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Introduction

Dans ce chapitre, nous présentons le procédé forage dans sa généralité, ansi que les spécificités du forage à pression contrôlée (MPD en Anglais). Nous présentons une revue de la littérature portant sur la modélisation du processus de forage et l'état-de-l'art des techniques d'automatisation.

In this chapter, we introduce the basic terminologies used to describe a drilling process, followed by a description of Managed Pressure Drilling (MPD) operations. We present a literature review on the modelling of drilling processes and the stateof-the-art automation technologies.

Drilling window. Drilling for oil and gas is the process of creating a borehole in the ground that may extend unto several thousand meters. The goal is to create a path for the fluids (oil, gas and water) to flow from a particular section of rocks (called reservoir) to the surface. While doing so, an engineered fluid called the drilling mud is circulated. The main component of the mud is water for a water-based mud (WBM) and diesel (sometimes, crude oil) for oil-based mud (OBM). Various factors in the well plan, like the required temperature and type of the formation, dictate the choice between WBM and OBM. The foremost function of the mud is to maintain the required pressure at the bottom of the wellbore during circulation, referred to as the Bottomhole Circulating2 Pressure (BHCP). It is required that the BHCP respects certain pressure constraints given by : Pore pressure : the pressure at which the fluids are confined within the pore space of the reservoir ;

Collapse pressure : the minimum pressure required to hold the surrounding rock structure from collapsing into the borehole ;

Fracture pressure : the minimum pressure required to fracture through the reservoir.

A schematic of these pressure gradients along the depth of a wellbore is shown in Figure 1. Indeed, for any drilling operation, we maintain the BHCP between the collapse and the fracture pressure, to create a stable wellbore. However, with respect to the pore pressure, if the BHCP is [START_REF] Azar | Drilling engineering[END_REF] • lower, then the operation is referred to as under-balanced ;

• higher, then the operation is referred to as over-balanced or conventional ;

• equal, then the operation is referred to as at-balanced.

The difference between BHCP and pore pressure is referred to as the drawdown. The operational limit set by the immediate pressure constraints with respect to the BHCP is called the drilling window.

Fracture pressure Pore pressure Collapse pressure Pressure Depth BHCP FIGURE 1: Schematic trend of various pressure gradients in the subsurface along the depth of the wellbore. During normal drilling operations, BHCP is maintained between the collapse and the fracture pressure limit. An over-pressured zone-deviation above the normal trend line-could potentially lead to a reservoir influx.

Kick. When the BHCP is maintained below the pore pressure (un-) intentionally, the fluids within the reservoir will flow into the wellbore. An undesired influx of the reservoir fluids is called a kick. The situation is severe if the influx is gas. An uncontrolled kick may lead to a blowout; causing potential loss to human lives and equipment. The ability to handle a kick is dependent on the type of drilling operation and the relevant equipment available. MPD is an established drilling technique to prevent and / or control small kicks with a limited non-productive time (NPT) [START_REF] Berg | The influx-management envelope considering real-fluid behavior[END_REF].

Managed pressure drilling. In conventional drilling operations, density of the drilling mud is the main factor affecting the BHCP. It may take up to several hours to re-engineer. In the case of MPD operation, a choke valve that restricts the flow at the surface outlet is present --providing a closed-loop circulation system --as opposed to an open flow channel in conventional operations [START_REF] Rehm | Managed pressure drilling[END_REF]. The choke valve opening (or restriction) provides an additional and a faster degree of freedom to control the BHCP (in a few minutes, see, e.g. [START_REF] Berg | The influx-management envelope considering real-fluid behavior[END_REF], [START_REF] Aarsnes | Modeling of two-phase flow for estimation and control of drilling operations[END_REF]). During MPD operations, the mud flows out from the annulus through a rotating circulation device (RCD), followed by a choke manifold. Figure 2 depicts a schematic view of the facilities and the flow path of the fluid. During conventional MPD operations, the choke is manually operated 3 , in which cases the efficiency of the BHCP control is, in general, proportional to the experience of the bloke on the choke. Such operations are increasingly replaced by automation solutions [START_REF] Macpherson | Drilling-systems automation: Current state, initiatives, and potential impact[END_REF]- [START_REF] Thorogood | Drilling automation: Technologies, terminology, and parallels with other industries[END_REF]. In automated MPD operations, the choke valve in the manifold of the rig site is actuated using a closed-loop feedback controller. Various control designs have been proposed in the literature (see, e.g. [START_REF] Hauge | A dynamic model of percolating gas in a wellbore[END_REF]- [START_REF] Berg | Automated pressure control for UBD operations: Case study and field validation[END_REF]) with an increasing effort to tackle multiphase flow situations. Different approaches include using a distributed fluid flow models in the wellbore to using a lumped low-order models where certain dynamics are neglected; coupled with feedback and feedforward control approaches [START_REF] Stakvik | Adaptive model based choke control system for MPD operations[END_REF]. Automation solutions to control the choke during a MPD operations are commercially available, e.g. Leidar ® from Kelda drilling controls AS. Reservoir data collection technology. An influx from the reservoir occurs when the BHCP is reduced below the reservoir pore pressure, creating a drawdown. The occurrence, severeness, composition of the influx must, to the extent possible, be anticipated, which requires some knowledge of the reservoir properties. We now review some of the technologies available in the industry to collect information on the reservoir. The following methods provide information regarding the rock constituting the reservoir :

• Prior to the drilling, seismic data and offset well data 4 provide a largely inaccurate estimate of the pore pressure gradient.

• A highly expensive operation-coring-and a laborious process of collecting drill-cuttings at the drilling rig-site are the only direct evidence to understand the subsurface rocks.

• In a production setting, a method referred to as well testing is used [START_REF] Dake | Fundamentals of reservoir engineering[END_REF], [START_REF] Prat | Well test analysis for fractured reservoir evaluation[END_REF]. It consists of temporarily shutting down the production and analyzing the subsequent evolution of pressure at the well-head. This generates information regarding the near-wellbore properties of the reservoir.

• In a drilling setting, wireline logging has evolved to provide an indirect measurement but with a high NPT cost. The drilling process is stopped and an array of logging tools are lowered into the wellbore and measure various physical quantities : sonic velocity, resistivity, radioactivity, etc.

• Recently, logging-while-drilling techniques aim at reducing the NPT by collecting the same measurements as wireline tools without stopping the drilling operation. Typically, sensors are installed in the BHA and their data is transmitted to the surface using mud-pulse telemetry, which is prone to delay and noise.

The main obstacle to characterizing the reservoir while drilling is the necessity to guarantee a safe interaction between reservoir and wellbore. In conventional drilling, the slow adjustment of the BHCP by varying mud density does not enable accurate control of the drawdown. Yet, the presence of an influx is a necessary condition to gather information on the reservoir via the flow properties. For this reason, various procedures consist in stopping the drilling process and crate conditions of an interaction with the reservoir. Pore pressure test (PPT) and formation integrity test (FIT) aim at understanding the pressure profiles at a particular section; drill stem test (DST) and repeat formation tester (RFT) aim at gathering information about the contained fluids, in addition. All of these generate NPT, since they cannot be realized as-drilling in conventional drilling.

Conversely, the MPD technique, by enabling fast and more accurate control of the BHCP, makes it possible to create safe interaction with the reservoir by generating small, controlled influxes [START_REF] Rehm | Underbalanced drilling: limits and extremes[END_REF]. This allows the operator to carry out the abovementioned tests dynamically, thus reducing NPT. The main goal of the work presented in this manuscript is to estimate some of the reservoir properties in real-time during MPD by relying solely on surface measurements.

Fluid flow modelling in the wellbore. As noted earlier, mud is circulated to maintain the required BHCP during the drilling operations. Drilling muds exhibit a non-Newtonian behaviour, making it challenging to mathematically model its flow dynamics. An influx from the reservoir alters the flow behavior of the mud in the annulus, primarily affecting the BHCP. The effect is more pronounced in case of a gas influx, especially in rather long wells where gas dissolution5 can occur. Such effects, when left unnoticed, may lead to an unstable feedback loop between the wellbore dynamics and the influx, leading to a riser-gas unloading or at worst, a blowout. Due to such inherent risks in the process of drilling for oil and gas, several efforts have been taken to understand the multiphase (liquid and gas) fluid flow. Different approaches range from the first principle mathematical models to experimental flow-loop tests (see, e.g. [START_REF] Hauge | A dynamic model of percolating gas in a wellbore[END_REF], [START_REF] O'bryan | Swelling of oil-base drilling fluids due to dissolved gas[END_REF]- [START_REF] Thomas | Gas solubility in oil-based drilling fluids: Effects on kick detection[END_REF]).

Primarily, such studies are useful to better understand the process so as to mitigate the risk of a blowout; used in well control simulations and training purposes. However, we envision that such models, when coupled with the reservoir models could be used to better understand the reservoir in realtime. The advantages of such an approach are multifold : understand the reservoir properties with a lower NPT, than the current state-of-the-art ; optimize drilling as a result of better estimate of the operating envelope and influx-(gas-) handling [START_REF] Berg | The influx-management envelope considering real-fluid behavior[END_REF]. There is wide range of dynamical models of single-phase and multiphase flow used in the context of oil and gas. Commercial software such as OLGA provide high-fidelity models for simulation purposes [START_REF] Meglio | Dynamics and control of slugging in oil production[END_REF], [START_REF] Hauge | Automatic kick detection and handling in managed pressure drilling systems[END_REF] (other software products are available, e.g. LedaFlow and DrillBench). In [START_REF] Cayeux | Advanced drilling simulation environment for testing new drilling automation techniques and practices[END_REF], a comprehensive drilling simulation environment, taking into account mechanical and hydrodynamic phenomena and their interaction, as well as cuttings transport is described. At the other end of the accuracy vs. tractability spectrum, the Kaasa model [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF], while retaining only the main features of the pressure dynamics inside the wellbore, has been used for commercially implemented realtime estimation and control solutions [START_REF] Stakvik | Adaptive model based choke control system for MPD operations[END_REF]. For an extensive review of multiphase flow models, we refer the reader to [START_REF] Aarsnes | Modeling of two-phase flow for estimation and control of drilling operations[END_REF]. In this manuscript, we rely on a model, described in Chapter 1 that retains main features of the transport phenomena in the wellbore, while simplifying the fluid rheology and thermodynamic aspects.

Reservoir characterization.

Reservoir characterization typically relies on the fusion of measurement data with reservoir models. Reservoir modelling is a scientific field of its own, where complex, three dimensional, multiscale, multiphase models of the diffusion, transport, thermodynamic and chemical phenomena are studied. Here, we focus on models of the near-wellbore diffusion dynamics and their coupling with the wellbore transport dynamics.

Traditionally, simplified models of the reservoir-wellbore interaction inspired by production engineering [START_REF] Dake | Fundamentals of reservoir engineering[END_REF] have been used for reservoir characterization. Several contributions [START_REF] Kneissl | Reservoir characterization whilst underbalanced drilling[END_REF]- [START_REF] Kong | A new model for predicting dynamic surge pressure in gas and drilling mud two-phase flow during tripping operations[END_REF] assume a linear, static relation between drawdown and influx flow rate. The proportionality constant is referred to as the Productivty Index (PI).

Other approaches consist in deriving approximate representations of the diffusion dynamics near the wellbore (see, e.g. [START_REF] Dake | Fundamentals of reservoir engineering[END_REF], [START_REF] Van Everdingen | The application of the laplace transformation to flow problems in reservoirs[END_REF]- [START_REF] Guppy | Non-Darcy flow in wells with finite-conductivity vertical fractures[END_REF]). These can then be used along with models of the wellbore to estimate, e.g. permeability, porosity, or steadystate pore pressure. In [START_REF] Kneissl | Reservoir characterization whilst underbalanced drilling[END_REF], [START_REF] Li | Reservoir characterization during underbalanced drilling of horizontal wells based on realtime data monitoring[END_REF], [START_REF] Larsen | Inflow predictions and testing while underbalanced drilling[END_REF], a linear time-varying relation between drawdown and influx rate, referred to as Constant Terminal Rate Solution (CTRS) is combined with measurements of the BHCP and influx rate to estimate pore pressure and sometimes permeability. In [START_REF] Hunt | Reservoir characterization during underbalanced drilling: A new model[END_REF], [START_REF] Hunt | Multilayer reservoir model enables more complete reservoir characterization during underbalanced drilling[END_REF], distributed models of the reservoir are used, along with downhole pressure and flow rate data.

While these approaches focus on the sole reservoir, other contributions analyze the impact of an influx on wellbore dynamics. In [START_REF] Moi | Nonlinear regression analysis and system stiffness approach for formation integrity test interpretation[END_REF], nonlinear regression is used to interpret FIT and Leak-Off Test (LOT) data. In [START_REF] Nygaard | Bottomhole pressure control during drilling operations in gas-dominant wells[END_REF], [START_REF] Vefring | Reservoir characterization during underbalanced drilling (UBD): Methodology and active tests[END_REF], the CTRS is used along with distributed models of the wellbore and Kalman filters to estimate pore pressure. In [START_REF] Gravdal | Improved kick management during MPD by real-time pore-pressure estimation[END_REF], dynamical well testing is performed and the pore pressure is estimated from a BHCP sensor as a specific point in the pressure build-up curve. In [START_REF] Ambrus | Real-time estimation of reservoir influx rate and pore pressure using a simplified transient two-phase flow model[END_REF], a leastsquare fitting of reservoir parameters is applied to a multiphase flow model along with a PI influx relation, requiring only surface data. An observer for a single-phase flow model and a linear, dynamic model of the reservoir is derived in [START_REF] Hauge | Automatic kick detection and handling in managed pressure drilling systems[END_REF].

In this manuscript, we investigate various combinations of distributed and simplified models, both for wellbore and reservoir, described in Chapters 1 and 2. Our estimation strategies rely on the backstepping approach, which is a "late lumping" [START_REF] Auriol | Late-lumping backstepping control of partial differential equations[END_REF] approach to observer design, i.e., the observer gains are derived for the distributed models rather than after discretization. The main contributions of this manuscript can be listed as below : Contribution 1 A comprehensive modelling of the wellbore and the annulus during two-phase flow conditions in the annulus, a tailored treatment of the boundary conditions and a tailored numerical scheme to account for the varying flow geometry in the drilling operations.

Contribution 2 Modelling of the distributed dynamics of reservoir pressure and treatment of the coupling boundary conditions between the wellbore and the reservoir dynamics.

Contribution 3

Observer designs for the coupled wellbore-reservoir models that results in the following types of system : hyperbolic PDEs coupled with a time varying reflection coefficient, finite dimensional ODE system coupled with a parabolic PDE and hyperbolic PDEs coupled with a parabolic PDE. Theoretical proofs of the stability conditions for each of the observer designs are presented.

Publications
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The rest of the thesis is organised as follows.

Part I focuses on the description of the wellbore and reservoir models used for simulation and estimation purposes.

Chapter 1 introduces the mathematical modelling of multiphase fluid flow within the drillstring and the annulus. We present a modification to current models to account for the variation in the flow geometry, and the required tools solve them numerically. We also present simulation case studies that are compared with the field data. Content of this chapter has partially appeared in [START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF] and [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF].

Chapter 2 introduces various models to calculate the influx from a reservoir. We present analytical solutions using simplifying assumptions. However, a general solution for the transient model is also presented. We argue the requirement of transient model by comparing their results. We also present a numerical scheme to solve diffusion equations, with necessary tools to adapt for liquid and gas reservoirs.

Part II focuses on the design of observers for various combination of distributed and reduced-order models of the wellbore and reservoir.

Chapter 3 presents an observer design for a coupled system given by a distributed model for the fluid flow in the wellbore and an approximate solution for the influx of the reservoir. The system is decoupled from the reservoir dynamics and present pressure wave propagation in the wellbore with a time-dependent reflection coefficient at the wellbore-reservoir boundary. We present the wellposedness of the kernels as an extension of the results in the literature [START_REF] Deutschmann | Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs[END_REF], [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF].

Chapter 4 presents an observer design for the coupled wellbore and reservoir dynamics. We present a modification to the existing lumped low-order model for the wellbore dynamincs [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF], to account for the the distributed pressure dynamics for the reservoir. We present a choice of observer design that results in a particular cascade structure that allows us to guarantee the stability of the error system. Content of this chapter has appeared in [START_REF] Camacho-Solorio | Observer design for a coupled ODE-PDE system from a wellbore reservoir drilling model[END_REF].

Chapter 5 presents an observer design by retaining the distributed nature of both the wellbore and the reservoir dynamics. We present the designs that consider two measurements : one at the topside and one hidden ; and only using topside sensing. This novel approach allows us to guarantee stability of the error system. Contents of this chapter has partially appeared in [START_REF] Velmurugan | Transient modelling of influx and observer implementation for estimation while drilling[END_REF].

Chapter 6 concludes the discussions presented in this manuscript. We present the current advancements and the possible future prospects, that the author seems fit in this field of research.

Part I

Mathematical modelling

Chapter 1

Wellbore model

Dans ce chapitre, nous détaillons les équations du modèle décrivant la dynamique de l'écoulement dans le puits. Le modèle est basé sur des équations de conservation de la masse et de la quantité de mouvement dans la tige de forage et le puits. Les conditions frontières sont cohérentes avec les installations industrielles typiquement rencontrées dans les opérations de type MPD. Comme illustré en Section 1.2, le modèle reproduit fidèlement le comportement de l'écoulement pendant les opérations industrielles standards, telles que les connections, ou les évènements fréquents, comme l'obstruction de vannes de contrôle. Ce modèle reste toutefois suffisamment simple pour pouvoir servir de base aux synthèses d'observateurs de la Partie II de ce manuscrit.

In this chapter, we detail the model describing the dynamics of the flow inside the wellbore. The model is based on first principles -conservation of mass and momentum -written for the drillstring and annulus. It incorporates boundary conditions corresponding to the industrial facilities typically encountered on MPD operations. As illustrated in Section 1.2, the model is able to reproduce the behavior of drilling systems during standard industrial operations, such as connections, or frequent contingencies, such as MPD choke plugging. However, it remains mathematically tractable, to serve as the basis for observer design in Part II.

MPD model description 1.System description and modelling assumptions

Consider the facilities schematically depicted on Figure 2. A drilling fluid (typically liquid) is pumped at the top of the drillstring. The fluid passes through the nozzles of the drillbit, then travels back up the annulus. When the bottom of the annulus in in contact with the reservoir, fluids (oil, gas and water) may flow in. The nozzle acts as a one-way valve and multiphase flow can only occur in the annulus. We make the following assumptions :

A1 The flow is one-dimensional; radial and angular variations of all physical quantities are neglected, We denote x ∈ [0, L] the curvilinear coordinate along the main axis of the pipe, where L is a pipe length.

A2 The temperature of the flowing fluid is constant --isothermal; not affected by the temperature gradient of seawater or/and the subsurface rocks.

A3 When two phases are present, they instantaneously reach their mechanical equilibrium at any given location x, i.e. both phases are at the same pressure p(t, x), where t > 0 denotes time.

A4 There is no mass exchange between the two phases.

Conservation laws

The proposed model is a classical Drift-Flux Model (DFM) [START_REF] Zuber | Average volumetric concentration in two-phase flow systems[END_REF] incorporating variations of the cross-sectional area. Indeed, it is usual that, in any well design, the bottom-hole assembly (BHA) consists of drill collars that are used to provide weight to the drill bit. Heavy-weight drill pipes (HWDP) help the transition into the normal drill pipes. Such an arrangement yields variations of the inner and outer diameter of the drillstring, which we take into account here by assuming that the cross-sectional area A(x) is space-dependent. Omitting the space and time dependence of the variables for clarity purposes, the mass conservation law for each phase and a combined momentum conservation law read [26]

∂(Aα l ρ l ) ∂t + ∂(Aα l ρ l v l ) ∂x = 0 (1.1) ∂(Aα g ρ g ) ∂t + ∂(Aα g ρ g v g ) ∂x = 0 (1.2) ∂(Aα l ρ l v l + Aα g ρ g v g ) ∂t + ∂(Aα l ρ l v 2 l + Aα g ρ g v 2 g + Ap) ∂x = AS + ∂A ∂x p (1.3)
where α i is the volume fraction, v i the velocity and ρ i the density of the phase i = l (liquid) and g (gas). Here, p is the pressure, A is the cross-sectional area and S is the momentum source term, which are detailed in Section 1.1.6.

Remark 1. The indices g and l denote here liquid and gas, but Equations (1.1)-(1.3) are valid for any two phases for which Assumption A3 is valid.

Closure relations

System (1.1)-(1.3) has seven unknowns and only three equations. The missing four equations are algebraic relations between the physical quantities, that we now detail.

Equations of state. The fluid densities and pressure are assumed to satisfy the following relations, referred to as the Equations of State (EOS) of liquid and gas, respectively

p -p 0 -C 2 l (ρ l -ρ 0 ) = 0 (1.4) p -C 2 g ρ g = 0 (1.5)
where C i is the velocity of sound in the medium i. Here ρ 0 is a known value of density at the reference pressure p o .

Volume fractions.

Besides, one has the following geometric condition on the volume fraction

α l + α g -1 = 0. (1.6)
Slip law. A consequence of Assumption A3 and of writing a combined momentum conservation law is that an empirical relation between the fluid velocities must be added to close the system. We assume the following form, commonly referred to as the slip law [59]

v g -v l = Φ(α g ), Φ(α g ) = C 0 (α g )v m + V d (α g ) -v l (1.7)
where C 0 (α g ) is the distribution parameter and V d (α g ) the slip velocity. The dependence of these parameters on the flow regimes is widely studied in the literature (see, for instance [START_REF] Pompilio | Experimental analysis of air water two phase flow in vertical large pipes and development of drift flux models[END_REF], [START_REF] Bhagwat | A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow[END_REF]). Here v m is the mixture velocity (see Equation 1.31b).

Drillstring and annulus -notations. In the next section, we detail the boundary conditions and in particular the one connecting the drillstring and the annulus. To avoid heavy notations, we rely on the fact that the drillstring contains liquid only. This allows us to use the following conventions :

• Subscripts d and a refer to drillstring and annulus, respectively, e.g. p a is the pressure inside the annulus.

• Subscripts g and l refer specifically to the annulus and denote gas and liquid, respectively.

• No subscript refers to the liquid inside the drillstring, e.g. v(t, x) is the velocity of the liquid at location x and time t inside the drillstring.

Further, we define the following conservative variables q d and q a as

q d = [ρ, ρv] (1.8) q a = [α l ρ l , α g ρ g , α l ρ l v l + α g ρ g v g ] (1.9) 
along with the following flux function f and source term S as .13) This enables us to write the equations for drillstring and annulus in the following compact form

f d (q) = [ρv, ρv 2 + p d ] (1.10) f a (q) = [α l ρ l v l , α g ρ g v g , α l ρ l v 2 l + α g ρ g v 2 g + p a ] (1.11) S d = [0, S d ] (1.12) S a = [0, 0, S a ] . ( 1 
∂(A d q d ) ∂t + ∂ f d (A d q d ) ∂x = A d S d + ∂A d ∂x p d (1.14) ∂(A a q a ) ∂t + ∂ f a (A a q a ) ∂x = A a S a + ∂A a ∂x p a . (1.15)
Using the algebraic relations (1.4)-(1.7), one can determine the expression of the physical variables1 α g , α l , v g , v l , ρ g , ρ l , p as a function of the conservative variables q a by following the procedure below2 :

1. Solve for presssure using

p a = -b + √ b 2 -4d 2 (1.16) where b = ρ 0 C 2 l -p 0 -q 1 C 2 l -q 2 C 2 g and d = -(ρ 0 C 2 l -p 0 )C 2 g q 2 .
It is straightforward to derive from Equation (1.6).

2. Obtain the densities of each phase ρ l and ρ g by solving the EOS's (1.4) and (1.5).

Chapter 1. Wellbore model 3. Find the velocity of liquid using

v l = q 3 1 -C 0 α g -q 2 V d q 1 + C 0 α g q 2 .
(1.17)

4. From the slip law 3 (1.7), obtain the gas velocity using P Single-phase drilling mud is pumped into the drillstring. Then, the mass balance is given by

v g = C 0 α l v l + V d 1 -C 0 α g . ( 1 
A d (0) ρ (t, 0) v (t, 0) -J p (t) = 0 (1.19)
where A d denotes the cross-sectionnal area of the drillstring, J p is the mass flow rate provided by the pump. At the rig site, pump stroke per minute n p (t) is generally available rather than the mass flow rate, in which case volume swept by the pump per stroke V p is known. Then the mass flow rate is calculated as

J p (ρ(t, 0), t) = V p n p (t)ρ(t, 0). (1.20)
B At the drillstring-annulus connection, we model the flow through the nozzles using a one-way valve equation. Besides, we write the mass conservation laws of liquid and gas over the drillstring-annulus-reservoir interconnection. These yield

A d (L)ρ(t, L)v(t, L) -C d A n 2ρ(t, L)R (p d (t, L) -p a (t, 0)) = 0 (1.21) A d (L)ρ(t, L)v(t, L) + J l f (p a (t, 0), p r ) -A a (0)α l (t, 0)ρ l (t, 0)v l (t, 0) = 0 (1.22) J g f (p a (t, 0), p r ) -A a (0)α g (t, 0)ρ g (t, 0)v g (t, 0) = 0 (1.23)
where c d is the discharge coefficient and A n the effective area of the bit nozzles. J i f is the mass flow rate of the liquid (i = l) and the gas (i = g) from the formation, i.e., reservoir section (detailed in Chapter 2). Here, the function R defined

R(x) = x if x ≥ 0 0 if x < 0 (1.24)
represents the non-return valve used to prevent backward flow of fluids from the annulus into the drillstring.

C At the top of the annulus, the boundary condition is determined by the valve equation describing the mass flow rate of the mixture through the MPD choke [START_REF] Di Meglio | Slugging in multiphase flow as a mixed initial-boundary value problem for a quasilinear hyperbolic system[END_REF] that reads J c (t, q a (t, L)) -J bpp (t) -J u c (q a (t, L)) = 0 (1.25)

with

J c (t, u a (t, L)) = n c ∑ i=1 K c,i G i (Z c,i (t)) 2ρ m (t, L)R (p a (t, L) -p 0 ) (1.26)
where K c,i , Z c,i and G i (•) are the choke flow factor, the choke opening and the choke characteristic of the choke valve i, respectively. Here, n c is the number of choke valves in the MPD set up and J bpp (t) is the mass flow rate from the back-pressure pump. Moreover,

J u c = A a (L)α l (t, L)ρ l (t, L)v l (t, L) + A a (L)α g (t, L)ρ g (t, L)v g (t, L) (1.27)
is the mass flow rate upstream the choke whereas J c is that downstream the choke.

Single-phase liquid flow

In the case of single-phase liquid flow, which occurs in the drillstring and in the annulus in the absence of influx from the reservoir, the model can be simplified provided the following two additional simplifying assumptions are made.

A5 The cross-sectional area of the pipe A is constant.

A6 The velocity of the fluid is negligible with respect to the speed of sound, i.e., v(t, x) C l , ∀(t, x).

With these assumptions, Equations (1.1),(1.3), along with (1.4) and α g ≡ 0 rewrites as the following semilinear hyperbolic PDE

q t + Aq x = S (1.28)
where the constant matrix A and the source terms S are given by

A = 0 1 C 2 l 0 , S = 0 S . (1.29)
This model will serve as the basis for the design of observers estimating liquid influx in Part II.

Source terms

The momentum source term comprises of pressure losses due to gravity and frictional flow. We present here their general form as a function of the physical variables u that reads

S(t, u) = ρ m g sin(θ) - 2ν(u)ρ m v m D h (1.30) 
where g and θ are the gravitational acceleration and the inclination of the fluid transmission line with respect to the horizontal. D h is the hydraulic diameter --for drillstring D h = D i,d ; for annulus D h = D i,a -D o,d ; the subscripts i for inner diameter and o for outer diameter. The mixture density ρ m and the mixture velocity v m take the form

ρ m = α l ρ l + α g ρ g (1.31a) v m = α l v l + α g v g .
(1.31b)

The Fanning friction factor ν(u) is in general challenging to determine; first-principle based approach can be used, e.g. using non-newtonian models in [START_REF] Reed | A new model for laminar, transitional, and turbulent flow of drilling muds[END_REF] or obtained as a solution of an estimation problem, e.g. [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF].

Single-phase laminar liquid flow. By setting α g ≡ 0 in the mixture relations (1.31) and assuming laminar flow, source terms (1.30), generally used to model the fluid flow in the drillstring, reduce to the following linear expression

S(t, x) = ρ(t, x)g sin(θ) - 32µ D 2 h v(t, x).
(1.32)

Numerical simulations

In this section, we describe the numerical scheme used to compute the solution to Equations (1.14), (1.15), (1.19),(1.21)-(1.23), (1.25), before illustrating the approach on industrial test cases.

U n i x i x i+1 U + x i+ 1 2 x U - x 1 2 x 1 x 3 2 u(n∆t, x) x i-1 2
Gas and liquid ... ...

Flow path

G i Outlet 0 L x N + 1 2 A + A - FIGURE 1.2:
Stencil for the modified, model based approach to use FVM scheme to account for the variation in the flow area. The variables U -and U + are calculated using a Godnov-type scheme assuming A -= A + , then update the starred variables using the algorithm 1. Flux limiters may be used to approximate the average of the variables U over the cell G i .

Numerical scheme

General approach. Finite-volume discretization is commonly used to solve systems of partial differential equations (PDEs) such as the DFM [START_REF] Fjelde | High-resolution hybrid primitive-conservative upwind schemes for the drift flux model[END_REF]. We use the Finite-Volume methods to find the solution within the spatial computational domain x ∈ Ω = [0, L] and the temporal computational domain t ∈ I = [0, T]. Referring to the stencil in Figure 1.2, we

• discretize the spatial domain Ω into N cells, with length ∆x ;

• discretize the time domain with a step-size 4 of ∆t ; determined based on the Courant-Freidrichs-Lewy (CFL) condition [START_REF] Courant | On the partial difference equations of mathematical physics[END_REF] ;

• denote each discretized cell as G i = [x i-1/2 , x i+1/2 ] with x i+1/2 = i∆x, the i th cell interface. The center of the grid cell is given by x i = (i -1/2)∆x ;

• denote Q n i as the spatial average of the conservative variable q over the i th cell at the time instant t n = n∆t ; and use a finite volume Godunov-type numerical scheme that takes the following form [66]

Q n+1 i = Q n i - ∆t ∆x F(Q n i , Q n i+1 ) -F(Q n i-1 , Q n i ) + ∆t S(Q n i , t n , x i ) (1.33)
where F is the numerical flux function to be determined. Classically, one would use a conservative 5 scheme, such as the Rusanov scheme described in [START_REF] Van Leer | Towards the ultimate conservative difference scheme[END_REF]. Here, however, the variations in the geometry imply that (1.14), (1.15) are not in conservative form, prompting the need for an adapted scheme. Further, we present a specific way to deal with the boundary conditions.

A model-based approach for the numerical scheme

The additional derivative term p i ∂ x A i , for i ∈ {d, a} in the systems (1.14) and (1.15) accounting for the variable geometry requires a numerical scheme with a non-conservative approach ; several methods have been proposed for the Euler equations (see [START_REF] Flåtten | The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model[END_REF]- [START_REF] Udegbunam | On the advectionupstream-splitting-method hybrid scheme: A simple transient-flow model for managed-pressure-drilling and underbalanced-drilling applications[END_REF]). We present here the numerical method proposed by [START_REF] Kröner | Numerical solutions to compressible flows in a nozzle with variable cross-section[END_REF] for the Euler equations (1.14) and the numerical method proposed by [START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF] for the DFM (1.15).

To accommodate the non-conservative terms, we present the numerical flux as a function of the primitive variables U n i (Q n i ) : vector of an approximation of the physical variables u over the cell G n i . Representing U - j and U + j as the approximate variables at the left and the right side of the interface j, the modified scheme to treat the variable geometry takes the form [53]

Q n+1 i = Q n i - ∆t ∆x F(U + * i+1/2 , U - i+1/2 ) -F(U + i-1/2 , U - * i-1/2 ) + ∆t S(U n i , t n , x i ) (1.34)
and the starred variables U * i+1/2 and U * i-1/2 have yet to be computed. In [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF], a second-order flux-vector-splitting (FVS) scheme [START_REF] Evje | Hybrid flux-splitting schemes for a two-phase flow model[END_REF] is used to calculate the numerical flux function F in (1.34) for the DFM in the annulus and a first-order upwind scheme [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] for the same in the drillstring. In what follows we make the following assumption : A7 The geometry of the flow path has piece-wise continuous cross-section, i.e. the area A(x) is constant within each cell G i and discontinuity occurs only at the cell interfaces x i±1/2 for i ∈ 1, 2, . . . , N.

the approach is as follows [START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF] : assume that the cells G i-1 , G i and G i+1 all have the same area and calculate the variables ; use the Algorithm 1 to obtain the starred variables and calculate the variables for the next timestep. We present here the nonlinear coordinate transformation for the Euler equation (1.14) and the DFM (1.15) to calculate the U ± * at the cell interface x i±1/2 as (with the superscripts † and # defined in Algorithm 1)

For drillstring :

(ρv) † * A # d = (ρv) † A † d (1.35a) (v † * ) 2 + 2C 2 l ln(ρ † * ) = (v † ) 2 + 2C 2 l ln(ρ † ) (1.35b)
For annulus :

(α l ρ l v l ) † * A # a = (α l ρ l v l ) † A † a (1.35c) (α g ρ g v g ) † * A # a = (α g ρ g v g ) † A † a (1.35d) α l ρ 2 u 2ρ g + α g u 2 g 2 + C 2 g ln ρ g † * = α l ρ 2 u 2ρ g + α g u 2 g 2 + C 2 g ln ρ g † (1.35e)
Remark 2. For a given cell interface, A -represent the area of the cell immediately left to the interface and A + to its immediate right.

Remark 3. Variations in the pressure profile p d (t, x) in the drillstring due to the changes in the cross-sectional area can be neglected --as a result of the assumption A6. This will reduce the Equation (1.35b) to a linear setting.

Remark 4. Let ǔn j be the variables averaged over the cell G i , then for a first order scheme ǔn j = U n i for j = i ∈ (x i±1/2 ). For a second order scheme, we use the linear interpolation

ǔn j = U n i + (u x ) n i (x -x i )
, where (u x ) n i is the approximation of the exact derivative of the variables; computed using a flux limiter (see, e.g. [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). [START_REF] Cayeux | Advanced drilling simulation environment for testing new drilling automation techniques and practices[END_REF] for the interface x i-1/2 , and obtain

Input: Q n i-1 , Q n i , Q n i+1 , A i-1 , A i , A i+1 Output: Q n+1 i Compute primitive variables, U n i-1 , U n i , U n i+1 , from conservative variables, Q n i-1 , Q n i , Q n i+1 , if A i+1 = A i then Set † = + and # = - Solve (1.35) for the interface x i+1/2 , obtain U + * i+1/2 else U + * i+1/2 = U + i+1/2 end if A i = A i-1 then Set † = -and # = + Solve (1.
U - * i-1/2 else U - * i-1/2 = U - i-1/2 end Compute Q n+1 i via (1.

34). Algorithm 1: Algorithm for the model-based modification [52]

Treatment of the boundary conditions

The numerical scheme (1.34), for i = 1 and i = N, has explicit dependency on U 0 and U N+1 for first-order schemes and, in addition, implicit dependency on U -1 and U N+2 for second-order schemes. These values are, a priori, not defined since they lie outside of the solution grid. One way of dealing with this issue is to extrapolate the solution, e.g. using polynomial approximations at the boundaries. However, extrapolation methods are only accurate in the absence of source terms [START_REF] Prebeg | Boundary and source term treatment in the large time step method for a common two-fluid model[END_REF]. Here, we rely on a characteristic-based method, more suited to the presence of sourceterms [START_REF] Cook | A generalized characteristicbased split projection method for Navier-Stokes with real fluids[END_REF]. For clarity purposes, we first detail the method for the case of the singlephase liquid flow occuring in the drillstring.

Characteristic-based method for the drillstring. Consider the system (1.14). Denoting λ

d,1 = v -C l and λ d,2 = v + C l ,
one can rewrite the system in the following form

∂ (p d -C l ρv) ∂t -λ d,1 ∂ (p d + C l ρv) ∂x = C l S d (1.36) ∂ (p d + C l ρv) ∂t + λ d,2 ∂ (p d + C l ρv) ∂x = -C l S d (1.37)
where (1.36) corresponds to the pressure wave travelling upstream the flow with a velocity of λ d,1 , while (1.37) corresponds to the pressure wave travelling along the flow direction with a velocity of λ d, [START_REF] Berg | The influx-management envelope considering real-fluid behavior[END_REF] . In what follows, we refer to (1.36),(1.37) as the characteristics-based formulation of the equations. At each boundary, the method consists in solving a set of two nonlinear equations to determine the values of the solution U 0 and U N+1 outside of the stencil. These equations consist of

• the physical boundary condition, as described in Section 1.1.4 ;

• the propagation forward in time of the characteristic-based equation corresponding to the boundary leaving the spatial domain. This means that Equation (1.36) is used at the topside (P) boundary, while Equation (1.37) is used at the bit (B) boundary.

This yields the following nonlinear system at the pump boundary,

A d (0) ρ (t, 0) v (t, 0) -J p (t) = 0 (1.38a) ∂p d ∂t -λ d,1 ∂p d ∂x -C l ρ ∂v ∂t -C l ρλ d,1 ∂v ∂x = C l S d . (1.38b)
Finding an analytical solution for the partial differential algebraic equation (1.38) is challenging. Thus, the system (1.38) is numerically solved for the next timestep t = n + 1 using a first-order finite difference upwind scheme yielding

A d,0 ρ n+1 0 v n+1 0 -J p n+1 = 0 (1.39a) p n+1 d,0 -p n d,0 ∆t -C l ρ n 1 v n+1 0 -v n 0 ∆t = -(λ d,1 ) n 1 p n d,0 -p n d,1 ∆x -C l (ρλ d,1 ) n 1 v n 0 -v n 1 ∆x + C l S d U n d,1 (1.39b) 
Similarly, at the bit side, Equation (1.37) is discretized using a forward Euler scheme.

Characteristic-based method for two-phase flow.

No exact characteristic-based form for (1.15) could, unfortunately, be derived. To apply the method, we make additional simplifying assumptions that enable such a formulation.

A8 the liquid is incompressible, i.e., ∂C o (u) ∂u = 0 and

∂V o (u) ∂u = 0
A9 the mass fraction of the gas is much lower than the liquid, i.e., α g ρ g α l ρ l

Note that these assumptions are solely used at the boundary 6 . Under these assumptions, the characteristic equations represent the fast dynamics (pressure waves on either directions of the fluid transmission) and the slow dynamics (migration of the gas phase) and take the form [64]

α g 1 -C 0 α g d 1 p a d 1 t + p a d 1 d 1 t α g = 0 (1.40) d 2 p a d 2 t -ρ l C m v g -v l d 2 α g d 2 t -ρ l α l v g -v l + C m d 2 v l d 2 t = v g -v l + C m S a (1.41) d 3 p a d 3 t + ρ l C m v g -v l d 3 α g d 3 t -ρ l α l v g -v l -C m d 3 v l d 3 t = v g -v l -C m S a (1.42)
where C m is the sound velocity (for details see, e.g. [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF], [START_REF] Aarsnes | Robust controller design for automated kick handling in managed pressure drilling[END_REF]- [START_REF] Bansal | Modified sound speed for the unification of single-phase and two-phase flow scenarios[END_REF]) in the mixture and the directional derivative along the vector V = [1, λ a,i ] T of eigenvalues 7 of the DFM λ a,i defined as

d i dt := ∂ ∂t + λ a,i ∂ ∂x , i = 1, 2, 3. (1.43)
For subsonic flow, the characteristic velocities satisfy

λ a,1 >0, λ a,2 >0, λ a,3 <0 (1.44)
which is consistent with the number of boundary conditions at each boundary. Indeed, there is a single physical boundary condition (1.25) case of single-phase flow, the characteristic equations (1.40)-(1.42) are discretized using a first-order finite-difference upwind scheme yielding, along with the physical boundary condition, a nonlinear system that is solved using Newton's algorithm. Due to the presence of a non-return valve that introduces a non-differentiable nonlinearity, the bit boundary condition (B) requires a slightly different treatment, which is detailed in [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF]. In the next section, we apply this method on several test cases representing realistic industrial scenarios.

Simulation of industrial scenarios

An important aspect of the proposed model and numerical scheme is their ability to reproduce the behaviour of single and multiphase flow during typical industrial situations. In view of using the code developed within the HYDRA8 project both for training and testing of control algorithm at Kelda Drilling Controls AS, an important effort has been devoted to integrate the simulator within the company's development framework, thus facilitating the transfer of knowledge to the industry. A description of this procedure is given in Appendices A and B. The numerical simulation of Section A.3 is performed within this framework. Besides, the simulation scenarios presented in this section have been elaborated in collaboration with Kelda Drilling Controls to reflect situations encountered while drilling actual wells. The description of these scenarios, along with appropriate simulations is envisioned to become benchmarks for observer, controller and model testing within the industry. We present the results obtained from a study to evaluate the pressure control systems for MPD operations, that led to the publication [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF]. A schematic of the wellbore profile used in the simulations is show in Figure 1.4 and the simulation parameters are defined in Table 1.1. We study the results for both open-loop9 and closed-loop simulations and are described for each of the scenarios. Choke plugging. Choke plugging is a contingency likely to occur during an MPD operation. Indeed, during the drilling process, the drilled rock cuttings are transported up in the annulus. It is one of the functions of drilling mud to clean the wellbore and transport the cuttings. The average size of drilled cuttings depend on the type of the drill bit. However, for some physical and chemical properties of the rocks or a poorly engineered mud, big lumps of the cuttings may be transported up in the annulus. In such scenarios, the masses of drilled cuttings can plug the choke opening entirely. It is an operational requirement that two chokes aligned in parallel are present at the manifold. But, the pressure surge created at the choke due to the plugging, creates a pressure wave reflection phenomenon. The presented model illustrates the impact of such an event on the pressure and flow dynamics.

Open-loop. Effects on the choke pressure p c and the BHCP p dh , when the choke opening Z c is plugged, can be seen in Figure 1.5. If unnoticed or not reacted in-time, pressure build-up in the wellbore may fracture the reservoir, initiating a chain of unwanted actions. The wave reflection and delay of the effect at each boundary are clearly seen because of the use of distributed models presented in this section.

Closed-loop.

We now present the simulation results obtained by using a controller to maintain the required BHCP during a choke plugging scenario. Controller actuation is the choke value opening and the controller design is detailed in [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF].

We implement the proposed controller on the design model, i.e., Kaasa model [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF], and the distributed model discussed in Section 1.1. The results are shown in Figure 1.6 and depict two important characters : pressure wave reflections at the choke and bottom of the wellbore in the simulation model, i.e., the distributed model, that are not seen in the design model which is a lumped low-order dynamical model; steady-state solution for the choke pressure p c and the pump pressure p p are different for both the models-the design model does not account for the compressibility of the fluid. The second part (right) of the Figure 1.6 shows the velocity profile of the liquid along the wellbore v and in the annulus v l . We notice that the steady-state profiles are perturbed due to the choke plugging and the discontinuities in the area acts as reflecting points for the pressure waves that are also showcased by the velocity profiles. Connections. One of the most common and repetitive operations on a drilling rig is connection. Drillpipes-≈ 10m-attached to their joints constitute a drillstring. To drill further, or to remove the drillstring out of the wellbore, it is required to (dis-) connect the drillpipe. We describe the connection process as follows :

κ g 8e-07 kg Pa -1 s -1 Bit discharge coefficient c d 0.8 [-] Profile parameter C 0 1.1 [-] Number of discretization cells N 320 [-] CFL condition - 0.9 [-] 0 0.5 1 
1. Stop the drilling process.

2. Reduce the flow rate of the mud from the pump to zero.

3. Mechanically (dis-) connect the drillpipe from the drillstring on the rig floor.

4. Increase the flow rate of the mud from zero to an operational value.

Resume drilling.

We now present the simulations for a connection operation.

Open-loop. Both the choke opening Z c and the pump flow J p are manually operated (a back-pressure pump at the surface is not considered here) and the simulation result is shown in Figure 1.7. The changes created by such operation at one end, i.e., choke, generates a pressure pulse that reflects at the bottom. Indeed, the choke set-point changes create pressure pulses at the choke that travels to the bottom of the wellbore. It was observed that there is an offset between the pressure changes at the choke p c to be reflected at the bottom of the wellbore p dh . This time difference is dictated by the velocity of sound in the liquid-at which the pressure wave travels in the medium. The pressure wave reflections sustain even at zero flow and dissipates only due to the frictional losses. We note that during manual connection operations, the BHCP may exceed the reservoir pressure and create fractures. Closed-loop. Using a closed-loop choke set-point changes can provide a better control of the BHCP. The flow rate of the mud pump and the back-pressure pump is changed as shown in Figure 1.8. Now, a controller is used to manipulate the choke opening to maintain the required BHCP. We again present the simulation case study comparing the controller performance using the design model and the distributed model. We present the results as a comparison between the design model and the distributed model but with two different set of control parameters [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF]. Their performances are summarized as follows :

1. Parameter set for simulations in Figure 1.9 is designed to lead a gentle control signal, a slow closed-loop system to recover from system disturbances, e.g. changes in pump flow. In this case, the results are similar for both the models. We argue that the distributed model reduces to the design model when the operations are rather smooth-no dynamics are excited.

2. Parameter set for simulations in Figure 1.10 is designed to create a faster closed-loop performance. Naturally, rapid set-point changes excites the faster dynamics in the system such as the pressure wave propagation. This leads to a poor controller performance than that achieved using the parameter set 1.

We argue that distributed models must be considered while designing a controller as faster dynamics of the system deteriorate the controller performance.

Gas influx. An influx occurs when the BHCP is lower than the reservoir pore pressure creating a drawdown. We present a scenario when the well is drilled into a high pressure gas pocket. Flow through the mud pump J p is maintained at 40 kg s -1 , while the reservoir pressure is rapidly increased by 4% at time t = 400 s. Assuming that the gas kick is identified, a reference BHCP higher than the reservoir pressure is set [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF]. This closed-loop simulation is shown in Figure 1.11. The results show the slow dynamics of the gas transport from the formation to the choke. The gas expansion increases the mass flow rate at the choke J c , which drastically decreases when the gas start to exit the annulus. The void gas distribution along the wellbore is also shown. We note the effect of variable geometry on the gas distribution along the wellbore. Chapter 2

Reservoir models

Dans ce chapitre, nous détaillons les équations du modèle décrivant la dynamique de la pression dans le réservoir. Ce modèle s'appuie également sur des lois de conservation, s'inspire largement des travaux de [START_REF] Dake | Fundamentals of reservoir engineering[END_REF]. Dans le cas d'un réservoir de liquide, des hypothèses simplificatrices permettent la linéarisation du modèle, ce qui n'est pas le cas des réservoirs de gaz. Un schéma numérique permettant le calcul des solutions numériques de cette équation est présenté, avec des simulations illustrant les principales caractéristiques du modèle. Nous soulignons l'importance de préserver le caractère distribué de la dynamique dans le réservoir dans le cadre de scénarios transitoires qui sont caractéristiques des situations rencontrées en forage, à l'inverse de l'ingénierie de production.

In this chapter, we describe the model reproducing the pressure dynamics inside the reservoir. The model, also based on first principles, is largely inspired from [START_REF] Dake | Fundamentals of reservoir engineering[END_REF].

In the case of a liquid reservoir, reasonable simplifying assumptions allow the model to be linearized, contrary to the case of a gas reservoir. Again, a scheme enabling efficient computation of the numerical solution is presented, along with simulations illustrating the main features of the model. In particular, we advocate for the importance of retaining the distributed dynamics inside the reservoir in a transient setting such as the ones encountered in drilling, as opposed to production engineering.

Distributed model: Radial diffusion equation

We consider a porous reservoir and make the following assumptions : A1 The reservoir is completly saturated with a single fluid. A2 The reservoir is homogeneous in the azimuthal and vertical directions. This assumption is restrictive, particularly regarding the vertical direction : it requires the section of the wellbore in contact with the reservoir to be sufficiently short.

Applying the mass conservation law over an infinitesimal radial section (see Figure 2.1) and applying Darcy's law yields the following pressure dynamics [START_REF] Dake | Fundamentals of reservoir engineering[END_REF] 1 r

∂ ∂r κρ(p(t, r)) µ(p(t, r)) r ∂p(t, r) ∂r = φc(p(t, r))ρ(p(t, r)) ∂p(t, r) ∂t (2.1)
where p(t, r) is the pressure of the contained fluid, µ its viscosity, c the total compressibility (fluid and rock), κ the permeability of the rock and φ its porosity. For sub-surface reservoirs, the radial domain extends from the radius of wellbore (r w ), to the "infinite" extent of the reservoir (r e ) --a region not affected by the near-wellbore dynamics, i.e., r ∈ [r w , r e ]. 

Pure liquid reservoir

It can be seen from Equation (2.1) that the equation is non linear --density, viscosity and compressibility all a priori depend on pressure. We make the following additional assumption that the A3 density, viscosity and compressibility are constant.

This yields the following linear pressure dynamics

∂p(t, r) ∂t = a r ∂ ∂r r ∂p(t, r) ∂r (2.4)
where a = κ/µcφ. Applying Darcy's law [START_REF] Dake | Fundamentals of reservoir engineering[END_REF] at the wellbore boundary of the reservoir yields the following equation defining the influx of fluid into the wellbore

q inf (t) = 2πκhr µ ξ ∂p ∂r (t, r w ). (2.5)
Thus, computing the value of the influx using Equation (2.5) requires the solution of the distributed reservoir model Equation (2.1) or Equation (2.4) at each timestep.

In Section 2.2, we present approximate solutions based on various simplifying assumptions. First, we describe the model in the case of a dry gas reservoir.

Pure gas reservoir

Due to the the high compressibility of gas, relying on Assumption A3 would result in a highly inaccurate model for a gas reservoir. For the sake of better 

a(p, r) = r ρ(p, z(p)) µ(ρ(p, z(p))) , b(p, r) = rφ k c(p, z(p))ρ(p, z(p)). (2.7) 
We now detail how these terms are modeled as a function of pressure, relying on models from the literature.

Density : the z factor

For the conditions encountered in a gas reservoir, the ideal-gas law does not hold because the volume of the constituent molecules and their intermolecular forces strongly affect the volumetric behaviour of the gas [START_REF] Whitson | Fund of AIME[END_REF]. Such deviation from the ideal gas behaviour is expressed as a factor z, i.e. we assume that the following EOS holds

p = zρR g T (2.8)
where R g is the specific gas constant and T is the temperature. Cubic EOS accurately predict the volumetric behaviour of gas and mixtures in pressure / temperature conditions typically encountered in reservoirs [START_REF] Whitson | Fund of AIME[END_REF]. They define z as the only physically meaningful root1 of the following polynomial

z 3 + A 2 z 2 + A 1 z + A 0 = 0 (2.9)
where the constants A 0 , A 1 and A 2 are functions of pressure, temperature and phase composition. Several modifications were proposed since the seminal work --Van der Wall's cubic EOS, of which the modification by Peng-Robinson gives

A 0 = -(AB -B 2 -B 3 ) (2.10) A 1 = (A -3B 2 -2B) (2.11) A 2 = -(1 -B) (2.12)
with the EOS constants defined as

A = Ω 0 a p r T 2 r α(T r ), α = 1 + m 1 - √ T r 2 (2.13) B = Ω 0 b p r T r , m = 0.37464 + 1.54226ω -0.26992ω 2 (2.14)
where Ω 0 a = 0.45724 and Ω 0 b = 0.07780. The reduced pressure and reduced temperature are given by p r = p/p c and T r = T/T c . Here p c and T c are critical pressure and temperature respectively. In what follows, we add the following assumption that the A4 the temperature T inside the reservoir is constant. This yields the following expression for density as a function of pressure only

ρ(p, z(p)) = p z(p)R g T . (2.15)

Viscosity

One of the sensitive physical property of gas with respect to pressure is viscosity.

In the petroleum industry, viscosity of crude oil is typically modeled using the Lee-Gonzalez correlation that reads [START_REF] Whitson | Fund of AIME[END_REF] 

µ(ρ(p, z(p)) = A 1 exp A 2 ρ(p, z(p)) A 3 (2.16)
where the parameters are defined as

A 1 = (9.379 + 0.01607M g )T 1.5 209.2 + 19.26M g + T × 10 -4
(2.17)

A 2 = 3.448 + (986.4/T) + 0.01009M g (2.18)

A 3 = 2.447 -0.2224A 2 . (2.19)
Here M g represents the molecular weight of the gas.

Compressibility

The compressibility of a fluid is defined as

c(p) = 1 p - 1 V ∂V ∂p T (2.20)
which, using Equation (2.15), Equation (2.20) takes the following form

c(p, z(p)) = 1 p - 1 z ∂z ∂p T . (2.21)

Approximate solutions for liquid influx

In this section, we investigate various way to compute an approximate solution to the PDE (2.4) along with boundary conditions (2.2),(2.3). The main objective is to provide dynamical relations between the influx q res and the BHCP that can be used in appropriate contexts. In Section 2.2.1, we recall simple explicit relations typically used in the context of production. In Section 2.2.2, we derive Green's function to derive a semi-analytical solution in the form of an infinite sum.

Approximate solutions from production engineering

Using simplifying assumptions regarding the flow conditions, analytical expressions to calculate the influx of liquid can be derived. They are inspired from production engineering where the situations of long and sustained flow of reservoir fluids are studied [START_REF] Dake | Fundamentals of reservoir engineering[END_REF]. These lead to the so-called quasi-steady-state solution and constant terminal rate solution.

Quasi-steady-state solution. A first approximate solution can be obtained by assuming that the outflow from the reservoir is constant, meaning qres = 0. Denoting q qss res the corresponding reservoir flow, this leads to the following relation between the value of the pressure at the wellbore boundary p(t, r w ), at the radial extent, i.e., p e and the flow

q qss res = - 2πκh µ (p(t, r w ) -p e ) (ln(r e /r w ) -1/2) . (2.22)
Although valid only for stabilized flow conditions, this relation, referred to as the Productivity Index (PI) relation, is sometimes used in a transient setting [START_REF] Nikoofard | Design and comparison of adaptive estimators for under-balanced drilling[END_REF] or averaged over time [START_REF] Suryanarayana | Use of a new rate-integral productivity index in interpretation of underbalanced drilling data for reservoir characterization[END_REF].

Constant terminal rate solution (CTRS). Another approximate solution is obtained by assuming that the radial extent of the reservoir is infinitely far away and the pressure is constant there, i.e., p e , giving [START_REF] Dake | Fundamentals of reservoir engineering[END_REF] lim r→+∞ p(t, r) = p e (2.23) and that the flow rate q res is suddenly changed from zero to a constant value. This yields the following relation between flow rate and pressure

q ctr (t) = - 4πκh (p(t, r w ) -p e ) µ log 4κt γφµcr 2 w + 2S (2.24)
where S is the skin factor --related to the additional pressure drop within the near wellbore reservoir section due to prolonged production (alongwith sand production) or decrease in the pressure drop in case of well stimulation operations. This relation2 (2.24) is the most widely used for reservoir characterization [START_REF] Kneissl | Reservoir characterization whilst underbalanced drilling[END_REF], [START_REF] Hunt | Multilayer reservoir model enables more complete reservoir characterization during underbalanced drilling[END_REF], [START_REF] Gravdal | Improved kick management during MPD by real-time pore-pressure estimation[END_REF].

A test case to compare the different influx models is set to assert the need of distributed reservoir pressure dynamics and influx using Darcy's equation. Here, as an illustrative example, we create sinusoidal oscillations for BHCP3 with a mean of pressure at the reservoir extent. Influx from the reservoir for such a scenario is shown in Figure 2.2. The result from the distributed model was obtained using a highly refined gridding routine (especially in the near-wellbore region, details in Section 2.3.1). The simulations show that the approximate solutions (CTRS and quasi-steady state solution) under-estimate the influx, in a transient setting. This is important because of the following reasoning. Fluctuations in the BHCP are highly likely, e.g. due to pressure wave propagations during choke set-point changes (as illustrated in Section 1.2.2). The situation where a given influx scenario turns into a well control situation is highly dependent on the cumulative volume of the influx flowing in from the reservoir [START_REF] Berg | The influx-management envelope considering real-fluid behavior[END_REF], which, therefore, should not be under-estimated ; that will effectively increase the chance of an influx event that could normally be handled dynamically 4 in the MPD setting, to a well control situation due to the late reactions. Such instances jeopardize the safety of personnel and equipment. Thus, we argue that the distributed model is required to estimate the influx flow rates while drilling, where we are interested in the time period of at-most a few hours during which the transient behaviour of the reservoir dominates.

Solution based on Green's function

In this section, we derive a general solution to (2.4) relying on the computation of Green's function. First, we make the following change of variables 

ϕ(t, r) = p(t,
φ(t, r) = f (r)g(t).
(2.30)

The functions f and g must satisfy, respectively5 

r f (r) + f (r) + λ a r f (r) = 0 (2.31)
and

g (t) = -λg(t), g(0) = 1 (2.32)
for some λ ∈ R. There is only a discrete number of possible λ corresponding to a family of solutions

f n (r) = Y 0 (ω n r w )J 0 (ω n r) -J 0 (ω n r w )Y 0 (ω n r), g n (t) = e -λ n t (2.33)
with

λ n = 2 ω 2 n (2.34)
where the ω n , n ∈ N * are zeros of the following Bessel equation

-Y 0 (ω n r w )J 1 (ω n r e ) + J 0 (ω n r w )Y 1 (ω n r e ) = 0 (2.35)
and Y i , J i , i = 0, 1 are the Bessel functions of the first and second kind, respectively. The f n form Riesz basis of L 2 , but not a Hilbert basis. It possesses, however, a biorthonormal basis (ψ n ) n∈N * defined as

ψ n = f n r A n , A n = 1 2 r 2 e f 2 n (ω n r e ) -r 2 w f n (ω n r w ) 2 ω 2 n (2.36)
which yields the following expression of the homogeneous solution

φ(t, r) = ∞ ∑ n=1 a n f n (r)g n (t) (2.37)
where the coefficients a n are determined from the initial condition as follows :

a n = r e r w φ 0 (r)ψ n (r)dr (2.38)
where φ 0 = p i -BHCP 0 . Defining the following Green's function

G(r, ξ, t) = ∞ ∑ n=1 ψ n (ξ) f n (r)g n (t) (2.39)
it is now possible to represent the general solution in terms of the scalar product as

φ(t, r) = r e r w G(r, ξ, t)φ 0 (ξ)dξ. (2.40)
Now that the general solution for the homogenous diffusivity equation is derived, we now treat the source term. The general solution may now be represented as An approximate solution can thus be computed by truncating the series (2.39). As will appear in Section 2.3, this representation is useful in the context of a continuous influx, but cannot be used to model kicks, due to the occurence of a Gibbs phenomenon. In the next section, we detail how the reservoir dynamics can be numerically solved.

ϕ(t, r) = r e r w ϕ 0 (ξ)G(r, ξ, t) -BHCP(t)

Numerical simulations

Numerical method

In this section, we present a numerical scheme to solve equations of the form b(p, r) ∂p ∂t

- ∂ ∂r a(p, r) ∂p ∂r = 0. (2.42)
The scheme is the so-called θ-scheme as described in [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology: volume 3 spectral theory and applications[END_REF]. We detail here the specific computations needed to implement the scheme for the liquid and gas reservoir models of Sections 2.1.1 and 2.1.2. Consider a (possibly irregular) grid 

r w = r 1 < • • • < r N = r e (2.
U n i = θ p n+1 i + (1 -θ)p n i (2.44)
that is a function of the values of the state at the current and future timesteps n and n + 1 respectively. The variable θ is a design parameter that sets the implicitness of the scheme: θ = 0 being fully explicit and θ = 1 being fully implicit 6 . Using a forward Euler discretization scheme over time on (2.42) yields

b(U n i , r i ) ∆t p n+1 i -p n i + A h (U n i ) = 0. (2.45)
The approximation of the operator A h is chosen as follows [84]

A h (U n i ) = - 1 (r i+1/2 -r i-1/2 ) a(U n i+1/2 , r i+1/2 ) U n i+1 -U n i r i+1 -r i -a(U n i-1/2 , r i-1/2 ) U n i -U n i-1 r i -r i-1 . (2.46)
The operator defined in Equation ( 2 resentation of the intermediate variable at the cell centre is given by Equation (2.44) and the same at the interface reads

U n i+1/2 = θ 2 p n+1 i + p n+1 i+1 + (1 -θ) 2 p n i + p n i+1 . (2.47)
At the boundaries, simple extrapolation is performed, which yields

U n+1 0 = BHCP, U n+1 N+1 -U n+1 N = 0. ( 2 

.48)

Let us now define the variables

α 1 = 1 (r i+1/2 -r i-1/2 ) 1 (r i+1 -r i ) (2.49) α 2 = 1 (r i+1/2 -r i-1/2 ) 1 (r i -r i-1 ) (2.50)
that allows us to represent the equation to be solved at each time step in a compact form that reads, for i = 1, ..., N

F := b(U n i , r i ) ∆t p n+1 i -p n i -α 1 a(U n i+1/2 , r i+1/2 ) U n i+1 -U n i + α 2 a(U n i-1/2 , r i-1/2 ) U n i -U n i-1 = 0. (2.51)
We solve Equation (2.51) at each time step n to find the future solution at the timestep n + 1. In other words, we find the zero of the defined function F with the knowledge of solution at previous timesteps. To do so, we use Newton's algorithm. We denote J F the Jacobian matrix of F with respect to the solution at the new time step U n+1 . To improve the accuracy and to decrease the computational burden of this numerical scheme, we now derive the analytical Jacobian of F. Due to the dependency on 3 spatial locations: i -1, i and i + 1 for the operator at i, the Jacobians have a tridiagonal structure and the respective derivatives can be calculated as follows:

∂F ∂p n+1 i-1 = -θα 2 a(U n i-1/2 , r i-1/2 ) + θ 2 α 2 U n i -U n i-1 ∂a ∂p n+1 i-1 (U n i-1/2 , r i-1/2 ) (2.52) ∂F ∂p n+1 i+1 = -θα 1 a(U n i+1/2 , r i+1/2 ) - θ 2 α 1 U n i+1 -U n i ∂a ∂p n+1 i+1 (U n i+1/2 , r i+1/2 ) (2.53) ∂F ∂p n+1 i = b(U n i , r i ) ∆t + θ ∆t p n+1 i -p n i ∂b ∂p n+1 i (U n i , r i ) + θα 1 a(U n i+1/2 , r i+1/2 ) - θ 2 α 1 U n i+1 -U n i ∂a ∂p n+1 i (U n i+1/2 , r i+1/2 ) + θα 2 a(U n i-1/2 , r i-1/2 ) + θ 2 α 2 U n i -U n i-1 ∂a ∂p n+1 i (U n i-1/2 , r i-1/2 ). (2.54)
Equations (2.52)-(2.54) are the expressions of the Jacobian for the general radial diffusion equation (2.42). We now detail the specific computations for the gas and liquid reservoir models under consideration.

Real gas

Due to the highly pressure dependent properties of real gas, utilizing the θ-scheme requires an elaborate description of various derivatives, specially for the Jacobian matrix. Other cases --ideal gas and liquid --will only be specific cases of real gas scenario assuming pressure independencies for certain physical properties. First, recalling from Equation (2.7) that

a(p, r) = r ρ(p, z(p)) µ(ρ(p, z(p))) , b(p, r) = rφ k c(p, z(p))ρ(p, z(p)).
Applying We now define the derivatives of the functions defining the gas properties : z-factor, density, viscosity and compressibility.

z-factor

Using Equations (2.9) to (2. Now, from Equation (2.57) it is straightforward to compute the following:

z 3 -(1 -bp)z 2 + (ap -3b 2 p 2 -2bp)z -(abp 2 -b 2 p 2 -b 3 p 3 ) = 0. ( 2 
h 1 (z, p) := ∂h ∂z = 3z 2 -2(1 -bp)z -3b 2 p 2 + (a -2b)p (2.61) h 2 (z, p) := ∂h ∂p = 3b 3 p 2 + (2b 2 -2ab -6b 2 z)p + bz 2 + (a -2b)z (2.62) g(z, p) = - h 2 (z, p) h 1 (z, p) (2.63) ∂ 2 z ∂p 2 = ∂g(z, p) ∂p = - h 1 (∂h 2 /∂p) -h 2 (∂h 1 /∂p) h 2 1 
(2.64)

∂ 2 z ∂z∂p = ∂g(z, p) ∂z = - h 1 (∂h 2 /∂z) -h 2 (∂h 1 /∂z) h 2 1 (2.65)
with

∂h 1 ∂z = 6z -2(1 -bp) (2.66) ∂h 1 ∂p = -6b 2 p + (a -2b + 2bz) (2.67
)

∂h 2 ∂z = 2bz + (a -2b -6b 2 p) (2.68) ∂h 2 ∂p = 6b 3 p + (2b 2 -2ab -6b 2 z).
(2.69)

Density

In the case of real gas, the required derivatives for the density function given by Equation (2.15) are 

∂ρ ∂p = M g zRT , ∂ρ ∂z = - pM g z 2 RT . ( 2 
+ ∂ρ ∂z ∂z ∂p (2.71) is ∂µ ∂ρ = A 1 A 2 A 3 ρ A 3 -1 exp(A 2 ρ A 3 ).
(2.72)

Compressibility

Finally the two partial derivatives for the compressibility function in Equation (2.21) with respect to p and z read

∂c ∂p = - 1 p 2 + 1 z 2 (p) ∂z(p) ∂p 2 - 1 z(p) ∂ 2 z(p) ∂p 2 (2.73) ∂c ∂z = 1 z 2 (p) ∂z(p) ∂p - 1 z(p) ∂z(p) ∂z∂p .
(2.74)

Ideal gas

Studying ideal gas behavior corresponds to the scenario where z = 1. This case of constant z that is independent of pressure simplifies the definition of functions While all the required derivatives are previously defined, a different definition is required for one specific property : compressibility. The function that defines the compressibility of an ideal gas and its derivative with respect to pressure read

a(p, r) = r ρ(p) µ(ρ(p)) , b(p, r) = rφ k c(p)ρ(p) . ( 2 
c(p) = 1 p , ∂c(p) ∂p = - 1 p 2 .
(2.78)

Liquid

Non-linear.

Unlike the physical properties of gas, for the application in consideration --drilling through a fully saturated single phase liquid reservoir --an important physical property that is dependent on pressure is density. Should we consider a non-linear form of solving the liquid reservoir dynamics, then using Equation (1.4) we get the functions (2.80)

a(p, r) = r µ ρ 0 + p -p 0 C 2 l , b(p, r) = rφ k c ρ 0 + p -p 0 C 2 l . ( 2 

Linear.

Nevertheless, as mentioned in Section 2.1.1, in case of single phase liquid completely saturating the reservoir pore, it is assumed that the density of the reservoir fluid do not significantly vary from the equilibrium profile. This removes any pressure dependency of the physical property of the liquid and translates to constant functions

a(p, r) = r ρ µ , b(p, r) = rφ k cρ .
(2.81)

Simulation case studies

In this section we present some numerical case studies to understand the reservoir pressure dynamics. First, we consider a liquid reservoir and study different numerical methods presented in this section to solve the diffusion equation. Figure 2.4 shows the reservoir pressure profile along the radial domain. Here, we introduce a step change to the BHCP to create a drawdown. The MATLAB solver pdepe, with a 10, 000 grid elements (GE) is considered as the real solution for comparison purposes. It can be noted the solution obtained by the Green's function does not capture well the pressure dynamics. As we increase the number of modes, 50 in this case, a Gibbs phenomenon occurs. The situation does not improve even while considering a finer grid (10, 000 GE) for the Green's solution. Thus, we use θscheme in this manuscript to solve the reservoir pressure dynamics.

Liquid Influx. We now present a situation of a case when the BHCP drops below the reservoir pore pressure, creating a drawdown and leading to a liquid influx. In presented scenario, the BHCP reduces due to a decrease in mud pump flow rate J p , at a constant choke opening Z c , for instance, during a pump failure on a drilling rig. Other operations like connections may lead to an influx (refer to Section 1.2.2 for variations in the BHCP). The distributed dynamics described in Section 2.1 for a liquid reservoir is used in the simulation and Figure 2.5 shows the resulting liquid influx into the wellbore. The parameter used as same as in Table 2.1.

Gas reservoir.

We present a simulation that relies solely on the gas reservoir. The parameters considered for this simulation are summarized in Table 2.1. Figure 2.6 shows a comparison of the gas influx obtained by two models : distributed model using real-gas EOS and a linearized reservoir model (2.81). The simulation is set for a deep gas reservoir with a pore pressure of 420 bar and a high temperature of ≈ 150 • C. Effects on gas EOS properties at such reservoir conditions are prominent. However, it is shown that the linearized model for a gas reservoir provides an influx estimate similar to the distributed model. This is important because, the observers discussed in Part II, design using linearized reservoir models may be used for gas reservoirs as well-need further investigation on mapping the EOS properties for different reservoir conditions and the observer performances. Part II

Observer Designs Introduction: general approach for observer design

Dans cette partie, nous présentons plusieurs observateurs qui estiment le débit de fluides depuis le réservoir vers le puits ainsi que, dans certains cas, le profil de pression dans le réservoir.

In this part, we present several observers estimating the influx of fluids from the reservoir into the wellbore, as well as, in certain cases, the pressure distribution in the reservoir.

The backstepping approach

We rely on the so-called backstepping approach to design observers able to estimate state variables in real-time from measurements. This method, which comes from nonlinear control design [START_REF] Freeman | Backstepping design of robust controllers for a class of nonlinear systems[END_REF], has been extended to infinite-dimensional systems such as the ones studied in this manuscript, and relies on the following steps, 1. choose a generic form for the observer: in our case, the "Luenberger-like" form which consists in a copy of the plant plus output error injection terms, with gains to be determined ;

2. design a so-called "target system" with desirable stability properties. The target system represents the desired behavior of the observer error system after the gains have been designed. Typically, the target system is constructed from the original system by removing terms that potentially create instability and, sometimes, adding term that improve convergence speed ;

3. find an invertible transformation that maps the solution of the observer error system to the solutions of the target system, such that the stability of the target system implies that of the observer error system ; 4. typically, the expression of the observer gains appears as a necessary and sufficient condition for the transformation to exist.

We now illustrate this approach on a classical example from [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF], which will serve as the basis for several designs in the coming sections.

Example 2.3.1. [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] Consider the following diffusion equation

ϕ t (t, x) = ϕ xx (t, x) (2.82) ϕ x (t, 0) = ξ ϕ(t, 0) (2.83) ϕ x (t, 1) = 0 (2.84)
defined on the time and spatial domains t > 0, x ∈ [0, 1], along with the following measurement y(t) = ϕ(t, 0).

(2.85)

The following observer To design an observer gain l(x) such that φ → 0, we look for an invertible transformation of the form where ξ has yet to be determined. Equation (2.92) is a Volterra integral equation [START_REF] Hochstadt | Integral equations[END_REF], [START_REF] Yoshida | Lectures on differential and integral equations[END_REF] and K, defined on the triangular domain

φt (t, x) = φxx (t, x)+l(x) (y -φ(t, 0)) (2.86) φx (t, 0) = ξ φ(t,
φ(t, x) = ψ(t, x) - x 0 K(x,
T = (x, y) ∈ R 2 : 0 ≤ y ≤ x ≤ 1 (2.96)
is referred to as the kernel, and has yet to be determined. Differentiating (2.92) with respect to time and space, using (2.93)-(2.95) and plugging the result into (2.89)-(2.91) yields the following set of conditions on K

K xx (x, y) = K yy (x, y) -cK(x, y) (2.97) 2 d dx K(x, x) = c (2.98) K x (x, 1) = 0 (2.99) K(1, 1) = 0 (2.100)
with the abusive notation d dx K(x, x) = K x (x, x) + K y (x, x). The observer gain l(x) and the parameter ξ are given by l Proof : The proof relies on the following Lyapunov function

(x) = K y (x, 0) -ξ (2.101) ξ = ξ + K(0, 0). ( 2 
V(t) = 1 2 1 0 ψ(t, x) 2 dx. (2.107) 
One can easily show that 

V(t) = -ξ ψ(t, 0) 2 - 1 0 ψ x (t, x) 2 -c 1 0 ψ(t,
ϕ(t, •) L 2 ≤ 1 + K L ∞ (T ) ψ(t, •) L 2 (2.112) ψ(t, •) L 2 ≤ 1 + L L ∞ (T ) ϕ(t, •) L 2 (2.113) which concludes the proof with λ = c 2 and C = 1 + K L ∞ (T ) 1 + L L ∞ (T ) .
This example oftens serves as the canonical system for backstepping applied to PDE control and observer design. In the next chapter, we apply the same methodology to design observers for coupled reservoir / wellbore models based on the ones presented in Part I. In Chapter 3, we design an observer for a distributed model of the wellbore coupled with the approximate CTRS solution as the influx model. This leads us to extend results from the literature [START_REF] Deutschmann | Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs[END_REF] on time-varying backstepping observer designs to hetero-directional hyperbolic PDEs. In Chapter 4, it is the wellbore model that we approximate by a finite-dimensional system, while keeping the full distributed wellbore dynamics. This leads to an interesting result on the observability of parabolic PDEs when the measurement is "filtered" by the finite-dimensional wellbore dynamics. Finally, in Chapter 5, we study the full (linear) distributed wellbore and reservoir dynamics, and design observers for two application scenarios: with and without bottomhole pressure sensors.

Notations. We use the following notation to denote the system of equations : Σ denotes the plant dynamics, Σ the observer dynamics and Σ the error dynamics. By definition, the estimates of the observer Σ asymptotically converges to the actual states Σ as t → ∞, if the error defined by Σ = Σ -Σ asymptotically converges to zero as t → ∞. The error dynamics is then mapped on to a target system Σ T , whose exponential stability can be guaranteed. This is achieved using standard backstepping approach [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF]. Also, consider the functions f (x, y, z) and g(x), then the following notations are used :

f x (x, y, z) = ∂ ∂x f (x, y, z) f y (x, y, z) = ∂ ∂y f (x, y, z) f z (x, y, z) = ∂ ∂z f (x, y, z) g (x) = d dx g(x)
.

We now present the different observer designs.

Equilibrium profile

Let t 0 > 0 be fixed, as well as a constant circulating flow rate qbit and a fixed value of the choke opening Zc . We define the equilibrium profile of interest as the steadystate solution to (1.28) along with the topside boundary condition (1.25) and the CTRS solution taken at time t 0 , i.e. the functions q 1 (x), q 2 (x) are solutions of the following system of equations :

d q2 (x) dx = 0 (3.4) C 2 l d q1 (x) dx = -q1 (x)g cos θ -F( q1 (x), q2 (x)) (3.5) A q2 (L) q1 (L) = K c Zc 2 q1 (L) q1 (L)C 2 l -ρ 0 C 2 l + p 0 -p ds (3.6) A q2 (0) q1 (0) = qbit + q res ( q1 (0), q2 (0), t 0 ). (3.7)
The function F is the frictional pressure loss in the source terms (1.30). The time instant t 0 can be seen as a degree of freedom in the design of the observer. Obviously, it must be chosen such that the actual profiles do not deviate much from the corresponding equilibrium profile, as the subsequent analysis consists in linearizing around the equilibrium profile.

Variable change: Riemann invariants

We now linearize system (1.28) around the equilibrium profile q = ( q1 (x), q2 (x)) . Denoting δq = (δq 1 , δq 2 ) = qq, this yields ∂δq ∂t

+ A ∂δq ∂x = S(δq 1 , δq 2 ). (3.8) 
In Equation (3.8), A is diagonalizable. More precisely, one has AR = RΛ, with

Λ = C l 0 0 -C l , R -1 = 1 2 C l 1 -C l 1 . ( 3.9) 
We consider the variable change in the form of Riemann invariants that reads

u(t, x) v(t, x) = 1 2 C l δq 1 + δq 2 -C l δq 1 + δq 2 . (3.10)
Now, left multiplying Equation (3.8) with R -1 results in a set of linear hyperbolic PDEs of the form :

u t (t, x) + C l u x (t, x) = σ ++ (x)u(t, x) + σ +-(x)v(t, x) (3.11a) v t (t, x) -C l v x (t, x) = σ -+ (x)u(t, x) + σ --(x)v(t, x). (3.11b)
In this setting, variables u and v represent pressure waves that propagate in opposite directions. The σ-terms denote their in-domain coupling, mainly due to friction. We consider here the simplified (laminar) momentum source term (1.32). Then the σ-terms take the form :

σ ++ (x) = σ -+ (x) = - 1 2 32µ ρ 0 D 2 h + g C l (3.12a) σ +-(x) = σ --(x) = - 1 2 32µ ρ 0 D 2 h - g C l . (3.12b)
Besides, setting α g ≡ 0 in (1.25), linearizing around an operating point Zc and expressing it in Riemann coordinates yields v(t, 1) = Θu(t, 1).

(3.13a)

The reflection coefficient Θ depends on the considered operating point as follows :

Θ = C l h2 + h1 C l h2 -h1 (3.13b) h1 = ∂h ∂q 1 ( q1 , q2 ) (3.13c) h2 = ∂h ∂q 2 ( q1 , q2 ) . (3.13d)
Particular attention in the design will be made, however, to ensure that the proposed observer works for a large range of operating points, i.e. that it is robust to changes in Θ. Finally, linearizing Equation (3.3) with q res given by (3.1) around the equilibrium yields, in Riemann coordinates u(t, 0) = g(t)v(t, 0), 

g(t) = q1 (0)η(t) + A q1 (0)η(t) -A (3.

Summary of the model and estimation problem

The purpose of the next sections is to design an observer for systems Σ of the form

v(t, 1) = Θu(t, 1) (3.16) u t (t, x) + C l u x (t, x) = σ ++ (x)u(t, x) + σ +-(x)v(t, x) (3.17) v t (t, x) -C l u x (t, x) = σ -+ (x)u(t, x) + σ --(x)v(t, x) (3.18) u(t, 0) = g(t)v(t, 0) (3.19)
relying on a measurement

y(t) = c 1 u(t, 1) + c 2 v(t, 1). (3.20)
Typically, in the context of drilling, (3.20) is the expression of the topside pressure, linearized around its equilbrium value.

Observer design

The proposed observer is an exact copy of Equations (3.16) to (3.19) plus output error injection terms, and direct injection of the measurement at the topside boundary,

v(t, 1) = Θ u(t, 1) - Θ c 1 +c 2 Θ (y(t) -(c 1 u(t, 1) + c 2 v(t, 1))) (3.21) u t (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x) + P u (t, x)(y(t) -(c 1 u(t, 1) + c 2 v(t, 1))) (3.22) v t (t, x) -C l u x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x) + P v (t, x)(y(t) -(c 1 u(t, 1) + c 2 v(t, 1))) (3.23) u(t, 0) = g(t) v(t, 0). (3.24)
Time dependent coefficient g(t) requires observer gains P u (t, x) and P v (t, x) that are function of time. The estimation error is obtained as a solution to the following system Σ v(t, 1) = 0 (3.25)

u t (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x) -P u (t, x)(c 1 u(t, 1) + c 2 v(t, 1)) (3.26) v t (t, x) -C l u x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x) -P v (t, x)(c 1 u(t, 1) + c 2 v(t, 1)) (3.27) u(t, 0) = g(t) v(t, 0). (3.28)
To design the observer gains, we rely on a variable change, that maps (3.25)-(3.28) to the following target system Σ T β(t, 1) = 0 (3.29)

α t (t, x) + C l α x (t, x) = σ ++ (x)α(t, x) (3.30) β t (t, x) -C l β x (t, x) = σ --(x)β(t, x) (3.31) α(t, 0) = g(t)β(t, 0). (3.32)
The system Σ T is exponentially stable, and converges to zero in finite time. Indeed, one can see from (3.29), (3.31) that β converes to zero in time 1/C l , which, along with (3.32) yields α(t, 0) = 0 for t > 1/C l and, using (3.30), that α(t, •) ≡ 0 for t > 2/C l . We map the variables ( u, v) to (α, β) using the following the invertible transformations u(t, x) = α(t, x) - (3.42). To do so, we convert the PDEs into integral equations and define characteristic curves in the (t, x)-plane along which the equations are integrated. For Equation (3.44), we define the characteristic curves (χ, ζ, τ) along which the equations can be integrated as the solutions of the following Cauchy problem :

χ (x, ξ, t; s) = -µ ζ (x, ξ, t; s) = µ τ (x, ξ, t; s) = -1 (3.48) χ(x, ξ, t; s F ) = x ζ(x, ξ, t; s F ) = ξ τ(x, ξ, t; s F ) = t (3.49)
form which it is easy to establish additional relations that read

χ 0 (x, ξ, t) := χ(x, ξ, t; 0) = x + µs F (x, ξ, t) (3.50) ζ 0 (x, ξ, t) := ζ(x, ξ, t; 0) = ξ -µs F (x, ξ, t) (3.51) τ 0 (x, ξ, t) := τ(x, ξ, t; 0) = t + s F (x, ξ, t) (3.52)
for ∀s ∈ [0, s F (x, ξ)] and each (χ, ζ, τ) ∈ Θ where Θ is the R 3×3 space on which the Kernals have an unique continuous solution. Following the schematic of the characteristic curves in Figure 3.1, when solving the curves (ξ, χ, τ) one hits the boundary where x = ξ. This provides the following condition:

χ(x, ξ, t; 0) = ζ(x, ξ, t; 0) (3.53) x + µs F (x, ξ, t) = ξ -µs F (x, ξ, t) (3.54) s F (x, ξ, t) = ξ -x 2µ (3.55)
and one can further solve for

χ(x, ξ, t; 0) = x + ξ 2 ζ(x, ξ, t; 0) = x + ξ 2 τ(x, ξ, t; 0) = t + ξ -x 2µ . (3.56)
Similarly for Equation (3.45), we define the characteristic curves (α, β, γ) as the solutions of the following Cauchy problem :

α (x, ξ, t; s) = µ β (x, ξ, t; s) = µ γ (x, ξ, t; s) = -1 (3.57) α(x, ξ, t; s G ) = x β(x, ξ, t; s G ) = ξ γ(x, ξ, t; s G ) = t (3.58)
and the slope the characteristic curve gives the following initial conditions

α(x, ξ, t; 0) = x -µs G (x, ξ, t) (3.59) β(x, ξ, t; 0) = ξ -µs G (x, ξ, t) (3.60) γ(x, ξ, t; 0) = t + s G (x, ξ, t). (3.61) 
For this set of the characteristic curves (α, β, γ) it can be noted that the curves hit the boundary defined by x = 0. This means, at x = 0, α(x, ξ, t; 0) = 0 and thus s G (x, ξ) = x/µ. Further conditions on the curve read α(x, ξ, t; 0) = 0 β(x, ξ, t; 0) = ξx τ(x, ξ, t; 0) = t + x/µ (3.62)

α 0 (x, ξ, t) = 0 β 0 (x, ξ, t) = ξ -x τ 0 (x, ξ, t) = t + x/µ (3.63)
for ∀s ∈ [0, s F (x, ξ)]. To show the existence of a solution for Equations (3.44) to (3.45), one must convert them into integral form and provide an upper bound within the integral limits. First, we integrate Equation (3.44) along the characteristic curve (χ, ζ, τ) for the limit set by s ∈ [0, s F (x, ξ, t)] that yields

s F (x,ξ,t) 0 d ds F(χ(s), ζ(s), τ(s)) = s F (x,ξ,t) 0 (a(χ(x, ξ, t; s))G(χ(x, ξ, t; s), ζ(x, ξ, t; s), τ(x, ξ, t; s)) + b(χ(x, ξ, t; s), ζ(x, ξ, t; s)) F(χ(x, ξ, t; s), ζ(x, ξ, t; s), τ(x, ξ, t; s))) ds (3.64)
and further we can write 

F(x, ξ, t) = F(χ 0 , ζ 0 , τ 0 ) + s F (x,
G(x, ξ, t) = g(γ 0 (x, ξ, t)) f (χ 0 (0, β 0 , γ 0 )) +
s F (0,β 0 ,γ 0 ) 0 (a(χ(0, β 0 , γ 0 ; s))G(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s), τ(0, β 0 , γ 0 ; s))

+ b(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s)) F(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s), τ(0, β 0 , γ 0 ; s)))ds 

+ s G (x,
ϕ(x, ξ, t) = f (χ 0 (x, ξ, t)) (3.70) ψ(x, ξ, t) = g(γ 0 (x, ξ, t)) f (χ 0 (0, β 0 , γ 0 )) (3.71)
and denote

H = F G T (3.72) φ φ φ(x, ξ, t) = ϕ(x, ξ, t) ψ(x, ξ, t) T . (3.73)
We define the functionals on H as the following : 

Φ[H](x, ξ, t) = s F (x,ξ,t) 0 [a(χ(x, ξ, t; s))G(χ(x,
Ψ[H](x, ξ, t) = g(γ 0 (x, ξ, t)) s F (0,β 0 ,γ 0 ) 0 [a(χ(0, β 0 , γ 0 ; s))×
G(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s), τ(0, β 0 , γ 0 ; s))

+ b(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s))F(χ(0, β 0 , γ 0 ; s), ζ(0, β 0 , γ 0 ; s), τ(0, β 0 , γ 0 ; s))]ds We now use the method of successive approximation to prove the existence of solution for the kernels. This is done by defining a sequence that reads Then,

+ s G (x,
H 0 (x, ξ, t) = 0 (3.76) H m (x, ξ, t) = φ φ φ(x, ξ, t) + Φ Φ Φ[H m-1 ](x, ξ, t). ( 3 
s F (x,ξ,t) 0 ζ m (x, ξ, t; s)ds = ξ ζ 0 η m µ dη ≤ M µ ξ 0 η m dη = M µ ξ m+1 m + 1 . (3.79)
Similarly, using a variable change η = β(x, ξ, t; s), it can be shown that

s F (x,ξ,t) 0 β m (x, ξ, t; s)ds ≤ M µ ξ m+1 m + 1 (3.80)
where M µ = max (1, 1/µ). Under the assumption

|∆F(x, ξ, t; s)| ≤ M m ξ m m! (3.81) |∆G(x, ξ, t; s)| ≤ M m ξ m m! (3.82)
where

M = ( ḡ( ā + b) + d + ē)M µ (3.83) ā = max (a(χ(x, ξ, t; s))) (3.84) b = max (b(χ(x, ξ, t; s))).
(3.85)

We can derive the upper bound for the functionals as

|Φ[∆H]| ≤ ( ā + b) M m m! s F 0 ζ m (x, ξ, t; s)ds (3.86) ≤ M m+1 ξ m+1 (m + 1)! (3.87)
and

|Ψ[∆H](x, ξ, t)| ≤ ḡ( ā + b) s F 0 0 M m ζ m (0, β 0 , γ 0 ; s) m! (3.88) + s G 0 ( d + ē) M m β m (x, ξ, t; s) m! (3.89) ≤ ( ḡ( ā + b) + d + ē) M m m! ξ m+1 m + 1 (3.90) ≤ M m+1 ξ m+1 m + 1 (3.91)
which concludes the proof.

It is now established that there exists an unique solution for the kernels of the form given by Equations (3.44) to (3.47). While this translates to the form of hyperbolic equations required to solve for P uv and P vv given by Equations (3.39) to (3.42), a similar approach can be taken to show the existence of an unique solution for Equations (3.35) In this chapter, we construct an observer and derive observability conditions for a coupled system : wellbore dynamics described by 3-dimensional ODE system and reservoir dynamics by an infinite dimensional PDE. At first, we present the generic design. Then, the desired coupling of the wellbore-reservoir models will be shown as a specific case of the following design.

Problem statement

The system Σ is a linear time-invariant n-dimensional ODE system coupled with a parabolic PDE given by the radial-diffusion equation, defined as

dx dt (t) = Ax(t) + Bu(t, a) (4.1)
y(t) = Hx(t) (4.2) u t (t, r) = r m-1 r m-1 u r (t, r) r (4.3) with A ∈ R n×n , B ∈ R n×1 , H ∈ R 1×n
, for t ∈ (0, T] and initial conditions x 0 ∈ R n and for r ∈ (a, b), t ∈ (0, T], with diffusion coefficient > 0 and some integer parameter m > 0, related to the geometry of the underling physical problem. Boundary conditions are

u r (t, a) = βu(t, a) + Dx(t) (4.4) u r (t, b) = 0 (4.5)
with β > 0, and initial conditions u 0 ∈ C(a, b). The system is understood as a dynamic system with combined state

x ∈ C ([0, T]; R n ), u ∈ C [0, T]; L 2 (a, b)
, and output y ∈ C ([0, T]; R). The estimation objective is to compute an estimate x, u from measurements y(t) ∈ R with exponential convergence in the sense of a norm. The proposed observer is a copy of Equations (4.1) to (4.5) with output error feedback : Luenberger-like observer. Estimate of the states are solution to the system denoted by Σ that reads

d x dt (t) = A x(t) + B u(t, a) + L (y(t) -y(t)) (4.6) y(t) = H x(t) (4.7) u t (t, r) = r m-1 r m-1 u r (t, r) r + l n+1 (r) (y(t) -y(t)) (4.8) u r (t, a) = β u(t, a) + D x(t) + l n+2 (y(t) -y(t)) (4.9) u r (t, b) = l n+3 (y(t) -y(t)) (4.10) for t ∈ (0, T], r ∈ (a, b), initial conditions x 0 ∈ R n , u 0 ∈ L 2 (0, 1)
and the boundary conditions are given by Equations (4.10) to (4.9). For an observer gain

L = [l 1 , l 2 , • • • , l n ], l n+1 ∈ L 2 (a, b), l n+2
∈ R, and l n+3 ∈ R, the estimation error is defined as the difference between the state and the observer state, that is, * := * - * . The estimation error x, u is a solution of the estimation error system denoted by Σ that reads

d x dt (t) = A x(t) + B u(t, a) -LH x(t) (4.11) y(t) = H x(t) (4.12) u t (t, r) = r m-1 r m-1 u r (t, r) r -l n+1 (r)H x(t) (4.13) u r (t, a) = β u(t, a) + D x(t) -l n+2 H x(t) (4.14) u r (t, b) = -l n+3 H x(t). (4.15) 
Exponential convergence of the estimate x, u to the state x, u is equivalent to the exponential stability of zero solution of the estimation error system. The main result, in Theorem 4.3.1, provides a way to compute observer gains L, l n+1 , l n+2 , and l n+3 , to guarantee exponential stability of the estimation error system. Before the statement of the main result, an additional observability condition is required. We now make the following assumptions.

A1 The finite dimensional subsystem given by Equations (4.1) to (4.2) is observable, that is, rank

(O) = n, with O = H H A • • • H A n-1 T
. This as- sumption guarantees the existence of a linear and invertible transformation T O : R n → R n that maps the system defined by Equations (4.1) to (4.2) to the observer canonical form, [START_REF] Kailath | Linear systems[END_REF]. The transformation T O is an invertible matrix, satisfying

T O A O = AT O , T O B O = B, H O = HT O , (4.16) 
where A O , B O , H O are in observer canonical form, that is

A O =        a 1 1 0 • • • 0 a 2 0 1 • • • 0 . . . . . . . . . . . . . . . a n-1 0 0 • • • 1 a n 0 0 • • • 0        , B O =      b 1 b 2 . . . b n      , ( 4 
.17) 

H O = 1 0 • • • 0 . ( 4 
         d dr r m-1 d dr φ(r) = -λ k r m-1 φ(r) φ n (a) = 0 φ n (b) = 0 (4.19)
are, simultaneously, solutions to the polynomial equation D(λ k ) = 0, with

D(ξ) = b n + b n-1 ξ + b n-2 ξ 2 + • • • + b 2 ξ n-2 + b 1 ξ n-1 (4.20) and at least one b i , i ∈ {1, 2, • • • , n} is different from zero.
This assumption is required so that the PDE states are observable through the ODE states. We describe briefly the methodology followed to define obsever gains that guarantee the stability of the estimation error system.

Methodology

Following the backstepping method for PDEs [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF], we seek a pair of transformations T O : R n → R n and T u : L 2 (0, 1) × R n → L 2 (0, 1), that map the states x, u satisfying Equations (4.11) to (4.15), to states z, w satisfying the target system

d z dt (t) = F z(t) + B O w(t, a) (4.21) 
with initial condition z 0 = T -1 O x 0 and F ∈ R n×n is in companion form, that is

F =        f 1 1 0 • • • 0 f 2 0 1 • • • 0 . . . . . . . . . . . . . . . f n-1 0 0 • • • 1 f n 0 0 • • • 0        (4.22) 
and

w t (t, r) = r m-1 r m-1 w r (t, r) r -σw(t, r) (4.23) 
for r ∈ (a, b), t ∈ (0, T], and boundary conditions

w r (t, a) = (β - σ 2 (b -a))w(t, a) (4.24) w r (t, b) = 0 (4.25)
with initial conditions w 0 ∈ C(a, b), satisfying u 0 = T w (w 0 , z 0 ). The finite-dimensional transformation T O is defined by Equations (4.16) to (4.17), while T u is the sum of a second-kind Volterra integral transformation acting on w and a linear spatiallyvarying transformation acting on z, that is

x(t) = T O z(t) (4.26) u(t, r) = w(t, r) - r a K(r, s)w(s, t)ds + (γ(r) -γ(a)) z(t). (4.27) 
Substitution of Equations (4.26) to (4.27) in the error Equations (4.11) to (4.15) and target systems results in a hyperbolic equation and boundary condition for the kernel K and a differential-algebraic system of equation and boundary condition for γ. Thus, existence of a transformation T u in the form of Equation (4.27) is guaranteed by the existence of a solution to the hyperbolic PDE and DAE systems, which is addressed in Lemma 4.3.1 and Lemma 4.3.2. Invertibility is given by invertibility of T O , the triangular structure of the pair given by Equations (4.29) to (4.30) and the fact that the part of the operator T u acting on w is a second-kind Volterra integral. To ensure stability of the target system, the eigenvalues of F are selected with negative real part and σ is chosen positive, satisfying

σ ≤ 2 β b -a . ( 4.28) 
Once the eigenvalues of F and the value of σ are chosen, there is a unique value for the observer gains L and l n , permitted for consistency of the transformations. These are the observer gains that guarantee the convergence of the estimate to the unknown system states x and u; are presented next in Theorem 4.3.1.

Main Result Theorem 4.3.1

Let the premises in assumptions A1 and A2 hold. Consider the estimation error system (4.11)-(4.15), and a similarity transformation T O ∈ R n×n that maps Equations (4.1) to (4.2) to observer canonical form in Equations (4.16) to (4.17).

Let the ODE observer gain L ∈ R n×1 be chosen such that the eigenvalues µ i , i ∈ {1, . . . , n} of the companion matrix F ∈ R n×n in Equation (4.22), defined as

F = A O -L O H O (4.29) L = T O L O (4.30)
have negative real part, and the PDE observer gains l n+1 ∈ L 2 (a, b), l n+2 ∈ R, and l n+3 ∈ R computed from

l n+1 (r) = γ 1 (r) + n -1 r γ 1 (r) - n ∑ i=1 (γ i (r) -γ i (a)) f i (4.31) 
for r ∈ (a, b), and

l n+2 = γ 1 (a) -d 1 , l n+3 = γ 1 (b) (4.32) 
where γ i (r), i ∈ {1, . . . , n}, is the solution of a differential-algebraic system of equations

K s (r, a) + β - σ 2 (b -a) - m -1 a K(r, a) + n ∑ i=1 (γ i (r) -γ i (a)) b i = 0 (4.33)
for r ∈ (a, b), and

r m-1 d dr r m-1 d dr γ 2 (r) = γ 1 (r) -γ 1 (a), r m-1 d dr r m-1 d dr γ 3 (r) = γ 2 (r) -γ 2 (a), . . . . . . . . . r m-1 d dr r m-1 d dr γ n (r) = γ n-1 (r) -γ n-1 (a), (4.34) 
for r ∈ (a, b), with boundary conditions

γ i (a) = d i , γ i (b) = 0, (4.35) 
for all i ∈ {2, . . . , n}, where b i are the coefficients of B O and d i are the coefficients of D O = DT O . In Equation (4.33), K ∈ L 2 (T ) is the solution to a second-order hyperbolic equation

               1 r m-1 r m-1 K r (r, s) r -s m-1 K(r, s) s m-1 s s = - σ K(r, s)
with boundary conditions

K(r, r) = σ 2 (r -b) K r (b, s) = 0 (4.36)
with σ positive, chosen as

µ ≤ σ ≤ 2 β b -a (4.37) µ = min i∈{1,2,...,n} {|µ i |} . ( 4.38) 
This choice of observer gains guarantees that estimation error system is exponentially stable, that is

x(t) 2 ≤ κ 1 exp(-µt) ( x 0 2 + u 0 H 1 ) (4.39) u(•, t) L 2 ≤ κ 2 exp(-µt) ( x 0 2 + u 0 H 1 ) (4.40) 
for some positive κ 1 , κ 2 .

Proof : The stability is then verified with Lyapunov-like functions

V 1 (t) = 1 2 b a w 2 (t, r)r m-1 dr (4.41) V 2 (t) = θ 2 w(t, a) 2 a m-1 + 1 2 b a w 2 r (t, r)r m-1 dr (4.42) with θ = β - σ 2 (b -a) (4.43) 
which satisfies θ > 0, according to the condition (4.28). The time derivatives of V 1 (t) and V 2 (t) along the trajectories of the w-system (4.23)-(4.25), satisfy

dV 1 dt (t) ≤ -2V 1 (t) (4.44) dV 2 dt (t) ≤ -2σV 2 (t). (4.45) 
From the comparison principle

V 1 (t) ≤ exp [-2σt] V 1 (0) (4.46) V 2 (t) ≤ exp [-2σt] V 2 (0) (4.47) 
and consequently,

w(•, t) L 2 ≤ exp [-σt] w 0 L 2 (4.48) |w(t, a)| ≤ exp [-σt] (|w 0 (a)| + k 1 (w 0 ) r L 2 ) (4.49) 
with

k 1 = a -(m-1) 2 √ θ (4.50) consequently |w(t, a)| ≤ k 2 exp [-σt] w 0 H 1 (4.51) 
with k 2 = max{1, k 1 }. The observer gain L = [l 1 , l 2 , . . . , l n ] T is chosen via pole placement. That is, given a set of n complex-valued numbers {µ 1 , µ 2 , . . . , µ n } with nega- tive real parts, it is always possible to find L such that the eigenvalues of F = A -LH, are exactly {µ 1 , µ 2 , . . . , µ n }. From the variation of constants formula

z(t) = exp[Ft] z 0 + t 0 exp[F(t -τ)]Bw(a, τ)dτ. ( 4.52) 
Then, there exists k 3 > 0, such that the norm of the state x(t) is bounded as follows

z(t) 2 ≤ k 3 exp[-µt]| z 0 | 2 + k 3 B 2 t 0 exp[-µ(t -τ)]|w(a, τ)|dτ (4.53)
with µ = min i∈{1,2,...,n} {|µ i |}. From (4.28), it follows that σ > µ > 0, and therefore

z(t) 2 ≤ k 3 exp[-µt] z 0 + k 2 k 3 σ -µ exp[-µt] B 2 w 0 H 1 . (4.54) 
The inequalities (4.48), (4.51) and (4.54) imply that the zero solution of the target system (4.21),(4.23)-(4.25) is stable, with exponential bounds

w(•, t) L 2 ≤ exp [-σt] w 0 L 2 (4.55) | z(t)| 2 ≤ k 3 exp[-µt]| z 0 | 2 + k 4 exp[-µt] w 0 H 1 (4.56) with k 4 = k 2 k 3 σ -µ B 2 . ( 4.57) 
Finally, since the transformation T O and the second-kind Volterra integral part of T u are bounded and invertible, [START_REF] Kailath | Linear systems[END_REF] and [START_REF] Hochstadt | Integral equations[END_REF] together with the fact that (4.26)-(4.27) has a triangular structure, imply the existence there exists positive κ 1 , κ 2 , such that

x(t) 2 ≤ κ 1 exp(-µt) ( x 0 2 + u 0 H 1 ) u(•, t) L 2 ≤ κ 2 exp(-µt) ( x 0 2 + u 0 H 1 ) .
The well-posedness of the DAE (4.34) and the hyperbolic PDE (4.36) are studied in next two lemmas.

Lemma 4.3.1

There is a unique L 2 (T ) solution to the hyperbolic equation (4.36).

Proof : A solution to hyperbolic system can be found following the procedure described in [START_REF] Vazquez | Boundary control and estimation of reactiondiffusion equations on the sphere under revolution symmetry conditions[END_REF] for kernel equations required for stabilization of diffusion equations in spherical domain, or the procedure described in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF], for kernel equations required for stabilization of diffusion equations with spatially-variable diffusion coefficients.

Lemma 4.3.2

The system of differential algebraic equations (DAE), (4.34) with boundary conditions (4.35) and by the algebraic equation (4.33), has a unique solution γ i (r) ∈ L 2 (0, 1), i ∈ {1, . . . , n}.

Proof : Define

γ i (r) = γ i (r) -γ i (a) (4.58) 
for i ∈ {1, 2, . . . , n}. Consider the regular Sturm-Liouville [START_REF] Zettl | Sturm-liouville theory[END_REF] problem

             d dr r m-1 d dr φ k (r) = -λ k φ k (r)r m-1
for r ∈ (a, b), with boundary conditions

φ k (a) = 0 φ k (b) = 0 (4.59)
for r ∈ (a, b), with k ∈ N. The solution to (4.59) is available as an analytic expression [94]

φ k (r) = c k r -v J v (µ k r) -r -v J v+1 (µ k a) Y v+1 (µ k a) Y v (µ k r) (4.60) 
with v = m 2 -1. The values µ k ∈ R, k ∈ N are the solutions to the equation

P v+1 (µ k a, µ k b) = 0 (4.61)
where P v is the difference of cross-products of first and second-kind Bessel functions [95]

P v (x, y) = J v (x)Y v (y) -J v (y)Y v (x). (4.62) 
The eigenvalues λ k , k ∈ N of the Sturm-Liouville problem (4.59) are 

λ k = µ 2 k . ( 4 
i , i ∈ {1, 2, • • • , n} in terms of the basis φ k ∈ C ∞ (a, b), that is γ i (r) = ∞ ∑ k=0 p i,k φ k (r). (4.64) 
One can verify that

n ∑ i=1 p i,k = -z k (4.65) 
with

z k = - b a K s (r, a) + β - σ 2 (b -a) - m -1 a K(r, a) × φ k (r)r m-1 dr (4.66)
and

λ k p m + p i-1,k = -a m-1 d i φ k (a). (4.67) 
For each k ∈ N, the n -1 algebraic equations (4.67) together with the equation (4.65) result in a n-dimensional algebraic system that one needs to solve in order to compute {q 1,k , q 2,k , • • • , q n,k }. In other words, the coefficients in the series (4.64) should satisfy an infinite sequence of n-dimensional linear systems

       λ k 1 • • • 0 0 0 λ k • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • λ k 1 b n b n-1 • • • b 2 b 1               p n,k p n-1,k . . . p 2,k p 1,k        =        β k d n β k d n-1 . . . β k d 2 z k        (4.68)
where β k =a m-1 φ k (a). Note that the generalized Fourier coefficients define a function uniquely in the space of definition, that is L 2 [a, b], r m-1 dr , for that reason, a unique solution of the algebraic system in the is a necessary and sufficient condition for the existence of a solution. Define

D(ξ) = det                   ξ 1 0 • • • 0 0 0 ξ 1 • • • 0 0 0 0 ξ • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 • • • ξ 1 b n b n-1 b n-2 • • • b 2 b 1                   (4.69) = b n + b n-1 ξ + b n-2 ξ 2 + • • • + b 2 ξ n-2 + b 1 ξ n-1 . ( 4.70) 
The sequence of linear systems (4.68) has a unique solution q i,k , with i ∈ {1, 2, . . . , n}, k ∈ N, if and only if D(λ k ) = 0, for all k ∈ N. This condition is related to the observability of the coupled system, since it defines a cancellation between the spectral values of the PDE and zeros of the ODE. This condition appears in Assumption 2.

Numerical case study

Coupled model

The finite-dimensional part of the following model is an adaptation from [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF] and we present the following modification to isolate the drillstring and the annular regions into two separate control volumes. A particular treatment of the boundary condition is presented to account for the liquid influx while the reservoir PDE is described in Chapter 2. The model derives from the first principles and the mass conservation equations for the control volumes drillstring ds and annulus ann, as shown in the Figure 4.1, reads

V ds β ds dp p (t) dt = q p (t) -q d (t) (4.71) 
V ann β ann dp c (t) dt = q a (t) -q c (t) (4.72)
where V is the control volume and β the bulk modulus of the liquid. We assume a constant liquid density ρ 0 , same as [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF]. The subscripts for the volumetric flow rate q(t) denotes the corresponding location (with reference to the schematic 4.1). The fluid flow rate entering the annulus, from both the drillstring and the reservoir satisfies the continuity relation

q a (t) = q d (t) + q res (t). (4.73) 
The momentum balance using the linearized frictional pressure loss 1 function (1.32), for the drillstring control volume, for a wellbore of depth h L reads

M ds dq d (t) dt = p p (t) -p d (t) -F ds (q d (t)) + ρ 0 gh L . (4.74)
Representing the pressure at the bottom of the drillstring p d (t) as a sum of pressure losses in the annulus and across the drill bit gives

M ds dq d (t) dt = p p (t) -p c (t) -F ann (q d (t) + q res (t)) -F ds (q d (t)) -∆p bit (t) (4.75)
where the pressure loss across the bit is given by

∆p bit (t) = ρ 0 2c 2 d A 2 n q 2 d (t). (4.76) 
We consider here the influx q res (t) = ξ p r (t, r w ) given by the distributed reservoir pressure model (2.1). To preserve the structure of the observer design, we denote the states of the finite dimensional subsystem as the perturbed 2 dynamics of (4.71), (4.72) and (4.75) around the steady state values for the choke opening Zc , e.g. δp c = p cpc . We can then write

x(t) = [δp c (t), δp p (t), δq d (t)] . (4.77) 
Defining the variable change ϕ(t, r) = p(t, r)p(t, r), the PDE subsystem that governs the dynamics of the reservoir pressure profile is given by ϕ(t, r) for r ∈ [r w , r e ].

The model takes the following form dx(t) dt = Ax(t) + Bϕ(t, r w ) (4.78)

y(t) = Hx(t) (4.79) ϕ t (t, r) = a r (rϕ r (t, r)) r (4.80) ϕ r (t, r w ) = βϕ(t, r w ) + Dx(t) (4.81) ϕ r (t, r e ) = 0 (4.82) 
where

A =   a 0 0 0 0 0 a 1 0 a 2 a 3   , B =   b 0 0 b 1   , (4.83) 
D = d 0 0 d 1 . (4.84) 
Definition of the matrix elements and the intermediate variables are given in Table 4.1 and the physical parameters are given in Table 4.2. Two measurements are typically available on drilling facilities, namely pump and choke pressure, which 1 assuming a constant area for each control volume, the Equation (1.32) is valid and the area corresponds to the subscripts, e.g. for F ds (q) we use the area of drillstring to calculate velocity corresponding to the flowrate q.

2 setting α g ≡ 0 in the choke equation (1.25) and linearizing around the steady state operating point Zc will linearize (4.72). Equivalently (4.76) can be linearized around qd . yields

H = 1 0 0 0 1 0 . ( 4.85) 
These two measurements are required to make the pair (A, H) observable. Thus, the design of Section 4.2 has to be slightly adapted to account for multiple outputs. They pose no difficulty using a block observer canonical form (see Appendix C), since the presence of multiple outputs only adds degrees of freedom to estimate the state of the scalar PDE.

Simulations

A test case, where the opening of the choke valve is increased suddenly, is considered here to illustrate the results. This leads to reduction of the pressure at the bottom of the wellbore and thus result in an influx from the reservoir. Figure 4.2 shows the comparison between the influx from the plant, the influx estimated by the an observer, with multiple tunings. A comparison with the open-loop simulation has appeared in [START_REF] Camacho-Solorio | Observer design for a coupled ODE-PDE system from a wellbore reservoir drilling model[END_REF].

Although the stability of the dynamics ensures that the latter provides an asymptotic estimate of the influx, it is desirable to speed up the convergence thanks to an observer. Indeed, the time-scale of the reservoir dynamics is much slower than that of the wellbore dynamics [START_REF] Velmurugan | Transient modelling of influx and observer implementation for estimation while drilling[END_REF]. We include normally random noise to the measurement signal and use a static time-step Linear Quadratic Regulator to design the observer gains. It can be observed from the Figure 4.2 that the desired performance is a trade-off between noise amplification, undesirable over-shoots and convergence speed. In this chapter, we describe the observer design for the coupled system that contains distributed dynamics for wellbore and reservoir given by the set of hyperbolic PDEs (1.28) and parabolic PDE (2.1) respectively. We investigate two potential scenarios. In the first one, mesurement of both the topside annulus pressure and BHCP are available. The observer design then relies on existing results from the literature. We then present the main contribution of this chapter : an observer design for the case where only the topside measurement is available. It relies on a novel backstepping transformation, where some of the kernels satisfy hyperbolic PDEs on triangular domains, while one kernel satisfies a diffusion equation on a square domain. The well-posedness of this system is assessed combining successive approximations and Green's functions.

Element Definition Element Definition

a 0 - β ann V ann A a D 2 a 32µh L + K c Zc 2ρ 0 ( pc -p 0 ) a 1 - β ds V ds a 3 - 32µh L M ds A d D 2 d + ρ 0 qd M ds c 2 d A 2 n a 2 1 M ds b 0 β ann V ann A a D 2 a 32µh L b 1 - 1 M ds d 0 - A a D 2 a 32µξh L d 1 - 1 ξ M ds ρ 0 h L A d β - d 0 ξ

Observer design

In this section we consider the influx q res (t) = ξ p r (t, r w ) given by the distributed reservoir pressure model (2.1). Defining the variable change ϕ(t, r) = p(t, r)p(t, r) and using the Equations (2.2), (3.3) The structure of the bi-directional coupling can be explained as follows : the downward travelling pressure wave 'v' influences the flux out of the reservoir and reflects into the upward travelling pressure wave 'u'. This interconnection has a feedback structure that potentially generates instability. It is the case, e.g. when the pressure in the wellbore is significantly decreased by an influx of gas from the reservoir, since a larger pressure differential increases the flux. However, for the case considered here of a liquid influx, instability is unlikely as the density of the oil from the reservoir is very close to that of the drilling mud. We now present two different ways of designing an observer to estimate the reservoir influx depending on the availability of downhole measurements.

Design with two measurements

In this section, we assume that choke pressure and BHCP measurements are available to estimate the influx from the reservoir. More precisely, we assume that we measure y c (t) = c 1 u(t, 1) + c 2 v(t, 1) → a measure of p c (t)

(5.9) y b (t) = ϕ(t, r w ) → a measure of BHCP(t).

(5.10) Equation (5.10) is valid under the following assumption2 :

A1 The boundary shared between the wellbore and the reservoir is at mechanical equilibrium during the period of study.

Wellbore observer

Measuring the BHCP allows one to decouple the reservoir and wellbore dynamics and design two separate observers. More precisely, the wellbore dynamics read v(t, 1) = Θu(t, 1) (5.11) The effective reflection coefficient Θ is a function of the linearization points of the choke equation that reads

u t (t, x) + C l u x (t, x) = σ ++ (x)u(t, x) + σ +-(x)v(t, x) (5.12) v t (t, x) -C l u x (t, x) = σ -+ (x)u(t, x) + σ --(x)v(t, x) (5 
Θ = Θ -c 1 1 + c 2 .
(5.23)

The design parameter provides a freedom to choose the influence of measurements and the observed states --higher amplifies measurement noise. It is possible to change the value of according to the choke opening to maintain a constant effective reflection coefficient Θ throughout the operation, but a time-dependent coefficient induces additional dynamics that may lead to instability. Importantly, a necessary and sufficient condition for the stability of the system Σ is that Θ satisfy

-1 < Θ < 1. (5.24)
Rather, it is possible to map the value of Θ throughout the operating range and chose a constant epsilon that ensures that Equation (5.24) is satisfied for all values of Z c . This point is illustrated in Figure 5.1. Setting Θ close to zero yields a rapidly converging observer. The observer gains P + (x) and P -(x) are found by using standard backstepping approach [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] This is done by mapping the error system on to a target system whose stability can be guaranteed. We choose the target system Σ T that reads β(t, 1) = Θα(t, 1) (5.25) α t (t, x) + C l α x (t, x) = σ ++ (x)α(t, x)

(5.26)

β t (t, x) -C l β x (t, x) = σ --(x)β(t, x)
(5.27) α(t, 0) = β(t, 0).

(5.28)

The mapping is achieved using invertible transformations that are functions of Volterra integrals. We choose the following change of variables u(t, x) = α(t, x) -

1 x P uu (x, ξ)α(ξ, t)dξ - 1 x P uv (x, ξ)β(ξ, t)dξ (5.29) v(t, x) = β(t, x) - 1 x P vu (x, ξ)α(ξ, t)dξ - 1 x P vv (x, ξ)β(ξ, t)dξ (5.30)
The observer gains P + (x) and P -(x) satisfy P + (x) = ΘC l P uv (x, 1) -C l P uu (x, 1)

c 1 + Θc 2 (5.31)
P -(x) = ΘC l P vv (x, 1) -C l P vu (x, 1)

c 1 + Θc 2 .
(5.32)

where P uu , P uv , P vu and P vv are the backstepping Kernels that satisfy a set of hyperbolic PDEs given by -C l P uu ξ (x, ξ) + C l P uu x (x, ξ) + σ ++ (x)σ ++ (ξ) P uu (x, ξ) + σ +-(x)P vu (x, ξ) = 0 (5.33) -C l P vu ξ (x, ξ) -C l P vu x (x, ξ) + σ --(x)σ ++ (ξ) P vu (x, ξ) + σ -+ (x)P uu (x, ξ) = 0 (5.34)

C l P uv ξ (x, ξ) -C l P uv x (x, ξ) + σ ++ (x) -σ --(ξ) P uv (x, ξ) + σ +-(x)P vv (x, ξ) = 0 (5.35) C l P vv ξ (x, ξ) + C l P vv x (x, ξ) + σ --(x) -σ --(ξ) P vv (x, ξ) + σ -+ (x)P uv (x, ξ) = 0 (5.36)
satisfying the following boundary conditions that read 

P uv (x, x) = σ +-(x) 2C l , P vu (x, x) = - σ -+ (x) 2C l . ( 5 

Reservoir observer

As a second step, we consider a subsystem that governs the reservoir dynamics only, that reads We note from Lemma (5.2.1) that the term v(t, 0) acts as a vanishing disturbance to (5.44)- (5.46). We first study the unperturbed dynamics and design l(r) such that they are exponentially stable. We do so by mapping them to the following stable Through standard backstepping approach, it can be seen that the observer gains l 1 and l(r) satisfy γ + L(r w , r w ) -Kl 1 = 0 (5.51) -aL y (r, r w ) + (aK + λ(r w ))L(r, r w ) + l(r) = 0 (5. 

Stability of the combined observer

Modifying the backstepping transformations such that the entire wellbore-reservoir state is mapped to a stable target system induces nonlinear, nonlocal relations between the backstepping kernels, which severely complicates the proof of their wellposedness. The simulations in section 5.2.3 shows that the considered coupled system is stable. However, to theoretically guarantee the exponential stability, slight modifications in the topside measurement is considered. Details are in Section 5.3.

Numerical simulations

We consider various industry relevant scenarios to study the performance and robustness of this combined observer design. Table 5.1 summarizes the simulation parameters.

Drilling into a high pressure pocket. During drilling, it is common to encounter pockets of hydrocarbons with higher pressure than anticipated. Drilling into such zones will lead to an influx. We present here a case where a section with known reservoir pressure is drilled using MPD and a high pressure pocket is encountered at 5 s. The pressure within the pocket is considered to be 50% higher than that of the anticipated. As depicted on Figure 5.2, the observer successfully estimates the influx, while no influx is detected in the absence of an observer (i.e. in open loop). The near wellbore reservoir pressure distribution is also estimated by the observer as shown on Figure 5.3. Interestingly, the reservoir pressure is poorly estimated away from the wellbore but this does not affect the influx estimation. In presence of transients. During MPD operation, there are instances when the choke opening is varied rapidly in order to maintain the required BHCP. We present the case here with an over estimation of the reservoir and wellbore parameters to emulate the uncertainty of these parameters in practice, inclusive of transients introduced by the choke variations. The perturbation of wellbore states from the steady state profile, reservoir pressure and permeability are assumed to be overestimated by 10% each and Z c varied from 0.8 to 0.4 in 1 s. Despite the uncertainty in the reservoir and wellbore parameters, the observer successfully estimates the influx and the near wellbore reservoir pressure distribution as depicted in Figures 5.4 and 5.5 respectively.

Rather, changing the form of measurement used to design the observer leads to a well-posed observer design for the coupled wellbore-reservoir dynamics. The design is detailed in the following section. 

Topside sensing

We now propose an observer design that relies on topside measurement only. Again, we propose a Luenburger-like observer that is an exact copy of the plant Σ with output error injection terms. For readability purposes, we assume that the measurement 3 is The state estimates are solution of the observer system Σ that reads v(t, 1) = Θu(t, 1) (5.58)

y(t) = u(t,
u t (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x) + p u (x)(y(t) -u(t, 1)) (5.59) v t (t, x) -C l v x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x) + p v (x)(y(t) -u(t, 1)) (5.60) u(t, 0) = v(t, 0) + ϕ(t, r w ) C l (5.61) ϕ r (t, r w ) = - δq b ξ + θ v(t, 0) + γ ϕ(t, r w ) (5.62) ϕ t (t, r) = a ϕ rr (t, r) + λ(r) ϕ r (t, r) + p(x)(y(t) -u(t, 1)) (5.63) ϕ r (t, r e ) = -d 0 .
(5.64)

The observer gains p u (x), p v (x) and p(x) are yet to be defined. The objective is to find these observer gains such the solution to the error system converges exponentially to zero, ie., the estimated states converge to the real value exponentially over time. State error is the difference between the real and estimated values of the system states. They are represented as a solution to the error system Σ that reads v(t, 1) = 0 (5.65)

u t (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x) -p u (x) u(t, 1) (5.66) v t (t, x) -C l v x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x) -p v (x) u(t, 1) (5.67) u(t, 0) = v(t, 0) + ϕ(t, r w ) C l (5.68) ϕ r (t, r w ) = γ ϕ(t, r w ) + θ v(t, 0) (5.69) ϕ t (t, r) = a ϕ rr (t, r) + λ(r) ϕ r (t, r) -p(x) u(t, 1)
(5.70) ϕ r (t, r e ) = d 0 .

(5.71) ). The black boundaries of the domain all correspond to boundary conditions for the kernels. Finally, the blue boundaries and arrows denote the "output" of these equations, i.e., the observer gains. The Equations are solved "from bottom to top" on this diagram.

due to the coupling between a parabolic and a hyperbolic PDE in the observer error equations. Interestingly, adding terms in β in the backstepping transformation as suggested in Remark 5 would yield a similar kernel equation but with an opposite sign in front of the M y term, i.e. an ill-posed parabolic operator with infinitely many unstable eigenvalues.

Well-posedness of the kernel equations

The structure of the kernel equations is as described on Figure 5.6. Notice first that (5.90)-(5.92) have been widely studied, e.g. in [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] where their well-posdeness has been established. Thus, there exists a solution L(r, s) for r, s ∈ T r given by r w ≤ s ≤ r ≤ r e . We now define G as the Green's function associated to the following mixed initial-boundary value problem 

N y (r, y) = a C l r (rN r ) r (r, y) -σ ++ (y)N(r, y) (5 

Conclusion and perspectives

Le problème étudié dans ce manuscrit est l'estimation de la pression et du débit de l'influx du réservoir en temps réel, pendant des opérations de type MPD. Nous avons étudié des influx de gaz et de liquide depuis la formation poreuse et les dynamiques mono-et diphasique qui en résultent dans le puits. Les solutions proposées sont basées sur des modèles qui prennent en compte la nature distribuée de la dynamique, à la fois dans le réservoir et le puits. Les modèles distribués ont fait l'objet de nombreuses publications en ce qui concerne la dynamique du puits [START_REF] Aarsnes | Modeling of two-phase flow for estimation and control of drilling operations[END_REF], [START_REF] Nygaard | Bottomhole pressure control during drilling operations in gas-dominant wells[END_REF], [START_REF] Evje | Hybrid flux-splitting schemes for a two-phase flow model[END_REF]. Une contribution originale de ce manuscrit est la conception d'un schéma numérique adpaté à deux aspects particulièrement importants en MPD: la géométrie variable des conduits, ainsi que le traitement des conditions frontières. Une mauvaise prise en compte des variations de la surface de la section du puits peut conduire à de grandes erreurs d'estimation de la pression de fonds, qui est une variable clé de ce procédé. Par ailleurs, les conditions frontières ont un rôle prédominant dans la dynamique des systèmes de MPD, ne serait-ce qu'à la frontière correspondant à la position de l'actionneur, à savoir la vanne de régulation. Des améliorations de ce modèle sont encore possible, sans porter atteinte à la structure du modèle ni à son schéma de résolution numérique. En particulier, l'implémentation d'une loi de glissement permettant la transition entre écoulement mono-et diphasique, telle que celles de [START_REF] Evje | Hybrid flux-splitting schemes for a two-phase flow model[END_REF], [START_REF] Aarsnes | Control-oriented drift-flux modeling of single and two-phase flow for drilling[END_REF], pourrait faire l'objet de contributions futures. De manière importante, les modifications futures du modèle peuvent être rapidement transféré vers le partenaire industriel grâce à l'intégration du modèle dans le cadre de développement de Kelda Drilling Controls.

L'étude des phénomènes de diffusion transitoires dans la région du réservoir proche du puits est une contribution originale de ce manuscrit. Un modèle, basé sur de simples équations de conservation et la loi de Darcy est décrit, ainsi qu'un schéma numérique permettant d'en calculer les solutions. La comparaison avec l'état-de-l'art des modèles utilisés pour la caractérisation de réservoirs montre d'importantes différences pendant les transitoires, qui peuvent être prédominants dans les opérations de MPD. Malgré la compressibilité a priori beaucoup plus importante du gaz par rapport au liquide, les simulations numériques présentées ici ne semblent pas conclure à un comportement hautement non-linéaire dans aucun des cas. Ce point mérite d'être examiné en plus de détails, mais il est encourageant quant à l'utilisation des observateurs synthétisés dans les Chapitres 3-5, et qui se basent sur des modèles linéaires du réservoir. Les améliorations à apporter au modèle du réservoir sont de multiple nature. D'une part, il est nécessaire de prendre en compte l'hétérogénéité verticale du réservoir le long de la section ouverte du puits. Cela pourrait être accompli en considérant des tranches de réservoir comme dans [START_REF] Nygaard | Nonlinear model predictive control scheme for stabilizing annulus pressure during oil well drilling[END_REF], [START_REF] Hunt | Multilayer reservoir model enables more complete reservoir characterization during underbalanced drilling[END_REF] ou une équation de diffusion à deux dimensions d'espace, comme suggéré dans [START_REF] Dake | Fundamentals of reservoir engineering[END_REF]. D'autre part, il y a la nécessité de mettre au point un modèle couplé gaz-liquide de l'influx.

Afin d'estimer le débit entrant de liquide depuis le réservoir, et son impact sur la dynamique du puits, nous nous sommes appuyés sur des avancées récentes en synthèse d'observateurs pour les systèmes linéaires de dimension infinie et, en particulier, la méthode du backstepping. Nos contributions se reposent majoritairement sur des mesures de surface. Nous avons considéré différentes combinaisons de modèles distribués ou agrégés, à la fois pour le réservoir et le puits.

Quand une simple relation de type CTRS est considéré avec la dynamique distribuée du puits, il en résulte un phénomène de transport dans le puits avec un coefficient frontière de réfection des ondes temps-variant. Nous avons proposé un observateur consistant en une copie du système augmentée par des termes d'injection d'erreur de sortie et des gains d'observateurs dépendant du temps. Nous montrons que la dynamique de l'erreur d'observation converge vers zéro en utilisant la méthode standard du basktepping, avec un noyau dépendant du temps.

Une autre possibilité est d'utiliser un modèle réduit pour le puits, mais de conserver la nature distribuée du réservoir. Cela mène à un résultat intéressant sur l'observabilité des systèmes couplés EDO-EDP de diffusion. En effet, l'existence d'une transformation de backstepping est équivalente, dans ce cas, à la condition d'observabilité spectrale de l'EDP à travers l'EDO : les zéros de transmission de l'EDO ne doivent pas coïncider avec les valeurs propres de l'opérateur de diffusion de l'EDP.

Enfin, quand les deux dynamiques distribuées sont retenues, nous présentons un nouvel observateur qui permet l'estimation de tous les états distribués à partir d'une seule mesure de surface. A la différence des EDO, les EDP hyperboliques couplées n'ont pas de zéros de transmission et la seule restriction de cette synthèse est la vitesse de convergence du système d'erreur. Bien que l'observateur présenté ici ne soit valable que pour deux équations hyperboliques linéaires, nous sommes convaincus qu'il pourra s'étendre, avec un nombre approprié de sorties mesurées, à un modèle d'écoulement dipahsique, c'est-à-dire à trois (ou plus) équations de transport, de manière similaire à l'extension de [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system[END_REF] vers [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF], [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF], ou de [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] vers [START_REF] Vazquez | Boundary control of coupled reaction-diffusion systems with spatially-varying reaction[END_REF]. Cette extension sera cruciale pour envisager l'estimation de dynamiques de réservoir pendant un influx de gaz, qui est de loin l'application industrielle la plus pertinente de ces recherches.

The problem under consideration in this manuscript is the estimation of the pore pressure and influx flow rate in real-time during MPD operations. We study both gas and liquid influxes from the formation and the resulting dynamics--single or multiphase flow--inside the wellbore.

The proposed solution relies on models taking into account the distributed nature of the dynamics, both in the reservoir and in the wellbore. Distributed models have been the topic of many contributions for dynamics inside the annulus [START_REF] Aarsnes | Modeling of two-phase flow for estimation and control of drilling operations[END_REF], [START_REF] Nygaard | Bottomhole pressure control during drilling operations in gas-dominant wells[END_REF], [START_REF] Evje | Hybrid flux-splitting schemes for a two-phase flow model[END_REF]. An original contribution presented in this manuscript is the design of a numerical scheme handling two aspects that may have a significant impact in MPD: the variable geometry of the pipes, as well as the treatment of the boundary conditions. Failing to take into account variations in the cross-sectional area of the pipe may lead to poor estimation of BHCP, which is a crucial variable. Besides, boundary conditions have a predominant role in the dynamics of MPD systems, if only at the location of the actuator, namely the MPD choke valve. Improvements to this model can be made without modifying the structure of the model or the numerical scheme. In particular, the implementation of a slip law enabling the transition between singlephase liquid flow and two-phase flow, as in [START_REF] Evje | Hybrid flux-splitting schemes for a two-phase flow model[END_REF], [START_REF] Aarsnes | Control-oriented drift-flux modeling of single and two-phase flow for drilling[END_REF] should be considered in future work. Importantly, modifications to the model can now be transferred to the industrial partner of the HYDRA project, thanks to the integration of the model in Kelda Drilling Control's framework.

The study of the diffusion phenomena in the near-wellbore region of the reservoir is an original contribution of this manuscript. A model, based on simple first principles and Darcy's law is described, along with an appropriate numerical scheme. The comparison with state-of-the-art models used for reservoir characterization shows discrepancies during transients, which are likely to occur in MPD operations. Despite the much higher compressibility of gas with respect to liquid a priori, the simulations conducted for this manuscript do not exhibit highly nonlinear behavior in either case. While this point needs to be further examined, it is encouraging as the observers designed in Chapters 3-5 rely on linearized reservoir dynamics. The improvements to be made to the reservoir models are two-fold. First, their is a need to take into account the vertical inhomogeneity of the open region of the wellbore into account. This could be done by considering layers of reservoir as in [START_REF] Nygaard | Nonlinear model predictive control scheme for stabilizing annulus pressure during oil well drilling[END_REF], [START_REF] Hunt | Multilayer reservoir model enables more complete reservoir characterization during underbalanced drilling[END_REF] or a two-dimensional diffusion equation as suggested in [START_REF] Dake | Fundamentals of reservoir engineering[END_REF]. Second, a model of gas and liquid flow entering the wellbore should be derived.

To estimate the flow rate of liquid from the reservoir and its impact on the wellbore dynamics, we rely on recent advances in linear infinite-dimensional system observer design and, in particular, on the backstepping method. Our contributions rely solely on topside sensing. We consider various combination of distributed and simplified models for both the wellbore and the reservoir dynamics.

When a simplified CTRS relation is considered with the distributed dynamics of the wellbore, it translates in a transport phenomenon in the wellbore with a time varying reflection co-efficient. We propose an observer consisting of a copy of the system with output error injection terms and time-varying observer gains. The observer error dynamics are proved to converge to zero using a standard backstepping tool -a Volterra transformation mapping it to a stable target system, with a timevarying kernel.

Another option is to use a reduced-order model for the wellbore, but to retain the distributed nature of the reservoir pressure dynamics. This leads to an interesting result on the observability of coupled diffusion PDE-ODE systems. Indeed, the existence of a backstepping transformation is, in that case, equivalent to the spectral observability of the PDE through the ODE's dynamics: the transmission zeros of the ODE must not lie on eigenvalues of the PDE diffusion operator.

Finally, when both the distributed dynamics of the wellbore and observer are considered, we present a novel design enabling estimation of all distributed states with a single topside measurement. Contrary to ODEs, coupled hyperbolic PDEs have no transmission zeros and the only restriction in the design lies in the convergence speed of the error system. While the presented design only works for two linear hyperbolic PDEs representing the wellbore dynamics, we strongly believe that it will extend, with an appropriate number of measurements, to a model of two-phase flow, i.e. to three (or more) transport PDEs, similarly to the extension of [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system[END_REF] to [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF], [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF] or [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] to [START_REF] Vazquez | Boundary control of coupled reaction-diffusion systems with spatially-varying reaction[END_REF]. This extension will be crucial to envision estimation of reservoir dynamics during a gas kick, which is by far the most relevant industrial application. are extended as coding progresses, issues are discovered and the code is subjected to refactoring. Only when all the tests for all the demanded features pass, the code is considered complete. An assert statement is an integral part of the TDD, which is a statement that checks if a certain condition is met. If the condition of the assert statement is not met, the test is considered as a failure. To understand the test framework, the reader is introduced to certain features of the object oriented programming (OOP) in the following section.

A.2 Object oriented programming

Object-oriented programming (OOP) is a programming paradigm based on the concept of 'objects', which can contain data, in the form of fields (often known as attributes), and code, in the form of procedures (often known as methods). In OOP, computer programs are designed by making them consist of objects that interact with one another. OOP languages are diverse but are class-based, meaning objects are instances of classes, which also determine their types.

A.2.1 Class and objects

Programming languages that support OOP typically use inheritance for code reuse and extendability in the form of class and objects:

• Class is the definition of the data format of the variables, and the functions that are defined for the class variables.

• Object is an instance of a class. In other words, when an object of a class is defined, it incorporates the attributes (variables) and methods (functions) of the definition class. For example, apple and orange can be considered as objects of the class fruits.

A.2.2 Encapsulation

Data encapsulation is an important feature of OOP, in which the accessibility to the data within the class is clearly defined. This allows the data to be secured and not altered from outside the definition of the class. Three encapsulation features available in OOP are private, where the data can be accessed only within that class, protected, where the data can be accessed within that class and the subclass and public which provides global access to the defined variables. Subclass is a class that is one step below in hierarchy to the master class (in C++, an OOP language), which by definition inherits all the attributes and methods that are defined as protected. We now present the framework maintained at Kelda.

A.2.3 Kelda test framework

Since MPD operations are safety critical in nature, a robust framework to test the control system is necessary. When an MPD control system is developed there are typically three main phases of development and testing from design to field operation as illustrated in Figure A.1. First, in the design phase frequent iterations and tests based on the design models are performed. The second phase is the verification phase. In this step, the MPD system is tested on a software platform, called as software in the loop (SIL). This phase could include tests performed in a flow loop setup, i.e., an emulated well with real hardware and piping, which is known as hardware in the loop (HIL). In general, flow loop tests are performed prior to the first fielding of the MPD system, but not necessarily in subsequent upgrades. The advantage of the flow loop test is that the hardware and software are tested and verified together. If the MPD system fails the verification, it is necessary to go back to the design phase. Third, if the verification phase is passed, the MPD control is ready for field operations. Prior to drilling, the MPD system is typically run through a set of site acceptance tests (SAT) in cased hole. The industrial scenarios presented in this manuscript are based on common SAT tests performed in the field. The lessons learned from the operation are used as input to the next round of the design phase and to improve and extend the test scenarios in the verification phase.

A.2.4 Unit tests: Straume ®

Straume ® is a hydraulics simulation software commercialized by Kelda for MPD applications. We present the test framework used for the development of Straume ® . A schematic of the definition of classes and the inheritance of the properties and methods of the classes to subclasses and objects are represented in the Figure A.2. Kelda uses Matlab.System (a base class for system objects, available in MATLAB) to interface external models and make them available directly in Simulink. Simulink uses a feature called code generation that makes the simulation using the external model efficient, by compiling the code into an executable file in the C language. The test framework can be understood using the following points:

• The Simulink model and the corresponding source code (which is the MATLAB script equivalent to the Simulink block) are named StraumeCore. The standard syntax of this source code contains the methods (functions in class) initialize, step and reset, to define the initialization, computation for one timestep and to reset the simulation correspondingly. Fluid and well configurations are considered as the input attributes for this source code. • For computational efficiency and compartmentalization of the product developement, Kelda uses dynamically loading libraries (DLLs). DLLs are precompiled executable files that can be shared between libraries of different programming languages. As the name goes, DLLs are dynamically loaded when they are called within a function. All the DLLs are defined in the class StraumeCore External APIs.

• The class StraumeCore proxy is a subclass of the class StraumeCore External APIs. This allows StraumeCore proxy to access all the DLLs and contains the methods for execution of Staume ® , thus providing a clean interface to the DLLs.

• Straume is an object of StraumeCore proxy that is used within the source code StraumeCore. Since an object is a copy/ an instance of the class, unit tests are run using the object Straume to check the functionalities and execution of the features added to product, as DLLs.

• The unit tests are defined in the class Basic Simulink Test, which is itself a subclass of the global class Matlab Test class defined within MATLAB. This allows Basic Simulink Test to benefit from the additional features that may be defined within MATLAB.

• krun is the command with a particular syntax that makes it possible to filter tests before they are executed, so as to not run all the tests all the time. The unit tests are defined in the form T**1 to create the object Straume and execute the corresponding test. 

A.2.5 Unit tests: HYDRA model

We now present the modifications necessary to integrate the HYDRA model into the framework. By doing so, the user can switch between the simulators Straume ® and HYDRA model to test any feature that can be added to these products. Such integration also helps in testing other products such as the controller Leidar ® as developed by Kelda. By defining the key performance indicators (KPIs) for the controller performance, measures to benchmark control performance can be made available to the industry. This is of particular interest in the drilling community due to the lack of such benchmarking measures for the safety critical operations. Referring to the • HydraCore proxy contains the scripts that run the functions defined for the HY-DRA model.

• An object called Hydra is defined as an instance of the above mentioned classes.

• Pre-defined unit tests by Kelda can now be used to check the functionalities of the HYDRA model using the object Hydra.

A.3 Test case

The unit test discussed in this report is to compare the performance of the simulators to the change of pump flow while maintaining a constant choke opening. The scenario described in this unit test is similar to connections, a regular operation used to connect/ disconnect a drillpipe into/ from the drillstring.

Here, the flow from the mud pump is ramped down slowly and maintained constant for a certain period before ramping back up to the operational flow. This is done while maintaining a constant choke opening. A point to note is that the choke actuator dynamics is considered differently in both the simulators.

For a given pump flow that is ramped-down and -up, the corresponding flow at the choke is shown in Figure A.4. It can be noted that the effect at the choke, due to the flow variation at the pump is delayed by a few seconds, which is due to the consideration of distributed pressure dynamics in the simulators. The responses from both the simulators are similar for the considered unit test while the reasoning for the noticeable discrepancies are as follows.

Conclusions It can be concluded that the HYDRA model has been successfully integrated in the Kelda's test framework developed for Straume ® . This will allow the operator to test controllers (Leidar ® ) and observers for their performances with respect to two different simulators -the commercial product Straume ® , which is developed with the goal of being computationally efficient and effective for control objectives; and HYDRA model that is developed by the ESRs within the project HY-DRA which considers the distributed pressure dynamics within the wellbore during multiphase fluid flows.

This integration of the HYDRA model into the test framework is considered as an upgrade to Straume ® since the results from HYDRA model will provide a better understanding of the distributed dynamics that may be lost in the bargain of computation efficiency and cost in Straume ® . This fact is more pronounced in the scenarios that contain multiphase fluid flows, which is beyond the scope of this manuscript. This integration will also allow the operator to switch between these two simulator as and when required depending on the operational conditions. 
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 2 FIGURE 2: Schematic of the general setup in a MPD operation. The RCD equipment provide a closed-loop mud circulation system. The choke valve is the control actuator for automated solutions. Variation in the flow geometry is due to the BHA and latest casing string in the annulus. A radial reservoir section is used to model the influxes into the annulus.
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 11411 FIGURE 1.1: A schematic representation of fluid flow path in the drillstring and the annulus. The boundary conditions are specified at the locations of: the mud pump (P), the drill bit (B) and the choke (C). Influxes from the reservoir are coupled at the bit (B) boundary condition. [P, B] ≡ [0, L] for drillsting and [B, C] ≡ [0, L] for annulus. indicated on Figure 1.1 --pump (P), drillbit (B) and choke (C) --as follows:
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 14 FIGURE 1.4: Wellbore profile with realistic variations in the flow geometry, used in the simulation of industrial scenarios.

FIGURE 1 . 5 :

 15 FIGURE 1.5: Open-loop choke plugging simulations. Results shows the pressure surge in an event of a blockage at the choke valve.

FIGURE 1 . 6 :

 16 FIGURE 1.6: Choke plugging scenario with a controller to maintain the BHCP. Left: shows the comparison of the dynamics obtained by low-order and distributed model in an even of choke plugging. Right: shows the snapshots of the velocity profiles during different times, influenced by the pressure wave reflections in the wellbore.

FIGURE 1 . 7 :

 17 FIGURE 1.7: Open loop Connection operation. When the choke and pump are manually operated, it leads to pressure oscillations within the wellbore. They are captured here when the pump flow is zero.Reflecting waves sustain until dissipated by frictional forces.
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 18 FIGURE 1.8: Mass flow rate changes for the mud pump and the backpressure pump to simulate a closed-loop connection scenario.

FIGURE 1 .

 1 FIGURE 1.10: Closed-loop connection operation with parameter set 2. Due to rapid changes and better convergence to disturbances, faster dynamics are excited. Controller performance for the distributed model deteriorates as compared to the parameter set 1.
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 111 FIGURE 1.11: Simulation results of a gas influx situation. Controller is used to circulate the gas out of the annulus through the choke. Left: shows the behaviour of mass flow rate; first increases due to gas expansion and drastically reduces when the gas exits the choke. Right: shows the snapshot of the distribution of gas void fraction within the annular region during the circulation process.
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 22 FIGURE 2.2:Response of different influx models for a test case of BHCP oscillations. The plots in red represent the sinusoidal pressure oscillations of BHCP (dashed) with respect to the reservoir pressure (solid). This represents the BHCP fluctuations due to pressure wave reflection in an event of choke set point change. The plots in blue represent the respective response for influx from various reservoir models considered.
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  .[START_REF] Larsen | Inflow predictions and testing while underbalanced drilling[END_REF]) is a function of the variables at the centres of the cells and at the interfaces. Refer to the stencil in the Figure2.3. The general rep-
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 23 FIGURE 2.3: Stencil for the numerical scheme described to solve the diffusion equations. Provides a degree of freedom to choose the implicitness of the numerical scheme.
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 2 [START_REF] Prat | Well test analysis for fractured reservoir evaluation[END_REF] and by representing the EOS constants as linear function of pressure A = ap and B = bp for a = Ω 0 a α(T r ) p c T
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 79 Respective derivatives of the functions with pressure for the Jacobians are ∂a(p, r) ∂p
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 25 FIGURE 2.5: Simulation of a liquid influx scenario using a distributed wellbore and reservoir model. Mud pump flow is ramped down while maintaining a constant choke opening.
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 26 FIGURE 2.6: Comparison of gas influx obtained from two different settings of the distributed reservoir model: considering real gas behaviour and linearized gas behaviour.
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 77 To find an upper bound for the sequence, let us consider the following change of variable, η = ζ(x, ξ, t; s). we then have dη = dζ ds ds = µ ds.(3.78)
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 63 Coefficients c k , k ∈ N are chosen for normalization. The set of functions φ k , k ∈ N form a basis in the Hilbert space L 2 m = L 2 [a, b], r m-1 dr . Consider a series representation of the functions γ
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 41 FIGURE 4.1: Schematic representation of the fluid flow through two control volumes of finite dimensional subsystem : drillstring and annulus separated by the drill bit. This adaption from[START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF] allows the influx model to be coupled in the annulus. Letters in red denotes the location of the corresponding states.
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 42 FIGURE 4.2: Observer performance to estimate the influx into the wellbore. Different tuning exhibits the trade-off between handling noise, overshoots and convergence rate.
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 151 FIGURE 5.1: Mapping of effective reflection coefficient Θ to a range of choke opening. Rapidly converging observer is obtained as Θ → 0.

  [START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF] and the Kernel L(r, y) is a solution of a parabolic equation that reads a L rr (r, y) -L yy (r, y) + λ(r)L r (r, y) + λ(y)L y (r, y)+ C + λ (y) L(r, y) e , r e ) = 0 (5.55)L r (r e , y) = 0.(5.56)
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 352 FIGURE 5.2: Influx estimation by the observer in comparison to the plant measurement and in the absence of an observer for the scenario of drilling into a high pressure pocket.
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 354 FIGURE 5.4: Influx estimation by the observer in comparison to the plant measurement for the case of pressure transients due to rapid choke opening variations.
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 56 FIGURE 5.6: Schematic representation of the kernel equations. The green arrows represent coupling at the boundaries. The red arrows represent the characteristic lines over which to integrate Equations (5.93)-(5.96). The black boundaries of the domain all correspond to boundary conditions for the kernels. Finally, the blue boundaries and arrows denote the "output" of these equations, i.e., the observer gains. The Equations are solved "from bottom to top" on this diagram.

  .106) N r (r w , y) = ξ N(r w , y) (5.107) N r (r e , y) = 0 (5.108) N(r, 0) = N 0 (r) (5.109) that is the function such that N(r, y) = r e r w G(r, s, y)N 0 (s)ds. (5.110) Chapter 6

FIGURE A. 1 :

 1 FIGURE A.1: Schematic of different test phases of software product development.
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 2 FIGURE A.2: Schematic of the test framework developed for Straume ® .
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 3 FIGURE A.3: Schematic of integrating HYDRA model into the Kelda's test framework.
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 3 we present the following modifications • The source code and the Simulink block are named as HydraCore. Computations within as defined as functions, which eliminates the need to compile the DLLs. Thus, StraumeCore External APIs are replaced by the global class defined in MATLAB called handle.
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 4 FIGURE A.4: Plot of the unit test to study the effect of flow changes in the HYDRA model.
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 22 FIGURE B.2:Controller performance with HYDRA model for an user test. The subplots, in the same order of occurrence are -measured, reference and set-point pressure at the choke; error between the reference and measured choke pressure from the virtual rig; height of the travelling block in the virtual rig; flow rates at the pump and choke; % opening of the chokes A and B; the legends, POS for the position mode of the controller, followed by the user test scenario -circulating off-bottom.
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  at the outlet of the annulus, with two outgoing characteristics, while there are, in total, three physical boundary conditions (1.21)-(1.23) with one outgoing characteristic in the drillstring and one in the annulus. This situation is schematically depicted on Figure 1.3. Similar to the

Eq.

(1.19) 

Eq.

(

1.21)-(1.23) Eq. (1.25) Eq. (1.36) Eq. (1.37) Eq. (1.42) Eq. (1.40)-(1.41) FIGURE 1.3: Schematic representation of the characteristic-based treatment of the boundary conditions. The equations in red represent the physical boundary conditions, while the blue ones correspond to outgoing characteristics.

TABLE 1 .

 1 1: The simulation parameter values used to obtain the simulations of the industrial scenarios.

	Parameter	Symbol Value	Unit
	Length of the well	L	4000	m
	Well inclination	θ(x)	π/2	rad
	Liquid bulk modulus Sound speed in gas	β l C g	1.1e+09 Pa 316 m s -1
	Reference pressure Liquid density at p 0	p 0 ρ 0	1e+05 1500	Pa kg m -3
	Number of chokes	n c	1	[-]
	Choke flow factor	K c,1	0.0025	m 2
	Average velocity	V d	0.5	m s -1
	Liquid viscosity	µ l	0.04	Pa s
	Gas viscosity	µ g	5e-06	Pa s
	Bit nozzles area	A n	5.77e-04 m 2
	Space discretization step length ∆x	12.5	m
	Gas production index			

  Assuming an instantaneous pressure equilibrium at the

		o u t	in
	wellbore		
		BHCP	(2.2)
	∂p ∂r	(t, r e ) = 0.		(2.3)

FIGURE 2.1: Schematic of the radial reservoir section. Mass conservation is applied over the highlighted infinitesimal section, with Darcy's law that gives radial diffusion equation. near wellbore region and a zero flux set at the radial extent of the reservoir yields the following boundary conditions p(t, r w ) = Equation (2.3) indicates that the reservoir is at rest away from the wellbore. This boundary condition should be modified in an Enhanced Oil Recovery (EOR) setting were fluids are injected from other wells to maintain a high reservoir pressure.

  with the initial and the boundary conditions over the domain of interest r ∈ [r w , r e ] Notice that BHCP t now appears as a source term in Equation(2.26). We follow the classical procedure, consisting of solving the homogeneous radial diffusivity equation with mixed boundary conditions (2.28),(2.29), and use the corresponding Green's function to derive the general solution. Denote φ the solution to the homogeneous equation, obtained by taking BHCP(t) ≡ 0 in(2.26). We look for a particular solution by applying the separation of variables method, i.e., of the form

	are given by								
			ϕ(0, r) = ϕ 0			(2.27)
		ϕ(t, r w ) = 0			(2.28)
		∂ϕ(t, r e ) ∂r	= 0.			(2.29)
						r) -BHCP(t).	(2.25)
	This yields the following dynamics					
	∂ϕ(t, r) ∂t	=	a r	∂ ∂r	r	∂ϕ(t, r) ∂r	-	∂BHCP(t) ∂t	(2.26)

  [START_REF] Gringarten | The use of source and Green's functions in solving unsteady-flow problems in reservoirs[END_REF] and denote p n i = p(r i , n∆t). Denote the operator A h = -

	∂ ∂r	a(p, r)	∂p ∂r	and an
	intermediate variable			

  chain rule it is simple to verify that

	∂a(p, r) ∂p	= r	µ(ρ(p, z(p)))	∂ρ ∂p	+	∂ρ ∂z	∂z ∂p µ 2 (ρ(p, z(p))) -ρ(p, z(p))	∂µ ∂ρ	∂ρ ∂p	+	∂ρ ∂z	∂z ∂p	(2.55)
	∂b(p, r) ∂p	=	rφ k	c(p, z(p))	∂ρ ∂p	+	∂ρ ∂z	∂z ∂p	+ ρ(p, z(p))	∂c ∂p	+	∂c ∂z	∂z ∂p	.	(2.56)

  .[START_REF] Kröner | Numerical solutions to compressible flows in a nozzle with variable cross-section[END_REF] 

	Viscosity			
	From Equation (2.16), the only additional term require to fully define the following
	derivative			
	∂µ	=	∂µ	∂ρ
	∂p		∂ρ	∂p

TABLE 2 .

 2 1:The simulation parameter values for distributed reservoir models. Gas parameters considered here are for Methane.

	Parameter	Symbol Value	Unit
	Critical pressure	p c	667.8	bar
	Critical temperature	T c	343	R
	Molecular weight	M g	16.04	g mol mol -1
	Universal gas constant	R g	669.94	[-]
	EOS constant	Ω a	0.45724 [-]
	EOS constant	Ω b	0.07780 [-]
	Wellbore radius	r w	0.0762	m
	Reservoir extent	r e	100	m
	Reservoir thickness	h	5	m
	Total compressibility of reservoir C	8.7e-10 Pa -1
	Porosity	φ	0.35	[-]
	permeability	κ	5e-13	m 2
	Reservoir temperature	T	300	°F
	Numerical implicitness	θ	0.95	[-]

  to(3.38). The observer gains P u (t, x) and P v (t, x) can now be obtained by numerically solving Equations(3.35) to(3.42).Dans ce chapitre, nous construisons un observateur et des conditions d'observabilité pour un système couplé : la dynamique dans le puits est décrite par une Equation Différentielle Ordinaire (EDO) d'ordre trois, alors que la dynamique dans le réservoir est décrite par une Equations aux Dérivées Partielles (EDP). Après avoir présenté un observateur générique, nous détaillons le cas particulier du modèle couplé puits-réservoir.

	Chapter 4
	Observer design for a coupled
	ODE and parabolic PDE system

  .18) A2 Observability of the coupled System. None of the eigenvalues λ k ∈ R, k ∈ N of the radial Laplacian operator with Neumann boundary conditions, that is

TABLE 4 .

 4 1: Definition of matrix elements and intermediate variables.

TABLE 4 .

 4 Dans ce chapitre, nous synthétisons un observateur pour un système dont les dynamiques du réservoir et du puits sont distribuées, et prennent la forme d'équations parabolique (2.1) et hyperbolique (1.28), respectivement. Nous envisageons deux scénarios. Dans le premier, des capteurs sont pression sont positionnés à la fois en surface et au fonds du puits. L'observateur qui en résulte découle naturellement de résultats de la littérature. Nous présentons ensuite la principale contribution de ce chapitre : un observateur pour le cas où seule la mesure de surface est disponible. Cette synthèse repose sur une nouvelle transformation de backstepping, dont un des noyaux vérifie, de manière remarquable, une équation de diffusion sur un domaine carré. Le caractère bien-posé des équations du noyau est démontré en combinant la méthode des approximations successives avec la fonction de Green.

	2: Definition and simulation values of wellbore and fluid
	parameters.		
	Parameter	Symbol Value	Unit
	Bulk modulus	β ann,ds	6.896e+08 Pa
	Annulus diameter	D a	0.1809	m
	Drillstring diameter	D d	0.1143	m
	Depth of the well	h L	2000	m
	Thickness of reservoir	h	2	m
	Mud viscosity	µ	40e-2	Pa s
	Choke constant Steady state choke opening	K c Zc	0.0029 0.8	[-] [-]
	Bit nozzle constant	c d	0.8	[-]
	Bit nozzle area	A n	7.459e-4	m 2
	Reference pressure	p o	1e5	Pa
	Reference density	ρ o	780	kg m -3
	Permeability	κ	5e-12	m 2
	Porosity	φ	0.2	[-]
	Total compressibility (reservoir) c	2.32e-9	Pa -1

  (t, x) + C l u x (t, x) = σ ++ (x)u(t, x) + σ +-(x)v(t, x)

	Now the coupled system takes the form			
		v(t, 1) = Θu(t, 1)		(5.2)
	u t (5.3)
	v t (t, x) -C l u x (t, x) = σ -+ (x)u(t, x) + σ --(x)v(t, x)	(5.4)
		u(t, 0) =	ϕ(t, r w ) C l	+ v(t, 0)	(5.5)
		ϕ r (t, r w ) = -	δq bit ξ	+ θv(t, 0) + γϕ(t, r w )	(5.6)
		ϕ t (t, r) = aϕ rr (t, r) + λ(r)ϕ r (t, r)	(5.7)
		ϕ r (t, r e ) = 0.				(5.8)
	Equation (5.7) represents the linearized radial diffusion equation with λ(r) = a/r.
		and (3.10) gives 1
	ϕ r (t, r w ) = -	δq bit (t) ξ	+	2A ξ ρ	v(t, 0) +	A ξ ρC l	ϕ(t, r w ).	(5.1)
				θ					γ

  (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x) + P + (x)(y c (t) -(c 1 u(t, 1) + c 2 v(t, 1))) (5.16) v t (t, x) -C l v x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x) + P -(x)(y c (t) -(c 1 u(t, 1) + c

					.13)
		u(t, 0) =	ϕ(t, r w ) C l	+ v(t, 0).	(5.14)
	A Luenburger-like observer is proposed as an exact copy of the plant with output
	error injection terms, and the BHCP is directly injected at the boundary x = 0, as
	follows			
	v(t, 1) = Θ u(t, 1) + (y c (t) -(c 1 u(t, 1) + c 2 v(t, 1)))	(5.15)
	u t 2 v(t, 1)))	(5.17)
	u(t, 0) =	y b (t) C l	+ v(t, 0).	(5.18)
	Defining the error coordinates as * := * - * yields
	v(t, 1) = Θ u(t, 1)	(5.19)
	u t (t, x) + C l u x (t, x) = σ ++ (x) u(t, x) + σ +-(x) v(t, x)
				-P + (x) (c 1 u(t, 1) + c 2 v(t, 1))	(5.20)
	v t (t, x) -C l v x (t, x) = σ -+ (x) u(t, x) + σ --(x) v(t, x)
				-P -(x) (c 1 u(t, 1) + c 2 v(t, 1))	(5.21)
	u(t, 0) = v(t, 0).	(5.22)

  .37) Under the condition (5.24) and the observer gains defined in Equations (5.31) and (5.32), the error system (5.19)-(5.22) converges to zero[START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system[END_REF].

	Lemma 5.2.1

  target system ψ t (t, r) = aψ rr (t, r) + λ(r)ψ r (t, r) -

			Cψ(t, r)	(5.47)
	ψ r (t, r w ) = Kψ(t, r w )			(5.48)
	ψ r (t, r e ) = 0.			(5.49)
	Here, C and K are the design parameters that provide a trade-off between conver-
	gence rate and robustness to uncertainties. Again, we consider the change of vari-
	able as a function of invertible Volterra integral transformation given by	
		r		
	ϕ(t, r) = ψ(t, r) -	r w	L(r, y)ψ(y, t)dy.	(5.50)

TABLE 5 .

 5 1: Wellbore parameters used for the simulation of industry relevant scenarios.

	Parameter	Symbol Value	Unit
	Flow rate at bit	q bit	0.03	m 3 s -1
	Length of the wellbore	L	2000	m
	Choke constant Steady state choke opening Zc K c	2.85e-03 [-] 0.95 [-]
	Velocity of sound	C l	940.30	m s -1
	Reference pressure Reference density	p 0 ρ 0	1e+05 780	Pa kg m -3

  Time snapshots of distributed pressure profile within the reservoir obtained from plant in comparison to that of the estimation by the observer for the scenario of drilling into a high pressure pocket.
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	FIGURE 5.3:

  Time snapshots of distributed pressure profile within the reservoir obtained from plant in comparison to that of the estimation by the observer for the case of pressure transients due to rapid choke opening variations.
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accounts for an additional factor due to frictional forces of the flow. For the given flow direction in schematic 2, circulating pressure in the annulus is higher than the static pressure. A common malpractice, i.e. not accounting the friction in the fluid flow, fractures the reservoir at the pump start.

in the oilfield, the operator is referred to as 'bloke on the choke'.

i.e., historical data from previously drilled wells in the same field.

when BHCP is higher than the bubble-point pressure, i.e. the minimum pressure required for the first gas bubble to dissolve in the given liquid phase.

a vector of any combination of the physical variables is denoted by u.

elements q i , i ∈ {1, 2,

3} are defined in the same order as Equation 1.9.

The choice of C 0 (u) and V d (u) can make the Equations (1.17) and (1.18) nonlinear equations that need to be solved simultaneously using non-linear solvers.

We use a constant time step over the domain I.

conservative schemes ensure that the numerical solution satisfies the mass and momentum conservation laws despite the discretization process[START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF].

Other simplifying assumptions are considered inside the computational domain, see[START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF],[START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF] and the citations therein.

see, e.g.[START_REF] Da | Roe-type riemann solver for gasliquid flows using drift-flux model with an approximate form of the Jacobian matrix[END_REF] for the eigenvalue analysis of the DFM. The standing wave due to the variable geometry corresponding to λ 4 = 0 is analysed in[START_REF] Abbasi | A godunov-type scheme for the drift flux model with variable cross section[END_REF]. At the boundary, it is reasonable to assume a constant area.

HYdraulic modelling for DRilling Automation.

i.e., without any controller.

One or three real roots may exist, where the smallest root is typically chosen for liquids and the largest root is chosen for vapours[START_REF] Whitson | Fund of AIME[END_REF].

valid for x < 0.01, when the logarithmic function in the denominator is expressed in the form : log(γx), see[START_REF] Dake | Fundamentals of reservoir engineering[END_REF]. The expression is therefore a poor approximation only for a short amount of time (around 1 second). This can, however, lead to over-or under-estimate a small amount of the influx, which is a motivation for considering a distributed model.

BHCP(t) = 1.85e7 + 1e5 sin (10t/T n ), where T n = Run time/dt.

without closing the BOP --leading to NPT --to circulate out the kick.

notation : for a function f , the first and second derivatives are denoted as f and f respectively.

the special case of θ = 0.5 is referred to as the Crank-Nicolson method.

drill bit can be considered as NRV due to the very high pressure head for flow directions opposite to the conventional drilling fluid path.

p(t, r) is the steady state reservoir pressure profile

measurement is not equal only during the prolonged exposure of the reservoir to the wellbore during drilling, resulting in the formation of mud cake. Even in case of an additional pressure drop, i.e., skin factor S = 0, observer design would be similar should the skin factor not affect the observability of the system.

this assumption is not restrictive as for a different measurementy c = c 1 u(1, t) + c 2 v(1, t) rewrites y c = (c 1 + c 2 Θ) u(1, t) and the design is unchanged up to a constant factor.

**:=01,02,...
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Chapter 3

Observer for hyperbolic PDE with time dependent reflection coefficient

Dans ce chapitre, nous synthétisons un observateur qui estime les états distribués dans le puits en présence d'un influx de liquide modélisé par le modèle CTRS (2.24). Nous réécrivons d'abord les équations dans une forme qui permet la synthèse de l'observateur, sur la base d'hypothèses simplificatrices [START_REF] Nygaard | Bottomhole pressure control during drilling operations in gas-dominant wells[END_REF], [START_REF] Deutschmann | Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs[END_REF].

In this chapter, we design an observer that estimates the states of the distributed wellbore dynamics in the presence of a liquid influx modelled by the CTRS (2.24). We first rewrite the system dynamics in a way that is amenable to observer design, making some simplifying assumptions [START_REF] Nygaard | Bottomhole pressure control during drilling operations in gas-dominant wells[END_REF], [START_REF] Deutschmann | Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs[END_REF].

Coupled reservoir -wellbore dynamics

During drilling operations, the reservoir section is open to the annular region of the wellbore. In general, the drillstring is equipped with non-return valves (NRVs) 1 . This allows us to know to the dynamics within the drillstring with higher degree of certainty. Thus, in what follows we assume that the A1 fluid flowing from the bit into the annulus q bit (t) is known.

Besides, we assume that the flow from the reservoir is given by the CTRS (2.24), which we recall here for readability purposes q res (q 1 , q 2 , t) = -4πκh (BHCP(t)p e ) µ log 4κt

where the BHCP is expressed as follows as a function of the conservative variables BHCP(t) = (q 1 (t, 0)ρ 0 )C 2 l + p 0 .

(3.2)

Writing the mass balance equation over the open section of the wellbore yields q 2 (t, 0) q 1 (t, 0) = q bit (t) + q res (t)

where A is the area of the open section of the wellbore.

P uv , P vu and P vv : 

along with the following expression of the observer gains

For (3.35)-(3.42) to be well-posed, either initial conditions have to be added, or the time-varying parameter g(t) needs to be extended to negative times. We chose the latter solution here, as g defined by (3.14) continuously extends to g(t) ≡ -1, ∀ t ≤ 0, i.e., as lim t→0 + η(t) = 0 in Equation (3.14), g(t) ≡ -1. We have the following theorem.

Theorem 3.2.1

Under the assumptions

where K = T × R, the system equations (3.39)-(3.42) admit an unique continuous solutions on K.

Proof : Although technical, the proof relies on classical tools : the kernel PDEs are transformed into integral equations using the method of characteristics. The method of successive approximations is then used to construct a solution to the integral equations in the form of an infinite series. The proof is a direct extension of the one presented in [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF] for the time-invariant case and the one in [START_REF] Deutschmann | Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs[END_REF] for a single time-varying kernel PDE. We prove here the well-posedness of a generic equation of the form

(3.47)

We now want to map the error system Σ onto a stable target system. We choose a system such that the in-domain coupling terms of the wellbore dynamics are removed. This allows the stability to be guaranteed. Denoted by Σ T , the target system reads β(t, 1) = 0 (5.72)

g α (x, y) β(t, y)dy (5.73) 

). There exists C, λ such that the solutions satisfy (α(t, •), β(t, •), ψ(t, •)) ≤ C (α 0 , β 0 , ψ 0 ) e -λt (5.79)

provided that c > 0 and γ > 0.

Proof : Notice that β converges to zero in finite time. Therefore, for t > 1/C l , ψ satisfies ψ r (t, r w ) = γψ(t, r w ) (5.80)

which is exponentially stable as proved in Chapter 4. Finally, α satisfies a simple transport equation with vanishing input, and thus also exponentially converges to zero.

Backstepping transformation

Kernel equations

We now seek a variable change as the following set of Volterra equations

M(r, y) α(t, y)dy.

(5.85)

Remark 5. Notice that the transformation (5.83)-(5.85) does not feature integral terms depending on β in the right-hand-side. As will appear, this is not only sufficient for observer design but actually necessary, as adding such terms would result in ill-posed kernel equations.

Differentiating with respect to time and space and plugging into the error and target systems yields the following set of observer gains

(5.86)

while the kernels satisfy the following set of equations

L(r e , r e ) = 0 (5.91)

L r (r e , s) = 0 (5.92)

on the one hand, and

(5.95)

with the following diffusion equation and boundary conditions

M r (r e , y) = 0 (5.99)

on the other hand. Finally, h, g α , g β and γ are given by The existence of such a function is a classical result of functional analysis, see e.g. [START_REF] Polyanin | Handbook of mathematics for engineers and scientists[END_REF].

Then, for some constant Γ, one can rewrite Equations (5.97)-(5.100) as

where

Plugging (5.111) into (5.93)-(5.96) yields

(5.115)

T(s)G(r w , s, y)ds

(5.116) Finally, Equations (5.113)-( 5.116) can be solved using the methods of characteristics and successive approximations. We are now ready to state the main result of this chapter. (5.117)

Proof : If (5.117) is satisfied then γ > 0, thus the target system is exponentially stable. The existence of the kernels implies that the error system and the target system have equivalent stability properties, thus the result.

Appendix A

Kelda software development test framework

Une partie importante du projet HYDRA a consisté à intégrer le simulateur diphasique dans l'architecture de développement logicielle de Kelda. Dans ce chapitre, nous présentons les détails de cette intégration. Nous décrivons la terminologie en développement logiciel. Kelda oriente son effort de développement sur un environnement basé sur les tests fréquents, afin d'assurer que de nouvelles fonctionnalités ne perturbent pas le produit existant.

An integral part of the HYDRA project is to integrate the simulator into the Kelda's software development test framework. In this chapter, we present the details and the efforts taken thus far towards the integration. We first introduce the terminologies in software development. Test-driven development (TDD) is a focus at Kelda to develop their products. This ensures that adding new features to the existing product does not hamper the current product.

A.1 Test automation

A.1.1 Software testing

Test automation can automate some repetitive, but necessary tasks, in a formalized testing process already in place, or perform additional testing that would be difficult to do manually. Test automation is critical for continuous delivery and continuous testing, where the software development team works in short cycles so the software can be released any time. Generally, the two types of test automation are • Graphical user interface (GUI) testing, where the operator can test the software with the use of arrows and mouse clicks, offering an easier interface to communicate with the software functionalities,

• API driven testing, usually bypasses the user interface and uses a programming interface to the application to validate the behaviour under test.

A growing trend in software development is the use of what is called as unit tests that allow the execution to determine whether various sections of the code are acting as expected under different circumstances. Test cases describe the tests that need to be run on the program. Test automation, mostly using unit testing, is a key feature of extreme programming and agile software development, and is known as test-driven development (TDD) or test-first development. Unit tests are written to define the functionality before the code is written and usually the program fails the tests in the beginning of the development cycle. However, these unit tests and the products evolve and

Appendix B

Controller testing

Ce chapitre décrit le contrôleur qui forme la base du logiciel Leidar ® . Le modèle d'écoulement du Chapitre 1 est utilisé pour tester la performance de ce contrôleur.

This chapter introduces the model-based controller that forms the basis of Leidar ® . The distributed flow model that was introduced in Chapter 1 has been used to test the controller performance.

B.1 Model-based control

The commercial product Leidar ® at our industrial partner Kelda is a model-based controller. Leidar ® , that runs the design model [START_REF] Kaasa | Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system[END_REF] to estimate the BHCP has proven success in numerous field operations around the world. A basic model-based control law for the choke pressure as in [START_REF] Stakvik | Adaptive model based choke control system for MPD operations[END_REF] can be expressed as

where q c,r is the desired flow through the choke, c 1 the proportional control gain and e the pressure error given by e = p spp c , and p sp the desired choke set point.

The corresponding choke opening Z c for a given flow through the choke is found by inverting the choke equation that reads

where K c is the choke characteristics and p ds the pressure downstream the choke valve. Using an adaptive model-based controller [START_REF] Stakvik | Adaptive model based choke control system for MPD operations[END_REF], the effective bulk modulus of the system is estimated using real-time pressure and flow measurements. This improves the performance of such controller as opposed to a non-adaptive controller.

B.2 Test Framework

As a first step towards the upgrading and testing of Leidar ® , the HYDRA model was integrated into the test framework (for scenario simulations) that was developed at Kelda. This was part of the HYDRA Deliverable D4.1 As a result, the HYDRA model also provides an additional option to evaluate and verify the performance of Leidar controller and Leidar estimators. This is shown as a schematic in Figure B.1. The test framework is setup in a way that the user can choose as a virtual rig (that is considered as the dynamic during real-life operation by the controller) from the simplified design model, the commercial product for multiphase fluid simulation Straume ® and the academically developed HYDRA model to be used by Leidar ® to track the required setpoint, e.g., for the BHCP or choke pressure. It can be noted that choke pressure obtained from the HYDRA model deviates from the +/-2 bar error range during the rapid ramp-ups and downs of the controller setpoint. Such occurrence can be attributed to the distributed momentum of the fluid along the wellbore. The HYDRA model reveals different closed-loop performance which confirms the need for controller testing with a distributed model such as the HYDRA model. A part of the difference arises from the absence of actuator (i.e., the choke) dynamics in the HYDRA model. A smoother tracking of the reference choke pressure in the HYDRA model can be attributed to the presence of distributed pressure dynamics throughout the flow path. In contrast, the design model uses the ODE formulation of the dynamics that assumes any effect to be seen across the flow path immediately. Such comparisons are also presented in [START_REF] Naderi Lordejani | Modeling and numerical implementation of managed-pressure-drilling systems for the assessment of pressure-control systems[END_REF].

Conclusions It can be concluded that the HYDRA model has been successfully integrated into the Kelda's controller test framework. This will allow the user to test Kelda's controller (Leidar ® ) for its performance with respect to two different simulators -simplified design model, the commercial product Straume ® , which is developed with the goal of being computationally efficient and effective for control objectives; and HYDRA model that is developed by the ESRs within the project HY-DRA which considers the distributed pressure dynamics within the wellbore during multi-phase fluid flows.

This integration of the HYDRA model into the controller test framework is considered as an upgrade to Leidar ® test framework, and will thus be a part of future controller improvements pursued by Kelda. It is observed that the simplified model and efficient implementation of the control algorithm can be sufficient to handle different dynamics that arise in the real-life operations, that are captured in the distributed models mentioned in this manuscript. This has been tested to be true in the real-life drilling operations in various drilling rigs across the world by Kelda. The user can now have an additional simulator to run with Leidar ® to test its performance. This will lead to creation of various industry standard benchmark scenarios, which is the focus of future work.

Embedding HYDRA model in the Straume ® and Leidar ® software packages of Kelda secures the technology transfer of the results of the HYDRA project to the company.

Appendix C

Block canonical form

We refer to the system described by Equation (4.78) and define a transformation for the states that reads

and choose a particular transformation matrix such that
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RÉSUMÉ

Lors du forage d'un puits de pétrole, il est courant de subir un influx non désiré de fluides provenant du réservoir. Ce manuscrit porte sur l'étude de la dynamique de l'écoulement en résultant dans le réservoir et le puits, pendant les opérations de forage à pression contrôlée (MPD en Anglais 

ABSTRACT

While drilling an oil well, unwanted influx of fluids from the reservoir may occur. This manuscript studies the dynamics of the resulting fluid flow in the wellbore and the reservoir, during managed pressure drilling (MPD) operations. We study the phenomena using first-principle approach that leads to a modified two phase flow model called the drift-flux model (DFM). The model takes the form of a hyperbolic system of transport equations, whereas the reservoir pressure dynamics is given by a parabolic diffusion equation. We propose appropriate numerical schemes for both. Then, we propose different observer designs to estimate the influx from the reservoir into the wellbore. The observers for the coupled wellbore-reservoir system take different forms, as we combine the distributed and the reduced order models for each system. We propose to use the choke pressure as a measurement that is typically available on a MPD operational site, i.e. topside sensing. However, availability of the bottom hole pressure modifies the observer design, in ways we detail. We show convergence of the observers to the true values of reservoir pore pressure and influx, in each case.
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