to be more
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Table 5.3: Trading results

Imbalance reduction

10 11 12 13 14
Total imbalance (MWh) 5 033 3 266 3252 3166 1412
Penalties (€) 39 060 23 678 23 846 17 920 11 684
Revenue (€) 1048 830 1056133 1055865 1060827 1063 120
BESS life loss (%) 0 3.1e-2 3.1e-2 1.7e-2 2.6¢-2
Monetized BESS life loss (€) 0 5 698 5 698 3125 4779
Revenue maximization
RO R1 R2 R3 R4
Total imbalance (MWh) 7 054 4 641 4 860 4 239 3 403
Penalties (€) 33 100 33 095 23 760 21 720 18 861
Revenue (€) 1054789 1074126 1074593 1085 190 1080 152
BESS life loss (%) 0 0.40 0.35 0.40 0.36
Monetized BESS life loss (€) 0 73 518 64 328 73 518 66 166

efficient later: compare for example R1 and R2. In the displayed afternoon, with strategy
R2, the BESS does not discharge even if there is a forecast error in order to keep some

charge for the evening.

5.2.6.1 Test case results

The results of the study are shown on table 5.3. The results presented feature actual
cash flows which means that the revenue indicated in the table does not include the cost
associated with the BESS life loss. The purpose of this cost is only to help the algorithms
controlling the BESS in a more conservative way.

We can see from the results that all strategies contribute to reducing the imbalance. As
expected, strategies 10 to 14 achieve better results than strategies RO to R4 for imbalance
minimization. In the best case, that is strategy I4, the relative imbalance reduction is 72%.

With strategies RO to R4, the total imbalance is higher. This is another illustration of
the fact that reducing the imbalance does not systematically contribute to revenue, since
there are times when imbalances are not penalized if they help the power grid at the national
level. In some cases, they can even be rewarded. Besides, since the BESS is used in day-
ahead trading, its available capacity to compensate imbalances is decreased. For example, if

the forecasts overestimate the PV power generation and the BESS is scheduled to discharge
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Figure 5.3: Example outputs from the four strategies minimizing imbalance, for day
2018-02-09
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Figure 5.4: Example outputs from the four strategies maximizing revenue, for day
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Figure 5.5: MBE of the AnEn forecasts over the testing period

entirely in the evening, the lower amount of PV production prevents the BESS from realizing
its commitment unless it charges more than expected during the day. This ultimately results
in a higher imbalance, since the BESS had to charge and could not correct the imbalances.
Since the PV power forecasting model has a tendency to overestimate production according
to figure 5.5, this is a common scenario.

Still, strategies I1 to 14 can increase revenue but not to the same extent as R1 to RA4.
This is because the latter strategies profit from the differences in day-ahead price at different
times of the day. With strategies 10 to 14, shifting the production at times where the spot
prices are higher does not contribute to reduce the imbalance, and so this effect does not
occur. The revenue stream from this source of profit is much more reliable than from the
compensation of imbalances, because the day-ahead price behavior is much less volatile,
and it has a strong daily pattern featuring higher prices in the morning and evening when
energy demand is high.

The control strategy and the participation to intra-day market improve the objective in
most cases. The strategy obtaining the best results is put in bold in table 5.3. In almost
all cases and for all criteria except the BESS life loss, the strategy that performs the best is
the one using both the intra-day market and the MPC control of the BESS. There are two
notable exceptions. For revenue maximization, strategy R3 (analytical solution) performed

better than R4 (numerical optimization). We found it surprising, because since there is no
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MPC control with the method RT1 used in R3, there are no theoretical reasons that the
BESS could be able to deliver the energy sold in the day-ahead market at times when there
is no production but the spot prices are high. Still, we can understand that since we are
optimizing for penalties in that case, not every imbalance is compensated, and it could be
that there are not enough penalties to correct, which ultimately could prevent the BESS
to perform its day-ahead planning. Another explanation could be that the MPC controller
used in R4 preserves the BESS life loss compared to R3, which is probably at the cost of
preventing some additional revenue is some cases. Overall, it seems that using strategy R4
is more reliable, as the MPC controller provides more guarantees that the BESS controller
can perform its day-ahead planning, but this choice is ultimately up to the PV power plant
operator.

An important remark is that the BESS degradation is low for all strategies, although
greater for strategies RO to R4 where deep charging and discharging cycles are performed.
Overall, BESS life loss is very low. In the worst case, the BESS life loss is 0.4% over the
4 months of the testing period, which means that the BESS would last around 75 years
considering only the cycling life loss. In practice, calendar ageing will reduce the life time
of the BESS and will cause its end of life much earlier, typically after 10-20 years of usage
[161). This suggest that the cycling ageing of the BESS can be neglected at least in the
operational phase of the BESS, since more aggressive control methods do not reduce the
actual life time of the BESS.

5.2.7 Sensitivity analysis

In this section, we discuss the sensitivity of the results to different parameters of the simu-
lation. To perform the sensitivity analysis, we extrapolated the raw results from the initial
simulations. We used different methods depending on the strategy and the parameter for

which we evaluate the sensitivity.

5.2.7.1 Sensitivity to the BESS size

This analysis was based on the observation that BESS life loss from cycling ageing is very
low compared to the calendar ageing. Therefore, we neglected the BESS ageing in the
objective function from equation (5.1). Following this, we noticed that both the objective
function and the constraints were linear with respect to the BESS capacity. Therefore, for
the optimization problems of the day-ahead bids, we assumed that reducing the BESS bids
FEpgss by the same factor as the BESS size reduction would provide a good estimate of

the optimal bids, while still respecting the constraints. The real-time control of the BESS
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Figure 5.6: Imbalance reduction per installed BESS capacity

follows the same linear optimization problem and we can make the same assumption for
the real-time control of the BESS, assuming there is no intra-day participation . With
intra-day markets, the problem remains linear but since the intra-day offers are dependent
on Eppss, we can not use the results from the initial simulation who had different intra-
day offers. Besides, this approach is only valid for BESS sizes lower than the size of the
initial simulation, so that the constraint from equation (5.6) remains true for lower bids. If
the BESS size and thus the BESS optimal bids increase, this constraint could be strongly

violated.

For the benchmark algorithms and the control method RTO, the decisions regarding the
control of the BESS are independent from the BESS size. Thus we can easily estimate the
output of the simulation for different BESS sizes by using the same command as in the
original simulation, then ensuring that the constraints are respected to show the saturation
effects from the BESS.

In the end, we performed this analysis for strategies with control method RTO0 and
strategies with control method RT1 and no intra-day market participation, that is strategies
I1 to I3 and R1 to R3.

The sensitivity of the results to the BESS size is reported on Fig. 5.6 and 5.7. Because
relative revenue, imbalance and penalties increase almost linearly with the installed capacity,
we depict the revenue increase or the imbalance reduction relative to the installed BESS

capacity to better reflect the efficiency of the different approaches.
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For the strategies minimizing imbalance, there are not much differences in the sensitivity
of each strategy to the BESS size. All strategies perform better with smaller BESS sizes.
This seems reasonable, because with smaller sizes, the output of the BESS is limited and
thus there is less risk of overcompensating a forecast error, and thus create an error in the
other direction. For example, consider the case when the forecast production is 10 MWh,
and the day-ahead bid is 12 MWh. The command would be to output 2 MWh of the BESS.
If the BESS size is 10 MWh, this command can be performed. However with a smaller
BESS size (1 MWh), the BESS output would be limited to 1 MWh. If the actual realization
is higher than 10 MWh, the larger BESS output will overcompensate the error, creating
an imbalance in the other direction. On the other hand, the smaller BESS will still reduce
the imbalance. For small BESS sizes, an error on the exact amount of imbalance is not
necessarily harmful if the sign of the forecast error is correct, which gives another reason
why the MBE of the forecast model is its most important characteristic for the PV/BESS

control.

Still, larger BESS sizes correct more imbalances, even if each installed BESS MWh is
less efficient. An operator would have to set an optimal cost-efficiency point to correct the

most possible imbalances for the lowest possible installation costs.

For strategies maximizing the revenue, the behavior is very different when there is an
intra-day market participation (R3) or not (R1 and R2). Strategies R1 and R2 have a similar
behavior, although strategy R2 seems to better manage small BESS sizes, thanks to the MPC
controller that takes into account the SOC of the BESS when deriving the output, and thus
limits saturation effects. Strategy R3 performs much better than the two others for lower
BESS sizes. We think that since the intra-day market already compensates a significant
part of the forecast errors, the BESS size can be more devoted to generating revenue on the
day-ahead market. Then the same effect as for minimizing imbalances appears: for small
BESS sizes, the BESS outputs are smaller, thus limiting the risk of having significant losses

on a given BESS output.

Overall, it appears from the results that taking BESS life loss into account does not
generate a significant improvement in control strategies. Besides, taking the near future
into account with a MPC used in method RT2 when managing a BESS is only useful when
the ratio of BESS capacity compared to PV capacity is low (that is, < 25%). For higher

ratios, the saturation effects are less frequent and thus a simpler algorithm can be used.

Finally, it is clear that the market conditions of the test case are not favorable to
PV/BESS. Compared to the 200 €/kWh we used as the installation price of a BESS, gaining
at most 90,000 €over the course of the test period (4 months) for that 91 897 kW portfolio

134



CHAPTER 5. TRADING WITH A STORAGE SYSTEM

5000 1

N
a1
o
o

o

-2500 A

Relative revenue increase (Eur/BESS MWh)

R1

0.00 0.25 0.50 0.75 1.00
BESS size modification factor

Figure 5.7: Revenue increase per installed BESS capacity
leads to an extremely long return on investment in France.

5.2.7.2 Sensitivity to market conditions

The market conditions are of particular importance for analyzing the results, and so we also
performed a sensitivity analysis on the market prices. Namely, we compared the difference
in results when the day-ahead prices are higher than the actual prices used in the initial
simulation, and also when the magnitude between the day-ahead prices and imbalance prices
is higher than the actual ones.

We assumed that the controlling algorithms’ output was the same after modifying the
price signals. This assumption is true only for strategies using the control RT1, if we keep the
same relative magnitude between the day-ahead and imbalance prices, so that the perception

. . . o . . s — T
of the financial risk of being in imbalance, i.e. the ratio LA S

T — T4
using the control method RT2, the control algorithm depends on other quantities than this

, is the same. For strategies

ratio, and thus it is not possible to modify the price signals without modifying the control
of the BESS.

We tested the strategies on two variations of the price signals. The results are represented
on Fig. 5.8 and 5.9. The first variation we tested involved multiplying the day-ahead prices
by a given factor, maintaining the same difference between the day-ahead and imbalance
prices ("Spot only”). The second variation was to multiply the difference between the

imbalance prices and the day-ahead prices by a given factor, keeping the same day-ahead
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Figure 5.8: Sensitivity of the revenue to market conditions for strategy R1

signal ("Balancing only”). Finally, we also multiplied both signals (”Spot and balancing”);
the multiplication factors must remain the same so that the relative difference between
day-ahead and imbalance prices remains the same.

For both strategies, the revenue increase is directly proportional to the market prices.
Since it is also directly proportional to the BESS installation cost, the return on investment
time of a PV/BESS could be significantly reduced if both the BESS installation cost reduces
and the market prices increase. The results are much more sensitive to the spot price than
the imbalance price variations. This is another illustration of the fact that the benefits
from reducing the imbalances are low and uncertain, while the benefits from shifting the

production to times with higher spot prices are much more reliable.

5.3 Approach 2: direct bidding with neural networks

This approach consists again in dropping the intermediate models to take each of the con-
secutive decisions with a single ANN that consider all the inputs. However, the decisions
to take are more complex than in the first test case of chapter 4. Since we operate a BESS,
we must take into account its operational constraints. Since the state of the BESS depends
on the history of its usage, the ANN must consider this history in addition to its inputs. In

practice, there are two main consequences for the ANN design and training;:

e Since the behavior of intra-day markets and day-ahead markets with BESS is more
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Figure 5.9: Sensitivity of the revenue to market conditions for strategy R3

complex and more design variables are involved, the ANN must also have more com-

plexity, which means more parameters. Therefore, their training is more difficult.

e Since the ANN must consider the history of the BESS usage in addition to the inputs,
we use a specific design of ANNs called Recurrent Neural Network (RNN).

For the control of the PV/BESS with operational constraints, we must use RNNs. For
the intra-day control, the BESS is not involved, and we can use standard ANNs; however
the randomness of the intra-day market must be taken into account using the intra-day
market model. Therefore, using approach 2, the workflow simplifies as represented on Fig.
5.10.

5.3.1 Day-ahead bidding

For the day-ahead bidding, the operational constraints of the BESS prevent the use of a
standard ANN. These constraints are the ones already presented in 5.2.1.2 in equations (5.5)
to (5.7).

Although there are ways to directly constrain the output of a neural network, these
constraints are difficult to enforce, most notably because the constraints for time step ¢
require knowing the output for time step ¢ — 1. However, all the outputs must be calcu-
lated at the same time, which is the GCT of the day-ahead electricity market. Therefore,

we choose to train an unconstrained neural network, and to perform modifications of the
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Figure 5.10: Flowchart of Approach 2
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Figure 5.11: Schematic representations of a RNN

unconstrained output to enforce the constraints before computing the loss function. As long
as the transformations have a gradient, the backpropagation can still be used to update the
model parameters, and the transformations used to enforce the constraints can be seen as
the output layer of the model.

Still, the model must have the time series of bids for the whole next day, from the time
series of inputs. Although it would be possible to use a standard ANN that takes all features
for each time step of the following day and that generates the bids, it is preferable to use a
model architecture specifically designed for sequence-to-sequence forecasts. This naturally
suggests RNNs, that have been developed for sequence predictions.

RNNs are a class of neural networks that are able to sequentially process a sequence of
inputs. Basically, the input is combined with a hidden state. The resulting vector is fed to a
neural network that generates the next hidden state. This new state can be combined with
the next input to get the next state, until the whole input sequence is processed. RNNs can
be schematically represented as folded or unfolded, as in figure 5.11.

The rationale behind this architecture is that the output of the neural network is condi-
tional to the state, and thus to the previous inputs. This creates a form or memory, which
allows the network to remember previous information when processing the next state. In
the case of regression, the output of the RNN can simply be the hidden state of the RNN.
Sometimes, a companion ANN is used to decode the hidden state into a value as the output.
In our case, this representation seems useful, as the output is conditional to the state of
charge of the BESS, which could be contained in the hidden state, and to the prices and
weather data which could be contained in the inputs.

If standard RNNs are theoretically able to remember any event, they empirically have a
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memory up to a few time steps ago and thus have trouble learning ”long-term” dependencies
[162]. To overcome this, another variant of RNNs called Long Short Term Memory networks
(LSTM) was initially proposed in [163]. In such networks, the ANN that is used in standard
RNNs is replaced by a memory cell that facilitates the propagation of information along
time. Since they outperformed standard RNNs on a number of tasks (see [164], ,[165] or
[166]), we chose to implement a LSTM.

To facilitate the implementation of the constraints, we also propose to separate the
contracted energy as before with E. = E. py + E.prss. Therefore, we train the LSTM
network to provide an output of size n,,t, X 2 where n,,s, is the number of MTUs for the
following day. The two columns of the output are E. py and E. ggss.

In a similar manner to the ANN we trained on chapter 3, the features used by the LSTM

are the union of all the features used in the first approach. They include:

o Weather-related features: NWP forecasts of wind speed, temperature, solar irradiance,

cloud cover and precipitation at the surface, clear-sky profile

o Market-related features: TSO forecast of national demand, spot prices observed the

day before the current trading day, day of the week and hour of the day.

Then the constraints are manually enforced on the LSTM output. The absolute max-
imum energy that can be moved from the battery is defined by the third constraint on the
charging/discharging rate. Thus, this constrained is enforced first. To do so, a check is
passed on the second column of the output, E. prss. If any two consecutive time steps
i, 4 1 violate the third constraint, the amount of energy F. ppss,i+1 moved from the BESS
at time ¢ + 1 is capped so that the maximum charging or discharging rate of the BESS is
respected, while keeping the direction i.e. charging or discharging, of the BESS.

Then the second constraint is checked. A second check is passed on E. prss. If the
second constraint is violated for any time step, the energy moved from the BESS is again
capped so that the BESS is not charged from the grid. Finally, the last constraint is checked
in the same manner: if for any two consecutive time steps, the constraint is violated, the
energy moved from the BESS is capped so that the state of charge of the BESS remains
between 0 and 1.

Note that for each of these transformations, the direction of the BESS energy movement
is preserved, and the absolute value of E. prss can only be lowered. Therefore, enforcing a
constraint can not cancel the realization of a previously enforced constraint.

Finally, the total revenue generated from the transformed output is computed from

equation (5.1), and the parameters of the LSTM are updated using backpropagation.
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5.3.2 Intra-day bidding

For the intra-day bidding, there are no constraints on the possible offers, and the realiza-
tion of a transaction does not influence the possible offers for the following time steps, as
opposed to the control of the BESS. Thus, each MTU can be considered independently and
consecutively when participating in the intra-day market. There is no incentive to use a
sequence forecast as for the day-ahead planning, so we use a standard ANN to produce the
intra-day offers.

We use the same intra-day market model as in 5.2.2. However, since the ANN model
learns from the reward it gets with the intra-day market, there is no need to force the intra-
day offer price to w5 to simplify the derivation of the offer as in 5.2.2. We can simply use
the output 7;p, Erp of the ANN, and then use it to evaluate the additional revenue. Since
the evaluation is made a posteriori, we can use the real additional revenue by replacing the
forecast PDF of the PV power by the actual energy generated Epy. Finally, the loss we
use to train the ANN is adapted from equation (5.13), which is the expected revenue with

respect to the probability of acceptance of the offer, knowing the actual energy generation

Epv:

Lip(mip, Erp) = prp ((7B,ip — 71p)Erp + (Epv — Ec)(7B, 1D — TB)) (5.46)

Compared to the intra-day control method from approach 1, this bidding agent is able
to offer both a volume and an offer price to maximize its additional revenue.

The features used to provide the intra-day offers are the same as the ones used for the
day-ahead bidding. However, at this stage we are closer to real-time and so the features

used are updated. They include:

e Updates of the NWP forecasts based on the last available NWP run.

e Update of the TSO national demand forecast.

e Actual spot price, which is known at the time of participation on the intra-day market.
e Clear-sky profile.

e Last observed injection from the PV plant. Since the intra-day market closes 30

minutes before delivery, we use the 30-minute lagged production as feature.

We also use the result of the previous decision-making process, that is the bids on the

day-ahead market, as features.
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5.3.3 Real-time control

The real-time control of the BESS is very similar to the day-ahead bidding agent. The
control of the BESS must be done over several time steps, since the action for the next time
step can prevent the realization of the day-ahead planning. This motivates again the use
of a LSTM. The output is only the energy to charge or discharge from the BESS, and thus
the output is a R™ sequence, where m is the length of the LSTM sequence.

To train the model, we use the reward obtained from the action of the BESS. We can
use the actual energy generation Epy to compute this reward. Thus, the loss used to train
this second LSTM model is:

Listu(Err) =Y 7p.EssEppss + (Epy — Ec)(nB.BESs — 7B) (5.47)

m
Where 7 prss denotes the imbalance price considering the action of the BESS:
T+ if Erealized + EBESS > Ec .
TB,BESS = . (5.48)
7w if Ereatized + EBpss < Ec

Once again, the features used are the updates of the features used at the previous stage.
They include updates of the NWP weather forecasts and TSO demand forecasts, clear-sky
profile, last power measurement from the PV plant. The control of the BESS is made as
close to the real-time as possible. In our case, we have the data with a 5-minute resolution
and thus we use the 5-minute lagged production time series as a feature. We also use the
decisions that resulted from the previous decision-making processes, that are the bids on

the day-ahead market and the accepted offers on the intra-day markets.

5.3.4 Results

We performed the same simulation as with Approach 1. The control of the PV/BESS is
simulated on a period of four months from 01/01/2018 to 01/05/2018 for the aggregated
plant of 91 897 kWp. The size of the BESS used for the simulation is 91 897 kWh as for
approach 1.

5.3.4.1 Day-ahead trading

The first decision to make is the day-ahead trading. Example results of the trading realized
with Approach 2 are shown on figure 5.12.
With this approach, the shape of the bids is quite similar from one day to another. Since

there are no dedicated PV power forecasting model in the decision chain, the model can not
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Figure 5.12: Example trading days with Approach 2 in the day-ahead market
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Table 5.4: Results for the day-ahead bidding with Approach 2 and comparison with the

best results obtained from Approach 1

Approach 1 - strategy R3  Approach 2
Total imbalance (MWh) 4239 14 563
Total revenue (€) 1 085 190 1126 615

offer bids as precise as with the first approach. Thus, its strategy to maximize revenue is
to offer bids at times when spot prices are high. The times of the day when prices are high
are almost always the same for this market, that is in the morning and the evening at peak
demand for France, and so the bids are almost the same every day.

Results regarding revenue and imbalance when using only this LSTM without parti-
cipation in the intra-day market and real-time control are shown in table 5.4. The actual
realization of the BESS used to derive this revenue is the output given by the enforcement
of the constraints described in 5.3.1 applied on the BESS planning given by the LSTM at
the day-ahead trading stage. These results set the benchmark for the following decision-
making processes. Using approach 2, the revenue generated at the day-ahead bidding phase
is higher than with approach 1, and so its usage of market information seems more efficient

than approach 1.

5.3.4.2 Intra-day trading

The following decision is the intra-day bidding. We trained two models: one designed for
minimizing the imbalance and another one designed to maximize the revenue.
The description of the model maximizing the revenue is presented in 5.2.2.1. The one

minimizing the imbalance is similar. However, we made several changes:

e The price of the offer is not an output of the model, as this would encourage the
model to make extremely poor bids regarding the revenue. For example, if a positive
imbalance is expected, the model could sell excess energy for a negative price on the
intra-day market, which would reduce the imbalance but be extremely harmful for the
actual revenue. As we want the solution to be useful in an operation setting even if
it does not focus on revenue, we removed this degree of freedom from the model and

always set the intra-day offer price to 7.

o The loss function is not the actual revenue but the imbalance reduction AI'mb. Since

the probability of acceptance of the offer is a function of the offer price only, we did
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Table 5.5: Results for the participation in the intra-day market with approach 2

ANN reducing imbalance ANN maximizing revenue
Total imbalance (MWh) 13 188 14 563
Imbalance variation -10.0% 0%
Total revenue (€) 1 095 025 1126 615
Revenue variation -2.8% 0%

Table 5.6: Results for the participation in the intra-day market and real-time control with

approach 2

Imbalance Reduction Revenue Maximization

Total imbalance (MWh) 15 023 25 517
Variation compared to benchmark 3.3% 5%
Variation compared to benchmark and intra-day 14.3% 5%
Total revenue (€) 968 677 1 013 699
Variation compared to benchmark -14% -10%
not take it into account in the loss function:
AlImb = Ercatized + Erp — Ee (549)

Complete results for these two models are reported in table 5.5. Although Approach 2

allows for a significant imbalance reduction, it does not necessarily increases the revenue.

This comes from the high frequency of cases when 7 > 74 or m_ < 74, in which case any

imbalance is actually rewarded.

When trying to anticipate this effect and using market-related inputs to participate in

the intra-day market to maximize revenue, the model learns to not participate in the intra-

day market, as it found no way to reliably increase the revenue. This seems to suggest that

the inherent uncertainty of imbalance prices is too important to have reliable methods to

increase the revenue for this market.

5.3.4.3 Real-time control

Final results for the control of the BESS using the three consecutive decisions are reported

on table 5.6.
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As for the intra-day participation, we can see that the second approach is able to reduce
the imbalance but not improve the revenue. This is a major distinction with the first
approach which could improve both criteria. Besides, the imbalance reduction was higher
with approach 1 than with this approach. However, the initial revenue generated with the

benchmark was higher with the second approach, which shows that it still has value.

5.4 Conclusions

In this chapter we applied the methodology we proposed for PV power trading to the whole
value chain, including and intra-day market and a storage system. To do so, we introduced
new trading methods for intra-day markets, and we also performed some sensitivity analysis
on the storage size and the market prices. We did not compare the two training methods
M1 and M2 introduced in chapter 2, since the study from 4 suggested that training method
M2 was more efficient regarding revenue. Therefore, we only studied the difference between
the approaches based on individual forecasting models (approach 1) and ANNs (approach
2).

As in the first test case from chapter 4, the second approach used the market information
more efficiently and so generated more revenue than the first approach in the day-ahead
bidding phase, while creating more imbalances. However, for the intra-day participation and
BESS control, there is almost no new market information that could help this model, and the
improvement must be based solely on the update of the PV power forecasts, which improves
a lot close to real-time. Thus, the first approach that uses a PV power forecasting model
significantly improved the revenue in the operation phase with intra-day market and storage
control, while the second approach that relies primarily on market trends and systematic
tendencies could not improve the revenue during that phase. This also explains why the
first approach, which uses much more accurate PV power forecasts, performed better in
both imbalance and revenue on the intra-day market and real-time control.

However, the second approach performed much better than the first one in the bid-
ding phase, and thus generated more revenue than the first approach even considering the

additional revenue obtained by the first approach during the operation phase.
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Chapter summary in French

Description du cas d’étude

Dans ce chapitre, nous étudions la chaine de valorisation compléte de I’énergie PV. Si nous
nous plagons toujours dans le cadre d’un marché day-ahead avec des prix de reglement des
écarts en ”"dual-pricing”, nous considérons également la possibilité de participer a un marché
intra-day, ainsi le couplage de la centrale PV avec une batterie.

Le marché intra-day permet d’acheter ou de vendre de I’énergie jusqu’a 30 minutes avant
la livraison. Ceci permet de réduire le volume d’écart et donc les pénalités. L’augmentation
du revenu est alors égale a la réduction du volume d’écart multipliée par la différence
entre le prix spot et le prix de la transaction intra-day. Cependant, les offres ne sont
pas systématiquement acceptées sur le marché intra-day, puisqu’elles doivent trouver une
contre-partie compatible en terme de prix.

La batterie permet deux fagons d’améliorer le revenu. La premiere est de déplacer la
production des instants ou le prix spot est faible aux instants ou le prix spot est élevé, ce
qui permet d’améliorer le revenu du volume d’énergie déplacée multipliée par la différence
de prix spot entre ces deux instants. Ceci s’effectue au moment de soumettre les offres
de vente a marché de day-ahead. La seconde est d’utiliser la batterie en temps réel pour
réduire le volume d’écart. L’augmentation du revenu est alors égale a la réduction de 1'écart
multipliée par la différence entre le prix spot et le prix de réglement des écarts.

De fagon génerale, en notant Epy la production PV, Epggg I'énergie chargée ou déchar-
gée de la batterie, Ejp 1’énergie vendue ou achetée sur le marché intra-day, E., le revenu

s’écrit :

R =ny(Epv + Eppss) — (Epv + Egpss + Eip — Ec)(7s — ) (5.50)
— C(EBEss)
Ou C(Fpgss) est un terme qui traduit le cotit 1ié & la perte de durée de vie de la batterie

causée par son utilisation.

Il y a donc trois processus de prise de décision successifs :

e En J-1, déterminer la quantité d’énergie E. a vendre sur le marché day-ahead en

prenant en compte la capacité de la batterie a déplacer la production.

e A T-30 minutes, déterminer la quantité d’énergic Ejp a acheter ou vendre sur le

marché intra-day en prenant en compte F.
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e Au plus pres possible du temps réel i.e. T-5 minutes avec nos données, déterminer
la quantité d’énergie Eppss a charger ou décharger de la batterie connaissant F. et
E ID-

Nous reprenons les solutions proposées dans la these avec les approches Al et A2 qui
utilisent respectivement la chaine classique de modeles de prévision individuels, ou un réseau
de neurones artificiel. Cependant, nous ne conservons que la méthode d’entrainement M2,
car elle a montré avoir de meilleurs performances en terme de revenu dans le chapitre 4. Ce
chapitre permet donc de comparer les approches Al et A2, ainsi que d’illustrer la valeur du
modele AnEn développé dans la these, puisque c’est cet unique modele qui permet d’obtenir
les prévisions PV a la fois pour les marchés day-ahead, intra-day et le controle de la batterie,

sans nécessité d’entralnement.

Approche 1

Pour chaque prise de décision, il est nécessaire d’avoir une prévision des prix et de la
production PV. Les mémes modeles que ceux du premier cas d’étude sont utilisés ici. Notons
cependant que pour la participation au marché intra-day et 1'utilisation de la batterie, les
prix spot sont déja connus puisqu’ils sont communiqués quelques heures seulement apres la
cloture du marché en J-1.

Pour chacune des options de valorisation (day-ahead, intra-day et controle de la batterie),
des algorithmes de controle spécifiques doivent étre développés.

Pour la participation au marché day-ahead, nous comparons deux méthodes. La premiere,
notée DAO est une méthode benchmark dans laquelle la batterie n’est pas utilisée, et les
offres sont calculées de la méme facon que dans le premier cas d’étude. La deuxieme consiste
a réaliser une optimisation stochastique du revenu en générant des scénarios de production
tenant en compte de ’auto-corrélation de la production PV a partir des prévisions probabil-
istes. Cette optimisation est également soumise aux contraintes opérationelles de la batterie
: sa charge ne peut pas dépasser son état de charge maximal ou étre inférieure a zéro, et elle
ne peut pas étre chargée d’'un volume d’énergie inférieur a la production PV. Nous rajoutons
également une contrainte sur la puissance maximale de charge ou décharge de la batterie
pour qu’elle soit plus représentative des solutions existantes dans le commerce.

Pour la stratégie de participation au marché d’intra-day, il faut déterminer l'offre op-
timale & soumettre. Une offre consiste en un couple (Ejp,m;p) comprenant le volume et
le prix de l'offre. Nous introduisons une modélisation probabiliste de ’acceptation ou non
de l'offre sur le marché intra-day. Nous proposons de la modéliser comme une épreuve de

Bernoulli dont la probabilité de succes dépend du prix d’offre. Plus le prix d’une offre de
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vente (resp. d’achat) est bas (resp. élevé), plus I'offre a de chances d’étre acceptée. A partir

de ce modele, nous avons pu établir que tout point critique (Ej, 7)) devait vérifier :

Ejp=E.— Fy (—: :7;) (5.51)

Cependant ce n’est pas nécessairement un maximum local. En posant m;p = m,, toute
transaction acceptée est bénefique pour le revenu, et on peut alors montrer que le point
critique est un maximum local. La stratégie de participation au marché intra-day est donc

de soumettre ce point comme offre, et donc :

* * - g — T
(ETpsmrp) = <Ec — Fpy <—+> 777Ts) (5.52)

T — Ty
Finalement, pour la méthode de controle en temps réel, nous proposons deux méthodes.

La premiere, la méthode RT'1, est obtenue de fagon similaire a la stratégie de participation
au marché intra-day. En négligeant le cotit d’usage de la batterie, et en n’optimisant que
pour le prochain pas de temps, nous pouvons montrer que le volume d’énergie a charger ou

décharger de la batterie qui minimise les pénalités est :

* _ 1
Egpss = Be = Fpy | ———5 (5.53)
14—
Mg — T4

La seconde méthode, la méthode RT2, est similaire a la méthode de participation au
marché day-ahead. A chaque pas de temps, la fonction de revenu est optimisée de fagon
stochastique a partir de scénarios de production PV et de prévisions déterministes des prix
de réglement des écarts, sous les contraintes opérationelles de la batterie. A la différence
de la premiere méthode, le revenu est optimisé sur le futur proche i.e. jusqu’a la fin de la
journée en cours, et pas uniquement pour le prochain pas de temps. Ceci est trés utile pour
le cas fréquent ou la batterie doit se décharger en fin de journée, quand le prix est elevé.
Sans prendre en compte le futur proche, le volume optimal calculé par la premiére méthode
pourrait vider la batterie de fagon prématurée pour compenser des erreurs de prévision, ce
qui causerait de grandes pénalités en fin de journée. Cette méthodologie est appelée Model
Predictive Control (MPC) dans la littérature.

Resultats de Papproche 1

La simulation de la participation a cette structure de marché est réalisée pour une centrale
PV virtuelle constituée de 'aggrégation des 12 centrales du premier cas d’étude, sur une

période couvrant Janvier a Mai 2018 sur le marché EPEX SPOT en France. Une différence
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importante par rapport au premier cas d’étude est que les données étant plus récentes, les
regles de calcul du prix des écarts ont changé et sont plus récentes. En particulier, les
pénalités ne sont plus nécessairement négatives, ce qui signifie que le producteur peut étre
rémunéré dans certains cas pour son écart, s’il contribue a la réduction de I’écart au niveau
national. La conséquence principale est que I'amélioration de revenu par la réduction des
écarts devient difficile, car dans de nombreux cas, réduire un écart revient effectivement a
diminuer son revenu. Ces nouvelles regles sont cohérentes avec les directives européennes
qui préconisent une uniformisation des regles de calcul des prix des écarts vers une regle
“single pricing” qui permettent ces pénalités positives [167].

Cing stratégies sont comparées : la stratégie de benchmark RO qui correspond a ’absence
de batterie, puis les quatre stratégies R1 a R4 qui correspondent aux cas avec ou sans marché
intra-day, et avec la méthode de contrdle RT1 ou RT2. Nous les comparons également aux
stratégies 10 a 14 qui utilisent exactement les mémes méthodes mais avec pour objectif de
minimiser ’écart au lieu de maximiser le revenu.

Avec les stratégies 10 A 14, la réduction de I’écart est significative, jusqu’a 72% dans le
meilleur des cas. Cependant, cela ne se traduit que par une faible augmentation du revenu,
puisque certains écarts étaient rémunérés. A l'inverse, les méthodes RO a R4 générent un
écart plus élevé, mais également une augmentation de revenu significative. La plupart du
revenu semble étre géneré par la participation de la batterie en day-ahead, et non pas par
la compensation des écarts, ce qui favorise les méthodes R4 et R4. La méthode R4 est celle
qui génere le plus de revenu, cependant il nous semble que la méthode R4 est plus fiable
puisqu’elle préserve la durée de vie de la batterie, bien que le coiit de vieillissement de la
batterie soit malgré tout assez faible pour toutes les stratégies. FEn outre, la méthode R4
utilise un algorithme glouton (”greedy algorithm”) qui I’expose & des risques plus importants.

Finalement, il faut remarquer que si les augmentations de revenu sont significatives, elles
ne se comparent pas au coiit d’investissement de la batterie. Les conditions sont défavorables
au couplage PV /batterie sur le marché day-ahead, avec un temps de retour extrémement
long. Les marchés de services systemes pourraient cependant offrir des opportunités de

revenu bien plus intéressantes.

Approche 2

Avec Papproche 2, nous entrainons un modéle ANN pour chaque prise de décision. Cepend-
ant, deux problémes rendent complexes l'utilisation de réseaux standards (“feedforward
neural networks”).

Le premier probleme est que la solution doit répondre aux contraintes opérationnelles
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de la batterie. En tout état de cause, la sortie d’'un modele ANN n’est pas contrainte. Nous
proposons donc d’intégrer dans la fonction d’évaluation de la sortie du réseau une premiere
étape préliminaire qui modifie cette sortie de fagon a ce que les contraintes opérationelles
soient respectées.

Le second probleme est que la décision a prendre dépend grandement de la décision qui
a été prise plus tot, puisqu’il est nécessaire d’avoir une idée de I’état de charge de la batterie
pour savoir combien d’énergie il est possible de charger ou décharger. Nous proposons donc
d’utiliser un réseau de type Recurrent Neural Network (RNN) qui est spécifiquement fait
pour la prévision de séquence, en utilisant une forme de mémoire qui permet au réseau
de conditionner sa sortie par I'historique de ce qu’il s’est passé avant. Plus précisément,
nous utilisons un modele de type Long Short Term Memory (LSTM) qui a prouvé dans la
littérature son efficacité.

Ainsi nous utilisons un réseau LSTM pour l'offre sur le marché day-ahead. Pour la
participationi au marché intra-day, il n’y a pas de contraintes et donc nous utilisons un
ANN standard. Par rapport a la premiere méthode, nous pouvons laisser le réseau libre
de choisir le prix d’offre wyp puisqu’il est censé apprendre par la fonction d’évaluation le
fonctionnement du marché, a savoir que les offres a prix non-compétitifs sont refusées et
donc de génerent pas d’amélioration du revenu. Finalement, nous utilisons a nouveau un
réseau LSTM pour le contrdle en temps réel, puisque le probleme est trés similaire a la

participation au marché intra-day.

Résultats de approche 2

Les résultats sont tres différents de ceux obtenus avec 'approche 1. Comme dans le cas
d’étude précédent, le modele exploite bien plus les tendances du marché que les données
météorologiques, si bien que la sortie du réseau ne semble que tres peu conditionnée par les
prévisions météorologiques. Au contraire, le réseau s’appuie énormément sur le comporte-
ment systématique du marché, avec des offres tres conservatrices le matin pour se protéger
du prix de réglement des écarts négatifs plus élevé que le positif, puis un stockage de I’énergie
toute 'apres-midi dans la batterie avant de décharger le soir lorsque le prix est élevé.
Cette stratégie fonctionne puisque le revenu géneré de cette facon est supérieur a ce-
lui obtenu par I'approche 1, bien qu’il reste trop faible pour envisager l'installation d’un
couplage PV/stockage. Il s’agit en fait d’un cas ou l'incertitude sur les prix, notamment
sur le fait que les écarts contributeurs a la réduction de I’écart national soient rémunerés ou
non, est telle qu’il n’est pas judicieux d’essayer a tout prix de réduire son volume d’écarts.

Au contraire, il vaut mieux exploiter les tendances moins incertaines du marché, c’est-a-dire
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le fait que les prix soient plus élevés a la pointe de la demande autour de 19h.

Malgré cela, les décisions suivantes sur le marché intra-day et le contrdle en temps réel
ne parviennent ni a réduire ’écart, ni a augmenter encore le revenu. Il semble logique que le
réseau ne parvienne pas a réduire les écarts puisqu’il ne posséde pas de moyen de prévision
de la production a proprement parler, mais il est surprenant qu’il ne parvienne pas non plus
a augmenter le revenu. Notre hypothese est que toutes les informations du marché a faible
incertitude sont déja exploitées au moment de soumettre les offres en day-ahead, et que
les informations apportées en se rapprochant du temps réel de réduisent pas suffisamment
I'incertitude sur le prix de réglement des écarts pour permettre au réseau d’augmenter encore

le revenu.
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6.1 Summary and main findings

In chapter 1, we introduced the context and the objectives of this study. The worldwide
energy production, and especially electricity, is a large contributor to many global pollu-
tion issues such as global warming, air and water pollution or loss of the local biodiversity.
Although they suffer from other problems, such as aesthetic impact or land occupation, re-
newable energies are usually considered more environmentally friendly than other electricity
sources. Especially, they produce much less COg emissions than burning fossil fuels, and
generate almost no waste compared to thermal and nuclear power plants. As such, their
development is much promoted since the 2000s.

However, the integration of renewable energies in the power grid causes many issues,
as their production is weather dependent and thus both uncertain and not controllable.
Traditionally, the cost caused by these integration issues was supported by a surcharge on
electricity consumers such as the CSPE in France [168] or the EEG surcharge in Germany
[169]. In the recent years, the installation costs of wind and especially photovoltaic power
decreased greatly, and now new support mechanisms involve transferring a part of the
renewable integration costs on renewable power plant operators, by making them financially
responsible for their production forecast errors.

Since it very difficult to know what kind of support mechanisms will be available in the

coming years, if any, the objective of this thesis is to maximize the revenue generated from
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PV power plants in the absence of any supporting mechanism. To do so, we focused on
addressing the systematic issues we found in the PV power trading value chain, instead of
incrementally improving individual parts of the value chain. We identified the four following

issues:

e The need for a seamless PV power forecasting model.

e The need for a PV power forecasting model that combines heterogenous sources of

data.
e The complexity and the number of forecasting models involved in the value chain.

e The absence of link between the individual forecast performance of the models and

the value they generate.

In chapter 2, we introduced the different options available for PV producers to valorize
their production. Currently, the most simple way to generate revenue from PV power
production is to participate in electricity markets. However, some new ways to valorize the
power may appear e.g. ancillary services market, flexibility remuneration or tenders with
specific remuneration rules. Thus, we proposed generic notations that allows for modeling
any valorization process assuming that their remuneration rules are clearly defined. In that
way, it is easy to participate in any subset of the existing valorization options, or to add
new options to the existing ones. Using this generic notation, we described the solutions

that we propose to improve PV power trading:

o First we proposed to train individual models together using the value of the decision
they contribute to as the objective function. This allows linking the training of the
model to the PV power value, and so addresses the fourth issue identified. The stand-
ard training method where each model is trained to maximize its own performance is

called Method 1, while the simultaneous training of the models for value is Method 2.

e Then we proposed to implement an alternative approach to obtain the decisions for
each market. The standard approach called Approach 1 is to use a chain of individual
forecasting models. We propose to use a single ANN to obtain the decisons for each
decision-making process, which is Approach 2. In that case, the decision-making is
based only on existing data. ANNs are convenient because they can learn to minimize
any objective function, and so we can directly use the revenue generated from a given
valorization option as an objective to train the ANN. To our knowledge, this approach

has never been proposed before. This addresses the third identified issue by greatly
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simplifying the model chain. Generally, this alternative approach had similar or better

results that the standard one, but showed a very different behavior.

In chapter 3, we presented the forecasting model that we developed to address the first
and second issues identified above. To do so, we improved an AnEn model by reinforcing
it with satellite data and in situ measurements, and also by implementing an automatic
feature-weighting procedure to make the model seamless. The model showed good per-
formances compared to other state-of-the-art models, especially for short-term forecasts i.e.
forecasts with an horizon lower than five minutes. This work was published in article [C] in
section 1.7.

In chapter 4, we used these two approaches and training methods to simulate the par-
ticipation of twelve PV power plants in the French electricity market EPEX SPOT. To
perform Approach 1, we used the AnEn model introduced in 3. We also performed ap-
proach 2 using a simple ANN as the trading agent, without any PV power forecasting
model. We found that this approach focused a lot more on market and price signals, result-
ing in systematically conservative bids, because overproducing is penalized less heavily than
underproducing. Results regarding revenue and penalties were in the same range as with
approach 1, although they were obtained in a very different manner: the total imbalance
was much higher with approach 2 than with approach 1, but the average financial penalty
per MWh of imbalance was lower. This ultimately resulted in roughly similar penalties
and revenue. The two training methods generated a similar effect, but in a less significant
manner. This comparison of the two Approaches and training methods was published in
article [A] in section 1.7.

In chapter 5, we enhanced the previous case study by adding a BESS coupled with the
PV plant to increase revenue, along with an intra-day market. The BESS and intra-day
market have similar roles, as they both allow modifying the production after the bids have

been submitted. But they have structural differences:

o Intra-day markets close 30 minutes before delivery, while BESS usage goes up to real-

time.

o Intra-day offers are subject to acceptation depending on the price of the offer while
BESS usage is not. We modeled the probability of acceptation of the intra-day offers
depending on their price and the imbalance prices to derive bidding rules on the intra-

day market.
e BESS usage is limited by the operational constraints of the BESS.
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Again, we used the notations from chapter 2 to perform Approaches 1 and 2. With
Approach 1 we proposed increasingly complex control strategies for the BESS, taking into
account BESS ageing and the near future. Sensitivity analyses revealed that more complex
strategies had low added value compared to simpler ones, unless the BESS size was very
small compared to the PV plant size. In such case, taking the near future into account
would greatly reduce the occurence of saturation effects with the BESS. With both control
strategies, participating in the intra-day market greatly reduced the BESS usage, allowing
to have similar performances with lower BESS sizes compared to the case wihout intra-
day. However, the increase in revenue was too low to make the BESS a viable financial
investment, because both the intra-day variations of the spot price and the penalizations for
forecast errors were too small. The control of the PV/BESS system with the quantification
of the revenue improvement was published in article [B] in section 1.7 while the sensitivity
of the results to the BESS size was presented at the EU PVSEC 2019 conference.

Approach 2 performed in a similar manner as in chapter 2. It used a lot of market
information, resulting in bids that exploited systematic trends of the electricity market
rather than weather data, which in the end resulted in bids that are very similar from
one day to another. Still, using the day-ahead BESS command as the real-time control
of the BESS without update resulted in an improved revenue compared to Approach 1,
despite having a greater imbalance. Benefits from shifting productions to times when spot
prices are higher are more reliable than reducing imbalance, because imbalance prices are
very uncertain, and sometimes imbalances are remunerated if they help the system. On
the other hand, the spot price is almost always higher in the evening and so shifting the
production to the evening with the BESS almost always increases revenue. This is why

focusing on market tendencies is more reliable than focusing on PV production.

However, Approach 2 was much less efficient for the intra-day market participation
and BESS real-time control. For the intra-day market, it could reduce imbalance but not
improve revenue, and for the real-time control it could not reduce imbalance nor improve
revenue compared to participating only in the day-ahead market, using the day-ahead BESS
command as the real-time control. When going closer to real-time, a lot of new informa-
tion regarding PV power production appears, while market information does not change
much. Thus, Approach 2, that mostly uses market information, had trouble improving the

performance when going closer to real-time.
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6.2 Conclusion and perspectives

In the introduction, we stated that the objective of the thesis was to maximize the value
obtained from PV power generation in electricity markets under price and production un-
certainty. We proposed to tackle the systematic issues of the PV power value chain instead
of improving individual parts of the chain. Generic notations were introduced to model
any trading option along with two concurrent approaches for taking decisions in the value
chain: Approach 1 that takes decisions based on expert forecasting models adapted to the
objective, and Approach 2 based on ANNSs learning to maximize the objective from historical
data. Two training methods were also introduced. Method 1 trains the individual models
of the value chain to maximize their forecasting performance, while Method 2 trains them
to maximize the revenue obtained from the related trading option.

We found that the most efficient option to valorize the PV production is to participate
in a day-ahead and an intra-day market without a storage system. The increased revenue
generated over the lifetime of the BESS would not compensate the initial investment required
for installing it.

A general finding is that Approach 2 made more use of market information, while Ap-
proach 1 made more use of weather information. When a BESS was available, Approach
2 performed better because it was better at shifting the production when the spot price
was high. Without this option, both approaches had similar results. Another advantage of
Approach 2 is that it is simpler to maintain, as there is only one model involved for each
decision. However, there are other elements to consider when choosing which approach to
prefer.

For example, using Approach 2 generates more overall imbalance. As a result, from the
TSO point of view, it is less righteous than Approach 1. It is an open question whether it
is allowed to deliberately generate more imbalance by being more conservative in order to
hedge against imbalance prices or not. Besides, in some tenders, participants have to give
to the TSO a forecast of their production. In that case, a PV power forecasting model is
required no matter what, which cancels the argument that Approach 2 is simpler to maintain
thanks to having less models.

However, there is a last argument in favor of Approach 2. When participating in elec-
tricity markets, one cause of having large imbalance prices is that a lot of participants base
their bids on the same weather forecasts, and so when the forecast is wrong, all the parti-
cipants are either short or long at the same time, which causes very high costs for balancing
the grid. Having a unique forecasting method or using different sources of information

can hedge this risk, effectively giving a competitive advantage even if the overall forecast

157



TOWARDS SEAMLESS VALUE-ORIENTED FORECASTING AND DATA-DRIVEN
MARKET VALORIZATION OF PHOTOVOLTAIC PRODUCTION

precision is lower [170]. With Approach 2, decisions are taken mostly based on market

information, and so using Approach 2 could hedge the risk of very high imbalances.
This thesis opens up several research directions. We identified some that look promising.

The first natural research direction that we could think of is to further improve the range
of forecast horizons of the AnEn model by using more data. As stated in the thesis, the
version we developed did not use data from all-sky imagers, or spatial data from neighboring
PV power plants. Such data could improve again the performance of short-term forecasts
in their respective forecast horizons. To improve the performance in the morning, infra-
red satellite images could be used to use information on the cloud cover that standard
visible satellite images could not see. Also, the AnEn model could be used not only to
combine features but directly forecasts from other models, either developed or bought from

an external entity.

Another possibility would be to use more adapted ANN structures in order to improve
the Policy Function Approximation performed in Approach 2. One good candidate is the RL
paradigm that was already used in recent work to maximize the cumulated profit obtained
from storage systems performing energy arbitrage, and so would shift the subject of this
thesis towards prescriptive analytics. Also, recent advances in deep learning highlighted
Generative Adversarial Networks (GANs) [171], which could be used to implement more
sophisticated ANN models able to process the market and weather information in a more
efficient manner. Although the ANN models used in this thesis performed well in terms
of revenue, they focused much more on market information than on weather information.
Using more sophisticated ANN structures could then improve the results in that regard.
More generally, considering more advanced decision-making methods could significantly
improve the results obtained in this thesis. For example, using RO techniques to control the
BESS could help achieving optimal solutions instead of approximately solving the problem
with an MPC approach. At the day-ahead bidding phase, we only considered stochastic
programming, although there are a wealth of stochastic optimization methods that could

perform the same task [43].

Extending the considered test cases is also a very direct research direction. For now,
we restricted ourselves to spot and intra-day electricity markets. However, the participa-
tion of variable energies in ancillary services markets is now a significant field of research,
especially in combination with storage systems. Thus, future works should consider the
joint participation in both electricity and ancillary services markets. Another interest of
this is that in our case studies, all the markets considered were sequential. With ancillary

services markets, the decision should be taken at the same time for both markets, and so the
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problem would be more complex. Power derivatives are also a useful tool to hedge against
the weather or the electricity price risk that could be included in our approach.

Another limitation of the work is that we focused on existing solutions to sell the PV
power production. However, it would be possible to model possible new options in pro-
spective works, such as peer-to-peer energy trading with the blockchain technology [172], or
alternative remuneration rules in electricity and ancillary services markets. This could serve
as a source of information for PV plants operators willing to estimate their revenue depend-
ing on market conditions. Alternatively, by simulating the simultaneous participation of
different actors, this could help identify possibly efficient market structures and imbalance

settlement rules.
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Résumé et observations principales

Dans le chapitre 1, nous avons présenté le contexte et I'objectif de cette étude. La produc-
tion mondiale d’énergie, et en particulier d’électricité, contribue largement a de nombreux
problemes environnementaux & échemlle mondiale tels que le réchauffement climatique, la
pollution de 'air et de ’eau ou la perte de la biodiversité locale. Bien qu’elles souffrent
d’autres problemes, tels que 'impact esthétique ou l'occupation des sols, les énergies ren-
ouvelables sont généralement considérées comme plus respectueuses de Ienvironnement que
les autres sources d’électricité. En particulier, elles émettent beaucoup moins de CO2 que
les combustibles fossiles et ne générent presque pas de déchets par rapport aux centrales
thermiques et a I’énergie nucléaire. Ainsi, leur développement est trés favorisé depuis les
années 2000.

Cependant, l'intégration des énergies renouvelables dans le réseau électrique pose de
nombreux problemes, car leur production dépend des conditions météorologiques et est
donc a la fois accompagnée d’incertitude et non-controlable. Historiquement, le cofit causé
par ces problemes d’intégration était supporté par des taxes supplémentaires qui étaient
redistribuées aux TSOs. Ces dernieres années, les colits d’installation des filieres éoliennes
et photovoltaiques ont fortement diminué, de sorte que les nouveaux mécanismes de soutien
impliquent le report d'une partie des cotits d’intégration des énergies renouvelables aux
exploitants de centrales électriques renouvelables, en les rendant financierement responsables
du colit causé par leurs erreurs de prévision de production.

Comme il est tres difficile de savoir quels types de mécanismes de soutien seront dispon-
ibles dans les années a venir, I'objectif de cette these est de maximiser les revenus générés
par les centrales électriques sur le marché de 1’électricité en ’absence de tout mécanisme de
soutien, sous incertitude des prix et de la production. Pour ce faire, nous nous sommes con-
centrés sur les problemes structurels que nous avons trouvés dans la chaine de valorisation
de I’énergie PV, au lieu d’améliorer individuellement les différents maillons de la chaine de

valorisation. Nous avons identifié les quatre problemes suivants :

e Le besoin d'un modele de prévision de puissance adapté aux besoins des marchés de

P’électricité.

e Le besoin d’'un modele de prévision de puissance PV a court terme qui combine des

sources de données hétérogenes.

¢ L’absence de lien entre la performance de prévision des modeles individuels et la valeur

qu’ils génerent sur les marchés.
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e La complexité et le nombre de modeles de prévision impliqués dans la chaine de valeur.

Dans le chapitre 2, nous avons présenté les différentes options disponibles pour les pro-
ducteurs de PV pour valoriser leur production. Actuellement, le moyen le plus simple de
générer des revenus a partir de la production d’électricité a court terme est de participer aux
marchés de I'électricité. Cependant, de nouvelles fagcons de valoriser la production peuvent
apparaitre, par exemple le marché des services systéemes ou des appels d’offres avec des
régles de rémunération spécifiques. Ainsi, nous avons proposé des notations génériques qui
permettent de modéliser tout processus de valorisation en supposant que leurs regles de
rémunération soient clairement définies. De cette fagon, il est facile de participer a n’im-
porte quel sous-ensemble des options de valorisation existantes ou d’ajouter de nouvelles
options a celles qui existent déja. En utilisant cette notation générique, nous avons décrit

les solutions que nous proposons pour améliorer la chaine de valorisation de I’énergie PV :

o Entrainer les modeles individuels simultanément en utilisant la valeur de la décision a
laquelle ils contribuent comme fonction objectif. Cela permet de relier I'entrainement
des modele au revenu , et donc d’aborder le troisieme probleme identifié. La méthode
d’entrainement standard ou chaque modele est formé pour maximiser sa propre per-
formance est appelée Méthode 1, tandis que ’entrainement simultané des modeles est
la Méthode 2.

e Une approche alternative pour obtenir les décisions pour chaque marché. L’approche
standard appelée Approche 1 consiste a utiliser une chaine de modeles de prévision
individuels. Nous proposons I’Approche 2 qui consiste a utiliser un seul ANN pour
obtenir les vecteurs de décisions de chaque option de valorisation. Dans ce cas, la
prise de décision s’appuie uniquement sur les données existantes. Les ANNs peuvent
apprendre & minimiser n’importe quelle fonction objectif, et ainsi nous pouvons utiliser
directement les revenus générés par une option de valorisation donnée comme objectif.
A notre connaissance, cette approche n’a jamais été proposée auparavant, et répond au

quatrieme probleme identifié en simplifiant considérablement la chaine de valorisation.

Dans le chapitre 3, nous avons présenté le modele de prévision que nous avons élaboré
pour traiter les premiers et deuxiemes problemes identifiés ci-dessus. Pour ce faire, nous
avons amélioré un modele AnEn en le renforcant avec des données satellite et des mesures
locales, ainsi qu’en mettant en ceuvre une procédure de pondération automatique des vari-
able d’entrée pour rendre le modele capable de fournir des prévisions pour n’importe quel

horizon. Le modele a montré de bonnes performances par rapport a 1’état de 'art, en
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particulier pour les prévisions a court terme, c’est-a-dire les prévisions dont 1’horizon est
inférieur a cing minutes. Ce travail a été publié dans un article de journal [27].

Dans le chapitre 4, nous avons utilisé les approches et les méthodes 1 et 2 pour simuler
la participation de douze centrales électriques PV au marché francais de I’électricité EPEX
SPOT. Pour réaliser 'approche 1, nous avons utilisé le modele de prévision AnEn développé
dans le chapitre 3. Nous avons également réalisé I’approche 2 en utilisant un ANN pour
obtenir les offres de vente, sans modele de prévision de puissance PV intermédiaire. Nous
avons constaté que cette approche exploitait plus les informations liées au marché, ce qui se
traduit par des offres généralement conservatrices, car la surproduction est moins pénalisée
que la sous-production. Les résultats sont similaires qu’avec 'approche 1, mais ils sont
obtenus d’une maniere tres différente : le montant total des écarts est bien plus élevé avec
I’approche 2, mais la pénalité financiere moyenne par volume d’écarts est moindre. Il en
résulte des pénalités et un revenu total a peu pres semblable. Les méthodes d’entrainement
1 et 2 ont eu un effet similaire, mais de maniére moins importante. Cette comparaison des
deux approches et méthodes de formation a été publiée dans [28].

Dans le chapitre 5, nous avons étendu le cas d’étude précédent en ajoutant un BESS
couplé a la centrale PV pour augmenter les revenus, ainsi qu’un marché intra-day. Le BESS
et le marché intra-day ont des rdles similaires, car ils permettent tous deux de modifier la

production apres que les offres ont été soumises, mais ils ont des différences structurelles :

e Les marchés intra-day ferment 30 minutes avant la livraison, tandis que 1'utilisation

d’un BESS va jusqu’au temps réel.

o Les offres intra-journalieres sont sujettes a acceptation en fonction du prix de 1’of-
fre. Nous avons modélisé la probabilité d’acceptation des offres intrajournalieres en

fonction de leur prix et des prix de reglement des écarts pour traiter cet aspect.

o L’utilisation des BESS est limité par des contraintes opérationnelles.

Nous avons utilisé les notations présentées dans le chapitre 2 pour réaliser les approches
1 et 2. Avec I'approche 1, nous avons proposé différents stratégies de controle graduelle-
ment plus complexes pour le BESS, en tenant compte du vieillissement du BESS et du futur
proche. Des analyses de sensibilité ont révélé que les stratégies plus complexes avaient une
faible valeur ajoutée par rapport aux stratégies plus simples, & moins que la taille des BESS
soit tres petite par rapport a celle de I'installation PV. Dans un tel cas, la prise en compte
du futur proche dans le controle du BESS réduit considérablement ’apparition d’effets de

saturation. Pour toutes les stratégies de controle, la participation au marché intra-day
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réduit considérablement l'utilisation du BESS, ce qui permet d’obtenir des performances
similaires a celles des cas sans marché intrajournalier avec des tailles de BESS plus faibles.
Toutefois, 'augmentation du revenu reste trop faible pour faire du BESS un investissement
financierement viable, car les variations intrajournalieres du prix de ’électricité et les pén-
alités pour les erreurs de prévision sont trop faibles. Le contréle du systeme PV /BESS a été
publié dans [173] tandis que la sensibilité des résultats a la taille du BESS a été présentée
a la conférence EU PVSEC 2019.

L’approche 2 s’est comportée de la méme maniere qu’au chapitre 2. Elle a plus utilisé les
informations sur le marché de 1’électricité, ce qui a donné lieu a des offres qui exploitent les
tendances systématiques du marché de 1’électricité plutot que les données météorologiques.
Cela aboutit & des offres trés similaires d’un jour a 'autre (voir figure 5.12). Néanmoins, en
utilisant la commande day-ahead du BESS comme controle en temps réel du BESS sans mise
a jour, le revenu obtenu est supérieur a celui de ’approche 1, malgré un plus grand écart.
Le profit obtenu en déplacant la productions vers des instants ot le prix de 1’électricité est
plus élevé est plus fiable que celui obtenu en réduisant 1’écart, car les prix de reglement des
écarts sont tres variables et imprévisibles, et parfois les écarts sont mémes rémunérés s’ils
aident a réduire le désequilibre au niveau national. D’autre part, le prix de 1’électricité est
presque toujours plus élevé le soir et donc le fait de déplacer la production vers le soir avec
le BESS augmente presque toujours le revenu.

Toutefois, 'approche 2 a été beaucoup moins efficace pour la participation au marché
intrajournalier et le contrdle en temps réel du BESS. Pour le marché intrajournalier, ’ap-
proche 2 a su réduire I’écart mais pas améliorer le revenu, et pour le controle en temps réel,
il n’a su améliorer aucun de ces critéres comparé a la participation au marché day-ahead
uniquement. En se rapprochant du temps réel, beaucoup de nouvelles informations liées a
la production d’énergie apparaissent, alors que les informations liées au marché changent
peu. Ainsi, 'approche 2, qui utilise principalement 'information liée au marché, & une faible

valeur ajoutée a I’approche du temps réel.

Conclusion et perspectives

Dans l'introduction, nous avons indiqué que l'objectif de la these était de maximiser la
valeur obtenue a partir de la production d’électricité sur les marchés de 1’électricité dans des
conditions de prix et de production incertains. Nous avons proposé d’aborder les problemes
structurels de la chaine de valorisation de I’énergie au lieu d’améliorer les différents maillons
de la chaine. Des notations génériques ont été introduites pour modéliser les différents

options de marché. Deux approches sont ont été proposées pour prendre des décisions dans la
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chaine de valorisation : ’approche 1 qui prend des décisions en s’appuyant sur des modeles de
prévision individuels adaptés a ’objectif, et 'approche 2 qui s’appuie sur des modeles ANNs
pour maximiser l'objectif a partir de données historiques. Deux méthodes d’entrainement
ont également été introduites. La méthode 1 entraine les différents modeles de la chaine de
valorisation a maximiser leur performance de prévision, tandis que la méthode 2 les entraine

a maximiser le revenu obtenus pour 'option de valorisation a laquelle ils contribuent.

Nous avons constaté que 'option la plus efficace pour valoriser la production PV est de
participer a un marché day-ahead et a un marché intrajournalier sans BESS. L’augmentation
des revenus générés pendant la durée de vie du BESS ne compenserait pas l'investissement
initial nécessaire a son installation.

Une conclusion générale est que 'approche 2 a fait un plus grand usage de 'information
sur le marché, tandis que I’approche 1 a fait un plus grand usage de I'information météoro-
logique. Lorsqu’un BESS était disponible, I’approche 2 a donné de meilleurs résultats parce
qu’elle permettait de déplacer la production lorsque le prix de I’électricité était élevé. Sans
cette option, les deux approches ont donné des résultats similaires. Un autre avantage de
I’approche 2 est qu’elle est requiert moins de maintenance, car il n’y a qu’'un seul modele
impliqué dans chaque décision. Toutefois, il y a d’autres éléments & prendre en considération

au moment de choisir 'approche a privilégier.

Par exemple, 'utilisation de ’approche 2 génére un plus grand écart global. Par con-
séquent, du point de vue du TSO, cette approche est moins vertueuse. Reste a savoir s’il est
permis de générer délibérément plus d’écarts en étant plus conservateur afin de se prémunir
contre les prix de reglement des écarts élevés ou non. En outre, dans certains appels d’offres,
les participants doivent donner au TSO une prévision de leur production. Dans ce cas, un

modele de prévision de puissance de PV est nécessaire quoi qu’il arrive.

Il reste un dernier argument en faveur de I’approche 2. L’une des raisons pour lesquelles
les prix d’équilibrage sont élevés est qu'un grand nombre de participants renouvelables fond-
ent leurs offres sur les mémes prévisions météorologiques, de sorte que lorsque les prévisions
sont fausses, tous les participants ont une erreur de prévision dans le méme sens, ce qui
entraine des colits tres élevés pour équilibrer le réseau, et donc des pénalités élevés pour
les producteurs qui se sont trompés dans ce sens. Utiliser une méthode de prévision ori-
ginale ou qui exploite différentes sources d’information peut diminuer ce risque en étant
moins susceptible de faire une erreur dans le méme sens que les autres participants, ce qui
donne effectivement un avantage concurrentiel méme si la précision globale des prévisions
est inférieure [170]. Avec 'approche 2, les décisions sont prises principalement sur la base

des informations du marché, et 'utilisation de I’approche 2 pourrait donc couvrir le risque
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d’écarts tres importants.

Cette theése ouvre plusieurs pistes de recherche. Nous en avons identifié quelques-unes
qui semblent prometteuses.

La premiere direction de recherche est d’améliorer la gamme des horizons de prévision
du modele AnEn en utilisant plus de données. Comme indiqué dans la these, la version
que nous avons développée n’a pas utilisé de données provenant de caméras hémishpériques,
ni de données spatiales provenant de centrales PV voisines. De telles données pourraient
améliorer encore la performance des prévisions a court terme.

Une autre possibilité serait d’utiliser les récents progrés en deep learning tels que les
Generative Adversarial Networks (GAN) [171] pour mettre en ceuvre des modéles ANN
plus sophistiqués capables de traiter les informations sur le marché et la météo de maniere
plus efficace. Bien que les modeles ANN utilisés dans cette theése aient donné de bons
résultats en termes de revenus, ils se sont concentrés beaucoup plus sur les informations
de marché que sur les informations météorologiques. L’utilisation de structures ANN plus
sophistiquées pourrait alors améliorer les résultats a cet égard.

Une autre limitation de cette these est que nous nous sommes concentrés sur les solutions
existantes pour vendre la production d’énergie PV. Il serait toutefois possible de modéliser de
nouvelles options, telles que la vente d’énergie en pair a pair avec la technologie blockvhain
[172], ou d’autres regles de rémunération sur les marchés de ’électricité et des services
systeme. Cela pourrait servir de source d’information pour les exploitants de centrales PV
souhaitant estimer leurs recettes en fonction des conditions du marché. Par ailleurs, en
simulant la participation simultanée de différents acteurs, cela pourrait aider a identifier des

structures de marché et des regles de pénalisation des écarts potentiellement plus efficaces.
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RESUME

La décarbonation de la production d’électricité a échelle mondiale est un élément de réponse clé face aux pressions
exercées par les différents enjeux environnementaux. Par ailleurs, la baisse des colts de la filiere photovoltaique (PV)
ouvre la voie a une augmentation significative de la production PV dans le monde. Cependant, la forte variabilité de la
production PV ainsi que des prix du marché de I'énergie impose aux producteurs d'energie PV de prendre de nombreuses
décisions sous incertitude pour valoriser leur production. Dans cette thése, nous proposons une formulation génerique de
ces problémes de prise de décision afin de formuler différentes fagons de les résoudre. L'approche classique consistant
a prévoir la production ainsi que les prix avant de résoudre un probléme d'optimisation stochastique est comparée a
une approche de Policy Function Approximation (PFA) ou des réseaux de neurones artificels apprennent directement a
formuler la prise de décision a partir des données. Cette seconde approche permet en particulier de résoudre certaines
problématiques auxquels font face les producteurs d'énergie PV tels que la disparité entre les produits de prévisions
commerciaux disponibles et la finalité de leur utilisation, ainsi que la multiplication des modeles requis pour valoriser la
production.

MOTS CLES

Energies renouvelables, Stockage, Optimisation, Prévision, Policy Function Approximation, Photovoltaique,
Marchés de I'électricité, Smart grids

ABSTRACT

The decarbonation of electricity generation on a global scale is a key response to the pressures of various environmental
issues. In addition, the falling costs of the photovoltaic (PV) industry are paving the way for a significant increase in PV
production worldwide. However, the high variability of PV production and energy market prices means that PV power
producers have to make many decisions under uncertainty in order to increase the value of their production. In this thesis,
we propose a generic formulation of these decision-making problems in order to formulate different ways to solve them.
The classical approach of predicting the PV power output as well as prices before solving a stochastic optimization problem
is compared to a Policy Function Approximation (PFA) approach where artificial neural networks learn directly to formulate
the decision making from the data. This second approach allows in particular to solve some of the problems faced by PV
power producers such as the disparity between the available market forecast products and the finality of their use, as well
as the multiplication of models required to value the PV production.

KEYWORDS

Renewable energies, Storage, Optimization, Forecasting, Policy Function Approximation, Photovoltaics, Elec-
tricity markets, Smart grids




