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Abstract

The Phase-Field Method (PFM), which has been designed for interfacial problems, provides an attractive framework for the modelling of fracture. The present work aims at developing some constitutive models within the framework of the PFM to model fracture in homogeneous and polycrystalline materials. For this purpose, two different situations have been examined. For the first situation, which is typical of brittle fracture, the development of damage is driven by the accumulation of elastic strain energy. The second situation is the one where damage is controlled by the development of plastic strains, which is quite common for ductile or fatigue fracture. The phase-field model for brittle fracture uses a scalar damage variable to represent the progressive degradation of mechanical resistance.

The spatial gradient of the damage variable, which is treated as an additional external state variable, serves regularization purposes and allows considering the surface energy associated with cracks. The deviatoric/spherical decomposition of elastic strain energy is used to consider closure effects. Some material parameters have been introduced to control the impact of deviatoric and spherical contributions on the development of damage. Also, the proposed strategy is adapted to any class of material symmetry. Numerical implementation is undertaken via the finite element method, where nodal degrees of freedom are the displacement and the damage variable. For illustration purpose, the numerical simulations are carried out under both static and dynamic loading conditions. An extension of the above model to plasticity-driven fracture in polycrystalline materials is also proposed. The framework of crystal plasticity has been used for the construction of constitutive relations. To consider the role of plastic strains on the development of damage, the proposed strategy uses the coupling between damage and hardening. The consequence is that the driving force for damage contains some contributions from isotropic and kinematic hardening variables. According to the numerical results, the important features of ductile and fatigue fracture are correctly reproduced.

Résumé

La méthode des champs de phases, qui a été conçue pour les problèmes d'interface, fournit un formalisme général intéressant pour la modélisation de la rupture. Ce formalisme est donc utilisé dans ce travail afin de construire des lois de comportement qui permettent de modéliser la rupture des matériaux homogènes et hétérogènes (i.e. polycristallins). Plus spécifiquement, deux modèles de comportement, qui utilisent les ingrédients de la mécanique de l'endommagement, sont proposés.

Dans le premier cas, typique de la rupture fragile, l'endommagement est gouverné par le stockage d'énergie élastique. Le second modèle se concentre sur le cas où l'endommagement est piloté par le processus de déformation plastique, ce qui est représentatif de l'endommagement ductile ou de fatigue.

Le modèle pour la rupture fragile utilise une variable d'endommagement scalaire pour décrire la perte de rigidité progressive. Le gradient de cette variable est traité comme une variable d'état supplémentaire afin de considérer l'augmentation d'énergie de surface due à la fissuration. La prise en compte des effets de fermeture repose sur une décomposition déviatorique/sphérique de l'énergie élastique. L'approche proposée est flexible en cela que des paramètres permettent de contrôler les contributions sphérique et déviatorique à la croissance de l'endommagement. Aussi, la description de la perte de rigidité ne nécessite pas d'hypothèse particulière quant à la classe de symétrie du matériau considéré.

L'implémentation numérique du modèle, via la méthode des éléments finis, permet de réaliser des simulations représentatives sous chargement aussi bien statique que dynamique. Le cadre général de la plasticité cristalline est ensuite utilisé pour construire un modèle champs de phases pour les matériaux élasto-viscoplastiques polycristallins. L'approche est semblable à celle utilisée précédemment, à ceci près que le couplage endommagement-écrouissage est introduit. Ce choix de modélisation permet de considérer l'impact des déformations plastiques sur le développement de l'endommagement. Les résultats numériques obtenus avec le modèle proposé permettent de reproduire les aspects essentiels de la rupture ductile et par fatigue des matériaux métalliques. 
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Context and objectives

Microstructure optimization requires a deep understanding of the influence of microstructural heterogeneities on damage development. Indeed, for most materials, the early stages of damage development are often impacted by microstructural features. For instance, the role of grain size [START_REF] Höppel | Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime[END_REF][START_REF] Järvenpää | Effect of grain size on fatigue behavior of Type 301LN stainless steel[END_REF][START_REF] Deng | Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[END_REF] and crystallographic orientation [START_REF] Mateo | Anisotropy effects on the fatigue behaviour of rolled duplex stainless steels[END_REF][START_REF] Li | Effect of crystallographic orientation and grain boundary character on fatigue cracking behaviors of coaxial copper bicrystals[END_REF] on the nucleation of fatigue cracks in metallic materials is largely documented.

The role of fiber orientation on the development of ductile damage in composite materials is also well known [START_REF] Cirino | The effect of fiber orientation on the abrasive wear behavior of polymer composite materials[END_REF]. The emergence of experimental techniques such as DIC [START_REF] Chu | Applications of digital-image-correlation techniques to experimental mechanics[END_REF], tomography [START_REF] Joachim | Electron Tomography[END_REF], or 3D XRD [START_REF] Poulsen | Three-Dimensional X-Ray Diffraction Microscopy[END_REF] offers some possibilities to gain insight into the role of microstructure on damage development. However, these experimental techniques often require sophisticated experimental set-ups, hence cannot be used in a systematic fashion. Also, they provide only partial information regarding the actual state of the probed volume element. Some numerical models have therefore been developed to get further information regarding the role of microstructural heterogeneities. Specifically, the description of damage through computational models is an important challenge in material science. However, the incorporation of damage in constitutive models is a complex task, mostly because of the computational issues associated with the nucleation CHAPTER 1. INTRODUCTION and propagation of surface discontinuities (i.e. cracks). Those difficulties can be circumvented with the Phase-Field Method (PFM), which provides a general framework for treating moving boundary problems.

Though the PFM has originally been applied to phase transition problems [START_REF] Bibliography Karma | Phase-Field Formulation for Quantitative Modeling of Alloy Solidification[END_REF], the application of the PFM to damage problems has recently received a lot of attention. Specifically, in the recent years, the PFM has emerged as an attractive approach for the description of brittle fracture [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]Miehe et al., 2010a;Miehe et al., 2010b;[START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF] as well as ductile fracture (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF]. Generally speaking, the PFM is appropriate for dealing with moving boundary problems (e.g. phase transitions). The PFM relies on the introduction of a field variable, which plays the role of an order parameter, to obtain a smooth description of the interfaces in multiphase systems. In the context of fracture, the PFM uses the ingredients of continuum damage mechanics [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF] to treat the order parameter as a damage variable representing the degradation of mechanical properties. The PFM considers the damage variable and its spatial gradient as state variables to obtain a smooth approximation of cracked surfaces. Phase field models of fracture can thus be interpreted as damage gradient models [START_REF] Sicsic | From Gradient Damage Laws to Griffith's Theory of Crack Propagation[END_REF]Nguyen, 2015) for which the free energy includes a damage gradient term associated with a regularizing internal length scale. For instance, the PFM has been used by Nguyen et al. (2015) to model the behavior of cementitious materials. The works of [START_REF] Larsen | Models for Dynamic Fracture Based on Griffith's Criterion[END_REF], [START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF], [START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF] and [START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF] have shown that the PFM can be extended to dynamic fracture and produce results that agree properly with experimental observations. The above models based on the PFM are smooth continuum formulations, which do not require an explicit tracking of discontinuity surfaces. As a result, the main advantage of this method is its ability to produce complex crack patterns, including branching and merging, in both two and three dimensions.

Most of the aforementioned models have been developed for isotropic materials. In relation with anisotropy, the works of [START_REF] Hakim | Crack Path Prediction in Anisotropic Brittle Materials[END_REF] and [START_REF] Teichtmeister | Phase field modeling of fracture in anisotropic brittle solids[END_REF] have focused on the anisotropy of surface energy, but they do not include the anisotropic character of other material properties (e.g. stiffness properties). Surface energy anisotropy is included through a fourth-order tensor penalizing fracture interfaces in different directions and by including higher order gradient term in the crack energy density function.

This work aims at developing a constitutive model within the general framework of the PFM to CHAPTER 1. INTRODUCTION deal with damage nucleation and growth in homogeneous and polycrystalline materials. More specifically, in order to consider the impact of microstructural heterogeneities, some efforts are made to consider the anisotropic aspect of stiffness and plastic deformation properties, which can be significant for crystalline materials. Also, very few studies have investigated the coupling between plasticity and damage (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF][START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF]. Thus, using the general crystal plasticity framework, different strategies for coupling hardening and damage are explored. In this work, the proposed formulation is quite general and allows dealing with different damage mechanisms. To show the capabilities and limits of this formulation, some numerical simulations are carried out. They allow investigating the impact of loading conditions and microstructural heterogeneities on damage development as well as the impact of the damage-elasticity and damagehardening couplings. Some important aspects of crack nucleation and propagation including kinking and branching and tension/compression asymmetry are discussed.

Outline of the thesis

Our contribution is mainly divided into three principal chapters with both theoretical and numerical aspects:

• The first contribution, which will be presented in chapter 2, provides a brief literature review.

The basic features of damage mechanics are first discussed, with a particular care to the description of closure effects. Then, the common strategies for introducing a non-local aspect into damage models are exposed. Finally, in order to motivate the present work, some damage models, which have been developed in the context of the PFM, are discussed with respect to their aptitude to describe both brittle and ductile fracture.

• The second contribution, which will be presented in chapter 3, consists in developing a phase-field model to describe crack nucleation and propagation in elastic materials. The spatial gradient of the damage variable, which is treated as an additional external state variable, serves regularization purposes and allows considering the increase of surface energy associated with the formation of cracks. Constitutive relations are developed within the framework of generalized standard materials [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF]. The coupling of damage with elasticity is considered. The proposed formulation satisfies the continuity of the stress-strain relation and CHAPTER 1. INTRODUCTION is adapted to any class of material symmetry. The proposed phase field model can therefore be used for materials with anisotropic elastic properties, which is of interest for the simulation of brittle fracture in polycrystalline materials. Numerical implementation is undertaken via the finite element method, where nodal degrees of freedom are the displacement and the damage variable.

• In the third contribution, which will be detailed in chapter 4, a gradient damage model is developed to model crack nucleation and propagation in elasto-viscoplastic polycrystalline materials.

The model uses a scalar damage variable to represent the progressive degradation of mechanical resistance. Though the ingredients of the proposed constitutive model are essentially the same as before, some additional aspects are included. First, the model treats crystallographic slip as an additional deformation mechanism using the general framework of crystal plasticity. Second, to account for the impact of plastic strains on damage growth, the coupling of the damage variable with isotropic and kinematic hardening variables is considered. Once again, numerical implementation is undertaken via the finite element method, where nodal degrees of freedom are the displacement and the damage variable. Some applications of the proposed model, for both ductile and fatigue damage, are presented in the final part of this chapter. 

Introduction

The main purpose of fracture mechanics is provide the tools for modelling crack propagation in solid materials. This aspect is often necessary when one wants to determine whether the conditions for failure are met or not within a structure. The theoretical foundation of fracture is based on the work of [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF], which relies on energetic arguments for considering crack propagation. [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF] postulated that the propagation of an existing crack begins when the energy release rate at the crack tip becomes equal or greater than the energy required for the creation of new surfaces. Although the energy approach provides some information on the fracture process, it is inappropriate for dealing with phenomena such as nucleation or branching. An alternative method, known as the stress intensity factor method [START_REF] Irwin | Fracture[END_REF], has proven to be more useful. This method, which directly examines the stress field around the crack tip, has largely been employed in many practical situations [START_REF] Michel | Stress Intensity Factors Handbook[END_REF][START_REF] Hills | Mechanics of fretting fatigue[END_REF][START_REF] Luke | Experimental and numerical study on crack initiation under fretting fatigue loading[END_REF][START_REF] Kazemi | Stress intensity factor determination of radially cracked circular rings subjected to tension using photoelastic technique[END_REF]. In a similar fashion, [START_REF] Barenblatt | The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[END_REF] and [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] have proposed the Cohesive Zone Model (CZM), which consists in introducing a cohesive law for a specific surface. The cohesive law of this surface is defined by the traction-separation relation.

The relationship between traction and surface separation is that with increasing spacing, traction on this cohesive surface reaches a maximum value, then decreases and eventually vanishes, allowing total separation. The cohesive zone method is a method relatively easy to implement. It however requires a priori knowledge of the crack propagation path. Different implementation of cohesive models into finite element solvers have been proposed. In the implementation of Xu and Needleman (1994), all elements are separated from the beginning and an appropriate cohesive model is used to join the boundaries of the elements. At the opposite, in the approach of [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF], new surfaces are created along the boundaries of the previous elements. From a fundamental point of view, these approaches (CZM, Griffith and Irwin models) are not naturally autonomous. Additional criteria must be introduced to determine where and when a crack nucleates, how fast it propagates and in which direction, and when it branches. Even if many engineering problems can be solved with the aforementioned methods, some complex numerical challenges are involved, such as tracking crack surfaces in 3D cases.

For the description of discontinuity surfaces, the eXtended Finite Element Method (XFEM) is largely used. Indeed, proposed by [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], this approach has successfully been applied to CHAPTER 2. LITERATURE REVIEW many problems involving moving discontinuity surfaces [START_REF] Dolbow | Modeling fracture in Mindlin-Reissner plates with the eXtended finite element method[END_REF][START_REF] Sukumar | Extended finite element method for three-dimensional crack modelling[END_REF][START_REF] Moës | Imposing Dirichlet boundary conditions in the extended finite element method[END_REF]. The fundamental idea of the XFEM consists in enriching the FEM approximation with some additional functions that model internal discontinuity surfaces, which can evolve with time.

While the XFEM has been largely used for crack propagation problems [START_REF] Daux | Arbitrary branched and intersecting cracks with the extended finite element method[END_REF][START_REF] Areias | Non-linear analysis of shells with arbitrary evolving cracks using XFEM[END_REF][START_REF] Aubertin | A coupled molecular dynamics and extended finite element method for dynamic crack propagation[END_REF], the use of XFEM for the determination of the correct crack surfaces and crack paths in 3D is still under debate [START_REF] Rabczuk | On three-dimensional modeling of crack growth using partition of unity methods[END_REF].

The theory of continuum damage mechanics (CDM), which was pioneered by [START_REF] Kachanov | Time of the Rupture Process under Creep Conditions[END_REF], provides an alternative framework for considering the degradation of mechanical resistance of a structure. In contrast with fracture mechanics, which explicitly consider the cracks, CDM mainly deals with the impact of micro-defects on the mechanical behavior of a material point by introducing a damage variable. In the context of thermodynamics, the damage variable is a state variable that represents the impact of microcracks and/or microvoids on the (thermo-)mechanical behavior of a material point.

In the case of isotropic damage, a single scalar variable d, which measures the surface density of microcracks, is introduced. A significant number of extensions have been proposed to consider the damage induced anisotropy. For this purpose, common strategies consist in introducing a tensorial, rather than scalar, damage variable [START_REF] Leckie | Tensorial Nature of Damage Measuring Internal Variables[END_REF][START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF] or multiple damage variables [START_REF] Ladevèze | Damage effective stress in quasi-unilateral conditions[END_REF][START_REF] Mazars | Continuum Damage Theory: Application to Concrete[END_REF][START_REF] Cauvin | Damage mechanics : basic variables in continuum theories[END_REF].

For the past decades, CDM has been used to describe a large variety of problems, including ductile damage (Lemaitre, 1985c;Lemaitre, 1985a;[START_REF] Ladevèze | Damage effective stress in quasi-unilateral conditions[END_REF], brittle damage [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Borst | Fracture in quasi-brittle materials: a review of continuum damage-based approaches[END_REF][START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF], fatigue damage [START_REF] Chaboche | A non-linear continuous fatigue damage model[END_REF][START_REF] Peerlings | Computational modelling of gradientenhanced damage for fracture and fatigue problems[END_REF] and creep damage [START_REF] Kachanov | Time of the Rupture Process under Creep Conditions[END_REF][START_REF] Chaboche | Description thermodynamique et phenomenologique de la viscoelasticite cyclique avec endommagement[END_REF]. However, the use of CDM in the context of the finite element method to model stress softening possibly suffers from excessive mesh dependence [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Jirásek | Nonlocal damage mechanics[END_REF]. Various remedies to mesh dependence have therefore been proposed [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Branco | A review on 3D-FE adaptive remeshing techniques for crack growth modelling[END_REF]. Also, another drawback of CDM is that it is a continuous approach that does not allow for a proper representation of discontinuity surfaces. This led to the development of continuous-discontinuous approaches, where a continuous description of cracking is used until the final stage of failure, which is modelled by a discontinuous approach.

For a material point, the development of damage leads to a softening behavior. Such a behavior can lead to a loss of ellipticity of the differential equations governing the behavior of a continuum.

The resulting mathematical problem therefore becomes ill-posed in the sense that it does not have a CHAPTER 2. LITERATURE REVIEW unique solution with continuous dependence on the given data. This may lead to undesirable mesh dependency. Consequently, various regularization approaches have been developed such as the nonlocal continuum theory [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF][START_REF] Bažant | Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress[END_REF], the gradient enhanced damage model [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Vandoren | Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models[END_REF], the gradient damage model [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF][START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF] and the Phase Field Method (PFM) for fracture [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF][START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF]. These approaches can be perceived as different extensions of the CDM framework, which in its original form is purely local.

In the following, a brief overview of damage models is presented. The definition of the damage variable and the basic concept of effective stress is first discussed. Then, the strategies for introducing a non-local aspect in constitutive relations are exposed. A particular attention is given to the PFM, which will be used later. In the final section, some applications of the PFM to both brittle and ductile fracture problems are presented.

Damage variable and effective stress concept

The phenomenological representation of continuum damage mechanics (CDM) has been pioneered

by [START_REF] Kachanov | Time of the Rupture Process under Creep Conditions[END_REF] and Y. Rabotnov (1968). This approach has been properly structured in the context of continuum thermodynamics with internal variables by [START_REF] Chaboche | Sur l'utilisation des variables d'etat interne pour la description du comportement viscoplastique et de la rupture par endommagement[END_REF]. This theory has since been widely developed and used by many authors to model different damage-related phenomena.

In such a formulation, damage is described by scalar or tensorial variables. Considering a damaged material point, in which a representative volume element (RVE) is isolated, the damage variable d n is defined, for each direction n , as the ratio between the damaged surface S d and the total surface S, that is:

d n = S d S (2.1)
The damage variable d n represents the surface density of defects in the plane of normal n :

• d n = 0 corresponds to the initially undamaged material,

• d n = 1 corresponds to the totally broken material.

The above definition of damage is quite general and no specific assumption has been made regarding the orientation of defects. If defects (cracks, voids) are randomly oriented in all directions n, damage CHAPTER 2. LITERATURE REVIEW variable. If the damage variable takes the form of a fourth-rank tensor D, then the effective stress tensor is given by:

σ ˜= (I -D) -1 : σ (2.3)
where I is the fourt-rank identity tensor. This type of approach has been followed by [START_REF] Ju | On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects[END_REF]. Some similar theories have been developed by directly using the elastic stiffness tensor as a state variable associated with damage [START_REF] Ortiz | A constitutive theory for the inelastic behavior of concrete[END_REF][START_REF] Simo | Strain-and stress-based continuum damage models-I. Formulation[END_REF]. Anisotropic damage can also be considered with a second rank tensor d for the representation of the damage state [START_REF] Murakami | Constitutive equations of creep and creep damage in polycrystalline metals[END_REF][START_REF] Chow | An anisotropic theory of elasticity for continuum damage mechanics[END_REF][START_REF] Ramtani | Contribution à la modélisation du comportement multiaxial du béton endommage avec description du caractère unilatéral[END_REF][START_REF] Voyiadjis | Advances in Damage Mechanics: Metals and Metal Matrix Composites[END_REF].

Closure effects

An important difficulty when modelling damage is the existence of closure effects. Indeed, while opened cracks/voids contribute to the decrease of stiffness properties, some stress states allow closing these defects, hence reducing their impact on stiffness properties. To take into account the unilateral behavior of microvoids and microcracks, the common approach consists in incorporating a damage deactivation criterion [START_REF] Ladevèze | On an anisotropic damage theory[END_REF]. The role of the damage deactivation criterion is easily understood in a uniaxial context. Indeed, if the load is reversed from tension to compression, cracks will completely close so that a material point behaves as uncracked or, in other terms, the initial stiffness properties are fully recovered. In a three-dimensional context, the mathematical description of the damage deactivation is more complex.

To include damage deactivation, the first type of strategy uses the spectral decomposition of symmetric second order tensors. Indeed, any symmetric second order tensor (say a) can be decomposed as follows:

a = 3 ∑︂ I=1 a I n I ⊗ n I (2.4)
where a 1 , a 2 and a 3 (respectively n 1 , n 2 and n 3 ) are the principal values (respectively principal directions) of a. The spectral decomposition allows defining the positive and negative parts of the CHAPTER 2. LITERATURE REVIEW symmetric second order tensor a as follows:

a + = 3 ∑︂ I=1 ⟨a I ⟩ + n I ⊗ n I (2.5) a -= 3 ∑︂ I=1 ⟨a I ⟩ -n I ⊗ n I (2.6)
This method therefore allows decomposing the stress and strain tensors (σ and ε) into positive and negative contributions. With such a decomposition, one can treat the impact of damage differently depending on the sign of the stress or strain tensor. This type of approach has been used by [START_REF] Miehe | Algorithms for computation of stresses and elasticity moduli in terms of Seth-Hill's family of generalized strain tensors[END_REF], Miehe et al. (2010a), Miehe et al. (2010b), and[START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF] in the context of isotropic elasticity. An extension of this approach to anisotropic elasticity has been proposed by [START_REF] Ju | On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects[END_REF]. According to [START_REF] Ju | On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects[END_REF], the elastic stiffness tensor C of a material point can be calculated from:

C = C ˜-P + : (C ˜-C + ) : P + (2.7)
where C ˜is the initial stiffness tensor, C + is the stiffness tensor for open defects and P + is the positive projection tensor for the strain state, that is:

P + = ∑︂ I H[ε I ]n I ⊗ n I ⊗ n I ⊗ n I (2.8)
where H is the Heaviside function. Thus, ε + can be expressed as:

ε + = P + : ε (2.9)
Though this approach can be applied to any type of material, whatever the material symmetry class is, it leads to a discontinuous stress-strain response.

The second type of strategy can be applied when the orientation of defects is known a priori. It consists in considering the normal stress acting on the plane containing defects as the key variable for closure effects. For instance, Andrieux and Marigo (1986) introduced the unilateral character of damage through the decomposition of the elastic compliance tensor S from:

S = S ˜+ ∑︂ I (︂ q I n I ⊗ n I ⊗ n I ⊗ n I ⎡ + (︂ n I ⊗ t I ⊗ n I ⊗ t I ⎡ (2.10)
where n I and t I are respectively the unit normal and unit tangent vector to the crack and S ˜is the initial compliance tensor. Closure effects are considered when the stress normal to the crack is negative. For this purpose, the following variable q I is introduced:

q I = {︄ 1 if σ I = n I • σ • n I > 0 0 if σ I ≤ 0 (2.11)
Andrieux and Marigo (1986) assumes that the shear resistance of the material remains affected by the crack, even when it is closed. This formulation preserves the continuity of the stress-strain relation, since, when q I changes value from 1 to 0, the normal stress vanishes and the strain response is not affected by the discontinuity of the compliance tensor. As a consequence, the only direction affected by the unilateral condition is n I ⊗ n I ⊗ n I ⊗ n I , which means that the closure effect is limited to the normal component to the crack.

The third type of strategy uses the decomposition of the strain or stress tensor into spherical and deviatoric contributions. Indeed, any symmetric second order tensor (say a) can be decomposed as follows:

a = a s + a d (2.12) = P s : a + P d : a (2.13)
This decomposition uses the spherical projection tensor P s and the deviatoric projection tensor P d .

These tensors are defined as follows:

P s = 1 3 (I ⊗ I) (2.14) P d = (I - 1 3 I ⊗ I) (2.15)
where I is the symmetric fourth-order-identity tensor defined by I ijkl = 1 2 (δ ik δ jl + δ il δ jk ) and I is the second-order-identity tensor defined by I ij = δ ij . This method allows decomposing the stress (or the strain) tensor into spherical and deviatoric contributions. Closure effects are then handled by considering the impact of damage on stiffness properties differently depending on the sign of the spherical strain tensor. This type of approach has been used by [START_REF] Freddi | Variational fracture mechanics to model compressive splitting of masonry-like materials[END_REF], [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF]Bleyer et al. (2017b) in the context of isotropic elasticity.
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Non-local damage models

As discussed earlier, strain localization and mesh dependency are sometimes observed when damage is introduced in constitutive relations. Different strategies have therefore been proposed to circumvent these difficulties [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF][START_REF] Bažant | Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress[END_REF][START_REF] Maugin | Internal Variables and Dissipative Structures[END_REF][START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF]. The common point of these strategies lies in the improvement of the description of damage distribution around a material point by offering supplementary information on its surroundings.

The first strategy uses the so-called non-local damage theory of Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF]. This theory consists in applying a non-local treatment to the constitutive equations that control softening. As a consequence, most constitutive equations display their conventional local form, the only exception being the evolution equation for the damage variable. Specifically, according to the classical approach of damage mechanics [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], the growth of damage is controlled by the energy restitution rate y, which is the driving force for damage, that is:

d ˙= f (y, κ[d]) (2.16)
where the hardening function κ, which depends on the damage variable d, measures the resistance to damage growth. The idea of Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF] consists in replacing the local driving force for damage y, which appears in the above equation, by its spatial average y ¯, i.e. :

d ˙= f (y ¯, κ[d]) (2.17)
The driving force y ¯represents the mean of y calculated over a finite volume centered around the position of the material point of interest. According to Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF], this strategy allows circumventing the difficulties associated with mesh sensitivity and convergence.

The idea of gradient-enhanced damage models [START_REF] Borst | On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials[END_REF] is somewhat similar to that used for the non-local damage theory of Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF]. Indeed, gradient-enhanced damage models use a non-local definition of the hardening variable κ ¯while the driving force y remains local. The evolution equation for the damage variable thus takes the following form:

d ˙= f (y, κ ¯[d]) (2.18)
In a general manner, the spatially averaged variable κ ¯can be defined from a weighting function (see [START_REF] Borst | Mesh-independent discrete numerical representations of cohesive-zone models[END_REF]). However, for most applications, a gradient approximation of κ ¯is adopted, that CHAPTER 2. LITERATURE REVIEW is:

κ ¯= κ -l 2 c ∆κ (2.19)
where l c is an internal length scale. A specific case of this theory, which is quite instructive, is when the hardening function exhibits an affine dependence with respect to the damage variable, that is:

κ = κ 0 + µd (2.20)
where κ 0 is the initial resistance to damage while µ is the hardening modulus. When this type of hardening function is chosen, one obtains that:

κ ¯= κ 0 + µd -l 2 c µ∆d (2.21) = κ 0 + µd ¯(2.22)
The above equation shows that, with some specific assumptions regarding the hardening function, gradient-enhanced damage models are based on the introduction of a spatially averaged damage variable d ¯= d + l 2 c ∆d, whose definition includes the internal length scale parameter l c .

The third type of strategy follows a more direct path toward non-locality by considering the damage variable d, as well as its spatial gradient ∇d, as state variables. The most common approach consists in treating these state variables as external, i.e. with the same status as for the strain tensor. The direct consequence is that the rates of these variables should appear in the definition of the density of power developed by internal forces [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF]. In comparison with the classical approach, the introduction of these variables leads to an additional contribution to the flow of energy, which depends on the evolution of the damage field. Also, because of the external character of d and ∇d, this strategy requires (i) solving additional equilibrium equations and (ii) prescribing additional boundary conditions. As we shall see later (see section 2.5.3), the phase-field method for fracture [START_REF] Karma | Phase-Field Model of Mode III Dynamic Fracture[END_REF][START_REF] Karma | Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture[END_REF]Miehe et al., 2010a) can be perceived as a particular case of this method. According to [START_REF] Frémond | Non-Smooth Thermomechanics[END_REF], this type of approach provides a reasonable description of the behaviour of concrete structures while spurious mesh sensitivity is also avoided. An alternative variant of this approach consists in treating the damage variable d and its spatial gradient ∇d as internal state variables. For this type of approach, which has been given only little attention, the non-local aspect is accomodated with an additional contribution to the flow of entropy, instead of energy [START_REF] Maugin | Internal Variables and Dissipative Structures[END_REF]. This type of approach has been recently used for the description of fatigue damage in metallic CHAPTER 2. LITERATURE REVIEW polycrystals by [START_REF] Mareau | A non-local damage model for the fatigue behavior of metallic polycrystals[END_REF]. The thermomechanical frameworks for treating a state variable like damage as either an internal or external state variable have been compared to each other by [START_REF] Papenfuss | Thermodynamical Frameworks for Higher Grade Material Theories with Internal Variables or Additional Degrees of Freedom[END_REF].

Phase field method 2.5.1 General principle

The phase field method is a quite general approach for modelling microstructure evolution. Specifically, the phase field method is well suited for dealing with interfacial problems. For instance, this method has been used to describe solidification [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF][START_REF] Suzuki | Phase-field model of dendritic growth[END_REF], solid state transformations [START_REF] Dreyer | A study of the coarsening in tin/lead solders[END_REF][START_REF] Landheer | The role of crystal misorientations during solid-state nucleation of ferrite in austenite[END_REF][START_REF] Warren | Extending phase field models of solidification to polycrystalline materials[END_REF] as well as crack growth [START_REF] Karma | Phase-Field Model of Mode III Dynamic Fracture[END_REF][START_REF] Karma | Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture[END_REF]Miehe et al., 2010a).

In a conventional approach, different phases are described by multiple sets of bulk continuum equations and additional boundary conditions have to be introduced to determine how the interfaces will evolve. Phase field modeling offers an alternative to compute the interface evolution. It replaces the discontinuous (sharp) interface between phases with a description in which material properties change continuously (diffusely) from one phase to the other. More specifically, the interfaces between domains are identified by a smooth variation of an order parameter in a narrow region of space (see figure 2.2). By definition, the diffuse approximation of an interface requires the introduction of an internal length scale. The local properties (e.g. stiffness, resistance), which depend on the order parameter, may then vary smoothly across the interface. The major advantage of a phase-field model is that an explicit tracking of the interface is unnecessary. Also, the boundary conditions at the interface are replaced by models in the bulk phase-field equations. The cost related to these benefits is the need to solve an additional equilibrium equation, which is related to the variation of the order parameter on the length-scale between phases.

where g c is the cracked surface energy density. For the evaluation of the total cracked surface area S c in a body B, the phase field method relies on the introduction of a crack density functional γ which depends on both the phase field d and its gradient ∇d1 :

S c = ∫︂ V γ [d, ∇d] dV (2.26)
As a result, the total free energy density ψ can be decomposed into a volumic contribution ψ v , which is purely local2 , and a surface contribution ψ s , which is non-local:

ψ = ψ v [ε, d, ...] + ψ s [d, ∇d] (2.27) = ψ v [ε, d, ...] + g c γ[d, ∇d] (2.28)
The latter equation is one of the key ingredient for the construction of a non-local damage model within the framework of the PFM.

Different propositions have been made for the construction of the crack density functional γ. The most widely used proposition (Bourdin et al., 2008;Miehe et al., 2010b;[START_REF] Hofacker | Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation[END_REF][START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF] for the crack functional is given by:

γ[d, ∇d] = 1 2l c (︂ d 2 + l 2 c ∇d • ∇d ⎡ (2.29)
While the first term in Equation 2.29 is purely local, the last term includes a non-local contribution, which plays a regularizing role by limiting the localization of damage. This term involves an internal length scale l c that will control the width of the damage localization zone, the discrete description being retrieved when l c approaches zero.

In order to provide additional regularity, a higher order theory for the crack density functional has been proposed by [START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF]. This functional has the form:

γ[d, ∇d, ∆d] = 1 4l c (︂ d 2 + 2l 2 c ∇d • ∇d + l 4 c (∆d) 2 ⎡ (2.30)
When integration by parts is applied, this functional leads to a strong-form problem with fourth-order derivatives of d (i.e. ∆(∆d)). This problem increases regularity in the exact solution of phase-field equation. However, the exploitation of this theory is numerically expensive.
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The external forces contributing to P e are represented by a body force density b and a contact force density t. The power of external forces is thus given by:

P e = ∫︂ V b • u ˙⋆dV + ∫︂ S t • u ˙⋆dS (2.33)
Following the terminology of [START_REF] Polizzotto | A thermodynamics-based formulation of gradientdependent plasticity[END_REF], the above expression for the power developed by external forces corresponds to an insulation condition in the sense that no external force is associated with the damage phase field.

In contrast with the classical formulation of continuum mechanics, the power of internal forces P i includes the additional contributions of d ˙⋆ and ∇d ˙⋆ so that:

P i = ∫︂ V σ : ∇u ˙⋆dV + ∫︂ V ξd ˙⋆dV + ∫︂ V η • ∇d ˙⋆dV (2.34)
where σ is the stress tensor, ξ is the power conjugate to the damage rate d ˙and η is the power conjugate to its spatial gradient ∇d ˙. For the purpose of thermodynamics, it is convenient to introduce the density of power developed by internal forces p i such that:

p i = σ : ∇u ˙⋆ + ξd ˙⋆ + η • ∇d ˙⋆ (2.35)
The rate of change of kinetic energy K ˙is given by:

K ˙= ∫︂ V ρu ¨• u ˙⋆dV (2.36)
where ρ is the mass density.

The principle of virtual power, which is provided by (2.32), writes:

∫︂ V b • u ˙⋆dV + ∫︂ S t • u ˙⋆dS = ∫︂ V σ : ∇u ˙⋆dV + ∫︂ V ξd ˙⋆dV + ∫︂ V η • ∇d ˙⋆dV + ∫︂ V ρu ¨• u ˙⋆dV (2.37)
For the above equality to be satisfied for any u ˙⋆ and any d ˙⋆, one must have:

∫︂ V b • u ˙⋆dV + ∫︂ S t • u ˙⋆dS = ∫︂ V σ : ∇u ˙⋆dV + ∫︂ V ρu ¨• u ˙⋆dV (2.38) ∫︂ V ξd ˙⋆dV + ∫︂ V η • ∇d ˙⋆dV = 0 (2.39)
The discontinuity surface A splits the body into subdomains V + and V -. The outer normal to A, which points towards V -, is defined by the unit vector m (see Figure 2.4). The indices "+" and "-" refer to the two sides of the discontinuity surface A. With these conventions, one has:

V = V + ∪ V - (2.40) ∂V = S = S + ∪ S - (2.41
)

∂V + = S + ∪ A (2.42) ∂V -= S -∪ A (2.43)
In the following, σ + is the stress tensor (respectively η + is the force associated with damage gradient) acting on the "+" side of the discontinuity surface. Their counterparts on the "-" side of the discontinuity surface are denoted by σ -and η -. Also,

[σ] = σ + -σ -(respectively [ η ] = η + -η -)
is the jump of the stress tensor (respectively the jump of the force associated with the gradient damage) through the discontinuity surface A.

The application of the divergence theorem to equation (2.38) leads to the following expression:

∫︂ V (divσ + b) • u ˙⋆dV + ∫︂ S u ˙⋆ • σ • n + ∫︂ A u ˙⋆ • [σ] • m dA = ∫︂ V ρu ¨• u ˙⋆dV + ∫︂ S t • u ˙⋆dS (2.44)
It is worth mentioning that, to obtain the above equality, the continuity of the velocity field is necessary.

Also, the local equilibrium equation for the stress field and the corresponding boundary conditions are deduced from the above relation:

divσ + b = ρu ¨∀x in V \A (2.45) σ • n = t ∀x in S (2.46) [σ] • n = 0 ∀x in A (2.47)
In a similar fashion, from the application of the divergence theorem to equation (2.39), one obtains that:

∫︂ V (ξ -div η ) d ˙⋆dV + ∫︂ S η • n d ˙⋆dS + ∫︂ A d ˙⋆[ η ] • n dA = 0 (2.48)
As a result, the fields ξ and η are constrained by the following conditions:

divη -ξ = 0 ∀x in V \A (2.49) η • n = 0 ∀x in S (2.50) [ η ] • n = 0 ∀x in A (2.51)
The evolution of the body B, when subjected to the boundary conditions given by (2.46),(2.47), (2.50) and (2.51), is governed by the equilibrium equations (2.45) and (2.49). At this stage, it is worth mentioning that the boundary condition (2.50) imposes some constraints regarding the orientation of cracks as they approach the external boundaries of a body. Specifically, for the common situation where the micro-stress η is parallel to ∇d, cracks propagate along the normal direction to the external surface.

Applications of PFM

Brittle fracture

Because the PFM provides a framework for the description of moving boundary problems, its application to damage problems has recently received much attention, especially for the description of brittle fracture. For instance, based on a regularized Griffith type of formulation, Francfort and Marigo (1998) proposed a variational approach for brittle fracture. The model of [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], which has also been used by [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF], is symmetric in the sense that it predicts identical behavior in tension and compression. In order to take into account the tension/compression asymmetry, one approach consists in decomposing the stored elastic energy into two parts, one related to the damage caused by tension and the other by compression (the latter one usually does not permit damage growth). For example, an asymmetric phase field model has been proposed in [START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF], where the volumetric and deviatoric decomposition of elastic energy density is taken into account to avoid damage under a negative spherical strain state. [START_REF] Freddi | Variational fracture mechanics to model compressive splitting of masonry-like materials[END_REF] proposed an alternative asymmetric model for shear fracture that was applied to cracking in masonry structures (The French Panthéon). The volumetric/deviatoric decomposition has also been used by [START_REF] Nguyen | Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials[END_REF] to construct a multi-phase field phase-field model for polycrystalline materials. This model, for which each preferential cleavage direction is associated with a damage variable, considers surface energy anisotropy. An anisotropic phase field model has been developed in CHAPTER 2. LITERATURE REVIEW the context of finite strains by [START_REF] Shanthraj | A phase field model for damage in elasto-viscoplastic materials[END_REF] to model the localization of damage on specific crystallographic planes, which is typical of cleavage fracture.

A robust formulation, based on continuum mechanics and thermodynamic arguments, has been presented by Miehe et al. (2010a) and Miehe et al. (2010b). In this formulation, the spectral decomposition of the strain tensor is used to split the elastic energy density into positive and negative contributions. This approach has been used by Nguyen et al. (2015) to model the behavior of cementitious materials. Another approach to address tension/compression asymmetry consists of using a symmetric/asymmetric hybrid formulation (Ambati et al., 2015a). This means that the stress-strain relationship is always given from the elastic energy stored without division, while the phase field evolution law is associated with that used in asymmetric phase field models. Though the hybrid formulation is thermodynamically inconsistent, it is computationally efficient.

The works of Larsen ( 2010), [START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF], [START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF], and [START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF] have shown that the PFM can be extended to dynamic fracture and produce results that agree properly with experimental observations. The above models based on the PFM are smooth continuum formulations, which avoid the modeling of discontinuities and which can be implemented in a straightforward manner in finite element solvers. The main advantage of this method is its ability to produce complex crack patterns, including branching and merging, in both two and three dimensions. It should be noted that the PFM may suffer from the high computational cost (sufficiently refined mesh in the damaged zone is necessary to accurately resolve the gradient term). Even so, this problem can be solved using parallel implementations and adaptive remeshing.

Ductile fracture

At present time, there are only a few studies which have addressed crack propagation in viscoelastic or viscoplastic solids by using the phase field method. For recent applications of the PFM to ductile fracture, one can recall the work of Miehe et al. (2016a), [START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF], and [START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF].

The model of [START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF] uses a degradation function that couples damage to plasticity. [START_REF] Borden | A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects[END_REF] proposed an approach which includes a measure of stress triaxiality as the driving force for crack initiation and propagation. In [START_REF] Alessi | Comparison of Phase-Field Models of Fracture Coupled with Plasticity[END_REF], a comparative study between different phase-field models of fracture coupled with plasticity is outlined. [START_REF] Miehe | Phase field modeling of fracture in porous plasticity: A variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure[END_REF] extended the phase-field modeling of fracture to porous finite plasticity. In the context of crystal plasticity, Na CHAPTER 2. LITERATURE REVIEW and Sun (2018) presented a phase field model that combines multiple phase fields and the framework of crystal plasticity theory. This approach has been used to investigate the behavior of halite under non-isothermal conditions.

Conclusions

In this chapter, a brief literature review has been performed. After discussing the basic concept of damage variable, the common strategies to deal with closure effects have been exposed. To circumvent the difficulties associated with damage localization and mesh dependency, some non-local damage models have been proposed. While different strategies for incorporating the non-local aspect in constitutive relations exist, significant efforts have recently been made at developping damage models within the framework of the phase-field method. In the context of damage, the phase-field method uses the damage variable and its spatial gradient as external state variables. The resulting equilibrium equations and boundary conditions, which can be obtained from an extended version of the principle of virtual power, have then been detailed. Some common damage models using the PFM have been briefly described in the final section. Most of the phase field models are dedicated to brittle damage, and often restricted to isotropic elasticity. The few models that consider the coupling between plasticity and damage have been developed at a macroscopic scale. In order to investigate the role of microstructural heterogeneities on the development of damage, it is therefore necessary to construct some constitutive relations that include the impact of damage on stiffness properties in the context of anisotropic elasticity, as well as the effect of damage on plastic deformation mechanisms at the microscale (e.g. crystallographic slip).

Chapter 3

A phase-field model for elastic solids:Application to brittle fracture 

Introduction

For materials with a brittle behavior, elasticity is the main deformation mechanism1 since loading conditions (e.g. high strain rates, low temperatures) prevent inelastic deformation modes (e.g. crystallographic slip, twinning) from being active. As a consequence, within the context of damage mechanics, the description of brittle fracture usually relies on the assumption that damage is purely driven by the accumulation of elastic strain energy [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF].

In this chapter, a phase-field model, which considers a scalar damage variable and its gradient as state variables, is constructed. Following the suggestion of [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF], the consideration of closure effects relies on the separation of the elastic strain energy into spherical and deviatoric contributions. However, while the original proposition of Amor et al. ( 2009) is restricted to isotropic elasticity, the proposed model is adapted to any class of material symmetry. Also, particular care is taken to introduce some material parameters to control the respective impacts of the spherical and deviatoric contributions on the development of damage, which is not possible in the original model of [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF]. This chapter is organized as follows. The constitutive relations are detailed in section 3.2. The numerical method used for the solution of equilibrium and compatibility equations is described in section 3.3. Finally, in section 3.4, some numerical examples are presented.

Constitutive equations

State laws

In order to model the evolution of the body B, the equilibrium equations, which have been detailed in 2.5.3, must be supplemented with some constitutive equations. The state variables used for the construction of constitutive equations are the strain tensor ε, the damage variable d and its gradient ∇d. They are listed in Because no additional internal variable (e.g. plastic strain tensor, hardening variable) is introduced, the behavior of a material point is assumed to be purely elastic. In the following, the constitutive equations are developed within the framework of generalized standard materials [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF]. Within this framework, we postulate the existence of a thermodynamic potential ψ. The state potential ψ, which corresponds to the free energy density, is decomposed into volume and surface contributions denoted respectively ψ v and ψ s :

ψ[ε, d, ∇d] = ψ v [ε, d] + ψ s [d, ∇d] (3.1) 
The volume contribution ψ v depends on the strain tensor ε according to:

ψ v [ε, d] = 1 2 ε : C[ε, d] : ε (3.2)
The stiffness tensor C depends on both the damage variable d and the strain tensor ε. Specifically, to account for closure effects, two different situations, depending on whether the volume has increased or decreased, are considered:

C[ε, d] = ∏︂ ⨄︂ ⋃︂ C + [d] if tr(ε) ≥ 0 C -[d] = C + [d] + P s : (︂ C ˜-C + [d] ⎡ : P s if tr(ε) < 0 (3.3)
with2 :

C + = (︂ C ˜-1 + g[d] (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡⎡ -1 (3.4)
In the above equations, C ˜denotes the initial (i.e. undamaged) elastic stiffness tensor. Also, according to equation (3.3), the spherical part of stiffness properties is recovered for negative volume changes.

The definition of the stiffness tensor therefore uses the spherical and deviatoric projection tensors, P s and P d , which are given by:

P s = 1 3 (I ⊗ I) (3.5) P d = I - 1 3 (I ⊗ I) (3.6)
where I is the symmetric fourth-order-identity tensor defined by I ijkl = 1 2 (δ ik δ jl + δ il δ jk ) and I is the second-order-identity tensor defined by

I ij = δ ij .
The material parameters f s and f d , which have been introduced in equation (3.3), allow controlling the contributions of spherical and deviatoric strains to the development of damage. The degradation function g [d] displays the following properties:

g[0] = 0 (3.7) g[1] = ∞ (3.8) g ′ [d] ≥ 0, ∀d in [0, 1] (3.9) 
Condition (3.7) is needed for stiffness properties to be unaltered in the absence of damage. Also, according to condition (3.8), the stiffness properties of a fully damaged material point completely vanishes when tr(ε) ≥ 0. Finally, when condition (3.9) is fulfilled, for a fixed strain state, the progression of damage always results in a decrease of stiffness properties. In the present work, the degradation function g [d] has the following form:

g[d] = d 1 -d (3.10)
It should be noticed that, for the consideration of the impact of damage on stiffness properties, no specific restriction regarding symmetry classes has been placed. The present strategy should therefore be applicable to any type of brittle material, whatever the symmetry class is.

The surface contribution ψ s uses the crack density functional γ proposed by [START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF] that is:

ψ s [d, ∇d] = g c γ[d, ∇d] (3.11) = 3g c 8l c (︂ d + l 2 c ∇d • ∇d ⎡ (3.12)
where g c is the the surface energy density. It is worth mentioning that surface energy is assumed to be isotropic in the sense that the crack energy density does not depend on the crack orientation. As CHAPTER 3. A PHASE-FIELD MODEL FOR ELASTIC SOLIDS:APPLICATION TO BRITTLE FRACTURE discussed by [START_REF] Nguyen | Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials[END_REF], it is possible to consider an anisotropic surface energy by using a tensorial, rather than scalar, form for the energy surface density.

Since the model is developed within the context of generalized standard materials, the driving forces associated with the different state variables are obtained from a partial differentiation of the state potential ψ. Thus, the reversible part of stress tensor σ r is given by:

σ r = ∂ψ ∂ε (3.13) = C[ε, d] : ε + 1 2 ε : ∂C[ε, d] ∂ε : ε (3.14) = C[ε, d] : ε (3.15)
It is worth mentionning that, with the above definition of the elastic stiffness tensor, σ r is a continuous function of ε.

Also, the driving force ξ r associated with the damage variable is obtained from:

ξ r = ∂ψ ∂d (3.16) = π + 3g c 8l c (3.17)
where π denotes the energy restitution rate :

π = 1 2 ε : ∂C[ε, d] ∂d : ε (3.18)
The derivative of the stiffness tensor C with respect to the damage variable d is:

∂C ∂d = ∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂ ∂C + ∂d if tr(ε) = tr(ε) ≥ 0 ∂C - ∂d = ∂C + ∂d -P s : ∂C + ∂d : P s if tr(ε) = tr(ε) < 0 (3.19) ∂C + ∂d = -g ′ [d] C + : (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡ : C + (3.20)
with:

g ′ [d] = 1 (1 -d) 2 (3.21)
Finally, the driving force η r , which is the dual variable of ∇d, is defined by:

η r = ∂ψ ∂ ∇ d (3.22) = 3g c l c 4 ∇d (3.23) TO BRITTLE FRACTURE
The state laws used by the present model correspond to equations (3.15), (3.17) and (3.23). For the constitutive model to be complete, some evolutions equations should also be specified. These equations are detailed in the following section.

Evolution laws

The second law of thermodynamics, which imposes some restrictions for the evolution of a thermodynamic system, takes the form of an inequality. Specifically, according to the second law of thermodynamics, the dissipated energy rate density φ must be non-negative. For isothermal transformations, this density is given by:

φ = p i -ψ ˙(3.24) = σ : ε ˙+ ξd ˙+ η • ∇ d ˙-ψ ˙≥ 0 (3.25)
Using the expression of the Helmholtz free energy ψ, the above equation is re-written as:

φ = ⎤ σ - ∂ψ ∂ε ⎣ : ε ˙+ ⎤ ξ - ∂ψ ∂d ⎣ d ˙+ ⎤ η - ∂ψ ∂ ∇ d ⎣ • ∇ d ˙(3.26)
From the list of state variables, their corresponding thermodynamic forces and the equilibrium condition ξ = div η (see section 2.5.3), the expression of the dissipation source becomes:

φ = σ ir : ε ˙+ ξ ir d ˙+ η ir • ∇ d ˙≥ 0
(3.27) with:

σ ir = σ -σ r (3.28) η ir = η -η r (3.29) ξ ir = ξ -ξ r = div η -ξ r (3.30)
According to the above expression, the dissipation source φ is given by the sum of the products between dissipative forces (i.e. σ ir , ξ ir and η ir ) and flux variables (i.e. ε ˙, d ˙and ∇ d ˙). Within the context of generalized standard materials [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF], the evolution equations, which relate the dissipative forces to the flux variables, are obtained from a dissipation potential ϕ.
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In the present work, the dissipation potential is a function that solely depends on ξ ir and d. The underlying assumption is that there is no viscous stress, that is:

σ ir = ∂ϕ ∂ε ˙(3.31) = O (3.32)
The above assumption is consistent with the fact that, because we focus on brittle damage, the stress state at a given time should not be impacted by the strain rate. In a similar fashion, the behavior does not depend on the rate at which the spatial gradient of the damage field changes, that is:

η ir = ∂ϕ ∂ ∇ d ˙(3.33) = 0 (3.34)
The direct consequence of these two assumptions is that there are no viscous contributions to the stress tensor σ or the thermodynamic force η in the sense that:

σ r = σ (3.35) η r = η (3.36)
For the dependence of the dissipation potential with respect to the dissipative force, a power law type of relation is assumed:

ϕ[ξ ir , d] = K N + 1 (︄ ⟨ξ ir ⟩ K )︄ N +1 (1 -d) (3.37)
In the above equation, the factor (1 -d) is included to make sure that the damage does not go beyond the maximum value of one. An alternative possibility for preventing damage of exceeding unity consists in introducing an indicator function I [0,1] [d] in the state potential [START_REF] Shanthraj | A phase field model for damage in elasto-viscoplastic materials[END_REF]. The latter option has not been adopted here because it results in a non-smooth evolution for damage. Also, K and N are viscosity parameters (with K > 0 and N ≥ 0). The parameter N controls the rate sensitivity of damage development while the resistance to damage development is adjusted with the parameter K. The specific case of a rate insensitive behavior corresponds to N = 0.
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d ˙= ∂ϕ ]︄ ξ ir , d ⌊︄ ∂ξ ir (3.38) = (︄ ⟨ξ ir ⟩ K )︄ N (1 -d) (3.39) = (︄ ⟨-π + 3gclc 4 ∆d -3gc 8lc ⟩ K )︄ N (1 -d) (3.40)
According to the evolution equation of the damage variable, damage healing is not allowed (i.e.

d ˙≥ 0) and the damage variable cannot exceed unity (i.e. d ˙= 0 for d = 1).

As will be discussed in section 3.2.1, the proposed constitutive model offers two advantages. First, closure effects, which favors the development of damage in tension, are accounted for and can be controlled with the f s and f d parameters and the stress-strain relation remains continuous when the unilateral condition takes place. Second, the above constitutive relations do not require any assumption regarding material symmetry.

Numerical implementation

In the present chapter, the finite element method is used for the solution to field equations. The numerical implementation of this method for the specific case of the proposed model is briefly discussed here. For all simulation, plane strain conditions are assumed.

Displacement field

The evolution of the displacement field u is governed by the following field equations:

divσ = ρu ¨(3.41) σ = C [ε, d] : ε (3.42) ε = sym [∇u] (3.43)
In the above set of equations, which result from equilibrium and compatibility conditions as well as from constitutive assumptions, the effect of external volume forces has been excluded. The corresponding variationnal formulation of this problem is given by:

∫︂ Ω u ⋆ • divσ dV = ∫︂ Ω ρ u ⋆ • u ¨dV (3.44) TO BRITTLE FRACTURE
where u ⋆ is the test displacement field. After integration by parts, one obtains:

∫︂ Ω ρ u ⋆ • u ¨dV + ∫︂ Ω ε ⋆ : σ dV = 0 (3.45)
where ε ⋆ is the test strain field derived from u ⋆ .

Within the context of the finite element method, the introduction the row vector N , which contains the interpolation functions, allows expressing the displacement fields u and u ⋆ from the nodal displacement vectors U and U ⋆ as follows:

u [x, t] = N [x] U [t] (3.46) u ⋆ [x, t] = U ⋆T [t] N T [x] (3.47)
Using the interpolation functions N , the first term in (3.45) becomes:

∫︂ Ω ρ u ⋆ • u ¨dV = U ⋆T ⎤∫︂ Ω ρN T • N dV ⎣ U ¨= U ⋆T M U ¨(3.48)
where M is the mass matrix. Also, the strain fields ε and ε ⋆ are obtained from U and U ⋆ with:

ε [x, t] = B [x] U [t] (3.49) ε ⋆ [x, t] = U ⋆T [t] B T [x]
(3.50)

The matrix B[x] is the first derivative of the shape functions with respect to position. In the 2D case, one finds that:

B[x] = ∏︁ ︂ ︂ ︂ ︂ ︂ ︂ ∐︂ ∂N 1 [ x ] ∂x 0 ... ∂N n [x] ∂x 0 0 ∂N 1 [x] ∂y ... 0 ∂N n [x] ∂y ∂N 1 [x] ∂x ∂N 1 [x] ∂y ... ∂N n [x] ∂x ∂N n [x] ∂y ⎞ ︃ ︃ ︃ ︃ ︃ ︃ ︁ (3.51)
The left hand-side term in equation (3.45) is thus given by:

∫︂ Ω ε ⋆ : σ dV = U ⋆T ⎤∫︂ Ω B T : C : B dV ⎣ U = U ⋆T K U (3.52)
where K is the stiffness matrix of the system. The solution of the displacement problem consists in determining the nodal displacement vector U . After elimination of the test displacement field from the variationnal formulation, the nodal acceleration vector U ¨is obtained from the resolution of the following system:

M U ¨[t] + K U [t] = 0 (3.53) TO BRITTLE FRACTURE
In the present work, U is determined from U ¨with the Newmark method :

U [t + ∆t] = U [t] + ∆t U ˙[t] + ∆t 2 2 (︂ (1 -b) U ¨[t] + b U ¨[t + ∆t] ⎡ (3.54) U ˙[t + ∆t] = U ˙[t] + ∆t (︂ (1 -a) U ¨[t] + a U ¨[t + ∆t] ⎡ (3.55)
where ∆t is the time step while a and b are time integration parameters.

Damage field

For the evolution of the damage field d (3.40), a discrete form of the following non-local equation is first needed:

Kd ˙= ⟨-π + 3g c l c 4 ∆d - 3g c 8l c ⟩ N (1 -d) (3.56)
To circumvent the difficulty related to the impossibility for damage healing to occur (i.e. d ˙≥ 0) and the presence of the power N , a local (i.e. point by point) resolution strategy is adopted here. The only obstacle for this strategy is the presence of the non-local laplacian diffusion operator, which can be overcome with the construction of a local laplacian diffusion operator obtained from the solution of the problem θ = ∆d in a weak form. For this purpose, the following non-local equation is considered:

∫︂ Ω d ⋆ θ dV = ∫︂ Ω d ⋆ ∆d dV (3.57)
where d ⋆ is the test damage field. Integrating by parts and using the divergence theorem, one obtains:

∫︂ Ω d ⋆ θ dV = ∫︂ ∂Ω d ⋆ ( ∇ d • n ) dS - ∫︂ Ω ∇ d ⋆ • ∇ d dV (3.58)
Combining the boundary condition (2.50) with the constitutive relation (3.23), the surface integral vanishes and the above equation reduces to:

∫︂ Ω d ⋆ θ dV + ∫︂ Ω ∇ d ⋆ • ∇ d dV = 0 (3.59)
Within the context of the finite element method, the damage variables d and d ⋆ at position x are evaluated from the interpolation function N and the nodal damage vectors D and D ⋆ with:

d[x, t] = N [x]D[t] (3.60) d ⋆ [x, t] = D ⋆T [t]N T [x] (3.61) TO BRITTLE FRACTURE
The spatial gradients of the damage variables ∇ d and ∇ d ⋆ are obtained from D and D ⋆ according to:

∇d[x, t] = Q[x]D[t] (3.62) ∇d ⋆ [x, t] = D ⋆T [t]Q T [x] (3.63) Q[x] = ∏︁ ︂ ︂ ∐︂ ∂N 1 [x] ∂x ... ∂N n [x] ∂x ∂N 1 [x] ∂y ... ∂N n [x] ∂y ⎞ ︃ ︃ ︁
(3.64)

The vector Θ, which contains the nodal values of the laplacian term θ, can therefore be determined from:

A Θ[t] + Z D[t] = 0 (3.65)
with:

A = ∫︂ Ω N T N dV (3.66) Z = ∫︂ Ω Q T • QdV (3.67)
In practice and in order to keep close to the operator that we are looking for, we can consider A as the lumped mass matrix (see appendix A). Once the vector Θ = -A -1 Z D is known, the damage rate vector D ˙is obtained from:

KD ˙[t] = ⟨-Π[t] + 3g c l c 4 Θ[t] - 3g c 8l c D[t]⟩ •N • (1 -D[t]) (3.68)
where • is the symbol of Hadamard product, 1 is the vector containing the value of 1 in each component and Π[t] is the vector containing the nodal values of the elastic energy restitution rate π. In order to obtain the nodal values straight from the integration point values, a mapping projector is used (see appendix A). For time integration of nodal damage variables, an explicit time integration scheme is employed for the temporal discretzation. The first order Euler explicit method is applied to the time integration of the damage vector:

D[t + ∆t] = D[t] + D ˙[t]∆t (3.69)

Overall algorithm

The overall algorithm for the estimation of the displacement and damage fields is briefly described here. It is composed of the following steps: 

• End

The present code has been implemented in Matlab.

Numerical examples

To discuss the advantages offered by the present formulation, some numerical examples are presented in this section. All the following examples deal with two dimensional problems with generalized plane strain conditions. For each application, the domain of interest Ω is meshed with triangular elements. Each node possesses three degrees of freedom: two for the displacement field u and one for In order to evaluate the impact of elastic anisotropy on crack propagation, some simulations have been performed with different anisotropy factors. According to [START_REF] Zener | Elasticity and Anelasticity of Metals[END_REF], the anisotropy factor Z for cubic crystals is given by:

Z = 2C 44 /(C 11 -C 12 ) (3.71)
As shown in Table 3.6, the anisotropy factor Z has been varied from 1 to 10 in the present work. The specific case of isotropy corresponds to Z = 1. The load-displacement curves are shown in figure 3.11.

Whatever the value of Z is, the load completely vanishes when the crack passes through the whole volume element. As illustrated by Figure 3.10, the crack propagation path is impacted by elastic anisotropy. More specifically, in the isotropic case, the crack follows a straight line as the impact of microstructural heterogeneities is inexistent. At the opposite, when Z is very different from unity, some important deviations along the crack propagation path are observed. For the specific case where Z is equal to 10, the important internal stresses around a triple junction are responsible for a branching phenomenon.
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Conclusion

In this work, a phase field model has been developed to model crack nucleation and propagation in elastic materials. The model uses a scalar damage variable to represent the progressive degradation of mechanical resistance. The spatial gradient of the damage variable, which is treated as an additional external state variable, serves regularization purposes and allows considering the surface energy associated with cracks. Constitutive relations are developed within the framework of generalized standard materials. The coupling of damage with elasticity is considered. Also, the impact of the loading mode on the development of damage is captured by differentiating the influence of spherical and deviatoric parts of the stiffness tensor and considering closure effects. The proposed formulation satisfies the continuity of the stress-strain relation and is adapted to any class of material symmetry. Numerical implementation is undertaken via the finite element method, where nodal degrees of freedom are the displacement and the damage variable. According to the numerical examples, the proposed model allows capturing some important aspects of crack propagation, including crack branching and bifurcation. Also, when total failure occurs, the stiffness reduction due to damage leads to a total disparition of the applied force.
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Introduction

In the previous chapter, a constitutive model for brittle fracture has been proposed. This model, which uses the phase field method, is based on the assumption that elasticity is the sole deformation mechanism. For many materials, this assumption is reasonable only for low temperatures and/or high strain rates. In many practical situations, the above conditions are not satisfied, in which case some additional deformation mechanisms exist. For metallic materials, crystallographic slip provides a significant contribution to deformation when the applied stress is sufficient. In this chapter, a constitutive model for plasticity driven fracture is proposed. This model can be applied to situations where plastic strains are much larger than elastic strains, which is typical of ductile fracture, or when elastic and plastic strains have similar magnitude, which is typical of fatigue fracture.

This chapter is organized as follows. The first section focuses on the description of the proposed 

Constitutive equations 4.2.1 Crystal plasticity framework

For polycrystalline metallic materials, crystallographic slip is often the most important plastic deformation mode. Though some additional deformation mechanisms can be active (e.g. twinning, phase transformations), crystallographic slip is therefore considered as the sole plastic deformation mode in the following.

As a result of crystallographic slip, the mechanical response of a crystalline material point depends on the orientation of slip systems with respect to the loading direction. The anisotropic aspect of plastic deformation is conveniently modelled with the general framework of crystal plasticity [START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications[END_REF]. Indeed, this framework provides a natural way of considering the kinematics of crystal-
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given by:

ε ˙p = ∑︂ α 1 2 (m α ⊗ n α + n α ⊗ m α )γ ˙α (4.2)
where γ ˙α is the plastic shear strain rate for the αth slip system. Because n α and m α are orthogonal to each other, it is clear that crystallographic slip results in an incompressible plastic flow in the sense that:

tr[ε ˙p] = 0 (4.3)
If we neglect lattice rotations, both the slip plane normal and slip direction are constant with respect to time. As a consequence, relation (4.2) is easily integrated, which leads to1 :

ε p = ∑︂ α 1 2 (m α ⊗ n α + n α ⊗ m α )γ α (4.4)

State laws

The starting point for the construction of a constitutive model is the list of state variables used to define the state of a crystalline material point at each time. In the present work, the thermal contributions are neglected so that the absolute temperature is not considered as a state variable.

Consequently, the only external state variables are the strain tensor ε, the damage variable d and its spatial gradient ∇ d. As for the elastic formulation discussed in chapter 3, the damage variable allows considering the progressive degradation of mechanical properties during a deformation process.

Also, the interest of the gradient ∇ d is twofold. First, it provides a way of circumventing the issues associated with damage-induced localization. Second, it offers the possibility of considering the increase of surface energy resulting from crack nucleation and propagation.

In order to include the impact of the deformation history, it is necessary to have some internal variables that allow considering the microstructural changes occurring during a deformation process.

First, to represent the progression of the plastic deformation process, the plastic shear strains γ α are treated as internal variables. Second, due to the evolution of the dislocation density and to internal stresses, the resistance to plastic deformation changes during a deformation path. To consider possible hardening/softening phenomena, some harderning variables are also introduced. In the present work, two different types of hardening variables are considered:
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• A tensorial internal variable z , which allows considering kinematic hardening.

• Some scalar internal variable λ α , which are defined for each slip system α to consider isotropic hardening.

It is worth mentioning that some additional kinematic or isotropic variables can easily be introduced to obtain more sophisticated hardening rules. For instance, the superposition of multiple kinematic hardening variables is discussed in [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF].

The external and internal state variables used for the construction of constitutive relations are listed in Table 4.1. The corresponding thermodynamic forces are also given. Within the context of continuum thermodynamics, the state equations, which allow connecting state variables to driving forces, are obtained from a thermodynamic potential. In the following, the thermodynamic potential is the Helmholtz free energy density ψ, which is a function of the state variables. The following decomposition is assumed for the free energy density:

State variable

ψ[ε, γ α , z , λ α , d, ∇ d] = ψ e [ε, γ α , d] + ψ k [ z , d] + ψ i [λ α , d] + ψ s [d, ∇ d] (4.5)
According to the above equation, different contributions are considered in the definition of the free energy density. The elastic contribution, which is denoted by ψ e , depends on the elastic strain tensor as well as the damage variable. In a manner similar to that used for the elastic formulation, the coupling between the elastic strain tensor and the damage variable allows modelling the reduction of stiffness properties resulting from the development of damage. The contribution ψ i , which is due to CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE the lattice defects responsible for isotropic hardening (e.g. dislocations), depends on both the isotropic hardening variables and the damage variable. The contribution of kinematic hardening to free energy is denoted by ψ k . It results from the internal stresses produced by microscopically inhomogeneous plastic deformation (e.g. dislocation structures, dislocation pile-ups). This contribution depends on the kinematic hardening variable and the damage variable. The coupling between hardening variables and damage is motivated by the fact that both the isotropic and kinematic hardening moduli are likely impacted by damage. Indeed, these moduli depend on stiffness properties. As a result, the stiffness reduction resulting from damage is expected to affect the isotropic and kinematic hardening moduli.

The elastic contribution to free energy is given by:

ψ e [ε, γ α , d] = 1 2 ε e : C[ε e , d] : ε e (4.6) = 1 2 (ε -ε p ) : C[ε e , d] : (ε -ε p ) (4.7)
where C is the fourth rank stiffness tensor and S = C -1 is the fourth rank compliance tensor. To include the impact of damage on stiffness properties, a strategy similar to that used for the purely elastic formulation is adopted. Specifically, depending on the spherical elastic strain tensor, two different situations are considered:

C[ε e , d] = {︄ C + [d] if tr(ε) = tr(ε e ) ≥ 0 C -[d] if tr(ε) = tr(ε e ) < 0 (4.8)
In the above equation, C + is the stiffness tensor corresponding to a positive spherical elastic strain tensor while C -is the stiffness tensor corresponding to a negative spherical elastic strain tensor. These two tensors are evaluated from:

C + [d] = (︂ C ˜-1 + g[d] (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡⎡ -1 (4.9) C -[d] = C + [d] + P s : (︂ C ˜-C + [d] ⎡ : P s (4.10)
where C ˜is the initial stiffness tensor, f d and f s are material parameters that control the impact of damage on the deviatoric and spherical contributions to the stiffness tensor and g [d] is a degradation function such that, when the damage variable has reached a unit value, a material point is infinitely CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE compliant. This function must satisfy the following conditions:

g[0] = 0 (4.11) g[1] = ∞ (4.12) g ′ [d] ≥ 0, ∀d in [0, 1] (4.13)
In the present work, the following degradation function is chosen:

g[d] = d 1 -d (4.14)
The present strategy allows considering closure effects in the sense that, when the spherical elastic strain tensor is negative, the spherical contribution to the stiffness tensor is not impacted by damage since:

P s : C : P s = P s : C ˜: P s if tr(ε) = tr(ε e ) < 0 (4.15)
The determination of stiffness properties uses the spherical projection tensor P s and the deviatoric projection tensor P d . These tensors are defined as follows: (4.16)

P s = 1 3 (I ⊗ I)
P d = (I - 1 3 I ⊗ I) (4.17)
where I is the symmetric fourth-order-identity tensor defined by I ijkl = 1 2 (δ ik δ jl + δ il δ jk ) and I is the second-order-identity tensor defined by

I ij = δ ij .
For the contribution of kinematic hardening ψ k , the simplest choice is a quadratic form with respect to the kinematic hardening variable z :

ψ k [ z , d] = 1 2 z : K[ z , d] : z (4.18)
where K is the fourth-order kinematic hardening moduli tensor. To include the impact of damage on the kinematic hardening moduli tensor, the same strategy as for the elastic stiffness tensor is used.

Specifically, the kinematic hardening moduli tensor is given by:

K[ z , d] = {︄ K + [d] if tr( z ) ≥ 0 K -[d] if tr( z ) < 0 (4.
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with:

K + [d] = (︂ K ˜-1 + g[d] (︂ f s P s : K ˜-1 : P s + f d P d : K ˜-1 : P d ⎡⎡ -1 (4.20) K -[d] = K + [d] + P s : (︂ K ˜-K + [d] ⎡ : P s (4.21)
where K ˜is the initial kinematic hardening moduli tensor. It should be noticed that, for simplicity, the same parameters (f s and f d ) and the same degradation function (g[d]) as for stiffness properties have been used to control deviatoric and spherical contributions. For generalization purposes, one could introduce some new parameters.

A quadratic form is also assumed for the contribution of isotropic hardening to free energy ψ i , that is:

ψ i [λ α , d] = Q(1 -f i d) 2 ∑︂ α (λ α ) 2 (4.22)
In the above equation, Q is the isotropic hardening modulus and f i (with 0 ≤ f i ≤ 1) is a parameter that controls the strength of the coupling between the isotropic hardening variables and the damage variable. It should be noticed that, for simplicity, only self-hardening is considered in the present formulation. The incorporation of latent hardening would require the introduction of a matricial form for the isotropic hardening modulus. This would allow considering the possible interactions between different slip systems.

Finally, using the crack surface density proposed by [START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF], the contribution of damage to free energy ψ d is given by:

ψ s [d, ∇ d] = 3g c 8l c (︂ d + l 2 c ∇ d • ∇ d ⎡ (4.23)
where g c is the crack surface energy density and l c is an internal length scale.

It should be noted that the convexity of the potential, which guarantees thermodynamic stability, is only satisfied when both C and K are positive semi-definite tensors while Q, g c and l c should be non-negative.

The state potential ψ allows determining the expressions of the thermodynamic forces associated with the different state variables. First, the reversible part of stress tensor σ r is obtained from the CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE differentiation of ψ with respect to ε, which leads to:

σ r = ∂ψ ∂ε (4.24) = C[ε, d] : (ε -ε p ) + 1 2 (ε -ε p ) : ∂C[ε e , d] ∂ε : (ε -ε p ) (4.25) = C[ε, d] : ε e (4.26)
It is worth mentionning that, with the above definition of the elastic stiffness tensor, σ r is a continuous function of ε e .

The thermodynamic force associated with the plastic shear strain γ α is (up to sign) the resolved shear stress τ α , which is simply the projection of the stress tensor σ r on the corresponding slip system:

-τ α = ∂ψ ∂γ α (4.27) = -m α • σ r • n α (4.28)
The differentiation of the state potential with respect to the isotropic hardening variable λ α leads to the following expression of the critical shear stress r α , which represents the resistance to plastic flow:

r α = ∂ψ ∂λ α (4.29) = Q(1 -f i d)λ α (4.30)
The backstress tensor x , which provides the position of the yield surface in the stress space, is connected to the kinematic hardening variable z with:

x = ∂ψ ∂ z (4.31) = K[ z , d] : z + 1 2 z : ∂K[ z , d] ∂ z : z (4.32) = K[ z , d] : z (4.33)
The driving force ξ r associated with the damage variable d is connected to the state variables with the equation:

ξ r = ∂ψ ∂d (4.34) = π + 3g c 8l c (4.
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where π denotes the energy restitution rate:

π = 1 2 ε e : ∂C[ε, d] ∂d : ε e + 1 2 z : ∂K[ z , d] ∂d : z -f i Q 2 ∑︂ α (λ α ) 2 (4.36)
The derivative of the stiffness tensor C with respect to the damage variable d is:

∂C ∂d = ∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂ ∂C + ∂d if tr(ε) = tr(ε e ) ≥ 0 ∂C - ∂d = ∂C + ∂d -P s : ∂C + ∂d : P s if tr(ε) = tr(ε e ) < 0
(4.37)

∂C + ∂d = -g ′ [d] C + : (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡ : C + (4.38)
In a similar way, the derivative of the kinematic hardening moduli tensor K with respect to the damage variable is given by:

∂K ∂d = ∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂ ∂K + ∂d if tr( z ) ≥ 0 ∂K - ∂d = ∂K + ∂d -P s : ∂K + ∂d : P s if tr( z ) < 0 (4.39) ∂K + ∂d = -g ′ [d] K + : (︂ f s P s : M ˜: P s + f d P d : M ˜: P d ⎡ : K + (4.40)
with M ˜= K -1 . It is worth mentioning that, due to the couplings between elasticity and damage and hardening and damage, the driving force for damage contains some mechanical contributions from the elastic strain tensor as well as the hardening internal variables.

Finally, the differentiation of the state potential ψ with respect to the gradient of the damage variable ∇ d provides the expression for the driving force η r :

η r = ∂ψ ∂ ∇ d (4.41) = 3 4 g c l c ∇ d (4.42)
The state equations, which connect the driving forces to the state variables, are given by (4.26), (4.28), (4.30), (4.33), (4.35) and (4.42).

Evolution laws

The second law of thermodynamics requires the dissipation source φ to be non-negative, which imposes some constraints regarding the evolution laws associated with the different state variables.
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For isothermal transformations, the dissipation source is given by:

φ = p i -ψ ˙(4.43) = σ : ε ˙+ ξd ˙+ η • ∇ d ˙-ψ ˙(4.44)
Using the expression of the Helmholtz free energy density ψ, which solely depends on state variables, the above expression of the dissipation source becomes:

φ = ⎤ σ - ∂ψ ∂ε ⎣ : ε ˙+ ⎤ ξ - ∂ψ ∂d ⎣ d ˙+ ⎤ η - ∂ψ ∂ ∇ d ⎣ • ∇ d - ∑︂ α ∂ψ ∂γ α γ ˙α - ∂ψ ∂ z : z ˙-∑︂ α ∂ψ ∂λ α λ ˙α ≥ 0 (4.45)
The above equation can be reformulated by using the definitions of the driving forces associated with the state variables, which leads to:

φ = (σ -σ r ) : ε ˙+ (ξ -ξ r ) d ˙+ ( η -η r ) • ∇ d + ∑︂ α τ α γ ˙α -x : z ˙-∑︂ α r α λ ˙α (4.46)
Also, with the help of the equilibrium condition ξ = div η (see section 2.5.3), one obtains that:

φ = σ ir : ε ˙+ ξ ir d ˙+ η ir • ∇ d ˙+ ∑︂ α τ α γ ˙α -x : z ˙-∑︂ α r α λ ˙α (4.47)
with:

σ ir = σ -σ r (4.48) η ir = η -η r (4.49) ξ ir = ξ -ξ r = div η -ξ r (4.50)
Equation ( 4.47) indicates that some evolution equations are necessary for the constitutive model to be complete. These evolution equations must relate the flux variables, which are listed in Table 4.2, to the corresponding dissipative forces. When the framework of standard materials [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF]) is adopted, such equations are obtained from a dissipation potential ϕ. In the present work, this potential is assumed to take the following additive form:

ϕ[τ α , -x , -r α , ξ ir , d] = ϕ p [τ α , -x , -r α ] + ϕ d [ξ ir , d] (4.51)
According to the above equation, plasticity and damage are two separated dissipative phenomena. As a result, the evolution of the plastic shear strain as well as the hardening variables is independent on CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE that of the damage variable. In the following, the plastic contribution to the dissipation potential is denoted by ϕ p while the contribution associated with damage is denoted by ϕ d . Also, the dissipation potential is independent on ε ˙and ∇ d ˙so that:

σ ir = ∂ϕ ∂ε ˙= O (4.52) η ir = ∂ϕ ∂ ∇ d ˙= 0 (4.53)
The direct consequence is that there are no viscous contributions to the stress tensor σ or the thermodynamic force η in the sense that: The plastic contribution to the the dissipation potential ϕ p depends on the resolved shear stresses τ α , the backstress tensor x and the critical resolved shear stress r α . In the present case, the plastic contribution to the dissipation potential is given by:

σ r = σ (4.
ϕ p = ∑︂ α L M + 1 ⎤ ⟨♣τ α -χ α ♣ -r α ⟩ L ⎣ M +1 (4.56)
where χ α is the projection of the backstress tensor x on the considered slip system:

χ α = m α • x • n α (4.57)
Also, M (with M > 0) is a strain-rate sensitivity parameter and L (with L > 0) is a viscosity parameter that allows controlling the drag stress. Specifically, large values of M and low values of L lead to an almost ideal elasto-plastic behaviour.
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The contribution of damage to the dissipation potential ϕ d takes a similar form:

ϕ d = K N + 1 (︄ ⟨ξ ir ⟩ K )︄ N +1 (1 -d) (4.58)
In the above equation, N and K are two material parameters (with N > 0 and K > 0) whose role resembles that of M and L. Specifically, large values of N and low values of K lead to a rateindependent evolution of the damage variable. As discussed hereafter, the factor (1 -d) is included to make sure that the damage does not exceed the maximum value of one.

According to the second law of thermodynamics, the dissipation source φ must be non-negative.

Within the context of standard materials, the dissipation potential must be convex with respect to the dissipative forces (i.e. τ α ,x , -r α and ξ ir ), non-negative and null at origin to comply with this constraint. It is easily demonstrated that these conditions are met for both ϕ p and ϕ p , hence for ϕ.

The evolution equations associated with the different fluxes are easily obtained from the dissipation potential φ. Indeed, the plastic shear strain rate γ ˙α associated with each slip system α is given by:

γ ˙α = ∂ϕ ∂τ α (4.59) = ⎤ ⟨♣τ α -χ α ♣ -r α ⟩ L ⎣ M sign[τ α -χ α ] (4.60)
It is emphasized that the above flow rule is identical to the one proposed by [START_REF] Méric | calculations of copper bicrystal specimens submitted to tension-compression tests[END_REF] for single crystals. Also, it should be mentioned that the effective stress concept is not adopted here. This concept, which has been used in the context of crystal plasticity by [START_REF] Chadli | Meso-Damage Evolution in Polycrystals[END_REF] and Boudifa et al. (2009b), uses an effective shear stress τ ˜α that is infinite for a fully damaged material point. The introduction of the effective shear stress in the flow rule could therefore result in an infinite plastic shear strain rate, which is believed to be non-physical and which would lead to some numerical issues.

For each slip system, the evolution of the corresponding isotropic hardening variable is controlled by the following equation:

λ ˙α = - ∂ϕ ∂r α (4.61) = ⎤ ⟨♣τ α -χ α ♣ -r α ⟩ L ⎣ M (4.62) = ♣γ ˙α♣ (4.
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The above equation provides a clear meaning to the isotropic hardening variable λ α , which is identified as the cumulated shear strain. As a consequence of the linear relation (4.30) between the critical shear stress and the isotropic hardening variable, the proposed dissipation potential leads to a linear isotropic hardening rule.

The rate of the kinematic hardening variable z ˙is obtained from the differentiation of the dissipation potential with respect to the backstress tensor x , which gives:

z ˙= - ∂ϕ ∂ x (4.64) = ∑︂ α 1 2 (m α ⊗ n α + n α ⊗ m α )γ ˙α (4.65) = ε ˙p (4.66)
The above equation indicates that the kinematic hardening variable is actually the plastic strain tensor.

Except from the impact of damage, the kinematic hardening rule used here is therefore identical to the one proposed by [START_REF] Prager | The Theory of Plasticity: A Survey of Recent Achievements[END_REF].

Finally, for the evolution of damage, one finds that:

d ˙= ∂ϕ ∂ξ ir (4.67) = (︄ ⟨ξ ir ⟩ K )︄ N (1 -d) (4.68) = (︄ ⟨-π + 3gclc 4 ∆d -3gc 8lc ⟩ K )︄ N (1 -d) (4.69)
According to the evolution equation of the damage variable, damage healing is not allowed (i.e. d ˙≥ 0)

and the damage variable cannot exceed unity (i.e. d ˙= 0 for d = 1).

Numerical implementation

For application purposes, the proposed set of constitutive equations has been implemented within a finite element solver. More specifically, for the two dimensional problems discussed in the next section, the body Ω is discretized with triangular elements. Each element node has three degrees of freedom: two for the displacement field u and one for the order parameter d. )

ε e = ε -ε p (4.72)
In the above set of equations, which result from equilibrium and compatibility conditions as well as from constitutive assumptions, the effect of external volume forces has been excluded. The corresponding variationnal formulation of this problem is given by:

∫︂ Ω u ⋆ • divσ dV = 0 (4.73)
where u ⋆ is the test displacement field. After integration by parts, one obtains:

∫︂ Ω ε ⋆ : σ dV = 0 (4.74) 
where ε ⋆ is the test strain field deriving from u ⋆ .

Within the context of the finite element method, the introduction of interpolation functions N allows expressing the displacement fields u and u ⋆ from the nodal displacement vectors U and U ⋆ as follows:

u[x, t] = N [x]U [t] (4.75) u ⋆ [x, t] = U ⋆T [t]N T [ x ] (4.76) 
Also, the strain fields ε and ε ⋆ are obtained from U and U ⋆ with:

ε[x, t] = B[x]U [t] (4.77) ε ⋆ [x, t] = U ⋆T [t]B T [x] (4.78) 
The matrix B(x) is the first derivative of the shape functions with respect to position. In the 2D case, one finds that:

B(x] = ∏︁ ︂ ︂ ︂ ︂ ︂ ︂ ∐︂ ∂N 1 [ x ] ∂x 0 ... ∂N n [x] ∂x 0 0 ∂N 1 [x] ∂y ... 0 ∂N n [x] ∂y ∂N 1 [x] ∂x ∂N 1 [x] ∂y ... ∂N n [x] ∂x ∂N n [x] ∂y ⎞ ︃ ︃ ︃ ︃ ︃ ︃ ︁ (4.
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The left hand-side term in equation ( 4.74) is thus given by:

∫︂ Ω ε ⋆ : σ dV = U ⋆T ⎤∫︂ Ω B T : C : B dV ⎣ U -U ⋆T ⎤∫︂ Ω B T : C : ε p dV ⎣ (4.80)
Introducing the above relation in equation ( 4.70) leads to the following system:

K [t] U [t] = F [t] (4.81) 
• K =

√︄ Ω B T : C : B dV , is the stiffness matrix of the system.

• F = √︄ Ω B T : C : ε p dV , is the second member representing the plastic contribution.

Damage field

In order to determine the evolution of the damage field d, the evolution equation ( 4.69) for the damage variable is first reformulated as follows:

Kd ˙= ⟨-π + 3g c l c 4 ∆d - 3g c 8l c ⟩ N (1 -d) (4.82)
To circumvent the difficulties related to (i) the impossibility for damage healing to occur (i.e. d ˙≥ 0)

and (ii) the presence of the power N , a local (i.e. point by point) resolution strategy is adopted here.

The only obstacle for the application of this strategy is the presence of the non-local laplacian diffusion operator, which can be overcome with the construction of a local laplacian diffusion operator obtained from the resolution of the problem θ = ∆d in a weak form. For this purpose, the following non-local equation is considered:

∫︂ Ω d ⋆ θ dV = ∫︂ Ω d ⋆ ∆d dV (4.83)
where d ⋆ is the test damage field. Integrating by parts and using the divergence theorem, one obtains:

∫︂ Ω d ⋆ θ dV = ∫︂ ∂Ω d ⋆ ( ∇ d • n ) dS - ∫︂ Ω ∇ d ⋆ • ∇ d dV (4.84)
Combining the boundary condition (2.50) with the constitutive relation (3.23), the surface integral vanishes and the above equation reduces to: 

∫︂ Ω d ⋆ θ dV + ∫︂ Ω ∇ d ⋆ • ∇ d dV = 0 ( 
d[x, t] = N [x]D[t] (4.86) d ⋆ [x, t] = D ⋆T [t]N T [x] (4.87) 
In a similar way, the spatial gradients of the damage variables ∇ d and ∇ d ⋆ are obtained from D and D ⋆ according to:

∇d[x, t] = Q[x]D[t] (4.88) ∇d ⋆ [x, t] = D ⋆T [t]Q T [x] (4.89) 
with:

Q[x] = ∏︁ ︂ ︂ ∐︂ ∂N 1 [x] ∂x ... ∂N n [x] ∂x ∂N 1 [x] ∂y ... ∂N n [x] ∂y ⎞ ︃ ︃ ︁ (4.90) 
The vector Θ, which contains the nodal values of the laplacian term θ, can therefore be determined from:

A Θ[t] + Z D[t] = 0 (4.
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with:

A = ∫︂ Ω N T N dV (4.92) Z = ∫︂ Ω Q T • QdV (4.93)
where A as the lumped mass matrix. Once the vector Θ = -A -1 Z D is known, the damage rate vector D ˙is obtained from:

KD ˙[t] = ⟨-Π[t] + 3g c l c 4 Θ[t] - 3g c 8l c D[t]⟩ •N • (1 -D[t]) (4.94)
where • is the symbol of Hadamard product, 1 is the vector containing the value of 1 in each component and Π[t] is the vector containing the nodal values of the elastic energy restitution rate π. For time integration of nodal damage variables, an explicit time integration scheme is employed for the temporal discretzation. The first order Euler explicit method is applied to the time integration of the damage vector: 

D[t + ∆t] = D[t] + D ˙[t]∆t ( 

Overall algorithm

The overall algorithm for the estimation of the displacement and damage fields is briefly described here. It is composed of the following steps:

• Initialization 1. Initialize the nodal displacement vector U (t 0 ), the nodal velocity vector U ˙(t 0 ) and the nodal damage vector D(t 0 ).

2. Compute the initial stiffness tensor C ˜and the initial kinematic hardening moduli tensor K 3.

Compute the matrices A and Z .

• For each time t 1. For each integration point, compute the strain tensor ε[t] and the damage variable d[t].

2. For each integration point, compute the stress tensor σ(t) and the stiffness tensor C[t].

3. For each integration point, compute the kinematic hardening tensor z [t] and the kinematic hardening tensor K[t].

Compute the stiffness matrix K [t].

5. Compute the nodal acceleration vector U ¨[t].

Compute the vector Θ[t] containing the nodal values of θ[t] = ∆d[t].

7. For each integration point, compute the elastic energy restitution rate π[t].

Compute the vector Π[t] containing the nodal values of π[t].

9. Compute the nodal damage rate vector D ˙(t).

10. Update the nodal displacement vector U [t + ∆t] and the nodal damage vector D[t + ∆t].

• End

The present code has been implemented in Matlab. First, some polycrystalline specimens are submitted to different monotonic loading conditions. For such tests, the magnitude of plastic strains is much larger than for elastic strains (i.e. ♣♣ε e ♣♣ << ♣♣ε p ♣♣), which corresponds to ductile fracture. In the second part, some cyclic loading conditions are prescribed to polycrystalline specimens to investigate fatigue fracture. For these specific loading conditions, the elastic and plastic strain tensor have similar magnitudes (i.e. ♣♣ε e ♣♣ ≈ ♣♣ε p ♣♣).

Plane strain state is assumed for all examples. Also, for all geometries used in this section, the boundary condition η • n = 0 is always assumed (see section 2.5.3).

For stiffness and hardening properties, the specific case of cubic symmetry is considered for the numerical examples. In this case, the initial fourth-rank stiffness tensor C ˜is defined from three independent constants C 11 , C 12 and C 44 . Using Voigt notation for two dimensions, the tensor can be written as:

[C ˜] = ∏︁ ︂ ∐︂ C 11 C 12 0 C 12 C 11 0 0 0 C 44 ⎞ ︃ ︁ (4.96)
In a similar fashion, because of cubic symmetry, the initial kinematic hardening moduli tensor K ˜is given by:

[K ˜] = ∏︁ ︂ ∐︂ K 11 K 12 0 K 12 K 11 0 0 0 K 44 ⎞ ︃ ︁ (4.97)
where K 11 , K 12 and K 44 are three independent constants. In some situations, the case of isotropy will be considered. In this case, both C ˜and K ˜are defined from two independent constants since the following conditions need to be satisfied:

C 11 -C 12 = 2C 44 (4.98) K 11 -K 12 = 2K 44 (4.99)
In the following, to reduce the number of material parameters, the initial kinematic hardening moduli tensor K ˜is assumed to be related to the initial stiffness tensor C ˜with a single scalar parameter B CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE such that:

K ˜= BC ˜(4.100)
For materials with cubic symmetry, the degree of anisotropy can be evaluated from the Zener ratio Z [START_REF] Zener | Elasticity and Anelasticity of Metals[END_REF], which is defined according to:

Z = 2C 44 C 11 -C 12 (4.101)
The specific case of isotropy corresponds to the situation where Z is equal to unity. where θ is the rotation angle. It is emphasized that, whatever the crystallographic orientation is, all slip systems are contained within the plane of 2D specimens. 

Monotonic loading tests

C 11 [kN/mm 2 ] 280 C 12 [kN/mm 2 ] 120 C 44 [kN/mm 2 ] 80 Z 1 Kinematic hardening B 0.01 K 11 [kN/mm 2 ] B C 11 K 12 [kN/mm 2 ] B C 12 K 44 [kN/mm 2 ] B C 44 Isotropic Hardening Q[N/mm 2 ] 100 f i 1 Plastic shear strain rate L[N/mm 2 ] 100 M 10 Damage g c [N/mm] 1 l c [mm] 10 -2 f s 10 f d 1 N 4 K[N/mm 2 ] 100
Table 4.3: Material properties of the specimens for the numerical simulations.

of approximately 45 • with respect to the loading direction. This specific aspect of the ductile fracture of metallic materials under uniaxial tension is experimentally well-known and largely documented in the literature [START_REF] Xue | Ductile fracture modeling : theory, experimental investigation and numerical verification[END_REF]. It is worth noting that the progression of damage is strongly correlated to that of plasticity. Indeed, the macroscopic crack is located in a region where important plastic strains have been accumulated, which indicates that the ductile aspect of fracture is correctly captured.

The average damage per grain has been plotted as a function of the average equivalent plastic strain per grain for time (b) in Figure 4.4. The strong correlation between damage and plastic strains confirms the important role of plastic strains for the development of damage, hence the ductile aspect of fracture.

The spatial localization of damage is partly explained by the influence of crystallographic orientation.

Specifically, the maximum Schmid factor2 has been computed for each grain. As illustrated by Figure 4.5, one can observe that damage preferably develops in the grains being favourably oriented for plastic slip because they have higher plastic strains. However, for some grains with a high maximum Schmid factor (i.e. close to 0.5), the corresponding value for average damage is negligible (i.e. close to 0). 

[N/mm] 1 l c [mm] 2 × 10 -3 f s 10 f d 1 N 6 K[N/mm 2 ] 20
Table 4.6: Material parameters for asymmetrically notched shear test.

has been imposed to the top edge and the left edge of the specimen. These edges are restrained horizontally, whereas the bottom and the right edges are fixed. The total duration of the test is 1 s and the maximum displacement is about of 0.01 mm. The spatial discretization of the specimen uses 80 000 triangular elements. The material parameters are shown in Table 4.6.

In the context of ductile fracture, this problem has been investigated by both Mediavilla et al. For this example, three different specimen geometries have been considered. The first one is a smooth specimen with no defect. For the second geometry, a large circular defect, with a radius r h of 0.006 mm, has been introduced at the center of the specimen (see Figure 4.18). For the third geometry, four small circular defects are placed in the central region of the specimen. These defects are far enough from each other so that, during the nucleation stage, they are no interactions. Also, for small defects, the hole radius is r h = 0.003 mm, so that the defect density is the same as for the second geometry. 

[N/mm] 1 l c [mm] 10 -2 f s 10 f d 1 N 4 K[N/mm 2 ] 100
Table 4.7: Material properties for the simulation of crack growth in a pre-cracked specimen subjected to fatigue loading.

the crack. This phenomenon of delayed propagation after the application of an overload is well known in the literature and has been the subject of many works [START_REF] Geary | A review of some aspects of fatigue crack growth under variable amplitute loading[END_REF][START_REF] Wheatley | Effects of a single tensile overload on fatigue crack growth in a 316L steel[END_REF].

To investigate this effect, a pre-cracked specimen, whose geometry is shown in Figure 4.28, is considered for the application of the proposed model. The specimen is meshed with 12 600 triangular elements. The typical size h of an element is about 5 × 10 -3 mm in the crack propagation zone and 10 -2 mm elsewhere. The microstructure used for this specimen, which is shown in Figure 4.28, consists of 400 grains. The material properties presented in 

Conclusion

In the present chapter, a phase-field model has been developed to model crack nucleation and propagation in polycrystalline materials. The strategy is essentially the same as for the description of brittle fracture, except that the coupling of damage with elasticity and hardening has been considered.

As a result, the growth of damage is governed by the accumulation of both elastic strains and plastic strains. Also, the impact of the loading mode on the development of damage is captured by differentiating the influence of positive and negative spherical strains, which allows considering closure effects.

The proposed formulation satisfies the continuity of the stress-strain relation and is adapted to any class of material symmetry. To show the capabilities and limits of this formulation, some numerical simulations have been carried out. They allow investigating the impact of loading conditions and microstructural heterogeneities on damage development as well as the impact of the damage-elasticity and damage-hardening couplings. These simulations indicate that some of the key aspects of ductile and fatigue damage are correctly depicted by the proposed model.

Chapter 5

Conclusions and prospects 

Conclusions

The modelling of fracture in solid materials is a complex task, mostly because it requires dealing with the evolution of discontinuity surfaces known as cracks. The Phase-Field Method (PFM), which has been designed for interfacial problems, provides an attractive framework for the modelling of fracture. As discussed in the second chapter, significant efforts have been made at developing phase-field models of fracture in the recent years. While most studies focus on brittle fracture, little attention has been given to other fracture modes (e.g. ductile, fatigue). Indeed, for these other fracture modes, the construction of constitutive relations is more complex because multiple deformation mechanisms coexist. Also, most phase-field models of fracture are designed for structural applications. The characteristic length scale of the structure is usually large and the impact of microstructural heterogeneities is not considered. Such structures can therefore be treated as a continuum with homogeneous properties. In the context of material science, the characteristic length scales of a microstructure are usually much smaller. The impact of microstructural heterogeneities (e.g. grains, fibers, pores) should therefore be considered for the modelling of fracture at the microscale. In constrast with structural applications, the anisotropic aspect of material properties is possibly significant at the microscale.

Therefore, the phase-field models of fracture, which are often restricted to isotropy, are inappropriate for microstructural applications.

The present work aims at using the PFM to model the development of damage. Specifically, this work focuses on (i) the development of different constitutive models within the framework of the PFM and (ii) the numerical implementation of these models. Regarding the former aspect, two situations have been treated. The first proposition concerns the modelling of brittle fracture, for which the development of damage is driven by the accumulation of elastic strain energy. The second proposition, which can be perceived as an extension of the first one, deals with plasticity-driven damage in polycrystalline materials. The resulting constitutive relations can thus be used for the modelling of ductile or fatigue fracture.

The phase-field model for brittle fracture has been described in the third chapter. Following the suggestion of [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF], the deviatoric/spherical decomposition of elastic strain energy has been used to consider closure effects. However, while the proposition of [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF] is restricted to isotropic elasticity, the proposed strategy is adapted to any class of material symmetry (anisotropic elasticity). Also, some efforts have been made at introducing some material parameters that control the impact of deviatoric and spherical contributions to the development of damage. To illustrate the capabilities of the proposed model, it has been implemented in a finite element solver. The numerical results indicate that:

• The crack propagation path can be controlled with some of the material parameters. The direct consequence is that these parameters can be identified from experimental results.

• When total failure occurs, the stiffness reduction due to damage leads to a total disparition of the applied force in the absence of closure effects.

• The proposed model allows capturing some important aspects of crack propagation under dynamic loading conditions, such as crack branching.

• Branching is also observed in a heterogeneous microstructure (e.g. polycrystalline microstructure). Indeed, the internal stresses, which are important near triple junctions, are sometimes responsible for a branching phenomenon.

The extension of the above model to plasticity-driven fracture has been detailed in the fourth chapter. The framework of crystal plasticity has been used for the construction of constitutive relations.

CHAPTER 5. CONCLUSIONS AND PROSPECTS

The proposed model is therefore designed for crystalline materials, for which the development of plastic strains takes plane on specific crystallographic planes and along specific crystallographic directions.

In contrast with some phase-field models for ductile fracture (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF][START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF], no direct coupling between the evolution of plastic strain and the evolution of the damage variable has been introduced. To consider the role of plastic strains on the development of damage, the proposed strategy uses the coupling between damage and hardening. The consequence is that the driving force for damage contains some contributions from hardening variables as well as elastic strains. The resulting phase-field model has been used to model ductile fracture (under monotonic loading conditions) as well as fatigue fracture (under cyclic loading conditions).

The numerical results indicate the orientation of cracks is consistent with experimental observations, for both fatigue and ductile fracture. The proposed model is flexible in the sense that it allows considering either the beneficial or detrimental influence of the strain rate. Also, the main features of the influence of geometrical defects on fatigue resistance are correctly reproduced.

Future prospects

While the proposed sets of constitutive relations allow considering some important features of brittle, ductile and fatigue fracture, some aspects have not been included in the present work.

First, the role of temperature has been excluded, which means that phenomena such as thermal shock cannot be treated. The introduction of temperature as an external state variable does not lead to important theoretical difficulties. However, from a numerical point of view, it requires solving an additional differential equation, i.e. the heat diffusion equation, which might be numerically expensive.

Second, the present work is limited to the context of infinitesimal transformations. While this is generally satisfactory for brittle or fatigue fracture, an accurate description of ductile fracture would require an extension to finite strains. Once again, the theoretical framework for an extension to finite strains is well established [START_REF] Asaro | Overview no. 42 Texture development and strain hardening in rate dependent polycrystals[END_REF][START_REF] Sidoroff | Incremental constitutive equation for large strain elasto plasticity[END_REF], the main difficulties are related to the numerical implementation.

Third, while the deviatoric/spherical decomposition allows considering closure effects in a simple manner, it does not always provide satisfactory results. Indeed, for a cracked specimen, the stiffness along the crack plane normal is not fully recovered (only the spherical part is). This is a limitation of CHAPTER 5. CONCLUSIONS AND PROSPECTS the proposed model, which does not improve the model of [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF] for this specific aspect.

It is worth mentioning that this limitation also applies to the model of Miehe et al. (2010b), which uses a positive/negative decomposition. This is due to the fact that these models use a scalar damage variable that, by definition, does not provide any information regarding the local orientation of cracks.

To circumvent this issue, one must either use a tensorial damage variable [START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF] or includes some information regarding the local orientation of cracks with respect to the stress state [START_REF] Steinke | A phase-field crack model based on directional stress decomposition[END_REF].

Finally, to validate and improve the proposed strategy, some experimental results are needed. In this perspective, the 3D microtomography techniques appear as an attractive method for the investigation of crack propagation in solid materials [START_REF] Réthoré | Three-dimensional Analysis of Fatigue Crack Propagation using X-Ray Tomography, Digital Volume Correlation and Extended Finite Element Simulations[END_REF]. Some important efforts should therefore be made to obtain experimental results that would help in gathering some information at the microscale for different materials and different loading conditions.

Introduction Contexte et objectifs

L'optimisation de la microstructure des matériaux nécessite une compréhension approfondie de l'influence des hétérogénéités microstructurelles sur le développement de l'endommagement. En effet, pour la plupart des matériaux, les premiers stades du développement de l'endommagement sont souvent influencés par les caractéristiques microstructurales. Par exemple, le rôle de la taille des grains [START_REF] Höppel | Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime[END_REF][START_REF] Järvenpää | Effect of grain size on fatigue behavior of Type 301LN stainless steel[END_REF][START_REF] Deng | Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[END_REF] et de l'orientation cristallographique [START_REF] Mateo | Anisotropy effects on the fatigue behaviour of rolled duplex stainless steels[END_REF][START_REF] Li | Effect of crystallographic orientation and grain boundary character on fatigue cracking behaviors of coaxial copper bicrystals[END_REF] sur la nucléation des fissures de fatigue dans les matériaux métalliques est largement documenté. Le rôle de l'orientation des fibres sur le développement de l'endommagement ductile dans les matériaux composites est également bien connu [START_REF] Cirino | The effect of fiber orientation on the abrasive wear behavior of polymer composite materials[END_REF]. L'émergence de techniques expérimentales telles que la DIC [START_REF] Chu | Applications of digital-image-correlation techniques to experimental mechanics[END_REF], la tomographie [START_REF] Joachim | Electron Tomography[END_REF], ou la 3D XRD [START_REF] Poulsen | Three-Dimensional X-Ray Diffraction Microscopy[END_REF] [START_REF] Irwin | Fracture[END_REF], s'est avérée plus utile.

Cette méthode, qui examine directement le champ de contrainte autour de la pointe de la fissure, a été largement utilisée dans de nombreuses situations pratiques [START_REF] Michel | Stress Intensity Factors Handbook[END_REF][START_REF] Hills | Mechanics of fretting fatigue[END_REF][START_REF] Luke | Experimental and numerical study on crack initiation under fretting fatigue loading[END_REF][START_REF] Kazemi | Stress intensity factor determination of radially cracked circular rings subjected to tension using photoelastic technique[END_REF]. De manière similaire, [START_REF] Barenblatt | The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[END_REF] and [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] des fins de régularisation. Deuxièmement, avec une estimation de la surface totale fissurée, on peut considérer l'augmentation de l'énergie de surface associée à la formation de fissures.

Énergie libre et fonction de densité d'énergie

Comme discuté précédemment, la méthode du champ de phase repose sur la description de l'interface diffuse de [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF]. Le point de départ de la construction d'un modèle de champ de phase est la définition de l'énergie totale libre de Helmhotz F. Comme l'énergie libre totale de Helmhotz F est une grandeur extensive, il est pratique d'introduire une densité d'énergie libre ψ telle que:

F = ∫︂ V ψdV (B.1)
Dans le contexte de l'endommagement, l'énergie libre totale contient une contribution volumique F v et une contribution de surface F s . Par conséquent, l'énergie libre totale est décomposée comme suit:

F = F s + F v (B.2)
Si la surface totale fissurée est désignée par S c , la contribution de la surface F s est donnée par: Pour les matériaux ayant un comportement fragile, l'élasticité est le mécanisme de déformation principal3 puisque les conditions de chargement (par exemple, taux de déformation élevé, basses températures) empêchent les modes de déformation inélastiques (par exemple, glissement cristallographique, maclage) d'être actifs. Par conséquent, dans le contexte de la mécanique de l'endommagement, la description de la rupture fragile repose généralement sur l'hypothèse que les dommages sont purement dus à l'accumulation de l'énergie de déformation élastique [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF]. 

F s = g c S c (B.
g[0] = 0 (B.33) g[1] = ∞ (B.34) g ′ [d] ≥ 0, ∀d dans [0, 1] (B.35)
La fonction de dégradation g [d] a la forme suivante: 

g[d] = d 1 -d (B.
∂C + ∂d = -g ′ [d] C + : (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡ : C + (B.46) avec: g ′ [d] = 1 (1 -d) 2 (B.47)
Enfin, la force motrice η r , qui est la variable duale de ∇d, est définie par: 

η r = ∂ψ ∂ ∇ d (B.48) = 3g c l c 4 ∇d ( 

Lois d'évolution

Selon le second principe de la thermodynamique, la densité du taux d'énergie dissipée φ doit être non-négative. Pour les transformations isothermes, cette densité est donnée par:

φ = p i -ψ ˙(B.50) = σ : ε ˙+ ξd ˙+ η • ∇ d ˙-ψ ˙≥ 0 (B.51)
En utilisant l'expression de l'énergie libre de Helmholtz ψ, l'équation ci-dessus est ré-écrite comme suit:

φ = ⎤ σ - ∂ψ ∂ε ⎣ : ε ˙+ ⎤ ξ - ∂ψ ∂d ⎣ d ˙+ ⎤ η - ∂ψ ∂ ∇ d ⎣ • ∇ d ˙(B.52)
À partir de la liste des variables d'état, des forces thermodynamiques correspondantes et de la condition d'équilibre ξ = div η (voir la section B), l'expression de la source de dissipation devient :

φ = σ ir : ε ˙+ ξ ir d ˙+ η ir • ∇ d ˙≥ 0 (B.53)
Avec:

σ ir = σ -σ r (B.54) η ir = η -η r (B.55) ξ ir = ξ -ξ r = div η -ξ r (B.56)
Dans le contexte des matériaux standard généralisés [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF] Ce chapitre est organisé comme suit. La première section se concentre sur la description du modèle constitutif proposé. Comme le modèle vise à prendre en compte l'impact des hétérogénéités microstructurales, le cadre général de la plasticité cristalline [START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications[END_REF] est combiné avec la mécanique de l'endommagement non local pour la construction des relations constitutives. La stratégie utilisée pour la mise en oeuvre numérique du modèle proposé est détaillée dans la deuxième section.

Quelques exemples numériques sont présentés dans la dernière section. Ces exemples permettent de discuter des avantages et des limites de la formulation proposée.

Équations constitutives

Cadre de la plasticité cristalline

Pour les matériaux métalliques polycristallins, le glissement cristallographique est souvent le mode de déformation plastique le plus important. Bien que certains mécanismes de déformation supplémentaires puissent être actifs (par exemple le maclage ou les transformations de phase), le glissement cristallographique est donc considéré comme le seul mode de déformation plastique dans ce qui suit.

En raison du glissement cristallographique, la réponse mécanique d'un point matériel cristallin dépend de l'orientation des systèmes de glissement par rapport à la direction de chargement. L'aspect proposée repose sur le concept de variable interne (maugin94), l'impact de l'histoire passée doit être considéré avec un ensemble approprié de variables internes. Cet aspect sera détaillé dans la section suivante.

Dans le contexte de la plasticité des cristaux, le tenseur du taux de déformation plastique ε ˙p pour un point matériel est donné par : La contribution plastique au potentiel de dissipation ϕ p dépend des contraintes de cisaillement résolues τ α , du tenseur des contraintes internes x et de la contrainte de cisaillement critique r α . Dans le cas présent, la contribution plastique au potentiel de dissipation est donnée par:

ε ˙p =
ϕ p = ∑︂ α L M + 1 ⎤ ⟨♣τ α -χ α ♣ -r α ⟩ L ⎣ M +1 (B.121)
où χ α est la projection du tenseur x sur le système de glissement considéré :

χ α = m α • x • n α (B.122)
La contribution de l'endommagement au potentiel de dissipation ϕ d prend une forme similaire : [START_REF] Lubarda | Damage tensors and the crack density distribution[END_REF], soit inclure certaines informations concernant l'orientation locale des fissures par rapport à l'état de contrainte [START_REF] Steinke | A phase-field crack model based on directional stress decomposition[END_REF].

ϕ d = K N + 1 (︄ ⟨ξ ir ⟩ K )︄ N +1
Enfin, pour valider et améliorer la stratégie proposée, certains résultats expérimentaux sont nécessaires. Dans cette perspective, les techniques de microtomographie 3D apparaissent comme une méthode intéressante pour l'étude de la propagation des fissures dans les matériaux solides [START_REF] Réthoré | Three-dimensional Analysis of Fatigue Crack Propagation using X-Ray Tomography, Digital Volume Correlation and Extended Finite Element Simulations[END_REF]. Des efforts importants devraient donc être déployés pour obtenir des résultats expérimentaux qui aideraient à recueillir certaines informations à l'échelle microscopique pour différents matériaux et différentes conditions de chargement.
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  constitutive model. Because the model aims at considering the impact of microstructural heterogeneities, the general framework of crystal plasticity[START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications[END_REF] is combined with non-local damage mechanics for the construction of constitutive relations. The strategy used for the numerical implementation of the proposed model is detailed in the second section. Some numerical examples are presented in the final section. These examples allow discussing the advantages and limitations of the proposed formulation.

CHAPTER 4 .

 4 A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE 4.3.1 Displacement field When inertia effects are neglected, the evolution of the displacement field u is governed by the following field equations: divσ = 0 (4.70) σ = C [ε, d] : ε e (4.71

  4.85) CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE Within the context of the finite element method, the damage variables d and d ⋆ at position x are evaluated from the interpolation function N and the nodal damage vectors D and D ⋆ with:

CHAPTER 4 .

 4 A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE4.4 Numerical examplesIn this section, some illustrative numerical examples are presented. These examples aim at investigating the ability of the proposed model to capture representative aspects of the fracture process of polycrystalline metallic materials. In the following, two different types of simulations are conducted.

For

  the following 2D examples, only the four slip systems (120)[21 ¯0], (210)[12 ¯0], (21 ¯0)[120] and (12 ¯0)[210] are considered. Also, the polycrystalline microstructure of the different specimens has been obtained from a Voronoi tessellation. Once the microstructure has been obtained, a random crystallographic orientation is affected to each crystal. In the 2D case, the rotation matrix R that allows switching between the crystal (i.e. fractional) and sample (i.e. global) coordinate systems has the following form:
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 4 .1.1 Uniaxial tension test To evaluate the performance of the model, a uniaxial tension test is first simulated. The specimen geometry and the boundary conditions are presented in Figure 4.2. A vertical displacement of +u (respectively -u) is progressively imposed on the upper (respectively lower) boundary of the specimen. The total duration of the tension test is 0.1 s and 20 000 increments are used to reach the maximum vertical displacement which is of 0.03 mm. The prescribed velocity on the upper and lower edges of the tension specimen is therefore equal to 0.3 mm/s.CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE Description Parameter[Unit] Value Elasticity

( 2006 )

 2006 using a non-local damage model and Ambati et al. (2016) using a phase field damage model.

Figure 4 .

 4 Figure 4.16 shows that, as a result of the application of the tensile load, a plastic shear band develops between the notches and gives birth to two different cracks. After, the strains begin to localize, these two cracks extend to the center of the specimen. The crack patterns shown in 4.16 correspond to the points labeled (a-c) in the load versus displacement curve presented in Figure4.17. The obtained crack pattern is in agreement with the results of[START_REF] Mediavilla | Discrete crack modelling of ductile fracture driven by non-local softening plasticity[END_REF] and[START_REF] Ambati | A Phase-field Model for Ductile Fracture at Finite Strains and Its Experimental Verification[END_REF].

CHAPTER 4 .

 4 A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE FRACTURE encountered during crack propagation tests.4.4.2.1 Short fatigue cracksFor the modelling of fatigue crack nucleation, the specimen shown in Figure4.18 is used. Fatigue tests are conducted with a frequency of f = 1 Hz. Controlled displacement is assumed for all the tests. Specifically, as shown in Figure4.18(a), the upper and the lower surfaces of the specimen are subjected to a sinusoidal displacement defined by u[t] = u m sin(2πf t). The polycrystalline microstructure has been generated for all specimens with a Voronoï tessellation of 400 seed points. The crystallographic orientation of the individual grains are assigned randomly. The structure is meshed with 42 000 triangular elements.
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  3) où g c est la densité énergétique de la surface fissurée. Pour l'évaluation de la surface totale fissurée S c dans un solide B, la méthode champ de phase repose sur l'introduction d'une fonctionnelle représentant la densité de fissures γ qui dépend à la fois du champ de phase d et de son gradient ∇d 1 : conséquence, la densité totale d'énergie libre ψ peut être décomposée en une contribution volumique Modèle de champ de phase pour les matériaux élastiques: Application pour la rupture fragile

  , les équations d'évolution, qui relient les forces dissipatives aux variables flux, sont obtenues à partir d'un potentiel de dissipation ϕ. Dans le présent travail, le potentiel de dissipation est une fonction qui dépend uniquement de ξ ir et d. L'hypothèse sous-jacente est qu'il n'y a pas de contrainte visqueuse, autrement dit : manière, le comportement ne dépend pas de la vitesse à laquelle le gradient spatial du champ d'endommagement change, ce qui signifie que: de ces deux hypothèses est qu'il n'y a pas de contributions visqueuses au tenseur de contrainte σ ou à la force thermodynamique η dans le sens où: σ r = σ (B.61) η r = η (B.62)

  ⊗ n α + n α ⊗ m α )γ ˙α (B.73) où γ ˙α est le taux de cisaillement plastique pour le système de glissement α. Comme n α et m α sont orthogonaux l'un à l'autre, il est clair que le glissement cristallographique résulte en un écoulement plastique incompressible dans le sens où : tr[ε ˙p] = 0 (B.74) Si nous négligeons les rotations du réseau, la normale au plan de glissement et la direction du glissement sont toutes deux constantes par rapport au temps. Par conséquent, la relation (B.73) est facilement intégrée, ce qui conduit à 5 : ⊗ n α + n α ⊗ m α )γ α (B.75) Lois d'état Le point de départ de la construction d'un modèle constitutif est de définir la liste des variables utilisées pour définir l'état d'un point matériel à chaque instant. Dans le présent travail, les contributions thermiques sont négligées, de sorte que la température absolue n'est pas considérée comme une variable d'état. Par conséquent, les seules variables d'état externes sont le tenseur des déformations ε, la variable d'endommagement d et son gradient spatial ∇ d. Comme pour la formulation élastique discutée au chapitre B, la variable d'endommagement permet de considérer la dégradation progressive des propriétés mécaniques au cours d'un processus de déformation. De plus, l'intérêt du gradient ∇ d est double. Tout d'abord, il permet de contourner les problèmes liés à la localisation induite par l'endommagement. Deuxièmement, il offre la possibilité de considérer l'augmentation de l'énergie de surface résultant de la nucléation et de la propagation des fissures. d'énergie libre :ψ[ε, γ α , z , λ α , d, ∇ d] = ψ e [ε, γ α , d] + ψ k [ z , d] + ψ i [λ α , d] + ψ s [d, ∇ d] (B.76)La contribution élastique à l'énergie libre est donnée par :ψ e [ε, γ α , d] = 1 2 ε e : C[ε e , d] : ε e (ε p ) : C[ε e , d] : (εε p ) (B.78)où C est le tenseur de rigidité et S = C -1 est le tenseur de souplesse. Pour inclure l'impact de l'endommagement sur les propriétés de rigidité, une stratégie similaire à celle utilisée pour la formulation purement élastique est adoptée. Plus précisément, en fonction du tenseur de déformation élastique sphérique, deux situations différentes sont envisagées :C[ε e , d] = {︄ C + [d] if tr(ε) = tr(ε e ) ≥ 0 C -[d] if tr(ε) = tr(ε e ) < 0 (B.79) Dans l'équation ci-dessus, C + est le tenseur de rigidité correspondant à un tenseur de déformation élastique sphérique positif tandis que C -est le tenseur de rigidité correspondant à un tenseur de déformation élastique sphérique négatif. Ces deux tenseurs sont évalués à partir de : s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡⎡ -1 (B.80) C -[d] = C + [d] + P s : (︂ C ˜-C + [d] ⎡ : P s (B.81) où C ˜est le tenseur de rigidité initial, f d et f s sont des paramètres matériels qui contrôlent l'impact de l'endommagement sur les contributions déviatoiriques et sphériques du tenseur de rigidité. La présente stratégie permet d'envisager les effets de fermeture au sens où, lorsque le tenseur de déformation élastique sphérique est négatif, la contribution sphérique du tenseur de rigidité n'est pas affectée par l'endommagement puisque: P s : C : P s = P s : C ˜: P s if tr(ε) = tr(ε e ) < 0 (B.82) Pour la contribution de l'écrouissage cinématique ψ k , le choix le plus simple est une forme quadratique par rapport à la variable d'écrouissage cinématique z : ψ k [ z , d] = 1 2 z : K[ z , d] : z (Ble taux de restitution d'énergie :

  avec M ˜= K -1 . Il convient de mentionner que, en raison des couplages entre l'élasticité et l'endommagement et l'écrouissage et l'endommagement, la force motrice de l'endommagement contient des contributions du tenseur de déformation élastique ainsi que des variables internes d'écrouissage. Enfin, la dérivation du potentiel d'état ψ par rapport au gradient de la variable d'endommagement ∇ d fournit l'expression de la force motrice η r : équations d'état, qui relient les forces motrices aux variables d'état, sont données par: (B.91), (B.93), (B.95), (B.98), (B.100) and (B.107). APPENDIX B. R ÉSUM É DE LA TH ÈSE EN FRAN ÇAIS Dans ce qui suit, la contribution de la plasticité au potentiel de dissipation est désignée par ϕ p tandis que la contribution associée à l'endommagement est désignée par ϕ d . De même, le potentiel de dissipation est indépendant de ε ˙et ∇ d ˙, de sorte que : est qu'il n'y a pas de contributions visqueuses au tenseur des contraintes σ ou à la force thermodynamique η dans le sens où : Taux de la variable d'écrouissage cinématique z ˙-x Taux de la variable d'écrouissage isotrope λ ˙α -r α Taux d'endommagement d ˙ξir Taux de gradient d'endommagement ∇ d ˙η ir Table B.5: Liste des variables de flux et des forces dissipatives correspondantes.

( 1

 1 -d) (B.123) APPENDIX B. R ÉSUM É DE LA TH ÈSE EN FRAN ÇAIS de fracture des matériaux métalliques polycristallins. Des conditions de chargement cyclique sont prescrites aux échantillons polycristallins pour étudier la rupture due à la fatigue. Pour ces conditions de chargement spécifiques, le tenseur de déformation élastique et le tenseur de déformation plastique ont des normes similaires (c'est-à-dire ♣♣ε e ♣♣♣♣ ≈ ♣♣ε p ♣♣).L'état de déformations planes est supposé pour tous les exemples. En outre, pour toutes les géométries utilisées dans cette section, la condition aux limites η • n = 0 est imposée (voir section B). Pour les propriétés de rigidité et d'écrouissage, le cas spécifique de la symétrie cubique est considéré pour les exemples numériques. Dans ce cas, le tenseur de rigidité initial C ˜est défini à partir de trois constantes indépendantes C 11 , C 12 et C 44 . En utilisant la notation Voigt en deux dimensions, ce tenseur peut s'écrire comme : manière, en raison de la symétrie cubique, le module d'écrouissage cinématique initial K ẽst où K 11 , K 12 et K 44 sont trois constantes indépendantes. Dans certaines situations, le cas particulier de l'isotropie sera considéré. Dans ce cas, C ˜et K ˜sont tous deux définis à partir de deux constantes indépendantes puisque les conditions suivantes doivent être remplies : C 11 -C 12 = 2C 44 (B.137) K 11 -K 12 = 2K 44 (B.138) Dans ce qui suit, pour réduire le nombre de paramètres du matériau, on suppose que le module d'écrouissage cinématique initial K ˜est lié au tenseur de rigidité initial C ˜avec un seul paramètre scalaire B tel que: K ˜= BC ˜(B.139) Pour les matériaux à symétrie cubique, le degré d'anisotropie peut être évalué à partir du rapport Zener Z (Zener and Siegel, 1949), qui est défini selon : Z = 2C 44 C 11 -C 12 (B.140) externe n'entraîne pas de difficultés théoriques importantes. Toutefois, d'un point de vue numérique, elle nécessite la résolution d'une équation différentielle supplémentaire, l'équation de diffusion de la chaleur, qui peut être numériquement coûteuse. Deuxièmement, le présent travail est limité au contexte des transformations infinitésimales. Si cela est généralement satisfaisant pour les ruptures fragiles ou de fatigue, une description précise de la rupture ductile nécessiterait une extension aux déformations finies. Une fois encore, le cadre théorique d'une extension aux déformations finies est bien établi (Asaro and Needleman, 1985; Sidoroff, 1982), les principales difficultés sont liées à la mise en oeuvre numérique. Troisièmement, si la décomposition déviatorique/sphérique permet d'envisager les effets de fermeture de manière simple, elle ne donne pas toujours des résultats satisfaisants. En effet, pour une éprouvette fissurée, la rigidité dans le plan normal de la fissure n'est pas totalement récupérée (seule la partie sphérique l'est). Il s'agit d'une limitation du modèle proposé, qui n'améliore pas le modèle d' Amor et al. (2009) pour cet aspect spécifique. Il convient de mentionner que cette limitation s'applique également au modèle deMiehe et al. (2010b), qui utilise une décomposition positive/négative. Cela est dû au fait que ces modèles utilisent une variable d'endommagement scalaire qui, par définition, ne fournit aucune information concernant l'orientation locale des fissures. Pour contourner ce problème, il faut soit utiliser une variable d'endommagement tensorielle
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	TO BRITTLE FRACTURE			
	Case		1	2	3
	Elasticity C 11 [kN/mm 2 ] 180 180 52 C 12 [kN/mm 2 ] 104 100 29 C 44 [kN/mm 2 ] 21 40 117
		Z	0.5	1	10
	Damage	g c	2.7 × 10 -3 kN/mm
		K	10 -3 kNs/mm 2
		l c		10 -2 mm
		f d		0.1
		f s		10
		N		1

.6: Polycrystalline volume element under tension: Material parameters for different Z values.
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			Driving force
		External Internal	
	Strain tensor	ε	σ r
	Plastic shear strain	γ α	-τ α
	Kinematic hardening variable	z	x
	Isotropic hardening variable	λ α	r α
	Damage variable	d	ξ r
	Damage gradient	∇ d	η r

1: List of state variables and corresponding driving forces.

Table 4 .
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	54)

2: List of flux variables and corresponding dissipative forces.

Table 4

 4 .7 have been used for simulations.As shown in figure4.29, an oscillatory vertical effort is imposed on the top edge and on the bottom edge of the specimen u[t]. During cyclic loading, the load ratio is fixed to zero and the frequency is 1

	Hz.

  offre quelques possibilités pour mieux comprendre le rôle de la microstructure sur le développement de l;endommagement. Toutefois, ces techniques expérimentales nécessitent souvent des dispositifs expérimentaux sophistiqués, et ne peuvent donc pas être utilisées de manière systématique. En outre, elles ne fournissent que des informations partielles sur l'état réel de l'élément de volume étudié. Certains modèles numériques ont donc été développés pour obtenir des informations

	Étude bibliographique
	Introduction
	supplémentaires sur le rôle des hétérogénéités microstructurales. Plus précisément, la description de
	l'endommagement par des modélisations numériques est un défi important dans la science des matéri-
	aux. Cependant, l'incorporation de l'endommagement dans les modèles constitutifs est une tâche
	complexe, principalement en raison des problèmes de calcul associés à l'amorçage et à la propagation

des discontinuités de surface (c'est-à-dire des fissures). Ces difficultés peuvent être contournées grâce à la méthode du champ de phase (MCP), qui fournit un cadre général pour le traitement des problèmes d'interfaces mobiles.

L'objectif principal de la mécanique de la rupture est de fournir les outils nécessaires à la modélisation de la propagation des fissures dans les matériaux solides. Cet aspect est souvent indispensable pour déterminer si les conditions de rupture sont remplies ou non au sein d'une structure. Le principe théorique de la rupture est basé sur les travaux de

[START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF]

, qui s'appuie sur des arguments énergétiques pour considérer la propagation des fissures.

[START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF] 

a postulé que la propagation des fissures existantes débute lorsque la quantité d'énergie libérée à la pointe de la fissure devient égale ou supérieure à l'énergie requise pour la création de nouvelles surfaces. Bien que l'approche énergétique fournisse certaines informations sur le processus de rupture, elle est inappropriée pour traiter des phénomènes tels que la nucléation ou la bifurcation. Une méthode alternative, connue sous le nom de méthode des facteurs d'intensité des contraintes

  ont proposé le modèle de la zone cohésive (MZC), qui consiste à introduire une loi de cohésion pour une surface spécifique. La loi de cohésion de cette surface est définie par la relation traction-séparation. La relation entre la traction et la séparation de la surface est que lorsque l'espacement augmente, la traction sur cette surface cohésive atteint une valeur maximale, puis diminue et finalement disparaît, permettant une séparation totale. La méthode de la zone cohésive est une méthode relativement facile à mettre en oeuvre. Elle nécessite cependant une connaissance a priori du chemin de propagation de 'endommagement d, ainsi que son gradient spatial ∇d, permettra d'évaluer la surface totale fissurée S c dans un solide B. L'intérêt de la méthode des champs de phase dans le cadre de l'endommagement est double. Tout d'abord, l'introduction du gradient spatial de la variable d'endommagement sert à

la fissure. Différentes implémentations de modèles cohésifs dans des solveurs éléments finis ont été proposées. Dans l'implémentation

de Xu and Needleman (1994)

, tous les éléments sont séparés dès le début et un modèle cohésif approprié est utilisé pour joindre les interfaces des éléments. À l'inverse, d

  est le tenseur symétrique d'identité du quatrième ordre défini par I ijkl = 1 2 (δ ik δ jl + δ il δ jk ) et I est le tenseur d'identité du deuxième ordre défini par I ij = δ ij . La fonction de dégradation g[d] présente les propriétés suivantes:

	Avec 4 :						
	C + =	(︂	C ˜-1 + g[d]	(︂	f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d	⎡⎡ -1	(B.30)
	Les tenseurs de projection sphérique et déviatorique, P s et P d sont donnés par:	
					P s = P d = I -1 (I ⊗ I) 3 1 3 (I ⊗ I)		(B.31) (B.32)
	où I						
	à toute classe de symétrie des matériaux. En outre, un soin particulier est apporté à l'introduction
	de certains paramètres matériels pour contrôler les impacts respectifs des contributions sphériques et
	déviatoiriques sur le développement de l'endommagement, ce qui n'est pas faisable dans le modèle
	original d'Amor et al. (2009). Ce chapitre est organisé comme suit. Les relations constitutives sont
	détaillées dans la section B. Enfin, quelques exemples numériques sont présentés.	

Dans ce chapitre, un modèle de champ de phase, qui considère une variable d'endommagement scalaire et son gradient comme des variables d'état, est construit. Suivant la suggestion d

[START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF]

, la prise en compte des effets de fermeture repose sur la séparation de l'énergie de déformation élastique en contributions sphériques et déviatoiriques. Cependant, alors que la proposition originale d

[START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF] 

est limitée à l'élasticité isotrope, le modèle proposé est adapté

  Ainsi, la partie réversible du tenseur de contrainte σ r est donnée par:

	la force motrice ξ r associée à la variable d'endommagement est obtenue à partir de :
									ξ r = = π + ∂ψ ∂d 3g c 8l c	(B.42) (B.43)
	où π indique le taux de restitution d'énergie:	
							π =	1 2	ε :	∂C[ε, d] ∂d	: ε	(B.44)
	La dérivée du tenseur de rigidité C par rapport à la variable d'endommagement d est:
	∂C ∂d	=	∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂	∂C + ∂d ∂C -∂d	=	∂C + ∂d	-P s :	∂C +	dans tr(ε) = tr(ε) ≥ 0
										(B.37)
								=	3g c 8l c	(︂	d + l 2 c ∇d • ∇d	⎡	(B.38)
	où g c est la densité d'énergie de surface.		
	Les forces motrices associées aux différentes variables d'état sont obtenues par dérivation partielle
	du potentiel d'état ψ. σ r =	∂ψ ∂ε		(B.39)
						= C[ε, d] : ε +	1 2	ε :	∂C[ε, d] ∂ε	: ε	(B.40)
						= C[ε, d] : ε	(B.41)

36) La contribution de surface ψ s utilise la fonctionnelle de densité de fissures γ proposée par Pham et al., 2011, c'est-à-dire: ψ s [d, ∇d] = g c γ[d, ∇d] ∂d : P s dans tr(ε) = tr(ε) < 0 (B.45)

  IntroductionDans le chapitre précédent, un modèle constitutif destiné à la rupture fragile a été proposé. Ce modèle, qui utilise la méthode champs de phase, est basé sur l'hypothèse que l'élasticité est le seul mécanisme de déformation. Pour de nombreux matériaux, cette hypothèse n'est raisonnable que pour des températures basses et/ou des taux de déformation élevés. Dans de nombreuses situations pratiques, les conditions ci-dessus ne sont pas remplies, auquel cas certains mécanismes de déformation supplémentaires existent. Pour les matériaux métalliques, le glissement cristallographique apporte une contribution significative à la déformation lorsque la contrainte appliquée est suffisante. Dans ce chapitre, un modèle constitutif de la rupture due à la plasticité est proposé. Ce modèle peut être appliqué aux situations où les déformations plastiques sont beaucoup plus importantes que les déformations élastiques, ce qui est typique de la rupture ductile, ou lorsque les déformations élastiques et plastiques ont une ampleur similaire, ce qui est typique de la rupture par fatigue.

  La dérivée du tenseur de rigidité C par rapport à la variable d'endommagement d est :

	π =	1 2	ε e :	∂C[ε, d] ∂d	: ε e +	1 2	z :	∂K[ z , d] ∂d	: z -f i	Q 2	α ∑︂	(λ α ) 2	(B.101)
	∂C ∂d -P ∂K = ∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂ ∂C + ∂d ∂C -∂d = ∂C + ∂d ∂d = ∏︂ ⋁︂ ⋁︂ ⨄︂ ⋁︂ ⋁︂ ⋃︂ ∂K + ∂d ∂K -∂d = ∂K + ∂d -P s :	∂d ∂K +	if tr(ε) = tr(ε e ) ≥ 0 if tr( z ) ≥ 0 : P s if tr( z ) < 0	(B.104)
	∂K + ∂d	= -g									

s : ∂C + ∂d : P s if tr(ε) = tr(ε e ) < 0 (B.102) ∂C + ∂d = -g ′ [d] C + : (︂ f s P s : C ˜-1 : P s + f d P d : C ˜-1 : P d ⎡ : C + (B.

103) De la même manière, la dérivée du module d'écrouissage cinématique K par rapport à la variable d'endommagement est donnée par: ′ [d] K + : (︂ f s P s : M ˜: P s + f d P d : M ˜: P d

To be more general, one can also include higher order gradients.

The volumic contribution ψv necessarily depends on the strain tensor ε and the damage variable d. It may also depend on some additional internal variables that do not need to be specified at this stage.

Strictly speaking, the contribution of thermal expansion could also be considered. This contribution is ignored here for simplicity.

For generalization purpose, one could include some cross-terms in the definition of C + to consider interactions between deviatoric and spherical strains. These terms, which are not considered here for simplicity, necessarily vanish for isotropic and cubic materials.

When integrating (4.2), there is an integration constant, which is assumed to be a null tensor.

The maximum Schmid factor of a given grain is given by maxα[m α 1 n α 1 ] for a uniaxial tension test along e1.

Pour être plus général, on peut aussi inclure des gradients d'ordre supérieur.

Strictement parlant, la contribution de la dilatation thermique pourrait également être prise en compte. Cette contribution est ignorée ici par souci de simplicité.

À titre de généralisation, on pourrait inclure certains termes croisés dans la définition de C + pour tenir compte des interactions entre les déformations déviatoriques et sphériques. Ces termes, qui ne sont pas considérés ici pour des raisons de simplicité, disparaissent nécessairement pour les matériaux isotropes et cubiques.

Lors de l'intégration (B.73), il y a une constante d'intégration, qui est supposée être un tenseur nul.

Remerciements

In order to obtain the nodal values straight from the integration point values, a mapping projector is used. With the context of finite element method, we design by S the vector which contains the nodal information and by E a vector which contains information in the integration points. The weak form of the mapping problem is :

Lumped mass matrix

In the case of dynamics, we solve the following problem:

In using the mass matrix, there is two approaches: Appendix B Résumé de la thèse en français Bien que la MCP ait été initialement appliquée aux problèmes de transition de phases [START_REF] Bibliography Karma | Phase-Field Formulation for Quantitative Modeling of Alloy Solidification[END_REF], l'application de la MCP aux problèmes de l'endommagement a reçu récemment une grande attention. Plus précisément, dans les dernières années, la MCP est apparue comme une approche intéressante pour la description des ruptures fragiles [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]Miehe et al., 2010a;Miehe et al., 2010b;[START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF] ainsi que des ruptures ductiles (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF]. D'une manière générale, la MCP est appropriée pour traiter les problèmes d'interfaces mobiles (par exemple, les transitions de phase). La MCP repose sur l'introduction d'une variable de champ, qui joue le rôle de paramètre d'ordre, permettant d'obtenir une description régulière des interfaces dans les systèmes multiphasés. Dans le contexte de la rupture, la MCP utilise les ingrédients de la mécanique de l'endommagement [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF] pour traiter le paramètre d'ordre comme une variable d'endommagement traduisant la dégradation progressive des propriétés mécaniques. La MCP considère la variable de l'endommagement et son gradient spatial comme des variables d'état permettant d'obtenir une approximation diffuse des surfaces fissurées. Les modèles de champ de phase peuvent ainsi être interprétés comme des modèles à gradient d'endommagement [START_REF] Sicsic | From Gradient Damage Laws to Griffith's Theory of Crack Propagation[END_REF]Nguyen, 2015), pour lesquels l'énergie libre contient un terme à gradient d'endommagement faisant apparaître une longueur interne limitant la localisation de l'endommagement aux petites échelles. Par ailleurs, la MCP a été utilisée par Nguyen et al. (2015) pour modéliser le comportement des matériaux cimentaires. Les travaux de [START_REF] Larsen | Models for Dynamic Fracture Based on Griffith's Criterion[END_REF], [START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF], [START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF] et [START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF] ont montré que la MCP peut être étendue à la rupture dynamique et produire des résultats qui sont en adéquation avec les observations expérimentales. Les modèles ci-dessus basés sur la MCP sont des formulations continues, qui ne nécessitent pas un suivi explicite des surfaces de discontinuité. Par conséquent, le principal avantage de cette méthode est sa capacité à reproduire des chemins de fissuration complexes, y compris des bifurcations et des coalescences, à la fois en deux et en trois dimensions. La plupart des modèles précédemment mentionnés ont été développés pour des matériaux isotropes. En ce qui concerne l'anisotropie, les travaux de Hakim and Karma (2005) and [START_REF] Teichtmeister | Phase field modeling of fracture in anisotropic brittle solids[END_REF] ont porté sur l'anisotropie de l'énergie de surface, mais ils n'incluent pas le caractère anisotrope des autres propriétés des matériaux (par exemple, les propriétés de rigidité). L'anisotropie de l'énergie de surface est prise en compte via un tenseur du quatrième ordre pénalisant les interfaces à haute densité d'énergie et par la présence d'un terme à gradient d'ordre supérieur dans la fonction de densité d'énergie de fissuration.

Ce travail vise à développer un modèle constitutif dans le cadre général de la MCP pour traiter la nucléation et la croissance de l'endommagement dans les matériaux homogènes et polycristallins. Plus précisément, afin de prendre en compte l'impact des hétérogénéités microstructurales, des efforts sont faits pour considérer l'aspect anisotrope des propriétés de rigidité et de déformation plastique, qui peuvent être significatives pour les matériaux cristallins. En outre, très peu d'études ont étudié le couplage entre plasticité et endommagement (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF][START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF]. Ainsi, en utilisant le cadre général de la plasticité cristalline, différentes stratégies de couplage entre l'écrouissage et l'endommagement sont explorées. Dans ce travail, la formulation proposée est assez générale et permet de traiter différents mécanismes d'endommagement. Pour montrer les capacités et les limites de cette formulation, des simulations numériques sont réalisées. Elles permettent d'étudier l'impact des conditions de chargement et des hétérogénéités microstructurelles sur le développement de l'endommagement ainsi que l'impact des couplages élasticité-endommagement et écrouissage-endommagement. Certains aspects importants de la nucléation et de la propagation des fissures, y compris la bifurcation et déviation(kinking) ainsi que l'asymétrie de traction/compression, sont discutés.

Plan de la thèse

Notre contribution est principalement divisée en trois chapitres principaux avec des volets à la fois théoriques et numériques:

• La première contribution, qui sera présentée au chapitre B, fournit une succincte analyse de la littérature. Une description détaillée de la méthode de champ de phase est exposée.

• La deuxième contribution, qui sera présentée au chapitre B, consiste à développer un modèle de champ de phase pour décrire la nucléation et la propagation des fissures dans les matériaux élastiques. Le gradient spatial de la variable d'endommagement, qui est traité comme une variable d'état externe supplémentaire, sert à des raisons de régularisation et permet de prendre en compte l'augmentation d'énergie de surface associée à la formation de fissures. Les relations constitutives sont développées dans le cadre des matériaux standard généralisés [START_REF] Halphen | On Generalized Standard Materials. [sur les matériaux standards generalisés[END_REF] de Camacho and Ortiz (1996), de nouvelles surfaces sont créées le long des interfaces des éléments précédents. D'un point de vue fondamental, ces approches (modèles CZM, Griffith et Irwin) ne sont pas naturellement autonomes. Des critères supplémentaires doivent être introduits pour déterminer où et quand une fissure s'amorce, à quelle vitesse elle se propage et dans quelle direction, et quand elle bifurque. Même si de nombreux problèmes d'ingénierie peuvent être résolus avec les méthodes précédemment mentionnées, certaines difficultés numériques persistent, comme le suivi des surfaces de fissures dans des cas en 3D.

Pour la description des surfaces de discontinuité, la méthode des éléments finis étendue (XFEM) est largement utilisée. En effet, proposée par [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], cette approche a été appliquée avec succès à de nombreux problèmes impliquant des surfaces de discontinuité mobiles [START_REF] Dolbow | Modeling fracture in Mindlin-Reissner plates with the eXtended finite element method[END_REF][START_REF] Sukumar | Extended finite element method for three-dimensional crack modelling[END_REF][START_REF] Moës | Imposing Dirichlet boundary conditions in the extended finite element method[END_REF]. L'idée fondamentale de la XFEM consiste à enrichir l'approximation FEM avec quelques fonctions supplémentaires qui modélisent les surfaces de discontinuité internes et qui peuvant évoluer avec le temps. Alors que la XFEM a été largement utilisée pour les problèmes de propagation des fissures [START_REF] Daux | Arbitrary branched and intersecting cracks with the extended finite element method[END_REF][START_REF] Areias | Non-linear analysis of shells with arbitrary evolving cracks using XFEM[END_REF][START_REF] Aubertin | A coupled molecular dynamics and extended finite element method for dynamic crack propagation[END_REF], l'utilisation de la XFEM pour la détermination des surfaces de fissures et des trajectoires de fissures correctes en 3D reste un problème ouvert [START_REF] Rabczuk | On three-dimensional modeling of crack growth using partition of unity methods[END_REF].

La théorie de la mécanique de l'endommagement (ME), dont le principe a été introduit par [START_REF] Kachanov | Time of the Rupture Process under Creep Conditions[END_REF], fournit un cadre alternatif pour considérer la dégradation progressive de la résistance mécanique d'une structure. Contrairement à la mécanique de la rupture, qui prend explicitement en compte les fissures, la ME traite principalement l'impact des micro-défauts sur le comportement mécanique d'un point matériel en introduisant une variable d'endommagement. Dans le contexte de la thermodynamique, la variable d'endommagement est une variable d'état qui représente l'impact des microfissures et/ou des microcavités sur le comportement (thermo-)mécanique d'un point matériel.

Dans le cas d'un endommagement isotrope, une seule variable scalaire d, qui mesure la densité de surface des microfissures, est introduite. Un nombre important d'extensions a été proposé pour prendre en compte l'anisotropie induite par l'endommagement. À cet effet, les stratégies usuelles consistent à introduire une variable d'endommagement tensorielle, plutôt que scalaire, [START_REF] Leckie | Tensorial Nature of Damage Measuring Internal Variables[END_REF][START_REF] Lemaitre | Anisotropic damage law of evolution[END_REF] ou des variables d'endommagement multiples [START_REF] Ladevèze | Damage effective stress in quasi-unilateral conditions[END_REF][START_REF] Mazars | Continuum Damage Theory: Application to Concrete[END_REF][START_REF] Cauvin | Damage mechanics : basic variables in continuum theories[END_REF]. Au cours des dernières décennies, la ME a été utilisé pour décrire une large variété de problèmes, y compris l'endommagement ductile (Lemaitre, 1985c;Lemaitre, 1985a;[START_REF] Ladevèze | Damage effective stress in quasi-unilateral conditions[END_REF], l'endommagement fragile [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Borst | Fracture in quasi-brittle materials: a review of continuum damage-based approaches[END_REF][START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF], l'endommagement par fatigue [START_REF] Chaboche | A non-linear continuous fatigue damage model[END_REF][START_REF] Peerlings | Computational modelling of gradientenhanced damage for fracture and fatigue problems[END_REF] et l'endommagement par fluage [START_REF] Kachanov | Time of the Rupture Process under Creep Conditions[END_REF][START_REF] Chaboche | Description thermodynamique et phenomenologique de la viscoelasticite cyclique avec endommagement[END_REF]. Cependant, l'utilisation de la ME dans le contexte de la méthode des éléments finis pour modéliser l'adoucissement (softening) des contraintes souffre potentiellement d'une dépendance excessive au maillage [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Jirásek | Nonlocal damage mechanics[END_REF]. Différents remèdes à la dépendance au maillage ont donc été proposés [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Branco | A review on 3D-FE adaptive remeshing techniques for crack growth modelling[END_REF]. Un autre inconvénient de la mécanique de l'endommagement est le fait qu'il s'agit d'une approche continue qui ne permet pas de représenter correctement les surfaces de discontinuité. Cela a conduit au développement d'approches continues-discontinues, dans lesquelles une description continue de la fissuration est utilisée jusqu'au stade final de la défaillance, qui est modélisée par une approche discontinue.

Pour un point matériel, le développement de l'endommagement conduit à un phénomène d'adoucissement.

Un tel comportement peut conduire à une perte d'ellipticité des équations différentielles gouvernant le comportement d'un milieu continu. Le problème mathématique qui en résulte devient donc mal posé dans le sens où il ne dispose pas d'une solution unique avec une dépendance continue aux données fournies. Cela peut conduire à des localisations indésirables dépendantes du maillage. Par conséquent, diverses approches de régularisation ont été développées, telles que la théorie non-locale de l'endommagement [START_REF] Pijaudier-Cabot | Nonlocal Damage Theory[END_REF][START_REF] Bažant | Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress[END_REF], les modèles enrichis par gradient [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Vandoren | Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models[END_REF], le modèle à gradient d'endommagement [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF][START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF] et la méthode de champ de phase (PFM) pour la rupture [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF][START_REF] Hofacker | A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns[END_REF]. Ces approches peuvent être perçues comme différentes extensions du cadre de la ME qui, dans sa forme originale, est purement local.

Méthode de champs de phase Principe générale

La méthode des champs de phase est une approche générale pour la modélisation de l'évolution des microstructures. Plus précisément, la MCP est bien adaptée pour traiter les problèmes d'interface.

Par exemple, cette méthode a été utilisée pour décrire la solidification [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF][START_REF] Suzuki | Phase-field model of dendritic growth[END_REF] ψ v , qui est purement locale 2 , et d'une contribution surfacique ψ s , qui est non locale :

Cette dernière équation est l'un des éléments clés pour la construction d'un modèle d'endommagement non local dans le cadre de la MCP.

Différentes propositions ont été faites pour la construction de la fonctionnelle de densité de fissuration γ. La proposition la plus largement utilisée (Bourdin et al., 2008;Miehe et al., 2010b;[START_REF] Hofacker | Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation[END_REF][START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF] est donnée par:

Alors que le premier terme de l'équation B.7 est purement local, le dernier terme inclut une contribution non locale, qui joue un rôle de régularisation en limitant la localisation de l'endommagement. Ce terme implique une longueur interne l c qui contrôle la largeur de la zone de localisation de l'endommagement, la description discrète étant récupérée lorsque l c s'approche de zéro.

Afin de fournir une régularité supplémentaire, une théorie d'ordre supérieur pour la fonctionnelle de densité de fissures a été proposée par [START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF]. Cette fonctionnelle a la forme:

Lorsque l'intégration par parties est appliquée, cette fonctionnelle conduit à un problème de forme forte avec des dérivés d'ordre 4 de d (c'est-à-dire ∆(∆d)). Ce problème augmente la régularité de la solution exacte de l'équation de champ de phase. Cependant, l'exploitation de cette théorie est numériquement coûteuse.

Une fonctionnelle qui dépend linéairement de d a été proposée par [START_REF] Pham | Gradient Damage Models and Their Use to Approximate Brittle Fracture[END_REF], et utilisée plus tard par Bleyer et al. (2017b). Cette fonctionnelle a la forme suivante :

Dans l'équation ci-dessus, la contribution non locale est très similaire à celle utilisée dans (B.7).

2 La contribution volumique ψv dépend nécessairement du tenseur de déformation ε et de la variable d'endommagement d. Elle peut également dépendre de certaines variables internes supplémentaires qui n'ont pas besoin d'être spécifiées à ce stade.

où ρ est la masse volumique.

Le principe des puissances virtuelles, qui est fourni par (B.10), s'écrit :

Pour que l'égalité ci-dessus soit respectée pour chaque u ˙⋆ et pour chaque d ˙⋆, il faut avoir:

La surface de discontinuité A divise le corps en sous-domaines V + et V -. La normale externe à

A, qui pointe vers V -, est définie par le vecteur unitaire m (voir figure B.3). Les indices "+" et "-"

se réfèrent aux deux côtés de la surface de discontinuité A. Avec ces conventions, on a :

)

Dans ce qui suit, σ + est le tenseur des contraintes (respectivement η + est la force associée au gradient d'endommagement) agissant sur le côté "+" de la surface de discontinuité. Leurs homologues du côté "-" de la surface de la discontinuité sont désignés par

est le saut du tenseur des contraintes (respectivement le saut de la force associée au gradient d'endommagement) à travers la surface de la discontinuité A.

L'application du théorème de divergence à l'équation (B.13) conduit à l'expression suivante:

Il convient de mentionner que, pour obtenir l'égalité ci-dessus, la continuité du champ de vitesse est nécessaire. De plus, l'équation d'équilibre local pour le champ de contrainte et les conditions aux limites correspondantes sont déduites de la relation ci-dessus :

De la même manière, par l'application du théorème de la divergence à l'équation (B.14), on obtient que :

Par conséquent, les champs ξ et η sont restreints par les conditions suivantes: 

La contribution de volume ψ v dépend du tenseur de déformation ε selon:

le tenseur de rigidité C est donné par:

Pour la dépendance du potentiel de dissipation par rapport à la force de dissipation, on suppose une relation de type puissance:

La convexité du potentiel de dissipation permet de calculer le sous-différentiel d ˙, qui est tel que: 

with: On suppose également une forme quadratique pour la contribution du durcissement isotrope à l'énergie libre ψ i , c'est-à-dire que: 

où g c est la densité d'énergie de surface de la fissure et l c est une longueur interne.

Il convient de noter que la convexité du potentiel, qui garantit la stabilité thermodynamique, n'est satisfaite que lorsque C et K sont des tenseurs semi-définis positifs alors que Q, g c et l c doivent être non-négatifs.

Le potentiel d'état ψ permet de déterminer les expressions des forces thermodynamiques associées aux différentes variables d'état. Tout d'abord, la partie réversible du tenseur de contrainte σ r est obtenue à partir de la dérivation de ψ par rapport à ε, ce qui conduit à :

Il convient de mentionner que, selon la définition ci-dessus du tenseur de rigidité, σ r est une fonction continue de ε e .

La force thermodynamique associée à la déformation plastique de cisaillement γ α est (au signe près) la contrainte de cisaillement résolue τ α , qui est simplement la projection du tenseur des contraintes σ r sur le système de glissement correspondant :

La dérivation du potentiel d'état par rapport à la variable d'écrouissage isotrope λ α conduit à l'expression suivante de la contrainte de cisaillement critique r α , qui représente la résistance à l'écoulement plastique :

Le tenseur des contraintes internes x , qui fournit la position de la surface de charge dans l'espace des contraintes, est relié à la variable cinématique d'écrouissage z par :

La force motrice ξ r associée à la variable d'endommagement d est reliée aux variables d'état par

Lois d'évolution

La deuxième loi de la thermodynamique exige que la source de dissipation φ soit non-négative, ce qui impose certaines contraintes concernant les lois d'évolution associées aux différentes variables d'état. Pour les transformations isothermes, la source de dissipation est donnée par :

En utilisant l'expression de la densité d'énergie libre de Helmholtz ψ, qui dépend uniquement des variables d'état, l'expression ci-dessus de la source de dissipation devient :

L'équation ci-dessus peut être reformulée en utilisant les définitions des forces motrices associées aux variables d'état, ce qui conduit à:

De même, à l'aide de la condition d'équilibre ξ = div η (voir section B), on obtient que :

Avec: 

Pour chaque système de glissement, l'évolution de la variable d'écrouissage isotrope correspondante est contrôlée par l'équation suivante :

Le taux de la variable d'écrouissage cinématique z ˙est obtenu à partir de la dérivation du potentiel de dissipation par rapport au tenseur x , ce qui donne:

Enfin, pour l'évolution de l'endommagement, on constate que : 

Fissures de fatigue courtes

Pour la modélisation de la nucléation des fissures en fatigue, on utilise l'éprouvette présentée sur la figure B.12. Les essais de fatigue sont effectués à une fréquence de f = 1 Hz. 

Conclusions et perspectives Conclusions

Le présent travail vise à utiliser la MCP pour modéliser l'évolution de l'endommagement. Plus précisément, ce travail se concentre sur (i) le développement de différents modèles constitutifs dans le cadre de la MCP et (ii) la mise en oeuvre numérique de ces modèles. En ce qui concerne le premier aspect, deux situations ont été traitées. La première concerne la modélisation de la rupture fragile, pour laquelle le développement de l'endommagement est déterminé par l'accumulation de l'énergie de déformation élastique. La seconde proposition, qui peut être perçue comme une extension de la première, concerne les dommages dus à la plasticité dans les matériaux polycristallins. Les relations constitutives qui en résultent peuvent ainsi être utilisées pour la modélisation de la rupture ductile ou de fatigue.

Le modèle de champ de phase pour les ruptures fragiles a été décrit dans le troisième chapitre.

Suivant la suggestion d [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF], la décomposition déviatorique/sphérique de l'énergie de déformation élastique a été utilisée pour considérer les effets de fermeture. Cependant, alors que la proposition d [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF] est limitée à l'élasticité isotrope, la stratégie proposée est adaptée à toute classe de symétrie matérielle (élasticité anisotrope). En outre, certains efforts ont été faits pour introduire des paramètres matériels qui contrôlent l'impact des contributions déviatoriques et sphériques au développement de l'endommagement. Pour illustrer les capacités du modèle proposé, il a été implémenté dans un solveur éléments finis. Les résultats numériques indiquent que :

• La trajectoire de propagation de la fissure peut être contrôlée avec certains des paramètres du modèle d'endommagement. La conséquence directe est que ces paramètres peuvent être identifiés à partir de résultats expérimentaux.

• Lorsque la rupture totale se produit, la réduction de la rigidité due à l'endommagement entraîne une disparition totale de la force appliquée en l'absence d'effets de fermeture.

• Le modèle proposé permet de saisir certains aspects importants de la propagation des fissures dans des conditions de chargement dynamique, comme la bifurcation des fissures.

• La bifurcation est également observée dans une microstructure hétérogène (par exemple, une microstructure polycristalline). En effet, les contraintes internes, qui sont importantes à proximité des jonctions triples, sont parfois responsables d'un phénomène de bifurcation.

L'extension du modèle ci-dessus à la rupture due à la plasticité a été détaillée dans le quatrième chapitre. Le cadre de la plasticité cristalline a été utilisé pour la construction des relations constitutives.

Le modèle proposé est donc conçu pour les matériaux cristallins, pour lesquels le développement des déformations plastiques se fait sur des plans cristallographiques spécifiques et selon des directions cristallographiques spécifiques. Contrairement à certains modèles de champ de phase pour la rupture ductile (Miehe et al., 2016a;[START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Kuhn | On phase field modeling of ductile fracture[END_REF][START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF] 

Perspectives

Tandis que les relations constitutives proposées permettent de prendre en compte certaines caractéristiques importantes de la rupture fragile, ductile et de fatigue, certains aspects n'ont pas été inclus dans le présent travail.

Tout d'abord, le rôle de la température a été exclu, ce qui signifie que des phénomènes tels que le choc thermique ne peuvent être traités. L'introduction de la température comme variable d'état