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Abstract

Communication channels are used to transmit information signals. However, these channels can

cause several distortions on the signal to be transmitted, such as attenuation, multipath loss and

Doppler shift, among others. For a better message recovery, the receiver can estimate the channel

and bring more reliability to the communications systems.

Several communications systems, for example high-definition television, mmWave system,

wideband HF and ultra-wideband have sparse channels. This characteristic can be used to improve

the performance of the estimator and reduce the size of the training sequence so decreasing the

consumption power and bandwidth.

This thesis handles the channel estimation problem by investigating methods that exploit the

sparsity of the channel. The study of Compressive Sensing and its sparse recovery algorithms led

to the proposition of a new algorithm called Matching Pursuit based on Least Square (MPLS).

The use of neural networks (NN) to sparse signals estimation was also explored. The work fo-

cused on NN inspired by sparse recovery algorithms such as Learned Iterative Shrinkage-Thresh-

olding Algorithm (LISTA). This resulted in two approaches that improve LISTA performance as

well as to a new neural network suitable to estimate sparse signals.
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Chapter 1

Introduction

This chapter introduces the reader to the context of this thesis and outlines the motivation and

contributions of the present work.

1.1 Motivations

In the last decades, the development of technological solutions in communications has given rise

to a new radio concept called Software Defined Radio (SDR) [1]. It is an emerging technology

in which previously hardware-based features have become software-defined, enabling users to

enter new applications when using an SDR. It presents several advantages for the development of

wireless solutions in civil and military communications such as interoperability between troops of

different forces and nations, the portability of waveforms, and the possibility of updating with the

latest advances in radio communications without requiring a new hardware.

Transmitter ReceiverChannel

Transmitted
signal

Received
signal

Figure 1.1 – Elements of a communication system.

A communication system is basically composed of three elements: transmitter, channel and

receiver as shown in Fig. 1.1 [2]. Communications channels can cause several distortions on the

signal, such as attenuation, multipath loss and Doppler shift, among others [2]. Consequently, to

better recover the message sent by the transmitter, an estimate of the channel can be used to com-

pensate these effects, resulting in an accurate signal demodulation, equalization, and decoding.
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Indeed, high-quality channel estimation is an essential feature of reliable communication systems.

One of the major challenges of communication systems is to provide accurate channel state in-

formation (CSI) at the receiver [3]. With the estimated CSI, transmitted symbols can be recovered

at the receiver. In order to do this, several channel estimation techniques to provide CSI have been

developed. In general, these techniques can be categorized into three classes as illustrated in

Fig. 1.2 [4].

Channel Estimation

Training Based
Channel Estimation

Blind Channel
Estimation

Semiblind Channel
Estimation

Figure 1.2 – Classification of channel estimation techniques.

The training based channel estimation uses some known symbols, the training sequence, sent

before and/or during the communication to estimate the channel from the measured outputs to

training sequence. Fig. 1.3 illustrates the transmitted symbol vector with T training and D data

symbols. However, these known signals consume power and bandwidth impacting on the channel

spectral efficiency due to the use of communication resources to transmit these symbols instead

of transmitting data. Moreover, in time-varying channels, the training sequence needs to be trans-

mitted periodically, resulting in further loss of channel throughput. Therefore, it is interesting to

reduce the required amount of the training symbols while keeping a sufficient estimation accuracy.

To achieve this, the characteristic of the channel can be used to improve the performance of its

estimator.

... ...

T TD

data training

Figure 1.3 – Transmitted symbol vector with T training and D data symbols.

On the other hand, blind techniques focus on statistical or deterministic properties of the sys-

tem. They do not exploit the knowledge of the training sequence. The main advantage of the blind

channel estimation techniques is the possibility of eliminating the training sequences. Nonethe-

less, in general, these techniques require long data record leading to a slow convergence rate [3].



29

Finally, the semiblind channel estimation algorithm is a combination of training based channel

estimation and blind channel estimation. It utilizes the known training symbols and the unknown

data symbols to perform channel estimation.

A communication channel is usually modeled by its channel impulse response (CIR), which is

a vector whose elements represent the complex gains associated with each multipath component of

the channel. In various communication systems, such as high-definition television (HDTV) [5, 6],

mmWave system [7, 8], wideband HF [9, 10], ultra-wideband [11–13], massive MIMO [14] and

underwater communication systems [15, 16], the channels can be considered sparse channels. In

other words, their impulse responses are characterized by a few significant terms that are widely

separated in some domain, that is, many coefficients are close to or equal to zero. Indeed, in wire-

less communication systems, for example, several components of the signal arrive at the receiver

with a delay due to the multipath caused by the environment, making its response sparse [17].

The length of a sampled sparse channel can reach hundreds of symbol intervals, although the

majority of taps in the sampled channel are near zero-valued. The channel sparsity is defined as

the number of non-zero taps of the channel [18, 19]. The sparsity can significantly reduce the

effective signal space dimension. That is, the size of the possible signals set in a sparse channel

can be much lower than the original (supposing non-sparse) signal space dimension.

Traditional channel estimation techniques such as least squares (LS) do not exploit the chan-

nels sparsity resulting in over-parameterization and poor performance of the sparse channel esti-

mator [2]. Furthermore, classical estimation algorithms become too complex for tackling these

channels [20].

The sparsity characteristic of the signal can be used to reduce the cost and complexity of

the signal estimation. For example, using compressive sensing (CS), these signals can be re-

constructed from fewer measurements than the required by the Shannon-Nyquist sampling the-

orem [18, 21–24]. The great advantage of CS is that it allows you to digitize only the relevant

signal information at a much lower sample rate than the Nyquist rate, so the digitized signal is

already in a compressed form. Compressive sensing has been applied to sparse channel estima-

tion [8, 15, 18, 20, 25–27]. The structure of sparse channels can be exploited using sparse recon-

struction algorithms such as Matching Pursuit (MP) [28], Basis Pursuit (BP) [29] and others [30]

leading to better estimation performance.

The channel estimation can be formulated as an optimization problem. An optimization prob-

lem can be solved by using numerical algorithms that iteratively refine their solution. Generally,
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in channel estimation, an accurate solution should be found with a small number of iterations. In

addition, these algorithms require some parameters adjustments that if they are not well chosen

may decrease the algorithm performance.

In order to overcome some issues of these algorithms, model-driven neural networks (NNs)

are becoming popular in communications systems [31–42]. Some of them are based on algorithms

which have performance guarantees and NNs tools, combining the best of both.

Starting with the study of compressive sensing, sparse recovery algorithms, and neural net-

work, this thesis aims at contributing to the development of algorithms suitable for sparse channel

estimation. In this work, the channel estimation is formulated as a signal recovery problem. The

developed approaches are intended to be used in Software Defined Radio (SDR) applications.

However, they can be applied in other areas where the signal of interest can be considered sparse

or compressible.

1.2 Thesis Contributions

This thesis is focused on sparse channel estimation. The main research contributions are:

• Study of sparse recovery algorithms (see Chapter 3) resulting in the publication of a review

article in IEEE Access [30].

• Performance comparison between some sparse recovery algorithms that have been presented

in the literature (see Section 3.4).

• Proposition of a greedy algorithm called Matching Pursuit based on Least Squares (MPLS)

(see Section 5.1).

• Wideband HF channel estimation based on CS (see Section 5.2).

• Proposal of a new approach to improve Learned Iterative Shrinkage-Thresholding Algo-

rithm (LISTA) estimation performance (see Section 5.3).

• Proposal of a new neural network to sparse signal estimation (see Section 5.4).

• Analysis of alternative shrinkage functions to be used in LISTA (see Section 5.5).
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1.3 Organization of the Thesis

This report is organized into six chapters, divided as follows:

Chapter 2 is dedicated to introduce the background of this thesis. First, Software Defined

Radio is addressed. Then, the concepts of sparsity and sparse signal are discussed. Finally, the

basis of compressive sensing are presented and some application areas are illustrated.

An overview of sparse recovery algorithms is presented in Chapter 3. These algorithms can

be classified into three categories: convex relaxation, non-convex optimization techniques and

greedy algorithms. Some algorithms of each category are addressed in this chapter. Moreover,

performance comparisons of them are also analyzed.

Chapter 4 discusses some neural networks proposed in the literature to deal with sparse sig-

nals estimation.

Chapter 5 presents the main contributions of this thesis. Based on the analysis made in Chap-

ter 3, a sparse recovery algorithm called Matching Pursuit based Least Square (MPLS) is proposed.

This algorithm as well as other greedy algorithms are applied to Wideband HF channel estimation.

In addition, the study of the neural networks addressed in Chapter 4 led to the suggestion of two

approaches to improve LISTA estimation performance. Furthermore, a neural network is proposed

to sparse signal estimation. Finally, a performance comparison between the techniques proposed

in this thesis and other sparse recovery algorithms is analyzed.

Chapter 6 concludes the work accomplished during this thesis and presents some perspectives

of future research directions.
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Chapter 2

Basic Concepts

This chapter introduces some concepts related to the thesis subject. Firstly, some characteristics

of Software Defined Radio are addressed. Then, sparse signal and sparsity are explained. Finally,

key concepts of the compressive sensing theory are presented and its applications are illustrated.

2.1 Software Defined Radio (SDR)

A radio is a device that wirelessly transmits or receives signals in the radio frequency (RF) part of

the electromagnetic spectrum. It can be found in many everyday items such as cell phones, televi-

sion, and vehicles. With the amount of data and ways of communication between people growing

very fast, modifying radio devices efficiently to respond to today’s different communication needs

has become a major challenge and goal of civil and military circles.

Using traditional hardware based radio devices, a physical intervention is required to modify

them limiting cross-functionality and higher production costs. In contrast, Software Defined Radio

(SDR) represents a great alternative providing an efficient and comparatively inexpensive solution

to this problem [43].

The SDR Forum defines an SDR as “a radio in which some or all of the physical layer functions

are software defined” [43]. In other words, an SDR is a radio implemented with generic hardware

that can be programmed to transmit and to receive a variety of waveforms. A Waveform can be

defined as the set of transformations applied to information to be transmitted and the corresponding

set of transformations to convert received signals back to their information content [44].

This progress is due to improvements in several areas, such as embedded systems, analog

to digital converters (ADC), digital transmission, digital signal processing, multi-band antennas,
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software architectures, and the ability to run new general purpose processors (GPP). Based on this,

SDR anticipates important advantages for the development of wireless solutions in civil and mil-

itary communications systems. Among the features envisioned are the interoperability between

troops of different military forces and nations, the portability of waveforms, and the possibility

of updating with new wireless features and capabilities without requiring new hardware, reducing

logistical support and operating expenditures [43]. SDR also allows that new products be more

quickly introduced into the market using a common platform architecture and reducing devel-

opment costs. In addition, SDR is viewed as the most suitable platform for the development of

cognitive radios (CR).

The high-level functional model of an SDR consists of an RF front-end subsystem that per-

forms channel selection, down-conversion to the basic band, and data routing to a processing unit

based on software. In this unit, the associated digital data set is presented to several layers (e.g.,

link modules, network, security) to perform decoding tasks suitable for extracting the desired in-

formation. This process is inverted on the transmission side, where the input signal is encoded and

modulated, appropriately for the transmission of information. This signal is then passed to the RF

subsystem for insertion into the radio channel.

Due to the multiplicity of concepts related to the functional model described in the previous

paragraph, several efforts have been made to standardize key elements within the SDR architec-

ture, providing a common platform for the development of radio equipment. Supported standards

can be proprietary or industry-standard, being developed through a consensus process. While the

first approach brings product differentiation to manufacturers, the second strategy commoditizes

the technology, enabling third party support in building the radio platform to achieve specific busi-

ness objectives. One of the most typical zones for standardization is the application framework,

which provides a common software operating environment in which the vendor freely provides a

set of interfaces for installing, configuring, controlling, and releasing application operation on a

SDR platform. Examples of application frameworks relevant to SDR systems include the Open

Mobile Alliance and the Software Communications Architecture (SCA) [45].

2.2 Sparse Signals

Sparse signals are characterized by the concentration of large part of its energy in a small frac-

tion of its duration. That is, few of their coefficients have non-zero values, and that concentrate
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the relevant information. These signals can be found in several domains [46]. For example,

most of the images and the audio signals have a sparse decomposition on a base of wavelets and

time-frequencies, respectively. The next paragraphs introduce sparse signals based on their vector

representation.

Consider the support of a vector x is defined as the index set of its non-zero elements, that is:

supp(x) = {i : x(i) 6= 0} (2.1)

The sparsity of a signal x can be measured by its l0-norm (see (2.2)). A s-sparse signal has

no more than s non-zero coefficients. On the other hand, let I(k) be the kth largest component of

x sorted by magnitude from largest to smallest, r ≥ 1, and C a constant, the coefficients x(i) of a

compressible signal decrease in magnitude according to (2.3) [47]. Due to their rapid decay, such

signals can be well approximated by s-sparse signals, keeping just the s largest coefficients of x.

||x||0 = #supp(x) = #{i : x(i) 6= 0} (2.2)

|x(I(k))|6Ckr k = 1, ...,n (2.3)

Fig. 2.1 shows a 200 samples length time-domain signal (Fig. 2.1a) representing 8 distinct

sinusoids (Fig. 2.1b). This figure is an example of 8-sparse signal in frequency domain, that is, it

can be seen in Fig. 2.1b that only 8 non-zero values exist among the 200 frequencies.
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Figure 2.1 – Samples of 8 sinusoids in (a) time and (b) frequency domains.

Dealing with sparse signals presents several advantages such as lower computational complex-

ity, lower processing time and less memory required during vector and/or matrix multiplication.
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Therefore, the performance of sparse signal processing algorithms can be improved if the sparsity

characteristic of the signal is taken into account.

2.3 Compressive Sensing (CS)

Nyquist–Shannon sampling theorem establishes a condition for a sample rate that permits perfectly

reconstructing a signal of finite bandwidth, i.e., the sample rate (Nyquist rate) has to be twice the

bandwidth of the signal. Traditionally, signal acquisition and transmission firstly sample the signal

at the Nyquist rate, then compress it. Nevertheless, it is worth to mention that in several scenarios,

the Nyquist rate can be very high, resulting in too many samples, which makes it difficult to

process it. In other words, it leads to many challenges related to high sampling rates for data

acquisition and large amounts of data for storage and transmission.

The compressive sensing (CS) theory, also known as compressed sensing or compressive sam-

pling, appears as an alternative approach to the traditionally signal processing. In order to reduce

energy consumption and time processing, improve storage capacities and facilitate signal process-

ing, CS performs signal sampling and compression simultaneously [21, 22, 47–49]. Employing

sparse representation, that is, the underlying assumption that the signal is sparse or compressible

by some transforms (e.g., Fourier, wavelets), CS allows recover signals from fewer measurements

than the Nyquist rate (sub-Nyquist sampling) reducing data acquisition costs.

Although the term “compressive sensing” has become popular in the last decades, its idea is

very old. Gaspard Riche de Prony can be considered as one of the first to deal with ideas related

to sparse estimation [50]. In 1795, he was interested in recovering small number of exponential

terms sampled in the presence of noise [51]. On the other hand, works on Geology and Geo-

physics in the eighties showed that wideband seismic signal can be recovery by very incomplete

measurements [52, 53] and one of the first paper to explicit use of l1-norm for signal reconstruc-

tion was written [54]. The general algorithmic principles that are used in compressive sensing

were published in [28, 55, 56]. Nevertheless, the foundation of compressive sensing is related

to [21, 22, 47–49].

2.3.1 Basics on Compressive Sensing

Compressive sensing allows to achieve two highly targeted objectives [22]:

• to reduce the energy for transmission and storage through the projection of the information
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into a lower dimensional space;

• to reduce the power consumption by reducing the sampling rate to the signal’s information

content rather than to its bandwidth.

Fig. 2.2 illustrates the three main steps involved in compressive sensing [23, 57]:

• Sparse Representation;

• CS acquisition (measurement);

• CS reconstruction (sparse recovery).

Sparse
Representation

z CS
Acquisition

h CS
Reconstruction

y ĥ

Ψ A

Figure 2.2 – Compressive sensing main steps.

In the first step (Sparse Representation), the signal is represented as a projection on a suitable

basis, i.e., a linear combination of only s basis vectors, with s� N. It means that a signal z with

N×1 column vector in its original representation can be represented with a basis of N×1 vectors

{ψi}N
i=1. Let Ψ be the N×N basis matrix, the signal can be represented in its sparse form h by:

z = Ψh (2.4)

In the second step (CS Acquisition), the signal z is measured by sampling it according to a

matrix Φ ∈ CM×N , where φi denotes the ith column of the matrix Φ. The system model is defined

by:

y = Φz+n = ΦΨh+n = Ah+n (2.5)

where y = [y1,y2, ...,yM]T denotes the received signal, h = [h1,h2, ...,hN ]
T is the sparse signal

vector with N > M and n is the noise.

The third step (CS Reconstruction) deals with recovery, which is possible if the following two

fundamental premises underlying CS are attended [22]:
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• Sparsity - means that the signal could be characterized by few significant terms in some

domain;

• Incoherence - states that distances between sparse signals are approximately conserved as

distances between their respective measurements generated by the sampling process.

The largest correlation between any two elements of Ψ and Φ is measured by the coherence

between these matrices and it is defined by:

µ(Φ,Ψ) =
√

N max
1≤k, j≤N

∣∣< ϕk,ψ j >
∣∣ (2.6)

If Φ and Ψ contain correlated elements, the coherence is large. On the contrary, the coherence

is small. Compressive sensing is mainly concerned with low coherence pairs. In [58], considering

C as a constant, the authors showed that if (2.7) holds, then with overwhelming probability one

sparse recovery algorithm will recover the signal.

M ≥Cµ2(Φ,Ψ)s logN (2.7)

Equation (2.7) shows that fewer measurements will be required to recover the signal if the

coherence between Ψ and Φ is small [59].

As illustrated in Fig.2.2, the last part (sparse recovery - CS Reconstruction) recovers the sparse

signal from a small set of measurements y through a specific sparse recovery algorithm [57]. This

step concerns the development of efficient sparse recovery algorithms. Some of them are addressed

in Chapter 3.

Fig. 2.3 illustrates the relationship between the variables in a noiseless scenario. This work

considers a noisy scenario and that the signal to be estimated is already in its sparse representation

h. Therefore, the system is defined by:

y = Ah+n (2.8)

One of the challenges associated with the sparse signal estimation is to identify the locations

of the non-zero signal components. In other words, this is finding the subspace generated by no

more than s columns of the matrix A, related to the received signal y. After finding these positions,

the non-zero coefficients can be calculated by applying the pseudoinversion process.

CS theory addresses two main challenges:
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Figure 2.3 – Representation of measurements used in compressive sensing.

• Design of the measurement matrix A;

• Development of a sparse recovery algorithm for the efficient estimation of h, given only y

and A.

In the first challenge, the goal is to design a measurement matrix A which assures that the

main information of any s-sparse or compressible signal is in this matrix [59]. The ideal goal is to

design an appropriate measurement matrix with M ≈ s.

The measurement matrix is very important in the process of sparse signal recovering. Ac-

cording to [22], if the Restricted Isometry Property (RIP) defined in (2.9) is satisfied, using some

recovery algorithm, it is possible to obtain an accurate estimation of the sparse signal h, for ex-

ample solving an lp-norm problem [60]. δs ∈ (0,1) is the RIC (Restricted Isometry Constant)

value and corresponds to the smallest number that achieves (2.9). The smaller δs, the closer any

submatrix of A composed by s columns is to being orthogonal.

(1−δs)||h||22 ≤ ||Ah||22 ≤ (1+δs)||h||22 (2.9)

Table 2.1 reproduces a comparison between deterministic sensing and random sensing for the

measurement matrix A presented in [59]. The random matrices are one approach to obtain a

measurement matrix A that obeys the RIP condition. Many works deal with random measurement

matrices generated by identical and independent distributions (i.i.d.) such as Bernoulli, Gaussian,

and random Fourier ensembles [48, 61–63]. However, these matrices require significant space for

storage and they have excessive complexity in reconstruction [59]. Furthermore, it is difficult to

verify whether these matrices satisfy the RIP property with a small RIC value [59].

Therefore, deterministic matrices have been studied to be used as measurement matrices.
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Table 2.1 – Comparison between random and deterministic sensing.

Random Sensing Deterministic Sensing
Outside the mainstream of signal Aligned with the mainstream

processing: worst case of signal processing: average
signal processing case signal processing

Less efficient recovery time More efficient recovery time
No explicit constructions Explicit constructions

Larger storage Efficient storage
Looser recovery bounds Tighter recovery bounds

In [64] and [65], the authors propose deterministic measurement matrices based on coherence

and based on RIP, respectively. Moreover, deterministic measurement matrices are constructed

via algebraic curves over finite fields in [66]. Furthermore, a survey on deterministic measurement

matrices for CS can be found in [67].

Having defined the appropriate measurement matrix A, h can be estimated by the least squares

(LS) solution of (2.8), i.e., solving the problem (2.10), where ε is a predefined error tolerance.

min ||ĥ||2 sub ject to ||y−Aĥ||22 < ε (2.10)

This system is “underdetermined” (the matrix A has more columns than rows). Normally, an

underdetermined system has an infinite number solutions. However, considering that the signal is

sparse, the number of solutions is reduced.

Let A† be the pseudo-inverse matrix of A and AAH has an inverse matrix, according to the LS

algorithm, the unique solution ĥ of the optimization problem (2.10) is given by (2.11) [2].

ĥLS = A†y = AH(AAH)−1y (2.11)

Fig. 2.4 illustrates an example of the estimation of the sparse signal h using the LS algorithm.

It is worth noting that the least squares minimization problem leads to the lowest energy solution,

however it may not return a sparse vector (see the estimate ĥLS in Fig. 2.4). Therefore, alternatives

have been sought. By focusing on the sparsity constraint on the solution and solving the l0 norm

minimization described by (2.12), it is possible to obtain a sparse approximation ĥ. The Lemma

1.2 of [49] shows that if the matrix A obeys the RIP condition with constant δ2s < 1, (2.12) has an

unique solution and h can be reconstructed exactly from y and A.
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Figure 2.4 – Sparse signal estimation using the LS algorithm.

min ||ĥ||0 sub ject to ||y−Aĥ||22 < ε (2.12)

Unfortunately, an exhaustive search over all
(N

s

)
possible sparse combinations is required in

the l0 minimization problem, which is computationally intractable for some practical applications.

Thus, although this gives the desired solution, in practice it is not feasible to solve this equation.

The excessive complexity of such a formulation can be avoided with the minimization of the l1

problem (2.13), which can efficiently compute (2.12) under certain conditions, as demonstrated

in [68].

min ||ĥ||1 sub ject to ||y−Aĥ||22 < ε (2.13)

One of the advantages of the l1 norm minimization approach is that it can be solved efficiently

by linear programming techniques [69]. Moreover, in [70], the authors state that sparse signals

can be recovered through l1 minimization if M ≈ 2s log(N).

2.3.2 Application of Compressive Sensing

This section overviews some application areas where CS can be suitable [30]. Fig. 2.5 enumerates

the areas addressed below.



42 2. BASIC CONCEPTS

Compressive
Sensing

Applications

Image
and

Video

Compressive Imaging

Medical Imaging

Video Coding

Compressive Radar

Wireless Sensor Networks

Internet of Things

Astrophysical Signals

Machine Learning

Compressive
Transmission

Data

Communication
Systems

Cognitive Radios

Sparse Channel
Estimation

Analog to Information
Conversion

Speech Recognition

Seismology

Direction-of-Arrival

Detection and
Recognition

Systems

Figure 2.5 – Compressive sensing application areas.

2.3.2.1 Image and Video

Compressive Imaging Natural images can be sparsely represented in wavelet domains, so the

required number of measurements in compressive imaging can be reduced using CS [71, 72]. One

example of application is the single-pixel camera that allows reconstructing an image in a sub-

Nyquist image acquisition, that is, from fewer measurements than the number of reconstructed

pixels [73].

Medical Imaging CS can be very useful for medical imaging. For example, the magnetic reso-

nance imaging (MRI) is a time-consuming and costly process. CS allows to decrease the number

of samples, and then to reduce the time of acquisition [74]. Similarly, bio-signals such as ECG

signals are sparse in either wavelet or Fourier domain [75]. CS allows to take advantage of the

sparsity and reduces the required number of collected measurements [74–77]. A hardware imple-

mentation on a system on chip (SoC) platform of a solution to tackle big data transmission and

privacy issues is presented in [78].

Video Coding Due to the development and the increase of video surveillance, mobile video, and

wireless camera sensor networks, wireless video broadcasting is becoming more popular and find-

ing several real-time applications [79, 80]. In these cases, a single video stream is simultaneously

transmitted to several receivers with different channel conditions [80]. In order to do this, many

new video codecs have been proposed using compressive sensing [80–83].
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Compressive Radar Radar imaging systems aim to determine the direction, altitude, and speed

of fixed and moving objects [84]. By solving an inverse problem using the compressive sensing

theory, the received radar signal can be recovered from fewer measurements [84]. Therefore, the

cost and the complexity of the hardware of the receiver are extremely reduced [84, 85]. Moreover,

the CS has been a novel way to deal with the Inter-Burst Translational Motion Compensation

(IBTMC) to achieve the exact recovery of Inverse Synthetic Aperture Radar (ISAR) images from

limited measurements [86].

2.3.2.2 Compressive Transmission Data

Wireless Sensor Networks Wireless sensor networks (WSNs) require high communication costs

and energy consumption. Due to critically resource constraints as limited power supply, commu-

nication bandwidth, memory, and processing performance, CS can be used to reduce the number

of bits to be transmitted or to represent the sensed data in WSNs [87–90].

Internet of Things The use of internet of things (IoT) devices has increased and it is estimated

that it will continue to do so in the following years. This includes home automation/control de-

vices, security cameras, mobile phones, and sensing devices [91]. However, the IoT devices have

computation, energy, and congestion constraints. Even if they need to transmit large amounts

of data, they usually have limited power and low-computation capabilities. Moreover, given the

large number of devices connected, they can suffer from congestion and packet drops [91]. Thus,

special data transmission strategies have to be developed to enable low-power and low-cost signal

processing operations, and energy-efficient communications [91]. Multimedia data usually pos-

sesses sparse structures. Therefore, the CS theory emerges as a good strategy to reduce the amount

of data that the IoT devices need to transmit with a high fidelity recovery data [92].

Astrophysical signals Radio receivers located in outer space suffer from strong restrictions on

storage capacity, energy consumption, and transmission rate. To overcome these challenges, sam-

pling architectures using CS provide a data acquisition technique with fewer measurements. Thus,

the amount of collected data to be downloaded to Earth and the energy consumption are reduced.

The simple coding process with low computational cost provided by the CS promotes its use in

real-time applications often found onboard spacecrafts. Moreover, the reconstruction of the signals

will be done on Earth where there are much more computing and energy resources than onboard a
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satellite [93, 94].

Machine Learning Machine learning algorithms perform pattern recognition (e.g., classifica-

tion) on data that is too complex to model analytically to solve high-dimensional problems. How-

ever, the amount of information generated by acquisition devices is always huge and ever-growing.

It can achieve gigabytes of data or more that exceeds the processing capacity of the most sophis-

ticated machine learning algorithms [95]. To reduce the energy consumption of the applications,

as in low-power wireless neural recording tasks, signals must be compressed before transmission

to extend battery life. In these cases, the CS can be used and it was demonstrated its potential in

neural recording applications [95–97].

2.3.2.3 Communication Systems

Cognitive Radios Cognitive radios (CRs) aim to provide a solution to the inefficient usage of the

frequency spectrum. Spectrum sensing techniques suffer from computational complexity, hard-

ware cost, and high processing time [57]. Since usually only some of the available channels are

occupied by the users, the signal of interest is normally sparse in the frequency domain. Hence,

the CS can be used to sense a wider spectrum with reduced sampling requirements, resulting in

more power efficient systems [98–101].

Sparse Channel Estimation As said in Section 1.1, channels of several communication sys-

tems can be considered or well modelled as sparse channels. In these cases, better results can be

achieved using the compressive sensing theory to estimate these channels [10, 18, 102, 103]. For

instance, a low-complexity CS hardware implementation for channel estimation in the integrated

services digital broadcasting-terrestrial (ISDB-T) system is proposed in FPGA in [104].

Analog to Information Converter The analog to digital converter (ADC) is based on the

Nyquist sampling theorem in order to have a perfectly reconstruction of the information. That

is, the signal is uniformly sampled at a rate at least twice its bandwidth. In several applications,

the information of the signal is much smaller than its bandwidth. In these cases, this represents

a waste of hardware and software resources to sample the whole signal. To deal with this, an

analog to information converter (AIC) can use the CS theory to acquire a large bandwidth with

relaxed sampling rate requirements, enabling faster, less expensive, and more energy-efficient

solutions [105–109]. Examples of AIC are: random demodulator [108, 110, 111], modulated
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wideband converter [112] and non-uniform sampling [107, 113–115]. All these architectures have

advantages and limitations. While the random demodulator AIC employs finite temporal sampling

functions with infinite spectral support, the modulated wideband converter AIC has finite spectral

sampling functions with infinite temporal support. Moreover, the modulated wideband converter

AIC requires a large number of branches, so synchronization among the branches is also required,

thus consuming more area and power. On the other hand, the non-uniform sampling AIC is sen-

sitive to timing jitter, i.e., a sampling time with a small error can lead to a big error in the sample

value for input signals that change rapidly.

2.3.2.4 Detection and Recognition Systems

Speech Recognition Dictionary of example speech tokens can be used to sparsely represent

speech signals [116]. Moreover, the speech signal can have sparse representation for a suitable

selection of sparse basis functions, but for the noise, it will be difficult to derive a sparse represen-

tation. Therefore, it is possible to exploit this characteristic and through the CS theory achieve a

better speech recognition performance [116–118].

Seismology The compressive sensing theory has an important use in data acquisition, that is, sit-

uations when it is intricate to obtain a lot of samples, for example in the case of seismic data [119].

The layers of the Earth can be estimated by measuring the reflections of a signal from different

layers of the Earth. However, this requires a large data collection that is a time-consuming and

expensive process. To deal with this, several works have proposed the CS for different seismic

applications [119–121].

Direction-of-Arrival Direction-of-Arrival (DOA) estimation is the process of determining which

direction a signal impinging on an array has arrived from [122, 123]. Since there are only a few

non-zeros in the spatial spectrum of array signals, which represent their corresponding spatial lo-

cations, this sparsity can be applied to the DOA estimation [124]. Hence, the compressive sensing

theory can be applied to the problem of DOA estimation by splitting the angular region into N

potential DOAs, where only s� N of the DOAs have an impinging signal (alternatively N− s of

the angular directions have a zero-valued impinging signal present) [125, 126]. These DOAs are

then estimated by finding the minimum number of DOAs with a non-zero valued impinging signal

that still gives an acceptable estimate of the array output [122, 127].
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Chapter 3

Sparse Recovery Algorithms

This chapter discusses several sparse recovery algorithms that have been proposed in the last years.

Sparse recovery algorithms have to recover a sparse signal from an undersampled set of mea-

surements. They are usually classified into three main categories: convex relaxation, non-convex

optimization techniques, and greedy algorithms [24]. Fig. 3.1 shows the algorithms that will be

addressed in this chapter and their classification into these categories. In addition to the description

of each of them, the following text provides an analysis and comparison of their performances.

Sparse
Recovery
Algorithms

Convex

Relaxation

BP

LASSO

LARS

DS

AMP

GraDeS

ISTA

Non-convex

Optimization

BCS

FOCUSS

IRLS

Greedy

Algorithms
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OMP

SP

StOMP

CoSaMP

ROMP

GOMP

GOAMP

GP

MMP

IHT

Figure 3.1 – Classification of sparse recovery algorithms.

Section 3.1 presents some algorithms from the first category (convex relaxation). These algo-

rithms result in convex optimization problems whose efficient solutions exist relying on advanced

techniques, such as projected gradient methods, interior-point methods, or iterative threshold-

ing [18].

On the other hand, non-convex optimization approaches described in Section 3.2 can recov-

ery the signal by taking into account a previous knowledge of its distribution [57]. Thanks to a
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posteriori probability density function, these solutions offer complete statistics of the estimate.

Nonetheless, they can be unsuitable for high-dimensional problems due to their intensive compu-

tational requirements [128].

The third category is composed of the greedy algorithms. They recover the signal in an iter-

ative way, making a local optimal selection at each iteration hoping to find the global optimum

solution at the end of the algorithm (see Section 3.3).

3.1 Convex Relaxation

3.1.1 Basis Pursuit (BP)

Basis Pursuit (BP) is a signal processing technique that decomposes the signal into an superposi-

tion of basic elements. This decomposition is optimal in the sense that it leads to the smallest l1

norm of coefficients among all such decompositions [29]. The BP algorithm seeks to determine a

signal’s representation that solves the problem:

min ||h||1 sub ject to y = Ah (3.1)

BP is a principle of global optimization without any specified algorithm. One of a possible

algorithm to be used is the BP-simplex [29] that is inspired by the simplex method of linear

programming [129]. For the BP-simplex, first, an initial basis A(Λ) is found by selecting M

linearly independent columns of A. Then, at each step, the swap which best improves the objective

functions is chosen to update the current basis, that is, one term in the basis is swapped for one

term that is not in the basis [29].

In [130], the authors propose an algorithm for BP called Greedy Basis Pursuit (GBP). Un-

like standard linear programming methods for BP, the GBP algorithm proceeds more like the MP

algorithm, that is, it builds up the representation by iteratively selecting columns based on com-

putational geometry [130]. Moreover, the GBP allows discarding columns that have already been

selected [130].
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3.1.2 BP De-Noising (BPDN) / Least Absolute Shrinkage and Selection Operator

(LASSO)

The Basis Pursuit Denoising (BPDN) [29] / Least Absolute Shrinkage and Selection Operator

(LASSO) [131] algorithm considers the presence of the noise n:

min ||h||1 sub ject to y = Ah+n (3.2)

and aims to solve the optimization problem defined by:

min(
1
2
||y−Ah||22 +λp||h||1) (3.3)

where λp > 0 is a scalar parameter [29, 131]. The term λp||h||1 promotes sparseness of a recon-

struction vector.

Its value greatly influences on the performance of the LASSO algorithm and therefore should

be chosen carefully. In [29], the authors suggest:

λp = σ
√

2log(p) (3.4)

where σ > 0 is the noise level and p is the cardinality of the dictionary [29].

Comparing with the LS cost function, it is possible to see that (3.3) basically includes a l1

norm penalty term. Hence, under certain conditions, the solution would achieve the minimal LS

error [132]. Since ||h||1 is not differentiable for any zero position of h, it is not possible to obtain

an analytical solution for the global minimum of (3.3).

There are several iterative techniques to find the minimum of (3.3) [29, 131]. One of these is

called “Shooting” [133] and starts by the solution:

ĥ = (AHA+ I)−1AHy (3.5)

where I is the identity matrix. Let a j be the jth column of the matrix A and B j be defined by (3.7),

each jth element of ĥ is updated by:

ĥ( j) =


λ−B j

aT
j a j

, i f B j > λ

−λ−B j

aT
j a j

, i f B j <−λ

0, i f |B j| ≤ λ

(3.6)
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B j =−aT
j y+∑

l 6= j
aT

j al ĥ(l) (3.7)

The original Shooting method is applied to real variables. For complex variables, an adaptation

is necessary. In [134], two schemes are presented to adapt the LASSO algorithm to estimate a

complex signal h:

• r-LASSO: Let imag(.) and real(.) be the imaginary and real parts of a complex vector,

respectively. It is defined by [134]:

yR =

 real(y)

imag(y)

 , hR =

 real(h)

imag(h)

 , AR =

 real(A) −imag(A)

imag(A) real(A)

 (3.8)

These definitions are used in the Shooting method in (3.5) and each jth element of ĥ is

calculated by [134]:

ĥ( j) = ĥR( j)+
√
−1ĥR( j+N) (3.9)

• c-LASSO: The complex l1-norm can be solved by some methods [134, 135]. It is defined

by:

||h||1 = ∑
i
|h(i)|= ∑

i

√
real(h(i))2 + imag(h(i))2 (3.10)

In many applications, the imaginary and real components tend to be either zero or non-zero

simultaneously [134]. However, the r-LASSO does not take into account the information about

any potential grouping of the real and imaginary parts [134]. On the other hand, the c-LASSO

considers this extra information [134]. A comparison between r-LASSO and c-LASSO performed

in [134] concludes that the c-LASSO outperforms the r-LASSO since it exploits the connection

between the imaginary and the real parts.

3.1.3 Least Angle Regression (LARS)

The Least Angle Regression (LARS) algorithm begins with ĥ = 0, the residual vector b0 = y, and

the active set Λ = /0. This algorithm selects a new column from the matrix A at each iteration
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i and adds its index to the set Λi [136]. The column a j1 that has a smaller angle with b0 is

selected at the first iteration. Then, the coefficient ĥ1( j1) associated with the selected column a j1

is increased [136]. Next, the smallest possible step in the direction of the column a j1 is taken until

another column a j2 has as much absolute correlation value with the current residual as the column

a j1 . The algorithm continues in a direction equiangular between the two active columns (a j1 ,a j2)

until a third column a j3 earns its way into the most correlated set [136]. The algorithm stops when

no remaining column has correlation with the current residual [136].

Fig. 3.2 illustrates the begin of the LARS algorithm considering a two-dimensional system [137].

As said before, LARS starts with ĥ0 = 0 and the residual vector b0 = y. Let θt(i) be the angle

between the column a ji and the current residual vector bi = y−Aĥi at iteration i, the column

a j1 is selected due to its absolute correlation with the initial residual vector compared to a j2

(θ1(1) < θ1(2)) [137]. Next, the algorithm continues in the direction of a j1 by adding the step

size γ1. γ1 is chosen in a way to guarantee that the columns a j1 and a j2 have the same absolute

correlation with the current residual vector at the next iteration (θ2(1) = θ2(2)). The solution co-

efficient is ĥ1( j1) = γ1 [137]. The column a j2 is added to the set Λ at the second iteration, and the

LARS continues in a equiangular direction with a j1 and a j2 . Then, the step size γ2 that leads to

the vector y is added [137]. Finally, the solution coefficients are equal to: ĥ2( j1) = γ1 + γ2d2( j1)

and ĥ2( j2) = γ2d2( j2), where d2 is the updated direction at the second iteration that is equiangular

with the active columns (a j1 , a j2). The estimated vector ĥ is updated by multiplying the step size

γ with the updated direction d [137]. The algorithm continues until the residual be zero.

a′j2
aj2

aj1

y

γ1

γ2
θ1(2)

θ1(1)

θ2(2)

θ2(1)

ĥ1(j1) = γ1
ĥ1(j2) = 0

ĥ2(j1) = γ1+γ2 d2(j1)
ĥ2(j2) = γ2 d2(j2)

Figure 3.2 – LARS approximates the vector y by using a j1 and a j2 .

A modified LARS called “homotopy algorithm” was proposed by Donoho and Tsaig to find a

sparse solution of an underdetermined linear system [69].

These steps can summarize the LARS algorithm [137]:
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• Step 1: Initialize the residual vector b0 = y, the active set Λ = /0, ĥ0 = 0 and the iteration

counter i = 1.

• Step 2: Calculate the correlation vector: ci = AT bi−1.

• Step 3: Find the maximum absolute value in the correlation vector: λi = ||ci||∞.

• Step 4: Stop the algorithm if λ≈ 0. If not, go to Step 5.

• Step 5: Find the active set: Λ = { j : |ci( j)|= λi}.

• Step 6: Solve the following least square problem to find active entries of the updated direc-

tion: AT (Λ)A(Λ)di(Λ) = sign(ci(Λ)).

• Step 7: Set the inactive entries of the updated direction to zero: di(Λ
C) = 0.

• Step 8: Calculate the step size γi by:

γi = min
j∈Λc

{
λi− ci( j)

1−aT
j A(Λ)di(Λ)

,
λi + ci( j)

1+aT
j A(Λ)di(Λ)

}

• Step 9: Calculate ĥi = ĥi−1 + γidi.

• Step 10: Update bi = y−Aĥi.

• Step 11: Stop the algorithm if ||bi||2 < ε. Otherwise, set i = i+1 and return to Step 2.

3.1.4 The Dantzig Selector (DS)

The Dantzig Selector (DS) is a solution to l1 minimization problem [138]:

min ||ĥ||1 sub jet to ||AT b||∞ ≤
√

1+δ1λNσ (3.11)

where b= y−Aĥ is the residual vector, σ is the standard deviation of the Additive White Gaussian

Noise in (2.8), λN > 0 and all the columns of A have norm less than
√

1+δ1. ||AT b||∞ is defined

by:

||AT b||∞ = sup
1≤i≤N

|(AT b)i| (3.12)
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For an orthogonal matrix A, the Dantzig Selector is the l1-minimizer subject to the constraint

||AT y− ĥ||∞ ≤ λNσ, and the ith element of ĥ is calculated by:

ĥ(i) = max(|(AT y)i|−λNσ,0)sgn((AT y)i) (3.13)

3.1.5 Iterative Soft Thresholding (ISTA)

In [139], the authors demonstrate that soft thresholding can be used to minimize equations of the

form:

1
2
‖Ah−y‖2

2 +λ‖h‖1 (3.14)

The solution is given by the limit of the sequence, where each iteration is defined by [139]:

ĥi = ηst
(
ĥi−1 +βAT bi−1;λ

)
, bi = y−Aĥi (3.15)

where ĥ0 = 0, β is a stepsize, and ηst(.;λ) is the soft thresholding function defined by (3.16)

applied to each element of the vector.

ηst(x;λ) =


x−λ, i f x > λ

0, i f |x|6 λ

x+λ, i f x <−λ

(3.16)

Although ISTA is guaranteed to converge [139], it converges slowly. Therefore, several mod-

ifications have been proposed to speed it up such as the “fast ISTA” (FISTA) [140] and the neural

network LISTA [34] (see Section 4.2.1).

3.1.6 Approximate Message Passing (AMP)

The Approximate Message Passing (AMP) algorithm is described in [141, 142]. This algorithm

starts by ĥ0 = 0 and b0 = y. Then, in each iteration i, it updates these vectors by:

ĥi = ηi−1(ĥi−1 +AT bi−1) (3.17)

bi = y−Aĥi +
1
δ

bi−1
〈
η
′
i−1(A

T bi−1 + ĥi−1)
〉

(3.18)
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where δ = M/N, ηi(.) is the thresholding function, 〈x〉 = ∑
N
i=1 x(i)/N for x = (x(1), ...,x(N))

and η′i(s) =
∂

∂s ηi(s). The term 1
δ
bi−1

〈
η′i(AT bi−1 + ĥi−1)

〉
is from theory of belief propagation in

graphical model [141].

The thresholding function ηi(.) depends on iteration and problem setting. In [142], the authors

consider the threshold control parameter λ and ηi(.) = η(.;λσi) defined by:

η(x;λσi) =


(x−λσi), i f x≥ λσi

(x+λσi), i f x≤−λσi

0, otherwise

(3.19)

where σi is the mean square error of the current estimate solution ĥi at iteration i.

AMP outperforms ISTA in convergence speed, but it does not work well unless the matrix A

has independent and identically distributed (i.i.d.) Gaussian entries (N (0,M−1)) [39]. In order to

overcome this restriction, the Orthogonal Approximate Message Passing (OAMP) was proposed

in [143].

3.1.7 Gradient Descent with Sparsification (GraDeS)

This algorithm was proposed in [144]. It considers a measurement matrix A which satisfies the RIP

with an isometric constant δ2s < 1/3. This algorithm finds a sparse solution for the l1 minimization

problem in an iterative way.

First, the algorithm initializes the signal estimation ĥ0 = 0. Then, in each iteration i, it esti-

mates the signal by:

ĥi = Hs

(
ĥi−1 +

1
γ

AH(y−Aĥi−1)

)
(3.20)

where γ > 1 and the operator Hs() sets all components to zero except the s largest magnitude

components.

3.2 Non-Convex Optimization Techniques

3.2.1 Bayesian Compressive Sensing (BCS)

Let σ2 be the noise variance, the sparse Bayesian learning (SBL) assumes the Gaussian likelihood

model [145]:
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p(y|h;σ
2) = (2πσ

2)−M/2 exp
(−1

2σ2 ||y−Ah||2
)

(3.21)

In a Bayesian formulation, the formalization that h is sparse is made by placing a sparseness-

promoting prior on h [146]. The Laplace density function is a widely used sparseness prior [147,

148]:

p(h|λ) =
(

λ

2

)N

exp

(
−λ

N

∑
i=1
|hi|
)

(3.22)

and henceforth the subscript s on h is dropped, recognizing that the interest is in a sparse solution

for the weights [146]. Thus, the solution of (2.8) corresponds to a maximum a posteriori (MAP)

estimate for using the prior in (3.22) [131, 147].

According to the Bayesian probability theory, we consider that a class of prior probability

distributions p(θ) is conjugate to a class of likelihood functions p(x|θ) if the resulting posterior

distributions p(θ|x) are in the same family as p(θ) [146]. Since the Laplace prior is not conjugate

to the Gaussian likelihood, the relevance vector machine (RVM) is used.

Assuming the hyperparameters α and α0 are known, a multivariate Gaussian distribution with

mean and covariance given by (3.23) and (3.24) can express the posterior for h [146].

µ = α0ΣAT y (3.23)

Σ = (α0AT A+D)−1 (3.24)

where D= diag(α1,α2, ...αN). Therefore, the search for the hyperparameters α and α0 can be seen

as a learning problem in the context of the RVM. A type-II maximum likelihood (ML) procedure

can be used to estimate these hyperparameters from the data [149].

The logarithm of the marginal likelihood for α and α0, noted L(α,α0), is given by [146]:

log p(y|α,α0) = log
∫

p(y|h,α0)p(h|α)dh

=−1
2
[
M log2π+ log |C|+yT C−1y

]
(3.25)

with C = σ2I+AD−1AT . The maximization of (3.25) can be obtained with a type-II ML approx-
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imation that uses the point estimates for α and α0. This can be achieved through the Expectation-

Maximization (EM) algorithm [146, 149], to yield:

α
new
i =

γi

µ2
i

(3.26)

where µi is the ith posterior mean weight from (3.23) and γi = 1−αiΣii with Σii the ith diagonal

element of (3.24).

3.2.2 Focal Underdetermined System Solution (FOCUSS)

The Focal Underdetermined System Solution (FOCUSS) was proposed in [150] to solve (2.8).

First, a low-resolution initial estimate of the real signal is made. Then, the iteration process re-

fines the initial estimate to the final localized energy solution [150]. The FOCUSS iterations are

based on a weighted minimum norm solution defined as the solution minimizing a weighted norm

||W−1h||2. It is given by [150]:

ĥ = W(AW)†y (3.27)

where the definition of a weighted minimum norm solution is to find h = Wq where q : min||q||2,

subject to AWq = y. The cost objective simply becomes
∥∥W†h

∥∥= ∑
N
i=1,w(i)6=0

(
h(i)
w(i)

)2
when W is

diagonal, where wi are the diagonal entries of W [150].

The basis of the basic FOCUSS algorithm lies the Affine Scaling Transformation (AST):

q = Ĥ†
k−1ĥ (3.28)

where Ĥ†
k−1 = diag(ĥk−1) [150]. Let Wpk be the a posteriori weight in each iteration, the AST is

used in the basic FOCUSS algorithm to construct the weighted minimum norm constraint (3.29)

by setting Wpk = Ĥk−1 [150].

||WT h||22 = ||q||22 =
n

∑
i=1,wi 6=0

(
h(i)
w(i)

)2

(3.29)

Let ĥ0 = 0, the steps of the algorithm are:
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Step 1: Wpk = (diag(ĥk−1)) (3.30)

Step 2: qk = (AWpk)
†y (3.31)

Step 3: ĥk = Wpk qk (3.32)

The algorithm continues until a minimal set of the columns of A that describe y is obtained [150].

By introducing two parameters, the authors extend the basic FOCUSS into a class of recur-

sively constrained optimization algorithms in [150]. In the first extension, ĥk−1 is raised to some

power l [150]. While in the second extension an additional weight matrix Wak which is indepen-

dent of the a posteriori constraints is used [150]. The follow steps describe the algorithm:

Step 1: Wpk = (diag(ĥl
k−1)), l ∈ N+ (3.33)

Step 2: qk = (AWak Wpk)
†y (3.34)

Step 3: ĥk = Wak Wpk qk (3.35)

It can be assumed that Wak is constant for all iterations. According to [150], l > 0.5 when

h(i)> 0 is imposed.

3.2.3 Iterative Reweighted Least Squares (IRLS)

The Iterative Reweighted Least Squares (IRLS) algorithm is used for solving (3.36) through a

weigthed l2 norm given by (3.37), where the weights are computated from the previous iterate

hn−1, so w(i) = |hn−1(i)|p−2 [151].

min
h
||h||pp sub ject to Ah = y (3.36)

min
h

N

∑
i=1

w(i)h2(i) sub ject to Ah = y (3.37)

Let Qn be the diagonal matrix with entries 1/w(i) = |hn−1(i)|2−p, the solution of (3.37) can be

given by:
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hn = QnAT (AQnAT )−1y (3.38)

To deal with the case 0 ≤ p ≤ 1, where w(i) will be undefined for hn−1(i) = 0, the authors

in [151] regularize the optimization problem by incorporating a small ε > 0:

w(i) = ((hn−1(i))2 + ε)p/2−1 (3.39)

3.3 Greedy Algorithms

Several greedy algorithms follow the steps showed in Fig. 3.3 [30]. There are some differences in

the choice of the quantity of the column in each iteration, that is, the way to choose the indices j

to compose the set Ji. For instance, the MP and the OMP algorithms only choose one column in

each iteration. In contrast, the StOMP algorithm chooses all columns whose the projection value

is bigger than the threshold value tS. The calculation of the residual vector bi and the estimation

of the non-zero values of ĥ in each iteration are other differences between the algorithms. For

example, the SP algorithm estimates ĥ only at the end of the algorithm as it is explained in the

subsections below.

Table 3.1 summarizes the inputs, the calculation of the residual vector bi and the signal esti-

mate components ĥi in each iteration [30]. In the next subsections, the greedy algorithms presented

in Fig. 3.1 are explained.

Table 3.1 – Main parameters and calculations of Greedy Algorithms.

Algorithm Inputs j bi ĥi

MP A, y max j ||c( j)|| bi−1− (ali
H bi−1)ali
||ali ||22

(ali
H bi−1)

||ali ||22
OMP A, y max j ||c( j)|| y−A(Λi)ĥi A(Λi)

†y
SP A, y, s s biggest ||c( j)|| y−A(Λi)A†(Λi)y –

StOMP A, y, T , tS j : ||c( j)||> tS y−A(Λi)ĥi A(Λi)
†y

CoSaMP A, y, s 2s biggest ||c( j)|| y−A(Λi)ĥi supps(A(Λi)
†y)

ROMP A, y, s s biggest ||c( j)|| y−A(Λi)ĥi A(Λi)
†y

GOMP A, y, Q, s Q biggest ||c( j)|| y−A(Λi)ĥi A(Λi)
†y

GOAMP A, y, Q Q biggest ||c( j)|| y−A(Λi)ĥi A(Λi)
†y

GP A, y max j ||c( j)|| bi−1−aiA(Λi)di ĥi−1 +aidi
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Figure 3.3 – Greedy Algorithms Diagram.

3.3.1 Matching Pursuit (MP)

The Matching Pursuit (MP) algorithm is proposed in [28]. Let ĥ0 = 0, each iteration i of the MP

algorithm consists in finding the column aki ∈ A which is best aligned with the residual vector

bi−1 (b0 = y) according to (3.40) [28].

ki = argmax
l
|al

Hbi−1|, l = 1,2, ....,N (3.40)

The index set Λi stores the indices of the best aligned columns after i iterations. Let Di be the

matrix formed by the columns aki chosen until iteration i, the next step is:

• Λi = Λi−1∪ ki and Di = [Di−1,aki ], if ki /∈ Λi−1;

• Λi = Λi−1 and Di = Di−1, , if ki ∈ Λi−1.

Then, a new residual vector is computed as (3.41) by removing the projection of bi−1 along

this direction, and the estimated coefficient is calculated by (3.42).
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bi = bi−1−Paki
bi−1 = bi−1−

(aki
Hbi−1)aki

||aki ||22
(3.41)

ĥi(ki) = ĥi−1(ki)+
(aki

Hbi−1)

||aki ||22
(3.42)

The stop criterion of the algorithm can be, for example, ||bi|| ≤ ε. The signal estimate corre-

sponds to the projections of the best columns of the matrix A

3.3.2 Orthogonal Matching Pursuit (OMP)

The Orthogonal Matching Pursuit (OMP) algorithm is an improvement of the MP [152]. It can be

stated as follows:

• Step 1: Initialize b0 = y, Λi = /0, and i = 1.

• Step 2: Find l that solves the maximization problem max
l
||Pal bi−1||2 = max

l

al
H bi−1
||al ||22

and up-

date Λi = Λi−1∪{l}.

• Step 3: Calculate ĥi = A†(Λi)y and update bi = y−A(Λi)ĥi.

• Step 4: Stop the algorithm if the stopping condition is achieved (e.g. ||bi|| ≤ ε). Otherwise,

set i = i+1 and return to Step 2.

In the OMP, the residual vector bi is always orthogonal to the columns that have already been

selected. Therefore, there will be no columns selected twice and the set of selected columns is

increased through the iterations.

Due to the OMP selects only one column in each iteration, it is very sensitive to the selection of

the index [153]. Alternatively, various approaches investigating multiple columns chosen in each

iteration have been proposed such as the SP, the StOMP, the CoSaMP, the ROMP, the GOMP, the

GOAMP, the MMP, and the GP algorithms. They are presented in the next sections.

3.3.3 Subspace Pursuit (SP)

At each stage, in order to refine an initially chosen estimate for the subspace, the Subspace Pursuit

(SP) algorithm tests subsets of s columns in a group [154]. That is, maintaining s columns of

A, the algorithm executes a simple test in the spanned list of space, and after refines the list by
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discarding the unreliable candidates, retaining reliable ones while adding the same number of new

candidates [154]. Basically, the steps of the SP are:

• Step 1: Initialize the support set Λ0 with the s indices corresponding to the largest magnitude

entries in the vector AHy, the residual vector b0 = y−A(Λ0)A(Λ0)
†y and the iteration

counter i = 1.

• Step 2: Λ̂i = Λi−1 ∪ Ji, where Ji is the set of the s indices corresponding to the largest

magnitude entries in the vector ci = AHbi−1.

• Step 3: Calculate xi = A†(Λ̂i)y.

• Step 4: Update Λi = {s indices corresponding to the largest magnitude elements of xi}.

• Step 5: Update bi = y−A(Λi)A†(Λi)y.

• Step 6: Stop the algorithm if the stopping condition is achieved. Otherwise, set i = i+1 and

return to Step 2.

After T iterations, the signal estimated is given by ĥ = A†(ΛT )y.

When the signal is very sparse, the SP algorithm has computational complexity upper-bounded

by O(sMN) (s≤ const.
√

N), that is, lower computational complexity than the OMP algorithm [154].

However, when the non-zero components of the sparse signal decay slowly, the computational

complexity of the SP can be further reduced to O(MNlogs) [154].

3.3.4 Stagewise Orthogonal Matching Pursuit (StOMP)

The Stagewise Orthogonal Matching Pursuit (StOMP) [155] algorithm is inspired by the OMP.

Different from the OMP algorithm, the StOMP algorithm selects multiple columns at each itera-

tion. That is, according to a threshold, the StOMP algorithm selects the subspaces composed of the

columns with the highest coherence between the remaining columns and the residual vector [155].

The number of iterations is fixed.

The input parameters are: the number of iterations T to perform, the threshold value tS, the

received signal y, and the measurement matrix A. The StOMP algorithm can be stated as follows:

• Step 1: Initialize the residual vector b0 = y, Λ0 = /0, and i = 1.
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• Step 2: Find al that ||Pal bi−1|| > tS, that is, max
l

al
H bi−1
||al ||2 > tS and add the al columns to the

set of selected columns. Update Λi = Λi−1∪{l}.

• Step 3: Let ĥi = A(Λi)
†y. Update bi = y−A(Λi)ĥi.

• Step 4: If the stopping condition is achieved (i = Nit = T ), stop the algorithm. Otherwise,

set i = i+1 and return to Step 2.

3.3.5 Compressive Sampling Matching Pursuit (CoSaMP)

The Compressive Sampling Matching Pursuit (CoSaMP) algorithm is presented in [156] to miti-

gate the unstability of the OMP algorithm. Similarly to the OMP, it starts by initializing a residual

vector as b0 = y, the support set as Λ0 = /0, the iteration counter as i = 1, and additionally sets

ĥ0 = 0. The CoSaMP performs these steps [156]:

• Step 1 - Identification: a proxy of the residual vector from the current samples is formed

and the largest components of the proxy ci = |AHbi−1| are located. The first 2s entries of ci

with largest absolute values are selected, and the indices selected compose Ji.

• Step 2 - Support merger: the set of newly identified components is united with the set of

components that appears in the current approximation. Λi = Ji∪supp(ĥi−1) is defined as the

augmentation of the support of the previous estimate ĥi−1 with the 2s indices corresponding

to the entries of ci with largest absolute values.

• Step 3 - Estimation: a least squares problem to approximate the target signal on the merged

set of components is solved. x̂i = A(Λi)
†y.

• Step 4 - Pruning: a new approximation by retaining only the largest entries in this least

squares signal approximation is produced. ĥi is composed of the first s entries of x̂i with

largest absolute values.

• Step 5 - Sample update: update bi = y−A(Λi)ĥi.

3.3.6 Regularized OMP (ROMP)

The Regularized OMP (ROMP) algorithm was proposed in [157]. Firstly, the ROMP algorithm

initializes Λ0 = /0 and the residual vector b0 = y. Then, during each iteration i, the ROMP performs

these three steps:
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• Step 1 - Identification: Λ̂i = {s biggest indices in magnitude of the projection vector ci =

AHbi−1}.

• Step 2 - Regularization: Among all subsets Ji ⊂ Λ̂i with comparable coordinates |c(l)| ≤
2|c( j)| for all l, j ∈ Ji, choose Ji with the maximal energy ||c(Ji)||2.

• Step 3 - Updating: Add the set Ji to the index set: Λi = Λi∪ Ji. Calculate ĥi = A(Λi)
†y and

update the residual vector bi = y−A(Λi)ĥi.

The regularization step can be done in linear time. The running time of the ROMP is compa-

rable to that of the OMP in theory, but it is often better than the OMP in practice [157].

3.3.7 Generalized Orthogonal Matching Pursuit (GOMP)

The Generalized Orthogonal Matching Pursuit (GOMP) algorithm is a direct extension of the

OMP algorithm [158]. The GOMP selects Q≥ 1 largest correlation columns of the matrix A with

the residual vector b. When Q = 1, the GOMP becomes the OMP. Moreover, Q≤ s and Q≤
√

M.

The steps of the GOMP are:

• Step 1: Initialize the residual vector b0 = y, Λ0 = /0 and i = 1.

• Step 2: Find the Q biggest al1 , ..,alQ columns that solves the maximization problem

max
k
||Palk

bi−1||2 = max
k

alk
H bi−1

||alk ||22
and add the ali columns to the set of selected columns.

Update Λi = Λi−1∪{l1, ..., lQ}.

• Step 3: Calculate ĥi = A(Λi)
†y. Update bi = y−A(Λi)ĥi.

• Step 4: Stop the algorithm if the stopping condition is achieved (Nit = min(s,M/Q) or

||bi||2 ≤ ε). Otherwise, set i = i+1 and return to Step 2.

The complexity of the GOMP algorithm is approximately 2NitMN +(2Q2 +Q)N2
itM [158].

3.3.8 Generalized Orthogonal Adaptive Matching Pursuit (GOAMP)

The Generalized Orthogonal Adaptive Matching Pursuit (GOAMP) algorithm considers that the

signal’s sparsity is not known, so it adapts the variable Q of the GOMP algorithm during the

iterations [159]. Basically, the GOAMP inserts a new step after the update of the residual vector:

• Step 1: Initialize the residual vector b0 = y, Λ0 = /0 and i = 1.
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• Step 2: Find the Q biggest al1 , ..,alQ columns that solve the maximization problem

max
k
||Palk

bi−1||2 = max
k

alk
H bi−1

||alk ||22
and add the ali columns to the set of selected columns.

Update Λi = Λi−1∪{l1, ..., lQ}.

• Step 3: Calculate ĥi = A(Λi)
†y. Update bi = y−A(Λi)ĥi.

• Step 4: If ||bi−1−bi||22/||bi−1||22 < ε2, Q = f (Q). Otherwise, go to Step 5.

• Step 5: Stop the algorithm if the stopping condition is achieved (||bi||2 ≤ ε1). Otherwise,

set i = i+1 and return to Step 2.

where f (Q) is a function that increases the value of Q. According to [159], ε2 is about 0.7−0.9.

3.3.9 Gradient Pursuit (GP)

The Gradient Pursuit (GP) algorithms were proposed in [160] as variations of the MP algorithm.

In the GP, at iteration i, the signal estimate ĥi is:

ĥi = ĥi+1 + γidi (3.43)

where di is the update direction and γi is the optimal step size defined by:

γi =
< bi−1,A(Λi)di >

||A(Λi)di||
(3.44)

In the MP and the OMP algorithms, the update direction is taken to be in the direction of the

best aligned column of the matrix A. In the OMP, once added, the column will not be selected

again as the process of orthogonalisation ensures that all future residuals will remain orthogonal

to all currently selected columns. However, in the MP and the GP the orthogonality is not ensured.

Hence, it is possible select again the same column.

Each iteration i consists in finding the column ali ∈ A which is best aligned with the signal

vector residual bi−1. The GP algorithms perform the follow steps:

• Step 1: Initialize b0 = y, Λ0 = /0 and i = 1.

• Step 2: Find li that solves the maximization problem max
li
||Pali

bi−1||2 = max
li

ali
H bi−1

||ali ||22
. Update

Λi = Λi−1∪{li}.
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• Step 3: Update the direction di. Calculate γi =
<bi−1,A(Λi)di>
||A(Λi)di|| and ĥi = ĥi−1 + γidi. Update

bi = bi−1− γiA(Λi)di.

• Step 4: Stop the algorithm, if the stopping condition is achieved. Otherwise, set i = i+ 1

and return to Step 2.

There are three different methods for calculating the update direction di [160, 161]:

• Gradient Pursuit: uses the direction that minimizes ||y−Aĥi−1||2, that is:

di = AT (Λi)
(
y−A(Λi)ĥi−1(Λi)

)
(3.45)

• Conjugate Gradient Pursuit: it is a directional optimization algorithm that is guaranteed

to solve quadratic optimization problems in as many steps as the dimension of the prob-

lem [162]. Let φ(h) = 1
2 hT Gh− fT h be the cost function to be minimized, this method

chooses di that is G-conjugate to all the previous directions, that is:

diGdk = 0, ∀k < i (3.46)

In this case, G = AT (Λi)A(Λi). Let Di be the matrix whose columns are the update direc-

tions for the first i iterations and let gi be the gradient of the the cost function in iteration i,

the new update direction di in iteration i is given by [162]:

di = gi +Di−1f (3.47)

where f =−
(
DT

i−1GDi−1
)−1 (DT

i−1Ggi−1
)
.

The OMP uses a full conjugate gradient solver at every iteration. Instead, in this method,

only a directional update step occurs for each new added element.

• Approximate Conjugate Gradient Pursuit: the new direction is conjugate to the previous

direction, but this can be extended to a larger number of directions:

di = gi +di−1 f (3.48)
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The G-conjugacy implies that:

〈(Gdi−1) ,(gi +bdi−1)〉= 0 (3.49)

f =−〈(A(Λi)di−1) ,(A(Λi)gi)〉
‖A(Λi)di−1‖2

2

(3.50)

3.3.10 Multipath Matching Pursuit (MMP)

With the help of the greedy strategy, the Multipath Matching Pursuit (MMP) algorithm executes

the tree search [153]. First, the MMP algorithm searches multiple promising columns of the

matrix A candidates and then it chooses one minimizing the residual in the final moment. The

MMP algorithm can not be represented by Fig. 3.3. Let L be the number of child paths of each

candidate, f k
i be the kth candidate in the ith iteration, Fi = { f 1

i , ..., f u
i } be the set of candidates in

the ith iteration and |Fi| be the number of elements of Fi, Ωk is the set of all possible combinations

of k columns in A, for example, if Ω= {1,2,3} and k = 2, then Ωk = {{1,2},{1,3},{2,3}} [153].

Fig. 3.4 shows a comparison from an hypothetical choice of columns in the first three iterations

of the OMP and the MMP algorithms [153]. In this figure, the OMP selects the column with index

2 in the first iteration, then the index 1 in the next iteration and in the third iteration, it selects the

index 4. On the other hand, the MMP algorithm selects the index 2 and 4 in the first iteration,

after for each index selected, the algorithm will select others L = 2 index in each iteration. Then,

in the second iteration, it selects the index 1 and 5 for the index 2 and for the index 4, but it is not

necessary to select the same index as can be noted in the third iteration where the MMP selects the

index 4 and 5 for the {2,1} composing f 1
3 = {2,1,4} and f 2

3 = {2,1,5}, and the index 2 and 3 for

the {4,1} composing f 1
3 = {2,1,4} and f 5

3 = {4,1,3}. Moreover, it can be noticed that although

the number of candidates increases as an iteration goes on (each candidate brings forth multiple

children), the increase is actually moderate since many candidates are overlapping in the middle

of search as the case of f 1
3 , f 2

3 and f 3
3 in Fig. 3.4 [153].

The residual vector of the kth candidate in the ith iteration is bk
i = y−A( f k

i )ĥk
i , where A( f k

i ) is

the matrix A using only the columns indexed by f k
i . Given the measurement matrix A, the received

signal y, the signal’s sparsity s and the parameter L, the MMP follows the steps bellow:

• Step 1: Initialize b0 = y, F0 = /0 and i = 1.

• Step 2: Set Fi = /0, u = 0 and k = 1.
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Figure 3.4 – Comparison between the OMP and the MMP algorithms (L = 2): (a) OMP (b) MMP.

• Step 3: Choose L best indices of columns that solve the maximization problem

argmax ||AHbk
i−1||22 to compose π and set j = 1.

• Step 4: Set f temp = f k
i−1∪{π j}, where π j is the jth element of the set π.

• Step 5: If f temp /∈ Fi then u = u+ 1, f u
i = f temp, Fi = Fi∪{ f u

i }, update ĥu
i = A†( f u

i )y and

bu
i = y−A( f u

i )ĥu
i . Otherwise, go to Step 6.

• Step 6: Set j = j+1. If j ≤ L then go to Step 4. Otherwise, go to Step 7.

• Step 7: Set k = k+1. If k ≤ |Fi−1| then go to Step 3. Otherwise, go to Step 8.

• Step 8: Set i = i+1. If i > s then go to Step 9. Otherwise, go to Step 2.

• Step 9: Find the index of the best candidate, that is, u∗ = argminu ||bu
s ||22. Set Λ = f u∗

s and

calculate the estimate signal ĥ = A†(Λ)y.

If the argmax ||AHbk
i−1||22 in the Step 3 is calculated as in the OMP algorithm, the MMP

algorithm is called Tree-based Orthogonal Matching Pursuit (TOMP) algorithm [163].

3.3.11 Iterative Hard Thresholding (IHT)

The Iterative Hard Thresholding (IHT) algorithm [164] is an iterative method that performs some

thresholding function on each iteration. This algorithm can’t be represented by Fig. 3.3. Let

ĥ0 = 0, i = 1, for each iteration:

ĥi = H(ĥi−1 +AH(y−Aĥi−1);λ) (3.51)
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where H(x;λ) is defined by:

H(x;λ) =

0, i f |x|6 λ

x, i f |x|> λ

(3.52)

The IHT algorithm can stop after a fixed number of iterations or it can terminate when the

sparse vector does not change much between consecutive iterations, for example [165].

In addition to the algorithms presented in the previous paragraphs, several others can be

found in the literature, among them, Back-tracking based Adaptive Orthogonal Matching Pur-

suit (BAOMP) [166], Chaining Pursuit (CP) [167], Conjugate Gradient Iterative Hard Threshold-

ing [168], Differential Orthogonal Matching Pursuit (D-OMP) [169], Denoising-based AMP (D-

AMP) [170], Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [140], Forward-Backward

Pursuit (FBP) [171], Fourier sampling algorithm [172], Hard Thresholding Pursuit [173], Heavy

Hitters on Steroids (HHS) [174], Iterative Half Thresholding Algorithm (IHTA) [175], Normal-

ized Iterative Hard Thresholding [176], lp-Regularized Least Squares Two Pass [177], Orthog-

onal Approximate Message Passing (OAMP) [143], Sequential Least Squares Matching Pursuit

(SLSMP) [132], Sparse Adaptive Orthogonal Matching Pursuit (SpAdOMP) [178], Sparse Recon-

struction by Separable Approximation (SpaRSA) [179], Stochastic Gradient Pursuit (SGP) [180],

Stochastic Search Algorithms [181], Stein’s Unbiased Risk Estimate Approximate Message Pass-

ing (SURE-AMP) [182], Tree Search Matching Pursuit (TSMP) [183], Vector Approximate Mes-

sage Passing (VAMP) [184], Weighted Iterative Shrinkage Thresholding Algorithm (WISTA) [185].

Many of these algorithms are derivations of those presented in the previous sections. Therefore,

it was preferred in this thesis to give more details to the ones that were used as the basis for the

techniques proposed in Chapter 5 and as well as the basis for other algorithms proposed in the

literature.

3.4 Performance Discussion

In order to have a better understanding of the potential of each solution, some algorithms repre-

sentative of each category were selected for further study. The performance comparison between

these algorithms resulted in a published scientific paper [30].

From the Convex Relaxation category, the AMP and FISTA algorithms were implemented.

The BCS via RVM was implemented representing the Non-convex Optimization category. And
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finally, from the Greedy algorithms, the MP and OMP were implemented.

Let Ns = 1000 be the number of realizations, the normalized mean squared error (NMSE)

described by (3.53) is used to evaluate the algorithms in terms of the size of the measured signal y

(M) and the signal’s sparsity.

NMSE =
1
Ns

∑
‖h− ĥ‖2

2

‖h‖2
2

(3.53)

The system model is defined by (2.8), considering:

• N = 1024;

• SNR = 30dB;

• A is i.i.d. Gaussian, with elements distributed N (0,M−1);

• the sparse signal h to be estimated is Bernoulli-Gaussian, that is, its elements are i.i.d

N (0,1) with probability γ and the others are set to 0.

The results are compared to the theoretical performance bound Oracle Least Square (OLS),

which has the previous knowledge of the non-zero tap positions. Let As be the matrix generated

by s columns of the matrix A related to the non-zero taps positions of the signal to be estimated,

where s is the sparsity of h. The OLS calculates the non-zero coefficients of ĥ by applying the

pseudo-inversion process in the matrix As.

First, the algorithms performances are analyzed varying the size of M for γ = 0.05 as shown in

Fig. 3.5 [30]. It can be seen that the performances of all the algorithms increase when the number

of measurements M increases. However, it can be noticed that a low M value (M < N) allows

the algorithms to recover the sparse signal resulting in low NMSE values. Among the algorithms

analyzed, the BCS presents the best performance. Furthermore, its performance is close to the one

achieved by the OLS. It confirms the good results achieved by the algorithms from the Bayesian

theory [30].

The algorithms performances are also analyzed varying γ for M = 512 as shown in Fig. 3.6 [30].

According to Fig. 3.6, as the signal becomes less sparse (i.e. γ increases), the performances of all

algorithms decrease, that is, the NMSE values increase. When γ is low, BCS is the algorithm that

achieves the best performance (lower NMSE value), which is close to the one achieved by the

OLS. However, when the signal to be estimated is less sparse (big γ values), FISTA shows a better

performance in recovering the signal [30].
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Figure 3.5 – Algorithms performances varying M for γ = 0.05.

Table 3.2 shows the percentage of non-zero tap positions correctly found for the five algorithms

analyzed [30]. The result of FISTA is not presented for M = 200 because in this scenario this

algorithm did not converge. It can be observed that:

• when the M value increases, the percentage of non-zero tap positions correctly found in-

creases.

• although AMP and FISTA algorithms present the highest percentage values for M = 400 and

γ = 0.05, the algorithms BCS and OMP are the ones that achieve the best results in terms of

NMSE (see Fig. 3.5). It means that even if BCS and OMP correctly find less non-zero tap

positions than the algorithms AMP and FISTA, BCS and OMP are better able to estimate

the non-zero coefficients resulting in lower NMSE values.

• when the γ value increases, that is, the signal become less sparse, the percentage of non-

zero tap positions correctly found decreases. This occurs for all the algorithms analyzed

and confirms what was suggested in Fig. 3.6.

Other performance comparisons between other algorithms can be found in the literature. Some

of them are presented below.

A performance comparison of the SP, the OMP, the ROMP, the GOMP, and the GOAMP

algorithms is made in [186] for the reconstruction of an image. The recovery performance was
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Figure 3.6 – Algorithms performances varying γ for M = 512.

Table 3.2 – Percentage of non-zero tap positions correctly found.

Algorithm
γ = 0.05 γ = 0.1 γ = 0.2

M = 200 M = 400 M = 512
AMP 81.7% 98.4% 97.7% 88.5%

FISTA - 98.5% 98.2% 89.5%
BCS 93.9% 97.0% 95.8% 91.9%
OMP 92.1% 96.7% 95.8% 92.9%
MP 67.6% 96.8% 96.2% 70.1%

analyzed in the form of Peak Signal to Noise Ratio (PSNR) value achieved and running time

elapsed. From these simulations, the PSNR value is better when the GOAMP algorithm is used.

In [57], the authors compare the BCS, the BP, the GraDeS, the OMP, and the IHT algorithms

to estimate a noisy sparse signal of length N = 1024. The metrics used were: phase transition

diagram, recovery time, recovery error, and covariance. The results show that techniques of con-

vex relaxation perform better in terms of recovery error, while greedy algorithms are faster, and

Bayesian based techniques appear to have an advantageous balance of small recovery error and a

short recovery time [57].

A comparison between the OMP and the modified LARS for solving LASSO algorithms is

made in [137] considering the solution accuracy and the convergence time. The results show

that generally the OMP requires fewer iterations than the LARS to converge to the final solution,

suggesting that the OMP is much faster than the LARS [137]. However, for the cases where some

columns of A are highly correlated, the OMP was considered less accurate than the LARS [137].
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In [158], the authors compare the GOMP, the OMP, the StOMP, the ROMP, and the CoSaMP

algorithms for a measurement matrix A 128×256 generated by a Gaussian distribution N(0,1/128).

The sparse signal varies from s = 1 to s = 70 and it is generated in two ways: Gaussian signals

and pulse amplitude modulation (PAM) signals. The results show that the critical sparsity of the

GOMP algorithm is larger than that of the OMP, the ROMP, the StOMP, and the CoSaMP algo-

rithms [158].

Algorithms OMP, StOMP, CoSaMP, MMP, and BPDN are compared in [153] varying the

SNR for two different sparsity values (s = 20 and s = 30). The 100×256 measurement matrix is

generated by a Gaussian distribution. The results show that the MMP performs close to the OMP

to s = 20, but for s = 30, the performance of the MMP is better [153]. Moreover, the running time

of these algorithms is shown as a function of s. The MMP algorithm has the highest running time

and the OMP and the StOMP algorithms have the lowest running time among algorithms under

test [153].

In [151], the authors compare the performance of the IRLS algorithm using the regularization.

The results show that for p = 1 the unregularized IRLS and regularized IRLS are almost identical

but for p = 0 and p = 1/2, the regularized IRLS algorithm recovers the greatest range of signals.

The authors in [163] compare the performance of the TOMP, the BP, and the OMP algorithms.

According to their results, TOMP needs less iteration than the OMP because the TOMP algorithm

selects the whole tree at a time and not only one element. Moreover, the TOMP can achieve better

results than the BP and the OMP in reconstruction quality [163].

In [187], the authors implement the algorithms OMP and AMP in FPGA. As the OMP pro-

cessing time increases quadratically with the number of non-zero coefficients of the signal to be

estimated, this algorithm is more suitable to recover very sparse signals. On the other hand, if

the signal to be estimated has several non-zero components it is more efficient to use the AMP

algorithm to recover the signal than the OMP.

The study of these sparse recovery algorithms led to the proposition of a greedy algorithm

called Matching Pursuit based on Least Squares (MPLS) that is presented in Section 5.1. In

addition, the good results of FISTA and the simplicity of ISTA stimulated the study of the neural

network LISTA and others neural networks used to sparse signal recovery (see Chapter 4).
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Chapter 4

Deep Learning based Compressive

Sensing

This chapter explores some neural networks used to estimate sparse signals. Firstly, key concepts

related to deep learning are introduced. Then, several neural network proposed in the literature are

addressed. Some of them were inspired by sparse recovery algorithms presented in Chapter 3.

4.1 Basics on Deep Learning

A neural network (NN) is a connection of several neuron elements to a layered architecture (see

Fig. 4.1). In each neuron element, several inputs are weighted summed with bias and it is fed into

an activation function σ(.) [188]. Some activation functions are presented in Table 4.1 [188, 189].

x1

x2

xj

.

.

.

∑ σ

w1

w2

wj

input layer

bias

output layer

y

Figure 4.1 – A neuron element of a neural network.



74 4. DEEP LEARNING BASED COMPRESSIVE SENSING

Table 4.1 – Activation functions.

Name σ(x)

ReLU max(0,x)

sigmoid 1
1+e−x

softmax exi

∑i exi

tanh(x) ex−e−x

ex+e−x

The feed-forward neural network is illustrated in Fig. 4.2. Its output in the layer l is given by:

rl = σ(Wlrl−1 + el) (4.1)

where Θl = [Wl , el] is the set of learnable parameters of the layer l. σ(.) introduces a non-linearity

which is very important for the expressive power of the neural network [189].

input layer output layer

hidden layers

...

...

...

...

...

...

Figure 4.2 – A fully connected feed-forward NN architecture.

Recurrent Neural Network (RNN) is another NN (see Fig. 4.3). It can use its internal state

(memory) to process sequences of inputs.

Another NN architechture is the Convolutional Neural Network (CNN). It adds convolutional

and pooling layers before feeding into a fully connected network (see Fig. 4.4). In the convolu-

tional layers, a dot production between a filter matrix and an input matrix comprised of several

neurons generates each output. On the other hand, in the pooling layers, each output is obtained

by the maximum value (max pooling) or the mean value (average pooling) of a group of neurons.

CNN is normally used for image recovery [190–195]. CNN works very effectively in recov-

ering richly structured signals, however it does not appear to be well suited to sparse recovery
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Figure 4.3 – A RNN architecture.

dense
layers

inputs convolution pooling dense

Figure 4.4 – A CNN architecture.

problems [31]. Indeed, in [31], the authors applied CNN to solve two 5G problems, but they did

not obtain good results.

Once a neural network has been structured, it has to be trained. Given a set of training data,

the NN is trained to minimize a loss function through an optimization algorithm, such as the

Stochastic Gradient Descent (SGD) [196] and Adam [197]. There are two approaches to training:

supervised and unsupervised.

Supervised training provides the network with the inputs and the corresponding outputs. In

others words, the training data {(yd ,hd)}D
d=1 pairs based on signal statistics are used to train the

parameters of the deep neural network (DNN) to accurately predict the unknown label ĥ associated
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with a newly observed feature y. The NN compares its resulting outputs with the desired outputs

and then it adjusts its parameters to minimize the error. After training the neural network with a

set of {(yd ,hd)}D
d=1, the network can be used to predict the sparse signal h that corresponds to an

input y. The learned network is implicitly dependent on the matrix A and the noise statistics [31].

On the other hand, in an unsupervised training, the network has, in the training phase, the

inputs without the corresponding outputs. For example Self-Organizing Maps which are also

called Kohonen networks [198, 199]. Therefore, supervised learning requires prior training which

makes difficult to implement the supervised NN in online processing and applications without

training data. In contrast, unsupervised learning allows the use of NN for online processing when

the learning procedure is fast enough.

The choice of the optimization algorithm, loss function, and activation function for a deep

learning model influences on producing faster and accurate results. Moreover, the training data is

very important to a good convergence of the NN.

Sparse recovery algorithms can be improved if they are combined with supervised deep learn-

ing. The literature reports different deep-learning approaches to solve sparse linear inverse prob-

lems [31–42, 185, 190, 191, 200–206]. For instance, it is possible to unroll/unfold a known

iterative recovery algorithm into a neural network such as LISTA [34] (see Section 4.2.1) and

LAMP [35] (see Section 4.2.2). These networks generally have numerical values as labels. More-

over, continuous and differentiable functions throughout the network structure allow the use of

gradient-based learning methods to train network parameters [185]. Deep unfolding can be sum-

marized as “given a model-based approach that requires an iterative inference method, we unfold

the iterations into a layer-wise structure analogous to a neural network” [207]. A number of train-

able parameters are learned using techniques from deep learning.

One of the main advantages of using neural network in compressive sensing is the reduction

of computational complexity in the recovery step (CS reconstruction). Compared to sparse re-

covery algorithms, it means fewer matrix multiplications and iterations required to estimate the

signal [35]. Instead of solving an optimization problem at the receiver, the network is defined be-

fore and its parameters are optimized to minimize a loss function during the training phase. Even

if the training phase can require a lot of computational resources to better fit the network, in a lot

of cases the neural network is only fit once up front and this phase is not necessary to run during

the reception, so it can be done offline [203, 208].
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4.2 Neural Networks Presented in the Literature

This section addresses some neural networks reported in the literature applied to sparse signals

estimation. Some of them are based on the idea of unfolding an iterative algorithm. Fig. 4.5 shows

the neural networks that will be discussed in more details in this section. The sparse recovery

algorithms that inspired them are also illustrated in this figure.

AMP IHT ISTA

LAMP LDAMP DL0RE LISTA TISTA
SURE-
TISTA

Sparse Recovery Algorithm

Neural Network

Figure 4.5 – Neural networks inspired by sparse recovery algorithms presented in this section.

4.2.1 Learned Iterative Shrinkage-Thresholding Algorithm (LISTA)

Inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA - see Section 3.1.5), a neural

network architecture called Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) was

proposed in [34] to sparse signal estimation. Fig. 4.6 shows, as an example, the neural network

LISTA with three layers.

ηst

C
y

S
ĥ1

+ ηst S
ĥ2

+ ηst
ĥ3

Figure 4.6 – Example of LISTA with 3 layers.

Let ηst(x;λ) be defined by (3.16), the output ĥi of the i−layer of LISTA is calculated by:

ĥi = ηst
(
Sĥi−1 +Cy;λi

)
(4.2)

LISTA “learns” the thresholds λi and the matrices C, S from the training data {(yd ,hd)}D
d=1
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by minimizing the quadratic loss function [34]:

LT (Θ) =
1
D

D

∑
d=1
||ĥT (yd ;Θ)−hd ||22 (4.3)

where λ = [λ1,λ2, ...,λT ] and Θ = [C,S,λ] denotes the set of learnable parameters and ĥT (yd ;Θ)

the output of the T−layer network with input yd and parameters Θ.

After training the neural network with a set of {(yd ,hd)}D
d=1, the network can be used to

predict the h that corresponds to the input y.

To better understand the relation between ISTA and LISTA, we can rewrite (3.15) as (4.4):

ĥi = ηst
(
ĥi−1 +βAT bi−1;λ

)
= ηst

(
ĥi−1−βAT (Aĥi−1−y);λ

)
= ηst

(
ĥi−1−βAT Aĥi−1 +βAT y;λ

) (4.4)

Then, considering βAT = C and IN−CA = S, (4.4) can be rewritten as:

ĥi = ηst
(
ĥi−1−βAT Aĥi−1 +βAT y;λ

)
= ηst

(
ĥi−1−CAĥi−1 +Cy;λ

)
= ηst

(
(IN−CA)ĥi−1 +Cy;λ

)
= ηst

(
Sĥi−1 +Cy;λ

)
(4.5)

From (4.4) and (4.5), it is possible to see the relation between ISTA (3.15) and LISTA (4.2).

However, while in ISTA the matrix A is known, in LISTA instead of using the matrix A, the

matrices C and S are learned during the training phase.

LISTA as presented in (4.2) has to learn the parameters λi for i = 1, . . . ,NL, the N ×M matrix

C, and the N × N matrix S. Moreover, it does one matrix-vector multiplication with the matrix

S in each layer. Therefore, the computational and memory complexity of LISTA are ≈ NLN2 and

≈ N2 +MN, respectively.

LISTA can also be rewritten as (4.6) and illustrated by Fig. 4.7, where ĥ0 = 0 and b̂0 = y.

The thresholds λi, the N × M matrix C, and M × N matrix G are learned from the training data

{(yd ,hd)}D
d=1 by minimizing the quadratic loss function (4.3). This configuration leads to memory

complexity ≈ 2MN. However, for each layer two matrix-vector multiplications are performed

(with C and G) leading to a computational complexity ≈ 2NLMN. If G is considered as A, the

computational and memory complexity decrease to ≈ NLMN and ≈MN, respectively.
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ĥi = ηst
(
ĥi−1 +Cbi−1;λi

)
, bi = y−Gĥi (4.6)

ĥi

bi

y

+

C

ηst

G +

ĥi+1

bi+1

y

-

Figure 4.7 – One layer of LISTA network.

It can be noticed that for 2M < N, LISTA represented by Fig. 4.7 and (4.6) results in lower

computational and memory complexity than LISTA represented by Fig. 4.6 and (4.2). In addition,

the computational complexity of one layer of LISTA is essentially equal to one iteration of ISTA

or AMP algorithms [31]. Moreover, the estimates generated by the LISTA network need fewer

matrix-vector multiplications than existing algorithms with optimally tuned regularization param-

eters (λ) [31]. LISTA can reach the results achieved by ISTA with much fewer layers than the

number of ISTA iterations. This can be seen in Section 5.5.2 and in the results presented in [31],

where LISTA took only 16 layers to reach an NMSE of −35dB, whereas AMP took 25 iterations

and ISTA took 4402 iterations.

In [200], the authors propose to use the cubic B-splines as shrinkage function in LISTA. Al-

ternatively, the authors in [209] model the nonlinear activation function using a linear expansion

of thresholds. In this thesis, other activation functions to be used in LISTA are analyzed in Sec-

tion 5.5.

4.2.2 Learned Approximate Message Passing (LAMP)

The Learned Approximate Message Passing (LAMP) [31, 35] was inspired by AMP (see Sec-

tion 3.1.6). Indeed, the neural network LAMP is constructed by unfolding the iterations of AMP.

Let λi =
αi||bi||2√

M
, the output ĥi of the i−layer of LAMP is calculated by (4.7). It can be noticed

that the parameter λi varies with the bi, while in LISTA it does not. LAMP also differs from

LISTA in the presence of the last term in (4.8) known as “Onsager correction”. The function η

depends on the problem setting as well as it occurs in AMP.
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ĥi = η(ĥi−1 +Ci−1bi−1;λi−1) (4.7)

bi = y−Aĥi +
||ĥi||0

M
bi−1 (4.8)

Fig. 4.8 illustrates one layer of LAMP. The parameters αi and the N × M matrices Ci are

learned during the training phase from the training data {(yd ,hd)}D
d=1. In each layer two matrix-

vector multiplications are performed (with Ci and A). Therefore, the computational and memory

complexity of LAMP are ≈ 2NLMN and ≈ NLMN, respectively. In [31], the authors also sug-

gest one other version of LAMP where C is the same matrix in all layers resulting in a memory

complexity ≈MN.

ĥi

bi

y

+

Ci

η

αi‖bi‖2√
M

‖.‖0
M

×

A + +

ĥi+1

bi+1

y

λi -

Figure 4.8 – One layer of the LAMP network.

4.2.3 Deep l0-Regularized Encoder (Dl0RE)

Fig. 4.9 illustrates the Deep l0-Regularized Encoder proposed in [36] where ĥi is the output of the

layer i. The N × M matrix C, the N × N matrix S, and θ are shared among both stages and are

learned during the training phase. In this thesis, this neural network is also called “Dl0RE”.

×θ−1 ηH ×θ

C
y

S
ĥ1

+ ×θ−1 ηH ×θ S
ĥ2

+ ×θ−1 ηH ×θ
ĥ3

Figure 4.9 – Deep l0-Regularized Encoder (Dl0RE).

The function ηH defined by (4.9) is also called in [36] as Hard thrEsholding Linear Unit

(HELU) function. It was chosen because it tends to produce highly sparse solutions and it does

not penalize large values [36]. However, during the training phase, ηH is replaced by HELUσ
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(when σ → 0, HELUσ becomes ηH), that is, a continuous and piecewise linear function (see

(4.10)). In [36], the authors start with σ = 0.2 and after each epoch, σ is divided by 10.

ηH(x) =

0, i f |x| ≤ 1

x, i f |x| ≥ 1
(4.9)

HELUσ(x) =



0, i f |x| ≤ 1−σ

(x−1+σ)
σ

, i f 1−σ < x < 1
(x+1−σ)

σ
, i f −1 < x < σ−1

x, i f |x| ≥ 1

(4.10)

Dl0RE performs one matrix-vector multiplication with S in each layer. Its computational and

memory complexity are ≈ NLN2 and ≈ N2 +MN, respectively. Comparing the IHT algorithm

with Dl0RE, it can be seen some similarities. For instance, ηH is the function (3.52) used in IHT

with λ = 1. In addition, several similarities between LISTA (see Section 4.2.1) and the neural

network illustrates in Fig. 4.9 can be noticed.

4.2.4 Learned Denoising-based Approximate Message Passing (LDAMP)

The Learned D-AMP (LDAMP) was proposed in [37] inspired by the D-AMP algorithm [170].

Let ĥi be the estimate of the signal h at iteration i and ĥ0 = 0, each iteration i of D-AMP calculates:

zi = y−Aĥi +
zi−1divDσ̂i−1(ĥi−1 +AHzi−1)

M
(4.11)

σ̂i =
||zi||2√

M
(4.12)

ĥi+1 = Dσ̂i(ĥi +AHzi) (4.13)

where zi is an estimate of the residual, σ̂i is an estimate of the standard deviation of that noise, Dσ̂i

is the denoiser and divDσ̂i−1 is the divergence of the denoiser [170].

Fig. 4.10 illustrates one layer of the LDAMP neural network [37]. The Denoiser block D(.) is

composed by a Denoising Convolutional Neural Network (DnCNN). The DnCNN neural network

has 16 to 20 convolutional layers. The first layer uses 64 different 3x3xc filters (where c is the

number of color channels) and is followed by ReLU [37]. The next 14 to 18 convolutional layers

each use 64 different 3x3x64 filters which are each followed by batch-normalization [210] and a
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ĥi+1

zi+1

y

divD(·)/M
-

Figure 4.10 – One layer of the LDAMP network.

ReLU [37]. Finally, the last layer uses c separate 3x3x64 filters to reconstruct the signal. Therefore,

each layer i of LDAMP can be described by:

zi = y−Aĥi +
zi−1divDwi−1(σ̂i−1)(ĥi−1 +AHzi−1)

M
(4.14)

σ̂i =
||zi||2√

M
(4.15)

ĥi+1 = Dwi(σ̂i)(ĥi +AHzi) (4.16)

In LDAMP, only the denoiser weights wi are learned, differently from LISTA (see Section 4.2.1),

where the matrices S and B are learned during the training phase.

In [32], the authors consider the channel matrix as a 2D natural image and apply LDAMP

which incorporates the denoising convolutional neural network (DnCNN) [192] for channel es-

timation in beamspace mmWave massive MIMO systems. The results indicate that the LDAMP

network can achieve good performance for mmWave channel estimation.

4.2.5 Trainable ISTA (TISTA)

Trainable ISTA (TISTA) includes three parts: a linear estimator, a minimum mean squared error

(MMSE) estimator-based shrinkage function, and a variance estimator [40, 41]. Fig. 4.11 illus-

trates one layer of TISTA.

The recursive formula of TISTA can be described by [40]:
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ĥi+1

y

-

ri

Figure 4.11 – One layer of the TISTA network.

ĥi+1 = ηMMSE(ri;τ
2
i ) (4.17)

ri = ĥi + γiW(y−Aĥi) (4.18)

τ
2
i =

v2
i

N
(N +(γ2

i −2γi)M)+
γ2

i σ2

N
tr(WWT ) (4.19)

v2
i = max

{
||y−Aĥi||22−Mσ2

tr(AT A)
,ε

}
(4.20)

where ĥ0 = 0, σ2 is the variance of the noise, W = AT (AAT )−1, γi is a trainable parameter, and

ε is a small value (e.g. ε = 10−9). The MMSE shrinkage function ηMMSE is chosen according to

the prior distribution of the original signal h. The variables γi control the variance of the MMSE

shrinkage function.

The time complexity of TISTA per iteration is O(N2), which is the same time complexity of

ISTA and AMP [40]. TISTA performs two matrix-vector multiplications (with A and W) in each

layer. Its computational and memory complexity are ≈ 2NLMN and ≈ 2MN, respectively.

Obtained results presented in [40] suggest that TISTA can be applied to different matrices

A such as binary and Gaussian matrices. In addition, the resutls shows that TISTA converges

faster than LISTA and AMP in several cases[40]. In [41], the authors propose two extensions of

TISTA to deal with matrix A with nonzero-mean components or with a large condition number.

The condition number k of a matrix is defined as the ratio of the largest and smallest singular

values, i.e., k = s1/sM [41]. In addition, an extension of TISTA to complex-field nonlinear inverse

problems is proposed in [42].
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4.2.6 Stein’s Unbiased Risk Estimate based-Trainable Iterative Thresholding Al-

gorithm (SURE-TISTA)

Let a divergence-free denoiser Î be constructed as (4.21) where C is a constant and I(.) is an

arbitrary function [143].

Î(xt) =C (I(xt)−div{I(xt)xt}) (4.21)

Stein’s unbiased risk estimate based-trainable iterative thresholding algorithm (SURE-TISTA)

was developed in [39] for sparse signal recovery problems. Fig. 4.12 illustrates a layer of SURE-

TISTA. Each layer calculates:

ĥi = Î (ri−1;λi) (4.22)

ri−1 = ĥi−1 +W(y−Aĥi−1)

where ĥ0 = 0, W = N
tr(ŴA)

Ŵ, Ŵ = AT (AAT )−1, and λi is a trainable parameter. Coptimal is

calculated based on SURE framework [39].

ĥi

y

+

A +

I(ri;λi) Î(ri;λi)

CoptimalW

ĥi+1

y

-

ri

Figure 4.12 – One layer of the SURE-TISTA network.

As weel as TISTA, SURE-TISTA performs two matrix-vector multiplications (with A and W)

in each layer. Its computational and memory complexity are≈ 2NLMN and≈ 2MN, respectively.

The results presented in [39] indicate that SURE-TISTA requires fewer learnable variables to

achieve similar performance as LAMP. Moreover, SURE-TISTA outperforms TISTA and does not

require error measure estimators nor prior information [39].

In addition to neural networks discussed in the previous paragraphs, many others have been

reported in the literature in the recent years. The list below enumerates other neural networks that

can be used to sparse signal estimation: DeepInverse [201], Deep M-Sparse l0 Encoder [36], Deep
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Neural Network-structured IHTA (DNN-IHTA) [185], Deep Neural Network-structured WISTA

(DNN-WISTA) [185], DR2-Net [190], DeepNIS [205], FompNet [206], Learned Vector Approx-

imate Message Passing (LVAMP) [31], OAMP-Net [33], ReconNet [190], WDLReconNet [191].

These neural networks are not detailed here because some of them are more suitable for image

estimation than for sparse channel estimation and others are variations from the NNs addressed in

the sections above.

4.3 Discussion

This section presents a comparison between some NNs addressed in Section 4.2. Then an alterna-

tive solution to deal with complex numbers in NNs is exposed. Finally some challenges of the use

of NN are discussed.

4.3.1 Comparison Between Some NNs

The choice of the NNs analyzed in this section was based on their representativeness or their use

as a basis for other NNs. LISTA is one of the first neural network based on a sparse recovery

algorithm presented in the literature. It inspired other authors to unfold known iterative recovery

algorithms into neural network and apply it to sparse signal recovery.

These networks can outperform the results achieved by the original algorithm. For instance,

one layer of LISTA, LAMP or TISTA has essentially the same computational complexity than one

iteration of ISTA or AMP algorithms [31, 40]. However, sparse signal estimation using LISTA

LAMP or TISTA can produce better estimates with fewer matrix-vector multiplications than using

ISTA or AMP. Moreover, obtained results in [39] indicate that SURE-TISTA outperforms TISTA

without require prior information nor error measure estimators.

Table 4.2 presents a comparison between some neural networks addressed in Section 4.2. In

this table, Θ represents the set of parameters which are learned during the training phase, Mc is

the memory complexity, MV is the number of matrix-vector multiplications performed in each

layer, Cc is the computational complexity, and σ represents the activation function. The function

η in LAMP depends on the application (see Section 4.2.2). The LDAMP (see Section 4.2.4) is not

presented in this table because its memory and computational complexity depend on the DnCNN

chosen.

It can be notice that the quantity of learned parameters required in TISTA and SURE-TISTA is
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Table 4.2 – Comparison of the neural networks addressed in Section 4.2.

Neural Network Θ Mc MV Cc σ

LISTA (Fig. 4.6) CN×M,SN×N ,λ1, . . . ,λNL ≈ N2 +MN 1 ≈ NLN2 ηst (3.16)
LISTA (Fig. 4.7) CN×M,GM×N ,λ1, . . . ,λNL ≈ 2MN 2 ≈ 2NLMN ηst (3.16)
LAMP (Fig. 4.8) C1

N×M, . . . ,CNL
N×M,α1, . . . ,αNL ≈ NLMN 2 ≈ 2NLMN η

Dl0RE (Fig. 4.9) CN×M,SN×N ,θ ≈ N2 +MN 1 ≈ NLN2 ηH (4.9)
TISTA (Fig. 4.11) γ1, . . . ,γNL ≈ 2MN 2 ≈ 2NLMN ηMMSE

SURE-TISTA (Fig. 4.12) λ1, . . . ,λNL ≈ 2MN 2 ≈ 2NLMN I (4.22)

only related to the number of layers NL while the number of learned parameters required in LISTA,

LAMP and Dl0RE also depends on the values of M and N. Therefore, the number of learnable

variables for TISTA and SURE-TISTA is much smaller than those of LISTA, LAMP and Dl0RE.

It significantly reduces the training complexity of TISTA and SURE-TISTA.

If N > 2M, the computational complexity of LISTA (for the representation in Fig. 4.6) and

Dl0RE is bigger than those of LISTA (for the representation in Fig. 4.7), LAMP, TISTA, and

SURE-TISTA. Regarding to the memory complexity, LAMP can have the biggest one compared

to the others NN presented in Table 4.2. It occurs because the memory complexity of LAMP also

depends on NL while the others are only related to M and N values.

4.3.2 Neural Network with Complex Number

In communication systems, normally the channel and the signals are complex. In generally, the

deep networks are not adapted to deal with complex number. Let real(.) and imag(.) be the real

and imaginary parts of a complex vector, respectively. In order to use neural network to estimate

complex sparse signals, the modification presented in (4.23) can be applied.

yR =

 real(y)

imag(y)

 , hR =

 real(h)

imag(h)

 ,

nR =

 real(n)

imag(n)

 , AR =

 real(A) −imag(A)

imag(A) real(A)

 (4.23)

Therefore, (2.8) can be replaced by (4.24).

yR = ARhR +nR (4.24)



87

4.3.3 Challenges

Using neural network to sparse signal recovery takes advantage of potentially available training

data. However, although the use of neural network appears to perform improvements for some

applications, it presents some challenges. Maybe it can be necessary to train a specific network

for each SNR value. Training at a low SNR does not allow to fit the best network in higher SNR

scenarios [189]. The design of the neural network architecture and the optimal choice of loss and

activation functions are other difficulties related to neural networks. The quantity of the training

data {(yd ,hd)}D
d=1 to be used is also important to better fit the network.

Moreover, the majority of building blocks, techniques, and architectures for deep learning are

based on real-valued operations and representations [211]. However, in dealing with communi-

cation systems, complex numbers are used to represent the channel, noise, and received signal.

Therefore, the neural network has to be adapted to operate on complex numbers. One alternative

is presented in Section 4.3.2.

The study of the LISTA led to the proposal of two improvements for this NN, both of which

increase the performance of its estimation. The first one is to use the estimate of LISTA as a first

result to estimate the non-zero tap positions of a sparse signal and then to calculate their values by

pseudo-inversion process (see Section 5.3). The second one is to change the shrinkage function ηst

used in LISTA to other functions (see Section 5.5). In addition, the study of the neural networks

addressed in this chapter motivated the proposition of a new neural network that is presented in

Section 5.4.
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Chapter 5

Sparse Signal Estimation Improvement

Techniques

This chapter presents the sparse signal estimation improvement techniques proposed in this the-

sis. In Section 5.1 a greedy algorithm called Matching Pursuit based on Least Squares (MPLS)

is explained. The algorithms LS, MP, OMP, and MPLS are used to estimate two different Wide-

band HF channels in Section 5.2. Then, an alternative to improve LISTA estimation performance

is addressed in Section 5.3. A new neural network to sparse signal estimation is discussed in

Section 5.4. Section 5.5 suggests some alternative shrinkage functions to replace the traditional

shrinkage function used in LISTA. Finally, Section 5.6 analyzes the performance of all techniques

proposed in this thesis.

Before explaining the techniques developed in this work, some definitions will be rewritten

here:

• As defined in Section 3.4, the Oracle Least Square (OLS) estimator is the LS with ideal

knowledge of the sparse signal on both the number of non-zero elements and their positions.

Let As be the matrix generated by s columns of the matrix A, where s is the sparsity of h.

The OLS calculates the non-zero coefficients of ĥ by applying the pseudo-inversion process

in the matrix As.

• The system model used in this chapter is defined by (2.8). Its parameter values are reported

in each section of this chapter.

• The SNR is defined by (5.1)
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SNR =
E[||Ah||22]
E[||n||22]

(5.1)

• In some sections below, the NMSE is used to evaluate the estimation performance. Equa-

tion (3.53) is rewritten here as (5.2) to defined NMSE.

NMSE =
1
Ns

∑
‖h− ĥ‖2

2

‖h‖2
2

(5.2)

Moreover, in this thesis, “tap attribution” is defined as to give “1” to a tap which has a non-

zero value and “0” to a tap that has a zero value. For example, let h be the sparse signal to be

estimated, its “tap attribution” is given by ht . Let ĥ be the estimate and ĥt be its “tap attribution”,

the percentage of non-zero taps positions correctly found is Pc = 4/5 = 80% ( number of blue

“1” in ĥt / number of “1” in ht) and the percentage of taps which had an improper attribution is

Pe = 3/20 = 15% ( number of red “0” and red “1” in ĥt / length of ht). These definitions will be

applied in Sections 5.3, 5.4 and 5.6.

h = 0 0 0.87 0 1.4 0 0 0.2 1.2 0 0.9 0 0 0 0 0 0 0 0 0 (5.3)

ht = 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 (5.4)

ĥ = 0.3 0 1.2 0 0.9 0 0.8 0.3 0 0 0.8 0 0 0 0 0 0 0 0 0 (5.5)

ĥt = 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 (5.6)

5.1 Matching Pursuit based on Least Squares (MPLS)

The study of the algorithms presented in Chapter 3 led to the development of a new greedy al-

gorithm, called Matching Pursuit based on Least Squares (MPLS) [212]. The MPLS algorithm

builds upon the MP algorithm to find the positions of the non-zero signal taps. Similarly to the

MP algorithm, each iteration of the MPLS algorithm consists in finding the column aki ∈A which

is best aligned with the residual vector bi−1 ( b0 = y) and the selection is performed according to:

ki = argmax
l
|al

Hbi−1|, l = 1,2, ....,N (5.7)

The difference between the MP and the MPLS algorithms lies in how the values assigned to
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the non-zero signal taps are calculated. The MP algorithm estimates the signal as the projection

values, while the MPLS algorithm does this estimation through the LS algorithm in the end of the

algorithm.

Consider Λi the index set of the best aligned columns of A until the iteration i, Λi is updated

by:

• If ki /∈ Λi−1, the index set is updated as Λi = Λi−1∪ ki.

• Otherwise, Λi = Λi−1.

Then, the residual vector’s projection along this direction is removed and a new residual vector

is computed as (5.8).

bi = bi−1−Paki
bi−1 = bi−1−

(aki
Hbi−1)aki

||aki ||22
(5.8)

After reaching the stop criterion, the signal is estimated by (5.9), where T is the number of

iterations and A(ΛT ) is a submatrix of A consisting of the ai columns with i ∈ ΛT .

ĥ = A†(ΛT )y (5.9)

5.1.1 Application Case

The performance of MP, MPLS and OMP algorithms for sparse channel estimation were evaluated

and compared to the theoretical performance bound OLS.

The Mean-Square Deviation (MSD) described by (5.10) is used to evaluate the algorithms in

terms of Sparsity (S) variation, where Ns is the number of channel simulations.

MSD =
1
Ns

∑ ||h− ĥ||22 (5.10)

The system model is defined by (2.8), considering:

• N = 120.

• SNR = 10dB.

• A stands for the M×N measurement matrix. The ith column of A is denoted ai. A is a

Toeplitz matrix determined by the training sequence c = [c1,c2, ...,cM]T where ci is a QPSK

value.
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• Each element of the sparse signal h to be estimated is characterized by hi = sidi. The

complex-valued vector d = [d1,d2, ...,dN ]
T characterizes the path gains as a complex gaus-

sian distribution, while the binary vector s = [s1,s2, ...,sN ]
T describes the channel paths.

Each si ∈ {0,1} denotes whether there is a non-zero channel tap at index i. The elements of

the vector s correspond to the combination of the possible positions of the non-zero elements

in the vector h, chosen randomly and with a number of elements defined by the sparsity of

the channel.

• n is the Additive White Gaussian Noise (AWGN).

5.1.2 Estimation Performance

Comparisons of sparse channel estimation algorithms reported in the literature take into account

only one channel with its fixed position of non-zero channel taps [20, 25, 26]. More generally,

performance analyses reflect only a fixed scenario. To obtain better precision, Ns = 5000 sparse

channels with length N = 120 were simulated for each point. Furthermore, performance analysis

of the proposed algorithm are performed under a variety of scenarios by varying the sparsity of

the channel, the length of the training sequence and the stopping criterion.

Fig. 5.1 presents the LS, MP, MPLS, OMP and OLS algorithms performances in terms of

MSD versus channel sparsity for M = 60. Let Nit be the number of iterations (stopping criterion),

in Fig. 5.1, the continuous lines represent the simulations with Nit = 2S, while the broken lines

denote the simulations with Nit = S.

When Nit = 2S, the MPLS and the OMP algorithms have similar results in terms of MSD until

16 non-zero channel taps, but it should be noted that the MPLS algorithm achieves these results

with lower complexity than the OMP algorithm. For S < 10, MP, OMP, and MPLS algorithms

lead to similar results. Therefore, for this range of S values, MP algorithm is preferable due to its

lower complexity.

Notice that, for small values of S and Nit = S, the MSD of the OMP and MPLS algorithms are

close to the one achieved by OLS. This means that both algorithms find almost all correct positions

of the non-zero channel taps. Moreover, comparing the results for Nit = 2S and Nit = S, it can be

seen that when the stop criterion is exactly the number of non-zero channel taps (Nit = S), the

MSD of both OMP and MPLS algorithms decrease unlike what happens with the MP algorithm.

Given that the MP and the MPLS algorithms choose the non-zero taps positions in the same

way, different MSD values obtained are likely due to the value assigned to the non-zero channel
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Figure 5.1 – MSD vs Sparsity for SNR = 10dB, M = 60.

taps. On the other hand, assigning the projection value to the channel estimation value (which is

done by the MP algorithm) has a very damaging effect on channel estimation. This does not occur

with MPLS algorithm, since it finds the correct positions of the non-zero channel taps and esti-

mates their values using the LS algorithm, thus approaching to the results of the OLS estimation.

Table 5.1 shows the amount of channels for which the algorithms found the correct positions

of non-zero channel taps considering stopping criteria SC, Ns = 5000, S = 6, and SNR = 10dB.

This table reinforces the conclusions from Fig. 5.1. Indeed, even if the MP algorithm finds the

non-zero channel taps properly, it leads to higher MSD value compared to those from the MPLS

and the OMP.

Table 5.1 – Number of channels that found the correct positions of non-zero channel taps.

5 correct positions 6 correct positions
SC MP/MPLS OMP MP/MPLS OMP

Nit = S 499 480 4484 4503
Nit = 2S 401 386 4589 4605

Fig. 5.2 considers M = 120, i. e., the same length of the channel. The stopping criterion is the

number of iterations equivalent to the number of non-zero channel taps (i.e., Nit = S). Comparing

Fig. 5.1 and Fig. 5.2, it can be seen that as M increases, the MSD of the algorithms decreases.

It is worth mentioning that for small values S, a smaller M value can be used with the OMP

and the MPLS algorithms without greatly increasing the MSD value.

These results points out an advantage of using algorithms that take into account the sparsity
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Figure 5.2 – MSD vs Sparsity for SNR = 10dB, stopping criterion Nit = S, M = 120.

of the channel. It is noted that the OMP and the MPLS algorithms have similar results in terms of

MSD, with the advantage that the MPLS algorithm is less computationally demanding.

5.2 Application of the CS on Wideband HF Channel Estimation

This section analyses the Wideband HF Channel Estimation using the algorithms MPLS, MP and

OMP.

The High Frequency (HF) band ranges from 3 to 30MHz and provides Beyond Line Of Sight

and long-distance (often intercontinental) communications without the use of satellites or radio-

relay, with low operational costs in comparison to fixed or satellite communication systems. HF

radio communications are widely used for civilian and military applications on long-distance com-

munications, mainly in remote regions and in emergency scenarios such as natural disasters [213].

HF channel models are characterized by several parameters related to the behavior of the

ionosphere. In general, a stochastic behavior that represents the different possible ways for the

transmission to reach the receiver is modeled. Given the HF transmission characteristics, some-

times it is possible to establish transmissions from some tens of kilometers near vertical incidence

skywave (NVIS) until distances far over-the-horizon (OTH) of the order of tens of thousands of

kilometers [214]. This large variety of scenarios brings great differences, for example, in delay

scattering of the received signal, which could be of an order of 10ms [215].

Several standards have been developed to standardize HF communications [216, 217]. In tradi-

tional systems, the bandwidth of HF communications is very narrow (3kHz) and the transmission

rate is very low, about 600bps or 2400bps [217]. However, with the increasing amount of data

transmission, it is necessary to increase the transmission rates, which requires a bigger bandwidth
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of HF communications. For example, the MIL-STD-188-110C in its Appendix D establishes the

characteristics of the waveforms for transmission in wideband HF channels with bandwidth up to

24kHz and data rates ranging from 75bps for the lowest 3kHz rate to 120kbps for the highest

24kHz rate [217]. The wideband HF channel is also used in spread spectrum communication, that

is, in situations where stealthy and robust communications are required [218].

The HF channel is a time-varying fading channel, involving time delay, Doppler frequency

shift, interference, and noise. In a HF channel, the transmitted signal travels over several paths with

different delays to the receiver via single or multipath reflects from the ionosphere (see Fig. 5.3).

This channel is characterized by multipath propagation and fading as in (5.11) where hl(t,τ) is

the impulse response for one of different ionospheric propagation paths (or reflecting ionospheric

layers); l, t, and τ are independent variables for time and delay [219].

Ionosphere Sky Wave

Direct Wave

Ground Wave

Figure 5.3 – Types of radio propagation: sky wave (HF), direct wave and ground wave.

h(t,τ) =
L−1

∑
l=0

hl(t)δ(τ− τl) =
L−1

∑
l=0

hl(t,τ) (5.11)

The basic concepts of wideband HF channels are investigated in [220]. Some laboratories

have conducted several wideband HF propagation measurement experiments useful in the channel

model development process [221, 222]. A wideband HF simulation system is described in [219],

the wideband HF channel model proposed is more appropriate than the Watterson channel model

for representing wideband HF channels.

The Watterson channel model [223] neglects the time delay spread and the time delay of each

path has a single value. Hence, it can not be used as a wideband HF channel model, because the ef-

fects of delay time spread, Doppler frequency shift, Doppler spread and variation of Doppler shift

with delay must be described in the wideband HF channel model. To address these characteristics,

for each propagation path, the model of the impulse response is given by [219]:
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hl(t,τ) =
√

Pl(τ)Dl(t,τ)Ψl(t,τ) (5.12)

where Pl(τ) is the delay power profile (DPP) that determines how the impulse response behaves,

its square root
√

Pl(τ) describes the shape in delay dimension, Dl(t,τ) is the deterministic phase

function describing the Doppler shift of each path, and Ψl(t,τ) is the stochastic modulation func-

tion [219].
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Figure 5.4 – Delay Power Profile.

Fig. 5.4 specifies the DPP, where στ is the delay spread, σc is the rise time, A is the maximum

value of the DPP. Let τ be the delay variable, ∆ controls the width, τc controls the delay offset, α

controls the symmetry of the profile, and Γ(.) is the Gamma function, Pl(τ) is defined by [219]:

Pl(τ) = A
αα+1

∆Γ(α+1)
zαe−αz (5.13)

z =
τ− τc

∆
+1 > 0 (5.14)

Let fS be the Doppler shift at τc and b be the rate of change of the Doppler shift between τL

and τc, the deterministic phase function Dl(t,τ) can be given by [219]:

Dl(t,τ) = ei2π[ fS+b(τ−τc)]t (5.15)

The stochastic modulation function Ψl(t,τ) describes the fading of the impulse response.

Ψl(t,τ) is independent in delay τ, correlated in time t. It is defined in terms of its resultant Doppler

spread width and spectral shape [219]:
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Ψt = xt + iyt (t = 0,1,2, ...) (5.16)

where xt and yt are the independent random variables generated by independent random variables

ρt and ρ′t [224]:

xt = ρt +(xt−1−ρt)λ (5.17)

yt = ρ
′
t +(yt−1−ρ

′
t)λ (5.18)

x0 = (1−λ)ρ0 (5.19)

y0 = (1−λ)ρ′0 (5.20)

λ = exp[−(∆t)σ f ] (5.21)

Ψl(t,τ) can be generated as random variables having an autocorrelation function with Gaus-

sian shape or Lorentzian shape [219, 224].

For example, Fig. 5.5 shows a wideband HF channel impulse response with 4 propagation

paths and delay spread στ = 100µs. The symbol rate is 19200symbol/s, that is used for a band-

width of 24kHz according to the Appendix D of the MIL-STD-188-110C [217].

Since the HF transmissions have a small number of arriving rays, the HF channel can be seen

as a tapped delay line in the delay spread domain. This section investigates the wideband HF

channel estimation using sparse recovery algorithms.

In order to do this, the system model is defined by (2.8), where y = [y1,y2, ...,yM]T is the

received signal, h= [h1,h2, ...,hN ]
T denotes the time-domain discrete wideband HF channel vector

with N > M taps and n is the Additive White Gaussian Noise (AWGN). A stands for the M×N

measurement matrix. The ith column of A is denoted ai. A is a Toeplitz matrix determined by the

QPSK training symbols.

Two different wideband HF channels are considered and the Mean-Square Deviation (MSD)

described by (5.10) is used to evaluate the algorithms in terms of the quantity of the acquired mea-

surement (M) and the number of iterations (Nit), where Ns is the number of channel simulations.

For these simulations, N = 127 and SNR = 20dB.
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Figure 5.5 – Example of a wideband HF channel with 4 propagation paths.

5.2.1 Wideband HF Channel A

The wideband HF Channel A is a case of near vertical incidence skywave (NVIS). It is a radio

propagation mode which involves the use of antennas with a very high radiation angle. Channel A

has 2 propagation paths with delay spread of 10µs and 200µs separated by 0.8ms. These channel

model parameters adjust the scattering function of the simulated channel to the scattering function

of the reported measured channel presented in [225].

The comparison of the LS, the MP, the OMP, and the MPLS algorithms in terms of MSD

performance versus the number of iterations (Nit) is shown in Fig. 5.6. The quantity of the acquired

measurement is M = 40.

It can be noticed that after some iterations, the MSD value of the MP, the MPLS, and the OMP

algorithms have increased with each new iteration. It occurs because these algorithms do not know

the exact channel’s sparsity (S) neither the exactly S non-zero tap positions. In fact, the wideband

HF Channel A has few non-zero taps, so when these algorithms choose more non-zero taps, they

are choosing tap positions with almost only the noise influence or re-selecting (it can occur with

the MP and the MPLS algorithms) a tap and increasing the noise influence in this tap.

The LS algorithm gives the worst channel estimate because it does not consider the channel

sparsity in its estimations. Then, the bad estimation influence is given in almost all taps for the

channel estimate. Therefore, it is possible to see that if the MP algorithm is used, the MSD is

lower. This occurs because this algorithm uses the sparsity characteristic of the channel to better

estimate it. Moreover, if MP selects more non-zero tap positions than the sparsity S of the signal to

be estimated, MP attributes a small value to these positions. It differs from the MPLS that uses the
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Figure 5.6 – MSD vs Nit for M = 40 and wideband HF Channel A.

pseudo-inversion process to calculate its values and the OMP that in each new iteration chooses a

new non-zero position, so when Nit > S, the OMP is necessarily increasing the MSD value.

5.2.2 Wideband HF Channel B

The wideband HF Channel B has 4 propagation paths and each path has a delay spread of 100µs.

One example is showed in Fig. 5.5. To obtain better precision, simulations in this work consider

5000 wideband HF channels where the delay position of each path was chosen randomly in each

simulation.

The comparison of the LS, the MP, the OMP, and the MPLS algorithms in terms of MSD

performance versus the number of iterations (Nit) is shown in Fig. 5.7. The quantity of the acquired

measurement is M = 40.

It can be seen that for S < 6, the MP, the MPLS, and the OMP algorithms have similar results

in terms of MSD, but for S > 6, the MP algorithm achieves a lower MSD value than the MPLS

and the OMP algorithms. It can be explained due to the bad estimation influence in the taps which

would be zero or almost zero. Besides this, the MPLS and the OMP algorithms use the LS solution

to estimate the tap values. Then, the bad estimation influence goes to almost all taps. Otherwise,

the MP algorithm gives the bad estimation influence from a bad tap selected only in this tap value

estimate.

Fig. 5.8 presents MSD values varying the quantity of the acquired measurement for S = 4. It
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Figure 5.7 – MSD vs Nit for M = 40 and wideband HF Channel B.

can be noticed that when M increases, the MSD value for the algorithms analyzed decreases. It

is worth mentioning that a smaller quantity of the acquired measurement, for example M = 40,

can be used with the algorithms and achieve a low MSD value. This points out an advantage of

using recovery algorithms that take into account the channel’s sparsity for wideband HF channel

estimation.
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Figure 5.8 – MSD vs M for S = 4 and Wideband HF Channel B.

The results suggest that wideband HF channels could be considered sparse in the delay spread

domain. Simulations have shown that the use of a sparse recovery algorithm that considers the
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channel’s sparsity achieves a better estimation performance than others that do not take into ac-

count the channel’s sparsity.

5.3 Proposition to Improve the LISTA Performance

This section discusses a solution to improve the LISTA estimation performance. Fig. 5.9 shows

an example of a sparse signal h and its estimate ĥ given by NL = 20 layers of LISTA [226]. As

can be seen, LISTA can estimate almost all the non-zero tap positions relatively well. However,

LISTA improperly attributes non-zero values to several zero-value taps, so negatively impacting

the estimation accuracy.
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Figure 5.9 – Example of a sparse signal h and its estimate ĥ given by NL = 20 layers of LISTA.

From Fig. 5.9, it can be noticed that using an appropriate threshold µ allows to avoid undue

non-zero values. With this in mind, Fig. 5.10 shows the general schema of the proposed sparse

recovery approach which is called in this thesis as “Tech. 1” [226].

LISTA Selection l2 Optimization

{(yd,hd)}Dd=1

ĥ

α

v′ v̂

Figure 5.10 – General schema of “Tech. 1”.

The first step consists of LISTA implementation, which produces the estimate ĥ. The second

step (“Selection”) takes into account α and ĥ to produce the vector v′. This step aims to use a

threshold µ as presented in Fig. 5.9. Let g be the number of non-zero taps of ĥ, E be the biggest

absolute tap value of ĥ and α be a positive value, the elements of the vector v′ are calculated by:
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v′(i) = 1, i f ĥ(i)> µ

v′(i) = 0, i f ĥ(i)≤ µ
(5.22)

where µ = αE.

That is, this step generates a signal v′ with j elements 1 where j ≤ g ≤ N. The positions of

these j non-zero elements will be the same positions of the non-zero elements of v̂.

Let G(x) be the matrix M×K composed by only K columns of the matrix A correlated to the

positions of the non-zero elements of x. The function U(x) is defined by:

U(x) = G†(x)y = GT (x)(G(x)GT (x))−1y (5.23)

Finally, step “l2 Optimization” calculates the non-zero elements of v̂ by U(v′). Then, the

estimate v̂ of the sparse signal h is calculated by attributing the values of the vector generated by

U(v′) into the positions i where v′(i) = 1.

5.3.1 Application Case

The normalized mean squared error (NMSE) described by (5.2) is used to evaluate the proposi-

tion of improvement of LISTA performance (“Tech. 1”). Ns is the number of realizations, which

corresponds to the number of different h to be estimated. In this work, Ns = 10000.

The proposed sparse recovery approach considers the system model defined in (2.8), where:

• N = 120.

• M = 60.

• A is i.i.d. Gaussian, with N (0,M−1).

• h is Bernoulli-Gaussian. Its elements are i.i.d N (0,1) with probability γ = 0.1 and the

others are set to 0.

• SNR = 30dB.

The parameters of LISTA were directly learned from independent realizations of the training

data during the training phase. Training data sets {(yd ,hd)}D
d=1 with D = 10000 were used. An-

other set with a size of 10000 was used for the testing phase. It was generated independently

of the training data but from the same distribution. During the training phase, LISTA adapts the

parameters minimizing the loss function (4.3) using the Adam optimizer [197].
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5.3.2 Estimation Performance

Fig. 5.11 presents the obtained NMSE as a function of the LISTA’s number of layers NL. The

curve LISTAstd (in blue) represents the NMSE values considering ĥ as the estimate of the sparse

signal h, that is, the output of the first step in Fig. 5.10 [226]. The curve in which α= 0.0 considers

the positions of the non-zero taps of ĥ as being those of non-zero taps of the v̂ (g = j). However,

the non-zero coefficients v̂ differ from those of ĥ, they are calculated by (5.23). The other curves

stand for NMSE values considering different values of α used in the step “Selection”. Fig. 5.11

also presents the theoretical performance bound Oracle Least Square (OLS).
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Figure 5.11 – Estimation performance for different values of α using “Tech. 1”.

As expected, increasing the number of layers makes the NMSE values decrease. Furthermore,

from Fig. 5.11, it can be seen that using the steps proposed in Fig. 5.10 the estimation performance

can be improved (NMSE values decrease) [226].

As it is showed in Fig. 5.11, with α = 0.02, the NMSE value can decrease up to 5.9dB com-

pared to LISTAstd. This occurs because, even if LISTA chooses good parameters Θ, the estimate

ĥ given by LISTA has more non-zero taps than h, leading to worse NMSE values. Therefore, after

the step “Selection”, the number of the non-zero tap positions decreases and the step “l2 Optmiza-

tion” calculates their values using LS algorithm resulting in lower NMSE values. This conclusion

is reinforced by Fig. 5.12 [226].

Fig. 5.12 presents the percentage of taps which had an improper tap attribution, that is, the

algorithm attributes a non-zero value to a tap that should have a zero value or the algorithm at-

tributes a zero value to a tap which should have a non-zero value. It can be observed that only
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using LISTA (curve LISTAstd), 10% to 15% of the tap attributions are incorrect. On the other

hand, with α = 0.02 this percentage of error decreases and this decrease reflects in better NMSE

values as can be seen in Fig. 5.11. This occurs because in the “Selection” step, taps with a norm

value lower or equal to 0.02E are setting to a zero value removing some improper tap attributions.
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Figure 5.12 – Percentage of taps that had an improper attribution.

Moreover, it can be observed from Fig. 5.11 that the α value influences a lot the performance

of the estimation. A big value of α (for example α = 0.1) can lead to set a lot of taps to zero

resulting in an estimate v̂ with sparsity s lower than h, so generating bigger NMSE values. On the

other hand, a small α value (for example α = 0.0) may consider that a lot of taps have non-zero

values resulting in an estimate with sparsity s bigger than h.

The influence of α value can be also observed in Table 5.2 [226]. This table shows the quantity

of layers required to achieve NMSE values equal to −20dB and −30dB. It considers the case

without using the steps proposed in Fig. 5.10 (Case 1) and the cases using them with different α

values (Cases 2 to 5).

Table 5.2 – Number of layers required to achieve a given performance using “Tech. 1”.

Case Method NMSE =−20dB NMSE =−30dB
1 LISTAstd 8 >20
2 α = 0.0 8 >20
3 α = 0.02 4 16
4 α = 0.05 5 >20
5 α = 0.1 7 >20

Case 3 shows that with 16 layers and α= 0.02 the NMSE is−30dB. This value is not achieved

even with 20 layers in the case that only the LISTA is used (Case 1). On the other hand, less

adjusted values of α may require bigger values of NL (>20) to achieve NMSE close to −30dB.
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Furthermore, it can be noticed that to achieve NMSE =−20dB only 4 layers are required in Case

3. Nevertheless, 8 layers are required if the steps proposed in Fig. 5.10 aren’t applied (Case 1), so

increasing the training phase time and also increasing the number of matrix-vector multiplications

required in the evaluation phase.

These results show that applying the two steps proposed after the LISTA output may lead

to better estimations (lower NMSE values) and fewer layers of the neural network than directly

consider the output given by LISTA as the estimate of the signal of interest. However, even if these

steps better estimate the sparse signal, the threshold used can set a zero value to a tap that should

have a non-zero value. With this in mind, a new neural network is proposed and described in

Section 5.4 to improve the sparse signal estimation focuses on finding the non-zero tap positions.

The steps proposed in Fig. 5.10 can be applied in other neural networks. For instance, it is

possible to change the first step “LISTA” for another neural network for example LAMP and to

use the estimate given by LAMP as ĥ in Fig. 5.10.

5.4 Proposed Neural Network

This section describes the proposed neural network to sparse signal estimation. Fig. 5.13 illus-

trates the proposed neural network with NL layers. In this thesis, this network is also called

“Tech. 2” [226]. The aim of this network is to estimate the non-zero tap positions of the sparse

signal instead of directly estimate its elements. Once the non-zero tap positions is estimated by

the proposed network, their element values are computed solving the least square problem. The

output p̂i of the i-layer of the proposed network is given by:

p̂i = ηr (Sp̂i−1 +Cy;λi) (5.24)

ηr

C
y

S
p̂1

+ ηr S
p̂2

+ ηr . . . S
p̂3 p̂NL−1

+ ηr

. . .

f
p̂NL

Q
p′ p

Figure 5.13 – Proposed neural network with NL layers.

Similarly to LISTA, the matrices C and S, and the thresholds λi are “learned” during the

training phase. However, while in LISTA the training data is composed by sparse signals hd , the

training data in the proposed neural network is {(yd , td)}D
d=1 where td( j) = 1 if hd( j) 6= 0 and

td( j) = 0 otherwise. The loss function used in the proposed neural network is given by (5.25)
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where Θ = [C,S,λ] and λ = [λ1,λ2, ...,λNL ].

L(Θ) =
1
D

D

∑
d=1
||p′(yd ;Θ)− td ||22 (5.25)

In this thesis, two different ηr functions are used: ηst and ηpwl . The first one, ηr = ηst , is the

same function used in LISTA and defined by (3.16). On the other hand, ηr = ηpwl is defined by

(5.26), where θ = {θ1,θ2,θ3,θ4,θ5} [227].

ηpwl(x;θ) =


θ3x, i f |x| ≤ θ1

sgn(x)[θ4(|x|−θ1)+θ3θ1], i f θ1 < |x| ≤ θ2

sgn(x)[θ5(|x|−θ2)+θ4(θ2−θ1)+θ3θ1], i f θ2 < |x|

(5.26)

After the last layer of the proposed neural network, two more steps are performed (see Fig. 5.13):

• f : it is the bounded function defined by (5.27) and illustrated in Fig. 5.14. This function

was chosen because it is a symmetric function and it generates only values ∈ [0,1] resulting

in p′(i) ∈ [0,1].

f (x) = |tanh(x)|= |e
x− e−x

ex + e−x | (5.27)

−2 −1 1 2

1

x

f(x)

Figure 5.14 – f (x) = |tanh(x)|.

• Q: the vector p′ is transformed into the vector p composed by only elements 0 and 1. Let

τ ∈ [0,1], so:

p(i) = 1, i f p′(i)≥ τ

p(i) = 0, i f p′(i)< τ

(5.28)
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After the proposed neural network, p is the estimate of the non-zero tap positions of ĥ. In

other words, p(i) = 0 corresponds to the taps of ĥ which have a 0 value and p(i) = 1 represents

the taps of ĥ which have a non-zero value.

The non-zero elements of ĥ are calculated through the least square solution. In other words,

the non-zero elements of the estimate ĥ of the sparse signal h are calculated by U(p) (see (5.23))

and compose the vector u. Then, the estimate ĥ is calculated by attributing the values of the vector

u into the tap positions of the non-zero elements of p.

The major differences between LISTA and the proposed neural network are [226]:

• While LISTA directly estimates ĥ, the proposed neural network estimates the tap positions

of the non-zero elements of ĥ.

• In order to estimate the non-zero tap positions, two other “steps” are introduced after the

last layer of the network (see Fig. 5.13).

• The element values of ĥ aren’t directly calculated by the proposed neural network. They are

calculated through the least square solution based on the proposed neural network output.

• The training data is different. In LISTA it is composed by sparse signals hd with differ-

ent element values, while in the proposed neural network it is composed by the non-zero

position vector td , that is, td has only 0 or 1 as element values.

Concerning the training phase, the parameters are learned in two steps. Firstly, only the pa-

rameter λi of layer i is learned. Then a global learning is performed, that is, all the parameters (C,

S, λ1, λ2, . . ., λi) are re-learned.

5.4.1 Application Case

This section presents an application case of the proposed neural network. The NMSE described

by (5.2) is used to evaluate the proposed neural network performance in terms of the number of

layers (NL). Moreover, the percentage of improper “tap attribution” is also analyzed (see definition

in Section 5.3.2).

The system model parameters are the same described in Section 5.3.1 and τ = 0.2. Training

data sets {(yd , td)}D
d=1 with D = 10000 were used. An independent test set with a size of 10000

from the same distribution are also used. Finally, the parameters of the network were calculated

minimizing the loss function described by (5.25) using the Adam optimizer.
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5.4.2 Estimation Performance

The curves Tech. 1 and LISTAstd showed in Fig. 5.15 and Fig. 5.16 are the same as those presented

in Fig. 5.12 and Fig. 5.11, respectively [226]. They were reproduced here to better compare the

results achieved by the proposed neural network.
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Figure 5.15 – Percentage of taps that had an improper attribution with the proposed neural network
(Tech. 2).

Fig. 5.15 presents the percentage of taps which had an improper attribution [226]. It can be

noticed that the proposed neural network (curves Tech. 2 ηst and Tech. 2 ηpwl) better estimates

the non-zero tap positions. This occurs because it was trained focused on finding the non-zero tap

positions instead of estimate the tap values (which is the case of LISTA).

Fig. 5.16 presents the obtained NMSE as a function of the number of layers NL [226]. The

performance obtained with the proposed neural network is also compared to LISTA, OLS and the

results achieved in Section 5.3.2 with α = 0.02 (curve Tech. 1).

From Fig. 5.16, it can be seen that the proposed neural network (curves Tech. 2 ηst and Tech. 2

ηpwl) improves NMSE values compared to LISTA (curve LISTAstd). Indeed, using ηr = ηpwl

(curve Tech. 2 ηpwl) the NMSE value can decrease up to 10.8dB compared to LISTAstd and the

results achieved are close to OLS. On the other hand, when ηr = ηst , Tech. 2 achieves similar

results in terms of NMSE when compared to the one achieved in Section 5.3.2 (curve Tech. 1).

When ηr =ηpwl , more parameters have to be calculated in the training phase compared to ηr =ηst .

However ηr = ηpwl enables the proposed neural network be better adjusted to sparse estimation

requiring few layers.
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Figure 5.16 – NMSE × NL using “Tech. 1” and “Tech. 2”.

In the simulations above, the channels in the sparse signal used in the training phase and

the evaluation phase are generated with the same statistics. However, in real-world applications,

mismatches may occur between the two phases. Therefore, it is essential for the trained models to

be relatively robust to these mismatches.

In the next simulations, the impact of variation in statistics of the sparse signal used during

training phase and evaluation phase is analyzed.

Fig. 5.17 shows the obtained NMSE when the signal to be estimated and the signals used dur-

ing the training phase have different γ values [226]. NL = 9 and the training data has γ = 0.1. As

expected, when the signal to be estimated is less sparse (γ > 0.1) than the signals used in the train-

ing data (γ = 0.1), the NMSE values achieved by “Tech. 1” and “Tech. 2” dissociate themselves

from the NMSE of the OLS. However, it should be highlighted that “Tech. 2 ηpwl” leads to better

NMSE values suggesting that it has some degree of robustness when sparsity mismatch occurs.

5.5 Shrinkage Functions in LISTA

This section explores alternative shrinkage functions to be used in LISTA. The objective is to

analyze their impact in terms of estimation quality.

The traditional shrinkage function ηst used in LISTA is defined by (3.16) and it is shown in

Fig. 5.18.a. Recently, cubic B-splines shrinkage function has been used in LISTA with several

parameters spread uniformly over the dynamic range of the signal to improve the estimation qual-
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Figure 5.17 – NMSE × γ using “Tech. 1” and “Tech. 2”.

ity [200]. As an alternative to these solutions, three shrinkage functions controlled by a small

number of learnable parameters that can vary across the layers of the LISTA network are consid-

ered here:

Exponential (ηexp): Let θ= {θ1,θ2,θ3}, the exponential shrinkage function is defined by [227]:

ηexp(x;θ) = θ2x+θ3xexp
(
− x2

2θ2
1

)
(5.29)

Piecewise Linear (ηpwl): Let θ = {θ1,θ2,θ3,θ4,θ5}, this function has five segments [227]:

ηpwl(x;θ) =


θ3x, i f |x| ≤ θ1

sgn(x)[θ4(|x|−θ1)+θ3θ1], i f θ1 < |x| ≤ θ2

sgn(x)[θ5(|x|−θ2)+θ4(θ2−θ1)+θ3θ1], i f θ2 < |x|

(5.30)

Spline (ηspl): The spline shrinkage function is defined by:

ηspl(x;θ) = θ2x+θ3xβ

(
x
θ1

)
(5.31)

where θ = {θ1,θ2,θ3} and β is the cubic B-spline [228]:

β(z) =


2
3 −|z|2 +

|z|3
2 , i f 0≤ |z| ≤ 1

1
6(2−|z|)3, i f 1≤ |z| ≤ 2

0, i f 2≤ |z|

(5.32)
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In Fig. 5.18, each color represents a different set of parameters used in each shrinkage function.
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Figure 5.18 – Shrinkage functions for different parameters.

5.5.1 Application Case

The normalized mean squared error (NMSE) described by (5.2) is used to evaluate ISTA and

LISTA estimation performance in terms of the number of iterations (Nit) and number of layers

(Nl), respectively. Ns is the number of realizations. In this work, Ns = 10000.

The system model is defined by (2.8), considering:

• N = 120.

• M = 60.

• A is i.i.d. Gaussian, with elements distributed N (0,M−1).

• h is Bernoulli-Gaussian, that is, its elements are i.i.d N (0,1) with probability γ = 0.1 and

the others are set to 0.

• SNR = 30dB.
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First, the parameters dependence in ISTA performance is verified. Next, the LISTA perfor-

mance is analyzed for the shrinkage functions presented in Section 5.5. The results are compared

to the theoretical performance bound OLS.

5.5.2 Estimation Performance

5.5.2.1 ISTA Performance

Fig. 5.19 presents the ISTA estimation performance for different values of the parameters β and

λ [229].
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Figure 5.19 – ISTA estimation performance for different β and λ values.

This figure leads to the following observations [229]:

• Many iterations are required for ISTA convergence.

• In all considered cases, ISTA does not converge to a NMSE value close to the one achieved

by OLS.

• ISTA converges to different NMSE values at different number of iterations depending on

the β and λ values.

These results highlight the importance of the parameters choice as they highly influence the

ISTA performance in sparse signal estimation. Moreover, they point out that even with a lot of

iterations, ISTA does not give an estimation result close to the one achieved by the theoretical

performance bound OLS.
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5.5.2.2 LISTA Performance

In order to analyze the LISTA estimation performance, training data set {(yd ,hd)}D
d=1 with D =

10000 was used. For the testing phase, another set with a size of 10000 was used. In both phases,

sets were generated independently with the same distribution parameters.

During the training phase of LISTA, the network adapts the parameters minimizing the loss

function (4.3) through the Adam optimizer. Therefore, it is not necessary to choose the ISTA

parameters β and λ, LISTA learns its parameters during the training phase.

Fig. 5.20 presents the LISTA estimation performance in terms of NMSE value considering

the traditional shrinkage function (3.16) and the functions described in Section 5.5 for different

numbers of layers [229]. The parameters of the shrinkage functions were learned directly from

independent realizations of the training data during the training phase.
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Figure 5.20 – LISTA estimation performance according to the number of layers.

From this figure, it can be seen that [229]:

• The NMSE values achieved by LISTA with the piecewise linear, exponential, and spline

shrinkage functions are better than those achieved by LISTA with the traditional shrinkage

function ηst .

• The use of piecewise linear, exponential, and spline shrinkage functions leads to NMSE

value decrease up to 9dB compared to the traditional shrinkage function.

• The use of one of the shrinkage functions presented in Section 5.5 allows LISTA to achieve
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performance close to OLS in a reasonable number of layers.

• While the traditional shrinkage function (3.16) has only one parameter that is adjusted for

each layer, the functions of Section 5.5 have three or five parameters. The results suggest

that increasing the degree of freedom of the shrinkage function, better results in terms of

NMSE can be achieved.

The computational complexity of one layer of LISTA and one iteration of ISTA are essentially

the same [31]. Comparing ISTA and LISTA estimation performances by the results presented in

Figs. 5.19 and 5.20, respectively, it can be noticed that [229]:

• Applying LISTA with only 6 layers, a NMSE equals to−24dB can be reached. On the other

hand, more than 3600 iterations of ISTA would be required to achieve this NMSE value.

• LISTA network generates estimates with lower NMSE value and less computational com-

plexity (significantly fewer matrix-vector multiplications) than ISTA.

• With LISTA, the parameters are internally optimized during the training phase.

Therefore, the obtained results show that LISTA generates better estimate than ISTA. Further-

more, combining LISTA with one of the shrinkage function presented in Section 5.5, an estimate

close to the OLS can be achieved using few layers of LISTA.

The above simulations consider that the training data and the signal of interest have similar

characteristics. However, the signal to be estimated can have different characteristics compared to

those of the training data used to training the network. In order to analyze the robustness of the

network generated by LISTA, two different cases were simulated:

• Case 1: the signal to be estimated and the signals used during the training phase have dif-

ferent SNR values.

Fig. 5.21 shows LISTA behaviour varying the SNR value of the signal to be estimated. The

network has NL = 20 and the training data has SNR = 30dB [229].

It can be noticed that the performance decreases, as outside the zone near to SNR = 30dB,

the obtained NMSE values are not close to those produced by OLS. That being said, even if

for SNR ≤ 20 dB, all shrinkage functions lead to similar performances, the functions ηspl ,

ηexp, and ηpwl achieve better results than the traditional function for SNR≥ 20 dB.
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Figure 5.21 – LISTA estimation performance varying the SNR of the signal to be estimated.

These results suggest that the functions presented in Section 5.5 can be an interesting solu-

tion to estimate signals with high SNR. Better performance to estimate signals with a wider

range of SNR can be achieved using one of these functions than if the ηst is used. It is very

useful for applications where the SNR value of the signal to be estimated is variable, for

example in wireless communication systems.

• Case 2: the signal to be estimated and the signals used during the training phase have dif-

ferent γ values.

Fig. 5.22 shows the LISTA estimation performance varying the γ of the signal to be esti-

mated. NL = 20 and the training data has γ = 0.1 [229].

As expected, when the signal to be estimated is less sparse (γ > 0.1) than the signals used

in the training data (γ = 0.1), the NMSE values achieved by LISTA dissociate themselves

from the NMSE of the OLS. However, it should be highlighted that the use of one of the

shrinkage functions presented in Section 5.5 instead of the traditional shrinkage function

(3.16) leads to better NMSE values.

As well as SNR, the sparsity of the signal to be estimated may not be fixed. As can be

seen in Fig. 5.22, LISTA with ηst has some degree of robustness when the sparsity varies.

However, this robustness clearly increase when one of the shrinkage functions proposed is

used.

The results indicate that the choice of the shrinkage function is an important factor for the esti-



116 5. SPARSE SIGNAL ESTIMATION IMPROVEMENT TECHNIQUES

0.1 0.15 0.2 0.25 0.3

−40

−30

−20

−10

0

OLS

γ

N
M
S
E

(d
B
)

LISTA - ηst
LISTA - ηspl
LISTA - ηexp
LISTA - ηpwl

Figure 5.22 – LISTA estimation performance varying the γ of the signal to be estimated.

mation performance of LISTA. Indeed, more flexible shrinkage functions, like exponential, spline,

or piecewise linear led to better estimation performance than the traditional shrinkage function ηst .

The piecewise linear function has a small advantage over the other shrinkage functions when the

characteristics of the training set and the signal to be estimated are the same (Fig. 5.20). On the

other hand, in terms of robustness to SNR mismatch, the functions splines and exponential present

a slight advantage (Fig. 5.21).

Fig. 5.20 and Fig. 5.21 point out that using a training data with a determined value of SNR

and γ to estimate a signal with different values for these parameters leads to decreased LISTA

estimation performance. To improve the LISTA performance, in addition to change the shrinkage

function to one of the presented in Section 5.5, the training data could be modified.

5.6 Performance Comparison

This section presents a performance comparison between some sparse recovery algorithms re-

ported in the literature and the approaches proposed in this thesis. The algorithms and neural

network analyzed here are:

• OLS: theoretical performance bound Oracle Least Square;

• MP: Matching Pursuit (see Section 3.3.1);

• OMP: Orthogonal Matching Pursuit (see Section 3.3.2);
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• MPLS: Matching Pursuit based on Least Squares (see Section 5.1);

• LISTAs: Learned Iterative Shrinkage-Thresholding Algorithm with the traditional shrinkage

function ηst defined by (3.16) (see Section 4.2.1);

• LISTApwl: Learned Iterative Shrinkage-Thresholding Algorithm with the piecewise linear

shrinkage function ηpwl defined by (5.30) (see Section 5.5);

• Tech. 1: Proposition to improve the LISTA performance (see Section 5.3);

• PNNs: Proposed Neural Network (Tech. 2) with the shrinkage function ηst defined by (3.16)

(see Section 5.4);

• PNNpwl: Proposed Neural Network (Tech. 2) with the piecewise linear shrinkage function

ηpwl defined by (5.30) (see Section 5.4).

They are evaluated in terms of NMSE described by (5.2), the percentage of non-zero taps po-

sitions correctly found (Pc) and the percentage of taps which had an improper attribution (Pe). The

number of multiplications (NM) is used as the parameter of the algorithm computational complex-

ity.

Firstly the floating-point arithmetic implementation is considered (see Section 5.6.1). Then

the estimation performances are analyzed using fixed-point arithmetic (see Section 5.6.2).

The system model is defined by (2.8), considering:

• N = 256.

• M = 128.

• A is i.i.d. Gaussian, with elements distributed N (0,M−1).

• h is Bernoulli-Gaussian, that is, its elements are i.i.d N (0,1) with probability γ = 0.1 and

the others are set to 0.

• SNR = 30dB.

• Ns = 10000.

• The training data sets used in the neural networks analyzed have D = 10000 pairs of ele-

ments.
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• The testing phase of the neural networks analyzed have another sets with a size of 10000

pairs of elements.

• The Adam optimizer was used in the neural networks analyzed.

• α = 0.02 for Tech.1.

• τ = 0.2 for PNNs and PNNpwl .

5.6.1 Estimation Performance: Floating-point Arithmetic

Fig. 5.23 presents the estimation performances for floating-point arithmetic in terms of number

of multiplications (NM). The results indicate that using neural network for estimating the sparse

signal leads to better estimation performance (lower NMSE value) than using one of the greedy

algorithm analyzed (MP, MPLS, and OMP). Indeed, the NMSE values achieved by the greedy

algorithms are very far from the value reached by the OLS. Moreover, it can be seen in Fig. 5.23

that LISTApwl , Tech. 1, PNNs and PNNpwl improve the estimation performance compared to

LISTAs. In addition, LISTApwl and PNNpwl are the ones which achieve results closer to the one

of the theoretical performance bound OLS. As ηpwl has more parameters than ηs, this has an

important influence on the estimation performance of LISTA and PNN as can be noticed when

comparing the results of LISTAs/LISTApwl and PNNs/PNNpwl .

Fig. 5.24 shows the percentage of non-zero taps positions correctly found. It can be noticed

that the greed algorithms require more NM to correctly found more than 80% of the non-zero

tap positions. In contrast, LISTAs and LISTApwl correctly found more than 80% of the non-zero

tap positions faster than the others techniques, that is, with fewer NM. However, one problem

of LISTA is that it attributes non-zero values to a lot of taps, so even if it finds a lot of non-

zero tap positions, it also attributes small values to wrong taps. This can be noticed in Fig. 5.25

that provides the percentage of taps with an improper attribution. This characteristic of LISTA is

more accentuated in LISTApwl that assigns non-zero values to almost all taps as can be noticed in

Fig. 5.24 and Fig. 5.25. Even if it has a big Pe, it doesn’t influence a lot the NMSE because the

values attributed to the taps are close to zero. However, LISTApwl is not appropriated to be use

if the knowledge of the non-zero tap positions is important. Fig. 5.25 shows that Tech. 1, PNNs

and PNNpwl have lower Pe than LISTAs and LISTApwl . Indeed, Pe < 2% can be achieved with

NM = 3×105, NM = 5×105, and NM = 13×105 using PNNpwl , PNNs, and Tech. 1, respectively.

These results suggest that PNNpwl is the best technique to found the non-zero tap positions. This
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Figure 5.23 – Estimation performance for floating-point arithmetic in terms of number of multi-
plications (NM).
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occurs because PNN focuses on estimating the non-zero tap positions instead of estimate their

values (see Section 5.4).
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Figure 5.24 – Percentage of non-zero taps positions correctly found (Pc).
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Figure 5.25 – Percentage of taps which had an improper attribution (Pe).

These results indicate PNNpwl as the best technique to estimate a sparse signal. It has the

fewest percentage of taps which had an improper attribution and it achieves NMSE value close to

the ones of the OLS. Even LISTApwl leads to NMSE values a little lower than the ones of PNNpwl ,

LISTApwl has the disadvantage of assigning non-zero values to a lot of taps which should have a

zero value, resulting in a big Pe.

5.6.2 Estimation Performance: Fixed-point Arithmetic

Sparse signal recovery on hardware is challenging since it consists of dot product operations and

complex matrix inversion (depending on the sparse recovery algorithm chosen). A hardware
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implementation has to take into account its cost and its performance. In general, more hard-

ware multipliers and more memory imply more power consumption. However, some applications

have hardware constraints requiring low-power and low-cost signal processing operations target-

ing longer battery life or more compact physical devices.

One alternative is to reduce the number of bits used in the hardware implementation to repre-

sent the values that will be calculated. Processors designed for extremely low power consumption

or very small size usually only provide multiplication instructions that are limited with respect

to the bit size of the words [230]. However, this reduction often leads to a degradation of the

algorithm performance. Therefore, this negative impact should be analyzed.

Floating-point arithmetic is complex and requires more area than fixed-point arithmetic in-

creasing hardware complexity [231]. Moreover, fixed-point implementation reduces the amount

of switching activity on wires and logic gates, leading to the reduction of power dissipation [232].

Taking these into account, the algorithms evaluated here were implemented using fixed-point arith-

metic. In this thesis, Qi. f is used to represent the quantization format where i is the amount of

integer bits and f is the amount of fractional bits.

The residual vector bi of the OMP algorithm is always orthogonal to the columns that have

already been selected. Therefore, theoretically, there will be no columns selected twice and the set

of selected columns is increased through the iterations. However, when the OMP is implemented

with limited data representation, there is an imperfect orthogonalization caused by inaccurate least

square calculation. For this reason, a choice should be made when implementing it:

• OMPn: the implementation can be forced to always choose a new non-zero tap, that is,

different from the ones selected in previous iterations keeping the original sense of orthog-

onality of the OMP.

• OMPr: the implementation allows the non-zero tap to be re-selected in others iterations

considering that orthogonality is not really achieved.

Fig. 5.26 shows the estimation performance in terms of NMSE varying the number of mul-

tiplication operation (NM) considering the two alternatives of OMP implementation for Q8.8. It

can be seen that when the non-zero taps can not be selected twice (OMPn) the NMSE value is

bigger than the OMPr case. It occurs because OMPn starts selecting wrong non-zero taps faster

than OMPr, that is, with less iterations. Therefore, increasing the error estimation.
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Figure 5.26 – OMPn and OMPr estimation performances for Q8.8 (16 bits).

Fig. 5.27 and Fig. 5.28 present the estimation performances of the MP, OMP and MPLS al-

gorithms considering 16-bits implementation (Q8.8) and 24-bits implementation (Q8.16), respec-

tively. Each point in the curves represents one iteration of the algorithm. It can be noticed that

for the same quantity of multiplication operation (NM) the OMP algorithm did less iteration (there

are less points in the green curves than in the other curves). This occurs because each iteration

of the OMP algorithm solves the least square problem which consumes a lot of multiplication op-

erations. Indeed, as iteration order goes up, the OMP algorithm computational complexity of the

iteration increases due to the expansion of the matrix which has to pass by the pseudo-inversion

process. On the other hand, the MP algorithm has the simplest iteration calculations leading to

more iterations (many blue points in the figures) for a same NM value.
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Figure 5.27 – MP, OMP and MPLS estimation performances for Q8.8 (16 bits).
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Figure 5.28 – MP, OMP and MPLS estimation performances for Q8.16 (24 bits).

The MP, OMP and MPLS algorithms start considering that all taps have zero values. Through-

out each iteration they increase or maintain the amount of non-zero taps. This can be seen in

Fig. 5.27 and Fig. 5.28. Initially the value of the NMSE decreases with the increase of NM. This is

because the algorithms find the positions of the taps that have non-zero values and assign values

to these taps. However, as the number of iterations increases, the algorithms start to assign non-

zero values to taps that should have zero values, so the NMSE increases, i.e., the estimation error

increases. For Q8.8 (Fig. 5.27) the algorithms were interrupted after increasing the NMSE values

as the number of iterations increased.

Considering the 16-bit implementation (Q8.8 - Fig. 5.27), the OMP algorithm presents the

best performance in terms of achieving lower NMSE for the same value of NM when compared to

the MP and the MPLS algorithms for NM < 6.5×106. On the other hand, for the 24-bit implemen-

tation (Q8.16 - Fig. 5.28), the MPLS algorithm has the best performance (lowest NMSE value)

for NM < 6.5× 106. If more multiplication operations are allowed then the OMP achieves better

performance (lowest NMSE). Indeed, Fig. 5.29 shows the minimum NMSE value achieved by the

MP, OMP and MPLS algorithms for 24-bits implementation. As said before, each MPLS and MP

iteration consumes fewer multiplication operations than one OMP iteration. Thus, it is possible

to find the non-zero tap positions faster with the MP and MPLS algorithms and thus estimate the

sparse signal faster than the OMP algorithm, leading to a lower NMSE value for a lower NM.

Therefore, it can be seen from Fig. 5.27 and Fig. 5.28 that depending on the amount of bits,

the algorithm that has the best estimation performance for a small NM value varies. In other words,

it would be better to choose the OMP algorithm to sparse signal estimation if 16-bits implementa-

tion is used. On the other hand, if 24-bits implementation is used, it would be better to choose the
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Figure 5.29 – Minimum NMSE value for 24 bits (Q8.16).

MPLS algorithm so it would reduce the computational complexity (NM < 6.5× 106) and achieve

a lower NMSE value. This difference in the estimation performance of 16-bits and 24-bits imple-

mentations occurs because with more bit accuracy (more bits), the fact that the MPLS algorithm

finds the correct positions of the non-zero taps with fewer iterations than the OMP algorithm is a

big advantage for the estimated signal calculation. In addition, as expected, increasing the num-

ber of bits improves the estimation performance of the algorithms, i.e., the achieved NMSE value

decreases.

Fig. 5.30 shows the percentage of non-zero taps positions correctly found according to the

number of multiplication operations performed. The MPLS algorithm is not represented here

because it finds the positions in the same way as the MP algorithm, the difference between these

algorithms lies in the calculation of the non-zero tap values and not in the way to determine their

positions. It can be seen in this figure that with 16-bits implementation, for the same value of

NM, the OMP finds more correct positions, which contributes to the result presented in Fig. 5.27.

On the other hand, with 24-bits implementation (see Fig. 5.30.b), the MP finds much more correct

non-zero tap positions, quickly reaching more than 80% of non-zero tap positions. These positions

are the same as those found by the MPLS algorithm. This result reinforces the good performance

achieved by the MP and MPLS algorithms when compared to the OMP in Fig. 5.28.

Fig. 5.31 presents the minimum NMSE value achieved for each algorithm considering 8 frac-

tional bits (Q8.8) and 16 fractional bits (Q8.16) implementations. It is worth highlight that these

minimums are achieved considering different computational complexities, i. e., different NM val-

ues for each algorithm (see Fig. 5.27 and Fig. 5.28). In addition, Fig. 5.31 shows in the rose line
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Figure 5.30 – Percentage of non-zero taps positions correctly found using the MP and OMP algo-
rithms.

the quantization noise imposed by bit limit precision. It is defined by (5.33) varying the number of

fractional bits. The results are compared to the OLS (blue curve). It has the previous knowledge

of the non-zero tap positions and calculates their non-zero coefficients with the floating-point least

square solution. Therefore, these thresholds represent the optimal NMSE achievable limit (OLS)

and the limit due to bit accuracy (Bl). It can be noticed that the MP, MPLS and OMP don’t

achieved the limit boundaries.

Bl =
2−2 f ×N×Ns

∑ ||h||22
(5.33)

Sparse signal estimation using neural network has advantages when it is implemented in fixed-

point arithmetic. The neural network training does not necessarily have to be done in hardware,

so floating-point arithmetic can be used to train the network. Once trained, the sparse signal

estimation is done using the neural network with fixed-point arithmetic.

Fig. 5.32 shows the estimation performance, in terms of NMSE, for LISTAs, LISTApwl , Tech. 1,

PNNs, and PNNpwl considering Q8.8, Q8.16 and floating-point arithmetic (represented as f , for

example LISTAs f means the float implementation of LISTAs) implementations. The results pre-

sented in Fig. 5.23 are showed in Fig. 5.32 to facilitate the comparison. The Q8.16 implementation

well represents the floating-point arithmetic suggesting that using 16 bits for the fractional part is

adequate. On the other hand, using 8 bits in the fractional part (Q8.8) decreases the estimation

performance in all techniques. This decrease is bigger using Tech. 1, PNNs or PNNpwl than using
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Figure 5.31 – Minimum NMSE value achieved.

LISTAs or LISTApwl . This occurs because Tech. 1, PNNs and PNNpwl applied the least square

solution to calculate the non-zero tap values. The complexity of the least square calculation sug-

gests that the limited precision (to use 8 bits instead of 16 bit to represent the fractional part) has a

greater influence on NMSE value than when the tap values are calculated directly by the network

(it is the case of LISTAs and LISTApwl).

In addition, it can be noticed that LISTApwl achieves lower NMSE value than the previous

algorithms (see Fig. 5.27 and Fig. 5.28). Moreover, sparse signal estimation using LISTApwl

requires fewer multiplication operations (NM) than the greedy algorithms MP, OMP and MPLS

to achieve the same NMSE value. This occurs because during the LISTA execution there are not

matrix inversion calculations leading to advantages over common sparse recovery algorithms. The

LISTApwl estimation performance does not vary much with the quantity of fractional bits. This

represents an advantage to use the Q8.8 implementation which consumes less power and memory

because it uses fewer bits.

Fig. 5.33 presents the percentage of non-zero taps positions correctly found (Pc) using LISTAs,

LISTApwl , Tech. 1, PNNs, and PNNpwl considering Q8.8, Q8.16 and floating-point arithmetic

implementations. The results presented in Fig. 5.24 are showed in Fig. 5.33 to facilitate the com-

parison. Tech. 1 provides the biggest difference when the implementation is changed from Q8.8

to Q8.16. For the other techniques, using Q8.8, the Pc value doesn’t decrease a lot. LISTAs,

LISTApwl , PNNs, and PNNpwl achieve more than 80% of non-zero tap positions correctly found

with NM < 4×105 while the MP algorithm achieves it only with NM = 8.88×105 (see Fig. 5.30b).



127

Fig. 5.34 gives the percentage of taps which had an improper attribution (Pe) using LISTAs,

Tech. 1, PNNs, and PNNpwl considering Q8.8, Q8.16 and floating-point arithmetic implemen-

tations. The results presented in Fig. 5.25 are showed in Fig. 5.34 to facilitate the comparison.

The results of LISTApwl are not presented here because more than 80% of taps had an improper

attribution as can be seen in Fig. 5.25. It can be noticed that PNNpwl leads to the lowest Pe. This

occurs because PNN is focused on finding the non-zero tap positions, so the neural network is

trained for that, resulting in better performance than if LISTA is used.

These results show that the performance of the techniques varies when the number of bit used

in the fractional part changes. From these simulation, LISTAs is the technique that achieves better

results for Q8.8 while for Q8.16 the PNNpwl leads to lowest percentage of taps with improper

attribution and to good NMSE values.
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Figure 5.32 – Estimation Performance for Q8.8, Q8.16 and floating-point arithmetic using: (a)
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Figure 5.33 – Percentage of non-zero taps positions correctly found (Pc) for Q8.8, Q8.16 and
floating-point arithmetic using: (a) LISTAs (b) LISTApwl (c) Tech. 1 (d) PNNs (e) PNNpwl .
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Figure 5.34 – Percentage of taps which had an improper attribution (Pe) for Q8.8, Q8.16 and
floating-point arithmetic using: (a) LISTAs (b) Tech. 1 (c) PNNs (d) PNNpwl .
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Chapter 6

Conclusion and Perspectives

This chapter presents some conclusions and perspectives of this thesis work.

6.1 Conclusions

This thesis dealt with sparse channel estimation and exploration of new approaches to sparse

signals estimation. High-quality channel estimation is very important to a reliable communication

system. Several channels can be considered sparse. This characteristic can be used to improve

their estimation. The compressive sensing and its sparse recovery algorithms are used in several

areas and they can be applied to sparse channel estimation reducing the cost and the complexity

of the estimation as well as the required amount of measurements. The work performed during

this thesis mainly focused two aspects: sparse recovery algorithms and neural networks based

compressive sensing.

Starting from the state of the art, several sparse recovery algorithms were studied and analyzed

in Chapter 3. A performance analysis suggested that these algorithms better estimate sparse sig-

nals. In other words, the sparser the signal is, the smaller the estimation error will be. In addition,

the algorithms BCS and OMP presented the lowest NMSE values (see Section 3.4). This study led

to the first contribution of this thesis: the proposition of a greed algorithm called Matching Pur-

suit based on Least Squares (MPLS) which combines the Matching Pursuit and the Least Square

algorithms (see Section 5.1). The results showed that the MPLS algorithm offers a better trade-

off between estimation accuracy and computational cost than OMP algorithm, while producing

similar results.

The study of these algorithms also led to the interest and study of the neural networks inspired



132 6. CONCLUSION AND PERSPECTIVES

by some of these algorithms, as discussed in Chapter 4. It resulted in other three contributions of

this thesis presented in Sections 5.3, 5.4 and 5.5 to improve sparse signal recovery.

LISTA can be considered as one of the first neural network inspired by a sparse recovery

algorithm. In this thesis, it is proposed to use the LISTA output to give a direction of the non-

zero tap selection. The non-zero tap positions are chosen according to a threshold related to

the biggest tap given by LISTA output. Then the signal estimate will be calculated by pseudo-

inversion process (see Section 5.3). The obtained results show that using this approach, the NMSE

value can be reduced up to 5.9dB comparing to the LISTA estimation performance.

In addition, a new neural network focused on finding the non-zero tap positions was proposed

(see Section 5.4). The obtained results show that the proposed network is a good approach to

sparse signal recovery reducing up to 10.8dB the NMSE value compared to LISTA and achieving

performance close to OLS. Furthermore, fewer layers are required to achieve good estimates lead-

ing to less time required for training phase and less matrix-vector multiplications required during

the evaluation phase.

Moreover, other shrinkage functions are suggested to replace the traditional shrinkage func-

tion of LISTA. Their estimation performances are analyzed in Section 5.5. The obtained results

indicate that the estimates generated by the LISTA network require fewer matrix-vector multi-

plications than existing algorithms with optimally tuned regularization parameters. Furthermore,

choosing an adequate shrinkage function, the LISTA can achieve NMSE values close to the theo-

retical performance bound with a few layers.

The results of this thesis reinforce the suitability of neural network in sparse signal estimation

as an alternative to the sparse recovery algorithms. The approaches developed in this work can

be extended and used to sparse signal estimation in several domains such as those presented in

Section 2.3.2.

Most of the works covered in this thesis were published in appropriate conferences and journal,

and those publications are listed in Appendix A.

6.2 Perspectives

As an extension of this thesis, the points below can further improve this work:

• Regarding the sparse recovery algorithms, a lot of them assume that the signal’s sparsity is

known. However, in several applications this is not true. Thus, it is necessary to develop
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sparse recovery algorithms that do not need this information and that are able to be adaptive

to time changes. One other approach is to develop a sparsity estimator such as the proposed

in [233].

• Although the use of neural network leads to performance improvements, it presents some

challenges. The optimization algorithm, the loss function, and training strategies influence

a lot the NN estimation performance. Therefore, they can be modified to try improve the

sparse signal estimation performance.

• It should be interesting to explore the use of alternative functions f (x) in the proposed neural

network, so as to their estimation performance impact.

• Another opportunity for future work would be to make the function ηr (see (5.24)) of the

proposed neural network variable according to the layer. For example, to use a ηr1 function

in the first layers and after to use a different ηr2 function.

• The step proposed in Fig. 5.10 can be applied in other neural networks. For instance, to

replace the first step “LISTA” for another neural network for example LAMP and to use the

estimate given by LAMP as ĥ in Fig. 5.10.

• The obtained results show that characteristics (e.g. SNR or γ) of the training set must match

with those of the signal to be estimated, otherwise it can lead to some degradation in terms

of NMSE. However, sometimes these characteristics vary, so a better choice of the training

set should be done. For example, use with different SNR to better estimate a signal with

variable SNR. Some simulations should be done to find the best way to compose the training

set.

• As several channels are more complex in reality than their mathematical models and change

over time, general NN that dynamically adapts to varying channel conditions is desirable.

Therefore, efficient hardware implementations of the training phase are required for online

training situations.
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Appendix B

Résumé en Français

B.1 Introduction

Ce chapitre présente le contexte de cette thèse et décrit la motivation ainsi que les contributions du

présent travail.

Au cours des dernières décennies, le développement de solutions technologiques dans le do-

maine des communications a donné naissance à un nouveau concept de radio appelé Radio logi-

cielle (Software Defined Radio - SDR) [1]. Il s’agit d’une technologie émergente dans laquelle des

fonctions auparavant matérielles sont devenues définies par logiciel, permettant aux utilisateurs

de saisir de nouvelles applications avec une SDR. Cette approche présente plusieurs avantages

pour le développement de solutions sans fil dans les communications civiles et militaires, telles

que l’interopérabilité des troupes de forces et de nations différentes, la portabilité des waveforms

et la possibilité de mettre à jour les dernières avancées en matière de communications radio sans

nécessiter de nouveau matériel.

Un système de communication est essentiellement composé de trois éléments : émetteur, canal

et récepteur, comme indiqué sur la Fig. B.1 [2]. Les canaux de communication peuvent être à

l’origine de plusieurs distorsions sur le signal, telles que l’atténuation, la perte par trajets multiples

et le décalage Doppler, entre autres [2]. Par conséquent, pour mieux récupérer le message envoyé

par l’émetteur, une estimation du canal peut être utilisée pour compenser ces effets, ce qui permet

une démodulation, une égalisation et un décodage du signal précis. En effet, l’estimation de canal

de haute qualité est une caractéristique essentielle des systèmes de communication fiables.

L’un des principaux défis des systèmes de communication consiste à fournir des informations

précises sur l’état du canal (CSI) au destinataire [3]. Avec l’estimation du CSI, les symboles trans-
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Émetteur RécepteurCanal

Signal
Transmis

Signal
Reçu

FIGURE B.1 – Eléments d’un système de communication.

mis peuvent être récupérés sur le récepteur. Pour ce faire, plusieurs techniques d’estimation de

canal ont été développées afin de fournir le CSI. En général, ces techniques peuvent être classées

en trois catégories, comme illustré dans la Fig. B.2 [4].

Estimation de Canal

Estimation Basée
sur l’Apprentissage

Estimation de Canal
Aveugle

Estimation de Canal
semi-Aveugle

FIGURE B.2 – Classification des techniques d’estimation de canal.

L’estimation de canal basée sur l’apprentissage (training based channel estimation) utilise cer-

tains symboles connus, la séquence d’apprentissage, envoyés avant et/ou pendant la communica-

tion pour estimer le canal des sorties mesurées à la séquence d’apprentissage. La Fig. B.3 illustre

le vecteur de symbole transmis avec T symboles connus (séquence d’apprentissage) et D sym-

boles pour representer l’information (les données). Cependant, ces symboles connus consomment

de l’énergie et de la bande passante qui ont une incidence sur l’efficacité spectrale du canal en

raison de l’utilisation de ressources de communication pour transmettre ces symboles au lieu de

transmettre des données. De plus, dans des canaux variant dans le temps, la séquence d’appren-

tissage doit être transmise périodiquement, ce qui entraîne une perte supplémentaire du débit du

canal. Par conséquent, il est intéressant de réduire la quantité requise de symboles d’apprentissage

tout en conservant une précision d’estimation suffisante. Pour ce faire, la caractéristique du canal

peut être utilisée pour améliorer les performances de son estimateur.

D’autre part, les techniques aveugles (Blind Channel Estimation) se concentrent sur les pro-

priétés statistiques ou déterministes du système. Elles n’exploitent pas la connaissance de la sé-

quence d’apprentissage. Le principal avantage des techniques d’estimation de canaux aveugles

est la possibilité d’éliminer les séquences d’apprentissage. Néanmoins, en général, ces techniques

nécessitent des enregistrements longs, conduisant à un taux de convergence lent [3].
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T TD

donnée apprentissage

FIGURE B.3 – Vecteur de symbole transmis avec T symboles d’apprentissage et D symboles de
données.

Enfin, l’algorithme d’estimation de canal semi-aveugle (Semiblind Channel Estimation) est

une combinaison d’estimation de canal basée sur la séquence d’apprentissage et l’estimation de

canal aveugle. Il utilise les symboles d’apprentissage connus et les symboles de données inconnus

pour effectuer une estimation de canal.

Un canal de communication est généralement modélisé par sa réponse impulsionnelle de canal

(CIR), qui est un vecteur dont les éléments représentent les gains complexes associés à chaque

composant de trajets multiples du canal. Dans des divers systèmes de communication, tels que

la télévision haute définition (HDTV) [5, 6], le système mmWave [7, 8], large bande HF [9, 10],

bande ultralarge [11–13], massive MIMO [14] et les systèmes de communication sous-marins [15,

16], les canaux peuvent être considérés comme des canaux parcimonieux. En d’autres termes, leurs

réponses impulsionnelles sont caractérisées par quelques termes significatifs qui sont largement

séparés dans un domaine, c’est-à-dire que de nombreux coefficients sont proches ou égaux à zéro.

En effet, dans les systèmes de communication sans fil, par exemple, plusieurs composants du

signal arrivent au récepteur avec un retard dû au multitrajet causé par l’environnement, rendant sa

réponse parcimonieuse [17].

La longueur d’un canal parcimonieux échantillonné peut atteindre des centaines d’intervalles

de symboles, bien que la majorité des taps du canal échantillonné aient une valeur proche de zéro.

La parcimonie du canal est définie comme le nombre de éléments non nuls du canal [18, 19].

Les techniques traditionnelles d’estimation de canal telles que les moindres carrés (least square

- LS) n’exploitent pas la parcimonie des canaux, ce qui entraîne une paramétrisation excessive et

des performances médiocres de l’estimateur de canal parcimonieux [2]. En outre, les algorithmes

d’estimation classiques deviennent trop complexes pour traiter ces canaux [20].

La caractéristique de parcimonie du signal peut être utilisée pour réduire le coût et la com-

plexité de son estimation. Par exemple, en utilisant l’acquisition comprimée (compressive sensing

- CS), ces signaux peuvent être reconstruits à partir de moins de mesures que celles requises par

le théorème d’échantillonnage de Shannon-Nyquist [18, 21–24]. Le grand avantage de CS est
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qu’il permet de numériser uniquement les informations du signal pertinentes à un taux d’échan-

tillonnage beaucoup plus bas que le taux de Nyquist, de sorte que le signal numérisé est déjà

sous une forme compressée. L’acquisition comprimée a été appliquée à l’estimation des canaux

parcimonieux [8, 15, 18, 20, 25–27]. La structure des canaux parcimonieux peut être exploitée à

l’aide d’algorithme d’acquisition comprimée tels que Matching Pursuit (MP) [28], Basis Pursuit

(BP) [29] et autres [30] conduisant à une meilleure performances d’estimation.

L’estimation de canal peut être formulée comme un problème d’optimisation pouvant être

résolu en utilisant des algorithmes numériques qui affinent sa solution de manière itérative. En

règle générale, dans l’estimation du canal, une solution précise doit être trouvée avec un petit

nombre d’itérations. De plus, ces algorithmes nécessitent des ajustements de paramètres qui, s’ils

ne sont pas bien choisis, peuvent réduire les performances de l’algorithme.

Afin de résoudre certains problèmes liés à ces algorithmes, les réseaux de neurones (NNs) sont

de plus en plus utilisés dans les systèmes de communication [31–42]. Certaines d’entre eux sont

basées sur des algorithmes offrant des garanties de performance et les outils de NN, combinant le

meilleur des deux.

À partir de l’étude de l’acquisition comprimée, des algorithmes d’acquisition comprimée et de

réseau neuronal, cette thèse vise à contribuer au développement d’algorithmes pour l’estimation

de canaux parcimonieux. Dans ce travail, l’estimation de canal est formulée comme un problème

de récupération de signal. Les approches développées sont destinées à être utilisées dans des appli-

cations radio logicielle (SDR). Cependant, elles peuvent être appliquées dans d’autres domaines

où le signal d’intérêt peut être considéré comme parcimonieux ou compressible.

B.2 Concepts de Base

Cette section introduit quelques concepts importants pour la compréhension de cette thèse. Pre-

mièrement, certaines caractéristiques de la radio logicielle sont abordées. Ensuite, le signal par-

cimonieux et la parcimonie sont expliqués. Enfin, les concepts clés sur l’acquisition comprimée

sont présentés et leurs applications illustrées.

Radio Logicielle (SDR) En utilisant des périphériques radio traditionnels basés sur du maté-

riel, une intervention physique est nécessaire pour les modifier, limitant ainsi les fonctionnalités

croisées et les coûts de production plus élevés. En revanche, la radio logicielle (SDR) apparaît

comme une excellente alternative offrant une solution efficace et relativement peu coûteuse à ce
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problème [43].

Le forum SDR définit un SDR comme “une radio dans laquelle certaines ou toutes les fonc-

tions de la couche physique sont définies par le logiciel” [43]. En d’autres termes, un SDR est

une radio implémentée avec un matériel générique qui peut être programmé pour transmettre et

recevoir une variété de formes d’onde (waveform).

Signaux Parcimonieux Des signaux parcimonieux peuvent être trouvés dans plusieurs do-

maines [46]. Par exemple, la plupart des images et des signaux audio présentent une décomposi-

tion parcimonieuse sur une base d’ondelettes et de fréquences-temps, respectivement. Ces signaux

sont caractérisés par la concentration d’une grande partie de son énergie dans une petite fraction

de sa durée. C’est-à-dire que peu de leurs coefficients ont des valeurs non nulles, ce qui concentre

les informations pertinentes.

La Fig. B.4 montre 200 échantillons d’un signal dans le domaine temporel (Fig. B.4a) repré-

sentant 8 sinusoides distinctes (Fig. B.4b). Ceci est un exemple d’un signal avec parcimonie égale

à 8 representé dans le domaine fréquentiel, c’est-à-dire que, comme indiqué sur la Fig. B.4b, il

n’existe que 8 valeurs non nulles parmi les 200 fréquences.
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FIGURE B.4 – Échantillons de 8 sinusoides dans le domaine (a) temporel et (b) fréquentiel.

Acquisition Comprimée Combinant les processus d’acquisition et de compression et exploitant

la parcimonie des signaux, l’acquisition comprimée permet de récupérer le signal parcimonieux à

partir d’un nombre de mesures inférieur au minimum requis par le théorème de Nyquist.

Pour ce faire, le signal d’intérêt z de taille N est d’abord représenté sous la forme d’une combi-

naison linéaire de seulement s vecteurs de base, avec s�N, c’est-à-dire z = Ψh, où h est le signal

parcimonieux. Ensuite, z est mesuré en l’échantillonnant par rapport à une matrice Φ ∈ CM×N :
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y = Φz+n = ΦΨh+n = Ah+n (B.1)

où y indique le signal reçu de taille M (M < N) et n est le bruit.

Enfin, le signal est reconstruit par un algorithme d’acquisition comprimée [30].

B.3 Algorithmes d’Acquisition Comprimée

Cette section traite de plusieurs algorithmes d’acquisition comprimée qui ont été proposés au

cours des dernières années. Ces algorithmes doivent récupérer un signal parcimonieux à partir

d’un ensemble de mesures sous-échantillonné. Ils sont généralement classés en trois catégories

principales : relaxation convexe (convex relaxation), techniques d’optimisation non convexe (non-

convex optimization techniques) et algorithmes gloutons (greedy algorithms) [24].

La Fig. B.5 montre les algorithmes qui sont abordés dans ce chapitre. Après leur descriptions,

certaines comparaisons de performances sont analysées.

Algorithmes
d’Acquisition
Comprimée

Relaxation

Convexe

BP

LASSO

LARS

DS

AMP
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ISTA

Optimisation

Non Convexe

BCS

FOCUSS

IRLS

Algorithmes

Gloutons

MP

OMP

SP

StOMP

CoSaMP

ROMP

GOMP

GOAMP

GP

MMP

IHT

FIGURE B.5 – Classification des algorithmes d’acquisition comprimée.

Les algorithmes de la première catégorie (relaxation convexe) entraînent des problèmes d’op-

timisation convexe dont les solutions efficaces reposent sur des techniques avancées, telles que les

méthodes de gradient projeté, les méthodes de point intérieur ou le seuillage itératif [18].

D’autre part, les approches d’optimisation non convexe peuvent récupérer le signal en tenant

compte d’une connaissance préalable de sa distribution [57]. Grâce à une fonction de densité

de probabilité postérieure, ces solutions offrent des statistiques complètes de l’estimation. Néan-

moins, ils peuvent ne pas convenir aux problèmes de grandes dimensions en raison de leurs exi-

gences informatiques intensives [128].
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La troisième catégorie est composée des algorithmes "gloutons". Ils récupèrent le signal de

manière itérative, en effectuant une sélection optimale locale à chaque itération dans le but de

trouver la solution optimale globale à la fin de l’algorithme.

L’étude de ces algorithmes a abouti à la proposition d’un algorithme glouton appelé Matching

Pursuit based on Least Squares (MPLS) présenté dans la Section 5.1. De plus, les bons résultats

de FISTA et la simplicité de ISTA ont stimulé l’étude du réseau neural LISTA et d’autres réseaux

neuronaux utilisés pour récupérer de signaux parcimonieux (voir le Chapitre 4).

B.4 Apprentissage Profond basé sur l’Acquisition Comprimée

Cette section explore certains réseaux de neurones utilisés pour estimer les signaux parcimonieux.

Tout d’abord, les concepts clés liés à l’apprentissage en profondeur sont introduits. Ensuite, plu-

sieurs réseaux de neurones proposés dans la littérature sont abordés. Certaines d’entre eux ont été

inspirés par les algorithmes d’acquisition comprimée présentés dans le Chapitre 3.

La Fig. B.6 montre les réseaux de neurones qui sont abordés plus en détail dans ce chapitre.

Les algorithmes d’acquisition comprimée qui les ont inspirés sont également illustrés dans cette

figure.

AMP IHT ISTA

LAMP LDAMP DL0RE LISTA TISTA
SURE-
TISTA

Algorithmes d’acquisition comprimée

Réseaux de neurones

FIGURE B.6 – Les réseaux de neurones inspirés par des algorithmes d’acquisition comprimée
présentés dans ce chapitre.

Les réseaux de neurones abordés sont :

• Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) ;

• Learned Approximate Message Passing (LAMP) ;
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• Deep l0-Regularized Encoder (Dl0RE) ;

• Learned Denoising-based Approximate Message Passing (LDAMP) ;

• Trainable ISTA (TISTA) ;

• Stein’s Unbiased Risk Estimate based-Trainable Iterative Thresholding Algorithm (SURE-

TISTA).

Dans [200], les auteurs proposent d’utiliser les B-splines cubiques comme fonction de retrait

dans LISTA. Alternativement, les auteurs de [209] modélisent la fonction d’activation non linéaire

en utilisant une expansion linéaire des seuils. Dans cette thèse, d’autres fonctions d’activation à

utiliser dans LISTA sont analysées dans la Section 5.5.

L’étude de LISTA a abouti à la proposition de deux alternatives pour améliorer ses perfor-

mances d’estimation. La première consiste à utiliser l’estimation de LISTA comme premier ré-

sultat pour estimer les positions des éléments non nuls d’un signal parcimonieux, puis de calculer

leurs valeurs par un processus de pseudo-inversion (voir la Section 5.3). La seconde consiste à rem-

placer la fonction ηst utilisée dans LISTA par d’autres fonctions (voir la Section 5.5). En outre,

l’étude des réseaux de neurones abordé dans ce chapitre a motivé la proposition d’un nouveau

réseau de neurones présentée dans la Section 5.4.

B.5 Techniques d’Amélioration de l’Estimation de Signaux Parcimo-

nieux

Cette section présente les techniques d’amélioration de l’estimation de signal parcimonieux pro-

posées dans cette thèse. Dans la Section 5.1, un algorithme glouton appelé Matching Pursuit based

on Least Squares (MPLS) est expliqué. Les algorithmes LS, MP, OMP et MPLS sont utilisés pour

estimer deux canaux large bande HF dans la Section 5.2. Ensuite, une alternative pour amélio-

rer les performances d’estimation de LISTA est abordée dans la Section 5.3. Un nouveau réseau

de neurones pour l’estimation de signaux parcimonieux est présenté dans la Section 5.4. La Sec-

tion 5.5 propose des fonctions alternatives pour remplacer la fonction traditionnelle utilisée dans

LISTA. Enfin, la Section 5.6 analyse les performances de toutes les techniques proposées dans

cette thèse.
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Matching Pursuit based on Least Squares (MPLS) L’algorithme MPLS s’appuie sur l’algo-

rithme MP pour rechercher les positions des éléments non nuls. Comme pour l’algorithme MP,

chaque itération de l’algorithme MPLS consiste à rechercher la colonne aki ∈ A qui s’aligne le

mieux avec le résidu vector bi−1 (b0 = y) et la sélection est effectuée en fonction de :

ki = argmax
l
|al

Hbi−1|, l = 1,2, ....,N (B.2)

La différence entre les algorithmes MP et MPLS réside dans la manière dont les valeurs affec-

tées aux éléments du signal non nuls sont calculées. L’algorithme MP estime le signal sous forme

de valeurs de projection, tandis que l’algorithme MPLS effectue cette estimation via l’algorithme

LS à la fin de l’algorithme.

Considérons Λi l’ensemble d’index des colonnes les mieux alignées de A jusqu’à l’itération i,

Λi est actualisé selon les règles suivantes :

• Si ki /∈ Λi−1, l’ensemble d’index est mis à jour en tant que Λi = Λi−1∪ ki.

• Autrement, Λi = Λi−1.

Ensuite, la projection du vecteur résiduel dans cette direction est supprimée et un nouveau

vecteur résiduel est calculé comme (B.3).

bi = bi−1−Paki
bi−1 = bi−1−

(aki
Hbi−1)aki

||aki ||22
(B.3)

Après avoir atteint le critère d’arrêt, le signal est estimé par (B.4), où T est le nombre d’itéra-

tions et A(ΛT ) est une sous-matrice de A composé des colonnes ai avec i ∈ ΛT .

ĥ = A†(ΛT )y (B.4)

Les performances des algorithmes MP, MPLS et OMP pour l’estimation de canaux parcimo-

nieux ont été évaluées et comparées aux performances théoriques liées à OLS.

L’erreur quadratique moyenne (Mean-Square Deviation - MSD) décrite par (B.5) est utilisé

pour évaluer les algorithmes en termes de variation de sa parcimonie (S), où Ns correspond au

nombre de simulations de canaux.

MSD =
1
Ns

∑ ||h− ĥ||22 (B.5)
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FIGURE B.7 – MSD vs Parcimonie pour SNR = 10dB, M = 60.

Le modèle du système est défini par (B.6). N = 120, M = 60, Ns = 5000, SNR = 10dB, A

représente la matrice de mesure M×N. A est une matrice de Toeplitz déterminée par la séquence

d’apprentissage c = [c1,c2, ...,cM]T où ci est une valeur QPSK. n est le bruit additif blanc gaussien

(Additive White Gaussian Noise - AWGN).

y = Ah+n (B.6)

La Fig. B.7 présente les performances des algorithmes LS, MP, MPLS, OMP et OLS en termes

de MSD versus la parcimonie du canal. Soit Nit le nombre d’itérations (critère d’arrêt), dans la

Fig. 5.1, les lignes continues représentent les simulations avec Nit = 2S, tandis que les lignes

pointillées désignent les simulations avec Nit = S.

Lorsque Nit = 2S, les algorithmes MPLS et OMP ont des résultats similaires en termes de MSD

jusqu’à 16 éléments non nuls du canal, mais il convient de noter que l’algorithme MPLS obtient

ces résultats avec une complexité inférieure à celle de l’algorithme OMP. Pour les algorithmes

S < 10, les résultats de MP, OMP et MPLS sont similaires. Par conséquent, pour cette range de

valeurs S, l’algorithme MP est préférable en raison de sa complexité inférieure.

Notez que, pour les petites valeurs de S et Nit = S, les MSD des algorithmes OMP et MPLS

sont proches de ceux obtenus par OLS. Cela signifie que les deux algorithmes trouvent presque

toutes les positions correctes des éléments non nuls du canal. De plus, en comparant les résultats

pour Nit = 2S et Nit = S, on peut constater que lorsque le critère d’arrêt correspond exactement
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au nombre de éléments non nuls du canal (Nit = S), le MSD des deux algorithmes OMP et MPLS

décroît contrairement à ce qui se passe avec l’algorithme MP.

Etant donné que les algorithmes MP et MPLS choisissent les positions des éléments non nuls

de la même manière, les différentes valeurs de MSD obtenues sont probablement dues à la valeur

affectée aux éléments non nuls du canal. D’autre part, l’affectation de la valeur de projection à

la valeur d’estimation de canal (effectuée par l’algorithme MP) a un effet très dommageable sur

l’estimation de canal. Cela ne se produit pas avec l’algorithme MPLS, car il trouve les positions

correctes des éléments non nuls du canal et estime leurs valeurs à l’aide de l’algorithme LS, se

rapprochant ainsi des résultats obtenus par OLS.

Application de l’acquision comprimée pour l’estimation des canaux large bande HF Cette

section analyse l’estimation des canaux large bande HF à l’aide des algorithmes MPLS, MP et

OMP. Les résultats suggèrent que les canaux large bande HF pourraient être considérés comme

parcimonieux dans le domaine de propagation du retard. Des simulations ont montré que l’utilisa-

tion d’un algorithme d’acquisition comprimée prenant en compte la parcimonie du canal permet

d’obtenir de meilleures performances d’estimation que d’autres qui ne tiennent pas compte de la

parcimonie du canal.

Proposition visant à améliorer les performances de LISTA La Fig. B.8 montre le schéma

général de l’approche proposée, appelée dans cette thèse comme “Tech. 1” [226].

LISTA Selection l2 Optimization

{(yd,hd)}Dd=1

ĥ

α

v′ v̂

FIGURE B.8 – Schéma général de “Tech. 1”.

La première étape consiste en l’implémentation de LISTA, qui produit l’estimation ĥ. La

deuxième étape (“Selection”) prend en compte α et ĥ pour produire le vecteur v′. Cette étape

vise à utiliser le seuil µ. Soit g le nombre de taps non nuls de ĥ, E la plus grande valeur abso-

lue d’un composant de ĥ et α soit une valeur positive (µ = αE), les éléments du vecteur v′ sont

calculés par :

v′(i) = 1, si ĥ(i)> µ

v′(i) = 0, si ĥ(i)≤ µ
(B.7)
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C’est-à-dire que cette étape génère un signal v′ avec j éléments 1 où j ≤ g≤ N. Les positions

de ces j éléments non nuls seront les mêmes positions des éléments non nuls de v̂.

Soit G(x) la matrice M×K composée uniquement de K colonnes de la matrice A corrélée aux

positions du non-nul éléments de x. La fonction U(x) est définie par :

U(x) = G†(x)y = GT (x)(G(x)GT (x))−1y (B.8)

Enfin, l’étape “l2 Optimization” calcule les éléments non nuls de v̂ par U(v′). Ensuite, l’esti-

mation v̂ du signal fragmenté h est calculée en attribuant les valeurs du vecteur généré par U(v′)

dans le positions i où v′(i) = 1.

Le NMSE décrite par (5.2) est utilisé pour évaluer la proposition d’amélioration des perfor-

mances de LISTA (“Tech. 1”). Le modèle du système est défini par (B.6). N = 120, M = 60,

Ns = 5000, SNR = 30dB, A est i.i.d gaussien N (0,M−1). h est Bernoulli-Gaussian. Ses éléments

sont i.i.d N (0,1) avec probabilité γ = 0,1 et les autres sont définis comme 0.

Les paramètres de LISTA ont été directement tirés de réalisations indépendantes des données

d’apprentissage au cours de la phase d’apprentissage. Les ensembles de données d’apprentissage

{(yd ,hd)}D
d=1 avec D= 10000 ont été utilisés. Un autre ensemble d’une taille de 10000 a été utilisé

pour la phase de test. Il a été généré indépendamment des données d’apprentissage mais à partir

de la même distribution. Au cours de la phase d’apprentissage, LISTA adapte les paramètres en

minimisant la fonction de perte (B.9) à l’aide de l’optimiseur Adam [197].

LT (Θ) =
1
D

D

∑
d=1
||ĥT (yd ;Θ)−hd ||22 (B.9)

La Fig. B.9 présente le NMSE obtenu en fonction du nombre de couches NL de LISTA. Comme

prévu, l’augmentation du nombre de couches entraîne la diminution de la valeur de NMSE. De

plus, sur la Fig. B.9, on peut constater qu’en utilisant les étapes proposées à la Fig. B.8, on peut

améliorer les performances de l’estimation (diminution de la valeur de NMSE) [226].

Comme le montre la Fig. B.9, avec α = 0.02, la valeur de NMSE peut diminuer jusqu’à 5.9dB

par rapport à LISTAstd. Cela se produit car, même si LISTA choisit les bons paramètres Θ, l’es-

timation ĥ donnée par LISTA a plus de elements non nuls que h, conduisant à de plus mauvaises

valeurs NMSE. Par conséquent, après l’étape “Sélection”, le nombre de positions des éléments

non nuls diminue et l’étape “l2 Optmization” calcule leurs valeurs à l’aide de l’algorithme LS, ce

qui entraîne une valeur inférieure de NMSE.
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FIGURE B.9 – Estimation de la performance de “Tech. 1”avec différentes valeurs de α.

De plus, il ressort de la Fig. B.9 que la valeur α influence beaucoup les performances de l’esti-

mation. Une valeur élevée de α (par exemple, α = 0.1) peut entraîner à des nombreuses éléments

nuls, ce qui donne une estimation v̂ avec une parcimonie s inférieur à h, générant ainsi de plus

grandes valeurs NMSE. D’autre part, une petite valeur α (par exemple α = 0.0) peut considérer

qu’un grand nombre des éléments ont des valeurs non nulles, ce qui donne une estimation dont la

parcimonie s est supérieure à h.

Ces résultats montrent que l’application des deux étapes proposées après la sortie de LISTA

peut conduire à de meilleures estimations (valeurs inférieures de NMSE) et moins de couches du

réseau de neurones que de considérer directement la sortie donnée par LISTA comme l’estimation

du signal d’intérêt. Toutefois, même si ces étapes permettent de mieux estimer le signal parci-

monieux, le seuil utilisé peut définir une valeur zéro pour un élément qui doit avoir une valeur

non nulle. Dans cette optique, un nouveau réseau de neurones est proposé et décrit dans la Sec-

tion 5.4 afin d’améliorer l’estimation de signaux parcimonieux axée sur la recherche des positions

des éléments non nuls.

Les étapes proposées dans la Fig. B.8 peuvent être appliquées à d’autres réseaux de neurones.

Par exemple, il est possible de changer la première étape “LISTA” pour un autre réseau de neu-

rones, par exemple LAMP et d’utiliser l’estimation donnée par LAMP sous la forme ĥ dans la

Fig. B.8.
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Réseau de neurones proposé Cette section décrit le réseau de neurones proposé pour l’esti-

mation de signaux parcimonieux. La Fig. B.10 illustre le réseau de neurones proposé avec NL

couches. Dans cette thèse, ce réseau s’appelle également “Tech. 2” [226]. Le but de ce réseau est

d’estimer les positions des éléments non nuls du signal parcimonieux au lieu d’estimer directe-

ment les éléments eux-mêmes. Une fois que les positions des éléments non nuls sont estimées par

le réseau proposé, leurs valeurs sont calculées en résolvant le problème des moindres carrés. La

sortie p̂i de la couche i du réseau proposé est donnée par :

p̂i = ηr (Sp̂i−1 +Cy;λi) (B.10)

ηr

C
y

S
p̂1

+ ηr S
p̂2

+ ηr . . . S
p̂3 p̂NL−1

+ ηr

. . .

f
p̂NL

Q
p′ p

FIGURE B.10 – Réseau de neurones proposé avec NL couches.

De la même manière que LISTA, les matrices C et S et les seuils λi sont “apprises” pendant la

phase d’apprentissage. Cependant, alors que dans LISTA les données d’apprentissage sont compo-

sées de signaux parcimonieux hd , les données d’apprentissage dans le réseau de neurones proposé

sont {(yd , td)}D
d=1 où td( j) = 1 si hd( j) 6= 0 et td( j) = 0 sinon. La fonction de perte utilisée dans

le réseau de neurones proposé est donnée par (B.11) où Θ = [C,S,λ] et λ = [λ1,λ2, ...,λNL ].

L(Θ) =
1
D

D

∑
d=1
||p′(yd ;Θ)− td ||22 (B.11)

Dans cette thèse, deux fonctions ηr différentes sont utilisées : ηst et ηpwl . La première, ηr = ηst ,

est la même fonction que celle utilisée dans LISTA et définie par (3.16). Par contre, ηr = ηpwl est

défini par (B.12), où θ = {θ1,θ2,θ3,θ4,θ5} [227].

ηpwl(x;θ) =


θ3x, si |x| ≤ θ1

sgn(x)[θ4(|x|−θ1)+θ3θ1], si θ1 < |x| ≤ θ2

sgn(x)[θ5(|x|−θ2)+θ4(θ2−θ1)+θ3θ1], si θ2 < |x|

(B.12)

Après la dernière couche du réseau de neurones proposé, deux autres étapes sont effectuées

(voir Fig. B.10) :

• f : c’est la fonction bornée définie par (B.13). Cette fonction a été choisie car elle est une
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fonction symétrique et ne génère que les valeurs ∈ [0,1], ce qui entraîne p′(i) ∈ [0,1].

f (x) = |tanh(x)|= |e
x− e−x

ex + e−x | (B.13)

• Q : le vecteur p′ est transformé en vecteur p composé uniquement d’éléments 0 et 1. Soit

τ ∈ [0,1], donc :

p(i) = 1, si p′(i)≥ τ

p(i) = 0, si p′(i)< τ

(B.14)

Après le réseau de neurones proposé, p est l’estimation des positions des éléments non nuls de

ĥ. En d’autres termes, p(i) = 0 correspond aux taps de ĥ qui ont une valeur 0 et p(i) = 1 représente

les taps de ĥ qui ont une valeur non nulle.

Les éléments non nuls de ĥ sont calculés via la solution des moindres carrés. En d’autres

termes, les éléments non nuls de l’estimation ĥ du signal parcimonieux h sont calculés par U(p)

(voir (5.23)) et composent le vecteur u. Ensuite, l’estimation ĥ est calculée en attribuant les valeurs

du vecteur u aux positions des éléments non nuls de p.

Les principales différences entre LISTA et le réseau de neurones proposé sont [226] :

• Alors que LISTA estime directement ĥ, le réseau de neurones proposé estime les positions

des éléments non nuls de ĥ.

• Pour estimer les positions des éléments non nuls, deux autres “étapes” sont introduites après

la dernière couche du réseau (voir la Fig. 5.13).

• Les valeurs d’éléments de ĥ ne sont pas directement calculées par le réseau de neurones

proposé. Ils sont calculés via la solution des moindres carrés basée sur la sortie du réseau de

neurones proposé.

Les résultats montrent que le réseau de neurones proposé améliore les valeurs de NMSE par

rapport à LISTA. En effet, en utilisant ηr = ηpwl la valeur de NMSE peut diminuer jusqu’à 10.8dB

par rapport à LISTAstd et les résultats obtenus sont proches de OLS. D’autre part, lorsque ηr = ηst ,

Tech. 2 obtient des résultats similaires en termes de NMSE par rapport à celui obtenu avec Tech. 1.

De plus, l’impact de la variation statistique du signal parcimonieux utilisé pendant la phase d’ap-

prentissage et la phase d’évaluation est analysé.
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Fonctions alternatives pour LISTA Cette section explore les fonctions alternatives pour rem-

placer la fonction traditionnelle ηst utilisée dans LISTA. L’objectif est d’analyser leur impact en

termes de qualité d’estimation. Trois fonctions contrôlées par un petit nombre de paramètres sont

prises en compte ici :

Exponential (ηexp) : Soit θ = {θ1,θ2,θ3}, la fonction exponentielle est définie par [227] :

ηexp(x;θ) = θ2x+θ3xexp
(
− x2

2θ2
1

)
(B.15)

Piecewise Linear (ηpwl) : Soit θ = {θ1,θ2,θ3,θ4,θ5}, cette fonction a cinq segments [227] :

ηpwl(x;θ) =


θ3x, si |x| ≤ θ1

sgn(x)[θ4(|x|−θ1)+θ3θ1], si θ1 < |x| ≤ θ2

sgn(x)[θ5(|x|−θ2)+θ4(θ2−θ1)+θ3θ1], si θ2 < |x|

(B.16)

Spline (ηspl) : La fonction spline est définie par :

ηspl(x;θ) = θ2x+θ3xβ

(
x
θ1

)
(B.17)

où θ = {θ1,θ2,θ3} et β est la fonction cubic B-spline [228] :

β(z) =


2
3 −|z|2 +

|z|3
2 , si 0≤ |z| ≤ 1

1
6(2−|z|)3, si 1≤ |z| ≤ 2

0, si 2≤ |z|

(B.18)

Les résultats montrent que :

• Les valeurs de NMSE obtenues par LISTA avec les fonctions piecewise linear, exponential,

et spline sont meilleures que celles obtenues par LISTA avec la fonction traditionnelle ηst .

• L’utilisation de fonctions piecewise linear, exponential, et spline conduit à une diminution

de la valeur de NMSE allant jusqu’à 9dB par rapport à la fonction de réduction classique.

• L’utilisation d’une des fonctions présentées dans la Section 5.5 permet à LISTA d’obtenir

des performances proches de OLS dans un nombre raisonnable de couches.

De plus, la performance d’estimation est analysée lorsque le signal à estimer a des caractéris-

tiques différentes de celles des données d’apprentissage utilisées pour entraîner le réseau. Deux
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cas différents ont été simulés : le signal à estimer et les signaux utilisés au cours de la phase d’ap-

prentissage ont des valeurs différentes de SNR; et le signal à estimer et les signaux utilisés pendant

la phase d’apprentissage ont différentes valeurs γ.

Les résultats indiquent que le choix de la fonction de retrait est un facteur important pour

la performance d’estimation de LISTA. En effet, des fonctions de retrait plus flexibles, telles

qu’exponential, spline, ou piecewise linear ont conduit à de meilleures performances d’estima-

tion que la fonction de retrait traditionnelle ηst . La fonction piecewise linear présente un léger

avantage par rapport aux autres fonctions de retrait lorsque les caractéristiques de l’ensemble d’ap-

prentissage et le signal à estimer sont identiques (Fig. 5.20). D’autre part, en termes de robustesse

à la non-concordance de SNR, les fonctions spline et exponential présentent un léger avantage

(Fig. 5.21).

Comparaison de performance Cette section présente une comparaison de performance entre

certains algorithmes d’acquisition comprimée et les propositions de cette thèse. Tout d’abord,

l’implémentation arithmétique en virgule flottante est considérée (voir la Section 5.6.1). Les per-

formances d’estimation sont ensuite analysées à l’aide de l’arithmétique en virgule fixe (voir la

Section 5.6.2).

Pour l’implémentation arithmétique en virgule flottante, les résultats indiquent que PNNpwl est

la meilleure technique pour estimer un signal parcimonieux. Elle a le plus petit pourcentage de taps

ayant une attribution incorrecte et atteint une valeur de NMSE proche de celles de OLS. Même

si LISTApwl conduit à des valeurs NMSE légèrement inférieures à celles de PNNpwl , LISTApwl

a l’inconvénient d’attribuer des valeurs non nulles à un grand nombre de taps qui devraient avoir

une valeur nulle, ce qui donne un gros Pe.

Cependant, les performances des techniques varient lorsque le nombre de bits utilisés dans

la partie fractionnaire change. De cette simulation, LISTAs est la technique qui permet d’obtenir

de meilleurs valeurs de NMSE pour Q8.8 tandis que pour Q8.16, le PNNpwl conduit au plus bas

pourcentage de taps avec une attribution incorrecte et de bonnes valeurs NMSE.

B.6 Conclusion et Perspectives

Cette section comprend quelques remarques finales sur le travail actuel et les perspectives.

Cette thèse portait sur l’estimation des canaux parcimonieux et l’exploration de nouvelles ap-

proches pour l’estimation des signaux parcimonieux. Une estimation de canal de haute qualité est
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très importante pour un système de communication fiable. Plusieurs canaux peuvent être considé-

rés comme parcimonieux. Cette caractéristique peut être utilisée pour améliorer leur estimation.

L’acquisition comprimée et ses algorithmes sont utilisés dans plusieurs domaines et peuvent être

appliqués à une estimation de canal parcimonieux réduisant le coût et la complexité de l’estima-

tion ainsi que le nombre de mesures nécessaires. Le travail effectué au cours de cette thèse s’est

focalisé principalement sur deux aspects : les algorithmes d’acquisition comprimée et les réseaux

de neurones basés sur l’acquisition comprimée.

Partant de la revue de littérature, plusieurs algorithmes d’acquisition comprimée ont été étu-

diés et analysés dans le Chapitre 3. Une analyse de performance suggère que ces algorithmes

permettent de mieux estimer les signaux parcimonieux. En d’autres termes, plus le signal est

parcimonieux, plus l’erreur d’estimation sera petit. De plus, les algorithmes BCS et OMP pré-

sentaient les valeurs les plus basses de NMSE (voir la Section 3.4). Cette étude a conduit à la

première contribution de cette thèse : la proposition d’un algorithme appelé Matching Pursuit ba-

sed on Least Squares (MPLS) qui combine les algorithmes Matching Pursuit et Least Square (voir

la Section 5.1). Les résultats ont montré que l’algorithme MPLS offre un meilleur compromis

entre la précision de l’estimation et le coût de calcul que l’algorithme OMP, tout en produisant

des résultats similaires.

L’étude de ces algorithmes a également suscité l’intérêt et l’étude des réseaux de neurones ins-

pirés par certains de ces algorithmes. Ils sont discutés dans le Chapitre 4. Trois autres contributions

de cette thèse ont été présentées dans les Sections 5.3, 5.4 et 5.5 afin d’améliorer la récupération

de signaux parcimonieux.

LISTA peut être considéré comme l’un des premiers réseaux de neurones inspiré d’un algo-

rithme d’acquisition comprimée. Dans cette thèse, il est proposé d’utiliser la sortie LISTA pour

donner une direction à la sélection des positions des éléments non nuls du signal. Ces positions sont

choisies en fonction d’un seuil lié au plus grand élément donné par la sortie de LISTA. Ensuite,

l’estimation du signal sera calculée par un processus de pseudo-inversion (voir la Section 5.3).

Les résultats obtenus montrent qu’en utilisant cette approche, la valeur de NMSE peut être réduite

jusqu’à 5.9dB par rapport aux performances d’estimation de LISTA.

De plus, un nouveau réseau de neurones axé sur la recherche des positions des éléments non

nuls a été proposé (voir la Section 5.4). Les résultats obtenus montrent que le réseau proposé est

une bonne approche pour la récupération de signaux parcimonieux en réduisant jusqu’à 10.8dB la

valeur NMSE par rapport à LISTA et en obtenant des performances proches de OLS. En outre, il
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faut moins de couches pour obtenir de bonnes estimations, ce qui réduit le temps nécessaire à la

phase de formation et réduit le nombre de multiplications matrice-vecteur nécessaires pendant la

phase d’évaluation.

Par ailleurs, d’autres fonctions de retrait sont proposées pour remplacer la fonction de retrait

traditionnelle de LISTA. Leurs performances d’estimation sont analysées dans la Section 5.5. Les

résultats obtenus indiquent que les estimations générées par le réseau LISTA nécessitent moins de

multiplications matrice-vecteur que les algorithmes existants dotés de paramètres de régularisa-

tion optimisés. De plus, en choisissant une fonction de retrait adéquate, LISTA peut atteindre des

valeurs de NMSE proches des performances théoriques liées à quelques couches.

Les résultats de cette thèse renforcent l’adéquation du réseau de neurones à l’estimation de si-

gnaux parcimonieux comme alternative aux algorithmes d’acquisition comprimée. Les approches

développées dans ce travail peuvent être étendues et utilisées pour l’estimation de signaux parci-

monieux dans plusieurs domaines tels que ceux présentés dans la Section 2.3.2.

La plupart des travaux couverts par cette thèse ont été publiés dans des conférences et un

journal du domaine. Ces publications sont répertoriées dans l’annexe A.
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Titre : Estimation de Canaux Parcimonieux pour la Radio Logicielle

Mots clés : Acquisition Comprimée ; Réseau neuronal ; Estimation des Canaux Parcimonieux

Résumé : Les canaux de communication sont uti-
lisés pour transmettre des signaux d’information.
Cependant, ces canaux peuvent causer plusieurs
distorsions sur le signal à transmettre, telles que
l’atténuation, la perte par trajets multiples et le
décalage Doppler, entre autres. Pour une meilleure
récupération des messages, le récepteur peut esti-
mer le canal et améliorer la fiabilité des systèmes de
communication. Plusieurs systèmes de communica-
tion, tels que la télévision haute définition, le système
mmWave, les large bande HF et les bandes ultra-
large, disposent de canaux parcimonieux. Cette ca-
ractéristique peut être utilisée pour améliorer les per-
formances de l’estimateur et réduire la taille de la
séquence d’apprentissage, diminuant ainsi la puis-

sance consommée et la bande passante. Cette thèse
traite le problème de l’estimation du canal en ex-
plorant des méthodes qui exploitent sa parcimo-
nie. L’étude de l’acquisition comprimée et de ses
algorithmes a conduit à la proposition d’un nou-
vel algorithme appelé Matching Pursuit based Least
Square (MPLS). L’utilisation de réseaux de neurones
(NN) pour l’estimation de signaux parcimonieux a
également été explorée. Les travaux ont été axés sur
NN, inspirés d’algorithmes d’d’acquisition comprimée
tels que Learned Iterative Shrinkage-Thresholding Al-
gorithm (LISTA). Cela a abouti à deux approches qui
améliorent les performances de LISTA ainsi qu’à un
nouveau réseau de neurones adapté à l’estimation de
signaux parcimonieux.

Title : Sparse Channels Estimation Applied in Software Defined Radio

Keywords : Compressive Sensing ; Neural Network ; Sparse Channel Estimation

Abstract : Communication channels are used to
transmit information signals. However, these chan-
nels can cause several distortions on the signal to be
transmitted, such as attenuation, multipath loss and
Doppler shift, among others. For a better message
recovery, the receiver can estimate the channel and
bring more reliability to the communications systems.
Several communications systems, for example high-
definition television, mmWave system, wideband HF
and ultra-wideband have sparse channels. This cha-
racteristic can be used to improve the performance
of the estimator and reduce the size of the training
sequence so decreasing the consumption power and

bandwidth. This thesis handles the channel estima-
tion problem by investigating methods that exploit the
sparsity of the channel. The study of Compressive
Sensing and its sparse recovery algorithms led to the
proposition of a new algorithm called Matching Pur-
suit based on Least Square (MPLS). The use of neu-
ral networks (NN) to sparse signals estimation was
also explored. The work focused on NN inspired by
sparse recovery algorithms such as Learned Itera-
tive Shrinkage-Thresholding Algorithm (LISTA). This
resulted in two approaches that improve LISTA per-
formance as well as to a new neural network suitable
to estimate sparse signals.
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