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Résumé en français

Dans ce premier chapitre, nous présentons le contexte général du développe-
ment des véhicules autonomes ainsi que les différents enjeux et difficultés ren-
contrés dans ce domaine. Nous commençons par une petite revue historique
sur le développement des robots autonomes, puis, nous abordons les différents
standard et architectures utilisés dans la conduite autonome.

1.1 Context and challenges

The development of self-driving cars has recently gained interest in the scientific re-
search community and the industrial world. The main motivation is to increase the
occupant safety and to reduce car crashes as much as possible. Indeed, the National
Highway Traffic Safety Administration (NHTSA) reported in 2016 that 94 percent of
deadly car crashes on US roads are caused by human error [NHTSA, 2016]. Although
a level 5 fully autonomous vehicle does not exist at the moment, driver assistance
systems have been effective in reducing fatal crash rates. NHTSA reported in 2018
that the overall fatalities due to car crashes have been reduced by 2.4 percent thanks
to the introduction of new sensor-based technologies in recent car models [NHTSA,
2018]. Another motivation is the introduction of driverless robotaxis and shuttles as
new business models for private and public transportations. This could have a pos-
itive impact on road safety, traffic congestion and parking. Since these services will
most probably use electric vehicles, significant improvements could be expected for
pollution and energy consumption.

Historically, autonomous mobile robots have been studied for more than 40 years.
The first developed mobile robot was presented by the Stanford Research institute (SRI)
between 1966 and 1972, named Shakey (Figure 1.1a). It was equipped with cameras,
range finders and wheel odometers. In 1977, Tsukuba Mechanical Engineering Lab in
Japan developed a driverless car capable of running at 30 [km/h] on a dedicated track
by following white street marks. Later, in the 1980s, professor Ernst Dickmanns de-
signed a self driving vehicle that achieved high speed driving on highways. Since then,
many European projects addressed autonomous driving developments, for instance,
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the PROMETEUS (1987-1995), ARGO (1996-2001), Cybercars (2001-2004, 2006-2008),
Citymobil projects (2006-2011) and (2012-2016).

A first major step toward autonomous vehicles has been demonstrated in the DARPA
Grand Challenge in 2005. The vehicles had to cross 200 Km of desert roads in fully
autonomous mode at an average speed of 30 [km/h]. Stanley, the winner of the chal-
lenge, was created by Stanford University’s Stanford Racing Team in cooperation with
the Volkswagen Electronics Research Laboratory (ERL) (figure 1.1b). A second major
step is the DARPA Grand Challenge in 2007 which addressed urban environments
(DARPA URBAN CHALLENGE). This event required teams to build an autonomous
vehicle capable of driving in traffic, performing complex maneuvers such as merg-
ing, passing, parking and negotiating intersections. The entry Tartan Racing of the
Carnegie Mellon team crossed the finish line first.

(a) Shakey robot (b) Stanely vehicle

Figure 1.1: Examples of autonomous mobile robots

In general, fully autonomous robots require three different modules to operate:
perception, path planning and control (Figure 1.2). Perception continuously provides
information about the surrounding environment as well as the location of the robot
(i.e. robot localization). Environment perception includes: static and moving obstacle
detection, segmentation, classification and tracking. Different sensor technologies can
be used (e.g. Radar, camera, LiDARs and ultrasounds) and fused together (i.e. sensor
data fusion). Localization estimates the position of the vehicle in the surrounding
environment with respect to a reference coordinates system. Path planning consists in
finding the appropriate path the robot has to follow in order to navigate from point
A to point B while avoiding collisions with obstacles. The control module calculates
the set of commands to be applied to follow the path generated by the planning. The
cascade input-output relation presented in Figure 1.2 shows the importance of the
perception module. Indeed, if something goes wrong in perception, path planning
and control can be highly affected.
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1.2.2 Automated driving requires multiple sensors

Figure 1.4: Examples of most common sensors used for ADAS and automated driving.

To ensure the driver’s safety, the vehicle has to "see" and sense everything in the sur-
rounding environment. Many sensor technologies have been used today in production
cars such as radars, cameras, ultrasounds and LiDARs (Figure 1.4) to enable different
features such as Adaptive Cruise Control (ACC), Parking Assist, Blind Spot Detection,
Lane keeping assist (LKA), etc. Because each sensor has its pros and cons, multiple
sensors are used to overcome limitations of each individual sensor. In the following
paragraphs, we introduce concepts of Radar, Camera and LiDAR sensor technologies.

A Radar

Radar technology is widely used in automotive applications, as it is capable of provid-
ing distance, velocity and angular information of the targets of interest (car, truck,
motorcycle, pedestrian etc.) even in inclement weather. The most popular radar-
based driver assistance system is ACC (Adaptive Cruise Control). In addition to the
vehicle speed, ACC maintains a safe separation distance from the car in front. To
do that, radars use special waveforms like FMCW (frequency-modulated continuous
wave). The Frequency Synthesizer generates the FMCW wave or chirp at the desired
frequency. The wave is then amplified using a power amplifier. The transmit (TX)
antenna converts the electrical energy of the signals to electromagnetic signals and
transmits them through free space. The receive (RX) antenna receives the reflected
signal (Figure 1.5) from the target and feeds it to the low-noise amplifier. Then, mixer
down-converts the signal to base hand. Finally, the signal is converted from analog to
digital so the signal processing can be performed to extract target attributes.
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C LiDAR

LiDAR (Light Detection and Ranging) is an active sensor that measures the distance to
an object by using the round-trip time of flight of laser light pulse. The time of flight
is the time that laser light spends to travel a distance from a light emitter to an object
then returns back to a receiver (i.e. phase shift in Figure 1.6b). Given the speed of
light c and the time of flight to f , the distance of the emitter to the object is deduced as
follows:

d =
c × to f

2

In addition range measures, LiDARs also provide a reflectivity (or intensity) data
which is a measure, collected for every point, of the return strength of the laser pulse
that generated the point. This information can be very relevant to characterize specific
objects for which the intensity is very high (traffic signs, vehicle license plates, road
paintings, etc). In robotics and automotive applications, LiDARs are designed to be
eye safe. A rotating mirror is generally used to change the direction of the laser pulse
allowing to cover a field of view up to 360 degrees horizontally. LiDAR providers
use a multi-beam LiDAR which is an array of multiple beams (or layers) in order to
generate a 3D point cloud (see Figure 1.6d). The main advantages of LiDAR sensors
are the accuracy of the measured range distance (2-5 centimeters), detection range (up
to 100-150 meters) and the resolution. However, laser beams are affected by rain and
fog due to laser light scattering caused by water droplets. As a result, the generated
point clouds may include empty regions without significant laser light returns.

Another typical problem for LiDAR sensors is the vertical beam resolution that
is the vertical angle between two consecutive layers. For some sensors, such as the
Velodyne VLP16, the vertical resolution may fall down to 2 degrees (figure 1.6c). The
impact of such a resolution is seen in the density of the point cloud. For example, a
resolution of 2 degrees is translated into a vertical distance of 1.7 m at 50 meters range.

D Comparison

Radar, LiDAR and Camera technologies are compared in Table 1.1. Radars are suitable
for long-range detection (up to 300 m) and can directly measure range and relative
radial velocity of the targets. They are robust against adverse weather and can be inte-
grated in car bumper or fascia. The price of radar sensors has significantly decreased
in recent years thanks to technology breakthrough (SiGe, RFCMOS) and integration ca-
pabilities. They are widely present today in production cars, to enable system features
like ACC, TJA and AEB. However, Radars have limited capabilities of spatial (angular)
resolution (i.e. separation of targets at the range and speed) and target classification.
Cameras are also used in ADAS applications today, especially for features like Lane-
Departure Warning (LDW) and Lane-Keeping Assist (LKA), and AEB as well (with or
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without fusion with Radars). They offer many advantages such as resolution and rich-
ness of information (color, shapes, texture). In addition, the evolution of processing
units has enabled the implementation of sophisticated AI-based algorithms for target
detection and classification. However, being a passive sensor, Camera is sensitive to
lighting conditions and poorly estimates depth data (monocular vision). Finally, Li-
DARs provide accurate 3D representation of the environment, with an accuracy of 2
of 5 cm. Compared to Radars, the resolution could be 30 times better, but the data
is still sparse compared to Camera. The vertical resolution of the LiDAR depends on
the number of layers (sources) and/or the scanning mechanism. The main challenge
of LiDAR manufacturers today is to find the best compromise between those design
parameters, in order to improve the cost of the sensor that is generally high. LiDAR is
also sensitive to rain and fog, because laser pulses are scattered by water droplets.

Table 1.1: Characteristics of Radars, LiDARs and camera for automated driving. ++: ideally
suited, +: good performance, m: medium, o: possible with additional effort, -: not suited

Radars LiDARs Cameras

Direct range measurement ++ ++ o - only stereo

Detection range ++ (300 meters) + (100-150 meters) m (40-120 meters)

Accuracy + ++ m

Resolution m + 1 ++

Weather conditions2 ++ + +

Light sensitivity ++ ++ -

Price for commercial
car products

Low High Medium

1 The resolution of 3D LiDARs depends on the number of layers. Compared to Radars, LIDARs have much better

resolution, whereas compared to cameras, they still have low resolution.
2 LiDARs and cameras are sensitive to rain and fog.

To conclude, there is not a single sensor that is suitable in all conditions. Instead,
each sensor has its advantages and disadvantages. In some applications, some criteria
may be privileged over others. For example, LiDARs and cameras have been exten-
sively used for (but not limited to): localization, object detection & classification and
mapping, whereas radars are suitable to detect metal objects even at longer ranges
(300 m). Choosing a suitable sensor for a given application is not straightforward and
should be carefully studied. In the following paragraph, we discuss the localization
task which is the main focus of study of this thesis.
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1.2.3 Localization for autonomous driving

Localization is a crucial perception task that focuses on estimating the position of the
vehicle in the surrounding environment with respect to a reference coordinate system.
Very often, we want to guarantee two essential properties of localization systems. Lo-
calization accuracy that consists in reducing metric errors of the estimation process and
localization integrity that is defined as the measure of trust which can be placed in the
correctness of the information supplied by the localization system. For localization ac-
curacy, three different localization levels have been studied in [EDMap, 2004] (Figure
1.7):

• WHAT ROAD: this level is provided by most navigation systems. It determines
the driving road and requires an accuracy of 5 to 10 meters.

• WHICH LANE : this level determines the lane where the vehicle is and requires
additional information such as the number of lanes. the required accuracy is
around 1 m.

• WHERE IN LANE: this level determines the position of the vehicle in the assigned
lane. It requires a localization error of 0.3 meter.

In addition to sensors, High Definition (HD) maps have been extensively used to
achieve accurate localization systems. These maps allow to understand the environ-
ment beyond sensor visibility (sensor range) and provide high accurate, up-to-date
and realistic environment representations. High Definition (HD) maps for autonomous
driving are currently being developed by many commercial maps providers like Tom-
Tom [Tom, 2019], Here [Her, 2019] (Figure 1.8) as well as free mapping projects like
OpenStreeMap (OSM) [Haklay and Weber, 2008].

A Coordinate systems for localization

Geodetic coordinates are typically used for vehicle navigations. They provide a 3D
position of the vehicle using two different angles: longitude and latitude from the center
of Earth and altitude. This reference system mostly used by GNSS (Global Navigation
Satellite Systems) is commonly known as the WGS 84 geodetic reference system. The
geometric manipulation of position in WGS 84 can be tedious because it uses angles
instead of Cartesian coordinates.

ECEF (Earth-Center Earth-Fixed) is a Cartesian coordinate system centered at the
center of the Earth (Figure 1.9.a). This reference system is not well suitable for vehicle
navigation because its center is too far from the surface of the Earth where the vehicles
are moving.

ENU (East North Up) is a Cartesian coordinate system whose center is on the sur-
face of the Earth. It assumes a surface section of the Earth to be flat. The three axes
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are aligned with the East, North and vertical directions and are tangent to the ellipsoid
model of the Earth (Figure 1.9.a).

In automatic control, it is more convenient to know where the vehicle is with respect
to the road. Hence, the curvilinear coordinate system is often used. The abscissa is
defined along the center of the lane, the ordinate is the signed lateral distance and
the heading which is the relative orientation with respect to the center of the lane (cf.
Figure 1.9.b). Figure 1.10 depicts the calculation of cross-track and along-track errors
assuming that we are given two different positions: Position 1 and position 2 and
given road geometry. The calculation of these errors depends essentially on the road
representation in the map (polyline, splines, polynomials). A good introduction to the
subject is given in [Héry et al., 2018].

1.3 Objective of this thesis

The aim of this thesis is to develop a highly accurate localization system to enable
highly automated driving functions (level 3 and above) on highway roads. The stud-
ied environment is very challenging. First, highway roads lack sufficient landmarks as
often used in SLAM-based localization approaches. Second, because the vehicle speed
is very high (up to 130 kph), problems related to data association and sensor frame
rates are to be expected. Hence, we address the problem by defining a suitable ar-
chitecture of the system, choosing the sensors (LiDAR and third party highly accurate
map) and developing the required algorithm pipeline for perception and localization.
Finally, we validate the developed solution by performing tests on test track and on a
real highway road.

1.3.1 Main contributions

In this work, we develop a LiDAR-based localization approach using a highly accurate
map. As previously discussed, LiDARs are suitable to get 3D accurate representation
of the environment and they cover a large field of view. The main contributions of this
work are summarized hereafter:

A LiDAR perception module

The proposed perception module uses LiDAR data to extract relevant features for local-
ization. Feature detection process relies on shape-based and reflectance-based models.
The perception module provides:

1. Detection and tracking of lane markings. The recognition of the type of the lane
marking is not addressed.

2. Detection and tracking of Guardrails (on highways).
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3. Detection of traffic signs. Here, only the locations of traffic signs are provided.
Semantic recognition is not addressed.

4. Detection of guardrail reflectors. Indeed, on many highway roads, guard rails are
usually equipped with reflecting markers to indicate their location in low light
conditions.

B Improved localization module based on an optimized particle filter

The proposed localization module implements a particle filtering algorithm to localize
the vehicle in a highly accurate digital map. The algorithm matches the data from the
perception module with the data attributes in the map. The choice of the number of
particles has an immediate effect on the convergence of the particle filter. If this number
increases, more space is covered and the convergence of the filter is more ensured.
However, increasing the number of particles results in a high computational resource
and limits real time application. A key contribution of our work is the proposal of
a modified version of particle filtering which keeps the number of particles constant
during the experiments but re-distributes them in an optimized manner to maximize
the particle space coverage around the true vehicle position. This version is called
constrained-update particle filtering.

C Localization assessment under a variety of conditions

To validate the proposed solution, we collected data by driving a prototype vehicle
in various conditions. At first, we conducted different experiments at different ego
vehicle speeds from 30 kph to 110 kph with a step of 10 kph. Secondly, we collected
data on a real highway road (A13 highway in Paris area) and on a Renault highway-
like test track (CTA2) of 5 kilometers length. The collected data contains different
driving maneuvers. Indeed, we have collected sequences with and without lane change
maneuver. The evaluation was performed by comparing the outputs of our localization
system to a ground truth provided by a GNSS/RTK receiver.

1.3.2 Structure of the manuscript

This manuscript is organized as follows. In chapter II, a state of the art review of dif-
ferent localization and mapping systems is given. In the mapping section, we describe
different map representations in the literature then we highlight the current trends
for autonomous vehicles. In the localization section, we discuss three different topics:
local localization (or odometry) where we address two different sensors: camera and
LiDAR sensors. In the global localization section, we focus on GNSS receivers and
the map-based localization. Finally, we address the Simultaneous Localization And
Mapping (SLAM) problem.
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Chapter III details our proposed perception and localization solution. First, a liter-
ature review of different perception systems with a focus on cameras and LiDARs is
given. Then, the proposed LiDAR-based road perception system is described. In addi-
tion, the Map Management System (MMS) which consists of a set of tools to commu-
nicate with the third party map is illustrated. A mathematical formulation of Markov
localization is given in order to introduce to the particle filtering concept and to explain
our implementation of the filter.

An experimental evaluation of the proposed system is discussed in chapter IV. This
evaluation compares position outputs of the localization system with a ground truth,
obtained by GNSS with RTK corrections. The evaluation of the perception system on
its own is not addressed in this work since it is considered to be implicitly evaluated
along with the localization system. Finally, conclusions and perspectives are given in
chapter V.
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Résumé en français

Le présent chapitre est consacré à l’étude de l’état de l’art des approches de
localisation et de cartographie. Dans la première partie, nous étudierons les dif-
férentes représentations de cartes à savoir: les cartes métriques et topologiques.
Ensuite, nous étudierons les différentes approches de localisation qui sont conçues
suivant la carte utilisée. Etant donné que la littérature sur la localisation est
extrêmement large, nous nous focalisons dans ce chapitre aux travaux utilisant
les LiDARs et les caméras.

2.1 Overview of mapping solutions

2.1.1 A taxonomy of map representations

Environment mapping has been widely addressed by the robotics research community
since the 1980s. The complexity of the mapping problem is the result of several impor-
tant factors. At first, the studied environment and its size. For instance, indoor and
outdoor environments should not be similarly considered in the mapping approach:
indoor environments are more controllable, less spacious and more structured than
outdoor environments. The size of the environment is also important considering the
limited detection ranges of sensors. Indeed, short range sensors would not be ap-
propriate for large environments and vice versa. The second and the most important
factor is the accuracy of perception and localization. Localization accuracy is important
for global map consistency and perception accuracy is important for local map consis-
tency. Under the restrictive assumption that the robot poses are known, the problem is
known as mapping with known poses and is less complex than the general case where the
poses are unknown and have to be estimated, namely the Simultaneous Localization And
Mapping (SLAM) problem. SLAM approaches will be discussed further in this chapter.
Here we focus on the first problem in which we still need to deal with perceptual er-
rors and ambiguities. Perceptual errors are mainly due to raw sensor data errors and
the errors of the processing unit itself (modeling errors, discretization, sub-sampling
...). The perceptual ambiguity is the problem of finding associations between objects
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a lot of work to be done towards formulating requirements for high definition maps
and implementing a standard map format for autonomous vehicles. Though, recently,
the problem has been tackled in the general robotic field by the IEEE RAS Map Data
Representation Working Group [IEEE Robotics and Automation Society, 2015].

2.1.3 Concluding remarks

The literature overview of mapping approaches shows two different map representa-
tions: metric and topological. Metric representations model the physical world and
the geometric properties of the environment. They have been essentially used in spe-
cific use cases such as localization. In topological or multi-layers topological maps, the
world is modeled by accessible areas that are connected to each other via arcs. This
representation is very useful for path planning and decision making tasks. Maps used
for autonomous vehicles are a mixture of metric and topological representations. The
represented geometric entities are in general: road segments, lanes, traffic signs, traffic
lights, etc. The topological representation ensures the interconnections between road
segments and the definition of the driving direction, etc. Although a lot of work has
been done in map representation for autonomous driving, the development of stan-
dard requirements is still an important step to be done. In our approach, we adopted
a metric map representation since we are aiming at developing a localization system.
The used map mainly contains basic road features like road markings and traffic signs.
In the following section, we give an overview of different localization techniques which
are also as important as the mapping task.

2.2 Overview of localization techniques

Localization approaches addressed in the context of the autonomous vehicles are de-
rived from the approaches that have been developed in the field of robotics. Robot
localization is the task of estimating the robot position in a given reference frame. We
distinguish between two different localization strategies: local and global. In local tech-
niques, the initial robot position is assumed to be known and the current position is
estimated from the previous position using a measure of its displacement using propri-
oceptive or exteroceptive sensors. This is also known as the position tracking problem.
When the robot is required to build and update a map of an unknown environment
while simultaneously localizing itself in it, the problem is called Simultaneous Local-
ization And Mapping (SLAM). Global localization can localize a robot without prior
knowledge of its initial position. This strategy is also known as the kidnapped robot
problem or the lost robot problem. Position tracking, SLAM and global localization will
be discussed in details in the following subsections.
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2.2.1 Position tracking

Position tracking aims at estimating the robot displacement between two consecutive
sensor readings. The displacement is computed by directly integrating propriocep-
tive sensor measurements like encoders, accelerometers and gyroscope. Thus, the
displacement is deduced by solving the dead reckoning navigation problem [Park et al.,
1998, Chung et al., 2001]. For exteroceptive sensors like cameras and laser scanners,
the task is more challenging because the displacement cannot be inferred directly from
raw sensor data, instead, some processing tools are required. For cameras, the task is
usually known as visual odometry and for laser scanners, it is most often referred to as
point cloud registration. Of course, other exteroceptive sensors could also be used such
as radars [Schuster et al., 2016] and sonars [Ribas et al., 2008].

A Formulation of the problem

Let S0:n = {S0, S1, .., Sn} be a series of sensor readings at discrete time instants. For
simplicity, the sensor local coordinate frame is assumed to be the same as the robot
local coordinate frame. The goal is to calculate the transformation matrix Tk,k−1 ∈ R

4x4

which model the ego motion rotation Rk,k−1 and translation tk,k−1 matrices between
two sensor readings Sk−1 and Sk:

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]

(2.1)

The pose of the robot Pk at time k is the concatenation of all subsequent motions
Tk,k−1 and is given as follows:

Pk = Tk,k−1 × Pk−1 (2.2)

The position P0 is assumed to be known. The full state position estimation is a 6
Degrees of Freedom (DoF) problem that consists of three translations and three rota-
tion angles. For some mobile robot applications (including autonomous vehicles), the
estimated position can be modeled by three parameters: a two-dimensional position
and a heading angle. In the following paragraphs, different approaches proposed for
camera-based and laser-based position tracking systems are described.

B Camera as the only exteroceptive sensor

The use of camera for ego motion estimation has been widely addressed in the liter-
ature and is commonly known as Visual Odometry (VO). Historically, this problem
is known in the computer vision community as structure from motion (SFM) and dates
back to the 1980s [Longuet, 1981], [Harris and Pike, 1987]. SFM focuses on the estima-
tion of both the camera positions and the structure of the environment from the image
set. VO is a particular case of SFM that focuses essentially on the estimation of camera
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(Moravec corner detector [Moravec, 1977]) was developed to detect feature points in one
picture and match them along the epipolar lines of the remaining eight pictures using
normalized cross correlation. The system of equations of the ego motion estimation
was solved using weighted least square minimization. Later, [Matthies and Shafer,
1987] proposed to use the Moravec corner detector for feature detection and improved
the scalar representation of uncertainties in the triangulation of 3D points by setting,
instead, a 3D normal distribution to represent the errors. As a result, the obtained
trajectory is more accurate than the one proposed by Moravec [Moravec, 1980].

A dense stereo VO approach is proposed in [Lacroix et al., 1999] for planetary
rovers. Feature points are selected by defining a similarity measure based on correla-
tion scores of one pixel with each of its neighbors. In order to eliminate false matches,
the authors implemented a tracking algorithm which checks if a corresponding feature
remains in a small area around the initial feature. The size of the search area is defined
according to the uncertainty of the estimated transformation from the robot internal
(proprioceptive) sensors. Finally, motion is estimated by applying a constrained least
square method to the associations. The displacement estimated by the algorithms was
close up to 1% to the GPS positions.

A remarkable real-time approach was proposed by Nister [Nistér et al., 2004]. A
Harris corner detector [Harris and Stephens, 1988] was used to detect features from the
image. In contrast to previous work, the proposed feature matching does not include
a tracking step over multiple frames, which limits the problem of feature drift over
time. Motion estimation is solved using the 5-points algorithm. To get rid of outliers,
the authors proposed to integrate the RANSAC outliers rejection algorithm into the
motion estimation [Nist, 2003]. The best obtained accuracy is about 1.08% of the total
trajectory.

Finally, in [Lefaudeux and Nashashibi, 2012], FAST corner detection and Lucas &
Kanade tracker [Lucas and Kanade, 1981] are used to detect and track spatial features
from stereo images. The ego-pose is estimated by standard photogrammetry tech-
niques (namely SVD). The authors did not report quantitative accuracy results due to
lack of ground truth data.

Monocular VO is particularly different from stereo because the relative motion and
the 3D structure have to be computed from bearing-only data. The estimated trajectory
is only valid up to a scale factor. Nister et al also tackled the case of monocular camera
[Nistér et al., 2004]. In contrast to the stereo version where the triangulation is directly
performed, the monocular version needs to track over multiple frames for 3D points
triangulation. Tardif et al [Tardif et al., 2008] used an omnidirectional camera for visual
odometry. Their key contribution is the decoupling of rotation and translation in the
motion estimation step. The rotation and translation are respectively calculated using
the vanishing points and a 3D landmark map that is built by triangulation of SIFT
features over multiple keyframes. A RANSAC scheme is also implemented for outliers
rejection. The VO system was run for 2.5 Km and the claimed accuracy was about 2.5%
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of the total trajectory.

Combining visual and inertial measurements has been addressed in the literature
to complement monocular cameras with metric scales (from IMU). This is known as
visual-inertial odometry (VIO). Historically, there have been two different concepts for
visual-inertial odometry: batch nonlinear optimization methods and recursive filtering
methods. While batch optimization methods [Leutenegger et al., 2015, Qin et al., 2018]
jointly minimize the errors originating from integrating the IMU and vision data, re-
cursive algorithms [Chai et al., 2002, Roumeliotis et al., 2002] usually use the IMU for
state propagation and updates from visual observations.

The above approaches tackled the case of unconstrained (full) motion estimation
problem with 6 DoF. However, for autonomous vehicles it is common to use nonholo-
nomic constraints to reduce the complexity of the motion estimation problem and, as a
result, enhance the runtime performance. An example of a 2 DoF motion model is ad-
dressed by Scaramuzza et al [Scaramuzza et al., 2009]. It was assumed that the motion
of a camera can be locally described with a circular motion and only 1-point algorithm
was needed to recover the trajectory. The method was tested with different feature
detectors: SIFT, Harris and KLT. Finally, two different approaches were proposed for
outliers removal: 1-point RANSAC and histogram voting.

All the approaches mentioned so far are subject to an unavoidable problem that is
the drifting error over time. The drift is the natural consequence of the incremental
path estimation process and must be kept as small as possible. To achieve this, several
techniques like the Bundle Adjustment (BA) have been designed. BA is defined in [Triggs
et al., 2000] as the problem of refining a visual reconstruction to produce jointly optimal 3D
structure and viewing parameter (camera pose and/or calibration) estimates. The main idea of
BA is to optimize a cost function which is the re-projection errors of the 3D structure
to obtain a very accurate model. This process involves a lot of matrix inversions yields
a computational burden. A local version of BA, called Local Bundle Adjustment (LBA) or
windowed bundle adjustment, was introduced in [Mouragnon et al., 2006] to side-step the
computational load of the global method. Instead of optimizing over all the images,
the author suggested to perform a local optimization only on a triplet of images. In
addition to BA techniques, fusion with other sensors such as IMU [Konolige et al.,
2007] and laser scanners [Zhang and Singh, 2014a] have also been proposed to cope
with cumulative drift.

So far, the vast of majority of visual odometry state of the art approaches are de-
veloped under a standard pipeline that includes: feature extraction, feature matching,
motion estimation and local optimization. Recent work focuses on developing an end-
to-end visual odometry methods using deep learning techniques as in [Wang et al.,
2017]. The aim is to avoid the standard pipeline and to train a deep learning model
to optimally learn effective feature representation for the VO problem and to model
sequential dynamics. As for other research fields, these methods have gained interest
in the scientific community.
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C Laser scanners as unique exteroceptive sensors

In this paragraph, we address the ego motion estimation by using laser scanner data
(point clouds). In the literature, it is more commonly known as point cloud registration
instead of laser odometry. Point cloud registration is very often solved by means of
the well established Iterative Closest Point (ICP) technique [Besl and McKay, 1992]. ICP
starts with two point clouds and an initial guess of their relative transformation, then
it iteratively refines the transformation by minimizing a cost function (metric error).
The general pipeline of an ICP algorithm is depicted in Figure 2.5.

Selection

Point 
Cloud 1

Point 
Cloud 2

Matching

Weighting

Minimizing

Figure 2.5: General pipeline of an ICP algorithm [Rusinkiewicz and Levoy, 2001]

The first step is to select some (or all) set of points in one or both point clouds.
This is very similar to the feature detection step in visual odometry. The matching
step is finding correspondences between the selected sets. The weighting step is as-
signing a relative weight to each of the associated points. Their relative weights should
indicate how reliable the feature correspondences are. Finally, the minimization step
is calculating the geometric transformation by minimizing a cost function that takes
into account the set of feature correspondences and their relative weights. The typical
problem faced in point cloud registration is the distortion caused by moving sensors.

In case of moving sensors, point cloud distortions are related to two main factors:
the velocity of the agent carrying the laser scanner and the frame rate of the latter.
The distortion is low for high frame rates, but can be significant for low frame rates.
Several methods have been proposed for distortion correction, VICP uses a motion
model to iteratively correct the measured points [Hong et al., 2010]. It is an ICP based
on velocity estimation followed by distortion correction using the estimated velocity.
Other methods use the reflectance images from the lidar and implement distortion
correction by means of a visual odometry algorithm [Tong and Barfoot, 2013].
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[Zhang and Singh, 2017] method, named LOAM (Lidar Odometry And Mapping),
is considered as the state of the art solution for lidar odometry. The selected points for
the ICP algorithm are points on sharp edges and planar surface patches. A KD-tree
algorithm [De Berg et al., 2008] was used to find correspondences by searching for the
nearest neighbor. The overall distances of feature correspondences are minimized us-
ing the Levenberg-Marquardt non-linear minimization method [Richard and Andrew,
2004]. In order to correct the distortion the authors modeled the robot motion with
constant angular and linear velocities during the start and the end of the laser sweep.
The proposed method have been evaluated using KITTI datasets [Geiger et al., 2013],
the average position error is 0.88% of the traveled distance.

The same approach for distortion correction was adopted by Moosmaan and Stiller
[Moosmann and Stiller, 2011a]. They constructed a 2D array of range measurements
from which they extracted surfaces along with their normal vectors and a confidence
value. Then, a de-skewing step consists in linearly transforming the extracted surfaces
by using the estimated velocity from the previous iteration. Finally, an ICP algorithm
was implemented to solve the motion estimation problem. This method has been tested
for two different scenarios. In scenario 1, the position estimation error is 2.29 meters
for a total length of 1.3 km, whereas in scenario 2, the position estimation error is 4.10
meters for a total length of 1.1 km.

In [Bosse and Zlot, 2009], a 2D laser scanner (SICK LMS291) is used to discretize the
environment into a 3D grid of voxels. Planar and cylindrical surfaces were estimated
for each voxel points, and the shape parameters were computed using the first- and
second-order moments. Correspondences were found by searching for the nearest
neighbor of each voxel in a 9D descriptor space (space of surface parameters). The
reported accuracy of this method is less than 1% of distance traveled.

In [Biber and Strasser, 2003], another registration approach called the normal dis-
tribution transform (NDT) was proposed. The 2D plan was discretized into a set of
cells (2D grid) for which a normal distribution was calculated from the corresponding
points. The NDT represents the probability of measuring a sample for each position
within the cell. The alignment of two different scans was ensured by calculating a score
value of each point in the second scan by means of the normal distribution transform
of the first scan. The authors did not report quantitative results on position errors,
instead, they analyzed qualitatively the obtained map.

A generalization of the NDT-based scan registration method using 3D data was
developed in [Magnusson et al., 2007]. The authors compared the performances of
ICP-based registration and NDT-based registration. They concluded that 3D-NDT is
more accurate than ICP. 3D-NDT is also faster because it avoids the data association
step of the ICP. The proposed approach was tested for mobile robot applications, the
authors compared the pose odometry results by varying the cell size. They concluded
that a size of 2m is preferable and gives translation error less than 0.5m and a rotation
error less than 0.01rad.
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D Combining cameras and laser scanners as exteroceptive sensors

Visual odometry and point cloud registration can be combined into one framework
for robot motion estimation. The idea is to combine the advantages of both methods
to improve the accuracy of the motion estimation problem. The proposed approaches
either use point cloud registration as the main motion estimation pipeline with the
aid of motion data from visual odometry, or use the visual odometry as the main
motion estimation pipeline and complete with 3D data from laser scanners. Examples
of the first category can be found in [Zhang and Singh, 2015] and [Pandey et al., 2011].
Zhang and Singh [Zhang and Singh, 2015] implemented an ICP algorithm by selecting
points on sharp edges and planar surfaces as geometric features from a 2-axis laser
scanner. The initial guess for the ICP was provided by a visual odometry system
[Zhang and Singh, 2014b]. Also, in [Pandey et al., 2011], the initial guess for the
ICP algorithm was provided by a vision system. The authors proposed to complete
the lidar 3D points with high dimensional features (SIFT descriptors) from camera
images and used these points in a RANSAC framework to obtain an initial guess of
the alignment transformation. The authors claim that using visual descriptors is more
efficient than using euclidean distances for the data association problem.

Most of the proposed approaches that consider visual odometry as the main pipeline
for motion estimation use monocular cameras and complete visual data with 3D laser
scanner data [Huang and Stachniss, 2018, Huang et al., 2019]. A 1-DoF ICP variant
was proposed in [Huang and Stachniss, 2018] where a visual odometry system is im-
plemented to compute the rotation and translation of the transformation between two
frames of a monocular camera. Given that the translation is only valid up to a scale
factor, 3D points from laser scanners are fed into an ICP algorithm which estimates
the true scale factor then refines the visual odometry estimated translation in a final
ICP step. The authors also proposed a constrained data association strategy for outlier
rejection. Indeed, the estimated rotation from visual odometry is used to guide data
association in all ICP iterations. This approach outperforms visual odometry from the
monocular camera, since it provides accurate scale estimate, as well as laser-based ICP
(more accurate orientation and translation).

A better accuracy was obtained with the direct approach proposed in [Huang et al.,
2019]. This method used two registration stages: the first stage tries to find a proper
initial pose estimate by jointly performing a coarse photometric pixel-alignments along
with a geometric point cloud registration. The second stage is performed by aligning
only pixel intensities at the finest image level. Good performance is obtained by an
occlusion detection of sparse point cloud, which reduces the impact of outliers in the
photometric alignment problem, that is which is based on the constant image brightness
assumption. The authors tested their approach on KITTI datasets and reported an er-
ror of 0.6% of traveled distance on sequence 04. They also compared their approach
to results of LOAM [Zhang and Singh, 2017]. Combining laser and camera outper-
forms lasers alone; e.g LOAM 1.4% .Vs. 1.0% on sequence 01 (which is a highway
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environment).

2.2.2 Global localization

Contrary to local localization that is considered as a continuous position estimation
problem, global localization is rather a discrete and qualitative problem that does not
require any prior knowledge of the initial position of the robot. Global localization
techniques are divided into two different categories. The first category is GNSS-based
which uses the Global Navigational Satellite System as the main source of information.
Most of the proposed solutions in the literature combine GNSS data with other (most
often proprioceptive) sensors and a prior map. The second category is Map-based which
uses exteroceptive sensors and a prior map as the main sources of information to infer
the robot position. In the next two paragraphs, we respectively address GNSS-based
and Map-based localization.

A GNSS-based solutions

GNSS has been the standard global localization technique for many years. Satellite-
based positioning methods rely on the trilateration of different satellite signals in order
to derive the receiver’s position. Each satellite broadcasts a coded signal that the GNSS
chipset receives and interprets. Using the time of arrival (TOA) and the speed of each
signal (the speed of light), the GNSS sensor calculates its distance to the satellite, called
pseudo range. The position of the receiver is deduced by trilateration from n different
satellites. The minimum required number is four: three satellites to determine the
longitude, latitude and altitude values and the forth is used to synchronize the time.
There are several sources of errors, the first source of error is the difference between the
pseudo range and the true range (Figure 2.6). This error is illustrated in the intersection
area (uncertainty region) between the different pseudo range circles in (Figure 2.6).
Another important problem is the multipath error. This error occurs when the receiver
reads the same signal from different paths rather than from a direct line of sight (LOS).
Mutliple paths are caused by reflections, for example, from high buildings in urban
environments. Even in open sky environments such as in highways, the accuracy
obtained by automotive GNSS receivers is not sufficient and is not better than 2-3
meters [Tgri, ].

To improve the accuracy and to cope with GNSS shortcomings, the use of com-
plementary navigational methods have been proposed. In [Obradovic et al., 2007], a
Kalman filter fuses odometer and gyroscope sensors into a dead-reckoning process
(DR). The estimated DR trajectory is corrected with high quality GNSS positions. A
digital map is used to project the obtained trajectory by adopting a two-pattern feature
vectors: straight-line and curve patterns. Similarly, the system proposed in [Fouque
et al., 2008] uses a digital map, a dead reckoning process and GNSS measurements for
a global localization of vehicles in a Extended Kalman Filter (EKF) implementation.
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from the map. The choice of feature type depends on the studied environment and
the used sensor. Various types of features have been proposed in the literature: either
specific to the structure of the road such as lane markings [Suganuma and Uozumi,
2011a], corners of road marks such as arrows, speed limits [Ranganathan et al., 2013]
and traffic signs [Li et al., 2010], or basic geometric features such as points [Wijk and
Christensen, 2000], segments [Gomes-Mota and Ribeiro, 2000] and planar surfaces [Ja-
vanmardi and Javanmardi, 2017] or salient visual features of the environment like in
[Caselitz et al., 2016, Se et al., 2005]. In any case, the appealing properties that a good
feature should have are the availability (i.e can be frequently found in the environment)
and the distinctiveness in order to minimize false matches. Given a feature-based map,
the implementation of the localization process consists of three different steps:

1. Feature extraction from sensor data.

2. Matching with map features.

3. Position error minimization.

A vision-based system was proposed in [Ranganathan et al., 2013] to detect corners
of specific road marks such as arrow and speed limits. The proposed system imple-
ments a visual odometry using calibrated stereo camera. At first, Harris corners are
detected and tracked using a KLT tracker. Then, relative motion is computed using
the 3-point algorithm [Richard and Andrew, 2004] with RANSAC estimator for robust-
ness. A windowed bundle adjustment is used to adjust and smooth the noise due to
visual odometry. A light-weight map that consists in road marks (corners and labels)
augmented with GPS coordinates is used for online localization. The process incorpo-
rates the absolute coordinates of map attributes in order to reduce the drift in visual
odometry. This method was compared to a Visual SLAM approach and proved to be
less sensitive to significant lighting change. However, its major drawback is that it is
only applicable to localization on roads with clearly painted visible markings. Also, it
is difficult to generalize this method to different roads like highways because it relies
on specific road mark types (stop, bike, turn arrow ). Moreover, as the road marks are
detected in an inverse perspective map (bird eye view) of the image, the pitch and roll
variations may induce image distortions and detection errors.

In [Pink, 2008], a stereo camera and georeferenced aerial images are used for global
localization. The localization process consists in matching the stereo images to aerial
images using a feature-based technique. The used features are the centroids of lane
markings computed for both type of images. Aerial images provide high pixel reso-
lution (10x10cm per pixel) and are used to build a lane markings map (Figure 2.7). A
Canny edge detector [Canny, 1986] is applied to stereo images to detect edge points
that are clustered according to their proximity in pixel coordinates. The alignment
between detected features and the corresponding feature map is achieved using ICP
algorithm. Despite promising localization accuracies, using ICP may stick nearby local
minima.
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Adams, 1998] for continuous localization (CL). The proposed method constructs a ma-
ture evidence grid by cumulating consecutive grids using odometry data. Then, the
mature grid is aligned to the global grid using two different approaches: the first one
is the iterative hill-climbing which looks iteratively in the vicinity of the current po-
sition for positions that maximize a matching score function. The second approach
entails calculating the matching scores at different positions close to the estimated one
and calculates a new position as the center of mass of the previous calculated ones
weighted by their matching score values.

In [Thrun, 1998], a grid-grid matching using a differentiable correspondence func-
tion that measures the similarity between grids was adopted. A different grid was
adopted in [Levinson and Thrun, 2010] where the reflectivity is the main data at-
tributed to the grid cell. A likelihood function that measures the similarity between
the local cumulated reflectance map and the global map is implemented within a his-
togram filter for online localization.

Likewise, the suggested approach in [Wolcott and Eustice, 2016] localizes a single
monocular camera in a 3D prior reflectance ground map. Multiple synthetic views
from different vehicle positions are extracted from the map. Then, a normalized mutual
information image registration is implemented in order to find the best alignment
between the current image and the synthetic views. To overcome the computational
burden of the method, the authors used a GPU-based implementation to accelerate the
process.

2.2.3 Simultaneous Localization And Mapping (SLAM)

So far, we have discussed the fundamentals of mapping and localization problems.
On the one hand, environment mapping assumes that the robot positions are known,
while on the other hand, some localization approaches need a prior map in order to
estimate the position. In this subsection, a general overview of the Simultaneous Lo-
calization And Mapping (SLAM) is provided. As the name suggests, the aim of SLAM
is to build a consistent map while simultaneously determining the robot position in
it. A seminal work in SLAM is the research of Smith and Cheeseman in 1986 [Smith
and Cheeseman, 1986]. Since then, intensive research has been conducted to solve
and improve the SLAM problem. The difficulty of SLAM lies in its intersection with
a variety of other fields such as: computer vision, geometry, dynamics, optimization
and probabilistic estimation. The SLAM problem has been tackled in two different
ways. The first is called EKF-based SLAM where an Extended Kalman Filter (EKF)
is implemented to recursively estimate a Gaussian density over the current robot and
landmark positions. Related methods are based in general on linearizing nonlinear
processes (motion model and correction model), and quickly become computationally
intractable when the number of landmarks grows significantly (e.g. in outdoor envi-
ronments). In addition, the linearization has a direct impact on the consistency of the
map as well as the estimated position. A thorough review of EKF- based SLAM tech-
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MAP estimation, X̄ is estimated by maximizing the posterior p(X | Z) according to
the following equation:

X̄ = arg max
X

p(X | Z) = arg max
X

p(Z | X )p(X ) (2.3)

Assuming that the measurements are independent given the variable X , the above
equation can be written as:

X̄ = arg max
X

p(X )
m

∏
k=1

p(zk | X ) (2.4)

X̄ = arg max
X

p(X )
m

∏
k=1

p(zk | Xk) (2.5)

A factor graph is often used to solve the MAP estimation problem. A factor graph
is a graphical model that encodes the dependence between the kth factors and the cor-
responding variable Xk. The nodes of the factor graph are the trajectory and landmark
positions and the factors are the probabilistic constraints p(zk | Xk) and p(X ) depicted
in equation 2.5. For simplicity, Gaussian noises ǫk with information matrices Ik are
considered:

p(zk | Xk) ∞ exp(−
1
2
‖hk(Xk)− zk‖Ik

) (2.6)

Substituting 2.6 into 2.5, the maximization problem can be considered as a mini-
mization of the negative log-posterior. Thus, the MAP estimate becomes:

X̄ = arg min
X

m

∑
i=1

‖hk(Xk)− zk‖Ik
(2.7)

This minimization problem is commonly solved by successive linearizations such as
Gauss-Newton or the Levenberg–Marquardt methods. Successive linearizations trans-
form non-linear problem into a set of linear equations called normal equations. Differ-
ent libraries have been proposed to solve the linear equations of the MAP estimation:
e.g GTSAM [Dellaert, 2012], g2o [Kummerle et al., 2011], iSAM [Kaess et al., 2008] and
SLAM++ [Polok et al., 2013]. Most of them take advantage of the normal equation
matrix to implement fast linear solvers.

2.3 Discussion

In this chapter, we presented two different categories of localization techniques: local
localization (or position tracking) and global localization. In general, local localiza-
tion is a sub-module of global localization techniques as shown in Figure 2.9. First,
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input sensors can be either exteroceptive or proprioceptive. Second, the position track-
ing module ensures a continuous position estimation at a frame rate T1 from sensor
1. In the literature, the main proprioceptive sensors for local localization are: wheel
encoders, gyroscopes, accelerometers. They can be directly integrated to estimate the
displacement of the vehicle (dead reckoning (DR)). For exteroceptive sensors, two dif-
ferent sensor technologies have been addressed: vision and lidar. Visual odometry
(VO) is presented with two different variants: stereo VO and monocular VO. Stereo
VO uses stereo vision and estimates motion using triangulated 3D points. Monocular
VO only uses one camera hence suffers from an unknown absolute scale. Although the
latter solved by stereo VO, it degenerates to the monocular case for distant features.
Local localization is accurate for a short period of time. However it tends to drift for
a long time period. When choosing a local localization technique, it is very important
to take into account the studied environment and the use-cases. For outdoor envi-
ronments (e.g. highway roads) visual odometry techniques have proven to be more
accurate than laser odometry and IMU-based solutions. In addition, we claim that us-
ing visual odometry is more appropriate than using Visual SLAM as it is very unlikely
to re-visit the same region twice (loop closure). The combination of visual-laser odom-
etry outperforms visual or laser odometry alone since it combines the advantages of
both methods. However, this assumes that both sensors are extrinsically calibrated
(sensor-to-sensor and sensor-to-vehicle). In addition, due to the limitation of modern
camera field of view (FoV), many 3D LIDAR will not be fully exploited as the overlap-
ping of the 3D points cloud with the camera image will be restrained with its FOV. The
second module is a map-matching algorithm that runs at a slower rate T2 > T1 and
where sensor 2 is used to extract features or to build grids depending on the map rep-
resentation (feature map or grid map). The goal is to reduce the cumulated drift from
the position tracking module and to enhance the estimation of the system by matching
map attributes to features/grids from input sensor.

2.3.1 Our proposed architecture

In the proposed approach, we used an inertial measurement unit for the position track-
ing module and a LiDAR sensor for environment perception (feature detection mod-
ule). We adopted an IMU-based position tracking for two main reasons: IMUs do not
depend on lighting conditions whereas vision sensors, for example, may encounter
major difficulties in the absence of light. In addition, IMUs are already available in to-
day’s cars and are easy to integrate. A map-matching algorithm is implemented using
a particle filter algorithm and a highly accurate light-weight map where primitive road
features are stored: lane markings, traffic signs, guardrails, etc. Thus, we developed
a road perception algorithm that uses LiDAR data to detect the same road primitives
stored in the map. To validate our architecture, we compared the localization outputs
to GNSS/RTK positions considered as ground truth. Different metrics are used for the
evaluation: the euclidean metric to compute absolute errors and the curvilinear coor-
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Figure 2.9: General architecture for global localization

dinates with respect to the map as described in [Héry et al., 2018]. The next chapter is
dedicated to detail the proposed architecture.
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Chapter 3

Design and evaluation of the proposed
localization system
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Résumé en français

Dans ce chapitre, nous détaillons notre architecture de localisation précise basée
sur les capteurs LiDARs. Cette architecture est basée sur différents modules: le
premier module est un module de perception qui permet d’interpréter les don-
nées du capteur afin d’extraire des amers liés à l’infrastructure routière tels que
les lignes de marquages, les panneaux de signalisation et les barrières sur au-
toroute. Le deuxième module est un module de localisation ou “map matching”
qui prend comme entrées les données du GNSS, les attributs de la carte et les
données de perception et implémente un algorithme de filtrage particulaire pour
estimer la position du véhicule. Enfin, on a un module d’évaluation et de vali-
dation qui évalue la précision de l’estimation de la trajectoire du véhicule en la
comparant par rapport à une vérité terrain obtenue grâce à une GNSS/RTK.

3.1 Introduction

In this chapter, the proposed solution for perception and localization using LiDAR sen-
sors is presented. The general architecture of the proposed solution is given in Figure
3.1. For online localization, we have three main modules: road perception that uses
LiDAR sensors in order to extract road primitive features. In our case, we extracted
lane markings, barriers, traffic signs and guardrail reflectors. The second module is
the Map Management System that takes as inputs a rough vehicle position estimation
(e.g GNSS data) and a highly accurate third party map in order to extract map features
in the vicinity of the vehicle. The third module is a map-matching algorithm based
on an improved version of particle filter. The evaluation of the localization system is
performed with a reference to a highly accurate GNSS with RTK corrections. Different
evaluation metrics will be discussed in the next chapter.

Before entering into the details of each module, we present, in the next paragraph,
the setup of our prototype vehicle.

40



Highly
accurate

digital map

Lidar
sensor

Wheel
Odometry

GNSS
data

Markov Localization
(Particle Filter)

Road perception

Online

Map Management
System
(MMS)

Error evaluation

Off-line

filter
estimate

GNSS
RTK

Figure 3.1: General architecture of our solution

41



3.1.1 Prototype vehicle: MELO

Our prototype vehicle "MELO" is a Renault Espace car that is equipped with 5 LiDARs:
four roof-mounted LiDARs and one bumper-mounted LiDAR. The front LiDARs are
Velodyne VLP32-C, and the rear LiDARs are Velodyne VLP-16. The vehicle is also
equipped with GNSS receiver with automotive dead-reckoning from ublox (ADR78)
and a GNSS/RTK for ground truth reference (ATLANS-C from iXblue). Finally, the
central processing unit is an embedded PC that runs ROS (Robot Operating System)
with the required modules to interface the sensors and insure time synchronization for
data collection and replay. The prototype vehicle is shown in Figure 3.2.

Figure 3.2: (Top left) Roof-mounted LiDAR. (Top right) bumper-mounted LiDARs. (Bottom
right) rear LiDARs. (Bottom left) All roof-mounted LiDARs
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3.2 Road Perception for Localization

Vehicle perception is a crucial task for self-driving cars to operate in real-world envi-
ronments. For human drivers, road texture and color, road boundaries, traffic signs,
lane markings and traffic participants (car, truck, motorcycles, cyclists, pedestrian) are
the main perceptual cues for a safe driving experience. For autonomous vehicles, per-
ception is very complicated due to many factors that are related to the environment
and to the vehicle itself. Given the imperfect sensors, the unpredictable environment
and the data processing time, there has not been a single perception system that can
operate under all conditions and in all driving scenarios. Perception is by definition a
set of processing units that take as input sensor data and model, interpret and understand the
surrounding environment. According to the desired application, one may be interested
in targeting some objects rather than others. For example, road perception focuses
on the extraction of static road features such as road markings, the road surface, road
boundaries and so on. Object detection and classification focuses on traffic participants
such as vehicles (car, truck, motorcycles) and vulnerable road users such as cyclists and
pedestrians. Sometimes, the detection of the absence of obstacle is more relevant than
the obstacle itself (e.g. freespace detection or drivable area detection).

In this work, we focus on the detection of static road features for localization. Road
perception modules are illustrated in Figure 3.3. The first module is the road detection
and segmentation module where the road boundaries are detected. Detecting the road
can be of several usages such as road mapping, detection of free (navigable) space,
detection of lane markings, etc. The second module is the extraction of lane mark-
ings. Lane markings have been essentially utilized for assistant functions such as Lane
departure Warning (LDW), Lane Keeping Assist (LKA) and also for more high level
automated driving features such as localization and mapping. The third module is the
detection and classification of traffic signs that aims at determining their 3D (or 2D)
positions, shape and the sign information within.

3.2.1 Road perception: State-of-the-art

A Road detection & segmentation

Many cues have been reported in the literature to define road boundaries and to de-
tect road surface. These cues can vary according to the used sensor. For lidars and
stereo-vision, the use of geometric cues such as the planes, elevation, curbs, slopes, etc,
often provide good accuracy in many scenarios: urban, semi-urban and highways. For
example, in [Lombardi et al., 2005], the disparity map of a stereo-vision system is used
for road detection. The road is detected as a 3D plane verifying some constraints in the
disparity map. In [Pradeep et al., 2008], surface normals are used to generate piecewise
planar models of the scene. Surfaces with similar normal directions are clustered and
curbs are detected. The use of supervised machine learning techniques have also been
investigated for road detection. In [Vitor et al., 2014], a multilayer perceptron (MLP)
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is applied to learn road patterns resulting in the classification of the road recognition.
LiDAR-based approaches use in general curbs, elevations and slopes. Very often, a
grid representation is utilized. In [Hata and Wolf, 2014], the compression levels of
consecutive rings are analyzed. Basically, the compression value is proportional to the
obstacle slope. In [Kammel and Pitzer, 2008], an occupancy grid is used to classify
curbs using the elevation difference. Indeed, a grid cell whose elevation difference ex-
ceeds a fixed threshold is labeled as a non ground cell. Similarly in [Chen et al., 2009],
the elevation of the ground is estimated by averaging the elevations from the lasers
directly striking the ground. By comparing point elevations with respect to ground
elevation, an elevation difference value that is greater than 0.25m is considered to be
a curb point. The same approach for detecting the ground is presented in [He et al.,
2016].

In the absence of 3D data, many approaches for detecting the road surface are
based on the appearance rather than the geometric elements. In this case, the road
is assumed to have uniform appearance (texture, color) which is different from its
surrounding. For example, in [Álvarez et al., 2007], a region growing algorithm is
used to detect the road by converting the colored image into an illumination invariant
image. In [McCall and Trivedi, 2006], a template matching is used to detect the road.
The template is obtaining by applying an inverse-perspective warping to the image
and cropping a local window that is assumed to belong to the road. In [Rasmussen
and Korah, 2006], Gabor filters are used to detect dominant texture orientations, then,
a vanishing point is detected through a voting scheme. Finally, the road is delimited
by the two most extrinsic rays that pass through the vanishing point.
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B Lane extraction and modeling

Detection of lanes is usually performed by seeking different types of lane features.
This comprises two different stages: extraction of marking features or points and lane
modeling. Most of state of the art techniques use vision-based systems for lane de-
tection due to the variety of information that can be inferred from image data. Very
often, lane markings are detected based on their shape and color. Their appearance is
very different from the asphalt, therefore gradient-based approaches are applicable to
extract a wide variety of lane markings. In [McCall and Trivedi, 2006], steerable filters
are applied by computing three separable convolutional kernels in different directions
of the image. This allows to measure the values and angles of the minimum and max-
imum responses. To detect lanes, the response in the direction of the lane should be
near the maximum, and the minimum response should be low. Then, parabolic model
is used in order to estimate the parameters of lane.

In [Aly, 2008], a real time detection in urban streets is proposed. At first, top view
of the road is constructed by applying inverse perspective mapping technique. Then,
a two dimensional Gaussian kernel is applied to filter the transformed image. Finally,
a Hough transform is used to count the number of lanes and to indicate lane marking
positions. As for lane modeling, RANSAC spline fitting is implemented. Thus, four
control points are required to achieve the fitting process.

Road markings can also be detected using Lidar sensors. LiDAR reflectance mea-
surements are very often used to achieve this goal. In [Hata and Wolf, 2014], road
marking points are selected by analyzing the intensity histogram of road surface. It is
shown that the histogram has bimodal shape; one mode for the asphalt and another
for marking returns. Thus, separating asphalt from road markings consists in finding
an appropriate threshold to separate the two modes of the histogram. The optimized
threshold is calculated using Otsu thresholding technique [Otsu, 1979]. The authors in
[Kammel and Pitzer, 2008] establish a lane marker intensity map to which the Radon
transform [Beylkin, 1987] is applied to detect lane markers in the Radon plane. In [He
et al., 2016], a convolutional neural network is applied to an intensity image obtained
by projection of the intensities of road surface points.

C Detection and recognition of traffic signs

Extensive research has been conducted on the detection and recognition of traffic signs.
ADAS systems based on this function are already in production and are known as TSR
(Traffic Sign Recognition) systems. In the last decades, the use of vision systems for
TSR has underpinned the trend in the automotive market. For vision systems, two dif-
ferent approaches have been addressed in the literature: color-based and shape-based
approaches. For color-based approaches color segmentation and feature extraction are
usually performed before detection, since the color and the shape of traffic signs are
regulated by law in each country. In general, color segmentation applies thresholding
to the input image in some color space. For example, in Figure 3.4 , a segmenta-

45





D Concluding remarks

The state-of-art review shows that road perception is mainly used on vision systems
for many reasons such as the information diversity provided by cameras (color, tex-
ture, shape, ...), the adapted algorithms for feature extraction and classification as well
as integration and cost of camera sensors. However, many relevant information cannot
be directly obtained from monocular vision such as depth, scale and the 3D coordi-
nates of a point. Meanwhile, lidars recently gained attention since automotive-grade
sensors already found their way into production for autonomous driving systems (e.g.
SAE level 2+ for Audi A8). Combining LiDAR and vision enables the strength of each
technology but also generates other challenges such as the geometric extrinsic calibra-
tion, time synchronization, as well as increasing the cost of the overall system. In all
cases, there is no perfect solution for the road perception problem. The use-case is
very important in choosing the sensor and the method to be implemented. The study
of the state of the art leads us to a generic architecture for lidar-based road perception
systems that is composed of two different steps (see the illustration in figure 3.5). The
first step is to localize the region of interest (ROI) for the desired road feature, in order
to limit the search space in the lidar data point cloud. For example, lane markings are
located on the road, hence the segmentation of the road surface is typically performed
beforehand. As for traffic signs, they are often located on the roadside and have reg-
ulated altitudes and shapes. The prior knowledge of the infrastructure can be used to
target more precisely the area of interest. The second step is refinement where some
geometric and reflectance cues are utilized to select the most likely candidates. In gen-
eral, it consists in a model-based fitting with the objective of searching for well-defined
geometric shapes like planes, lines, spheres. When the object of interest is very reflec-
tive (as in our case study), the LiDAR reflectance is used to strengthen the refinement
step.

Localization of
Region Of Interests

(ROI)

Object detection,
classification and

recognition
Lidar
data

Extracted features

Figure 3.5: Road object detection and classification

Our proposed road perception system detects distinctive features on highway roads
that are: lane markings, traffic signs, barriers and barrier reflectors. At first, we propose
a road segmentation approach followed by a lane markings detection and tracking
algorithm. Then, we use a reflectivity front grid map for the detection of traffic signs
and barrier reflectors. This representation allows us to quickly identify the region of
interest indicating the locations of the traffic signs and the barrier reflectors. Finally, a
2D horizontal height map is used to detect barriers.
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pk = (rk, θ, φk) (3.2)

0 ≤ φk ≤ 2 π (3.3)

θ is the vertical beam angle and is constant at a given lidar layer, rk is the detected
point range and φk is the azimuth angle. The first step is to group the set L by sub-
dividing the azimuth angle (φ) into a set of chunks sj. A chunk is defined by a start
angle φstart, an end angle φend and an angular resolution φend that defines its size (i.e.
the number of chunk points). Consequently, the set L can be defined as follows:

L =







sj = {pi = (ri, θ, φi) | φ
j
start ≤ φi ≤ φ

j
end}

φ
j
start = j × φres

φ
j
end = (j + 1)× φres and j ∈ [0, ..Nc = ⌊ 2π

φres
⌉]

(3.4)

where the symbol ⌊x⌉ is the integer part (truncation) of the float x and Nc is the
number of chunks. The second step is re-structuring where the azimuth space is di-
vided into four quadrants: Q1 := [0, π

2 ], Q2 := [π
2 , π], Q3 := [π, 3π

2 ] and Q4 := [ 3π
2 , 2π].

Intuitively, we can assume that there exist at most one road boundary in each quad-
rant region. Hence, the road segmentation algorithm can be executed for the four
quadrants in parallel, therefore, to reduce the computational time.

φ = 0 φ = 2 π

x

y

θ
Lidar

layer points

Q 1 Q 2 Q 3 Q 4

layer chunks 

Layer re-structuring

φ = π/2 φ = π φ = 3π/2

s2s1 ... sNsN-1...

Figure 3.7: Re-structuring of layer points into contiguous chunks
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The classification of layer chunks into road and non road is obtained by fitting
the chunk sj into a circular arc model. Hence, a similarity measure (score) λ(θ, sj)
is designed for this purpose. Except for the intrinsic parameters of the LiDAR, our
method does not require any other parameter such as the mounting height of the
LiDAR as in [Hata and Wolf, 2014]. Indeed, all the points of a road chunk lie within
the same horizontal plane, which is the road surface plane as illustrated in Figure 3.8.
We denote by zµ the height of the plane which sj belongs to, and we estimate it as
follows:

zµ =
1

Ns
∑

p:=(r,θ,φ)∈sj

zp, where, zp = r × sin(θ) (3.5)

Lidar

θ

sj
Plan: zμ

Rμ

Chunk
points

zμ r ̃

Figure 3.8: Theoretical distribution of a road chunk points

Ns is the number of chunk points. We also denote by Cj the expected circular arc
described by sj if it is completely on the road surface. The first parameter of Cj is zµ.
The second parameter is the radius Rµ which is calculated with respect to the beam
vertical angle θ (Figure 3.8):

Rµ = zµ × cot(θ) (3.6)

where cot denotes the cotangent function. For each point pi = (ri, θ, φi) ∈ sj there
exists a corresponding point p̃i = (r̃i, θ, φi) ∈ Cj and for which we have:

r̃ =
√

R2
µ + z2

µ (3.7)

The similarity measure λ is calculated by computing the normalized sum of the
distances of pi to p̃i and is given as follows:
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λ(θ, sj) =
1
N ∑

p∈sj

dist(p, Cj) (3.8)

where dist is the distance in the spherical coordinates and is given by:

‖p − p̃‖ =
√

r2 + r̃2 − 2rr̃ (3.9)

Consequently:

dist(p, Cj) =

√

r2 + R2
µ + z2

µ − 2r
√

R2
µ + z2

µ (3.10)

B Implementation of Forward-Backward iterative search

For simplicity, the notation λ(θ, sj) is simply substituted by λj. We stored the λ values
in four different arrays (one array per quadrant). For each array, we implemented
an iterative search process in order to keep only road chunks. As mentioned, we
assumed that within each quadrant, the layer intercepts the road boundaries once
at most. Consequently, the quadrant chunks can be split into two different adjacent
sections: road surface and non road surface. For Q1 and Q3, we implemented a forward-
search strategy, starting from the first chunk and iterating until crossing the first chunk
whose λ value is greater than a threshold T. Inversely, for Q2 and Q4, we implemented
a backward-search, starting from the last chunk and reversely iterating over chunks until
crossing the first value of λ > T. An illustration of this process is given in Figure 3.9.

φ = 0 φ = 2 π

Q 1 Q 2 Q 3 Q 4

layer chunks 

φ = π/2 φ = π φ = 3π/2

s2s1 ... sNsN-1...

λ1,1 λ1,2 λ1,3 λ1,4 λ3,1 λ3,2 λ3,3 λ3,4

λ2,1 λ2,2 λ2,3 λ2,4 λ4,1 λ4,2 λ4,3 λ4,4

Forward-
search

Backward-
search

Figure 3.9: Forward and Backward search process

In order to set a proper value of T,we compute a histogram of λ values for all layers
that hit the road surface. Assuming that the majority of layer chunks lies within the
road surface, the histogram peak can be used to set the value of T. In Figure 3.10, the
histogram shows that the peak is reached for λ ≤ 0.1. This value can be used to set the
threshold T.
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tural element with one value is applied to an input binary array in Figure 3.11. As we
can see, the applied kernel tries to connect isolated points and to fill the gaps between
them. This is very practical when we want to homogenize a continuous shape for a
better detection output. The dilation can be applied as much as necessary, thought, too
many iterations would result in overgrowing the shape in the image. For example, too
many repetitive dilations to the input image in Figure 3.11 will turn all white pixels
into black pixels.

1
1
1

1
1
1 1

1
1

Binary input image

3x3 kernel

Dilation output

Figure 3.11: Dilation Output for 3x3 Structural element

In some cases, we want to dilate a specific direction in the image. It is therefore
more appropriate to apply one-directional kernels instead of two dimensional ones.
For instance, in our application, we want to look for vertical lines considering that
lane markings are parallel to the driving direction.Thus, we applied a n × 1 kernel to
the binary image in order to improve the quality of the lines that we want to detect.
Choosing a large kernel size allows to connect very distant pixels together but may also
extend isolated points into segments, which can potentially result in false detected
lines. The results of the dilation operation which was repeated twice with different
kernel sizes, and applied to reflectivity grid map are illustrated in Figure 3.12. As we
can be seen, kernel sizes larger than 5× 1) cause the appearance of many line segments
that were originally isolated points. Having tested different kernels, we concluded that
the kernel size 5 × 1 enhances the line quality without adding false detections. Finally,
Hough transform is implemented to extract the straight lines.

B Line detection using the Hough Transform (HT)

The Hough transform is a global method for extracting straight lines in a 2D image.
The principle mainly relies on the difference between Cartesian and polar forms of a
line. It has been shown that a line in the Cartesian space can be mapped to a point
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C Tracking with Kalman filter

In order to deal with missed detections and occlusions, we implemented a tracking
algorithm based on a standard Kalman filter [Kalman, 1960]. The algorithm is a com-
posed of a prediction step and a correction (or update) step. In the prediction step, a
motion model is used to update the state of the tracked object. In the correction step,
the prediction is updated on the basis of the difference between measured and pre-
dicted states. Let xk be the state vector of a tracked object at time k be xk. It is assumed
that the system evolution functions are linear with normally distributed additive noise
given as below:

P(xk | xk−1, uk) = A × xk−1 + B × uk + ǫmotion (3.12)

where A and B are the transition matrices that govern the state vector x and the com-
mand vector u, respectively. ǫmotion is a normal distribution with a zero-mean covari-
ance matrix ǫmotion ∼ N (0, Σmotion). Moreover, the equation of the observation zk is
given as:

P(zk | xk) = H × xk + νobs (3.13)

where H is the observation matrix and νobs is a normal distribution with a zero-
mean covariance matrix νmotion ∼ N (0, Σobs). The standard implementation of kalman
filter to estimate the state vector and covariance matrix (xk, Σk) is described as follows:







xk = A × xk−1 + B × uk−1

Σk = Σk−1 + Σmotion

Kk = Σk × HT × (H × Σk × HT + Σobs)
−1

xk = xk−1 + Kk × (zk − H × xk)

Σk = (I − Kk × H)× Σk

(3.14)

where K is called the Kalman gain and I is the identity matrix.

In our case, the inertial inputs are the velocity v and the yaw rate w. They are pro-
vided by an inertial measurement unit (IMU) from u-ublox B78-ADR. The command
vector is given as u = [∆y, ∆θ] where ∆y and ∆θ are respectively the lateral displace-
ment and the change of heading between two time steps. the state vector is the polar
representation of the line x = [r, θ]. The command vector u is a function of v and w
and is given by:

∆y = v × dt × sin(w × dt) (3.15)

∆θ = w × dt (3.16)

In addition, the adopted motion model is given by:
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Figure 3.14: Line tracking architecture

rk = rk−1 − ∆y (3.17)

θk = θk−1 − ∆θ (3.18)

The values of r and θ are interpreted as the ego vehicle lateral distance and heading
in relation to the line, respectively. By undergoing the movement described by (v, w),
the lateral vehicle displacement in the lateral direction can be given by ∆y = v × dt ×
sin(w × dt). This displacement induces a change in the value of r given by Equation
3.17. Similarly, the yaw rate w produces also a change of heading ∆θ = dt × w given
by Equation 3.18. The command vector was not set directly to (v, w) in order to keep a
linear representation of the motion model. Otherwise, the motion model will include
non linearities. Nevertheless, non-linear versions of Kalman filter could be used where
the motion model is often approximated by the first degree of the Taylor expansion
could be used (e.g. the Extended Kalman Filter (EKF) [Julier and Uhlmann, 1997]). We
assume that, in our case, the linear version is sufficient given the driving conditions on
highway roads. The observation matrix is equal to identity which means all the state
variables are observable. To summarize, the prediction and observation matrices are
given by:

A =

[
1 0
0 1

]

, B =

[
−1
−1

]

, H =

[
1 0
0 1

]

(3.19)

Figure 3.14 shows an overview of the different steps in our tracking algorithm.
In the initialization step, a «track» is created for each detected line. A track is an
implementation of the above equations of Kalman filter. In the second stage, a track-
to-measurement association is implemented by calculating the distances between track
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• It is located at the left hand side of the driving direction, i.e: r ≥ 0 (but can be
adapted when the road has barriers on both sides).

• It is considered as the longest line in the height map.

Sometimes, the third assumption can be violated by moving obstacles (vehicles,
trucks, etc) that occlude the median barrier (Figure 3.15b). Thus, we implemented the
Kalman Filter tracking algorithm to filter out the temporary presence of these obstacles.
The result of the median barrier detection is depicted by the green line in Figure 3.15a.

A Lane index inference from detected barrier

The main use of the median barrier detection is to estimate the lane number which the
driving vehicle belongs to. Assuming that the vehicle distance to the barrier is r and
that the lane width is w, the lane index can therefore be approximated by:

Laneindex = ⌊
r

w
⌉ (3.20)

Indeed, in actual highway roads the distance to the barrier is the sum of the distance
to the far left lane marking rl f ar and the left highway strip width wst

r = rl f ar + wst + σdet (3.21)

Where σdet is the barrier detection error. The lane index inferred from the detected
barrier is therefore:

Laneindex =

true index
︷ ︸︸ ︷

⌊
r f arl

w
⌉ +

error
︷ ︸︸ ︷

⌊
wst + σdet

w
⌉ (3.22)

Where ⌊
r f arl

w ⌉ is the true lane number and ⌊wst+σdet
w ⌉ is as an error term. On one

hand, the strip width on French highways is at maximum 2.5 m and the lane width
is approximately 3.5 m. On the other hand, the value of σdet is considered to be small
since the accuracy of LiDAR points is in the order of a few centimeters. As a result, we
can assume wst + σdet < w which yields ⌊wst+σdet

w ⌉ = 0.

3.2.5 Detection of traffic signs and guardrail reflector

For traffic signs and guardrail reflectors, we use the same principle as for the detection
of lane markings. However, instead of creating a horizontal reflectivity grid map, we
created a frontal reflectivity grid map. A frontal grid is a discretization of the space
(θ, φ) in the spherical coordinates. Let respectively be (θres, φres) the corresponding
angular resolutions and [θmin, θmax] and [φmin, φmax] the vertical and horizontal field of
views . The angular position of a grid cell mi,j is consequently given by:
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the input image and the used template. There are mainly two different approaches for
template matching: Feature-based approaches [Manjunath et al., 1992] and template-
based approaches [Sarvaiya et al., 2009]. The choice of the matching technique depends
on the nature of the image and the problem to be solved. Feature-based techniques
attempt to find correspondences between features such as points, curves and edges. A
similarity measure is applied to feature descriptors such as SIFT, SURF [Bay et al., ]
and ORB [Rublee et al., 2011] in order to find correspondences.

Template-based matching operates directly on the pixel values by comparing in-
tensity values of the template with intensity values of the input image. Let I(x, y)
be the input image and t(u, v) the image patch. Many similarity measures are used
in template matching. For example, a first option is to compute the sum of squared
differences (SSD):

SSD = ∑
x,y
[I(x + u0, y + v0)− t(x, y)]2 (3.25)

The template matches are obtained by searching for minimum values of the SSD.
A second option is the cross-correlation. In the case of template matching, it is often
calculated by sliding the template over the input image and searching for the maximum
values which correspond to potential template matches. The formulation of cross-
correlation is given as follows:

CC = ∑
x,y

I(x + u0, y + v0)× t(x, y) (3.26)

One problem with cross-correlation occurs when a template is matched to an input
image under varying illumination intensities. An improved version of cross-correlation
is to normalize the pixels in the windows before comparing them. This is known as
Normalized Cross-Correlation (NCC). The mathematical formulation of NCC is given
as follows:

NCC = ∑
x,y

(I(x + u0, y + v0)− I0)× (t(x, y)− t0)
√

∑x,y(I(x + u0, y + v0)− I0)2
√

∑x,y(t(x, y)− t0)2
(3.27)

where,

I0 =
1
N ∑

x,y
I(x + u0, y + v0) (3.28)

t0 =
1
N ∑

x,y
t(x, y) (3.29)

N is the number of pixels in the image template. The idea here is to normalize
the pixels inside the local window by subtracting the mean pixel values (denoted by
I0 and t0) and dividing by their standard deviations. Feature-based approaches are
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very often used when the structural information is more relevant than the intensity
information. For template matching, the intensity data is more relevant. In our case,
since the sought reflector is more distinguished by its intensity values than its geo-
metric form, we applied a template matching algorithm based on normalized cross
correlation. However, in practical situations, many false detections can occur due to
passing cars (license plates), isolated reflective points, etc. To further refine the set of
detections, we used a model-based geometric fitting to discard ROIs that do not match
a specific shape. The adopted method is described in the next paragraph.

B Refinement of ROI candidates

Unlike image data where colors and texture can be exploited, the geometric approaches
remain the most reliable to search for specific shapes within LiDAR point clouds. For
traffic signs and guardrail reflectors, we assume that they can be modeled by planar
surfaces. The idea is to extract, for each detected ROI, the corresponding set of the
3D points from the grid maps. We apply a RANSAC-based plane fitting algorithm in
order to only keep plane surfaces. RANSAC is the abbreviation of Random Sample
Consensus. It is a parameter estimation algorithm proposed by [Fischler and Bolles,
1981] that is robust in the presence of a large proportion of outliers. The parameter
estimation is performed by the minimum required number of points to construct a
plane model. Thus, we need at minimum three non-coplanar points. Then, a score
function is used to check to which extent the estimated parameters fit to the remaining
points. For instance, one can use the number of inliers as a score value . The outline of
RANSAC is given in in Algorithm 1:

Data: 3D point cloud: P
Result: Best plane parameters that fit P

1 1- Initialization: let N be the number of iterations ;
2 2- while num of iteration < N do
3 2.1) Randomly select a sample of three points from P;
4 2.2) Fit a plane model to these points ;
5 2.3) Compute the distance of all other points to this model;
6 2.4) Construct the inlier set (i.e. count the number of points whose distance

from the model < d);
7 2.5) Store these inliers;
8 2.6) increment num of iteration;
9 end

10 3) The set with the maximum number of inliers is chosen as a solution to the
problem ;

11 4) Estimate the model using all the inliers;
Algorithm 1: RANSAC-based plane estimation algorithm

The number of iterations N that is necessary to calculate a correct solution is com-
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puted by:

N =
log(1 − p)

log(1 − (1 − ǫ)s)
(3.30)

where s is the minimum number of points which the model can be estimated from,
ǫ is the tolerated percentage of outliers in the data and p is the requested probability
of success.

Detection of traffic signs Detection of guardrail reflectors

Minimum number of inlier (points) 70 50

Maximum detection distance (meters) 30 30

The normal vector: n = (nx, ny, nz)

Parallel to the
driving direction:

ny ≈ nz ≈ 0

Perpendicular to
the driving direction:

nx ≈ nz ≈ 0

In our case, the requested probability is p = 99%, the percentage of outliers is
ǫ = 50% and the minimum number of required points is s = 3. The minimum number
of iterations is therefore equal to N = 35 iterations. The inlier points are firstly used to
calculate the normal vector of the plane surface and, secondly to calculate the centroid
point. The first selection criterion is applied to the estimated normal vectors of the
estimated plane surface. Indeed, the normal vectors for traffic signs are assumed to
be parallel to the driving direction, whereas guard guardrail reflectors are assumed to
belong to planar surfaces perpendicular to the driving direction. This is shown in the
last column of Table ??. The second selection criterion concerns the calculated centroid
point of the plane. Finally, to improve the reliability of the detections, we fixed a
detection range of 30 meters. Indeed, the LiDAR point cloud is more dense at closer
distances to the sensor..

3.2.6 Qualitative results and discussion

A Road surface segmentation

We present in Figures 3.18 and 3.19 results of the proposed road surface detection in
different scenarios: an obstacle-free and with moving truck scenarios. We tested our
algorithm with different chunk resolutions φres: 2, 5 and 9 degrees. On one hand,
increasing the size of the chunk improves the model fitting score (i.e the chunk con-
tains significant number of points) and is therefore less sensitive to false detections.
However, this allows to eliminate large chunks that may be classified as non road but
containing a significant amount of points from the road surface. On the other hand,
choosing a small chunk resolution may result in false chunk classification because the
fitting score is not reliable (i.e not enough points for the fitting process). Figures 3.18a
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The illustrated results also show some missed road marking detections. The missed
detections correspond in the majority of cases to dashed road markings. Indeed, be-
cause LiDAR data is sparse, only few pixels in the reflectivity grid map are obtained
from dashed markings. Considering that we have fixed a minimum line length (i.e.
minimum number of pixels corresponding to the line) in the Hough line extraction
process, dashed markings are not detected. Decreasing the minimum length thresh-
old would result in having false detections from small segments mainly due to the
implementation of dilation operator. Our detection strategy is to allow having missed
detections rather than having false detections. In other cases, missed detections are
caused by temporary occlusion. Although, Kalman tracking is implemented to cope
with this problem as in Figures 3.21c and 3.22c, the issue may persist if the line remains
occluded for a long period of time (e.g. in traffic jams).

For convenience, since the reflectivity grid map is centered around the ego vehicle
position, detection of road markings is implemented with signed values of the ranges
r in the Hough parameter space. Negative r value means that the line is on the right
side of the vehicle and positive r value means that the line is on the left side of the
vehicle. Consequently, we can set the values of θ within the interval [0, π

2 ] (i.e. default
interval is [0, π]). Finally, for the rest of this manuscript, detected lines are given by the
following set:

{l1 = (r1, θ1), l2 = (r2, θ2), .., ln = (rn, θn)} (3.31)

C Detection of guardrail reflectors and traffic signs

Detection algorithms of traffic signs and guardrail reflectors have been tested in CTA2
test track and A13 highway road. Figures 3.23 and 3.25 show the detection results
of traffic signs whereas Figures 3.24 and 3.26 show the detection results of guardrail
reflectors. Detection of traffic signs is particularly sensitive to high reflective plates
of moving objects (Figure 3.23). Indeed, the geometric criteria used to select valid
traffic sign candidates are also satisfied in the case of license plates (i.e planar surface
shape and the orientation of the normal vector). This is one of the limitations of using
LiDARs which do not provide more information than the reflectance as provided by
camera images. To cope with this problem, we used traffic signs stored in the map
to further filter false detections. The idea is to check if a map traffic sign is located
nearly at the same location as the detected traffic signs. Obviously, because detections
are expressed in local LiDAR frames and map attributes are expressed in the global
frame (WGS 84), we need to use an estimate of the vehicle position to transform local
detections to the global frame. In this case, the accuracy of the used estimate is of
major concern.

Figures 3.24 and 3.26 depict detection results for guardrail reflectors where NCC
results are shown as colored bounding boxes. In contrast to traffic signs detection, it is
less likely to find reflective planar surfaces that are perpendicular to the driving direc-
tion, thus, the NCC matching is robust to vehicle license plates. Also, NCC matching
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B Link Borders

Similarly to the link representation, lane markings are represented by polylines of type
linestring (Figure 3.27). Link borders are identified by unique IDs and store the lane
marking type (e.g. continuous, dashed, pavement, etc), width and distance to the
centerline (Link).

C ShapePoints

ShapePoints are the most basic elements in the used map. They consist of 3D points
expressed in WGS 84 coordinate system and are attached to other high level objects
such as Links.

D Road signals

Road signals can be of different types: traffic light, traffic signs, stop and yield signs,
etc. A road signal is a 3D point expressed in the local Cartesian frame (Figure 3.27). It
is characterized by a unique ID and other information such as: the attributed Link ID
and the type ID.

3.3.2 MMS module functions

The developed tools in the MMS module are described below:

A Map interface functions

The map interface functions establish the communication with the map database and
allow to extract map elements within a region of interest. A region of interest is a
circular region centered around a rough position of the vehicle (e.g GNSS position)
and whose radius is a fixed parameter.

B Extraction of road signals

The road signals table contains 3D points expressed in the WGS 84 coordinate sys-
tem. Thus, we used the haversine formula to calculate the distance between the GNSS
position and the road signal points which are expressed as longitude/latitude values.

C Extraction of Link Borders

At first, we extracted all the links in the region of interest using their relative shape-
points. Second, we filtered out all the links in the opposite side to the driving direction
using the vehicle heading measure from GNSS receiver. Finally, for each link, we ex-
tracted the left and right link borders (i.e. left and right lane markings). Instead of
executing the latter steps each time a GNSS position is available, we constructed a link
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D Map Tracker Point

A second important function in the MMS module is the calculation of a map tracker
point. The usefulness of this concept will be revealed in the localization part. A
map tracker point is the projection point q of a given point (the vehicle position for
example) pv to a link border. To do that, we iterate over the contiguous segments of
the linestring set of points := {p1, p2, .., pN}. For each pair of points (pi, pi+1), we
calculate the projection point of the vector −−→pi pv into the line defined by (pi, pi+1), say
it is qi. The retained point qi is the point that is inside the segment [pi, pi+1]. Let the
vectors −→u and −→v be defined as follow: −→u = −−→pi pv and −→v = −−−→pi pi+1. The normalized
vectors are computed as:

−→
ũ =

−→u

‖−→u ‖
,
−→
ṽ =

−→v

‖−→v ‖
(3.34)

The projection of the point pv is inside the line segment [pi, pi+1] if the following
condition is met:

0 ≤
−→
ũ .

−→
ṽ ≤

‖−→u ‖

‖−→v ‖
(3.35)

The projection point qi can be calculated by the following:

−→piqi =
(−→u .−→v )

‖−→u ‖
×−→u (3.36)

In the rest of this manuscript, we express the set of extracted road signals (traffic
signs and guardrail reflectors) and link borders are given by:

Mk = {lsk
1, lsk

2, .., lsk
n, rsk

1, rsk
2, .., rsk

m} (3.37)

where lsi stands for the extracted link border linestrings (polyline) and rsi the ex-
tracted road signals.

3.4 Markov Localization

3.4.1 Basic concept and mathematical formulation

In general, Markov localization addresses the problem of estimating the state of a mo-
bile robot from sensor data. The robot is assumed to navigate in a static environment
and that the only variable affected by sensor data is the robot state. This is commonly
known as the Markov assumption. Instead of handling a single state, Markov localiza-
tion maintains a probability distribution over the space of all hypotheses. This rep-
resentation allows to weight these hypotheses according to the observed sensor data.
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B The update step

In the update step, the observation data is incorporated from the sensors to obtain
the posterior probability density. The measurement zk at time k is supposed to be
conditionally independent of earlier measurements z0:k−1. The measurement model
p(zk | xk) expresses the probability of seeing the measurement zk when being at posi-
tion xk. The posterior density over xk is obtained by the Bayes theorem:

p(xk | z0:k) =
p(zk | xk)p(xk | z0:k−1)

p(zk | z0:k−1)
(3.39)

The state estimation is processed by recursively computing the prediction and the
update steps. At time t = 0, the initial state x0 is modeled in the form of a density
p(x0) that could be a uniform density over the allowable positions. Moreover, a prior
map M is integrated as follows: p(xk | z0:k, M).

To summarize, Markov localization recursively computes two different phases: pre-
diction and update. The prediction phase is based on the definition of a motion model
defined by the probability density: p(xk | xk−1, uk−1) and the update phase requires
the definition of a measurement model defined by the probability density: p(zk | xk).
The following sections describe different approaches of Markov-based localization. We
start with a specific case, the Kalman filter, where motion and measurement can both
be modeled by normal distributions. Then, we describe other approaches for nonpara-
metric estimation: grid-based and sampling-based localizations.

3.4.2 The Kalman Filter (KF)

The Kalman Filter (KF) is a special case of Markov localization where motion and
measurement can be modeled by Gaussian density and the initial state is also specified
as a Gaussian. Under these assumptions, the probability density p(xk | z0:k) remains
Gaussian in all the steps of the filter. One of the key advantages of Kalman Filter is
the ability to evaluate Equations 3.38 and 3.39 in closed form solutions. In addition,
the posterior density can be described in a very concise form (the mean and covariance
matrices of the Gaussian). The implementation of KF is computationally quite efficient,
for a matrix size of d × d, the complexity of matrix inversion is approximately O(d2.4).
Although many extensions of the Kalman filter are available (Extended Kalman Fil-
ter, Unscented Kalman Filter), the Gaussian assumptions inherited by the KF are not
always appropriate in case of non-linear and non-Gaussian motion and measurement
models. The Kalman filter is classified among the family of parametric filters. In the
following section, we discuss two variants of nonparametric filters: Grid Localization
and Monte Carlo Localization. Both algorithms differ from to the Kalman Filter in their
ability to handle raw sensor data and solve the global localization problem.
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3.4.3 Grid-based Localization

Grid localization is a very popular technique for global localization. It uses a grid
decomposition of the pose space. The posterior density is a collection of discrete prob-
ability values, {pi,k} where i stands for the cell id and kfor the time step, and each
probability value is defined over a grid cell. It requires as input the discrete proba-
bility values {pi,k−1}, the new measurement zk, the control and the map and outputs
the updated probability values {pi,k}. A pseudo code for grid localization is given in
Algorithm. 2.

Data: {pi,k−1}, zk, uk and M
Result: Updated probability values: {pi,k}

1 for i iterating over all grid cells do
2 Prediction step:

˜pi,k = ∑
j

pj,k−1 ×

motion_model
︷ ︸︸ ︷

f (xi,k , xj,k−1, uk)

Update step:

pi,k = α × ˜pi,k ×

measurement_model
︷ ︸︸ ︷

g(zk , xi,k, M)

3 end

Algorithm 2: Grid localization pseudo code

A key parameter for grid localization is the resolution of the grid. A finer grained
representation, also known as metric representation, allows to have better localization
accuracy, but at the expense of computational time. In, a coarse resolution, known
as topological representation, reduces the computational time but results in a loss of
the localization accuracy. That said, the motion and measurement models can also be
highly affected by the grid resolution. For example, adopting a topological representa-
tion (e.g. a grid cell resolution of 1 m) with a high accurate measurement model will
cause a drastic variation within each cell. Similarly for a motion model with a robot
speed of 0.1m/s, the robot will not be able to change cell for many consecutive frames.

3.4.4 Monte Carlo Localization (MCL)

The second nonparametric filter is the very popular Monte Carlo Localization based
on Particle Filter. This powerful technique is adapted for many localization problems:
local and global. The basic idea is to model the posterior density by a set X of weighted
particles or samples as follows:

Xk = {(x
[1]
k , w

[1]
k ), (x

[2]
k , w

[2]
k ), ..., (x

[N]
k , w

[N]
k )} (3.40)
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The variable x
[i]
k is a pose hypothesis and the variable w

[i]
k is the corresponding

importance weight. One of the key advantages of the particle representation is the
ability to model nonlinear transformations of random variables. The variable N is
the number of particles and is a parameter of the algorithm. This parameter is very
important as it directly affects the computational time and the accuracy of the filter
convergence. Increasing N allows accurate convergence but also increases the run time
of the filter.

Data: Xk−1, zk, uk and M
Result: Xk

1 X̄k = Xk = ∅ ;
2 for i = 1 to N do

3 sample x
[i]
k ∼ p(xk | uk, x

[i]
k−1) ;

4 w
[i]
k = p(zk | x

[i]
k , M) ;

5 X̄k = X̄k ∪ (x
[i]
k , w

[i]
k ) ;

6 end
7 for i = 1 to N do

8 draw i with probability ∼ w
[i]
k ;

9 add x
[i]
k to Xk;

10 end

Algorithm 3: The particle filter algorithm [Thrun, 2002a]

Algorithm 3 is a pseudo code to describe the basic Monte Carlo algorithm based on
particle filter. Line 3 generates a hypothesis state based on the previous particle state
and the control uk by means of the state transition distribution:

p(xk | uk, xk−1)

Line 5 computes the importance factor w
[i]
k by incorporating the recent measure-

ment zk and the map M in the measurement model:

p(zk | xk, M)

The tricky step of the Particle Filter goes from lines 7 to 10. It is called the resampling
or importance resampling and consists in drawing new particles with replacement N
particles from the temporary set X̄k. For the initialization step, all the particles have
the same weight and are uniformly distributed over the pose space. The probability of
drawing a particle is given by its importance weight. Importance resampling generates
a new set of particles by replacing bad particles (i.e. with low weights) with good
particles (i.e. with higher weights). Thus, the new set is likely to have many duplicates.
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3.4.5 Discussion

Kalman and particle filters are both two different variants of Bayes filters that recur-
sively estimate the state vector of a given process (e.g. position estimation in robot
localization). Kalman filter has become the most popular and most used tool for state
estimation. Its strength lies in its simplicity and its computation efficiency for small-
size state vectors. This simplicity is due to the fact that it represents the state vector
by a multivariate Gaussian distribution. In addition, it approximates the state (predic-
tion step) and measurement (update step) transitions by linear equations. However,
two major limitations to Kalman filtering approaches are often encountered: first, the
linearization in EKF is approximated by linear Taylor expansions. Given that in most
robotics problems, the state and measurement transitions are nonlinear, linearization
may not be sufficient in some points of the space. A second limitation is observed in
SLAM-approaches or map-based approaches where the state vector is not only limited
to the position of the robot but also includes landmark positions. Since the complexity
of Kalman filters is O(K2) where K is the size of the state vector, adding landmarks
may increase the complexity and reduces the time efficiency.

Particle filter has also been used for state estimation. It approximates a distribution
by a set of particles drawn from this distribution. Unlike Kalman filter, it can represent
a broader space of distributions than Gaussians. Another advantage of particle filter
is its ability to model nonlinear transformations of random variables. In addition, for
landmark-based localization approaches, its time efficiency can be controlled by the
number of particles. Indeed, for M particles and K landmark, the computational time
is O(MK) (e.g. O(K2) for Kalman filter). In our approach, we adopted a particle
filter implementation in virtue of their advantages over Kalman filter for map-based
localization. The proposed implementation is illustrated hereafter.

3.5 Proposed Particle Filter implementation

The proposed particle filter implementation follows the same basic steps as a Markov
localization. The filter inputs are: extracted map elements Mk, inertial data, velocity v
and yaw rate Ω̇, GNSS position and LiDAR perception features. Let Xk be the set of
samples at time k:

Xk := 〈 x
[1]
k , w

[1]
k 〉, ...., 〈 x

[N]
k , w

[N]
k 〉 (3.41)

The state space vector x consists of the 2D position (x, y) and the heading γ:

x = [x, y, γ] (3.42)

For the initialization step, the samples are uniformly drawn within the ellipsoid
error of the GNSS position. The integration of a rough position estimation (such as a
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GNSS position) is very useful to reduce the computational cost of the initialization, es-
pecially in large-scale outdoor environments. In the following subsections, we describe
the proposed implementations of particle filter (PF) fundamental steps (prediction, up-
date and resampling).

3.5.1 The prediction step

The motion model adopted for our approach is a constant turn rate and velocity
(CTRV) model, as it can be applied in highway driving conditions. The following
system describes the motion update equations:

γ
[i]
k = γ

[i]
k−1 + Ω̇k × dt + νγ (3.43)

x
[i]
k = x

[i]
k−1 + vk × dt × cos(γ

[i]
k ) + νx (3.44)

y
[i]
k = y

[i]
k−1 + vk × dt × sin(γ

[i]
k ) + νy (3.45)

Where vk and Ω̇k are respectively the vehicle velocity and yaw rate. The motion
model error distributions are zero mean normal distributions and are modeled by
νγ, νx and νy.

3.5.2 Different weighting strategies

In order to update the particle weights, we used the perception data Pk and the ex-
tracted map elements Mk and we propose four weighting strategies described in the
following paragraphs:

A Weighting from lane markings

Let {

Perception
︷ ︸︸ ︷

lk
1, lk

2, ..., lk
m1

,

Map
︷ ︸︸ ︷

lsk
1, lsk

2, ..., lsk
m2
} respectively be detected lane markings and ex-

tracted linestring at time k. The polar coordinates of each linestring lsk
i are calculated

by using the relative map tracker point. For a tracker point q
[i]
k = (x

q
[i]
i

, y
q
[i]
i

), the polar

coordinates are given by:

r
[i]
k = ‖x

[i]
k − q

[i]
k ‖ (3.46)

θ
[i]
k = atan2(y

q
[i]
i

− y
[i]
k , x

q
[i]
i

− x
[i]
k )− γ

[i]
k (3.47)

By applying the above equations to all linestrings, the result is given by the follow-
ing set:

{lsk,i
1 = (r̄k,i

1 , θ̄k,i
1 ), lsk,i

2 = (r̄k,i
2 , θ̄k,i

2 ), .., lsk,i
m2

= (r̄k,i
n , θ̄k,i

m2
)} (3.48)
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B Weighting from median barrier

The main use of the median barrier is to calculate the number of the lane where the
ego vehicle is. Consider that the calculated lane number from the detected barrier is
Lindex = r

w , where the value w is directly extracted from the map. For each particle
we use the map polylines (map lane markings) to also attribute a lane index for each
particle Li,m

index. The calculated weight from median barrier is therefore given by:

wbarrier =
1

1 + α × |Lindex − Li,m
index|

(3.50)

Where α is a penalty parameter (α = 100 in our case). The interpretation of this
equation is straightforward, all the particles that are within the same lane as the true
lane of the ego vehicle share the same lane index Li,m

index which is also equal to Lindex. In
this case, the value of |Lindex − Li,m

index| = 0 and the calculated weight from the barrier
is equal to one. Assume that the ego vehicle is on the lane indexed (lane_index = 0)
(cf. Figure 3.30). Particles on lane number 0 (i.e. the true ego vehicle lane) will have
wbarrier = 1. Particles on lanes number 1 and 2 (lane_index = 1 and 2) will respectively
have wbarrier =

1
α , 1

2α . Multiplying wl and wbarrier for the three lanes gives the following
values (wl,

wl
α , wl

2α ).

C Integration of GNSS data

Although the positions estimates from commercial GNSS receivers are not accurate
enough for global localization, they can be exploited to define a bounded error of the
localization system.

Very often, the distances from particle positions to the GNSS position are calculated
and compared to threshold distance ρmax to decide whether to keep the particle or not.
This proves to be very useful when the particles tend to get far from the GNSS posi-
tion [Chausse et al., 2005]. The proposed method is similar in the idea but different in
the formulation of the adopted metric. The use of the L2-norm is very common but
propagates the GNSS position error in both x − y directions and strongly affects the
lateral positioning of the vehicle. Alternatively, we computed the average of the rela-
tive distances Di between a particle calculated MTPs and the GNSS calculated MTPs
and compared it to a threshold distance ρmax. Figure 3.31 shows an example of the
calculation of Di, a map composed of two lane markings, a GNSS position with its rel-
ative MTPs and three particle hypothesis with their relative MTPs. Although the three
particles are not in the same position, their relative MTPs coincide. As a result, all the
particles will have the same distance Di =

s1+s2
2 , where s1 and s2 are the curvilinear

lengths, thus the lateral position will not be affected by this process.
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g(sk
n , rsk,i

m ) = e

−(‖sk
n‖−‖rsk,i

m ‖)2

2σ2
d (3.53)

Where σd is a detection measurement error variance. Finally, the calculated weights
for guardrail reflectors and traffic signs are:

{

wr = ∑
p1
q=1 g(sk

q , rsk,i
q ), i f sk

q and rsk,i
q are guardrail reflector

ws = ∑
p2
q=1 g(sk

q , rsk,i
q ), i f sk

q and rsk,i
q are traffic signs

(3.54)

E Discussion

Lane markings are crucial for lateral positioning but do not have a significant contri-
bution in the longitudinal direction. Road curvatures can be utilized to reduce the
longitudinal drift [Suganuma and Uozumi, 2011a] but require high curvature values to
be efficient, which is not the case of highway roads. In contrast, road traffic signs and
guardrail reflector contribute in the longitudinal direction. Traffic signs may be absent
for hundreds of meters on the highway, whereas guardrail reflector are repetitive but
not guaranteed to be installed in all highway roads. The worst case is the simultaneous
absence of traffic signs and guardrail reflector. In this case, the particle filter is only
relying on lane markings and GNSS data.

w
[i]
k =

{

w
[i]
k−1 × (w

[i]
k,l × w

[i]
k,s × w

[i]
k,r × w

[i]
k,barrier), i f Di ≤ ρmax.

0, else.
(3.55)

Weights should be normalized to model the probability density. The normalization
is given by:

w̃
[n]
k =

w
[n]
k

∑
N
i=1 w

[i]
k

(3.56)

Finally, different options have been considered to calculate the filter estimate from
the set of weighted particles. The standard option, which we use in our study, is to
compute the weighted mean:

x̄k =
N

∑
i=1

w̃
[i]
k x

[i]
k (3.57)

There is also another option which consists in taking the best particle, that is, the
particle with the maximum weight:

x̄k = x
[p]
k , where p = arg max

i

(w
[i]
k ) (3.58)
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runtime performance as the number of particles grows significantly. In addition, ran-
domly generating particles is not efficient since we know that some regions of the map
are unlikely to be populated by particles. We propose a more elegant way to generate
particles by relying on the lateral position of the filter estimate from the previous filter
estimate and from the geometry of the road inferred from the map (constrained update).
The idea is to re-distribute the sample set more efficiently while maintaining the same
number of particles. Thanks to road markings, the filter estimate is often well localized
in the lateral direction. A new set of particles is placed along a generator curve C that
is parallel to map road markings and has the same lateral offset as the previous filter
estimate (Figure 3.32b). Thus, the new set of samples covers more space in the longitu-
dinal direction and the weighting step improves the accuracy. Figure 3.32c shows the
result obtained with the constrained update strategy. The filter is able to recover the
correct position without having to increase the number of particles to populate more
regions in the map.

3.5.4 The resampling step

A major problem is amplified through repetitive resampling: after some iterations the
particles tend to concentrate into an identical particle copy, this is known as particle
degeneracy. Particle degeneracy would eradicate particle diversity which is a crucial
characteristic of the filter. As a general rule, the resampling step increases the variance
of the particle filter as an estimator. On one hand, too much resampling increases
the risk of losing diversity, while on the other hand, too little resampling puts many
particles in regions of low probability. According to [Thrun, 2002a], there are two
main strategies for variance reduction. The first strategy is to perform the resampling
step according to the value of the variance of the importance weights. If it is high,
the resampling should be done, otherwise, no resampling should be performed. Con-
sequently, the resampling frequency is decreased. The second strategy, which is the
adopted implementation in our filter, is known as low variance sampling. The pseudo
code is given hereafter:
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Consequently, no particle is lost if no observation is available (i.e. no update step).
Second, the dependent samples cycles through all particles rather than choosing them
independently. As a result, larger subsets of samples are covered.

3.6 Conclusion

In this chapter, we presented a road perception module and a map-based localiza-
tion approach. The road perception detects different highway primitive features such
as lane markings, traffic signs, barriers and guardrail reflectors. These features are
extracted from 3D LiDAR point clouds by coupling geometry-based and reflectivity-
based approaches. Lane markings are detected by searching straight lines in a 2D hor-
izontal reflectivity grid map, whereas barriers are detected by searching straight lines
in a 2D height map. Traffic signs are detected using closed contour detector applied to
a frontal reflectivity grid map. To eliminate false detections, we executed a RANSAC
plane estimation to keep planar surfaces that satisfy certain criteria (orientation of the
normal vector and the number of points (inliers) constructing the plane). We showed
that our algorithm gives promising detection results but mistakenly detects vehicle
plates as traffic signs. Finally, guardrail reflectors are detected by applying template
matching using normalized cross correlation (NCC) to a frontal reflectivity grid map.
Similarly, RANSAC plane estimation is used to filter false template matches. In con-
trast to traffic signs, the fixed geometric criteria to detect guardrail reflectors are not
affected by license plates. According to qualitative results, we concluded that using
the bumper-mounted LiDAR is more suitable to detect: barriers, guardrail reflectors
and lane markings. The roof-mounted LiDAR is more appropriate for traffic signs
detection.

The localization system is implemented using a particle filter where the detected
features are matched to a third party highly accurate digital map. This map stores
geometric road primitives: lane markings, traffic signs, road connections, etc. We pro-
posed an improved version of Particle Filter (PF) which keeps the number of particles
constant during the experiments but re-distribute them in an optimized manner to
maximize the particle space coverage around the true vehicle position. This version is
called constrained update particle filter. Constrained means that particles are generated
taking into account the road map geometry. To evaluate our approach, we have con-
ducted many experiments in a Renault highway-like test track and in a real highway
environment in France (French A13 highway). We discuss the results in the up-coming
chapter.
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Chapter 4

Experimental results

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 CTA2 test track results . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 A13 highway results . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

88



Résumé en français

Dans ce chapitre, nous proposons une description des expériences que nous
avons menées afin de valider notre système de localisation sur carte. Nous avons
testé notre approche sur deux pistes différentes. La première est une piste de voie
rapide localisé au centre technique d’Aubevouye de Renault. Le deuxième essai
a été effectué dans des conditions réelles de conduite sur l’autoroute A13. Nous
avons testé notre système en variant la vitesse du véhicule (de 30Km/h à 90
km/h) pour étudier l’impact de la vitesse sur le précision de l’estimation de la
position du véhicule. Enfin, le test sur l’autoroute A13 est un essai représentatif
des conditions réelles de conduite dont l’existence d’obstacles.

4.1 Introduction

The aim of this chapter is to present the conducted experiments to evaluate our pro-
posed localization approach and the achieved results. We tested our proposed solution
in different driving scenarios and on two different highway roads. The first is an exper-
imental test track (CTA2) of 5 km long located at CTA, Renault’s Aubevoye’s Technical
Center (Figure 4.1a). This track is designed to exactly replicate a two-lane highway
environment. The second is a section of the A13 highway of about 100 kilometers long,
running from Paris and ending at Aubevoye (Figure 4.1b).

We have driven our prototype vehicle "MELO" at different speeds from 30 kph
to 90 kph in CTA2 test track and up to 130 kph on A13 highway, and in different
driving scenarios involving lane-keeping and lane-change maneuvers. On one hand,
our test track provides a well-controlled environment, where tests can be performed in
ideal and safe conditions, especially those that are not possible on real highway roads
(e.g. driving at low speed). On the other hand, driving on A13 highway allowed us to
experiment real traffic scenarios, where real world related problems are to be expected,
such as missed detections, obstruction, dynamic objects etc. As for the maps, the A13
highway and the Renault test track were mapped by the same provider. Nevertheless,
guardrail reflectors are not yet provided in the A13 highway map.
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• Lane markings only: in this case, the median barrier is not considered and the
update step is performed with lane markings only. The goal is to evaluate the
multi-hypothesis problem.

• Median barrier Only: only the median barrier is used in the update step. The
goal is to evaluate the contribution of median barrier to the localization accuracy.

• Lane markings and median barrier: in this case, lane markings and median bar-
rier are used in the update step of the filter. The goal is to evaluate accuracy
improvements obtained by fusing both measurements.

Configuration Traffic signs Rail reflectors Lane markigns Median barrier GNSS data

All update Yes Yes Yes Yes Yes

Traffic signs Yes No Yes Yes Yes

Traffic signs
without GNSS

Yes No Yes Yes No

Lane markings and
median barrier

No No Yes Yes Yes

Lane markings only No No Yes No Yes

Median barrier only No No No Yes Yes

Table 4.1: Summary of the use cases and configurations for the evaluations processes

For all the experiments, the number of particles is a constant parameter and is
properly defined to ensure a total length of 20 meters for the generated curve C in
the constrained update strategy (10 meters in front of the vehicle and 10 meters behind).
We draw particles along the curve C with a step size set to 0.1m thus requiring a total
number of particles equals to 200 = 20

0.1 . Moreover, to activate the constrained update
strategy, the threshold value in Equation 3.59 is fixed to ws,th = 0.2 . The integration
of GNSS inputs requires to set the value of ρmax. In our case, we have chosen 15
meters because the goal is to develop a localization system that works with a low cost,
degraded GNSS data.

4.2.1 Evaluation metrics

The evaluation of the localization system should be defined according to specific met-
rics to qualify its accuracy. Choosing a suitable evaluation metric is also important for
the design of the overall autonomous navigation system. A typical metric is the compu-
tation of the euclidean distance between the localization position outputs and reference
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positions obtained from a highly accurate ground truth. The euclidean distance is gen-
erally calculated with respect to a fixed Cartesian frame. Other important metrics for
autonomous vehicle navigation are the cross-track and along-track distances that are
the curvilinear abscissa defined with respect to the map.

A Absolute error

The calculation of the absolute errors is straightforward. Let x1:T be the estimated
localization positions and x∗1:T the corresponding ground truth positions. The absolute
error at time k is calculated as follows:

errorabs,k = ‖xk − x∗k‖ (4.1)

B Along-track and cross-track errors

The along-track (AT) and cross-track (CT) errors are signed and calculated with respect
to the curvilinear coordinates attached to the map. Contrary to the absolute error, they
implicitly incorporate the map error. In other words, the absolute error is the result
of the localization system error and the ground truth position error, whereas both
along-track and cross-track errors are calculated by passing through the map which in
turns has errors. Nevertheless, both metrics are expected to yield similar results with
highly-accurate maps.

The calculation of cross-track and along-track errors depends on the representation
of lanes in the map. A good comparison of map representations and their impact on
the calculation on the errors is given in [Héry et al., 2018]. In our case, the lanes are
modeled by polylines, thus, we approximate the errors by using the map tracker points.
Map tracker points are the projection points of one vehicle position into map polylines
(cf. Parag.3.3.2.D). Let xk, x∗k be the filter estimate and the associated ground truth
position at time k. Let {p1,k, p2,k, ..., pn,k} and {p∗1,k, p∗2,k, ..., p∗n,k} be their corresponding
map tracker points. Hence, the associated errors are computed as:

CTerror =
1
n

n

∑
j=1

(‖pj,k − xk‖ − ‖p∗j,k − x∗k‖) (4.2)

ATerror =
1
n

n

∑
j=1

‖pj,k − p∗j,k‖ × sign(pj,k, p∗j,k) (4.3)

Considering λ∗
k as the heading of the ground truth at time k, the sign function is

given by:

sign(pj,k, p∗j,k) =

{

1 , if u.v > 0
−1 , if u.v ≤ 0

(4.4)

Where u = [cos(λ∗
k), sin(λ∗

k )]
T, v =

−−−→
pj,k p∗j,k and (.) is the inner product operator.
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4.3 Experimental results

4.3.1 CTA2 test track results

Our mule car MELO has been driven on the CTA2 test track at different speeds, in
order to assess the impact of the ego speed on the localization accuracy. At first, all
detected objects from our road perception module have been used. Then, we disabled
the guard rail reflector input in order to evaluate its impact on the performance. In
both cases, the two particle filter implementation are tested and compared.

Table 4.2: Localization accuracy results on CTA2 test track. All detected objects from our road
perception module are used: traffic signs, guard rail reflectors, lane markings and barriers.

30 kph 50 kph 70 kph 90 kph

Absolute
error

µ : 0.52
std: 0.33

µ : 0.67
std: 0.35

µ : 0.8
std: 0.56

µ : 1.08
std: 0.75

Along-track
error

µ : -0.21
std: 0.54

µ : -0.43
std: 0.57

µ : -0.53
std: 0.78

µ : -0.83
std: 0.93

Cross-track
error

µ : -0.05
std: 0.15

µ : -0.08
std: 0.13

µ : -0.07
std: 0.14

µ : -0.07
std: 0.16

(a) Particle filter implementation with constrained update

30 kph 50 kph 70 kph 90 kph

Absolute
error

µ : 0.52
std: 0.33

µ : 0.67
std: 0.35

µ : 0.8
std: 0.56

µ : 1.08
std: 0.75

Along-track
error

µ : -0.21
std: 0.54

µ : -0.43
std: 0.57

µ : -0.53
std: 0.78

µ : -0.83
std: 0.93

Cross-track
error

µ : -0.05
std: 0.15

µ : -0.08
std: 0.13

µ : -0.07
std: 0.14

µ : -0.07
std: 0.16

(b) Particle filter implementation without constrained update

Tables 4.2a and 4.2b summarize mean and standard deviation values (µ and std)
for the absolute, along-track and cross-track errors using all detected objects from our
road perception module. The error graphs of the measurement records are illustrated
in Figure A.1.

As we can see in Table 4.2, the localization accuracy is affected by the vehicle speed.
Indeed, the mean absolute error increases from 0.52m at 30 kph to 1.08m at 90 kph.
Regarding the cross-track error, the vehicle speed has no significant effect. Indeed,
the y-component (i.e. lateral component) of the ego velocity vector is most often very
small in all driving maneuvers (lane-change and lane-keeping). The standard update
strategy and the constrained update strategy give similar results for all vehicle speeds.
This is expected because the constrained update strategy is basically designed to tackle
the particle deprivation problem that occurs when the filter hypothesis start the drift
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away from the most likely area around the true position. Since guard rail reflectors are
repetitive features, the deprivation problem is very unlikely to occur.

Table 4.3: Localization accuracy results on CTA2 test track without the guard rail reflector
input

30 kph 50 kph 70 kph 90 kph

Absolute
error

µ : 1.79
std: 1.84

µ : 1.28
std: 0.70

µ : 3.62
std: 2.38

µ : 4.62
std: 2.46

Along-track
error

µ : -0.33
std: 2.54

µ : -1.19
std: 0.80

µ : -3.59
std: 2.47

µ : -0.37
std: 5.14

Cross-track
error

µ : -0.05
std: 0.14

µ : -0.08
std: 0.14

µ : -0.06
std: 0.15

µ : -0.08
std: 0.14

(a) Particle filter implementation with constrained update

30 kph 50 kph 70 kph 90 kph

Absolute
error

µ : 3.51
std: 1.82

µ : 1.28
std: 0.70

µ : 6.02
std: 2.27

µ : 5.45
std: 2.45

Along-track
error

µ : 0.79
std: 3.95

µ : -1.19
std: 0.80

µ : -6.11
std: 2.27

µ : 5.45
std: 2.32

Cross-track
error

µ : -0.05
std: 0.16

µ : -0.08
std: 0.14

µ : -0.05
std: 0.17

µ : -0.05
std: 0.32

(b) Particle filter implementation without constrained update

The same scenarios have been replayed while disabling the guard rail reflector in-
put. As we can see in Table 4.3, the localization errors significantly increase in compar-
ison with Table 4.2. Indeed, guard rail reflectors are repetitive and play an important
role in reducing the along-track errors. This is not the case for traffic signs that can
be absent for hundred of meters. The importance of the proposed constrained update
strategy can be observed in Figure A.2. At different vehicle speeds (30 kph, 70 kph
and 90 kph), the particles are initialized and their relative positions are updated using
inertial data for a period of time without encountering any traffic sign. This makes the
longitudinal drift increases; therefore getting the particles far from the true position of
the vehicle. When a traffic sign is detected, the standard update strategy is not capable
of covering back to the true position since all the particles have drifted away, hence, the
calculated weights are very low (close to zero). However, with the proposed approach,
the filter rapidly converges back around the true position of the vehicle. This is mani-
fested by the instantaneous decrease of the absolute and along-track errors illustrated
in Figure A.2. At 50 kph, the constrained update strategy is not activated (i.e ws,max

remains greater than ws,th) because the filter is initialized near a traffic sign location,
which allowed the particles to stay close to the true position of the vehicle.
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4.3.2 A13 highway results

Following the test track evaluations, we have conducted real world experimentations
on the A13 highway to assess the performance of our localization approach. Guard rail
reflectors are not used in these experiments because they are not yet available in the
map. The results discussed hereafter are computed from a section of approximately
6 kilometers long. The conditions on the A13 highway are degraded in comparison
with the Renault test track. At first, LiDAR reflectivity returns are sometimes too low
that the lane perception module does not always detect the lines. Second, moving
objects in the environment (e.g. other vehicles) cause occlusions that seriously impact
the detection of traffic signs and lane markings. Finally, since the A13 has three lanes,
the multi-lane hypothesis problem occurs. The main goals of the experiments are:

1. To evaluate our localization system when both lane markings and median barrier
inputs are available and assess the contribution of each object type.

2. To evaluate our localization system without the GNSS inputs as signal losses
occur in real-world scenarios (e.g. tunnels).

3. To evaluate our localization system using all the detectable features by our road
perception module (except for guard rail reflectors)

4. To evaluate our localization system performance in a lane change scenario.

Figure 4.2 illustrates the separate contributions of each of lane markings and me-
dian barrier to the cross-track localization error, as well as their joint contribution when
simultaneously available. When only the lane markings are used, the cross-track error
is in the order of 4m and remains at that value during a time interval t1 = [0 − 900]
frames. Then, from t = 900 frames onwards, the error is shifted near zero. Since the ob-
served shift is in the order of one lane width, this can be explained by the fact that the
filter converged to the adjacent (wrong) lane in the time interval t1. In t2 = [900− 1700]
frames, the filter converged back to the correct lane. The ambiguity in t1 is mainly due
to multi-lane hypothesis. This problem occurs when the detected lane markings are
not sufficient to decide which lane the ego vehicle is in. A typical example is when the
lane marking detection module only detects the lines of the ego lane in a multi-lane
roads resulting thus to equal likelihood of occurences in all road lanes.

lanesOnly barrierOnly lanesAndBarrier

Cross-track
error

µ : 1.74
std: 1.76

µ : 0.43
std: 0.65

µ : 0.0
std: 0.13

Table 4.4: Cross-track localization error using separately lane markings, median barrier and
the fusion of both
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vehicle in the lateral (cross-track) direction and have minor contributions to the longi-
tudinal (along-track) direction. On the other hand, guardrail reflectors and traffic signs
are necessary to localize the vehicle in the longitudinal direction.

For lateral direction, the best cross-track accuracies are obtained by jointly using
lane markings and median barrier. The obtained accuracy is below 20cm for all tested
vehicle speeds. However, if one of these detected objects is not taken into account, the
cross-track accuracy can be deteriorated. Indeed, the only use of lane markings is not
sufficient and may lead to the multi-lane hypothesis problem. This problem occurs
when some lane markings are not detected and is characterized by a convergence of
the filter to the wrong ego lane, leading therefore, to a significant cross-track error
(shifted by ∼ lane width). On the other side, the use of median barrier allows to
robustly estimate the correct ego lane index but is not capable to infer the position of
the vehicle in it (i.e WHICH LANE localization level). This is a conceptual choice in our
approach, the median barrier are used to mitigate the multi-hypothesis problem due
to missed lane marking detections.

For longitudinal direction, we studied the impact of three different inputs: traffic
signs, guardrail reflectors and GNSS data. In contrast to the cross-track error, the along-
track error is around 3 meters when using traffic signs and GNSS inputs (e.g. A13
results) and is around 1 meter when adding guardrail reflectors (e.g. CTA2 results).
This is because guardrail reflectors are repetitive features (e.g. spatial periodicity of
40 meters at CTA2), whereas traffic signs may be absent for hundred of meters on
highways. In the absence of traffic signs and guardrail reflectors, GNSS data is used
to limit the cumulative drift obtained from odometry integrations by enclosing the
particles within an ellipsoid error (3σ-ellipsoid) of GNSS data.

One of the contributions of this study is the proposal of an improved version of
particle filter, named contrained-update particle filter, that tackles the particle deprivation
problem. Concretely, in our case, the deprivation problem occurs when guardrail reflec-
tors are not used and, consequently, the localization system may be subject to cumula-
tive drift between two detected traffic signs. The cumulative drift can be significantly
high (i.e. because two consecutive traffic signs can be very distant on highways) so that
the particles tend to gradually vanish from the spatial region around the true position.
Different approaches have been addressed in the literature to alleviate this problem by
increasing the number of particles to populate more regions in the space. However,
increasing the number of particles increases the computational complexity of the filter.
In our approach, the deprivation problem is solved by efficiently re-distributing the set
of particles using the geometry of the road extracted from the map. Experimental re-
sults showed that the proposed improvement gives better along-track accuracies than
the standard particle filter implementation.
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Chapter 5

Conclusion and perspectives

Résumé en français

Le présent chapitre résume les travaux présentés dans ce manuscrit. Nous ré-
sumons d’abord le problème qu’on chercher à résoudre et les contributions sci-
entifiques apportées. Ensuite, nous détaillons les résultats expérimentaux pour
la validation de notre système.

This chapter concludes the research work presented in this manuscript. At first, we
summarize the problem and our proposed solution to address it. Then, we focus on
main results obtained from the experimental evaluation. Finally, we discuss the open
questions and perspectives for future research.

5.1 Proposed approach

In this thesis, we addressed the development of a highly accurate localization system
to enable highly automated driving functions on highway roads. Based on the state-of-
art review of mapping and localization techniques, we proposed a global localization
system architecture with position tracking, feature detection (perception module) and
map matching (localization module). We have chosen LIDAR as the main sensor for
environment perception, thanks to its range measurement accuracy and its robustness
against lighting conditions. Then, we developed a LIDAR-based perception module
and a localization module based on particle filtering and a very accurate third party
map. The perception module detects road primitive features that are lane markings,
traffic signs, median barriers and guardrail reflectors. The detection processes mainly
rely on the shape and reflectance values of these features. Before detecting lane mark-
ings, we developed a road segmentation method to eliminate the impact of high reflec-
tive isolated points in the environment that may lead to false lane marking detections.
The road segmentation approach uses a geometric analysis of layer points on the road
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surface by locally approximating the geometry with a circular arc model. Once the
road surface points are filtered and kept, a 2D reflectivity grid map is constructed and
a Hough transform is applied in order to extract straight lines. The segmentation of
the road surface allows to define a low reflectivity threshold since the asphalt points
have low reflectivity values. The straight line model for lane markings is a good ap-
proximation on highway roads since they are designed to have low curvature values.
In addition, the perception module is mainly designed to feed a localization algorithm,
thus, the detection range can be set in the vicinity of the vehicle (10-20 meters for lane
markings). The detection of the median barrier is very similar to the method used to
detect lane markings except that we extracted it from a height grid map instead of a
reflectivity grid map. Finally, to cope with possible occlusions, a standard tracking
algorithm based on Kalman Filter is implemented.

Detections of traffic signs and guardrail reflectors are performed on a front reflectiv-
ity grid map that is obtained by projecting LiDAR point cloud onto a 2D front view. On
one hand, traffic signs are considered to be high reflective plane surfaces whose normal
vectors are parallel to the driving direction. On the other hand, guardrail reflectors are
considered to be a cluster of high reflective points in planar surfaces characterized by
a normal vector that is perpendicular to the driving direction. For both features, the
detection process goes through three major steps. First, a detection of Regions Of In-
terests (ROIs) is executed on the corresponding front reflectivity grid maps. For traffic
signs, a closed contour operator is applied to a 2D image, that is constructed from the
reflectivity values of the front grid map, in order to obtain bounding boxes indicat-
ing potential candidates of traffic signs. Since LiDAR points are sparse, we applied a
dilation to the 2D image in order to fill the gaps within the closed contours. Regard-
ing guardrail reflectors, we applied a template matching algorithm where the template
is a selected sample from our dataset. The template matching is implemented using
a Normalized Cross-Correlation (NCC) technique. The second step after detecting
ROIs is geometric-based filtering approach. For the retained candidates, we applied
a RANSAC plane estimation in order to keep only plane surfaces that satisfy certain
conditions (mainly the directions of the normal vectors and the number of inlier points
in the RANSAC process).

The localization approach is based on an implementation of the particle filtering al-
gorithm and takes as inputs the perception data from LiDAR sensors and a highly ac-
curate third party digital map. Particle filter searches for the best associations between
perception data and map attributes through manipulating multiple vehicle position
hypothesis called "Particles". The best particles are those for which the projected map
attributes to particle positions are very close (metrically speaking) to the perceived
objects. A key contribution of the thesis is the proposal of an improved version of
particle filtering, namely constrained-update particle filtering, which tackles the particle
deprivation problem without modifying the number of particles.

Experimental tests have been conducted on two different highway roads. The first
is a Renault highway-like test track (CTA2) situated at Aubevoye, France. The second
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is a section the A13 French highway. At CTA2, we conducted experiments for different
vehicle velocities in order to evaluate the impact of the speed. We also tested the
contribution of guardrail reflectors on the accuracy of the localization system. In the
A13 section, the vehicle is moving at high speeds (up to 130 kph), our approach is
tested only with the traffic signs as guardrail reflectors are not yet mapped for this
road. Error evaluations have been studied with two different metrics: the absolute
error from one side, the cross-track (lateral) and along track (longitudinal) errors from
the other side. The main comments that can be given are as follows:

1. Lane markings and the median barrier are necessary to localize the vehicle in
the lateral (cross-track) direction. The overall cross-track accuracy is below 20cm
for all tested velocities. Indeed, velocity impacts are rather to be expected in
the longitudinal direction than the lateral direction. However, this accuracy is
conditioned to the joint use of lane markings and median barrier. On one hand,
lane markings alone are not sufficient and may lead to the multi-lane hypothesis
problem. On the other hand, the median barrier alone is only capable to achieve
the WHICH LANE localization level. When fusing both features, the system is
capable to achieve the WHERE IN LANE localization level.

2. In the longitudinal direction, we studied the impact of three different inputs:
traffic signs, guardrail reflectors and GNSS data. In contrast to the cross-track
error, the along-track error is highly sensitive to speed variations (e.g. 1.79m
for 30 Kph .Vs. 4.69m for 90 kph at CTA2). In general, the along-track error
is around 3 meters when using traffic signs and GNSS inputs (e.g. A13 results)
and is around 1 meter when adding guardrail reflectors (e.g. 0.52m at 30 kph
.Vs. 1.08m at 90 kph at CTA2). This is because guardrail reflectors are repetitive
features (e.g. spatial periodicity of 40 meters at CTA2), whereas traffic signs may
be absent for hundred of meters on highways. This allows to validate the concept
of using guardrail reflectors as promising features for localization. Finally, in the
absence of traffic signs and guardrail reflectors, GNSS data is used to limit the
cumulative drift obtained from odometry integrations by enclosing the particles
within an ellipsoid error (3σ-ellipsoid) of GNSS data.

3. The constrained-update particle filter implementation gives similar accuracies in
the cross-track direction and better accuracies in the along-track direction com-
pared to the standard implementation, except for the case where guardrail re-
flectors are used. Indeed, the constrained-update implementation is only trig-
gered when the particle weights tend to be very low, which is very unlikely using
guardrail reflectors. Nevertheless, when guardrail reflectors are not integrated,
the difference can be significantly high. For example, on A13 highway, the ab-
solute error is reduced from 3.22m to 2.36m when using traffic signs and GNSS
data, and from 26.52m to 4.68m when only traffic signs are available (e.g. GNSS
signal loss scenario).
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5.2 Future research

This section introduces several improvements that can be integrated in the current
system.

A Extension of the A13 map

The map of the A13 highway section did not include guardrail reflectors layer. An
investigation can be done to evaluate the localization system with the use of guardrail
reflectors in the particle filter update step. At this moment, we used the CTA2 test
track to validate the concept.

B Integration of a vision system

One major improvement would be to replace the inertial data of the internal IMU
sensor with oVisual odometry (VO). VO systems are more accurate and give better
results in terms of displacement calculation. The impact of the integration of the IMU
data can be seen when traffic signs are not detected and when no guardrail reflectors
exist. In this case, the particle filter solely rely on integrating inertial data to predict the
position in the longitudinal direction. We believe that with a visual odometry system,
the cumulative drift will be reduced.

C An evaluation protocol of the perception module

In this work, our proposed approach was evaluated based on the outputs of the global
localization system. The results of the localization implicitly contain the accuracy of
perception. However, perception can be also used for other purposes such as mapping,
obstacle detection and avoidance, etc. Therefore, an evaluation protocol of perception
using a highly accurate map as ground truth could be investigated.

D Vision-based Artificial intelligence (AI) algorithms to improve LiDAR percep-
tion

Vision-based AI algorithms can be integrate to improve the robustness of the LiDAR
perception system. Indeed, by labeling specific road features (lane markings, traffic
signs, rail reflectors, etc), we can train AI algorithms to detect these features and to
fuse the results with the LiDAR perception algorithms.
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Figures: results at CTA2
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