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Piola (or second Piola-Kirchhoff) stress tensor w.r.t. the intermediate conĄguration

S ∼ = det (F ∼ ) σ ∼ .F ∼ -T
Boussinesq (or Ąrst Piola-Kirchhoff) stress tensor Cette thèse sŠinscrit dans le contexte général de lŠamélioration continue de la sécurité des installations nucléaires. Elle sŠintéresse plus particulièrement au comportement des matériaux se trouvant à proximité du coeur dŠun réacteur. Elle sŠappuie pour cela sur de précédentes études menées aĄn de comprendre, modéliser et prédire la chute de ténacité des aciers austénitiques inoxydables utilisés comme matériaux des structures internes de réacteurs nucléaires. Ces structures portantes sont soumises à des doses dŠirradiation importantes au cours de leur durée de vie. Or il a été montré que de tels niveaux dŠirradiation induisent une évolution des propriétés microstructurales et de facto des propriétés mécaniques de ces matériaux. La création de défauts à lŠéchelle cristallographique sous irradiation a été identiĄée comme origine de la dégradation de ces propriétés. La compréhension Ąne des effets de lŠirradiation sur lŠécrouissage et les propriétés à rupture de ces matériaux nécessite donc de faire appel à des outils adaptés à cette échelle. La caractérisation mécanique des aciers austénitiques à lŠéchelle cristalline nŠa été que très rarement étudiée dŠun point de vue expérimental. Les modèles de plasticité cristalline reposent donc sur des paramètres matériaux dont les valeurs numériques couramment utilisées sont issues dŠidentiĄcations faites à une échelle supérieure, celle du polycristal. De plus, les modèles de plasticité cristalline prenant en compte lŠendommagement ductile ne sont quŠà leurs débuts. Des études plus approfondies sont donc nécessaires aĄn de pouvoir les mettre en oeuvre dans des calculs de structures. Les objectifs de cette thèse sont ainsi triples. Nous réaliserons dŠune part lŠidentiĄcation de certains paramètres dŠune loi de comportement mécanique de plasticité cristalline à partir de résultats expérimentaux obtenus sur monocristaux dŠaciers austénitiques inoxydables. DŠautre part nous nous attacherons à développer et implanter dans un code de calcul aux éléments Ąnis, un modèle numériquement efficace de plasticité cristalline à gradient. Ce dernier sera exploité pour étudier le phénomène de localisation de la déformation plastique observé dans de nombreux matériaux irradiés. EnĄn, nous présenterons un modèle innovant utilisant le formalisme à gradient pour la simulation de la rupture ductile de monocristaux poreux.

Π ∼ M = E ∼ T .E ∼ .

Historical context

The successive discovery of chemical chain reactions, existence of the neutron and nuclear Ąssion during the Ąrst half of the twentieth century made of nuclear power a promising source of energy. However, the Ąrst artiĄcial nuclear reactor Chicago Pile-1, reaching criticality on 2 December 1942, was described by one of its designers Enrico Fermi as "a crude pile of black bricks and wooden timbers". Ever since tremendous efforts have been put not only into enhancing efficiency but also into improving safety of such installations. Nevertheless global aging of the existing Ćeet of nuclear power plants and prevention of nuclear accidents require a continuing effort in order to maintain nuclear security. For that purpose, material science and in particular fracture mechanics is a cornerstone. Understanding the effects of temperature, pressure and radiations conditions on the behaviour and strength of materials is essential for the design and lifetime prediction of nuclear reactors. Furthermore, discoveries made in the context of nuclear materials do not only beneĄt to the sector of nuclear energy, but also enrich the knowledge about materials which have many other potential applications. Back in the early twentieth century fracture mechanics involved essentially thorough experimental investigations and observations of crack propagation in materials. Standardized mechanical tests were proposed in order to measure toughness, i.e. the resistance of a material with respect to crack propagation. A few decades later emerged theoretical work on failure by crack propagation in brittle materials Ąrst, then in ductile materials. During the second half of last century the theoretical and experimental study of the effects of voids in the ductile fracture mechanism has thrived. TodayŠs available computing power allows to use reĄned extensions of these models in order to simulate numerically crack propagation in specimens and even structures with accuracy. Now, in keeping with advances in the Ąeld of materials sciences for nuclear industry applications, the experimental, theoretical and numerical work presented hereafter aims at contributing to the improvement of nuclear installationsŠ safety. It falls within the same scope as and continues several PhD thesis works conducted at the Laboratoire de Comportement Mécanique des Matériaux Irradiés (LCMI) from CEA Saclay in cooperation with Centre des Matériaux of Mines ParisTech. The studies carried out by [START_REF] Han | Modélisation de la fragilisation due au gonĆement dans les aciers inoxydables austénitiques irradiés[END_REF], [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] and [START_REF] Barrioz | Rupture ductile des matériaux CFC irradiés[END_REF] constitute the main foundation on which the progress made during this work is built. [START_REF] Han | Modélisation de la fragilisation due au gonĆement dans les aciers inoxydables austénitiques irradiés[END_REF] developed, implemented and identiĄed a crystal plasticity model that accounts for irradiation induced Frank loops. He also formulated the Ąrst homogenized yield criterion for porous single crystals. [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] extended the latter criterion to Ąnite strains and proposed a Ąrst model of ductile failure in single crystals which he validated upon comparison to porous unit-cell simulations. He also developed a reduced strain gradient model for single crystals based on the micromorphic approach. [START_REF] Barrioz | Rupture ductile des matériaux CFC irradiés[END_REF] investigated the inĆuence of irradiation induced defects, in particular nano-voids, on the ductile failure mechanisms from an experimental perspective. He also proposed new criteria to predict void coalescence in highly swollen irradiated materials. This work continues their efforts and aims at modeling and simulating strain localization and void-driven ductile fracture in austenitic stainless steels used in the nuclear industry.

Industrial interest

Inside a nuclear reactor vessel, internals are structures designed to support, align and guide the core components; set the path for the coolant Ćuid; and direct and support the in-core instrumentation. Any accident occurring during operation or any hazardous external event such as a high magnitude earthquake would lead to the transfer of the loads imposed on the fuel assemblies to the upper and lower support structures. In a Pressurized Water Reactor (PWR) as depicted in Figure 1.1, the lower core support structures consist in the core barrel, the core baffles, the lower core plate and support columns, the neutron shields pads and the lower core support plate. The upper core structures, providing support to the fuel assemblies, rod cluster control assembly (RCCA) and in-core instrumentation, consist in an upper support assembly, upper support columns, RCCAs guide columns, thermocouple columns and the upper core plate.
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In Fast Neutron Reactors (FNR) such as the sodium cooled FNR shown in Figure 1.2, hot and cold internals as well as fuel claddings and the reactor vessel are made of austenitic stainless steel.

In nuclear reactors most internals are made of austenitic stainless steel alloys. Excellent mechanical properties, combined with a high resistance to corrosion and irradiation at relatively low costs make such alloys among the best candidates for the functions described above. The nominal conditions of operation of these structures are indeed extremely harsh. In conventional Light Water Reactors (LWR) temperature of lower internals lies around 300 Ű 370 • C. In the mean time, the neutron Ćux is about 10 14 Ű 10 15 neutrons/cm 2 /s and the coolant Ćow rate about 10 4 kg s -1 . The combination of these conditions can collectively degrade the integrity of reactor internals. During unit outages, visual and ultrasound controls are performed on critical parts and some of them such as springs, bolts or guides can be replaced if their integrity is corrupted. However, other parts such as the core shroud or the upper guide structure would have a strong impact on the economical and technical operation in case of replacement and their integrity assessment is based on ageing studies of the materials. In FNR fuel claddings temperature can rise above 600 • C and irradiation dose levels which are reached can provoke a macroscopic swelling by cavity nucleation.

To date, in LWR, in-core failures observed in iron-and nickel-based stainless alloys are mainly due to a degradation process referred to as irradiation-assisted stress-corrosion cracking (IASCC). IASCC corresponds to an enhancement of susceptibility to corrosion and stress corrosion cracking induced by irradiation. It has detrimental effects on the mechanical properties, in particular susceptibility regarding crack initiation and propagation. Notwithstanding the fact that IASCC is one of the main mode of degradation observed in LWRŠs internals, there remain other possible failure mechanisms which were observed in irradiated austenitic stainless steel specimens. In FNR the macroscopic swelling caused by irradiation induced nano-void nucleation can be responsible for a quasi-brittle behaviour of austenitic stainless steels. It is all the more important that these mechanisms can be understood and predicted to the extent that an increase in the lifetime of existing reactors is envisaged. With such lifetime extensions, irradiation dose levels seen by reactor internals will inevitably rise. It will be shown later how irradiation doses can cause formation of irradiation-induced defects such as dislocation Frank loops and nano-sized voids. The former can cause strain localization and thus be responsible for an important loss of ductility, while the latter can affect void-driven ductile fracture. Therefore, the forthcoming study is devoted to the investigation of strain localization and void-driven ductile failure mechanisms in irradiated austenitic stainless steels.

Scientific interest

Models to describe plasticity in single crystals are widespread in the literature. However, experimental data on single crystals available to calibrate such models for austenitic steels are very scarce. Therefore, material parameters involved in these models are mostly identiĄed on experiments performed at a larger scale, namely at the polycrystal scale. Other parameters are also determined from simulations performed at smaller scales such as discrete dislocations dynamics simulations. All in all it appears particularly interesting to obtain experimental data at the single crystal scale in order to inform more reliably models designed to describe mechanisms taking place at that scale.

Furthermore, irradiation-induced defects can severely affect the deformation mechanisms of irradiated materials. Gliding dislocations can indeed swipe out these defects in their motion and cause local softening, which in turn leads to strain localization in narrow bands called channels. Yet, modeling strain localization phenomena is a thriving topic in the current literature. Several models are indeed available, including models developed in the context of crystal plasticity. Strain localization occurring in irradiated austenitic steels can therefore serve as a practical case study for such models. It can help to identify their limitations and give insight on how to introduce more physics in their formulation.

In addition, interest is given to the computational cost of the Ąnite element implementation of such a model. It is shown how alternative approaches can signiĄcantly improve the numerical performance to the expense of relatively low additional implementation effort. Particular attention is devoted to demonstrate to which extent consistence with prior results is kept.

Finally, focus is set on developing a model Ąrst of this kind, suited to the simulation of regularized crack propagation in single-and polycrystals. First, a reconciliation of ductile fracture models at hand in the literature is attempted and the thermodynamical framework which ensues serves as a foundation for further developments. Building blocks of such a model available in the literature are then gathered together and complemented with innovative ideas on void coalescence. Simulations of fracture in single crystals are performed eventually to demonstrate the strengths and weaknesses of the Ąnal model.

Each of the above paragraphs gives rise to a different chapter of the present work. Each chapter is presented in the form of a scientiĄc article, and complemented with additional relevant information.

Outline

The outline of the present work is as follows. In Chapter 2 the main knowledge concomitantly justifying and serving as a basis for the next chapters is presented in the form of a literature review. The synthesis describing the effect of irradiation on microstructural and mechanical properties of austenitic stainless steels will serve as a motivation for the two main topics of this work, namely strain localization and ductile fracture in single crystals.

In Chapter 3 experimental results obtained on austenitic stainless steels single crystals are presented. First, attention is drawn on experimental conditions and methods. Then, results are described in detail. Eventually, experimental data are exploited in order to identify material parameters of a standard crystal plasticity law available in the literature.

Chapter 4 is devoted to the enhancement of a strain gradient plasticity model. Inherent limitations regarding models involving constant material length scales are put in evidence. Improvements by consideration of an evolving characteristic length are proposed. The major beneĄt of this extension is then demonstrated in the context of modeling strain localization phenomena occurring in single crystals, as observed in irradiated materials.

In Chapter 5 several approaches available in the literature to interpret and implement a strain gradient crystal plasticity model are discussed and compared. Details of the Ąnite element implementation of a numerically efficient Lagrange multiplier based formulation are presented. Differences and similarities between these settings are highlighted upon comparison of numerical simulation results.

Chapter 6 is dedicated to the presentation of a comprehensive model of ductile fracture for single crystals. A thermodynamical foreword is given in a Ąrst step in order to recast available models in a unique formalism. The latter is then employed so as to derive an homogenized model of porous single crystals accounting for growth and coalescence of voids. Finally the model is employed to simulate crack propagation in single crystal structures.

Concluding remarks and opening to future developments are Ąnally presented in Chapter 7.

If I have seen further it is by standing on the shoulders of Giants.

Isaac Newton
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Literature review

Résumé

Dans ce chapitre est présenté lŠétat de lŠart en matière dŠobservations expérimentales des propriétés des aciers austénitiques inoxydables irradiés utilisés en conditions des réacteurs à eau légère et des réacteurs à neutrons rapides. Les effets de lŠirradiation sur la nano-structure de ces matériaux seront tout dŠabord exposés. Puis, lŠincidence des évolutions micro-et nanostructurales sur les mécanismes de déformations sera abordée. Nous verrons ensuite comment les propriétés mécaniques sont affectées par lŠirradiation. DŠune part, nous verrons comment, sous certaines conditions, les modes de déformations peuvent être modiĄés par lŠexistence de défauts dŠirradiation. Nous nous appuierons pour cela sur des observations faites par microscopie électronique à balayage et en transmission permettant de révéler la présence dŠhétérogénéités intenses de déformation dans les matériaux irradiés. DŠautre part, nous nous intéresserons aux propriétés mécaniques macroscopiques des aciers irradiés. En particulier nous discuterons des conséquences de lŠirradiation sur leurs propriétés à rupture. Ensuite, nous verrons quelles sont les conditions propices à lŠapparition de zones de localisation de la déformation. Nous examinerons comment la mécanique des milieux continus généralisés peut servir de cadre théorique à la modélisation et la simulation de telles hétérogénéités de déformations induites par des instabilités de natures diverses. Nous analyserons plusieurs méthodes disponibles dans la littérature et comment elles peuvent être mises en oeuvre pour modéliser les phénomènes de localisation observés dans certains aciers irradiés. EnĄn, nous nous intéresserons aux mécanismes à lŠorigine de la rupture ductile gouvernée par lŠévolution de cavités telles que celles pouvant exister dans les aciers irradiés. Nous verrons comment des méthodes dŠhomogénéisation périodique permettent de modéliser la rupture ductile des milieux poreux. Les modèles les plus avancés visant à prévoir le comportement des monocristaux poreux seront enĄn abordés et comparés. 0.08 2.00 0.045 0.030 0.75 16.0-18.0 10.0-14.0 2.00-3.00 0.10 balance 316L2 0.030 2.00 0.045 0.030 0.75 16.0-18.0 10.0-14.0 2.00-3.00 0.10 balance

The FCC crystal structure is schematized in Figure 2.3a. Black disks represent atomic sites of the crystal lattice. Blue arrows indicate the highest atomic density directions (⟨110⟩ directions) which are also the preferential slip directions for dislocations. One out of the four highest atomic density planes ( ¶111♢ planes) is Ąlled in grey. Also known as slip planes, they correspond to the slipping planes associated to dislocation motion. Figure 2.3b displays an electron backscatter diffraction (EBSD) map, obtained by scanning electron microscopy (SEM), of a solution annealed (SA) 316L stainless steel. The color map represents the crystal orientation of the material. It can be observed that the microstructure of the material is organized in grains of uniform crystal orientation. For low nickel alloys (304 and 304L), a signiĄcant amount of ferrite is also observed. The main population of defects in the crystal structure of these grains 6000X (GreenĄeld and Wilsdorf, 1961).

in defect clusters which appear as small black zones. It can be seen from 2.11a that dislocation channels can have different orientations in a single grain and therefore interact with each other. When irradiation is carried out in conditions for bubbles and voids to nucleate, dislocation channels may interact with these defect as well. [START_REF] Fish | Tensile properties of fast reactor irradiated type 304 stainless steel[END_REF] showed how irradiation voids were signiĄcantly sheared inside a 50 nm wide dislocation channel. [START_REF] Garner | 4.02 radiation damage in austenitic steels[END_REF] measured a shear deformation of 100-200% inside this channel by comparing the shape of voids outside and inside of the channel. Byun et al. (2006) proposed a microscale deformation mode map (see Figure 2.12) for 316 and 316LN stainless steels irradiated at low temperatures (60-100 • C) and tensile-tested at room temperature. The deformation map is given in terms of irradiation dose and maximum applied true stress. The zones where channel deformation occurs are located above 1000 MPa of maximum applied true stress or above 0.1 dpa irradiation dose. [START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF]; [START_REF] Nogaret | Clear band formation simulated by dislocation dynamics: Role of helical turns and pile-ups[END_REF] investigated the formation of single dislocation channels by discrete dislocation dynamics (DDD) simulations. They performed numerical tensile tests experiments on low-dose and high-dose irradiated iron single crystals. They deĄned a deformation localization index (DLI) which corresponds to the percent of the volume with plastic strain that is lower than the volume average. They found (see Figure 2.13a) that this index increases with irradiation dose. For overall plastic strains lower than 1% the DLI decreases for both irradiation dose considered. However for the larger dose the DLI increases notably above 1% overall plastic strain, while it is almost constant for the lowest irradiation dose. Fig 2 .13b shows that at higher dose, the increase of the DLI is associated to a transition from a multiple slip mode to a single slip mode. On the contrary, at low dose, no such a transition occurs (see Fig 2 .13c). [START_REF] Arsenlis | A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[END_REF] studied by DDD how the irradiation-induced defect density affects channeling localization in irradiated BCC iron. They showed that below defect densities of 3.61 × 10 21 m -3 no dislocation channels are formed in a tensile test along a ⟨001⟩ loading direction. However at defect densities larger than 8.15 × 10 21 m -3 dislocation channels are formed under the same loading conditions. Therefore it exists a critical defect density which triggers dislocation channeling which is in accordance with [START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF] Ąndings. [START_REF] Arsenlis | A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[END_REF] also showed that channel initiation and size are mediated by Frank loop coalescence resulting from elastic interactions with moving dislocations. (b-c) Plastic strain rate fractions induced by dislocations on different slip planes for high-and low-dose conĄgurations [START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF].

Figure 2.14 Transition from homogeneous to heterogeneous deformation as the defect density increases in irradiated BCC iron obtained by dislocation dynamics (DD) simulations. Green and yellow tones represent a high density of dislocation loops. Blue tones correspond to network dislocations [START_REF] Arsenlis | A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[END_REF]. (Pokor et al., 2004a). (b) Tensile stress-strain curves obtained at 600 • C on a 304 stainless steels irradiated in reactor EBR-II to 1.1×10 22 n/cm 2 at 540±50 • C [START_REF] Holmes | Effect of fast reactor irradiation on the tensile properties of 304 stainless steel[END_REF].

2. An important decrease of the strain hardening capability is induced by irradiation. Pokor et al. (2004a) performed tensile test experiments on SA 304L stainless irradiated up to 3.4 dpa in mixed spectrum OSIRIS reactor. As depicted in Figure 2.16a, they illustrated the rapid drop of the strain hardening capability with irradiation dose. At 2 dpa almost no strain hardening occurs. At 3.4 dpa a small stress drop is observed after the yield point and is followed by a stress plateau until striction and Ąnal failure. Decrease of hardening capability with irradiation dose in stainless steels was also reported and quantiĄed in Byun and Hashimoto (2006); Pokor et al. (2004b); [START_REF] Renault-Laborne | Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate[END_REF]. A parallel between irradiation and pre-deformation can in fact be drawn as suggested by Byun and Farrell (2004b) and depicted in Figure 2.17a.

3. An increase in the ultimate strength is observed after irradiation. Even though the hardening capability decreases drastically with irradiation dose, the paramount augmentation of yield strength after irradiation is responsible for the increase of ultimate strength after irradiation. Evolution of ultimate strength with irradiation dose in stainless steels was reported and quantiĄed in [START_REF] Bagley | Materials for nuclear reactor core applications[END_REF]Byun and Hashimoto, 2006;[START_REF] Garnier | Déformation sous Ćux des aciers austénitiques des structures internes des réacteurs à eau pressurisée[END_REF][START_REF] Holmes | Effects of fast reactor exposure on the mechanical properties of stainless steels[END_REF]Pokor et al., 2004a,b;[START_REF] Renault-Laborne | Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate[END_REF].

4. A sharp decrease of ductility is exhibited after irradiation. Tensile experiments performed by Pokor et al. (2004a) show that the total elongation plummets with irradiation dose. As shown in Figure 2.16a, the total elongation is about 42% at 0 dpa and plunges to less than 15% at 3.4 dpa. Figure 2.16b displays the ductility reduction which can be observed in FNR conditions for a grade 304 stainless steel. Under such circumstances, at high Ćuences, even a macroscopic brittle-like behaviour can be observed. Figure 2.17b displays the evolution of total elongation with neutron dose in different stainless steels. Decrease of ductility with irradiation dose in stainless steels was also reported and quan-tiĄed in [START_REF] Bagley | Materials for nuclear reactor core applications[END_REF]; [START_REF] Garnier | Déformation sous Ćux des aciers austénitiques des structures internes des réacteurs à eau pressurisée[END_REF]; Pokor et al. (2004b); [START_REF] Renault-Laborne | Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate[END_REF] and also in [START_REF] Fish | Tensile properties of fast reactor irradiated type 304 stainless steel[END_REF][START_REF] Hamilton | Mechanical properties of highly irradiated 20 percent cold worked type 316 stainless steel[END_REF] where the dependence on irradiation temperature was studied. Ductility loss is in fact a direct outcome of the strain hardening capability decrease. ConsidèreŠs global instability criterion [START_REF] Considère | LŠemploi du fer et de lŠacier dans les constructions[END_REF] predicting onset of necking (dF /dε ≤ 0 or dσ/dε ≤ σ) is met earlier when the macroscopic strain hardening slope is reduced. If the macroscopic ductility is notably affected by irradiation, nevertheless, locally, large strain levels can be reached in the vicinity of the neck.

dpa. In the literature a different ductile fracture mechanism is associated to each fracture surface morphology:

1. classical void-driven ductile fracture by nucleation, growth and coalescence of micrometric voids. It is characterized by presence of micrometric dimples on fracture surfaces and occurs at low irradiation doses.

2. channel fracture induced by intense localization of plastic deformation (so-called channel deformation). It is characterized by presence of transgranular, often terraced, Ćat facets on fracture surfaces. Channel fracture was reported in irradiated austenitic stainless steels in [START_REF] Bloom | Irradiation strengthening and embrittlement[END_REF][START_REF] Fish | Swelling and tensile property evaluations of high-Ćuence EBR-II thimbles[END_REF][START_REF] Fukuya | Fracture behavior of austenitic stainless steels irradiated in PWR[END_REF][START_REF] Hamilton | Mechanical properties and fracture behavior of 20% cold-worked 316 stainless steel irradiated to very high neutron exposures[END_REF][START_REF] Hojná | Overview of intergranular fracture of neutron irradiated austenitic stainless steels[END_REF][START_REF] Huang | The fracture characterization of highly irradiated type 316 stainless steel[END_REF][START_REF] Huang | Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the fast Ćux test facility (FFTF) to 180 dpa[END_REF][START_REF] Hunter | Channel fracture in irradiated EBR-II type 304 stainless steel[END_REF][START_REF] Little | Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel[END_REF][START_REF] Margolin | The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. ductility and fracture toughness[END_REF][START_REF] Mills | Fracture toughness of irradiated stainless steel alloys[END_REF][START_REF] Mills | Fracture toughness of type 304 and 316 stainless steels and their welds[END_REF][START_REF] Odette | The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels[END_REF]. It occurs at intermediate to high irradiation doses.

3. nanovoid-driven ductile fracture by growth and coalescence of vacancy voids. It is characterized by presence of unstructured zones composed of nano-dimples on fracture surfaces. Nano-dimpling was reported in irradiated austenitic stainless steels in [START_REF] Courcelle | Grain-boundary embrittlement in highly irradiated 15-15ti austenitic steel[END_REF][START_REF] Gurovich | Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18CrŰ10NiŰTi austenitic stainless steels[END_REF][START_REF] Neustroev | Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling[END_REF]. It occurs at very high doses, when irradiation induced swelling is considerable.

These fracture modes may coexist, hence fracture surfaces may be a composite of micro-dimples, Ćat facets and nano-dimples. [START_REF] Margolin | The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. ductility and fracture toughness[END_REF] measured the fracture mode portion as a function of swelling for two different shield assemblies (see Figure 2.20). Classical ductile fracture dominate at swelling levels below 2%. The channel fracture mode, characterized by Ćat facets, covers a wide range of swelling levels for the BM-7 shield assembly irradiated between 30-46 dpa. However for higher dose levels (100-150 dpa for E-65 shield assembly) nanovoid-driven ductile failure already predominates above 3.5% swelling. The TEM micrography by [START_REF] Fish | Swelling and tensile property evaluations of high-Ćuence EBR-II thimbles[END_REF] in Figure 2.21 showing how vacancy voids are sheared inside a dislocation channel might give some insight of the underlying mechanisms of channel fracture and/or nanovoid-driven fracture.

Although heavily irradiated materials exhibit, macroscopically, very low ductility, they display, microscopically, a very high ductility inside dislocation channels. This drastically heterogeneous deformation mode affects how material fails. A characteristic length can be associated to this heterogeneity. Instead of favouring failure by nucleation, growth and coalescence of voids bigger in size, it promotes failure by growth/shearing of voids smaller in size than this characteristic length.

In this section the radiation-induced microstructure evolutions were introduced. In particular, defects formed under LWR and FNR irradiation conditions were presented. Existence of a localized deformation mechanism and the conditions prone for its appearance were then investigated. Irradiation was shown to have a detrimental effect on mechanical properties and more speciĄcally on toughness. In order to get some insight on the link between mechanical characteristics and microstructural properties and deformation mechanisms, attention was given to fracture surfaces and information they give on fracture mechanisms. Two tracks of investigation can readily be identiĄed and constitute the topics of the next two sections. First of all a succinct overview of strain localization modeling is presented. Then, existing models for void-driven ductile fracture and their extension to crystal plasticity are introduced. [START_REF] Marano | Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution FFTŰsimulations results[END_REF].

the grain they belong to as originally predicted by [START_REF] Asaro | Strain localization in ductile single crystals[END_REF]. The authors argued that kink bands, which are responsible for large crystal lattice curvature, are never observed in practice in irradiated materials. Therefore they used a strain gradient extension of their model in order to penalize lattice rotations and were able to replace kink bands by bundles of slip bands in their simulations. However, as pointed out by the authors, due to the softening behaviour which is considered and despite the regularization technique they use to cancel kink bands, their simulations are mesh size dependent. This kind of mesh dependencies is a regular issue in the context of softening behaviour.

Modeling strain localization phenomena with conventional plasticity generally entails dependency of the results on the spatial discretization used to solve the underlying differential equations. In the context of Ąnite element analysis, results may then depend on element type, element size, element orientation, etc. For example, absence of convergence when element size is reduced (see Fig 2 .26a) is often encountered when localization occurs. The root of this issue is the loss of ellipticity of partial differential equations for example when softening comes into play. The loss of stability causes softening and localization to be a self-perpetuating phenomenon. One solution to deal with absence of mesh convergence is to treat the mesh size as a material parameter [START_REF] Achouri | Experimental characterization and numerical modeling of micromechanical damage under different stress states[END_REF][START_REF] Xue | Calibration procedures for a computational model of ductile fracture[END_REF]. Therefore this parameter can then be identiĄed on experimental data. However this approach is not fully satisfactory because it requires to know a priori where localization will occur. Another approach to deal with strain localization is to take advantage of so called non-local models. These theories involve regularization techniques based on integral or gradient operators. A proposition of classiĄcation of the generalized continuum theories is given in Figure 2.25 by [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF]. The key idea shared by such models is to consider that the behaviour of a given material point depends not only on its own state but also on the state of its neighbours. Therefore material length scales naturally arise and will serve as parameters to be linked to the characteristic length of plastic deformation mechanisms involved during localization processes. For a more detailed comparison of several non-local formulations the reader is referred to [START_REF] Chen | Modélisation de la rupture ductile par approche locale: simulation robuste de la déchirure[END_REF]. Figure 2.26 shows how a gradient-based non-local model allows to alleviate mesh dependency results when softening-induced strain localization occurs. Similarly, Figure 2.27 demonstrates how an integral non-local formulation allows to solve mesh [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF].

dependency when softening is induced by damage. Other techniques, such as phase Ąeld methods have recently been used in order to treat efficiently non-localities [START_REF] Ask | A Cosserat crystal plasticity and phase Ąeld theory for grain boundary migration[END_REF][START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF].

For the purpose of this work focus is set on strain gradient continuum plasticity theories, because they present the advantage of being easier to implement in numerical solvers. A thorough review on theoretical, numerical and experimental aspects of these theories was recently published by [START_REF] Voyiadjis | Strain gradient continuum plasticity theories: theoretical, numerical and experimental investigations[END_REF]. The idea of these formulations is to introduce the second gradient of displacement or the gradient of a strain measure into the framework. Several approaches were pursued in the literature. [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF] proposed the Ąrst gradient-enhanced plasticity theory in order to predict measured size effects by accounting for the geometrically necessary dislocations (GND) density tensor. The probably most general and ambitious gradient theories were then developed for elasticity in [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF] and plasticity in [START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF][START_REF] Gudmundson | A uniĄed treatment of strain gradient plasticity[END_REF][START_REF] Hutchinson | Strain gradient plasticity[END_REF]. [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] reviewed several strain gradient approaches to the elasticity, plasticity, damage, and diffusion in solids. The author showed how these theories relate to one another and can be cast into the unifying micromorphic approach. For crystal plasticity models in the setting of gradient plasticity, three classes can be identiĄed. A family of models is based on the GND density tensor [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF]. Another is based on scalar measures of statistically stored dislocation (SSD) and GND densities on each slip system [START_REF] Evers | Non-local crystal plasticity model with intrinsic SSD and GND effects[END_REF][START_REF] Svendsen | On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation[END_REF]. The last, proposed by WulĄnghoff and Böhlke (2012), is based on a single accumulated plastic strain measure.

In order to guaranty that these theories do not violate the fundamental laws of thermodynamics, several thermodynamical formulations were developed in the literature. The method pursued by [START_REF] Forest | Strain gradient crystal plasticity: thermomechanical formulations and applications[END_REF]; [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF]; [START_REF] Gurtin | Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF]; [START_REF] Hutchinson | Strain gradient plasticity[END_REF] of enriching the power density of internal forces and of contact forces is presented brieĆy. The cornerstone of the enriched internal power formulation is the idea that introduction of mechanical gradient effects should lead to an extension of the power of internal and contact forces entering the principle of virtual power. For sake of simplicity and the purpose of this work the gradient of a single scalar accumulated plastic strain variable, noted p, is considered. In the context of small strains, the enriched power of internal and contact forces is introduced as

P (i) = σ ∼ : ε ∼ + a ṗ + b .∇ ṗ P (c) = t . u + a c ṗ (2.1)
where σ ∼ is the Cauchy stress tensor, ε ∼ the total strain rate tensor, a and b generalized scalar and vector stresses, t the surface traction vector, u the displacement rate and a c a generalized [START_REF] Bažant | Nonlocal integral formulations of plasticity and damage: survey of progress[END_REF]. contact stress scalar. The generalized principle of virtual power which ensues states that the stress and acceleration field in a material body, verify the local equations of dynamics if and only if the power of the internal, remote and contact forces balances the power of the acceleration field in any virtual motion and for any sub-domain, under the hypothesis of continuity of the fields involved. Neglecting the contribution of inertia effects and remote forces it gives for any sub-domain

D D (σ ∼ : ε ∼ + a ṗ + b .∇ ṗ) dV = ∂D (t . u + a c ṗ) dS (2.2)
where ∂D represents the surface boundary of sub-domain D. Applying the divergence theorem results in the following generalized balance equations and Neumann boundary conditions

div (σ ∼ ) = 0 ∀x ∈ D (2.3) div (b ) = a ∀x ∈ D (2.4) t = σ ∼ .n ∀x ∈ ∂D (2.5) a c = b .n ∀x ∈ ∂D (2.6)
where n denotes the outward surface normal unit vector. The Ąrst law of thermodynamics then states that the variation of internal and kinetic energy of any sub-domain of a material body in the current configuration is due to mechanical power and heat input. In absence of heat transfers it gives in the local form

P (i) = ρ ė (2.7)
where e is the speciĄc internal energy density and ρ the volumetric mass density. An additive decomposition of the strain tensor in an elastic and a plastic part ε ∼ = ε ∼ e + ε ∼ p is considered. The Helmholtz speciĄc free energy density, ψ = e -T s, where T is the temperature and s the speciĄc entropy density, is assumed to depend on the set of state variables ¶ε ∼ e , p, ∇p♢. The second law of thermodynamics states that the global amount of entropy increases. Therefore in absence of entropy Ćux and source, the speciĄc dissipation density d is positive

d = T ṡ = ė -ψ ≥ 0 (2.8)
Combining the Ąrst and second laws of thermodynamics Eq. (2.7) and (2.8) it comes

ρd = σ ∼ -ρ ∂ψ ∂ε ∼ e : ε ∼ e + a -ρ ∂ψ ∂p ṗ + b -ρ ∂ψ ∂∇p .∇ ṗ + σ ∼ : ε ∼ p ≥ 0 (2.9)
The following state laws are then postulated

σ ∼ = ρ ∂ψ ∂ε e (2.10) a = ρ ∂ψ ∂p -H (2.11) b = ρ ∂ψ ∂∇p (2.12)
where it has been assumed for sake of simplicity that no dissipation is associated with the generalized stress b , whereas -H is the dissipative part of the generalized stress a. This approach allows to recover the [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF] gradient theory which involves a single internal length.

The residual mechanical dissipation is then

ρd = σ ∼ : ε ∼ p -H ṗ ≥ 0 (2.13)
At this stage a dissipation pseudo-potential Ω, function of the thermodynamic forces -σ ∼ and H, can be deĄned in order to determine the evolution of the state variables. This potential must guaranty that for any possible process Eq. (2.13) is satisĄed. It is worth noting that according to state laws Eqs. (2.11), (2.12) and balance equation Eq. (2.4) it comes

H = ρ ∂ψ ∂p -a = ρ ∂ψ ∂p -div (b ) = ρ ∂ψ ∂p -div ρ ∂ψ ∂∇p (2.14)
The choice of the Helmholtz free energy potential ψ and the dissipation pseudo-potential Ω entirely determine the gradient-enhanced material behaviour. The last term in equation (2.14) is the non-local dissipative stress which will regularize the strain localization phenomena. In practice a supplementary hardening will be induced by existing gradients of p. A typical result associated to strain gradient models is the coupling of nonlinearity and nonlocality which arises in the material behaviour. This coupling can become an issue when solving the governing differential equations, because they cannot be solved directly in a pointwise manner as in conventional plasticity. Relaxation methods have been developed, such as the micromorphic approach [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] or a Lagrange multiplier approach [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF], in order to deal with this difficulty. These two methods will be extensively presented and used in next chapters.

Ductile failure in metallic materials

Ductile failure gathers together several failure modes which are regularly encountered in metallic materials at moderate/high temperatures and moderate/slow loading rates. [START_REF] Noell | The mechanisms of ductile rupture[END_REF] proposed a taxonomy of ductile failure modes reported in the literature. Figure 2.28 synthesizes and illustrates seven taxa of ductile failure. As reported in section 2.1.4, void-driven ductile failure is the predominant fracture mechanism observed in irradiated austenitic stainless steels in a wide variety of irradiation conditions. Therefore, as this work proceeds focus is made on void-driven ductile fracture mechanisms.

Experimental investigation of void-driven ductile fracture mechanisms

Void-driven ductile fracture is commonly decomposed into three major mechanisms:

1. Void nucleation consists in emergence of voids within the material. Voids typically nucleate at defects in the crystal lattice such as inclusions, precipitates, grain boundaries, etc. These defects are obstacles for dislocation glide and therefore they are responsible for stress concentrations which eventually lead either to their decohesion [START_REF] Avramovic-Cingara | Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing[END_REF][START_REF] Xu | Void nucleation by inclusion debonding in a crystal matrix[END_REF] or to their cracking [START_REF] Shabrov | Void nucleation by inclusion cracking[END_REF]. The X-ray tomography scans performed by [START_REF] Babout | On the competition between particle fracture and particle decohesion in metal matrix composites[END_REF] on aluminum alloys in Figure 2.29 display the mechanisms of debonding and cracking. In the context of nuclear materials it is important to remind that voids and bubbles can also be induced by irradiation. Irradiation induced voids are typically three orders of magnitude smaller than voids nucleated at defects, but may still be responsible for failure if irradiation-induced swelling is important as conĄrmed by the observations of fracture surfaces.

2. Void growth corresponds to the increase of voidsŠ volume. After void nucleation the mechanical loading may result in the expansion of their volume. High-resolution 3D tomography scans on nuclear pressure vessel steel by [START_REF] Daly | A multi-scale correlative investigation of ductile fracture[END_REF] shown in Figure Figure 2.32 SEM micrography of a 304L stainless steel fracture surface displaying micrometric dimples [START_REF] Barrioz | Effect of dislocation channeling on void growth to coalescence in FCC crystals[END_REF].

served to void nucleation. Figure 2.32 shows a typical SEM micrography of a 304L stainless steel fracture surface.

Homogenization of porous materials applied to ductile fracture

Modeling and simulating accurately void-driven ductile failure is of paramount importance in mechanics of materials, because it makes possible proper design of structures. In the context of nuclear materials it is even more vital. Recent literature reviews by [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF] [START_REF] Rice | On the ductile enlargement of voids in triaxial stress Ąelds[END_REF] prior to homogenized models, or thermodynamical approaches [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF], as well as variational methods [START_REF] Danas | A Ąnite-strain model for anisotropic viscoplastic porous media: IŰtheory[END_REF] are other possible alternatives to describe and predict ductile failure. [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] laid a milestone by conducting the theoretical and numerical limit analysis of a spherical hollow sphere. The author developed the yield loci and Ćow rule of a simpliĄed ductile porous material made of a rigid perfect-plastic matrix material following the von Mises yield criterion. In the past four decades this model has extensively been enhanced in order to improve its accuracy and to take into account more and more physical phenomena:

Void growth models

1. Accuracy improvements were obtained by [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF] to better Ąt porous unit-cell simulations and experimental results.

2. Shear dominated failure modiĄcations were proposed by [START_REF] Nahshon | ModiĄcation of the Gurson model for shear failure[END_REF].

3. Void shape effects were introduced in the model by [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities[END_REF].

4. Interfacial stresses effects were supplemented by [START_REF] Dormieux | An extension of Gurson model incorporating interface stresses effects[END_REF].

5. Inhomogeneous boundary strain rate effects were studied by [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF].

6. Isotropic and kinematic hardening effects were respectively introduced by [START_REF] Leblond | An improved Gurson-type model for hardenable ductile metals[END_REF] and [START_REF] Mear | InĆuence of yield surface curvature on Ćow localization in dilatant plasticity[END_REF].

7. Hill, Tresca, Mohr-Coulomb and Schmid yield criteria were used instead of von Mises criterion for the matrix material respectively by Benzerga and Besson (2001), [START_REF] Cazacu | New analytical criterion for porous solids with Tresca matrix under axisymmetric loadings[END_REF], [START_REF] Anoukou | Limit analysis and homogenization of porous materials with MohrŰCoulomb matrix. Part I: Theoretical formulation[END_REF] and [START_REF] Han | A yield function for single crystals containing voids[END_REF].

8. Strain gradients effects in the matrix material were accounted for by [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF].

GursonŠs yield function in its simplest, yet general form, can be written

ϕ g (Σ ∼ , σ 0 , α i ) = A(α i ) F(Σ ∼ ) σ 0 2 + B(α i ) cosh C(α i ) G(Σ ∼ ) σ 0 + D(α i ) (2.15)
where Σ ∼ = 1/V V σ ∼ dV is the macroscopic Cauchy stress tensor, σ 0 the matrix material yield stress and α i a set of internal variables describing voidsŠ state such as the void volume fraction, voidsŠ aspect ratio, orientation, etc. F and G denote scalar valued equivalent stresses, which respectively reduce to the von Mises equivalent stress and the hydrostatic mean stress in the original formulation by Gurson. A, B, C and D are scalar valued function which depend on voidsŠ state only. In the original formulation

A = 1, B = 2f , C = 3/2 and D = -(1 + f 2 ),
where f is the void volume fraction. [START_REF] Besson | Continuum models of ductile fracture: a review[END_REF] argued that the yield function Eq. 2.15 can instead be interpreted as an implicit deĄnition of some effective stress σ * g inside the matrix material such that ϕ g (Σ ∼ , σ * g , α i ) = 0. The yield function then becomes simply

φg = σ * g -σ 0 (2.16)
The interest of such a procedure is that the deĄnition of σ * g can be easily modiĄed without further formal modiĄcations of the constitutive equations. This is of particular interest for numerical implementation of material behaviours. Gurson complemented the yield function 2.15 with a Ćow rule by proving that the normality rule holds, hence

ε ∼ p = Λ ∂ϕ g ∂Σ ∼ (2.17)
where ε ∼ p is the plastic strain tensor at small strains and Λ a macroscopic so-called plastic multiplier. Closure of the model is obtained by giving evolution equations for the internal variables α i . When α i reduces to the void volume fraction f , the commonly accepted evolution equation, in absence of void nucleation, is based on mass conservation

ḟ = (1 -f )tr ( ε ∼ p ) (2.18)
This evolution law is based on some underlying homogenization hypothesis which will be discussed further in Chapter 6. Thermodynamical approaches followed by [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF][START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF][START_REF] Rousselier | Dissipation in porous metal plasticity and ductile fracture[END_REF] or variational methods followed by [START_REF] Castaijeda | The effective mechanical properties of nonlinear isotropic composites[END_REF] led to different, yet closely related homogenized models of porous materials. [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] performed a limit-load analysis at incipient failure for a porous solid containing square-prismatic voids. The author derived the maximum stress which can bear the intervoid ligament separating voids before necking. Once this critical stress is reached localization of plastic deformation will occur inside the ligament. ThomasonŠs criterion characterizes the onset of void coalescence by intervoid necking. However it can also be seen as a yield criterion (Benzerga et al., 2001). With this point of view, void growth and void coalescence are two plastic mechanisms which can be chosen to be activated either separately or possibly simultaneously. Extensions of ThomasonŠs criterion of intervoid necking has been extensively generalized in order to improve its accuracy and to take into account more physical phenomena:

Void coalescence models

1. Strict upper-boundedness of maximum limit loads were developed in [START_REF] Benzerga | Effective yield criterion accounting for microvoid coalescence[END_REF]; [START_REF] Morin | Coalescence of voids by internal necking: theoretical estimates and numerical results[END_REF].

2. Shear dominated coalescence was supplemented by [START_REF] Scheyvaerts | The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension[END_REF]; [START_REF] Tekoglu | A criterion for the onset of void coalescence under combined tension and shear[END_REF]; [START_REF] Torki | On void coalescence under combined tension and shear[END_REF].

3. Matrix plastic anisotropy effects were developed by [START_REF] Keralavarma | A criterion for void coalescence in anisotropic ductile materials[END_REF]; [START_REF] Morin | InĆuence of void shape and size effects, and plastic anisotropy on ductile fracture[END_REF].

4. Interfacial stresses effects were introduced by Gallican and Hure (2017).

5.

Hardening effects were introduced by [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF]; [START_REF] Scheyvaerts | The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension[END_REF].

6. Secondary population of voids were considered in [START_REF] Fabrègue | A constitutive model for elastoplastic solids containing primary and secondary voids[END_REF].

Thomason's criterion in its simplest, yet general form, can be written in absence of shear loading:

ϕ c (Σ ∼ , σ 0 , α i ) = Σ 33 σ 0 -(1 -χ 2 p )C(α i ) (2.19)
where it is assumed that coalescence occurs in the plane with normal e 3 . σ 0 still represent the yield stress of the matrix material and C is a concentration factor depending on voids' state. In its original form C(χ p , W ) = 0.1 ((1/χ p -1)/W ) 2 + 1.2 1/χ p where χ p is the size of squareprismatic voids, normalized by the homogenization cell size and W is the aspect ratio of the square-prismatic voids. Thomason's model was developed for square-prismatic cells and voids. However, in the literature, the model is assessed on orthorombic unit-cells containing spheroidal voids. Therefore, χ p is not appropriate to characterize the intervoid distance since the latter evolves along the height of the void. [START_REF] Torki | On void coalescence under combined tension and shear[END_REF] proposed to define an equivalent intervoid distance for spheroidal voids χ s such that two cells having the same porosity inside the material band containing the void will have the same intervoid distance. To satisfy this condition one can prove that χ s = π/6χ p . Closure of the model is obtained by giving evolution equations for the internal variables α i . When α i reduces to the normalized intervoid distance and the void aspect ratio, geometrical considerations, for prismatic cells with spheroidal voids, give

Ẇ = 9 4 λ χ s 1 - 2 πχ 2 s εp eq λ = 3 2 λ εp eq χ s = 6f λ πW 1 3
(2.20)

Following again the procedure proposed in Besson (2010), Eq. (2.19) can be interpreted as an implicit deĄnition of an effective stress σ * c inside the matrix material such that ϕ c (Σ ∼ , σ * c , α i ) = 0. It follows that the yield function then becomes

φc = σ * c -σ 0 (2.21)

Extensions into the framework of crystal plasticity

Most of the aforementioned models were developed in the framework of von Mises or Hill plasticity. Nevertheless, in metallic alloys, voids, cavities or bubbles, which have been described earlier, are often intragranular defects. Therefore each void is surrounded, locally, by a single crystal.

It is thus a motivation to consider crystal plasticity in the homogenization procedure. The pioneering analytical work of (Hori and Nemat-Nasser, 1988a,b) demonstrated the prominent effect of crystal plasticity on the evolution of void shapes in FCC and BCC crystals.

Experimental studies dedicated to quantify the effect of crystal plastic anisotropy on void growth and coalescence are still scarce. [START_REF] Crépin | Cavity growth and rupture of β-treated zirconium: a crystallographic model[END_REF] investigated the fast cavity growth and rupture by prismatic slip in β-treated zirconium. They showed how lath forces plastic slip to localize at their boundaries, causing a preferential growth of tubular voids parallel to their orientation. Ultimately cracks propagate along the dotted path formed by cavities. [START_REF] Gan | Cylindrical void in a rigid-ideally plastic single crystal II: Experiments and simulations[END_REF] studied the deformation and crystal rotation patterns surrounding cylindrical holes in aluminum. Crystal plasticity Ąnite element simulations were validated upon comparison with analytical slip line theory and experimental results. They highlighted existence of discontinuities of activated slip systems and lattice rotation, conĄrming existence of slip sectors as predicted by the slip line theory. Recently [START_REF] Barrioz | Effect of dislocation channeling on void growth to coalescence in FCC crystals[END_REF] studied the effect of dislocation channeling, induced by irradiation defects, on the behaviour of holes drilled in the middle of grains of tensile 304L stainless steel polycrystal specimens. They evidenced a strong modiĄcation of void evolution at low strains in the irradiated material as compared to the pristine material. The dislocation channels which are formed interact strongly with voids. However as the strain increases, activation of secondary dislocation channels lead to a more and more homogeneous deformation mode.

Numerical studies have also contributed to qualify the effect of plastic anisotropy of crystals in the context of ductile failure. Periodic porous unit-cells frequently used to assess the effective behaviour of porous materials up to failure were used. Typical Ąelds of accumulated plastic slip observed in single crystal porous unit-cell simulations are depicted in Figure 2.33 for several crystal orientations. The main Ąndings obtained from Ąnite element simulations of voids embedded in a crystal matrix can be listed as follows.

1. Void growth rate is strongly affected by crystal orientation. InĆuence of crystal orientation on void growth decreases with stress triaxiality [START_REF] Ha | Void growth and coalescence in fcc single crystals[END_REF][START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]Potirniche et al., 2006a;[START_REF] Selvarajou | Void growth and coalescence in hexagonal close packed crystals[END_REF][START_REF] Yerra | Void growth and coalescence in single crystals[END_REF]. Potirniche et al. (2006a), for example, reported that, for uniaxial loadings, voids grow, in a [111] orientation, twice as fast as in a [100] orientation. For highly anisotropic orientations, porous crystals can exhibit an almost incompressible behaviour because only a few slip systems are active [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]Mbiakop et al., 2015a,b).

Figure 2.33 Accumulated plastic slip Ąelds plotted in cross-sections of periodic single crystal porous unit-cell simulations with an imposed stress triaxiality T = 3 obtained for a initial porosity f 0 = 0.01 and at a strain such that f = 0.1. Fields are reproduced from [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF].

section of voids becomes elliptic when loaded in a [110] direction, loading along a [ 123] orientation produces corners which are due to combined rotation and stretching of voids.

3. For some crystal orientations, void-induced hardening can be observed as compared to pristine void-free material because the presence of voids changes the local stress state as compared to the remotely applied one [START_REF] Selvarajou | Void growth and coalescence in hexagonal close packed crystals[END_REF].

4. The overall effect of crystal orientation is larger for small initial void volume fractions [START_REF] Ha | Void growth and coalescence in fcc single crystals[END_REF][START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF].

5. Void volume fraction at coalescence is strongly inĆuenced by the crystal orientation while it is almost independent of the stress triaxiality [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF][START_REF] Yerra | Void growth and coalescence in single crystals[END_REF].

Crystal orientation affects more void coalescence velocity at low stress triaxiality [START_REF] Liu | The effects of load condition on void coalescence in FCC single crystals[END_REF].

6. Broader multiple slip regions are observed when a strain gradient crystal matrix is considered [START_REF] Borg | Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void[END_REF]. In this context, smaller voids are responsible for a localized deformation mode inside regions which intersect the void surface and are parallel to the active slip system. Smaller voids are also responsible for larger maximum mean stresses and reduced void growth [START_REF] Borg | Size effects on void growth in single crystals with distributed voids[END_REF][START_REF] Hussein | Plasticity size effects in voided crystals[END_REF][START_REF] Shu | Scale-dependent deformation of porous single crystals[END_REF]. In addition strain gradient effects tend to smooth out the geometry of voids as their size decreases.

Meanwhile, other authors focused on more local mechanisms. [START_REF] Chang | Molecular dynamics modeling and simulation of void growth in two dimensions[END_REF]; Potirniche et al. (2006b);[START_REF] Traiviratana | Void growth in metals: atomistic calculations[END_REF] studied void growth in single crystal by large scale 2D and 3D molecular dynamics. They investigated the behaviour of single crystals containing voids with radius of 1 to 100 nm. They showed that plastic deformation in the vicinity of voids is triggered by nucleation of dislocations at atomic steps on voidsŠ surface. For nano-voids (radius ≤ 10 nm), the stress necessary to nucleate dislocations increases when the void radius is decreased (at a given void volume fraction). According to the authors, no size effect could be observed on void growth rate for voids with radii smaller than 50 nm. Recently, [START_REF] Hure | Assessing size effects on the deformation of nanovoids in metallic materials[END_REF] investigated experimentally the behaviour of nanovoids in conditions relevant for low stress triaxiality and large strain conditions. They were able to demonstrate a possible existence, though limited, of void growth size effect for very small voids (radius ≤ 10 nm). Furthermore, [START_REF] Segurado | An analysis of the size effect on void growth in single crystals using discrete dislocation dynamics[END_REF]; [START_REF] Segurado | Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals[END_REF] investigated the mechanism of void growth by DDD for void radii greater than 100 nm. For such voids growth is triggered by nucleation of dislocations in the bulk. The authors were able to show that larger voids grow more rapidly than smaller voids. To summarize, for very small voids (radius ≤ 10 nm) a Šsmaller is strongerŠ size effect can be expected, while for larger voids (radius ≥ 100 nm) a Šlarger is fasterŠ size-effect can be anticipated. In addition, according to their experimental observations, [START_REF] Hure | Assessing size effects on the deformation of nanovoids in metallic materials[END_REF] argued that even at the nanoscale continuum mechanics modeling of plasticity could still remain relevant to describe the behaviour of voids.

A few homogenized models describing the growth of voids in porous single crystals were developed in the past decade. These models do not account for any size effects, thus limiting their scope to void sizes at least greater than 10 nm. [START_REF] Han | A yield function for single crystals containing voids[END_REF] proposed the Ąrst yield function for single crystals containing voids. Based on a variational formulation due to [START_REF] Castaijeda | Nonlinear composites[END_REF] the authors formulated a small strain GursonŠs like yield criterion for each slip system of the single crystal. The resulting yield function can be seen as an extension of SchmidŠs law to porous crystals, the plastic behavior of which is sensitive to the hydrostatic pressure. The model was later generalized to Ąnite deformations and extended with a Ćow rule by [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]. Following the same procedure as in previous section, the implicit deĄnition of the effective resolved shear stress inside the crystal matrix τ * s for s-th slip system can be written

ϕ s (Π ∼ M , τ * s , α i ) = A(α i ) F(Π ∼ M ) τ * s 2 + B(α i ) G(Π ∼ M ) τ * s 2 + C(α i ) cosh D(α i ) H(Π ∼ M ) τ * s + E(α i ) (2.22)
where Π ∼ M is MandelŠs stress related to each resolved shear stress τ s by Π ∼ M : (m s ⊗ n s ) = τ s where m s is the unit vector in the gliding direction and n s is the unit vector normal to the slip plane. In [START_REF] Han | A yield function for single crystals containing voids[END_REF][START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF], α i reduces to the void volume fraction f , and one has

A = 1 B = αf 2 45 C = 2q 1 f D = q 2 3 20 E = -(1 + (q 1 f ) 2 ) (2.23) F(Π ∼ M ) = τ s G(Π ∼ M ) = 3 2 Π ∼ M ′ : Π ∼ M ′ H(Π ∼ M ) = Π M m (2.24)
where

Π ∼ M = Π ∼ M ′ +Π M m 1 ∼ .
The parameters α, q 1 and q 2 are to be Ątted by comparison with RVE simulations. The values identiĄed by [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] are α = 5.69, q 1 = 1.60 and q 2 = 1.19. Then, the yield function on each system is simply

φs = τ * s -τ c s (2.25)
Hardening is therefore readily accounted for in the critical resolved shear stress τ c s of the pristine void-free single crystal. A few other models of porous single crystals have been proposed in the literature. One is due to [START_REF] Paux | An approximate yield criterion for porous single crystals[END_REF]. It is based on a modiĄcation of GursonŠs model to account for the crystallographic nature of the matrix material. The modiĄcations consist in replacing σ 0 by τ 0 the critical resolved shear stress in absence of hardening in Eq. (2.15) and changing the deĄnition of F and C

F(Σ ∼ ) = N s=1 ♣Σ ∼ : (m s ⊗ n s )♣ n 1 n C = κ ′ ≃ 0.506 (2.26)
where N is the number of slip systems and n a positive regularization exponent. When n goes to inĄnity F(Σ ∼ ) converges towards the largest term in the sum over s. The model can be seen as a regularized Schmid law [START_REF] Arminjon | A regular form of the Schmid law. Application to the ambiguity problem[END_REF][START_REF] Gambin | ReĄned analysis of elastic-plastic crystals[END_REF] extended to account for the effect of the hydrostatic pressure. This model was then extended in order to take into account hardening in [START_REF] Paux | Plastic yield criterion and hardening of porous single crystals[END_REF]. The second is due to Mbiakop et al. (2015a,b). It is based on the modiĄed variational (MVAR) method established by [START_REF] Danas | Numerical modeling of elasto-plastic porous materials with void shape effects at Ąnite deformations[END_REF]. The authors argued that the effective (macroscopic) strain rate tensor D ∼ is given by

D ∼ = ∂ Ũ ∂Σ ∼ (2.27)
where the effective potential of a porous medium Ũ (Σ ∼ , α

i ) = (1 -f ) min σ ∼ ∈S(Σ ∼ ) ⟨U (σ ∼ )⟩ is given by the MVAR model Ũmvar (Σ ∼ ) = (1 -f ) -n N s=1 γs 0 (τ s 0 ) -n n + 1 Σ ∼ .S ≈ mvar,s .Σ ∼ n+1 2
(2.28) Corresponding porous unit-cell numerical limit analysis results are also reported. Graphs are reproduced from (Mbiakop et al., 2015a).

predicted by the three porous single crystal void growth criteria presented above. It can be seen that all of them predict very similar elastic domains for different porosities and crystal orientations. On the same graphs are also plotted the results obtained from numerical limit analysis simulations performed on porous unit-cells by [START_REF] Han | A yield function for single crystals containing voids[END_REF]. A quite good agreement between homogenized models and limit analysis simulations can also be observed. Recently [START_REF] Joëssel | Modélisation micromécanique du comportement viscoplastique dŠun polycristal poreux: application à un acier inoxydable austénitique irradié[END_REF] proposed alternative effective properties of voided cubic crystals under hydrostatic loading. He followed two distinct approaches to derive upper bounds of the effective Ćow stress σh of porous single crystals. The Ąrst method is based on the Hollow-sphere assemblages (HSA) Gurson-like technique, while the second follows the inĄnite-rank sequential laminates (LAM) method [START_REF] Idiart | Modeling the macroscopic behavior of two-phase nonlinear composites by inĄnite-rank laminates[END_REF]. Both approaches lead to the following expression

σh = α(n)n(f -1 n -1) (2.29)
where n is the creep exponent and α(n) depends on the chosen homogenization technique. The authors obtained the following expressions of α HSA and α LAM

α HSA = Sup σ ∼ d ∈ T d ♣ξ .σ ∼ d .ξ ♣ n n+1 N k=1 τ (k) -n 0 ♣σ ∼ d .(m s ⊗ n s )♣ n+1 1 n (2.30) α LAM = Sup σ ∼ d ∈ T ∥ (ξ ) ♣ξ .σ ∼ d .ξ ♣ n n+1 N k=1 τ (k) -n 0 ♣σ ∼ d .(m s ⊗ n s )♣ n+1 1 n
(2.31) ξ denotes the normalized position vector relative to the center of the sphere, T d represents the set of symmetric deviatoric stresses and

T ∥ (ξ ) = ¶σ ∼ d ∈ T d : σ ∼ d .ξ ∥ ξ ♢.
The authors were able to obtain quite a good agreement with porous unit-cell results under hydrostatic loadings for several porosities, creep exponents and crystal anisotropies.

Homogenized models describing coalescence of voids in single crystals are even more scarce. A Ąrst criterion was built by [START_REF] Yerra | Void growth and coalescence in single crystals[END_REF] in order to be able to predict onset of void coalescence in single crystals. The authors proposed an extension to ThomasonŠs criterion given in Eq. (2.19) suited to incorporate hardening and crystal plasticity effects. The criterion writes

ϕ c (Σ ∼ , σ 0 , α i ) = Σ eq σ loc y + 3 2 Σ m σ loc y -(1 -χ 2 p ) 3 2 C(α i ) (2.32)
where σ loc y is a measure of material strength in the vicinity of the void in the coalescence plane. In order to estimate this quantity [START_REF] Yerra | Void growth and coalescence in single crystals[END_REF] proposed to perform an ancillary computation of a single crystal which orientation is given by the crystal orientation in the vicinity of the void. The applied loading is equibiaxial straining which is representative of the loading in the coalescence plane. σ loc y is then the equivalent stress reached by this single crystal when the equivalent plastic strain equals an estimation of the local plastic strain in the vicinity of the void extrapolated from the average applied strain tensor. The authors showed that such a criterion allows to give a satisfactory prediction of the equivalent strain at onset of void coalescence. More recently Hure (2019) derived a coalescence criterion for porous single crystals by extending to the crystal plasticity framework the coalescence criterion in tension and shear developed by [START_REF] Torki | On void coalescence under combined tension and shear[END_REF]. The coalescence criterion relies on three average Taylor factors M 1 , M 2 and M 3 which are numerically computed by integrating over the intervoid ligament local Taylor factors obtained by TaylorŠs minimum shear principle. The criterion writes

         ♣Σ 33 ♣ -t(W, χ p )Σ surf 2 b 2 Σ vol 2 + 4 Σ 2 sh T 2 -1 = 0 for ♣Σ 33 ♣ ≥ Σ surf 4 Σ 2 sh T 2 -1 = 0 for ♣Σ 33 ♣ ≤ Σ surf (2.33)
where one has t(W, χ) = W (-0.84 + 12.9χ p ) 1 + W (-0.84 + 12.9χ p ) b = 0.9 (2.34)

Σ surf = τ 0 M 1 χ 3 p -3χ p + 2 3 √ 3W χ p (2.35) Σ vol = τ 0 M 2 2 √ 3   2 -1 + 3χ 4 p + ln   1 + 1 + 3χ 4 p 3χ 2    
(2.36) Hure (2019) showed with numerical limit analysis performed by FFT on cylindrical and cubic unit-cells that the semi-analytical coalescence criterion is in very good agreement with the numerical yield loci for both FCC and hexagonal close-packed (HCP) single crystals. Effects of the set of slip systems, crystal orientation, void shape and volume were assessed. The strong coupling, at low applied stress triaxiality, between crystal and void lattice orientation on the coalescence stress was also demonstrated.

T = τ 0 2M 3 √ 3 (1 -χ 2 p ) (2.37)
To the authorŠs knowledge, the only applications of such models of porous single crystals to the simulation of structures were performed by [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] on a single-edge-notch tension specimen. Figure 2.35 displays the accumulated plastic slip and porosity Ąelds obtained for three different crystal orientations. These results were obtained with a model accounting for void growth only. In addition, they suffer from the well known issue of mesh-dependency associated to damage induced softening and related instability.

Conclusions

A state of the art was reported in order to address the study of strain localization and ductile fracture in the context of irradiated austenitic stainless steels modeling with the most recent knowledge and tools at hand in the literature. Focus was made on experimental results and modeling methods.

First of all, a description of the material at the center of this study was provided. The crystallographic nature of austenitic stainless steels was shown to be the scene of great evolutions induced by neutron radiations produced by Ąssion reactions. The nature, as well as the conditions (temperature, dose, Ćux spectrum) of apparition of the defects produced by radiation-damage were described. It was also discussed how proton irradiation can serve as an effective and advantageous tool to mimic a neutron irradiation induced defect microstructure. For the purpose of this work the main point to remember is that dislocation Frank loops, voids and bubbles can be formed under irradiation. The consequences caused by these defects on the mechanical behaviour of irradiated austenitic stainless steels were outlined. The main features caused by radiationinduced defects are an increase of yield and ultimate strength and a loss of hardening capability and ductility. As a result the fracture toughness of austenitic stainless steels endures a dramatic decrease when irradiation dose increases. Although these properties are well assessed in the literature at the polycrystal level, very few experimental data are available at the single crystal level. Consequently, for purposes of modeling the local intragranular behaviour of austenitic stainless steels, experimental investigations of unirradiated and irradiated single crystals are necessary.

Then, the link between irradiation-induced defects and observed material properties was characterized. Comments on how instabilities may arise from material properties or geometrical conditions and result in strain localization phenomena were given. Dislocation Frank loops, responsible for strengthening of irradiated austenitic stainless steels, can in turn lead to material instabilities. Their elimination in the path of gliding dislocations provokes local softening and therefore easier glide for the forthcoming dislocations resulting in dislocation channeling. Dislocation channels are widely observed in (irradiation)-hardened metals and are the bridging link between strengthening and loss of hardening capability and ductility. Modeling strain localization phenomena requires speciĄc means in order to thwart ill-posedness of conventional theories in this context. Strain gradient plasticity is an efficient tool to incorporate length scales dependencies into material models and thus ensure uniqueness of the solution in simulation of strain localization. Nevertheless the non-local coupling terms which arise in strain gradient plasticity models are responsible for an increased complexity in the resolution of the differential equations governing the material behaviour. Tremendous numerical efforts are hence necessary in order to compute the behaviour of large structures. Efficient numerical treatment and implementation of strain gradient models are therefore required.

Last, mechanisms of ductile failure in metallic materials are presented. Focus is made on void-driven ductile fracture which is typically decomposed into void nucleation, void growth and void coalescence. In radiation-damaged materials two distinct population of voids can simultaneously coexist and be responsible for failure. Micrometric voids nucleate by inclusion rupture or decohesion and nanometric voids formed by clustering of vacancies induced by irradiation. Both populations are affected and interact with the heterogeneous deformation mode induced by dislocation channeling. Ductile failure of irradiated stainless steels can occur by growth and coalescence of micro-and nano-metric voids. Modeling the behaviour of porous materials up to failure can be performed with homogenized models. Homogenization techniques provide approximations of effective properties of representative volume elements. Recently homogenization of porous single crystals were carried out in order to be able to predict ductile failure accounting for crystal plasticity anisotropies effects. However, to the authorŠs knowledge, a complete, regularized ductile failure model of porous single crystals has not yet been proposed.

This synthesis provides the guidelines of the present work:

1. produce experimental data on austenitic stainless steels single crystals to inform and validate existing continuum crystal plasticity models 

Introduction

Due to their excellent mechanical properties at relatively low cost, austenitic stainless steels are widely used as structural materials in engineering applications [START_REF] Marshall | Austenitic stainless steels: microstructure and mechanical properties[END_REF]. For instance, their mechanical behaviour in the range of temperatures and pressures operating inside nuclear pressure vessels makes them suitable for internal structural use. These qualities have led to an extensive literature aiming at measuring, understanding and leveraging the origin of these particularly interesting properties. Experimental as well as numerical studies were carried out in order to investigate the underlying mechanisms at scales spanning over several orders of magnitude. Microscopical analyses based on electron micrography are widely used to characterize and link mechanical properties to microstructural features such as grain size, grain morphology, crystallographic morphology, presence of precipitates, etc. Microstructural characterization of steels are mostly performed at subcrystalline level, while most mechanical tests are performed on polycrystalline specimens, thus averaging the behaviour of numerous grains. The reason for the striking gap between the scales of microstructural observation and mechanical characterization is twofold. First, most applications of steels do involve pieces composed of a large number of grains and therefore do not necessarily require measuring the mechanical behaviour of individual grains. Second, mechanical testing of individual grains is challenging for steels due to relatively small grain size obtained during elaboration, typically a few tens of micrometers.

Nevertheless Ąlling this gap could have substantial beneĄts. Elementary mechanisms of plasticity and fracture occur indeed often at scales below the grain size. Furthermore, models of material behaviours have become more and more reĄned. For instance, continuum theory of crystal plasticity is a modeling tool of utmost importance for bridging subgrain features to macroscopic mechanical behaviour. However crystal plasticity models rely on material parameters which remain, for some, imprecisely known in austenitic stainless steels due to the lack of experimental work at this scale. To some extent, evaluation of these parameters can be carried out by inverse identiĄcation on polycrystals experiments or by coarse-graining results obtained by numerical simulations performed at smaller scales (e.g. discrete dislocation dynamics (DDD) simulations). Yet, an experimental investigation of the mechanical behaviour of austenitic stainless steel single crystals would help validating or if not amending numerical values of material parameters used in the literature. The present work aims at performing this task.

Several techniques exist in order to grow millimeter-sized (or even larger) metallic single crystals such as the BridgmanŰStockbarger method or the Czochralski method. They can thus be used in order to produce ingots from which single crystal specimens can be machined while controlling the orientation of the crystal lattice within the sample geometry. Experiments on pure metallic single crystals were performed for instance on aluminum [START_REF] Taylor | The plastic extension and fracture of aluminium crystals[END_REF], copper [START_REF] Cuitino | Three-dimensional crack-tip Ąelds in four-point-bending copper single-crystal specimens[END_REF][START_REF] Demir | Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending[END_REF], magnesium [START_REF] Syed | compression response at room temperature of single-crystal magnesium[END_REF] and α-iron [START_REF] Keh | Plasticity of iron single crystals[END_REF]. Experiments on metallic alloys single crystals are more scarce since their elaboration is often more sophisticated. Available studies focus predominantly on nickel-based superalloys [START_REF] Hanriot | Mechanical behaviour of a nickel-based superalloy single crystal[END_REF][START_REF] Raffaitin | The effect of thermal cycling on the high-temperature creep behaviour of a single crystal nickel-based superalloy[END_REF] or HadĄeld steels [START_REF] Canadinc | Strain hardening behavior of aluminum alloyed HadĄeld steel single crystals[END_REF]Karaman et al., 2000). Some experimental techniques do not require large grains, such as for instance mircropillar compression or nanoindentation. Such methods were respectively used by [START_REF] Paccou | Micropillar compression study of Fe-irradiated 304l steel[END_REF] and [START_REF] Weaver | Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening[END_REF] to characterize virgin and irradiated 304 stainless steel. However, small scale experimental techniques often come with the difficulty of assessing the dependency of the results to the size of the samples. This question is raised because the scale of the sample becomes of the same order of magnitude as the scale of the deformation processes. When possible, experimental methods which do not involve that kind of issues should be preferred, at least for Ąrst investigations. To the authorsŠ knowledge a single study performed by Karaman et al. (2001) reports tensile test results on 316L stainless steel millimeter-sized single crystals. Their tensile experiments were carried out on nitrogen-free and nitrogen-strengthened steels at room temperature with a strain rate of 5×10 -5 s -1 and with the tensile directions oriented along <111>, <001> and <123> crystal directions. At these temperature and strain rates, slip and twinning mechanisms coexist and interact. In order to isolate and analyze only one plastic mechanism it is more convenient to study the behaviour of 3.2 Experimental methods 54 316L stainless steel at a higher temperature where slip predominates. For light water nuclear reactor applications the temperature of structural internals made out of 316L stainless steel neighbours 300-350 • C, therefore a temperature of 300 • C is chosen in the present study.

If experiments on metallic single crystals are seldom in the literature, in contrast, many crystal (elasto-)plasticity models are available and used in numerical simulations. A common feature shared by most models is to consider a set of yield criteria in order to account for several inelastic mechanisms, such as plastic slip on different slip systems. Some differences between available models stem from their either phenomenological or more physical foundation. For instance [START_REF] Méric | Single Crystal Modeling for Structural Calculations: Part 1-Model Presentation[END_REF] consider a phenomenological crystal plasticity theory. On the other hand a variety of dislocation-based crystal plasticity theories were formulated [START_REF] Kuhlmann-Wilsdorf | The theory of dislocation-based crystal plasticity[END_REF]. Some models account for the edge or screw nature of dislocations [START_REF] Gurtin | The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity[END_REF], while others introduce size dependencies by accounting for the presence of geometrically necessary dislocations [START_REF] Gurtin | A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations[END_REF]. In addition, formulations with a critical stress (threshold) to activate plastic slip [START_REF] Méric | Single Crystal Modeling for Structural Calculations: Part 1-Model Presentation[END_REF] and formulations without a critical stress (threshold-free) [START_REF] Kothari | Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum[END_REF] are available. Furthermore, rate-independent settings [START_REF] Anand | A computational procedure for rate-independent crystal plasticity[END_REF]Forest and Rubin, 2016;[START_REF] Schmidt-Baldassari | Numerical concepts for rate-independent single crystal plasticity[END_REF] and viscoplastic frameworks [START_REF] Méric | Single Crystal Modeling for Structural Calculations: Part 1-Model Presentation[END_REF][START_REF] Rashid | A constitutive algorithm for rate-dependent crystal plasticity[END_REF] were concurrently proposed. All in all, a wide variety of models are at hand in the literature. More often than not, their parameters are obtained from inverse identiĄcation on polycrystals or by upscaling numerical results from DDD or molecular dynamics (MD) simulations rather than from direct calibration on single crystal tests.

The objectives of the present chapter are threefold. First tensile tests are performed on austenitic stainless steel single crystal specimens at 300 • C. Tensile tests are carried out along directions close to <111> and <110> crystal orientations. Digital image correlation analysis is applied in order to measure displacement and strain Ąelds. Then, experimental data are confronted to theoretical modeling of single crystals. First of all, the correct prediction of activated slip systems by SchmidŠs criterion is assessed. Thereafter, Ąnite element simulations, are performed in order to calibrate a crystal plasticity model available in the literature. Eventually, a review of enhanced crystal plasticity constitutive equations to account for irradiation induced defects is presented. Thereafter, preliminary experimental results for a prospective study on proton-irradiated austenitic single crystals are presented.

The chapter is organized as follows. In Section 3.2 the material and experimental techniques used for this study are presented. Section 3.3 gathers experimental results obtained from ex situ tensile tests. In Section 3.4 the identiĄcation procedure of material parameters of a crystal plasticity model is explained and comparison to experimental data are presented. A review of crystal plasticity models relevant for irradiated austenitic steels and preliminary results on proton-irradiated stainless steels are presented in section 3.5. Concluding remarks and prospects are given in Section 3.6.

Experimental methods

Material and instruments

A 25 × 25 × 2 mm 316L grade austenitic stainless steel plate composed of mainly two millimetersized weakly-misoriented grains was purchased from Princeton ScientiĄc Corporation (Princeton ScientiĄc Corporation, 2020). An EBSD map of the plate showing the two grains is given in Appendix A. The chemical compositions as provided by the supplier is given in Table 3.1. Electrical-discharge machining with a ϕ = 100 µm wire was used in order to obtain two 25 × 25 × 0.9 mm sized plates by cutting through the thickness of the initial plate. The same machining technique was then used to cut tensile specimens inside single-or bi-crystal regions of the plate. The geometry design and dimensions were optimized in order to maximize the number of specimens to be machined from the plates while remaining compatible with the available testing equipment described in Section 3.2.2. A sketch of the tensile specimen geometry and 3.3 Experimental results 56 measured temperatures. A uniform temperature proĄle was measured by infrared thermography on the region facing the surface in contact with the heating unit. A gradient of approximately -60 • C /mm along the tensile direction was measured on both sides of the heated region. More details on the temperature gradient measurement are given in Appendix C.

Digital Image Correlation Ąeld measurements

For ex situ tensile tests a paint speckle pattern is used for Digital Image Correlation (DIC) measurements. A random pattern is obtained by laying Ąrst a thin layer of white paint. In a second step droplets of black paint are disposed on the white surface by using an airbrush with very thin aperture in order to minimize the black spots diameter. A mean diameter of about 20 µm is obtained. A heat resistant paint (HI-TEMP from KBS Coatings (KBS, 2020)) is used to make the DIC pattern. A Canon MP-E 65mm f/2.8 1-5x lens mounted on a Canon Mark IV digital camera is utilized for optical image acquisition. A maximum image deĄnition of 6720 × 4480 pixels is used to take pictures every 10 s during the tests. For all the tests the pixel size varies between 1.78 µm/pixel and 2.53 µm/pixel. The MATLAB software Ncorr [START_REF] Blaber | Ncorr: open-source 2d digital image correlation matlab software[END_REF] is used to perform image correlations and Ąelds post-processing. A correlation area of length L 0 =7.7 mm and width W 0 =1.5 mm centered in the middle of the specimen is used. The correlation window radius is equal to 50 µm and the spacing between correlation windows is 25 µm. Ncorr is also used to compute the local in plane deformation gradient F ∼ = ∂x /∂X . In order to compute strains, an optimal length over which displacements evolution can reasonably be considered as linear must be deĄned. If this distance is chosen too large, deformations will be smoothed out and information is lost. If on the contrary it is chosen too small, noise in the displacements measurements are ampliĄed and strain Ąelds are unrealistically oscillating. In our case an optimal length of 100 µm was found after several tests. Furthermore, the out-of plane components of F ∼ cannot be directly measured with the two-dimensional image correlation technique used in this study. However, according to [START_REF] Papasidero | Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: BaoŰWierzbicki results revisited[END_REF], a three-dimensional equivalent strain can be deĄned as follows. First, a two-dimensional Hencky strain tensor is deĄned as

H ∼ 2D = 1 2 log F ∼ T .F ∼ = H 11 H 12 H 12 H 22 (3.1)
From H ∼ 2D , in-plane principal strain components H 2D I and H 2D II can be determined. Then, assuming small elastic strains and using plastic incompressibility the third principal Hencky strain can be estimated as

H III = -H 2D I -H 2D II .
Finally, the von Mises norm can be used to deĄne a scalar equivalent strain measure

H 3D eq = 2 3 (H 2D I ) 2 + (H 2D II ) 2 + H 2 III = 2 √ 3 (H 2D I ) 2 + (H 2D II ) 2 + H 2D I H 2D II (3.2)

Experimental results

Microstructure of tensile specimens

The austenitic stainless steel plate used in this study was sold by Princeton ScientiĄc Corporation as a single crystal with ⟨111⟩ and ⟨1 10⟩ crystal directions parallel to the long edges of the plate. However, as mentioned earlier, the plate was actually composed of mainly two millimeter-sized weakly-misoriented grains. The presence of a grain boundary crossing the middle of the plate was detected when performing an EBSD map covering the whole surface of the plate (see Appendix A). The misorientation between the two grains (later denoted G1 and G2) is about 10°. As far as possible tensile specimens were taken from one or the other grain, hence avoiding the presence of the grain boundary in their minimum cross section area. In Table 3.2, the notations used to Table 3.2 Notations used to denote the tensile specimen and their respective crystal orientation.

Notation Grain

[ϕ 1 , Φ, ϕ 2 ] Tensile X 1 Transverse X 2 Normal X 3 R4 G1 [98°, 35°, 38°] [111] [1 10] [11 2] R2, R3 G2 [308°, 59°, 40°] [1 10] [111] [ 11 2]
denote the tensile specimen, the grain they were taken from and their corresponding average Euler angles (given with the Bunge convention ZXZ) are presented. For practical purposes the closest crystallographic orientations are given for the principal axes of each specimen. It is important to note that these crystallographic orientations are not exactly aligned with the specimen axes, but are used to have an informative approximate orientation of the crystal inside the specimens. In the forthcoming numerical analysis in Section 3.4, as-measured orientations will be used by assigning average Euler angles to the whole specimen. For two different specimens, each one taken from one of the two grains composing the initial plate, a large scale EBSD map covering the whole surface is performed. These EBSD maps are presented in Figure 3.2 along with their corresponding Inverse Pole Figures (IPF). From Figures 3.2a and 3.2b it can be seen that the specimen R4 is weakly misoriented (about 3°) from the announced crystal orientation.

On the contrary in Figures 3.2c and 3.2d a misorientation of about 10°can be observed between the orientation of specimen R2 and the announced orientation. This is due to the fact that specimen R2 was taken from grain G2 which was known to be slightly misoriented with respect to G1. On the EBSD maps, white regions are BCC-indexed zones which correspond to elongated ferrite inclusions. The presence of these defects is probably due to the elaboration process of the millimeter-sized grains. As this work proceeds, their inĆuence on the mechanical behaviour will be neglected for the sake of simplicity.

Ex situ tensile results

DIC measurements

As presented in Section 3.2.3 the software Ncorr is used to compute displacement Ąelds by digital image correlations. These Ąelds are then post-processed in order to extract an equivalent Hencky strain H 3D eq deĄned at Eq. (3.2). Figure 3.3 displays, for each orientation, the corresponding Ąelds of equivalent strain at two different macroscopic tensile strains deĄned as ∆L/L 0 . ∆L denotes the variation in length of the correlation zone which initial length is L 0 = 7.7 mm. In Figures 3.3a and 3.3c ∆L/L 0 = 0.05 and on in Figures 3.3b and 3.3d ∆L/L 0 = 0.10. At a macroscopic strain level of 0.05, equivalent strain Ąelds are already signiĄcantly heterogeneous. For each orientation narrow bands appear in the whole correlation area and are not restricted to the lowest cross section region located at the center. Overall their width is lower than approximately 200 µm. These bands are collectively oriented along preferential directions. For each specimen essentially two preferential directions can be observed and several parallel bands are visible for each of them. In specimen R4, the bands are approximately symmetrically inclined at ±15°with respect to the tensile direction. In specimen R2, the bands are approximately inclined at -58°and 30°with respect to the tensile direction. The local maximum equivalent strain reaches up to 0.2 in almost all bands, while outside of the bands a strain lower than 0.05 is always observed. In specimen R4 all bands have mostly the same intensity in terms of equivalent strain. On the contrary, in specimen R2, one band located in the middle of the specimen appears almost twice stronger as all others. At a macroscopic strain level of 0.1, the heterogeneity of equivalent strain Ąeld persists for both specimens and the same narrow bands remain visible. For both orientations all the bands observable at ∆L/L 0 = 0.10 were already noticeable at ∆L/L 0 = 0.05. While their specimen R2 and R3. One has indeed σ R2 0 /σ R4 0 ≃ 0.62 and σ R3 0 /σ R4 0 ≃ 0.66 to be compared to m R4 /m R2,R3 ≃ 0.74. In Figure 3.5b, the almost linear hardening behaviour for specimen R4 is characterized by a slope of H R4 = 2575 MPa, while a slope of H R2 = H R3 = 465 MPa is obtained with specimen R2 and R3. For all the tests the linear hardening regime is preceded by a limited hardening regime which lasts for about 1 % of macroscopic strain after the purely elastic regime. It probably corresponds to an easy glide period, during which single slip is essentially operating locally without much forest dislocations interactions. The second plastic stage lasts until failure of the specimen which occurs almost without signiĄcant strain after the ultimate tensile strength. Failure occurs indeed by propagation of a crack starting from one long-edge side and reaching rapidly the other long-edge side of the specimen.

Numerical identification of crystal plasticity material parameters

Crystal plasticity law

The tensile experiments presented in previous section are used in order to identify the material parameters of a crystal plasticity model often used in the literature. The model is essentially composed of yield criteria, Ćow rules, hardening laws and dislocation density evolution laws deĄned per slip system. The usual Schmid yield criterion deĄned per slip system is used. It states that plastic slip is active on a given slip system s if and only if the resolved shear stress τ s applied on this system reaches a critical value noted τ s c . In the context of Ąnite strains, τ s is often deĄned with respect to MandelŠs stress tensor Π ∼ M by τ s = Π ∼ M : (m s ⊗n s ), where m s and n s refer to the slip direction and normal to slip plane unit vectors in the undistorted conĄguration of system s respectively. MandelŠs stress is deĄned with respect to CauchyŠs stress σ ∼ by Π

∼ M = det (E ∼ ) E ∼ T .σ ∼ .E ∼ -T
, where a multiplicative elastic-plastic decomposition of the deformation gradient is assumed (F ∼ = E ∼ .P ∼ ). The yield criteria therefore read

f s = ♣τ s ♣ -τ s c (3.3)
3.4 Numerical identiĄcation of crystal plasticity material parameters 62 Several approaches exist in order to deĄne Ćow rules per slip system. From a numerical point of view one major difficulty arises, because of the possible indeterminacy of active slip systems. In order to alleviate this obstacle viscoplastic Ćow rules are often used [START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF][START_REF] Peirce | Material rate dependence and localized deformation in crystalline solids[END_REF]. In this work following Ćow rules are utilized in the form γs = sign (τ s ) γ0

f s τ 0 n (3.4)
The hardening laws are expressed as functions of the scalar dislocation densities ρ s per slip system s deĄned as the length of dislocation lines per unit volume on system s. The hardening laws account therefore for lattice friction and dislocations interactions. Following [START_REF] Franciosi | Latent hardening in copper and aluminium single crystals[END_REF], the critical resolved shear stress (CRSS) is taken as

τ s c = τ 0 + µb N u=1 a su ρ u (3.5)
where τ 0 is the thermal component of the CRSS due to lattice friction, b is the norm of the dislocation Burgers vector b , µ is the shear modulus and a su is a matrix describing interactions between dislocations. For FCC metals, it usually takes the form of a 12 × 12 matrix composed for symmetry reasons of only 6 independent coefficients noted a 1 to a 6 . These coefficients can be regarded as Taylor factors describing the possible dislocation junctions or dipoles formations [START_REF] Bassani | Latent hardening in single crystals. II. Analytical characterization and predictions[END_REF][START_REF] Devincre | Physical analyses of crystal plasticity by DD simulations[END_REF][START_REF] Franciosi | The concepts of latent hardening and strain hardening in metallic single crystals[END_REF][START_REF] Kubin | Modeling dislocation storage rates and mean free paths in face-centered cubic crystals[END_REF][START_REF] Madec | The role of collinear interaction in dislocation-induced hardening[END_REF], namely self-hardening interactions (a 1 ), coplanar interactions (a 2 ), Hirth locks (a 3 ), colinear interactions (a 4 ), glissile junctions (a 5 ), and Lomer locks (a 6 ) can exist.

[
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Several atomistic and DDD studies were carried out in order to determine numerically appropriate values for the a i coefficients [START_REF] Devincre | Physical analyses of crystal plasticity by DD simulations[END_REF][START_REF] Madec | The role of collinear interaction in dislocation-induced hardening[END_REF][START_REF] Monnet | Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel[END_REF]. It appears that colinear interactions (a 4 ) display the strongest interaction. On the contrary Hirth locks (a 3 ) seem to induce a less signiĄcant hardening. In between, Lomer locks (a 6 ), self-hardening (a 1 ), coplanar interactions (a 2 ) and glissile junctions (a 5 ) have similar importance on the hardening behaviour. Furthermore, DDD simulations performed on single crystal copper by [START_REF] Devincre | Physical analyses of crystal plasticity by DD simulations[END_REF] have shown that intensity of interactions between dislocations varies with the total density of dislocations. This property is attributed to the modiĄcation of the line tension by [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF]. The latter authors also argued that other kinds of defects, such as dislocation loops which will be discussed in next section, do also contribute to the modiĄcation of the line tension. Therefore, they proposed the following identiĄcation from DDD simulations for the dependence of the interaction matrix coefficients upon the total obstacle density ρ obs

a su = a su ref   0.2 + 0.8 ln 0.35b √ ρ obs ln 0.35b √ ρ ref   2 (3.7) If ρ obs = ρ ref , then a su = a su ref .
In addition a su is a decreasing function of ρ obs in the domain of interest 10 9 Ű10 15 m -2 . Variations with respect to a su ref become non-negligible when ρ obs differs from ρ ref by one or several orders of magnitudes. Such a situation can occur in case of intense hardening by dislocation multiplication (or also when dislocation loops are annihilated in the context of irradiated materials). A diminution of about a factor 2 is obtained when ρ obs becomes large (∼10 15 m -2 ). Unless otherwise stated, evolution of matrix interaction coefficients will be neglected throughout this work.

An identiĄcation of the material parameters of the crystal plasticity law is sought. As long as DDD results have shown that self-hardening, coplanar interactions, glissile junctions and Lomer locks have similar inĆuence on hardening, the following approximation will be used to reduce the number of independent parameters from 6 to only 3

A 1 = a 1 ≃ a 2 ≃ a 5 ≃ a 6 A 2 = a 3 A 3 = a 4 (3.8)
It should be remarked that, when going to large deformations, the interaction matrix is used outside its identiĄcation domain where little is known about its evolution. Furthermore, the scalar dislocation densities evolution equations are generally composed of at least two contributions [START_REF] Devincre | Physical analyses of crystal plasticity by DD simulations[END_REF][START_REF] Mecking | Kinetics of Ćow and strain-hardening[END_REF][START_REF] Tabourot | Generalised constitutive laws for FCC single crystals[END_REF][START_REF] Teodosiu | A physical theory of the finite elastic-viscoplastic behaviour of single crystals[END_REF]. A positive contribution that accounts for storage governed by multiplication of dislocations by interactions with other systems based on OrowanŠs relation. This term is characterized by an estimation of the number of obstacles κ a dislocation can cross before being pinned. Magnitude of the interactions between systems is characterized in FCC materials by a 12×12 interaction matrix b su . For the sake of simplicity it is assumed that b su = 1-δ su where δ su is KroneckerŠs delta. In that manner dislocations in each system do not interact with dislocations among the same system, but interact with the dislocations in all others system with the same intensity. In addition a negative contribution describes annihilation of dislocations dipoles in a given system in order to account for dynamical recovery. This mechanism is characterized by an annihilation distance bG c , where b is the norm of Burgers vector and G c a proportionality factor. The standard dislocation density evolution on system s is therefore

ρs = ♣ γs ♣ b   1 κ N u=1 b su ρ u -bG c ρ s   (3.9)
A sensitivity analysis to the values of crystal plasticity hardening parameters κ, G c and A i is presented in Appendix D in order to show how each parameter inĆuences the hardening behaviour.

Parameters identiĄcation procedure

Hardening parameters

The scope of the present study is mainly to identify the hardening behaviour of austenitic stainless steel single crystals at 300 • C and low loading rates. The elastic constants and viscosity parameters will be considered as known from the literature. In addition some hardening parameters are known with accuracy from experiments available in the literature. The friction stress τ 0 can be identiĄed reasonably from tensile tests on polycrystals as pointed out by Monnet and In a second step κ, G c are optimized in order to describe the hardening part of the experimental curve. Finally, A i from Eq. (3.8) are identiĄed in order to minimize also the mismatch of the hardening part of the experimental and numerical stress-strain curves. For identiĄcation of κ, G c and A i only the part up to U 1 = 1 mm of the hardening curve in Figure 3.5a is used for optimization. This crosshead displacement corresponds to a macroscopic DIC measured strain of ∆L/L 0 = 0.075 for specimen R4 and ∆L/L 0 = 0.10 for specimen R2 in Figure 3.5b. Parameters obtained after optimization as well as the values used in the literature are listed in Table 3.3. Results of the optimization procedure are displayed in bold font. Other material parameters which were not optimized are also presented for completeness. Note that τ 0 is left empty for the proposed identiĄcation since the grain size effect is not relevant for the present experiments conducted on single crystals. 

Comparison with experimental results

Macroscopic stress-strain behaviour

Ling (2017) and [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF] calibrated the crystal plasticity material parameters on tensile experiments performed on SA 304L polycrystals by Pokor et al. (2004a). Note that tensile tests presented in this study are conducted on 316L stainless steel which has a slightly different chemical composition (see Table 2.1). The fact that two different sets of material parameters were found to Ąt the same experiment is a proof that additional experiments were necessary in order to get conĄdence in one or the other set of parameters. A new set of material parameters was therefore identiĄed on single crystal tensile experiments and compared to the prediction obtained with the sets available in the literature. Figure 3.7 shows the stress-strain curves obtained with the new optimized parameters set. Numerical simulations with parameters sets available in the literature are also presented. Figure 3.7a displays the comparison of experimental and numerical curves for specimen R4, while Figure 3.7b displays the same comparison for specimen R2 and R3. First of all a blatant discrepancy between experimental results and results obtained numerically with the parameters available in the literature can be observed. With the set of parameters used in [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] the yield stress is satisfyingly reproduced, but predicted hardening is weaker than experimentally measured. With the set of material parameters used in [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF], the yield stress is not well reproduced, because of the relatively high initial dislocation density considered. In addition a much stronger hardening is predicted numerically in this case, which fails to reproduce the experimental observations. To summarize, two different sets of material parameters available in the literature produce results that are bounding the actual behaviour. The set of optimized parameters is capable of Ątting very accurately the experimental data on single crystals. The yield point is well predicted thanks to the Ąt of the initial dislocation density per system ρ s 0 . The hardening slope is precisely reproduced thanks to the Ąt of κ, G c and A i . Yet, there is no guarantee that the proposed numerical values are unique in order to match the experimental curves. The material parameters resulting from the identiĄcation procedure on single crystals experiment were therefore used in large FFT and FEM simulations of a periodic polycrystal. FFT simulations are performed with AMITEX [START_REF] Gélébart | Amitex[END_REF] on a cubic cell composed of 600 Voronoï grains. The cubic cell is discretized with 101 × 101 × 101 cubic voxels. FEM simulations are performed with Z-set on a cubic cell composed of 512 cubic grains which are each discretized with 27 quadratic Ąnite elements with reduced integration. In both FFT and FEM simulations a tensile loading is prescribed with periodic boundary conditions imposed in the three directions. Results not displayed here have shown that numerically predicted results are converged in terms of number of grains and in terms of mesh size. 

True strain

Proposed identification (FFT) Proposed identification (FEM) [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] identification (FFT) (Pokor et al., 2004) Exp. 304L (Ehrnsten et al., 2007) Exp. 316L [START_REF] Wintle | Adimew test: Assessment of a cracked dissimilar metal weld assembly[END_REF] Exp. 316L [START_REF] Muhamed | Dynamic strain aging behaviour in aisi 316l austenitic stainless steel under as-received and as-welded conditions[END_REF] Exp. 316L [START_REF] Zhang | iradmat: A thermo-mechanical testing system for in situ high-energy x-ray characterization of radioactive specimens[END_REF] Exp. 316L (Byun et al., 2004) Exp. 316L true stress vs true strain curves obtained numerically with the proposed identiĄcation. On the same graph are also plotted the numerical FFT curve obtained with the parameters identiĄed by [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] and experimental curves on 304L and 316L stainless steels at ∼300 • C from the literature. Since experiments were performed on different stainless steel grades and on materials having uncommunicated, but most likely different initial dislocation density, some experimental curves were shifted along the true strain axis in such a way that their yield point falls onto the curve with the lowest yield stress σ 0 = 140 MPa. First of all, although the underlying numerical implementation of the crystal plasticity model is different, FEM and FFT simulations display an excellent agreement. Then, LingŠs identiĄcation Ąts very well the experimental curve obtained by Pokor et al. (2004a) as expected. Although some variability exist among experimental data, the overall beam of experimental curves remains relatively narrow. In order to normalize the numerical true stress obtained with the proposed identiĄcation, a value of the material parameter τ 0 was to be deĄned (i.e a grain size d chosen). τ 0 was worked out in such a way that normalizing the numerical curve by M τ 0 , where M is the Taylor factor equal to 3.06 in the FCC structure, results in a normalized yield stress of 1. It was found that the value of τ 0 satisfying this condition is equal to 68 MPa. With τ ∞ = 10.0 MPa, it corresponds to a grain size of d = 30 µm which is the size measured by Byun et al. (2004) on their 316L stainless steels tensile specimens.

The parameters identiĄed on single crystal tensile experiments result in a remarkably satisfying agreement with tensile experiments on polycrystals without further calibration than the grain size. All in all, the proposed identiĄcation results in a adequate Ąt to experimental results obtained on single-and polycrystals.

Local strain fields and profiles

In order to verify that the crystal plasticity law is capable of matching not only macroscopic quantities, but also local quantities, experimental and numerical local strain Ąelds are compared. To do so, numerical simulations are post-processed in order to compute the equivalent Hencky strain deĄned at Eq. (3.2). Experimental equivalent Hencky strain Ąelds obtained by DIC were plotted in Figure 3.3. Their numerical counterpart obtained with the set of optimized crystal plasticity parameters are plotted in Figure 3.9. It can be observed that computed equivalent strain Ąelds are overall much more homogeneous than experimentally measured Ąelds. However, in an average sense numerical results agree rather well with experimental data.

To conĄrm this observation proĄles of equivalent strain along X 1 and X 2 directions are plotted in Figure 3.10 at ∆L/L 0 = 0.05 and Figure 3.11 at ∆L/L 0 = 0.10. ProĄle lines are plotted along horizontal and vertical symmetry axes of the specimen (dashed lines in Figure 3.6). Since a Ąner discretization is used for DIC measurements than for numerical simulations, raw experimental proĄles (light blue) are smoothed out (deep blue) on a grid composed of the same number of nodes as the Ąnite element mesh. In addition raw DIC measurements (light blue) are plotted as thick curves in order to evidence potential errors due to the DIC method. The thickness of the curve along the y-axis of the graphs represents the maximum error which was observed on DIC measurements in case of a rigid body motion. That error was shown to be always lower than or equal to H 3D,error eq = 0.005. Numerical proĄles obtained with the several sets of material parameters described in Table 3.3 are displayed. The heterogeneity of the experimental equivalent strain Ąeld depicted in Figure 3.3 translates into the presence of several local minima and maxima in the proĄle curves. On the other hand, smoothness of numerical results depicted in Figure 3.9 are characterized by smooth equivalent strain proĄles. Peaks observed on the experimental proĄle are more numerous along X 1 , because the correlation area is wider along that direction. In the same manner, for numerical results, a greater discrepancy between minimum and maximum equivalent strain is observed along X 1 than along X 2 because the simulated area is wider along the former direction. As already stated above, in an average sense numerical results agree well with experimental observations. The reasons why the crystal plasticity simulations do not predict intense heterogeneities as the ones observed experimentally are at least twofold. First of all, numerical samples have homogeneous material properties, which might be a crude assumption for instance in terms of initial dislocation densities. Then, a nonnegligible hardening is predicted for both orientations considered. Therefore, any area where plastic strain would become more intense would also rapidly become much harder by dislocation multiplication. As a result, plastic slip would in turn be activated in the neighbourhood of such an area leading to smoothing of the initial intensely deformed region. As non-negligible hardening behaviours are also observed experimentally, the origin of observed plastic heterogeneities could be linked to material properties heterogeneities. Other explanations could be the presence of geometrical heterogeneities caused by specimen machining and preparation or wrinkling due to the small thickness of the specimens (140 µm). In Appendix E the effect of hard inclusions on the local strain behaviour is investigated. It is shown that a few numbers of hard inclusions can be responsible for a much more heterogeneous strain pattern than without inclusions. Ferrite inclusions could potentially play the role of hard inclusions and cause the heterogeneities observed in DIC strain Ąelds.

Fields of lattice rotation

The crystal plasticity formulation at Ąnite strains used in this work is based on a multiplicative decomposition of the deformation gradient F ∼ into an elastic part P ∼ and a plastic part E ∼ . While P ∼ accounts for plastic slip and is thus lattice rotation free, E ∼ describes rotation and stretching of the crystal lattice. The polar decomposition E ∼ = R ∼ .U ∼ gives thereby the rotation tensor R ∼ and the stretch tensor U ∼ . From the rotation tensor a rotation angle ϕ can be deĄned as

ϕ = arccos 1 2 (trace (R ∼ ) -1) (3.13)
The magnitude of ϕ indicates how much the crystal lattice has rotated with respect to its initial conĄguration. In Figure 3.12, the Ąelds of lattice rotation ϕ computed numerically for specimen 3.3.

R4 and R2 are plotted at ∆L/L 0 = 0.10. In the area of reduced cross section, the lattice rotation computed for specimen R2 is signiĄcantly larger than for specimen R4. This result supports the argument given to explain the discrepancy observed between the direction of observed slip traces in Figure 3.4b and the theoretical direction predicted in the initial conĄguration of the crystal lattice.

3.5 Mechanical behaviour of irradiated austenitic stainless steel single crystals

Crystal plasticity laws accounting for irradiation defects

As discussed in Chapter 2, the main population of defects generated under Light Water Reactor (LWR) conditions in austenitic stainless steels are dislocation Frank loops. Theses defects are responsible for pinning dislocations, hence to some extent preventing their motion and thus increasing the yield stress of irradiated steels. Several constitutive equations were proposed in the literature to account for Frank loop induced hardening and already reviewed to some extent by [START_REF] Han | Modélisation de la fragilisation due au gonĆement dans les aciers inoxydables austénitiques irradiés[END_REF].

Dispersed barrier hardening model

The modiĄed dispersed barrier model [START_REF] Li | Predicting plastic Ćow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics[END_REF][START_REF] Monnet | New insights into radiation hardening in face-centered cubic alloys[END_REF][START_REF] Seeger | On the theory of radiation damage and radiation hardening[END_REF] accounts for the volumetric density of dislocation loops (unit m -3 ) ρ L by introducing an additional contribution into the critical resolved shear stress

τ s c = τ 0 + µb 12 u=1 a su ρ u + α L µb L ϕ L ρ L (3.14)
where α L is a weighting factor, b L is the norm of the Burgers vector of Frank loops of type (a/3)<111> and ϕ L is the Frank loop diameter. [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF] noted that the hardening due to Frank loops decreases when the density of other defects (dislocations, solute clusters) increases. They proposed the following Ąt for the weighting factor α L α L = 0.16 -0.068 ln (0.35b

√ ρ obs ) (3.15)
where ρ obs is the density of all kinds of defects, namely ρ obs = 12 u=1 a su ρ u + ϕ L ρ L . In the domain of interest for ρ obs , α L decreases from 1 to about 0.2. [START_REF] Li | Predicting plastic Ćow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics[END_REF] proposed as an extension to replace the exponent 0.5 over ϕ L ρ L by an exponent n which can be identiĄed from DDD simulations. Recently, [START_REF] Monnet | Multiscale modeling of irradiation hardening: Application to important nuclear materials[END_REF] argued that a more relevant expression of the dispersed barrier model in presence of several kinds of defects would be to consider the following quadratic combination of their contribution into the critical resolved shear stress

τ s c = τ 0 + (µb) 2 12 u=1 a su ρ u + (α L µb L ) 2 ϕ L ρ L (3.16)
Since dislocations interact with Frank loops, modiĄcations of the dislocation density evolution were proposed. If Eq. (3.14) is adopted, then a natural extension of Eq. (3.9) is

ρs = γs b   1 κ 12 u=1 b su ρ u + 1 κ k dl ϕ L ρ L -bG c ρ s   (3.17)
where k dl is a weighting factor characterizing intensity of dislocation-dislocation loop interactions. Such an expression can be interpreted as follows. The Ąrst term on the right-hand side corresponds to the inverse of the mean free path L D between dislocations, while the second term can be interpreted as the inverse of the mean free path L L between Frank loops. Therefore the sum of the two Ąrst terms corresponds to an harmonic average of mean free paths between different kinds of defects. On the other hand, if Eq. (3.16) is adopted, then a natural extension of Eq. (3.9) becomes

ρs = γs b   1 κ 12 u=1 b su ρ u + k dl ϕ L ρ L -bG c ρ s   (3.18)
A single mean free path is established in Eq. (3.18). [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF] argued that forest dislocations and dislocation loops can indeed be considered in the same mean free path, because gliding dislocations need to cut through both kinds of defects. However, the authors also noted that forest and coplanar dislocation interactions are different in nature. Therefore, they proposed to separate both contributions and to introduce a second mean free path weighted by κ c for coplanar dislocation interactions. In addition, they proposed an heuristic dependence of dislocation densities evolutions to grain size in order to account for the dislocation storage at grain boundaries. The evolution equations for dislocation densities is then Ąnally written as

ρs = γs b   1 d + 1 κ u∈forest b su ρ u + k dl ϕ L ρ L + 1 κ c u∈coplanar(s) b su ρ u -bG c ρ s   (3.19) = γs b 1 d + 1 L s -bG c ρ s (3.20)
where L s is the average mean free path for system s. However, Eq. (3.20) does not reduce to the conventional evolution equation of dislocations densities when the density of Frank loops vanishes. Note that other authors [START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF][START_REF] Song | Mechanical properties of irradiated multi-phase polycrystalline BCC materials[END_REF] do not account for the inĆuence of Frank loops in the mean free path calculation, thus keeping the original Kocks-Mecking dislocation evolution equation unchanged.

Regarding evolution of dislocation loop densities, geometrical considerations made by [START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF] led to the evolution equations used in [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF]

, namely ρL = -λ L ϕ L b ρ L 12 s=1 ♣ γs ♣ (3.21)
where λ L is a dimensionless parameter that controls the rate at which dislocation loops are swept out in the wake of gliding dislocations.

Extension of the dispersed barrier hardening model

A reĄnement of the dispersed barrier model was proposed in [START_REF] Song | Mechanical properties of irradiated multi-phase polycrystalline BCC materials[END_REF]. Dislocation Frank loops are mainly lying in <111> planes of the FCC lattice. The families or populations of dislocation loops can therefore be described by four scalar Ąelds ρ k L corresponding to their respective volumetric density (unit m -3 ) on each <111> plane. Eqs. (3.14) or (3.16) remain unchanged provided that

ρ L = 4 k=1 ρ k L (3.22)
The main idea behind such a reĄnement is to have a framework capable of describing the bifurcation from an homogeneous deformation mode towards an heterogeneous deformation mode in which dislocation channeling predominates [START_REF] Arsenlis | A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[END_REF]. A faster reduction of loop density in a given plane could indeed trigger apparition of a predominant slip system which is known to be correlated to dislocation channel formation [START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF] (see Figure 2.13).

Evolution equations for dislocation Frank loops densities per slip plane were proposed in the literature. A model by [START_REF] Krishna | A temperature and rate-dependent micromechanical model of molybdenum under neutron irradiation[END_REF]; [START_REF] Krishna | Dislocation and defect density-based micromechanical modeling of the mechanical behavior of FCC metals under neutron irradiation[END_REF] suggests that dislocation loop densities evolution equations can be expressed as

ρk L = - ϕ L b ρ k L -ρ sat L 12 s=1 ρ s   s∈coplanar(k) A s L ♣ γs ♣   (3.23)
where A s L is the annihilation area deĄned by A s L = 2d L L s + πd 2 L , with d L is the standoff distance for dislocation loop annihilation. Eq. (3.23) is to a large extent analogous to Eq. (3.21). Mainly three differences can be noticed. First the annihilation area depends upon the dislocation mean free path L s . Second, a lower bound saturation value ρ sat L is introduced in order to depict the fact that debris of dislocation loops can remain in the material. Third, only coplanar dislocation glide can contribute to dislocation loop density evolution.

Based on an original formulation by [START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF], [START_REF] Song | Mechanical properties of irradiated multi-phase polycrystalline BCC materials[END_REF] proposed a tensorial formulation of the dispersed barrier model in which Eq. (3.14) becomes

τ s c = τ 0 + µb 12 u=1 a su ρ u + α L µb L 4 k=1 G ∼ s : H ∼ k (3.24)
where for slip system s the tensor G ∼ s = n s ⊗ n s . Tensor H ∼ k is a so-called damage descriptor tensor inspired by [START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF]. It represents the density of dislocation loops belonging to the loop family of habit plane k. Double contraction between G ∼ s and H ∼ k represents the interaction between a dislocation gliding in slip system s with a dislocation loop in plane k. The deĄnition of the damage descriptor is

H ∼ k = 3ϕ L ρ k L M ∼ k , with M ∼ k = 1 ∼ -n k ⊗ n k
the tangential projection tensor onto the habit plane k. An alternative to Eq. (3.24) would be to consider the quadratic formulation proposed by [START_REF] Monnet | Multiscale modeling of irradiation hardening: Application to important nuclear materials[END_REF] that leads to a similar expression of the critical resolved shear stress as in Eq. (3.16). To complement Eq. (3.24) with evolution laws, [START_REF] Song | Mechanical properties of irradiated multi-phase polycrystalline BCC materials[END_REF] proposed the following tensorial evolution equations

Ḣ ∼ k = -η N s=1 ♣ γs ♣G ∼ s : H ∼ k .M ∼ k (3.25)
3.5 Mechanical behaviour of irradiated austenitic stainless steel single crystals 74 where η characterizes the annihilation efficiency similarly to λ L in Eq. (3.21). As in previous formulation, the loop density evolution depends on the intensity of plastic slip through ♣ γs ♣. The fact that the direction of Ḣ ∼ k coincide with M ∼ k reĆects the fact that gliding dislocations do not interact with dislocation loops lying in a plane parallel to their gliding plane [START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF][START_REF] Song | Mechanical properties of irradiated multi-phase polycrystalline BCC materials[END_REF].

Cascade induced source hardening model

It was noted from DDD simulations that an underestimation of the strengthening resulting from irradiation can occur when only dislocation Frank loops are accounted for [START_REF] Tanguy | Dislocations and irradiation defects-based micromechanical modelling for neutron irradiated austenitic stainless steels[END_REF]. [START_REF] Han | Modélisation de la fragilisation due au gonĆement dans les aciers inoxydables austénitiques irradiés[END_REF] argued that the mechanism of cascade induced source hardening can add up to the dispersed barrier hardening mechanism and explain this discrepancy. The model, originally proposed by Trinkaus et al. (1997a,b), describes the effect of dislocation Frank loops in the same way as a Cottrell atmosphere that pins glissile dislocations. The mechanism of dislocation unpinning then leads to an additional softening, which [START_REF] Han | Modélisation de la fragilisation due au gonĆement dans les aciers inoxydables austénitiques irradiés[END_REF]; [START_REF] Tanguy | Dislocations and irradiation defects-based micromechanical modelling for neutron irradiated austenitic stainless steels[END_REF] proposed to model by a phenomenological exponential decrease of the critical resolved shear stress when plastic slip increases. If the form of the dispersed barrier hardening model deĄned at Eq. (3.14) is used, then its extension by the cascade induced source hardening model leads to the following deĄnition of the critical resolved shear stress

τ s c = τ 0 + µb 12 u=1 a su ρ u + α L µb L ϕ L ρ L + τ a exp - ♣γ s ♣ γ 0 (3.26)
where τ a and γ 0 are material parameters which determine the additional strengthening induced by dislocation pinning and the rate of dislocation unpinning respectively.

Proton-irradiation of austenitic stainless steel single crystals

Modeling of irradiation-induced hardening at the single crystal level comes along with an additional set of material parameters. For irradiated austenitic stainless steels identiĄcation of these parameters is usually based on Ątting experimental tensile curves by performing polycrystal simulations. This task was for example carried out by [START_REF] Han | A yield function for single crystals containing voids[END_REF]; [START_REF] Hure | Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel[END_REF]; [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF]. In line with the motivations of this chapter, performing mechanical tests on irradiated stainless steel single crystals would be of great interest in order to validate or amend the sets of material parameters available in the literature. In order to be able to carry out such tests in a near future, the preliminary task of performing irradiation of austenitic stainless steel single crystals was achieved. For the purpose of keeping track of this work the irradiation experiment is described below.

Material

The same austenitic stainless steel single crystal plate used for the tensile tests on virgin material described above was used for irradiation. As depicted in Appendix A, a 20×18×0.9 mm slab was cut with an electron discharge machine with a brass wire of diameter 100 µm. In the context of this experiment, the main limitation for the slab geometry was the size of the sample holder which was used for irradiation. Of course, this geometry needed also to be compatible with available material and prospective tensile specimen geometry compatible with the tensile machine. Pictures of the sample holder and of the slab mounted onto the sample holder are shown in Figure 3.13. One face of the slab was mirror polished and a Ąnal polishing step with a colloidal silica suspension was performed in order to remove the polishing-induced hardened layer. Note that white spots visible on the specimen surface in Figure 3.13 do not correspond to scratches, but are in fact caused by ferrite inclusions. 

Conclusions

The outcomes of this chapter can be summarized as follows.

• An experimental protocol was established in order to carry out tensile tests on 316L austenitic stainless steel single crystals. EBSD maps of the specimen surface were carried out in order to characterize the misorientation with the orientation announced by the supplier. Temperature monitoring was shown to be achievable by controlling only the temperature of the heating unit. A DIC setup based on optical acquisition of paint speckle pattern deposited on specimen surface turned up to be the most practicable solution to measure displacements Ąelds.

• Tensile experiments were performed in two different directions of the FCC stainless steel single crystal. The DIC measured displacements Ąelds were post-processed in order to compute a scalar Hencky equivalent plastic strain Ąeld. Persistent heterogeneities of strain could be observed for both orientations. These heterogeneities are materialized by mainly two groups of thin bands which are parallel to one another for each crystal orientation tested. The orientations of the bands with respect to the tensile direction were shown to correspond to the most favorable slip systems traces according to SchmidŠs law. At a smaller scale, electron microscopy revealed that each band was in fact composed of bundles of slip lines.

• Force measurements showed the signiĄcant discrepancy in terms of hardening that is due to the crystal anisotropy. The <111> orientation displayed the highest yield strength and the greatest strain-hardening slope as compared to the <110> orientation. In both cases almost linear hardening curves were obtained with a satisfying repeatability.

• Experimental stress-strain curves were compared to Ąnite element simulations with a crystal plasticity constitutive behaviour. Material parameters available in the literature were shown to give unsatisfying predictions of the hardening behaviour. Therefore, an identiĄcation of material parameters was proposed in order to obtain a better agreement between experimental data and numerical results. The equivalent strain Ąelds obtained numerically agree well, in an average sense, with DIC measurements. However heterogeneities of strain were not predicted with the crystal plasticity model used. Possible roots of experimentally measured strain heterogeneities are for instance material properties heterogeneities or geometrical imperfections, both of which were not accounted for in the simulations.

• A review of available crystal plasticity hardening models accounting for irradiation-induced dislocation Frank loops was proposed. Several formulations of the dispersed barrier hardening model are available in the literature. The key ingredients to these are the addition of one or several internal variables characterizing the density of dislocation Frank loops.

As obstacles to dislocationsŠ motion, dislocation loops participate to the critical resolved shear stress and possibly to the mean free path of gliding dislocations. As internal variables, dislocation loop densities are assigned evolution laws which in essence describe how they can be annihilated by gliding dislocations.

• A synthesis of the proton-irradiation experiment on a 316L single crystal carried out at MIBL was made. Irradiation conditions were chosen in order to produce a microstructure of defects comparable to what could be seen in LWR conditions for a dose of 1 dpa. A future study will focus on performing mechanical tests on the irradiated layer in order to be able to validate or amend sets of material parameters proposed in the literature for the dispersed barrier hardening crystal plasticity model. 

Introduction

Strain localization is commonly encountered in experiments involving a wide range of materials at scales spanning over multiple orders of magnitude and are referred to as necking, shear bands, Lüders bands, Portevin-Le Chatelier effect. The pioneering works of [START_REF] Considère | LŠemploi du fer et de lŠacier dans les constructions[END_REF]; [START_REF] Hadamard | Leçons sur la propagation des ondes et les équations de l'hydrodynamique[END_REF]; [START_REF] Hill | Acceleration waves in solids[END_REF]; [START_REF] Mandel | Conditions de stabilité et postulat de Drucker[END_REF]; [START_REF] Rice | Theoretical and applied mechanics[END_REF]; [START_REF] Thomas | Plastic Flow and Fracture in Solids[END_REF] set the general framework for predicting strain localization as a result of a mechanical instability involving either geometric or material imperfections. In metals, a material-based instability may for example originate from a porosity growth induced softening behaviour leading to shear-banding, while necking in a tensile test is an example of a geometry-based instability [START_REF] Audoly | One-dimensional modeling of necking in ratedependent materials[END_REF][START_REF] Hart | Theory of the tensile test[END_REF]. In single crystals slip bands and kink bands described in [START_REF] Gilman | Mechanism of ortho kink-band formation in compressed zinc monocrystals[END_REF]Jaoul, (1965Jaoul, ( , 2008)); [START_REF] Neuhäuser | The dynamics of slip band formation in single crystals[END_REF] are common occurrences of material induced strain localization phenomena. Characteristic length scales arise naturally in strain localization phenomena observed in experiments, but conventional material models are however size-independent and therefore cannot provide satisfying predictions for strain localization. In addition when aiming at modeling softening mechanisms, numerical simulations using conventional theories display spurious mesh dependent dissipated energy due to the loss of ellipticity of the underlying partial differential equations (see e.g. [START_REF] Bažant | Continuum theory for strain-softening[END_REF]; [START_REF] Germain | Simulation of laminate composites degradation using mesoscopic non-local damage model and non-local layered shell element[END_REF]; [START_REF] Lorentz | Gradient constitutive relations: numerical aspects and application to gradient damage[END_REF]). As a remedy, regularization methods such as Cosserat, integral and gradient models (see [START_REF] Forest | Generalized continua[END_REF] and references quoted therein) have been developed extensively in the past few decades also motivated by size effects observed in experiments. In particular, observations suggest that some size effects in metals are related to Geometrically Necessary Dislocations (GND) [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Stelmashenko | Microindentations on W and Mo oriented single crystals: A STM study[END_REF]. Hence strain gradient plasticity (SGP) theories have been extended to frameworks suited to (sub-)crystalline scales, as for instance continuum crystal plasticity ( [START_REF] Bardella | A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Forest | Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials[END_REF][START_REF] Niordson | Computational strain gradient crystal plasticity[END_REF] and references quoted therein).

For metallic single crystals strain localization induced by material softening generally results in the formation of slip bands. These thin bands are parallel to the primary slip plane and their thickness is directly related to the defect density and softening mechanism involved. In contrast, kink bands are localization zones of Ąnite thickness that are perpendicular to the slip direction. Kink bands are known to occur when strain incompatibility arises and if not enough slip systems are available. [START_REF] Asaro | Strain localization in ductile single crystals[END_REF] have performed a bifurcation analysis of plastic slip localization for crystals undergoing single slip. Their theoretical analysis shows that slip and kink bands are equally probable single slip localization modes in that conditions. Asaro and RiceŠs bifurcation analysis is based on standard crystal plasticity. More advanced crystal plasticity models incorporate the dislocation density tensor as a hardening variable in addition to scalar dislocation densities (statistically stored dislocations) [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Wuląnghoff | Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures[END_REF]. Dislocation pile-ups are known to induce a back-stress and associated kinematic hardening [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Forest | Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations[END_REF][START_REF] Steinmann | On the numerical treatment and analysis of Ąnite deformation ductile single crystal plasticity[END_REF]. As a result localization in kink bands can be superseded by slip bands that do not induce any lattice curvature as proved by the bifurcation analysis in [START_REF] Forest | Modeling slip, kink and shear banding in classical and generalized single crystal plasticity[END_REF]. Strain gradient plasticity introduces length scales in the continuum models and can therefore provide physically-relevant regularization properties. It appears that strain gradient plasticity regularizes kink bands, meaning that simulated kink bands have a Ąnite thickness [START_REF] Forest | Strain localization patterns at a crack tip in generalized single crystal plasticity[END_REF]. In contrast the Ąnite element simulation of slip bands is meshŰdependent (they are one element (in fact one Gauss point) thick) because they can develop in the absence of accumulation of GND. The recent simpliĄed strain gradient plasticity model developed by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF], following the approach from WulĄnghoff et al. ( 2013); WulĄnghoff and Böhlke (2012), displays the unique feature of regularizing both slip and kink bands. This is because it involves the full gradient of an accumulated slip variable instead of the dislocation density tensor or individual GND densities. This model is acknowledged to be too crude to control independently the intensity of slip and kink bands. The regularization effect on slip bands is of phenomenological nature, it has no precise physical background in contrast to kink bands which are controlled by the formation of polarized dislocation walls represented by GND densities. It is a necessary feature for a model to be used in meshŰobjective Ąnite element simulations of slip banding in crystals.

Although it is of particular importance when investigating Ćow localization, only a few works mention the evolution of the length scale during straining and how it is linked to the hardening/softening behaviour. In an early work [START_REF] Zbib | On the structure and width of shear bands[END_REF] highlighted the slip band narrowing arising when considering a parabolic hardening/softening behaviour in a strain gradient framework. In the different but closely related context of non-local damage models, [START_REF] Geers | Strain-based transientgradient damage model for failure analyses[END_REF]; [START_REF] Simone | Incorrect initiation and propagation of failure in non-local and gradient-enhanced media[END_REF] evidenced spurious spreading of damage over continuously wider regions. Recently [START_REF] Poh | Localizing gradient damage model with decreasing interactions[END_REF] and [START_REF] Vandoren | Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models[END_REF] proposed to use a damage-dependent length scale respectively in micromorphic and integral non-local damage models to address this unwanted phenomenon. Dislocations motion mechanisms motivated [START_REF] Forest | Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized-continuum approaches[END_REF] to propose evolving length scales depending on the dislocation density. [START_REF] Dahlberg | Evolution of the length scale in strain gradient plasticity[END_REF] provided a strain gradient framework incorporating an evolution law for the constitutive length scale parameter which is also physically based and directly related to the dislocation density. Evolving length scales are also present in the newly developed SGP model by [START_REF] Petryk | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part I: The hardening law[END_REF]. Also, to the authorsŠ knowledge, the case of saturating softening behaviour has received little attention in the literature. This is particularly important when aiming at simulating ductile failure at large local strains of materials exhibiting softening. It will be shown in the present work that the saturated regime in most existing SGP models leads to unwanted broadening of the localization zone. This feature will be analyzed and a remedy will be proposed.

One example of intense Ćow localization is the mechanism of dislocation channel deformation (DCD). It consists in a highly heterogeneous deformation mode at the grain scale. Abundant observations of this deformation mode have been made in quenched [START_REF] Bapna | The observation of slip channels in quenched gold[END_REF][START_REF] Mori | Plastic deformation of quench-hardened aluminum single crystals[END_REF][START_REF] Wechsler | Dislocation channeling in irradiated and quenched metals[END_REF], predeformed [START_REF] Luft | Work softening and microstructural instability of predeformed molybdenum single crystals[END_REF] and irradiated [START_REF] Farrell | Mapping flow localization processes in deformation of irradiated reactor structural alloys-final report[END_REF][START_REF] Fish | Swelling and tensile property evaluations of high-Ćuence EBR-II thimbles[END_REF][START_REF] Gussev | Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels[END_REF][START_REF] Jiao | The role of irradiated microstructure in the localized deformation of austenitic stainless steels[END_REF]Smidt Jr, 1970b;[START_REF] Tucker | Dislocation channeling in neutronirradiated niobium[END_REF][START_REF] Wechsler | Dislocation channeling in irradiated and quenched metals[END_REF] metals. Such channels initiate when the Ąrst moving dislocations are clearing a path of isolated sessile obstacles, for example Frank dislocation loops, leading to a reduced defect density inside channels. They are also called clear bands due to their contrast in electron microscopy [START_REF] Lee | On the origin of deformation microstructures in austenitic stainless steel: Part IŰmicrostructures[END_REF]. The induced softening along that path is the precursor to Ćow localization. It has been shown experimentally in [START_REF] Farrell | Mapping flow localization processes in deformation of irradiated reactor structural alloys-final report[END_REF] and numerically in [START_REF] Arsenlis | A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[END_REF][START_REF] Barton | A polycrystal plasticity model of strain localization in irradiated iron[END_REF][START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF] that deformation localization in irradiated steels is simultaneously accompanied by a loss of dislocation interactions and activation of fewer slip systems. The thickness of dislocation channels is typically measured in a 10 nm to 100 nm range in irradiated materials [START_REF] Farrell | Mapping flow localization processes in deformation of irradiated reactor structural alloys-final report[END_REF]. Dislocation channels are known to have a strong inĆuence on macroscopic mechanical properties of nuclear materials. Dislocation channels may indeed interact with grain boundaries and favor the mechanism of Irradiation Assisted Stress Corrosion Cracking (IASSC) [START_REF] Mcmurtrey | Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy[END_REF]. Moreover the Transmission Electron Microscope (TEM) observations of deformed radiation-damaged stainless steels in Figures 4.1a and 4.1b suggest that dislocation channels may also interact with other irradiation induced defects such as nanometric voids or bubbles. Elongated voids inside channels indicate possible large local strains.

In this study a reduced Ąnite strain micromorphic single crystal plasticity model is used to describe slip band localization in single crystals. The novelty of the approach lies Ąrst in the analytical derivation of closed form solutions obtained from a micromorphic crystal plasticity theory in case of single slip associated to linear hardening and softening behaviours. It is demonstrated that this kind of model predicts an increasing and unbounded localization slip band width when a saturation of softening is reached. Second, an enhanced micromorphic crystal plasticity model, involving an evolving length scale, is then proposed that predicts a bounded localization slip band width for realistic saturating softening behaviours. Finally, the enhanced model is applied to study the interaction between localization slip bands and voids that may exist or nucleate in irradiated materials. For that purpose a 2D plane strain periodic

A reduced micromorphic single crystal plasticity model at Ąnite deformations

Let us consider a crystalline continuum for which each material point can uniquely be deĄned by a position vector X in the reference conĄguration D 0 and a position vector x in the current conĄguration D. Following the micromorphic approach of (Forest, 2016b;[START_REF] Germain | The method of virtual power in continuum mechanics. Part 2: Microstructure[END_REF], at time t, the degrees of freedom (DOF) of the material point are described by the Ąeld of displacement vector u (X , t) and an additional microslip scalar Ąeld γ χ (X , t). This additional Ąeld of degrees of freedom γ χ , which comes in addition to usual constitutive internal variables, is introduced to reĄne the kinematical description at a given material point

X DOF = ¶u , γ χ ♢ (4.1)
In the present work, the micromorphic variable γ χ is akin to a cumulative plastic slip variable within the micromorphic approach (Forest, 2016b). It will serve as an auxiliary variable for a convenient numerical implementation of strain gradient plasticity. The Lagrangian gradients of the degrees of freedom are

H ∼ (x , t) = ∂u ∂X = Grad u (4.2) K (x , t) = ∂γ χ ∂X = Grad γ χ (4.3)
where the displacement gradient H ∼ is directly related to the deformation gradient F ∼ by F ∼ = 1 ∼ + H ∼ , and K is referred to as the microslip gradient vector. The following stresses are introduced

S ∼ = ρ 0 ρ σ ∼ .F ∼ -T (4.4) M = ρ 0 ρ F ∼ -1 .m (4.5) S = ρ 0 ρ s (4.6)
where S ∼ is the Boussinesq (or Ąrst Piola-Kirchhoff) stress tensor which generates mechanical power with Ḟ ∼ and σ ∼ the Cauchy stress tensor which generates power with Ḟ ∼ .F ∼ -1 . The vectors M and m are generalized stresses with respect to the reference and current conĄguration, respectively. They are respectively conjugate to K and K .F ∼ -1 in the power of internal forces, see [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]. Similarly, S and s are generalized stresses in the reference and current conĄgurations which generate power with γχ . The balance laws for momentum and generalized momentum take the form

Div S ∼ = 0 , ∀X ∈ D 0 (4.7) Div M -S = 0, ∀X ∈ D 0 (4.8)
where D 0 is the reference conĄguration of the body. The associated boundary conditions read

T = S ∼ .n 0 , ∀X ∈ ∂D 0 (4.9) M = M .n 0 , ∀X ∈ ∂D 0 (4.10)
where T is the surface traction vector which generates power over u . M is the generalized surface traction which generates power over γχ . Vector n 0 is the outward unit normal to the surface element of the boundary ∂D 0 of the body. The multiplicative decomposition of the deformation gradient F ∼ is adopted

F ∼ = E ∼ .P ∼ (4.11)
where E ∼ denotes its elastic part and P ∼ its plastic part. The local intermediate conĄguration C ♯ consists in the transport of the local reference conĄguration by the tensor P ∼ . The local current conĄguration C consists in the transport of the reference conĄguration C 0 by F ∼ , or equivalently the transport of C ♯ by E ∼ . γ s is the plastic slip on a system s deĄned by its Schmid tensor N ∼ s = m s ⊗ n s where n s is the normal to the slip plane and m s the slip direction. P ∼ is related to the plastic slips by

Ṗ ∼ .P ∼ -1 = N s=1 γs N ∼ s (4.12)
where N is the total number of slip systems. The elastic Green-Lagrange strain measure E ∼ e GL is introduced as

E ∼ e GL = 1 2 E ∼ T .E ∼ -1 ∼ (4.13)
A plastic accumulated slip measure γ cum is now deĄned as

γ cum = t 0 N s=1 ♣ γs ♣ dt (4.14)
The relative plastic slip e quantiĄes the difference between accumulated plastic slip and microslip with e(X , t) = γ cum -γ χ (4.15) γ χ is the micromorphic counterpart of γ cum , they have identical physical interpretation.

A free energy density function ψ is chosen in the form

ρψ(E ∼ e GL , e, K ∼ , γ cum ) = 1 2 ρ ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + 1 2 ρ ρ 0 H χ e 2 (4.16) + 1 2 ρ ρ 0 AK T .K + ρψ h (γ cum ) (4.17)

C

≈ is the fourth rank tensor of elastic moduli, H χ a penalty modulus, A a higher order modulus and ρ 0 , ρ ♯ and ρ are volumetric mass densities in the reference, intermediate and Ąnal local conĄguration respectively. The function ψ h (γ cum ) is a hardening potential which will take various forms in the following sections. For simplicity a quadratic and isotropic form was assumed for the gradient K contribution in the free energy potential, leading to a single higher order modulus A. If the penalty modulus H χ is large enough, the variable γ χ is almost equal to γ cum . In that case, the gradient K of γ χ does not signiĄcantly differ from the gradient of the accumulated slip variable γ cum . In the following sections the following approximation will be used

γ χ ≃ γ cum , ∂γ χ ∂X ≃ ∂γ cum ∂X , ∂ 2 γ χ ∂X 2 ≃ ∂ 2 γ cum ∂X 2 (4.18)
When the penalty modulus H χ takes a high enough value, γ χ is almost equal to γ cum . The micromorphic model then reduces to a SGP model [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF]. The following state laws are postulated, identically fulĄlling the second law of thermodynamics

Π ∼ e = C ≈ : E ∼ e GL (4.19) S = -H χ e (4.20) M = AK (4.21)
where the Piola (or second Piola-Kirchhoff) stress tensor Π ∼ e is deĄned with respect to the intermediate conĄguration

C ♯ by Π ∼ e = ρ ♯ ρ E ∼ -1 .σ ∼ .E ∼ -T = ρ ♯ ρ 0 E ∼ -1 .S ∼ .P ∼ T . The Mandel stress Π ∼ M is introduced with respect to the intermediate conĄguration by Π ∼ M = E ∼ T .E ∼ .Π ∼ e
, in order to compute the resolved shear stress τ s by τ s = Π ∼ M : N ∼ s . In contrast to strict strain gradient plasticity, the higher order micromorphic stresses are uniquely deĄned in the elastic part of the structure. Whereas the slip variable γ vanishes in the elastic part, the microslip γ χ can be different from zero. This occurs close to the boundary with the plastically active domain. According to the second law of thermodynamics, the residual dissipation inequality is obtained as

N s=1 ♣τ s ♣ + ρ ♯ ρ s -ρ ♯ dψ h dγ cum ♣ γs ♣ ⩾ 0 (4.22)
Hence the yield function f s for each slip system s is introduced with

f s = ♣τ s ♣ + ρ ♯ ρ s -ρ ♯ dψ h dγ cum -τ 0 = ♣τ s ♣ -τ 0 - ρ ♯ ρ s + ρ ♯ dψ h dγ cum (4.23)
where τ 0 is the initial critical resolved shear stress, which is assumed for brevity to be the same for all slip systems. For conciseness hardening is here assumed to be a function of γ cum only. Noticing that ρ ♯ = ρ 0 due to plastic incompressibility, from Eq. (4.6) one has

ρ ♯ ρ s = S.
Accordingly, a rate-dependent law is chosen for the plastic slip rates

γs = sign (τ s ) γ0 ♣τ s ♣ -τ 0 -S + ρ ♯ dψ h dγcum τ 0 n (4.24)
where γ0 and n are viscosity parameters.

Analytical reference solutions for linear hardening and perfect plasticity

As a simple reference analysis of this model, the problem of a periodic unit-cell loaded in simple shear and undergoing single slip for linear hardening and perfect plasticity behaviours is studied. Predictions of the model are derived analytically in the rate-independent case and used to validate the Ąnite element computations performed with the Ąnite element solver ZŰset [START_REF] Besson | Large scale object-oriented finite element code design[END_REF]ZŰset package, 2020).

Geometry and boundary conditions

Let us consider the periodic unit-cell of width W in X 1 , length L in X 2 and thickness T in

X 3 = X 1 ∧ X 2 directions shown in Figure 4.2.
As in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF], the problem of simple shear with a unique slip system (m , n ) aligned with the shearing direction is considered (m = X 1 and n = X 2 ). A macroscopic (average) deformation gradient F ∼ is applied such that

u = (F ∼ -1 ∼ ).X + v (X ) (4.25) with F ∼ = 1 ∼ + F 12 m ⊗ n (4.26)
where v is a periodic function of periodicity W in X 1 direction, L in X 2 direction and T in X 3 direction. At origin point O zero displacements are imposed in the three directions such that

u (X 1 = 0, X 2 = 0, X 3 = 0) = 0 (4.27) slip plane slip dir. W L x 1 x 2 O Figure 4.2 Periodic unit-cell of width W along X 1 , length L along X 2
, and thickness T along X 3 .

In order to enforce existence of gradients of the microslip γ χ along X 2 and thus evidence the boundary layer formation, Dirichlet boundary conditions along X 2 are applied while periodic boundary conditions along X 1 and X 3 are considered

γ χ (X 1 = 0, X 2 , X 3 ) = γ χ (X 1 = W, X 2 , X 3 ) (4.28) γ χ X 1 , X 2 = ± L 2 , X 3 = 0 (4.29) γ χ X 1 , X 2 , X 3 = - T 2 = γ χ X 1 , X 2 , X 3 = T 2 (4.30)
Analytical solutions are Ąrst obtained in the case of linear hardening (H > 0) and perfect plasticity (H = 0) corresponding to the following form of the hardening potential:

ρψ h (γ cum ) = 1 2 ρ ρ 0 Hγ 2 cum (4.31)
where γ cum = ♣γ♣ in the case of monotonic single slip for which the superscript s is dropped, and H is the hardening modulus. In the reference conĄguration, the equations that need to be satisĄed are the balance laws Eqs. (4.7), (4.8) and yielding condition Eq. (4.23). From Eq. (4.12) one has in simple shear with a single slip system that P ∼ = 1 ∼ + γm ⊗ n . Inspired from the work of [START_REF] Gurtin | On the plasticity of single crystals: free energy, microforces, plasticstrain gradients[END_REF], with F ∼ = E ∼ .P ∼ , we make the assumption of small elastic deformations in the absence of lattice rotation expected in the considered slip conĄguration, i.e.

E 12 ≪ 1 with E ∼ = F ∼ .P ∼ -1 = 1 ∼ + E 12 m ⊗ n . Hence one obtains E ∼ e GL ≃ E 12 2 (m ⊗ n + n ⊗ m ) (4.32)
and also

Π ∼ e = C ∼ ∼ : E ∼ e GL ≃ Π e 12 (m ⊗ n + n ⊗ m ) where C ∼ ∼
is the elasticity tensor. It follows from the deĄnition of MandelŠs stress Π ∼ M = E ∼ T .E ∼ .Π ∼ e and the small elastic strain assumption 4.2 Simple shear in the cases of linear hardening and perfect plasticity 90 that Π ∼ M ≃ Π ∼ e , and thus, dropping the superscript for the unique system s, one has

τ = Π ∼ M : (m ⊗ n ) ≃ Π ∼ e : (m ⊗ n ) (4.33)
Hence one obtains Π e 12 ≃ τ . The assumption of small elastic deformations yields also S ∼ ≃ Π ∼ e .P ∼ -T . Note that P ∼ is of the form which yield, when projected along X 1 and

P ∼ = 1 ∼ + γm ⊗ n , hence P ∼ -T = 1 ∼ -γn ⊗ m
X 2 ∂τ ∂X 2 - ∂(γτ ) ∂X 1 = 0 (4.35) ∂τ ∂X 2 = 0 (4.36)
From the periodic boundary conditions Eqs. (4.28) and (4.30), and arbitrariness of the width W and thickness T , invariant solutions along X 1 and X 3 will be sought, i.e. γ χ (X 1 , X 2 , X 3 ) = γ χ (X 2 ). Similarly, from Eq. (4.18) γ is also invariant along X 1 and X 3 . As a consequence equations (4.35) and (4.36) give respectively that τ is invariant along X 1 and X 2 . Since the periodic unit-cell can be considered arbitrarily thin along X 3 without loss of generality, τ is also invariant along X 3 . Hence τ is uniform in the periodic unit-cell:

τ (X 1 , X 2 , X 3 ) = τ (4.37)
Combining Eqs. (4.20) and (4.21) with Eq. (4.8) leads to the differential equation governing the microslip

A d 2 γ χ dX 2 2 = H χ (γ χ -γ) (4.38)
From the homogeneity of the shear stress in the unit-cell, when yielding occurs the whole unit-cell becomes plastic and the yield condition Eq. (4.23

) leads to f = ♣τ ♣ -(τ 0 + Hγ + H χ (γ -γ χ )) = 0.
Combined with Eq. (4.38) one obtains another form of the differential equation governing the microslip

A d 2 γ χ dX 2 2 - HH χ H + H χ γ χ + H χ H + H χ (♣τ ♣ -τ 0 ) = 0 (4.39)
Since the shear stress τ is uniform in the unit-cell, the differential equation (4.39) governing the microslip is a second-order, linear, inhomogeneous differential equation with constant coefficients. It is elliptic if H > 0 and parabolic if H = 0.

Linear hardening (H > 0)

In the case of linear hardening Eq. (4.39) takes the form

d 2 γ χ dX 2 2 - 2π λ 0 2 γ χ = - 2π λ 0 2 κ (4.40)
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λ 0 = 2π A(H + H χ ) ♣H♣H χ , assuming H + H χ ≥ 0 (4.41) κ = λ 0 2π 2 H χ (♣τ ♣ -τ 0 ) A(H + H χ ) (4.42)
Note that for large values of the penalty parameter H χ , one has H χ ≫ H and the intrinsic length λ 0 ≃ 2π A/H, which is the expression for the strain gradient plasticity model. For a strictly positive linear hardening, the solutions of Eq. (4.40) are of the form

γ χ (X 2 ) = α cosh 2π X 2 λ 0 + β sinh -2π X 2 λ 0 + κ (4.43)
where α and β are integration constants. For symmetry reasons γ χ (X 2 ) = γ χ (-X 2 ) which leads to β = 0 and α is uniquely determined from boundary condition Eq. (4.29)

α = - κ cosh 2π λ0 L 2 (4.44)
which Ąnally leads to 

γ χ = κ   1 - cosh 2π λ0 X 2 cosh 2π λ0 L 2   (4.45) Since F ∼ = E ∼ .P ∼ = (1 ∼ + E 12 (m ⊗ n )).(1 ∼ + γ(m ⊗ n )) ≃ (1 ∼ + (E 12 + γ)(m ⊗ n )) from
τ = F 12 + τ0 Z h 1 C44 + 1 Z h (4.47)
where 1

Z h = 1 H - 2H χ tanh 2π λ0 L 2 L 2π λ0 H(H + H χ ) (4.48)

Perfect plasticity (H = 0)

For the case of perfect plasticity, H = 0, the same periodic and Dirichlet type boundary value problem as in the previous section is studied. In that case the differential equation (4.39) becomes

d 2 γ χ dX 2 2 + ♣τ ♣ -τ 0 A = 0 (4.49)
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γ χ (X 2 ) = τ 0 -♣τ ♣ 2A X 2 2 + αX 2 + β (4.50)
where α and β are integration constants, which are uniquely determined from boundary conditions

α = 0 and β = - τ 0 -♣τ ♣ 8A L 2 (4.51)
which Ąnally leads to

γ χ (X 2 ) = τ 0 -♣τ ♣ 2A X 2 2 - L 2 2 (4.52)
This solution is also obtained when computing the Taylor expansion at order two of Eq. (4.45) with H going to zero, i.e. λ 0 going to inĄnity and X 2 /λ 0 going to 0. Using the uniformity of the shear stress in the unit-cell, equation (4.46) leads now to

τ = F 12 + τ0 Zp 1 C44 + 1 Zp (4.53)
where 1

Z p = 1 H χ + L 2 12A (4.54)
which is also obtained with the Taylor expansion of Eq. (4.48) when H goes to zero. In the case of strictly positive linear hardening a boundary layer solution is obtained. The size of the boundary layer depends on the ratio between the material length scale λ 0 and the size L of the unit-cell. In the case of perfect plasticity, it appears that the size of the plastic zone, or in other words the radius of curvature of the parabola, depends not only on the higher order modulus A but also on the size L of the unit-cell.

The analytical solutions Eqs. (4.45) and (4.52) are used to validate the Ąnite element solution of the same boundary value problem. The unit-cell is discretized regularly in 101 elements (reduced integration with eight Gauss points). The interpolation is quadratic for the displacements u and linear for γ χ . Cubic elasticity is considered and C 11 , C 12 and C 44 denote the elasticity moduli. Table 4.1 gathers the material parameters that have been used for validation in case of linear hardening H = 1000 MPa and perfect plasticity H = 0 MPa. Figure 4.3 shows the Ąnite element and analytical solutions at F 12 = 1%. Viscosity parameters γ0 and n have been chosen such that the response is almost rate-independent. The viscous part of the stress is equal to τ 0 ( γ/ γ0 ) 1/n . With the chosen values of the parameters, it is more than 20 times lower than the critical resolved shear stress in the range of strain rates considered here. A perfect agreement is also obtained for any other value of F 12 . 
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Simple shear in the case of softening behaviour

This section is dedicated to the prediction of the micromorphic crystal plasticity model for softening behaviour and in particular to the formation of localization slip bands. As mentioned in the introduction strain gradient models can be used to regularize strain localization phenomena by introducing one or several characteristic lengths. It is shown here how the model presented in Section 4.2 incorporates an intrinsic length that, in case of single slip and linear softening, is related to the localization slip band width. Then non-linear saturating softening behaviour are shown to trigger an increasing slip localization band width. An enhanced model is then proposed in order to bound the localization band width and thus conĄne the localization zone when the softening behaviour tends toward perfect plasticity.

Linear softening (H < 0)

Let us now consider a linear softening behaviour (H < 0 in the hardening potential Eq. (4.31)).

The same boundary conditions Eqs. (4.28), (4.29) and (4.30) as in previous section are kept. Because of the material softening a plastic instability is expected. Therefore a solution with localized plastic deformation over a width λ along X 2 and centered at O is sought for. In the plastic zone the yield condition is satisĄed while γ is zero in the elastic zone

f = 0 ∀X 2 ∈ -λ 2 ; λ 2 (4.55) γ = 0 ∀X 2 ∈ -L 2 ; -λ 2 ∪ λ 2 ; L 2 (4.56)
The differential equation (4.39) governing γ χ is only valid in the region X 2 ∈ -λ 2 ; λ 2 and the solutions are of the form

γ χ (X 2 ) = α cos 2π X 2 λ 0 + β sin 2π X 2 λ 0 + κ (4.57)
For symmetry reasons γ χ (X 2 ) = γ χ (-X 2 ), hence β = 0. Out of the plastic zone γ(X 2 ) = 0 and at the elastic/plastic interfaces, i.e. at X 2 = ± λ 2 , continuity of microslip γ χ and of generalized stress normal to the interface M .X 2 must hold, hence

γ χ ± λ 2 ≃ γ ± λ 2 = 0 (4.58) M ± λ 2 .X 2 = A dγ χ dX 2 X2=± λ 2 = 0 (4.59)
Combining Eqs. (4.58) and (4.59) with Eq. (4.57) one gets

α = ♣τ ♣ -τ 0 H (4.60) λ = λ 0 (4.61)
Hence it is shown that, for H χ ≫ H, the material parameters H and A fully determine the width λ = λ 0 ≃ 2π A/H of the localization slip band that arises in single slip with a linear softening behaviour. This is in contrast to the parabolic case of the previous section for which the plastic zone size depends on the length of the unit-cell. From Eq. (4.46) the uniform shear stress writes

τ = F 12 + τ0 Ze 1 C44 + 1 Ze (4.62)
where

1

Z e = λ 0 HL (4.63)
In the case of strictly negative linear softening the localized solution obtained is a cosine proĄle. The period of the cosine function is a material parameter and it is equal to the width of the localization band. If the length L of the unit-cell is larger than λ 0 the period of the cosine function is then equal to L. Numerically, in order to trigger the localization instability in the center of the periodic unitcell, a defect is introduced in its middle. It consists in a single element having an initially slightly lower critical resolved shear stress τ def ect 0 taken equal to 99% of τ 0 . The analytical solution Eq. (4.57) is used to validate the Ąnite element solution of the same boundary value problem using the same mesh as in Section 4.2. Figure 4.4 shows both solutions at F 12 = 1%. A perfect agreement is also obtained for any other value of F 12 .

Non-linear softening and localization slip band widening

A linear softening behaviour is useful to establish analytical reference solutions, but is of limited interest for modeling softening in real materials at large deformations. In order to model any given saturating softening behaviour, for example the clearing of Frank dislocation loops inside dislocation channels relevant for irradiated materials, it is proposed to introduce in Eq. (4.16) a non-linear exponential softening by means of the hardening potential

ρψ h = - ρ ρ 0 τ a γ 0 exp - γ cum γ 0 (4.64)
This kind of softening is similar to the phenomenological dislocation unpinning model proposed by [START_REF] Ling | Void growth and coalescence in triaxial stress Ąelds in irradiated fcc single crystals[END_REF]. The goal of the present subsection is to evidence the broadening of the localization band when such a non-linear softening behaviour is adopted inside the formulation presented in Section 4.2. An enhanced model is then proposed in order to bound a priori the localization slip band width when considering linear and non-linear softening behaviours. [START_REF] Zbib | On the structure and width of shear bands[END_REF] evidenced the narrowing of localization shear bands by adopting a concave parabolic hardening. However, parabolic softening is unrealistic at large strains and is not used in the present work. As shown in the previous subsection, for simple shear in single slip, a constant band width is obtained in case of a linear softening. Hence a slip band width widening is expected to occur due to the increase of the (negative) tangent softening modulus of the softening proposed in equation (4.64). The yield condition Eq. (4.23) in the particular case of a non-linear exponential hardening writes:

f s = ♣τ s ♣ -τ 0 -H χ (γ χ -γ cum ) + τ a exp - γ cum γ 0 = 0 (4.65)
The solution in terms of γ cum for yielding condition Eq. (4.65) involves the Lambert W function1 . Finally γ cum is eliminated from the differential equation (4.38) which provides

A d 2 γ χ dX 2 2 + H χ γ 0 W - τ a H χ γ 0 exp τ 0 -♣τ ♣ -H χ γ χ H χ γ 0 = τ 0 -♣τ ♣ (4.66)
This differential equation cannot be solved analytically, however a local analysis in the neighbourhood of a given point X = X 0 suffices to prove the widening of the localization band. The function dψ h dγ cum is then approximated by its Taylor expansion in X 0 with

dψ h dγ cum (γ cum ) ≃ H 0 T (γ cum -γ cum (X 0 2 )) + dψ h dγ cum (γ cum (X 0 2 )), (4.67) with H 0 T = d 2 ψ h dγ 2 cum (γ cum (X 0 2 )) (4.68)
This expression can be substituted in Eq. (4.23) and the same analysis as in previous subsection leads then to a local characteristic length scale λ which is similar to the case of linear softening

λ = 2π A(H 0 T + H χ ) ♣H 0 T ♣H χ ≃ 2π A ♣H 0 T ♣ (4.69) ♣H 0 T ♣ decreases when γ cum (X 0 
2 ) increases and ranges in 0;

τ a γ 0 . γ cum reaches its maximum at the center of the defect (X 0 2 = 0), so λ is maximum at X 0 2 = 0 and goes to inĄnity when softening saturates, i.e. when γ cum (X 0

2 ) goes to inĄnity and ♣H 0 T ♣ goes to 0. Finally this proves that the localization band width tends to increase when increasing F 12 . This result has been veriĄed by computing the Ąnite element solution of the γ χ proĄle for the exponential softening potential Eq. (4.64). for large values of γ cum the localization slip band edges reach the boundary of the periodic unit-cell and plastic deformation tends to become homogeneous. This feature of localization slip band broadening is not acceptable when trying to simulate continuing localization at plastic strains much greater than the softening saturating strain (γ cum ≫ γ 0 ).

An enhanced model for a bounded localization slip band width

An enhanced micromorphic crystal plasticity model is therefore proposed in order to bound a priori the localization slip band width when solving the problem of simple shear in single slip. Up to now A was taken as a constant material parameter, while hardening was taken into account with the hardening potential ψ h (γ cum ). Here a dependence of the higher order modulus A with respect to γ cum is introduced in the form

A(γ cum ) = - Λ 0 2π 2 ρ ♯ d 2 ψ h dγ 2 cum (4.70)
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where Λ 0 has the dimension of a length. The corresponding Lagrangian potential Eq. (4.16) writes:

ρψ = 1 2 ρ ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + 1 2 ρ ρ 0 H χ e 2 + 1 2 ρ ρ 0 A(γ cum )K T .K + ρψ h (γ cum ) (4.71)
By virtue of the second law of thermodynamics the state laws Eqs. (4.19) and (4.20) still hold and Eq. (4.21) becomes

M = A(γ cum )K (4.72)
The residual dissipation inequality is now

N s=1 ♣τ s ♣ + ρ ♯ ρ s -ρ ♯ dψ h dγ cum - 1 2 dA dγ cum K T .K ♣ γs ♣ ⩾ 0 (4.73)
An enhanced yield function is proposed in the form

f s = ♣τ s ♣ -τ 0 - ρ ♯ ρ s + ρ ♯ dψ h dγ cum + 1 2 dA dγ cum K T .K (4.74)
It can be seen that the introduction of an evolving higher order modulus induces additional apparent hardening in the expression of the effective critical resolved shear stress. For the problem of single slip considered here superscript s is dropped and combining Eq. ( 4 

ρ ♯ dψ h dγ cum = τ a exp - γ cum γ 0 and A(γ cum ) = Λ 0 2π 2 τ a γ 0 exp - γ cum γ 0 (4.76)
Note that A(γ cum ) ≥ 0 such that the free energy potential is convex with respect to the microslip gradient. Two approximations allow us to derive an approximate closed form solution to differential equation (4.75).

Approximation 1

At initiation of plastic slip, gradients along X 2 of accumulated plastic slip and microslip are close to zero. Therefore the Ąrst and second terms of the right-hand side of differential equation (4.75) that involve quadratic terms of these gradients can be neglected. The approximate differential equation becomes

A(γ cum ) d 2 γ χ dX 2 2 = τ 0 + ρ ♯ dψ h dγ cum -♣τ ♣ (4.77)

Approximation 2

The analytical solutions are derived in the limit case of SGCP, i.e. when the penalty factor H χ of the micromorphic model is large enough. Therefore combining Eq. (4.76) with approximated differential equation (4.77) and approximations Eq. (4.18), one gets

Λ 0 2π 2 τ a γ 0 exp - γ cum γ 0 d 2 γ cum dX 2 2 = τ 0 + τ a exp - γ cum γ 0 -♣τ ♣ (4.78)
With the variable substitution

Γ = exp - γ cum γ 0 (4.79)
the derivatives with respect to X 2 are rewritten as

dΓ dX 2 = - 1 γ 0 exp - γ cum γ 0 dγ cum dX 2 , (4.80) and d 2 Γ dX 2 2 = 1 γ 2 0 exp - γ cum γ 0 dγ cum dX 2 2 - 1 γ 0 exp - γ cum γ 0 d 2 γ cum dX 2 2 (4.81) ≃ - 1 γ 0 exp - γ cum γ 0 d 2 γ cum dX 2 2 (4.82)
where quadratic terms of the gradient of accumulated plastic slip are again neglected. The differential equation governing Γ is then derived from Eq. (4.78) as

d 2 Γ dX 2 2 + 2π Λ 0 2 Γ = 2π Λ 0 2 ♣τ ♣ -τ 0 τ a (4.83)
Its solutions are of the form

Γ(X 2 ) = α cos 2π X 2 Λ 0 + β sin 2π X 2 Λ 0 + ♣τ ♣ -τ 0 τ a (4.84)
where α and β are integration constants. Inserting the latter result into the yield condition f = 0 one has

γ χ (X 2 ) = τ 0 -♣τ ♣ H χ + τ a H χ Γ(X 2 ) -γ 0 ln(Γ(X 2 )) (4.85)
For symmetry reasons γ χ (X 2 ) = γ χ (-X 2 ), hence β = 0. Combining Eqs. (4.58) and (4.59) one obtains

λ = Λ 0 (4.86) α = ♣τ ♣ -(τ 0 + τ a ) τ a (4.87)
The approximated analytical solution Eq. (4.85) is compared to the Ąnite element solution of the same boundary value problem using the full model and using the same mesh as in Section 4.2. The proposed expression of A(γ cum ) allows to bound the localization band width at any strain when considering an exponential softening2 . However it can be observed from Figure 4.7 that while the size of the region where plastic slip occurred is Ąxed, the size of the region of continuing plastic Ćow decreases for further straining F 12 . The latter region becomes vanishingly thin since its size is proportional to the square root of higher order modulus A which, according to Eq. (4.76), tends to zero for increasing plastic slip. This means that the classical crystal plasticity model, without regularization, is retrieved. To that extent, the band width becomes close to the mesh size in the Ąnite element simulation.
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Application to irradiated voided crystals: void/slip band interaction

As shown in [START_REF] Fish | Swelling and tensile property evaluations of high-Ćuence EBR-II thimbles[END_REF] and on Figure 4.1b, irradiation induced nanovoids may be heavily sheared inside dislocation channels during straining. The objective here is to study the possible interactions between these voids and such localization bands from a continuum mechanical perspective. It is shown experimentally in [START_REF] Farrell | Mapping flow localization processes in deformation of irradiated reactor structural alloys-final report[END_REF] and numerically in [START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF] that essentially one single slip system is active inside such a dislocation channel. Therefore a single slip system is considered in the following. A periodic distribution of voids in a plate is considered for simplicity. Interactions between voids and localization bands are analyzed in the Ąnite element simulation of a single unit-cell with appropriate periodic boundary conditions.
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Finite element meshes, loading and boundary conditions

The periodic unit-cell is made of a one-element thick square plate of width and height L in direction X 1 and X 2 and thickness T along X 3 . A cylindrical hole of radius R is located at the center, see Figure 4.8. Regular meshes consist of hexahedral elements which are quadratic in displacements u and linear in γ χ (reduced integration with eight integration points). In the same way as in previous section, an average deformation gradient F 12 is prescribed to the unit-cell with fully periodic boundary conditions. This corresponds to the same macroscopic simple glide deformation Ąeld Eq. (4.26) as in the previous section. The microslip variable γ χ is taken periodic along all three directions. A unique slip system (m , n ) aligned with the shearing direction 1 is considered (m = X 1 and n = X 2 ). An exponential softening behaviour of type Eq. (4.64) is used and Eq. (4.70), and more precisely Eq. (4.76), are adopted for the evolution of the higher order modulus A(γ cum ). Cubic elasticity is considered and Table 4.2 gathers the numerical values of Ąxed material parameters used for all the simulations.

Choice of geometrical and material parameters

The initial void volume fraction is deĄned as

f band 0 = πR 2 T 2RLT = πR 2L (4.88)
which represents the ratio between the volume of the cylindrical hole to the volume of the box of edge length L along X 1 and 2R along X 2 as plasticity is expected to localize in that region.
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χ 0 = 2R/L q 0 = R/Λ 0 [0.2, 0.4] [1/18, 1/12, 1/9, 1/6, 1/3]
In fact this void volume fraction is proportional to the intervoid spacing ratio χ 0 deĄned as

χ 0 = 2R L (4.89)
The ratio q 0 of the intrinsic length to void size is deĄned as

q 0 = R Λ 0 (4.90)
where the constitutive intrinsic length Λ 0 enters Eq. (4.70). For convenience purposes in the following χ 0 will referred to as the porosity and q 0 as the normalized void size. Throughout all simulations Λ 0 is Ąxed to 100 nm which corresponds to an upper bound of the dislocation channels width observed in irradiated steels. Noting that according to [START_REF] Farrell | Mapping flow localization processes in deformation of irradiated reactor structural alloys-final report[END_REF], the greater the irradiation dose the wider and the fewer the dislocation channels. Such a size is at the limit of continuum mechanical modeling. It is therefore assumed that there are enough dislocation sources in these bands for strain gradient continuum crystal plasticity to be applicable. Table 4.3 gathers the discrete values retained for the parameters χ 0 and q 0 in the following simulations.

Results

Figure 4.9 shows the results obtained for a macroscopic shear strain F 12 = 0.15. Very large strains are reached inside the localization band in accordance with the large deformation setting of the theory and Ąnite element implementation. It is important to note that local strains may signiĄcantly exceed the maximum value of the accumulated plastic strain γ cum of the legend bar. Also for visualization purposes all unit-cells are displayed with the same size for a given void volume fraction, even though the actual hole and cell sizes are varied.

In order to measure the inĆuence of q 0 and χ 0 on the localization phenomenon, the localization slip band thickness is deĄned as 

λ = max x1=0,x2,x3=0 x b 2 -x a 2 , ∆γ cum (x a 2 ) > ∆γ max cum /
(∆γ cum (x 2 )) (4.92)
In other words, the band thickness is measured at 1/15 of the peak strain value. Figures 4.10 and 4.11 display the evolution of λ with the macroscopic strain for three values of q 0 at χ 0 = 0.2 and χ 0 = 0.4 respectively. For the two Figures the dashed lines correspond to the limit where λ reaches four times the initial size along X 2 of the largest element inside the localization band. Therefore, results above this line can be considered as mesh independent, while it is considered mesh dependent when it goes below it. For both Figures the top dashed line corresponds to q 0 = 1/3, the middle dashed line to q 0 = 1/6 and the bottom dashed line corresponds to q 0 = 1/18. Figure 4.12 shows the evolution of λ with q 0 at F 12 = 2.5% for two values of χ 0 . γ cum (a) χ 0 = 0.2 and q 0 = 1/3 (b) χ 0 = 0.4 and q 0 = 1/3 (c) χ 0 = 0.2 and q 0 = 1/6 (d) χ 0 = 0.4 and q 0 = 1/6 (e) χ 0 = 0.2 and q 0 = 1/9 (f) χ 0 = 0.4 and q 0 = 1/9 (g) χ 0 = 0.2 and q 0 = 1/12 (h) χ 0 = 0.4 and q 0 = 1/12 (i) χ 0 = 0.2 and q 0 = 1/18 (j) χ 0 = 0.4 and q 0 = 1/18 
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Discussion

Effect of intrinsic length and hole size on void shape

Figure 4.9 shows that void shape is signiĄcantly impacted both by q 0 and χ 0 . For the lowest values of q 0 , i.e. the lowest normalized void sizes, the holes remain elliptical, while they take peanut-like shapes when their size increases and become comparable with the intrinsic length scale. In addition increasing the porosity χ 0 induces preservation of elliptical void shapes for larger normalized void sizes. Eventually even for large void volume fractions peanut-like shapes are obtained. Peanut-like void shapes are in good agreement with those observed inside dislocation channels (see Figure 4.1a and 4.1b). However this agreement is for now only qualitative, and one must note that similar void shapes can be obtained with standard J2 Ćow theory.

Effect of intrinsic length and hole size on localized slip band width

Figure 4.10 and 4.11 show that, at a given porosity χ 0 , larger values of normalized void size q 0 induce thicker localization slip bands. In addition increasing the porosity χ 0 , for a given normalized void size q 0 , decreases the localization slip band width. Figure 4.12 shows more precisely that at a low macroscopic shear strain, larger normalized void sizes and/or smaller porosities induce thicker localization slip bands. The effect of the normalized void size can be understood as follows. When the void radius is much lower than Λ 0 the width of the localization zone is mainly governed by the void size. Hence, for small values of q 0 , λ strongly depends on q 0 . However when the void radius is of the order of magnitude of the intrinsic material length scale Λ 0 the width of the localization band is mainly governed by the latter parameter. Therefore a saturation of the localization band width is observed as q 0 increases. The effect of the porosity can be understood as follows. For a low porosity χ 0 the localization band width λ is expected to be close to the one of the sound material which has been shown in previous section to be equal to the intrinsic material length scale Λ 0 . When increasing porosity χ 0 , with void radii always smaller than the intrinsic material length scale 4.5 Conclusions 106 (q 0 = R/Λ 0 < 1), voids are responsible of more intense Ćow localization and therefore localization bands are thinner than in the case of the sound material.

Effect of intrinsic length and hole size on the selection of slip and kink band modes

It can be seen in Figure 4.9 that slip and kink bands, respectively parallel and perpendicular to the slip direction, initiate where the sheared material cross-section is reduced due to the presence of the void. In the simulations performed, kink bands were found to have a lower intensity than slip bands. It was proven by [START_REF] Asaro | Strain localization in ductile single crystals[END_REF] that slip and kink bands are equivalently probable at initiation of plastic slip for the problem considered. In the post-bifurcation simulations, the results clearly show that slip bands dominate at least for the considered conĄgurations. This is probably due to the fact that, in contrast to slip band, kink bands are associated to strong lattice rotation and curvature so that their structure evolves rapidly with further overall straining Forest (1998); [START_REF] Forest | Strain localization patterns at a crack tip in generalized single crystal plasticity[END_REF]. The present simulations show that the relative intensity of kink bands decreases when the macroscopic strain increases. As expected and according to [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF] it is found that when decreasing the normalized void size q 0 the regularization power of the gradient model affects both kink and slip bands. For a given porosity χ 0 it is observed that the larger the normalized void size, the lower is the relative intensity of the kink band compared to the slip band. In addition it can be observed that, for a given normalized void size, the relative intensity of the kink band increases when increasing the porosity. It should be emphasized that the present model incorporates the effect of the spatial derivatives of the microslip both along and perpendicular to the slip plane. Gradient effects along the slip direction are related to the densities of geometrically necessary dislocations which are known to be responsible for signiĄcant size effects. This contribution plays an essential role in the thickness of kink bands [START_REF] Forest | Strain localization patterns at a crack tip in generalized single crystal plasticity[END_REF]. In contrast gradient effects perpendicular to the slip planes are less explored even though they could be related to cross-slip (or climb at higher temperatures) of dislocations contributing to the Ąnite thickness of slip band bundles [START_REF] Neuhäuser | Dislocations in Solids[END_REF]. The present model is isotropic with respect to the gradient of slip vector which essentially leads to the same Ąnite thickness for slip and kink bands (see [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]). A more elaborate formulation should introduce anisotropy and include a smaller length scale for slip bands than for kink bands.

Conclusions

The main Ąndings of the present work can be summarized as follows:

1. The predictions of a micromorphic crystal plasticity model in case of single slip linear hardening for a periodic unit-cell in simple shear have been established analytically. These analytical solutions have been used to validate the Ąnite element implementation. Three cases were distinguished: linear hardening, perfect plasticity and linear softening. A Ąxed localization band width was shown to emerge in case of linear softening directly related to the higher order modulus of the micromorphic model.

2. A localization band widening has been observed in the Ąnite element simulations at large strains when a non-linear saturating softening and a constant higher order modulus are considered. This band broadening has not been mentioned in the previous literature on plastic strain localization because most of the results in the literature are limited to linear softening and do not consider the saturating regime. It has been observed in the case of damage localization and cracking for some gradient damage model simulations. Such a broadening of plastic bands is not relevant for the simulation of continuing localization in slip bands observed for instance in irradiated materials.

Strain gradient crystal plasticity with evolving length scale 107

3. An enhanced model is proposed in order to preserve a bounded localization band width when a non-linear saturating softening behaviour is used. It is based on a non-constant higher order modulus which varies with the accumulated plastic slip. Finite element results at large strains and an approximate analytical solution using such an evolving length scale conĄrm the absence of widening of the localization slip band in simple shear. The proposed constitutive function A(γ cum ) is decreasing toward zero which leads to a vanishingly small slip band width in the saturated regime. This is similar to existing gradient damage models based on an evolving and vanishing intrinsic length scale at fracture.

4. The enhanced model was applied to the study of void and slip band interaction. The effects of normalized void size and porosity versus intrinsic material length scale on the shape of deformed void, the localization band width, and the localized deformation pattern were illustrated by systematic micromorphic Ąnite element simulations at large strains. Void shape was shown to evolve from elliptical towards peanut-like shape when increasing normalized void size or decreasing void volume fraction which correspond to the experimental observation (see Figure 4.1a). This model applied to a porous material has shown that the localization band width depends simultaneously on the intrinsic material length scale and the void size. Kink bands and slip bands are always observed at initiation of plastic slip and the relative intensity of slips bands compared to kink bands increases when increasing the macroscopic shear strain.

Future work will be dedicated to quantify the inĆuence of several other physical parameters like the tensile versus shear stress ratio (i.e. stress biaxiality), the slip system orientation and the number of active slip systems.
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Introduction

The anisotropic elasto-plastic deformation of crystalline aggregates including shape change, crystallographic texture, and strain hardening can be predicted by classical continuum crystal plasticity [START_REF] Cailletaud | Some elements of microstructural mechanics[END_REF][START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity Ąnite-element modeling: Theory, experiments, applications[END_REF]. The classical continuum crystal plasticity formulation can be enhanced in order to predict experimentally observed size effects such as precipitate or grain size effects, for instance based on the introduction of the dislocation density tensor and associated constitutive length scales [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Forest | Modeling slip, kink and shear banding in classical and generalized single crystal plasticity[END_REF][START_REF] Gurtin | On the plasticity of single crystals: free energy, microforces, plasticstrain gradients[END_REF].

Experimental evidence of size effects can be found in different mechanical tests such as microtorsion [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Guo | Individual strain gradient effect on torsional strength of electropolished microscale copper wires[END_REF][START_REF] Liu | The effects of load condition on void coalescence in FCC single crystals[END_REF], micro-compression [START_REF] Greer | Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients[END_REF][START_REF] Uchic | Sample dimensions inĆuence strength and crystal plasticity[END_REF], micro-bending [START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Haque | Strain gradient effect in nanoscale thin Ąlms[END_REF][START_REF] Stölken | A microbend test method for measuring the plasticity length scale[END_REF] and micro-indentation [START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Liu | Depth dependence of hardness in copper single crystals measured by nanoindentation[END_REF][START_REF] Nix | Indentation size effects in crystalline materials: A law for strain gradient plasticity[END_REF] of crystalline materials. SizeŰdependent crystal plasticity modeling is required when the specimen or grain size becomes comparable to the intrinsic lengths of the underlying plastic deformation mechanisms [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Kocks | Physics and phenomenology of strain hardening: the FCC case[END_REF]. The gradient of shear strain results in the development of the dislocation density tensor which can be described in terms of the storage of geometrically necessary dislocations (GND) [START_REF] Acharya | Lattice incompatibility and a gradient theory of crystal plasticity[END_REF][START_REF] Ashby | The deformation of plastically non-homogeneous materials[END_REF][START_REF] Bardella | A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations[END_REF]Cordero et al., 2012a;[START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF]. The GND density controls the material strain hardening together with the usual scalar dislocation densities, also called statistically stored dislocations (SSD).

The strain gradient plasticity approach can also be used to regularize the simulation of shear band formation in crystalline solids. Strain softening results in a narrow band of intense shearing. The possible loss of ellipticity of partial differential equations in strain softening materials results in an ill-posed boundary value problem and classically shows dependency on mesh size or density. The shear band dependency on the mesh size or density can be overcome by introducing intrinsic material length scale in conventional plasticity [START_REF] Anand | A large-deformation gradient theory for elasticŰ plastic materials: strain softening and regularization of shear bands[END_REF]Kaiser and Menzel, 2019b;[START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Peerlings | Localisation issues in local and nonlocal continuum approaches to fracture[END_REF][START_REF] Vignjevic | Modelling of strain softening materials based on equivalent damage force[END_REF][START_REF] Voyiadjis | Gradient plasticity theory with a variable length scale parameter[END_REF] and in crystal plasticity (Kaiser and Menzel, 2019a;[START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF][START_REF] Petryk | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part I: The hardening law[END_REF]. Furthermore, the difficulties in assessment of active slip systems within the crystal plasticity framework can be overcome by rate-dependent [START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF] or rate-independent (Forest and Rubin, 2016;Kaiser and Menzel, 2019a) formulations.

Implementation of strain gradient crystal plasticity in a Ąnite element code is a challenging task that has been performed for example by [START_REF] Bardella | Latent hardening size effect in small-scale plasticity[END_REF]; [START_REF] Borg | Size effects on void growth in single crystals with distributed voids[END_REF]; [START_REF] Nellemann | An incremental Ćow theory for crystal plasticity incorporating strain gradient effects[END_REF][START_REF] Nellemann | Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity[END_REF]; [START_REF] Panteghini | On the Ąnite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility[END_REF]; [START_REF] Shu | Scale-dependent deformation of porous single crystals[END_REF]; [START_REF] Yalcinkaya | Non-convex rate dependent strain gradient crystal plasticity and deformation patterning[END_REF] at small strains and by Kaiser and Menzel (2019a); [START_REF] Lewandowski | Size effects in wedge indentation predicted by a gradient-enhanced crystal-plasticity model[END_REF]; [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]; [START_REF] Niordson | Computational strain gradient crystal plasticity[END_REF] at Ąnite deformations. An efficient method to implement strain gradient plasticity models is to resort to the micromorphic approach proposed by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] 2020) for crystal plasticity based on the dislocation density tensor. According to this approach, additional plastic microdeformation degrees of freedom, in the sense of [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF], are introduced at each node and the curl part of the microdeformation tensor is assumed to expend work with a conjugate couple stress tensor. A penalty parameter, which can be interpreted as a higher order elasticity modulus, is used to constrain the plastic microdeformation to be as close as possible to the usual plastic deformation. As a consequence, the curl of the microdeformation tensor almost coincides with the dislocation density tensor.

The computational cost of Ąnite element simulation based on strain gradient or micromorphic crystal plasticity is rather high due to the number of additional degrees of freedom and the strong nonlinearities of the problem. A reduced micromorphic crystal plasticity model was proposed by [START_REF] Erdle | A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip[END_REF][START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF][START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF][START_REF] Wuląnghoff | A gradient plasticity grain boundary yield theory[END_REF][START_REF] Wuląnghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF]. It is limited to a single scalar additional degree of freedom, called microslip variable which is bounded to remain close to the cumulative plastic slip by means of the penalty parameter. The gradient of the microslip is then assumed to be an argument of the Helmholtz free energy density function. This approach can be compared to the relaxation of the strain gradient plasticity model by a Lagrange multiplier based formulation recently proposed by [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] for isotropic materials. As in the micromorphic approach, one hardening variable is duplicated in two separate instances. One instance of the variable is dedicated to nonlocality and the other to nonlinearity, see [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]. The equivalence between both variables is weakly enforced by a Lagrange multiplier, instead of a penalty term. The Lagrange term is added to the free energy function and treated as an additional Ąeld variable. This strong coupling scheme was shown to reduce the computational cost drastically compared to previous algorithms. Details of Ąnite element implementation of micromorphic strain gradient rate-dependent crystal plasticity based on Newton-Raphson method to integrate the differential equations can be found in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]. The numerical implementation of a Lagrange multiplier based strain gradient isotropic plasticity model was presented in [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] The objective of the present work is to compare the computational performances and predictions of reduced micromorphic crystal plasticity and a new Lagrange multiplier based implementation of strain gradient plasticity. The novelty of the work lies, Ąrst, in this new formulation of strain gradient plasticity with a Lagrangian function and, second, in the comparison of the predictions of the two models. The computational performance and physical relevance of both models are also assessed. Three distinct physical situations are considered. First, regularization of strain localization in a periodic bar undergoing strain-softening is investigated. Then, the size and orientation dependent torsion of FCC single crystal wires is investigated showing that both models coincide at intermediate wire diameters but differ in their asymptotic behaviour. Further, the numerically efficient Lagrange multiplier based constitutive framework is used to study the ductile growth and coalescence of voids in porous unit-cells. The results are compared to data obtained with the micromorphic approach that are already available in the literature.

The outline of the paper is as follows. In section 5.2, a thermodynamically consistent formulation of reduced strain gradient crystal plasticity is presented in the rate-dependent and rate-independent cases. In section 5.3 the constitutive framework of reduced micromorphic and Lagrange multiplier approaches are described. The numerical implementation of the latter is presented in section 5.4. Numerical examples of a sheared periodic bar, a cylinder in torsion and a porous unit-cell under axisymmetric triaxial loading are provided in section 5.5. Concluding remarks follow in section 5.6.

The notations used in the paper are as follows. Underlined bold a and under-wave bold A ∼ stand respectively for Ąrst and second rank tensors. The transpose, inverse, transpose of inverse and time derivative are denoted by A ∼ T , A ∼ -1 , A ∼ -T and Ȧ ∼ respectively. The single and double contractions are written as A ∼ .b = A ij b j e i and A ≈ : B ∼ = A ijkl B kl e i ⊗ e j respectively. The following tensor products are used:

a ⊗ b = a i b j e i ⊗ e j , A ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l , A ∼ ⊗B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l and A ∼ ⊗B ∼ = A il B jk e i ⊗ e j ⊗ e k ⊗ e l
, where e i refers to an orthonormal base vector.

A reduced strain gradient crystal plasticity theory

Thermodynamical formulation

A reduced strain gradient crystal plasticity theory is adopted in which only the gradient of a scalar effective quantity is considered in keeping with [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF]. Based on the work by WulĄnghoff and Böhlke (2012) the accumulated plastic slip γ cum , deĄned as

γ cum = t 0 N s=1 ♣ γs ♣ dt (5.1)
is chosen to be the thermodynamic variable carrying gradient effects. γs denotes the plastic slip rate on the s-th slip system. In the Ąnite strain setting, the deformation gradient F ∼ , with
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L ∼ p = Ṗ ∼ .P ∼ -1 = N s=1 γs (m s ⊗ n s ) with L ∼ = Ḟ ∼ .F ∼ -1 = Ė ∼ .E ∼ -1 + E ∼ .L ∼ p .E ∼ -1 (5.2)
where m s and n s refer to the gliding direction and direction normal to the slip plane respectively. In the reference conĄguration, upon neglecting body forces, following [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Gurtin | Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF] the principle of virtual power, for all material subsets D 0 of the body, can be written as

D0 S ∼ : Ḟ ∼ + S γcum + M . K dV 0 = ∂D0 (T . u + M γcum ) dS 0 ∀ u , ∀ γcum , ∀D 0 (5.3)
where S ∼ is the Boussinesq (or nominal 1-st Piola-Kirchhoff) stress tensor related to the Cauchy stress tensor σ ∼ by S ∼ = (ρ 0 /ρ)σ ∼ .F ∼ -T with ρ 0 (respect. ρ) the volumetric mass density in the reference conĄguration (respect. current conĄguration). Vector T is the traction vector and u is an arbitrary velocity Ąeld. S and M are higher order stresses and M a higher order traction scalar. K is the Lagrangian gradient of the accumulated plastic slip, K = Grad γ cum . From Eq. ( 5.3) it can be derived that, within any subset D 0 of the body, the stresses satisfy the equilibrium relations Div S ∼ = 0 ∀X ∈ D 0

(5.4) Div M -S = 0 ∀X ∈ D 0

(5.5) in the absence of body forces and in the static case. As a result of Eq. ( 5.3), on the surface of the subset ∂D 0 the stresses S ∼ and M are in equilibrium with the traction vector T and scalar M according to T = S ∼ .n 0 ∀X ∈ ∂D 0 , (5.6)

M = M .n 0 ∀X ∈ ∂D 0 (5.7)
where n 0 refers to the outward unit surface normal. In order to formulate a complete thermodynamic theory of reduced strain gradient crystal plasticity a free energy potential ψ needs to be deĄned. The speciĄc free energy potential ψ is chosen to depend on the elastic Green-Lagrange strain measure E ∼ e GL = (1/2) E ∼ T .E ∼ -1 ∼ , the accumulated plastic slip γ cum , its Lagrangian gradient K and hardening variables r s left to be deĄned.

ψ E ∼ e GL , γ cum , r s , K = 1 2ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K .K (5.8)
where ρ ♯ refers to the volumetric mass density in the intermediate conĄguration (i.e. the con-Ąguration resulting from the transport of the reference conĄguration by P ∼ ). The contribution of the accumulated plastic slip gradient is weighed by the strictly positive material parameter, so called higher order modulus, A. The Clausius-Duhem inequality (isothermal case) resulting from 1-st and 2-nd principles of thermodynamics enforces

S ∼ ρ 0 : Ḟ ∼ + S ρ 0 γcum + M ρ 0 . K -ψ ≥ 0 (5.9)
5.2 A reduced strain gradient crystal plasticity theory 114

The Ąrst term on left-hand side of Eq. (5.9) can be decomposed into an elastic contribution and a plastic contribution

S ∼ ρ 0 : Ḟ ∼ = Π ∼ e ρ ♯ : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1
(5.10)

where Π ∼ e is the second Piola-Kirchhoff stress tensor deĄned by 

Π ∼ e = (ρ ♯ /ρ)E ∼ -1 .σ ∼ .E ∼ -T = (ρ ♯ /ρ 0 )E ∼ -1 .
M = E ∼ T .E ∼ .Π ∼ e .
The residual dissipation in Eq. (5.9) then writes

Π ∼ e ρ ♯ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 + S ρ 0 - ∂ψ h ∂γ cum γcum + M ρ 0 - A ρ 0 K . K - N s=1 ∂ψ h ∂r s ṙs ≥ 0 (5.11)
Here it is assumed that the higher order stress S has a dissipative part which will be denoted -H, while M is assumed to be non-dissipative. As discussed by [START_REF] Forest | Formulations of strain gradient plasticity[END_REF] it is the most simple assumption to derive AifantisŠ model. The following state laws are postulated

Π ∼ e = ρ ♯ ∂ψ ∂E ∼ e GL = C ≈ : E ∼ e GL
(5.12)

S = ρ 0 ∂ψ h ∂γ cum -H (5.13) M = ρ 0 ∂ψ ∂K = AK (5.14)
Finally the residual dissipation reduces to

Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 - H ρ 0 γcum - N s=1 ∂ψ h ∂r s
ṙs ≥ 0 (5.15)

The resolved shear stress τ s is the energetic counterpart of γs and from Eq. (5.2) it can be deduced that it is related to Mandel stress Π ∼ M by τ s = Π ∼ M : N ∼ s where N ∼ s = m s ⊗ n s is the Schmid tensor. Assuming that the rate of hardening variable r s is proportional to the slip rate γs (e.g. ṙs = g s (r s )♣ γs ♣) leads to the following expression of the residual dissipation

N s=1 ♣τ s ♣ - ρ ♯ ρ 0 H -ρ ♯ ∂ψ h ∂r s g s (r s ) ♣ γs ♣ ≥ 0 (5.16)
where it has been assumed that sign (τ s ) = sign ( γs ). Eq. (5.16) motivates the introduction of the yield function of each system deĄned by

f s = ♣τ s ♣ -τ s 0 + ρ ♯ ρ 0 H + ρ ♯ ∂ψ h ∂r s g s (r s ) = ♣τ s ♣ -τ s c - ρ ♯ ρ 0 S (5.17)
where τ s 0 is the initial critical resolved shear stress of s-th system. The critical resolved shear stress is introduced as τ s c = τ s 0 + ρ ♯ ∂ψ h /∂r s g s (r s ) + ρ ♯ ∂ψ h /∂γ cum . By combining Eq. (5.5) and Eq. (5.14) one obtains S = Div M = Div (AK )

(5.18)

As it can be seen from yield criterion Eq. (5.17), the divergence term induces a coupling between constitutive nonlinearity and spatial nonlocality. Therefore pointwise integration of the differential equation governing the material behaviour over a given domain is precluded. Two different relaxation approaches to deal with this coupling are presented in section 5.3 and compared in terms of computational performance and physical predictions in section 5.5.

Rate-dependent and rate-independent formulations

A rate-dependent (viscoplastic) and a rate-independent formulation of crystal plasticity are presented here and used in the next sections.

Rate-dependent crystal plasticity

As emphasized in [START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF] (and references therein) most rate-independent crystal plasticity theories lead to an ill-conditioned problem regarding the selection of active slip systems. Different methods exist to ensure uniqueness, but their numerical implementation may also play a crucial role in the active slip system selection. One possible way to overcome these issues is to work within a rate-dependent setting. In this framework the slip rates are no longer deĄned by a rate-independent yield surface, but are governed by a rate-dependent potential surface. Smoothness of viscous potential functions allows one to obtain the direction of the strain increment by the normality rule. Evolution of the plastic slip variables γ s can for example be obtained by considering Norton-type Ćow rules:

γs = γ0 f s τ s 0 n sign (τ s ) = γ0 Φ s RD (f s )sign (τ s ) (5.19)
where γ0 and n are material parameters which control the rate sensitivity of the material response. Macauley brackets of a scalar x, written ⟨x⟩, denote the positive part of x and Φ s RD denotes the rate-dependent Ćow function. High values of the power exponent n and of the reference rate γ0 lead to a low strain rate sensitivity in a given strain rate range.

Rate-independent crystal plasticity

Another possible way to select the active slip systems is to use the rate-independent formulation proposed by Forest and Rubin (2016) and intensively used by [START_REF] Farooq | Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses[END_REF] (later referred to as RubiX formulation). It is characterized by a smooth elastic-plastic transition with no slip indeterminacy. It is based on a strictly rate-independent overstress allowing to remove illconditioning of the selection of activated slip systems. The main idea consists in replacing Eq. (5.19) by: γs = εeq

f s R sign (τ s ) = εeq Φ s RI (f s )sign (τ s ) (5.20)
where εeq is a non-negative homogeneous function of degree one in the total velocity gradient L ∼ .

The rateŰindependent Ćow function is noted Φ s RI and εeq is taken here as the total equivalent distortional strain rate:

εeq = 2 3 D ∼ ′ : D ∼ ′ D ∼ ′ = 1 2 L ∼ + L ∼ T - 1 3 (trace L ∼ )1 ∼ (5.21)
R is a positive constant having the unit of a stress and which controls the amplitude of the rate-independent overstress. As this work proceeds Γ (resp. Φ s ) will be used indistinguishably to represent either γ0 or εeq (resp. Φ s RD or Φ s RI ).

Summary of constitutive equations

Equilibrium equations, state laws and evolution equations are summarized in Table 5.1. 

∼ = 0 ∀X ∈ D 0 Π ∼ e = C ≈ : E ∼ e GL Ė ∼ = Ḟ ∼ .F ∼ -1 .E ∼ -E ∼ . N s=1 γs N ∼ s Div M -S = 0 ∀X ∈ D 0 M = AK γs = ΓΦ s ♣τ s ♣ -τ s c - ρ ♯ ρ 0 S sign (τ s ) T = S ∼ .n 0 ∀X ∈ ∂D 0 S = ρ 0 ∂ψ h ∂γ cum -H ṙs = g s (r s )♣ γs ♣ M = M .n 0 ∀X ∈ ∂D 0 γcum = N s=1
♣ γs ♣

Relaxations of strain gradient plasticity theory

Micromorphic approach

WulĄnghoff and Böhlke (2012) and [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF] used the micromorphic approach [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] to tackle the issue of nonlocality and nonlinearity coupling. Their approach is based on the introduction of an additional degree of freedom, denoted γ χ , enriching the kinematic description of the material behaviour. γ χ is the micromorphic counterpart of γ cum , and, therefore it bears the same physical interpretation. However γ cum and γ χ are treated independently in the resolution of the equations governing the material behaviour. In this context the principle of virtual power Eq. ( 5.3) is extended to higher order contributions:

D0 S ∼ : Ḟ ∼ + S γχ + M .Grad γχ dV 0 = ∂D0 (T . u + M γχ ) dS 0 ∀ u , ∀ γχ , ∀D 0 (5.22)
Using the divergence theorem one can again derive the balance laws in the reference conĄguration, namely Eq. ( 5.4) and (5.5),

Div S ∼ = 0 (5.23) Div M -S = 0

(5.24) while on the surface ∂D 0 stresses are in equilibrium with the traction vector and scalar T = S ∼ .n 0 (5.25)

M = M .n 0 (5.26)
In order to ensure quasi-equality between γ cum and γ χ , a penalty term is introduced in the free energy potential penalizing their difference γ cum -γ χ , where H χ is a penalty modulus which is usually taken large enough so that the results obtained with the model do not depend on the chosen value (typically H χ ∼ 10 4 -10 5 MPa). With this method the speciĄc free energy density Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modeling and simulation 117

Eq. (5.8) now writes

ψ E ∼ e GL , r s , γ cum , γ χ , K χ = 1 2ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K χ .K χ + H χ 2ρ 0 (γ cum -γ χ ) 2
(5.27)

where K χ = Grad γ χ . The 1-st and 2-nd principles of thermodynamics now enforce

S ∼ ρ 0 : Ḟ ∼ + S ρ 0 γχ + M ρ 0 . K χ -ψ ≥ 0 (5.28)
The mechanical dissipation therefore becomes

Π ∼ e ρ ♯ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 + S ρ 0 - ∂ψ ∂γ χ γχ - ∂ψ ∂γ cum γcum + M ρ 0 - A ρ 0 K χ . K χ - N s=1 ∂ψ h ∂r s
ṙs ≥ 0

(5.29)

After selecting nonŰdissipative contributions, the following state laws are adopted

Π ∼ e = ρ ♯ ∂ψ ∂E ∼ e GL
(5.30)

S = ρ 0 ∂ψ ∂γ χ = -H χ (γ cum -γ χ ) (5.31) M = ρ 0 ∂ψ ∂K χ = AK χ (5.32)
In contrast to the previous section, the constitutive assumption that S is non-dissipative is made here. Therefore the energy dissipated with γχ vanishes. Yet, a term involving the higher order stress S and conjugate to γcum remains. The residual dissipation now writes

Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 - N s=1 ∂ψ h ∂r s ṙs - H χ ρ 0 (γ cum -γ χ ) + ∂ψ h ∂γ cum γcum ≥ 0 (5.33)
which can also be written

N s=1 ♣τ s ♣ - ρ ♯ ρ 0 H χ (γ cum -γ χ ) -ρ ♯ ∂ψ h ∂γ cum -ρ ♯ ∂ψ h ∂r s g s (r s ) ♣ γs ♣ ≥ 0 (5.34)
By combining state law Eq. (5.31), equilibrium equation Eq. (5.24) and state law Eq. (5.32) it comes S = -H χ (γ cum -γ χ ) = Div M = Div (AK χ ). Therefore the micromorphic approach is a relaxation1 of the strict strain gradient formulation from section 5.2 in the sense that no spatial derivatives are explicitly involved for the non-local contribution in Eq. (5.34). The plastic slip rates now are

γs = ΓΦ s ♣τ s ♣ -τ s c + ρ ♯ ρ0 H χ (γ cum -γ χ ) sign (τ s ) (5.35)
The main drawback of this method, in the context of viscoplasticity, lies in the necessity of taking a large value for H χ in order to assure quasi-equality between γ χ and γ cum . In the limit case of almost rate insensitivity the viscoplastic parameters n and γ0 are such that the nonlinear system of equation governing activation of slip systems is very stiff and thus extremely sensitive to the errors that are made during the iterative process (typically an Euler-backward scheme) used to solve them. As a consequence small time steps are necessary in order to achieve convergence. One possible way to tackle this issue and allow the use of large time steps with the micromorphic approach is to use a rate-independent crystal plasticity setting such as the one proposed by Forest and Rubin (2016) and presented in section 5.2.2.2.

Lagrange multiplier approach

Alternatively, the Lagrange multiplier method proposed by [START_REF] Fortin | Chapter III on decomposition-coordination methods using an augmented lagrangian[END_REF] and successfully applied in [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]) can be used. This approach is described here for relaxing the theory presented in section 5.2.1. The main ideas of the method are Ąrst to duplicate the variable upon which the nonlinear-nonlocal coupling is acting and second to enforce equality between both variables through a Lagrangian function. In the context of the model presented in section 5.2.1 the non-local instance of the coupling variable will be denoted γ χ while its local instance is γ cum . Similarly to the micromorphic approach, K χ = Grad γ χ is regarded as a state variable. Enforcing equality between γ χ and γ cum is achieved using a Lagrange multiplier λ. It turns out that the previous free energy density in Eq. (5.8) becomes a Lagrangian function

L E ∼ e GL , γ cum , r s , γ χ , K χ , λ = 1 2ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K χ .K χ + λ ρ 0 (γ χ -γ cum ) + µ χ 2ρ 0 (γ χ -γ cum ) 2
(5.36)

where µ χ is a Lagrangian penalization modulus. The 1-st and 2-nd principles of thermodynamics still require to verify Eq. (5.28), where ψ is now replaced by L, and the mechanical dissipation is written as in Eq. (5.29). The postulated state laws are now

Π ∼ e = ρ ♯ ∂ψ ∂E ∼ e GL
(5.37)

S = ρ 0 ∂ψ ∂γ χ = λ + µ χ (γ χ -γ cum ) = ∆ χ -µ χ γ cum (5.38) M = ρ 0 ∂ψ ∂K χ = AK χ (5.39)
Similarly to the micromorphic approach, the constitutive assumption that S is non-dissipative is made. Therefore the energy dissipated with γχ vanishes. Yet, a term involving the higher order stress S and conjugate to γcum remains. For convenience the scalar stress ∆ χ = λ + µ χ γ χ is introduced. By deĄnition ∂L/∂λ must vanish when the constraint γ cum = γ χ is met

∂L ∂λ λ = (γ χ -γ cum ) λ ρ 0 = 0 (5.40)
and therefore the residual mechanical dissipation becomes

Π ∼ M ρ ♯ : Ṗ ∼ P ∼ -1 - N s=1 ∂ψ h ∂r s ṙs - µ χ γ cum -∆ χ ρ 0 + ∂ψ h ∂γ cum γcum ≥ 0 (5.41)
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N s=1 ♣τ s ♣ - ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) -ρ ♯ ∂ψ h ∂γ cum -ρ ♯ ∂ψ h ∂r s g s (r s ) ♣ γs ♣ ≥ 0 (5.42)
By combining state law Eq. (5.38), equilibrium Eq. ( 5.24) and state law Eq. (5.39) it comes S = ∆ χ -µ χ γ cum = Div M = Div (AK χ ). Therefore the Lagrange multiplier approach is a relaxation of the strict strain gradient formulation from section 5.2 in the sense that no spatial derivative is explicitly involved in the non-local contribution in Eq. (5.42). The plastic slip rates now are

γs = ΓΦ s ♣τ s ♣ -τ s c + ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) sign (τ s ) (5.43)

Numerical implementation

The numerical implementation in a Ąnite element setting of the Lagrange multiplier approach is described. Details on the implementation of the micromorphic formulation can be found in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF].

Integration of constitutive equations

The sets of degrees of freedom (DOF), input variables (IN), output variables (OUT) and integration variables (INT) are:

DOF: ¶u , γ χ , λ♢ IN: ¶F ∼ , ∆ χ ♢ OUT: ¶S ∼ , γ M ♢ INT: ¶E ∼ , γ s , r s , γ cum ♢ (5.44)
where γ M is merely a copy of γ cum obtained at the end of the constitutive integration. Integrating the constitutive equations consists, for known values of all variables at a given time step n, in computing the evolution of the output and internal variables at next time step n + 1 knowing the evolution laws of the input variables. At the global level the output variables need to satisfy the weak form of the balance equations Eqs. (5.23), (5.24), (5.25) and Eq. (5.26). It can be noted that

S ∼ = Jσ ∼ .F ∼ -T = 1 2 J J e E ∼ . C ≈ : E ∼ T .E ∼ -1 ∼ .E ∼ T .F ∼ -T
(5.45)

where state law Eq. (5.30) has been used along with the elastic free energy used in Eq. (5.36) and J = det (F ∼ ) and J e = det (E ∼ ). The evolution of S ∼ depends on evolutions of E ∼ and F ∼ . Within the Lagrange multiplier approach the set of equations to be solved at the local level are similar to evolution equations in Table 5.1 and can be reformulated incrementally as the problem of Ąnding the solution of the following system of equations R(∆E ∼ , ∆γ s , ∆r s , ∆γ cum ):

R =                              R E ∼ = ∆E ∼ -∆F ∼ .F ∼ -1 .E ∼ -E ∼ . N s=1 ∆γ s N ∼ s = 0 R γ s = ∆γ s -∆ΓΦ s ♣τ s ♣ -τ s c - ρ ♯ ρ 0 (∆ χ -µ χ γ cum ) sign (τ s ) = 0 R r s = ∆r s -g s (r s )♣∆γ s ♣ = 0 R γcum = ∆γ cum - N s=1
♣∆γ s ♣ = 0

(5.46)
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where ∆Γ = ∆ε eq in the rate-independent formulation and ∆Γ = γ0 ∆t in the rate-dependent formulation. Note that it may happen that τ s c -(ρ ♯ /ρ 0 ) (∆ χ -µ χ γ cum ) < 0. In that case this value is replaced by 0 in the computation. Note also that Eq. (5.46) does not guarantee that plastic incompressibility is satisĄed. In order to fulĄll this condition, the tensor E ∼ is corrected at the beginning of each iteration of the Newton algorithm used to solve Eq. (5.46). This correction amounts to replace E ∼ by (J/J e ) 1/3 E ∼ . As a result, the corrected tensor P ∼ veriĄes det (P ∼ ) = 1, which corresponds to the plastic incompressibility condition. Solving R(∆E ∼ , ∆γ s , ∆r s , ∆γ cum ) = 0 is performed using a Newton algorithm with an Euler backward (implicit) scheme which requires computation of the Jacobian matrix J = ∂R/∂∆v int (or some approximation of it). The analytical Jacobian matrix for the resolution of Eq. (5.46) is given in Appendix F.

Finite element formulation

The model is implemented in the Ąnite element software Z-set using a 3D total Lagrangian formulation following [START_REF] Besson | Object-oriented programming applied to the finite element method part I. general concepts[END_REF]ZŰset package, 2020). The principle of virtual power in the context of the Lagrange multiplier method combines Eqs. (5.23), (5.24), (5.25), (5.26), and in addition Eq. (5.40) must be satisĄed

                 ∀ u D0 S ∼ : Ḟ ∼ dV 0 = ∂D0 T . u dS 0 ∀ γχ D0 AK χ . K χ + (∆ χ -µ χ γ M ) γχ dV 0 = ∂D0 M γχ dS 0 ∀ λ D0 (γ χ -γ M ) λdV 0 = 0
(5.47)

(5.48)

(5.49)

The Ąnite element problem is solved by a monolithic iterative method. The material body occupies the domain D 0 in its reference conĄguration, the decomposition of this body in n Ąnite elements raises (5.51)

                         ∀ u
(5.52)

The boundary ∂D 0 is discretized into n S surface elements ∂D e 0 for the application of surface tractions. As this section proceeds tensors are written with index notations. Within the volume of each element the degrees of freedom u i , γ χ and λ are interpolated by their values at p nodes for the displacements (ũ a i for a ∈ [1; p]) and q nodes for Lagrange multiplier λ and the microslip γ χ ( λ b and γb

χ for b ∈ [1; q]) u i = p a=1 u N a u a i γ χ = q b=1 χ N b γ b χ (5.53) λ = q b=1 χ N b λ b thus ∆ χ = q b=1 χ N b λ b + µ χ γ b χ (5.54)
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where u N a and χ N b are shape functions, the superscripts denoting the element node number.

The deformation gradient F ij and the Lagrangian gradient of microslip K i are given by

F ij = p a=1 u B a j u a i K χi = q b=1 χ B b i γ b χ (5.55) with u B a j = ∂ u N a /∂X j and χ B b i = ∂ χ N b /∂X i .
Using these relations in Eqs. (5.50), (5.51) and (5.52) leads to

                                     n e=1 D e 0 S ij p a=1 u B a j ua i dV e 0 = n S e=1 ∂D e 0 T i p a=1 u N a ua i dS e 0 n e=1 D e 0 A q b=1 χ B b i γ b χ q b=1 χ B b i γb χ + q b=1 χ N b λ b + µ χ γ b χ -µ χ γ M q b=1 χ N b γb χ dV e 0 = n S e=1 ∂D e 0 M q b=1 χ N b γb χ dS e 0 n e=1 D e 0 q b=1 χ N b γ b χ -γ M q b=1 χ N b ˙ λ b dV e 0 = 0
(5.56)

(5.57)

(5.58) which can be reformulated as (5.66)

                                     n e=1 p a=1 D e 0 S ij u B a j dV e 0 ua i = n S e=1 p a=1 ∂D e 0 T i u N a dS e 0 ua i n e=1 q b=1 D e 0 A q k=1 χ B k i γ k χ χ B b i + q k=1 χ N k λ k + µ χ γ k χ -µ χ γ M χ N b dV e 0 γb χ = n S e=1 q b=1 ∂D e 0 M χ
B k i γ k χ χ B b i + q k=1 χ N k λ k + µ χ γ k χ -µ χ γ M
(5.67)

(5.68)

This system of equations is solved using NewtonŠs method. The details of the numerical implementation are given in Appendices G and H. As this work proceeds, quadratic (resp. linear) interpolation functions are used for the displacement (resp. microslip and Lagrange multiplier) degrees of freedom.

Numerical examples

1D localization band formation

Validation of the Lagrange multiplier implementation

Validation of the implementation is done by solving the problem of a periodic bar of length L along X 2 (see Figure 5.1a) in simple shear with a single slip system and a linear softening behavior (H < 0)

τ c (γ) = τ 0 + Hγ (5.69)
Such a hardening behaviour corresponds to a hardening free energy potential ψ h = Hγ 2 /2. In the reference conĄguration, the gliding direction m is aligned with X 1 , the normal to the slip plane n is aligned with X 2 . A macroscopic shear deformation F ∼ = 1 ∼ + F 12 m ⊗ n is imposed such that the displacement Ąeld is given by u = (F ∼ -1 ∼ ).X + v (X ). Periodic boundary conditions are imposed on the displacement Ćuctuation v , micro-slip variable γ χ and Lagrange multiplier λ. As discussed in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] the analytical solution to this problem, in terms of plastic slip, is a localization band following a sine shape within the [-λ 0 /2; λ 0 /2] region and no slip elsewhere

γ(X 2 , F 12 ) =          ♣τ ♣ -τ 0 H cos 2π X 2 λ 0 + 1 if X 2 ∈ - λ 0 2 ; λ 0 2 0 if X 2 ∈ - L 2 ; - λ 0 2 ∪ λ 0 2 ; L 2 (5.70)
with the wavelength λ 0 = 2π A/♣H♣, where H is the slope of linear softening. It is important to notice that in the context of the Lagrange multiplier approach, when the penalty factor µ χ = 0, the Lagrange multiplier λ, which is a degree of freedom, coincides with the Laplacian of γ in this elementary problem. Yet, it can be noted from Eq. (5.70) that the Laplacian of γ takes the form

∆γ(X 2 , F 12 ) =          - 2π λ 0 2 ♣τ ♣ -τ 0 H cos 2π X 2 λ 0 if X 2 ∈ - λ 0 2 ; λ 0 2 0 if X 2 ∈ - L 2 ; - λ 0 2 ∪ λ 0 2 ; L 2 (5.71)
Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modeling and simulation 123 which is discontinuous in ±λ 0 /2. Therefore solving numerically this problem by Ąnite elements with standard continuous shape functions might lead to difficulties. Figure 5.1b and 5.1c show the Ąnite element solutions to this problem in case µ χ = 0, for discretizations of respectively n = 51 and n = 201 elements along the X 2 direction of the bar and a wavelength λ 0 = L/2. It is observed that strong oscillations of plastic slip (solid red line) occur around the analytical solution (dashed black line) for both Ąnite element discretizations. These oscillations are caused by abnormal Ćuctuations of the Lagrange multiplier (solid blue line) also plotted on the same Ągures. Fluctuations are probably due to poor approximations of the Lagrange multiplier degree of freedom at the discontinuity. This issue can be solved by using the Lagrangian penalization term in Eq. (5.36). The additional penalty term is very similar to the micromorphic penalization, but it bears a completely different meaning. While in the micromorphic approach H χ has to be large in order to ensure quasi-equality between γ cum and γ χ , in the Lagrange multiplier approach µ χ only helps to provide additional coercivity and can take much lower values in practice. Figure 5.1d and 5.1e show the Ąnite element solution of the periodic bar in simple shear when µ χ = 50 MPa for n = 51 and n = 201. It can be observed that the oscillations almost vanish everywhere, except at ±λ 0 /2 where their amplitude is much lower and that a smooth solution coinciding with the analytical solution is obtained everywhere else. Another possible alternative to properly account for the discontinuity of the Lagrange multiplier could be to use a discontinuous Galerkin Ąnite element formulation [START_REF] Cockburn | Discontinuous Galerkin methods: theory, computation and applications[END_REF][START_REF] Hughes | A multiscale discontinuous galerkin method with the computational structure of a continuous Galerkin method[END_REF].

Another observation can be made on the interdependence between mesh density and the value of µ χ which yields a smooth proĄle of ∆ χ . The proĄles of ∆ χ in a reduced region of the bar for several values of µ χ and the two different mesh densities n = 51 and n = 201 are plotted in Figure 5.2. It can be seen that if the value of µ χ is not large enough, oscillations of ∆ χ are still observed even if µ χ ̸ = 0. Increasing the value of µ χ tends to smooth out the proĄle of ∆ χ . In this example, no clear evolution of the proĄle can be observed for values of µ χ greater than or equal to 10 MPa. The results obtained with µ χ = 5 MPa suggest that at a given value of µ χ , a Ąner mesh leads to a smoother proĄle of the Laplacian term ∆ χ . In other words, increasing the discretization reduces the value of µ χ required to obtain a smooth proĄle of ∆ χ .

Computational efficiency

The computational efficiency of both relaxed formulations for the rate-independent and viscous settings are compared in this section. The four possible variants (micromorphic or Lagrange multiplier approach and rate-dependent or rate-independent formulation) are used to solve the localization problem presented above. It can be shown that the shear stress τ is uniform. In order for the results to be comparable in terms of computational efficiency, the viscous stress τ vs = τ 0 ( γ/ γ0 ) 1/n , for the rate-dependent setting, and the overstress τ os = R( γ/ εeq ), for the rate-independent setting, need to be calibrated in order for the numerical solution to be close to the rate-independent solution without overstress with a given precision. The macroscopic shear strain rate is chosen to be Ḟ 12 = 10 -2 s -1 . From the analytical expression of τ = (F 12 + τ 0 /Z e )/(1/C 44 + 1/Z e ) with 1/Z e = λ 0 /HL derived in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] it follows that the maximum viscous stress is

τ max vs = τ 0   2 Ḟ 12 γ0 H 1 C44 + 1 Ze   1/n
(5.72) while the rate-independent overstress is uniform and given by Table 5.2 Numerical values of material parameters for the comparison of computational efficiencies.

τ os = √ 3R H 1 C44 + 1
C 44 τ 0 H H χ µ χ n γ0 R
105 GPa 100 MPa -10 MPa 5 × 10 4 MPa 50 MPa 15 10 30 s -1 0.1 MPa γ0 , n and R are chosen such that τ max vs and τ os are less than 1% of τ 0 . The material parameter used are summarized in Table 5.2. Four different values of A are chosen such that λ 0 /L = 2π A/♣H♣/L takes the following values [0.25; 0.5; 0.75; 1]. The one-element thick bar is meshed with n = 201 quadratic elements with reduced integration (C3D20R). In the micromorphic approach each node has three displacement degrees of freedom and the linear nodes have one additional degree of freedom γ χ . In the Lagrange multiplier approach each node has three displacement degrees of freedom and the linear nodes have two additional degrees of freedom γ χ and λ. The number of degrees of freedom in the micromorphic simulations is n DOF = 4077, while it is n DOF = 4485 with the Lagrange multiplier based formulation. Results not shown here exhibit an overall discrepancy of less than 1% on the predicted numerical γ Ąeld between the four formulations after a mean shear deformation gradient of F 12 = 100%. All simulations are also in excellent agreement with the analytical solution. Simulations were ran on a single Intel Core i7-7600U CPU. Reference computation time is T ref = 2316 s and corresponds to the time needed for the viscous micromorphic formulation to reach F 12 = 100% with λ 0 /L 0 = 0.25. The relative computation times for the four different values of λ 0 /L and four different formulations are displayed in Figure 5.3.

First, despite the slightly larger number of degrees of freedom, the computational cost reduction obtained with the Lagrange multiplier based formulation, as compared to the micromorphic approach, is striking. In the rate-dependent setting this speedup ranges from 30 up to almost 200. In the rate-independent setting this speedup ranges between 1.5 and 70. Regarding the micromorphic implementation only, the speedup obtained with the rate-independent setting, as compared to the viscous setting, ranges from more than 2.5 to about 17 as the ratio λ 0 /L increases. Furthermore, regarding the Lagrange multiplier formulation only, the ratedependent and rate-independent settings have very similar computational performances. The rate-independent setting is slightly more efficient for the lowest λ 0 /L ratios, while on the contrary the rate-dependent formulation performs better at λ 0 /L = 1.

The rate of convergence in the local integration scheme was checked for the micromorphic and Lagrange multiplier approaches. Both methods display a very similar rate of convergence that is very close to the quadratic bound of a Newton scheme. The gap of performances between the two implementations is in fact attributed to the poor conditioning of the local Jacobian matrix when the penalization modulus H χ is taken large. Pre-conditioning techniques could be applied in order to enhance the performances of the micromophic approach.

As this work proceeds, the rate-dependent setting is adopted and results obtained with micromorphic and Lagrange multiplier approaches are compared. As already discussed by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF] micromorphic and strict strain gradient formulations, such as the Lagrange multiplier based formulation, are indeed not always strictly equivalent. Therefore the choice of the appropriate formulation should not only be motivated by the computational efficiency but also by the desired scaling law.

Size effects in torsion tests

The torsion of single and polycrystal wires has been the subject of intensive experimental and computational research. [START_REF] Nouailhas | Tension-torsion behavior of single-crystal superalloys -Experiment and Ąnite-element analysis[END_REF] discovered that the torsion of a single crystal bar or tube is characterized by two types of strain gradients: a radial gradient from the center to the outer surface due to the loading, but also a gradient along the outer circumference due to the anisotropic activation of slip systems. This was observed experimentally by means of strain gauges placed along the circumference (Forest et al., 1996). The transition from single to polycrystals for microwires of increasing diameters was computed using Ąnite element crystal plasticity in [START_REF] Quilici | On size effects in torsion of multi-and polycrystalline specimens[END_REF] and more recently in [START_REF] Bayerschen | Single-crystal gradient plasticity with an accumulated plastic slip: Theory and applications[END_REF]. The sizeŰdependent torsion of FCC single crystal bars is investigated below by means of the proposed micromorphic and strain gradient plasticity models.

Problem setup

Simulations are performed with a single crystal cylindrical microwire of diameter D = 2R 0 meshed with elements that are quadratic for displacements degrees of freedom and linear for γ χ and λ. Quadratic shape function are used for displacements degrees of freedom because they are known to provide better interpolation accuracy than linear shape functions. Furthermore, quadratic elements are also known to be less subject to locking issues. However linear shape functions are used for γ χ and λ in order to limit the number of degrees of freedom. It is in fact assumed that plastic deformations vary less rapidly than displacements, in such a way that linear shape functions give sufficient precision to interpolate accumulated plastic slip. With the formalism developed in this work quadratic shape function for γ χ and λ could also have been used. As reduced integration involves a lesser number of integration points than full integration, 20-node brick elements with reduced integration possessing 8 Gauss points (instead of 27 for full integration) are used. Reducing the number of integration points clearly decreases the accuracy of the integration, but it also reduces the computational cost. Furthermore, reduced integrated elements are known to be less stiff than fully integrated elements. Therefore, reduced integration is often recommended in order to avoid the problem of locking and possible oscillations. Yet, reduced integration can lead to hourglassing issues when the element stiffness matrix is zero. In this work methods to prevent hourglass were not used, but no signiĄcant hourglass modes could be observed in the simulations which are presented below. Yet, several ways to address hourglassing have been proposed in literature [START_REF] Belytschko | Hourglass control in linear and nonlinear problems[END_REF]: inserting an artiĄcial stiffness to the hourglass deformation modes, inserting an artiĄcial viscosity, reĄning the mesh, etc. The bottom face of the microwire is clamped while the top surface undergoes a rigid body rotation around the wire axis. The lateral faces are kept traction free, which means that T = 0 and M = 0 from Eq. ( 5.25) and (5.26). Two orientations of the single crystal are considered: <001> and <111> aligned with the microwire axis. The geometry and the boundary conditions are as shown in Figure 5.4. The Cartesian coordinate system is chosen for the two microwire single crystals (later respectively denoted <001> and <111>) such that

X 1 = [110] X 2 = [1 10] X 3 = [001]
(5.74)

and

X 1 = [ 11 2] X 2 = [1 10] X 3 = [111]
(5.75) respectively. Face-centered cubic (FCC) single crystal microwires are simulated. The hardening laws per slip system are based on the evolution of usual scalar dislocation densities. The hardening term accounts for lattice friction and dislocation interactions [START_REF] Kubin | Modeling dislocation storage rates and mean free paths in face-centered cubic crystals[END_REF]. The critical resolved shear stress (CRSS) is taken as:

τ s c = τ 0 + µ 12 u=1 a su r u (5.76)
where τ 0 is the thermal component of the CRSS due to lattice friction, r u denotes adimensional dislocation density (r u /b 2 = ρ u is the usual dislocation density, i.e. the length of dislocation lines per unit volume, b is the norm of the dislocation Burgers vector b ), µ is the shear modulus, and a su is a matrix describing interactions between dislocations. Such an hardening behaviour is standard in the literature, but the link to a free energy potential ψ h remains an open question.

The evolution equation for the adimensional dislocation density r s

ṙs = ♣ γs ♣       12 u=1 b su r u κ -G c r s      
(5.77) accounts for multiplication and annihilation of dislocations. The parameter κ is proportional to the number of obstacles crossed by a dislocation before being immobilized, G c is the critical distance controlling the annihilation of dislocations with opposite signs, and b su describes the interactions between dislocations. The structures of the matrices a su and b su are given in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF] for FCC crystals. Cubic elasticity is considered. The wrought Inconel 718 material parameters at room temperature used for the numerical simulation are given in Table 5.3. r s 0 denotes the initial value of the adimensional dislocation density, which is assumed to be the same for all slip systems. The various intrinsic length scale to diameter ratios (ℓ/2R 0 ) considered in the simulations are given in Table 5.4. <111> specimen with maximum plastic strain values along <11 2> directions. The overall curves are presented using normalized torque T /R 3 0 as a function of surface strain γ R deĄned as

Results and discussion

γ R = kR (5.78)
where k is the applied twist per unit length (θ/L). They are given in Figure 5.7 for the two single crystal orientations <001> and <111> using classical crystal plasticity. The <001> crystal orientation is found to be signiĄcantly stronger than the <111> wire. The orientation of the crystal to the loading direction causes different slip activity and results in different mechanical responses. The twist angle at the cross-section of the microwire is calculated as θ h = θh/L, where h is the height from the bottom end. The initial material line for <001> and <111> crystal orientation is shown in Figure 5.4b. The rotation of material line with increasing surface strain is as shown in Figure 5.5 and 5.6. The response of the micromorphic wire is also provided in Figure 5.7 for comparison for a given internal length value. In the micromorphic approach, the penalty parameter H χ is chosen sufficiently large for γ cum and γ χ to almost coincide. The chosen value of H χ in the simulation is 10 4 MPa. The intrinsic length scale (ℓ) considered in the simulation is deĄned as ℓ = A/♣H♣ as proposed in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF], where H is the initial equivalent linear hardening modulus. H is estimated by performing uniaxial tensile test on one element as proposed in [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF]. Its value is given by the ratio of τ s and γ s for one activated slip system at the beginning of its activation. Thus the estimated H values for <001> and <111> crystal orientation are 2500 MPa and 2000 MPa respectively. The intrinsic length scale can be varied by varying the constitutive parameter A. The various values of A and of the intrinsic length scale to diameter ratio (ℓ/2R 0 ) of microwire are given in the Table 5.4. The micromorphic response in Figure 5.7 exhibits a linear hardening of the wire in contrast to the saturated classical crystal plasticity response. The magnitude of the slope depends on the value of the internal length as demonstrated in the following. The effect of different ratios ℓ/2R 0 on the size effects in torsion microwires has been studied for the two models considered in this work, namely the micromorphic and strain gradient plasticity formulations. The torque vs surface strain curves of the micromorphic model are compared with the Lagrange multiplier based model. The cumulative plastic strain (γ cum ) Ąelds for different ℓ/2R 0 of microwire (ℓ/2R 0 = 0.03, 0.07, 0.10 and 0.44 for <001> and ℓ/ 2R 0 = 0.03, 0.08, 0.11 and 0.50 for <111> crystal orientation) obtained using both models are shown in Figure 5.8 and 5.9. It can be seen that, for low and intermediate values of the ratio ℓ/2R 0 , the two models predict the same accumulated plastic slip Ąelds. In contrast, for the larger value ℓ/2R 0 = 0.31, the circumferential gradient has almost disappeared according to the Lagrange multiplier based model whereas it is still present in the micromorphic simulation. Increasing the length scale for a Ąxed wire diameter leads to a strong decrease of the plastic strain gradient. This can be attributed to the fact that the energetic cost of plastic strain gradient increases with ℓ and the free energy of the sample is minimum for a limited value of the gradient. These observations are valid for both orientations <001> and <111>. It is remarkable that the four-fold and six-fold patterns disappear for large enough internal length scale values.

The corresponding torque vs surface strain curves are provided in Figure 5.10 and 5.11. They clearly show the size-dependent hardening effect for both models. For small and intermediate values of the internal length, the micromorphic and Lagrange multiplier models are found to deliver the same overall responses. This result is expected since the value of penalty parameter in the micromorphic model has been chosen so as to ensure such a correspondence. However, keeping the same value of the penalty parameter H χ and increasing the internal length, or equivalently the value of the parameter A, leads to a saturation of the torque-shear strain curve for the micromorphic model. In contrast, the Lagrange multiplier based model predicts ever increasing hardening. Figure 5.10a and 5.11a show almost the same micromorphic response for the two largest ℓ/2R 0 values whereas distinct curves are obtained with the Lagrange multiplier approach, see Figure 5.10b and 5.11b. This saturation of size effects predicted by a micromorphic formulation has already been demonstrated analytically for the microcurl theory by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF] in the case of periodic shearing of a laminate at small strains and small rotations.
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γ R = 6% , θ h = 23 • γ R = 10% , θ h = 37 • γ R = 14% , θ h = 52 •
The present new results show that this feature also exists at large strains for torsion. These observations apply to both orientations <001> and <111>. The strongest additional hardening effect is obtained when the internal length takes values comparable to the wire diameter, as expected.

The predictions of the Lagrange multiplier based formulation can be considered in fact as the limit case when the penalty modulus H χ goes to inĄnity in the micromorphic formulation. The predictions obtained with the micromorphic formulation for several values of H χ are plotted in Figure 5.12. As H χ rises the prediction of the micromorphic formulation goes closer to the

Problem setup

An initially spherical void of radius R 0 is placed at the center of a cube of size L 0 as presented in Figure 5.13a. The matrix material surrounding the void is a FCC single crystal (later denoted <100>) such that

X 1 = [100] X 2 = [010] X 3 = [001]
(5.79)

Therefore, for symmetry reasons only one eighth of the porous unit-cell is considered. Figure 5.13b shows the corresponding Ąnite element mesh for a void volume fraction f 0 = (4/3)π(R 0 /L 0 ) 3 = 1%. Quadratic (resp. linear) shape functions are used for the displacement (resp. micro-slip γ χ and Lagrange multiplier λ) degrees of freedom. Elements with reduced integration are used. A triaxial axisymmetric loading is applied by prescribing displacement boundary conditions on the inner faces of the cube at X 1 = 0, X 2 = 0, X 3 = 0 and outer faces at

X 1 = L 0 /2, X 2 = L 0 /2, X 3 = L 0 /2 U 1 (X 1 = 0, X 2 , X 3 ) = 0 U 1 (X 1 = L 0 /2, X 2 , X 3 ) = U 1 (t) (5.80) U 2 (X 1 , X 2 = 0, X 3 ) = 0 U 2 (X 1 , X 2 = L 0 /2, X 3 ) = U 2 (t) (5.81) U 3 (X 1 , X 2 , X 3 = 0) = 0 U 3 (X 1 , X 2 , X 3 = L 0 /2) = U 3 (t) (5.82)
External forces F 1 , F 2 and F 3 are respectively associated to U 1 , U 2 and U 3 . The macroscopic stresses Σ 11 , Σ 22 and Σ 33 are deĄned by

Σ 11 = 4F 1 (L 0 + 2U 2 )(L 0 + 2U 3 ) (5.83) Σ 22 = 4F 2 (L 0 + 2U 1 )(L 0 + 2U 3 ) (5.84) Σ 33 = 4F 3 (L 0 + 2U 1 )(L 0 + 2U 2 )
(5.85)

A macroscopic strain rate Ḟ 11 = 10 -4 s -1 is imposed along the X 1 direction. Displacements U 2 and U 3 are adjusted following the procedure described in [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] in order to enforce a constant stress triaxiality T where

T = Σ m Σ eq = 1 + η 2 + η 3 3 1 -η 2 -η 3 -η 2 η 3 + η 2 2 + η 2 3 (5.86)
with the relations Σ 22 = η 2 Σ 11 and Σ 33 = η 3 Σ 11 . For the applied axisymmetric loading considered in this Section, the values η 2 = η 3 = 0.625 were chosen, corresponding to a triaxiality of 2. This Ąrst size effect is due to a more diffuse plastic deformation Ąeld when the intrinsic length ℓ gets closer to L 0 . For the three lowest values of the ratio considered, the void volume fraction evolution displays two distinct regimes, while for the two largest ratios only one regime is visible. This two-regime evolution is characteristic of void growth and void coalescence. During the Ąrst regime, voids grow rather slowly because of overall yielding of the matrix surrounding them. At some point necking of the ligament separating voids is reached, which leads to a sudden steepening of void growth evolution. This acceleration is due to intense localization of plastic deformation inside the ligament. Onset of void coalescence by intervoid ligament necking is characterized by a transition from a triaxial to a uniaxial straining mode [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF]. This transition can therefore be detected by computing over time the ratio ♣∆U 2 ♣/♣∆U 1 ♣. Coalescence can be considered to set on as soon as this ratio becomes lower than an arbitrary small critical value, say 5%. Hollow squares are plotted in Figure 5.14 in order to depict the macroscopic strain and void volume fraction at which coalescence begins. For the sake of clarity, coalescence onsets are only displayed for the results obtained by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]. For a given characteristic length, the micromorphic and Lagrange multiplier formulations predict almost identical strain and void volume fractions at onset of coalescence. The second size effect which appears is that void growth to void coalescence transition is postponed when ℓ/L 0 is increased. This delay is due to the weaker void volume increase during the growth regime.
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For the two largest value of ℓ/L 0 a very Ćat void growth regime is observed. The quasi-absence of void growth explains why coalescence does not occur in the range of applied deformations.

Necking of the intervoid ligament would indeed require larger stresses to be applied. A third size effect which can be observed is a slight increase of the void volume fraction at coalescence when the intrinsic length increases. This additional effect is due to the fact that size effects prevent intense localization of plastic deformation. Therefore void coalescence which occurs by localization of plastic slip in the intervoid ligament requires a larger void volume fraction in order to happen. The macroscopic stress-strain curves obtained with the Lagrange multiplier formulation are plotted in Figure 5.15 aside to the results obtained with the micromorphic formulation presented in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]. As previously noted for void volume fraction in Figure 5.14, both formulations are also equivalent in terms of stress-strain behaviour when size effects are absent. However the discrepancies between both formulations observed in presence of size effects on void volume fraction evolution are also visible on the stress-strain behaviour. dominates over softening induced by void growth. This regime is therefore characterized by an increase of the macroscopic stress despite the augmentation of f . In the second regime, softening induced by void growth overcomes the hardening capacity of the matrix leading to a macroscopic softening behaviour. However, for the largest intrinsic length, softening induced by void growth does not overcome hardening of the matrix material, thus the second stress softening regime is not observed. Hollow squares are also plotted on the stress-strain curves in order to depict onset of void coalescence. As discussed earlier, strong size effects postpone the onset of void coalescence, because of impeded void growth. As a collateral effect, it can be noted that the macroscopic stress at coalescence increases notably with ℓ/L 0 . The inĆuence of the penalization modulus µ χ in the Lagrange multiplier formulation is visible in Figure 5.14 and 5.15. For the smallest characteristic length µ χ has a rather weak impact on the void volume fraction evolution and stress behaviour. As the characteristic length increases, the importance of µ χ rises. It can be observed that greater values of µ χ induce a slightly slower void growth and a harder stress-strain behaviour. These effects become more visible at large strains.

The accumulated plastic strain Ąeld obtained with the Lagrange multiplier formulation with µ χ = 10 4 MPa are displayed in Figure 5.16 at a macroscopic strain E 11 = 0.3 for several values of the ratio ℓ/L 0 . These Ąelds are quantitatively in excellent agreement with the results obtained by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF] with the micromorphic approach. According to conventional crystal plasticity, plastic strains are predominantly localized in the vicinity of the void, in particular where the cross-section area orthogonal to the main tensile direction is minimum. Plastic anisotropy causes the presence of several soft zones, where γ cum is maximum and which correspond to regions with highest Schmid factors. As the ratio ℓ/L 0 is increased the accumulated plastic slip tends to become more homogeneous across the porous unit-cell. Therefore, the maximum local value of γ cum drops. In addition, the number of local maxima decreases. Three intense maxima were indeed visible with conventional crystal plasticity, while only two much less intense maxima can be observed when ℓ/L 0 = 30. Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modeling and simulation 141

Conclusions

The major outcomes of this study can be stated as follows:

1. A Lagrange multiplier approach accounting for the nonlinearity and nonlocality coupling inherent to strain gradient plasticity was presented. It was compared to the micromorphic approach in the context of crystal plasticity. The main idea of the Lagrange multiplier approach is to enforce weakly equality between local and non-local variables through a Lagrange multiplier.

2. The Ąnite element implementation of the Lagrange multiplier method was detailed. In particular tangent and Jacobian matrices were derived.

3. The computational efficiencies of the micromorphic and Lagrange multiplier formulations were compared. Rate-dependent and rate-independent crystal plasticity settings were used.

A signiĄcant speedup, reaching a computational time reduction of up to a factor 200, is obtained with the Lagrange multiplier based and rate-dependent formulation compared to the micromorphic and rate-dependent formulation. Important beneĄts are also displayed with the rate-independent setting as compared to the viscoplastic Ćow rule, in particular when the micromorphic approach is considered.

4. The prediction of size effects with the micromorphic and Lagrange multiplier approaches were compared for single crystals torsion tests. It was shown that both models provide similar results for small and intermediate internal length scales. However, for larger internal length scales, the hardening due to strain gradients saturates according to the micromorphic approach. A similar saturation effect was observed on the grain size effect on the yield stress in polycrystals using the microcurl model at small strains in (Cordero et al., 2012b). The scaling law is different for the Lagrange multiplier formulation since such a saturation is not observed.

5. Advantage of the Lagrange multiplier numerical efficiency has been taken in order to perform simulations of void growth in porous unit-cells up to void coalescence. Comparison to simulations made previously with the micromorphic formulation displays a very good agreement between both formulations.

Although this model remains computationally rather expensive, the results obtained in this work suggest that simulation of structures, such as real specimens, are now within reach in more reasonable computation times. The work initiated in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] on the evolution of voids in a softening matrix material will be pursued by performing 3D porous unit-cell simulations by taking advantage of the enhanced computational performance of the Lagrange multiplier formulation. The advances obtained in this paper will also be coupled in a future work to recent extensions of standard crystal plasticity to ductile failure [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] and damage [START_REF] Lindroos | Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructures[END_REF].

A strain gradient model for ductile fracture in single crystals

Résumé

Un modèle complet de rupture ductile pilotée par la croissance et la coalescence de cavités est développé pour les monocristaux. Un formalisme de plasticité cristalline à gradient est adopté comme cadre, aĄn de régulariser les champs mécaniques locaux. Le modèle est basé sur un cadre thermodynamique original pour les matériaux poreux homogénéisés. Ce dernier uniĄe et généralise différents cadres thermodynamiques existants. La thermodynamique sert conjointement de ligne directrice dŠoù découlent naturellement les couplages, mais aussi de garde-fou empêchant la violation des principes fondamentaux. Ce cadre générique est une condition préalable pour, dans un deuxième temps, introduire des contributions non-locales dans une formulation à gradient de déformation plastique. La formulation de plasticité à gradient utilisée est construite à partir dŠune relaxation de la plasticité à gradient stricte faisant intervenir un multiplicateur de Lagrange, ainsi quŠun terme de pénalisation dans lŠénergie libre. Le modèle de rupture ductile monocristalline établi est basé sur une représentation multisurface de la plasticité des cristaux poreux. Les mécanismes de croissance et de coalescence de cavités sont conjointement pris en compte. Une extension dŠune formulation existante est proposée pour la phase de croissance et une nouvelle approche est proposée et validée pour la phase de coalescence. Le modèle obtenu est ensuite mis en oeuvre dans des simulations par éléments Ąnis dŠun monocristal en déformations planes déformé en traction jusquŠà rupture. La capacité de régularisation et la convergence avec le raffinement du maillage sont démontrées. Des simulations de rupture ductile de structures monocristallines sont ensuite présentées.

Introduction

Modeling ductile fracture of metallic alloys is a major topic in the Ąeld of mechanical engineering.

Multiple mechanisms can spearhead ductile fracture [START_REF] Noell | The mechanisms of ductile rupture[END_REF] that is commonly characterized by signiĄcant local inelastic deformation prior to material separation and formation of free surfaces. One main mechanism is related to nucleation, growth and coalescence of voids in the bulk material. The seminal works of [START_REF] Green | A plasticity theory for porous solids[END_REF]; [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF]; [START_REF] Mcclintock | A Criterion for Ductile Fracture by the Growth of Holes[END_REF]; [START_REF] Rice | On the ductile enlargement of voids in triaxial stress Ąelds[END_REF]; [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF]; [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] paved the way to the establishment of continuum mechanics models of ductile fracture provoked by combined plastic deformation and formation and evolution of voids. The key ingredient of these models consists in introducing a damage scalar variable, related to the volume fraction of voids. The evolution of the damage variable is driven by the local loading state of the material. In order to efficiently reproduce failure after signiĄcant plastic deformation these models propose an elegant way to decrease the load bearing capacity of the material when the amount of damage increases. This is accomplished by deriving yield potentials for which the elastic domain shrinks when damage increases. Their approach encompasses two major requirements: (1) to derive the appropriate evolution of the damage variable and ( 2) to obtain the appropriate dependency of the yield criteria upon damage. In the context of porous plasticity (see the reviews by [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]; [START_REF] Besson | Continuum models of ductile fracture: a review[END_REF]; Pineau et al. ( 2016)), increase of damage is mainly governed by void nucleation and void growth. Some authors also proposed extensions involving contribution of void shearing [START_REF] Nahshon | ModiĄcation of the Gurson model for shear failure[END_REF] in the effective damage variable evolution, although that way the link to void volume fraction is lost. Deriving effective yield criteria of porous solids was conducted by mainly three homogenization techniques. The Ąrst, followed by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF], involves limit analysis of an idealized porous unit-cell. The second, followed for example by [START_REF] Danas | A Ąnite-strain model for anisotropic viscoplastic porous media: IŰtheory[END_REF] is based on variational methods. The third followed by [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF][START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF][START_REF] Rousselier | Dissipation in porous metal plasticity and ductile fracture[END_REF]) calls upon thermodynamical considerations [START_REF] Germain | Continuum Thermodynamics[END_REF]. Early models were extensively enriched to improve their accuracy for instance by introducing Ątting parameters [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF]. Extensions were also developed to account for shape [START_REF] Gologanu | A micromechanically based Gurson-type model for ductile porous metals including strain gradient effects[END_REF], orientation [START_REF] Cao | A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation[END_REF] or size of voids [START_REF] Dormieux | An extension of Gurson model incorporating interface stresses effects[END_REF][START_REF] Gallican | Anisotropic coalescence criterion for nanoporous materials[END_REF]. In the homogenization procedure the behaviour of the so-called matrix material that surrounds the voids is of paramount importance. Gurson originally considered an isotropic rigid perfectly plastic matrix material. GursonŠs approach was later generalized to take isotropic hardening and kinematic hardening [START_REF] Besson | An extension of the Green and Gurson models to kinematic hardening[END_REF][START_REF] Mear | InĆuence of yield surface curvature on Ćow localization in dilatant plasticity[END_REF][START_REF] Morin | A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening[END_REF] into account. Other studies focused on deriving effective yield criteria of porous materials with a plastic anisotropic matrix material (Benzerga and Besson, 2001;[START_REF] Keralavarma | A criterion for void coalescence in anisotropic ductile materials[END_REF][START_REF] Morin | Coalescence of voids by internal necking: theoretical estimates and numerical results[END_REF].

In most metallic alloys voids nucleate at imperfections such as inclusions or precipitates by debonding or cracking [START_REF] Babout | On the competition between particle fracture and particle decohesion in metal matrix composites[END_REF]. These defects can be within the bulk of grains. In this case voids are individually surrounded by single crystals at short distances. Recent experiments were carried out on polycrystal stainless steel tensile specimens containing focused ion beam (FIB) drilled holes inside grains [START_REF] Barrioz | Effect of dislocation channeling on void growth to coalescence in FCC crystals[END_REF]. These showed the importance of crystal orientation on the plastic behaviour surrounding voids. Although anisotropic nature of plasticity in single crystals could be captured to some extent by Hill-type anisotropic yield criteria, single crystal porous unit-cell simulations [START_REF] Ha | Void growth and coalescence in fcc single crystals[END_REF][START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]Potirniche et al., 2006a;[START_REF] Selvarajou | Void growth and coalescence in hexagonal close packed crystals[END_REF][START_REF] Yerra | Void growth and coalescence in single crystals[END_REF] have shown the strong effect of crystal plasticity on void growth and coalescence. Nevertheless, since the early work by [START_REF] Mori | Plastic deformation of quench-hardened aluminum single crystals[END_REF], only a few studies were devoted to develop models for porous single crystals up to failure. Single crystal void growth models were settled by [START_REF] Crépin | Cavity growth and rupture of β-treated zirconium: a crystallographic model[END_REF]; [START_REF] Han | A yield function for single crystals containing voids[END_REF]; [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]; Mbiakop et al. (2015a); [START_REF] Paux | Plastic yield criterion and hardening of porous single crystals[END_REF]. Even fewer studies dealt with void coalescence in single crystals [START_REF] Hure | A coalescence criterion for porous single crystals[END_REF][START_REF] Yerra | Void growth and coalescence in single crystals[END_REF]. A comprehensive model combining void growth and void coalescence criteria in porous single crystals is still lacking. The Ąrst and foremost objective of the present work is to address the formulation, implementation and application of such a model. The proposed model will be constructed in a Ąnite strain framework on the basis of the void growth model developed in [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF]). An original coalescence criterion, adapted for intervoid necking in single crystals, is proposed and validated. In keeping with the multi-mechanism plasticity framework proposed by [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF], void growth yield criteria will be combined to void coalescence criterion to obtain a so-called multi-surface model.

Most ductile fracture models predict a softening regime at incipient Ąnal failure. Softening occurs in these models on account of damage variable increase which in turn reduces the size of the elastic domain. As a result softening induces localization and localization promotes damage acceleration. Although such a behaviour might be in agreement with underlying physical mechanisms it also entails the major issue of causing ill-posedness of the boundary value problem as reported by [START_REF] Bažant | Continuum theory for strain-softening[END_REF]; [START_REF] Lorentz | Gradient constitutive relations: numerical aspects and application to gradient damage[END_REF]. From a numerical point of view, solving these equations, for example by Ąnite elements, results in the absence of convergence of the results when the mesh size is decreased. Localization systematically tends to form the most thin band possible (typically one Gauss point thick). Several approaches were followed to bypass or overcome this issue. In [START_REF] Achouri | Experimental characterization and numerical modeling of micromechanical damage under different stress states[END_REF][START_REF] Xue | Calibration procedures for a computational model of ductile fracture[END_REF] mesh size is treated as a material parameter used to control the characteristic length of post-localization regime. Another technique used to introduce a material length scale is to deploy the intrinsically sizedependent phase Ąeld method as in [START_REF] Miehe | Phase field modeling of fracture in porous plasticity: A variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure[END_REF]. In another way, theories developed in the context of non-local continua were also successfully applied in order to regularize localization predicted in ductile fracture simulations. Non-local theories, based either on integral or gradient formulations, naturally incorporate one or several length scales. In the context of ductile fracture, these lengths can be used to drive the evolution of damage in the post-localization regime. Sizedependent modeling of ductile fracture not only amounts to the choice of a non-local theory, but also the choice of one or several appropriate non-local variables. Some authors used the damage variable to carry non-local effects [START_REF] Håkansson | Thermomechanical response of non-local porous material[END_REF][START_REF] Ramaswamy | Finite element implementation of gradient plasticity models Part II: Gradient-dependent evolution equations[END_REF]. Alternatively others used strain quantities as non-local variables such as the volumetric equivalent plastic strain in [START_REF] Nguyen | A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms[END_REF][START_REF] Zybell | Size effects in ductile failure of porous materials containing two populations of voids[END_REF], the equivalent plastic strain in [START_REF] Lorentz | Numerical simulation of ductile fracture with the Rousselier constitutive law[END_REF]; [START_REF] Nguyen | A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms[END_REF]; [START_REF] Payet | Crack initiation and propagation in nonlocal ductile media[END_REF], the strain tensor in Enakoutsa and [START_REF] Enakoutsa | Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture[END_REF] or the matrix equivalent plastic strain in [START_REF] Nguyen | A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms[END_REF]. It is not uncommon that several non-local variables are used. Despite the more important numerical effort it requires, it is mostly necessary in order to be able to regularize localization for any loading path. The present work takes advantage of the strain gradient crystal plasticity model (without damage) developed and compared to the micromorphic approach in Chapter 5. This Ąnite strain formulation of strain gradient plasticity is based on a Lagrange multiplier method already successfully applied by [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] for isotropic materials in the context of ductile fracture. For numerical efficiency a single scalar non-local variable is used.

The thermodynamics of continuum damage mechanics is extensively studied in the domain of geophysics and civil engineering, where rocks and soils contain defects (pores, cracks, etc) which may or not be Ąlled with Ćuids inĆuencing their mechanical behaviour [START_REF] Chaboche | Continuum Damage Mechanics: Part I-General Concepts[END_REF][START_REF] Coussy | Poromechanics[END_REF][START_REF] Kachanov | Introduction to continuum damage mechanics[END_REF]. However literature covering thermodynamics of porous metallic alloys remains very scarce. Yet in his seminal work [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] was able to design a mechanical model of ductile failure based on very simple thermodynamical considerations. Furthermore similarities between this model and models derived with other completely different approaches are remarkable. A few other thermodynamical settings were developed in [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF], [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF] and [START_REF] Bouby | Sur le cadre thermodynamique dŠune classe de modèles de plasticité de milieux poreux ductiles[END_REF]. Building a sound thermodynamical framework for porous plasticity which uniĄes existing theories will be the third objective of this work. In the same vein as [START_REF] Nguyen | A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms[END_REF], this framework will work as a prerequisite in order to be able to introduce strain gradient effects and couplings in the constitutive equations of the proposed porous crystal plasticity model.

The new results obtained in this work can be summarized as follows:

1. A thermodynamical framework unifying existing porous plasticity models accounting for void growth and void coalescence is established.

3. Simulations of regularized ductile fracture in single crystals, the Ąrst of this kind, are reported.

The outline is as follows. In Section 6.2 the thermodynamics of homogenized porous materials is presented. A short literature review serves as an introduction in order to exhibit the limitations of existing models. A unifying thermodynamical framework is then proposed. In Section 6.3 the aforementioned setting is extended to strain gradient crystal plasticity. The chosen gradient enhanced principle of virtual power, free energy potential and dissipation potentials are exposed in details in order to derive an original comprehensive model of ductile fracture in single crystals. The validity of a newly proposed coalescence criterion in single crystals is assessed in Section 6.4. Two different approaches to account for void coalescence are then discussed. In Section 6.5 the ability of the model to regularize ductile fracture is demonstrated. The contribution of the thermodynamical force conjugate to porosity is also investigated. Ductile fracture simulations of single crystal structures are presented in Section 6.6. The outcomes and prospects are listed in Section 6.7.

Thermodynamical framework for homogenized porous materials

The objective of this section is to develop a thermodynamical framework for the modeling of homogenized porous solids. First a brief review of existing thermodynamical settings for homogenized porous solids is presented. Then a framework is set up, which is shown to generalize previous approaches.

State of the art

The total volume V tot of a porous solid body is the union of two parts, namely the total volume of empty spaces (or voids ) V voids and the total volume of dense material V mat . First and foremost the void volume fraction f v of a porous solid body is deĄned as the volume of voids divided by the total volume of the body V tot

f v = V voids V tot (6.1)
It should be emphasized that there is no universal relation between the macroscopic deformation gradient F ∼ = ∂x /∂X and the void volume fraction f v . In fact, any relation between F ∼ and f v consists in a constitutive assumption related to a homogenization scheme. As a consequence the void volume fraction can be considered in general terms as an independent internal variable.

In the forthcoming development the term porosity will be used to describe a damage variable which deĄnition might be different from the void volume fraction given at Eq. (6.1). The porosity variable will be noted f . [START_REF] Germain | Continuum Thermodynamics[END_REF]; [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] proposed a thermodynamical framework in which the porosity is considered as an independent state variable. A multiplicative decomposition of the deformation gradient F ∼ in an elastic part E ∼ and a plastic part P ∼ is assumed:

F ∼ = E ∼ .P ∼ . The elastic velocity gradient L ∼ e = Ė ∼ .E ∼ -1 and plastic velocity gradient L ∼ p = Ṗ ∼ .P ∼ -1 are introduced such that L ∼ = Ḟ ∼ .F ∼ -1 = L ∼ e + E ∼ .L ∼ p .E ∼ -1 .
In order to introduce a dependence of the Helmholtz speciĄc free energy potential, noted ψ, on the porosity f , Rousselier proposed an additive split composed of three parts. The Ąrst term ψ e accounts for elastic energy, the second ψ p is a hardening potential and the third ψ f carries the effect of porosity f . The Helmholtz speciĄc free energy in the isothermal case is then postulated to take the form

ψ(E ∼ , p, f ) = ψ e (E ∼ ) + ψ p (p) + ψ f (f ) (6.2)
where p is a hardening variable. In the limit case of f going to one, the speciĄc free energy should vanish. However this is not the case in the Rousselier model since elastic and hardening potentials ψ e and ψ p are assumed to be independent of the porosity f . This assumption is exact if f is close to zero but deteriorates when f increases. In RousselierŠs model ψ f is obtained by postulating the following form of the dissipation potential Ω and yield criterion ϕ

Ω σ ∼ ρ , P, F = Λ(ϕ) = Λ ϕ eq σ eq ρ , P + ϕ m σ m ρ , F (6.3) 
where P = ∂ψ p /∂p, F = ∂ψ f /∂f , ρ 0 = ρdet (F ∼ ) is the volumetric mass density in the current conĄguration deĄned with respect to the volumetric mass density in the initial conĄguration noted ρ 0 . The macroscopic Cauchy stress is noted σ ∼ , with the notations σ m = tr (σ ∼ )/3 and

σ eq = 3/2σ ∼ ′ : σ ∼ ′ with σ ∼ ′ = σ ∼ -σ m 1 ∼ . Assuming that ϕ m = g(σ m /ρ)h(F )
Rousselier showed that there exist a unique possible function ψ f (f ) which satisĄes the commonly used evolution equation of the damage variable f (here called porosity)

ḟ = (1 -f )tr (L ∼ p ) (6.4)
The function ψ f which satisĄes the postulated form of ϕ m and evolution equation (6.4) found by Rousselier writes

ψ f (f ) = F 0 f - σ 1 ρ 0 ((1 -f ) ln (1 -f ) + f ln (f )) (6.5) 
This function admits F 0 as a limit when f increases in values approaching one. However such a potential imposes the thermodynamic force conjugate to porosity to be

F = ∂ψ ∂f = F 0 -(σ 1 /ρ 0 ) ln(f /(1 -f )) (6.6)
which diverges when f approaches one. Therefore RousselierŠs model should be limited to applications where the porosity is small. Alternatively [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF] postulates the Helmholtz free energy

ψ(E ∼ , p, f ) = ψ e (E ∼ ) + (1 -f )ψ p (p) (6.7)
The dependence of the elastic energy on f is omitted, in the same manner as in RousselierŠs model, because in their model, the stresses (i.e. elastic deformations) already decrease due to the fact that the yield surface shrinks when f increases. Unlike RousselierŠs model the hardening potential is here multiplied by (1-f ) so that ψ vanishes when the porosity reaches one. However the thermodynamic driving force F = ∂ψ/∂f = -ψ p was omitted in [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF] owing to the fact that according to Eq. (6.4) f and P ∼ are not independent variables. It is therefore interesting to investigate under which hypotheses, the evolution law of f v coincides with the evolution law of f . According to its deĄnition Eq. (6.1), the void volume fraction evolution is

ḟv = Vtot -Vmat V tot - (V tot -V mat ) Vtot V 2 tot = Vtot V tot - Vmat V tot - V tot -V mat V tot Vtot V tot =tr (L ∼ ) - Vmat V tot -f v tr (L ∼ ) =(1 -f v )tr (L ∼ p ) + (1 -f v )tr (L ∼ e ) - Vmat V tot (6.8)
Therefore evolutions of f v and f are the same if and only if

Vmat

V tot = (1 -f v )tr (L ∼ e )

in other words Vmat

V mat = tr (L ∼ e ) (6.9)

The aforementioned condition shows the main difference between the void volume fraction and the damage variable called porosity. The void volume fraction incorporates an elastic contribution, while the porosity does not. In fact, [START_REF] Besson | Simulation numérique de la mise en forme des céramiques[END_REF] already discussed the fact that an appropriate deĄnition of the porosity must consider a relaxed stress-free state at a reference temperature (i.e. a temperature relaxing thermo-elastic strains). Otherwise, (thermo-)elastic strains would contribute to the increase of damage which is not satisfactory. A simple counterexample to prove it is the case of a virtual perfectly dense material, i.e. free of voids. If elastic strains are taken into account in the evolution of damage, it means that the application of a any stress would result in the apparition of damage. Moreover, the force conjugate to the porosity P f deĄned by [START_REF] Besson | Simulation numérique de la mise en forme des céramiques[END_REF] as the sintering pressure bears the same physical interpretation as F in RousselierŠs model. Recently Bouby and Kondo ( 2017) proposed a free energy potential which is similar to the one suggested by Rousselier. Instead of considering f as a state variable, they introduce a so-called Lagrangian porosity ϕ p = V t void /V 0 tot . Omitting the dependence on hardening and temperature, they propose to write the free energy as

ψ (E ∼ , ϕ p ) = ψ e (E ∼ ) + m(ϕ p ) (6.10)
No particular expression of m is derived, but the authors argued that the thermodynamic force P conjugate to ϕ p is given by P = -m ′ (ϕ p ) and that it should coincide with the pressure existing inside voids. In their further developments they stated that the effective mean stress seen by the porous material is the sum of the average Cauchy stress and this additional pressure. However to the authors knowledge a proof of such a statement was not yet given. In addition [START_REF] Bouby | Sur le cadre thermodynamique dŠune classe de modèles de plasticité de milieux poreux ductiles[END_REF] argued that to retrieve the well known Gurson model the pressure P must be taken equal to zero, for any porosity ϕ p . This results in the fact that m is identically zero for any porosity ϕ p . With these assumptions the free energy would not depend on the porosity at all. Another approach was conducted by [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF] in order to prove that GursonŠs model can be cast into the thermodynamical framework of generalized standard materials (GSM) [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF]. The authors showed that it is sufficient to assume that porosity is constant in order to satisfy the prerequisite of a GSM theory. As a consequence, with such an assumption, GursonŠs model enjoys the following highly advantageous properties:

• non-negativeness of the dissipation • existence of a solution to the problem of projecting the stress tensor onto the yield surface • uniqueness of this solution if the free energy is strictly convex with respect to the set of internal variables [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF] then argued that, if it is very questionable to consider the porosity Ąxed over the whole loading path, it is however, from a numerical point of view, reasonable to discretize porosity in an explicit manner. In that way, over a given time increment porosity is treated as a constant, therefore satisfying the GSM conditions and ensuring existence and uniqueness of the sought solution. The main reason why porosity needs to be considered constant in order to satisfy the conditions of the GSM framework is that porosityŠs evolution equation is not linked by any means to GursonŠs criterion (unlike RousselierŠs criterion). As a result, porosity does not satisfy an extended normality rule and one needs to remove porosity from the set of state variables, and thus consider it as Ąxed over time. However, one could also argue that such a condition is a Ćaw inherent to GursonŠs criterion. It is therefore appealing to propose a modiĄcation of GursonŠs criterion in order to alleviate the assumption of constant porosity. In the forthcoming section such a modiĄcation is proposed in a general setting which is valid for, but not restricted to GursonŠs criterion.

6.2.2 A unifying thermodynamical framework for porous plasticity

General formulation

Under isothermal conditions and at Ąnite deformations the state variables are chosen as the elastic Green-Lagrange strain tensor E ∼ e GL = (E ∼ T .E ∼ -1 ∼ )/2 , a hardening variable p and the porosity f . The Helmholtz speciĄc free energy density ψ is a scalar valued function of these variables

ψ = ψ E ∼ e GL , p, f (6.11)
The following decomposition of the speciĄc free energy density is proposed

ψ E ∼ e GL , p, f = ψ e E ∼ e GL , f + ψ p (p, f ) + ψ f (f ) (6.12)
which uniĄes and generalizes the formulations by Rousselier, Besson, Bouby and Kondo. However the constraint that for any E ∼ e GL and p, the functions ψ e (E ∼ e GL , •), ψ p (p, •) and ψ f (•) go to zero when the porosity f goes to one is imposed. Under isothermal and static conditions, the Ąrst and second principle of thermodynamics lead to the well known Clausius-Duhem inequality

d = T ṡ = ė -ψ ≥ 0 (6.13)
where d is the speciĄc dissipation density, T the temperature, ṡ the rate of speciĄc entropy density and ė the speciĄc internal power density. In this context, ė is merely the opposite of the power density of internal forces p (i) = (σ ∼ /ρ) : L ∼ . It can therefore be written

ė = p (i) = S ∼ ρ 0 : Ḟ ∼ = Π ∼ e ρ ♯ : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 (6.14) with Π ∼ e = ρ ♯ ρ E ∼ -1 .σ ∼ .E ∼ -T
and

Π ∼ M = E ∼ T .E ∼ .Π ∼ e (6.15)
where S ∼ is the Ąrst Piola-Kirchhoff (Boussinesq) stress tensor related to the Cauchy stress tensor by S ∼ = (ρ 0 /ρ)σ ∼ F ∼ -T . The scalar ρ 0 and ρ ♯ = ρ 0 /det (P ∼ ) respectively represent the volumetric mass density in the initial and intermediate conĄguration of the body. The tensor Π ∼ M is the Mandel stress tensor. ψ can be decomposed as follows

ψ E ∼ e GL , p, f = ∂ψ ∂E ∼ e GL : Ė ∼ e GL + ∂ψ ∂p ṗ + ∂ψ ∂f ḟ (6.16)
Inserting Eq. (6.16) into Clausius-Duhem inequality Eq. (6.13) leads to

d = Π ∼ e ρ ♯ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 - ∂ψ ∂p ṗ - ∂ψ ∂f ḟ ≥ 0 (6.17)
The following state law is postulated

Π ∼ e ρ ♯ = ∂ψ ∂E ∼ e GL (6.18)
The residual dissipation therefore becomes

d = Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 - ∂ψ p ∂p ṗ - ∂ψ e ∂f + ∂ψ p ∂f + ∂ψ f ∂f ḟ ≥ 0 (6.19)
Here the thermodynamical forces R p /ρ ♯ = ∂ψ p /∂p and R f /ρ ♯ = ∂ψ e /∂f + ∂ψ p /∂f + ∂ψ f /∂f respectively power conjugate to ṗ and ḟ are introduced. In addition -Π ∼ M /ρ ♯ is power conjugate to L ∼ p . In order to deĄne the evolution of internal variables a dissipation (pseudo)-potential Ω needs to be deĄned. The chosen dissipation potential must ensure the positivity of the dissipation in Eq. (6.19). It appears here that any choice of Ω will determine the evolution of V mat a priori unknown in Eq. (6.8). For convenience the thermodynamical formulation is cast into the framework of generalized standard materials [START_REF] Nguyen | Stability and nonlinear solid mechanics[END_REF], in which the dissipation potential is a function of the thermodynamical forces and the state variables can intervene as parameters

Ω = Ω - Π ∼ M ρ ♯ , R p ρ ♯ , R f ρ ♯ ; E ∼ e GL , p, f (6.20)
The evolution equations then formally write

L ∼ p = - ∂Ω ∂ - Π ∼ M ρ ♯ ṗ = - ∂Ω ∂ Rp ρ ♯ ḟ = - ∂Ω ∂ R f ρ ♯ (6.21)
It is further assumed that Ω depends only on the Ąrst and second invariants of the stress tensor Π M m and Π M eq and the plastic potentials ϕ eq and ϕ m are introduced so that

Ω Π M eq ρ ♯ , Π M m ρ ♯ , R p ρ ♯ , R f ρ ♯ ; E ∼ e GL , p, f = Λ(ϕ) = Λ ϕ eq Π M eq ρ ♯ , R p ρ ♯ ; f + ϕ m Π M m ρ ♯ , R p ρ ♯ , R f ρ ♯ ; f (6.22)
The evolution equations Eq. (6.21) become

L ∼ p ′ = - dΛ dϕ ∂ϕ eq ∂ - Π ∼ M ′ ρ ♯ tr (L ∼ p ) = - dΛ dϕ ∂ϕ m ∂ -Π M m ρ ♯ (6.23) ṗ = - dΛ dϕ ∂ϕ ∂ Rp ρ ♯ ḟ = - dΛ dϕ ∂ϕ m ∂ R f ρ ♯ (6.24) with Π M m = tr (Π ∼ M )/3 and Π ∼ M ′ = Π ∼ M -Π M m 1 ∼ .
At this point a particular, yet sufficiently general, form for ϕ m is proposed as

ϕ m Π M m ρ ♯ , R p ρ ♯ , R f ρ ♯ ; f = h R f ρ ♯ ; f g Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f (6.25)
where h, g and k are functions to be deĄned. Such an assumption on the form of ϕ m is a generalization of the form chosen by [START_REF] Rousselier | Dissipation in porous metal plasticity and ductile fracture[END_REF]. It is also the key ingredient for modiĄcations of GursonŠs potential in order to overcome the necessity of considering a Ąxed porosity, as done by [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF], to Ąt in the GSM framework. In order to satisfy simultaneously Eq.
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∂ϕ m ∂ R f ρ ♯ = (1 -f ) ∂ϕ m ∂ -Π M m ρ ♯ (6.26)
This equality raises a particular condition on the functions h, g and k which needs to be satisĄed. That condition can be written as an implication as follows1 

-h ′ R f ρ ♯ ; f g Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f -h R f ρ ♯ ; f k ′ R f ρ ♯ ; f g ′ Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f = (1 -f )h R f ρ ♯ ; f ∂g ∂ Π M m ρ ♯ Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f ⇒ ḟ = (1 -f )tr (L ∼ p ) (6.27)
The constitutive formulation of the material behaviour reduces to the choice of free energy potentials ψ e , ψ p , ψ f and plastic potentials ϕ eq and ϕ m . The (visco-)plastic multiplier λ = dΛ/dϕ is introduced. The dissipation can then be calculated

d = λ     - Π ∼ M ρ ♯ : ∂ϕ ∂ - Π ∼ M ρ ♯ + R p ρ ♯ ∂ϕ ∂ Rp ρ ♯ + R f ρ ♯ ∂ϕ ∂ R f ρ ♯     (6.28)
Convexity of the potential ϕ with respect to its variables is a sufficient condition to ensure positivity of the dissipation.

Effective matrix stress

As discussed by [START_REF] Besson | Continuum models of ductile fracture: a review[END_REF], an elegant way to introduce hardening in a Ćow potential derived by homogenization of porous materials, is to consider this potential ϕ as an implicit deĄnition for an effective matrix stress σ * . The Ćow potential then becomes simply a function of the difference between the effective stress and the conventional hardening force. In other words, ϕ derived by homogenization is replaced by

       σ * ♣ ϕ Π ∼ M ρ ♯ , σ * ρ ♯ , R f ρ ♯ ; f def = 0 φ(σ * -R p ; p; f ) (6.29)
ϕ is used as an implicit deĄnition of σ * (Π ∼ M , R f ; f ). φ is the effective Ćow potential. In a particular case, yet still sufficiently general, σ * shall be expressed as an implicit function of the stress

Σ ∼ (Π ∼ M , R f ; f ) = Π ∼ M -(1 -f )R f 1 ∼ so that        σ * ♣ ϕ Σ ∼ ρ ♯ , σ * ρ ♯ ; f def = 0 φ(σ * -R p ; p; f ) (6.30) An important feature is that if σ * is an homogeneous function of degree n in Σ ∼ (i.e. σ * (αΣ ∼ ; f ) = α n σ * (Σ ∼ ; f )), then EulerŠs lemma requires ∂σ * ∂Σ ∼ : Σ ∼ = nσ * (6.31)
The dissipation in Eq. (6.28) can hence be reformulated as

d = λ     - Π ∼ M ρ ♯ : ∂ φ ∂ - Π ∼ M ρ ♯ + R p ρ ♯ ∂ φ ∂ Rp ρ ♯ + R f ρ ♯ ∂ φ ∂ R f ρ ♯     = λ     ∂ φ ∂σ * ∂σ * ∂ Σ ∼ ρ ♯     ∂ Σ ∼ ρ ♯ ∂ - Π ∼ M ρ ♯ : - Π ∼ M ρ ♯ + ∂ Σ ∼ ρ ♯ ∂ R f ρ ♯ R f ρ ♯     + R p ∂ φ ∂ Rp ρ ♯     = λ     ∂ φ ∂σ * ∂σ * ∂ Σ ∼ ρ ♯ : Σ ∼ ρ ♯ + R p ρ ♯ ∂ φ ∂ Rp ρ ♯     = λ   ∂ φ ∂σ * nσ * + R p ρ ♯ ∂ φ ∂ Rp ρ ♯   (6.32)

Link to existing formulations

The framework presented in the previous section uniĄes several thermodynamical approaches of homogenized porous media. To recover RousselierŠs formulation one needs to assume that ψ e and ψ p are independent of f in (6.12). It is recalled that this assumption is inconsistent with the fact that ψ should vanish when f goes to one. In RousselierŠs model, the function k in Eq. (6.25) vanishes and h and g are chosen such that implication Eq. (6.27) becomes

-h ′ g = (1 -f )hg ′ ⇒ ḟ = (1 -f )tr (L ∼ p ) (6.33)
Assuming ϕ eq = Π M eq /ρ ♯ -R p /ρ ♯ -R 0 /ρ 0 and solving the differential equation on the left-hand side of Eq. (6.33) implies that

h R f ρ ♯ ; f = f (6.34) g Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f = Dσ 1 ρ 0 exp Π M m (1 -f 0 ) σ 1 (1 -f ) (6.35) with k R f ρ ♯ ; f = 0 (6.36) ϕ = ϕ eq + ϕ m = Π M eq ρ ♯ - R p ρ ♯ - R 0 ρ 0 + Df σ 1 ρ 0 exp Π M m (1 -f 0 ) σ 1 (1 -f ) (6.37)
where D and σ 1 are integration constants and R 0 the radius of the initial elastic domain. Note that h coincides with f at R f /ρ ♯ only, which does not imply that h is necessarily a constant. Therefore h ′ does not vanish in general. BessonŠs formulation can also be recovered by assuming that ψ e is independent of f and ψ f is identically zero in (6.12). In addition ψ p depends on f so that ψ p (p, f ) = (1 -f ) ψp (p). However in BessonŠs formulation the contribution of R f /ρ ♯ was neglected so that ϕ m = g(Π M m /ρ ♯ , R p /ρ ♯ ; f ). Lastly, Bouby and KondoŠs formulation can be recovered (at small strains where ϕ p = f ) by assuming that ψ e is independent of f . One can recover the statement made by Bouby and Kondo that the effective mean stress seen by the homogenized materials is a sort of Terzaghi stress, which is the sum of the macroscopic mean stress Π M m and an additional pressure. Such a formulation is obtained by imposing

h R f ρ ♯ = 1 (6.38) g Π M m ρ ♯ + k R f ρ ♯ ; f , R p ρ ♯ ; f = 2f cosh   Π M m ρ ♯ + k R f ρ ♯ ; f Rp ρ ♯   (6.39) with k R f ρ ♯ ; f = -(1 -f ) R f ρ ♯ (6.40)
in Eq. (6.25). With this assumption one has indeed

ϕ = ϕ eq Π M eq ρ ♯ , R p ρ ♯ ; f + ϕ m Π M m -(1 -f )R f ρ ♯ , R p ρ ♯ (6.41)
and more generally

ϕ = Π ∼ M -(1 -f )R f 1 ∼ ρ ♯ , R p ρ ♯ (6.42)
where -(1 -f )R f act as a hydrostatic pressure. Here one recognizes the particular form of the stress

Σ ∼ = Π ∼ M -(1 -f )R f 1 ∼ described in previous section.
Unlike the formulation by Rousselier no additional constraint on R f is here imposed, thus the dependence of ψ e , ψ p and ψ f on f can be chosen freely. In particular one can enforce that the Helmholtz free energy vanishes when f goes to one. As this work proceeds it will therefore be assumed that the general form of the Ćow potential in Eq. (6.42) holds. Equivalently, as discussed above, one can use Eq. (6.42) as an implicit deĄnition of an effective matrix stress σ * and reformulate the Ćow potential as

       σ * ♣ ϕ Π ∼ M -(1 -f )R f 1 ∼ ρ ♯ , σ * ρ ♯ , R f ρ ♯ ; f def = 0 φ(σ * -R p ; p; f ) (6.43)
where φ becomes the effective Ćow potential of the porous material. Within this formulation, GursonŠs Ćow potential [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] used by [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF] and [START_REF] Bouby | Sur le cadre thermodynamique dŠune classe de modèles de plasticité de milieux poreux ductiles[END_REF] becomes

       σ * ♣ ϕ = Π M eq σ * 2 + 2f cosh 3 2 Π M m -(1 -f )R f σ * -1 -f 2 def = 0 φ = (1 -f )(σ * -R p -R 0 ) (6.44)
where it can be noted that Π M eq = Σ eq , because the von Mises equivalent stress only depends on the deviatoric part of the stress Σ ∼ . The particular form of φ used by [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF] was chosen. The advantage of GursonŠs criterion lies in its homogeneity of degree one in Σ ∼ . The homogeneity of degree one is indeed the key ingredient in order to satisfy the Hill-Mandel lemma [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF]. RousselierŠs criterion in its original form does not have this property of being homogeneous of degree one in Σ ∼ . But one could also, with the same assumptions on functions h, g and k, use the extension of RousselierŠs criterion by [START_REF] Tanguy | An extension of the Rousselier model to predict viscoplastic temperature dependant materials[END_REF] in order to deĄne an effective matrix stress σ * as

       σ * ♣ ϕ = Π M eq ρ ♯ σ * + 2 3 f D R exp q R 2 (Π M m -(1 -f )R f )(1 -f 0 ) σ * (1 -f ) def = 0 φ = (1 -f )(σ * -R p -R 0 ) (6.45)
With this deĄnition, σ * is also homogeneous of degree one in Σ ∼ . Therefore in both cases EulerŠs lemma Eq. ( 6.31) can be applied with n = 1. In addition, the Ćow potential φ chosen in Eq. (6.44) enforces λ = ṗ. Eventually, using (6.32) one has

d = ṗ ρ ♯ φ + (1 -f )R 0 (6.46)
In order to reduce the thermodynamical framework developed above to its quintessence, a small strain formulation of GursonŠs model within this framework is given in Appendix I.

Extension to multi-mechanisms plasticity

General formulation

Extending to Ąnite strains a formulation by [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF] it is considered that multiple plastic deformation mechanisms can coexist so that the overall plastic deformation rate

L ∼ p = Ṗ ∼ .P ∼ -1 is a sum of K plastic deformation rates L ∼ p i Ṗ ∼ .P ∼ -1 = K i=1 L ∼ p i (6.47)
The internal variables that are now chosen are the elastic Green-Lagrange strain tensor E ∼ e GL = (E ∼

T .E ∼ -1 ∼ )/2, a hardening variable p i for each deformation mechanism and the porosity f . The Helmholtz speciĄc free-energy density is postulated to be of the form

ψ E ∼ e GL , f, p i = ψ e (E ∼ e GL , f ) + K i=1 ψ i p (p i , f ) + ψ f (f ) (6.48)
Similarly to previous section the constraint is imposed that for any E ∼ e GL and p i , the functions ψ e (E ∼ e GL , •), ψ i p (p i , •) and ψ f (•) tend to zero when the porosity f goes to one. The mechanical dissipation then writes

d = Π ∼ e ρ ♯ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ ♯ : ( Ṗ ∼ .P ∼ -1 ) - K i=1 ∂ψ i p ∂p i ṗi - ∂ψ e ∂f + K i=1 ∂ψ i p ∂f + ∂ψ ∂f ḟ (6.49)
The following state law is postulated from Eq. (6.49):

Π ∼ e ρ ♯ = ∂ψ ∂E ∼ e GL
(6.50)

The thermodynamic forces R i p /ρ ♯ = ∂ψ i p /∂p i and R f /ρ ♯ = ∂ψ e /∂f + K i=1 ∂ψ i p /∂f + ∂ψ f /∂f are respectively conjugate to ṗi and ḟ . In addition

-Π ∼ M /ρ ♯ is work conjugate to L ∼ p . The residual mechanical dissipation therefore becomes d = Π ∼ M ρ ♯ : ( Ṗ ∼ .P ∼ -1 ) - K i=1 R i p ρ ♯ ṗi - R f ρ ♯ ḟ ≥ 0 (6.51)
In order to deĄne the evolution of internal variables a dissipation (pseudo)-potential Ω i needs to be deĄned for each plastic deformation mechanism. The chosen dissipation potentials need to ensure the positivity of the dissipation in Eq. (6.51). The dissipation potentials are functions of the thermodynamical forces and the state variables can intervene as parameters

Ω i = Ω i Π ∼ M ρ ♯ , R i p ρ ♯ , R f ρ ♯ ; E ∼ e GL , p i , f (6.52)
The evolution equations then formally write

L ∼ p i = - ∂Ω i ∂ - Π ∼ M ρ ♯ ṗi = - ∂Ω i ∂ R i p ρ ♯ ḟ = - K i=1 ∂Ω i ∂ R f ρ ♯ (6.53)
For each mechanism the plastic potentials ϕ i is introduced so that

Ω i Π ∼ M ρ ♯ , R i p ρ ♯ , R f ρ ♯ ; E ∼ e GL , p i , f = Λ(ϕ i ) (6.54)
The evolution equations Eq. ( 6.53) become

L ∼ p i = - dΛ dϕ i ∂ϕ i ∂ - Π ∼ M ρ ♯ ṗi = - dΛ dϕ i ∂ϕ i ∂ Rp ρ ♯ ḟ = - K i=1 dΛ dϕ i ∂ϕ i m ∂ R f ρ ♯ (6.55)
Taking advantage of the discussion made in previous section a similar potential as in Eq. (6.42) is adopted reminding the implication ∀i,

ϕ i Π ∼ M ρ ♯ , R i p ρ ♯ , R f ρ ♯ ; E ∼ e GL , p i , f = ϕ i Π ∼ M -(1 -f )R f 1 ∼ ρ ♯ , R i p ρ ♯ ; E ∼ e GL , p i , f ⇒ ḟ = (1 -f )tr ( Ṗ ∼ .P ∼ -1 ) (6.56)
The dependence of ψ e , ψ i p and ψ f on f can therefore be chosen freely. In particular one can enforce that the Helmholtz free energy vanishes when f goes to one. The constitutive formulation of the material behaviour reduces to the choice of free energy potentials ψ e , ψ i p , ψ f and plastic potentials ϕ i eq and ϕ i m . The (visco-)plastic multipliers for each deformation mechanism λi = dΛ/dϕ i are introduced. The dissipation can than be calculated

d = K i=1 λi     - Π ∼ M ρ ♯ : ∂ϕ i ∂ - Π ∼ M ρ ♯ + R i p ρ ♯ ∂ϕ i ∂ R i p ρ ♯ + R f ρ ♯ ∂ϕ i ∂ R f ρ ♯     (6.57)
Convexity of the potentials ϕ i is sufficient to ensure the positivity of the dissipation.

Effective matrix stresses

The same procedure as in section 6.2.2.2 can be applied to introduce hardening laws for each mechanism by considering the Ćow potentials ϕ i as implicit deĄnitions for effective matrix stresses σ i * . Flow potentials then become simply the difference between the effective stress and the conventional hardening force. In other words ϕ i derived by homogenization is replaced by

       σ i * ♣ ϕ i Π ∼ M ρ ♯ , σ i * ρ ♯ , R f ρ ♯ ; f def = 0 φi (σ i * -R p ; p; f ) (6.58) ϕ i is used as an implicit deĄnition of σ i * (Π ∼ M , R f ; f ).
φi is the effective Ćow potential. A particular case, yet still general enough, is when σ i * shall be expressed as an implicit function of a stress

Σ ∼ (Π ∼ M , R f ; f ) = Π ∼ M -(1 -f )R f 1 ∼ so that        σ i * ♣ ϕ i Σ ∼ ρ ♯ , σ i * ρ ♯ ; f def = 0 φi (σ i * -R p ; p; f ) (6.59) An important feature is that if σ i * is an homogeneous function of degree n i in Σ ∼ (i.e. σ i * (αΣ ∼ ; f ) = α ni σ i * (Σ ∼ ; f )), then EulerŠs lemma requires ∂σ i * ∂Σ ∼ : Σ ∼ = n i σ i * (6.60)
The dissipation in Eq. (6.57) can hence be reformulated

d = K i=1 λi     - Π ∼ M ρ ♯ : ∂ φi ∂ - Π ∼ M ρ ♯ + R i p ρ ♯ ∂ φi ∂ R i p ρ ♯ + R f ρ ♯ ∂ φi ∂ R f ρ ♯     = K i=1 λi     ∂ φi ∂σ i * ∂σ i * ∂ Σ ∼ ρ ♯     ∂ Σ ∼ ρ ♯ ∂ - Π ∼ M ρ ♯ : - Π ∼ M ρ ♯ + ∂ Σ ∼ ρ ♯ ∂ R f ρ ♯ R f ρ ♯     + R i p ∂ φi ∂ R i p ρ ♯     = K i=1 λi     ∂ φi ∂σ i * ∂σ i * ∂ Σ ∼ ρ ♯ : Σ ∼ ρ ♯ + R i p ρ ♯ ∂ φi ∂ R i p ρ ♯     = K i=1 λi   ∂ φi ∂σ i * n i σ i * + R i p ρ ♯ ∂ φi ∂ R i p ρ ♯  
(6.61)

Multi-mechanism based strain gradient porous crystal plasticity

The multi-mechanism deformation framework for homogenized porous materials established at Ąnite strain in the previous section is now applied in the context of growth and coalescence of voids in single crystals with non-local gradient effects.
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Void growth and void coalescence in single crystals

Following the work developed by [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF], a void growth deformation mechanism for each slip system of a single crystal is considered. An additional deformation mechanism is introduced to account for void coalescence. The main argument which motivates not to decompose coalescence in deformation mechanisms on each slip system is that coalescence is a phenomenon which mostly involves activation of many slip systems inside the ligaments separating coalescing voids as discussed by [START_REF] Barrioz | Effect of dislocation channeling on void growth to coalescence in FCC crystals[END_REF]. Therefore, for a crystal having N slip systems, the plastic rate is written as

Ṗ ∼ .P ∼ -1 = N s=1 L ∼ p s + L ∼ p c (6.62)
where the terms in the sum account for plastic slip and void growth on each slip system, and L ∼ p c is the plastic rate associated to void coalescence. For each deformation mechanism a scalar deformation rate can be introduced. For void growth they will be denoted γs and γc for void coalescence. Note that γc is not to be interpreted as a slip rate, since void coalescence is not a mechanism decomposed on slip systems. An accumulated plastic deformation variable is introduced as

γ cum = t 0 N s=1 ♣ γs ♣ + ♣ γc ♣ dt (6.63)

Gradient enhanced principle of virtual power

In the spirit of the model developed by [START_REF] Wuląnghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF] it is assumed that the gradient effects operate on the accumulated plasticity scalar variable γ cum . In order to treat the nonlocality, a relaxation is used that is based on the duplication of γ cum into an auxiliary variable γ χ . Following [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF][START_REF] Gurtin | Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF], upon neglecting the contribution of body forces, for any material subset D 0 , an enriched principle of virtual power is stated

D0 S ∼ : Ḟ ∼ + S γχ + M . K χ dV 0 = ∂D0 (T . u + M γχ ) dS 0 ∀ u , ∀ γcum , ∀D 0 (6.64)
Higher order stress scalar S and vector M are energetic duals to γ χ and K χ = Grad γ χ . Equality of both instances will be ensured by using a Lagrange multiplier in the free energy potential [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]. The power of internal forces on the left-hand side of Eq. (6.64) is in equilibrium with the power of contact forces on the right-hand side. The traction vector is T and a higher order traction scalar M is dual to γ χ . From Eq. ( 6 where n 0 refers to the outward unit surface normal.

Gradient enhanced free energy potential

The Ąrst step to the deĄnition of the material behaviour is the choice of a speciĄc free energy density potential which depends on the state variables. For the present model the state variables are the elastic Green-Lagrange strain measure E ∼ e GL , the local and non-local accumulated plastic deformation γ cum and γ χ , the Lagrangian gradient of the latter K χ , the Lagrange multiplier λ, one hardening variables r s per slip system s and the porosity f . A simple acceptable dependence on f of the free energy potential is chosen

ψ E ∼ e GL , γ cum , γ χ , K χ , r s , f, λ = (1 -f ) 1 2ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + 1 2ρ 0 K χ .A ∼ .K χ + λ ρ 0 (γ cum -γ χ ) + µ χ 2ρ 0 (γ cum -γ χ ) 2 (6.67)
which is nothing but the free energy potential of the pristine void-free material weighed by (1-f ).

The material parameter A ∼ is a second order tensor of higher order moduli. For a material with cubic symmetry A ∼ reduces to A1 ∼ , where A is the single higher order modulus in this case. λ is a Lagrange multiplier which enforces γ χ and γ cum to be equal and µ χ is a Lagrangian penalization modulus enhancing coercivity of the model. From the 1-st and 2-nd principle of thermodynamics the Clausius-Duhem inequality is written

d = S ∼ ρ 0 : Ḟ ∼ + S ρ 0 γχ + M ρ 0 . K χ -ψ ≥ 0 (6.68)
The Ąrst term of equation Eq. ( 6.68) can be decomposed into elastic and plastic contributions as in Eq. (6.14). The mechanical dissipation therefore becomes

d = Π ∼ e ρ ♯ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ ♯ : Ṗ ∼ .P ∼ -1 + S ρ 0 - ∂ψ ∂γ χ γχ + M ρ 0 - ∂ψ ∂K χ . K χ -(1 -f ) N s=1 ∂ψ h ∂r s ṙs - ∂ψ ∂γ cum γcum - ∂ψ ∂f ḟ - ∂ψ ∂λ λ ≥ 0 (6.69)
The following state laws are adopted

Π ∼ e = ρ ♯ ∂ψ ∂E ∼ e GL = (1 -f )C ≈ : E ∼ e GL
(6.70)

S = ρ 0 ∂ψ ∂γ χ = (1 -f ) (λ -µ χ (γ cum -γ χ )) = (1 -f ) (∆ χ -µ χ γ cum ) (6.71) M = ρ 0 ∂ψ ∂K χ = (1 -f )AK χ (6.72)
For convenience the scalar stress ∆ χ = λ + µ χ γ χ is introduced. By deĄnition ∂ψ/∂λ must vanish when the constraint γ cum = γ χ is met therefore

∂ψ ∂λ λ = (1 -f )(γ cum -γ χ ) λ ρ 0 = 0 (6.73)
and the residual mechanical dissipation follows

d = Π ∼ M ρ ♯ : Ṗ ∼ P ∼ -1 -(1 -f ) N s=1 ∂ψ h ∂r s ṙs (6.74) -(1 -f ) µ χ γ cum -∆ χ ρ 0 + ∂ψ h ∂γ cum γcum - ∂ψ ∂f ḟ ≥ 0 (6.75)
Here it is postulated that rates of hardening variables are proportional to slip rates on each slip system, i.e. ṙs = a(r s )♣ γs ♣. The thermodynamic forces are deĄned as

R s ρ ♯ = ∂ψ h ∂r s a(r s ) (6.76) R cum ρ ♯ = ∂ψ h ∂γ cum (6.77) R f ρ ♯ = ∂ψ f ∂f = - 1 2ρ ♯ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K χ .K χ + λ ρ 0 (γ cum -γ χ ) + µ χ 2ρ 0 (γ cum -γ χ ) 2 (6.78)

Gradient enhanced dissipation potentials

In the present framework the dissipation potentials are a function of thermodynamical forces and the state variables can intervene as parameters. For the void growth and void coalescence mechanisms the individual potentials for the mechanisms i = 1..K are

Ω i = Ω i Π ∼ M ρ ♯ , R i ρ ♯ , R cum ρ ♯ , R f ρ ♯ ; E ∼ e GL , r i , γ cum , γ χ , λ, f (6.79)
As discussed earlier and expressed at Eq. ( 6.56), a sufficient condition to fulĄll ḟ = (1f )tr Ṗ ∼ .P ∼ -1 is to consider Ćow rules ϕ i such that

ϕ i = ϕ i Π ∼ M -(1 -f )R f 1 ∼ ρ ♯ , R s ρ ♯ , R cum ρ ♯ ; E ∼
e GL , r s , γ cum , γ χ , λ, f (6.80)

Void growth

For void growth mechanisms an extension of the implicit deĄnition of effective resolved shear stresses τ s * established at small strains for porous single crystals by [START_REF] Han | A yield function for single crystals containing voids[END_REF] and extended to Ąnite strains by Ling et al. ( 2016) is adopted

ϕ s = τ s τ s * 2 + α 2 45 f Π M eq τ s * 2 + 2q 1 f cosh q 2 3 20 Π M m -(1 -f )R f τ s * -1 -(q 1 f ) 2 def = 0 (6.81)
where

τ s = (Π ∼ M -(1 -f )R f 1 ∼ ) : (m s ⊗ n s )
with m s and n s respectively the gliding direction and normal to slip plane for system s. With this deĄnition, the effective stresses τ s * are positive. The Ćow potentials are then chosen as

φs = (1 -f ) τ s * -R s -R cum - ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) -τ s 0 (6.82)
where τ s 0 in the initial critical resolved shear stress of system s. The contribution R s and R cum correspond to conventional hardening contributions. R s can for example be used to model dislocations based hardening. R cum can for instance be used to introduce an additional phenomenological hardening. The term ρ ♯ /ρ 0 (µ χ γ cum -∆ χ ) corresponds to the strain gradient contribution. It follows the evolution laws for void growth 2016) is introduced as

L ∼ p s = - dΛ d φs ∂ φs ∂ - Π ∼ M ρ ♯ = -(1 -f ) γs ∂ϕ s ∂τ s * -1 ∂ϕ s ∂ Π ∼ M ρ ♯ = (1 -f ) γs N ∼ s * ( 
N ∼ s * = ∂τ s * ∂ - Π ∼ M ρ ♯ = - ∂ϕ s ∂τ s * -1 ∂ϕ s ∂ Π ∼ M ρ ♯ (6.85)
where

∂ϕ s ∂τ s * = -2 τ s2 τ s3 * - 4 45 αf Π M 2 eq τ s3 * -2 3 20 q 1 q 2 f Π M m -(1 -f )R f τ s2 * sinh q 2 3 20 Π M m -(1 -f )R f τ s * (6.86)
and

∂ϕ s ∂ Π ∼ M ρ ♯ = 2 τ s τ s2 * (m s ⊗ n s ) + 2 15 αf 1 τ s2 * Π ∼ M ′ + 2 3 3 20 q 1 q 2 f τ s * sinh q 2 3 20 Π M m -(1 -f )R f τ s * 1 ∼
(6.87)

Void coalescence

A criterion to detect coalescence by intervoid necking in single crystals was proposed by [START_REF] Yerra | Void growth and coalescence in single crystals[END_REF]. Their criterion is based on the well known criterion by [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] which can be expressed with the function

ϕ c = σ I -C f σ g * (6.88)
σ I is the stress orthogonal to the coalescence plane deĄned by its normal vector e I . In general, the plane in which coalescence takes place is unkown a priori. Therefore it is usually necessary to test the criterion over a wide range of directions in order to determine the plane in which coalescence will initiate at Ąrst. As this work proceeds it is assumed that the normal to the coalescence plane coincides with the direction of the largest eigenvalue of the symmetric Cauchy stress tensor σ ∼ . The scalar σ I is therefore interpreted as the maximum principal Cauchy stress and e I is the associated eigenvector. Such an assumption was already successfully used by [START_REF] Nguyen | A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms[END_REF]. The principal stress σ I satisĄes σ I = σ ∼ : (e I ⊗ e I ). The coefficient C f is a concentration factor which is a function of homogenization cell and void geometries.

To characterize these geometries the cell aspect ratio λ c , void aspect ratio W and normalized intervoid ligament size χ are often introduced. For a spheroidal void of semi-axes a 1 and a 2 in a tetragonal unit-cell of dimensions L 1 and L 2 they are respectively expressed

λ c = L 1 L 2 W = a 1 a 2 χ = 2a 2
L 2 (6.89)
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The porosity can be expressed in terms of these geometrical quantities

f = 4 3 πa 1 a 2 2 L 1 L 2 2 = π 6 W χ 3 λ c (6.90)
Since C f depends on these quantities, equations characterizing their evolutions with loading are needed. Deriving an accurate evolution equation for the void aspect ratio W in porous single crystals is out of the scope of the present study. A Ąrst proposal based on variational limit analysis was provided by Mbiakop et al. (2015a). However, for the sake of simplicity, as this work proceeds the void aspect ratio W will be Ąxed to 1, which corresponds to voids remaining spherical. For an arbitrary small porous unit-cell, the cell aspect ratio λ c can be expressed with respect to its initial value λ 0 c , initial porosity f 0 and the cell normalized elongation L 1 /L 0 1 which depends upon the deformation gradient tensor F ∼ as follows

F ∼ -1 .L 1 = L 0 1 (6.91) L 1 F ∼ -1 .e I = L 0 1 e I (6.92) L 1 L 0 1 = 1 (F ∼ -1 .e I ).(F ∼ -1 .e I ) (6.93) λ c = λ 0 c L 1 L 0 1 3 2 1 -f 1 -f 0 (6.94)
To derive this expression it was assumed that the principal direction of the unit-cell coincides with the direction of the maximum principal Cauchy stress oriented by the eigenvector e I . It appears from Eq. (6.90) that, assuming W = 1, applying equation (6.94) and having an evolution equation for f allows to compute χ with χ = 6 π λ c f 1 3 (6.95)

In Eq. (6.88) σ g * represents the effective Ćow stress of the matrix during void growth. In [START_REF] Yerra | Void growth and coalescence in single crystals[END_REF] the authors account for hardening of the matrix by determining an effective Ćow stress in the vicinity of the void in the intervoid coalescence plane. They propose to perform an auxiliary computation on a single Gauss point with an identical crystal orientation and under an equibiaxial straining loading state which is representative of the loading during coalescence in the coalescence plane. The effective Ćow stress is then derived as the equivalent stress when the actual equivalent plastic deformation is reached in the auxiliary computation. Such a method is an elegant way to introduce hardening in ThomasonŠs coalescence criterion. Nevertheless, the computational cost of performing these auxiliary simulations in order to determine the effective Ćow stress of the crystal matrix can become signiĄcant. In principle, at each iteration of the constitutive integration such a simulation should be done. Therefore a new approach is proposed. The main ingredient of this new method is to consider that at initiation of intervoid necking many slip systems are activated in the intervoid ligament. The Thomason criterion is reformulated as

σ c * ♣ ϕ c = Σ I -C f σ c * def = 0 (6.96) φc = (1 -f ) σ c * -R cum - ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) -σ g * (6.97)
where Σ I is the maximum eigenvalue of the Cauchy stress

Σ ∼ Σ ∼ = 1 det (E ∼ ) E ∼ -T . Π ∼ M -(1 -f )R f 1 ∼ .E ∼ T (6.98)
Eq (6.96) deĄnes an equivalent coalescence stress σ c * , while Eq. (6.97) is the effective coalescence Ćow potential. These equations are the coalescence counterpart of Eq. (6.81) and (6.82) deĄned previously for void growth. Since many slip systems are active, the effective Ćow stress σ g * of the crystal matrix can hence be approximated by the effective Ćow stress of an isotropic matrix. The latter can for instance be deĄned implicitly by a GTN-like equation

σ g * ♣ ϕ g = Σ eq σ g * 2 + 2q c 1 f cosh q c 2 3 2 Σ m σ g * -1 -(q c 1 f ) 2 def = 0 (6.99)
where q c 1 and q c 2 are parameters to be calibrated. σ g * represents the effective Ćow stress of the matrix during void growth, thus it must be updated while coalescence is not taking place. However once coalescence sets on σ g * is a constant. It follows the evolution laws for void coalescence

L ∼ p c = - dΛ d φc ∂ φc ∂ - Π ∼ M ρ ♯ = -(1 -f ) γc ∂ϕ c ∂σ c * -1 ∂ϕ c ∂ Π ∼ M ρ ♯ = (1 -f ) γc N ∼ c * (6.100)
where the normal N ∼ c * is introduced such that

N ∼ c * = ∂σ c * ∂ - Π ∼ M ρ ♯ = - ∂ϕ c ∂σ c * -1 ∂ϕ c ∂ Π ∼ M ρ ♯ (6.101)
where

∂ϕ c ∂σ c * = -C f (6.102)
and

∂ϕ c ∂ Π ∼ M ρ ♯ = ∂ϕ c ∂ Σ ∼ ρ ♯ : ∂ Σ ∼ ρ ♯ ∂ Π ∼ M ρ ♯ = ∂Σ I ∂Σ ∼ : 1 det (E ∼ ) E ∼ -T ⊗E ∼ (6.103) = (e I ⊗ e I ) : 1 det (E ∼ ) E ∼ -T ⊗E ∼ (6.104) One has by construction ḟ = (1 -f )tr (L ∼ p ) (6.105)
Therefore, the overall macroscopic plastic dissipation becomes

Π ∼ M -(1 -f )R f 1 ∼ : Ṗ ∼ .P ∼ -1 = (1 -f ) N s=1 γs Π ∼ M -(1 -f )R f 1 ∼ : N ∼ s * + (1 -f ) γc Π ∼ M -(1 -f )R f 1 ∼ : N ∼ c * (6.106) = (1 -f ) N s=1 γs τ s * + (1 -f ) γc σ c * (6.107)
This equation is in fact the Hill-Mandel lemma. It states the equivalence between macroscopically and microscopically dissipated energies. Then the mechanical dissipation can eventually be 

∼ = 0 ∀X ∈ D 0 Π ∼ e = C ≈ : E ∼ e GL Ė ∼ = Ḟ ∼ .F ∼ -1 .E ∼ -E ∼ .   k∈ ¶s;c♢ γs N ∼ k *   Div M -S = 0 ∀X ∈ D 0 M = (1 -f )AK χ γk = γ0 φk τ0(1-f ) n with k ∈ ¶s; c♢ and s = 1..N T = S ∼ .n 0 ∀X ∈ ∂D 0 S = (1-f )(∆ χ -µ χ γ cum ) ṙs = g s (r s )♣ γs ♣ with s = 1..N M = M .n 0 ∀X ∈ ∂D 0 γcum = k∈ ¶s;c♢ ♣ γk ♣
formulated as a sum over all deformation mechanisms

d = 1 -f ρ ♯ N s=1 τ s * - ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) -R s -R cum ♣ γs ♣ + 1 -f ρ ♯ σ c * - ρ ♯ ρ 0 (µ χ γ cum -∆ χ ) -R cum ♣ γc ♣ (6.108) = 1 ρ ♯ N s=1 φs + (1 -f )τ 0 ♣ γs ♣ + 1 ρ ♯ φc + (1 -f )σ g * ♣ γc ♣ (6.109)

Viscoplastic Ćow rules

A viscoplastic Ćow rule is adopted for each deformation mechanism (void growth mechanisms and void coalescence mechanism). In that way evolution of the plastic slip variables γs and γc are indistinguishably governed by the following Norton type Ćow rule γk = γ0 φk

τ 0 (1 -f ) n k ∈ ¶s; c♢ (6.110)
where γ0 and n are materials parameters controlling the rate sensitivity of the material behaviour. Distinct values of these viscosity parameters can be selected for growth and coalescence, if necessary. Note that the term (1 -f ) at the denominator accounts for the fact that the slip rates γk are power conjugate to the effective matrix stresses τ s * and σ c * as depicted in Eq. ( 6.107).

Summary of constitutive equations and material parameters

Equilibrium equations, state laws and evolution equations are summarized in Table 6.1. Four categories of material parameters can be identiĄed:

1. Material parameters for elasto-plasticity 2. Initial void characteristics 3. Porous criteria GTN-like parameters

Strain gradient parameters

They are listed in Table 6.2 with their corresponding unit and signiĄcation. 

Validation of the coalescence criterion

In order to validate the capability of the criterion given by Eq. (6.97) to detect onset of coalescence the following procedure is proposed. Porous unit-cell Ąnite element simulations are performed for several crystal orientations, stress triaxiality ratios and hardening behaviour. Onset of void coalescence can then be identiĄed in each unit-cell simulation. Finally, the value of σ I at onset of coalescence (σ num

I

) is compared to the theoretical value (σ th I ) predicted by the proposed criterion.

Single crystal porous unit-cell simulations

Periodic porous unit-cell Ąnite element simulations are performed by prescribing a macroscopic deformation gradient F ∼ to a cubic cell containing an initially centered spherical void such that initial porosity f 0 = 1%. Periodic displacement boundary conditions are applied

u = F ∼ .x + v v (x + ) = v (x -) (6.111)
where u is the displacement Ąeld and v the periodic Ćuctuation. The vectors x + and x - denote homologous nodes on opposite faces of the unit-cell. In keeping with [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] the macroscopic deformation gradient F ∼ and Ąrst Piola-Kirchhoff stress S ∼ are related to their microscopic counterpart by volume averages (6.112) 6.4 Validation of the coalescence criterion 166 where V tot 0 denotes the total volume (including the void) of the unit-cell domain D 0 in the reference conĄguration. It follows that the macroscopic Cauchy stress is given by

F ∼ = 1 V tot 0 D0 F ∼ dV S ∼ = 1 V tot 0 D0 S ∼ dV
σ ∼ = 1 V tot D σ ∼ dV = 1 det F ∼ S ∼ .F ∼ T (6.113)
where V tot denotes the total volume (void included) of the unit-cell domain D in the current conĄguration. Macroscopic hydrostatic (σ m ), equivalent (σ eq ) stresses are deĄned by

σ m = tr (σ ∼ ) 3 σ eq = 3 2 σ ∼ ′ : σ ∼ ′ σ ∼ ′ = σ ∼ -σ m 1 ∼ (6.114)
Only axisymmetric loading conditions are considered for which the macroscopic stress tensor and stress triaxiality ratio can be written

σ ∼ =   σ 11 0 0 0 ησ 11 0 0 0 ησ 11   T = σ m σ eq = 1 + 2η 3(1 -η) (6.115)
The simulations are performed at Ąxed macroscopic Cauchy stress triaxialities T ∈ ¶1; 1.5; 2; 3♢. The reader is referred to [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] for the numerical implementation of such a condition. The hardening behaviour considered is this study is a standard dislocation density based law following [START_REF] Kubin | Modeling dislocation storage rates and mean free paths in face-centered cubic crystals[END_REF]. The critical resolved shear stress of a given system s is composed of a thermal component due to lattice friction τ 0 and an athermal component R s due to dislocations interactions

τ s c = τ 0 + R s = τ 0 + µ N u=1
a su r u (6.116)

where µ is the shear modulus and a su a matrix describing interactions between dislocations. r u denotes the adimensional dislocation density (r u /b 2 = ρ u is the usual dislocation density, i.e. the length of dislocation lines per unit volume, b being the norm of the dislocation Burgers vector b ). Two sets O 1 and O 2 of crystal orientations (given with respect to the unit-cell lattice periodicity directions X 1 -X 2 -X 3 ) are considered

O 1 =        [100] -[010] -[001] [ 125] -[1 21] -[210] [110] -[ 110] -[001] [111] -[ 211] -[0 11]        O 2 =        [210] -[ 120] -[001] [ 125] -[0 52] -[29 25] [100] -[01 1] -[011] [100] -[02 1] -[012]        (6.117)
For the Ąrst set O 1 unit-cell simulations were performed in [START_REF] Ling | An elastoviscoplastic model for porous single crystals at Ąnite strains and its assessment based on unit cell simulations[END_REF] with the material parameters listed in Table 6.3. In this study additional unit-cell simulations are performed for all orientations in O 1 and O 2 with the same materials parameters but µ = 0, i.e. in the absence of hardening.

Coalescence onset

Onset of coalescence means here the transition to a uniaxial straining mode (extension) during which plastic deformation localizes in the intervoid ligament. This transition is marked by the saturation of transverse (in the coalescence plane) deformation. In other words if the coalescence plane is normal to X 1 the components F 22 and F 33 of the deformation gradient will saturate. Therefore, for an increment ∆F ∼ of the macroscopic deformation gradient, onset of void coalescence can be detected when the ratios ∆F 22 /∆F 11 and ∆F 33 /∆F 11 become lower than an As this work proceeds onset of coalescence will be considered when these two ratios are simultaneously lower than 5%. During the post-processing of a unit-cell simulation, the lowest time t c at which this condition is met, is considered as the onset of coalescence and the maximum principal Cauchy stress at coalescence is recorded as σ num I = σ 11 (t c ). At the same time the value of C f σ c * is computed. For that purpose, the original form of C f derived by [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] is adopted

C f (χ, W ) = (1 -χ 2 ) 0.1 1 -χ χW 2 + 1.2 1 χ (6.118)
where χ and W respectively represent effective normalized intervoid distance and void aspect ratio. To estimate χ and W it is assumed for simplicity that the initially cubic cell remains orthorombic and that the initially spherical voids remain ellipsoidal when deforming. Although these assumptions might be crude for highly deformed cells at coalescence, especially at low triaxialities, it is the simplest way to obtain estimates. With these assumptions a deformed unit-cell is characterized by L 1 , L 2 and L 3 which are respectively computed by following the displacements of the nodes initially located at the middle of each face of the unit-cell. The void is characterized by three semi-axes r 1 , r 2 and r 3 which are respectively computed by following the displacements of the nodes initially located at the intersection of the void with the three major axis of the cube. The geometrical parameters χ and W are then computed as follows

χ = √ χ 2 χ 3 = 2r 2 L 2 2r 3 L 3 W = 2 W 12 W 13 W 12 + W 13 = 2 r1 r2 r1 r3 r1 r2 + r1 r3 λ c = L 1 √ L 2 L 3 (6.119)
which correspond to their usual deĄnition when the void is a sphere and the cell a cube (χ = 2R/L and W = 1). Yet, the choice made in Eq. (6.119) to deĄne χ, W and λ c is not unique. The value of σ c * should be equal to σ g * at onset of coalescence, hence σ g * is computed by solving Eq. (6.99) where q c 1 = 1.5 and q c 2 = 1 are chosen. The theoretical coalescence stress is therefore σ th I = C f (χ, W )σ g * . In Figure 6.1, the numerical coalescence stresses are plotted against the theoretical coalescence stresses for all the simulations for which coalescence was attained. If the criterion were to be exact the points would be located on the Šy = xŠ bisector. As it is only an approximation the points may not exactly lay on this line. Almost all the predicted coalescence stress values are less than ±%20 apart from the values predicted by the unit-cell simulation. It can be seen that the criterion is capable of well predicting the coalescence onset with or without hardening of the matrix material surrounding the void. A more reĄned tuning of the function C f in Eq. (6.119) and the parameters in Eq. (6.99) could lead to a more precise prediction of coalescence onsets. This is however beyond the scope of the present study.

Alternative formulation for modeling void coalescence

Void coalescence was described in previous sections as an individual plastic mechanism having its own yield surface. This approach is comfortable from a modeling point of view. However, from a numerical perspective the implementation effort and computational costs associated to this approach can be signiĄcant. Another common approach in the literature consists in modeling void coalescence without extending the set of yield criteria. The method proposed by [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF] introduces an effective deĄnition of the porosity f * once a critical porosity f c is reached

f * = f for f ≤ f c f c + f * u -fc f R -fc (f -f c ) for f > f c (6.120)
where f c , f R and f * u are material parameters. f c describes the porosity at the onset of void coalescence. f R denotes the standard porosity at fracture, while f * u is the effective porosity at fracture. With adequate numerical values of material parameters, Eq. (6.120) allows to artiĄcially provoke acceleration of effective porosity growth once coalescence sets on. As a consequence, the yield surface(s) associated to void growth shrink at a greater rate leading to an accelerated stress drop. The advantage of utilizing Eq. (6.120) is that void coalescence can straightforwardly be incorporated in a numerical implementation of a void growth model. On the other hand, some drawbacks are the lack of physical foundation for the effective porosity and the necessity to know a priori the critical porosity at coalescence f c . Furthermore, in such a formulation this parameter is assumed no to depend on the loading state. 

f 0 λ 0 c q 1 q 2 α q c 1 q c 2 f R f * u 0.
1% 1 1.471 1.325 6.456 1 1.5 0.35 0.67

In order to alleviate these two last drawbacks an hybrid formulation was proposed by [START_REF] Zhang | A complete Gurson model approach for ductile fracture[END_REF]. Their idea was to combine a coalescence criterion based on the stress state with the efficient treatment of void coalescence by the use of an effective porosity f * . To do so, they proposed to revoke the ad hoc choice of f c and proposed to deĄne it as the porosity reached when ThomasonŠs coalescence onset criterion is met. In that manner, f c is continuously updated upon loading and becomes constant when void coalescence is reached. As this chapter proceeds, f * -type void coalescence will rely on the coalescence criterion deĄned at Eq. ( 6.97) in order to obtain f c locally. The summary of material parameters given in Table 6.2 has its third category extended by two additional material parameters, namely f R and f * u . In the context of the strain gradient crystal plasticity model presented in Section 6.3, assuming an effective porosity as in Eq. (6.120) does not involve major difficulties. The main point consists in replacing f by f * in each equation, but one. The only equation in which f is not replaced by f * is the evolution law of the porosity Eq. (6.4). However, it should be noted that since void coalescence is not treated as an independent plastic mechanism, γ c is not deĄned anymore. As a consequence the auxiliary variable γ χ does not account for void coalescence directly. Since void growth criteria are affected by f * , void coalescence still has an indirect effect on γ χ .

Void growth mechanisms and f * -type coalescence vs void growth and void coalescence mechanisms

Several variations of the model presented above are compared in this section. Ductile fracture by void growth only is compared to ductile fracture by void growth and void coalescence, with either the f * -type treatment of coalescence or its yield mechanism based treatment. A single hexahedral element with eight nodes and reduced integration with one Gauss point is loaded with a constant stress triaxiality similarly to the periodic porous unit-cells in Section 6.4. Triaxialities of 1 and 3 are applied. Four different crystal orientations are considered and correspond to the orientations in set O 1 . Numerical values of material parameters used are listed in Tables 6.3 and 6.4. Since a single Gauss point is used, no gradients of accumulated plastic slip can form and therefore the non-local moduli A and µ χ do not inĆuence the results presented hereafter. Furthermore, for simplicity, the force conjugate to porosity R f is neglected. Stress-strain responses and porosity evolutions are plotted in Figure 6.2. Solid lines correspond to cases at a triaxiality T = 1 and dashed lines to cases at T = 3. Reference behaviours of the pristine void-free single crystal are plotted in black. Red curves correspond to the model with void growth mechanisms only, i.e. without accounting for void coalescence. Orange and blue curves correspond to the model with f * -type coalescence and void coalescence mechanism respectively. Since only their treatment of coalescence differ, curves with different colors depart from one another once coalescence sets on. In addition, since the same coalescence criterion is used for f * -type coalescence and void coalescence mechanism, blue and orange curves start deviating from the red curve at the same moment. When only void growth mechanisms are accounted for, stress and porosity evolutions with strain are smooth all the way until fracture. However, if coalescence is taken into account, a corner appears at onset of void coalescence. That corner marks a fast acceleration of porosity increase which simultaneously triggers a sharp stress drop. In all cases presented in Figure 6.2 but one, with the parameters in Table 6.4, the acceleration of porosity increase is more pronounced with the void coalescence mechanism than with the f * -type treatment of coalescence. As a consequence, stresses also sink faster. In order to fully break the material, a failure condition on f , f * and χ is introduced. The material is considered broken if f reaches 99.9% of 1/q 1 or if f * reaches 99.9% of f * u or if χ reaches 0.999. If at least one of these conditions is met the stress tensor is Ąxed to 0 and the tangent matrix is set to εC ≈ , where ε = 10 -6 and where C ≈ is the elastic stiffness tensor.

It is well established in the literature that f * u can be adjusted in order to obtain an adequate acceleration of the porosity when a f * -type coalescence model is used [START_REF] Zhang | A complete Gurson model approach for ductile fracture[END_REF]. In Figure 6.2, the numerical value chosen for f * u , namely 67%, leads to a relatively weak acceleration of porosity increase. Increasing f * u would result in a sharper acceleration of porosity and thus result in a faster drop of the stress. When coalescence is treated as an additional yielding mechanism (orange curves) it is less straightforward to control the slopes of porosity increase and decrease of stress in the coalescence regime. In the model presented in Section 6.3.4.2, the Ćow stress for void coalescence noted σ g * was considered constant once coalescence has set on. Here an extended formulation is proposed in order to be able to control the acceleration of porosity and stress decrease in the spirit of the work of [START_REF] Brepols | Gradient-extended two-surface damageplasticity: micromorphic formulation and numerical aspects[END_REF]. The coalescence Ćow stress now writes

σ g * ← σ g * + ω 1 -exp - γ c β (6.121)
where ω and β are additional material parameters that can be adjusted to control the rate of void coalescence. Alternative approaches to account for hardening were proposed by [START_REF] Scheyvaerts | The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension[END_REF][START_REF] Vishwakarma | Micromechanical modeling and simulation of the loading path dependence of ductile failure by void growth to coalescence[END_REF]. Their respective inĆuence is brought to light in Figure 6.3 in which ω and β were independently varied. ω is taken in the range 1.5 to 100 GPa, while β is in the range 0.1 to 10. In the present example the coalescence Ćow stress σ g * was equal to 615 MPa. Increasing ω results in a slower porosity growth and stress softening.

On the contrary increasing β has opposite effects, namely a faster porosity augmentation and a sharper stress drop. Figure 6.4 shows how ω affects the void growth and coalescence plastic slip variables after coalescence. As ω increases void growth plastic variables increase more and more in the coalescence regime, whereas for ω = 0 void growth mechanisms are completely inactive in the coalescence regime. In contrast, as ω increases, the contribution of void coalescence γ c to the plastic activity decreases in the post-coalescence regime. The role of Eq. (6.121) is thus to introduce strain hardening associated to the void coalescence mechanism. In that way, the softening rate can be calibrated from experiments or computational unit cell results.

Numerical applications

The model was discretized using an Euler-backward (implicit) scheme and implemented in the Ąnite element software Z-set [START_REF] Besson | Object-oriented programming applied to the finite element method part I. general concepts[END_REF]. Details on the Ąnite element implementation of the Lagrange multiplier formulation were described in Chapter 5.

Plane strain tension

Mesh convergence analysis

First, a mesh convergence analysis is carried out in order to demonstrate the regularization capacity of the model. A thin rectangular plate of initial length L 0 , width W 0 = L 0 /5 and thickness T 0 = W 0 /10, as depicted in Figure 6.5, is loaded in tension by applying the following apparition of plastic strain gradients are balanced by gradient-induced hardening. This has two effects. First, the sharp stress drop leading to failure occurs at larger strains. Second, the discrepancy between the four meshes on the strain at onset of failure is much smaller. Figure 6.7 displays, at locations denoted by number Š1Š in Figure 6.6b, the Ąelds of the normalized intervoid distance χ which is the relevant damage variable during coalescence. It can be noted that with a conventional plasticity theory, i.e. not accounting for strain gradients, the more reĄned the mesh is, the more localized the damage variable is. When mesh size is decreased a smaller volume needs thus to be completely damaged to reach failure. This explains why less energy is required for failure when mesh size is decreased and the absence of convergence with mesh size reduction. In contrast, with the strain gradient regularization, the damage variable spans over a similar volume for the four different meshes. This explains why macroscopic stress-strain curves are nearly mesh-size independent. Figure 6.7 shows the same Ąelds at the last converged step for each simulation, denoted by number Š2Š in Figure 6.6b. It can be noted that χ strongly localizes in the necked region, for both conventional and strain gradient porous crystal plasticity. Even though the macroscopic stress vs strain curve seems to be almost mesh-size independent (for m = 16 and m = 32) with the strain gradient model, the local Ąeld of the damage variable χ still localizes eventually to the thickness of one Gauss point.

q 2 α q c 1 q c 2 A µ χ ω β 1.

Effect of thermodynamic force conjugate to porosity

The impact of the thermodynamic force conjugate to porosity noted R f deĄned at Eq. ( 6 porosity and boundary conditions as the one used for the mesh convergence analysis are used to assess the inĆuence of R f on the results. A is taken equal to 1 N. The mesh corresponding to m = 16 is used to perform simulations where R f is neglected or not. Figure 6.9 plots the stress-strain curves obtained when R f is not neglected (solid lines) and is neglected (dashed lines). Several hardening laws with Q ∈ ¶100; 125; 150♢ are considered in order to vary the magnitude of R f . It is observed that, for all hardening laws considered, R f does not affect the macroscopic stress-strain behaviour at small strains, from 0 to almost 0.2 strain. However once the macroscopic engineering stress reached a maximum the inĆuence of R f becomes visible. Simulations in which R f was neglected display a slightly harder response in the softening regime. This is more pronounced for the case with signiĄcant hardening, because in this case R f , deĄned at Eq. (6.78) takes larger values due to the hardening stored energy ψ h . Moreover the onset of the sharp stress drop prior to failure is signiĄcantly postponed when R f is neglected. The force conjugate to porosity contributes indeed to increasing the largest eigenvalue of Σ ∼ which enters in the coalescence criterion Eq. (6.96) and (6.97). Therefore void coalescence occurs at larger strains when it is omitted. Figure 6.10 compares the mean stress Ąeld σ m to the Ąelds of each term in the following decomposition:

R f = R elas f + R hard f + R grad f
. It can be noted that R f is mostly determined by the energy stored due to hardening in the example considered here. The contribution of elastic stored energy and gradient related energy contribution in R f are indeed small compared to the latter.

Periodic perforated plate

The behaviour of a perforated periodic plate submitted to a triaxial stress Ąeld is now analyzed. Periodic boundary conditions are applied and a mean deformation gradient is imposed simultaneously to a Ąxed stress triaxiality T = 2 in the same manner as in Section 6.4. Several variations of the porous single crystal model are investigated. In particular, results accounting for void growth only are compared to results accounting for void growth and coalescence with an f * -type implementation of coalescence as described in Section 6.4.3. Conventional crystal plasticity and strain gradient crystal plasticity are considered. 
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Results and discussion

The single crystal surrounding the center hole is oriented such that the crystal orientations triplet ([100], [010], [001]) coincide with the orthonormal basis (X 1 , X 2 , X 3 ) parallel to the edges of the plate. The dislocation densities based hardening law presented in Chapter 3 is used with the material parameters of Table 6.3. Additional material parameters regarding the (strain gradient) porous single crystal model are listed in Table 6.6. The force R f conjugate to the porosity evolution is not accounted for in the simulations. The macroscopic stress-strain curves of the periodic perforated porous single crystal plates are plotted in Figure 6.11. First of all, size effects can be observed on the hardening behaviour already at early stages of straining, when only void growth plastic mechanisms are active. However, for the smallest characteristic length, i.e. A = 10 -3 N, the hardening part of the curve is very close to the conventional crystal plasticity behaviour. Then, at larger strains, size effects become even more predominant. When only void growth is accounted for (solid lines) two main effects can be noted. First, increasing the characteristic length postpones the onset of the stress drop. Second, the softening rate decreases when increasing the higher order modulus A (i.e. the intrinsic length). When void coalescence is taken into account with an effective porosity f * (dashed lines) the same observations can be made except for A = 1 N. In that case, the onset of softening occurs earlier than with A = 10 -1 N. This behaviour is associated to a modiĄcation of the failure mode and will be explained in light of the accumulated plastic strain Ąelds presented in Figure 6.12. A common feature of the results presented in Figure 6.11 is that, for a given value of A, taking void coalescence into account provokes an earlier transition to macroscopic softening. Such a behaviour is in fact due to the acceleration of porosity increase when the coalescence criterion is met. Accumulated plastic strain Ąelds are shown in 6.12 for void growth in Figure 6.12(a-d) and void growth combined with f * -type void coalescence in Figure 6.12(e-h). Plastic strain Ąelds are plotted on meshes deformed by the periodic Ćuctuation v only (i.e. the homogeneous part F ∼ .x is omitted). It can be noted that, for both cases, as the material length scale increases (from left to right) the plastic strain Ąelds become more homogeneous as expected according to [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF]. The conventional crystal plasticity simulation displays indeed a very localized plastic strain Ąeld, in particular in the case for which coalescence is accounted for. Localization of plastic slip is in that case due to softening induced by porosity increase. Since this phenomenon is unregulated in conventional plasticity, damage and plastic strains localize eventually in a one-Gauss point thick band and results are mesh-size dependent. On the other hand, the predicted plastic strain Ąelds in the case of the strain gradient porous crystal plasticity model are more diffuse and smoother, even when void coalescence is considered. In all cases but one, the plastic strain Ąeld is the most intense in the vicinity of the void and propagates along two symmetric directions inclined with respect to the main loading direction. However, a remarkable behaviour is observed at A = N, when a f * -type coalescence model is used. In that case, plastic strains are also maximum close to the void, but the maxima are located on the horizontal symmetry axis of the unit-cell instead of the vertical symmetry axis. The line crossing both maxima is therefore aligned with the main loading direction instead of being orthogonal to it as in all other cases. The peculiar positions of these maxima is due to the fact that porosity is also maximum at these locations. Such a behaviour arises, because of the stress redistributions induced by gradient effects which cause stress triaxiality to be greater at non-standard locations. 
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Such a result is evidently mesh size dependent, and decreasing the element size would result in a thinner damage localization band. It is also interesting to note that the Ąrst Ąnite element located ahead of the notch is less damaged than its neighbour on its right-hand side. The origin of that phenomenon lies in the fact that the stress triaxiality is much larger in the latter bulk element than in the former which is closer to a free-boundary. Taking void coalescence into account with the f * -type coalescence model results in an even more localized Ąeld of porosity.

In fact, the faster increase of porosity in the coalescence regime is responsible for a stronger softening and thus a more intense localization. On the other hand, the strain gradient porous single crystal model is once more proven to be able to regularize porosity localization, since, with identical loading conditions, the porosity Ąeld localization spans over several Gauss point layers.

Similarly to what is observed with the conventional model, when void coalescence is accounted for in the strain gradient model, the porosity is localized in a narrower region than when only void growth is taken into account. However, even though the porosity is more conĄned with the f * -type coalescence than with void growth only, the localized region still remains larger than the mesh size. Figure 6.15 displays the curves of applied load F at point G against the crack mouth opening displacement (CMOD) computed as the vertical displacement of the point denoted by letter C in Figure 6.13. For comparison, the load vs CMOD curves predicted without porosity are also displayed. Loading curves obtained with the conventional porous model (black lines) are evidently mesh size dependent and reducing mesh size would result in an even less ductile apparent behaviour. However, it is observed that f * -type coalescence results in a fast decrease of the load which is due to the sharp acceleration of porosity increase ahead of the notch tip. Taking strain gradients into account postpones the load drop. As pictured in Figure 6.14, damage is indeed smeared over several Gauss point layers, thus requiring a larger amount of energy to be supplied in order to drive the crack forward. Similarly to the conventional case, f * -type coalescence is responsible for more localized and intense damage which translates into a sharper drop of the stress as compared to the model accounting only for void growth.

Conclusions

The main conclusions of this chapter can be listed as follows:

• It was shown how several thermodynamical approaches to ductile fracture available in the literature are based on distinct simplifying hypotheses and how they can be reconciled in an unifying framework. A key aspect of the discussion is the distinction between void volume fraction, regarded as the relative volume of empty spaces in the material, and the porosity, treated as a damage variable.

• A multi-mechanism framework is settled in order to account for multiple plastic processes that can be simultaneously or successively activated upon loading. The setting allows to treat void growth and void coalescence mechanisms concomitantly and is also tailored to porous crystal plasticity for which several void growth plastic processes can coexist.

• The thermodynamical framework was then extended to strain gradient crystal plasticity. The chosen formulation is based on a Lagrange multiplier based extension of the free energy potential in order to account for gradients of an accumulated plastic slip scalar Ąeld.

• A new criterion for void coalescence onset detection in single crystals was proposed and validated by means of porous unit-cell simulations. The criterion relies on a revisited version of ThomasonŠs criterion, in which the effective coalescence Ćow stress is implicitly deĄned by the stress satisfying the GTN criterion. The main motivation of such a criterion is based on the experimental observation that incipient failure in single crystals is associated with activation of many slip systems and thus a quasi-isotropic behaviour. • An alternative formulation to model void coalescence involving an effective porosity f * was compared to the plastic mechanism based void coalescence model. Both approaches were tested on single Gauss point simulations at Ąxed triaxiality and up to failure. An extension of the plastic mechanism based model was shown to enable control of the softening rate in the post-coalescence regime.

• Multiple variants of the strain gradient porous crystal plasticity model were tested on Ąnite element numerical applications. The convergence with respect to mesh size when gradient terms are accounted for is demonstrated. Smoothing of damage Ąelds is observed as the material characteristic length is increased.

• First of a kind simulations of ductile fracture in porous single crystal plane strain CT-like geometries were performed. The strain gradient model allows to regularize the width of the damaged zone, while the crack propagates in a one Gauss point thick layer with the conventional model.

Conclusions and prospects

Résumé

Cette thèse porte sur la localisation de la déformation et les mécanismes de rupture ductile dans les monocristaux. Les résultats obtenus au cours de ce travail sŠinscrivent dans le contexte des matériaux pour le nucléaire, mais peuvent également bénéĄcier à dŠautres secteurs, comme les transports ou la santé. Une des principales motivations de cette étude est la chute de ténacité en fonction de lŠaccroissement de la dose dŠirradiation observée dans les aciers austénitiques utilisés dans lŠindustrie nucléaire. Celle-ci est couramment attribuée à lŠapparition de défauts induits par irradiation tels que des boucles de dislocation de Frank en conditions dŠun réacteur à eau légère ou encore des nano-cavités dans les conditions dŠun réacteur à neutrons rapides. Ces défauts étant formés à lŠéchelle de quelques dizaines de nanomètres, lŠétude de leur inĆuence sur les propriétés mécaniques de ces matériaux peut être réalisée à lŠéchelle du grain, cŠest à dire du monocristal, qui les contient. Or, la caractérisation mécanique de monocristaux dŠaciers austénitiques nŠa été que très rarement étudiée dŠun point de vu expérimental dans la littérature. Les premiers résultats de cette thèse ont donc porté sur lŠacquisition de données expérimentales à cette échelle. Puis, leur traitement a permis la calibration dŠun modèle de plasticité cristalline en procédant à lŠidentiĄcation de différents paramètres associés à lŠécrouissage. Ensuite, lŠexistence de phénomènes de localisation de la déformation plastique dans certains matériaux irradiés nous a conduit au développement dŠun modèle de plasticité cristalline capable de décrire ce type de mécanisme. Basé sur un formalisme à gradient de déformation, ce modèle a été enrichi aĄn de limiter lŠélargissement de bandes de localisation lorsque lŠadoucissement du matériau sature. 

Conclusions

The present work deals with strain localization and ductile failure in single crystals. Both phenomena are of utmost interest in the context of metallic alloys, and for instance, in their use by the nuclear industry. Focus was geared towards the behaviour of austenitic stainless steels which are widely employed as structural materials in nuclear reactors. Many conclusions drawn in this work are however not limited to nuclear materials, or even austenitic steels, and can beneĄt to a wide range of engineering Ąelds, as varied as transports or medicine. In the speciĄc case of nuclear reactor internal structures, experimental studies have demonstrated that neutron irradiation can signiĄcantly alter the mechanical properties of austenitic stainless steels.

A major potential concern is the drop of fracture toughness as irradiation dose increases. In the literature, it is well established that fracture toughness is linked to deformation and failure mechanisms. As a consequence, modiĄcations of the latter with irradiation were extensively studied in order to explain and predict evolution of toughness with neutron exposure. Depending on the temperature and neutron Ćux conditions, radiation-induced defects were observed that can cause toughness to decrease. In Light Water Reactor (LWR) conditions, dislocation Frank loops can be nucleated during irradiation and can, upon loading, lead to strain localization. In Fast Neutron Reactor (FNR) conditions, nanometric voids and bubbles can be formed under irradiation and contribute to void driven ductile failure. Both kinds of defects are nucleated at scales much lower than the grain size. Their environment can therefore relevantly be modeled by a single crystal.

Crystal plasticity constitutive equations are standard in the literature. Their validity is often assessed on experiments involving polycrystals or by coarse graining results from lower scale simulations such as discrete dislocation dynamics (DDD) or molecular dynamics (MD). In fewer cases, validation upon comparison to mechanical tests on single crystals is proposed. In the speciĄc case of austenitic stainless steels the latter approach is almost nonexistent.

Furthermore, modeling strain localization is a hot topic of the present-day literature. Numerous theoretical and numerical tools such as integral and gradient methods have Ćourished in order to be able to capture such phenomena in simulations. Nevertheless, available approaches are often cumbersome and suffer from important numerical costs preventing their use for large scale applications.

In addition, modeling the behaviour of voids embedded in single crystals is a much more nascent topic. However, an abundant literature is available on the modeling of ductile nucleation, growth and coalescence of voids in plastic isotropic, or even anisotropic, materials. Recent advances have taken advantage of several decades of separate research on crystal plasticity on the one hand, and ductile fracture on the other hand, in order to bring together both realms. At dawn of predicting material failure at the single crystal scale, signiĄcant efforts are still required in order to obtain quantitatively predictive, robust and efficient constitutive models and numerical implementations.

In the present work, a literature review of the mechanical behaviour of irradiated stainless steels and the modeling of strain localization and ductile fracture was conducted in Chapter 2. Experimental investigation of the mechanical behaviour of austenitic stainless steel single crystals was carried out and presented in Chapter 3. Then, some theoretical and numerical limitations of gradient regularization of strain localization were addressed in Chapter 4 and Chapter 5 respectively. At last, enhanced modeling and simulation of single crystal ductile failure was proposed in Chapter 6.

Tensile experiments conducted on austenitic stainless steel single crystals presented in Chapter 3 have led to original observations and conclusions which can be listed as follows:

• Heterogeneous strain patterns are formed on the tensile specimen surface. These patterns are composed of bands, themselves composed of bundles of slip lines, whose orientations coincide with activated slip plane traces as predicted by the Schmid criterion.

• The yield strength and hardening behaviour highly depends on the crystal orientation with respect to the tensile direction. When pulled along <111> directions 316L single crystals display a harder and more pronounced strain hardening response than along <110> directions. Both directions display an almost linear strain hardening behaviour.

• Crystal plasticity simulations have shown that available sets of material parameters, iden-tiĄed on polycrystals [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF][START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF], predict unrealistic strain hardening behaviours when single crystals are considered. A new set of material parameters was therefore identiĄed in order to Ąt single crystals and polycrystals experimental data.

Note that no strain gradient plasticity effects were introduced at this stage due to the rather macroscopic nature of the tests and measurements. A review of available constitutive hardening laws that account for irradiation defects was then presented. As an introduction to a future study, the conditions of a proton-irradiation experiment performed on 316L single crystal were then presented.

Then, light was shed on some theoretical limitations of a reduced micromorphic strain gradient crystal plasticity model at Ąnite strains and an enhanced model was derived. The main outcomes of this study can be summarized as follows:

• Numerical Ąnite element predictions were shown to Ąt remarkably well with analytical solutions in single slip. Linear hardening, absence of hardening and linear softening were shown to trigger boundary layers, parabolic proĄle or cosine-shaped localization band of plastic slip in a periodic bar loaded in simple shear, depending on the sign of the hardening modulus.

• Progressive, unlimited broadening of the localization band was demonstrated as a saturating softening behaviour was considered.

• An evolving material length scale was thus proposed. It was shown by approximate analytical solutions and Ąnite element simulations to be able to prevent broadening of strain localization.

• The model was Ąnally applied to investigate interactions between localization bands and cylindrical voids for several ratios between the band width and voidŠs radius. Smaller voids were shown to preserve elliptical shapes, while larger voids deform in peanut-like shapes. Larger void volume fractions were responsible for wider localization bands.

Improvements of the strain gradient crystal plasticity model were implemented and are available in the Ąnite element software Z-set. An alternative to the micromorphic approach was proposed in order to relax the reduced strain gradient crystal plasticity model. This innovative approach takes advantage of a Lagrange multiplier and an additional penalization [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]. Micromorphic and Lagrange multiplier formulations were compared, leading to the following state-of-the-art results:

• Micromorphic and Lagrange multiplier approaches are conceptually very similar, since they share the idea of duplicating the non-local variable whose gradients are accounted for. The micromorphic theory allows to recover the original gradient theory by using a large penalization modulus acting on the difference between both instances of the nonlocal variable. On the other hand, the Lagrange multiplier formulation enforces weakly equality between both instances by the means of a Lagrange multiplier and an additional penalization.

• The Lagrange multiplier approach was shown analytically to be strictly equivalent to the micromorphic approach in the speciĄc case of strain localization in a periodic bar in simple shear with a single slip system. Analytical solutions display the discontinuity of the Lagrange multiplier at the elastic-plastic interfaces of the localization band. The additional penalization term was shown to be fundamental when predicting that discontinuity without spurious oscillations in the context of Ąnite elements. Accounting for discontinuities of the Lagrange multiplier will be possible in the future using discontinuous Galerkin methods [START_REF] Cockburn | Discontinuous Galerkin methods: theory, computation and applications[END_REF] or recent Hybrid High-Order (HHO) elements [START_REF] Di Pietro | Building bridges: connections and challenges in modern approaches to numerical partial differential equations[END_REF].

• A detailed presentation of the Ąnite element implementation of the Lagrange multiplier formulation was made. In particular, tangent and Jacobian matrices were derived analytically.

• A drastic reduction of computational cost was obtained in general with the Lagrange multiplier implementation as compared to the micromorphic implementation. A speedup of up to two order of magnitude was reached in some cases.

• Further numerical comparisons of predicted size effects were performed on single crystal wires in torsion and cubic porous unit-cells under imposed stress triaxiality. Micromorphic and Lagrange multiplier approaches were shown to be almost equivalent at small length scales. As material length scale rises (or specimen size decreases) the micromorphic approach displays a saturation of enhanced hardening. On the contrary, size effects predicted by the Lagrange multiplier formulation are unbounded.

Additionally, rate-dependent and rate-independent (Forest and Rubin, 2016) crystal plasticity settings were compared from a computational cost perspective. Both formulations were shown to have overall similar computational performance. Implementation of the Lagrange multiplier formulation was done and is available in the Ąnite element software Z-set. Further developments were concomitantly implemented. A Ąnite element, including displacement degrees of freedom and micro-slip and associated Lagrange multiplier degrees of freedom was established. Periodic Ąnite elements for both micromorphic and Lagrange multiplier formulations were implemented.

In addition, a micromorphic and Lagrange multiplier formulation of von Mises plasticity were set up with the equivalent plastic deformation as non-local variable. Eventually, a Ąrst-of-its-kind ductile fracture model for single crystals was formulated in a strain-gradient plasticity setting. It is composed of the following essential building blocks:

• A thermodynamical framework for porous homogenized models was proposed. It aims at unifying and generalizing several available approaches in the literature [START_REF] Besson | Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms[END_REF][START_REF] Bouby | Sur le cadre thermodynamique dŠune classe de modèles de plasticité de milieux poreux ductiles[END_REF][START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF][START_REF] Rousselier | Dissipation in porous metal plasticity and ductile fracture[END_REF]. The fundamental ingredient of the formulation lies in the treatment of the void volume fraction as an independent state variable. It is shown how a well chosen condition on the dissipation potential can be formulated in order to recover the usual evolution law for porosity.

• The thermodynamical setting serves as a foundation for the formulation of a strain gradient porous crystal plasticity model. A Lagrange multiplier approach is followed similarly as in Chapter 5. The porous crystal plasticity model accounts for void growth with a modiĄed, pressure dependent, Schmid yield criterion for each slip system. It also takes into account the mechanism of void coalescence in an original way.

• The newly formulated void coalescence criterion is validated upon comparison to single crystal porous unit-cell simulations. It is shown to predict satisfactorily the critical stress at coalescence in absence or presence of strain hardening.

The model was then tested on several geometries in order to assess its capacity of predicting regularized ductile fracture in single crystals.

Prospects

The present work raised and left behind many open questions. As follows is a non-exhaustive list of suggestions for research to be conducted in future studies. First of all, experimental data gathered in this work are unique and thereby require to be validated and complemented by • SEM in situ tests appear particularly promising to further study the behaviour of these materials. A Ąrst experiment conducted in situ on a notched and perforated specimen shown in Figure 7.1 has proven encouraging possibilities in that way. Tensile tests, but also, for instance, micro-indentation tests or micro-pillar indentation, can be considered to further validate or adjust identiĄed parameters.

• In a near future, experimental characterization of proton-irradiated stainless steel single crystals could be pursued. Data obtained on irradiated materials would allow to calibrate more precisely material parameters used in constitutive equations accounting for irradiation-induced defects at the single crystal scale.

Then, modeling size effects and strain localization in single crystal is a promising topic. Major lines of development are the enhancement of the physical foundation of the corresponding models and in addition the improvement of numerical tools to implement them.

• Rate-independent and quasi-rate-independent viscoplastic crystal plasticity Ćow rules were compared from a computational viewpoint. Both settings were shown to have advantages and drawbacks. Results not shown here suggest that alternative algorithms available in the literature could lead to a more efficient numerical integration of crystal plasticity Ćow rules. The Lagrange multiplier based formulation by [START_REF] Schmidt-Baldassari | Numerical concepts for rate-independent single crystal plasticity[END_REF], for instance, has shown promising results.

• Micromorphic and Lagrange multiplier based strain gradient formulations were also compared from a computational perspective. If a signiĄcant gain was obtained with the latter, the numerical efforts associated to gradient models remain a serious drawback. Further attention could be given to computational aspects in order to continuously enhance the efficiency of such kind of models.

• The Lagrange multiplier formulation developed in the context of strain gradient (porous) crystal plasticity appears promising from a computational point of view. However absence of saturation of the size-effects predicted by the Lagrange multiplier formulation may seem unrealistic in some cases. This lack is due to the simple quadratic form of the non-local free-energy potential adopted. Investigating more reĄned potentials could be envisaged to adapt the predictions in order to obtain desired asymptotic size-dependence.

Finally, investigations concerning ductile fracture mechanisms at the single crystal scale should be continued. Among the research pathways which could be followed, the following aspects appear to be promising:

• The single crystal void growth and coalescence model is still very nascent. A thorough investigation of its predictions compared to porous unit-cell simulations could be carried out. Such a study would lead to improve the calibration of void growth and void coalescence criteria, but also reveal necessary improvements in order to capture mechanisms not yet taken into account. For instance, accounting for coalescence in shear as in [START_REF] Hure | A coalescence criterion for porous single crystals[END_REF] could be considered as a Ąrst step.

• Effects of crystal plastic anisotropy on void growth and void coalescence could be further assessed. Parametric studies on relevant geometries (NT, CT specimen for instance) could be considered. In the longer term, the model could be used as a part of a workĆow devoted to microstructure optimization.

• Numerical results obtained with the porous single crystal plasticity model should be correlated and compared to experimental data. Mechanical tests on specimen containing a few number of grains could be performed to this end. For instance, aluminum with large grains could be used as a model FCC material for such experiments.

• Continuation of the present work could eventually reach the ultimate objective of predicting, for a given microstructure, the evolution of relevant mechanical properties with irradiation dose. In particular, being able to predict quantitatively evolution of toughness with neutron exposure from numerical methods is a key target of the present project. Forest, S., Olschewski, J., Ziebs, J., Kühn, H.J., Meersmann, J., Frenz, H., 1996 

B

Single crystal tensile specimens preparation

B.1 Specimen thickness reduction

The specimen geometry was designed in order to maximize the number specimens that could be cut from the initial plate. The chosen geometry does not have wide heads as in common tensile specimen geometries. Therefore, during tensile tests on this geometry, both ends of the specimen need to be gripped. In order to avoid any sliding, specimens were thinned down by mechanical hand-polishing to a thickness of ∼140 µm. A stainless steel disk as shown in Figure B.1 was used as specimen holder during polishing. The specimen is stuck in the middle of the disk by using a hot melt adhesive (or hot glue). As shown in Figure B.1, the disk has a crown on its outer boundary. That crown is polished simultaneously to the specimen. The height of the crown is measured periodically in multiple locations in order to ensure the horizontality of the polished surface. Specimens were mirror-polished on both sides in order to remove any surface imperfections. The last polishing step was performed with a 0.25 µm colloidal silica suspension from Struers (Struers, 2020) in order to remove the hard surface layer induced by previous polishing operations.

B.2 Heat resistant paint speckle pattern

A heat paint speckle pattern was deposited onto the surface of the single crystal tensile specimens in order to perform displacement Ąeld measurements by DIC. An in-house airbrush system, depicted in Figure B.2, was used to lay a Ąrst coating of white heat resistant paint on the whole specimen surface. The airbrush nozzle was then cleaned up and mounted again on the airbrush. The nozzle was tightened in order to reduce the airbrush outlet aperture to its lowest level.

The distance between the specimen and the airbrush head was then maximized by moving the airbrush on its rail. Finally black heat resistant paint droplets were projected on the white coated surface of the specimen. This procedure allowed to obtain very small black spots (∼50 µm) and therefore a very Ąne DIC pattern ideal for high resolution Ąeld measurements. 

B.3 Heat resistant gold nanoparticles pattern

As a perspective of the present work is to perform SEM in situ tensile experiments, a methodology was elaborated in order to create patterns suited for DIC with secondary electron images.

Based on a technique presented in [START_REF] Kammers | Small-scale patterning methods for digital image correlation under scanning electron microscopy[END_REF] gold nanoparticle temperature resistant pattern were formed. A Milli-Q water solution containing 100±15 nm wide gold nanoparticles, with a concentration of 0.053 mg µL -1 , i.e. 5.0 × 10 9 particles/mL, was purchased from Ted Pella (Ref.: NanoXact T M 100 nm T. Cap. Gold). 10 µL droplets of the nanoparticle solution are laid with a micro-pipette on the mirror-polished specimen so as to cover the whole surface.

After sufficient time water evaporates and nanoparticles remain on the specimen surface. To accelerate the evaporation process the specimen is heated to a temperature of 150 • C when depositing the droplets. Several depositions are needed in order to obtain a sufficiently dense and homogeneously distributed population of nanoparticles. About 15 successive depositions results in an adequate pattern as presented in , 2011), is imputed to a capillary Ćuid Ćow conveying nanoparticles to the droplet outer boundary. According to [START_REF] Kammers | Small-scale patterning methods for digital image correlation under scanning electron microscopy[END_REF] the Šcoffee ringŠ effect can be mitigated by decreasing the drying time. Alternative methods to heating the sample could be considered, such as angling the sample, spin-coating or layering. The major drawback related to the elaboration of gold nanoparticles patterns lies in the difficulty of obtaining an ideal pattern at the desired location. However, the fact that such patterns can be elaborated in minutes and easily removed with puriĄed water and a soft polishing Ąlm makes it a very lean and reliable technique.

C

Temperature gradient along single crystal tensile specimens

The heating device devoted for tensile tests at high temperatures provided with the MicroMecha micro-tensile machine consist in a 8 mm wide heating unit getting in contact with the bottom face of the specimen. Since tensile specimens are longer than the width of the heating unit, specimens heads are only heated by heat conduction and to some extent by heat convection. A FLIR infrared thermographic camera was used in order to characterize the temperature gradient along the specimen surface, in particular at the edge of the heating unit. The camera was calibrated by measuring the temperature on the specimen surface by using a welded thermocouple. Figure C.1a shows the thermographic image obtained after waiting a sufficient time to reach a steady state. Two proĄle lines Li1 and Li2 were plotted on the specimen surface and the heating unit surface respectively. Figure C.1b shows the temperature proĄle along both proĄle lines. It is not necessarily inconsistent that the specimen appears warmer than the heating unit, because both elements have possibly very different emissivity. In the contact-heated region the specimen temperature is rather homogeneous, while out of the contact-heated region a gradient of about -60 • C /mm is measured. As a consequence, the center part of the specimen, with lowest cross section sees also the highest temperature. Despite the fact that the specimen geometry is exempt of wide heads, the softer response induced by a higher temperature guarantees that the specimen will predominantly deform in its middle section. 

D

Crystal plasticity material parameters sensitivity analysis

In order to describe the effect of material parameters κ, G c , ρ s 0 and A i on the hardening behaviour, a sensitivity analysis is conducted. Each material parameter is varied independently and several different numerical values are used for each variable. Numerical values identiĄed by [START_REF] Ling | Simulation de la rupture ductile intragranulaire des aciers irradiés[END_REF] are used as the set of reference. The sensitivity analysis is performed for two different crystal orientations, namely orientations of specimen R4 and R2 presented in Table 3.2.

Figure D.1 shows the dependence of the hardening behaviour on the values taken by the interaction matrix coefficients A 1 , A 2 and A 3 . Generally speaking, increasing one of the A i parameter leads to an increase of the hardening rate. Both orientations have a greater sensitivity to the value taken by A 1 . For A 1 orientation R4 is slightly more sensitive than R2. While orientation R4 is almost insensitive to A 2 , orientation R2 displays a slender dependency to the same parameter. Orientation R2 and R4 have a very limited sensitivity to parameter A 3 .

Figure D.2 shows the results of the sensitivity analysis for parameters κ and G c involved in the evolution law of dislocation densities. κ characterizes the number of obstacles a dislocation can cross before being immobilized, while bG c represents the annihilation distance between two dislocations belonging to the same slip system. Increasing κ or G c leads thereby to a reduction of the strain hardening rate. In the domain considered for each parameter, the sensitivity of the hardening behaviour to κ is more important than the sensitivity to G c . Orientation R4 is slightly more sensitive than orientation R2 to the values taken by κ and G c .

Figure D.3 shows the inĆuence of the initial dislocation density per slip system ρ s 0 and the evolution of coefficients A i on the hardening behaviour. Increasing the initial dislocation density results in a larger yield stress. However the asymptotic hardening behaviour at large strains does not depend on ρ s 0 . Therefore the rate of strain hardening is lower for the largest ρ s 0 values. When the evolution law for the interaction matrix coefficients Eq. (3.7) proposed by [START_REF] Monnet | Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies[END_REF] is adopted, the density of obstacles ρ obs to dislocation motion increases, thereby the interaction coefficients decrease and as a consequence the rate of strain hardening decreases and a softer asymptotic behaviour is predicted. 

E

Influence of hard inclusions on local strains

In Chapter 3 it was shown that strain Ąelds computed numerically are much more homogeneous than strain Ąelds measured from experiments with DIC analysis. In order to explain this discrepancy, the track of strain heterogeneities caused by hard inclusions is investigated. Such hard inclusions can for example model the inĆuence of ferrite inclusions present in the tensile specimens. Finite element simulations of tensile experiments presented in Chapter 3 are repeated, but with a modiĄcation of the local material behaviour in a few areas. 1% of all elements of the Ąnite element mesh are selected randomly and assigned a purely elastic behaviour. The elastic constants are set the same as the rest of specimen, but plastic slip cannot occur in these elements. Figure E.1 shows the equivalent Hencky strain Ąelds obtained numerically and experimentally for crystal orientations corresponding to specimen R4 and R2 at ∆L/L 0 = 0.10. The stress redistribution due to hard elastic inclusions affects greatly the equivalent Hencky strain Ąeld. Instead of a smooth deformation proĄle, strain heterogeneities are nucleated in the vicinity of these inclusions. As the macroscopic deformation increases, heterogeneities become more and more intense. However, areas of intense plastic activity remain located near hard inclusions. This observation can be put in parallel with the intensely deformed bands observed experimentally. It was noted that these bands were indeed more prone to have their intensity increase, instead of having new bands nucleated. A more quantitative analysis could be performed by obtaining a more realistic morphology of a single ferrite inclusion (e.g. by EBSD) and measuring the local strain Ąeld in the vicinity of it during an SEM in situ tensile test. The same ferrite inclusion could then be simulated embedded in an austenite matrix in a Ąnite element simulation in order to validate or disprove the hypothesis that ferrite inclusions are responsible for the apparition on strain heterogeneities in the form of bands. This is out of the scope of the present study.

F Jacobian matrix ∂R/∂v int

The Jacobian matrix is needed to integrate the constitutive equations at the Gauss point level. The block form of the Jacobian matrix writes 

J = ∂R ∂∆v int =               ∂R E ∼ ∂∆E ∼ ∂R E ∼ ∂∆γ p ∂R E ∼ ∂∆r q ∂R E
∂R γcum ∂∆γ cum               (F.1) • Derivatives of R E ∼ R E ∼ = ∆E ∼ -∆F ∼ .F ∼ -1 .E ∼ + E ∼ . N s=1 ∆γ s N ∼ s (F.2) ∂R E ∼ ∂∆E ∼ = 1 ≈ -(∆F ∼ .F ∼ -1 )⊗1 ≈ + 1 ≈ ⊗ N s=1 ∆γ s N ∼ s T (F.3) ∂R E ∼ ∂∆γ p = E ∼ .N ∼ p ∂R E ∼ ∂∆r q = 0 ∂R E ∼ ∂∆γ cum = 0 (F.4) • Derivatives of R γ s R γ s = ∆γ s -∆ΓΦ s ♣τ s ♣ -τ s c - ρ ♯ ρ0 (∆ χ -µ χ γ cum )

G

Details on the finite element implementation

In order to facilitate the numerical implementation in a Ąnite element code, equations are now written in vector and matrix form. The rates of nodal degrees of freedom ˙ u a , ˙ γ b χ and ˙ λ b are arranged in vector form as ¶ ˙

u a i ♢ = ¶ ˙ u e ♢ =                                      ˙ u 1 1 ˙ u 1 2 ˙ u 1 3 . . . ˙ u p 1 ˙ u p 2 ˙ u p 3                                      ¶ ˙ γ b χ ♢ = ¶ ˙ γ e χ ♢ =                  ˙ γ 1 χ ˙ γ 2 χ . . . ˙ γ q χ                  ¶ ˙ λ b ♢ = ¶ ˙ λ e ♢ =                  ˙ λ 1 ˙ λ 2 . . . ˙ λ q                  (G.1)
Here, superscripts a and b used for summation over the nodes of one element are dropped and a superscript e is added, in order to indicate that the vector is for one individual element and to distinguish it from vectors for the entire Ąnite element mesh. Recall that p is the number of nodes possessing displacement degrees of freedom and q is that for ∆ χ and microslip γ χ . VoigtŠs notation is used for writing tensors in the form of vectors and matrices. Especially, the second-order non-symmetric tensor F ∼ is arranged in the form:

¶F ∼ ♢ =                              F 11 F 22 F 33 F 12 F 23 F 31 F 21 F 32 F 13                              (G.2) 238
Thus, shape functions u N a i and χ N b can be written as

[ u N] =      u N 1 0 0 • • • u N p 0 0 0 u N 1 0 • • • 0 u N p 0 0 0 u N 1 • • • 0 0 u N p      (G.3) and [ χ N] = χ N 1 χ N 2 χ N 3 • • • χ N q . (G.4)
Accordingly, u B a ij and χ B a i can also be written in matrix form denoted by [ u B] and [ χ B]:

[ u B] =                                   ∂ u N 1 ∂X 1 0 0 • • • ∂ u N p ∂X 1 0 0 0 ∂ u N 1 ∂X 2 0 • • • 0 ∂ u N p ∂X 2 0 0 0 ∂ u N 1 ∂X 3 • • • 0 0 ∂ u N p ∂X 3 ∂ u N 1 ∂X 2 0 0 • • • ∂ u N p ∂X2 0 0 0 ∂ u N 1 ∂X 3 0 • • • 0 ∂ u N p ∂X 3 0 0 0 ∂ u N 1 ∂X 1 • • • 0 0 ∂ u N p ∂X 1 0 ∂ u N 1 ∂X 1 0 • • • 0 ∂ u N p ∂X 1 0 0 0 ∂ u N 1 ∂X 2 • • • 0 0 ∂ u N p ∂X 2 ∂ u N 1 ∂X 3 0 0 • • • ∂ u N p ∂X 3 0 0                                   (G.5)
and

[ χ B] =         ∂ χ N 1 ∂X 1 ∂ χ N 2 ∂X 1 ∂ χ N 3 ∂X 1 • • • ∂ χ N q ∂X 1 ∂ χ N 1 ∂X 2 ∂ χ N 2 ∂X 2 ∂ χ N 3 ∂X 2 • • • ∂ χ N q ∂X 2 ∂ χ N 1 ∂X 3 ∂ χ N 2 ∂X 3 ∂ χ N 3 ∂X 3 • • • ∂ χ N q ∂X 3         (G.6)
The interpolation of increment of the displacements ui , microslip γχ and Lagrange multiplier λ in one element thus write ¶ u ♢ = [ The reader is referred to [START_REF] Besson | Non-linear mechanics of materials[END_REF] for the description of the assembly procedure. Thus, the global Ąnite element set of equations Eqs. (5.66), (5.67) and (5.68) to be solved can be written as (G.18)

Since the system is nonlinear, it can be solved by NewtonŠs method which requires the calculation of the Jacobian matrix with respect to the internal reactions [START_REF] Besson | Non-linear mechanics of materials[END_REF]. The Jacobian matrix of an individual element, split into nine blocks, writes In the element stiffness matrix, one can Ąnd four derivatives which will be evaluated by consistent tangent matrix ¶J * ♢ in the next section. The consistent tangent matrix ¶J * ♢ is deĄned as:

J * = δ∆v OUT δ∆v IN (G.30)

H

Details on the consistent tangent matrix

It is shown in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at Ąnite deformations. application to strain localization and void growth in ductile metals[END_REF] 

I

A small strain thermodynamical formulation of Gurson's model

GursonŠs model is revisited here in a simpliĄed version of the framework proposed in Chapter 6. Small perturbations are assumed such that the symmetric small strain tensor ε ∼ = (1/2)(∇u + ∇u T ) is additively decomposed into an elastic and a plastic part

ε ∼ = ε ∼ e + ε ∼ p (I.1)
In that context the evolution of the total volume can be neglected and thereby ρ 0 , ρ ♯ and ρ become the same quantity. The porosity f is still deĄned by its initial value f 0 and the following evolution law ḟ = (1 -f )tr ( ε ∼ p ) (I.2)

The set of state variables is supposed to consist of the elastic strain tensor ε ∼ e , the porosity f and a hardening scalar variable p. The speciĄc free energy density is assumed to take the following form 3 1 ∼ . As in Chapter 6 it is assumed that ϕ m can be written in the following form

ϕ m σ m ρ , R f ρ , R p ρ ; f = h R f ρ ; f g σ m ρ + k R f ρ ; f , R p ρ ; f (I.12)
Here h = 1 is assumed. In order to satisfy simultaneously Eq. I.2 and I.11 the following equality must hold

- ∂Ω ∂ R f ρ = (1 -f )   - ∂Ω ∂ -σm ρ   (I.13)
That equality holds with the condition that

∂k ∂ R f ρ R f ρ ; f = (1 -f ) ∂g ∂ σm ρ σ m ρ + k R f ρ ; f , R p ρ ; f (I.14)
In the context of GursonŠs model, the functions g and k are such that

g σ m ρ + k R f ρ ; f , R p ρ ; f = 2f cosh   σm ρ + k R f ρ ; f Rp ρ   (I.15) k R f ρ ; f = -(1 -f ) R f ρ (I.16)
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The revisited Gurson criterion can thereby be written

ϕ = Σ eq R 0 + R p 2 + 2f cosh 3 2 Σ m R 0 + R p -1 -f 2 (I.17)
where Σ ∼ = σ ∼ -(1 -f )R f 1 ∼ is the relevant stress. Eq. (I.17) can then be interpreted as an implicit deĄnition of an effective stress σ * (Σ ∼ ; f ) homogeneous of degree one in Σ ∼ , with the yield criterion being then expressed as

     σ * ♣ ϕ Σ eq σ * 2 + 2f cosh 3 2 Σ m σ * -1 -f 2 def = 0 φ = (1 -f )(σ * -R p -R 0 ) (I.18)
In Ąne, the residual mechanical dissipation becomes

d = Σ ∼ ρ : ε ∼ p - R p ρ ṗ (I.19) = Σ ∼ ρ : ∂Λ ∂ϕ ∂ϕ ∂ φ ∂ φ ∂σ * ∂σ * ∂Σ ∼ - R p ρ ∂Λ ∂ϕ ∂ϕ ∂ φ ∂ φ ∂R p (I.20) = (1 -f ) ρ λ(σ * -R p ) (I.21)
where λ = ∂Λ/∂ϕ. Noting that σ * -R p ≥ σ * -R p -R 0 ≥ 0 proves the positivity of the dissipation.

  e j ⊗ e k ⊗ e l Ąrst dyadic product on tensors X ∼ ⊗Y ∼ = X il Y jk e i ⊗ e j ⊗ e k ⊗ e l second dyadic product on tensors X ∼ ⊗Y ∼ = X ik Y jl e i ⊗ e j ⊗ e k ⊗ e l third dyadic product on tensors -)domain in the initial conĄguration D material (sub-)domain in the current conĄguration ∂D 0 boundary of material (sub-)domain in the initial conĄguration ∂D boundary of material (sub-)domain in the current conĄguration X position of a material point in D 0 x position of a material point in D u = x -X displacement Ąeld 1 ∼ = δ ij e i ⊗ e j second order identity tensor1 ≈ = 1 2 (δ ik δ jl + δ il δ jk ) e i ⊗ e j ⊗ e k ⊗ e lfourth order identity tensor on symmetric second order tensors

Figure 2 . 2

 22 Figure 2.2 Domains of several stainless steel classes as a function of nickel and chromium contents (Encyclopaedia Britannica, 2019).

  Figure 2.10 Electron micrography of copper displaying (a) elementary structure in unirradiated copper; 20000X (b) clustered-structure characteristic of easy glide in neutron-irradiated copper; 6000X (GreenĄeld and Wilsdorf, 1961).

Figure 2 .

 2 Figure 2.13 Discrete dislocation dynamics results of tensile tests on iron single crystal pillars of diameter 1.5 µm loaded along a ⟨001⟩ crystal direction. (a) Deformation Localization Index (DLI) evolution with respect to plastic strain (insets show irradiation defects (dark dots) distribution and dislocation network (orange lines), open arrows point at dislocation channels).(b-c) Plastic strain rate fractions induced by dislocations on different slip planes for high-and low-dose conĄgurations[START_REF] Cui | Suppression of localized plastic Ćow in irradiated materials[END_REF].

  Figure 2.16 (a) Tensile stress-strain curves obtained at 330 • C on a SA 304 stainless steels irradiated to different doses in OSIRIS reactor at about 330 • C (Pokor et al., 2004a). (b) Tensile stress-strain curves obtained at 600 • C on a 304 stainless steels irradiated in reactor EBR-II to 1.1×10 22 n/cm 2 at 540±50 • C (Holmes et al., 1969).

Figure 2 .

 2 Figure 2.24 Fast Fourier Transform (FFT) crystal plasticity simulation results of a 3D FCC polycrystal displaying localization slip (red) and kink (blue) bands. Grain boundaries and activated slip planes are respectively plotted grey and yellow (Marano et al., 2019).

Figure 2 .

 2 Figure 2.25 Proposition of classiĄcation of the mechanics of generalized continuum media[START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF].

  Figure 2.26 (a) Softening-induced localization in shear bands without gradient-regularization displaying mesh dependence. (b) Softening-induced localization in shear bands with gradientregularization displaying mesh convergence (Anand et al., 2012).

Figure 2 .

 2 Figure 2.27 Regularized curved crack propagation in a double-edge notched specimen obtained with an integral non-local formulation by[START_REF] Bažant | Nonlocal integral formulations of plasticity and damage: survey of progress[END_REF].

Figure 2 .

 2 Figure 2.28 Schematic of ductile failure mechanisms which may coexist and interact[START_REF] Noell | The mechanisms of ductile rupture[END_REF].

Figure 2 .

 2 Figure 2.31 2D Synchrotron radiation-computed tomography (SRCT) images at (a) peak load (b) Ćat to slant transition (c) slant propagation during a Kahn tear test of an Aluminum AA2139 alloy (Morgeneyer and Besson, 2011).

  Figure 2.34 Comparison of yield loci obtained with the model by Han et al. (2013), Paux et al. (2015) and Mbiakop et al. (2015a). In (a) and (b) crystal orientation is [100]-[010]-[001] and porosity equal to 1% and 5% respectively. In (c) and (d) porosity is 1% and crystal orientation is [111]-[ 211]-[0 11] and [210]-[ 120]-[001] respectively.Corresponding porous unit-cell numerical limit analysis results are also reported. Graphs are reproduced from(Mbiakop et al., 2015a).

Figure 2 .

 2 Figure 2.35 Accumulated plastic slip Ąelds (a-c) and porosity Ąelds (d-f) in the vicinity of the notch of a single crystal SENT specimen for three different crystal orientations (Ling et al., 2016).

Figure 3 . 5

 35 Figure 3.5 Experimental engineering stress vs (a) crosshead displacement (b) DIC measured macroscopic strain. In (b) curves are smoothed out because DIC measurements are done every 0.05 mm crosshead displacement and also truncated because DIC fails at large strains due to paint speckle pattern cracking and decohesion.
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 37 Figure 3.7 Comparison of experimental and numerical engineering stress vs DIC measured displacement with the simulation parameters presented in Table 3.3 for specimen R4 in (a) and specimens R2 and R3 in (b).
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 38 Figure 3.8 Comparison of numerical (FFT and FEM) and experimental normalized true stress vs true strain curves on 304L and 316L stainless steels polycrystals. Experimental data are reproduced from Byun and Farrell (2004a); Ehrnstén et al. (2007); Muhamed et al. (2017); Pokor et al. (2004a); Wintle et al. (2004); Zhang et al. (2017). (σ 0 = 140 MPa)

  Figure 3.9 Numerically computed equivalent Hencky strain Ąelds at macroscopic strain of ∆L/L 0 = 0.05 in (a) and (c) and ∆L/L 0 = 0.10 in (b) and (d). The closest crystal directions aligned with the tensile and transverse direction are depicted.

  Figure 3.10 Horizontal (a,b) and vertical (c,d) equivalent Hencky strain proĄle lines at ∆L/L 0 = 0.05 in specimens with crystal orientation close to R4 in (a,c) and R2 in (b,d) obtained by DIC and Ąnite element simulations with the parameters presented in Table 3.3.

  Figure 3.11 Horizontal (a,b) and vertical (c,d) equivalent Hencky strain proĄle lines at ∆L/L 0 = 0.1 in specimens with crystal orientation R4 in (a,c) and R2 in (b,d) obtained by DIC and Ąnite element simulations with the parameters presented in Table 3.3.

Figure 3

 3 Figure 3.16 Activity decay as measured on proton-irradiated sample compared to exponential decay of radioactive 54 Mn isotope.

  and the balance equation (4.7) rewrites Div (Π ∼ e -γΠ ∼ e .(n ⊗ m )) = 0 (4.34)

Figure 4 .

 4 Figure 4.3 Analytical (black line) and Ąnite element (red crosses) solutions of differential equation (4.39) with: (a) a strictly positive linear hardening (H = 1000 MPa) and (b) perfect plasticity (H = 0 MPa) at F 12 = 1%.

Figure 4

 4 Figure 4.4 Analytical (black line) and Ąnite element (red crosses) solutions of differential equation (4.39) with a linear negative hardening (H = -250 MPa) at F 12 = 1%.

Figure 4 . 5

 45 Figure 4.5 Finite element solution of equation (4.38) for an exponential softening behaviour displaying localization band width widening.

  Figure 4.6 shows both solutions at F 12 = 0.05% and F 12 = 0.1%. Since approximation 1 is only valid close to initiation of plastic slip, agreement between analytical and numerical results deteriorates when F 12 increases. Nevertheless one should notice that close to the elastic/plastic interfaces a good agreement is obtained because gradients of accumulated plastic slip and microslip remain small in these regions. As a consequence the width of the localization zone

Figure 4 .

 4 Figure 4.6 Analytical (black line) and Ąnite element (red crosses) solutions of differential equation governing γ χ at F 12 = 0.05% and F 12 = 0.1%, when considering the non-linear softening behaviour Eq. (4.64) and the constitutive function Eq. (4.70) for A(γ cum ).

Figure 4 . 7

 47 Figure 4.7 Finite element solutions of differential equation governing γ χ for A constant displaying localization band width widening (solid line) and for A(γ cum ) inducing a bounded localization band width (dashed line).

Figure 4 . 8

 48 Figure 4.8 Periodic unit-cell mesh with a cylindrical hole (width and height L and thickness T ).

Figure 4 . 9

 49 Figure 4.9 Finite element results showing the interaction of a slip band and a void in a unit-cell under average shear at F 12 = 0.15.

Figure 4 .

 4 Figure 4.10 Normalized localization slip band width λ as a function of F 12 for three different values of parameter q 0 and for χ 0 = 0.2. Dashed lines represent the normalized width equal to four times the initial mesh size.

Figure 4 .

 4 Figure 4.11 Normalized localization slip band width λ as a function of F 12 for three different values of parameter q 0 and for χ 0 = 0.4. Dashed lines represent the normalized width equal to four times the initial mesh size.

Figure 4 .

 4 Figure 4.12 Normalized localization slip band width λ as a function of q 0 for two different void volume fractions at the overall shear value F 12 = 0.025. Insets correspond to snapshots of Figure 4.9i (left) and 4.9b (right) at F 12 = 0.15.

  at small strains and Forest (2016a) at Ąnite deformation, as demonstrated by Anand et al. (2012); Brepols et al. (2017) for conventional plasticity and by Aslan et al. (2011); Cordero et al. (2010); Ryś et al. (

0

  AK χ . K χ + (∆ χ -µ χ γ M ) γχ dV e 0

  . (5.59), (5.60), (5.61) an internal reaction is associated with each degree-offreedom. R a int(ui,e) refers to the internal reaction related to u i on node a of element e b int(γχ,e) (resp. R b int(λ,e) ) as the internal reaction related to γ χ (resp. λ) on node b of element

  external reaction is associated to each degree of freedom. R a ext(ui,e) , R b ext(γχ,e) , R b ext(λ,e) refer to the external reactions related to u i on node a, γ χ and λ on node b of element e R a ext(ui,e) =

Figure 5 . 2

 52 Figure 5.2 Numerical solutions of the Laplacian term ∆ χ proĄle along a periodic strip in simple shear for several values of µ χ . The discretization is n = 51 elements in (a) and n = 201 elements in (b).

Figure 5

 5 Figure 5.3 Computation times for the Ąnite element resolution of the periodic strip in simple shear and single slip for four different Λ 0 /L ratios and four different formulations.

Figure 5

 5 Figure 5.4 Microwire torsion (a) boundary conditions (b) example mesh from the top side in which the black line represents an initial material line. For the <001> crystal orientation the black line is oriented along a <110> direction. For the <111> crystal orientation it is oriented along a <11 2> direction.

Figure 5 .

 5 Figure 5.5 and 5.6 show the accumulated plastic strain Ąelds in the deformed conĄguration for FCC single crystals with wire axis parallel to <001> and <111> respectively. A cross section of each sample is illustrated in Figure5.5 and 5.6. The radial and circumferential plastic strain gradients are clearly visible. A four-fold pattern is observed for the <001> specimen with maximum plastic strain values along <100> directions. A six-fold pattern is observed for the

Figure 5 . 5 Figure 5 . 8

 5558 Figure 5.5 Cumulative plastic strain (γ cum ) Ąeld in FCC single crystal for <001> crystal orientation in classical crystal plasticity with respect to deformed conĄguration. The rotation of material line shown in Figure 5.4b with increasing surface strain is shown by a black line on the cross-section.

Figure 5 .

 5 Figure 5.14 Void volume fraction f evolution with respect to macroscopic deformation E 11 for different intrinsic length to cell size ratios ℓ/L 0 obtained with the micromorphic (solid lines) and the Lagrange multiplier (dashed lines) formulations in porous unit-cell simulations with f 0 = 0.01 and material parameters presented in Table 5.5. Hollow squares denote onsets of void coalescence.

Figure 5 Figure 5 .

 55 Figure 5.15 Macroscopic stress-strain behaviour for different intrinsic length to cell size ratios ℓ/L 0 obtained with the micromorphic formulation (dots) by Ling et al. (2018) and the Lagrange multiplier formulation (dashed lines) in porous unit-cell simulations with f 0 = 0.01 and material parameters presented in Table 5.5. Hollow squares denote onsets of void coalescence.

  .64) one can develop the following balance equations and boundary conditions Div S ∼ = 0 ∀X ∈ D 0 and T = S ∼ .n 0 ∀X ∈ ∂D 0 (6.65) Div M -S = 0 ∀X ∈ D 0 and M = M .n 0 ∀X ∈ ∂D 0 (6.66)

  tensor N ∼ s * already derived in Ling et al. (

Figure 6 . 1

 61 Figure 6.1 Numerically computed principal Cauchy stress in unit-cell simulations vs theoretical prediction of the principal Cauchy stress at onset of coalescence. Dashed lines represent the ±20% error from the case were the theoretical prediction matches the numerical value.

Figure 6

 6 Figure 6.2 Stress-strain behaviour and porosity evolution at imposed stress triaxialities of 1 (solid lines) and 3 (dashed lines) on a single Gauss point with three different variants of the porous single crystal ductile failure model: void growth mechanisms only (red), void growth mechanisms and f * -type coalescence (blue), and void growth and void coalescence mechanisms (orange).

Figure 6 . 3 Figure 6

 636 Figure 6.3 InĆuence of material parameters ω and β from Eq. (6.121) on the post-coalescence regime of the tensile stress and the porosity. σ g * = 615 MPa in this example.

  Figure 6.6 Stress vs normalized elongation (a) and normalized width reduction (b) for conventional and gradient porous single crystal plasticity for several mesh reĄnements m ∈ ¶4, 8, 16, 32♢.

  Figure 6.7 Field of damage variable χ at location (1) in Figure 6.6b for conventional (left) and gradient (right) porous single crystal plasticity for several mesh reĄnements m ∈ ¶4, 8, 16, 32♢.

Figure 6 . 9

 69 Figure 6.9 InĆuence of the presence or absence of the force R f in the yield criteria for several hardening behaviours Q = 100 MPa (black), Q = 125 MPa (blue) and Q = 150 MPa (red).

Figure 6

 6 Figure 6.10 Comparison between the mean stress σ m and three different contributions to R f related respectively to elasticity, hardening and gradient effects for Q = 100 MPa and at -∆W/W 0 = 0.3. Stresses are expressed in MPa.

Figure 6 .

 6 Figure 6.11 Macroscopic normalized stress vs macroscopic strain F 11 -1 for conventional and strain gradient perforated porous single crystal plates oriented along [100] -[010] -[001] crystal directions.

Figure 6 .

 6 Figure 6.12 Accumulated plastic strain Ąelds at F 11 -1 = 0.15 for conventional and strain gradient periodic perforated porous single crystal plates oriented along [100] -[010] -[001] crystal directions.

Figure 6

 6 Figure 6.14 Porosity Ąelds in the vicinity of the CT specimen notch front, i.e. close to X 1 = a 0 at CMOD=2 mm in (a), (b) and (d). The last computed time step is used in (c). Initial (undeformed) mesh is displayed in solid red lines.

Figure 7 . 1

 71 Figure 7.1 Notched and perforated single crystal specimen tested in situ with SEM imaging to perform DIC displacements Ąelds measurements on the gold nanoparticles pattern laid down on its surface.

Figure B. 3

 3 Figure B.3 SEM micrography of a DIC pattern suited for in situ testing obtained by deposition of gold nanoparticles on a mirror-polished specimen.

  Figure B.3. Evaporation of the solution can result in the formation of halos having a denser quantity of nanoparticles. Such an aureole is visible in the top left corner of Figure B.3. This phenomenon, known as the Šcoffee ringŠ effect (Kammers and Daly

  Figure C.1 (a) Infrared thermographic image of a tensile specimen heated by contact with a heating unit. Li1 and Li2 are proĄle lines located along the specimen and the heating unit respectively. On each line, hot spots and cold spots are denoted by red and blue triangles respectively. (b) Temperature proĄles along Li1 and Li2.

  Figure D.1 Sensitivity analysis to the parameters A 1 , A 2 and A 3 for orientations R4 in (a,c,e) and R2 in (b,d,f) (The other simulation parameters were assigned the values given inTable 3.3 from Ling (2017))
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  is the Cauchy stress tensor. The quantitiesR f /ρ = ∂ψ/∂f = -((1/2)ε ∼ e : C ≈ : ε ∼ e +ψ h (p))and R p /ρ = ∂ψ/∂p are introduced. The following state law is postulated σ
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	CW		cold worked
	DDD		discrete dislocation dynamics
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	DIC		digital image correlation
	dpa		displacement per atom
	EBSD FCC FFT FNR		electron backscatter diffraction face-centered cubic fast Fourier transform fast neutron reactor	1
	GND		geometrically necessary dislocations Introduction
	GSM		generalized standard materials
	HCP		hexagonal close-packed
	HFIR		high Ćux isotope reactor
	HHO		hybrid high-order
	IPF		inverse pole Ągure
	LWR NT		light water reactor notch tensile Résumé
	PIS		plastic instability stress
	PKA		primary knock-on atom
	PWR		pressurized water reactor
	RIS		radiation induced segregation
	RVE	e	Mandel stress tensor representative volume element
	SA		solution annealed
	Acronyms / Abbreviations 2D SED 3D SEM BCC SENT BF SRCT BWR SSD CMOD SVE	secondary electron detector two-dimensional scanning electron microscope three-dimensional single-edge-notch tension body-centered cubic synchrotron radiation-computed tomography bright Ąeld statistically stored dislocations boiling water reactor crack mouth opening displacement statistical volume element
	CRSS		critical resolved shear stress
	CT		compact tension
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	Type	C	Mn	P	S	Si	Cr	Ni	Mo	N	Fe
	304	0.07 2.00 0.045 0.030 0.75 17.5-19.5 8.0-10.5	..	0.10 balance
	304L 2 0.030 2.00 0.045 0.030 0.75 17.5-19.5 8.0-12.0	..	0.10 balance
	316										

.1 Chemical composition requirements (weight % 1 ) for 304, 304L, 316, 316L austenitic stainless steels according to ASTM Standard A240/A240M (2012) speciĄcations.
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	crystal plasticity model at Ąnite strains. Analytical solutions of a case study are derived and
	compared to Ąnite element resolutions. The model is enhanced in order to better predict strain localization when softening saturates. In Chapter 5 a Lagrange multiplier based relaxation Contents
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	Dans ce chapitre nous nous intéressons au comportement mécanique en traction à 300 • C de 3.5.1.1 Dispersed barrier hardening model . . . . . . . . . .
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	3. improve computational efficiency of existing strain gradient plasticity models
	4. formulate a full and regularized model of ductile failure for porous single crystals
	In Chapter 3 the methods and results of tensile tests carried out on austenitic stainless steel
	single crystals are presented. These experimental data are used to calibrate the parameters of
	a continuum crystal plasticity material model. Chapter 4 deals with a reduced micromorphic
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 3 3 Numerical values of material parameters for single crystal simulations as used in the literature and as obtained from optimization. IdentiĄed parameters are displayed in bold font.

	Parameter	Ling (2017) Monnet and Mai (2019)	Fit Unit
	Elastic constants				
	C 11	200000	200000	200000 [MPa]
	C 12	136000	136000	136000 [MPa]
	C 44	105000	105000	105000 [MPa]
	Viscosity parameters				
	γ0	10 29	10 29	10 29 [s -1 ]
	n	15	15	15	-
	Hardening parameters				
	τ ∞	42.8	10.0	10.0 [MPa]
	τ 0	88	55.2	-[MPa]
	µ	65600	73800	73800 [MPa]
	ρ s				
	κ	42.8	12.0	29.0	-
	G c	10.4	3.9	0.01	-
	A 1	0.124	0.124	0.087	-
	A 2	0.070	0.070	0.297	-
	A 3	0.625	0.625	0.579	-

0 8.34 × 10 8 2 × 10 12 3.17 × 10 11 [m -2 ] b 2.54 × 10 -10 2.54 × 10 -10 2.54 × 10 -10 [m] of experimental and numerical yield points.

  One shall sleep well only if a simulation is running. LŠexemple dŠun monocristal possédant un unique système de glissement et soumis à chargement de cisaillement simple est étudié dans un premier temps. Des solutions analytiques sont obtenues pour le glissement simple dans le cas dŠun écrouissage positif, nul et négatif. LŠécrouissage négatif linéaire, cŠest-à-dire lŠadoucissement linéaire, entraîne une largeur de bande de localisation constante, tandis que lŠadoucissement non linéaire avec saturation entraîne une largeur de bande croissante. Un tel comportement adoucissant avec saturation est parfois rencontré dans les aciers irradiés. Une amélioration du modèle est donc proposée aĄn de maintenir une largeur de bande de localisation limitée lorsque lŠon envisage un comportement comportant un adoucissement exponentiel. Des solutions analytiques approchées sont utilisées pour valider les résultats obtenus par éléments Ąnis dans le cas du cisaillement simple. Le modèle étendu de Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Simple shear in the cases of linear hardening and perfect plasticity . 4.2.1 A reduced micromorphic single crystal plasticity model at Ąnite deformations . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Analytical reference solutions for linear hardening and perfect plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple shear in the case of softening behaviour . . . . . . . . . . . . 4.3.1 Linear softening (H < 0) . . . . . . . . . . . . . . . . . . . . . 4.3.2 Non-linear softening and localization slip band widening . . . 4.3.3 An enhanced model for a bounded localization slip band width 4.4 Application to irradiated voided crystals: void/slip band interaction 4.4.1 Finite element meshes, loading and boundary conditions . . .
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Résumé

Un modèle de plasticité cristalline micromorphe basé sur un formalisme en grandes transformations est utilisé pour simuler la localisation de la déformation plastique au sein dŠune bande de glissement. plasticité cristalline micromorphe est ensuite appliqué pour prédire lŠinteraction entre bandes de glissement localisées et cavités pouvant par exemple être rencontrées dans les matériaux irradiés poreux exhibant pour certains un comportement adoucissant. Pour cela, des cellules unitaires poreuses périodiques à cavités cylindriques sont sollicitées en cisaillement simple. Les résultats des simulations montrent un accord qualitativement satisfaisant entre les prédictions numériques et les observations expérimentales vis-à-vis de la forme et de lŠorientation des cavités. Contents 4.1 4.4.2 Choice of geometrical and material parameters . . . . . . . . 4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.4.1 Effect of intrinsic length and hole size on void shape 4.4.4.2 Effect of intrinsic length and hole size on localized slip band width . . . . . . . . . . . . . . . . . . . . 4.4.4.3 Effect of intrinsic length and hole size on the selection of slip and kink band modes . . . . . . . . . . . 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 .

 4 1 Numerical values of material and unit-cell parameters.

	C 11	C 12	C 44	τ 0	A	H χ	n	γ0	L
	200 GPa 136 GPa 105 GPa 10 MPa 1 N 10 5 MPa 15 10 17 s -1 1 mm

  = λ and the solutions of this equation have been detailed in Sections 4.2.2.2, 4.2.2.3 and 4.3.1. For an exponential softening behaviour of the type proposed in Eq. (4.64) one has

														.72) with
	the balance equation (4.8) and yielding condition Eq. (4.74) one obtains the general differential
	equation inside the plastic zone [-λ 2 ; λ 2 ]								
	A(γ cum )	d 2 γ χ dX 2 2	=	1 2	dA dγ cum	dγ χ dX 2	2	-	dA dγ cum	dγ cum dX 2	dγ χ dX 2	+ τ 0 + ρ ♯	dψ h dγ cum	-♣τ ♣ (4.75)
	At this step it is straightforward to show that Eqs. (4.74) and (4.75) reduce respectively to Eqs.
	(4.23) and (4.40) in case of a linear hardening/softening behaviour (ψ h (γ cum ) = 1 2 Hγ 2 cum ). In that case Λ 0

Table 4 .

 4 2 Numerical values of material parameters for the simulation of periodic porous unit-cells. Table 4.3 Discrete values of parameters of interest in the simulation of slip band/void interactions.

	C 11	C 12	C 44	τ 0	τ a
	200 GPa 136 GPa 105 GPa 235 MPa 35 MPa
	γ 0	Λ 0	H χ	n	γ0
	0.1	100 nm 10 6 MPa	15	10 20 s -1

  RésuméUne théorie de plasticité cristalline à gradient impliquant le gradient dŠun seul champ scalaire est présentée. Des formalismes de plasticité cristalline dépendant et indépendant de la vitesse de déformation sont considérés. Le modèle est ensuite reformulé en suivant dŠabord lŠapproche micromorphe, puis en suivant une approche basée sur un multiplicateur de Lagrange. LŠimplémentation numérique dans le cadre dŠune résolution par éléments Ąnis est détaillée pour cette dernière. LŠefficacité numérique de lŠapproche à multiplicateur de Lagrange est mise en évidence dans un exemple impliquant la régularisation dŠune bande de localisation. Il est montré que lŠamélioration des performances numériques atteint jusquŠà deux ordres de grandeur dans lŠaccélération du temps de calcul. Ensuite, les effets de taille prévus par les formulations micromorphe et à multiplicateur de Lagrange sont évalués. Tout dŠabord, des comparaisons numériques sont effectuées sur des cylindres monocristallins en torsion. La saturation des effets de taille induits par lŠapproche micromorphe et lŠabsence de saturation avec lŠapproche à multipli-

This chapter was accepted for publication in the journal Computer Methods in Applied Mechanics and Engineering as: Scherer, J. M., Phalke, V.,

Besson, J., Forest, S., Hure, J., & Tanguy, B. (2020)

. Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modeling and simulation. cateur de Lagrange lorsque la taille de lŠéchantillon est réduite sont démontrées. La formulation à multiplicateur de Lagrange est Ąnalement appliquée pour caractériser les effets de taille prévus pour la croissance ductile de cellules unitaires poreuses sous triaxialité des contraintes imposée. Un excellent accord avec les résultats micromorphes est obtenu.

  S ∼ .P ∼ T with respect to the intermediate conĄguration and Π ∼ M is the Mandel stress tensor deĄned by Π ∼

Table 5 .

 5 1 Summary of equilibrium equations, state laws and evolutions equations.

	equilibrium equations	state laws	evolution equations
	Div S		

Table 5 .

 5 3 Numerical values of material parameters for the simulation of microwires in torsion.

	C 11	C 12	C 44	τ 0	n	γ0	µ	G c
	259.6 GPa	179 GPa	109.6 GPa 320 MPa	20 10 33 s -1 77.2 GPa 10.4
	κ	r s 0	a su	b su (s ̸ = u) b uu	H χ	µ χ	
	42.8	5.38 × 10 -11	0.124	1	0 10 4 MPa 10 3 MPa	

Table 5 .

 5 4 Numerical values of ℓ/2R 0 ratios for the simulation of microwires in torsion.

	ℓ/2R 0 <001> 0.03 0.07 0.10 0.31 0.44 0.54
	ℓ/2R 0 <111> 0.03 0.08 0.11 0.35 0.50 0.61

Table 5 .

 5 5 Numerical values of material parameters for the simulation of porous unit-cells.

	C 11	C 12	C 44	τ 0	n	γ0
	200 GPa 136 GPa 105 GPa	88 MPa	15	10 29 s -1
	µ	G c	κ	r s 0	b ij (i ̸ = j)	b ii
	65.6 GPa	10.4	42.8	5.38 × 10 -11	1	0
	a 1 , a 2	a 3	a 4	a 5	a 6	µ χ
	0.124	0.07	0.625	0.137	0.122	10 2 ; 10 3 ; 10 4 MPa
	macroscopic deformation.				

Table 6 .

 6 1 Summary of equilibrium equations, state laws and evolution equations.

	equilibrium equations	state laws	evolution equations
	Div S		

Table 6 .

 6 2 Summary of material parameters involved in the strain gradient porous crystal plasticity model.

	Category Parameter	Unit	SigniĄcation
		C ijkl	MPa	Elastic moduli
		τ 0	MPa	Initial critical resolved shear stress
	1	γ0 n	s -1 -	Reference slip rate Viscosity exponent
		ψ h / R s , R cum MPa	Hardening potential / Hardening functions
		g s	-	Hardening variables evolution functions
	2	f 0 λ 0 c / χ 0	--	Initial porosity Initial cell aspect ratio / intervoid distance
	3	q 1 , q 2 , α q c 1 , q c 2	--	Void growth GTN-like parameters Void coalescence GTN-like parameters
	4	A µ χ	MPa.mm 2 Strain gradient modulus MPa Penalization modulus

Table 6 .

 6 3 Numerical values of material parameters for the simulation of unit-cell simulations for crystal orientations in O 1 .

	C 11	C 12	C 44	τ 0	n	γ0
	200 GPa 136 GPa 105 GPa	88 MPa	15	10 14 s -1
	µ	G c	κ	r s 0	b su (s ̸ = u)	b uu
	65.6 GPa	10.4	42.8	5.38 × 10 -11	1	0
	a 1	a 2	a 3	a 4	a 5	a 6
	0.124	0.124	0.07	0.625	0.137	0.122
	arbitrary low value.					

Table 6 .

 6 4 Numerical values of material parameters for void growth and coalescence mechanisms and f * -type coalescence.

Table 6 .

 6 5 Numerical values of material parameters used for the mesh convergence analysis.

	C 11	C 12	C 44	τ 0	n	γ0	Q	γ 0	f 0 λ 0 c
	200 GPa 136 GPa 105 GPa 88 MPa 15 10 29 s -1 100 MPa	0.05	1% 1
	q 1								

Table 6 .

 6 

6 Numerical values of material parameters for the simulation of periodic perforated porous single crystal plates.

  dŠintroduire une contribution non-locale du gradient du glissement plastique cumulé. Ainsi, des premières simulations de rupture ductile régularisée ont pu être réalisées dans des structures monocristallines. Les perspectives possibles de ces travaux concernent à la fois les aspects expérimentaux et les aspects théoriques et numériques. La caractérisation mécanique de monocristaux dŠaciers austénitiques pourra être poursuivi, notamment en suivant la voie dŠessais mécaniques in situ dans un microscope électronique à balayage aĄn de décrire les mécanismes de déformation avec une plus grande résolution. De plus, des essais mécaniques sur monocristaux irradiés aux protons est entrevu aĄn dŠidentiĄer les paramètres matériaux relatifs aux défauts dŠirradiation dans un modèle de plasticité cristalline. Par ailleurs, lŠamélioration des fondements physiques et de lŠefficacité numérique de modèles de plasticité cristalline à gradient pourra être poursuivi. Les axes dŠamélioration possibles portent aussi bien sur la formulation théorique de ce type de modèle, que sur la méthode dŠimplémentation de la plasticité cristalline et le traitement des effets non-locaux dŠun point de vue numérique. EnĄn, le modèle de rupture ductile régularisée à lŠéchelle cristalline pourra être mis en oeuvre dans des simulations de structure mono-et polycristallines aĄn dŠen valider sa capacité à décrire lŠinĆuence de lŠanisotropie induite par la plasticité cristalline sur la rupture. In fine ce modèle pourra être envisagé aĄn de prédire la chute de ténacité avec lŠaugmentation de la dose dŠirradiation observée dans les aciers irradiés.

De plus, deux versions du modèle, lŠune basée sur lŠapproche micromorphe, la seconde sur une formulation faisant intervenir un multiplicateur de Lagrange, ont été implémentées dans un code de calcul aux éléments Ąnis. Leur mise en oeuvre dans différentes simulations a montré la meilleure efficacité numérique de cette deuxième approche. EnĄn, un modèle original de rupture ductile par croissance et coalescence de cavités dans une matrice cristalline a été développé. Ce modèle est fondé sur une approche thermodynamique, dont le cadre théorique nous a permis Contents 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

  . The elastic/plastic deformation behaviour of various oriented SC16 single crystals under combined tension/torsion fatigue loading, in: Lütjering, G., Nowack, H. (Eds.), Sixth International Fatigue Congress, Pergamon. pp. 1087Ű1092. Forest, S., Rubin, M., 2016. A rate-independent crystal plasticity model with a smooth elasticŰplastic transition and no slip indeterminacy. European Journal of Mechanics-A/Solids 55, 278Ű288.

  that the consistent tangent matrix is which involves the inverse of the (local) Jacobian matrix J = ∂R/∂v INT .
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	• ∂R ∂∆v IN								
	∂R E ∼ ∂∆∆ χ	= 0	∂R E ∼ ∂∆F ∼	= -	∂(∆F ∼ .F ∼ ∂∆F ∼ -1 .E ∼ )	(H.10)
				= -1 ∼ ⊗ F ∼	-1 .E ∼	T	-(∆F ∼ ⊗E ∼	T ) :	∂F ∼ ∂F ∼ -1	:	∂F ∼ ∂∆F ∼	(H.11)
				= -1 ∼ ⊗ E ∼	T .F ∼	-T	T	-(∆F ∼ ⊗E ∼	T ) : (-F ∼	-1 ⊗F ∼	-T ) : 1 ≈	(H.12)
				= -1 ∼ ⊗ E ∼	T .F ∼	-T + (∆F ∼ ⊗E ∼	T ) : (F ∼	-1 ⊗F ∼	-T )	(H.13)
	For the rate-dependent formulation	
									∂R γ s ∂∆F ∼	= 0	(H.14)
	For the rate-independent formulation
							∂R γ s ∂∆F ∼	= -sign (τ s ) Φ s ∂∆ε eq ∂∆F ∼	(H.15)
		J * =	∂∆v OUT ∂∆v INT ∂∆ε eq ∂∆F ∼	-	∂R ∂∆v INT = ∂∆ε eq ∂∆D ∼ ′ : -1 ∂R ∂∆v IN ∂∆D ∼ ′ ∂∆D ∼ : = 2 3 ∆D ∼ ′ ∆ε eq : ∂(∆F ∼ F ∼ ∂∆F ∼	+ ∂∆D ∼ ∂∆v OUT ∂∆L ∼ : ∂∆L ∼ ∂∆F ∼ ∂∆v IN -1 )	(H.1) (H.16) (H.17)
	• ∂∆v OUT ∂∆v INT	∂∆S ∼ ∂∆E ∼ ∂(∆F ∼ .F ∼ = ∂S ∼ ∂E ∼ -1 ) = ∂∆F ∼ ∂S ∼ ∂σ ∼ = J1 ∼ ⊗F ∼ ∂S ∼ ∂σ ∼ : ∂σ ∼ ∂E ∼ = 1 ∼ ⊗F ∼ -T + ∆F ∼ -1 ∂σ ∼ ∂E ∼ = -1 J e (E ∼ .Π ∼ e .E ∼ T ) ⊗ E ∼ ∂F ∼ ∂F ∼ -1 -T + : ∂∆F ∼ ∂F ∼ 1 J e 1 ∼ ⊗(Π ∼ e .E ∼ = 1 ∼ ⊗F ∂R γ s ∂∆∆ χ = -sign (τ s ) ∆Γ ∂Φ s ∂f s ∂f s ∂∆∆ χ = -sign (τ s ) ∆ΓΦ s ′ ρ ♯ T ) T ρ 0	(H.18) (H.2) (H.3) (H.20)
	• ∂∆v OUT ∂∆v IN	∂R r s ∂∆F ∼ ∂∆S ∼ ∂∆F ∼	∂Π ∼ e ∂E ∼ = 0 ∂Π ∼ e ∂E ∼ e GL ∂E ∼ e GL ∂E ∼ = ∂S ∼ ∂F ∼	+ ∂Π ∼ 1 J e (E ∼ ⊗E ∼ ) : e ∂E ∼ e : ∂E ∼ e GL ∂Π ∼ e ∂E ∼ ∂R r s = ∂∆∆ χ = 0 ∂R γcum ∂∆F ∼ ∂E ∼ GL = C ≈ = 1 2 (1 ∼ ⊗E ∼ T + E ∼ T ⊗1 ∼ ) = (σ ∼ .F ∼ -T ) ⊗ ∂J ∂F ∼ + J	+ = 0 1 J e ∂σ ∼ .F ∼ [(E ∼ .Π ∼ e )⊗1 ∼ ] : (1 ∼ ⊗1 ∼ ) ∂R γcum = 0 ∂∆∆ χ -T ∂F ∼ -T : -T ∂F ∼ ∂F ∼	(H.4) (H.5) (H.21) (H.6) (H.7) (H.22)
			∂∆S ∼ ∂∆γ s = 0	∂∆S ∼ ∂∆r s = 0	∂∆S ∼ ∂∆γ cum	= 0	(H.8)
		∂∆γ M ∂∆E ∼	= 0 ∂∆S ∼ ∂∆∆ χ	∂∆γ M ∂∆γ s = 0 = 0 ∂∆γ M ∂∆F ∼	∂∆γ M ∂∆r s = 0 = 0 ∂∆γ M ∂∆∆ χ	∂∆γ M ∂∆γ cum = 0	= 1	(H.9) (H.24)

∼ -T + (∆F ∼ ⊗1 ∼ ) : (-F ∼ -1 ⊗F ∼ -T ) : 1 ≈ (H.19) = J(σ ∼ .F ∼ -T ) ⊗ F ∼ -T + J(σ ∼ ⊗1 ∼ ) : (-F ∼ -T ⊗F ∼ -1 ) (H.23)

Maximum, unless range or minimum is indicated.

L stands for "low-carbon" for which carbon analysis should be reported to nearest 0.001% as compared to 0.01% for other steels

Crystal orientation inĆuences the evolution of the shape of voids. For low symmetry crystal orientations and small stress triaxialities voids tend to rotate along with the lattice(Potirniche et al., 2006a).[START_REF] Ha | Void growth and coalescence in fcc single crystals[END_REF], reported for example, that while the cross

For z ∈ C, and the function f : z → ze z , the Lambert W function is deĄned as the inverse function of f , i.e. such that for z ∈ C, z = f -1 (ze z ) = W (ze z )

Results not shown here indicate that a bounded localization band width is obtained also when considering a bi-linear (softening followed by a plateau) behaviour.

Relaxation is meant here in a sense different from[START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF], where this terminology was used to describe a "linear micromorphic model with symmetric Cauchy force stresses" which is put in contrast to "the classical Mindlin-Eringen model for micromorphic media with intrinsically non-symmetric force stresses".

A comprehensive Ąnite strain gradient-enhanced model of ductile failure in single crystals is constructed.

The notations h ′ , g ′ and k ′ are used as abbreviations for the derivatives of h, g and k with respect to their Ąrst argument.
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