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Abstract

Artificial intelligence is the scientific field which studies how to create machines that are capable of
intelligent behaviour. Deep learning is a family of artificial intelligence methods based on neural
networks. In recent years, deep learning has lead to groundbreaking developments in the image and
natural language processing fields. However, in many domains, input data consists in neither images
nor text documents, but in time series that describe the temporal evolution of observed or computed
quantities. In this thesis, we study and introduce different representations for time series, based on deep
learning models. Firstly, in the autonomous driving domain, we show that, the analysis of a temporal
window by a neural network can lead to better vehicle control results than classical approaches that do
not use neural networks, especially in highly-coupled situations. Secondly, in the gesture and action
recognition domain, we introduce 1D parallel convolutional neural network models. In these models,
convolutions are performed over the temporal dimension, in order for the neural network to detect -and
benefit from- temporal invariances. Thirdly, in the human pose motion generation domain, we introduce
2D convolutional generative adversarial neural networks where the spatial and temporal dimensions
are convolved in a joint manner. Finally, we introduce an embedding where spatial representations of
human poses are sorted in a latent space based on their temporal relationships.
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Chapter 1

Introduction

“Αἰὼν παῖς ἐστι παίζων, πεσσεύων· παιδὸς ἡ βασιληίη.

Time is a child playing at draughts, a child’s kingdom.”

Heraclitus
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1.1 Context

Our current societies are based upon the implicit assumption that progress is, ultimately, closely tied to
better standards of living for human people. In particular, the access to information and communication
tools has blatantly soared in the last decades, up to a point where information technology holds a
central and strategic position in the organization of our lives. Computer science plays a crucial role in
telecommunications networks, in the management of vital networks (electricity grids, transportation
networks, water or gas distribution networks), in office automation, for the Internet, for the media

or in robotics, for instance. Moreover, information technology also penetrates new domains, such as
health, domotics, smart wearables or autonomous vehicles. Autonomous vehicles (AV) can already
detect pedestrians in order to avoid them and drive smoothly without any human intervention in simple
scenarii1. Computers offer undeniable advantages over humans, including faster speeds, bigger memory,
absence of fatigue, fewer errors and lower costs. They also raise unresolved concerns regarding a variety
of topics such as ethics, environment, social implications, user’s rights, data regulation, sovereignty, or
equal and fair treatment, to name a few. From a strictly scientific point of view, computers also still
present a major drawback: computer programs are unable to adapt themselves in order to cope with
difficult tasks.

Intelligence can arguably be considered as the ability to adapt oneself and to process information in
order to maximize one’s chance of achieving one’s objectives. Artificial Intelligence (AI) is the scientific
domain that studies “intelligent” programs. More broadly speaking, AI can also be considered as an
umbrella term for a wide range of concepts and technologies that allow machines to exhibit human-like
capabilities.

Deep Learning (DL) is an artificial intelligence method that allows a program to learn a hierarchy
of concepts from examples, without requiring a human to explicitly provide any of these concepts
before. By combining several concepts, programs can discover more abstract concepts. For instance, by
combining a geometrical concept of a cross with a concept of a green color, programs can discover the
more abstract concept of a pharmacy cross. The composition of discovered (learned) representations in
deep learning algorithms allows them to build a hierarchical representation of the data; that representation
can become more and more abstract as the number of layers in the composition goes up. Deep learning
techniques have proved to be extremely successful in the image domain in the last decade, as well in the
natural language processing (NLP) domain -i.e. the text domain- in the very recent years. All current
state-of-the-art approaches in these domains make use of deep learning techniques and models.

However, in numerous domains, the observed input data to process are neither images nor texts
but time series that represent the evolution of measurements or computed values. It is the case in
meteorology (e.g. temperature, pressure, wind speed), in economy (rates, index, spread), in seismology,
in the industry (voltage, electric energy consumption, sensors), in medicine (EEG, ECG, temperature,
blood pressure), in epidemiology (active cases in a disease or a pandemic), in speech recognition (audio
sequences, mel-spectograms), in autonomous vehicle control (spatial reference trajectories) and in

1Current autonomous vehicles are able control the steering and the acceleration or deceleration based on their perception
of the surrounding environment, but still require a human driver to monitor the driving environment. The long-term goal
pursued in research on autonomous vehicles is to make vehicles fully autonomous. Research on autonomous vehicles is a
very active research domain driven by actors from academia, startups and multinational corporations.

2



gesture recognition (positions or orientations of the human body’s joints), to name a few domains.

1.2 Objectives

The initial objectives of this thesis are to explore deep learning approaches for time series, and to find
out whether designing an approach based on deep learning techniques can lead to substantial gains and
progress for tasks that involve time series. In order to delimit the scope of this thesis while trying to
address these broad objectives, we orient our research with several choices.

First, in order to focus on the temporal aspect of time series, we choose to work on motion-related
time series data: in chapter 3 the input data consists in the reference trajectory that a vehicle should
follow, while in chapter 4 and chapter 5 the input data consists in sequence of human poses.

Second, for the same reason, we choose to design deep learning architectures that (essentially) act
on the temporal dimension.

Third, we choose to avoid the use of Recurrent Neural Networks2,3 (RNNs). At the time of the
beginning of this thesis, the state-of-the-art approaches for sequence modeling with deep learning
methods were RNN-based. While being a very elegant theoretical answer for sequence modeling with
neural networks, RNNs present many issues at both applied and theoritical levels: e.g. RNNs are slow
to train, very sensitive to initialization, struggle to capture very long-term relationships and are hard to
regularize.

While exploring deep learning approaches for motion-related tasks, the aim of this thesis is therefore
to answer the following questions:

Question 1 Recurrent Neural Networks (RNNs) resort to a memory vector when they process a sequence.

How to model sequences with a neural network without having to resort to an external memory like

RNNs do, while achieving comparable or better performance?

Question 2 Can time-series be sufficient to serve as the only input when modeling non-trivial and

non-periodic tasks, like motion-related tasks?

1.3 Contributions

The main contributions of this thesis can be synthesized as follows.

Coupled Vehicle Control We propose a novel approach for coupled vehicle control based on a deep
learning model.

Our exact contributions are discussed more precisely in a subsection in chapter 3.

To the best of our knowledge, deep neural networks have not been used before for the coupled
control of wheeled vehicles.

2Recurrent Neural Networks (RNNs) are introduced in detail in chapter 2.
3May it be vanilla RNNs or their extensions. See chapter 2.
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Two possible architectures are presented and tested. The neural network model learns the
inverse dynamics of a vehicle, in particular the coupled longitudinal and lateral dynamics.
Once trained, the neural network is used as a controller for the vehicle. Such deep learning
controller is able to handle situations with strongly coupled longitudinal and lateral dynamics
in a very short time.

• Guillaume Devineau et al. (2018c). “Coupled longitudinal and lateral control of a vehicle
using deep learning”. In: 2018 21st International Conference on Intelligent Transportation

Systems (ITSC). IEEE, pp. 642–649

Human Pose Motion/Sequence Recognition We propose a novel deep learning architecture for action
and gesture recognition of human pose sequences, where parallel 1D convolutions over time
are used to detect temporal patterns.

Our exact contributions are discussed more precisely in a subsection in chapter 4.

The proposed architecture only uses convolutions, which are easy to train and to audit, and
leads to fast and relatively light models. Moreover the model architecture can be applied
without adaptation work to various types of gestures, various types of sensors, and various
types of pose sequences including facial landmarks sequences, hand pose sequences and
full-body pose sequences.

• Guillaume Devineau et al. (2018b). “Deep learning for hand gesture recognition on skele-
tal data”. In: 2018 13th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2018). IEEE, pp. 106–113

• Guillaume Devineau et al. (2018a). “Convolutional neural networks for multivariate time se-
ries classification using both inter-and intra-channel parallel convolutions”. In: 2018 RFIAP

(Reconnaissance des Formes, Image, Apprentissage et Perception) conference, (RFIAP 2018).
RFIAP

Human Pose Embedding We propose a novel denoising auto-encoder neural network architecture for
self-supervised learning on human poses. Our exact contributions are discussed more precisely
in a subsection in chapter 5. Our approach can be summarized as follows:

The latent space of the denoising auto-encoder is constrained with a spatial loss and a temporal
loss. The spatial loss ensures that the poses are correctly reconstructed spatially by the auto-
encoder. The temporal loss, a time-sampled triplet loss, ensures that the internal (spatial)
representations of the poses learned by the network are organized4 in a temporally coherent
manner. The resulting latent space, and the encoder and decoder networks can notably be used
for human pose embedding purposes, in both offline and online settings. The latent space of
the denoising auto-encoder model displays semantic meaning properties.

4E.g. in the latent space.
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Human Pose Motion/Sequence Generation We propose a novel Generative Adversarial Network
(GAN) architecture for human pose motion generation. Our exact contributions are discussed
more precisely in a subsection in chapter 5. Our approach can be summarized as follows:

Our approach first converts human pose sequences into a 2D spatio-temporal image-like format,
that can thus be used by deep convolutional GANs architectures.

1.4 Thesis outline

This thesis is laid out in six chapters:

Introduction In this chapter, we briefly introduced the context of this thesis, the problematics linked to
this thesis and the main contributions of this thesis.

Overview of Sequence Modeling with Neural Networks In this chapter, we introduce the different
families of deep learning architectures and models prominent in the research literature for
sequence modeling. The models fall into four broad main categories: fully-connected neu-
ral networks, recurrent neural networks, convolutional neural networks and attention-based
associative memory neural networks. Fully-connected layers virtually make no assumption
about the 1D structure of sequences, and, as such, do not benefit from an inductive bias.
Convolutional Neural Networks (CNNs) share a reduced amount of parameters along the
time axis in order to detect temporal regularities in sequences. Recurrent Neural Networks
(RNNs) take a different approach: they take advantage of an external dynamic5 memory -i.e. a
vector- to store information between time steps. Finally, attention-based associative memory
neural networks propose to organize the models’ internal representations based on similarities
between inputs. This last category of neural networks can be seen as a first step towards neural
networks trained with self-supervised learning only.

Vehicle Control with Feedforward Neural Networks Autonomous vehicles rely on three main sub-
systems: namely the perception, the planning, and the control systems. Perception translates
raw sensor data into meaningful intelligence about a vehicle environment. Planning refers to
the process of making decisions in order to achieve the vehicle goals, e.g. to bring the vehicle
to a goal location while avoiding obstacles. Finally, control refers to the process of executing
the planned actions given the state of the vehicle and its environment.

In this chapter, we propose a novel framework for vehicle control where the control commands
are estimated by a neural network; we propose two architectures that can be used for that
neural network: a vanilla fully-connected neural network architecture and a convolutional
neural network (CNN) architecture. In experiments on a test track, we show that the proposed
framework leads to better results than human-designed non-deep classical approaches. We
observe that the CNN model is able to better capture the temporal dynamics than the fully-
connected model, leading to better results in the CNN case.

5The processing is still based on static weights/parameters, like fully-connected and convolutional neural networks do.
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Gesture Recognition with Convolutional Neural Networks over Time Gesture is one of the most
natural and simplest way to interact with one’s environment, including other humans and
machines. It is complementary to voice and does not require a complex physical brain-machine
interface. The ability to recognize human intents and actions is useful for numerous real-life
situations, and even critical for the design of meaningful interactions between humans and
machines. Moreover, it is known that 3D human pose, i.e. a sparse representation of the human
body based on information about its joints, is sufficient to describe and understand human
motion, from a human perspective.

In this chapter, we propose a novel approach to perform gesture recognition based on parallel
1D convolutions over the time dimension, on human pose sequences. The proposed network
architecture, the SkelNet, only uses convolution layers, dispensing with recurrence entirely.
We study the performance of the proposed SkelNet models with regards to the architecture
design choices, the parameters used, and on different tasks.

Human Motion Generation with Deep Learning A generative model is a model that models the data
generation process. Since generative models mostly rely on inductive biases, they tend to be
good at out-of-domain generalization.

Motivations for human pose motion generation include: realistic video synthesis, professional
training in technical skills and gestures, animation movies, virtual reality, augmented reality,
video games, ergonomic assessments, motion analysis for sport, musical or medical purposes,
exploration and creation of dance choreographies. Finally, human pose motion generation
could also be used to perform data augmentation for other deep learning tasks.

In this chapter, we propose two novel approaches for human pose motion generation, with the
help of neural networks.

The first approach is based on a Denoising Auto-Encoder of (spatial) human poses, where an
additional temporal constraint is enforced with the help of a triplet loss. This approach allows
to embed static human poses in a spatially and temporally constrained latent space. The latent
space of the denoising auto-encoder model displays semantic meaning properties.

The second approach is based on a 2D Generative Adversarial Network (GAN). Human
poses sequences are first represented as 2D, image-like, data. A conditional GAN with a
convolutional neural network architecture operating on this representation is then proposed to
generate human pose sequences.

Conclusion In this chapter, we summarize this thesis and propose possible future extensions to our
work.
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Chapter 2

Overview of Sequence Modeling with Neural
Networks

“Pour bien savoir les choses, il en faut savoir le détail.”

La Rochefoucauld
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2.1 Introduction

In this chapter, we present an overview of major approaches for sequence modeling using artificial
neural networks.

Sequence modeling

Let n ∈ N∗. A sequence s is a finite, or infinite, sequence of data points xt (where ∀t ∈ T, xt ∈ Rn)
indexed by a totally ordered set T called time:

s = (xt)t∈T (2.1)

When T is a discrete set (e.g. T= N or T= J1,100K), the sequence is said to be discrete. When T
is continuous (e.g. T= R), the sequence is said to be continuous.

A text sequence is a sequence of embedding vectors, where each embedding vector represents an
individual word or “token”. While text sequences may seem no different than other (types of) sequences,
they are actually very different, by nature. Text sequences represent highly semantic, extremely sparse
and very arbitrary content. In contrast, almost all other types of sequences represent content that is more
regular. For instance, an audio sequence displays regularities that are directly related to the physical
constraints and the dynamics of audio signals in the real, physical world.

In this thesis, we consider discrete sequences of physical quantities’ observations, indexed by natural
numbers (i.e. T=N), since sequences usually come from physical sensors that output values at discrete
time steps1. Frequent tasks that involve sequences include:

prediction the goal is to predict the value of a sequence at a time index tp based on previous values
only, i.e. based on values whose temporal index t is such as t < tp.

classification the goal is to assign a label to a sequence

anomaly detection the goal is to detect whether a sequence presents “abnormal” values or behavior

content-based retrieval the goal is to find, among many sequences, the sequence that is the most
“similar” to another sequence called request

motive/motif discovery the goal is to determine short subsequences called motives (or motifs) that are
repeated in a sequence

clustering the goal is to group sequences based on their similarity

transduction the goal is to transduce (or translate) a sequence into another sequence

segmentation the goal is to find a temporal partition of a sequence, so that the resulting temporal
segments make sense from an application-domain perspective

1Sensors values are usually already temporally synchronized and resampled at a lower level, e.g. at the hardware-level.
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Since a sequence can be viewed either as a whole, or as individual data evenly spaced on a 1D-grid,
it is worth noting that most of these tasks can be performed at a sequence level (e.g. one classification:
of the whole sequence) or at a time step level (e.g. many classifications: one for each individual value
of a sequence). This also holds true for sequence transduction tasks where both sequences can be seen
as a whole (one) or as a collection of values (many), leading to four possible scenarii (one-to-one,
one-to-many, many-to-one, many-to-many).

Deep Learning approaches

Classic approaches for sequence modeling that do not rely on artificial neural networks are essentially
model-based and not data-adaptive. As such, the only way to incorporate a domain knowledge about
the time series or sequences used consists in handcrafting rules with the help of experts and devising a
new model that incorporates these rules. Designing such expert rules appears to be very hard in the real
world. This is a crucial issue, since, as Elman, who introduced the famous recurrent neural networks2,
noted: “The representation of time -and memory- is highly task-dependent". Classic approaches include
AutoRegressive Integrated Moving Average (ARIMA) models (Box et al., 1970) estimated following the
Box–Jenkins approach (Box et al., 1970), or Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) (Bollerslev, 1986) models for instance.

Machine Learning (ML) based approaches tend to be notably more efficient for sequence modeling
than classic approaches, because they are data-adaptive. However, they share the same drawback as
the classic approaches: they often rely on carefully handcrafted features that require human expert
knowledge. Machine learning approaches include the k-Nearest Neighbors (k-NN) model (Hastie et al.,
2009; Lin et al., 2007) combined with the Dynamic Time warping (DTW) discrepancy (Bagnall et al.,
n.d.; Cuturi et al., 2017; Sakoe et al., 1978) for instance.

Statistical modeling approaches close to machine learning methods usually show good performances
too, while sharing benefits and drawbacks of the two approach families discussed before. Statistical
modeling approaches close to machine learning methods include Hidden Markov Models (HMMs)
(Leong et al., 2006; Rabiner, 1989; Starner et al., 1997; Yamato et al., 1992), Conditional Random
Fields (CRFs) (Lafferty et al., 2001; Sutton et al., 2006), or Singular Spectrum Analysis (SSA) (Ghil
et al., 2002; Golyandina et al., 2001; Vautard et al., 1992) for instance.

Finally, the state-of-the-art approaches for sequence modeling currently are based on Deep Learning
(DL) neural networks: regardless of the domain, approaches that use a neural network tend to display
better results than approaches that do not use a neural network. Deep learning approaches are data-
adaptive and do not require human expert knowledge contrary to the formerly mentioned approaches:
neural networks learn internal representations and features by their own during training. As such,
neural networks do not require expert rules to model sequence patterns. Like all the other approaches
mentioned, the performance of neural networks not only results from the data but also from their
sequence-focused design: the choice of a good neural network architecture is crucial.

In the next sections of this chapter, we present an overview of major deep learning architectures and
approaches for sequence modeling. The proposed overview is not a complete and exhaustive list of all

2Recurrent neural networks are presented in section 2.3.1.
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the architectures and approaches for sequence modeling, but rather a shortlist of the most commonly
encountered ones in the deep learning for sequences research literature. The major approaches presented
rely on the three most popular deep learning layers: fully-connected layers (TDNNs in section 2.2, and
attention mechanisms in section 2.5), recurrent layers (RNNs in section 2.3) and convolutional layers
(CNNs in section 2.4).

2.2 Fully-Connected Neural Networks

Multi-Layer Perceptrons (MLP) with Time Delay Neural Networks (TDNN)

The universal approximation theorem (Hornik, 1991) states that, under hypotheses on the activation
function, a feedforward network with a single hidden layer containing a finite number of neurons can
approximate continuous functions on compact subsets of Rn. As such, one may use a trivial feedforward
neural network fθ such as a Multi-Layer Perceptron (MLP) to model sequences, like any other type of
data.

When their statistics do not change over time, sequences are said to be stationary. In many real
world scenarii however, sequences are not stationary; the interpretation of a feature in the data depends
on earlier features and/or the time they appeared at. Sequences can also be arbitrary long. However,
fully connected layers require a fixed number of inputs. Their general purpose connection pattern does
not naturally benefit from regularities, like periodicity, that may exist in time series data either. Due
to these shortcomings and -good, yet- poor results when compared to more complex neural network
architectures, vanilla multi-layer perceptrons are hardly ever used on their own for sequence modeling
when it comes to artificial neural networks.

An exception to this assessment is the so-called Time Delay Neural Network (TDNN) architecture
(Waibel et al., 1989). TDNNs overcome the main obstacle of sequence processing for MLPs: the length
of the sequence. Sequences are usually long and have potentially variable -or even infinite- length
T of their input sequence x = (x1,x2, . . . ,xT ). TDNNs only perform computations on a small finite
subsequence x =

(
xφ(t−τ),xφ(t−(τ−1)), . . . ,xφ(t)

)
of the input sequence, of length τ , at each time step t:

yt = f T DNN
θ (xφ(t−τ),xφ(t−(τ−1)), . . . ,xφ(t)) (2.2)

where φ is a strictly increasing function φ : N→ N that extracts a subsequence from x. In practice,
however, that subsequence is usually based on consecutive indices or time steps:

yt = f T DNN
θ (xt−τ ,xt−(τ−1), . . . ,xt) (2.3)

Such a TDNN processing successive inputs (φ = identity) can be viewed3 as a 1-dimensional
Convolutional Neural Network (CNN) with a stride of 1 and a kernel size of τ +1. More generally, the
choice of φ is crucial to TDNNs, as it is supposed to find regularity in the data over time.

3However, in practice, the value of τ used in TDNNs is often an order of magnitude greater than the value of τ used in
CNNs. It is known that deep CNN models with small kernels tend to be more expressive than shallow CNN models with
large kernels, for a comparable parameters count.
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Finding φ may require an expert knowledge. Moreover, even with a large τ and/or a large sliding
window, the time-context of TDNNs is limited.

An illustration of a TDNN with an exponential delay is proposed in figure 2.1. In the illustration
proposed in figure 2.1, the TDNN only performs computations on a small finite subsequence of length
τ = 5, at each time step t. More precisely, at each time step t of the input sequence, the TDNN only
considers the following input subsequence:

(
xφ(t−τ),xφ(t−(τ−1)), . . . ,xφ(t)

)
where φ is an exponential

delay function defined (at each time step t) by φ(t− τ) = t for τ = 0 and by φ(t− τ) = t−2τ−1 for
τ ∈ J1,4K. The exponential delay function is used for illustration purposes only: other φ functions can
be considered as well, as mentioned earlier.

yt

xt-3

yt-2...

xt-5xt-6xt-7xt-9xt-10...

TDNN

xtxt-1xt-2xt-4xt-8

f

Input sequence

Time delay
neural network

Output sequenceyt-1

Figure 2.1 – Illustration of a Time Delay Neural Network (TDNN). The example TDNN depicted here
has an exponential delay: yt = f T DNN

θ
(xt ,xt−20,xt−21,xt−22,xt−23). Input and output values not related

to the the current time step t are greyed out on the illustration.

Fully-Connected Neural Networks with Attention-Mechanisms

The performance of a TDNN is closely related to the exact design of its time extraction function φ .
However, a TDNNs’ φ function has two major drawbacks. The first one stands in the fact that φ is
handcrafted based on a human per-domain expert knowledge, while it could advantageously be learned
during the training. The second drawback is more subtle, but closely related to the first one. The role of
φ is to make binary decisions about whether each individual time step (value) should be included in
the list of the TDNN neural network inputs, or not. Rather than performing a hard and hand-designed
filtering of the input, a soft and learned filtering4 of the input could be used to help the network better
devise by itself during training which information is relevant or not in its input.

The process of selectively focusing on an aspect of the input information -while ignoring other
perceivable information present in the input- is called attention.

Attention mechanisms in neural networks are not specific to fully-connected neural networks. As
such, they are introduced in their own section (section 2.5). However, it is worth noting that attention-
based models from the Transformer neural network family (introduced in section 2.5.2) are based on a
fully-connected architecture. Such models achieve state-of-the-art performance in one domain involving

4Based on a (learned) mask applied to the input, for instance.
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sequential data (the human written language domain), outperforming both convolutional and recurrent
neural networks.

2.3 Recurrent Neural Networks

Feedforward neural networks excel at pattern recognition. However, they lack plasticity as they rely on
a fixed architecture and on fixed parameters θ to process their input. Recurrent Neural Networks (RNNs)
combine feedforward neural networks with hidden states -which one can view as dynamic memories- to
overcome this shortcoming.

This section will first dive into the generic mechanism of Recurrent Neural Networks with vanilla

RNNs and will then put the spotlight on a few typical state-of-the-art gated recurrent neural networks.

2.3.1 Vanilla Recurrent Neural Networks

A Recurrent Neural Network (RNN) processes a variable-length sequence of inputs x = (x1,x2, . . . ,xT )

sequentially, one input xt at a time, using a feedforward neural network fθ and a hidden state ht whose
value evolves over time. At each time step t, the hidden state value is given by

ht = fθ (ht−1,xt) (2.4)

where h0 is an initial hidden state vector, fθ a feedforward neural network, θ its parameters, and
(h1,h2, . . . ,hT ) is the sequence of values taken by the hidden state vector over time. For convenience,
in the rest of this thesis, such a feedforward neural network fθ will be referred to as a Recurrent Neural
Network (RNN), and the associated h as the RNN’s hidden state. Depending on the definition, the output
of the RNN can either be the raw hidden state h, or its value σout put(h) after an activation function
σout put .

If σh, σy are two non-linearity functions, fθ a dense layer, y the prediction, bh and bz two bias
vectors and Wuv a weight matrix connecting a vector u to a vector v, the former recurrence relation
coincides with the definition of an RNN as initially introduced in (Elman, 1990):

ht = σh(Wxhxt +Whhht−1 +bh)

yt = σy(Whyht +by)
(2.5)

An illustration of a RNN is proposed in figure 2.2: on the right side of the figure 2.2, the so-called
“unfolded” graphical representation depicts how the same feedforward neural network fθ is applied
to different inputs xt over time while conveying a memory vector ht ; on the left side of the figure 2.2,
the “folded” graphical representation that is commonly used to summarize the “unfolded” operations is
presented.

A RNN can learn a probability distribution over a sequence (x)t∈J1,...,T K by being trained to pre-
dict the next symbol in that sequence: the output at each time step t is the conditional distribution
p(xt |xt−1,xt−2, . . . ,x1).
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The probability of the sequence x = (x)t∈J1,...,T K is therefore given by:

p(x) = p(x1)p(x2|x1)p(x3|x1,x2) . . . p(xT |xT−1,xt−2, . . . ,x1) =
T

∏
t=1

p(xt |xt−1,xt−2, . . . ,x1) (2.6)

The learned distribution can also be used to sample new sequences iteratively, one value after
another.

The RNN’s model fθ itself is invariant through time translation due to the recursive expression. This
provides an inductive bias to the RNN. Conversely, the hidden state value ht at time step t depends on
the input subsequence (x1,x2, . . . ,xt) already processed by the RNN beforehand. Assuming the RNN’s
parameters θ are trained such as the output features ht are a representation of the input subsequence
(x1,x2, . . . ,xt) up to time step t for each time step, a RNN effectively maps a variable-length sequence
(x)t∈J1,...,T K to a fixed-size representation hT .

xt

RNNf

yt

ht-1

...

...

...

x1

h1
RNNf

y1

x2

h2
RNNf

y2

xt-1

ht-1
RNNf

yt-1

xt

RNNf

yt

ht-2

Figure 2.2 – Illustration of a Recurrent Neural Network (RNN). The folded graphical representation
(left) is often used to summarize the unfolded graphical representation (right).
Figure adapted from (Le, 2015).

2.3.2 Recurrent Neural Networks Training

As with standard feedforward networks, weight initialization matters in recurrent neural networks. Some
authors suggest initializing vanilla RNNs with the identity matrix to make it easier for the information
to flow from one time step to another. For more complex gated RNN cells -presented in the next section-
like LSTM cells, initializing the gates biases uniformly in the expected range of long-term dependencies
seems to have the same effect.

Training a feedforward neural network using backpropagation requires to calculate its derivatives
and to apply the derivative chain rule. However, in RNNs, gradients do not only depend on the
input at a single time step, but also on the time steps before. To train RNNs, an extension of the
regular backpropagation algorithm, called Backpropagation Through Time (BPTT) (Werbos, 1990) is
used. BPTT unfolds the recurrent neural network in time, then uses the backpropagation algorithm,
keeping in mind that the network parameters are the same at each time step. In practise, the Truncated
Backpropagation Through Time (Jaeger, 2002), which truncates the history used in order to relieve the
need for a complete backtrack through the whole input sequence at every step, is used, at the risk of
favoring short-term dependencies.
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When the gradients are being propagated back in time all the way to the initial layer, they go through
numerous matrix multiplications due to the chain rule. A gradient with a small initial amplitude will tend
to decay (vanishing gradient) during that process and have no influence on learning, while a gradient
with a large initial amplitude will tend to grow too much (exploding gradient) and -usually- to cause
numerical conditioning issues or have a disproportionate influence on learning.

A few solutions to that issue exist. One may clip the gradient amplitude (i.e. gclip = min(g,gmax))
to avoid such exploding gradients, or even normalizing it no matter its initial value. Regarding the loss
function, skip connections are known to produce smoother loss functions that are easier to train, both
for feedforward networks and for RNNs; as such, skipping state updates can help training RNNs. Some
other tricks such as teacher forcing (Williams et al., 1989), which consists in feeding the RNN with the
ground truth output yt as input at time t +1 during training can also be used for RNN training. Layer
normalization is also known to improve the performance of vanilla recurrent networks.

However, most of the formerly mentioned techniques are often not sufficient to successfully train
RNNs by their own.

Besides these training initialization and training issues, regularizing RNNs reveals itself to be
difficult. RNNs need specific regularization schemes, as they naturally posses a stronger inductive bias
than feedforward networks due to their recurrent definition.

Most famous RNN regularization techniques include zoneout (Krueger et al., 2016), variational
dropout (Gal et al., 2016), recurrent dropout (Semeniuta et al., 2016), dropconnect on hidden-to-hidden
weights with an averaged stochastic gradient descent training method (Merity et al., 2017) and recurrent
batch normalization (Cooijmans et al., 2016).

2.3.3 Recurrent Neural Networks with Gates

To succesfully train RNNs, two main approaches stand out. One is to devise a better and dedicated
learning algorithm, e.g. with gradient clipping or by smoothing the gradients. The other one is to use
more complex activations function than usual activation functions, in order to warp time. The second
option is performed with the help of gates. Gates indicate if their input signal should be attenuated, thus
allowing an information to flow more or less depending on the input. Invariance to time warping leads
to gate-like mechanisms in recurrent models (Tallec et al., 2018).

RNNs with gates have proven to be much easier to train and to be able to capture longer-term
dependencies than vanilla RNNs. In this section we present two main RNN models with a gating
mechanism: Long Short-Term Memory Units (LSTMs) and Gated Recurrent Units (GRUs). These two
models are the reference RNN models used in the literature. An illustration of these two gated RNN
models is proposed in figure 2.3.

Long Short-Term Memory Units (LSTMs)

Long Short-Term Memory units (LSTMs) (Greff et al., 2016; Hochreiter et al., 1997b) are RNNs with
gates and a structure called Constant Error Carousel (CEC) designed to prevent vanishing gradients. The
memory is conveyed from one time step to another in a vector ct whose update equation is both linear
and weightless, the actual non-linear computations being performed by the other portions of the LSTM.
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Figure 2.3 – Illustration of two gated RNNs: (a) LSTM and (b) GRU.
Figure reproduced from (Olah, 2015).

A LSTM is to a vanilla RNN what a sheet of paper is to chinese whispers. In vanilla RNNs, the hidden
state to transfer is altered at each update, potentially a lot, as there is no mechanism designed to protect
its value. In LSTMs, the hidden state is only altered deliberately to add or to remove an information, as
decided by mainly two gates: the input and forget gates. These gates control how much the hidden state
should stay unchanged over time. A third gate named ouput gate controls the output of the LSTM.

The mathematical formulation of the LSTM is presented in equations 2.7.

it = σ(Wixt +Uiht−1 +bi)

ft = σ(W f xt +U f ht−1 +b f )

ot = σ(Woxt +Uoht−1 +bo)

c̃t = tanh(Wcxt +Ucht−1 +bn)

ct = it� c̃t + ft� ct−1

ht = ot� tanh(ct)

(2.7)

where Wi,W f ,Wo,Ui,U f ,Uo are weight matrices, xt is the input vector at time step t, ht is the
current exposed hidden state, ct is the memory cell state, and � is element-wise multiplication.

An illustration of a LSTM unit is proposed in figure 2.3 (a). Besides illustrating the equations 2.7,
the figure 2.3 (a) also highlights the order and the role of the three gates -the forget gate (ft), the input
gate (it) and of the output gate (ot)- as well as the central role of the memory state ct in a LSTM unit to
convey information between two successive time steps.

Another commonly used variant is the LSTM with peephole connections (Gers et al., 2001). In a
standard LSTM without peephole connections, gates can only observe the input units and the outputs of
all cells, however there is no direct connection between them and the constant error carousel c. This can
be harmful when the output gate is closed, as none of the gates has access to the CECs they control.
LSTM with peephole connections, are an extension of LSTMs where gates have access to the internal
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state c. The formulation of a peephole LSTM, is given in equations 2.8.

it = σ(Wixt +Uiht−1 +Pict−1 +bi)

ft = σ(W f xt +U f ht−1 +P f ct−1 +b f )

c̃t = tanh(Wcxt +Ucht−1 +bn)

ct = it� c̃t + ft� ct−1

ot = σ(Woxt +Uoht−1 +P0ct +bo)

ht = ot� tanh(ct)

(2.8)

where Wi,W f ,Wo,Ui,U f ,Uo,Pi,P f ,Po are weight matrices, xt is the vector input to the time step t,
ht is the current exposed hidden state, ct is the memory cell state, and � is element-wise multiplication.

LSTMs can still be trained with BPTT like vanilla RNNs but are easier to train and able to learn
long(er)-term dependencies between the input.

LSTM gates do not have the same importance to remember the sequences: the forget gate is more
important that the output gate (Greff et al., 2016). The input gate is of negligible importance when
compared to both of theses gates: f > o >> i .

Gated Recurrent Units (GRUs)

Gated Recurrent Unit (GRU) (Cho et al., 2014) is a simplified variant of the LSTM architecture. A GRU
does not either use peephole connections or output activation functions. In a GRU, input and forget
gates are coupled into an update gate. The GRU output gate is called reset gate.

GRUs have fewer parameters than LSTMs. While LSTMs tend to slightly better perform than GRUs,
their performance is comparable for many tasks. Tuning hyperparameters such as the layer size is often
more important than finding the best architecture between the two in practice.

The mathematical formulation of the GRU is given in equations 2.9.

z = σ(Wzxt +Uzht−1 +bz)

r = σ(Wrxt +Urht−1 +br)

h̃t = tanh(Whxt + r�Uhht−1 +bh̃t
)

ht = z�ht−1 +(1− z)� h̃t

(2.9)

An illustration of a GRU unit is proposed in figure 2.3 (b). Besides illustrating the equations 2.9, the
figure 2.3 (b) also highlights the central role of the hidden state ht in a GRU unit to convey information
between two successive time steps.

2.3.4 Seq2seq

Seq2seq is a general end-to-end approach for sequence transduction (Sutskever et al., 2014). It aims to
transduce (i.e. transform) an input sequence (source) to a new one (target), where both sequences can be
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of arbitrary lengths. Examples of transduction tasks include text translation between languages, audio
voice translation, audio style transfer, question-answering, dialog generation or motion generation from
text for instance.

The architecture of a seq2seq model is an encoder-decoder architecture. An encoder neural network
first encodes the variable-length input sequence (source) into a fixed-length embedding vector. The
embedding vector is then decoded by the decoder neural network which maps the fixed-length embedding
vector to a new variable-length sequence (target).

An illustration of a seq2seq model is proposed in figure 2.4. The proposed illustration highlights the
fact that in a seq2seq model, both the input and the output of the model are sequences. A variable-length
input sequence (on top) can be encoded into a fixed-size vector (middle) before being decoded to a
variable-length ouput sequence (bottom).

x2x1 xPxP-1xP-2xP-3 Input sequence

Fixed-size
latent space vector

Target sequence

zencoderf decoderf

...x4x3

yQ-1yQ y3y4 y1y2...yQ-3yQ-2

Figure 2.4 – Illustration of a seq2seq approach. An input sequence (xi)i∈J1,PK of length P is encoded
into a fixed-sized latent space vector z which is later decoded into a target sequence (yi)i∈J1,PK of length
Q. In the original seq2seq model, both the encoder and the decoder are LSTMs.
Figure adapted from (Sutskever et al., 2014).

While (Sutskever et al., 2014) use a (multilayered) LSTMs for the encoder and for the decoder, any
architecture that maps a variable-length sequence to a fixed-length vector can be used for the encoder,
and any architecture that maps a fixed-length vector to a variable-length sequence can be used for the
decoder. As such, other RNN-based architectures and even CNN-based architectures can be used to
form a seq2seq model.

2.3.5 Other notable RNN extensions and models

Numerous RNN extensions exist in the research literature. RNN extensions can be general RNN
extensions, i.e. extensions of both vanilla RNNs and more complex RNNs like GRUs and LSTMs.
RNN extensions can also be (recurrent) model-specific by introducing a new recurrent cell architecture,
e.g. by introducing the GRU architecture, or by improving an existing architecture, e.g. by improving a
LSTM architecture to a LSTM with peephole connections architecture.
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Finally, other classes of models are sometimes directly based on a RNN architecture, e.g. this
is the case with Memory Networks5 (Weston et al., 2014). For instance, the Differentiable Neural
Computer model6 (Graves et al., 2016) is RNN-based since it is actually a RNN where the memory is
partly decoupled from the controller neural network that is responsible of writing and reading from the
memory, using attention-based mechanisms.

A non-exhaustive list of a few notable RNN extensions and models is proposed:

Bidirectional RNNs Bidirectional RNNs (Schuster et al., 1997) connects two hidden layers of opposite
directions (i.e. time is reversed t ←−t in the RNN equations of half of the neurons) to the
same output. Their future input information is reachable from the current state.

Multi-Dimensional RNNs Multi-Dimensional Recurrent Neural Networks (Graves et al., 2007) and
Grid Long Short-Term Memory Networks (Kalchbrenner et al., 2015) extend the one dimen-
sional sequence RNN model to multi-dimensional RNN models.

Echo State Networks Echo State Networks (Jaeger et al., 2004) are recurrent neural networks with
sparsely connected hidden layers, the connectivity and weights of hidden neurons being
randomly fixed.

Clockwork RNNs Clockwork RNNs (Koutnik et al., 2014) aim at capturing different time scales
by partitioning the RNN’s hidden layers into modules, each module processing inputs at a
different clock rate.

Fast weights Fast associative memory models with fast weights (Ba et al., 2016) extend the RNN
architecture with a Hebbian connectivity to support a dynamically changing short-term memory
of the units’ activities. The idea of fast weights is to store short-term memories in a weight
matrix, rather than in the hidden units (which are also already in charge of the non-temporary
processing) in order to relieve them.

Chunkers Chunkers (Schmidhuber, 1992) are recurrent neural networks trained in order to detect
temporal regularities and to learn to use them for identifying relevant points in time, leading to
a more resource-efficient processing.

Adaptive computation time Finally, adaptive computation time is a way for RNNs to perform different
amounts of computation at each time step (Graves, 2016).

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a class of feedforward neural networks where the neural
network uses a convolution operation in place of a matrix multiplication in at least one of its layer.
CNNs tend to exhibit good performance on data with a grid-like topology. Data with a grid-like topology

5Memory Networks are introduced in section 2.5.3.
6Differentiable Neural Computers are introduced in section 2.5.3.
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include time-series and images, as they respectively can be viewed as a field of vectors taking values
over an evenly spaced 1D grid (time) or 2D grid (spatial pixel grid).

Convolutional neural networks over sequences find temporal regularities. Convolutional neural
networks also have fewer parameters than “equivalent” vanilla feedforward neural networks.

2.4.1 Convolution operator

Definition

A convolution between two real-valued functions x and w is another function, written x∗w, defined by

(x∗w)(t) = x(t)∗w(t) =
∞∫
−∞

x(u)w(t−u)du.

Similarly, the convolution between two vector sequences x = (xt)t∈D and w = (wt)t∈D taking values
over an evenly-spaced discrete time domain D , e.g. D = Z or D = J1,T K, is another sequence of
vectors taking values over D and defined by:

(x∗w)t = ∑
u+v=t

(u,v)∈D2

xu�wv (2.10)

where � is the element-wise HADAMARD product.
The convolution operator is associative, commutative and bilinear. Convolution is also closely

related to the FOURIER transform, which filters a signal into circular paths.
Although the convolution operator is commutative, in convolutional network terminology, the first

argument x to the convolution is referred to as the input and the second argument w is referred to as the
kernel. The convolved output is referred to as the feature map.

A kernel w with a smaller support (i.e. duration) than the duration of a sequence x can still be
convolved with that sequence x, by padding the kernel with zeros so that both the kernel w and the
sequence x have the same duration.

In convolutional neural networks, the kernel is usually chosen smaller than the input, rather than
using a kernel with the same size as the input. Each parameter of the kernel is used at every position of
the input. This choice allows both a more sparse connectivity and parameter sharing across the input
locations, because of the reuse of the parameters. Parameter sharing also makes convolution equivariant
to translation:

T (x∗w) = T (x)∗w (2.11)

where T is a (temporal) translation operator.
An illustration of a 1D convolution operation is proposed in figure 2.5: at a given time step, to obtain

the output of the convolution (bottom of the figure), an input sequence (top of the figure) is convolved
with a small kernel (middle of the figure) of size 3 in this case. In order to compute the value of the
convolution between the kernel and the input sequence at another time step, the kernel position is shifted
along the time axis.

It can be proven that, given some natural constraints, a convolutional structure is actually a necessary
condition for equivariance to the action of a compact group (Kondor et al., 2018).
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xtxt-1 xt+1xt... ...xt+2xt+1xt-1

w2 w3w1

xt-2

(x*w)t... ...

Input sequence

Output sequence

Kernel

(x*w)t-1 (x*w)t+1

(x*w)t = w1xt-1 + w2xt + w3xt+1

Figure 2.5 – Illustration of a 1D convolution between a sequence and a kernel w of length 3. Input and
output values not related to the the current time step t are greyed out on the illustration.

If F designates the FOURIER transform, F−1 the inverse FOURIER transform, if x and w are
square-summable, and if x and w have FOURIER transforms F (x) and F (w) respectively, then

x∗w = F−1(F (x)F (w)) (2.12)

Graph convolutions

The definition of the convolution operator can then be extended to graphs, using the former equation
and the graph FOURIER transform G F . On a graph, a convolution can be defined as:

x∗w = G F−1(G F (x)�G F (w)) (2.13)

As the graph FOURIER transform itself is defined on values of the spectrum of the graph Laplacian,
this definition of a graph convolution is spectral and therefore depends on the exact graph topology.
However, one can define a graph convolution7 using message-passing spatial approaches that do not
require a spectral operator (Wu et al., 2019). The definition of the convolution operator can also be
extended to other types of input data, e.g. to 2D-grid data (images) or to functions on manifolds (Kondor
et al., 2018).

To summarize, one can define a convolution operator over both regular (grid-like) and irregular
(graph-like) domains. This convolution operator filters the input using a kernel. Due to its properties,
the convolution operator is parameter-efficient and good at extracting patterns from the data.

7Graph convolutional neural networks (GCNNs), i.e. CNNs that operate on graphs, can be defined using such a graph
convolution operator.

20



Extensions of the definition

The definition of the convolution operation can be extended, and many extensions of the convolution
operation (or of the convolutional layer) exist in the literature. These extensions add new domains for
the convolution operation, e.g. convolutions over graphs, or propose to add additional parameters to
the convolution operation. The most commonly used extensions include: strided convolutions, dilated
convolutions, transposed convolutions, separable convolutions, deformable convolutions and causal (or
temporal) convolutions.

Strided convolutions A stride is the step size used for the kernel when traversing a sequence: instead
of using a translation stride (step) of 1, other values can be used, e.g. a stride of 2 can be
used for downsampling a sequence without of having to pooling. Strided convolutions are
convolutions that use a stride value different than 1.

Dilated convolutions Dilated convolutions, also known as à trous convolutions or atrous convolu-
tions8, introduce another parameter called the dilation rate. The dilatation rate is the spacing
between the values in a kernel. Dilated convolutions have a wider field of view than standard
convolutions at the same computational cost.

Transposed convolutions Transposed convolution, also named fractionally-strided convolution (Du-
moulin et al., 2016) or deconvolution (Long et al., 2015), are convolutions that increase the
input sequence duration rather than decreasing it, as standard convolutions do.

Separable convolutions There are two main types of separable convolutions: spatial separable convo-
lutions, and depthwise separable convolutions (Chollet, 2017). Both of them aim at reducing
the number of parameters in a convolution kernel, when the kernel dimension is greater than 1
(which is not the case for sequential data, by definition). A spatial separable convolution sepa-
rates a kernel into two smaller kernels. A depthwise separable convolution splits a kernel into
two separate kernels that perform two convolutions: a depthwise convolution and a pointwise
convolution.

Deformable convolutions Convolutions are computed on a grid (a 1-dimensional temporal grid in the
sequence case, or a 2-dimensional spatial grid in the image case for instance). In Deformable
Convolutional Networks (Dai et al., 2017), that grid is deformed: each point that forms the
grid is moved by a learnable offset; the convolution computations being performed on these
moved grid points.

Causal (or temporal) convolutions A causal convolution9 is a convolution where future values are
masked and only past values are used: at each step t the sequence values indexed by t ′ where
t ′ < t are used for the convolution computation, the other ones indexed by t ′′ where t ′′ > t

being set to zero). An efficient way to compute causal convolutions consists in shifting and
padding the input sequence by the kernel size and then undo the shifting. Causal convolutions

8While being frequently encountered, atrous is actually a spelling mistake, the correct form being à trous. In French, à
trous means with holes.

9Causal convolutions are sometimes -and often ambiguously- referred to as “temporal convolutions”.
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can be used, for instance, for applications involving temporal sequences if the application
requires the computation to be an online computation, i.e. a computation where an output is
computed at/for each input time step. An example of causal convolution use can be found
in the Temporal Convolutional Networks (TCNs10) (Bai et al., 2018). TCNs are made of
residual11 convolution blocks where the convolution is dilated, causal and normalized using
weight normalization (Salimans et al., 2016). The idea of masking future information is also
used in numerous autoregressive deep learning models like in PixelCNN (Van den Oord et al.,
2016) and Wavenet (Oord et al., 2016), or in reinforcement learning models -for problems
sensitive to the positional dependency- like in SNAIL (Mishra et al., 2017) for instance.

2.4.2 Pooling

A pooling function is a function that replaces a layer output at a specific location by a summary statistic
of the values taken by the neighbors of that location.

For grid-like domains, the neighborhood of a location is often defined as a rectangular neighborhood
centered on the location (for instance a few time steps before and after a specific time step, if the domain
is time).

Pooling summarizes features over a whole neighborhood, helping the representation to become
more invariant to small translations of the input. This invariance is often gained at the cost of losing the
precise location (in time or in space) of information.

The two most widely used pooling functions are Maximum Pooling (maxpool) (Y.-T. Zhou et al.,
1988) and Average Pooling (avgpool). For a given neighborhood of input values N = x1,x2, . . . ,xp,
they are respectively defined by:

maxpool(N ) = max
xi∈N

xi

avgpool(N ) =
1
p ∑

xi∈N
xi

Depending on the data and the cardinality of the neighborhood, either max or average pooling may
perform best of the two methods (Boureau et al., 2010). Empirical comparisons of the two methods
show that max pooling often outperforms average pooling in image recognition problems, however that
result may not hold for any type of data.

Since pooling tends to lose the precise location of information, architectures that require such precise
location do not use pooling (Oord et al., 2016).

10Not to be confused with Time-Contrastive Networks (Sermanet et al., 2018) (referred to as TCNs too...) or with standard
non-causal CNNs over time, also often described as Temporal Convolutional Networks (referred to as TCNs too...).

11Residual connections and skip-connections are introduced in section 2.4.3.
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2.4.3 Convolutional Neural Networks Architecture

A convolutional neural network (CNN) is a feedforward neural networks that uses a convolution
operation in place of a matrix multiplication in at least one of its layer.

General architecture of a 1D CNN

A traditional CNN model frequently involves a sequence of blocks involving a convolution layer, a
(e.g. batch) normalization layer, a non-linearity layer, a regularization layer12 and a pooling layer, as
illustrated in figure 2.6. Except the convolution layer and the activation layer, any of the remaining
layers, e.g. the pooling layer, can be dropped or replaced by a more appropriate layer if needed. These
blocks are often followed by hidden dense layers. The convolution blocks serve as feature extractors,
whereas the dense hidden layers can be seen as a classifier or a regressor, depending on the network’s
target(s). The final fully-connected layers not related to convolutions can be replaced with any other
type of layers, the correct layer type depending on the task13.

Such a CNN model is trainable end-to-end, as a composition of layers that are all differentiable.

Convolution
Block #1

Convolution
Block #2

Convolution
Block #2... Dense Layers

Convolution Neural Network

NormalizationConvolution Activation Dropout Pooling

Convolution Block

Figure 2.6 – Illustration of a typical CNN architecture (top) and a convolution block (bottom)

When their input data are time-series or temporal sequences, 1D CNNs are usually referred to as
Temporal Convolutional Neural Networks (TCNs). Temporal convolutional neural networks perform
their convolution and pooling operations over the time dimension. They may use either causal or
non-causal convolutions, depending on the task to perform. Causal-convolutions are usually used for
online tasks (Bai et al., 2018), while standard-convolutions are used for offline tasks.

12While regularization is often performed at the model’s loss function level, it can also be performed at an architectural
connectivity level, e.g. dropout (N. Srivastava et al., 2014), or at a weight level, e.g. spectral normalization (Miyato et al.,
2018).

13E.g. both recurrent layers and convolutional layers can be used, if the CNN model is a machine translation model.
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Advantages of a 1D CNN architecture

Temporal convolutional neural networks are well suited for time-series data: time can be viewed as a 1D
grid and CNNs are known to have good performances on grid-like domains (Goodfellow et al., 2016).

In temporal convolutional neural networks, each neuron is not connected to all neurons of the
previous layer, contrary to fully-connected layers14. Local connections (with only a small number of
neurons) is effective in reducing parameters and speed up convergence. A group of connections can
share the same weights, thus reducing parameters further.

Since the parameters of the convolution kernels are shared across the convolution domain, CNNs
can process both fixed-length inputs and variable-length inputs.

The multi convolutional layer hierarchy of a temporal convolutional neural networks give them
the ability to learn complex temporal hierarchies with increasing levels: first convolutional layers will
extract low-level patterns of the raw input sequence over a short time horizon, while last convolutional
layers extract high-level and more task-related patterns of the sequence over a wide time-horizon.

As such, temporal convolutional neural networks can advantageously be used for problems involving
time. For instance, 3D convolutions could theoretically be used in tasks involving both temporal
information and spatial information,. However 3D convolutions (k3 parameters, without bias) are more
computationally expensive than 1D convolutions (k kernel parameters, without bias) and 2D convolutions
(k2 kernel parameters, without bias) while spatial and temporal dynamics are not necessarily related in
all tasks. As such, a better solution often consists in using separate convolutions: convolutions over
time on one hand, alongside with 2D spatial convolutions on the other hand. One good architecture
typically intertwines temporal convolutions and spatial convolutions, i.e. the architecture consists in
a sequence of ST ST ST . . . constitutional layers, where S denotes a spatial convolution, and T and
temporal convolution, as described in (Pigou et al., 2015).

Finally, temporal convolutional neural networks inherit properties of the convolution operator
(presented in 2.4.1), the most notable one being equivariance to time translation: a temporal shift in a
convolutional layer input sequence produces an identical temporal shift in the output of that layer.

Skip connections and Residual connections

Neural networks tend to have complex loss landscapes. The deeper the network, the more chaotic the
loss landscapes become. Having highly non-convex loss landscapes raises at least two issues (H. Li
et al., 2018). The first one is generalization: with such landscapes, a neural network will have trouble
to generalize since a small change in the input distribution might have dramatic consequences on the
calculated loss distribution, due to the chaotic loss landscape. The second one, is more practical: the
neural network will be harder or even impossible to train.

Skip connections or residual connections (K. He et al., 2016; G. Huang et al., 2017; R. K. Srivastava
et al., 2015) allow to overcome this pitfall and substantially improve the training of very deep neural
networks. Skip-connections promote flat minimizers of the loss landscape.

Skip connections are additional identity15 connections between nodes from different layers; skip

14Fully-connected layers are often used in attention-based models for instance.
15Skip-connections usually use the identity operator, unless another operator is explicitly stated.
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x H H(x)

(a) Vanilla hidden layer

H H(x)+xx

(b) Hidden layer with a skip-connection

H(x) ⊙  T(x) + C(x) ⊙  x

H

T

C

x

(c) Hidden layer with a highway circuit

Figure 2.7 – Illustration of skip connections and highway circuits
Figure inspired by a figure from (Zilly et al., 2017).

connections skip one or more nonlinear processing layers. A residual block is a block where a layer Hθ

is skipped with a residual connection. An illustration of a skip-connection is proposed in figure 2.7 (b):
an identity connection between the input and the output nodes allow the incoming information to skip
the neural network Hθ , whereas this was not the case in the original case depicted in figure 2.7 (a).

In a traditional neural network, a layer learns the true output y = Hθ (x) whereas in a neural network
featuring a residual block the same layer learns -hence the name- the residual

Rθ (x) = Hθ (x)−x (2.14)

Residual blocks and skip connections can be introduced in any neural network architecture, regard-
less of the computational graph topology. Besides helping the gradients to flow more easily during the
backpropagation, they introduce a way to transform or bypass the signal. As such, it is worth noting
that the Highway Networks architecture (R. K. Srivastava et al., 2015), which inspired the design of
residual blocks (K. He et al., 2016), makes use of gating functions and is itself inspired from the design
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of a LSTM cell. In a traditional neural network, a layer Hθ outputs y = H = Hθ (x) whereas in a neural
network featuring a highway circuit the equations are:

H = HθH (x)

T = TθT (x)

C =CθC(x)

y = H�T+C�x

(2.15)

where Tθ and Cθ are two gating functions respectively named the transform gate and the carry gate.
An illustration of how a highway circuit both transforms (top gate in the figure) and carries (bottom gate
in the figure) the original input is proposed in figure 2.7 (c).

2.5 Attention-based Associative Memory

2.5.1 Attention Mechanisms in Neural Networks

Attention mechanisms are mechanisms that select -and focus on- a specific aspect of their input, while
ignoring other perceivable present information in the input.

Attention over sequences

The first attention mechanism called as such was proposed in (Bahdanau et al., 2014) to overcome
the incapability of remembering long sentences16 in the context of machine translation with seq2seq
models. This first attention mechanism proposed to allow the seq2seq decoder to access the entire
encoded sequence -rather than only the last encoded value- and to selectively decide what values (or
time steps) are important.

The most frequently encountered attention mechanism takes two sequences s(a)=
(

x(a)1 ,x(a)2 , . . . ,x(a)
T (a)

)
and s(b) =

(
x(b)1 ,x(b)2 , . . . ,x(b)

T (b)

)
as input, and scores all the couples

(
x(a)i ,x(b)j

)
using a scoring function

γ , where x(a)i is a vector from the first sequence and x(b)j is a vector from the second sequence. The
resulting scores can be stored in a matrix that is then used for task-related purposes, e.g. for sequence
alignment (Bahdanau et al., 2014).

Numerous scoring functions γ can be used. For instance, the cosine: γ(u,v) = cos(u,v) or the
dot-product: γ(u,v) = u>v can be used as scoring functions. Scoring functions can include parameters
to learn. This is the case for the following tanh scoring function: γ(u,v) = θ>a tanh(Wa[u;v]) where
θa and Wa are weight matrices to be learned in the alignment model and [·; ·] is the concatenation
operation.

Attention scoring functions can also have a single input, when the two input sequences of the scoring
function actually relate to the same input sequence. Attention mechanisms with such as scoring function
are called self-attention mechanisms.

16This is likely due to the lack of truly long-term memory in LSTMs, despite their promises, as noted in (Bai et al., 2018).
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An attention function Γ has three inputs. The first two inputs are the inputs of the scoring function
γ , while the third input is directly modulated by the output of the scoring function γ . For instance the
scaled dot-product attention Γscaled dot-product has three inputs: a key K, a value V, and a query Q. The
output of the scaled dot-product attention is a weighted sum of the value V, the weight assigned to
each value being determined by the dot-product of the query Q with all the keys K. The mathematical
formulation of the scaled dot-product attention is given in equation 2.16, where n is the dimension of
both K and V.

Γscaled dot-product(Q,K,V) = softmax
(

QK>√
n

)
V (2.16)

Multi-head attention is a simple ensembling technique that consist in computing attention on different
representation subspaces and jointly attending the computed attentions. For instance, the mathematical
formulation of the multi-head scaled dot-product attention mechanism is given in equation 2.17, where
p is the heads count, [·; ·] is the concatenation operation and WO and WQ

i , WQ
i , WQ

i (∀i ∈ J1, pK) are
matrices of parameters to learn.

hi = Γscaled dot-product(QWQ
i ,KWK

i ,VWV
i ) ∀i ∈ J1, pK

Γmulti-head scaled dot-product(Q,K,V) = [h1;h2; . . . ;hp]WO
(2.17)

An illustration of the multi-head scaled dot-product attention is proposed in figure 2.8: the right
side of the illustration highlights the ensembling aspect of the multi-head scaled dot-product attention
module whereas the left side of the illustration depicts the operations performed on the key K, the value
V and the query Q by each individual scaled dot-product attention module.

Figure 2.8 – Illustration of a multi-head scaled dot-product attention (right) and scaled dot-product
attention (left).
Figure reproduced from (Vaswani et al., 2017).

One possible interpretation of a scaled dot-product attention module is that it implicitly performs
selective analogies17 on a key-value dictionary-like structure: it selects aspects of an input data value
(V) where the input “type” (K) matches a desired “type” (Q). A multi-head scaled dot-product attention
module performs these analogies on different learned representations of the same input.

17A basic analogy being: "V is to K what the desired output is to Q".
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2.5.2 Transformer Networks

The transformer neural network architecture is an encoder-decoder architecture for sequence transduction
that is based solely on attention mechanisms, dispensing with recurrence and convolutions entirely
(Vaswani et al., 2017). Since the model is based on fully-connected layers, a positional encoding of the
input is added to it beforehand, in order to allow the network to extract information from the sequential
structure of the input. Both the encoder (Devlin et al., 2018) and the decoder (Radford et al., 2019) of
a transformer are composed of repeated modules. Each of these modules essentially consists of the
already introduced multi-head attention, and fully-connected layers.

Transformer-based models exhibit state-of-the-art performances in the human language and natural
language processing (NLP) domains (Devlin et al., 2018).

2.5.3 Memory Networks

Memory Networks (Weston et al., 2014) are a class of models that provide an explicit memory repre-
sentation, combined with inference components. Memory Networks are an attempt to externalize and
isolate memory abilities of a neural network from the perception processing abilities of the network. As
any memory, the external memory can be altered, written to and read from. If the memory network is
differentiable, it can be trained end-to-end, allowing for learned write and read mechanisms. This allows
complex content-addressable retrieval, e.g. with attention mechanisms to orient the input perception
towards the contents of the memory.

An illustration of a Memory Network is proposed in figure 2.9. As seen on the figure 2.9, a memory
network is consists in four modules I, G, O, R: the module I extracts features from the input, the module
G updates the memory recursively: m = G(m, I(x)), so that the module O and the module R produce
the output using this updated memory. The figure 2.9 highlights the central role of the memory bank m
in Memory Networks. Since the module G updates the memory recursively, Memory Networks could
also have been introduced in the RNN section (section 2.3). Memory Networks can be considered as
an early attempt at distinguishing the memory-related processing (and storage) from the rest of the
processing, in a neural network.

m

OI G Rx
I(x) O(I(x), m)

R(O(I(x), m))

Figure 2.9 – Illustration of a Memory Network. I extracts features from the input, G updates the memory
recursively: m = G(m, I(x)). O and R produce the output using this updated memory.
Figure reproduced from (Weston et al., 2014).
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Neural Turing Machines (NTMs) and Differentiable Neural Computers (DNCs)

Differentiable Neural Computers (DNCs) (Graves et al., 2016) are memory networks inspired from the
Von-Neumann architecture; they are an extension of Neural Turing Machines (NTMs) (Graves et al.,
2014).

A DNC is a neural network coupled to an external memory matrix. The neural network, called a
controller, is responsible for taking input in, reading from memory, writing to memory, and producing
an output. Since a DNC is differentiable end-to-end, the controller can be trained to learn how to use
the memory. Finally, the DNC model is also Turing complete.

Three kinds of interactions exist between the controller and the memory: content lookup mechanisms,
temporal memory linkage and dynamic memory allocation. Content can be written to the memory,
as well as erased from the memory. A temporal link matrix additionally stores information about the
order of writes, giving a DNC the native ability to recover sequences in the order in which it wrote
them. Reading from the memory can be done either based on content lookup (i.e. searching content by
similarity) or based on the order from the temporal link matrix.

In practice, a LSTM or a GRU is often used as a controller.
It is worth noting that attention mechanisms are used in all of the three possible interaction mech-

anisms between the controller and memory: in content lookup mechanisms, in temporal link matrix
recording mechanisms and finally in memory allocation for writing mechanisms.

An illustration of a differentiable neural computer is proposed in figure 2.10. The illustration
summarizes all memory access mechanisms (reading and writing heads with content lookup, temporal
linkage and dynamic memory allocation) into a single block for clarity purposes. As one can see in
figure 2.10, a DNC is a RNN since it conveys an external memory matrix18 across time steps to perform
computations on its input at a given time step. As such, the DNC could also have been introduced in the
RNN section (section 2.3). Though, the DNC’s memory-controller interactions (which are not detailed
in figure 2.10 for the sake of simplicity) essentially make extensive use of attention-based mechanisms.

18From one time step to another, (1) a memory state, (2) contents read from the memory, and (3) a control state are
conveyed.
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Figure 2.10 – Illustration of a Differentiable Neural Computer.
Figure reproduced from the code repository of (Graves et al., 2016).

2.6 Conclusion

In this chapter, we presented an overview of neural network module architectures used for sequence
modeling. Understanding attention mechanisms, recurrent neural networks and convolutional neural
networks is crucial to understand existing deep learning models that work on sequential data, and to
devise new ones.

Prior to this thesis, RNN-based approaches have long -and clearly- been considered as the de facto

standard approaches to obtain state-of-the-art performance on sequences with neural networks. However,
this assumption has been drastically challenged by the recent research literature. Current state-of-the-art
models for text sequences are attention-based models that do not use recurrent cells (Brown et al., 2020).
In other domains involving sequential data, like the audio domain or the human motion pose domain,
current state-of-the-art models frequently alternate between recurrent-only models and convolution-only
models.

Fully-connected, recurrent and convolutional neural networks are all able to model sequences.
However the performance of fully-connected neural networks clearly lags behind the performance of
RNNs and CNNs when no additional constraint is imposed. Temporal order is lost with a basic dense-
only architecture, whereas the design of both the CNN architecture and the RNN architecture allow
them to find temporal regularities in the data. Attention mechanisms select and focus on a specific aspect
of their input, while ignoring other perceivable present information in the input. Attention mechanisms
can be used with most feedforward neural networks architectures, including fully-connected neural
networks, convolutional neural networks and recurrent neural networks architectures.

After having dived into the details of each approach, it is worth noting afterwards that all these
approaches are actually very closely related to each other, even if their principle and exact inner
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operating mechanism may differ. When it comes to sequence modeling, a CNN can be considered
as a special case of a TDNN. Reversely, a TDNN can also be considered as a special case of a CNN.
A convolutional structure is known to be a necessary condition for temporal equivariance, which is
usually a desired property when it comes to sequences. The major difficulty when using a TDNN is to
decide -at an architectural level- where a TDNN has to attend to, temporally speaking. An attention
mechanism can be viewed as a way to "attend to" only a certain aspect -e.g. a portion- of a sequence
rather than the entirety of the sequence: in a sense, an attention mechanism try to filter the information
that needs to be processed later on. While this filtering can partly be performed at an architectural
level, e.g. based on similarities, attention mechanisms also very often learn the correct filtering with
parameters during training, at the expense of additional model parameters. Finally, RNNs only consider
one input sequence value at a time, rather than examining the full input at once at a sequence level,
as attention mechanisms do, or rather than examining the input at a sliding window level, as TDNNs
and CNNs do. In order to still be able to account for the temporal context of the input, RNNs rely on
an external memory. RNNs -and memory models that are based upon them- write and read relevant
information to that memory. Regardless of performance, the question of whether a deep learning model
should, or should not, require an external memory is still an open question for most applications.
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Chapter 3

Vehicle Control with Feedforward Neural
Networks

“Quand on lui réclamait des solutions parfaites, qui écarteraient

tous les risques : « C’est l’expérience qui dégagera les lois,

répondait-il, la connaissance des lois ne précède jamais

l’expérience. »”

Saint-Exupéry
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3.1 Introduction

In this chapter, we focus on the problem of controlling a car-like vehicle in highly dynamic situations,
for instance to perform evasive manoeuvrers in face of an obstacle.

We propose to use deep neural networks to implicitly model highly coupled vehicular dynamics,
and perform low-level control in real-time. In order to do so, we train a deep neural network to output
low-level controls (wheels torque and steering angle) corresponding to a given initial vehicle state and
target trajectory. Compared to classical MPC frameworks which require integrating dynamic equations
on-line, this approach allows to perform this task off-line and use only simple mathematical operations
on-line, leading to much faster computations.

This chapter is organized as follows: a brief summary of our contributions in proposed in sec-
tion 3.1.1. Motivations for the approach we introduce are discussed in section 3.1.2. Related works that
exist in the research literature are then discussed in section 3.2. Section 3.3 presents the vehicle model
used to generate the training dataset and to simulate the vehicle dynamics on a test track. Section 3.4
introduces two artificial neural networks architectures used to generate the control signals for a given
target trajectory, and describes the training procedure used in this chapter. Section 3.5 compares the
performance of these two networks, using simulation on a challenging test track. A comparison to
conventional decoupled controllers is also provided. Finally, a conclusion is proposed in section 3.6.

3.1.1 Contributions summary

Besides the overall approach and (hyper-)parameters, our contributions more specifically are: learning
the (inverse) dynamics of a wheeled vehicle with a neural network and using such a neural network
as a vehicle controller1, the creation of a public vehicle dynamics dataset for control (as described in
section 3.4.1) alongside with an open-sourced vehicle dynamics simulator2 based on the dynamics from
(Polack et al., 2017), the two neural network architectures proposed in sections 3.4.2 and 3.4.3, and all
the experiments performed in section 3.5. This chapter first appeared in (Devineau et al., 2018c).

3.1.2 Motivations

The recent development of deep learning has led to dramatic progress in multiple research fields, and
this technique has naturally found applications in autonomous vehicles. The use of deep learning to
perform perceptive tasks such as image segmentation has been widely researched in the last few years,
and highly efficient neural network architectures are now available for such tasks. More recently, several
teams have proposed taking deep learning a step further, by training so-called “end-to-end” algorithms
to directly output vehicle controls from raw sensor data (see, in particular, the seminal work in (Bojarski
et al., 2016)).

Although end-to-end driving is highly appealing, as it removes the need to design motion planning

1Thus effectively isolating control from perception and planning.
2The code for the vehicle dynamics simulator model is open source and published at https://github.com/

guillaumephd/vehicle-dynamics-model (Vehicle dynamics simulator code by Devineau, Polack and Altché
based on Polack’s original work).
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and control algorithms by hand, handing the safety of the car occupants to a software operating as a
black box seems problematic. A possible workaround to this downside is to use “forensics” techniques
that can, to a certain extent, help understand the behavior of deep neural networks (Castelvecchi, 2016).

We choose a different approach consisting in breaking down complexity by training simpler, mono-
task neural networks to solve specific problems arising in autonomous driving; we argue that the reduced
complexity of individual tasks allows much easier testing and validation.

3.2 Related Works

A particular challenge in highly dynamic situations, for instance to perform evasive manoeuvrers in face
of an obstacle, is the important coupling between longitudinal and lateral dynamics when nearing the
vehicle’s handling limits, which requires highly detailed models to properly take into account (Gillespie,
1997). However, precisely modeling this coupling involves complex non-linear relations between state
variables, and using the resulting model is usually too costly for real-time applications. For this reason,
most references in the field of motion planning mainly focus on simpler models, such as point-mass or
kinematic bicycle (single track), which are constrained to avoid highly coupled dynamics (Polack et al.,
2018). Similarly, research on automotive control usually treats the longitudinal and lateral dynamics
separately in order to simplify the problem (Khodayari et al., 2010).

Although these simplifications can yield good results in standard on-road driving situations, they
may be problematic for vehicle safety when driving near its handling limits, for instance at high speed
or on slippery roads. To handle such situations, some authors have proposed using Model Predictive
Control (MPC) with a simplified, coupled dynamic model (Falcone et al., 2007) which is limited to
extremely short time horizons (a few dozen milliseconds) to allow real-time computation. Other authors
have proposed to model the coupling between longitudinal and lateral motions using the concept of
“friction circle” (Kritayakirana et al., 2012), which allows precisely stabilizing a vehicle in circular
drifts (Goh et al., 2016). However, the transition towards the stabilized drifting phase – which is critical
in the ability, e.g., to perform evasive manoeuvrers – remains problematic with this framework.

Several authors have already proposed a divide-and-conquer approach by using machine learning
on specific sub-tasks instead of performing end-to-end computations, and in particular on the case of
motion planning and control. For instance, (Drews et al., 2017) used a Convolutional Neural Network
(CNN) to generate a cost function from input images, which is then used inside an MPC framework for
high-speed autonomous driving; however, this approach has the same limitations as model predictive
control. Other approaches, such as the one in (Se-Young Oh et al., 2000), used reinforcement learning
to output steering controls for a vehicle, but were limited to low-speed applications. In (Punjani et al.,
2015) the authors used a Rectified Linear Unit (ReLU) network model to identify the dynamics of a
helicopter in order to predict its future accelerations, but this model has not been used for control.

Closer to our work, (Rivals et al., 1994) trained neural networks integrating a priori knowledge of
the bicycle model for decoupled longitudinal and lateral control of a vehicle; in (Y. Chen et al., 2017),
authors used supervised learning to generate lateral controls for truck and integrated a control barrier
function to ensure the safety of the system. In (Cui et al., 2017) the authors coupled a standard control
and an adaptive neural network to compensate for unknown perturbations in order to perform trajectory
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tracking for autonomous underwater vehicle.

To the best of our knowledge, deep neural networks have not been used in the literature for the
coupled control of wheeled vehicles.

3.3 Vehicle simulator: 9 DoF vehicle model

In this section, we present the 9 Degrees of Freedom (9 DoF) vehicle model (Polack et al., 2017) which
is used both to generate the training and testing dataset, and as a simulation model to evaluate the
performance of the deep-learning-based controllers. All the equations presented in this section 3.3
are introduced in (Polack et al., 2017). They are only reproduced here for the sake of clarity and
completeness, and with the author’s acknowledgement.

The Degrees of Freedom comprise 3 DoF for the vehicle’s motion in a plane (Vx,Vy, ψ̇), 2 DoF for
the carbody’s rotation (θ̇ , φ̇ ) and 4 DoF for the rotational speed of each wheel (ω f l,ω f r,ωrl,ωrr). The
model takes into account both the coupling of longitudinal and lateral slips and the load transfer between
tires. The control inputs of the model are the torques Tωi applied at each wheel i and the steering angle
δ of the front wheel. The low-level dynamics of the engine and brakes are not considered here. The
notations are given in Table 3.1 and illustrated in Figure 3.1.

Remark: the subscript i = 1..4 refers respectively to the front left ( f l), front right ( f r), rear left (rl)
and rear right (rr) wheels.

Figure 3.1 – Vehicle model and notations. Figure reproduced from (Polack et al., 2017).

Several assumptions were made for the model:

• Only the front wheels are steerable.

• The roll and pitch rotations happen around the center of gravity.

• The aerodynamic force is applied at the height of the center of gravity. Therefore, it does not
involve any moment on the vehicle.

• The slope and road-bank angle of the road are not taken into account.
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Table 3.1 – Notations

X , Y Position of the vehicle in the ground frame

θ , φ ,
ψ

Roll, pitch and yaw angles of the carbody

Vx, Vy Longitudinal and lateral speed of the vehicle in its inertial frame

MT Total mass of the vehicle

Ix, Iy,
Iz

Inertia of the vehicle around its roll, pitch and yaw axis

Iri Inertia of the wheel i

Tωi Total torque applied to the wheel i

Fxpi ,
Fypi

Longitudinal and lateral tire forces generated by the road on the wheel i expressed in the tire
frame

Fxi , Fyi Longitudinal and lateral tire forces generated by the road on the wheel i expressed in the
vehicle frame (x,y)

Fzi Normal reaction forces on wheel i

l f , lr Distance between the front (resp. rear) axle and the center of gravity

lw Half-track of the vehicle

h Height of the center of gravity

re f f Effective radius of the wheel

ωi Angular velocity of the wheel i

Vxpi Longitudinal speed of the center of rotation of wheel i expressed in the tire frame

3.3.1 Vehicle dynamics

Equations (3.1a-3.1e) give the expression of the vehicle dynamics:

MTV̇x = MT ψ̇Vy +
4

∑
i=1

Fxi−Faero (3.1a)

MTV̇y = −MT ψ̇Vx +
4

∑
i=1

Fyi (3.1b)

Ixθ̈ = lw(Fz1 +Fz3−Fz2−Fz4)+h
4

∑
i=1

Fyi (3.1c)

Iyφ̈ = lr(Fz3 +Fz4)− l f (Fz1 +Fz2)−h
4

∑
i=1

Fxi (3.1d)

Izψ̈ = l f (Fy1 +Fy2)− lr(Fy3 +Fy4) (3.1e)

+ lw(Fx2 +Fx4−Fx1−Fx3)

Fxi and Fyi denote respectively the longitudinal and the lateral tire forces expressed in the vehicle
frame; Faero =

1
2ρairCxSV 2

x denote the aerodynamic drag forces with ρair the mass density of air,
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Cx the aerodynamic drag coefficient and S the frontal area of the vehicle; Fzi denote the damped
mass/spring forces depending on the suspension travel ζi due to the roll θ and pitch φ angles according
to Equation (3.1f). The parameters ks and ds are respectively the stiffness and the damping coefficients
of the suspensions.

Fzi =−ksζi(θ ,φ)−dsζ̇i(θ ,φ) (3.1f)

The position (X ,Y ) of the vehicle in the ground frame can then be derived using Equations (3.1g)
and (3.1h).

Ẋ = Vx cosψ−Vy sinψ (3.1g)

Ẏ = Vx sinψ +Vy cosψ (3.1h)

3.3.2 Wheel dynamics

The dynamics of each wheel i = 1..4 expressed in the pneumatic frame is given by Equation (3.2):

Irω̇i = Tωi− re f f Fxpi (3.2)

3.3.3 Tire dynamics

The longitudinal force Fxpi and the lateral force Fypi applied by the road on each tire i and expressed in
the pneumatic frame are functions of the longitudinal slip ratio τxi , the side-slip angle αi, the normal
reaction force Fzi and the road friction coefficient µ:

Fxpi = fx(τxi,αi,Fzi,µ) (3.3a)

Fypi = fy(αi,τxi,Fzi,µ) (3.3b)

The longitudinal slip ratio of the wheel i is defined as following:

τxi =


re f f ωi−Vxpi

re f f |ωi| if re f f ωi ≥Vxpi (Traction phase)
re f f ωi−Vxpi
|Vxpi| if re f f ωi <Vxpi (Braking phase)

(3.4)

The lateral slip-angle αi of tire i is the angle between the direction given by the orientation of the
wheel and the direction of the velocity of the wheel (see figure 3.1):

α f = δ − atan
(

Vy + l f ψ̇

Vx± lwψ̇

)
; αr =−atan

(
Vy− lrψ̇
Vx± lwψ̇

)
(3.5)

In order to model the functions fx and fy, we used the combined slip tire model presented by Pacejka
in (Pacejka, 2002) (cf. Equations (4.E1) to (4.E67)) which takes into account the interaction between
the longitudinal and lateral slips on the force generation. Therefore, the friction circle due to the laws of
friction (see Equation (3.6)) is respected. Finally, the impact of load transfer between tires is also taken
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into account through Fz.

||~Fxp +~Fyp|| ≤ µ||~Fz|| (3.6)

Lastly, the relationships between the tire forces expressed in the vehicle frame Fx and Fy and the
ones expressed in the pneumatic frame Fxp and Fyp are given in Equation (3.7):

Fxi = (Fxpi cosδi−Fypi sinδi)cosφ −Fzi sinφ (3.7a)

Fyi = (Fxpi cosδi−Fypi sinδi)sinθ sinφ (3.7b)

+ (Fypi cosδi +Fxpi sinδi)cosθ +Fzi sinθ cosφ

More details on vehicle dynamics can be found in (Gillespie, 1997) and (Rajamani, 2012).

3.4 Feedforward Neural Networks Models

We propose two different artificial neural network architectures to learn the inverse dynamics of a
vehicle, in particular the coupled longitudinal and lateral dynamics. An artificial neural network is
a network of simple functions called neurons. Each neuron computes an internal state (activation)
depending on the input it receives and a set of trainable parameters, and returns an output depending on
the input and the activation. Most neural networks are organized into groups of units called layers and
arranged in a tree-like structure, where the output of a layer is used as input for the following one. The
training of the neural network consists in finding the set of parameters (weights and biases) minimizing
the error (or loss) between predicted and actual values on a training dataset.

We generated a vehicle dynamics dataset using the 9 DoF vehicle model simulator. The dataset
is presented in section 3.4.1. In section 3.4.4 we describe how to train a neural network to learn the
inverse dynamics of a vehicle, in particular the coupled longitudinal and lateral dynamics, using the
ground-truth vehicle dynamics dataset we generated. The two neural network models we train based
on this training procedure are presented in section 3.4.2 for the Multi-Layer Perceptron model and in
section 3.4.3 for the Convolutional Neural Network model.

3.4.1 Dataset

Based on the 9DoF vehicle model simulator, we generated a ground-truth vehicle dynamics dataset.

The dataset we generated with the 9DoF vehicle model has a total of 43241 instances: it is divided
into a train set of 28539 instances and a test set of 14702 instances. For validation during each respective
model’s training, a cross-validation approach is chosen, as described in the section 3.4.4 where the
training procedure is detailed.

The following procedure was used to generate each instance:

First, a control u to apply is generated randomly, as well as an initial state ξ (0) of the vehicle. More
precisely, the vehicle is chosen to be either in an acceleration phase or in a deceleration phase with
equiprobability. In the first case, the torques at the front wheels Tω1 and Tω2 are set equal to each other
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and drawn from a uniform distribution between 0Nm and 750Nm, while the torques at the rear wheels
Tω3 and Tω4 are set equal to zero (the vehicle is assumed to be a front-wheel drive one). In the second
case, the torques of each wheel are set equal to each other and drawn from a uniform distribution
between −1250Nm and 0Nm. In both cases, the steering angle δ is drawn from a uniform distribution
between −0.5 and +0.5rad. The initial state ξ (0) is composed of the initial position (X (0),Y (0)) of the
vehicle in the ground frame, the longitudinal and lateral velocities V (0)

x and V (0)
y , the roll, pitch and yaw

angles and their derivatives, and the rotational speed ω
(0)
i of the each wheels. The initial longitudinal

speed V (0)
x is drawn from a uniform distribution between 5 and 40m.s−1; the initial lateral speed V (0)

y is
drawn from a uniform distribution whose parameters depend of V (0)

x ; the rotational speed ω
(0)
i is chosen

such that the longitudinal slip ratio is zero. All the other initial states are set to zero.

Secondly, the 9 DoF vehicle model is run for 3s, starting from the initial state ξ (0) and keeping the
control u constant during the whole simulation. The resulting trajectories are downsampled to 301 time
steps, corresponding to a sampling time of 10ms.

Consequently, each instance of the dataset consists in the following triplet:

ξ (0) the initial state of the vehicle,

u = (Tω1,Tω2,Tω3,Tω4 ,δ ) the control -kept constant over time- to apply,

(X (0),Y (0)), . . . ,(X (300),Y (300)) the resulting trajectory.

The dataset generation method is summarized in Algorithm 1.

Algorithm 1 Dataset Generation
1: function GENERATE INSTANCE

2: is_accelerating∼B(0,1) . Coin flipping
3: if is_accelerating = 1 then
4: u1 ∼U (0,750) . uniform; in N.m
5: δ ∼U (−0.5,+0.5) . uniform; in rad
6: u← [u1,u1,0,0,δ ]
7: else if is_accelerating = 0 then
8: u1 ∼U (−1250,0) . uniform; in N.m
9: δ ∼U (−0.5,+0.5) . uniform; in rad

10: u← [u1,u1,u1,u1,δ ]

11: V (0)
x ∼U (5,40) . uniform; in m.s−1

12: V (0)
y ∼U (a,b) . uniform; in m.s−1

13: where a = max
(
−1,−V (0)

x
3

)
14: and b = min

(
+1,+V (0)

x
3

)
15: trajectory← 9DoF(ξ (0),u,Tsim = 3s)

∣∣
(X ,Y )

16: save (ξ (0),u, trajectory)
17: function GENERATE DATASET(n = 43241)
18: for i← 1 . . .n do GENERATE INSTANCE()
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3.4.2 Model 1: Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP), or multi-layer feedforward neural network, is a neural network f

whose equations are:

h(0) = x (3.8a)

h(k) = σ
(k)(W(k)>h(k−1)+b(k)), for k = 1..L (3.8b)

where x denotes the input vector, h(k) the output of layer k ∈ J1,LK, L ∈ N∗ the number of layers of the
MLP and σ (k) denotes the k-th activation function. h(L) = f (x) denotes the output vector of the neural
network.

The MLP, presented in figure 3.2, is used to predict the constant control (Tω1 ,Tω2,Tω3,Tω4,δ ) to
apply given an initial state ξ (0) and a desired trajectory (X (0),Y (0)), . . . ,(X (300),Y (300)). It is trained
on the dataset presented in subsection 3.4.1. It comprises L = 5 layers, respectively containing 32,
32, 128, 32 and 128 neurons. All the activations functions of the network are rectified linear units
(ReLU): σ(x) = max(0,x). The loss function used, as well as weights initialization or regularization are
discussed in the section 3.4.4, as they are common for the two neural networks proposed. We performed
a grid search to choose the sizes of the layers among 35 = 243 possibilities by allowing each layer
to have a size of either 32, 64, or 128 neurons, training the corresponding MLP for 200 epochs and
evaluating its performance on the test dataset.

32
neurons

32
neurons

128
neurons

32
neurons

128
neurons

ξ(0)

X(0), Y(0)

X(1), Y(1)

...
X(300), Y(300)( )

Flatten
+

Concat

control

initial state

trajectory

inputs: MLP output:

u

Model 1: Multi-Layer Perceptron (MLP)

Figure 3.2 – Multi-Layer Perceptron

3.4.3 Model 2: Convolutional Neural Network

Convolutional Neural Networks (CNN) are neural networks that use convolution in place of general
matrix multiplication in at least one of their layers. A traditional CNN model almost always involves
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a sequence of convolution and pooling layers. CNNs have a proven history of being successful for
processing data that has a known grid-like topology. For instance, numerous authors make use of CNNs
for classification (Dong et al., 2015), or semantic segmentation (Badrinarayanan et al., 2017) purposes.

We propose to use convolutions to pre-process the vehicle trajectory before feeding it to the MLP, as
illustrated in figure 3.3. Trajectories are time-series data, which can be thought of as a 1D grid taking
samples at regular time intervals, and thus are very good inputs to process with a CNN. We decided
to process the X and Y coordinates separately. For each channel x (either X or Y ), we construct the
following CNN module, which is depicted in figure 3.4:

h(0) = x (3.9a)

h(k) = σ
(k)(π(k)(W(k) ∗h(k−1)+b(k))), for k = 1..L′ (3.9b)

where h(L′) is the output of the CNN module, L′ ∈ N∗ the number of layers, σ (k) the k-th activation
function and π(k) the k-th pooling function.

The parameters of the CNN module are L′= 3, with a convolution kernel size of 3 for all convolutions.
The activation functions are all ReLU and the pooling functions are all average-pooling of size 2. The
first two convolutions have 4 feature maps while the last convolution has only 1 feature map.

As the longitudinal and lateral dynamics are quite different, distinct sets of weights are used for the
X and Y convolutions. After processing the X and Y 1D-trajectories by their dedicated CNN module,
their output are concatenated. This new output is then fed to the former MLP whose characteristics
remain the same except from the dimension of its input. The whole model shown in figure 3.3 is
designated as the “CNN model” in the rest of this chapter.
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Model 2: Convolutional Neural Network (CNN)
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u

Figure 3.3 – Convolutional Neural Network
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3.4.4 Training procedure

The training procedure is the same for the two neural networks:

Weights Initialization & Batching

Each training batch is composed of 32 instances of the dataset. The Xavier initialization (Glorot et al.,
2010) (also known as GLOROT uniform initialization) is used to set the initial random weights for all
the weights of our model.

Train, Test and Validation sets

During training, a 5-fold cross-validation approach is chosen: for each one of the 5 folds of the train set,
the model is trained on the remaining 4 folds of the train set, and validated on the remaining part (1
fold) of the train data. The final score measure reported by the 5-fold cross-validation is the average of
the values computed in the loop. Once the model’s parameters have been adjusted on the 5 different
folds of the train set, a final evaluation on the test set is performed.

Loss function, Regularization & Optimizer

The objective of the training is to reduce the mean square error (MSE) between the controls predicted
upred by the neural network and the ones ureal that were really applied to obtain the given trajectory.
The neural network is trained in order to minimize the loss function L defined by Equation (3.10) on the
train dataset, before evaluation on the test dataset.

L = γLδ +(1− γ)LT +Lreg (3.10)
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where

Lδ (δ
real,δ pred) =

1
0.5

MSE(δ real,δ pred) (3.11a)

LT (T real
ωi

,T pred
ωi ) =

1
4×2000

4

∑
i=1

MSE(T real
ωi

,T pred
ωi ) (3.11b)

Lreg(W ) = γreg||W ||22 (3.11c)

The scaling factors 1/0.5 and 1/(4× 2000) were chosen in order to normalize the steering and
the torques. The parameter γ = 0.99 was chosen in order to prioritize the lateral dynamics over the
longitudinal one. Equation (3.11c) is an L2 regularization of our model, where W is the vector containing
all the weights of the network. We set γreg = 10−5.

To train our model, we used the Adam optimization algorithm (D. Kingma et al., 2014). It calculates
an exponential moving average of the gradient and the squared gradient. For the decay rates of the
moving averages, we used the parameters β1 = 0.9, β2 = 0.999. The values of other parameters were
α = 10−3 for the learning rate, and ε = 10−8 to avoid singular values.

3.5 Comparison between Classical approaches and Neural Net-
works approaches

In order to compare their ability to learn the vehicle dynamics, the two different artificial neural networks
are used as “controllers"3. The reference track, presented in figure 3.5, comprises both long straight
lines and narrow curves. The reference speed is set to Vre f = 10m/s on the whole track.
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Figure 3.5 – Top view of the test track; numbers 1 to 7 refers to different road sections delimited by
dashed lines in order to facilitate the matching with figures 3.9 to 3.13.

3Properly speaking, they are not real controllers as they do not learn how to reject disturbances and modeling errors.
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3.5.1 Generating the control commands

In order to compute the control commands to be applied to the vehicle, the artificial neural network
needs to know the trajectory the vehicle has to follow in the next 3s, as in the train dataset. One problem
that arises is that it has only learned to follow trajectories starting from its actual position such as in
figure 3.6. However, in practice, the vehicle is almost never exactly on the reference path. Therefore, a
path section starting from the actual position of the vehicle and bringing it back to the reference path
is generated: for that purpose, cubic Bezier curves were chosen as illustrated in figure 3.7. Thus, at
each iteration, (i) a Bezier curve with length 3s is computed to link the actual position of the vehicle to
the reference trajectory; (ii) a query comprising the previously computed Bezier curve is sent to the
artificial neural network; (iii) the artificial neural network returns the torques at each wheel and the front
steering angle to apply until the next control commands are obtained. The computation sequence is run
every 300ms, even though the query takes less than 2ms.

3.5.2 Comparison of the models

The results obtained for the MLP and the CNN models are displayed respectively in blue and in red in
figures 3.9 to 3.13. The resulting videos, obtained using the software PreScan (TASS International n.d.),
are available online4. Clearly, it appears that the results obtained using a CNN are better than a MLP.
First, we observe that the control commands are smoother in curves with the CNN. There are steep
steering (see figure 3.9) and front torques (see figure 3.10) variations for the MLP around s = 360m in
road sections n◦4 and around s = 480m in road sections n◦6. In the latter case, the steering angle reaches
its saturation value +0.5rad and the wheel torques change suddently from 1000Nm to −1000Nm and
vice-versa, which is impossible in practice. On the contrary, the control signals of the CNN model
remains always smooth and within a reasonable range of values. Secondly, both the longitudinal and
lateral errors are smaller for the CNN than the MLP as shown respectively in Table 3.2 and 3.3.

Table 3.2 – Comparison of the longitudinal performances of the MLP and CNN controllers (in m/s).

model RMS average std. dev. max

MLP 0.76 -0.29 0.70 -4.94

CNN 0.60 -0.39 0.46 -2.33

Table 3.3 – Comparison of the lateral performances of the MLP and CNN controllers (in m).

model RMS average std. dev. max

MLP 0.61 0.003 0.61 3.26

CNN 0.43 0.014 0.43 1.7

However, unlike classic controllers, stability cannot be ensured for these “controllers" as they are
black boxes. In particular, for the CNN, we observe a lateral static error in straight lines. This static
error is caused in fact by the Bezier curves which do not converge fast enough to the reference track on

4https://www.youtube.com/watch?v=yyWy1uavlXs
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straight lines as only the first 300ms are really followed by the CNN model (see figure 3.8). Moreover,
figure 3.9 shows that the steering angle applied during straight lines is the same for MLP and CNN.

3.5.3 Coupling between longitudinal and lateral dynamics

The speed limit a kinematic bicycle model can reach in a curve of radius R is given by Equation (3.12)
where µ = 1 is the road friction coefficient and g the gravity constant (Polack et al., 2018). This
corresponds to 9.9m/s (R = 20m) in road section n◦2 and 7.0m/s (R = 10m) in road section n◦6. As the
reference speed is set to 10m/s throughout the track, conventional decoupled longitudinal and lateral
controllers (based on a kinematic bicycle model) will not perform well in road section n◦6.

Vkbmlim =
√

0.5µgR (3.12)

On the contrary, both models (especially the CNN) are able to pass this road section, showing
the ability of artificial neural networks to handle coupled longitudinal and lateral dynamics. More
precisely, we observe in figure 3.12 that the speed is reduced in section n◦6 because the artificial neural
networks deliberately brake (see figure 3.10 and 3.11), even though the speed of the vehicle is below the
reference speed. This is due to the loss function used during training and given by Equation (3.10) that
penalizes more steering angle errors than torque errors. Hence, the models prioritize the lateral over the
longitudinal dynamics.

Therefore, such “controllers" are particularly interesting for highly dynamic maneuvers such as
emergency situations or aggressive driving where the longitudinal and lateral dynamics are strongly
coupled. However, they should be used sparingly as they are only black boxes, or should at least be
supervised by model-based systems. Moreover, for normal driving situations, conventional decoupled
longitudinal and lateral controller should be preferred.
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Figure 3.6 – Example of a training dataset instance: in red, the reference trajectory, in blue the one
obtained from the control predicted by the CNN model.
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Figure 3.7 – Example of a Bezier curve (in red) joining the actual position of the vehicle (the red circle)
to the reference trajectory (in green). The actual trajectory followed by the vehicle is shown in blue.
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Figure 3.8 – Example of a Bezier curve on a straight line section of the reference trajectory. The lateral
error is not corrected since the convergence of the Bezier curve to the reference trajectory is too slow.
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Figure 3.9 – Comparison of the steering command computed by the different controllers. The numbers
1 to 7 correspond to the different road sections presented in Figure 3.5.
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Figure 3.10 – Comparison of the torque applied at the front wheels computed by the different controllers.
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Figure 3.11 – Comparison of the torque applied at the rear wheels computed by the different controllers.
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Figure 3.12 – Comparison of the total speed obtained with the different controllers.
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Figure 3.13 – Comparison of the absolute value of the lateral error obtained with the different controllers.
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3.5.4 Comparison with decoupled controllers

Finally, the “controllers" obtained with the MLP and CNN models are compared with commonly
used decoupled controllers: the lateral controller is either a pure-pursuit (PP) (Coulter, 1992) or a
Stanley (Thrun et al., 2006) controller while in both cases, the longitudinal controller is ensured by a
Proportional-Integral (PI) controller with gains KP = 600 and KI = 10. The gain for the front lateral
error is 0.75 for the Stanley controller. The preview distance of the pure-pursuit controller is defined as a
function of the total speed Vg at the center of gravity: LP = l f +TAVg where TA = 1.5s is the anticipation
time. The results of the PP and the Stanley controllers are shown respectively in green and grey in
figures 3.9 to 3.13. Clearly, a decrease of performance can be observed when using these decoupled
controllers in the challenging part of the track. In particular, the lateral error becomes huge in both
cases during the sharp turn of road section n◦6 while the CNN was able to perform reasonnably well.

3.6 Conclusion

This work presented some preliminary results on deep learning applied to trajectory tracking for
autonomous vehicles. Two different approaches, namely a MLP and a CNN, were trained on a high-
fidelity vehicle dynamics model in order to compute simultaneously the torque to apply on each wheel
and the front steering angle from a given reference trajectory. It turns out that the CNN model provides
better results, both in terms of accuracy and smoothness of the control commands. Moreover, compared
to most of the existing controllers, it is able to handle situations with strongly coupled longitudinal and
lateral dynamics in a very short time. However, the controller obtained is a black-box and might not be
used standalone.

The results proved the ability of deep learning algorithms to learn the vehicle dynamics character-
istics. From a deep learning perspective, it is worth noting that (inverse) vehicle dynamics -who are
highly dependent on temporal evolutions- can be learned by neural networks that make, in a sense, a
relatively limited use of the temporal information by itself.

Being able to learn vehicle dynamics with neural networks opens a wide range of new possible
applications of such techniques, for example for generating dynamically feasible trajectories. Future
work will focus on (i) replacing the complex dynamics models by a learned off-line model in Model
Predictive Control for motion planning, (ii) using Generative Adversarial Networks (GAN) to generate
safe trajectories where the learned dynamics is used as constraint, and (iii) performing real-world
experiments with our approach on a real car.

50



Chapter 4

Gesture Recognition with Convolutional
Neural Networks over Time

“On ne peut oublier le temps qu’en s’en servant.”

Baudelaire

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Contributions summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Handcrafted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Deep-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Convolutional Neural Networks over Time approach . . . . . . . . . . . . . . . . 59

4.3.1 Pose Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 SkelNet Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Reference models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Input Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Module Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Neural Network Design Choices . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.5 Weight Sharing Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.6 Applicability of the approach to other databases . . . . . . . . . . . . . . . . 88

4.5 Model visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

51



4.1 Introduction

Gesture is one of the most natural and simplest way to interact with one’s environment, including
other humans and machines. It is complementary to voice and does not require a complex physical
brain-machine interface. The ability to recognize human intents and actions is useful for numerous
real-life situations, and even critical for the design of meaningful interactions between humans and
machines.

While pose estimation is often performed at a frame-level only1, gesture recognition naturally takes
into account temporal information from the motion performed. Different sensors can be used to capture
gestures, including mono cameras, stereo cameras, depth-aware cameras, as well as event cameras,
on-body IMUs and motion capture sensors placed on suits or gloves.

Several approaches exist for gesture recognition, using either dense or sparse sensor data as input.
One can make use of dense 2D image data obtained by the previously cited sensors, and extract features
from the data to classify the gesture performed. One can also work on dense 3D data, which require
more computational resources but have more potential, and can also be acquired with these sensors.
Such dense 3D data can represent tremendous amount of data, however it has been known for a long time
that skeletal pose, which is a sparse representation of the human body based on its joints, is sufficient to
describe and understand human motion (Johansson, 1973). Joints positions, rotations and other relevant
vector features, can be either estimated from 2D or 3D data using vision techniques, or even be directly
provided by the sensor, at a very high frame rate (Lugaresi et al., 2019; Raaj et al., 2019). One can also
note that the use of pose sequence reduces privacy concerns, compared to image sequences, because
of the nature of the information involved in these two representations. All these reasons support and
motivate the interest of performing gesture recognition using only 3D or 2D pose data sequences.

For illustration purposes, a handstand movement viewed both as an RGB image sequence and as a
pose sequence is proposed in figure 4.1. As one can see in figure 4.1, human pose sequences preserve
more privacy than image sequences but they still allow recognition of the action performed.

For widespread adoption, gesture recognition algorithms need to be reliable and fast enough to be
computed in real-time on embedded devices like smartphones and robots. This requirement of fast and
reliable computing becomes crucial in many practical use cases, e.g. for human-robot collaboration in
factories.

We propose a Convolutional Neural Network (CNN) approach to perform gesture recognition by
computing 1D convolutions over the time dimension to capture temporal information. Gesture can either
be analyzed after each new frame or at the end of the gesture.The most important contributions of this
model are a source-agnostic approach, able to work with different types of sensors, and an architecture
light enough to be run on embedded devices. The model architecture only uses convolutions, which are
easier to train, more constrained and easier to audit, compared to recurrent cells. Moreover the model
architecture can be applied without adaptation work to various type of gestures.

The rest of this chapter is organized as follows: in section 4.1.1 we summarize our contributions for

1In the literature, pose estimation is sometimes improperly designated as “static” gesture recognition, whereas gesture
recognition itself is coined as “dynamic” gesture recognition in order to highlight the importance of the temporal dynamics
involved in gesture recognition.
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Sequence of images

Sequence of poses

Figure 4.1 – Human pose sequences can be used as a sparse representation of movements (here, a
handstand movement)

this chapter. In section 4.2 we propose a review of related works in this research area. In section 4.3
we introduce the proposed approach, including the network architecture and the evaluation protocol
we use. In section 4.4 we study the influence of individual components of the model, all other things
being equal. Finally, in section 4.6 we summarize our approach and highlight the main outcomes of the
experiments we conduct.

4.1.1 Contributions summary

Besides the overall approach and (hyper-)parameters, our contributions are described in this section. In
section 4.3.2, we introduce a deep convolutional neural network model (SkelNet model) architecture
for gesture recognition based on temporal information. In section 4.4.2, we introduce a simple early
recognition method for the SkelNet model. In section 4.4.4, we study the influence of varying hyperpa-
rameters for the different building blocks of the model, in order to justify the design choices behind the
neural network architecture proposed. In section 4.4.5, we study whether -and how- sharing some of the
weights of the model could help reduce the model’s parameters’ count without degrading too much the
model recognition performances. In section 4.4.6, we show that the model is not specific to hand gesture
recognition: the model can be used for human action recognition and for facial emotion recognition, for
instance. In section 4.5, in order to -ultimately- better understand the model, we perform visualization
experiments and we propose an attempt to interpret them. Finally, all the other experimental results
presented in this chapter are also ours.2

4.2 Related Works

In this section, we review published state-of-the-art approaches for skeleton-based human activity and
hand gesture recognition. These approaches begin with the extraction of spatial or temporal features
from raw data. The extracted features are later provided to a machine learning algorithm which performs
the classification. The features can either be handcrafted by human experts or learned directly from the
data, using a deep learning approach. Deep learning approaches for skeleton gesture recognition can be

2When the experiments we perform make use of already existing methodologies -e.g. for Procrustes in section 4.4.2 or
for TCN’s causal-convolutional layers in section 4.4.4-, references and motivations are also provided.
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split into three main categories: the ones that make use of recurrent cells, the ones that make use of
convolutional cells, and the ones that make use of an attention mechanism. However, it is possible to
combine them together, e.g. using convolutional cells followed by recurrent cells or using attention over
recurrent cells.

In the following subsections, we review the handcrafted approaches and the deep learning ap-
proaches.

4.2.1 Handcrafted features

Rather than directly providing the raw hand skeletal data to a classifier, one can pre-compute relevant
representations from the raw data to feed the classifier. These hand-crafted representations are entirely
designed by human experts using their knowledge, e.g. regarding usual gesture speed, or physiological
constraints. Hand-crafted representations usually describe geometric properties, physical constraints
and statistical features about skeletons: e.g. distance between joints, orientations of the joints, curvature
of the joints’ trajectories. Hand-crafted representations can also involve any other human interpretable
metric computed from the skeletal data.

Examples of hand-crafted representations range from histograms of 3D joints locations (HOG3D)
(Klaser et al., 2008), to 3DSURF (Knopp et al., 2010), or to Laban descriptors (Truong et al., 2016), to
name a few. Enumerating all the numerous published hand-crafted representations approaches is out of
the scope of this chapter.

(Han et al., 2017) provide a comprehensive review of hand-crafted spatio-temporal features relevant
for 3D skeletal data. (L. Wang et al., 2019) compare the effectiveness of ten of these hand-crafted
features. Besides multi-modal representations, (Han et al., 2017) identify that published handcrafted
representations usually fall into one of the following three main categories: displacement-based rep-
resentations, orientation-based representations, and representations based on raw joint positions. The
overwhelming majority of the approaches introduced below have been introduced in the context of
full-body skeletal gesture recognition but can still provide insights -and be applied- to hand-skeletal
gesture recognition.

Full-body skeleton

(Xia et al., 2012) propose to project HOG3D features using Linear Discriminant Analysis (LDA) and
cluster them into posture visual words which represent the prototypical poses of actions. The visual
words temporal evolutions are modeled by discrete hidden Markov models (HMMs). In a similar
fashion, (Jin et al., 2012) propose to use quantized 3D joint angles and the (position) displacement of a
central joint to describe atomic movements. (Hussein et al., 2013) propose a covariance of 3D joints
(Cov3DJ) descriptor to captures the dependence of locations of different joints on one another. (Ofli
et al., 2014) propose a sequence of the most informative joints (SMIJ) descriptor where they select
the most informative joints at each time step with regards to interpretable metrics such as the mean or
variance of joint angle trajectories. (Jiang Wang et al., 2013) propose to use the pairwise distances of
joints positions as well as Fourier Temporal Pyramids (FTP). (Ohn-Bar et al., 2013) propose to use
pairwise affinities of joints angles as well as descriptors extracted by an extension of the histogram
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of oriented gradients (HOG) algorithm. (Zanfir et al., 2013) propose a moving pose descriptor that
considers both the position of each joint as well as its speed and acceleration. The computed descriptors
are classified by a modified non-parametric k-nearest neighbor (k-NN) classifier. (Chaudhry et al.,
2013) encode skeletal sequences into spatiotemporal hierarchical models, and then use linear dynamical
systems (LDS) to learn the dynamic structures. (Slama et al., 2015) propose to use the geometric
structure of the Grassmann manifold. (Vemulapalli et al., 2014) propose a human skeletal representation
within the Lie group SE(3)× . . .×SE(3), based on the idea that rigid body rotations and translations
in 3D space are members of the Special Euclidean group SE(3). Human actions are then viewed as
curves in this manifold. The final classification is performed in the corresponding Lie algebra using the
dynamic time warping (DTW) discrepancy, Fourier temporal pyramids (FTP) to model the temporal
dynamics, and a linear support-vector machine (SVM) for the classification. (Anirudh et al., 2015) use
the same representation with manifold functional principal component analysis (mfPCA) to reduce the
dimensionality of the features. (Devanne et al., 2014) represent skeletal joints’ sequences as trajectories
in a n-dimensional space. The trajectories of the joints are interpreted in a Riemannian manifold.
Similarities between the shape of trajectories in this shape space are calculated with k-nearest neighbor
(k-NN) in order to achieve the sequence classification. (Amor et al., 2015) views the evolution of
skeleton shapes over time as trajectories on Kendall’s manifold and introduces a suite of tools derived
from Riemannian geometry to study them. (Ben Tanfous et al., 2018) proposes to code a sparse skeletal
shape represented as a point from Kendall’s manifold on its attached tangent space. (Chrungoo et al.,
2014) propose a scale-invariant and speed-invariant descriptor called histogram of direction vectors
(HODV). (Evangelidis et al., 2014) propose a local skeletal representation which implies a view-invariant
descriptor of joint quadruples, as well as a multi-level representation of Fisher vectors (FV) obtained
with Fisher kernel representations encoding the generation of such local skeletal representations from
a gaussian mixture model (GMM). (H. Zhang et al., 2015) propose a bio-inspired approach. They
project 3D human skeleton trajectories onto three anatomical planes: coronal, transverse and sagittal
planes. (Tao et al., 2015) propose a framework for jointly learning the feature representations and
action classifiers, using classifiers called moving poselet (MP) that describe bodypart configurations
undergoing certain movements. (Coppola et al., 2015) introduce qualitative descriptions of joints
trajectories using 3D qualitative trajectory calculus and use hidden Markov models (HMM) to perform
the final classification. (Ding et al., 2015) use a graph to avoid periodic sequences and then use a
spatiotemporal feature chain (STFC) to represent the human actions by trajectories of joint positions.
(G. Zhu et al., 2016) segment normalized relative orient (NRO) features to train an offline model that
predicts key poses and atomic motions, which can then also be used for an online action recognition
approach based on a variable-length maximum entropy markov model (MEMM). (Cippitelli et al.,
2016) use the k-means clustering algorithm on normalized distances between joints to select the most
important postures in a sequence and then classify the sequence using a multiclass support-vector
machine (SVM) classifier with a radial basis function (RBF) kernel. (Chunyu Wang et al., 2016)
propose to use key-pose-motifs for each action class, a key-pose-motif containing a set of ordered
poses required to be close but not necessarily adjacent in the action sequences. Sequence classification
is performed by matching it to the motifs of each class and selecting the class that maximizes the
matching score. (Lillo et al., 2016) use a hierarchical model with motion poselets dictionary entries and
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histograms of these motion poselets. The human body representation is split into a set of spatial regions.
(Pei Wang et al., 2016) smooth joints trajectories using B-splines to generate motionlets. Undirected
complete labeled graphs combining these motionlets and their spatio-temporal correlations are created to
represent the gestures. Finally, a graph kernel called subgraph-pattern graph kernel (SPGK) is proposed
to measure the similarity between the graphs.

Hand skeleton

(Ionescu et al., 2005) use local orientation histograms and the superposition of all hand region skeletons
within a sequence. The Baddeley’s distance between the resulting signature and signatures from a gesture
alphabet is finally computed. (Reddy et al., 2011) use distance between joints and the superposition
of hand skeletons also called dynamic signature. (Wang et al., 2014) use a superpixel earth mover’s
distance to measure the dissimilarity between hand gestures, where the superpixels come from hand
shapes (depth) and the corresponding textures (color) provided by a Kinect camera. (De Smedt et
al., 2017) use three hand-crafted descriptors: shapes of connected joints (SoCJ), histograms of hand
directions (HoHD) and histograms of wrist rotations (HoWR), as well as Fisher Vectors (FV) for the
final representation.

4.2.2 Deep-learning

To the best of our knowledge, most of the existing work in the literature of deep neural networks based
methods for hand or body gesture recognition focus on video-based approaches. (H.-B. Zhang et al.,
2019) provide a review of vision-based approaches. However there is significantly less published deep
learning methods that deal with skeleton data as input. In this subsection we survey a list of these
deep-learning based gesture recognition methods on skeletal data.

Fully-Connected Layers (FC)

Unconstrained vanilla fully-connected layers alone are not efficient to model temporal phenomena.
(C. Li et al., 2019) propose to use path signature (PS) features both for spatial and temporal features.
They also propose a differentiable temporal transformer module (TTM) that can be included in any
neural network and use fully connected layers to perform sequence classification. The TTM module
consists in a localization step and a temporal shift step. The TTM module transforms input gestures
temporally in order to alleviate the temporal difference that inevitably arises between sequences.

Recurrent neural networks (RNN)

For the last few years, recurrent neural networks have nearly been the de facto state-of-the-art approaches
for sequence modeling, which explains why most of the deep-learning approaches for gesture recognition
use recurrent cells like the long short-term memory (LSTM) cell introduced by (Hochreiter et al., 1997a)
or the gated recurrent unit (GRU) cell introduced by (Cho et al., 2014).

(Avola et al., 2018) use hand-crafted joint angles features learned by a recurrent LSTM architecture.
(Lefebvre et al., 2013) propose a bi-directional LSTM to learn inertial 3D gestures from micro-electro-
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mechanical (MEM) systems. (H. Wang et al., 2017) propose a two-stream spatio-temporal recurrent
neural network model with LSTMs, where the joint coordinates are given as input of the two RNN
branches. (Du et al., 2015) propose a hierarchical recurrent neural network model to represent the
human body spatial structure and temporal dynamics of the joints. (W. Zhu et al., 2016) propose a
recurrent neural network model with LSTM cells and fully connected layers for the classification. They
introduce regularization both in the fully connected layers with a mixed-norm reguarization term in the
loss function to drive the model to learn co-occurrence features of the joints at different layers and in the
LSTM cells, where they derive an internal dropout similar to the DropConnect regularization method
introduced in (Wan et al., 2013) or to one of the the regularization methods introduced in (Merity et al.,
2017) for language models in the natural language processing (NLP) domain. (Veeriah et al., 2015)
introduce a differential gating scheme for the LSTM neural network, which emphasizes on the change in
information gain caused by salient motions between the successive frames, in a model called differential
Recurrent Neural Network (dRNN). (J. Liu et al., 2016) also introduce a gating mechanism within
LSTM cells to improve recognition robustness, and use a tree-structure based traversal method for better
representation of human skeletons. (Shahroudy et al., 2016) propose a part-aware LSTM where the
network learns the long-term context representations individually for each part of the skeleton.

Convolutional neural networks (CNN)

Recurrent cells are relatively slow and difficult to train or to use in a hardware-accelerated parallel
computing setting, compared to convolution-only methods. Convolutions can be computed on 2D
images with 2D convolutions, in 3D video images with 3D convolutions, but also on trajectories
of joints positions or orientations with 1D convolutions. Deep learning tools for graphs like graph
convolutions can also be computed by taking the skeleton graph as input of the graph convolution. (Wu
et al., 2019) propose a survey on graph neural networks in which they describe spectral-based and
and spatial-based possible definitions of graph convolution and graph pooling, as well as graph neural
networks architectures families, including temporal recurrent and spatiotemporal ones.

(Neverova, 2016a; Neverova et al., 2015) propose an adaptive multi-modal convolutional neural
network gesture recognition approach featuring a “ModDrop” training technique. ModDrop performs a
gradual fusion between modalities and randomly drops separate channels during training, in order to
improve the model robustness and prevent false co-adaptations between data representations.

(F. Yang et al., 2019) propose a lightweight convolution-only model which takes skeletal joints
positions and the pairwise distances between the joints as input. (S. Yan et al., 2018) propose a
spatial-temporal graph convolutional network (ST-GCN) model where each skeleton is viewed as a
graph over which can be processed by graph convolutions. They extend spatial graph convolutions into
spatio-temporal convolutions by including temporally connected joints in the neighborhood used by the
convolution. (X. S. Nguyen et al., 2019; X. Nguyen et al., 2019) also model hand skeletons as graphs
for hand gesture recognition. Their classification pipeline involves graph convolutions and learned
symmetric positive definite (SPD) matrices which are known to lie on a Riemannian manifold, namely
the Stiefel manifold. (J. Weng et al., 2018) propose a deformable pose traversal convolution network,
using deformable convolutions that use a learned receptive field.

57



Convolutional and Recurrent layers

Recurrent neural networks and convolutional neural networks can also be combined. Most common
case consists in features being first extracted with convolutional layers, before their temporal dynamic
is modeled by recurrent layers.

(Neverova, 2016b) explore the use of 1D convolutions over the time dimension, with both convolution-
only and convolution-and-recurrent model architectures on the Google Abacus biometric user authentica-
tion dataset. They obtain the best results using a “Conv-DCWRNN” architecture that mixes convolutions
with clockwork RNNs.

(Baccouche et al., 2011) propose a to use 3D convolutions on video images sequences to extract
spatio-temporal features that are fed to a RNN trained to classify the gesture sequences. (Donahue et al.,
2015) propose to perform 2D convolutions on video images to get features that are modeled by two
layers of LSTM cells. (I. Lee et al., 2017) propose an ensemble of temporal sliding LSTM networks to
capture short-, medium-, and long-term temporal dependencies. (Nunez et al., 2018) propose to perform
1D convolutions on the joints followed by RNNs. (J. Weng et al., 2018) also propose a deformable pose
traversal convolution method based on 1D convolutions and LSTMs.

Attention mechanisms

Attention mechanisms have attracted a vivid interest of the deep-learning research community in the
last years. In biological human settings, attention serve multiple purpose: it can both enhance the
perception of important stimuli and prioritize such stimuli for decision-making. In artificial neural
networks, attention is commonly used for alignment and masking purposes. In its most general form,
attention can be described as a way to quantify the interdependence between two vectors or more. For
instance, one can learn attention masks to align two sequences, or to emphasize certain joints or time
steps over others. Attention is usually not a deep learning architecture per se but rather a mechanism
used to provide pertinent information to other building blocks of a neural network.

(Baradel et al., 2017a,b, 2018) propose a spatio-temporal soft-attention mechanism on RGB frames
that is conditioned on pose features. The pose features are obtained with a convolutional model that takes
a 3D subsequence pose data tensor as input and processes it. (Hou et al., 2018) propose a convolutional
neural network with attention called spatial-temporal attention residual temporal convolutional network
(STA-Res-TCN). Their network processes hand skeletons with a main convolutional branch which
uses temporal convolutions (TCN) from (Lea et al., 2017). Another parallel mask branch for attention
is also present, the final generation of attention-aware features being obtained with element-wise
multiplications. (Maghoumi et al., 2018) propose a model based on a stack of 5 recurrent layers of
gated recurrent unit (GRU) cells, over which an attention mechanism is applied before being fed to
another GRU layer and two fully-connected layers. (Song et al., 2017) combine the use of an LSTM-
based neural network for human action recognition from skeletal data with a spatio-temporal attention
mechanism. Joint-selection and frame-selection gates are used to adaptively allocate different attentions.
(J. Liu et al., 2017) propose a global context-aware attention LSTM (GCA-LSTM) model in a similar
fashion to (Song et al., 2017), but with an attention mechanism which explicitly uses the full spatial and
temporal context, rather than -somehow more- implicitly on each individual the LSTM cells hidden
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states. (Fan et al., 2018) propose an attention mechanism for multiview fusion of skeletons preprocessed
by LSTM cells.

4.3 Convolutional Neural Networks over Time approach

In this section we present our approach to gesture recognition from human pose sequences.

4.3.1 Pose Data Representation
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Articulation (b)

Base

Palm

Wrist

(a) Hand is represented by 22 joints that reflect and summarize the
anatomy of a human hand: 4 joints are used for each finger, 1 for
the palm (roughly located at the center of the metacarpal bones)
and 1 for the wrist. Each dot represents one of the 22 joints of the
hand skeleton.
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(b) Hand joints are ordered and
indexed as illustrated above. The
graph representing the hand can
be viewed as a tree, whose root is
the joint #1 (wrist).

Figure 4.2 – Hand skeleton returned by the Intel RealSense camera.

Human body can be represented with a skeletal representation. Skeletal representations are sparse,
robust to illumination changes and scene variations.

Phenomenologically, visual skeletal representations are also known to be sufficient for human people
to describe and understand biological motion, including human motion (Johansson, 1973).

Skeletons can be directly provided by sensors, e.g. by highly accurate consumer-grade depth sensors,
or either be estimated from 2D or 3D data using vision techniques, at a very high frame rate, even
in real-time and in on-device mobile settings (Lugaresi et al., 2019; Raaj et al., 2019). For instance,
the Intel RealSense camera provides in real time a full hand skeleton with the topology presented in
figure 4.2. Figure 4.2 (a) presents the structure of the hand skeleton, whereas figure 4.2 (b) details more
exactly its topology and the indexation order of the skeleton’s joints.

A skeleton is a graph with a fixed adjacency matrix of size J× J. Its J nodes p1, . . . ,pJ are called
joints, and its adjacency matrix describes the connections between joints, i.e. the skeletal structure. In
the physical world, joints usually represent distinct and precise human body articulations, some of those
joints being connected by bones as indicated by the adjacency matrix. Since the structure of human
skeletons does not usually evolve over time, one can only consider a skeleton as being an ordered set of
joints:
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(a) Projected view of a hand gesture. A hand gesture is a sequence of a skeleton’s joints’ poses over
time.
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(b) Gesture as a 3D tensor. A gesture
can be represented by a tensor g whose
shape is (T,J,d) where T is the se-
quence duration, J the number of joints
in the skeleton and d the dimensions
(d = 3 for 3D (x,y,z) gestures). While
this 3D tensor could be viewed as a 2D
colored image, we avoid using such data
visualization method in this chapter, as
it visually mixes different (xyz) dimen-
sions that we compare in the last section
of this chapter.

C channels (C = J +d)

T steps

1
T

1
2
3
4

2 3 4 J+1J J+2 C... 2J+1 2J+2 ...

...

(X: dimension 1) (Y: dimension 2) (Z: dimension d=3)

...

(c) Gesture as a 2D monochrome image (flattened tensor). A
gesture can also be represented by a tensor g whose shape is
(T,C) where C = J×d by concatenating the xyz dimensions along
the joints axis in order to reshape the 3D tensor. The resulting
2D tensor can be viewed as a 2D mono image, where each line
represents a different time step and where each column repre-
sents a 1D channel. The 1D channels are in the following order:
x1,x2, . . . ,xJ,y1,y2, . . . ,yJ,z1,z2, . . . ,zJ . Important note: while the
image is monochrome, fake colors are used in amplitude-color-coded
visualizations for better readability purposes.

Figure 4.3 – Illustration of different pose sequence representations. The 2D image representation used
for visualizations in all this chapter is described in subfigure (c).

s = (p1, . . . ,pJ) (4.1)

Joints are vectors that can convey 2D-3D information as well as any other relevant information
computed or provided by sensors, e.g. velocity and acceleration information. In practice, joints
components usually represent the orientation or the position or the corresponding physical articulation.

In this thesis, we assume each joint pi is represented by its position in the 3D physical world:
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Figure 4.4 – Visualization of one random gesture (sequence) of each class (DHG 14 classes). All the x
(respectively the y and z) channels are plotted in blue (respectively in green and in blue).
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Figure 4.5 – Visualization of one random gesture (sequence) of each class (DHG 28 classes). The
sequences are labelled according to 14 or 28 label classes, depending on the gesture represented and
whether the number of fingers used is distinguished -with one finger or with the whole hand- or not.

pi =


xi

yi

zi

 (4.2)

A gesture g is represented as the evolution of the skeleton s over time:

g = (s(1), . . . ,s(T )) (4.3)

where T is the duration of the sequence.

To summarize, a gesture can be viewed as a 3D tensor of shape:

(T,J,d)
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where T is the sequence duration, J the number of joints and d their dimension: the first axis of the
tensor is indexed by time indices, the second axis is indexed by joints, and the last axis is indexed by
joint (position or rotation) components, i.e. dimensions. A projected view of a hand gesture is proposed
in figure 4.3 (a) with the associated 3D tensor in figure 4.3 (b).

The 3D shape of a gesture tensor allows different visualizations methods, the most classical one
being a simple time-series plot. As an illustration of a such plot, figure 4.4 illustrates the evolution
of different gestures in the DHG14 case of the DHG14/28 dataset (De Smedt et al., 2017), while
figure 4.5 illustrates the evolution of the same gestures in the DHG28 case of the DHG14/28 dataset
(the DHG14/28 dataset (De Smedt et al., 2017) is described later on in details in section 4.3.3). In both
figures 4.4 and 4.5, the horizontal axis of each plot represents time whereas the vertical axis represents
the amplitude of the channels.

Another useful alternative representation of the same sequences is devised in details in figure 4.3 (c)
and used for data visualizations through all the chapter. The representation consists in a 2D tensor of
shape

(T,C)

where C = J×d are 1D time series channels. To obtain the C channels, the xyz dimension axis of the 3D
(T,J,d)-shaped gesture tensor is concatenated along the joints axis, so that the 1D channels respectively
represent the temporal evolution of x1,x2, . . . ,xJ,y1,y2, . . . ,yJ,z1,z2, . . . ,zJ , in that order. An example
of such color-coded representation is proposed in figure 4.6. In figure 4.6, each one of the 28 plots
represents a gesture sequence. The vertical axis represents time, whereas the horizontal axis represents
all the x, y, and z channels. To represent the amplitude of the channels, a purple-blue to orange-yellow
colormap is used: low amplitudes are represented with a purple-blue color whereas high amplitudes are
represented with an orange-yellow color. In figure 4.6, for each gesture (i.e. for each plot), the evolution
over time of the amplitudes of the channels are clearly visible.

4.3.2 SkelNet Neural Network Architecture

We propose a neural network architecture for gesture recognition.

The neural network architecture we introduce is detailed and explained below. It is also depicted in
figure 4.8 for the overall architecture and in figure 4.7 for a more detailed illustration with the different
temporal CNN branches but without the preprocessing module.

The architecture mostly consists of three blocks.

First, a preprocessing module is proposed to generate (learned) features that may be more relevant
than the original input, e.g. by mixing information from different channels into new mixed channels.
To that extent, we propose to use a linear module to apply spatial combinations (over the “channels”
axis) in this chapter. However, that preprocessing module may be extended to more complex modules
in future works, e.g. to modules that make use of graph convolutional layers.

In the second block of the model, n temporal-feature extractor modules are used (by default n = J),
each of them taking a one-dimensional time series for its input and outputting a vector of features.

Third, fully-connected layers take as input the n vectors and predict the gesture category.
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Figure 4.6 – Amplitude-color-coded visualization of one random gesture (sequence) of each class (DHG
28 classes). Examples used are the same as the ones in figure 4.5 (and figure 4.4). Abscissa: all x
channels, all y channels and all z channels (in that order). Ordinate: Time steps. Color: from purple-blue
(low values) to orange-yellow (high values).

The three blocks of the neural network are trained jointly on a skeletal-based or landmark-based
gesture recognition task in an end-to-end manner.

The feature engineering is conveyed in the n extractors crafting the vectors of features. All these
ones share the same architecture (but not necessarily the same weights), and are based on Convolutional
Neural Network (CNN).

In an extractor module, every channel is fed to 3 branches, namely 2 modules for temporal feature
extraction that both follow a convolutional neural network scheme and 1 pooling branch, that we call
“residual” branch in this chapter. An illustration of an extractor module is proposed in figure 4.7, on
the right side of the figure (with an input channel on the top of the illustration, the three processing
branches vertically on the middle, and an output channel on the bottom).

The convolutional neural scheme used consists in a sequence of several convolutional layers made of
a convolution followed by an average pooling of size 2, the convolution kernel sizes for the 2 branches
being respectively equal to 3 and 7. The use of two different temporal convolution kernel sizes provides
the network the ability to directly work at different time resolutions.

While the pooling branch that we refer to as a “residual” branch only performs a pooling operation
-in order to subsample the original channel input to a much shorter duration- it can still arguably be
considered as a “residual” branch. Indeed, its role is to skip the two convolutional branches (thus
matching the definition of a residual branch given in chapter 2). This can been seen clearly on the right
side of the figure 4.7 where an extractor module is illustrated: in the extractor, information present in
the input vector (top) can flow through the residual pooling branch (middle) thus effectively skipping
the two convolution branches (left and right). The difference between this residual pooling branch and a
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Figure 4.7 – Illustration of the SkelNet parallel convolutional neural network without the preprocessing
module. Every channel is processed separately before the Multi Layer Perceptron. The parallel feature
extraction module presented on the right is not shared between the 66 channels.

basic residual identity branch being that the residual pooling branch has to perform as many pooling
operations as there are pooling operations in the convolutional branches, in order for the output “time”
dimension of the three branches to match3.

Finally the several vectors outputted by these extractor module’s branches are concatenated into a
larger feature vector, which serve as an input for the fully connected neural classifier.

For a more formal outlook of an extractor let h(m,β ) be the input of the m-th convolution layer of
the β branch, for m ∈ N∗ and β ∈ {1,2}. Let K(m,β ) be the corresponding number of feature maps, let
W(m,β )

k be the k-th convolution kernel of the m-th layer in the branch β (for k ∈ [1, . . . ,K(m,β )]), and let
b(m,β )

k represent the bias of the k-th filter map in the m-th layer in the branch β . The output h(m+1,β ) of
the m− th convolution layer is given by:

h(m+1,β ) = σ(h(m,β ) ∗W(m,β )
k +b(m,β )

k ) (4.4)

with σ being the activation function.

The outputs h(m+1,1), h(m+1,2) of the last layer m, and the output of the pooling branch are merged
together, into a vector v. The vectors v for every channel are passed as the inputs of the fully-connected
layers.

All of the subsampling layers used in an extractor perform an average pooling with a temporal
size of 2. An average pooling step computes the average value of a feature in a neighborhood (of 2
time steps in our case), while the other popular pooling technique, namely the max pooling, keeps the
maximum value in the neighborhood. (Boureau et al., 2010) have shown empirically that the latter
technique can increase the performances in the image recognition field, compared to an average pooling
step. However, as shown later in section 4.4.4, results we obtained on hand gesture classification show
that slightly higher performances are achieved when average pooling is used.

3While not strictly required, this is useful both for convenience -e.g. for concatenation- and for flexibility purposes.
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Figure 4.8 – Illustration of the proposed SkelNet neural network approach. The channels are first
preprocessed before being given to the temporal feature extractor module on he right. This parallel
feature extraction module on the right can be shared or not between the channels depending on the
experiments we perform. The resulting features are finally given as input of the fully-connected layers
which perform the final classification. The whole model is trained end-to-end on recognition tasks.

The fully-connected layers have 2 hidden layers with respectively 1024 and 128 hidden units. They
use ReLU activation functions σ(x) = ReLU(x) = max(0,x), at the only exception of the output neurons
which uses a softmax activation function for classification purpose. The use of residual branches in
our architecture is inspired from the original Residual Networks article (K. He et al., 2016). Skip-
connections and residual branches smooth the training loss landscapes of neural networks, easing the
network training optimization process, as shown in (H. Li et al., 2018).

The number of fully connected hidden layers and the size of these layers result from grid search
experiments we performed on the DHG 14/28 dataset where we observed that the use of 2 hidden
layers slightly outperformed single hidden layer networks in terms of final test accuracy. Moreover,
the 2-hidden-layer architectures with large layer sizes (denoted f c_layer_0 and f c_layer_1) are more
accurate than the smaller architectures for the DHG 14/28 dataset. Yet, the experiments did not show a
clear optimum, hence the values chosen of 1024 and 128 neurons respectively.

Our model uses a preprocessing module applying a linear layer over the “channels” axis, to combine
information from the various time sequences (si(tk))k∈[0,T−1] in order to capture meaningful spatial
patterns to be submitted to the downstream convolutional layers (the combination could for instance
capture relative distances and similar meaningful predictors).

If s=(si(tk))i,k is a gesture tensor of shape T×C (T = 100,C = 66= 22×3), and y=(yj(tk)) j∈[0,Cout ,k]

the output of the preprocessing module, where Cout is the size of the output of the preprocessing layer,
we learn the linear transformation (over the “channels” axis):

y = WLSC s+bLSC (4.5)
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This transformation is constant across time in order to keep the temporal information untouched.

4.3.3 Evaluation protocol

In this chapter, we study the design choices behind the neural network architecture proposed. We
evaluate qualitatively and quantitatively the recognition performance of models belonging to this family
of neural networks. Unless specified otherwise, all the experiments are performed three times and the
mean and the standard deviation of the results are provided when relevant.

We train the model on one machine with a GPU (NVIDIA GeForce GTX 1080 Ti) using CUDA and
CuDNN accelerated GPU operations. Still, a comprehensive hyperparameters search is not realistically
affordable for the models’ family on large-scale datasets with our hardware due to the duration of
model trainings and the count of model variations, even when considering random search, bayesian
optimization or improved methods; e.g. like hyperband from (L. Li et al., 2016) or BOHB from (Falkner
et al., 2018).

Though being skeleton-type agnostic, the model was first designed for hand skeletal gesture recog-
nition. For comprehensive analysis, all experiments are performed on a medium-sized hand gesture
dataset called the DHG 14/28 dataset (De Smedt et al., 2017). The DHG 14/28 dataset is presented more
thoroughly in the subsection “Datasets” below. To study the applicability of our approach on other
datasets and to study the influence of input data representation while alleviating the training time of the
numerous neural network variations, some but not all experiments are also performed on a bigger-sized
body skeletal action recognition dataset called the NTU RGB+D dataset and on a small-to-medium-sized
facial emotion recognition dataset called the RAVDESS dataset. The three datasets are presented below.

Datasets

The main dataset we use to study the proposed architecture is the Dynamic Hand Gesture-14/28 (DHG
14/28, or DHG) dataset created and introduced by (De Smedt et al., 2017) in the SHREC2017 - 3D
Shape Retrieval Contest.

The DHG 14/28 dataset is a dataset of hand gesture sequences for supervised learning gesture
classification. It contains a total of 2800 examples, the gestures being performed by 28 different
participants in total. Gesture duration is variable. Each labeled example consists of the raw data
sequence returned by the camera, associated with two labels representing the category of the recorded
gesture. For all sequences a depth image of the scene is provided at each time step, alongside with both
a 2D and a 3D skeletal representation of the hand. The camera provides information about the joints
positions but not the joints rotations.

Each gesture falls into one of 14 categories as described in table 4.1.

Moreover, each gesture can be performed with either only one finger or with the whole hand. It
means that gestures are classified with either 14 labels or 28 labels, depending on the number of fingers
used. In our experiments, the RGB+D images are discarded and we only use the 3D hand skeletal
representation of the hand.

In the standard evaluation protocol introduced in the SHREC2017 - 3D Shape Retrieval Contest, the
training and testing sets of the DHG 14/28 dataset are pre-split, as described at the end of this section.
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Class index Name of the gesture Type

1 Grab Fine

2 Tap Coarse

3 Expand Fine

4 Pinch Fine

5 Rotation Clockwise Fine

6 Rotation Counter Clockwise Fine

7 Swipe Right Coarse

8 Swipe Left Coarse

9 Swipe Up Coarse

10 Swipe Down Coarse

11 Swipe X Coarse

12 Swipe + Coarse

13 Swipe V Coarse

14 Shake Coarse

Table 4.1 – Gestures in the DHG 14/28 dataset.

Some of the works in the literature use another evaluation protocol for the DHG 14/28 dataset which
consists in a leave-one-out cross-validation protocol, and distinguish these two protocols by calling the
dataset the “DHG 14/28 dataset” when using the leave-one-out protocol and calling it the “SHREC’17
dataset” when using the train/test split protocol. We use the train/test split protocol and refer to the
dataset as the “DHG 14/28 dataset”.

The dataset we use to study applicability of the approach on other datasets and the input data type
representation influence is the NTU RGB+D dataset introduced in (Shahroudy et al., 2016).

The NTU RGB+D dataset is a large-scale full-body sequences dataset for supervised learning of
human activity classification. It contains a total of 56880 examples, the actions being performed by 40
different participants in total. Action duration is variable.

Except for 302 sequences where skeleton data is missing or incomplete, a RGB+D image of the
scene is provided at each time step, alongside with IR sequences and a 3D skeletal representation of the
human body. Both the joints positions and the joints rotations are provided. In our experiments, the IR
and RGB+D images are discarded and we only use the 3D body skeletal representations. Each sequence
is captured by three Kinect cameras, each camera having different orientations.

An illustration of a RGB frame from a sample NTU RGB+D dataset sequence ("shaking hands"
action), as well as the two associated 3D poses overlaid on top of it, is proposed in figure 4.9. One can
notice that the poses estimated by the Kinect camera in figure 4.9 are noisy (especially on the feet), but
still contain enough information to describe the action performed (shaking hands).

Two evaluation methods are proposed for this dataset: cross-view evaluation and cross-subject
evaluation. In cross-view evaluation, the participants are split into a training and a testing group, while
in cross-view evaluation, two cameras make up a training group while the last one makes up a testing
group. Because we only use the skeletal information without RGB+D or IR, and because the skeletal
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Figure 4.9 – Two actors poses (overlaid on the associated video frame) from the NTU RGB+D dataset.
While the poses estimated by the Kinect camera are noisy (especially on the feet), they contain enough
information to summarize most of the scene information relevant to describe the action performed
(shaking hands).
Frame from (Shahroudy et al., 2016).

information is supposedly the same for the three cameras up to a rotation transformation from a camera
to another, we choose to use the cross-subject evaluation method.

In the NTU RGB+D dataset each action falls into one out of 60 possible classes. The classes
are divided into three major groups: 40 daily actions (drinking, eating, reading, etc.), 9
health-related actions (sneezing, staggering, falling down, etc.), and 11 mutual actions
(punching, kicking, hugging, etc.).

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset is an
audiovisual dataset for supervised learning human emotion classification introduced in (Livingstone
et al., 2018). It contains a total of 7356 examples of realistic emotional speeches and songs, recorded by
24 different professional actors in total.

Each recording falls into one of the following possible emotions: calm, happy, sad, angry,
fearful, surprise, disgust and neutral.

Speech duration and song duration are variable. Each labeled example consists of the raw video
(audio and RGB frames) returned by the camera filming the actor face and an associated label that
describes the emotional class.

For each sequence, we discard audio and extract facial landmarks of the actors from the video frames
sequence using a state-of-the-art convolutional experts constrained local model proposed in (Baltrusaitis
et al., 2018). We obtain 68 ordered facial landmarks that represent the actor face.

This extraction is illustrated in figure 4.10. Figure 4.10 represents a video frame of an actress’
recording: on the left (a) the original frame, and on the right (b) the information we extracted from it,
overlaid on the original frame. The extraction model from (Baltrusaitis et al., 2018) estimates facial
landmarks (red-circled blue dots), global head orientation (blue box) and eye gaze directions (green
lines). We only use the facial landmarks information.

While the human face physiology is different from the human body or hand physiologies, these
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(a) Original video frame (b) Extracted facial landmarks

Figure 4.10 – Extraction of facial landmarks. On the left (a) the original frame from the dataset, and on
the right (b) superposed over it, in red, the facial landmarks we extract.
Frame from the RAVDESS dataset (Livingstone et al., 2018).

landmarks can be seen as the nodes of a (non-rigid) face skeleton graph. Our neural network model’s
input is the sequence of the positions of the facial landmarks over time.

Regardless of the dataset used, the sequences exhibit variable lengths whereas our neural networks
take a fixed-size input. To that end, we consider the trajectories of joints positions or joints rotations
as unidimensional sequences that we temporally re-sampled. To temporally resize these sequences, a
simple linear interpolation (over the “time” T axis) of the time series is used. Edge case values at the
boundaries of the input are filled with a reflection. After interpolation, every sequence has a fixed length.
For the DHG and NTU RGB+D datasets, the final length is 100 time steps, whereas for the RAVDESS
dataset the final length is 122 time steps.

Datasets splits

The DHG 14/28 dataset is split into 1960 train sequences (70% of the dataset) and 840 test sequences
(30% of the dataset).

The NTU RGB+D dataset split follows the cross-subject benchmark proposed by the dataset authors:
actions performed by subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38 are
considered as train sequences, whereas the other actions are considered as test sequences. There are
40320 train sequences (71% of the dataset) and 16560 test sequences (29% of the dataset).

The RAVDESS dataset is split into 5150 train sequences (70% of the dataset) and 2206 test sequences
(30% of the dataset).

For all the trainings and all the datasets, we perform a 5-fold cross-validation during training to
avoid overfitting.

Metric, Loss, Regularization & Optimization algorithm

For each model variation, we provide the model accuracy on the test set.
To predict the class Cm of a sequence yi, the output ξi of the last fully-connected layer of the model

is normalized by the softmax function to give the posterior probability:

pmodel(yi ∈Cm) =
eξ m

i

∑
M
k=1 eξ k

i
(4.6)
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During training, we minimize the cross-entropy loss LCE between the empirical distribution defined
by the training set and the probability distribution defined by the model being trained:

LCE =− 1
N

N

∑
i=1

M

∑
m=1

1yi∈Cm log(pmodel(yi ∈Cm)) (4.7)

where N is the total number of sequences, M is the cardinal of the set of classes {C1, . . . ,Cm}, 1yi∈Cm

is the value of the indicator function of the i-th sequence belonging to the m-th class and pmodel(yi ∈Cm)

is the probability by the model (after the softmax) that the i-th sequence belongs to the class Cm.
Minimizing the cross-entropy is equivalent to maximizing the log-likelihood.

Model is regularized with dropout (N. Srivastava et al., 2014). The drop rate is set to p = 0.4 for all
the models evaluated in this chapter. The choice of the drop rate for the dropout results from grid search
experiments on drop values from 0.0 to 0.8. Changing the drop rate increases up to +2.5% the model
accuracy on the DHG 14/28 dataset, however no consistent relation between accuracy evolution was
observed with regards to dropout rate.

To train the models, we use the Adam optimization algorithm (D. Kingma et al., 2014) which
calculates an exponential moving average of the gradient and the squared gradient. For the decay rates
of the moving averages we used the parameters β1 = 0.90, β2 = 0.99. The value of the parameter ε is
ε = 1.00×10−8.

For our experiments, we use a learning rate of α = 1.00×10−3 unless specified otherwise, which is
the default value proposed for Adam (1.00×10−3). The optimal initial learning rate we found for the
reference model presented in the next section is α = 5.00×10−5.

Regarding the number of training epochs, we perform early stopping: if the validation loss does
not improve during the 50 last steps by more than 0.01%, we stop the training in order to prevent the
network from overfitting the training data.

Weights Initialization & Batching

Each training batch contains a set of 32 skeletal gesture sequences and their associated labels. The choice
results from experiments we ran on batch sizes in the range of values : batch_size∈{8,16,32,64,128,256,512,1024}.
Even though higher batch sizes are quicker to process with parallelization, it has been shown by (Keskar
et al., 2016) that using large batches often lead to poorer generalization.

We use the Xavier initialization (also known as Glorot uniform initialization) from (Glorot et al.,
2010) to set the initial random weights for all the weights of our model.

While using Kaiming initialization (also known as He uniform initialization) from (K. He et al.,
2015) reportedly helps neural networks with ReLU-like activations to converge much earlier than
when using Xavier initialization, no significant difference between the two initialization methods was
observed. We use Xavier initialization for all the trainings.
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4.4 Experiments

In this section, we study models from the SkelNet family and analyze the factors that influence their
performance at gesture recognition.

We perform experiments on the input data representation, as well as experiments on the models.
Regarding experiments on the models, both the architecture of the neural networks and the choice of the
hyperparameters are studied, all other things being kept equal unless specified, including the original
input data representation.

4.4.1 Reference models

In this section we introduce two reference models that we call the “SkelNet reference model” and the
“SkelNet-Hand model”. They are introduced below.

Through all the chapter, the terms “the model”, “the reference model”, and “the SkelNet reference
model” all refer to the neural network of the SkelNet family with the following architecture hyperpa-
rameters: no preprocessing module, average pooling of length 2, PReLU activation (K. He et al., 2015),
standard convolution with only 1 single convolutional layer (Cout = 22,groups = 22) and 2 hidden
fully-connected layers of size (Nout,1 = 1400,Nout,2 = 42). Regarding the training hyperparameters, we
fix a dropout rate equal to 0.4 and an initial learning rate of 1.00×10−4.

The selection of PReLU as the activation function results from experiments where the following
different activation functions were tested: rectified linear unit (ReLU), parametric rectified linear unit
(PReLU) from (K. He et al., 2015), exponential linear unit (ELU) from (Clevert et al., 2015) and Swish
from (Ramachandran et al., 2017). The number of fully connected hidden layers, the size of these layers
and the group count all result from experiments too.

This model is very shallow4 and lightweight5 compared to almost every other neural network
proposed in the literature. As such, the model is ready for on-device computations on embedded
systems. While slightly below state-of-the-art, the model exhibits a good performance for hand gesture
recognition, especially for a lightweight model, as presented in table 4.3.

In the section 4.4.5, we analyze the impact of weight sharing between temporal feature extractor
modules, depending on sharing choices such as the convolution abstraction level (i.e. whether the
convolution is applied to raw signals, or to already convoluted signals) for instance. As such, a SkelNet
model with several convolutional layers is required for these experiments.

To that end, we consider a second reference model that we refer to as “SkelNet-Hand”. The SkelNet-
Hand model is a standard SkelNet model with the following configuration: no preprocessing module,
average pooling of length 2, ReLU activation, standard convolution with 3 convolutional layers, and 1
hidden fully-connected layer of size (Nout = 1996). The kernel size for all the convolutions is 3, and in
each branch the 3 convolutions have respectively 8, 8 and 4 feature maps. It is important to note that in
the SkelNet-Hand model, no extractor module is shared by default (i.e. C extractor modules are used,

4Both the SkelNet-1024-128 and the SkelNet-1400-42 have only one convolutional layer.
5The SkelNet-1024-128 has ∼2.4M parameters: 2404393 parameters for the 14 classes case and 2406199 parameters for

the 28 classes case. The SkelNet-1400-42 has ∼3.1M parameters: 3144547 parameters for the 14 classes case and 3145149
parameters for the 28 classes case.
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where C denotes the input channels count). For the sake of performing fair comparisons, experiments
involving the SkelNet-Hand model do not make use of data augmentation techniques (the experiments
involving the SkelNet reference model do not make use of data augmentation techniques either, unless
explicitly stated otherwise).

The “SkelNet-Hand” model displays performances that are comparable to the “reference SkelNet”
model performances, as shown in table 4.3.

The confusion matrices of the SkelNet-Hand model for the 14 actions and 28 actions are presented
in figure 4.11 and in figure 4.12 respectively. The confusion matrices show that the SkelNet-Hand model
is robust to each action class.

Figure 4.11 – Confusion matrix for the SkelNet-Hand model on the DHG14/28 dataset (14 classes)
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The table 4.2 details precision, recall and F1 values for the SkelNet-Hand model, and confirms that
robustness.

4.4.2 Input Representation

The neural network is designed to extract temporal features from gestures and then to merge them in
order to perform the final classification. Intermediate representations of the gestures are entirely learned
by the model, without any manual intervention. However, since model representations are based on the
input data representation -chosen by human practitioners-, finding an appropriate input representation is
crucial to leverage the full potential of the network. In this subsection, we evaluate how the original
input representation influences the final model accuracy. We specifically study the effect of Procrustes
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Figure 4.12 – Confusion matrix for the SkelNet-Hand model on the DHG14/28 dataset (28 classes)
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standardization, data augmentation, sequence length, position and rotation representations and the time
location of information inside the gesture sequences.

Procrustes

The shape of a hand skeleton can be defined as its geometry regardless of its position, orientation, and
size. Procrustes Analysis (PA) (Krzanowski, 2000) and its extension Generalized Procrustes Analysis
(GPA) (Gower, 1975) are two means by which shape variables can be obtained from landmark and
skeletal data. In layman’s terms, the aim of Procrustes Analysis is to align one shape with another,
without using any symmetry. In Greek mythology, Procrustes was a bandit who attacked people and
forced them to arbitrary “fit” on his bed: he would turn them and stretch out or cut off their legs in order
to make sure they fit to the size of the bed. Hence, Procrustes Analysis aims, in a manner inspired by
the eponymous mythological bandit, at fitting one shape to an other (arbitrary) standard one.

Procrustes Analysis is commonly used as a post-processing alignment method between two poses
in the full-body human pose estimation domain and in the full-body human pose prediction domain
(Bogo et al., 2016; Martinez et al., 2017b; Moreno-Noguer, 2017). Even if Procrustes Analysis has
not been applied per se on hand skeletons for hand gesture recognition purposes before -to the best
of our knowledge-, it has however already been successfully applied to very similar domains. First,
in the static image hand recognition domain, PA has been used to align hand contours extracted from
images A. K. Jain et al., 1999; Yörük et al., 2006. Finally, even closer to the experiment we perform in
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Ours DE SMEDT et al. Difference

Gesture Precision Recall F1-score Precision Recall F1-score F1-score

G 72.4% 94.8% 82.1% 67.5% 57.0% 61.8% 20.3%

T 71.2% 77.0% 74.0% 85.2% 87.0% 86.1% -12.1%

E 84.7% 90.9% 87.7% 84.8% 87.0% 85.9% 1.8%

P 90.9% 78.4% 84.2% 52.1% 61.0% 56.2% 28.0%

RC 69.2% 98.2% 81.2% 80.0% 77.5% 78.8% 2.5%

RCC 97.8% 77.6% 86.5% 90.9% 85.5% 88.1% -1.6%

SR 91.2% 100.0% 95.4% 85.1% 92.5% 88.6% 6.7%

SL 98.0% 88.9% 93.2% 78.4% 85.5% 81.8% 11.4%

SU 98.2% 79.4% 87.8% 89.3% 85.5% 87.4% 0.4%

SD 93.3% 91.8% 92.6% 80.8% 88.0% 84.3% 8.3%

SX 100.0% 89.9% 94.7% 95.8% 85.0% 90.1% 4.6%

S+ 98.3% 100.0% 99.1% 90.2% 98.5% 94.1% 5.0%

SV 90.6% 100.0% 95.1% 93.2% 92.0% 92.6% 2.5%

Sh 96.2% 71.4% 82.0% 88.6% 81.0% 84.7% -2.7%

Table 4.2 – Comparison of F1 score for the SkelNet-Hand model in the 14 gesture classes case

this section, PA has also been applied in the facial expression recognition domain (S. Jain et al., 2011;
Martins, 2008): PA is first used as a pre-processing method to align facial landmarks between faces, the
aligned landmarks (i.e. faces) being then fed to a classifier in a second stage.

Finally, let’s note that other pose standardization approaches exist, besides PA. In the human limbs
(i.e. skeleton segments, or bones) lengths normalization approach proposed in Zanfir et al., 2013, average
skeleton segment lengths are learned using training data. The proposed approach aims at explicitly
normalizing human skeletons. To normalize a pose, the lengths of the limbs of the pose are adjusted
to fit a desired length calculated from the learned lengths, while keeping body joint’s angles constants
during the transformation. Finally, the resulting pose is centered around the hip center. The motivation
behind this skeleton normalization approach is conceptually very close to the motivation behind the
use of Procrustes Analysis skeletal alignment approach: in both cases both scale and location of the
skeleton are standardized. However, the PA alignment can arguably be more powerful: compared to the
limbs lengths normalization approach from Zanfir et al., 2013, in PA other alignment transformations
can be directly learned, including rotations of the skeleton. Moreover, PA alignment does not require
the pose to have a root node, whereas the limbs lengths normalization approach proposed in Zanfir
et al., 2013 does require a root node. As such, PA alignment can be used directly without adaptation to
any other pose topology even if the topology does not have a root node: this is often the case for facial
landmarks topologies, for instance.

Given two centred matrices A and B, Procrustes Analysis finds the linear transformation matrix Ω
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Model Accuracy (14) Accuracy (28)

(Oreifej et al., 2013) 78.5 74

(Devanne et al., 2014) 79.6 62

(De Smedt et al., 2017) 82.9 71.9

(Ohn-Bar et al., 2013) 83.9 76.5

(J. Weng et al., 2018) 85.8 80.2

(De Smedt et al., 2016) (SoCJ + HoHD + HoWR) 88.2 81.9

(Caputo et al., 2018) 89.5 -

(Boulahia et al., 2017) 90.5 80.5

(Hou et al., 2018) (Res-TCN) 91.1 87.3

SkelNet-Hand 91.3 84.4

(X. Chen et al., 2019) 91.3 86.6

(X. S. Nguyen et al., 2019) 92.38 86.31

(Y. Li et al., 2019) (HG-GCN) 92.8 88.3

(Hou et al., 2018) (STA-Res-TCN) 93.6 90.7

(Maghoumi et al., 2018) 94.5 91.4

(F. Yang et al., 2019) 94.6 91.9

(Avola et al., 2018) 97.62 91.43

SkelNet-1400-42 (Cout = 22,groups = 22) ∼2.4M parameters 88.0 77.9

SkelNet-1024-128 (Cout = 22,groups = 1) ∼2.4M parameters 91.5 84.0
Last SkelNet model but with TCN instead of convolutional layers 91.3 84.8

Table 4.3 – Results on the DHG-14/28 SHREC’17 dataset using the train/test split protocol (in %)

that minimizes the following objective:

argmin
Ω
‖ΩA−B‖ (4.8)

where:

A ∈ R(J,d) is a centred matrix that represents a shape of J joints of dimension d,

B ∈ R(J,d) is a centred matrix that represents a shape of J joints of dimension d,

with J = 22 joints and d = 3 (xyz) dimensions in the experiments.

The intuition behind Procrustes is to translate two vectors to a same origin in order to center them
-if not already the case-, then to scale them down to unit-size and finally to optimally rotate them with
respect to a norm minimization problem and with regards to the rigid transformations. The resulting
vectors represent a standardized version of the original vectors, and lie on a curved space related to
Kendall’s shape space (Kendall, 1984) where gestures can be viewed as Riemannian trajectories (Ben
Tanfous et al., 2018) and compared. When the matrix Ω is orthogonal, i.e. Ω>Ω = I, the orthogonal
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Procrustes objective has an analytical solution given by:

Ω =UV> (4.9)

where U and V come from the singular value decomposition UΣV> of the matrix BA>.

We make use of Procrustes Analysis to create a Procrustes-standardized version of the gestures,
and compare the performances of the model trained on these standardized gestures to the same model
trained on original non-procrusted gestures. More precisely, we test two different Procrustes Analysis
registration approaches: a “by-time step” registration approach, and a “full-sequence” registration
approach.

Let J refer to the joints’ count, and d to their dimensions, and T to the duration of the hand gesture
sequence. The “by-time step” PA approach applies PA to individual skeletons (i.e. on tensors of shape
(J, d)). The “full-sequence” PA approach considers a gesture as a single tensor of shape (T , J, d) that is
first reshaped as to a shape of (J×T , d) by concatenating successive time steps along the the joints axis.
A PA is performed on that (J×T , d) tensor.

Our motivation for a “by-time step” Procrustes Analysis can be explained as follows. The convolu-
tional neural network models we introduced perform convolution operations on the temporal dimension
in order to extract temporal patterns relevant for classification. As such, coarse gestures that mostly
involve a global translation and/or a global rotation of the hand are relatively easy to classify by the
models. However fine gestures are more difficult, as the inner shape of the hand evolves over time.
As such, registering the current hand skeleton at each time step to a reference hand skeleton -e.g.
the hand skeleton at the first time step- may arguably help the models to better compare the hand
configuration between different time steps and thus better recognize fine gestures. We refer to this PA
registration method as the “by-time step” separate skeleton registration. In equation 4.8, for a “by-time
step” Procrustes Analysis, B ∈ R(J,d) represents the first skeletal frame of a gesture sequence, while
A ∈ R(J,d) represents the current skeletal frame for a specific time step of that gesture sequence. For
each individual time step, a PA is performed.

Our motivation for a “full-sequence” Procrustes Analysis can be explained as follows. All possible
gestures are not evenly distributed in the physical space. As such, we define a reference gesture as the
mean of all the gestures from the training set of the dataset. Registering a new gesture sequence to
classify to this reference gesture may present an advantage as it could help the models to be more robust
to slight global rotations and perturbations since the gesture is registered. Moreover, overall temporal
evolutions may be better conserved with this registration than with the “by-time step” PA. However, we
also would expect this registration method to have a major drawback: some gestures may appear almost
identical after the registration: e.g. horizontal swipes might appear undistinguishable from vertical
swipes. We refer to this PA registration method as the “full-sequence” registration. In equation 4.8, for
a “full-sequence” Procrustes Analysis, B ∈ R(J×T,d) represents the reference gesture (i.e. the mean of
all the gestures from the training set of the dataset), while A ∈ R(J×T,d) represents the gesture sequence
to classify. Note that all time steps are concatenated to form the matrices A and B from the original
tensors. Only one PA is performed.

We performed Procrustes Analysis on the full sequences considering either the sequences as a whole
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(“full-sequence” PA), or considering skeletons separately at each time step (“by-time step” PA), in order
to compare if one of the two methods would lose more temporal information than the other.

For the 14 classes case, the SkelNet-1400-42 model achieves only a 31.3%(±2.9%) accuracy when
performing PA on the whole sequences and a 41.2%(±2.9%) accuracy when performing PA on the
sequences separately at each time step, compared to an baseline accuracy of 88.0%(±1.4%). For the
harder 28 classes case, the SkelNet-1400-42 model achieves only a 20.5%(±0.3%) accuracy when
performing PA on the whole sequences and a 42.7%(±2.1%) accuracy when performing PA on the
sequences separately at each time step, compared to an baseline accuracy of 77.9%(±3.8%).

The orthogonal Procrustes analysis performs even worse than the Procrustes analysis, though. For the
14 classes case, the SkelNet-1400-42 model achieves only a 19.8%(±0.7%) accuracy when performing
orthogonal PA on the whole sequences and a 13.0%(±9.3%) accuracy when performing orthogonal PA
on the sequences separately at each time step, compared to an baseline accuracy of 88.0%(±1.4%). For
the harder 28 classes case, the SkelNet-1400-42 model achieves only a 11.6%(±3.0%) accuracy when
performing orthogonal PA on the whole sequences and a 4.9%(±0.2%) accuracy when performing
orthogonal PA on the sequences separately at each time step, compared to an baseline accuracy of
77.9%(±3.8%).

Surprisingly, we observe a dramatic drop in the recognition accuracy not only for the “by-time
step” PA but also for the “full-sequence” PA, compared to the reference model. The orthogonal
Procrustes objective has an analytical solution which eliminates hypothetical optimization issues, but
using orthogonal PA does not improve the model accuracies at all.

This suggests that in both cases the temporal information is either lost or at least not salient-enough
to present patterns easily distinguishable by the convolutions over time series used by our model.

Data augmentation

Data augmentation is a commonly used technique in deep learning to leverage available data and help
neural networks become more robust to noise. Modern neural networks have hundreds of thousands,
millions or even billions of parameters. With so many parameters, overfitting is a serious issue for
neural networks, especially when they are trained on small datasets.

We perform data augmentation by generating new sequences obtained as modifications of exist-
ing sequences, and study the performance of our model. We augment the data with the following
transformations:

1. Scale: A random scale transformation is applied to the skeleton’s channels. The scaling factor
is sampled from a uniform distribution in [0.8,1.2]. The scaling factor s can either be the same
for all channels: ∀i ∈ J1,66K si = s with s ∼ U (0.8,1.2) or be channel-specific to each channel i:
∀i ∈ J1,66K si ∼U (0.8,1.2).

2. Shift: A random shift transformation is applied to the skeleton’s channels. The shift offset is
sampled from a uniform distribution in [−0.1,+0.1]. The shift offset o can either be the same for
all channels: ∀i ∈ J1,66K oi = o with o ∼ U (−0.1,+0.1) or be channel-specific to each channel i:
∀i ∈ J1,66K oi ∼U (−0.1,+0.1).

3. Temporal Interpolation: New gestures are generated by interpolating the positions of the joints
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between consecutive successive time steps. The displacement ~∆ between two successive frames is
calculated and a new position is generated by replacing the original displacement ~∆ with a scaled
displacement r ·~∆ where the displacement factor r is sampled from a Gaussian distribution centered
at 1.0 with a standard deviation of 0.3: r ∼N (1.0,0.3). The displacement factor r can either be the
same for all channels: ∀i ∈ J1,66K ri = r with r ∼ G (1.0,0.3) or be channel-specific to each channel i:
∀i ∈ J1,66K ri ∼ G (1.0,0.3).

4. Temporal Masking: A contiguous portion p = 0.2 of the gesture is masked. The temporal location
of the masked portion is chosen randomly uniformly. To mask the channels, different filling strategies
are used: filling with zeros and padding with the channel values before the mask, after the mask, or the
mean of these values. Temporal masking can either be the same for all channels or be channel-specific
to each channel.

5. Noise: A random uniform noise is added to the skeleton’s channels. The noise level is sampled
from a uniform distribution in [−0.1,+0.1]. The noise level ε can either be the same for all channels:
∀i ∈ J1,66K εi = o with ε ∼U (−0.1,+0.1) or be channel-specific to each channel i: ∀i ∈ J1,66K εi ∼
U (−0.1,+0.1).

The model accuracy obtained on the DHG 14/28 dataset (14 classes case and 28 classes case) for
each one of the data augmentation strategies mentioned above is detailed in table 4.4.

Model Original Data Scale Shift Time Mask Noise All

14 classes 88.0±1.4 92.4±1.0 91.6±1.1 91.8±0.7 92.4±0.7 91.9±0.5 92.2±0.8

28 classes 77.9±3.8 83.0±1.4 80.2±6.6 84.2±1.1 81.8±2.5 81.5±2.4 81.5±3.5

Table 4.4 – Influence of data augmentation on the model accuracy (in %)

We observe a gain in accuracy of 4.4 points for the 14 class case and 6.3 points for the 28 class case
when we perform data augmentation. This gain is greater than the upper-bound of the original reference
model accuracy confidence interval.

When compared to the results from the SkelNet-Hand model evaluated on the same dataset, we
conclude that using a lightweight model such as our reference model with data augmentation leads to
accuracies comparable to the ones obtained with the SkelNet-Hand model, but with only a fraction of
its weights and computational requirements.

With data augmentation, our reference SkelNet model has only 2404393
13869871 ≈ 17% of the original model

weights but achieves roughly the same accuracy (+0.2%) than the original model on the 14 classes
case. This result is confirmed on the 28 classes case using data augmentation: the model also represents
2406199
13896989 ≈ 17% of the original model weights and achieves roughly the same accuracy (-0.3%) than the
original model.

This highlights the importance of data augmentation. First, sequences of skeletal hand gesture benefit
from data augmentation like more traditional data such as text documents and images. Second, no matter
the method used, data augmentation always improves accuracy. Third, among all data augmentation
techniques tested, the scale appears to be more useful. Adding noise and temporally interpolating the
gestures can also be useful, but combining all the data augmentation techniques does not necessarily
improve the final accuracy. All the results of the three techniques cited are not surprising because of the

78



variability between the subjects that perform the gestures: the performer’s hand can move fast or slow,
be more or less close to the camera and potentially be detected with some error. As such new examples
generated with a method based on these observations are more likely to look like real gestures while
still providing data variability to the network. Since skeletal data is sparse, using data augmentation
likely improves not only the accuracy but also the robustness of the model.

Sequence Length

We compared the influence of the length of the input sequences on the model performances by training
a model for each one of 70, 80, ..., 130 input time steps configuration both for 14 and 28 cases.

The model accuracy obtained on the DHG 14/28 dataset (14 classes case and 28 classes case) for
each one of the input data durations mentioned above is detailed in table 4.5.

Model T = 70 T = 80 T = 90 T = 100 T = 110 T = 120 T = 130

14 classes 88.8±1.0 89.8±0.5 88.9±1.5 88.4±2.0 87.7±1.4 88.7±0.6 84.8±3.1

28 classes 74.2±4.8 73.3±6.1 76.0±4.3 74.9±4.7 75.7±5.6 78.3±1.5 75.7±0.8

Table 4.5 – Influence of the input data length on the model accuracy (in %)

For the reference model architecture on the 14 classes case, the accuracy varies between -3.6 and
+1.4 points, compared to a reference accuracy computed for the 100 time steps case.

For the reference model architecture on the 28 classes case, the accuracy varies between -1.6 and
+3.4 points, compared to a reference accuracy computed for the 100 time steps case.

However, the sequence length of the best performing models are not the same depending the number
of classes: T = 80 for the 14 classes case and T = 120 for the 28 classes case.

As such, we chose T = 100 since this sequence length appears to be a good compromise between
the model performance on 14 classes, on 28 classes and on the model size which is dependent on the
input size.

As a result, the model is always trained on inputs that have a 100 time steps length.

Position/Rotation representations

We compare the influence of recognizing gestures and actions based on the joints’ positions or the joints’
orientations. We use the NTU RGB+D dataset for the experiments, as the DHG 14/28 dataset does not
provide the joints’ orientations.

The NTU RGB+D dataset requires a deeper SkelNet neural network compared to the ones we use
on the DHG 14/28 dataset. Although being deeper, that SkelNet model has less parameters than the
ones used on DHG 14/28. Except the depth of the model used, all of these models follow the same
(SkelNet) architecture. Its exact architecture is presented in the last section of this chapter.

The SkelNet model taking the joints’ positions as input data achieves a 61.5%(±0.42%) accuracy,
while it only achieves a 51.53%(±0.59%) accuracy when the input data is the joints’ orientations.

We observe the best representation is the position-based one. To the best of our knowledge, there is
no consensus in the literature about the best representation for gesture recognition between position
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and orientation of the joints. One hypothesis we propose to explain the high difference in performance
between our position-based and orientation-based models lies in the estimation method used by the
Kinect cameras that were used to create this dataset: as estimating correct positions is easier than
estimating rotations, the position data may be less noisy than the orientation data in the dataset.

Early recognition

One drawback of using convolutional-based approaches for gesture recognition lies in the fixed input
size used by the convolutional models. As one can use sliding windows over time to perform by-window
gesture classification, this drawback is mostly an issue at the beginning of gestures, when the gesture
acquisition is not yet finished.

We propose an extremely simple solution to that specific issue, by stretching the portion of the
gesture already performed to the fixed-input size required by the model.

Instead of classifying a full gesture, we analyze the recognition performance of our model on an
ongoing gesture, depending on the portion of the gesture already performed, as depicted in figure 4.13.

As expected, the performances are low when a very small fraction of the gesture is performed.
However, the performances soar as the portion of the gesture performed comes close to 1.

This results suggests that using temporal resampling alongside with a convolutional network ap-
proach on non-finished gestures is sufficient to obtain satisfactory accuracies for early gesture recog-
nition. When 80% of the gesture has already been performed, the recognition accuracy is as high as
79.2% for the 14 classes case and 68.1% for the harder 28 classes case.
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Figure 4.13 – Evolution of the recognition performances as gestures are performed

4.4.3 Module Ablation Study

In this section we analyze the incidence of each part of the neural network, by removing individual
modules of the model, all other factors being equal. In this section, the temporal feature extractor
modules of the reference model are not shared, as in the SkelNet-Hand model.
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Model Accuracy (14 classes) Delta Accuracy (28 classes) Delta

Reference model 91.28 84.35

Without Residual branch 90.32 -1.05 79.93 -5.24

Without High-resolution branch 90.80 -0.53 78.97 -6.38

Without Low-resolution branch 90.08 -1.31 80.17 -4.96

Table 4.6 – Influence of branch ablation on the model accuracy (in %)

We highlight the importance of using three parallel branches for the 28 gesture classes case in
table 4.6 where performances significantly drop if one of the two high- or low- resolution branches are
removed.

4.4.4 Neural Network Design Choices

We now focus on the influence of varying hyperparameters for the different building blocks of the
model.

Pooling Method

A comparison of average pooling and max pooling shows that average pooling slightly outperforms
max pooling by +0.88% in accuracy for the 14 classes classification problem. For gesture classification
problems where no complex semantic information is present, average pooling likely acts as a regularizer,
compressing channels in the time domain. As gestures are smoother and more regular than lots of other
time series data because of the physical constraints inherent to gesture, and especially when compared
to sequences of arbitrary word vectors in the natural language processing domain, average pooling could
arguably result in loosing less useful information than max pooling.

Preprocessing module

The preprocessing module is trained jointly with the convolutional network. We do not apply a normal-
ization step before this preprocessing module, as the DHG14/28 data has already nearly normalized
values.

The influence of the size of the output of the preprocessing module is illustrated in figure 4.14. We
conclude of this experiment that the size of the preprocessing module has no significant impact on the
accuracy for our gesture classification task. The model can gain up to 1.0% in accuracy when choosing
the appropriate number of output channels (e.g. Cout = 132 or Cout = 44) compared to the baseline
SkelNet-1024-128 model, however no trend is easily distinguishable from the results.

The 1.0% gain in accuracy observed when Cout = 44 (while there are 22 joints) may suggest that
most of the gestures may be distinguishable with a simple 2D projection from the 3D data.

As the preprocessing module has little impact on the accuracy, it is not applied by default for the
hyper-parameter search, and the input sequences are directly processed by the convolutional module.
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Figure 4.14 – Accuracy obtained on the 14 classes case, with various sizes of the linear (over the
“channels” axis) preprocessing module (blue curve). The red line is the SkeltNet-1024-128 reference
architecture, without a preprocessing module.

Convolutional module

The network’s convolutional module extracts temporal features from the gesture channels. In this section
we evaluate the use of either standard convolutions or temporal convolution networks (TCN) introduced
by (Lea et al., 2017) for the temporal feature extraction. TCNs are 1D convolutional networks where
standard convolutions are replaced by causal convolutions, i.e. convolutions where an output at time
t is convolved only with elements from time t and earlier in the previous layer. More precisely, a
TCN convolutional layer is a residual layer whose processing block is made of two dilated causal
convolutions with ReLU activations, with both weight normalization (Salimans et al., 2016) and dropout
(N. Srivastava et al., 2014) regularization methods.

We first evaluate performances obtained with standard convolution. By using a grid search for
n ∈ {1,2,3,4} convolutional layers and Cconv ∈ {11,22,44,66,96} output channels per layer, we show
that shallow and small neural networks perform better (figure 4.15).

In particular, in the case of small convolutions (Cconv ∈ {11,22}) the validation accuracy decreases
with the number of layers, while this number has little impact for larger convolution kernels Cconv ≥ 44 .
The best overall score for both validation and training sets is reached for Cconv = 22 and n = 1. This
suggests that shallow and small neural networks generalize better but also converge more easily on a
medium-sized dataset like the DHG 14/28 dataset. We though observe that deeper architectures may
be more adapted or even required for larger datasets that includes more classes, like the NTU RGB+D
dataset for instance.

We now present the results obtained with the TCN convolutional layers.

We explore 3 essential hyper-parameters :

• The depth d of the network, i.e. the number of successive convolution layers

• The number of convolution channels per layer Cconv

• The filter size k of the convolutions
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Figure 4.15 – Influence of the number and the size of convolution layers on accuracy.

Experimental results (figure 4.16) suggest that :

• TCNs require more depth than our classical CNN to be accurate: at least 5 layers (figure 4.16a)

• Having large networks with a high Cconv(≥ 200) leads to a good performance (figure 4.16b)

• A minimum kernel size is required to perform well, presumably for the model to have a long
enough memory. We see that, with d = 5 layers, kernel size k = 2 (giving a receptive field of
kd = 25 = 32 time steps to the network) is not sufficient, whereas k = 3 (giving a receptive
field of kd = 35 = 243) is enough (figure 4.16c)

• The SkelNet-1024-128 with standard convolutions performs better than all the equivalent
TCNs configurations tested

In the TCN case, the classification module’s input is only the last time step output (y(c)(t =
L))c∈[0,Cconv−1], of size Cconv (where Cconv is the number of channels outputs of the last convolution
layer), whereas the size is (Cconv,Lconv) for our regular CNN model. Even though we choose a larger
Cconv than in the equivalent regular CNN architecture, the output of the convolution module is much
smaller. Therefore we use a MLP with only 1 hidden layer (of size 128) for classification.

The SkelNet-1024-128 with standard convolutions has 4662123
2404393 ≈ 2 times less parameters than its

counterpart with temporal convolutions, while the SkelNet NTU with standard convolutions introduced
in the section 4.4.6 has even 6384192

1545984 ≈ 4 times less parameters than its counterpart with temporal
convolutions.

The SkelNet models that use TCN convolutional layers have considerably more parameters than the
SkelNet models that use a standard convolution approach. They are also much slower to train (about 20
times slower than a small and shallow CNN architecture).

Dropout

We study in figure 4.17 the impact of dropout rate on accuracy, for three variations of a SkelNet-1936-128
model.
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(a) Influence of the number of layers on the model accu-
racy, on a model with Cconv = 300 channels per convolu-
tion layer

(b) Influence of the number of output channels per layer
on the model accuracy, on a model with d = 5 layers

(c) Influence of the kernel size (previously set to 3)
on the model accuracy, on a model with 5 layers
and Cconv = 300 output channels

Figure 4.16 – Experiments on TCN architectures (14 classes case). For comparison, the accuracies of
both the SkelNet-1024-128 and the SkelNet-1400-42 models with standard convolutions are displayed,
in green and in violet respectively.
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The first variation (in red in figure 4.17) consists in a model with 66 independent processing branches.
The second variation (in green in figure 4.17) consists in a model with only 3 processing branches:
1 that processes all the x channels, 1 that processes all the y channels and 1 that processes all the z

channels. Finally the third variation (in blue in figure 4.17) consists in a model with a single processing
branch shared for all channels regardless of the joint or the joint component.

In figure 4.17 (a) the experiment is performed for the 14 classes case of the DHG 14/28 dataset,
whereas in figure 4.17 (a) the experiment is performed for the 28 classes case of the DHG 14/28 dataset.

The results of the experiment show an almost constant final model accuracy with a wide confidence
margin, regardless of the dropout rate: noisy random weights initialization at the beginning of the
training have more impact on the final accuracy than the dropout rate per se.
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Figure 4.17 – Model accuracy for different dropout rates.

4.4.5 Weight Sharing Study

Sharing Weights at the Input Level

To reduce the total parameters count of the learned neural network and impose regularities across
channels, one could think of feeding several channels to the same convolutional layers, using grouped
convolutions. Channels are split into groups different groups of equal sizes.

All 66
groups input channels in the same group share the same set of filters. For instance, when

groups = 1 all 66 channels are convolved with the same filters, whereas groups = 66 means that each
input channel is processed with its own filters.

Our network working with 66 parallel extractors, using 3 convolutional layers of size Cout,conv =

(8,8,4) for 1 input sequence, is equivalent to a neural network with 3 layers

[(Cout = 66×8,groups = 66),(Cout = 66×8,groups = 66),(Cout = 66×4,groups = 66)]

working on all 66 input sequences. We observe that having this many channels and this many layers is
not necessary, at least on the DHG 14/28 dataset.
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However, we still want to analyze how this groups parameter affects our model, and if processing
some sequences separately improves the performance. Results are presented in figure 4.18.

In figure 4.18 (a), a SkelNet model with 1 convolutional layer operating on the 66 input channels
is trained for gesture recognition on the 14 classes case of the DHG14/28 dataset. The impact of the
groups parameter on the model accuracy is evaluated. The results are plotted in figure 4.18 (a), as
well as the associated confidence intervals. Since groups must divide the input channels’ count, only
groups values up to 66 that divide 66 are considered: namely 1, 2, 3, 6, 11, 22, 33 and 66. We observe
that the best model accuracies are obtained with groups = 1, groups = 2 or groups = 66. Since the
model’s accuracy’s confidence interval is wider (and therefore the model’s accuracy more uncertain) for
groups = 2 than for groups = 1 and since the model with groups = 1 has way less parameters than the
model with groups = 66, we finally choose to use groups = 1 in our baseline model.

In figure 4.18 (b), two SkelNet models with 96 output channels in both cases, are trained for gesture
recognition on the same 14 classes case of the DHG14/28 dataset. The models are identical, except for
the depth of the temporal features extractor modules: one model (results in plain red, with a confidence
interval, at the top in figure 4.18 (b)) uses 2 convolutional layers whereas the other model (results in
plain blue, with a confidence interval, at the top in figure 4.18 (b)) uses 4 convolutional layers. For
each one of the models, the impact of the groups parameter on the model accuracy is evaluated. Since
groups must divide both 66 and 96, only the following groups values are considered: 1, 2, 3 and 6. We
observe that the models’ accuracies are very close to each other with consideration to the accuracies’
confidence interval. This conjecture from this observation that the SkelNet model architecture does
not benefit from grouped convolutions for arbitrary output channel sizes: in other words, the model’s
architecture does not benefit from grouped convolutions when the (input channels’) groups are arbitrary
themselves.

Sharing Weights at the Resolution Level

In this section, the reference model is as the SkelNet-Hand model, with non-shared temporal feature
extractor modules.

To reduce the total parameters count of the learned neural network (∼13.8M parameters) and impose
regularities across channels, one could think of re-using the same temporal feature extractor module
entirely across all channels.

Since the temporal feature extractor module has two convolutional branches, it is also possible to
share only one of the two branches across channels and still have a channel-specific one for the other.

The model accuracy obtained on the DHG 14/28 dataset (14 classes case and 28 classes case) when
sharing all high-resolution branches across channels or all low-resolution branches across channels is
detailed in table 4.7.

This result highlights the importance of processing the two branches adaptively, since the accuracy
drops when one of the branches is shared amongst channels.

86



(a) Model accuracy on the 14 classes case for the 1
convolutional layer SkelNet model, depending on
the groups parameter. The values groups can take
are limited because it must divide 66 (since there
are 66 input channels).

(b) Model accuracy on the 14 classes case for the
2 convolutional layer model (in red) and for the
4 convolutional layer model (in blue), depending
on the groups parameter. The values groups can
take are limited because it must divide 66 (input
channels’ count) and 96 (output channels’ count).

Figure 4.18 – Influence of the groups parameter on the model accuracy. Each one of the Cout convolu-
tions sees only 66

groups input sequences. groups = 1 is a classical convolution layer, groups = 66 means
that input sequences are processed independently.
The average score on the 3 splits of the cross-validation is taken, and the blue bars represent the 95%
confidence interval.

Model Accuracy (14 classes) Delta Accuracy (28 classes) Delta

Reference model 91.28 84.35

Sharing all high-res. branches 89.73 -1.55 81.48 -2.87

Sharing all low-res. branches 89.8 -1.48 81.96 -2.39

Table 4.7 – Influence of sharing branches on the model accuracy (in %)

Sharing Weights at the Abstraction Level

In this section, the reference model is as the SkelNet-Hand model, with non-shared temporal feature
extractor modules.

Due to their sequential nature, deep convolutional neural networks are usually believed to create
hierarchical representations, where the first convolutional layers extract low-level patterns from the
input signal, whereas the last convolutional layers extract more abstract patterns related to the final
classification task.

Regardless of its resolution, each of the two convolutional branches of the temporal feature extractor
module have three convolutional layers.

To reduce the total parameters count of the learned neural network and impose regularities across
channels, one could think of re-using the same low-level convolutions in all feature extractor modules.

The model accuracy obtained on the DHG 14/28 dataset (14 classes case and 28 classes case) when
re-using the same low-level convolutions in high-resolution branches only, in low-resolution branches
only, or in both branches, is detailed in table 4.8.

One can also think of sharing weights both at a resolution-level (i.e. the branches) and an abstraction-
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Model Accuracy (14 classes) Delta Accuracy (28 classes) Delta

Reference model 91.28 84.35

Sharing first conv. in high-res. branch 90.08 -1.20 80.65 -3.70

Sharing first conv. in low-res. branch 88.77 -2.51 83.15 -1.20

Sharing first conv. in both branches 89.37 -1.91 82.92 -1.43

Table 4.8 – Influence of sharing first convolutional layers on the model accuracy (in %)

level (i.e. the first convolutions) across channels. The model accuracy obtained on the DHG 14/28
dataset (14 classes case and 28 classes case) when sharing weights both at a branches-resolution-level
and an abstraction-level (i.e. the first convolutions) across channels is detailed in table 4.9.

Model Accuracy (14 classes) Delta Accuracy (28 classes) Delta

Reference model 91.28 84.35
Sharing first conv. in low-res. branch

and sharing all high-res. branches 89.96 -1.32 82.92 -1.43

Sharing first conv. in high-res. branch
and sharing all low-res. branches 89.61 -1.67 81.84 -2.51

Table 4.9 – Influence of sharing first convolutional layers and branches on the model accuracy (in %)

While sharing the weights of both branches decreases the model accuracy more, sharing either the
low-resolution branch or the high-resolution branch (and not the other one) is feasible and only reduces
the accuracy of up to ∼1.7% for the 14 classes case and up to ∼2.5% for the 28 classes case.

Sharing only the first convolution of a branch does not improve the overall accuracy, which may
indicate that either the network depth is not big enough to benefit from such low-level processing
sharing, or that the dataset size is too small to benefit from this sharing. The results obtained on the 28
classes case suggests that some channels -likely some joints- are more useful than others to predict the
class, especially at a high-resolution level.

Overall, sharing weights at the resolution or at the abstraction level slightly reduces the parameters
count, but at the cost of up to ∼2.5% for the 14 classes case and up to ∼3.7% for the 28 classes case.

4.4.6 Applicability of the approach to other databases

To evaluate whether our approach is applicable to other types of skeleton-based motions, we train our
model on other skeleton-based datasets.

Full body

The first database, we use is the NTU RGB+D dataset introduced in (Shahroudy et al., 2016) which is a
human-body skeletal action recognition database. After performing experiments, we observe that our
SkelNet model requires more convolutional layers than in the hand gesture case. For that dataset, the
SkelNet model is made of 4 successive convolutional layers with Cout = 25,groups = 1, followed by 3
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fully-connected layers Nout,1 = 1024,Nout,2 = 1024,Nout,3 = 128. On the NTU RGB+D dataset, that
SkelNet model yields to an accuracy of 61.5% ± 0.42 (see table 4.10).

The SkelNet model is therefore better performing than Deep LSTM models from (Shahroudy
et al., 2016). This highlights that convolution-based models such as SkelNet can perform better than
recurrent-based models, while being faster to train and easier to understand. However, the SkelNet
model is significantly outperformed by other approaches that include domain-knowledge, attention
mechanisms and/or graph-based deep learning models. Integrating these elements into the SkelNet
architecture might therefore significantly improve our results. It should also be noted that our model is
very lightweight, with only ∼1.5M parameters, paving the way for real-time gesture recognition on
embedded devices like smartphones and robots.

Face Landmarks

We also apply our model on the RAVDESS dataset which is a facial emotion recognition video dataset by
first extracting 68 face landmarks from the videos as described in the section 4.3.3. With all the frames,
we get times series of the face landmarks positions. We use the same shallow SkelNet configuration as
for the hand gesture task, the input being landmarks instead of joints. We finally train the model on
the emotion classification task, and achieve a 91.2% recognition accuracy. This is significantly above
the 79.74% accuracy result reported by (Z. He et al., 2019) with their CNN-based method on the same
RAVDESS dataset (visual modality). Furthermore, our model is lightweight, especially compared to
approaches based on vision-only, and suited to facial emotion recognition.
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Model (Cross-Subject) Accuracy

(Evangelidis et al., 2014) 38.6

(Vemulapalli et al., 2014) 50.1

(Du et al., 2015) 59.1

(Hu et al., 2015) 60.2

(Shahroudy et al., 2016) (Deep LSTM) 60.7

(Shahroudy et al., 2016) (Part-aware LSTM) 62.9

(J. Liu et al., 2016) 69.2

(H. Wang et al., 2017) 71.3

(Song et al., 2017) 73.4

(Fan et al., 2018) 73.8

(J. Liu et al., 2017) (Direct GCA-LSTM) 74.3

(I. Lee et al., 2017) 74.6

(Tas et al., 2018) 75.3

(Ke et al., 2017a) 75.9

(M. Liu et al., 2017) 76.0

(J. Liu et al., 2017) (Stepwise GCA-LSTM) 76.1

(Pichao Wang et al., 2016) 76.3

(J. Weng et al., 2018) 76.8

(P. Zhang et al., 2017) 79.4

(H. Wang et al., 2018) 79.5

(Ke et al., 2017b) 79.6

(M. Liu et al., 2017) 80.0

(S. Weng et al., 2018) 81.1

(S. Yan et al., 2018) 81.5

(Xie et al., 2018) 82.7

(Y. Tang et al., 2018) 83.5

(Si et al., 2018) 84.8

(Maghoumi et al., 2018) 84.9

SkelNet NTU (∼ 1.5M parameters only) 61.5(±0.4)

Table 4.10 – Results on NTU RGB+D Dataset (in %)

4.5 Model visualizations

Richard Feynman, who received the Nobel Prize in Physics in 1965, once stated in a famous sentence:
"What I cannot create, I do not understand". Feynman thought that understanding something was not
just about working through advanced mathematics, but to have the ability to reduce it to it’s fundamental
underlying concepts (first principles) and have a firm grasp on each of them.

As scientists and as humans, we want to be able to answer "why?" questions, either to understand the
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world or to act on it in a way we desire. Before trusting a model and allowing a widespread adoption of
that model, people want to know the model performs ”well”, e.g. either in terms of statistical accuracy,
or in terms of their inner mechanism: their mechanism should be appropriate, fair, and open for audit
and control.

While it is easy to get a mental intuition about how SkelNet models may process information through
temporal filtering of the joints, one should cross-check if this intuition is likely a correct one or not, and
try to understand the reasons behind a model giving one specific outcome rather than another one.

Interpreting a neural network model is still a significant challenge in machine learning today. Meth-
ods that attempt to interpret neural networks usually fall into: game theoretic approaches, probabilistic
and statistical approaches, clustering approaches, visualizations-related approaches, or a combination of
them. Among them, methods that attribute the prediction of a deep network to its input features receive
more attention, as they mimick the way we try to understand new unknown phenomena as humans.

However, the credit assignment problem, which refers to the question of determining how much
‘credit’ (or ‘blame’) a given neuron should get for a given outcome, is still also an open and active
problem in research, with direct implications in reinforcement learning (e.g. what actions should be
credited for the reward, given that all actions previous to a time step affect the environment at that
time step?) or in the time-series supervised learning (e.g. for efficient backpropagation through time
in recurrent networks). Post-hoc interpretability is one family of methods that seek to “explain” the
prediction without considering the details of black-box model’s hidden mechanisms.

Attribution Methods

To study the problem of attributing the prediction of a deep SkelNet model to its input features, we
choose to use two state-of-the-art post-hoc approaches attribution methods and visualize the result. These
two post-hoc approaches: Integrated Gradients (Sundararajan et al., 2017) and DeepLift (Shrikumar
et al., 2017).

Both of these methods extend the idea of examining the gradient of an output with respect to its
input, the latter not being viable as-is with non-linear deep learning models (e.g. negative values going
through a ReLU activation always lead to a zero-gradient, regardless of the input). More precisely, they
are based on the study of how much an output changes from a baseline as the input changed from a
baseline. Using a baseline is needed both for philosophical reasons -since understanding is closely
related to the essence of objects: properties kept invariant regardless of external change or interactions-
and for practical reasons, mostly due to the non-linearities of deep learning models.

Integrated Gradients calculate the integral of the gradients between a baseline tensor xbaseline and a
tensor of interest x (equation 4.10).

IG(x,xbaseline) = (x−xbaseline)
∫ 1

0
∇F
(

αx+(1−α)xbaseline
)

dα (4.10)

Rather than focusing on the gradient (how the output changes at the input point), DeepLIFT explains
the difference in output from a reference’ (baseline) output in terms of the difference of the input from
some ‘reference’ (baseline) input. While the underlying equations are more complex and separate
positive and negative contributions, the idea is still close to the Integrated Gradients methods, replacing
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gradients of a layer by a slope (equation 4.11) called multiplier6, leading to feature importance (equation
4.12).

m =
y−ybaseline

x−xbaseline =
∆y
∆x

(4.11)

f eatureDL
i = (x−xbaseline

i )
∆Yi

∆xi
(4.12)

While interpretation of neural networks is fragile (Ghorbani et al., 2019), especially when it comes
to adversarial perturbations, such methods still reveal themselves to be helpful, in order to get an
intuition about how and why a model makes its predictions, especially when combined with a visual
representation of the results.

Introduction to the visualization approach chosen

In this subsection, we explain the visualization approach chosen for all the figures of this section, namely
for figures 4.19 (a) and (b), for figures 4.20 (a) and (b), for figures 4.21 and for figures 4.22 (a) and (b).
All the figures are later explained in more detail in the next sections.

Each figure, e.g. figure 4.19 (a), features 14×2 = 28 plots. Each one of the 28 plots represents a
sequence, using the standard 2D format introduced earlier at the beginning of the chapter (see figure 4.3
(c) for a short description of the 2D format). The vertical axis of each plot represents time (from
time step 0 at the top, to time step 100 at the bottom). The horizontal axis of each plot represents the
C = 22×3 = 66 input channels (in the following order: x1,x2, . . . ,xJ,y1,y2, . . . ,yJ,z1,z2, . . . ,zJ , with
J = 22).

The first and third rows of each figure, i.e. 14 plots in total, represent prototypes of each one of the
14 classes of the DHG14/28 classes (14 classes case). To construct the prototype of a given gesture
class, all gestures of that class are averaged, leading to a mean tensor of the same shape: (T,C) where
T = 100 and C = 66. The colormap used for the 14 plots is a blue-to-yellow colormap: blue indicates
low values whereas yellow indicates high values.

The second and fourth rows of each figure, i.e. 14 plots in total too, represent models attributions
for the prototype sequences illustrated immediately above them. The colormap used for the 14 plots is a
red-to-green colormap: red indicates negative values whereas green indicates positive values.

As an example, in figure 4.19 (a), the second plot of the third row represents the prototype (i.e. mean
sequence) of the class #9 (“Swipe Up”): the X and Z channels blocks (on the left and on the right, in
green-yellow colors) exhibit approximately constant values, while the Y channels block (on the middle,
in blue) exhibit Y values that evolve over time (from low values in dark blue at the beginning of the
sequence (top) to higher values in lighter blue later (middle and bottom)).

In the same figure, the second plot of the fourth row (i.e. just below the plot of the “Swipe Up”
prototype) represents the models’ attributions for that “Swipe Up” prototype. The choices of the exact
attribution method and baseline are discussed in the next sections. In this example, the attribution
method is the DeepLift method and the baseline is a gesture prototype defined as the mean sequence

6Multipliers respect a chain rule like gradients, and partial-slopes can be computed in a manner that is analog to the
partial-derivatives computation.
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of all gestures, regardless of their class. Reading the attribution plot, we can observe how or why
the DeepLift attribution method considers that a Swipe Up gesture (or, more precisely, the Swipe Up
prototype plotted right above) is effectively classified as a “Swipe Up” gesture by our SkelNet model.
Our model considers the evolution of Y channels between t = 40 and t = 70 to be very informative
of a “Swipe Up” gesture, whereas the evolution of X and Z channels are not considered as being very
informative of a “Swipe Up” gesture at any moment. These attributions seem credible with regards to
the prototype plotted above and tend to support our convolutions-over-time model architecture .

Still as an example, in the same figure 4.19 (a), the attributions related to the class #8 (“Swipe Left”)
are also informative. While the conclusion of the observed attributions plot is similar (the model seems
to consider the evolution of X channels between t = 40 and t = 70 to be very informative of a “Swipe
Left” gesture, whereas the evolution of Y and Z channels are not considered as being very informative
of a “Swipe Left” gesture at any moment), the attributions plot reveals that the model tends to rely not
on all X channels but on a very limited set of X channels (about 3 or 4 channels).

In the next subsections, we experiment different visualizations choices and try to interpret the
resulting visualizations.

Choice of the attribution method

We experimentally investigate the differences between the two attribution methods (Integrated Gradients
and DeepLift) for SkelNet models in figure 4.19. More precisely, the attributions obtained with the
Integrated Gradients approach are presented in figure 4.19 (a) whereas the attributions obtained with the
DeepLift approach are presented in figure 4.19 (b).

On figure 4.19, the two attribution methods lead to similar visualizations: most gesture prototypes
(i.e. mean gestures for a given class) have close attributions by the two methods, while for some of them
(e.g. 5 - Rotation Clockwise and 6 - Rotation Counter Clockwise) one of the two methods appears to
perform better than the other (e.g. Integrated Gradients arguably perform much better than DeepLift for
the two aforementioned classes on the visualization).

After observing differences between the two attributions methods for several other SkelNet archi-
tectures and different hyper-parameters, we qualitatively conclude that neither one nor the other is
consistently more informative than the other one and choose to only use Integrated Gradients for further
visualizations.

Choice of the attribution baseline

Two natural baselines sequences are the zeros sequence: xbaseline
zeros = 0 and the xbaseline

meansequence =
1
N ∑1∈[[1,N]] xi

mean of all sequences in the DHG 14/28 dataset, regardless of the class of the gestures.

We compare the two baselines in figure 4.20.

In figure 4.20 (a), i.e. in the zero-baseline case, the attributions plots can almost be directly obtained
by thresholding the prototypes sequences plotted right above them. In figure 4.20 (b), i.e. in the
mean-baseline case, the attributions plots appear to be more related to motions that are specific to
individual gesture prototypes.
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(a) Visualization of by-class mean gesture of each class (DHG 14 classes) and the associated attributions to the
respective class. Red indicate negative values, while green indicate positive attribution. Horizontal axis: channels.
Vertical axis: time. Attribution method: Integrated Gradients.

(b) Visualization of by-class mean gesture of each class (DHG 14 classes) and the associated attributions to the
respective class. Red indicate negative values, while green indicate positive attribution. Horizontal axis: channels.
Vertical axis: time. Attribution method: DeepLift.

Figure 4.19 – Comparison and visualization of two attribution methods: Integrated Gradients and
DeepLift.

As such, the zero-baseline attributions focuses on the movement per se, while the mean-baseline
attributions focus on the gesture specificity compared to other gestures.

Since explaining the models classification is the goal of this section, we choose to use mean-baseline
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(a) Integrated Gradients attributions for SkelNet model with a zero-baseline (no motion)

(b) Integrated Gradients attributions for SkelNet model with a mean-baseline (mean motion)

Figure 4.20 – Comparison and visualization attributions depending on the baseline.

for further visualizations.

Visualizing branch-sharing (1 / 3:XYZ / 66) in SkelNet models

We now focus on the model by itself and compare three variations of the SkelNet architecture. The
variations we study are the three variations we already introduced in section 4.4.4.

The first variation consists in a model with 66 independent processing branches. The second
variation consists in a model with only 3 processing branches: 1 that processes all the x channels, 1 that
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processes all the y channels and 1 that processes all the z channels. Finally the third variation consists
in a model with a single processing branch shared for all channels regardless of the joint or the joint
component.

In figure 4.21, we present the attributions we obtain for each one of the three models. For the sake
of clarity, we refer to the first variation as the C = 66 channels model, the second variation as the C = 3
(XYZ) channels model, and the third one as the C = 1 channels model in the legend of the figure 4.21.

In figure 4.21, the 1-shared-branch model surprisingly appears to not only correctly focus on
temporal variations of the channels’ amplitude, but also have comparable attributions for all channels in
a single x-block (resp. y-block and z-block) of input channels. One shortcoming of that model may lie
in the fact that the temporal features tend to group together for several joints or channels. This suggests
that this model may be arguably more adapted for global motion of the hand than for fine finger-level
motions.

The 3:XYZ-shared-branch model also appears to correctly model temporal variations of the channels’
amplitude. However, this model does not seem to present any clear advantage over the 1-shared-branch
model, even with the introduction of human-knowledge with specific branches for the X, Y and Z axes
in order to reflect the importance of these axes in the 14/28 gesture classes.

The 66 independent branches model also appears to correctly model temporal variations of the
channels’ amplitude. Contrary to the former two other models, the attributions are more sparse than
before: temporal patterns of some (very) few channels can be responsible for a classification. Depending
on the task, this high specificity can be an advantage, but also a disadvantage since one could expect the
model robustness to suffer from these sparse positive attributions.

Dropout rate influence

Robustness of model attributions for the last 66 independent branches model is visualized in figure 4.22.
The 66 independent branches model appears to have a comparable accuracy regardless of the dropout

probability. However, since it also has more sparse attributions than the 3:XYZ-shared-branch model
and the 1-shared-branch model as shown in figure 4.21, one can wonder how dropout rate affects the 66
independent branches model attributions. In figure 4.22, three models trained with different dropout rate
are visualized: one without dropout, one with a p = 0.40 dropout rate, and one with a very high dropout
rate: p = 0.95. For comparison, the same 66 independent branches model from previous figure 4.21 is
trained with a p = 0.55 dropout rate.

The model leads to similar attributions for a wide range of dropout rates, like p = 0.40. When no
dropout is applied, attributions are slightly less sparse. However for extremely large dropout rates, the
model does not benefit of its branches since most of them are dropped, making the model very close and
comparable to the single channel model from figure 4.21. As a summary, excepted for extremely high
dropout rates, the 66 independent branches model appears consistent and robust in the way it attributes
a sequence to a given class, almost regardless of the dropout rate.
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(a) Integrated Gradients attributions for SkelNet model with 66 independent branches.

(b) Integrated Gradients attributions for SkelNet model with 3 (1 for X, 1 for Y, 1 for Z)
shared branches.

(c) Integrated Gradients attributions for SkelNet model with 1 shared branch for all channels.

Figure 4.21 – Comparison and visualization of attributions for three models: C=66, C=3 (XYZ), C=1.
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(a) Integrated Gradients attributions for a SkelNet model without dropout: p = 0

(b) Integrated Gradients attributions for a SkelNet model with dropout rate: p = 0.40

(c) Integrated Gradients attributions for a SkelNet model with dropout rate: p = 0.95

Figure 4.22 – Comparison and visualization of attributions for three dropout rates: p = 0, p = 0.40 and
p = 0.95.
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4.6 Conclusion

We present an approach for gesture recognition from human pose sequences, based on a family of 1D
convolutional neural networks. The family of model we introduce, SkelNet, makes use of convolutions
over the time dimension in order to extract the temporal patterns of the skeleton-based gesture dynamics.
We study the performance of the models and observe shallow networks are sufficient for medium-sized
datasets while deeper networks seem to be needed for bigger datasets. The effectiveness of our method
is demonstrated by achieving high accuracy (91.5% accuracy) on a challenging hand gesture dataset
(DHG 14 dataset from the SHREC17 Shape Retrieval Contest). Furthermore, the SkelNet model used is
lightweight (∼2.4M parameters). We also validated the applicability and the effectiveness of SkelNet
models on two other type of datasets: one with sequences of full body poses and the other one on
sequences of facial landmarks. As for future direction, we intend to improve our early recognition
method, to integrate domain knowledge and to extend our method to support unsegmented data streams.
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Chapter 5

Human Motion Generation with Deep
Learning

“Every body continues in its state of rest, or of uniform motion in a

right line, unless it is compelled to change that state by forces

impressed upon it.”

Newton
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5.1 Introduction

In this chapter, we propose two novel approaches for human pose motion generation, with the help of
neural networks. Motivations for human pose motion generation are first discussed in section 5.1.2. The
two proposed approaches aim at generating sequences of human poses. They do not require any image
information.

The first approach, introduced in section 5.3, is a time-contrastive autoencoder-based method that is
trained on individual pose frames. We refer to this approach as a Temporal Triplet Pose Auto-Encoder
(TTPAE) approach. The second approach, introduced in section 5.4, is a generative adversarial neural
network method that works at a sequence level. We refer to this approach as a Spatio-Temporal
Conditional Generative Adversarial Network (STCGAN) approach. Motivations for the two proposed
approaches are discussed in sections 5.3.3 and 5.4.3 respectively.

While the two approaches can create new motions, the first one (TTPAE) almost decouples spatial
and temporal information, whereas the second one (STCGAN) rather uses this coupled spatiotemporal
information. In the TTPAE approach, spatial information is learned using fully-connected neural
networks and temporal information is taken into account during training through a time-based triplet
loss function. In the STCGAN approach, the spatial information and the temporal information are
learned jointly using convolutional neural networks.

Besides adopting very different strategies from one another, the two proposed approaches also differ
from each other at inference time when it comes to human pose sequence generation. Indeed, in the
TTPAE approach, human pose sequences can be generated on-the-fly (i.e. one time step after another),
whereas human pose sequences can only be generated all-at-once (i.e. a full sequence) in the STCGAN
approach, because of the convolutional neural network architecture proposed for the STCGAN generator
neural network.

5.1.1 Contributions summary

Our contributions are summarized in section 5.3.2 for the time-contrastive autoencoder-based approach,
and in section 5.4.2 for the generative adversarial neural network approach.

5.1.2 Motivations

A generative model is a model that models the data generation process. Since generative models mostly
rely on inductive biases, they tend to be good at out-of-domain generalization.

Motivations for pose motion generation include: realistic video synthesis, professional training
in technical skills and gestures, animation movies, virtual reality, augmented reality, video games,
ergonomic assessments, motion analysis for sport, musical or medical purposes, exploration and
creation of dance choreographies.

From a machine learning perspective, models that generate realistic data can also be used for data
augmentation. Data augmentation is a very common technique in supervised learning meant to improve
the robustness of machine learning models.
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Figure 5.1 – Classical pipeline for human motion video generation: a sequence of images y is generated
with a model conditioned on a still image x and a sequence of poses s

The first motivation for motion pose generation is realistic video synthesis. Deep-learning-based
models for video generation (video being considered as a sequence of images) have begun to produce
realistic results in the recent years. Models with the most convincing outputs often consist of GAN-like
generative neural networks, conditioned on a couple of: (1) a still image xre f of the subject of the
action; and (2) a sequence (p1,p2, . . . ,pT ) of the subject’s desired poses pt over time. Based on that,
they output a sequence (y1,y2, . . . ,yT ) of images yt over time, with textures and poses consistent with
both xre f and pt at each time step t, as illustrated in figure 5.1. Existing generative models that are not
conditioned on pose sequences lack of temporally coherent structure, highlighting the importance of
pose sequences.

While the end-result performance and the inner mechanism of these models (e.g. GAN-based,
VAE-based, RNN-based, ...) vary, they share a common drawback: they rely on a pre-existing known
motion sequence of poses s.

In animation movies, characters are represented with 3D meshes and joints that allow the 3D meshes
to be easily deformable, and thus easy to animate using hand-chosen keyframes of the joint poses at
specific time steps and time-interpolated values between these time steps. In virtual reality, augmented
reality and other 3D tools, human-like avatars are usually represented in the same way.

In sport, musical and medical settings, analyzing one’s motion can be very useful. A key step in such
analyses lies in the motion decomposition, after the initial motion recognition step. Indeed, the motion
decomposition allows for expert feedback about one specific aspect of the gesture performed, essentially
on how to improve that aspect of the gesture. As such, motion decomposition and recombination can
also be useful for ergonomics or technical skills professional training. Examples range from learning
how to avoid musculoskeletal disorders, how to make better swings in golf, how to make better hand
gestures for surgeons, to learning how to play cello better or faster. Being able to generate new motions
(e.g. using a neural network for this generation) is as important as being able to distinguish motions
(e.g. using a neural network to discriminate if a gesture is well performed or not).

Finally, more creative applications that use pose motion information can be considered, like new
motion creation for sport or dance purposes: in these settings, new gestures, new moves and new
choreographies could be created, either purely from an exploratory perspective (e.g. generating random
gestures until one is artistically innovative, or discovering what would have happened if a tennis player
had jumped while hitting the ball) or given a known context (e.g. creating a new dance whose style
would lie in-between a waltz style and a shuffle dance style).

All of the examples mentioned above show that pose motion generation is increasingly gaining
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interest from diverse communities. However human motion is hard to represent due to the complexity
of human morphology. One way to apprehend human motion dynamics consists in encoding human
expert knowledge into models of human body, e.g. by including weight of body parts and muscular
constraints. Formalizing such expert knowledge is very difficult and not necessarily efficient. More
recent approaches are based on deep learning models, capturing statistically relevant patterns by their
own during training, relieving the need for human expert knowledge. Most deep learning models for
human pose motion generation somehow combine the use of recurrent cells with a generative GAN or
VAE framework, but still lack of realism or variety.

Once pose-only sequences are generated by a deep learning model, the motion can be given as the
input of other deep learning models if required, e.g. the motion could be fed into a deep learning model
conditioned on a still image and a pose sequence to generate a realistic video. End-to-end training of
the two neural networks as one single neural network may likely be possible in most cases, e.g. in order
to get a neural network that generates a realistic video given a still image only and no pose information.

5.1.3 Spatial and temporal coherence of pose data

Pose-based recognition methods and pose-based generation methods are still active research fields.
Studies on human visual perception of biological motion have shown that humans can recognize human
body motion actions, using the motion of the body’s (skeletal) joints positions only (Johansson, 1973).
Human pose representations are high-level, sparse, representations of the human body. As such, working
with pose-based models rather than image-based models may be more relevant for action recognition
and generation, since these tasks are high-level tasks that involve semantics. Of course, one can also
create models that use images, texts, audio signals or any other relevant information, in addition to
poses.

Skeleton-based action recognition systems still face significant issues today.

First, skeletons are often noisy. This issue is especially noticeable for skeletons estimated using
image-based approaches. Pose estimation methods tend to exhibit high nonlinearity in certain regions
of the problem domain, and are not always robust to occlusions. Temporal smoothness may not be
present if the vision-based pose estimation approach only works at a frame level. In other cases, pose
estimation models can present overfitting, or not be very robust to the camera orientation. Regardless of
misdetections, estimated skeletons are often noisy as illustrated in figure 5.2.

Second, generating realistic individual skeletons is difficult. For instance, one could think of training
an auto-encoder (AE) to minimize the L1 or L2 norm reconstruction loss between a ground truth skeleton
and the generated autoencoded skeleton. When generating skeletons using such a successfully trained
autoencoder, the quantitative reconstruction error of the generated skeletons do not necessarily correlates
with the human perception of what a skeleton is or not. This may be explained by several reasons. On
the one hand, the human eye does not tolerate reconstruction errors evenly: a small error on a joint’s
location will be perceived as higher if the joint is close to another one for instance. On the other hand,
L1 and L2 distances highly suffer from noise. However, ground-truth skeletons, which are considered to
represent the reality, are sometimes very noisy. Handcrafting such a better reconstruction loss function
is difficult, especially if taking into account the noise.

105



(a) Noise-free Human Pose (b) Noisy Human Pose

Figure 5.2 – Illustration of noise on a human pose. Note the elbow and the head joints’ positions.

Third, the main issue left to generate pose motion is to produce spatially coherent skeletons at each
time step and to ensure in the meantime that the overall movement displays a temporal consistency. This
can be an issue for most methods that generate skeleton data, including methods based on variational
auto-encoders (VAEs). While recurrent neural networks (RNNs) generally ensure temporal consistency
of the sequences they generate, RNNs present several drawbacks. The theoretically very long time
horizon of RNNs like LSTMs and GRUs is largely absent in practice. RNNs are slow to train, tend to
repeat elements and to be cyclic. Moreover LSTMs and GRUs are known to have underlying dynamical
systems that exhibit chaotic behavior. Finally, models that try to mix realistic individual skeleton
generation methods (e.g VAEs) with temporally coherent methods (e.g. RNNs) tend to quickly become
complicated while producing almost inconclusive empirical results.

5.2 Related Works

Human motion generation gains increasing attention in the research community (Längkvist et al., 2014),
the recent works using deep-learning approaches for spatiotemporal modeling. In particular two main
directions have been explored in recent works: recurrent-based models that essentially separate the
spatial structure and the temporal dependencies, and generative adversarial networks that learns them
simultaneously.

5.2.1 Recurrent Neural Networks (RNN) models

Recurrent neural networks (RNNs) are widely employed for sequential data and several recurrent-based
and autoencoder-based models are proposed in literature for a variety of human motion tasks including
action classification, action prediction, action anticipation and motion synthesis (Fragkiadaki et al.,
2015; Ghosh et al., 2017).

In (Chung et al., 2015), authors developed a variational recurrent neural network (VRNN) with
high-level latent random variables conditioning a variational auto-encoder at each time step, that has
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been extended on human activity modeling in a semi-supervised fashion in (Bütepage et al., 2018). In
the related field of object extraction and prediction in videos, an auto-encoder is combined with a VRNN
in (Minderer et al., 2019). The autoencoder detects key points in 2D images while the VRRN learns
the dynamics of these key points. Recurrent networks and auto-encoders used in Encoder-Recurrent-
Decoder (ERD) fashion has been introduced in (Fragkiadaki et al., 2015) but they produce unrealistic
human motion due to accumulated errors. In (Fragkiadaki et al., 2015), authors address it by gradually
adding noise to the input during training, but this noise scheduling process is hard to tune in practice.
The Dropout Autoencoder LSTM (DAE) introduced in (Ghosh et al., 2017) achieves better performances
and robustness due to the DAE removing randomly some joints during training in order to learn human
skeleton dependencies. More recently (Martinez et al., 2017a) has improved the RNN baseline by
adding residual connections that enables the model to focus on short-term motion prediction. Recurrent
encoder-decoders with RNN can be used to directly predict the whole sequence, using recurrent networks
in on-sequence encoder and decoder. In (Harvey et al., 2018), an on-frame autoencoder is combined
with an on-sequence autoencoder, showing that the use of on-frame autoencoding tends to denoise noisy
skeletal data joints.

5.2.2 Generative Adversarial Networks (GAN) models

Another major approach of human motion prediction and synthesis resorts to Generative Adversarial
Networks (GANs) in order to directly synthesize a whole pose sequence. A simple approach is proposed
in (Kiasari et al., 2018) whose model jointly trains an AE and a GAN, conditioned on the initial state and
the given class label: the AE encodes the initial state in a low-dimensional representation used to train a
GAN -conditioned on action class label- to generate sequences of low-dimensional sequences. The use
of GAN for motion generation has received major attention in the related field of 2D video prediction
conditioned with a starting 2D image and an already known sequence of poses (Balakrishnan et al.,
2018; Z. Huang et al., 2018; Ma et al., 2017; H. Tang et al., 2018), and (Siarohin et al., 2019) for the
prediction of a single 2D image from one reference image and one pose. In practice, however, human
motion models based on recurrent networks and generative adversarial networks lack of smoothness.
The generated sequences often notably lack of realism to the human eye, even for models with apparent
low spatial joints’ position prediction errors. A triplet loss can be added to the generation loss in order to
penalize the adjacent frames having larger distance than the non-adjacent ones, as (Y. Yan et al., 2017)
do for 2D images. In the field of 3D human motion prediction (Barsoum et al., 2018) simultaneously
trains a Wasserstein Generative Adversarial Network (WGAN) to predict a whole sequence of poses and
a motion-quality-assessment model to learn whether a given skeleton sequence is a real human motion.
The potential of a multi-source discriminator to generate more anthropometrically realistic poses has
been shown in (W. Yang et al., 2018) in the related field of 3D human pose estimation from 2D images.
Another solution to ensure better sequence realism has been proposed in (Pavllo et al., 2018) that uses
quaternions to represent rotations and that penalizes absolute position errors rather than angle errors
in order to avoid error accumulation along the kinematic chain and to ensure more realistic positions
of skeletal joints. However, for 3D rotations, both quaternions and Euler angles representations are
discontinuous and difficult for neural networks to learn (Y. Zhou et al., 2019). In order to generate

107



dance from music, (H.-Y. Lee et al., 2019) propose an approach with three main phases: decomposition,
composition, and testing. To that end, individual poses are first encoded by a Variational Auto-Encoder
(VAE). The encoded vectors are then used to train a Generative Adversarial Network (GAN) conditioned
on the audio. Finally, the trained generator neural network is used in a Recurrent fashion to synthesize
the final dance.

5.2.3 Triplet loss

A formal definition of a triplet loss is proposed in section 5.3.9.

In the deep metric learning research area (Kaya et al., 2019), a triplet loss is a loss function
where a reference (anchor) input is compared to a positive input and a negative input, according to a
margin parameter: as a result a triplet loss constrains the distance gap between dissimilar clusters. For
instance, triplet loss is frequently used in image-based deep-learning models for (re-)identification and
distinction of video frames (Y. Yan et al., 2017). Deep metric learning aims at automatically constructing
task-specific distance metrics from data. Except approaches based on a triplet loss, other promising
approaches in deep metric learning exist, including contrastive loss (Hadsell et al., 2006) where only two
inputs are considered1, neighbourhood components analysis (Goldberger et al., 2005) where a distance
is learned based on the classification performance of an average leave-one-out approach, or angular
losses (Deng et al., 2019; Jian Wang et al., 2017) where angular constraints and/or representations are
favoured over euclidean distance constraints and/or representations -as in the triplet loss case-.

While newer state-of-the-art loss functions have been proposed in the research literature, it actually
appears that they tend to “perform marginally better than, and sometimes on par with, classic methods”
(Musgrave et al., 2020). As such, triplet loss can still be considered as a key and central tool for deep
metric learning purposes.

While the triplet loss is very frequently and successfully used in the image domain, very limited
results based on a triplet loss exist in the 2D/3D human pose domain. Except in this work, and to the
to the best of our knowledge, the triplet loss has not been applied to pose-only data before, except
in two cases: namely for few-shot learning in gesture recognition (Granger, 2019) and for human
pose embedding (Sun et al., 2020). While our work was performed in parallel of the two approaches
mentioned -the earliest one being (Granger, 2019)- and independently from them, we do not claim the
use of a triplet loss on static human poses as being a contribution of ours per se.

For images, triplet loss usually helps models to display texture continuity between two successive
similar frames, however no temporal continuity is usually neither enforced nor guaranteed, especially
due to the information density inherent to images. Time-Contrastive networks (TCNs) from (Sermanet
et al., 2018) use triplet-loss for self-supervised temporal frames matching between images from different
views.

The TCN frame sampling method in a video single-view setting is a sampling approach very close
to the sampling approach we propose: where the TCN samples RGB frames from a video, we propose
to sample human poses of a sequence, as described in more details in section 5.3.10. Nonetheless, in the

1Arguably leading to an absolute similarity learning and not a relative similarity learning as in the triplet loss case,
according to some authors.
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TCN paper no guarantee that the sampling method is sufficient for sequence generation is provided, and
only content similarity per se is pursued. Moreover, the data type used in the TCN paper is RGB frames
and not on human poses. Human poses contain way less redundant information compared to RGB
images where large portions of an image may be related and/or similar. Distinguishing between signal
and noise is also much harder in the human pose domain compared to the image domain (see figure 5.2).
Distinguishing between different clusters becomes more difficult when the distance inter-cluster (related
to time, in our case) is comparable or even lower to the distance intra-cluster (related to static poses, in
our case). Given the specificity inherent to human poses, we consider our frame sampling method (and
its application to human pose sequence generation with a triplet loss) as a contribution.

In the image sequence (i.e. in the video) domain, other methods for triplet sampling have been
proposed in the literature, in order to preserve a temporal coherence between images. In image
sequences, adjacent frames can sometimes have totally different semantics from the next ones, e.g. to
camera shaking. For a given anchor frame, (Pan et al., 2016) propose to extend the time-based triplet
sampling method by ranking all frames of the sequence based on their respective Euclidean distance
to the anchor frame, and restrict the positive and negative anchor frames based on the frames ranking
before using a time-based sampling approach. However, it is widely known that the Euclidean distance
is a poor discrepancy metric for time-series applications (Gharghabi et al., 2018). While handcrafting
more appropriate discrepancy measures between poses might be worth the effort in order to shortlist
acceptable candidates for the triplet, a formal exploration of all the descriptors introduced in the related
works section of the chapter 4 might probably be as much worth the effort. Finally, this approach
requires handcrafted features or loss functions whereas the goal of most deep metric learning approaches
is essentially to fully learn the metrics based on data. Still in the image sequence (i.e. in the video)
domain, (Redondo-Cabrera et al., 2019) propose to extend the learning based on a temporal coherence
not only from between frames in the same video but also between frames from different videos. Finally,
as detailed in (Kaya et al., 2019), numerous other works focus on learning the mining of hard triplet
samples, e.g. with the help of adversarial losses. However, to the best of our knowledge, these works’
approaches do not guarantee a temporal coherence (other than by performing a “smart” shortlist of
triplet candidates regardless of time, the candidates later being used as inputs in a time-based triplet
sampling approach).

In the approach we propose in the section 5.3, both the temporal sampling method and the sparsity
of the data suggest that the vanilla triplet loss we use enforces a temporal coherence and continuity of
poses. To the best of our knowledge, our triplet-loss-aided approach is the first one to use denoising
auto-encoders with a triplet loss for skeleton data sequences synthesis.

5.2.4 Other approaches

Some original approaches of human motion anticipation do not resort to RNNs or GANs. In (S. Yan et al.,
2019) a Convolutional Sequence Generation Network (CSGN) is proposed: latent vectors are sampled
with a Gaussian Process (GP) and convolved at different time scales to generate time-structured skeletal
joint sequences. The AE-ProMPs introduced in (Dermy et al., 2018) uses Probabilistic Movement
Primitives computing (PRoMPs), inspired from the robotics field, to infer the continuation of a trajectory
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conditioned by its initial portion. However, this dynamics-based method does not enable human motion
generation from scratch.

5.3 Temporal Triplet Human Pose Auto-Encoder

In this section, we propose a self-supervised learning method to generate sequences of human poses
that are temporally coherent and robust to noise, using a temporal triplet loss.

5.3.1 Approach summary

We propose a self-supervised approach for learning representations of human poses in a latent space,
with the help of a denoising autoencoder neural network. The proposed approach is illustrated in
figure 5.3 and explained below.

A denoising autoencoder learns to encode a pose into a latent space and to decode it back. Compared
to a vanilla autoencoder whose role is to output the same pose as the input pose, the denoising
autoencoder’s role is to output a cleaned version of a noisy input pose, i.e. to output the input pose but
with noise removed.

The denoising autoencoder is trained to minimize a loss that combines a reconstruction term, to
ensure spatial coherence, and a temporal triplet term, to ensure temporal coherence.

Once the neural network is trained, we observe that both the encoder and the decoder modules of the
neural network are highly continuous. Generating a new (static) pose is as easy as sampling a random
vector in the latent space and decoding it with the decoder. Generating a new (dynamic) sequence of
poses is deceptively simple as well. Two random latent vectors are first sampled in the latent space; an
encoded sequence is created using a simple linear interpolating between the two vectors; each one of
the encoded poses is decoded with the decoder yielding to the final sequence.

Generated sequences are spatially and temporally coherent, and even often look more realistic to the
human eye than real, ground-truth, but noisy, sequences.

We deliberately describe the different parts of our approach separately, for the sake of clarity. First,
we describe the denoising encoder-decoder as if it were standalone.

5.3.2 Contributions summary

As mentioned earlier in section 5.2.3, the use of a triplet loss in the human pose domain was first
proposed in (Granger, 2019) and our temporal sampling method is inspired by the temporal sampling
method from (Sermanet et al., 2018) in the image domain.

Besides the overall approach and (hyper-)parameters, our contributions more specifically are: a
denoising autoencoder architecture introduced in section 5.3.4 coupled with a temporal loss, a temporal
sampling method introduced in section 5.3.10, a noise sampling method introduced in section 5.3.7.
Finally we propose to generate human pose sequences based on the proposed approach and the latent-
code interpolation sampling method from section 5.3.11.

110



Shared autoencoder weights
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Figure 5.3 – Triplet Denoising Autoencoder for Human Poses. Three human poses: A (for anchor
pose), P (for positive pose) and N (for negative pose) are sampled, as described in section 5.3.9. A
and P are similar, while A and N are dissimilar. All the poses are first corrupted with a Gaussian noise
perturbation, as described in section 5.3.7. They are then reconstructed -independently- by a same
denoising-autoencoder, whose role is to learn to (spatially) reconstruct original noise-free poses from
corrupted noisy poses. A triplet loss is used to constrain the autoencoder’s generated poses not only
spatially, but also temporally, as described in section 5.3.9. The model is differentiable end-to-end.

5.3.3 Model intuition

Neural networks whose layers size form an hourglass-like shape typically excel at compressing and
decompressing information. Such neural networks are called autoencoders since they encode their input

111



into a smaller vector and then decode it back to an output which is equal to the input, hence the "auto-"
prefix. The first layers of the network form a so-called "encoder" while the remaining last layers form a
"decoder". The whole network can thus be seen as an "encoder-decoder". We will train an autoencoder
to compress poses into a compressed vector in a latent space and convert that representation back to
poses. The network will be optimized to ensure the reconstructed pose are spatially correct. Rather than
only autoencoding poses, our network will also remove noise present in the poses.

5.3.4 Model architecture

The architecture of the model consists in a neural network with hourglass-like shaped fully-connected
layers; the sizes of the layers in the encoder and in the decoder are symmetrical. No weight is shared
between the encoder and the decoder. All layers use Leaky ReLU activations with a negative slope of
0.2.

For regularization, the units of the fully-connected layers are dropped with a Dropout probability
of p = 0.15 in order to limit their co-adaptation. Batch Normalization (BatchNorm) technique is also
used. BatchNorm is performed after each layer’s nonlinearity and dropout. The reasons behind the
effectiveness of batch normalization remain under active discussion in the research community. The use
of both dropout and batchnorm altogether is also subject to discussion and debated, however no clear
consensus has emerged at the time of the writing of this PhD thesis about whether both techniques could,
could not, should or should not be used altogether. We use both methods to regularize the denoising
autoencoder model.

The autoencoder takes a flattened pose vector of dimension J×d, where J is the count of joints in
the body’s structure and d is the dimension (count of components) of each joint. In our experiment,
J×d = 75. We chose a latent space of size zdim = 32 for the auto-encoder.

The model architecture is detailed in table 5.1 for the encoder and in table 5.2 for the decoder.

Table 5.1 – Human Motion Generation: Encoder neural network architecture

Encoder

# FC(input size, output size) Activation(negative slope) Dropout(rate) BatchNorm

1 FC(75 = J×d, 2048) LeakyReLU(0.2) Dropout(0.15) No

2 FC(2048, 1024) LeakyReLU(0.2) Dropout(0.15) Yes

3 FC(1024, 512) LeakyReLU(0.2) Dropout(0.15) Yes

4 FC(512, 256) LeakyReLU(0.2) Dropout(0.15) Yes

5 FC(256, 32 = zdim) LeakyReLU(0.2) Dropout(0.15) Yes

5.3.5 Model loss function, dataset, model training

The full denoising encoder-decoder model is trained end-to-end in order to optimize a spatiotemporal
objective. The spatiotemporal objective consists of two different, mostly decoupled objectives: a spatial
objective and a temporal objective.

The Lspatiotemporal spatiotemporal model loss function to optimize is thus given by:

112



Table 5.2 – Human Motion Generation: Decoder neural network architecture

Decoder

# FC(input size, output size) Activation(negative slope) Dropout(rate) BatchNorm

1 FC(32 = zdim, 256) LeakyReLU(0.2) Dropout(0.15) No

2 FC(256, 512) LeakyReLU(0.2) Dropout(0.15) Yes

3 FC(512, 1024) LeakyReLU(0.2) Dropout(0.15) Yes

4 FC(1024, 2048) LeakyReLU(0.2) Dropout(0.15) Yes

5 FC(2048, 75 = J×d) No activation (Linear) Dropout(0.15) No

Lspatiotemporal = Lspatial +Ltemporal

=
(
αreconstructionLreconstruction +αanatomyLanatomy

)
+αtripletLtriplet

(5.1)

where:

Lreconstruction, Lanatomy are two spatial loss functions,

Ltriplet is a temporal loss function,

αreconstruction, αanatomy, αtriplet are hyperparameters.

The exact formal expression of the spatial objective and its hyperparameters will be introduced in
section 5.3.6 while the exact formal expression of the temporal objective and its hyperparameter will be
introduced in section 5.3.9.

Backpropagation with the Adam optimizer (D. Kingma et al., 2014) is used to perform the training
of the model parameters. The optimizer initial learning rate is set to 1.0×10−4 and the following Adam
parameters: β1 = 0.5 and β2 = 0.99.

For experimentation, the NTU RGB+D dataset (Shahroudy et al., 2016) is used. Training is
performed with the 3D (x,y,z) pose sequences. In training and validation, the dataset author’s cross-
subject split is used, in order to avoid model overfitting on individual subjects. Data is normalized: all
sequences are max-normalized (i.e. scaled such as the whole sequence fits in a 3D bounding box of
unitary width) and centered such as the joint that represents the human body’s hips is at the origin. Data
augmentation is performed on the original sequences by applying random -credible- rotations centered
around the hips joint and by adding noise to the input pose sequences.

5.3.6 Spatial coherence loss: reconstruction and anatomy

Formally, let s = (x1,x2, . . . ,xT ) ∈ RT×J×d a human pose sequence, where T is the sequence duration,
J is the number of body joints and d is the dimensionality of each joint.

Let D and E be two fully connected neural networks. The exact model architectures used for D and
E are the ones previously detailed in section 5.3.4. We consider the encoder-decoder neural network
AE = D◦E where E is the encoder network D is the decoder network.
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The encoder-decoder AE = D◦E is trained to minimize a spatiotemporal coherence loss, which
consists in a spatial coherence term and a temporal coherence term. The spatial coherence loss for a
single pose is given by:

Lspatial(x, x̃) = αreconstructionLreconstruction(x, x̃)+αanatomyLanatomy(x, x̃) (5.2)

with

Lreconstruction(x, x̃) = ‖x−D◦E (x̃)‖ (5.3)

Lanatomy(x, x̃) = ‖σ (x)−σ (x̃)‖ (5.4)

σ(x) = ∑
(i, j)∈B

∥∥∥x(i)−x( j)
∥∥∥ (5.5)

where:

‖ · ‖ is the L2 norm,

x is a pose,

x̃ is a noisy pose, i.e. x̃ = x+ ε where ε is a pose noise,

x(i) is the i-th component of the pose x, i.e. x(i) is the joint i of the pose x

B is the set of all couples (i, j) such as i < j and a bone exists between the joint i and the
joint j,

αreconstruction is an hyperparameter whose value is set to 0.9995,

αanatomy is an hyperparameter whose value is set to 0.0002.

The goal of optimizing the reconstruction loss Lreconstruction is to give the neural network D◦E the
ability to reconstruct a noise-free pose x from a noisy pose x̃. Another loss, Lanatomy, is added in order
to ensure that the human anatomy is respected. Lanatomy compares the cumulative length of all human
body’s bones in the generated pose with the cumulative length of all human body’s bones in the original
pose. The anatomy loss is referred to as the “anthropometric regularity” constraint in 3D human pose
estimation domain (Ramakrishna et al., 2012). The two losses (reconstruction and anatomy losses) are
weighted with two hyperparameters, αreconstruction and αanatomy.

5.3.7 Noise sampling during training

Let B the number of bones in the body, and let dbones ∈ RB represent the vector of lengths of a human
body’s bones. Knowing the human body’s structure (or equivalently its adjacency matrix), we easily
derive from dbones the vector djoints ∈ RJ where each component i represents the minimum distance
from the joint i to, and only to, the other joints it is connected with. That vector will be used for noise
sampling during training. A visual illustration of (a) the minimum distances between a joint and its
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neighbors and (b) a visual interpretation of the vector djoints ∈ RJ as a "safe" noise scale description is
proposed in figure 5.4.

(a) Minimum distance between a
joint and its neighbors

(b) All these minimal distances are
used to determine the Gaussian
noise sampling’s standard deviation

Figure 5.4 – Noise amplitude determination

During training, a random Gaussian noise ε is sampled and added to a ground-truth pose x in order to
create a noisy pose x̃ = x+ ε . Modeling the noise as a Gaussian noise is not a strong assumption, given
that poses are often estimated with vision-based methods or vision-like sensors. However, appropriately
modeling the parameters of the Gaussian distribution is crucial, because pose is very sensitive to noise,
due to the human anatomy. We use a centered Gaussian noise. Rather than being unit-scale, that
Gaussian noise is scaled differently for each dimension. More precisely, for each joint i, the standard
deviation σε

(i) component is chosen so that, 3×σε
(i) = 0.35×d(i)

joints. This ensures that roughly 99.7%
of the sampled noises will have a magnitude less or equal to 35% of djoints. This ensures that adding
the Gaussian noise to the original pose does not deform the original too much, e.g. by avoiding that a
shoulder joint be "swapped" with a head joint due to noise. While the exact value of 0.35 is somehow
arbitrary, a value less than 0.5 nevertheless seems experimentally guarantee that noisy poses still look
like credible poses to the human eye.

5.3.8 Generating a static pose

We train the encoder-decoder neural network with the spatial loss only for now for analysis2.

We observe that training the proposed encoder-decoder model with the spatial loss only and with
data augmentation (limited random rotations and translations of the original ground-truth poses) leads
to a model that is perceptually relatively continuous in term of encoder-transformation or decoder-
transformation. We observe that the use of data augmentation is crucial to get more continuity in the
model: almost surprisingly, data augmentation on our encoder-decoder trained with the spatial-loss only,

2The model optimized on the complete loss with both spatial and temporal loss terms will also be trained end-to-end all
at once.
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leads to results that are visually comparable to VAE-based models for poses like the one from (Pavlakos
et al., 2019), but without requiring any non-deterministic variational Bayesian method.

To generate new poses, we sample an encoded vector z from a standard Gaussian distribution with
zero mean and unit variance: z∼N (0,1), and then decode it with the decoder neural network D to
obtain a pose x:

x = D(z) (5.6)

Since the decoder network is continuous, one may think of generating a sequence of poses as
generating a sequence of encoded vectors and decoding them with the decoder. That is the approach we
propose to generate motion pose sequences.

Ideally, a linear interpolation, defined in equation 5.7, between to encoded vectors zA and zB, should
lead to a realistic motion after decoding the interpolated vector z(t) at each time step t.

z(t) = α(t)zA +(1−α(t))(zB− zA) (5.7)

where α(t) = t
N for t ∈ J0,NK.

However, while our AE approach is largely sufficient to produce realistic frames, no temporal
consistency is guaranteed between frames3. To resolve that issue, we introduce another additional loss
in the complete loss function we optimize: a temporal loss.

5.3.9 Temporal coherence loss: triplet

The encoder-decoder AE = D◦E is trained to minimize a spatiotemporal coherence loss, which consists
in a spatial coherence term and a temporal coherence term. The temporal coherence loss for a triplet of
poses is given by:

Ltemporal(xA,x⊕,x	, x̃A, x̃⊕, x̃	) = αtripletLtriplet(yA,y⊕,y	) (5.8)

where:

xA is an "anchor" pose,

x⊕ is a "positive" pose (similar to xA),

x	 is a "negative" pose (dissimilar to xA),

x̃ is a noisy pose, i.e. x̃ = x+ ε where ε is a pose noise:

x̃A = xA + εA

x̃⊕ = x⊕+ ε⊕

x̃	 = x	+ ε	

(5.9)

αtriplet is an hyperparameter whose value is set to 0.0003,

3Other existing models, e.g. VAE-based models, suffer from the same issue.
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y is the reconstruction of a noisy pose x̃ by the denoising autoencoder AE = D◦E:

yA = D◦E(x̃A)

y⊕ = D◦E(x⊕)

y	 = D◦E(x	)

(5.10)

and where Ltemporal is the triplet loss given by:

Ltriplet(yA,y⊕,y	) = max(‖yA−y⊕‖−‖yA−y	‖+δ ,0) (5.11)

where:

‖ · ‖ is the L2 norm,

δ is a "margin" scalar whose value is set to 1.0

Deep Metric Learning is a family of deep learning techniques whose goal is to measure the similarity
among samples using a learned embedding (Duan et al., 2018; Kaya et al., 2019). Among deep metric
learning techniques, a key and widely used technique consists in the use of a triplet loss (Weinberger
et al., 2009). A formal definition of the triplet loss equations is given in equation 5.11, while a visual
illustration of the triplet loss is proposed in figure 5.5.

The intuition behind the triplet loss is to force the neural network to have similar internal representa-
tions for poses that are known to be similar, and less similar internal representations for poses that are
known to be less similar.

To that end, a triplet of poses are sampled. First a reference "anchor" pose yA. Second, another
pose y⊕ that is known to be very similar to the anchor pose. Third, a last pose y	 that is known to be
dissimilar to the anchor pose.

The triplet loss compares the distance ‖yA−y⊕‖ between the anchor pose yA and the positive pose
y⊕ with the distance ‖yA−y	‖ between the anchor pose yA and the negative pose y	, and ensures
that the first one is lesser or equal than the second one, effectively distancing the representations of
the positive and the negative poses. A fixed additional margin δ is also added, to ensure the negative
pose is spaced with the anchor pose, in a relatively similar fashion to the support vector machines
(SVM) margins. Both ordering the poses and introducing a margin between them help to make their
representations more separable.

5.3.10 Pose (temporal) sampling during training

While triplet loss for poses increases robustness of the poses’ representations and makes it easy to
navigate between them since similar poses have representations that are grouped together, one still has
to devise how to sample triplets in order to train the network. Moreover, triplet loss per se does not
guarantee temporal continuity.

Appropriately sampling the triplets can be a difficult task in the general case, since one usually
does not know the best distance to compare two samples. Sampling strategies, also known as "mining"
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(a) A triplet of poses. The anchor pose is symbolized in blue, the positive pose in green,
and negative pose in red.

(b) Without triplet loss, the three poses representa-
tions have close similarity, making them harder to
distinguish.

(c) With triplet loss, the representation of the pos-
itive pose is closer to the representation of the an-
chor pose than the negative one. The negative one
is at least at a distance δ of the anchor one.

Figure 5.5 – Illustration of the effect of triplet loss on human poses.
Figure inspired and adapted from (Y. Huang et al., 2019).

methods, often involve computing features (angle, loss, ...) over a random subset of candidate vectors
in order to elect the most relevant vectors to be fed as input of the triplet loss. Since the training
procedure largely relies on hard negative samples, hard negative poses can also be synthesized, e.g. in
an adversarial fashion. However, we do not need such complex triplet mining strategies in our case.

Our main goal is to create temporally coherent motion, since poses already are spatially coherent.
As such, we only need to sample pose triplets that are similar or dissimilar essentially with regards to
time.

We propose a very simple sampling method to that end.

In a training sequence of poses s = (x1,x2, . . . ,xT ), we first extract a random anchor pose xA = xtA

at time step t = tA. The positive pose x⊕ = xt⊕ and negative pose x	 = xt	 are then chosen so that t	
has a delay with tA about an order of magnitude greater than the delay between t⊕ and tA:

tA < t⊕� t	 (5.12)
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In our experiment, we resample pose sequences from the NTU RGB+D dataset so that all sequences
have a duration of T = 100 time steps. For each pose sequence s = x1,x2, . . . ,xT , and each time step
0≤ t ≤ T , we construct the following triplet:

(xA, x⊕, x	) = (xt , xt±2, xt±10)

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

... ...

Figure 5.6 – Temporal sampling of the triplet of poses.

An illustration of that (temporal) sampling method is proposed in figure 5.6.

The triplet loss will enforce that two temporally very close (but still distinct) poses will have
representations that are more similar than a representation of a later pose.

Given that the by-frame pose denoising encoder-decoder already displays spatial continuity and
given that pose representation is already sparse, training the model with the triplet sampling method and
the triplet loss enforces temporal continuity.

5.3.11 Generating pose motion with latent semantic space interpolation

Generation procedure

To generate a new pose sequence, two vectors zA and zB are chosen in the latent space. A T -step linear
interpolation of vectors between these two vectors is then performed. Finally, all the latent vectors are
decoded individually by the decoder in order to produce the final pose sequence s = y0,y1, . . . ,yT :

yt = D
(

α(t)zA +(1−α(t))(zB− zA)
)
∀t ∈ J0,T K (5.13)
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where α(t) = t
T for t ∈ J0,T K and where D is the decoder neural network.

The two latent vectors zA and zB used in the procedure can either (1) be sampled, e.g. from a
Gaussian distribution, or (2) be encodings of real poses by the encoder neural network E.

Semantics in the latent space

We observe continuity of both the encoder and the decoder neural networks.

Moreover, we observe the emergence of a semantic in the latent space. Individual components of a
latent code present a semantic meaning, from a human point of view.

In order to illustrate the semantic meaning of the latent space, we consider a latent code z:

z =
(

z1 z2 · · · zzdim

)>
∈ Rzdim

where zdim = 32 is the dimension of the latent space, and plot the evolution of the generated decoded
pose when altering a single component zi of the vector.

Let Γ(i,u) =
(

γ1 γ2 · · · γzdim

)>
∈ Rzdim design the vector where all the components j are cen-

tered except the component j = i whose component is linear with regards to u:

γ j(i,u) =

 u if i = j

0 otherwise.
∀ j ∈ J1,zdimK

We plot the evolution of u 7→ D(Γ(i,u)), for several fixed values of the vector components i in
figure 5.7 to explore the latent space. The model architecture used for figure 5.7 has been introduced in
section 5.3.4 and features a 32-dimension latent space.

A semantic interpretation for each component is proposed below.

We first observe that when linearly interpolating between two latent codes, the appearance of
decoded poses changes continuously. The semantics contained in the pose also change gradually.

The latent representation does not appear to be a fully disentangled representation, since several
axes seem able to control the rotation of the body. Moreover, each individual axis appears to control
all body joints, and not only one arm of one leg for instance. However, each individual axis presents a
semantic meaning: a human interpretation of the evolution of the model’s decoded poses from that axis
involves more-or-less atomic movements (e.g. "lower an arm" or "cross one’s legs") that, together, make
up class-specific movements (e.g. "drinking" or "jumping" movements). It is important to note that the
model never has access to categorical information (classes) about the sequence it is trained on, at any
point. Since no class information can leak to the model, the emergence of such high-level semantic
information in the latent space is worth noting.

Even if each individual dimension in the latent space could affect the full body at once, we observe
that is often only controls a (semantically related) part of the body.

For instance, in figure 5.7 the dimension i = 5 appears to control the arms of the body, and more
precisely how much the two arms are crossed over the chest or not. That dimension also controls how
much one is sitting down or standing up.

The same act of sitting down and standing up is also controlled by the dimension i = 25, but with a
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fully different sitting pose: the sitting pose features a left arm open, pointing at something. That arm is
progressively opened or closed when traveling in this dimension i = 25.

Other dimensions can involve more rotation-focused transformations than translation transformations.
This is the case for the dimension i = 32 where an progressively rotates from a profile-turned pose to a
front-facing pose.

Arguably, one can even consider that higher-lever semantic meaning can appear, as illustrated with
the dimension i = 10. That dimension appears to control whether the pose is open, active and almost
aggressive or if it is closed on itself, in an almost defensive setting.

To better illustrate possible interpolations in the latent space, a visualization based on a (less
powerful) model trained with a 2-dimensional latent space only is proposed in figure 5.8.

(a) Evolution of u 7→ D(Γ(i,u)) from u = 0 (left) to u = 10 (right) on dimension i = 5

(b) Evolution of u 7→ D(Γ(i,u)) from u =−5 (left) to u = 10 (right) on dimension i = 10

(c) Evolution of u 7→ D(Γ(i,u)) from u =−10 (left) to u = 10 (right) on dimension i = 23

(d) Evolution of u 7→ D(Γ(i,u)) from u =−10 (left) to u = 0 (right) on dimension i = 25

(e) Evolution of u 7→ D(Γ(i,u)) from u =−3 (left) to u = 4 (right) on dimension i = 32

Figure 5.7 – Illustration of semantics emergence in the latent space
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Figure 5.8 – Visualization of decoded static poses for different latent vectors for a model with a zdim = 2
only dimensional latent space. The latent space illustrated in this figure is not as continuous as our
model’s latent space with zdim = 32 since the two dimensional space is too small to accurately represent
the complexity of both 3D poses and their temporal evolutions.

5.3.12 Role of individual components

The hyperparameters αreconstruction, αanatomy and αtriplet from in the loss function are indicative of the
relative importance of each component of our approach. As a reminder, the objective we optimize is:

Lspatiotemporal = Lspatial +Ltemporal

=
(
αreconstructionLreconstruction +αanatomyLanatomy

)
+αtripletLtriplet

(5.14)

Note that pose data is normalized as detailed in section 5.3.5 and that the hyperparameters sum to
one: αreconstruction +αanatomy +αtriplet = 1.

While the spatial and temporal aspects are coupled since the network is trained end-to-end, they
still are relatively independent. The main effect of the temporal objective is to "order" the spatial
representations in a temporally coherent way, as explained below, the remaining spatial objective only
being to generate realistic static poses. As such, the neural network’s Achilles heel that first needs to be
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strengthened is the spatial aspect.

Reconstruction

The value of αreconstruction = 0.9995 highlights the drastically vital importance of pose reconstruction in
our approach.

In our experiment, training leads to a reconstruction loss value (alone) of the order of Lreconstruction∼
2×10−2.

A common problem with pose data sequences stands in the fact that, due to the presence of noise in
the training data (since pose data comes form an inherently noisy vision-based estimation method) and
the high sensitivity of pose data to noise, evaluating results is hard. Indeed, the perceived visual quality
of the reconstruction of a pose does not necessarily always aligns fully with the numerical reconstruction
error, even with apparently low reconstruction errors. As such, a qualitative visual inspection of the
results is needed besides the quantitative numerical error. This problem is frequently encountered
in recurrent-based models from the literature, for instance, although often not explicitly mentioned.
Devising a better metric that accounts for this issue is hard and has yet to be investigated, for instance
using a noise-robust loss or an adversarial loss.

As such, the numerical value for the reconstruction loss is given for indicative purposes, the
hyperparameter value being "validated" afterwards with human visual perception. A value of at least
0.98 for αreconstruction appears to be required for to be able to reconstruct pose-like data. Conversely, a
value of αreconstruction closer to 1 is at the expense of the other objectives previously mentioned.

Anatomy

While the reconstruction error is sufficient for most frames, some rare edge-case generated poses are not
realistic. To alleviate this issue without necessarily having to resort to an adversarial loss, an anatomy
loss is used. The anatomy loss measures the cumulative length of the generated skeleton’s bones and
compares it with the cumulative length of the original skeleton’s bones.

To the best of our knowledge, the anatomy loss we use has first been introduced in the 3D human
pose estimation domain by (Ramakrishna et al., 2012). Other very similar anatomic constraints can also
be found in (R. Li et al., 2019) or in (Chunyu Wang et al., 2014) for instance.

Using the anatomy loss resolves the immense majority of the previous edge-case issues.

It also has the advantage (and disadvantage) of not being an adversarial loss: with an adversarial loss,
the adversarial discriminator network would easily spot the difference between noisy and non-noisy
poses. A simple anatomy loss leads to almost comparable results, while allowing for denoising.

The value of αanatomy = 0.0002 we use is conservative. Halving it still helps limit edge-cases issues.

In our experiment, since most frames already are well reconstructed, training leads to an anatomy
loss value (alone) of the order of Lanatomy ∼ 1×10−1 only (in the worst cases).

Triplet

Triplet loss is crucial for temporal continuity and coherence of the generated sequences, in our approach.
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Triplet loss does not improve the reconstruction per se. Moreover, training the neural network
without it already leads to a mostly smooth and continuous latent space.

However, the proposed sequence generation procedure (i.e. to decode a linear interpolation of
vectors from the latent space to the output pose space) does not lead to temporally realistic generated
sequences if no triplet loss is enforced. Locally, two close latent vectors will have close decoded poses,
but on a wider temporal scale, the sequence lacks of temporal coherence when no triplet loss is used.
While one could think of using recurrent neural networks or convolutional neural networks to learn a
path in the latent space in order to find out which latent vectors to generate and decode, that path would
be non-linear and complex. The introduction of the triplet loss allows to circumvent and even iron out
that apparent issue.

One can view the triplet loss as a way to "sort" the latent space in a coherent way. It brings similar
vectors closer to each other while ensuring a minimal distance between dissimilar vectors. As such,
triplet loss sorts the latent space and makes each "individual" vector in the latent space more easily
distinguishable. The sorting is temporal-related, since we sample the triplets in a temporally coherent
strategy during sampling.

As with the reconstruction, this involves visual and partial human judgment. Due to the "sorting"
effect of the triplet loss, a formal evaluation of the minimal hyperparameter value required for temporal
realism would require to introduce an adversarial loss between real and generated pose sequences. In
practice, however, a temporal triplet loss only -without temporal adversarial loss- reveals to be sufficient.

We observe that a value of (at least) αtriplet = 0.0003 is sufficient for full temporal coherence of the
generated sequences.

In our experiment, training leads to a triplet loss value (alone) of the order of Ltriplet ∼ 7×10−1.

5.3.13 Conclusion

We have proposed a novel approach for human motion pose sequence generation with a self-supervised
model. The approach mostly decouples the temporal and the spatial aspect of the sequence synthesis.

Our approach uses a per-frame denoising encoder-decoder neural network to deal with spatial
aspects of human poses. A temporal triplet loss with a simple time-contrastive sampling method is
responsible for the temporal continuity of the generated sequences.

The latent space of the encoder-decoder model displays very interesting semantic meaning properties
which would be worth investigating in a future work.

To generate new pose sequences, a linear interpolation in the encoder-decoder latent is performed,
each interpolated vector being decoded by the decoder module to generate a pose. At a frame level, we
observe that generated denoised poses often look more realistic to the human eye than ground truth data,
because of the frequently high level of noise in vision-estimated pose data. At a sequence level, we
observe that sequences are both (1) temporally coherent and (2) credible. This is notable for a model
that requires neither an adversarial loss nor a variational sampling.

The overall robustness and ease-of-training of the whole approach opens a wide range of new
possible extensions. For instance, generating a gesture of a given class or of a given style can be done
by learning a path in the denoising decoder-encoder latent space. Immediate possible extensions include
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a class-conditioned model, to choose a gesture to generate, and a frame-adversarial loss that would
replace the total bones’ length loss. Finally, coupling the model with other multimodal deep learning
models (e.g. image-based, text-based or audio-based) could remove the need for them to be conditioned
on pre-existing pose.

5.4 Spatio-Temporal Generative Adversarial Networks

In this section, we propose an approach to generate sequences of human poses based on a Conditional
Generative Adversarial Network.

5.4.1 Approach summary

To represent human pose sequences, a 2D-convolution-ready representation format of the sequences
is first adopted. Human pose sequences are converted to a 2D image-like spatio-temporal continuous
representation based on a spatial joint reordering trick (Baradel et al., 2018; J. Liu et al., 2016) and
called Tree Structure Skeleton Image (TSSI) (Z. Yang et al., 2018), in order to preserve both spatial and
temporal relationships. The TSSI format is a very immediate (time× repeated and re-indexed joint×
dimension) tensor representation where the joints are repeated and re-indexed, the resulting tensor being
viewed as an image for visualization purposes. TSSIs are described in more details in section 5.4.4.

A conditional generative adversarial network (CGAN) approach is proposed for human pose
sequence generation. The CGAN is composed of a generator neural network and a discriminator
neural network. The two neural networks use the TSSI format, both for their input and for their output.
The architectures of the generator and the discriminator neural networks are 2D convolutional neural
networks architectures with convolutions that process information from both space and time domains.
The two networks are conditioned on action classes (e.g. "drinking water", "jumping" or "waving
hands"). They are trained in an adversarial fashion on ground truth human pose sequences represented
with the TSSI format.

After the training is complete, the generator network can generate new sequences. Since the
sequences coming out of the generator are represented in the TSSI format, a last and almost immediate
step consists in transforming back the generated sequences into their canonical representation: a
(time× joint×dimension) tensor representation.

5.4.2 Contributions summary

The most natural and immediate way to represent a pose sequence, regardless of the nature of the
keypoints -such as body joints, hand joints or facial landmarks- is to use a 3D tensor representation of
shape (T,J,d) where the three axes of the tensor represent and are indexed by time (T timesteps), by
keypoints (J keypoints), and by keypoints’ dimensions (d keypoints’ dimensions). As mentioned later
in section 5.4.1, the representation we use is a close, but slightly different, representation introduced
in (Z. Yang et al., 2018) and based on a spatial body joint reordering trick introduced in (J. Liu et al.,
2016).
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Besides the overall approach and (hyper-)parameters, our main contribution more specifically is the
conditional generative neural network architecture introduced in section 5.4.5.

5.4.3 Model intuition and Motivation

Generative models can broadly be split into three main categories: Generative Adversarial Networks
(GANs), Variational Auto-Encoders (VAEs) and exact likelihood models like flow-based models4.
A flow-based generative model is constructed by composing a series of invertible transformations
and maps observed data to a standard Gaussian latent variable. The model explicitly learns the data
distribution. Generating new data with a flow-based generative model is as simple as sampling a vector
in the latent space, and computing its inverse transformation back to the original domain. Despite
their computational efficiency, flow-based models tend to have worse density modeling performance
compared to state-of-the-art models, to this date (Ho et al., 2019). While neither VAEs nor GANs
explicitly learn the probability density function of real data, both of these approach families have shown
good results in generative tasks in numerous domains, including images, spoken and written human
language and music. VAEs are directed probabilistic graphical models whose posterior is approximated
by a neural network, forming an autoencoder-like architecture. Generating new data with a VAE model
is as simple as sampling a vector in the VAE’s latent space -the prior over the latent variables usually
being set to be the centered isotropic multivariate Gaussian- and decoding it back to the original domain,
in a similar fashion to the generation procedure we use in our temporal triplet auto-encoder proposed
in section 5.3. However, combining temporal information with a VAE is not straightforward, and
approaches found in the literature -e.g. combining a VAE and a RNN put before, "inside" or after the
VAE- do not produce realistic results for human pose sequence generation tasks (Chung et al., 2015).

GANs are models where two neural networks are trained in an adversarial fashion. They will be
introduced more formally in section 5.4.5. GANs are known to produce very realistic results -especially
in the image domain-, compared to VAEs, and benefit from a wide interest in the research community.
As such, our idea is to leverage the power of GANs to generate human pose sequences.

How to apply GANs to skeletal data? An option is to decouple temporal and spatial information,
using a 1D-CNN GAN architecture. However, this tends to produce individually temporally coherent
pose sequences, but with very limited spatial coherence. Another option consists in representing
sequences as spatio-temporal graphs, and train a generator on these graphs using adversarial learning,
like proposed in (S. Yan et al., 2019). While that option is very encouraging, the resulting generated
human pose sequences seem to be noisy. However, analyzing failure cases of such graph-based models
is difficult because of the relative novelty of graph-based deep learning tools: the audit and interpretation
of graph-based models is more difficult than the audit and interpretation of image-based models.

We propose to use image-based GANs for human pose sequences generation.

We observe that human pose sequences in a d-dimensional physical space5 can be viewed as
images6, since images are 3-dimensional tensors of shape (Height×Width×Channels) and sequences

4Flow-based generative models include models like Glow (D. P. Kingma et al., 2018), for instance.
5Human pose sequences usually have d = 3 dimensions in the real world, or d = 2 if captured from a single point of

view.
6Image usually have Channels = 3 channels for RGB images, or Channels = 1 channel for gray-scale images, for
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are 3-dimensional tensors too, of shape (Duration× Joints×d). However, representing a sequence as
an image presents a major drawback: the image axis that represent the joints ordering (spatial axis)
has no continuity, since two successively-indexed joints can be anywhere in the body, regardless of its
structure. As such, this representation cannot serve as the input of a convolutional neural network, even
if convolutional neural architectures are very commonly used in GANs.

To overcome this issue, raw-image representations are transformed into redundant image repre-
sentations called TSSIs (J. Liu et al., 2016; Z. Yang et al., 2018) where columns are reordered and
duplicated so that data can be continuous along both the time axis and the spatial axis, rather than only
along the time axis as in the original raw-image format. The two image-representations are described in
section 5.4.4.

A GAN model is trained to generate human pose sequences in the TSSI format. To be able to control
the generated gesture, the GAN is transformed into a Conditional GAN (CGAN) conditioned with a
sequence class (e.g. "drinking", "jumping", "taking a selfie", ...).

Finally, the redundant columns in the generated human pose sequences TSSI representation are
averaged, in order to obtain the desired and realistic human pose sequences.

5.4.4 Format of the input poses

Sequences can be viewed as images

Let a human pose sequence s = (x1,x2, . . . ,xT ) ∈ RT×J×d , where T is the sequence duration, J is the
count of joints in the body’s structure, and d is the dimension (count of components) of each joint.

Since a sequence s is represented with a 3-dimensional (T,J,d)-shaped tensor, one can see that a
sequence can almost immediately be seen as a multi-channel image, since a multi-channel image is also
a (visual) representation of 3-dimensional tensor.

Compared to RGB images whose values always are in a fixed range (e.g. 0-255), sequences values
could be unbounded. In practice however, on a fixed temporal horizon T , human motion is bounded
due to spatial and muscular limits of the human body. We normalize all the sequences so that they are
centered with unitary variance. While this is not mandatory, it has two benefits: the first one is that they
will be ready for neural networks whose weights initialization (Kaiming initialization) expects such
normalized input, and the second one is that they can be plotted like RGB images.

An analogy with the RGB image format is proposed in table 5.3 and a visual illustration of the
different representations is proposed in figure 5.10.

For the sake of clarity, and more especially to distinguish them from the TSSI format that is described
in the next subsection, we chose to refer to the normalized sequences representation as the "raw-image
representation" or as "vanilla-image representation", since they can be plotted: each pixel in the image
is indexed by three values representing the spatial and temporal locations of that "pixel" (value). At this
stage, no information has been lost, and no information is redundant, compared to the original tensor.
As such, the vanilla-image representation is still a (T,J,d)-shaped tensor, but centred and normalized.

instance.
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Table 5.3 – Analogy between a vanilla sequence format and the RGB image format

Image RGB image Sequence

Axes 3 3

First axis Height (H) Time (T )

Second axis Width (W ) Space: Joints (J)

Third axis Channels (C = 3) Space: Joints’ dimensions (d)

"Continuity" Along the H and W axes Along the T axis. Not along the J axis.

Values Bounded (0-255 range) Unbounded

Ensuring spatial continuity of the images

However, the vanilla-image representation presents a major drawback: the spatial joint J axis that
represents the joints ordering has no spatial "continuity", since two successively-indexed joints can be
anywhere in the body, regardless of its structure.

For instance, on figure 5.11 which represents a human body, the joint #16 -left toe- has two neighbors
in terms of indexing: the joint #15 -left heel- and the joint #17 -right side of the pelvis-, but has only
one neighbors in terms of spatial structure, since the joint #17 is not connected by any bone to the joint
#16, whereas joints #16 and #15 are connected by a bone.

To ensure a spatial continuity we use the “tree traversal over the spatial steps” spatial ordering
described in (J. Liu et al., 2016). Using that spatial ordering, the tensor representation immediately
becomes what (Z. Yang et al., 2018) refer to as the “Tree Structure Skeleton Image (TSSI) represen-
tation”. We thus also refer to that tensor representation as a “Tree Structure Skeleton Image (TSSI)
representation”.

Even earlier than (Z. Yang et al., 2018), the authors of (Baradel et al., 2018) also propose to repeat
and re-index the body’s joints based on the spatial ordering described in (J. Liu et al., 2016): moreover
they also make use of a similar 3D tensor representation. However their 3D tensor representation
is different from the TSSI (3D tensor) representation. A comparison between the 3D tensor TSSI
representation and the 3D tensor representation used in (Baradel et al., 2018) can be found below at the
end of the current section.

In (Baradel et al., 2018; J. Liu et al., 2016; Z. Yang et al., 2018), the direct concatenation of joints
#1→ #2→ #3→ . . .→ #J is replaced by a depth-first tree traversal order of the body’s skeletal graph
structure, which happens to be a tree whose root is the join #2 -belly-. That traversal order has pros and
cons. The immediate benefit is that two neighbors in terms of indexing become neighbors in terms of
spatial relationship. A minor drawback of the method is that the information partly becomes redundant,
since columns are repeated twice or more. A traversal order that respects a spatial continuity of the
joints is illustrated in figure 5.11, the traversal order being indicated by a red path with arrows and dots.

Following (Baradel et al., 2018; J. Liu et al., 2016; Z. Yang et al., 2018) we replace the vanilla
concatenated traversal order of the joints #1→ #2→ #3→ . . .→ #J by a depth-first tree traversal
order of the joints: #2→ #21→ #9→ . . .→ #17→ #1→ #2. Once the traversal order is established,
columns from the original vanilla-image are simply reordered and duplicated when necessary so that
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the traversal order is correct to form the TSSI, as illustrated in figure 5.10 (c) and in figure 5.12 (d). As
such, the TSSI representation is a (T ×RJ×d)-shaped tensor, where RJ is the length of the depth-first
tree traversal ordering of the joints. A few (ground truth) sequences in the TSSI-format are plotted in
figure 5.9 for illustration.

Joint J axes
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T
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es

Figure 5.9 – 64 different ground-truth sequences represented in a TSSI format. The horizontal axis of
each TSSI sequence is the joint J axis. The vertical axis of each TSSI sequence is the time T axis. The
xyz dimensions are mapped to RGB channels for visualization.

In (Z. Yang et al., 2018), the authors use a 3D tensor representation “TSSI” of shape (T,RJ,d)-
shaped tensor, where T is the duration of the sequence, d is the joints’ dimension and RJ is the length
of the depth-first tree traversal ordering of the joints. In (Baradel et al., 2018), however, a fourth axis
is considered in order to incorporate derivates of the represented signals, namely: the raw signals,
their first-order derivates (i.e. velocities) and their second-order derivates (i.e. accelerations). As such,
a sequence could be represented as a 4D tensor representation of shape (T,RJ,d,∆)-shaped tensor,
where T is the duration of the sequence, d is the joints’ dimension, RJ is the length of the depth-first
tree traversal ordering of the joints, and ∆ = 3 is the derivatives count. The authors introduce a deep
learning model for human activity recognition based on 3D convolutional neural networks. To that
end, they value a 3D tensor representation over the 4D tensor representation previously mentioned: the
dimensions (d) axis is concatenated along the joints (RJ) axis to form a channels axis. As such, they
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use a 3D tensor representation, whose shape is (T,C,∆)-shaped tensor, where T is the duration of the
sequence, d is the joints’ dimension, RJ is the length of the depth-first tree traversal ordering of the
joints, C = RJ×d is the channels count and ∆ = 3 is the derivatives count. Both the TSSI representation
from (Z. Yang et al., 2018) and the 3D tensor representation from (Baradel et al., 2018) have 3 axes, but
-even if they are close to each other- the semantics of the two representations are different.

It is worth noting that (Baradel et al., 2018) perform experiments related to the topological joint
order proposed in (J. Liu et al., 2016) and used by both (Baradel et al., 2018) and (Z. Yang et al., 2018).
In the experiments by (Baradel et al., 2018), three orderings are considered: the topological order, a
random joint order and topological order without double entries. On the human activity recognition task
used for evaluation, their model displays a better recognition accuracy when using the topological order
than when using a random order, with an in-between accuracy being obtained when the topological
order does not feature duplicated joints. This result highlights the importance of the repeated entries in
the joint traversal order introduced in (J. Liu et al., 2016): they ensure that the traversal order preserves
neighbourhood relationships.

Converting back the images to sequences

Since columns in TSSI formatted-sequences are redundant, averaging columns that represent the
same joint and sorting them (based on the joints’ indices) is sufficient to go back to original vanilla-
image representations. Vanilla-image representations are equivalent to the original sequence tensor
represention, up to an optional (de)normalization step.

5.4.5 Spatio-Temporal Conditional Generative Adversarial Neural Network (STC-
GAN)

Approach presentation

Now that sequences are represented as spatiotemporal images where all images axes are continuous,
we propose a Generative Adversarial Network (GAN) approach to generate sequences. The complete
process is illustrated in figure 5.12.

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a framework for the estimation
of generative models via an adversarial training procedure in which two models, a discriminator D and
a generator G, are trained simultaneously and contest with each other in a game theory scenario. The
generator (G in all of our figures), generates candidates while the discriminator (D in all of our figures),
evaluates them. GANs rely upon the idea that discriminative models can improve generative model
performances: if a data generator is good, one should not be able to tell generated data apart from real
ground truth data.

The two networks are trained simultaneously with competing objectives. The discriminator neural
network is a binary classifier whose goal is to correctly distinguish if its input is sampled from the ground
truth distribution of real samples, or if its input has been generated by the generator neural network.
Conversely, since we want the generator to generate data so realistic that it could have been sampled
from the ground truth distribution of real samples, the generator is trained to fool the discriminator.
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(a) Projected view of a sequence. A sequence of poses can be represented by a tensor s whose
shape is (T,J,d) where T is the sequence duration, J the number of joints in the skeleton and d the
dimensions (d = 3 for 3D (x,y,z) gestures).

J joints

T steps
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(b) Raw sequence as an image. The same se-
quence s can equivalently be represented as an im-
age with d channels where the height of the image
is the sequence duration T and the width of the im-
age is the joints’ count J. When d = 3, the three x,
y and z channels can be stored in the RGB format.

J’ joints
(J joints repeated for the TSSI)

T steps

d dimensions
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(c) Sequence as a Tree Structure Skeleton Im-
age (TSSI). (J. Liu et al., 2016; Z. Yang et al.,
2018) To ensure that neighboring columns in the
image representation are spatially related in the
original skeleton structure, joints (i.e. columns) are
reordered and repeated when needed. The joint ar-
rangement comes from a depth-first tree traversal
order of the skeletal (tree) structure.

Figure 5.10 – Illustration of different human pose sequence representations.

The generator learns a mapping from a prior noise distribution pz to a data space. As such, generating
new data is performed by sampling a vector from that distribution z∼ pz and feeding it as the input of
the generator network, as illustrated in figure 5.12 (c). The noise distribution we choose is the standard
Gaussian distribution.

Formally, let G be a neural network, D a neural network which outputs a single scalar in the [0,1]
interval, pground truth data be the ground truth data distribution, pz be the prior noise distribution. The
objective LGAN of a GAN is defined in equation 5.15 and equation 5.16.

LGAN(G,D) = Ex∼pground truth data(x)[logD(x)]+Ez∼pz(z) [log(1−D(G(z)))] (5.15)

The GAN is trained in an adversarial fashion, such as the two networks G and D compete against

131



Start
End

7 8

23 22

6

5

1112
2524

10

9

3

21

4

2

1
17 13

18 14

19

20

15

16

2 21 9 10 11 12 25 2412 12 11 ... 17 1 218

Traversal order

Figure 5.11 – Illustration of a traversal order that respects spatial relations.
Figure reproduced and adapted from (Baradel et al., 2018; J. Liu et al., 2016; Z. Yang et al., 2018).

each other, playing the following zero-sum min-max game:

min
G

max
D

LGAN(G,D) (5.16)

GANs can be extended to a conditional generative adversarial neural network (CGAN) model by
conditioning either G, or D, or both, on a conditional information c. When both G and D are conditioned
by c, the objective LCGAN of the CGAN becomes:

LCGAN(G,D) = Ex∼pground truth data(x|c)[logD(x|c)]+Ez∼pz(z) [log(1−D(G(z|c)))] (5.17)

where the two networks play the same zero-sum game as described earlier in equation 5.16. The
training of the two networks is performed jointly.

We propose a spatiotemporal conditional generative adversarial neural network (STCGAN) approach
for human pose sequence generation. The STCGAN is trained on spatiotemporal TSSI-formatted human
pose sequences, and conditioned on classes of actions (e.g. "drinking", "opening bottle" or "fold paper").
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Figure 5.12 – Overview of the GAN Pose Sequence Generation Pipeline
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Figure 5.13 – Overview of our Generative Adversarial Neural Network for Pose Sequences. Note
that all sequences (ground truth and generated) are represented using TSSIs that are not shown in the
illustration. The class-conditioned vector is only used for the CGAN model.

An illustration of the principle of our STCGAN is proposed in figure 5.13.
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One-hot actions

In our experiments, we use the previously mentioned NTU RGB+D dataset, described 5.3.4, but
transform the sequences into the TSSI format. The dataset features 60 different types of actions.

To condition the sequences, we encode classes with one-hot encoding. The one-hot encoded vector
is then repeated over a 2D grid to match the time and joint (i.e. width and height) dimensions of the
input of the neural network it is given to.

Models architectures

TSSI-formatted sequences are spatiotemporal image representations that are continuous in both the
temporal T dimension and the spatial J dimension. As such, we choose to use a deep convolutional
generative adversarial network (DCGAN) architecture for the generator and for the discriminator of
our STCGAN, as convolutional layers are known to be effective at filtering patterns in "continuous"
grid-like data. Two-dimensional convolutions allow the generator (resp. discriminator) network to
generate (resp. recognize) spatially and temporally coherent patterns.

The architecture of the generator is detailed in table 5.4, while the architecture of the discriminator
is detailed in table 5.5.

In the generator, a first branch processes a noise vector z sampled from a standard Gaussian
distribution, while another branch processes a class condition vector c. The two resulting outputs are
then merged by concatenation (along the channel axis, keeping the time and joint dimensions untouched).
Finally, the concatenated vector is sequentially processed by the different blocks of the generator to
generate a new TSSI-formatted sequence.

Except for the concatenation step, all generator blocks are made of a 2D bilinear upsampling layer,
followed by a 2D convolution, batch normalization, and a ReLU activation. The last layer’s activation
function is tanh.

In the discriminator, the candidate vector x is immediately concatenated with the one-hot encoded
condition vector c along the dimension (i.e. channels) axis. The resulting output is sequentially
processed by the different blocks of the discriminator.

All discriminator blocks are made of a 2D convolution followed by a batch normalization, and a
Leaky ReLU activation with a 0.2 negative slope. The last layer’s activation function is a sigmoid.

5.4.6 Experimental results

We train the proposed STCGAN model on TSSI-formatted sequences and their respective associated
classes, for 100 epochs. After the training, we generate new TSSI-sequences using the generator.
Examples of generated TSSI-formatted sequences are plotted in figure 5.14.

Finally, the TSSI are converted back to vanilla image-representations that we plot in 2D (image-view)
and 3D (projected-pose-view).

Visual comparisons between the quality and the variety of the generated sequences and the ground
truth sequences is proposed in figure 5.15 for the “hair brushing” action, in figure 5.16 for the “kicking
something” action, in figure 5.17 for the “clapping” action, and in figure 5.18 for the “checking time on

134



Table 5.4 – Generator Architecture

Generator

#→ # 2D Upsample + 2D Convolution BatchNorm Activation

in. channels out. channels kernel size stride padding bias

z→ 1 zdim = 100 256 4 1 0 No Yes ReLU

c→ 2 cdim = 60 256 4 1 0 No Yes ReLU

1,2→ 3 Concatenation (channels axis)

3→ 4 512=256+256 256 4 2 1 No Yes ReLU

4→ 5 256 128 4 2 1 No Yes ReLU

5→ 6 128 64 4 2 1 No Yes ReLU

6→ 7 64 d = 3 4 2 1 No No Tanh

Table 5.5 – Discriminator Architecture

Discriminator

#→ # 2D Convolution BatchNorm Activation

in. channels out. channels kernel size stride padding bias

x,c→ 1 Concatenation (channels axis)

1→ 2 63 = d + cdim 64 4 2 1 No No LeakyReLU(0.2)

2→ 3 64 128 4 2 1 No Yes LeakyReLU(0.2)

3→ 4 128 256 4 2 1 No Yes LeakyReLU(0.2)

4→ 5 256 512 4 2 1 No Yes LeakyReLU(0.2)

5→ 6 512 1 4 1 0 No No Sigmoid

a watch” action.

5.4.7 Conclusion

We have proposed a novel approach for human motion pose sequence generation using generative
adversarial networks over images.

Sequences are represented as a 2D spatiotemporal grid with several dimensions, in an image-like
fashion: to represent human motion pose sequences, we borrow a representation called TSSI (Z. Yang
et al., 2018) that ensures a spatial and a temporal continuity of the data, based on a spatial joint
reordering trick (Baradel et al., 2018; J. Liu et al., 2016). As such, any GAN architecture that can
digest images may be used to generate sequences. We call Spatio-Temporal Conditional Generative
Adversarial Network (STCGAN) the CGANs networks that use the TSSI image format. Since in a TSSI,
the image axes are the time and the joint (space) axes, STCGANs directly have access to space and time
in a coupled way rather than separately. A simple STCGAN architecture is proposed, and trained in an
experiment. To generate human pose sequences, a random vector is sampled from a standard Gaussian
noise prior distribution and mapped with the generator neural network to a TSSI-formatted sequence,
which is later converted back to a human pose sequence with a vanilla format.

The approach mostly couples the temporal and the spatial aspect of the sequence synthesis.
Immediate possible extensions include: better conditioning the GAN, harnessing the power of the

numerous GAN models from the very rich and extensive literature about image-based GANs -e.g. by
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Figure 5.14 – 64 different generated sequences represented in a TSSI format. The horizontal axis of
each TSSI sequence is the joint J axis. The vertical axis of each TSSI sequence is the time T axis. The
xyz dimensions are mapped to RGB channels for visualization.

adding attention mechanisms or deformable convolutions layers-, or using progressive GANs, denoising
GANs or hole-filling GANs for a more robust generation.
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(a) Generated sequences from the proposed GAN model (“Hair Brushing” action)

(b) Ground-truth sequences from the dataset (“Hair Brushing” action)

Figure 5.15 – Visual comparison of GAN-generated sequences and ground-truth sequences. Each line
represents an individual sequence. All sequences represent the “hair brushing” action and they are all
independent. Temporal order: left to right.
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(a) Generated sequences from the proposed GAN model (“Kicking something” action)

(b) Ground-truth sequences from the dataset (“Kicking something” action)

Figure 5.16 – Visual comparison of GAN-generated sequences and ground-truth sequences. Each line
represents an individual sequence. All sequences represent the “kicking something” action and they are
all independent. Temporal order: left to right.
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(a) Generated sequences from the proposed GAN model (“Clapping” action)

(b) Ground-truth sequences from the dataset (“Clapping” action)

Figure 5.17 – Visual comparison of GAN-generated sequences and ground-truth sequences. Each
line represents an individual sequence. All sequences represent the “clapping” action and they are all
independent. Temporal order: left to right.
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(a) Generated sequences from the proposed GAN model (“Checking time on a watch” action)

(b) Ground-truth sequences from the dataset (“Checking time on a watch” action)

Figure 5.18 – Visual comparison of GAN-generated sequences and ground-truth sequences. Each line
represents an individual sequence. All sequences represent the “checking time on a watch” action and
they are all independent. Temporal order: left to right.
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5.5 Conclusion

In this chapter, we proposed two different and novel approaches for human pose sequence generation.
More precisely, our contributions are summarized in sections 5.3.2 and 5.4.2. The two proposed
approaches are simple enough to be easily understood and reproduced. As the rare human pose sequence
generation models found in the literature sometimes do not produce realistic results at all despite their
apparent sophistication, the simplicity of the two approaches we propose is worth noting.

The first approach we propose, a Temporal Triplet Pose Auto-Encoder (TTPAE), mostly decouples
spatial and temporal information, as the temporal objective used mainly "organizes" spatial pose
representations in the latent space in a temporally-coherent manner. The second approach we propose, a
Spatio-Temporal Conditional Generative Adversarial Network (STCGAN) couples spatial and temporal
information.

The Temporal Triplet Pose Auto-Encoder approach mostly works at a frame-level, whereas the
Spatio-Temporal Conditional Generative Adversarial Network approach essentially works at a sequence
level.

Both of the proposed approaches might easily be extended. For instance, adversarial constraints at a
frame-level or at a sequence-level might ensure even more realism to pose sequences generated with the
Temporal Triplet Pose Auto-Encoder. Adding denoising abilities to the Spatio-Temporal Conditional
Generative Adversarial Network and improving the embedding used for the class conditioning -a vanilla
one-hot encoding for now- could lead to substantial improvements of the approach.
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Chapter 6

Conclusion

“It takes something more than intelligence to act intelligently.”

Dostoyevsky

In this thesis, we studied and introduced different representations for time series, based on deep
learning models.

Summary

In recent years, deep learning has attracted increasing attention from both industrial actors and academic
actors. Deep learning methods and approaches fueled significant advances in areas ranging from image
processing to natural language processing. However, in many domains, input data consists in neither im-
ages nor text documents, but in time series that describe the temporal evolution of observed or computed
quantities. Time series can be found in many domains including signal processing, telecommunications,
weather forecasting, earthquake prediction, electroencephalography, electrocardiography, statistics,
astronomy, robotics, human action recognition, handwriting recognition, speech recognition, music
composition, health or finance.

A classical deep learning approach for sequence modeling consists in the use of recurrent neural
networks (RNNs), where a dynamic memory is used to store information from one time step to another,
alongside with a feedforward neural network that is responsible: (1) to read from the memory and to
write to the memory; and (2) to model the sequence. While this approach is appealing, it also comes with
its set of complex issues1 from both a theoretical perspective and an applied perspective. These issues
motivate us to look for other families of neural networks, in order to learn time series representations.

Progress made in the last decade in deep learning suggest that the context of an object2 provides a
lot of information about the object itself. As the saying goes: birds of feather flock together.

In this thesis, all the contributions we proposed implicitly embrace the idea that temporal context
provides useful information that could or should be exploited by neural networks.

1E.g. regularization issues, vanishing-gradient issues or training duration issues, to name a few.
2E.g. a temporal context around a specific time step, when it comes to time-series.
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Firstly, in the autonomous driving domain, we showed that, the analysis of a temporal window by a
neural network can lead to better vehicle control results than classical approaches that do not use neural
networks, especially in highly-coupled situations.

Secondly, in the gesture and action recognition domain, we introduced 1D parallel convolutional
neural network (CNN) models. The use of a CNN architecture allows for a limited number of parameters.
In our models, convolutions are performed over the temporal dimension, in order to detect and benefit
from temporal invariances. Since the parameters of the convolution kernels are shared across the time
dimension, these models can process both fixed-length inputs and variable-length inputs.

Thirdly, in the human pose motion generation domain, we introduced 2D convolutional generative
adversarial neural networks where the spatial and temporal dimensions are convolved in a joint manner,
allowing for a context that is not only temporal but also spatial.

Finally, we introduced an embedding where spatial representations of human poses are sorted in
a latent space based on their temporal relationships. In layman’s terms, this approach can be seen as
an anamorphose of a spatial3 latent space of human body poses, where the deformations are based on
temporal distances between the poses. Compared to the other contributions of this thesis, where the
temporal context is explicit, in this contribution the temporal context becomes implicit once the latent
space has been learned.

Future Works

Our work can be extended in several directions. We suggest a few prospective ideas that possibly might
be relevant for future research.

Vehicle control

Generative Adversarial Networks While the proposed neural network architectures show
promising results, no guarantee is provided on whether the estimated control command is
correct or not. A potential risk of the proposed approach is to fall outside of the domain of
validity of the network, leading to unrealistic -and potentially dangerous- values. To circumvent
this issue, an option could consist in getting always more training examples, and monitor the
performance obtained by the neural network. This is easy in simulation, but much harder on
vehicles in the real world. Another better option consists in the use of generative adversarial
networks (GANs). One network, the generator, should estimate the correct control. A second
network, the critic, should select progressively harder and harder couples of initial conditions
and reference trajectory to follow, the goal of the critic being to find situations where the
generator produces inappropriate results. The two networks would be trained in an adversarial
fashion. The control generator network would thus be more robust to estimate the correct
control command values, even in difficult scenarii.

Obstacle avoidance Obstacle avoidance competencies are essential and critical to guarantee
human and vehicle safety, in the context of autonomous driving. While many obstacle

3As it relates to poses, which are grounded in the physical -spatial- space.
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avoidance approaches exist, they usually occur at a path planning level in the perception-
planning-control paradigm. However, obstacles may appear at a very last moment, e.g. due to
earlier misdetections in the perception block, or due to an unforeseeable and abrupt change
in the vehicle’s environment. In such cases, the vehicle safety can not be guaranteed by
an obstacle avoidance approach working at a path planning level only, since the generated
emergency trajectory to follow may not feasible in the real world due to the vehicle’s dynamics.
One idea to overcome this critical issue could consist in training our neural network to not
only generate a control command based on a reference trajectory and initial conditions, but
also based on a bird-view map of the surrounding environment, including obstacles. Learning
jointly both (inverse) vehicle dynamics and obstacle avoidance competencies offline during
training would allow real-time and dynamics-informed obstacle avoidance. Such competencies
would be extremely valuable, especially when imminent -and likely dangerous- obstacles
appear on the road. This proposed approach might be trained in simulations, and then fine-
tuned with transfer learning on real vehicles. It would allow more reactive and safer driving
styles.

Reinforcement Learning Reinforcement Learning (RL) can be used to drive autonomous
vehicles based on data coming from the sensors mounted on the vehicles: RGBD cameras,
LIDARs, radars, ultrasounds, GPS devices, IMU sensors. Such approaches typically lead to
bang-bang controls4 with abrupt switches between two states. To slightly smooth the vehicle’s
trajectory, a fine-tuned proportional–integral–derivative (PID) controller can be added. A better
approach might consist in informing the RL algorithm about the vehicle dynamics beforehand.
To that end, one could either integrate our proposed neural network architecture(s) into a
deep-RL approach, where our network would estimate the control to apply, leaving the room
for the RL algorithm to adapt it based on other information coming from SLAM5 data and
from raw sensors data.

Human gesture and action recognition

Spatial Information While gesture and action recognition are temporal phenomena, many
gestures and actions might actually be inferred based on spatial poses only. For instance, the
existence of a static frame of one’s touching one’s shoes may be a very good predictor for
a “tie one’s shoelaces” action, regardless of temporal evolutions. As such, it may be worth
spending time on the spatial aspect of gestures.

Spatial Attention To that end, a spatial attention head could be added to the model,
to help the neural network select, or weight differently, body parts before analyzing
the temporal evolutions of the joints.

Distances between joints To describe the spatial structure, a potentially useful hand-
crafted feature to use to improve the performance of the neural network could be

4This is especially true when the RL approach involves a discrete action space, with quantized steering angle values or
quantized wheels’ torques.

5SLAM stands for “Simultaneous Localization And Mapping”.
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the distances between the joints. One drawback of this feature is that the number
of distances grows quadratically with the number of joints. As such, it cannot be
used on all structures, e.g. it cannot be used on detailed 3D meshes. To circumvent
this drawback, an attention head could be introduced in the model to select a limited
amount of distances (channels), the selected channels being considered as relevant
for the recognition.

Pose standardization The introduction of a pre-processing module to make the
pose (i.e. the landmarks or the skeletons) view-invariant could greatly improve the
performances of the proposed neural networks. To that end, three heads could be
integrated in the neural network. They would learn how to locate, how to rotate and
how to scale the pose to a “standard” pose, which would then be used by the rest of
the neural network model.

Embeddings Rather than hand-designing features and architectures, or in addition to
it, the input poses could be embedded beforehand into a task-relevant representation.
The denoising encoder-decoder embedding we proposed could potentially be an
example of such a task-relevant embedding.

Graph-only approach Another research direction might consist in considering pose se-
quences as a single big spatio-temporal graph, where nodes represent a joint and edges
represent either rigid-constraints (i.e. bones) or temporal continuity constraints, and exploring
various approaches from the deep learning on graphs research area. Deep learning on graphs
has attracted increasing attention by the research community in the very last years, enabling
numerous potential research directions.

Fusion At the one hand, when it comes to gesture recognition, it appears that some information
is redundant, either spatially (e.g. moving one’s hand necessarily implies to move one’s elbow
for instance) or temporally (e.g. due to different temporal resolutions involved in an action).
At the other hand, some piece of information in a gesture can shed a light on other piece of
information from that gesture (e.g. when one’s claps, the right and left moves of the hands are
related to each other). For these reasons, one may want to perform fusion between inputs, in
order to better allocate the resources of the neural network. Learning how to perform fusion
of multivariate time series is difficult. The main questions to consider are: what should be
merged? When? How? At which stage in the neural network architecture? Regarding the
fusion between channels, late fusion appears to perform better than early fusion. However,
a progressive fusion of information between channels might still improve the performance
of the neural network. A fusion based on spatial relations or even on semantic relations
might be relevant. To perform the fusion, self-supervised spatial, temporal or spatio-temporal
embeddings could probably be exploited.
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Human pose embedding

Static Pose Adversarial loss The anatomy loss may be replaced by an adversarial loss. The
idea would be to resort to adversarial training in order to ensure that each individual (static)
reconstructed human pose is considered as realistic by a neural network (human pose critic).

Dynamic Poses Adversarial loss To ensure that all transitions obtained via linear interpola-
tions in the latent space trained with the time-sampled triplet loss, another adversarial loss
might be used. The idea would be to resort to adversarial training in order to ensure that each
individual (dynamic) reconstructed sequence of human poses -obtained via linear interpolations
in the latent space- are considered as realistic by a neural network (human pose motion critic).

Sparsity loss The latent space we introduced sometimes exhibits redundant axes: two different
dimensions sometimes code the same human pose semantical evolution. A simple L1 loss
could be used to encourage a sparse representation of the latent code z. An expression for
that sparsity loss could be Lsparsity(z) = αsparsity‖z‖1 where αsparsity would be an training
hyperparameter.

Human motion generation

GAN Architectures The GAN architecture we introduced is relatively simple and could very
likely be improved in order to produce even more realistic human pose motion sequences. For
instance, one could consider using GAN architectures based on attention mechanisms or on
deformable convolutions layers.

Classes embedding The action classes are one-hotted in the architecture we introduced.
Rather than a one-hot encoding, an embedding of the classes could be used to reduce the di-
mensions required. Besides using traditional embedding techniques, introducing an embedding
that respects the semantic relationships involved in the gestures might be worth investigating.

Poses and mask conditioning The model we introduced can generate new sequences condi-
tioned on existing action classes. From a human perspective, it could be useful to be able
to edit generated gestures. For instances, animators might want to manually fix a pose at
a specific time step, and to keyframe it so that the generated pose at that time step in the
generated sequence matches the pose they manually chose. To manually fix a human pose, the
human pose embedding we introduced earlier could be used, to easily edit semantically the
pose. However, matching that pose at a specific time step in the generated sequence requires a
modification to our GAN architecture. One idea could consist in conditioning the GAN not
only on a class, but also on (1) a temporal binary keyframes mask and (2) a manually-provided
reference human pose motion sequence of the same length as the one to generate. The temporal
binary keyframes mask would indicate whether a keyframe exists, or not, at each individual
time step. At each time step, if a keyframe is set, the reference human pose would be used to
condition the generator and the discriminator. Otherwise, if not keyframe is set, the generator
and the discriminator would learn to discard the reference pose and not condition themselves
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on it. Finally, a loss term that measures the distance between the generated poses and the
associated keyframes, if any, would be added to the discriminator’s losses, to encourage the
generator to respect the provided reference keyframes. Such conditioning would allow human
practitioners to harness the generator neural network, opening the door for AI-assisted human
pose motion design tools.

Perspectives

Deep learning is a very exciting and a very dynamic research domain. From a practical perspective,
deep learning approaches open the door to a myriad of very powerful applications. From a theoretical
perspective, numerous discoveries related to deep learning, neural networks and high-dimensional
spaces remain to be found. Some of the practical and theoretical key deep learning results only date
back to very recent times, even if research on artificial neural networks has been ongoing for decades.

Forging human intuitions that are relevant in the deep learning area is hard, though, or, at least, not as
immediate as one would like. One possible explanation for this observation might stand in the fact that
human intuitions usually come from our direct experience with low-dimensional spaces, both at practical
and at conceptual levels; however, these intuitions may not always hold true in high-dimensional spaces.
All of this forces deep learning practitioners and researchers to adapt and, sometimes, to step into totally
unknown territories. Current deep learning approaches can be robust to task-related noise, even though
they may not be very well suited for ever changing environments and situations.

A very promising research area in the machine learning domain that might likely alleviate this issue
is called self-supervised learning. Self-supervised learning is a learning technique where the training
data is autonomously labeled, rather than manually labeled by humans. For instance, autonomous data
labeling could be performed based on relations that exist between different pieces of information in the
input data. Self-supervised learning provides more supervisory signals than supervised learning, and
even more than reinforcement learning.

As such, more knowledge about the structure of the world might be learned through self-supervised
learning than from both supervised learning and reinforcement learning.
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Résumé en français

Chapitre 1
Introduction

Ce chapitre constitue l’introduction de la thèse. Il est subdivisé en quatre sections :

1. Contexte

2. Objectifs

3. Contributions

4. Structure de la thèse

Contexte Cette thèse s’inscrit dans le domaine de la recherche en intelligence artificielle.

Dans le langage courant, le terme “intelligence” est difficile à définir de manière précise
et exhaustive car il recouvre des notions souvent floues et mal définies. Néanmoins, pour
beaucoup, l’intelligence peut être considérée comme la capacité à s’adapter et à organiser des
informations, le plus souvent dans le but de maximiser ses chances d’atteindre un objectif.

L’Intelligence Artificielle (IA) est le domaine scientifique qui étudie des programmes “intelli-
gents”.

Au sein des approches actuelles en IA, l’Apprentissage Profond désigne un ensemble de
méthodes d’intelligence artificielle qui permettent à un programme d’apprendre une hiérarchie
de concepts à partir d’exemples, sans nécessiter d’intervention humaine pour trouver ces
concepts. En combinant plusieurs concepts, un programme peut découvrir des concepts plus
abstraits. Par exemple, en combinant le concept géométrique de “croix” avec le concept de
“couleur verte” , le programme peut découvrir le concept plus abstrait de “croix de pharmacie”.
La composition de représentations découvertes (apprises) par les programmes basés sur de
l’apprentissage profond permet à ces programmes d’apprendre des concepts de plus en plus
abstraits au fur et à mesure que l’on progresse dans les couches successives de composition.

Les méthodes basées sur des techniques d’apprentissage profond ont démontré leur excellence
dans les domaines de l’imagerie et de la vision par ordinateur au cours de la dernière décennie,
ainsi que dans le domaine du Traitement Automatique du Langage (TAL) au cours des toutes
dernières années. Actuellement, l’état de l’art dans ces domaines repose sur des techniques et
des modèles d’apprentissage profond.
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Pourtant, dans de nombreux domaines, les données observées à considérer ne sont ni des
images ni du texte mais des séries temporelles qui représentent l’évolution de grandeurs
mesurées ou calculées au cours du temps. C’est par exemple le cas en météorologie (tempéra-
ture, pression, vitesse du vent par ex.), en économie (taux, indices, spread), en sismologie,
dans l’industrie (tension, consommation d’énergie électrique, capteurs), en médecine (élec-
troencéphalogrammes, électrocardiogrammes, température, pression sanguine), en épidémi-
ologie (nombre de cas positifs à une maladie ou à une pandémie), en reconnaissance vocale
(séquences audio, mel-spectrogrammes), pour le contrôle de véhicules autonomes (trajec-
toires de référence) ou encore pour la reconnaissance de gestes (positions ou orientations des
articulations du corps humain) pour ne citer que quelques exemples.

Objectifs Cette thèse vise à explorer des approches d’apprentissage profond pour les séries temporelles.

A cette fin, des architectures de réseaux de neurones artificiels sont étudiées.

Une architecture particulière de réseau de neurones artificiels, appelée réseau de neurones
récurrents, ou recurrent neural network (RNN) en anglais, est réputée être adaptée au traitement
de données séquentielles. Néanmoins, cette architecture présente des défauts et des limitations,
autant d’un point de vue théorique que d’un point de vue pratique.

A ce titre, l’un des objectifs de cette thèse est d’étudier si des architectures de réseaux de
neurones non-récurrents peuvent être -qualitativement et quantitativement- pertinentes pour
traiter des données séquentielles.

Un des autres objectifs de la thèse est de découvrir si des séries temporelles contiennent
“suffisamment” d’information pour pouvoir être la seule source de donnée à considérer pour
des tâches complexes, par exemple pour des tâches de reconnaissance d’émotions faciales ou
de contrôle de véhicules autonomes.

Contributions On peut résumer les contributions principales de cette thèse de la manière suivante :

Contrôle Couplé de Véhicule On propose une nouvelle approche, qui fait appel à
des modèles d’apprentissage profond, pour le contrôle couplé de véhicule.

Sauf erreur, il s’agit de la première utilisation connue de réseaux de neurones profonds
pour le contrôle couplé de véhicules à roues.

Deux exemples d’architectures de réseaux de neurones sont présentées et testées.
Dans les deux cas, un modèle apprend la dynamique inverse d’un véhicule, en partic-
ulier la dynamique latérale-longitudinale couplée. Après la phase d’apprentissage,
on utilise le réseau de neurones pour contrôler le véhicule. Un tel contrôleur appris
par apprentissage profond est capable de gérer en temps réel des situations avec un
fort couplage longitudinal et latéral.

Reconnaissance de Mouvements de Pose Humaine On propose une nouvelle ar-
chitecture de réseaux convolutifs pour la reconnaissance d’actions et de gestes à partir
de séquences de poses humaines.
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Dans cette architecture, des convolutions parallèles unidimensionnelles opérant sur
la dimension temporelle sont utilisées pour détecter des motifs temporels.

L’architecture proposée n’utilise que des convolutions, qui sont faciles à entraîner,
à auditer, et permettent d’aboutir à des modèles relativement légers. De plus, cette
architecture ne nécessite que des adaptations minimales pour être appliquée à des
nouveaux types de gestes, de capteurs, ou de formats de séquences de poses tels que
des séquences de positions d’articulations ou de points particuliers de la main, du
corps humain ou du visage.

Génération de Mouvements de Pose Humaine On propose deux nouvelles archi-
tectures de réseaux de neurones pour la synthèse de séquences de poses humaines :
une architecture de réseaux de neurones auto-encodeurs débruitants pour l’apprentissage
auto-supervisé de poses humaines, et une architecture de réseaux antagonistes générat-
ifs.

L’espace latent de l’auto-encodeur proposé est contraint par un objectif spatial et
par un objectif temporel. Une fonction de coût spatial encourage les poses à être
correctement reconstruites spatialement par l’auto-encodeur. Une fonction de coût
temporel, basée sur une triplette de poses échantillonnées temporellement, encourage
les représentations internes (spatiales) des poses apprises par le réseau de neurones
à s’organiser d’une manière cohérente temporellement. Les réseaux encodeurs et
décodeurs qui constituent l’auto-encodeur peuvent être utilisés pour obtenir des
représentations de poses humaines, en particulier pour des usages en temps réel.
L’espace latent de l’auto-encodeur débruitant présente des propriétés sémantiques
qu’il serait intéressant d’étudier dans des travaux ultérieurs.

Les réseaux antagonistes génératifs proposés font quant à eux appel à une représen-
tation des séquences de poses qui permet d’utiliser une architecture de neurones
convolutifs.

Structure de la thèse Cette section présente le plan de la thèse.

Chapitre 2
État de l’art de la Modélisation de Séquences par des Réseaux de
Neurones

Ce chapitre propose un état de l’art des principales approches de modélisation de données séquentielles
avec des réseaux de neurones artificiels. Il est subdivisé en six sections :

1. Introduction

2. Réseaux de neurones à propagation avant

3. Réseaux de neurones récurrents
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4. Réseaux de neurones convolutifs

5. Mémoire associative basée sur l’attention

6. Conclusion

Introduction Ce chapitre présente un état de l’art des approches de modélisation des données séquen-
tielles avec des réseaux de neurones artificiels. Plus précisément, cette thèse s’intéresse
aux données séquentielles relatives à des grandeurs physiques observées. Ces données sont
représentées sous la forme de suites, finies ou infinies, de vecteurs de Rn indexées par le
temps, où n désigne la dimension de la série temporelle considérée. Les principales méthodes
d’apprentissage automatique qui permettent de modéliser des données séquentielles sans toute-
fois relever des réseaux de neurones sont brièvement citées. Le reste du chapitre présente les
principales méthodes basées sur des réseaux de neurones et de l’apprentissage profond pour
modéliser de phénomènes à partir de séries temporelles.

Réseaux de neurones à propagation avant Les données séquentielles présentent généralement des
régularités : un signal peut présenter une ou plusieurs périodicités, deux signaux représentant
un même phénomène peuvent ne pas être indépendants l’un de l’autre, etc. A ce titre, il peut
être judicieux de faire appel à des réseaux de neurones artificiels qui présentent des biais
inductifs pour modéliser des séries temporelles.

Les séries temporelles pouvant être de longueur (durée) arbitrairement grande, les réseaux de
neurones artificiels ne travaillent en général que sur une sous-fenêtre temporelle de longueur
finie à l’échelle du phénomène considéré. C’est le cas des réseaux de neurones à retard
temporel, ou time delay neural networks (TDNN) en anglais, où, à chaque instant t, le réseau
de neurones artificiel ne considère qu’un nombre fini de valeurs passées de la série temporelle
d’entrée pour calculer la valeur de sortie à l’instant t, par exemple les valeurs de la série
temporelle d’entrée à t− 1, t− 2, t− 4 et t− 8. La liste des indices temporels considérés
dans un TDNN à un instant t est fixée, et ne dépend donc pas de la valeur prise par la série
temporelle à l’instant t.

Déterminer la liste adéquate des indices temporels d’intérêt pour un problème donné nécessite
une connaissance experte et se révèle être une tâche difficile à réaliser. Plutôt que de fixer
“à la main” la liste des pas de temps de la série temporelle que le réseau de neurones va
considérer comme c’est le cas pour un TDNN, il est possible pour certains réseaux de neurones
d’apprendre de manière automatique quelles entrées prendre en compte (ou non), et à quel
degré. Ce processus de sélection de certains aspects de l’information -au détriment d’autres
aspects pourtant visibles- est appelé “attention”. Les réseaux de neurones qui utilisent un
mécanisme d’attention sont introduits dans la section 5. de ce chapitre.

Réseaux de neurones récurrents Les réseaux de neurones à propagation avant sont performants pour
reconnaître des motifs. Néanmoins, ils manquent de plasticité dans la mesure où ces réseaux
possèdent une architecture et des paramètres qui sont fixés une fois pour toutes. Un réseau de
neurones récurrents, ou recurrent neural network (RNN) en anglais, combine un réseau de
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neurones à propagation avant avec un état caché, ce dernier pouvant être considéré comme une
mémoire dynamique. A chaque pas de temps t, la sortie du réseau de neurones est fonction de
la valeur de la série temporelle d’entrée à l’instant t, ainsi que de la valeur de l’état caché à
l’instant t.

Entraîner des réseaux de neurones récurrents se révèle être relativement difficile, la valeur
du gradient ayant souvent tendance à diminuer jusqu’à devenir évanescente ou au contraire à
augmenter jusqu’à exploser, et ceci pour des raisons à la fois théoriques (liées au choix de la
fonction d’activation utilisée ou à des questions de normalisation, par exemple) et pratiques
(liées au conditionnement des vecteurs et des matrices utilisés, par exemple).

Dans la pratique, deux types d’approches se distinguent pour l’entraînement des réseaux de
neurones récurrents. La première consiste à concevoir des algorithmes d’entraînement plus
robustes, par exemple en tronquant les gradients en-deça d’un certain seuil ou encore en lissant
les gradients. La deuxième consiste à utiliser des fonctions d’activations plus complexes, afin
d’aligner ou de déformer dynamiquement le temps en fonction des entrées. Pour ce faire, des
portes, ou gates en anglais, sont utilisées. Les portes indiquent si, et à quel point, leur signal
d’entrée doit être atténué ou non; elles permettent ainsi de réaliser un filtrage de l’information
en entrée.

Les deux principaux réseaux de neurones récurrents qui utilisent un système de portes sont les
Long Short-Term Memory (LSTM) et les Gated Recurrent Unit (GRU). L’architecture de ces
deux réseaux de neurones récurrents permet de limiter grandement une potentielle évanescence
du gradient : l’entraînement de ces réseaux de neurones par des méthodes de rétropropagation
de gradient est ainsi grandement facilité. Par métonymie et abus de langage, certains auteurs
désignent par le terme de “RNN” les réseaux LSTM ou GRU car ces deux réseaux sont en
pratique les deux réseaux de neurones récurrents (RNN) les plus couramment utilisés à ce jour.

Il existe néanmoins de nombreux autres réseaux de neurones récurrents moins connus.

Réseaux de neurones convolutifs Un réseau de neurones convolutifs, ou convolutional neural network

(CNN) en anglais, est un réseau de neurones à propagation avant dans lequel l’opération de
multiplication matricielle est remplacée par une opération de convolution au sein d’au moins
une des couches.

Les CNN ont tendance à se révéler très performants sur des données dont la topologie est
décrite par une grille. C’est le cas des séries temporelles et des images par exemple, puisque ces
types de données peuvent être vus comme un champ de vecteur qui prend des valeurs sur une
grille espacée régulièrement, cette grille étant à une dimension (temps) dans le cas des séries
temporelles et à deux dimensions (grille spatiale de pixels) dans le cas des images. Les réseaux
de neurones convolutifs appliqués à des séquences détectent des régularités temporelles. Les
réseaux de neurones convolutifs présentent l’avantage de nécessiter moins de paramètres que
les réseaux de neurones à propagation avant classiques “équivalents” sans convolution.

Il est possible d’étendre la définition des réseaux de neurones convolutifs à des domaines
irréguliers, tels que des graphes, par exemple.
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Mémoire associative basée sur l’attention Les mécanismes d’attention sont des mécanismes qui
sélectionnent -et ciblent- un aspect spécifique des données en entrée, tout en écartant le
reste de l’information pourtant également perceptible au sein de ces données.

Dans le cas des données séquentielles, les mécanismes d’attention reviennent souvent, en
pratique, à des mécanismes d’alignement entre deux séquences. Un tel alignement entre
deux séquences u et v peut être représenté par une matrice A dont chacune des dimensions
est donnée par la longueur des deux séquences considérées. Chaque coefficient Ai, j de
cette matrice représente “l’attention” (c’est-à-dire le score d’appariement ou d’affinité) :
Ai, j = affinité(ui,v j) entre la valeur prise par les deux séquences prises aux pas de temps
respectifs i et j. De nombreuses fonctions d’affinité sont envisageables. Par exemple, la
fonction cosinus ou le produit scalaire peuvent être utilisés. Il est également possible d’utiliser
des fonctions avec des paramètres qui peuvent être appris au cours d’un entrainement.

Le terme de réseaux de neurones transformateurs, ou transformer networks en anglais, désigne
une architecture de réseaux de neurones faisant appel à des mécanismes d’attention, initiale-
ment conçus pour traiter des données séquentielles textuelles dans le domaine du traitement du
langage naturel. L’architecture de ces réseaux de neurones se retrouve dans tous les modèles à
l’état de l’art actuel en traitement du langage naturel. A ce jour, cette architecture de réseaux
de neurones demeure récente. Ainsi, malgré les très bonnes performances obtenues par ces
réseaux dans le domaine de la modélisation de données séquentielles, certaines questions
relatives à ces modèles restent ouvertes : on peut par exemple songer à la “nature” de ce qui
est appris par ces réseaux, à l’importance des têtes utilisées dans ces réseaux, aux choix relatifs
à l’encodage positionnel ou encore au lien avec l’apprentissage en quelques coups, ou few-shot

learning en anglais, pour ne citer que quelques exemples.

Enfin, il existe de nombreuses autres architectures de réseaux de neurones qui font appel à
des mécanismes d’attention, par exemple de manière à obtenir des réseaux de neurones avec
des mémoires associatives où les données peuvent-être indexées et retrouvées autant par leur
adresse (localisation) que par leur contenu (nature).

Conclusion Pour modéliser des données séquentielles avec des réseaux de neurones, il est possible
d’utiliser des réseaux de neurones à propagation avant densément connectés simples ou avec de
l’attention, des réseaux de neurones convolutifs, qui filtrent l’information de manière spectrale,
ou des réseaux de neurones récurrents, qui font appel à une mémoire externe dynamique pour
stocker de l’information. Au-delà de la question de la performance, la question de la nature
même des réseaux de neurones à utiliser pour modéliser des données séquentielles de manière
pertinente reste une question ouverte pour la plupart des applications.
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Chapitre 3
Réseaux de Neurones Artificiels pour le Contrôle Couplé de Véhicule

Ce chapitre porte sur la question du contrôle couplé de véhicules autonomes avec des réseaux de
neurones artificiels. Il est subdivisé en six sections :

1. Introduction

2. Revue de littérature sur le sujet

3. Simulateur de véhicule : modèle à 9 degrés de liberté

4. Modélisation par réseaux de neurones artificiels

5. Comparaison entre les approches classiques et les approches basées sur des réseaux de neurones

6. Conclusion

Introduction Le développement récent de l’apprentissage profond a permis des progrès colossaux dans
de nombreux domaines de recherche, y compris dans le domaine des véhicules autonomes.
L’utilisation de réseaux de neurones à des fins de segmentation d’image pour la conduite est
un domaine qui a été largement exploré ces dernières années; des architectures de réseaux
de neurones très performantes pour réaliser ces tâches sont désormais disponibles. Plus
récemment, plusieurs équipes ont proposé d’entraîner des réseaux de neurones de bout en bout,
ou end-to-end en anglais, pour calculer directement les commandes à appliquer à un véhicule
pour le conduire à partir de données brutes telles que des images en couleurs ou des données
radar et lidar. Cette idée de conduite de bout en bout est particulièrement attrayante car elle
élimine le besoin de concevoir à la main des algorithmes de planification de mouvement et
des algorithmes de contrôle. Néanmoins, déléguer la sécurité des occupants de la voiture à
un logiciel dont les décisions ne sont pas intelligibles semble problématique. Une solution
intermédiaire consiste à séparer les différentes étapes de la conduite en blocs fonctionnels
auditables : par exemple sous la forme d’un bloc de perception, d’un bloc de plannification et
d’un bloc de contrôle. Chaque bloc possède alors une complexité plus faible, ce qui permet
d’une part de le modéliser par des réseaux de neurones mono-tâches plus simples, et d’autre
part une plus grande capacité de validation et d’audit de ces réseaux par des experts. Ce
chapitre étudie l’utilisation de réseaux de neurones artificiels pour le contrôle couplé de
véhicules autonomes.

Revue de littérature sur le sujet Dans certaines situations hautement dynamiques, par exemple dans
le cas d’une manœuvre d’évitement à haute vitesse face à un obstacle sur la route, le couplage
important entre la dynamique latérale et longitudinale est difficile à modéliser lorsque l’on
s’approche des limites du véhicule. Une modélisation précise de ce couplage fait intervenir des
relations complexes et non-linéaires entre plusieurs variables d’état. Il n’est ainsi pas possible
d’utiliser un tel modèle pour des applications en temps-réel. Pour cette raison, la plupart
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des approches qui existent dans le domaine de la planification de mouvement s’intéressent
à des modèles plus simples qui évitent les situations à fort couplage. De manière similaire,
la recherche dans le domaine du contrôle considère généralement la dynamique latérale et
longitudinale séparément pour simplifier le problème. Bien que ces simplifications mènent à
de bons résultats dans des situations de conduite classiques, elles se révèlent problématiques et
dangereuses lorsque le véhicule s’approche des cas limites, par exemple à haute vitesse ou sur
des routes glissantes.

Simulateur de véhicule : modèle à 9 degrés de liberté Cette section présente les équations utilisées
dans le modèle très réaliste qui sert à simuler un véhicule. Les dynamiques du châssis du
véhicule, des roues, et des pneus sont modélisées. Le modèle possède neuf degrés de liberté :
trois degrés de liberté décrivent le mouvement du véhicule dans le plan, deux degrés de liberté
décrivent la rotation du châssis du véhicule, et quatre degrés de liberté décrivent la vitesse de
rotation des quatre roues.

La commande à imposer correspond à l’angle de rotation de la roue avant gauche (angle du
volant) et au couple de chacune des quatre roues.

Modélisation par réseaux de neurones artificiels Cette section propose de modéliser la dynamique
inverse du véhicule par un réseau de neurones artificiels.

Dans un premier temps, le simulateur, introduit dans la section précédente, est utilisé pour
générer un jeu de données de conduite qui sera utilisé par la suite dans le cadre d’un apprentis-
sage supervisé. Ce jeu de données est composé de plusieurs dizaines de milliers d’exemples.
Chaque exemple est décrit par un triplet : ce triplet se compose de l’état initial du véhicule,
du contrôle (commande) qui est appliqué au véhicule pendant la durée de la simulation, et de
la trajectoire (série temporelle des positions) réellement suivie par le véhicule au cours de la
simulation. Pour chacun des exemples, le contrôle appliqué et l’état initial du véhicule sont
tirés aléatoirement de manière à pouvoir couvrir de nombreuses situations.

Deux architectures de réseaux de neurones sont proposées pour apprendre de manière super-
visée la dynamique inverse du véhicule.

La première architecture consiste en un perceptron multicouche, ou multilayer perceptron

(MLP) en anglais, à cinq couches cachées, dont les entrées sont le vecteur d’état initial du
véhicule et la trajectoire suivie par le véhicule présentée au réseau sous forme de vecteur
colonne.

La deuxième architecture étend l’architecture de ce perceptron multicouche, en ajoutant en
entrée la sortie d’un module de pré-traitement de la trajectoire par un réseau de neurones
(module) convolutif. Le terme de CNN est utilisé pour désigner cette deuxième architecture.

Un entrainement de chacun des réseaux de neurones est réalisé. L’objectif de chaque réseau
de neurones consiste à prédire le contrôle (a priori inconnu) à appliquer à un véhicule dans
un état initial donné (connu) afin de respecter une trajectoire de référence (connue). Pour
l’entraînement, une fonction de coût en erreur quadratique moyenne est utilisée avec une
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régularisation L2. De plus, grâce à un hyperparamètreγ , l’entraînement accorde plus de
priorité à la dynamique latérale qu’à la dynamique longitudinale.

Comparaison entre les approches classiques et les approches basées sur des réseaux de neurones
Une fois chacun des deux réseaux de neurones appris de manière supervisé sur le jeu de don-
nées, les paramètres des réseaux de neurones sont gelés.

Les deux réseaux de neurones sont ensuite utilisés comme contrôleurs pour contrôler un
véhicule. Les réseaux sont évalués sur une piste de test inconnue. La trajectoire de référence à
suivre à chaque instant est générée par une courbe de bézier cubique qui ramène le véhicule
vers la piste à suivre.

Ainsi, à chaque itération, (i) une courbe de bézier est calculée pour relier la position réelle du
véhicule à la piste, (ii) une requête composée de l’état du véhicule ainsi que de la courbe de
bézier précédemment calculée est fournie en entrée du réseau de neurones, (iii) le réseau de
neurones retourne l’angle de rotation de la roue avant gauche (angle du volant) et le couple de
chacune des quatre roues que le véhicule va appliquer jusqu’à la prochaine itération. La durée
d’une itération est de 300ms, mais la requête au réseau de neurones prend moins de 2ms.

Enfin, deux méthodes classiques de contrôle sont également considérées. Elles ne font pas
appel à des réseaux de neurones. Le profil des erreurs en termes d’angle du volant, de couple
de chaque roue et d’erreur latérale est étudié.

Il s’avère que les commandes de contrôle obtenues sont plus lisses pour le modèle CNN que
pour le modèle MLP, en particulier dans les virages.

Pour les situations de conduite normales faiblement couplées, les approches classiques -qui
présentent l’avantage de posséder des garanties théoriques- avec des contrôleurs découplés en
latéral et en longitudinal peuvent sembler préférables à des approches neuronales.

Néanmoins, dans les situations hautement couplées (c’est le cas de la section de route numéro
6) l’usage de réseaux de neurones pour le contrôle de véhicule est vital. Les deux modèles
MLP et CNN traversent avec succès la section de route en tenant compte du couplage de la
dynamique latérale et longitudinale. Il est à noter que les deux réseaux de neurones anticipent
les virages et, si nécessaire, ralentissent délibérément la vitesse du véhicule en-deçà de la
vitesse de consigne afin de pouvoir réussir à suivre correctement la trajectoire de référence
dans les virages.

Dans les parties les plus difficiles du parcours, les performances des modèles classiques se
révèlent bien plus faibles que les performances obtenues avec les réseaux de neurones.

Conclusion Ce chapitre présente des approches et des modèles pour le suivi de trajectoire de véhicules
autonomes grâce à des méthodes d’apprentissage profond. Deux architectures de réseaux de
neurones sont évaluées à partir d’un modèle de dynamique de véhicule très fidèle. L’objectif
des réseaux de neurones est d’estimer l’angle de rotation du volant et le couple de chacune des
quatre roues à appliquer pour pouvoir suivre une trajectoire de référence étant donné l’état du
véhicule. Il s’avère que les meilleures performances sont obtenues dans le cas du modèle CNN :
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les commandes obtenues sont lisses, sans à-coups, et sont d’une grande précision. De plus,
comparés à des méthodes classiques, les réseaux de neurones présentent l’avantage majeur de
pouvoir gérer des situations à fort couplage longitudinal-latéral, et cela en temps-réel.

Chapitre 4
Reconnaissance de Gestes avec des Réseaux de Neurones Convolu-
tifs sur le Temps

Ce chapitre porte sur la question de la reconnaissance de gestes et d’actions humaines avec des réseaux
de neurones convolutifs où la dimension temporelle du mouvement est convoluée. Il est subdivisé en six
sections :

1. Introduction

2. Revue de littérature sur le sujet

3. Réseaux neuronaux convolutifs relativement au temps

4. Expériences

5. Visualisations des modèles

6. Conclusion

Introduction Pouvoir reconnaitre les intentions humaines et les actions humaines est utile dans la
vie courante, et peut même être crucial dans certaines situations. En particulier, la faculté de
reconnaitre des gestes, des attitudes, des postures ou encore des expressions faciales se révèle
souhaitable et utile dans de nombreuses situations. Le geste est un moyen simple et naturel qui
nous permet d’interagir avec notre environnement.

Différents capteurs permettent de représenter numériquement des gestes humains. C’est le
cas bien sûr des appareils photographiques et des caméras classiques qui fournissent des
images en couleurs. C’est également le cas des caméras stéréo, des caméras de profondeur, des
caméras événementielles, des centrales inertielles ou des systèmes de capture de mouvement
par exemple.

Or, des expériences ont montré que la seule connaissance de la position des articulations du
corps humain et de leur mouvement au cours du temps est suffisante pour permettre à un sujet
de reconnaitre et de discerner des actions humaines. La position des articulations du corps
humain peut être estimée en temps réel grâce à des techniques de vision par ordinateur, ou être
fournie par des capteurs physiques.

Ainsi, la simple donnée d’une séquence temporelle de vecteurs décrivant les positions des
articulations du corps humain au cours d’un mouvement semble a priori suffisante pour pouvoir
reconnaître ce mouvement. Une telle donnée de pose humaine est plus respectueuse de la vie
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privée que des données plus denses comme des vidéos (qui garantissent moins l’anonymat)
et présente l’avantages d’être plus légère et donc potentiellement plus rapide à analyser. Ce
critère de vitesse est important car, dans la plupart des situations, l’analyse du mouvement
n’est utile que si elle est réalisée en temps-réel. C’est par exemple la cas pour des tâches de
domotique ou de conduite autonome pour saisir l’intention d’un piéton de traverser, ou non, la
rue.

Ce chapitre propose une architecture de réseaux de neurones convolutifs (CNN) pour réaliser
des tâches de reconnaissance de gestes et d’actions en se basant sur des informations tem-
porelles. Les mouvements peuvent être analysés soit à chaque pas de temps, soit à la fin du
mouvement. Outre sa relative légèreté, le modèle proposé possède l’avantage majeur de ne
faire appel qu’à des couches de convolutions qui sont plus facile à entraîner et à auditer que des
couches récurrentes. Enfin, l’architecture du modèle ne nécessite qu’une adaptation minime et
immédiate pour pouvoir être appliquée à différentes sources de capteurs ou à des mouvements
variés : gestes de la main, mouvements du corps entier, expressions faciales, etc.

Revue de littérature sur le sujet De nombreuses approches ont été proposées dans la littérature scien-
tifique dans le but de reconnaître des mouvements. Certaines sont basées sur des méthodes
d’apprentissage automatique et font appel à des caractéristiques expertes définies manuelle-
ment, basées par exemple sur des distances géométriques entre les différentes articulations, sur
des histogrammes ou encore sur des travaux de géométrie riemannienne. D’autres se basent
sur des méthodes d’apprentissage profond avec des réseaux de neurones : on retrouve des
approches qui font appel à toutes les principales architectures de réseaux de neurones artificiels,
à savoir les réseaux de neurones à propagation avant densément connectés, les réseaux de
neurones récurrents, les réseaux de neurones convolutifs, ou encore des réseaux de neurones
faisant intervenir des mécanismes d’attention. Néanmoins, les approches qui font appel à des
réseaux de neurones convolutifs sont encore relativement peu explorées, et ne se basent que
très rarement sur des données de pose humaine.

Réseaux neuronaux convolutifs relativement au temps Cette section propose une nouvelle approche
pour la reconnaissance de gestes et d’actions à partir de séquences de poses humaines.

Dans un premier temps, une définition formelle d’une séquence de poses sous la forme
d’un tenseur à trois dimensions (Temps, Articulations, Dimensions) est donnée. Quelques
visualisations possibles de ces tenseurs sont présentées à titre illustratif. Il est possible,
sans perte d’information, de considérer ces séquences de poses comme des tenseurs à deux
dimensions (Temps, Canaux).

Dans un second temps, l’architecture de la famille de réseaux de neurones proposée, intitulée
SkelNet, est détaillée. Enfin dans un dernier temps, les modalités d’évaluation des perfor-
mances des réseaux SkelNet sont présentées : métriques retenues, fonction de coût choisie pour
l’entraînement, régularisations appliquées, algorithme d’optimisation choisi, jeu de données
utilisé, méthode d’initialisation des poids, et taille des lots, ou batch size en anglais, durant
l’entrainement.
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Un modèle d’apprentissage profond SkelNet est un réseau de neurones modélisant, grâce
à convolutions temporelles, des séquences de poses humaines de gestes ou d’actions, par
exemple dans un but de classification (reconnaissance) de ces gestes ou de ces actions. Le
modèle prend en entrée des séquences de poses.

Dans un premier temps, un module de pré-traitement apprend à générer (sans impact sur la
dimension temporelle) des caractéristiques susceptibles d’être plus pertinentes que les données
brutes, par exemple en mélangeant l’information de différents canaux vers de nouveaux canaux
plus pertinents.

Une des forces principales du modèle réside dans l’extraction de caractéristiques et de motifs
temporels, ces motifs étant ensuite utilisés pour réaliser la classification de la séquence. Dans
le modèle de référence, chaque canal d’entrée est traité séparément. Il est néanmoins possible
de mettre en commun ces traitements comme le montrent les expériences réalisées dans
les sections suivantes. Pour plus de performance et de robustesse, la phase d’extraction de
caractéristiques temporelles est séparée en trois branches parallèles, et dont les sorties sont
finalement concaténées pour être réunies.

La première branche est constituée d’une succession de plusieurs couches convolutives
où la convolution est unidimensionnelle et ne s’applique qu’à la dimension temporelle du
tenseur. Chaque couche convolutive suit une architecture classique dans les réseaux convo-
lutifs avec la présence d’une alternance de couches de convolutions, de mises en commun et
d’échantillonnages, ou pooling en anglais, de régularisations, et d’activations non-linéaires.
Les convolutions et les mises en commun considèrent uniquement la dimension temporelle du
tenseur.

Une deuxième branche parallèle à la première est présente dans le module d’extraction de
motifs temporels. Elle est identique en tous points à la première, à la différence près que la
taille des noyaux de convolutions varie. Les deux branches réalisent ainsi un filtrage temporel
à des résolutions temporelles différentes.

Une troisième branche parallèle aux deux précédentes, improprement appelée branche résidu-
elle, réalise un sous-échantillonnage par moyenne temporelle du tenseur d’entrée du module.

Enfin, pour chaque canal, les sorties des trois branches sont concaténées dans un vecteur
unique.

Une fois que les caractéristiques temporelles ont été extraites de chacun des canaux, elles
sont toutes fournies à un réseau de neurones densément connecté qui se charge de réaliser la
classification finale.

Le modèle global, avec le module de pré-traitement, les modules d’extraction de motifs
temporels, et le module final de classification, est différentiable et peut être entraîné de bout en
bout.

Expériences De nombreuses expériences sont proposées et effectuées afin d’étudier l’architecture de
réseaux de neurones convolutifs SkelNet proposée.
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Dans un premier temps, l’influence de la représentation initialement choisie pour les données
est étudiée : effet de la standardisation des données par une méthode de Procrustes, effet
des différentes techniques d’augmentation de données, effet de l’échantillonnage, choix de la
représentation en positions ou en rotations, et reconnaissance précoce de gestes.

Dans un deuxième temps, une justification aux différents choix qui sous-tendent l’architecture
du réseau de neurones est proposée : effet de la méthode de mise en commun, ou pooling en
anglais, effet du module de pré-traitement, effet du nombre de couches et de l’opérateur de
convolution temporelle, effet de la méthode de régularisation.

Dans un troisième temps, une étude des paramètres du modèle et de leur éventuel partage est
étudié : effet du partage des poids au niveau de l’entrée, effet du partage des poids selon la
résolution, effet du partage des poids selon le niveau d’abstraction et de profondeur.

Enfin, dans un dernier temps, on montre que le modèle proposé peut s’appliquer à de nouveaux
jeux de données, à de nouvelles sources de données et à de nouvelles tâches : reconnaissance
d’action à partir de mouvements du corps entier, reconnaissance d’émotions à partir de
mouvements d’expressions faciales.

Visualisations des modèles La question de l’interprétation des traitements réalisés par les réseaux de
neurones artificiels est une question scientifique qui reste ouverte et débattue. Il est souhaitable
de tenter de “comprendre” au moins partiellement ce que le réseau de neurones apprend pour
mieux saisir pourquoi il classe des gestes ou des actions dans une catégorie plutôt qu’une
autre. Pour ce faire, des visualisations, basées sur des méthodes d’attribution a posteriori, sont
étudiées dans cette section.

Il apparait ainsi des différences entre les variations du modèle proposé. Des différences sont
par exemple observées selon que les canaux d’entrée du modèle (i) ne sont pas partagés, (ii)
sont partagés par blocs de canaux x, y et z, ou (iii) sont partagés globalement pour tous les
canaux.

Conclusion Ce chapitre propose une nouvelle approche de reconnaissance de gestes et d’actions à
partir de séquences de poses humaines. L’approche se base sur une famille de réseaux de
neurones convolutifs 1D. Cette famille de modèles, intitulée SkelNet, fait usage de convolutions
appliquées à la dimension temporelle afin d’extraire des motifs temporels du mouvement (du
squelette) de la pose humaine. Une étude extensive de la performance des modèles est réalisée.
Des réseaux peu profonds se révèlent suffisants pour des jeux de données de tailles moyennes
tandis que des réseaux plus profonds sont plus avantageux pour des jeux de données de grande
taille. Le modèle SkelNet est relativement léger (∼2.4M de paramètres). L’approche proposée
n’est pas spécifique aux gestes de la main et son applicabilité est confirmée pour des tâches de
reconnaissances d’actions humaines ou de reconnaissance d’émotions faciales.
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Chapitre 5
Génération de Mouvements Humains par Apprentissage Profond

Ce chapitre porte sur la question de la synthèse de mouvements humains avec des réseaux de neurones
artificiels. Il est subdivisé en cinq sections :

1. Introduction

2. Revue de littérature sur le sujet

3. Auto-encodeur de pose humaine entraîné avec des triplettes temporelles

4. Réseaux antagonistes génératifs spatio-temporels

5. Conclusion

Introduction Dans ce chapitre, deux nouvelles approches sont proposées pour la synthèse de séquences
de poses humaines, c’est-à-dire pour la synthèse de mouvements. Les deux approches sont
conçues pour générer des données de poses, et ne nécessitent ni image ni information préalable,
comme c’est parfois le cas dans d’autres approches.

La première approche se base sur un auto-encodeur temporellement-contrastif entraîné sur des
triplettes de poses individuelles. La seconde approche se base sur des réseaux antagonistes
génératifs, les réseaux étant cette fois-ci entraînés à l’échelle de séquences entières.

Revue de littérature sur le sujet Dans la littérature scientifique, deux directions principales ont été
explorées pour la synthèse de mouvements de pose humaine via des réseaux de neurones : les
modèles basés sur des réseaux récurrents qui ont tendance à séparer la structure spatiale et la
structure temporelle, et les modèles génératifs adverses qui les apprennent de manière conjointe.
Plusieurs approches tentent notamment de conjuguer des réseaux de neurones récurrents avec
des réseaux de neurones auto-encodeurs variationnels, avec un succès néanmoins limité.
Dans une autre voie, plusieurs approches sont basées sur des réseaux antagonistes génératifs
appliqués à des images couleurs issus d’une caméra et associés ou conditionnés avec les poses
humaines correspondantes. Ces approches nécessitent ainsi des données images en plus des
données de poses.

Auto-encodeur de pose humaine entraîné avec des triplettes temporelles Cette section propose une
nouvelle approche pour apprendre de manière auto-supervisée des représentations de poses
humaines dans un espace latent, avec l’aide d’un réseau de neurones de type auto-encodeur
débruitant. Un auto-encodeur débruitant apprend à encoder une pose vers un espace latent et à
la décoder depuis ce même espace latent. La différence entre un auto-encodeur débruitant et
un auto-encodeur simple réside dans le fait que là où auto-encodeur simple apprend à encoder
une pose puis à la décoder à l’identique, un auto-encodeur débruitant apprend à décoder une
version débruitée de cette pose, c’est-à-dire la même pose qu’en entrée mais sans le bruit.
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L’auto-encodeur débruitant proposé est entraîné à minimiser une fonction de coût qui combine
un terme de reconstruction, qui assure la cohérence spatiale des poses individuelles, et un
terme de triplette temporelle, qui assure une cohérence temporelle entre les poses individuelles.

Après entraînement du réseau de neurones, l’encodeur et le décodeur se révèlent très continus.
La synthèse (statique) d’une pose est réalisée en échantillonnant un vecteur aléatoire dans
l’espace latent et en décodant celui-ci avec le décodeur. La synthèse (dynamique) d’une
séquence de poses est elle aussi réalisée de manière très immédiate : (i) deux vecteurs
aléatoires sont d’abord échantillonnés dans l’espace latent, (ii) une séquence de vecteurs
latents est obtenue par interpolation linéaire entre ces deux vecteurs, et (iii) chacun de ces
vecteurs latents est décodé par le décodeur de façon à aboutir à la séquences de pose souhaitée.
Les séquences de poses générées sont cohérentes spatialement et temporellement. À l’œil
humain, les séquences de poses générées sont même souvent perçues comme étant plus réalistes
que les séquences réelles, mais bruitées, de vérité terrain.

Réseaux antagonistes génératifs spatio-temporels Cette section propose une nouvelle approche basée
sur des réseaux antagonistes génératifs, ou generative adversarial networks (GAN) en anglais,
pour la synthèse de séquences de poses humaines. Pour représenter les séquences de poses,
une représentation 2D pouvant servir d’entrée à des convolutions 2D est adoptée. Cette
représentation, reprise de la littérature scientifique, s’obtient en parcourant les articulations
du corps selon un chemin qui assure -quitte à réordonner les articulations ou à les répéter
plusieurs fois- une continuité spatiale entre deux “nouvelles” articulations successives ainsi
obtenues. Il fait alors sens de calculer des convolutions sur le tenseur représentant la séquence
de pose, et dont les dimensions peuvent être vues par la pensée comme les dimensions d’un
tenseur représentant une image. Deux réseaux de neurones, un générateur et un discriminateur,
(comme pour tous les réseaux antagonistes génératifs), sont entraînés de manière antagoniste
à synthétiser et à discriminer des séquences de pose. L’architecture de chacun de ces deux
réseaux est de type convolutif, chaque convolution 2D traitant ainsi de manière conjointe des
informations spatiales et temporelles. Les deux réseaux sont conditionnés sur des classes
d’actions, dans l’optique de pouvoir synthétiser des actions spécifiques. Une fois les deux
réseaux entrainés, les paramètres des réseaux sont gelés. Le générateur est ensuite utilisé pour
synthétiser des séquences dans la représentation 2D précédemment évoquée. Les séquences de
poses sont ensuite retransformées en leur représentation tensorielle canonique.

Conclusion Deux nouvelles approches différentes pour la synthèse de séquences de poses humaines
sont proposées dans ce chapitre.

Dans la première approche, un réseau de neurones auto-encodeur, entraîné avec des triplettes
de poses échantillonnées temporellement, découple l’essentiel des informations spatiales et
temporelles. La fonction de coût temporel choisie a pour rôle principal d’“organiser” et
de “trier” les représentations spatiales de poses d’une manière cohérente d’un point de vue
temporel.

Dans la seconde approche, des réseaux antagonistes génératifs spatio-temporels conditionnels
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couplent l’information spatiale et temporelle.

De nombreuses extensions des approches proposées sont envisageables; certaines étant même
relativement faciles à obtenir. Par exemple, l’inclusion d’une contrainte antagoniste permettrait
au modèle auto-encodeur de poses de garantir un réalisme des poses synthétisées encore accru.
L’ajout d’un mécanisme de débruitage aux réseaux antagonistes génératifs pourrait lui aussi se
révéler pertinent. Enfin, une représentation des classes par un encodage plus judicieux que
l’encodage 1 parmi n, ou one-hot encoding en anglais, pourrait ouvrir la voie à de nouvelles
approches.

Chapitre 6
Conclusion

Ce chapitre résume les contributions de cette thèse. Quelques pistes de recherche en lien avec les
résultats obtenus dans la thèse sont suggérées. Enfin, on mentionne des perspectives à plus long
terme pour l’intelligence artificielle, en particulier celle de l’apprentissage auto-supervisé et celle de
l’apprentissage par renforcement.
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MOTS CLÉS

Apprentissage Profond, Contrôle Couplé de Véhicule, Reconnaissance de Gestes et d’Actions, Génération

de Mouvements Humains, Représentation de Pose Humaine, Séries Temporelles, Modélisation de Données

Séquentielles

RÉSUMÉ

L’apprentissage profond est une branche du domaine de l’intelligence artificielle qui vise à doter les machines de la capac-
ité d’apprendre par elles-mêmes à réaliser des tâches précises. L’apprentissage profond a abouti à des développements
spectaculaires dans le domaine de l’image et du langage naturel au cours des dernières années. Pourtant, dans de
nombreux domaines, les données d’observations ne sont ni des images ni du texte mais des séries temporelles qui
représentent l’évolution de grandeurs mesurées ou calculées. Dans cette thèse, nous étudions et proposons différentes
représentations de séries temporelles à partir de modèles d’apprentissage profond. Dans un premier temps, dans le
domaine du contrôle de véhicules autonomes, nous montrons que l’analyse d’une fenêtre temporelle par un réseau de
neurones permet d’obtenir de meilleurs résultats que les méthodes classiques qui n’utilisent pas de réseaux de neurones.
Dans un second temps, en reconnaissance de gestes et d’actions, nous proposons des réseaux de neurones convolutifs
1D où la dimension temporelle seule est convoluée, afin de tirer profit des invariances temporelles. Dans un troisième
temps, dans un but de génération de mouvements humains, nous proposons des réseaux de neurones génératifs con-
volutifs 2D où les dimensions temporelles et spatiales sont convoluées de manière jointe. Enfin, dans un dernier temps,
nous proposons un plongement où des représentations spatiales de poses humaines sont (ré)organisées dans un espace
latent en fonction de leurs relations temporelles.

ABSTRACT

Artificial intelligence is the scientific field which studies how to create machines that are capable of intelligent behaviour.
Deep learning is a family of artificial intelligence methods based on neural networks. In recent years, deep learning has
lead to groundbreaking developments in the image and natural language processing fields. However, in many domains,
input data consists in neither images nor text documents, but in time series that describe the temporal evolution of
observed or computed quantities. In this thesis, we study and introduce different representations for time series, based
on deep learning models. Firstly, in the autonomous driving domain, we show that, the analysis of a temporal window
by a neural network can lead to better vehicle control results than classical approaches that do not use neural networks,
especially in highly-coupled situations. Secondly, in the gesture and action recognition domain, we introduce 1D parallel
convolutional neural network models. In these models, convolutions are performed over the temporal dimension, in order
for the neural network to detect -and benefit from- temporal invariances. Thirdly, in the human pose motion generation
domain, we introduce 2D convolutional generative adversarial neural networks where the spatial and temporal dimensions
are convolved in a joint manner. Finally, we introduce an embedding where spatial representations of human poses are
sorted in a latent space based on their temporal relationships.

KEYWORDS

Deep Learning, Coupled Vehicle Control, Gesture and Action Recognition, Human Motion Generation, Human

Pose Embedding, Time Series, Sequence Modeling
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