
HAL Id: tel-03129146
https://pastel.hal.science/tel-03129146

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmation dynamique tropicale en optimisation
stochastique multi-étapes

Duy-Nghi Tran

To cite this version:
Duy-Nghi Tran. Programmation dynamique tropicale en optimisation stochastique multi-étapes. Op-
timisation et contrôle [math.OC]. Université Paris-Est, 2020. Français. �NNT : 2020PESC1040�. �tel-
03129146�

https://pastel.hal.science/tel-03129146
https://hal.archives-ouvertes.fr

École doctorale Mathématiques et Sciences et Technologies de
l’Information et de la Communication

Thèse de doctorat

Spécialité : Mathématiques

Présentée par

Duy Nghi Benôıt Tran

Pour obtenir le grade de

Docteur de l’Université Paris-Est

Programmation dynamique tropicale en
optimisation stochastique multi-étapes

Tropical dynamic programming in

multistage stochastic optimization

Soutenance le 11 Décembre 2020 devant le jury composé de :

M. William McEneaney University of California, San Diego Rapporteur

M. Alois Pichler Technische Universität Chemnitz Rapporteur

M. Michel De Lara École des Ponts ParisTech Président du jury

M. Bernardo da Costa Universidade Federal do Rio de Janeiro Examinateur

M. Welington de Oliveira Mines ParisTech Examinateur

Mme Zheng Qu The University of Hong Kong Examinateur

Mme Marianne Akian Inria et École polytechnique Directrice de thèse

M. Jean-Philippe Chancelier École des Ponts ParisTech Directeur de thèse

Contents

I Introduction 3

1 Version Française 5

2 English version 17

II Tropical Dynamic Programming 27

3 Tropical Dynamic Programming: the deterministic case 29
3.1 Introduction . 30
3.2 Notations and definitions . 32
3.3 Almost sure convergence on the set of accumulation points 38
3.4 SDDP selection function: lower approximations in the linear-convex framework 44
3.5 A min-plus selection function: upper approximations in the linear-quadratic

framework with both continuous and discrete controls 50
3.6 Numerical experiments on a toy example . 58
3.7 Algebraic Riccati Equation . 63
3.8 Smallest and greatest eigenvalues . 64
3.9 Homogenization . 65

4 Tropical Dynamic Programming: toward the stochastic case 69
4.1 Introduction . 70
4.2 Tropical Dynamical Programming on Lipschitz MSP 72
4.3 Asymptotic convergence of TDP along the problem-child trajectory 78
4.4 Illustrations in the linear-polyhedral framework 81

III Entropic regularization of the Nested Distance 91

5 Entropic regularization of the Nested Distance 93
5.1 Introduction: from the Wasserstein distance to the Nested Distance 94
5.2 The Nested Distance and its entropic regularization 97
5.3 Numerical experiment . 101
5.4 Proof of Theorem 58 . 101

IV Interchange between integration and minimization 103

6 Interchange between integration and minimization 105
6.1 Introduction . 106
6.2 Minimization interchange theorem on posets 107
6.3 Interchange between minimization and integration 110
6.4 Conclusion and perspectives . 117
6.5 Extended Lebesgue and outer integrals . 117

iv Contents

Miscellaneous results 125
A Uniform sampling on the unit sphere . 125
B Approximating by independent scenario trees 126
C Tropical Dynamic Programming for POMDP 127

Remerciements

J’espère que le désir que j’ai
d’apprendre me tiendra lieu de
capacité

Emilie du Châtelet

Mes premiers remerciements vont à Marianne et Jean-Philippe. Par votre bienveillance
à mon égard et votre profonde expérience j’ai beaucoup appris durant ces trois années, tant
sur la méthode que sur le sujet. Je me souviendrai du temps que vous m’avez consacré
à répondre mes questions qui étaient parfois loin d’être mûres et de ces journées entières
passées à travailler sur le projet de thèse. Vous m’avez offert des conditions idéales pour
mener cette thèse. Merci.

Je tiens aussi particulièrement à te remercier Michel, tu as été le troisième directeur
officieux de cette thèse. Tes remarques et critiques m’ont non seulement apprises à faire des
présentations plus claires mais aussi à être un chercheur plus efficace, mieux organisé.

It was a great honor to have you both, Professor McEneaney and Professor Pichler as
reviewers of this thesis. Your work were the starting point for two of my projects and hopefully
many others, thank you ! J’ai aussi eu l’opportunité de partir quelques mois à Hong Kong
durant cette thèse pour travailler avec toi Zheng, et à défaut d’avoir beaucoup produit, ce fut
peut être la période où j’ai le plus lu, travaillé et échangé durant ces trois années, merci encore.
Merci à Bernardo et Welington pour votre participation à mon jury et pour vos commentaires,
la présente version de ma thèse a profité de nombreuses de vos corrections ! Je remercie aussi
l’ensemble des chercheurs des équipes tropical de l’X et d’optimisation stochastique des Ponts
qui ont suivi cette thèse de plus ou moins loin et qui ont tous offert retours et critiques sur
mon travail. Un grand merci aussi à Isabelle qui a veillé à ce que je ne manque de rien durant
cette thèse.

J’ai eu l’opportunité d’enseigner à l’X et avoir mes premières expériences face à une classe.
Les nombreuses discussions avec toi Igor et les chargés de TD du cours de “Discrete Mathe-
matics”, Apolline, Luca, Milica, Mathieu, m’ont beaucoup appris sur le métier d’enseignant
qui était le but originel de mes études.

Je n’ai pas eu le courage de contacter mes anciens professeurs, mais si par hasard l’une ou
l’un d’entre vous tombe sur ces quelques mots, sachez que votre exemple et vos enseignements
m’ont constamment poussés vers le haut et à changer au fil des années.

Je suis chanceux d’avoir des amis qui ont sû me supporter depuis si longtemps, cela
remonte même au collège pour toi Jocelyn ! Ce bout de chemin a été bien plus agréable en
votre compagnie. J’avais commencé à vous remercier un(e) par un(e) avant de m’apercevoir
que ça allait être sacrément long aussi je vais plutôt dérouler une longue liste :). Merci à
ceux que je continue de voir depuis le lointain lycée (on est vieux !) Antoine, Claire, Hugo,
Martin, Rabi, Raphy, Vico. J’espère qu’on pourra continuer de se voir malgré la distance et
nos jobs, promis je te ditcherai pas la prochaine fois Antoine. Et tant d’autres du lycée que
je revois occasionellement !

Merci aux amis des premières années de fac Antoine et Claire (double sanction), Chau-
mont, Fred, Géry, Imad (hallouf), Méro, Solène, Yacine (hallouf 2)... et toutes ces heures
passées à rager sur des cours parfois obscurs, à trâıner chez Bouée (un jour on aura des nou-
velles de ce gars), à plancher à la BU, à rien faire devant la BU, à lancer des pommes de

pins dans la poubelle devant la BU, à boire des cafés devant la BU... Ces années sont très
importantes pour moi : c’est à cette période où je me suis mis à aimer étudier.

Et aussi merci à tous mes amis des nombreuses années suivantes où j’ai essayer d’apprendre
des maths ! En particulier à Eugène et Rafa qui m’ont accompagné à toutes les secondes
sessions possibles de L3 pendant que tout le monde partait en vacances ! Je pense encore
de temps en temps à ces moments de bonheurs et galères au 425, à ces heures avec Diane,
Marion et Robert dans la vieille bibli de la prépa agreg où on grimpait aux fenêtres pour
travailler le week-end, à ces nombreuses heures à regarder des films chez Nico ou chez Diane,
à François et sa légendaire bistouille, à cette (trop courte) colloc avec Eugène et Céline où on
alternait entre les Marseillais vs les Chtits et discussions de maths, à tous ces bons moments
(et parfois difficiles !) avec Arpad, Ayoub, BG, doudou, Duvocelle, Havet, Heythem, Juliette,
Pierre, queja, Sam, Touftouf et tant d’autres de nos promos d’Orsay. C’est à vos côtés que
j’ai tant pris goût aux Mathématiques et à suivre l’enseignement des Mâıtres du 425.

Durant ces trois années de thèse j’ai rencontré d’autres doctorants et post-doctorants
partageant le même intérêt et les mêmes difficultés face à la thèse. J’ai pû continuer de
travailler dans la bonne humeur à l’aide des nombreux viets avec Alex, Lingling, Sami (la
patronne m’a demandé des nouvelles de “Bouddha” hier), les domac avec Dylan, Mouad,
Sofiane, Wiwi (et sa légendaire intéraction avec un type un peu trop énervé), les sessions
de jeux avec Cyrille, Seb et Thomas, les conseils des anciens, Etienne, Gaspard, Henri et
Marion, et surtout la bonne ambiance qui régnait au 2ème étage du Cermics et son adhérence
grâce à Adel, Adèle, aux deux Adrien, Guillaume, Maël (mon bureau est dispo maintenant),
Ezéchiel, Oumi, mon frère de thèse Thomas, Victor... Que ce soit à travers les intéractions
quotidiennes au Cermics, les cours dispensés à l’X, les rencontres en conférences, j’ai pu me
former agréablement au formidable travail de chercheur grâce à vous.

Enfin, je voudrais remercier ma famille ainsi que mon grand-frère adoré et ma mère adorée.
Mais plus que tout, je veux remercier la personne pour qui mes études comptaient tant. Cette
personne dont le visage s’éclairait quand il mentionnait mes rares réussites. Papa, qui aurait
tant aimé voir l’aboutissement de ma thèse et pour qui, avant tout autre personne, je me suis
donné tant de mal à étudier durant toutes ces années. J’espère que tu es fier de moi, merci
pour tout Papa.

Part I

Introduction

Chapter 1

Version Française

Problèmes d’optimisation stochastique multi-étapes

Dans cette thèse nous étudions les problèmes d’optimisation stochastique multi-étapes dans
le cadre hasard-décision (le risque vient en premier, la décision en seconde). En partant d’un
état donné x0, un décideur observe le résultat w1 d’une variable aléatoire W1, puis décide
d’un contrôle u0 qui induit un coût cw1

0 (x0, u0) connu et le système évolue vers un état futur
x1 à partir d’une dynamique connue : x1 = fw1

0 (x0, u0). Après avoir observé un nouveau
résultat aléatoire, le décideur prend une nouvelle décision basée sur ce constat qui induit
un coût connu, le système évolue alors vers un état futur, et ainsi de suite jusqu’à ce que
T décisions aient été prises. A l’étape finale, on impose des contraintes sur l’état final xT ,
modélisées par une fonction de coût final ψ. Le décideur vise à minimiser le coût moyen de
ses décisions.

Les problèmes d’optimisation stochastique multi-étapes (MSP) peuvent être décrits formelle-
ment par le problème d’optimisation suivant

min
(X,U)

E

[
T−1∑
t=0

c
Wt+1
t (Xt,Ut) + ψ(XT)

]
,

s.t. X0 = x0 donné, ∀t ∈ [[0, T − 1]],

Xt+1 = f
Wt+1
t (Xt,Ut),

σ(Ut) ⊂ σ(X0,W1, . . . ,Wt+1),

(1.1)

où (Wt)t∈[[1,T]] est une suite donnée de variables aléatoires indépendantes ayant chacune des
valeurs dans un ensemble mesurable (Wt,Wt).

Résolution par programmation dynamique

Une approche pour résoudre les problèmes MSP est la programmation dynamique, voir par
exemple [Bel54, Ber16, CCCDL15, PP14, SDR09]. On note X = Rn l’espace d’état et U = Rm
l’espace des commandes pour certains entiers n,m ∈ N. Les espaces X et les U sont tous deux
dotés de leurs structures euclidienne et borélienne. Nous définissons les opérateurs de Bellman
ponctuels Bwt et les opérateurs de Bellman moyennés Bt pour chaque t ∈ J0, T − 1K. Pour
chaque réalisation possible w ∈ Wt+1 du bruit Wt+1, pour chaque fonction φ : X → R
prenant des valeurs réelles étendues dans R = R ∪ {±∞}, la fonction Bwt (φ) (·) : X → R est
définie par

∀x ∈ X, , Bwt (φ) (x) = min
u∈U

(
cwt (x, u) + φ

(
fwt (x, u)

))
.

L’opérateur de Bellman moyenné Bt est la moyenne de tous les opérateurs de Bellman
ponctuels par rapport à la loi de probabilité de Wt+1. C’est-à-dire que pour chaque fonction
φ : X→ R, on pose

∀x ∈ X , Bt (φ) (x) = E
[
BWt+1
t (φ) (x)

]
= E

[
min
u∈U

(
c
Wt+1
t (x, u) + φ

(
f
Wt+1
t (x, u)

))]
.

L’opérateur Bellman moyenné peut être vu comme un opérateur à une étape qui calcule
en un état donné x, le coût de la meilleure (en moyenne) commande. Notez que dans le
cadre hasard-décision, la commande est prise après observation du bruit. La programmation

dynamique stipule que pour résoudre les problèmes MSP (4.1), il suffit de résoudre le système
suivant d’équations de Bellman,

VT = ψ et ∀t ∈ J0, T − 1K, Vt = Bt (Vt+1) . (1.2)

Pour résoudre les équations de Bellman, il faut calculer récursivement en remontant dans le
temps les fonctions valeur (de Bellman) Vt. Enfin, la valeur V0(x0) est la solution du problème
à plusieurs étapes (1.1).

Vers une atténuation du fléau de la dimension

Une limitation de la programmation dynamique pour résoudre les problèmes d’optimisation en
plusieurs étapes est ce qu’on appelle le ”fléau de la dimension” [Bel54]. C’est-à-dire que lorsque
l’espace d’état X est un espace vectoriel, toute méthode basée sur une grille pour calculer les
fonctions valeur a une complexité qui est exponentielle en la dimension de l’espace d’état
X. Un algorithme populaire (voir [GLP15, Gui14, GR12, PP91, Sha11, ZAS18]) qui vise à
atténuer le fléau de la dimension est l’algorithme Stochastic Dual Dynamic Programming (ou
SDDP en abrégé) introduit par Pereira et Pinto en 1991. En supposant que les fonctions de
coût cwt sont convexes et les dynamiques fwt sont linéaires, les fonctions valeur définies par la
Programmation Dynamique (3.3) sont convexes [GLP15]. Sous ces hypothèses, l’algorithme
SDDP vise à construire des les approximations des fonctions valeur en tant que suprema de
fonctions affines et ne repose pas sur une discrétisation de l’espace d’état. L’un des principaux
inconvénients de l’algorithme SDDP est l’absence d’un critère d’arrêt efficace : il construit des
sur-approximations des fonctions valeur mais les approximations par le dessus (ou internes)
sont obtenues par à un schéma de Monte-Carlo coûteux et les critères arrêts associés ne sont
pas déterministes. Nous suivons une autre voie pour fournir des sur approximations comme
expliqué maintenant.

Dans [Qu13, Ch. 8] et [Qu14], Qu a conçu un algorithme qui construit des approximations
par le dessus de la fonction valeur survenant dans le cadre de problèmes de commande opti-
male en horizon infini et continu où l’ensemble des commandes est à la fois discret et continu.
Ce travail a été inspiré par celui de McEneaney [McE07] en utilisant des techniques issues
de l’algèbre tropicale, aussi appelées techniques max-plus ou min-plus. Supposons que pour
chaque contrôle discret, les fonctions de coût sont quadratiques convexes et la dynamique est
linéaire en l’état et le contrôle continu. Si l’ensemble des contrôles discrets est fini, alors en
exploitant la linéarité min-plus des opérateurs de Bellman Bt, on peut montrer que les fonc-
tions valeur peuvent être calculées comme un infimum ponctuel fini de fonctions quadratiques
convexes :

Vt = inf
φt∈Ft

φt ,

où Ft est un ensemble fini de formes quadratiques convexes. De plus, dans ce cadre les éléments
de Ft peuvent être explicitement calculés par le biais de l’Équation Algébrique Discrète de
Riccati (DARE [LR95]). Ainsi, une schéma d’approximation qui calcule une suite croissante
de sous-ensembles

(
F kt
)
k∈N de Ft donne un algorithme qui converge après un nombre fini

d’itérations
V k
t = inf

φt∈Fkt
φt ≈ inf

φt∈Ft
φt = Vt.

Cependant, la taille de l’ensemble des fonctions Ft qui doivent être calculées a une croissance
exponentielle en T − t. Dans [Qu14], face à la croissance exponentielle de Ft, Qu a introduit

un schéma aléatoire qui ajoute à F kt “le meilleur” élément (étant donné les approximations
actuelles) de Ft en un point tiré uniformément sur la sphère de l’unité.

Aperçu de la thèse

Chaque chapitre de cette thèse a été écrit comme un chapitre indépendant. Le lecteur peut
les lire indépendamment des autres.

1. Aux chapitres 3 et 4, nous construisons un algorithme général qui englobe à la fois
l’algorithme SDDP et une adaptation du travail de Qu à un cadre stochastique, à temps
discret et à horizon fini. Notre algorithme construit itérativement des approximations
des fonctions valeur sous forme de combinaisons max-plus ou min-plus linéaires. Ces
deux chapitres constituent le cœur de la thèse.

2. Le chapitre 5 est une contribution sur le calcul d’une distance entre processus stochas-
tiques appelée la Distance Imbriquée. Nous présentons une relaxation entropique de la
Distance Imbriquée qui peut être calculée efficacement.

3. Dans le chapitre 6, nous donnons un théorème général sur l’échange entre intégration
et minimisation. Il généralise notamment celui de Giner [Gin09] et celui de Rockafellar
and Wets [RW09].

Dans chacune des sections suivantes, nous présentons plus en détail chaque chapitre et sa
contribution.

Programmation dynamique tropicale : le cas déterministe

On s’est d’abord intéressé au cadre simplifié des problèmes déterministes d’optimisation multi-
étapes,

min
x=(x0,...,xT)∈XT+1

u=(u0,...uT−1)∈UT

T−1∑
t=0

ct(xt, ut) + ψ(xT)

s.t. ∀t ∈ [[0, T−1]] , xt+1 = ft(xt, ut) et x0 ∈ X donné .

Dans ce contexte déterministe, on a cherché à comprendre comment, à chaque pas de temps,
une combinaison linéaire max-plus ou min-plus de fonctions élémentaires pourrait converger
vers la fonction valeur. On présente un algorithme itératif qui ajoute à chaque itération
une fonction élémentaire à la combinaison linéaire max-plus ou min-plus courante. Cet algo-
rithme, appelé Programmation Dynamique Tropicale (TDP), peut être vu comme une variante
tropicale des approximations parametriques utilisées en Programmation Dynamique Approx-
imative (voir [Ber19, Pow11]) où les fonctions valeurs sont approchées par des combinaisons
linéaires de fonctions élémentaires.

L’algorithme TDP détermine une fonction élémentaire à rajouter en tirant aléatoirement
un point, dit de raffinement. De plus, sachant que les fonctions valeurs vérifient le système
d’équations de Bellman, on souhaiterait que les approximations générées par TDP vérifient
aussi ce système d’équations.

TDP exige deux propriétés sur les fonctions élémentaires ajoutées itérativement aux ap-
proximations courantes de Vt, t < T . La première propriété, locale, est appelée exactitude de
la fonction élémentaire. Elle demande à ce que la fonction élémentaire φt ajoutée vérifie la
t-ème équation de Bellman au point de raffinement x ∈ X:

φt(x) = Bt

(
VFt+1

)
(x) .

La seconde propriété, globale, est appelée validité de la fonction élémentaire. Celle-ci exige
que la fonction élémentaire φt ajoutée au temps t soit toujours en dessous ou au dessus de
l’image par le t-ème opérateur de Bellman Bt de l’approximation courante au temps t + 1,
i.e. en notant VFt+1 une combinaison max-plus or min-plus linéaire de fonctions élémentaires
(approchant Vt+1),

φ(·) ≥ Bt

(
VFt+1

)
(·) , (pour des combinaisons min-plus linéaires)

φ(·) ≤ Bt

(
VFt+1

)
(·) . (pour des combinaisons max-plus linéaires)

Ainsi, ne disposant que d’information exacte qu’en les points de raffinement, il est en
général impossible de garantir que de telles combinaisons linéaires min-plus ou max-plus
vérifient le système d’équations de Bellman. Toutefois, nous avons établi une condition suff-
isante portant sur la richesse des points de raffinement afin que, presque sûrement, asympto-
tiquement les approximations générées par TDP vérifient un système d’équations de Bellman
restreintes. Si les restrictions ne sont à leur tour pas trop contraignantes, alors il est possible
de conclure que toute suite de fonctions vérifiant un tel système d’équations est égale à la
suite de fonctions valeurs, en des points d’intérêts.

On obtient de cette façon le premier résultat de cette thèse qui est une condition suffisante
portant sur la richesse des points de raffinement, asymétrique entre combinaison linéaire min-
plus et max-plus, afin d’obtenir convergence presque sûre asymptotique des approximations
générées par TDP vers la fonction valeur en des points d’intérêts.

On a ensuite illustré (voir Figure 1.1) ce résultat de convergence en appliquant l’algorithme
TDP pour générer des approximations min-plus des fonctions valeurs (au dessus des fonctions
valeurs), comme infima de formes quadratiques convexes. Parallèlement on a aussi généré des
sous-approximations des fonctions valeurs comme suprema de fonctions affines. Les sur-
approximations adaptent aux problèmes multi-étapes (discrets en temps) un algorithme dû à
Zheng Qu ([Qu14]). Les sous-approximations sont générées par l’algorithme Dual Dynamic
Programming (DDP), version déterministe d’un algorithme introduit par Pereira et Pinto en
1991, une fois retranscrit dans le cadre de TDP. Sur la Figure 1.1, on a représenté l’écart
entre sur approximations et sous approximations le long des trajectoires optimales des sous
approximations courantes.

Programmation dynamique tropicale : vers le cas stochastique

Dans [BDZ18, PdF13], on étudie des schémas d’approximation où les sous-approximations
sont données sous forme de suprema de fonctions affines et les sur-approximations sont des
fonctions polyhédrales. Dans ce chapitre 4, nous cherchons à étendre, avec TDP, l’approche
de [BDZ18, PdF13] en considérant plus généralement que les sous-approximations sont des
combinaisons linéaires max-plus de certaines fonction de base et les sur-approximations sont
des combinaisons linéaires min-plus de certaines autres fonctions de base. On va :

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 7, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 18, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 40, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

Figure 1.1: Écart en fonction du temps t entre une adaptation de la méthode de Qu (infima de
quadratiques convexes) et une variante déterministe de SDDP (suprema de fonctions affines).
Cet écart est évalué le long des trajectoires optimales courantes de la variante déterministe
de SDDP.

Figure 1.2: Approximations U-SDDP des fonctions valeurs. L’écart entre sur-approximation
(infimum de quadratiques, en rouge) et sous-approximations (supremum de droites, en bleu)
tend vers 0 le long d’une trajectoire spécifique d’états (en pointillées).

Figure 1.3: Approximations V-SDDP des fonctions valeurs. L’écart entre sur-approximation
(infimum de fonctions “en forme de V”, en rouge) et sous-approximations (supremum de
droites, en bleu) tend vers 0 le long d’une trajectoire spécifique d’états (en pointillées).

1. Élargir le cadre déterministe du Chapitre 3 au cadre des MSP Lipschitz (voir la Sec-
tion 4.2).

2. S’assurer que les sur et sous approximations convergent vers la véritable fonction valeur
Vt sur un ensemble de points communs, (voir la Section 4.3). Le résultat de la Section 4.3
se généralise à tout schéma d’approximation min-plus/max-plus le résultat de [BDZ18]
qui a été donné pour un variante de SDDP.

3. Donner explicitement plusieurs moyens numériquement efficaces de construire des sous
approximations inférieures des fonctions valeur Vt, comme combinaisons min-plus et
max-plus linéaires de fonctions simples, (voir la Section 4.4).

Relaxation entropique de la Distance Imbriquée

Figure 1.4: Deux arbres de scenarios X et Y avec (en bleu à droite) une approximation
continue de l’histogramme des feuilles. Leur Distance Imbriquée (ND) est de ND2(X,Y) =
1.009 et sa relaxation entropique (END) est de END2(X,Y) = 1.011, voir Section 5.3. Ces
arbres ont été générés via le package Julia ScenTrees.jl [KPP20].

Dans le cadre de la programmation stochastique multi-étapes (MSP), Georg Pflug a intro-
duit en 2009 [Pfl09] la Distance Imbriquée, qui est un raffinement de la distance de Wasserstein
pour tenir compte de la proximité dans les filtrations entre deux processus stochastiques à
temps discret. Selon la dénomination habituelle dans la communauté de la programmation
stochastique (voir [HR09, PP14, SDR09]), nous désignons également par arbre de scénarios
un processus stochastique à temps discret qui est également discret et fini en espace.

Il existe de nombreuses distances différentes entre les arbres de scénarios. Cependant,
peu d’entre elles sont adaptées aux besoins des MSP : on voudrait garantir la continuité de
la fonction de valeur d’une MSP par rapport aux arbres de scénarios, i.e. si deux arbres de
scénarios sont arbitrairement proches l’un de l’autre, alors la valeur de la MSP associée (avec
la même structure sauf pour les arbres de scénarios) est également arbitrairement proche.

Une distance entre les arbres de scénarios est la distance de Wasserstein. Intuitivement, la
distance de Wasserstein entre deux probabilités p et q (pour l’arbre de scénarios (Xt)t∈[[1,T]],

considérer la loi de probabilité du T -uplet (X1, . . . , XT)) correspond au coût optimal de la
division et du transport de la masse de l’un à l’autre. On écrit 1k, k ∈ N, pour le vecteur
(1; . . . ; 1) de Rk.

Définition 1 (Transport optimal discret et distances de Wasserstein). Soit n,m deux entiers
et X = {x1, x2, . . . , xn} et Y = {y1, . . . , ym} deux ensembles finis inclus dans Rt, t ≥ 1.
Notons c = (cij)i,j une matrice n×m positive appelée matrice de coût. Le coût de transport
optimal entre deux mesures de probabilité p et q sur respectivement X et Y, est la valeur du
problème d’optimisation suivant

OT(p, q; c) = min
π∈Rn×m+

∑
1≤i≤n
1≤j≤m

cijπij s.t. π1m = p et πT1n = q. (1.4)

De plus, on définit la fonction de coût c par c(xi, yj) = cij pour chaque indice i, j. Lorsque
pour un certain réel r ≥ 1, la fonction de coût c est égale à dr avec d une métrique sur X×Y,
alors OT(p, q; dr)1/r est la r-ème distance de Wasserstein entre p et q, notée Wr(p, q).

Nous nous référons aux ouvrages [PC19, Vil09] pour une présentation du transport opti-
mal.

Dans les problèmes d’optimisation à deux étapes, sous certaines hypothèses de régularité,
la fonction valeur d’une MSP à deux niveaux est lipschitzienne par rapport à la distance de
Wasserstein, voir [PP14, Chapitre 6]. Cependant, la fonction valeur d’un MSP avec plus de 2
d’étapes n’est pas lipschitzienne par rapport à la distance de Wasserstein, comme le montre
l’Exemple 1, où nous montrons que pour un MSP à 3 étapes, deux arbres de scénarios peuvent
être arbitrairement proches l’un de l’autre dans la métrique de Wasserstein, mais l’écart entre
les valeurs des MSPs associés est arbitrairement grand.

Exemple 1 (La distance de Wasserstein n’est pas adaptée aux MSPs). Dans cet exemple,
nous montrons que la distance 1-Wasserstein n’est pas pertinente pour évaluer la distance
entre les arbres de scénarios impliqués dans une MSP : une petite distance de Wasserstein
arbitraire entre deux arbres de scénarios peut être associé à un écart arbitrairement grand
entre les valeurs des MSPs associés.

Étant donné un arbre de scénario Z (processus stochastique discret en temps et en espace)
équipé de sa filtration naturelle (Ft)t∈[[0,2]]

1, on voudrait acheter au coût moyen minimal un
unique objet

v(Z) = min
u

E

[
2∑
t=0

Ztut

]
|

ut ∈ {0, 1} ,
ut est Ft -mesurable,∑T

t=0 ut = 1,

 .

Soit A � ε > 0, sur la Figure 1.5 on a représenté deux arbres de scénarios modélisant
le prix d’un objet pendant 3 pas de temps. Leurs filtrations naturelles sont différentes. Intu-
itivement, sur l’arbre de scénario de gauche, le décideur observe une variation de ε du prix à
t = 1 et sait qu’elle entrâınera une forte hausse ou une forte baisse du prix à t = 2. Alors que
dans l’arbre de scénario de droite, le décideur ne reconnâıt pas cette information en t = 1.
Exemple inspiré de [HRS06].

D’une part, nous avons la proximité dans la métrique de 1-Wasserstein W comme

W(X,Y) = 2ε.

1∀t ∈ [[0, 2]], Ft = σ(Z0, . . . , Zt).

A

A+ ε

A− ε

2A

0

0.5

0.5

1

1

A A

2A

0

1

0.
5

0.5

Figure 1.5: Gauche : arbre de scénarios X := (X0, X1, X2). Droite : arbre de scénarios
Y = (Y0, Y1, Y2).

En revanche, les valeurs optimales sont v(X) = A+ε
2 et v(Y) = A. Nous avons donc un écart

de valeurs arbitrairement important

|v(X)− v(Y)| = A− ε
2

→
A→+∞

+∞.

En 2012, Pflug et Pichler ont prouvé dans [PP12] que la Distance Imbriquée introduite
précédemment par Pflug est l’adaptation correcte de la distance de Wasserstein pour la pro-
grammation stochastique multi-étapes : sous des hypothèses de régularité, la fonction valeur
d’un MSP est continue de Lipschitz par rapport à la Distance Imbriquée entre les arbres de
scénarios. Depuis lors, elle a été utilisée comme outil pour quantifier la qualité des arbres
d’approximation : étant donné un arbre de scénario initial, on aimerait avoir un bon arbre
d’approximation avec moins de nœuds. La Distance Imbriquée quantifie la qualité d’un arbre
approximatif et le plan de transport optimal associé permet également de réduire les arbres
de scénario, voir par exemple [KP15, HVKM20].

La Distance Imbriquée est généralement calculée par un algorithme rétrograde dans le
temps (introduit dans [PP12], voir aussi [PS19, Definition 15]) qui revient à résoudre un
nombre exponentiel (en T) de problèmes de transport optimal en l’absence de structure
(indépendence) sur le processus de bruit. Il décompose dans le temps le calcul de la Dis-
tance Imbriquée comme le calcul dynamique d’un nombre fini de problèmes de transport
optimaux entre des probabilités conditionnelles avec des coûts mis à jour en amont.

Le transport optimal entre des probabilités discrètes de taille n peut être résolu par
l’algorithme Hongrois avec une complexité deO(n3) (voir [EK72]) ou avec l’algorithme d’enchères
avec une complexité d’environ O(n3 log n), voir [BC89].

En ajoutant un terme entropique à la formulation primale du problème de transport
optimal associé au calcul d’un coût de Wasserstein, un schéma de projection alternatif donne
l’algorithme de Sinkhorn, introduit en Transport Optimal dans [Cut13]. En sélectionnant
soigneusement le terme de relaxation entropique, la complexité de l’algorithme de Sinkhorn
est d’environ O(n2).

En relaxant chaque problème de transport optimal impliqué dans le calcul récursif de la
Distance Imbriquée, on obtient une relaxation entropique de la Distance Imbriquée.

Le chapitre est organisé comme suit :

• Dans la section 5.2, nous définissons d’abord formellement la Distance Imbriquée comme
la valeur d’un système dynamique de problèmes de transport optimal entre des proba-
bilités conditionnelles avec des coûts variables. Ensuite, nous présentons une relaxation

entropique du problème de transport optimal discret (1.4) et comment ce problème de
transport optimal relaché peut être résolu efficacement par l’algorithme de Sinkhorn.
Enfin, nous définissons une régularisation entropique naturelle de la Distance Imbriquée
en relaxant chaque problème de transport optimal impliqué dans sa formulation dy-
namique.

• Dans la section 5.3, nous terminons ce chapitre 5 par une expérience numérique montrant
à la fois l’accélération de notre approche du calcul des Distance Imbriquées et sa précision
relative.

Échange entre intégration et minimisation

La question de l’échange entre intégration et minimisation est une question importante en
optimisation stochastique (où l’intégration correspond à une espérance mathématique). Étant

donné un espace de mesure
(
Ω,F , µ

)
et un sous-ensemble U ⊂ RΩ

de fonctions, on se demande
quand l’égalité suivante est vraie

inf
u∈U

∫
Ω
udµ =

∫
Ω

inf
u∈U

udµ . (1.5)

Le cadre mathématique et les conditions pour obtenir l’équation (1.5) peuvent être trouvés
dans [BG01, EKT13, Gin09, RW09, SDR09]. Nous nous concentrons sur [Gin09] et [RW09].

Pour commencer, dans l’équation (1.5), il convient de préciser dans quel sens l’intégrale
∫

doit être comprise et dans quel sens les infima infu∈U u ou infu∈U
∫
udµ sont définis. Ensuite,

lorsque le sous-ensemble U sur lequel la minimisation est effectuée est un sous-ensemble de
L1(Ω,F, µ;R) et quand l’intégrale

∫
est l’intégrale habituelle de Lebesgue, Giner a obtenu

dans [Gin09] une condition nécessaire et suffisante pour obtenir l’Equation (1.5). Dans ce
cadre, l’espace L1(Ω,F, µ;R) est doté de l’ordre habituel µ-presque partout, et l’infimum est
infu∈U u = ess infu∈U u, qui est bien défini par [Nev70, Proposition II.4.1]. Compte tenu d’un
sous-ensemble U ⊂ L1(Ω,F, µ;R) de fonctions, Giner établit que l’Équation (1.5) est vraie si
et seulement si, pour chaque famille finie u1, . . . , un de U , nous avons

inf
u∈U

∫
Ω

(u− inf
1≤i≤n

ui) dµ ≤ 0 .

Cependant, la vérification de la condition ci-dessus n’est pas une tâche facile, car elle dépend
conjointement de l’intégrale

∫
et du sous-ensemble U . De plus, on peut se demander si on

peut encore avoir l’Equation (1.5) pour des sous-ensembles U qui sont intégrables dans un
sens plus faible que Lebesgue intégrable.

Lorsqu’un sous-ensemble de fonctions U ∈ L0(Ω,F, µ;R) est l’image d’un ensemble X par
une application f : L0(Ω,F, µ;R) → L0(Ω,F, µ;R), i.e. U = f(X), un célèbre théorème de
Rockafellar et Wets ([RW09, Theorem 14.60]) donne une condition sur l’application f et une
condition sur l’ensembleX de sorte que l’équation (1.5) soit vérifiée. Dans ce cas, on s’intéresse
à l’échange entre minimisation sur des sous-ensembles U de L0(Ω,F, µ;R) avec l’intégrale ex-
terne, une généralisation de l’intégrale de Lebesgue à L0(Ω,F, µ;R). Nous étudions l’intégrale
externe et ses propriétés dans l’Annexe 6.5.

Le chapitre est organisé comme suit. La section 6.2 est consacré à un théorème d’échange
énoncé sur des ensembles partiellement ordonnés. Plus précisément, nous présentons un

théorème d’échange abstrait de la forme

∧
x∈X

Φ(x) = Φ
(
∧
x∈X

x
)
. (1.6)

Une fois supposé des conditions sur l’application Φ : X → Y et des propriétés structurelles
sur les ensembles X, Y, nous fournissons une condition nécessaire et suffisante pour que
l’Équation (1.6) soit vraie. Notre résultat s’inscrit dans la lignée de celui de Giner, car notre
condition nécessaire et suffisante utilise à la fois la cartographie Φ et l’ensemble X.

La section 6.3 aborde la question d’origine sur l’échange entre minimisation et intégration
en utilisant les résultats de la section 6.2.

Nous espérons que notre théorème d’échange abstrait ou que son application à l’intégrale
de Lebesgue étendue donne un aperçu de la manière dont on peut obtenir l’échange entre
l’intégration et minimisation comme dans l’équation (1.5), ainsi que sur la manière dont nous
pouvons aller au-delà du cas intégral (mesures de risque en optimisation stochastique).

Chapter 2

English version

Multistage Stochastic optimization Problems

In this thesis we study multistage stochastic optimal control problems in the hazard-decision
framework (hazard comes first, decision second). Starting from a given state x0, a decision
maker observes the outcome w1 of a random variable W1, then decides on a control u0 which
induces a known cost cw1

0 (x0, u0) and the system evolves to a future state x1 from a known
dynamic: x1 = fw1

0 (x0, u0). Having observed a new random outcome, the decision maker
makes a new decision based on this observation which induces a known cost, then the system
evolves to a known future state, and so on until T decisions have been made. At the last step,
there are constraints on the final state xT which are modeled by a final cost function ψ. The
decision maker aims to minimize the average cost of her decisions.

Multistage Stochastic optimization Problems (MSP) can be formally described by the
following optimization problem

min
(X,U)

E

[
T−1∑
t=0

c
Wt+1
t (Xt,Ut) + ψ(XT)

]
,

s.t. X0 = x0 given,∀t ∈ [[0, T − 1]],

Xt+1 = f
Wt+1
t (Xt,Ut),

σ(Ut) ⊂ σ(X0,W1, . . . ,Wt+1),

(2.1)

where (Wt)t∈[[1,T]] is a given sequence of independent random variables each with values in
some measurable set (Wt,Wt).

Dynamic Programming

One approach to solving MSP problems is by dynamic programming, see for example [Bel54,
Ber16, CCCDL15, PP14, SDR09]. For some integers n,m ∈ N, denote by X = Rn the
state space and U = Rm the control space. Both X and U are endowed with their euclidean
structure and borelian structure. We define the pointwise Bellman operators Bwt and the
average Bellman operators Bt for every t ∈ J0, T −1K. For each possible realization w ∈Wt+1

of the noise Wt+1, for every function φ : X→ R taking extended real values in R = R∪{±∞},
the function Bwt (φ) (·) : X→ R is defined by

∀x ∈ X, , Bwt (φ) (x) = min
u∈U

(
cwt (x, u) + φ

(
fwt (x, u)

))
.

Now, the average Bellman operator Bt is the mean of all the pointwise Bellman operators
with respect to the probability law of Wt+1. That is, for every φ : X→ R, we have that

∀x ∈ X , Bt (φ) (x) = E
[
BWt+1
t (φ) (x)

]
= E

[
min
u∈U

(
c
Wt+1
t (x, u) + φ

(
f
Wt+1
t (x, u)

))]
.

The average Bellman operator can be seen as a one stage operator which computes the value
of applying the best (average) control at a given state x. Note that in the hazard-decision
framework assumed here, the control is taken after observing the noise. Now, the Dynamic
Programming approach states that in order to solve MSP Problems (2.1), it suffices to solve
the following system of Bellman equations (2.2),

VT = ψ and ∀t ∈ J0, T − 1K, Vt = Bt (Vt+1) . (2.2)

Solving the Bellman equations means computing recursively backward in time the (Bellman)
value functions Vt. Finally, the value V0(x0) is the solution of the multistage Problem (2.1).

Damping the curse of dimensionnality

One issue of using Dynamic Programming to solve multistage optimization problems is the
so-called curse of dimensionality [Bel54]. That is, when the state space X is a vector space,
grid-based methods to compute the value functions have a complexity which is exponential
in the dimension of the state space X. One popular algorithm (see [GLP15, Gui14, GR12,
PP91, Sha11, ZAS18]) that aims to dampen the curse of dimensionality is the Stochastic Dual
Dynamic Programming algorithm (or SDDP for short) introduced by Pereira and Pinto in
1991. Assuming that the cost functions cwt are convex and the dynamics fwt are linear, the
value functions defined in the Dynamic Programming formulation (3.3) are convex [GLP15].
Under these assumptions, the SDDP algorithm aims to build lower (or outer) approximations
of the value functions as suprema of affine functions and does not rely on a discretization
of the state space. One of the main drawback of the SDDP algorithm is the lack of an
efficient stopping criterion: it builds lower approximations of the value functions but upper
(or inner) approximations are built through a Monte-Carlo scheme that is costly and the
associated stopping criteria is not deterministic. We follow another path to provide upper
approximations as explained now.

In [Qu13, Ch. 8] and [Qu14], Qu devised an algorithm which builds upper approximations
of a Bellman value function arising in an infinite horizon and continuous time framework
where the set of controls is both discrete and continuous. This work was inspired by the work
of McEneaney [McE07] using techniques coming from tropical algebra, also called max-plus
or min-plus techniques. Assume that for each fixed discrete control the cost functions are
convex quadratic and the dynamics are linear in both the state and the continuous control.
If the set of discrete controls is finite, then exploiting the min-plus linearity of the Bellman
operators Bt, one can show that the value functions can be computed as a finite pointwise
infimum of convex quadratic functions:

Vt = inf
φt∈Ft

φt ,

where Ft is a finite set of convex quadratic forms. Moreover, in this framework, the el-
ements of Ft can be explicitly computed through the Discrete Algebraic Riccati Equation
(DARE [LR95]). Thus, an approximation scheme that computes an increasing sequence of
subsets

(
F kt
)
k∈N of Ft yields an algorithm that converges after a finite number of improve-

ments

V k
t := inf

φt∈Fkt
φt ≈ inf

φt∈Ft
φt = Vt.

However, the size of the set of functions Ft that need to be computed is growing exponentially
with T − t. In [Qu14], in order to address the exponential growth of Ft, Qu introduced a
probabilistic scheme that adds to F kt the “best” (given the current approximations) element
of Ft at some point drawn on the unit sphere.

Outline of the thesis

Every chapter of this thesis was written as an independent chapter. The reader may read
them independently of the others.

1. In Chapter 3 and Chapter 4, we build a general algorithm that encompasses both
SDDP algorithm and an adaptation of Qu’s work to a stochastic, discrete time and
finite horizon framework. TDP iteratively builds approximations of the value functions
as max-plus or min-plus linear combinations. These two chapters form the core of the
thesis.

2. In the second part Chapter 5 is a contribution about the Nested Distance: we present
an entropic relaxation of the Nested Distance which can be computed efficiently.

3. In the third Chapter 6 we give a general theorem about the interchange between inte-
gration and minimization. It notably generalizes the one of Giner [Gin09] and the one
from Rockafellar and Wets [RW09].

In each of the following sections, we give a presentation of each chapter and its contribu-
tion.

Tropical Dynamic Programming: the deterministic case

First, we focus on the simplified framework of deterministic multistage optimisation problems,

min
x=(x0,...,xT)∈XT+1

u=(u0,...uT−1)∈UT

T−1∑
t=0

ct(xt, ut) + ψ(xT)

s.t. ∀t ∈ [[0, T−1]] , xt+1 = ft(xt, ut) and x0 ∈ X given .

In this deterministic context, we tried to understand how, at each time step, a linear max-plus
or min-plus combination of elementary functions could converge towards the value function.
An iterative algorithm is presented which adds at each iteration an elementary function
to the current max-plus or min-plus linear combination. This algorithm, called Tropical
Dynamic Programming (TDP), can be seen as a tropical variant of parametric approximations
used in Adaptive Dynamic Programming (see [Ber19, Pow11]) where the value functions are
approximated by linear combinations of basis functions.

TDP determines an elementary function to be added by randomly drawing a point, called
a trial point. Moreover, since the value functions verify Bellman’s system of equations, we
would like that the approximations generated by TDP verify this system of equations as well.

TDP requires two properties on the elementary function φt added iteratively to the current
approximation of Vt, t < T . The first property, local, is called tightness of the elementary
function. It requires that the added elementary function verifies the t-th Bellman equation
at the trial point x ∈ X:

φt(x) = Bt

(
VFt+1

)
(x) .

The second property, global, is called the validity of the elementary function. It requires that
the elementary function φt added at time t is always below or above the image by the t-th

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 7, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 18, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 40, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

Figure 2.1: Gap w.r.t. the time t between an adaptation of Qu’s algorithm (infima of
convex quadratics) and a deterministic variant of SDDP (suprema of affine cuts). The gap is
evaluated along current optimal trajectories of deterministic SDDP.

Bellman operator Bt of the current approximation at time t + 1, i.e. denoting by VFt+1 a
max-plus or min-plus linear combinations of basic functions (approximating Vt+1),

φ(·) ≥ Bt

(
VFt+1

)
(·) , (for min-plus linear combinations)

φ(·) ≤ Bt

(
VFt+1

)
(·) . (for max-plus linear combinations)

Thus, having exact information about this system only at the trial points, it is generally
impossible to guarantee that such min-plus or max-plus linear combinations verify the Bellman
system of equations. However, we have established a sufficient condition regarding the richness
of the trial points such that, almost surely, asymptotically the approximations generated by
TDP verify a restricted Bellman system of equations. If the restrictions are in turn not too
restrictive, then it is possible to conclude that any sequence of functions verifying such a
system of equations is equal to the sequence of value functions at points of interest.

This gives us the first result of this thesis, Theorem 15 which is a sufficient condition
concerning the richness of the trial points, asymmetric between linear min-plus and max-plus
combinations, in order to obtain an almost sure asymptotic convergence of the approximations
generated by TDP towards the value function at points of interest.

This convergence result was then illustrated (see Figure 2.1) by applying the TDP algo-
rithm to generate min-plus approximations of the value functions (above the value functions),
as infima of convex quadratic shapes. At the same time, sub-approximations of the value func-
tions were also generated as suprema of affine functions. The upper approximations adapt
to multistage problems an algorithm from Zheng Qu ([Qu14]). Lower approximations are
generated by the Dual Dynamic Programming (DDP) algorithm, deterministic version of an
algorithm introduced by Pereira and Pinto in 1991, once transcribed into TDP. In Figure 1.1,
the difference between upper and lower approximations along the optimal trajectories of the
current lower approximations has been represented.

Tropical Dynamic Programming: toward the stochastic case

In [BDZ18, PdF13], is studied approximation schemes where lower approximations are given
as a suprema of affine functions and upper approximations are given as a polyhedral function.
We aim in this chapter 4 to extend, with TDP, the approach of [BDZ18, PdF13] considering
more generally that lower approximations are max-plus linear combinations of some basic
functions and upper approximations are min-plus linear combinations of some other basic
functions. In this chapter, we will:

Figure 2.2: U-SDDP approximations of the value functions. We observe that the gap between
upper approximations (infimum of quadratics, in red) and lower approximations (supremum
of cuts, in red) vanishes along a specific trajectory of states (in dashed lines).

Figure 2.3: V-SDDP approximations of the value functions. We observe that the gap between
upper approximations (infimum of “V-shaped functions”, in red) and lower approximations
(supremum of cuts, in blue) vanishes along a specific trajectory of states (in dashed lines).

1. Extend the deterministic framework of Chapter 3 to Lipschitz MSP defined in Equa-
tion (4.1) and introduce TDP, (see Section 4.2). The noises are independent and each
with finite support.

2. Ensure that upper and lower approximations converge to the true value functions on a
common set of points, see Section 4.3. The main result of (Section 4.3) generalizes to
any min-plus/max-plus approximation scheme the result of [BDZ18] which was stated
for a variant of SDDP.

3. Explicitly give several numerically efficient ways to build upper and lower approxima-
tions of the value functions, as min-plus and max-plus linear combinations of some
simple functions, see (Section 4.4).

Entropic relaxation of the Nested Distance

In Multistage Stochastic Programming (MSP), Georg Pflug introduced in 2009 [Pfl09] the
Nested Distance, which is a refinement of the Wasserstein distance to account proximity in
the filtrations between two discrete time stochastic processes. Following usual denomination
in the Stochastic Programming community (see [HR09, PP14, SDR09]), we also denote by
scenario tree a discrete time stochastic process which is also discrete and finite in space.

There are many different distances between scenario trees. However, few are suited for
MSP purposes: one would like to guarantee continuity of the value function of a MSP with

Figure 2.4: Two scenario trees X and Y with (in blue, right) a continuous probability ap-
proximation of the histogram the leaves. Their Nested Distance is ND2(X,Y) = 1.009 and its
entropic relaxation is END2(X,Y) = 1.011, see Section 5.3. The trees were generated using
the ScenTrees.jl package [KPP20].

respect to scenario trees, i.e. if two scenario trees are arbitrarily close to each other, then
the value of the associated MSP (with the same structure except for the scenario trees) is
arbitrarily close as well.

One distance between scenario tree is the Wasserstein distance. Intuitively, the Wasser-
stein distance between two probabilities p and q (for scenario tree (Xt)t∈[[1,T]], consider the
probability law of the tuple (X1, . . . , XT)) corresponds to the optimal cost of splitting and
transporting the mass from one to the other. We write 1k, k ∈ N, for the vector (1; . . . ; 1) of
Rk.

Definition 2 (Discrete optimal transport and Wasserstein distances). Let n,m be two integers
and X = {x1, x2, . . . , xn} and Y = {y1, . . . , ym} be two finite sets included in Rt, t ≥ 1.
Denote by c = (cij)i,j a n×m positive matrix called cost matrix. The optimal transport cost
between two probability measures p and q on respectively X and Y, is the value of the following
optimization problem

OT(p, q; c) = min
π∈Rn×m+

∑
1≤i≤n
1≤j≤m

cijπij s.t. π1m = p and πT1n = q. (2.4)

Now, define the cost function by c(xi, yj) = cij for every indexes i, j. When for some real
r ≥ 1, the cost function c is equal to dr with d a metric on X×Y, then OT(p, q; dr)1/r is the
r-th Wasserstein distance between p and q, denoted Wr(p, q).

We refer to the textbooks [PC19, Vil09] for a presentation and references on optimal
transport.

In two stage multistage optimization problems, under some regularity assumptions, the
value function of a bilevel MSP is Lipschitz continuous with respect to the Wasserstein dis-
tances, see [PP14, Chapter 6]. However the value function of MSP with more than 2 stages
is not continuous with respect to the Wasserstein distances, as seen in Example 1, where we

show that for a 3 stage MSP, two scenario trees can be arbitrarily close to each other in the
1-Wasserstein metric but the gap in the values of the associated MSPs is arbitrarily large.

Example 1 (The Wasserstein distance is not suited for MSP). In this example we illustrate
that the 1-Wasserstein is not an interesting metric to evaluate distance between scenario trees
involved in a MSP: an arbitrary small Wasserstein distance between two scenario trees may
yield an arbitrary large gap in values of the same MSP.

Given a scenario tree Z (see Definition 53 for a formal definition) with natural filtration
(Ft)t∈[[0,2]]

1, we want to buy a single object at the minimal average cost

v(Z) = min
u

E

[
2∑
t=0

Ztut

]
|

ut ∈ {0, 1} ,
ut is Ft -measurable,∑T

t=0 ut = 1,

 .

Fix A � ε > 0, here are two scenario tree modeling the price of an object during 3 time
steps. Their natural filtrations are different. Intuitively, on the left scenario tree, the decision
maker observes that an ε variation of the price at t = 1 and knows that it will yield an
explosion (upward or downward) of the price at t = 2. Whereas on the right scenario tree,
the decision maker does not recognize such information at time t = 1. Example adapted but
inspired from [HRS06].

A

A+ ε

A− ε

2A

0

0.5

0.5

1

1

A A

2A

0

1

0.
5

0.5

Figure 2.5: Left: scenario tree X := (X0, X1, X2). Right: scenario tree Y = (Y0, Y1, Y2).

On the one hand we have proximity in the 1-Wasserstein metric W as

W(X,Y) = 2ε.

On the other hand, the optimal values are v(X) = A+ε
2 and v(Y) = A. Thus, we have an

arbitrarily large gap in values

|v(X)− v(Y)| = A− ε
2

→
A→+∞

+∞.

In 2012, Pflug and Pichler proved in [PP12] that the Nested Distance previously intro-
duced by Pflug, is the correct adaptation of the Wasserstein distance for multistage stochastic
programming: under regularity assumptions, the value function of MSPs is Lipschitz contin-
uous with respect to the Nested Distance between scenario trees. Since then, it has been used
as a tool to quantify the quality of approximating trees: given an initial scenario tree, one

1For every t ∈ [[0, 2]], Ft = σ(Z0, . . . , Zt).

would like to have a good approximating tree with fewer nodes. The Nested Distance both
quantifies the quality of an approximating tree and the associated optimal transport plan also
allows for reduction of scenario trees, see for example [KP15, HVKM20].

The Nested Distance is usually computed via a backward recursive algorithm (introduced
in [PP12], see also [PS19, Definition 15]) which amounts to solve an exponential number
(in T) number of optimal transportation problems if there is no further assumption (like
independence) on the noise process. It decomposes over the time the computation of the
Nested Distance as the dynamic computation of a finite number of optimal transport problems
between conditional probabilities with costs updated backward.

Optimal transport between discrete probabilities of size n can be solved by the Hungarian
algorithm with complexity O(n3) (see [EK72]) or with the auction algorithm with complexity
roughly O(n3 log n), see [BC89].

By adding an entropic term to the primal of the optimal transport problem associated
with the computation of a Wasserstein cost, an alternating projection scheme yield Sinkhorn’s
algorithm, introduced in Optimal Transport in [Cut13] to compute Wasserstein distances.
By carefully selecting the entropic regularization term, Sinkhorn’s algorithm computes an
ε-overestimation of the Wasserstein distance in O(n2 log(n)ε−3) operations.

Relaxing each optimal transport problem involved in the recursive computation of the
Nested Distance, we end up with an entropic regularization of the Nested Distance.

The chapter is organized as follows:

• In Section 5.2, we first formally define the Nested Distance as the value of a dynamic sys-
tem of optimal transport problems between conditional probabilites and varying costs.
Then, we present an entropic relaxation of the discrete optimal transport Problem (2.4)
and how this relaxed OT problem can be solved efficiently by Sinkhorn’s algorithm.
Lastly, we define a natural entropic regularization of the Nested Distance by relaxing
each OT problem involved in its dynamic formulation.

• In Section 5.3, we end this chapter 5 with a numerical experiment showing both the
speedup of our approach to compute Nested Distances and also its relative preciseness.

Interchange between integration and minimization

The question of interchanging integration and minimization is an important issue in stochastic
optimization (where integration corresponds to mathematical expectation). Loosely stated,

given a measure space
(
Ω,F , µ

)
and a subset U ⊂ RΩ

of functions, we wonder when does the
following equality hold

inf
u∈U

∫
Ω
udµ =

∫
Ω

inf
u∈U

udµ . (2.5)

Mathematical framework and conditions to get Equation (2.5) can be found in [BG01, EKT13,
Gin09, RW09, SDR09]. We focus on [Gin09] and [RW09].

To begin with, in Equation (2.5) one needs to clarify in which sense the integral
∫

is to
be understood and in which sense the infima infu∈U u or infu∈U

∫
udµ are defined. Then,

when the subset U , over which minimization is performed, is a subset of L1(Ω,F, µ;R) and
when the integral

∫
is the usual Lebesgue integral, Giner obtained in [Gin09] a necessary

and sufficient condition for (2.5) as follows. In this case, the space L1(Ω,F, µ;R) is endowed

with the usual µ-pointwise order, and the infimum is infu∈U u = ess infu∈U u, which is well-
defined by [Nev70, Proposition II.4.1]. Given a subset U ⊂ L1(Ω,F, µ;R) of functions, Giner
establishes that Equation (2.5) holds true if and only if, for every finite family u1, . . . , un in
U , we have

inf
u∈U

∫
Ω

(u− inf
1≤i≤n

ui) dµ ≤ 0 .

However, checking the above condition is not an easy task, as it depends jointly on the
integral

∫
and on the subset U . Moreover, one may wonder if we can still have Equation (2.5)

for more general subsets U which are integrable in a weaker sense than Lebesgue integrable.
When a subset of functions U ∈ L0(Ω,F, µ;R) is the image of a set X by a mapping

f : L0(Ω,F, µ;R) → L0(Ω,F, µ;R), i.e. U = f(X), a celebrated theorem of Rockafellar and
Wets ([RW09, Theorem 14.60]) gives a condition on the mapping f and a condition on the
set X so that Equation (2.5) holds. In this case, we deal with minimization over subsets U
of L0(Ω,F, µ;R) and interchange with the outer integral, a generalization of the Lebesgue
integral to L0(Ω,F, µ;R). We study the outer integral and its properties in Appendix 6.5.

The Chapter is organized as follows. Sect. 6.2 is devoted to a minimization interchange
theorem on posets. More precisely, we provide an abstract interchange theorem of the form

∧
x∈X

Φ(x) = Φ
(
∧
x∈X

x
)
. (2.6)

Once assumed conditions on the mapping Φ : X → Y and structural properties of the sets
X, Y, we provide a necessary and sufficient condition so that Equation (2.6) holds true. Our
result is in the lineage of Giner’s, as our necessary and sufficient condition involves both the
mapping Φ and the set X.

Sect. 6.3 then tackles the original question of interchange between minimization and in-
tegration by specifying the results of Section 6.2.

We hope that either our abstract interchange theorem or its application to the extended
Lebesgue integral provide insight as to how one may obtain the interchange between integra-
tion and minimization as in Equation (2.5), and as to how we can go beyond the integral case
(risk measures in stochastic optimization).

Part II

Tropical Dynamic Programming

Chapter 3

Tropical Dynamic Programming:
the deterministic case

Contents

3.1 Introduction . 30

3.2 Notations and definitions . 32

3.3 Almost sure convergence on the set of accumulation points . . . 38

3.4 SDDP selection function: lower approximations in the linear-
convex framework . 44

3.5 A min-plus selection function: upper approximations in the linear-
quadratic framework with both continuous and discrete controls 50

3.5.1 The pure homogeneous case . 50

3.5.2 Optimal trajectories for upper approximations may not converge . . 56

3.6 Numerical experiments on a toy example 58

3.6.1 A toy example: constrained linear-quadratic framework 58

3.6.2 Discretization of the constrained control 58

3.6.3 Homogenization of the costs and dynamics 59

3.6.4 Min-plus upper approximations of the value functions of Problem (3.50) 59

3.6.5 Upper and lower approximations of the value functions 60

3.6.6 Numerical experiments . 61

3.7 Algebraic Riccati Equation . 63

3.8 Smallest and greatest eigenvalues 64

3.9 Homogenization . 65

3.1 Introduction

Throughout this chapter, we aim to study a deterministic optimal control problem with
discrete time. Informally, given a time t and a state xt ∈ X, one can apply a control ut ∈ U
and the next state is given by the dynamic ft, that is xt+1 = ft (xt, ut). Then, one wants
to minimize the sum of costs ct (xt, ut) induced by the controls starting from a given state
x0 and during a given time horizon T . Furthermore, one can add some final restrictions on
the states at time T which will be modeled by an additional cost function ψ depending only
on the final state xT . We will call such optimal control problems, multistage optimization
problems and switched multistage optimization problems if the controls are both continuous
and discrete:

min
x=(x0,...,xT)∈XT+1

u=(u0,...uT−1)∈UT

T−1∑
t=0

ct(xt, ut) + ψ(xT) (3.1a)

s.t. ∀t ∈ [[0, T−1]] , xt+1 = ft(xt, ut) and x0 ∈ X given . (3.1b)

One can solve the multistage Problem (3.1) by Dynamic Programming as introduced by
Richard Bellman around 1950 [Bel54, Dre02]. This method breaks the multistage Prob-
lem (3.1) into T sub-problems that one can solve by backward recursion over time. More

precisely, denoting by Bt : RX → RX
the operator from the set of functions over X that may

take infinite values to itself, defined by

Bt(φ) : x 7→ min
u∈U

(
ct(x, u) + φ

(
ft(x, u)

))
, (3.2)

one can show (see for example [Ber16]) that solving Problem (3.1) amounts to solve the
following sequence of sub-problems:

VT = ψ and ∀t ∈ [[0, T − 1]] Vt = Bt(Vt+1) . (3.3)

We will call each operator Bt the Bellman operator at time t and each equation in (3.3) will
be called the Bellman equation at time t. Lastly, the function Vt defined in Equation (3.3)
will be called the (Bellman) value function at time t. Note that the value of Problem (3.1)
is equal to the value function V0 at point x0, that is V0 (x0), whereas solving the sequence of
sub-problems given by Equation (3.3) means to compute the value functions Vt at each point
x ∈ X and time t ∈ [[0, T−1]].

We will state several assumptions on these operators in Section 3.2 under which we will
devise an algorithm to solve the system of Bellman Equation (3.3), also called the Dynamic
Programming formulation of the multistage problem. Let us stress on the fact that although
we want to solve the multistage Problem (3.1), we will mostly focus on its (equivalent) Dy-
namic Programming formulation given by Equation (3.3).

One issue of using Dynamic Programming to solve multistage optimization problems is the
so-called curse of dimensionality [Bel54]. That is, when the state space X is a vector space,
grid-based methods to compute the value functions have a complexity which is exponential
in the dimension of the state space X. One popular algorithm (see [GLP15, Gui14, GR12,
PP91, Sha11, ZAS18]) that aims to dampen the curse of dimensionality is the Stochastic Dual
Dynamic Programming algorithm (or SDDP for short) introduced by Pereira and Pinto in
1991. Assuming that the cost functions ct are convex and the dynamics ft are linear, the value

functions defined in the Dynamic Programming formulation (3.3) are convex [GLP15]. Under
these assumptions, the SDDP algorithm aims to build lower (or outer) approximations of the
value functions as suprema of affine functions and thus, does not rely on a discretization of
the state space. In the aforementioned references, this approach is used to solve stochastic
multistage convex optimization problems, however in this chapter we will restrict our study
to deterministic multistage convex optimization problems as formulated in Problem (3.1). In
our deterministic framework, the SDDP algorithm boils down to the classical Nested Benders
decomposition and can be applied to our framework. One of the main drawback of the SDDP
algorithm (in the stochastic case) is the lack of an efficient stopping criterion: it builds lower
approximations of the value functions but upper (or inner) approximations are built through
a Monte-Carlo scheme that is costly and the associated stopping criteria is not deterministic.
We follow another path to provide upper approximations as explained now.

In [Qu13, Ch. 8] and [Qu14], Qu devised an algorithm which builds upper approximations
of a Bellman value function arising in an infinite horizon and continuous time framework
where the set of controls is both discrete and continuous. Qu’s work was inspired by the
work of McEneaney [McE07] using techniques coming from tropical algebra, also called max-
plus or min-plus techniques. Assume that X = Rn and that for each fixed discrete control
the cost functions are convex quadratic and the dynamics are linear in both the state and
the continuous control. If the set of discrete controls is finite, then exploiting the min-plus
linearity of the Bellman operators Bt, one can show that the value functions can be computed
as a finite pointwise infimum of convex quadratic functions:

Vt = inf
φt∈Ft

φt ,

where Ft is a finite set of convex quadratic forms. Moreover, in this framework, the el-
ements of Ft can be explicitly computed through the Discrete Algebraic Riccati Equation
(DARE [LR95]). Thus, an approximation scheme that computes an increasing sequence of
subsets

(
F kt
)
k∈N of Ft yields an algorithm that converges after a finite number of improve-

ments

V k
t := inf

φt∈Fkt
φt ≈ inf

φt∈Ft
φt = Vt.

However, the size of the set of functions Ft that need to be computed is growing exponentially
with T − t. In [Qu14], in order to address the exponential growth of Ft, Qu introduced a
probabilistic scheme that adds to F kt the “best” (given the current approximations) element
of Ft at some point drawn on the unit sphere.

Our work aims to build a general algorithm that encompasses both a deterministic version
of the SDDP algorithm and an adaptation of Qu’s work to a discrete time and finite horizon
framework.

The remainder of this chapter is structured as follows. In Section 3.2, we make several
assumptions on the Bellman operators Bt and define an algorithm which builds approxima-
tions of the value functions as a pointwise optimum (i.e. either a pointwise infimum or a
pointwise supremum) of basic functions in order to solve the associated Dynamic Program-
ming formulation (3.3) of the multistage Problem (3.1). At each iteration, the so-called basic
function that is added to the current approximation will have to satisfy two key properties
at a randomly drawn point, namely, tightness and validity. A key feature of the proposed
algorithm is that it can yield either upper or lower approximations. More precisely,

V
k
t

V k
t

Vt

Figure 3.1: The lower approximations V k
t will be built as a supremum of basic functions (here

affine functions) that will always be below Vt. Likewise, the upper approximations V
k
t will be

built as an infimum of some other basic functions (here quadratic functions) that will always
be above Vt.

• if the basic functions are affine, then approximating the value functions by a pointwise
supremum of affine functions will yield the SDDP algorithm;

• if the basic functions are quadratic convex, then approximating the value functions by a
pointwise infimum of convex quadratic functions will yield an adaptation of Qu’s min-plus
algorithm.

In Section 3.3, we study the convergence of the approximations of the value functions
generated by our algorithm at a given time t ∈ [[0, T]]. We use an additional assumption
on the random points on which current approximations are improved, which state that they
need to cover a “rich enough set” and show that the approximating sequence converges almost
surely (over the draws) to the Bellman value function on a set of interest.

In the last sections, we will specify our algorithm to three special cases. In Section 3.4,
we prove that when building lower approximations as a supremum of affine cuts, the con-
dition on the draws is satisfied on the optimal current trajectory, as done in SDDP. Thus,
we get another point of view on the usual (see [GLP15, Sha11]) asymptotic convergence of
SDDP, in the deterministic case. In Section 3.5, we describe an algorithm which builds upper
approximations as an infimum of quadratic forms. It will be a step toward addressing the
issue of computing efficient upper approximations for the SDDP algorithm. In Section 3.6,
we present on a toy example some numerical experiments where we simultaneously compute
lower approximations of the value functions by a deterministic version of SDDP of the value
functions and upper approximations of the value functions by a discrete time version of Qu’s
min-plus algorithm.

3.2 Notations and definitions

In the sequel, we will use the following notations

• X := Rn, endowed with its Euclidean structure and its Borel σ-algebra denotes the set of
states.

• T , a finite integer that we will call the time horizon.
• opt, denotes a generic operation that is either the pointwise infimum or the pointwise
supremum of functions which we will call the pointwise optimum.
• R, denotes the extended real line endowed with the operations +∞+ (−∞) = −∞+∞ =
+∞.
• domφ, denotes the domain of φ ∈

(
R
)X

defined as the subset of X in which φ(x) ∈ R.

• Ft and Ft, denote for every t ∈ [[0, T]], two subsets of the set
(
R
)X

such that Ft ⊂ Ft.
• φ is said to be a basic function if it is an element of Ft for some t ∈ [[0, T]].
• δX denotes, for every set X ⊂ X, the function equal to 0 on X and +∞ elsewhere.
• For every t ∈ [[0, T]] and every set of basic functions Ft ⊂ Ft, we denote by VFt its pointwise
optimum, VFt := optφ∈Ft φ, that is

VFt : X −→ R
x 7−→ opt {φ(x) | φ ∈ Ft} .

(3.4)

• (Bt)t∈[[0,T−1]] denotes a sequence of T operators from RX
to RX

, called the Bellman operators.

• (Vt)t∈[[0,T]], denotes, for a fixed function ψ : X→ R, a sequence of value functions given by
the system of Bellman Equations (3.3).

Now, we make several assumptions on the structure of Problem (3.3). These assumptions
will be satisfied in the examples developed in Sections 3.4 to 3.6. These assumptions will
make it possible to propagate backward in time, regularity of the value function at the final
time t = T to the value function at the initial time t = 0.

Assumption 1 (Structural assumptions).

–(a) Stability by pointwise optimum: for every t ∈ [[0, T]], if Ft ⊂ Ft then VFt ∈ Ft.

–(b) Stability by pointwise convergence: for every t ∈ [[0, T]] if a sequence of functions
(φk)k∈N ⊂ Ft converges pointwise to φ on the domain of Vt, then φ ∈ Ft.

–(c) Common regularity: for every t ∈ [[0, T]], there exists a common (local) modulus of
continuity of all φ ∈ Ft, i.e. for every x ∈ dom(Vt), there exist ωt,x : R+ → R+∪{+∞} which
is increasing, equal to 0 in 0, continuous at 0 and such that for every φ ∈ Ft and for every
x′ ∈ dom(Vt), we have that |φ(x)− φ(x′)| ≤ ωt,x(‖x− x′‖).

–(d) Final condition: the value function VT at time T is a pointwise optimum for some
given subset FT of FT , that is ψ := VFT .

–(e) Stability by the Bellman operators: for every t ∈ [[0, T − 1]], if φ ∈ Ft+1, then Bt (φ)
belongs to Ft.

–(f) Order preserving operators: for every t ∈ [[0, T − 1]], the operators Bt are order
preserving, i.e. if φ, ϕ ∈ Ft+1 are such that φ ≤ ϕ, then Bt (φ) ≤ Bt (ϕ).

–(g) Additively subhomogeneous operators: for every time step t ∈ [[0, T − 1]], and
every given compact set Kt, there exists Mt > 0 such that the operator Bt restricted to Kt is
additively subhomogeneous over Ft+1, meaning that for every constant function λ ≥ 0 and
every function φ ∈ Ft+1, we have

Bt (φ+ λ) + δKt ≤ Bt (φ) + λMt + δKt .

–(h) Proper value functions: the solution (Vt)t∈[[0,T]] to the Bellman equations (3.3) never
takes the value −∞ and is not identically equal to +∞.

–(i) Compactness condition: for every t ∈ [[0, T −1]] and every compact set Kt ⊂ dom(Vt),
there exists a compact set Kt+1 ⊂ dom(Vt+1) such that, for every function φ ∈ Ft+1 and
constant λ ≥ 0, we have

Bt
(
φ+ λ+ δKt+1

)
≤ Bt (φ+ λ) + δKt .

Remark 3. Assumption 1-(c) ensures that the domain of each function of Ft includes the
domain of Vt. Note that if Ft is the set of all functions satisfying Assumption 1-(c), then As-
sumption 1-(b) is trivially satisfied. Also note that the domain of Vt is known as in [GLP15].

Remark 4. Note that Assumption 1-(h) and 1-(i) do not change whether opt = inf or
opt = sup as the optimal control problem that we consider is formulated as a minimization
problem.

Lemma 5. For every t ∈ [[0, T]] we have that Vt ∈ Ft.

Proof. By Assumption 1-(d) and Assumption 1-(a), VT is in FT . Now, assume that for some
t ∈ [[0, T−1]] we have that Vt+1 ∈ Ft+1. By Assumption 1-(e), we have that Vt = Bt(Vt+1) ∈ Ft
which ends the proof by backward induction.

From a set of basic functions Ft ⊂ Ft, one can build its pointwise optimum VFt =
optφ∈Ft φ. We build a monotone sequence of approximations of the value functions as optima
of basic functions which will be computed through compatible selection functions as defined
below. We illustrate this definition in Figure 3.2.

If opt = inf, then we will build upper approximations of the value function Vt as a min-
plus linear combinations of basic functions. If opt = sup, we will build lower approximations
as a max-plus linear combinations of basic functions.

Definition 6 (Compatible selection function). Let a time step t ∈ [[0, T − 1]] be fixed. A
compatible selection function, or simply selection function, is a function St from 2Ft+1 × X
to Ft satisfying the two following properties
– Validity: for every set of basic functions Ft+1 ⊂ Ft+1 and every x ∈ X, we have St [Ft+1, x] ≤
Bt
(
VFt+1

)
(resp. St [Ft+1, x] ≥ Bt

(
VFt+1

)
) when opt = sup (resp. opt = inf).

– Tightness: for every set of basic functions Ft+1 ⊂ Ft+1 and every x ∈ X the functions
St [Ft+1, x] and Bt

(
VFt+1

)
coincide at point x, that is St [Ft+1, x] (x) = Bt

(
VFt+1

)
(x).

For t = T , we say that ST : X → FT is a compatible selection function if it is valid and
tight. There, ST is valid if, for every x ∈ X, the function ST [x] remains below (resp. above)
the value function at time T when opt = sup (resp. opt = inf). Moreover, the function ST
is tight if it coincides with the value function at point x, that is for every x ∈ X, we have
ST [x] (x) = VT (x).

Note that the Tightness assumption only asks for equality at the point x between the
functions St [Ft+1, x] and Bt

(
VFt+1

)
and not necessarily everywhere. The only global prop-

erty between the functions St [Ft+1, x] and Bt
(
VFt+1

)
is an inequality given by the validity

assumption.
In Algorithm 1 we will generate, for every time t, a sequence of random points of crucial

importance that we will call trial points. They will be the ones where the selection functions

xk−1t

Bt(V k
t+1)

φSDDP

t (Φk
t+1, x

k−1
t)

xk−1t

φmin-plus

t (Φ
k
t+1, x

k−1
t)

Bt(V
k
t+1)

Figure 3.2: In Sections 3.4 and 3.5, we will specify two selection functions, φSDDP
t and φmin-plus

t ,
respectively, that will respectively yield upper and lower approximations of the value func-
tions. In both cases, the selection function computes a basic function (in red or blue) which is
equal, at the point xk−1

t , to the image by the Bellman operator of the current approximation
(in black), that is the tightness assumption. Moreover it remains above (or below) the image
by the Bellman operator of the current approximation, that is the validity assumption.

will be evaluated, given the set F kt which characterizes the current approximation. In order to
generate those points, we will assume that we have at our disposition an Oracle which, given
T+1 sets of functions (characterizing the current approximations), computes T+1 compact
sets and a probability law.

Definition 7 (Oracle). The Oracle takes as input T+1 sets of functions F = (F0, . . . , FT)
included in F0, . . . ,FT respectively. Its output consists of T+1 compact sets K0, . . . ,KT , each
included in X, and of a probability measure PF on the space XT+1 which are such that

– Initialization. If for every t ∈ [[0, T]], Ft = ∅, then return T+1 given compact sets and a
given probability measure.

– For every t ∈ [[0, T]], Kt ⊂ dom (Vt).

– The support of PF is included in K0 × . . .×KT .

For every time t ∈ [[0, T]], we construct a sequence of functions
(
V k
t

)
k∈N belonging to Ft

as follows. For every time t ∈ [[0, T]] and for every k ≥ 0, we build a subset F kt of the set Ft

and define the sequence of functions by pointwise optimum

V k
t := VFkt = opt

φ∈Fkt
φ . (3.5)

As described here, the functions are just byproducts of Algorithm 1, which only describes the
way the sets F kt are computed.

As the following algorithm was inspired by Qu’s work which uses tropical algebra tech-
niques, we will call this algorithm “Tropical Dynamic Programming”.

At each iteration, Algorithm 1 generates a trial point xkt which only depends on the data
available at the current iteration. We loosely explain this point. Define for every k ∈ N, F k =
(F kt)t∈[[0,T]] and xk = (xkt)t∈[[0,T]]. Then, there exists a deterministic function ξ and a sequence

of independent random variables (W k)k∈N such that for every k ∈ N, xk = ξ(F k,W k) where
(W k)k∈N is furthermore independent from F 0. Throughout the remainder of the chapter,

Algorithm 1 Tropical Dynamic Programming (TDP)

Input: For every t ∈ [[0, T]], St a compatible selection function and a Trial point Oracle
satisfying Definition 7.

Output: For every t ∈ [[0, T]], a sequence of sets
(
F kt
)
k∈N and the associated sequence V k

t =
optφ∈Fkt

φ.

Define for every t ∈ [[0, T]], F 0
t := ∅.

for k ≥ 0 do
Forward phase
Compute

(
Kk

0 , . . .K
k
T ,Pk

)
= Oracle

(
F k0 , . . . , F

k
T

)
.

Draw trial points
(
xkt
)
t∈[[0,T]]

over Kk
0 ×Kk

1 × . . .×Kk
T according to Pk knowing the past

iterations.
Backward phase
Compute φk+1

T := ST
[
F kT , x

k
T

]
.

Define F k+1
T := F kT ∪

{
φk+1
T

}
.

for t from T − 1 to 0 do
Compute φk+1

t := St
[
F k+1
t+1 , x

k
t

]
.

Define F k+1
t := F kt ∪

{
φk+1
t

}
.

end for
end for

denote by (Ω,F ,P) a probability space on which the random variables (W k)k∈N are defined
and independent.

We will denote by + the Minkowski sum between sets, by B the unit closed Euclidean
ball of XT+1 and for every x ∈ XT+1 and radius r > 0, B(x, r) is the Euclidean open ball
of radius r centered at x. Furthermore, we define for every t, K∗t := limk∈NK

k
t the set of all

possible limit points of Kk
t . We make the following assumption on the Oracle which, loosely

stated, ensures that if a state xt is close to K∗t , then xt is almost a limit point of the sequence
of trial points (xkt)k∈N.

Assumption 2 (Trial point assumption). For every radius r′ > 0, there exists r > 0 such
that

∀x ∈ X , P
[(
x ∈ limk∈N

1Kk + rB
)
⇒ x ∈ limk∈NB(xk, r′)

]
= 1 . (3.6)

Remark that (limk∈NK
k) + rB = limk∈N(Kk + rB), hence the lack of parenthesis. The

following lemma gives some more insight on the Trial point assumption.

Lemma 8. Consider the sequence of trial points (xk)k∈N generated by Algorithm 1 with an
Oracle satisfying Assumption 2. Given r′ > 0 and x ∈ X, for every r′′ > r′, P-a.s.,

x ∈ limk∈NB(xk, r′)⇒ xk ∈ B(x, r′′) for infinitely many indices k ∈ N . (3.7)

Conversely, given r′′ > 0 and x ∈ X, for every r′ > r′′, P-a.s.

xk ∈ B(x, r′′) for infinitely many indices k ∈ N⇒ x ∈ limk∈NB(xk, r′) . (3.8)

1See [RW09, Definition 4.1 p. 109].

Proof. First, we prove Equation (3.7). Fix r′′ > r′ > 0 and assume that x ∈ limk∈NB(xk, r′),
P-a.s.. Then, there exists an increasing function σ : N → N and a sequence (yσ(k))k∈N ⊂ r′B
such that xσ(k) + yσ(k) −→

k→+∞
x. As r′′ − r′ > 0, there exists a rank k0 ∈ N such that when

k ≥ k0 we have ‖x− xσ(k) + yσ(k)‖ ≤ r′′ − r′. By triangle inequality, we have

‖x− xσ(k)‖ ≤ ‖x− xσ(k) + yσ(k)‖+ ‖−yσ(k)‖ ≤ (r′′ − r′) + r′ = r′′,

i.e. P-a.s., for every k ≥ k0, x ∈ B(xk, r′′), which yields Equation (3.7).
Second, we prove Equation (3.8). Fix r′ > r′′ > 0 and assume that xk ∈ B(x, r′′) for

infinitely many indices k ∈ N. Thus, P-a.s, there exists an increasing function σ : N→ N and
a sequence (yσ(k))k∈N ⊂ r′′B such that xσ(k) − x = yσ(k). As r′ > r′′, P-a.s. x ∈ B(xk, r′) and
x = xσ(k) − yσ(k). Hence, we obtain Equation (3.8).

Now, we give two examples of Oracles that satisfy the Trial point assumption 2. They are
used respectively in Section 3.4 and 3.5.

Example 2 (Independent uniform draws over the unit sphere). Consider the Oracle which
constantly outputs T + 1 times the unit Euclidean sphere S of X and the uniform probability
measure Pk := σU of ST+1 on XT+1.2 Here, we have for every k ∈ N, Kk = ST+1. Fix an
arbitrary r′ > 0 and set r = r′/2, we prove that

∀x ∈ X,P
[
x ∈ (ST+1 + rB)⇒ x ∈ limk∈NB(xk, r′)

]
= 1 .

Proof. Fix x ∈ ST+1 + rB, we need to show that we have P
[
x ∈ limk∈NB(xk, r′)

]
= 1. Now,

fix r′′ > 0 such that r < r′′ < r′. Using Lemma 8-(3.8), it is enough to show that

P[xk ∈ B(x, r′′) for infinitely many indices k ∈ N] = 1. (3.9)

As r′′ > r and x is distant from ST+1 by less than r, the quantity P[xk ∈ B(x, r′′)] =
σU [B(x, r′′) ∩ ST+1] is a positive constant in k. Thus, we have that

∑
k∈N P

[
xk ∈ B(x, r′′)

]
=

+∞. Moreover, the sequence of events (xk ∈ B(x, r))k∈N is independent, thus by Borel-
Cantelli’s Lemma, Equation (3.9) holds.

Example 3 (Dirac on the current optimal trajectory). The sequence of probability measures
(Pk)k∈N is recursively build as follows:
– Set P0 := (δx00 , . . . δx0T

) where x0
t ∈ K0

t for every t ∈ [[0, T]].

– Given sets of functions F k0 , . . . , F
k
T . Start, by fixing xk0 = x0 and compute forward in time,

for t ∈ [[0, T−1]], optimal controls by ukt ∈ arg minu But (VFkt+1
)(xkt), and successive states by

xkt+1 = ft(x
k
t , u

k
t).

– Define a probability measures Pk := (δxk0
, . . . , δxkT

).

Consider the Oracle which, given sets of functions F k0 , . . . , F
k
T , outputs the singleton

{xk} =
{

(xkt)t∈[[0,T]]

}
and the probability measure Pk := (δxk) defined at previous step. Fix

r > 0, take r′ = r > 0 and x ∈ XT+1. We obtain that

P
[
x ∈

(
limk∈N {xk}+ rB︸ ︷︷ ︸

=B(xk,r)

)c
or x ∈ limk∈NB(xk, r)

]
= 1 ,

which is equivalent to the Trial point assumption with Kk = {xk}.
2For every A ∈ B(XT+1), σU (A) = C Leb(π−1

ST+1(A ∩ ST+1)), where Leb is the Lebesgue measure on XT+1,

πST+1 is the Euclidean projector on ST+1 restricted to the ball B(0, 1)T+1 without 0 and C a normalization
constant.

3.3 Almost sure convergence on the set of accumulation points

In this section, we will prove the convergence result stated in Theorem 15. For this purpose,
we state several crucial properties of the approximation functions

(
V k
t

)
k∈N generated by

Algorithm 1. They are direct consequences of the facts that the Bellman operators are order
preserving and that the basic functions building our approximations are computed through
compatible selection functions. Algorithm 1 is stochastic as trial points are drawn at each
iteration from Pk. Therefore, equalities, inequalities and statements where the functions V k

t

are involved hold P-almost surely. However, for the sake of simplicity, we will refrain from
always adding P-almost surely in equalities, inequalities and some statements.

Lemma 9. The sequence of functions
(
V k
t

)
k∈N, for every t ∈ [[0, T]], given by Equation (3.5)

and produced by Algorithm 1 satisfy the following properties.

1. Monotone approximations: for every indices k < k′ and every t ∈ [[0, T]], we have
that V k

t ≥ V k′
t ≥ Vt when opt = inf and V k

t ≤ V k′
t ≤ Vt when opt = sup.

2. For every k ∈ N and every t ∈ [[0, T − 1]], we have that Bt
(
V k
t+1

)
≤ V k

t when opt = inf
and Bt

(
V k
t+1

)
≥ V k

t when opt = sup.

3. For every k ≥ 1 and every t ∈ [[0, T − 1]], we have Bt
(
V k
t+1

) (
xk−1
t

)
= V k

t

(
xk−1
t

)
.

4. For every k ≥ 1, we have V k
T

(
xk−1
T

)
= VT

(
xk−1
T

)
.

Proof. We prove each point when opt = inf. The case opt = sup is similar and left to the
reader.

• (1) (left inequality). Let t ∈ [[0, T]] be fixed. By construction of Algorithm 1, the sequence of
sets

(
F kt
)
k∈N is non-decreasing. Now, using the definition of the sequence

(
V k
t

)
k∈N given by

Equation (3.5) we have that V k+1
t = VFk+1

t
(x) = infφ∈Fk+1

t
φ(x) ≤ infφ∈Fkt

φ(x) = VFkt (x) =

V k
t and thus the sequence

(
V k
t

)
k∈N is non-increasing.

• (2). We prove the assertion by induction on k ∈ N. For k = 0, as F 0
t = ∅, we have V 0

t = +∞
for all t ∈ [[0, T − 1]] and thus the assertion is true. Now, assume that for some k ∈ N, we
have for all t ∈ [[0, T − 1]]

Bt
(
V k
t+1

)
≤ V k

t . (3.10)

Since
(
V k′
t+1

)
k′∈N is non-increasing by already proved Item (1) and Bt is order preserving using

Assumption 1-(f), we have that Bt
(
V k+1
t+1

)
≤ Bt(V k

t+1). This last inequality combined with

induction assumption given by Equation (3.10) gives the inequality

Bt
(
V k+1
t+1

)
≤ V k

t . (3.11)

Moreover, we also have that

Bt
(
V k+1
t+1

)
=

(by (3.5))
Bt
(
VFk+1

t+1

)
≤

(by St validity at xkt)

St
[
F k+1
t+1 , x

k
t

]
= φk+1

t , (3.12)

where the last equality is obtained by definition of function φk+1
t in Algorithm 1. Thus,

combining Equation (3.11) and (3.12) we have that Bt(V k+1
t+1) ≤ inf

(
V k
t , φ

k+1
t

)
. Finally, using

Equation (3.5) and Algorithm 1, we have that

inf
(
V k
t , φ

k+1
t

)
= inf

(
inf
φ∈Fkt

φ, φk+1
t

)
= inf

φ∈Fkt ∪{φ
k+1
t }

φ = inf
φ∈Fk+1

t

φ = V k+1
t .

Thus, we obtain that Bt
(
V k+1
t+1

)
≤ inf

(
V k
t , φ

k+1
t

)
= V k+1

t , which gives the induction assump-

tion for k + 1 and concludes the proof of (2).
• (3). As the selection function St is tight in the sense of Definition 6, we have by construction
of Algorithm 1 that Bt(V k

t+1)(xk−1
t) = φkt (x

k−1
t). Combining this equation with Item (2) and

the definition of V k
t , one gets Lemma 9-(3).

• (4). Similarly, we have that VT (xk−1
T) = φkT (xk−1

T), which combined with the inequality
given in Item (1) and the definition of V k

T gives Lemma 9-(4).
• (1) (right inequality). We prove that V k

t ≥ Vt for all for all k ∈ N and all t ∈ [[0, T]]. Fix
k ∈ N, we show that V k

t ≥ Vt for all t ∈ [[0, T]] by backward recursion on time t. For t = T ,
by validity of the selection functions given in Definition 6, for every φ ∈ F kT , we have that
φ ≥ VT . Thus V k

T = VFkT = infφ∈FkT
φ ≥ VT . Now, suppose that for some t ∈ [[0, T − 1]], we

have that Vt+1 ≤ V k
t+1. Then, using the definition of the value function in Equation (3.3),

the fact that the Bellman operators are order preserving and the inequality already proved
in Item (2) we obtain that: Vt = Bt

(
Vt+1

)
≤ Bt

(
V k
t+1

)
≤ V k

t , which gives the assertion for
time t. This ends the proof.

In the following two propositions, we state that the sequences
(
V k
t

)
k∈N and (Bt

(
V k
t+1

)
)k∈N

converge uniformly on any compact included in the domain of Vt. The limit function V ∗t of(
V k
t

)
k∈N will be a natural candidate to be the value function Vt.

Lemma 10. Fix t ∈ [[0, T]]. Let (φk)k∈N be a monotonic sequence in Ft such that there exists
φ1, φ2 ∈ Ft satisfying for every k ∈ N φ1 ≤ φk ≤ φ2. Then, the sequence (φk)k∈N converges
uniformly on every compact set included in dom(Vt) to a function φ∗ ∈ Ft.

Proof. The proof relies on the Arzela-Ascoli theorem [Sch95, Theorem 2.13.30 p.347]. Since
φ1 and φ2 belong to Ft, they are finite on dom(Vt). Then, the sequence of functions (φk)k∈N
is monotonic and bounded, so it converges pointwise on dom(Vt) to a limit function φ∗. By
Assumption 1-(b), this implies that φ∗ ∈ Ft.

Now, fix a compact set K ⊂ dom(Vt). First, since (φk)k∈N ⊂ Ft, we have that for every
k ∈ N, dom(φk) contains dom(Vt) and the sequence of functions (φk)k∈N share a common
modulus of continuity. Second, supk∈N supx∈K |φk(x)| is finite as |φ1| and |φ2| are continu-
ous functions on the compact K. Hence, by Arzela-Ascoli theorem the monotonic sequence
(φk)k∈N converges uniformly on the compact K towards the continuous function φ∗.

Proposition 11 (Existence of an approximating limit). Let t ∈ [[0, T]] be fixed. The sequence
of functions

(
V k
t

)
k∈N defined by Equation (3.5) and Algorithm 1 P-a.s. converges uniformly

on every compact set included in the domain of Vt (solution of Equation (3.3)) to a function
V ∗t ∈ Ft.

Proof. By Lemma 9-(1), for every k ≥ 1 we have that V 1
t ≤ V k

t ≤ Vt, when opt = sup (and
the inequalities are reversed when opt = inf). Now, we have that V 1

t ∈ Ft and by Lemma 5,

the mapping Vt is also in Ft. Moreover, by Lemma 9-(1), the sequence (V k
t)k≥1 is monotonic.

Thus, by Lemma 10, we have that (V k
t)k≥1 converges uniformly on every compact set included

in dom(Vt) towards a function V ∗t ∈ Ft.

This ends the proof.

Proposition 12. Let t ∈ [[0, T−1]] be fixed and V ∗t+1 be the function defined in Proposition 11.
The sequence Bt

(
V k
t+1

)
P-a.s. converges uniformly to the continuous function Bt

(
V ∗t+1

)
on

every compact sets included in the domain of Vt.

Proof. First we consider the case opt = inf. As the sequence
(
V k
t+1

)
k∈N is non-increasing and

using the fact that the operator Bt is order preserving, the sequence (Bt(V k
t+1))k∈N is also

non-increasing. Moreover, we have that

V 1
t ≥ V k

t (Lemma 9-(1))

≥ Bt(V k
t+1) (Lemma 9-(2))

≥ Bt(Vt+1) (Lemma 9-(1))

= Vt.

Thus, by Lemma 10, the sequence of functions (Bt(V k
t+1))k≥1 converges uniformly on every

compact set included in dom(Vt) to a function φ ∈ Ft. Let Kt be a given compact set included
in dom(Vt). We now show that the function φ is equal to Bt

(
V ∗t+1

)
on the given compact Kt or

equivalently we show that φ+ δKt = Bt
(
V ∗t+1

)
+ δKt . As already shown in Proposition 11, we

have that V k
t+1 ≥ V ∗t+1, which combined with the fact that the operator Bt is order preserving,

gives, for every k ≥ 1, that Bt(V k
t+1) ≥ Bt(V ∗t+1). Now, adding on both side of the previous

inequality the mapping δKt and taking the limit as k goes to infinity, we have that

φ+ δKt ≥ Bt
(
V ∗t+1

)
+ δKt .

For the converse inequality, start by recalling that, by the compactness condition (see As-
sumption 1-(i)), there exists a compact set Kt+1 ⊂ dom(Vt+1) such that, for every φ ∈ Ft+1

and every λ ≥ 0, we have that

Bt
(
φ+ λ+ δKt+1

)
≤ Bt (φ+ λ) + δKt . (3.13)

Now, by Proposition 11, the non-increasing sequence
(
V k
t+1

)
k∈N converges uniformly to V ∗t+1 ∈

Ft+1 on the compact set Kt+1. Thus, for any fixed ε > 0, there exists an integer k0 ∈ N, such
that we have

V k
t+1 ≤ V k

t+1 + δKt+1 ≤ V ∗t+1 + ε+ δKt+1 ,

for all k ≥ k0. By Assumption 1-(f) and Assumption 1-(g), the operator Bt is order preserving
and additively Mt-subhomogeneous, thus we get using Equation (3.13) that

Bt
(
V k
t+1

)
≤ Bt

(
V k
t+1 + δKt+1

)
≤ Bt(V ∗t+1 + ε+ δKt+1), (by Assumption 1-(f))

≤ Bt(V ∗t+1 + ε) + δKt , (by Equation (3.13))

≤ Bt(V ∗t+1) +Mtε+ δKt . (by Assumption 1-(g))

Adding δKt on the left hand side, we have for every k ≥ k0 that Bt
(
V k
t+1

)
+ δKt ≤ Bt

(
V ∗t+1

)
+

Mtε+ δKt . Thus, taking the limit when k goes to infinity we obtain that

φ+ δKt ≤ Bt
(
V ∗t+1

)
+Mtε+ δKt .

BtBt(φt+1)

St

φt+1

St+1

Figure 3.3: The optimality of the sets (St)t∈[[0,T]] means that in order to compute the restriction
of Bt (φt+1) on St, one only needs to know the values of φt+1 on the set St+1.

The result has been proved for all ε > 0 and we have thus shown that φ = Bt
(
V ∗t+1

)
on

the compact set Kt. We conclude that
(
Bt
(
V k
t+1

))
k∈N converges uniformly to the function

Bt
(
V ∗t+1

)
on the compact set Kt. For the case opt = sup, mutatis mutantis we have that

Bt(V k
t+1) ≤ Bt(V ∗t+1). Similarly, as the sequence (V k

t+1) is non-decreasing and Bt is order
preserving, one gets that for every k large enough

Bt(V ∗t+1) ≥ Bt(V ∗t+1) + δKt+1 ≥ Bt(V ∗t+1 + ε+ δKt+1).

Thus, by Equation (3.13) and Mt-subhomogeneity we have that Bt(V ∗t+1) + δKt ≤ Bt(V k
t+1) +

Mtε+ δKt , which yields the result when k goes to infinity. This ends the proof.

We want to exploit the fact that our approximations of the final cost function are exact
in the sense that we have equality between V k

T and VT at the points drawn in Algorithm 1,
that is, the tightness assumption of the selection function is much stronger at time T than
for times t < T . Thus we want to propagate the information backward in time: starting from
time t = T we want to deduce information on the approximations for times t < T .

In order to show that Vt = V ∗t on some set St, a dissymmetry between upper and lower
approximations is emphasized. We introduce the notion of optimal sets (St)t∈[[0,T]] with respect
to a sequence of functions (φt)t∈[[0,T]] as a condition on the sets (St)t∈[[0,T]] such that in order
to compute the restriction of Bt (φt+1) to St, one only needs to know φt+1 on the set St+1.
The Figure 3.3 illustrates this notion.

Definition 13 (Optimal sets). Let (φt)t∈[[0,T]] be T+1 functions on X. A sequence of sets
(St)t∈[[0,T]] is said to be (φt)-optimal if for every t ∈ [[0, T − 1]], we have

Bt
(
φt+1 + δSt+1

)
+ δSt = Bt (φt+1) + δSt . (3.14)

When approximating from below, the optimality of sets is only needed for the limit func-
tions (V ∗t)t∈[[0,T]], whereas when approximating from above, one needs the optimality of sets
with respect to the value functions (Vt)t∈[[0,T]]. It seems easier to ensure the (V ∗t)-optimality of

sets than (Vt)-optimality as the function V ∗t is known through the sequence
(
V k
t

)
k∈N, whereas

the function Vt is, a priori, unknown. This fact is discussed in Sections 3.4 and 3.5.

Lemma 14 (Uniqueness in restricted Bellman Equations). Let (Xt)t∈[[0,T]] be a sequence of
sets such that for every t ∈ [[0, T]], Xt ⊂ dom(Vt) and which is

– (Vt)-optimal when opt = inf,
– (V ∗t)-optimal when opt = sup.

If the sequence of functions (V ∗t)t∈[[0,T]] satisfies the following restricted Bellman Equations:

V ∗T + δXT = ψ + δXT and ∀t ∈ [[0, T − 1]], Bt
(
V ∗t+1

)
+ δXt = V ∗t + δXt . (3.15)

Then, for every t ∈ [[0, T]] and every x ∈ Xt, we have that V ∗t (x) = Vt(x).

Proof. We prove the lemma by backward induction on time t ∈ [[0, T]]. We first treat the case
opt = inf. At time t = T , since VT is given by Equation (3.3), we have VT = ψ. We therefore
have by Equation (3.15) that V ∗T + δXT = ψ + δXT = VT + δXT , which gives the fact that
functions V ∗T and VT coincide on the set XT . Now, let time t ∈ [[0, T −1]] be fixed and assume
that we have V ∗t+1(x) = Vt+1(x) for every x ∈ Xt+1, or equivalently:

V ∗t+1 + δXt+1 = Vt+1 + δXt+1 . (3.16)

Using Lemma 9-(1), the sequence of functions (V k
t)k∈N is lower bounded by Vt. Taking the

limit in k, we obtain that V ∗t ≥ Vt, thus we only have to prove that V ∗t ≤ Vt on Xt, that is
V ∗t + δXt ≤ Vt + δXt . We successively have:

V ∗t + δXt = Bt
(
V ∗t+1

)
+ δXt (by (3.15))

≤ Bt
(
V ∗t+1 + δXt+1

)
+ δXt (Bt is order preserving)

= Bt
(
Vt+1 + δXt+1

)
+ δXt (by induction assumption (3.16))

= Bt (Vt+1) + δXt (by (3.14), (Xt)t∈[[0,T]] is (Vt)-optimal)

= Vt + δXt , (by (3.3))

which concludes the proof in the case of opt = inf.
Now we prove the case opt = sup in a similar way by backward induction on time t ∈ [[0, T]].

As for the case opt = inf, at time t = T , one has V ∗T + δXT = VT + δXT . Now assume that
for some t ∈ [[0, T − 1]] one has V ∗t+1 + δXt+1 = Vt+1 + δXt+1 . By Lemma 9-(1), the sequence
of functions (V k

t) is now upper bounded by Vt. Thus, taking the limit in k we obtain that
V ∗t ≤ Vt and we only need to prove that V ∗t + δXt ≥ Vt + δXt . We successively have:

Vt + δXt = Bt (Vt+1) + δXt (by (3.3))

≤ Bt
(
Vt+1 + δXt+1

)
+ δXt (Bt is order preserving)

= Bt
(
V ∗t+1 + δXt+1

)
+ δXt (by induction assumption (3.16))

= Bt
(
V ∗t+1

)
+ δXt ((Xt)t∈[[0,T]] is (V ∗t)-optimal)

= V ∗t + δXt , (by (3.15))

This ends the proof.

One cannot expect the limit function, V ∗t , to be equal everywhere to the value function,
Vt, given by Equation (3.3). However, one can expect an (almost sure over the draws) equality
between the two functions Vt and V ∗t on all possible cluster points of sequences (yk)k∈N with
yk ∈ Kk

t for all k ∈ N, that is, on the set limKk
t .

Theorem 15 (Convergence of Tropical Dynamic Programming). Define K∗t := limkK
k
t , for

every time t ∈ [[0, T]]. Assume that, P-a.s. the sets (K∗t)t∈[[0,T]] are (Vt)-optimal when opt = inf
(resp. (V ∗t)-optimal when opt = sup). Then, P-a.s. for every t ∈ [[0, T]] the function V ∗t
defined in Proposition 11 is equal to the value function Vt on K∗t .

Proof. We will only consider the case opt = inf as the proof for the case opt = sup is
analogous. We will show that Equation (3.15) holds P-almost surely with Xt = K∗t , t ∈ [[0, T]].
The proof is decomposed in several steps

• Reformulation using the separability of X. Let C := (Ct)t ⊂ XT+1 be compact in dom(V0)×
. . . × dom(VT). For every t ∈ [[0, T − 1]], set ∆t : xt ∈ X → V ∗t (xt) − Bt(V ∗t+1)(xt) ∈ R,
∆T : xT ∈ X → V ∗T (xT) − VT (xT) ∈ R and ∆ := (∆)t∈[[0,T]]. Also write K∗ := (K∗t)t∈[[0,T]].
We want to show that

P
[
∀x ∈ C,

(
x ∈ K∗ ⇒ ∆(x) = 0

)]
= 1 . (3.17)

By continuity of V ∗t − Bt(V ∗t+1) (resp. V ∗T − VT) for every t ∈ [[0, T − 1]] (resp. t = T) and
compactness of K, Equation (3.17) is equivalent to

P
[
∀ε > 0, ∃r > 0, ∀x ∈ K,

(
x ∈ (K∗ + rB)⇒ ∆(x) ≤ ε

)]
= 1 . (3.18)

Without loss of generality, by density, one may restrict ε and r to the countable set Q∗+ and
the set C to the set C ∩ (Qn)T+1, that is, Equation (3.18) is equivalent to

∀ε ∈ Q∗+,∃r ∈ Q∗+, ∀x ∈ C ∩ (Qn)T+1,P
[
x ∈ (K∗ + rB)⇒ ∆(x) ≤ ε

]
= 1 . (3.19)

For the remainder of the proof, we fix ε ∈ Q∗+. Now, we exploit the equicontinuity of
the sequence of functions (V k

t)k∈N and
(
Bt(V k

t+1)
)
k∈N in order to compute a suitable radius

r′ ∈ Q∗+ so as to satisfy Equation (3.19). We separate the cases t = T and t < T .

• Equicontinuity and uniform convergence, case t = T. As the functions VT and V k
t , for k ∈ N

are in FT , they share a common modulus of continuity on the compact CT . Thus, they share
a common uniform modulus of continuity. Hence, there exists a radius rT ∈ Q∗+, such that
for every xT ∈ CT ∩Qn, if yT ∈ B(xT , rT) ∩ domVT , then∣∣V k+1

T (xT)− V k+1
T (yT)| ≤ ε

3
and |VT (yT)− VT (xT)| ≤ ε

3
. (3.20)

Now, as (V k
T)k∈N converges uniformly to V ∗T on the compact CT ⊂ domVT , there exists a rank

kT ∈ N such that, if k ≥ kT , then for all xT ∈ KT ,

|V k+1
T (xT)− V ∗T (xT)| ≤ ε

3
. (3.21)

• Equicontinuity and uniform convergence, case t ∈ [[0,T− 1]]. The sequences (V k
t)k∈N, resp.

(Bt(V k
t+1))k∈N are uniformly equicontinuous on the compact Ct ⊂ dom(Vt). There exists a

radius rt ∈ Q∗+ such that for every xt ∈ Ct, if yt ∈ B(xt, rt) ∩ domVt, then for every k ∈ N,

|V k+1
t (xt)− V k+1

t (yt)| ≤
ε

4
and |Bt(V k+1

t+1 (yt))− Bt(V k+1
t+1 (xt))| ≤

ε

4
. (3.22)

By uniform convergence of the sequence (V k
t)k∈N (resp. Bt(V k

t+1)k∈N) to V ∗t (resp. to Bt(V ∗t+1))
on the compact Ct ⊂ dom(Vt), there exists a rank kt ∈ N such that, if k ≥ kt, then for every
xt ∈ K

|V ∗t (xt)− V k+1
t (xt)| ≤

ε

4
and |Bt(V k+1

t+1)(xt)− Bt(V ∗t+1)(xt)| ≤
ε

4
(3.23)

• There exists a draw xk
∗
t of the sequence of trial points (xkt)k∈N arbitrarily close to any given

point of K∗. Throughout the remainder of the proof, we fix ranks kt ∈ N and radii rt ∈ Q∗+
defined in Step 2 and set

k := max
t∈[[0,T]]

kt ∈ N and r := min
t∈[[0,T]]

rt .

By the Trial point oracle assumption, there exists r ∈ Q∗+ such that, for every x ∈ C,

P[x ∈ K∗ + rB⇒ x ∈ limk∈NB(xk, r/2)] = 1 . (3.24)

Now, fix x ∈ C∩(Qn)T+1. By Equation (3.24), P-a.s., if x ∈ K∗+rB then x ∈ limk∈NB(xk, r/2),
so by Lemma 8, (xk)k ∈ B(x, r) infinitely often. Hence, P-a.s., if x ∈ K∗ + rB, then there
exists k∗ ≥ k such that

xk
∗ ∈ B(x, r). (3.25)

• Conclusion. When t = T , by triangle inequality, P-a.s. we have that

∆(xT) ≤ |V ∗T (xT)− V k∗+1
T (xT)|︸ ︷︷ ︸

≤ε/3 by (3.21) and (3.25)

+ |V k∗+1
T (xT)− V k∗+1

T (xk
∗
T)|︸ ︷︷ ︸

≤ε/3 by (3.20)

+ |V k∗+1
T (xk

∗
T)− VT (xk

∗
T)|︸ ︷︷ ︸

=0 by Tightness Lemma 9-(4)

+ |VT (xk
∗
T)− VT (xT)|︸ ︷︷ ︸

≤ε/3 by (3.21) and (3.25)

≤ ε .

When t ∈ [[0, T − 1]], by triangle inequality, P-a.s. we have that

∆(xt) ≤ |V ∗t (xt)− V k+1
t (xt)|︸ ︷︷ ︸

≤ε/4 by (3.23)

+ |V k+1
t (xt)− V k+1

t (xkt)|︸ ︷︷ ︸
≤ε/4 by (3.22) and (3.25)

+ |V k+1
t (xkt)− Bt(V k+1

t+1)(xkt)|︸ ︷︷ ︸
= 0 by Lemma 9-(3)

+ |Bt(V k+1
t+1)(xkt)− Bt(V k+1

t+1)(xt)|︸ ︷︷ ︸
≤ε/4 by (3.22) and (3.25)

+ |Bt(V k+1
t+1)(xt)− Bt(V ∗t+1)(xt)|︸ ︷︷ ︸

≤ε/4 by (3.23)

≤ ε .

Thus, we have shown Equation (3.19), i.e. P-a.s., for every t ∈ [[0, T]] we have V ∗t = Bt(V ∗t+1)
on K∗t . The sequence (V ∗t)k∈N satisfies the restricted Bellman Equation (3.15) with the
sequence (K∗t)k∈N. The conclusion follows from the Uniqueness lemma (Lemma 14).

3.4 SDDP selection function: lower approximations in the
linear-convex framework

We will show that our setting contains a similar framework of (the deterministic version of)
the SDDP algorithm as described in [GLP15] and yields the same result of convergence. Let
X = Rn be a continuous state space and U = Rm a continuous control space. We want to

solve the following problem

min
x=(x0,...,xT)
u=(u0,...uT−1)

T−1∑
t=0

ct(xt, ut) + ψ(xT)

s.t. x0 ∈ X is given,

∀t ∈ [[0, T]], xt ∈ X,
∀t ∈ [[0, T − 1]], ut ∈ U, xt+1 = ft(xt, ut).

(3.26)

We make similar assumptions as in the literature of SDDP (e.g. [GLP15]), note that in
our formulation, we have put the constraints on the states and controls on the cost functions.
We refer to [AE84] and [RW09] for results on set-valued mappings.

Assumption 3. For all t ∈ [[0, T − 1]] we assume that:

1. The dynamic ft : X× U −→ X is linear, ft(x, u) = Atx+Btu, for some given matrices
At and Bt of compatible dimensions.

2. The cost function ct : X × U −→ R is a proper lower semicontinuous (l.s.c.) convex
function which is Lct-Lipschitz continuous on its (convex) domain, dom(ct).

3. The projection on X of dom(ct), denoted Xt, is a convex polytope with non-empty inte-
rior.

4. Define the set-valued mapping Ut : X⇒ U, for every x ∈ X

Ut(x) := {u ∈ U | (x, u) ∈ dom(ct) and ft(x, u) ∈ Xt+1} ,

where we assume that

• For every x ∈ Xt, Ut(x) is compact.

• The graph of the set-valued mapping Ut has a non-empty interior.

• For every x ∈ Xt, there exists u ∈ Ut(x).3

• The set-valued mapping Ut is LUt-Lipschitz continuous4 (hence, both upper and lower
semicontinuous).

Moreover, at time t = T , we assume that XT := dom(VT) ⊂ X is convex and compact with
non-empty interior, the final cost function ψ : X −→ R is a proper convex l.s.c. function with
known compact convex domain and ψ is CT -Lipschitz continuous on its domain.

Remark 16. Under Assumption 3, the graph of the set-valued mapping Ut is convex, and its
domain is Xt.

Remark 17. A sufficient condition to ensure that the set-valued mapping Ut is Lipschitz con-
tinuous is given in [RW09, Example 9.35]: Ut is Lipschitz when its graph is convex polyhedral,
which is the classical framework of SDDP. Moreover a Lipschitz constant can be explicitly
computed.

3known as a Relatively Complete Recourse assumption.
4For all x, x′ ∈ X, Ut(x

′) ⊂ Ut(x) + LUt‖x′ − x‖.

For every time step t ∈ [[0, T − 1]], recall the Bellman operator Bt for every function
φ : X→ R by:

Bt(φ) := inf
u∈U

(
ct(·, u) + φ

(
ft(·, u)

))
. (3.27)

Moreover, for every function φ : X→ R and every (x, u) ∈ X× U we define

But (φ) (x) := ct (x, u) + φ
(
ft(x, u)

)
∈ R . (3.28)

The Bellman equations of Problem (3.26) can be written using the Bellman operators Bt given
by Equation (3.27):

VT = ψ and ∀t ∈ [[0, T−1]], Vt : x ∈ X 7→ Bt(Vt+1)(x) ∈ R . (3.29)

In Proposition 18, we establish a stability property of the Bellman operators given by
Equation (3.27). The image of a Lipschitz continuous function by the operator Bt will also
be Lipschitz continuous and we give an explicit (conservative) Lipschitz constant.

Proposition 18. Under Assumption 3, for every t ∈ [[0, T − 1]], given a constant Lt+1 > 0,
there exist a constant Lt > 0 such that if φ : X→ R is convex l.s.c. proper with domain Xt+1

and Lt+1-Lipschitz continuous on Xt+1 then Bt (φ) is convex l.s.c. proper with domain Xt

and Lt-Lipschitz continuous on Xt.

Proof of Proposition 18. Fix t ∈ [[0, T − 1]] and let φ : X → R be a convex l.s.c. proper
function with domain Xt+1 and Lt+1-Lipschitz continuous function on Xt+1. We show that
dom

(
Bt(φ)

)
= Xt. Let xt ∈ Xt be arbitrary. By the RCR Assumption, there exist ut ∈ Ut(xt)

such that ft (xt, ut) ∈ Xt+1 and (xt, ut) ∈ dom(ct). As the domain of φ is Xt+1, we have that

inf
u∈U

(
ct(xt, u) + φ

(
ft(xt, u)

))
≤ ct (xt, ut) + φ

(
ft(xt, ut)

)
< +∞ .

Thus, we have shown that dom
(
Bt(φ)

)
includes Xt. Conversely, if x /∈ Xt, then for every

u ∈ U, we have ct(x, u) = +∞, hence x /∈ dom(Bt(φ)). This implies that dom
(
Bt(φ)

)
⊂ Xt

and the equality follows.
Moreover, the above infimum can be restricted to Ut(x), which is compact. As the function

x 7→ Bt (φ) (x) is convex (resp. l.s.c.) on Xt as (x, u) 7→ ct (x, u)+φ (ft (x, u)) is jointly convex
(resp. l.s.c. and Ut(x) is compact).

Since ct(x, ·), φ are l.s.c. and ft(x, ·) is continuous, the above infimum is attained. We
will denote by ux ∈ Ut(x) a minimizer, note that ft(x, ux) ∈ Xt+1.

We finally show that the function Bt (φ) is Lipschitz on Xt with a constant Lt > 0 that
only depends on the data of Problem (3.26). Fix x, x′ ∈ Xt and denote by ux′ ∈ Ut(x′) an
optimal control at x′, i.e. Bux′t (φ)(x′) = Bt(φ)(x′). For every u ∈ Ut(x), we have that

Bt(φ)(x) ≤ Bt(φ)(x′) + But (φ)(x)− Bt(φ)(x′)

= Bt(φ)(x′) +
(
ct(x, u)− ct(x′, ux′)

)
+
(
φ
(
ft(x, u)

)
− φ

(
ft(x

′, ux′)
))

≤ Bt(φ)(x′) + Lct(‖x− x′‖+ ‖u− ux′‖) (3.30)

+ Lt+1

(
λmax(ATt At)

1/2‖x− x′‖+ λmax(BT
t Bt)

1/2‖u− ux′‖
)
.

Indeed, as the domain of ct(x, ·) is Ut(x), the domain of φ is Xt+1 and that for every u ∈ Ut(x),
we have ft(x, u) ∈ Xt+1, Equation (3.30) holds for every u ∈ Ut(x).

Now, we will bound from above ‖u − ux′‖ by ‖x − x′‖ multiplied by a constant. By
Assumption 3-(4) the set-valued mapping Ut is LUt-Lipschitz on its domain Xt. Hence, by
definition, there exists ũ ∈ Ut(x) such that:

‖ũ− ux′‖ ≤ LUt‖x− x′‖. (3.31)

Replacing u by ũ in Equation (3.30), by Equation (3.31) we deduce that Bt(φ)(x)−Bt(φ)(x′) ≤
Lt‖x− x′‖, where the Lipschitz constant Lt > 0 only depends on the data of Problem (3.26).
Mutatis mutandis, we have that Bt(φ)(x′)−Bt(φ)(x) ≤ Lt‖x−x′‖, and the result follows.

Remark 19. Knowing the value function at time t = T , by Proposition 18 we can compute
recursively backward in time the domain of Vt for each t < T : it is equal to the projection on
X of the domain of the cost function, which is Xt and known to the decision maker. Moreover
using Proposition 18 we have that, for every t, the value function Vt is convex l.s.c. proper
and Lipschitz continuous on its domain, with a computable constant.

As lower semicontinuous proper convex functions can be approximated by a supremum
of affine function, for every t ∈ [[0, T]] we define FSDDP

t to be the set of affine functions
φ : x ∈ X 7→ 〈a, x〉 + b ∈ R, a ∈ X, b ∈ R with ‖a‖2 ≤ Lt if x ∈ Xt and +∞ otherwise.
Moreover, we shall denote by FSDDP

t the set of convex functions φ : X 7→ R which are Lt-
Lipschitz continuous on Xt, of domain Xt and proper.

Proposition 20. Under Assumption 3, the Problem 3.26 and the Bellman operators defined
in Equation (3.29) satisfy the structural assumptions given in Assumption 1.

Proof. We prove successively each assumption listed in Assumption 1.

•1-(a). Recall that we are here on the case opt = sup. Fix t ∈ [[0, T]] and let F ⊂ FSDDP
t be a

set of affine Lt-Lipschitz continuous functions with domain Xt. For every x, x′ ∈ Xt, we have
that

|VF (x)− VF
(
x′
)
| = | sup

φ∈F
φ(x)− sup

φ∈F
φ(x′)| ≤ sup

φ∈F
|φ(x)− φ(x′)| ≤ Lt‖x− x′‖.

Thus, the function VF is Lt-Lipschitz continuous. As a supremum of affine functions is convex
and l.s.c., VF is also convex and l.s.c., we have thus shown that VF ∈ FSDDP

t .

•1-(b) and 1-(c). By construction, for all t ∈ [[0, T]], every element of FSDDP
t is Lt-Lipschitz

continuous. Thus, by the previous point, FSDDP
t is also stable by pointwise convergence.

•1-(d). As ψ is convex proper and LT -Lipschitz continuous on XT , it is a countable (as Rn is
separable) supremum of LT -Lipschitz affine functions.

•1-(e). This has been shown in Proposition 18.

•1-(f). Let φ1 and φ2 be two functions over X such that φ1 ≤ φ2 i.e. for every x ∈ X, we have
φ1(x) ≤ φ2(x). We want to show that Bt (φ1) ≤ Bt (φ2). Let x ∈ X, we have:

Bt (φ1) (x) = inf
u∈U

ct(x, u) + φ1 (ft(x, u))

≤ inf
u∈U

ct(x, u) + φ2 (ft(x, u))

= Bt (φ2) (x).

•1-(g). We will show that Bt is additively homogeneous, hence one can choose Mt = 1 in
Assumption 1-(g). Let λ ∈ R be a given constant and φ a given function in Ft+1. We identify
the constant λ with the constant function λ : x 7→ λ and we have for all x ∈ X:

Bt (λ+ φ) (x) = inf
u∈U

(
ct(x, u) + (λ+ φ)

(
ft(x, u)

))
= inf

u∈U

(
ct(x, u) + λ+ φ

(
ft(x, u)

))
= λ+ inf

u∈U

(
ct(x, u) + φ

(
ft(x, u)

))
= λ+ Bt(φ)(x).

• 1-(h). By backward recursion on time step t ∈ [[0, T]] and by Proposition 18, for every time
step t ∈ [[0, T]] the function Vt given by the Dynamic Programming Equation (3.29) is convex
and Lt-Lipschitz continuous on Xt.

•1-(i). Fix t ∈ [[0, T −1]], an arbitrary element φ ∈ FSDDP
t , a constant λ ≥ 0 and set φ̃ := φ+λ.

We will show that for every compact set Kt ⊂ Xt, there exist a compact set Kt+1 ⊂ Xt+1

such that

Bt
(
φ̃+ δKt+1

)
+ δKt = Bt

(
φ̃
)

+ δKt , (3.32)

which will imply the desired result. Now, Equation (3.32) is equivalent to the fact that for
every state xt ∈ Kt, there exist a control ut ∈ Ut(x) such that

ft(xt, ut) ∈ Kt+1 where ut ∈ arg min
u∈Ut(x)

But (φ̃)(xt) = ct(xt, u) + φ̃
(
ft(xt, u)

)
.

Set Kt+1 := ft(Xt, Ut(Xt)), it satisfies Equation (3.32), we show that it is compact. As Xt is
compact and ft is continuous, it is sufficient to prove that Ut(Xt) is compact, which is true as
Ut is upper semicontinuous (u.s.c.) and non-empty compact valued, see [AE84, Proposition
11 p.112]. This ends the proof

Now, we define a compatible selection function for opt = sup. Let t ∈ [[0, T − 1]] be fixed,
for any F ⊂ FSDDP

t and x ∈ X, we define the following optimization problem

min
(x′,u,λ)∈Xt×Ut(x′)×R

ct(x
′, u) + λ (3.33a)

s.t. x′ = x and φ
(
ft(x

′, u)
)
≤ λ ∀φ ∈ F . (3.33b)

If we denote by b its optimal value and by a a Lagrange multiplier associated to the
constraint x′ − x = 0 at the optimum, that is such that (x′, u;λ, a) is a stationary point of
the Lagrangian ct (x′, u) + λ− 〈a, x′ − x〉, then we define

φSDDP
t (F, x) := x′ 7→ 〈a, x′ − x〉+ b+ δXt(x

′) .

Finally, at time t = T , for any F ⊂ FSDDP
T and x ∈ X, fix a ∈ ∂VT (x) and define

φSDDP
T (F, x) := x′ 7→ 〈a, x′ − x〉+ VT (x) .

Proposition 21. For every time t ∈ [[0, T]], the function φSDDP
t is a compatible selection

function for opt = sup in the sense of Definition 6.

Proof. Fix t ∈ [[0, T − 1]], F ⊂ FSDDP
t+1 and x ∈ X. Using Equation (3.27) we obtain that

Bt (VF) (x) is equal to b the optimal value of optimization problem (3.33a). Thus, since
φSDDP
t (F, x) (x) = b we obtain that the selection function is tight. It is also valid as a is a

subgradient of the convex function Bt (VF) at x. For t = T , the selection function φSDDP
T is

tight and valid by convexity of VT .

If we want to apply the convergence result from Theorem 15, as we approximate from
below the value functions (opt = sup) then one has to make the draws according to some
sets Kk

t such that the sets K∗t := limk∈NK
k
t are V ∗t optimal. As done in the literature of

the Stochastic Dual Dynamic Programming algorithm (see for example [GLP15] and [ZAS18]
or [PP91]), one can study the case when the draws are made along the optimal trajectories
of the current approximations.

More precisely, fix k ∈ N we define a sequence (xk0, x
k
1, . . . , x

k
T) by

xk0 := x0 and ∀t ∈ [[0, T − 1]], xkt+1 := ft(x
k
t , u

k
t) ,

where ukt ∈ arg minu But
(
V k
t

) (
xkt
)
. We say that such a sequence (xk0, x

k
1, . . . , x

k
T) is an optimal

trajectory for the k-th approximations starting from x0. We show that optimal trajectories
for the current approximations become (V ∗t)-optimal when k goes to infinity, using a result
of convergence in minimization by Rockafellar and Wets [RW09, Theorem 7.33].

Proposition 22. For every k ∈ N, let (xk0, x
k
1, . . . , x

k
T) be an optimal trajectory for the k-

th approximations starting from x0 and define a sequence of singletons for every t ∈ [[0, T]],
Kk
t :=

{
xkt
}

. Then the sets (K∗t)t∈[[0,T]] defined by K∗t := limkK
k
t are (V ∗t)-optimal.

Proof. Fix t ∈ [[0, T−1]], we want to show that Equation (3.14) is satisfied for K∗t which is
equivalent to prove that for every x∗t ∈ K∗t , we have that

Bt
(
V ∗t+1 + δK∗t+1

)
(x∗t) = Bt

(
V ∗t+1

)
(x∗t). (3.34)

Now, using the definition of the Bellman operators in Equation (3.27) and Equation (3.34)
we have to prove that there exists a control u∗t ∈ Ut(x∗t) such that

u∗t ∈
{
u
∣∣ ft(x∗t , u) ∈ K∗t+1

}
∩ arg min
u∈Ut(x∗t)

(
ct(x

∗
t , u) + V ∗t+1

(
ft(x

∗
t , u)

))
. (3.35)

Fix x∗t ∈ K∗t and extracting if needed a subsequence, without loss of generality, assume
that (xkt)k∈N converges to x∗t . Fix k ∈ N and the sequence of controls (uk0, . . . , u

k
T−1) associated

with the optimal trajectory for the k-th approximations (xk0, . . . , x
k
T). We have that

ukt ∈
{
u
∣∣ ft(xkt , u) ∈ Kk

t+1

}
∩ arg min
u∈Ut(xkt)

(
ct(x

k
t , u) + V k

t+1

(
ft(x

k
t , u)

))
. (3.36)

Extracting, if needed, a subsequence (unt)n∈N of (ukt)n∈N, we will show that the sequence
(unt)n∈N converges to some u∗t ∈ arg minu∈Ut(x∗t) ct(x

∗
t , u) + V ∗t+1(ft(x

∗
t , u)). Equation (3.35)

will be satisfied as for every n ∈ N, ft(x
n
t , u

n
t) ∈ Kn

t+1, the continuity of ft and definition of
K∗t+1 will ensure that u∗t ∈

{
u | ft(x∗t , u) ∈ K∗t+1

}
.

We will use the result of convergence in minimization [RW09, Theorem 7.33]. We define

Bk : U→ R, u 7→ ct(x
k
t , u) + V k

t+1

(
ft(x

k
t , u)

)
,

B∗ : U→ R, u 7→ ct(x
∗
t , u) + V ∗t+1

(
ft(x

∗
t , u)

)
.

Recall that, under Assumption 3-(4), the set-valued mapping Ut has compact values with
non-empty interior and is LUt-Lipschitz continuous for some constant LF > 0. Moreover,
the functions B∗ and every Bk, k ∈ N are convex, l.s.c., proper, inf-compact, with compact
domains Ut(x

∗
t) and Ut(x

k
t), respectively. As Ut is Lipschitz continuous, the sequence of

functions (Bk)k∈N converges uniformly to B∗ on every compact K included in the interior of
dom(B∗) = Ut(x

∗
t). Thus, by [RW09, Theorem 7.17.c], (Bk

t)k∈N epiconverges to B∗. Finally,
(ukt)k∈N ⊂ ft(Xt, Ut(Xt)) which is compact as Ut is u.s.c. and ft is continuous. We conclude
that we can extract a converging subsequence out of (ukt)k. Denoting by u∗t ∈ Ut(x

∗
t) its

limit, by [RW09, Theorem 7.33] we finally have that u∗t ∈ arg minu∈UB
∗(u). This ends the

proof.

Hence, when applying TDP with the SDDP selection function, we will refine the approxi-
mations along the current optimal trajectories, i.e. we use Oracle defined in Example 3. We
conclude this section by proving the convergence of TDP algorithm in the SDDP case.

Theorem 23 (Lower (outer) approximations of the value functions). Under Assumption 3,
for every t ∈ [[0, T]], denote by

(
V k
t

)
k∈N the sequence of functions generated by Tropical

Dynamic Programming with the selection function φSDDP
t and the draws made uniformly over

the sets Kk
t defined in Proposition 22. Then, the sequence

(
V k
t

)
k∈N is non-decreasing, bounded

from above by Vt, and converges uniformly to V ∗t on every compact set included in dom (Vt).
Moreover, almost surely over the draws, V ∗t = Vt on limk∈NK

k
t .

Proof. As the structural assumptions Assumption 1 are satisfied, as the functions φSDDP
t , 0 ≤

t ≤ T , are compatible selections and the sets (K∗t)t∈[[0,T]] are (V ∗t)-optimal (case opt = sup)
by Theorem 15, we have the result.

3.5 A min-plus selection function: upper approximations in
the linear-quadratic framework with both continuous and
discrete controls

In §3.5.1, we study the case where the cost functions and dynamics are homogeneous. We
conclude this section in §3.5.2 with an example which shows that using optimal trajectories
of the best current approximations as trial points in Tropical Dynamic Programming may
generate functions (V k

t)k∈N which do not converge to the value function Vt. In the appendix
3.9, we show how one can use the homogeneous case to solve the non-homogeneous case by
augmenting the state dimension by one.

3.5.1 The pure homogeneous case

We will denote by Mn the set of n×n real matrices and by Sn ⊂Mn the subset of symmetric
matrices.

Definition 24 (Pure quadratic form). We say that a function q : X→ R is a pure quadratic
form if there exist a symmetric real matrix M ∈ Sn such that for every x ∈ X, we have
q(x) = xTMx.

Similarly, a function q : X×U→ R is a pure quadratic form if there exist two symmetric
real matrices M1 ∈ Sn and M2 ∈ Sm such that for every x ∈ X, we have q(x, u) = xTM1x+
uTM2u.

Let us insist that pure quadratic forms are not general 2-homogeneous quadratic forms in
the sense that they lack a mixing term of the form xTMu. In 3.9 we show why we do not
lose generality by studying this case instead of general polynomials of degree 2. Let X = Rn
be a continuous state space (endowed with its Euclidean and Borel structure), U = Rm a
continuous control space and V a finite set of discrete (or switching) controls. We want to
solve the following optimization problem

min
(x,u,v)∈XT+1×UT×VT

T−1∑
t=0

cvtt (xt, ut) + ψ(xT) (3.37a)

s.t. x0 ∈ X given, and ∀t ∈ [[0, T − 1]], xt+1 = fvtt (xt, ut) . (3.37b)

Assumption 4. Let t ∈ [[0, T − 1]] and v ∈ V be arbitrary.

– The dynamic fvt : X × U −→ X is linear. That is, fvt (x, u) = Avtx + Bv
t u, for some given

matrices Avt and Bv
t of compatible dimensions.

– The cost function cvt : X × U −→ R is a pure convex quadratic form, cvt (x, u) = xTCvt x +
uTDv

t u, where the matrix Cvt is symmetric semidefinite positive and the matrix Dv
t is sym-

metric definite positive.

– The final cost function ψ := infi∈IT ψi is a finite infimum of pure convex quadratic form, of
matrix Mi ∈ Sn with i ∈ IT a finite set, such that there exists a constant αT ≥ 0 satisfying
for every i ∈ IT 0 �Mi � αT Id.

One can write the Dynamic Programming equation for Problem 3.37 as follows

VT = ψ and ∀t ∈ [[0, T−1]],∀x ∈ X, Vt(x) = inf
v∈V

inf
u∈U

cvt (x, u) + Vt+1

(
fvt (x, u)

)
. (3.38)

The following result is crucial in order to study this example: the value functions are
2-homogeneous, allowing us to restrict their study to the unit sphere.

Proposition 25. For every time step t ∈ [[0, T]], the value function Vt, solution of Equa-
tion (3.38) is 2-homogeneous, that is, for every x ∈ X and every λ ∈ R, we have Vt(λx) =
λ2Vt(x).

Proof. We proceed by backward recursion on time step t ∈ [[0, T]]. For t = T it is true by
Assumption 4. Assume that it is true for some t ∈ [[1, T]]. Fix λ ∈ R, then by definition of
Vt−1, for every x ∈ X, we have

Vt−1 (λx) = min
v∈V

min
u∈U

cvt−1(λx, u) + Vt
(
fvt−1(λx, u)

)
= min

v∈V
min

u′=u/λ∈U
cvt−1(λx, λu′) + Vt

(
fvt−1(λx, λu′)

)
,

which yields the result by 2-homogeneity of x 7→ cvt−1(x, u), linearity of fvt−1 and 2-homogeneity
of Vt.

Thus, in order to compute Vt, one only needs to know its values on the unit (Euclidean)
sphere S as for every non-zero x ∈ X, Vt(x) = ‖x‖2 Vt

(
x
‖x‖
)
. Hence, we will refine our

approximations only on the sphere, that is we will draw trial points uniformly on the sphere
and use the Oracle defined in Example 2. Now, for every time t ∈ [[0, T−1]] and every

switching control v ∈ V we define the Bellman operator with fixed switching control Bvt for
every function φ : X→ R by:

Bvt (φ) := inf
u∈U

cvt (·, u) + ‖fvt (·, u)‖2φ
(

fvt (·, u)

‖fvt (·, u)‖

)
.

For every time t ∈ [[0, T − 1]] we define the Bellman operator Bt for every function φ : X→ R
by:

Bt (φ) := inf
v∈V
Bvt (φ) . (3.39)

This definition of the Bellman operator emphasizes that the unit sphere S is (Vt)-optimal
in the sense of Definition 13. Note that for 2-homogeneous functions, we have that Bvt (φ) =
infu∈U c

v
t (·, u)+φ(fvt (·, u)). Using Equation (3.39), one can rewrite the Dynamic Programming

Equation (3.38) as

VT = ψ and ∀t ∈ [[0, T−1]], Vt = Bt(Vt+1) . (3.40)

Now, in order to apply the Tropical Dynamic Programming algorithm to Equation (3.40),
we need to check Assumption 1. Under Assumption 4, there exist an interval in the cone of
symmetric semidefinite matrices which is stable by every Bellman operator Bt in the sense of
the proposition below. We will consider the Loewner order on the cone of (real) symmetric
semidefinite matrices, i.e. for every couple of matrices of symmetric matrices (M1,M2) we
say that M1 � M2 if, and only if, M2 − M1 is semidefinite positive. Moreover we will
identify a pure quadratic form with its symmetric matrix, thus when we write an infimum
over symmetric matrices, we mean the pointwise infimum over their associated pure quadratic
forms.

Proposition 26 (Existence of a stable interval). Under Assumption 4, we define a sequence
of positive reals (αt)t∈[[0,T]] by backward recursion on t ∈ [[0, T − 1]] such that we have:

0 �M � αt+1 Id⇒ 0 � Bt(M) � αt Id, (3.41)

where αT is a given constant by Assumption 4.

Proof. First, given an arbitrary t ∈ [[0, T]], we want to show that if M � 0 then Bt(M) �
0. As in Proposition 20 one can show that the Bellman operator Bt is order preserving.
Therefore, if M � 0 then Bt(M) � Bt(0). Hence it is enough to show that Bt(0) � 0. But
by Formula (3.53), we have that Bt(0) = minv∈VC

v
t � 0 (by Assumption 4) hence the result

follows.

Second, let t ∈ [[0, T − 1]] and αt+1 > 0 be fixed. We consider αt > 0 defined by

αt := max
v∈V

αt+1λmax

(
Avt (A

v
t)
T
)

+ λmax(Cvt) > 0 , (3.42)

and we prove that if M � αt+1 Id then we have that Bt(M) � αt Id. For that purpose, con-
sider M such that M � αt+1 Id. Then, denoting by B

v
t the matrix Id+αt+1B

v
t (Dv

t)−1(Bv
t)T ,

we have that λmin(B
v
t) = 1 + αt+1λmin(Bv

t (Dv
t)−1(Bv

t)T) ≥ 1 using the fact that the matrix
Bv
t (Dv

t)−1(Bv
t)T is positive semi-definite by Assumptions 4. Now, we successively have for

any v ∈ V

λmax

(
Bvt (M)

)
≤ λmax

(
Bvt (αt+1 Id)

)
(Bvt is order preserving)

= λmax

(
αt+1(Avt)

T (B
v
t)
−1Avt + Cvt

)
(using (3.53))

≤ αt+1λmax

(
(Avt)

T (B
v
t)
−1Avt

)
+ λmax(Cvt) (by Proposition 35)

≤ αt+1λmax

(
AvtA

v
t
T
)
λmax

(
(B

v
t)
−1
)

+ λmax(Cvt) (by Proposition 35)

≤ αt+1λmax

(
AvtA

v
t
T
)

+ λmax(Cvt) (as λmax

(
(B

v
t)
)

= λmin

(
(B

v
t)
)−1 ≤ 1)

≤ αt , (using (3.42))

which gives that Bvt (M) � αt Id. Then, the same result follows for the operator Bt using
Equation (3.39). This ends the proof.

Using Proposition 26, one can deduce by backward recursion on t ∈ [[0, T−1]] the existence
of intervals of matrices, in the Loewner order, which are stable by the Bellman operators.

Corollary 27. Under Assumption 4, using the sequence of positive reals (αt)t∈[[0,T]] defined
in Proposition 26, we define a sequence of positive reals (βt)t∈[[0,T]] by βT := αT and ∀t ∈
[[0, T−1]], βt := max(αt, βt+1). Then, one has that

0 �M � βT Id⇒ ∀t ∈ [[0, T − 1]], 0 � Bt(. . .BT−2(BT−1(M))) � βt Id.

The basic functions Fmin-plus

t will be pure quadratic convex forms bounded in the Loewner
sense by 0 and βtI,

Fmin-plus

t :=
{
φ : x ∈ X 7→ xTMx ∈ R

∣∣M ∈ Sn, 0 �M � βt Id
}
,

and we define the following class of functions which will be stable by pointwise infimum of
elements in Fmin-plus

t ,
Fmin-plus

t :=
{
VF
∣∣F ⊂ Fmin-plus

t

}
. (3.43)

Exploiting the min additivity of the Bellman operator, which gives that Bt
(
inf(φ1, φ2)

)
=

inf
(
Bt(φ1),Bt(φ2)

)
, and the fact that the final cost ψ̃ is a finite infima of basic functions, one

deduces by backward induction on t ∈ [[0, T]] that the value functions are finite infima of basic
functions.

Lemma 28. For every time t ∈ [[0, T]], there exists a finite set Ft of convex pure quadratic
forms such that

Vt = inf
φ∈Ft

φ.

Proof. For t = T , set FT := {ψi}i∈IT . Now, assume that for some t ∈ [[0, T − 1]], we have that
Vt+1 = infφ∈Ft+1 φ, where Ft+1 is a finite set of convex pure quadratic functions. Then, by
definition of the Bellman operators Bt (see Equation (3.39)), we have that

Vt = Bt(Vt+1) = inf
v∈V
Bvt (inf

φ∈Ft+1

φ) = inf
φ∈Ft+1

inf
v∈V
Bvt (φ) = inf

φ∈Ft+1,v∈V

(
Bvt (φ)

)
As the image by Bt of a convex pure quadratic function is still a convex pure quadratic
function (see Appendix 3.7), setting Ft :=

{
Bvt (φ) |φ ∈ Ft+1 and v ∈ V

}
, we obtain that

Vt = infφ∈Ft φ, where Ft is a finite set of convex pure quadratic functions. Backward induction
on time t ∈ [[0, T]] ends the proof.

Proposition 29. Under Assumption 4, the Problem 3.37 and the Bellman operators defined
in Equation (3.38) satisfy the structural assumptions given in Assumption 1.

Proof. We prove successively each assumption listed in Assumption 1.

• 1-(a). By construction, Fmin-plus

t in Equation (3.43) is stable by pointwise infimum.

• 1-(b) and 1-(c). We will show that every element of Fmin-plus

t is 2β-Lipschitz continuous on
S. Let F = {φi}i∈I ⊂ Fmin-plus

t with I ⊂ N and φi ∈ Fmin-plus

t with associated symmetric matrix
Mi. Fix x, y ∈ S, we have successively

|VF (x)− VF (y)| = | inf
i∈I

xTMix− inf
i∈I

yTMiy|

≤ max
i∈I
|xTMix− yTMiy|

≤ max
i∈I
|xTMi (x− y) + yTMi (x− y) |

≤ max
i∈I
|〈x+ y,Mi(x− y)〉| (MT = M)

≤ ‖x+ y‖ ·max
i∈I
‖Mi (x− y) ‖ (Cauchy-Schwarz)

≤ ‖x+ y‖ ·max
i∈I
‖Mi‖‖x− y‖

≤ βt‖x+ y‖ · ‖x− y‖ (‖Mi‖ ≤ βt)
≤ 2βt‖x− y‖ , (3.44)

since ‖x + y‖ ≤ 2. Thus, every element of Fmin-plus

t is 2βt-Lipschitz on S and by stability by
pointwise infimum, Fmin-plus

t is stable by pointwise convergence.

• 1-(d). By Assumption 4, the final cost function ψ is an element of Fmin-plus

T .

• 1-(e). This is given by Corollary 27.

• 1-(f). Proceed as in Proposition 20.

• 1-(g). Fix a time step t ∈ [[0, T −1]], a compact Kt ⊂ dom(Vt) (= X), a function φ ∈ Fmin-plus

t+1

and a constant λ ≥ 0. By definition of Fmin-plus

t+1 , there exists a finite set F := {φi}i∈I ⊂ Fmin-plus

t+1

such that φ = infi∈I φi. By Equation (3.56), for each i ∈ I and v ∈ V, there exists a linear
map Lvi such that

min
u∈U

cvt (x, u) + φi(f
v
t (x, u)) = cvt (x, L

v
i (x)) + φi(f

v
t (x, Lvi (x))) , (3.45)

with ‖Lvi ‖ ≤ αt+1Ct, where Ct is a constant depending on the parameters of the control
problem only. Hence the maps x 7→ fvt (x, Lvi (x)) are linear and their norm are bounded by
(αt+1 + 1)C ′t for some constant C ′t depending on the parameters of the control problem only.
Set Mt := ((αt+1 + 1)C ′t‖Kt‖)2, where ‖Kt‖ is the radius of a ball centered in 0 including Kt.
Therefore, for x ∈ Kt, we have ‖fvt (x, u)‖2 ≤Mt. Now, for x ∈ Kt, using the bound on ft we

have

Bt (φ+ λ) (x) = min
i∈I
u∈U
v∈V

cvt (x, u) + ‖fvt (x, u)‖2(φi + λ)(
fvt (x, u)

‖fvt (x, u)‖
)

≤ min
i∈I
v∈V

cvt (x, L
v
i (x)) + ‖fvt (x, Lvi (x))‖2(φi + λ)(

fvt (x, Lvi (x))

‖fvt (x, Lvi (x))‖
)

≤ min
i∈I
v∈V

cvt (x, L
v
i (x)) + ‖fvt (x, Lvi (x))‖2φi(

fvt (x, Lvi (x))

‖fvt (x, Lvi (x))‖
) +Mtλ

= min
i∈I
v∈V

(
cvt (x, L

v
i (x)) + φi(f

v
t (x, Lvi (x)))

)
+Mtλ

= min
i∈I
u∈U
v∈V

(
cvt (x, u) + φi

(
fvt (x, u)

))
+Mtλ (by (3.45))

= Bt(φ)(x) +Mtλ .

hence the desired result Bt (φ+ λ) (x) ≤Mtλ+ Bt(φ)(x).

• 1-(h). This is a consequence of Lemma 28.

• 1-(i) Fix φ ∈ Ft and λ ≥ 0. Denote by φ̃ = φ+ λ. For every x ∈ X, we have that

Bt(φ̃)(x) = min
(u,v)∈U×V

cvt (x, u) + ‖fvt (x, u)‖2φ̃(
fvt (x, u)

‖fvt (x, u)‖
)

= min
(u,v)∈U×V

cvt (x, u) + ‖fvt (x, u)‖2(φ̃+ δS)(
fvt (x, u)

‖fvt (x, u)‖
)

= Bt(φ̃+ δS)(x),

which implies the desired result.

Remark 30. We have shown that Bt is additively subhomogeneous with constant Mt. An
upper bound of Mt can be computed as in the proof of Proposition 26, by bounding the greatest
eigenvalue of each matrices Lvi .

We now define, for any t ∈ [[0, T]], a selection functions φmin-plus

t and prove that it is a
compatible selection function. As each arg min mentioned below involves a finite set, selecting
an element in the arg min raises no issue.

Proposition 31. For every time t ∈ [[0, T]], any F ⊂ Fmin-plus

t and any x ∈ X, define a
function φmin-plus

t as follows

φmin-plus

t (F, x) ∈

{
Bt
(

arg minφ∈F
(
Bt(φ)(x)

))
for t 6= T ,

arg minψi∈F ψi(x) for t = T ,
(3.46)

is a compatible selection function as defined in Definition 6.

Proof. Fix t = T . The function φmin-plus

t is tight and valid as VT = ψ. Now fix t ∈ [[0, T − 1]].
Let F ⊂ Fmin-plus

t+1 and x ∈ X be arbitrary. We have

Bt(VF)(x) = Bt
(

inf
φ∈F

φ
)
(x)

= inf
(u,v)∈U×V

(
cvt (x, u) + inf

φ∈F
φ
(
fvt (x, u)

))
= inf

φ∈F
inf

(u,v)∈U×V

(
cvt (x, u) + φ

(
fvt (x, u)

))
= inf

φ∈F

(
Bt (φ) (x)

)
= φmin-plus

t (F, x) (x) .

Thus, φmin-plus

t is tight. By similar arguments, we have for every x′ ∈ X that

Bt(VF)(x′) =
(

inf
φ∈F
Bt(φ)

)
(x′) ≤ φmin-plus

t (F, x)(x′) .

This shows that φmin-plus

t (F, x) is valid and ends the proof.

We conclude this section by proving the convergence of TDP algorithm in the Min-plus
case.

Theorem 32 (Upper (inner) approximations of the value functions). For every t ∈ [[0, T]],
denote by

(
V k
t

)
k∈N the sequence of functions generated by Tropical Dynamic Programming

with the selection function φmin-plus

t and the draws made uniformly over the sphere Kt := S.
Under Assumption 4, the sequence

(
V k
t

)
k∈N is non increasing, bounded from below by Vt and

converges uniformly to V ∗t on S. Moreover, almost surely over the draws, V ∗t = Vt on S.

Proof. As the structural Assumption 1 are satisfied, as the functions φmin-plus

t , 0 ≤ t ≤ T are
compatible selections and the unit sphere S is Vt-optimal (case opt = inf), we can apply
Theorem 15.

3.5.2 Optimal trajectories for upper approximations may not converge

We now give an example showing that approximating from above may fail to converge when
the points are drawn along optimal trajectories for the current upper approximations of Vt (in
contrast with Section 3.4 where we approximate from below Vt). As shown by Proposition 36
there is no loss of generality in considering the framework of §3.5.1 but with non-homogeneous
functions.

We consider a (non-homogeneous) problem with only two time steps, that is T = 1 and
t ∈ {0, 1} such that
• The state space X and the control space U are equal to R.
• The linear dynamic is f(x, u) = x+ u.
• The quadratic cost is c(x, u) = x2 + u2.
• The final cost function is the infimum, ψ = inf(ψ1, ψ2), of two given quadratic mappings,
ψ1(x) = (x+ 2)2 + 1 and ψ2(x) = x2.

The Bellman operator B, associated to this multistage optimization problem is defined for
every φ : X→ R and every x ∈ X by

B(φ)(x) = min
u∈U

(
x2 + u2 + φ(x+ u)

)
= x2 + min

u∈U

(
u2 + φ(x+ u)

)
.

x0 = −2 −1

2

4

6

B(Ψ1)

B(Ψ2)

x

x1 = −1

1

2

3

4

Ψ2

Ψ1

x

Figure 3.4: Illustration of the multistage (two stages here) optimization problem studied in
§3.5.2. The final cost function, ψ = inf(ψ1, ψ2) is shown in the right subfigure and displays
of the images, by the Bellman operator B, of the functions ψ1 and ψ2 are drawn in the left
subfigure. We have that B(ψ2)(x0) > B(ψ1)(x0). At the final time t = 1, the “best function”
at the point −1 is ψ2. The image by the k-th optimal dynamic of x0 = −2 is x1 = −1.

For the case where φa,b(·) = (·+ a)2 + b with a, b ∈ R one has for every x ∈ R

B(φa,b)(x) =
3

2
x2 + ax+ b. (3.47)

Fix x0 = xk0 = −2 for every k ∈ N. As described in Algorithm 1, the approximations of the
value functions V1 and V0 are initialized to +∞. Thus every control u ∈ U is optimal in the
sense that u ∈ arg minu′∈U x

2 + (u′)2 + φ(x+ u′). Hence if we set x0
1 := −1 = f(x0, 1) then

(x0, x
0
1) is an optimal trajectory as described in Proposition 22.

We deduce from Equation (3.47) the following facts, illustrated in Figure 3.4.

1. The image of ψ2 is strictly greater than the image of ψ1 by the Bellman operator B, i.e.

B(ψ2)(−2) > B(ψ1)(−2).

2. The image by the k-th optimal dynamic of−2 is−1, i.e. setting uk0 := arg minu′∈U(−2)2+
(u′)2 + V k

1 (−2 + u′) (the arg min is here a singleton) one has

f(−2, uk0) = −1.

3. At the final step t = 1, the best function at the point −1 is ψ2, i.e.

ψ(−1) = inf(ψ1(−1), ψ2(−2)) = ψ2(−2).

From those three facts, one can deduce starting x0 = −2 and x1 = −1, the optimal
trajectory for the current approximations will always be sent to x1 = −1. But, as shown in
the proof of Proposition 31 one can show that the image by B of an infimum is the infimum
of the images by B:

V0(−2) = B(inf(ψ1, ψ2))(−2) = inf(B(ψ1)(−2),B(ψ1)(−2)).

Thus for every k ∈ N, we have V0(−2) = B(ψ1)(−2) < B(ψ1)(−2) = V k
0 (−2). The constant

sequence V k
0 (−2) fails to converge to V0(−2).

3.6 Numerical experiments on a toy example

In §3.6.1, we propose a toy optimization Problem (3.48) on which we run TDP-SDDP and
TDP-Minplus. Problem (3.48) falls in the framework described in Section 3.4. Thus, we
are able to obtain lower approximations of Vt using TDP-SDDP. TDP-Minplus cannot be
applied directly. We apply a “discretization” step to Problem (3.48) (see §3.6.2) which yields
Problem (3.49) parameterized by an integer N > 0. Then we apply to Problem (3.49) an
“homogenization” step (see §3.6.3) to obtain Problem (3.50). The value functions Vt of the
original Problem (3.48) are bounded from above by Ṽt,N , the value functions of Problem (3.50).
We apply TDP-Minplus (described in Section 3.5) to Problem (3.50) which gives upper ap-
proximations of Ṽt,N and a fortiori, of Vt. In §3.6.6, we show numerical experiments which
show the convergence of this approximation scheme to Vt.

3.6.1 A toy example: constrained linear-quadratic framework

Let β, γ be two given reals such that β < γ, we study the following multistage linear quadratic
problem involving a constraint on one of the controls:

min
(x,u,v)∈XT+1×UT×[β,γ]T

T−1∑
t=0

ct(xt, ut, vt) + ψ(xT) (3.48a)

s.t. x0 ∈ X given, and ∀t ∈ [[0, T − 1]], xt+1 = ft(xt, ut, vt) , (3.48b)

where X = Rn and U = Rm, with quadratic convex costs functions of the form

ct(x, u, v) = xTCtx+ uTDtu+ v2dt,

where Ct ∈ S+
n , Dt ∈ S++

m and dt > 0, linear dynamics ft(x, u, v) = Atx + Btu + vbt, where
At (resp. Bt) is a n × n (resp. n ×m) matrix, bt ∈ X, and final cost function ψ := xTMx
with M ∈ S++

n .
For every t ∈ [[0, T]], the value function Vt is Lt-Lipschitz continuous and convex. Moreover

the Lipschitz constant Lt > 0 can be explicitly computed. As done in Section 3.4 we will
generate lower approximations of the value functions Vt through compatible selection functions
(φSDDP
t)t∈[[0,T]]. In this example, the structural Assumptions 1 are not satisfied as the sets of

states and controls are not compacts. As we will still observe convergence of the lower
approximations (φSDDP

t)t∈[[0,T]] generated by TDP to the value functions, this suggests that
the (classical) framework presented in Section 3.4 can be extended. This will be the object
of a future work and here we would like to stress on the numerical scheme and results.

3.6.2 Discretization of the constrained control

We approximate Problem (3.48) by discretizing the constrained control in order to obtain an
unconstrained switched multistage linear quadratic problem. More precisely, we fix an integer
N ≥ 2, set vi = β + i γ−βN−1 for every i ∈ [[0, N − 1]] and set V := {v0, v1, . . . vN−1}. Then, we
define the following unconstrained switched multistage linear quadratic problem:

min
(x,u,v)∈XT+1×UT×VT

T−1∑
t=0

cvtt (xt, ut) + ψ(xT) (3.49a)

s.t. x0 ∈ X given, and ∀t ∈ [[0, T − 1]], xt+1 = fvtt (xt, ut) , (3.49b)

where for every v ∈ V, fvt = ft(·, ·, v) and cvt = ct(·, ·, v). As the set of controls of Problem
(3.48) contains the set of controls of Problem (3.49), upper approximations of the value
functions of Problem (3.49) yield upper approximations of the value functions of Problem
(3.48). Thus we will construct upper approximations for Problem (3.49).

3.6.3 Homogenization of the costs and dynamics

We add a dimension to the state space in order to homogenize the costs and dynamics, when a
sequence of switching controls is fixed. Define the following homogenized costs and dynamics
for every t ∈ [[0, T − 1]] by:

f̃t
v
(x, y, u) =

(
At vbt
0 1

)(
x
y

)
+

(
Bt
0

)
u,

c̃t
v(x, y, u) =

(
x
y

)T (
Ct 0
0 v2dt

)(
x
y

)
+ uTDtu,

And as the final cost function is already homogeneous, ψ̃(x, y) =

(
x
y

)T (
M 0
0 0

)(
x
y

)
. Using

these homogenized functions we define a multistage optimization problem with one more
(compared to Problem (3.49)) dimension on the state variable:

min
(x,y,u,v)∈XT+1×RT+1×UT×VT

T−1∑
t=0

c̃t
vt(xt, yt, ut) + ψ̃(xT , yT)

s.t.

{
(x0, y0) ∈ X× R is given,

∀t ∈ [[0, T − 1]], (xt+1, yt+1) = f̃t
vt

(xt, yt, ut) .

(3.50)

One can deduce the value functions Vt,N of the multistage optimization problem (3.49)

(with non-homogeneous costs and dynamics) from the value functions Ṽt,N of (3.50) (with
homogeneous costs and dynamics) by Proposition 36. For every x ∈ X, we have that

Vt,N (x) = Ṽt,N (x, 1) . (3.51)

For every time step t ∈ [[0, T]] the value function Ṽt,N solution of Problem (3.50) is 2-

homogeneous. That is, for every (x, y) ∈ X × R and every λ ∈ R, we have Ṽt,N (λx, λy) =

λ2Ṽt,N (x, y) . This will allow us to restrict the study of the value functions to the unit sphere,
which is compact.

3.6.4 Min-plus upper approximations of the value functions of Problem (3.50)

We apply the results of Section 3.5 as follows. Let v ∈ V be a given switching control, in this
framework, the operator Bvt is defined as in Section 3.5 but with an augmented state. More
precisely, for every function φ : X× R→ R and every point (x, y) ∈ X× R:

Bvt (φ) (x, y) = inf
u∈U

c̃vt (x, y, u) + ‖f̃vt (x, y, u)‖2φ(
f̃vt (x, y, u)

‖f̃vt (x, y, u)‖
) .

Then, for every time t ∈ [[0, T − 1]], the Dynamic Programming operator Bt associated to
Problem (3.50) satisfies Bt (φ) := infv∈V Bvt (φ).

A key property of the operators Bvt and Bt is that they are min-additive, meaning that
for every functions φ1, φ2 : X→ R one has:

Bvt
(
inf(φ1, φ2)

)
= inf

(
Bvt (φ1),Bvt (φ2)

)
,

and a similar equation for Bt. Moreover, by Riccati formula (see Equation (3.52)), the image
of a convex quadratic function by Bvt is also a convex quadratic function.

Lemma 28 suggests to use the following set of basic functions:

Fmin-plus

t := Ft and Fmin-plus

t :=
{
VF

∣∣∣ F ⊂ Fmin-plus

t

}
.

As done in Section 3.5, one could also have considered as basic functions the quadratic func-
tions bounded in the Loewner sense between 0 and αtI, where αt > 0, t ∈ [[0, T]], are real
numbers such that, if φ is a quadratic form bounded between 0 and αt+1I, then Bvt (φ) is
bounded between 0 and αtI.

Moreover, using the aforementioned properties, one will be able to compute Bvt (VF) for
a given switching control v and Bt(VF), for any finite set F of convex quadratic functions.
Therefore, given a time t ∈ [[0, T − 1]], we define the selection function φmin-plus

t as follows. For
any given F ⊂ Fmin-plus

t+1 and (x, y) ∈ X× R,

φmin-plus

t (F, x, y) = Bvt (φ)

for some (v, φ) ∈ arg min
(v,φ)∈V×F

Bvt (φ) (x, y) .

Moreover, at time t = T , for any F ⊂ Fmin-plus

T and (x, y) ∈ X× R, we set

φmin-plus

t (F, x, y) = ψ̃(x, y) = ψ(x).

Motivated by the 2-homogeneity of the value functions, the random draws of TDP for the
basic functions Fmin-plus

t , 1 ≤ t ≤ T and the selection functions φmin-plus

t will be made uniformly
on the unit Euclidean sphere, which satisfies Definition 7. Indeed, by 2-homogeneity, it is
enough to know the value functions of (3.50) on the sphere to know them on the whole state
space.

3.6.5 Upper and lower approximations of the value functions

For a large number of discretization points N (defined in §3.6.2), one would expect that the
value functions Vt,N of (3.49) approximate the value functions Vt of (3.48). Indeed, one can
show that for every time step t ∈ [[0, T]], the approximation error is bounded by CtT/N

2 in
X, for some constant Ct > 0. Thus, for large N , we have Vt,N ≈ Vt and by Equation (3.51),
for every N ≥ 2, we have

Ṽt,N (·, 1) = Vt,N ≥ Vt.

In the following Proposition we approximate Ṽt,N from above by a min-plus algorithm and
Vt from below by SDDP and using the convergence result of Theorem 15 (admitting that the
result still holds for SDDP in this framework), we obtain the following one.

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 7, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 18, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 40, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

Figure 3.5: First example for β = 1, γ = 5 with N = 5 after 7 iterations (left), 18 iterations
(middle) and 40 iterations (right).

Theorem 33. For every t ∈ [[0, T]], denote by
(
V
k
t

)
k∈N

(resp. (V k
t)k∈N) the sequence of func-

tions generated by TDP with the selection function φmin-plus

t (resp. φSDDP
t) and the draws made

uniformly over the Euclidean sphere of X× R (resp. made as described in Proposition 22).

Then the sequence
(
V
k
t

)
k∈N

(resp. (V k
t)k∈N) is non-increasing (resp. non-decreasing),

bounded from below (resp. above) by Ṽt,N (resp. Vt) and converges uniformly to Ṽt,N (resp.
Vt) on any compact subset of X× R (resp. K∗t defined in Proposition 22).

3.6.6 Numerical experiments

The following data was used as a specific case of (3.48). For every time t ∈ [[0, T − 1]],

At = (1− 0.1) Id Bt =

1 · · · 1
...

...
1 · · · 1

 bt =

1
...
1


Ct = 0.1 Id Dt = 0.1 Id dt = 0.1.

The time horizon is T = 15, the states are in X = Rn with n = 25, the unconstrained
continuous controls are in U = Rm with m = 3, the constrained continuous control is in [β, γ],
with [β, γ] = [1, 5] in the first example and [β, γ] = [−3, 5] in the second one. Moreover,
we start from the initial point x0 = 0.2 (1, . . . , 1)T when TDP is applied with the selection
function φSDDP

t and the number of discretization points N is varying from 5 to 200, for TDP
with the selection function φmin-plus

t . In Figures 3.5 and 3.6, we give graphs representing the

values V k
t (x

k
t) and V

k
t (x

k
t , 1) at each time step t ∈ [[0, T − 1]] where the sequence of states

(xkt)k∈N is the optimal trajectory for the current lower approximations (V k
t)k∈N defined in

(22). From Theorem 33, we know that for every t ∈ [[0, T − 1]] the gap V
k
t (x

k
t , 1) − V k

t (x
k
t)

should be close to 0 as k increases assuming that N is large enough to have Vt ≈ Vt,N .
On those two examples, we exhibit two convergence behaviors. On the first example, the

constrained control has to be greater than 1, thus avoiding 0 which would have been (or
almost) the optimal control if there were no constraint. The optimal constrained control is
the projection on U× [β, γ] of the optimal unconstrained control, thus the switching control
is most of the time equal to the lower bound β = 1.

From this observation we deduce two properties. First, the upper approximation given by
Qu algorithm is good, even for a small N , as the optimal switch is (most of the time) equal
to β. Second, this implies that at iteration k, the set F kt is of small cardinality.

Moreover, in this example the number of switches is N = 5 thus few computations of
Bvt (φ)(x) need to be done in order to compute Bt(φ)(x) for some x ∈ X and φ ∈ F kt . Thus,

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 7, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 18, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

2.5 5.0 7.5 10.0 12.5

0.5

1.0

1.5

2.0

Iteration 40, N = 5

Time step (t)

V
al

ue
s

Qu
SDDP

Figure 3.6: Second example for β = −3, γ = 5 with varying N = 5 (left), N = 50 (middle)
and N = 200 (right) after 20 iterations.

Figure 3.7: Time spent for the first example (left) and the second example when N = 50
(middle) and N = 200 (right).

as shown on the left of Figure 3.7, the computation time of an iteration of Qu’s min-plus
algorithm is small compared to SDDP which does not exploit this property.

On the second example, the constrained control is in an interval containing 0. The switch-
ing control often changes and this means more computations. A compromise between com-
putational time and precision can be achieved (see Figure 3.7) in order to make the compu-
tational time of Qu algorithm similar to the one of SDDP algorithm.

Conclusion

In this chapter we have devised an algorithm, Tropical Dynamic Programming, that encom-
passes both a discrete time version of Qu’s min-plus algorithm and the SDDP algorithm in the
deterministic case. We have shown in the last section that Tropical Dynamic Programming
can be applied to two natural frameworks: one for min-plus and one for SDDP. In the case
where both framework intersects, one could apply Tropical Dynamic Programming with the
selection functions φmin-plus

t and get non-increasing upper approximations of the value func-
tion. Simultaneously, by applying Tropical Dynamic Programming with the selection function
φSDDP
t , one would get non-decreasing lower approximations of the value function. Moreover,

we have shown that the upper approximations are, almost surely, asymptotically equal to the
value function on the whole space of states X and that the lower approximations are, almost
surely, asymptotically equal to the value function on a set of interest.

Thus, in those particular cases we get converging bounds for V0(x0), which is the value of
the multistage optimization Problem 3.1, along with asymptotically exact minimizing policies.
In those cases, we have shown a possible way to address the issue of computing efficient upper
bounds when running the SDDP algorithm by running in parallel another algorithm (namely
TDP with min-plus selection functions).

In Section 3.6 we studied a way to simultaneously build lower and upper approximations
of the value functions using the results of the previous sections. However the discretization
and homogenization scheme that was described is rapidly limited by the dimension of the
control space, due to the need to discretize the constrained controls. We will provide in a
future work, a systematic scheme to use simultaneously SDDP and a min-plus methods which
is more efficient numerically and does not rely on discretization of the control space. Moreover
we will extend the current framework to multistage stochastic optimization problems with
finite white noises.

3.7 Algebraic Riccati Equation

This section gives complementary results for Section 3.5. We use the same framework and
notations introduced in Section 3.5.

Proposition 34. Fix a discrete control v ∈ V and a time step t ∈ [[0, T − 1]].

–(a) The operator Bvt : Sn → S+
n restricted to the pure quadratic forms (identified with Sn the

space of the symmetric semidefinite positive matrices) is given by the discrete time algebraic
Riccati equation

Bvt (M) = Cvt + (Avt)
TMAvt − (Avt)

TMBv
t

(
Dv
t +Bv

tM(Bv
t)T
)−1

(Bv
t)TMAvt . (3.52)

–(b) Moreover, when M ∈ S+
n Equation (3.52) can be rewritten as

Bvt (M) = (Avt)
T M

(
I +Bv

t (Dv
t)−1 (Bv

t)T M
)−1

Avt + Cvt . (3.53)

Proof.

• We prove Equation (3.52). Note that if M is symmetric, then Bvt (M) is also symmetric.
Now, let t ∈ {T−1, T−2, . . . , 0} and M ∈ Sn be fixed. Let x ∈ X, we have that

Bvt (M)(x) = inf
u∈U

xTCvt x+ uTDv
t u+ ‖fvt (x, u)‖2 f

v
t (x, u)T

‖fvt (x, u)‖
M

fvt (x, u)

‖fvt (x, u)‖
= inf

u∈U
xTCvt x+ uTDv

t u+ fvt (x, u)T Mfvt (x, u)

= xTCvt x+ inf
u∈U

uTDv
t u+ fvt (x, u)TMfvt (x, u). (3.54)

As u 7→ fvt (x, u) is linear, Dv
t � 0 and M � 0, we have that

g : u ∈ U 7→ uTDv
t u+ fvt (x, u)TMfvt (x, u) ∈ R

is strictly convex, hence is minimal when ∇g(u) = 0 i.e. for u ∈ U such that:(
Dv
t + (Bv

t)T MBv
t

)
u+ (Bv

t)TM(Avt)x = 0 . (3.55)

Now we will show that Dv
t + (Bv

t)T MBv
t is invertible. As M ∈ Sn and Dv

t ∈ S+
n , for every

u ∈ U, we have:

uT
(
Dv
t + (Bv

t)TMBv
t

)
u = uTDv

t u︸ ︷︷ ︸
>0

+ (Bv
t u)T M (Bv

t u)︸ ︷︷ ︸
≥0

> 0 .

We have shown that the symmetric matrix Dv
t + (Bv

t)T MBv
t is definite positive and thus

invertible. We conclude that Equation (3.55) is equivalent to:

u = −
(
Dv
t + (Bv

t)TMBv
t

)−1
(Bv

t)T M (Avt)x . (3.56)

Finally, replacing Equation (3.56) in Equation (3.54) we get after simplifications that

Bvt (M)(x) = xT
(
Cvt + (Avt)

TMAvt

− (Avt)
TMBv

t

(
Dv
t + (Bv

t)TMBv
t

)−1
(Bv

t)TMAvt

)
x ,

which gives Equation (3.52).

• Equation (3.53) follows from [LR95, Proposition 12.1.1 page 271].

3.8 Smallest and greatest eigenvalues

Here we recall some formulas on the lowest and greatest eigenvalues of a matrix. Denote the
smallest eigenvalue of a symmetric real matrix M by λmin(M) (every eigenvalue of M is real)
and by λmax(M) its greatest eigenvalue.

Proposition 35. Let n > 0 be given. We have the following matrix inequalities.

∀(A,B) ∈ S2
n , λmax(A+B) ≤ λmax(A) + λmax(B) . (3.57a)

∀(A,B) ∈Mn×Sn , λmax(ATBA) ≤ λmax(ATA)λmax(B) . (3.57b)

Proof. For any matrix M ∈Mn, the spectral norm of M , ‖M‖sp, (See [Cia89, Theorem 1.4.2])
is the subordinate matrix norm of the Euclidean norm on Rn. When the matrix M ∈ Sn is
real symmetric, we have that ‖M‖sp = λmax(M) and for any real matrix M ∈ Mn, we have

that λmax(MTM) = λmax(MMT) = ‖M‖2.
• Fix A,B ∈ Sn, we prove Equation (3.57a). As A + B ∈ Sn and using the fact that a
subordinate matrix norm is a norm we have that λmax(A+B) = ‖A+B‖sp ≤ ‖A‖sp +
‖B‖sp = λmax(A) + λmax(B).
• Fix (A,B) ∈Mn×Sn. We prove Equation (3.57b) as follows

λmax(ATBA) = ‖ATBA‖ (as ATBA ∈ Sn)

≤ ‖AT ‖sp‖B‖sp‖A‖sp (‖·‖sp is submultiplicative as a matrix norm)

= ‖A‖2sp‖B‖sp = λmax(ATA)λmax(B) .

This ends the proof.

3.9 Homogenization

We explain why, by adding another dimension to the state variable, there is no loss of general-
ity induced by studying pure quadratic forms in Problem 3.37 instead of positive polynomial
of degree 2, nor is there one for studying linear dynamics instead of affine dynamics.

First, we define the operator H2 that maps a function φ defined on a finite dimensional
vector space E to a 2-homogeneous function H2

(
φ
)

defined on the extended domain E×R as
follows

H2 : RE −→ RE×R

φ 7−→ H2

(
φ
)

: (z, y) 7→ y2φ(zy) if y 6= 0, 0 otherwise.
(3.58)

Thus, if φ is a positive polynomial of degree 2, then H2(φ) is a 2-homogeneous convex
quadratic form (with possibly a mixed term in x and u). In a similar way, we define the
operator H1 that maps any function φ defined on a domain E and taking values in E to a
1-homogeneous function H1

(
φ
)

as follows

H1 : EE −→ (E× R)E×R

φ 7−→ H1

(
φ
)

: (z, y) 7→ (yφ(zy), y) if y 6= 0, 0 otherwise.
(3.59)

Now consider (Bt)t∈[[0,T−1]] the Bellman operators associated to Problem 3.37

Bt : RX −→ RX

φ 7−→ Bt
(
φ
)

: x 7→ minu∈U
v∈V

cvt (x, u) + φ(fvt (x, u)) , (3.60)

We denote by (BHt)t∈[[0,T−1]], the family of Bellman operators obtained through homoge-
nization (with E = X× U) as follows

BHt : RX×R −→ RX×R

ϕ 7−→ BHt
(
ϕ
)

: (x, y) 7→ minu∈U
v∈V
H2

(
cvt
)(
x, u, y

)
+ϕ(H1

(
fvt
)
(x, u, y)).

(3.61)

The next proposition relates the solution of Problem 3.37 with non-homogeneous functions
to the solution of the associated homogenized problem.

Proposition 36. Let (Vt)t∈[[0,T]] (resp. (Ṽt)t∈[[0,T]]) denote the solutions of the Dynamic Pro-
gramming Equation (3.3) system of equations associated with the operators (Bt)t∈[[0,T−1]] de-

fined by Equation (3.60) (resp. (BHt)t∈[[0,T−1]] defined by Equation (3.61)) and final cost ψ

(resp. H2

(
ψ
)
)). Then, for every x ∈ X and t ∈ [[0, T]] , we have that Vt(x) = Ṽt(x, 1).

Proof. First, it is easy to prove by backward recursion on time t ∈ [[0, T]], that the mappings
Ṽt for every t ∈ [[0, T]], are 2-homogeneous. Second, we will show by backward recursion on
time that, for every t ∈ [[0, T]],

Ṽt = H2

(
Vt
)
. (3.62)

Then, the result will follow by evaluating Equation (3.62) at y = 1. At the final time t = T ,
we have that

ṼT := H2

(
ψ
)

= H2

(
VT
)
.

Now, assume that for some t ∈ [[0, T − 1]], we have that Ṽt+1 = H2

(
Vt+1

)
, for (x, y) ∈ X× R

we successively obtain that

Ṽt(x, y) = BHt (Ṽt+1)(x, y)

= min
u∈U
v∈V

H2

(
cvt
)
(x, u, y) + Ṽt+1

(
H1

(
fvt
)
(x, u, y)

)
(2-homogeneity of Ṽt+1)

= min
u∈U
v∈V

H2

(
cvt
)
(x, u, y) +H2

(
Vt+1

)(
yfvt (

x

y
,
u

y
), y
)

(Induction hyp. and def.)

= min
u∈U
v∈V

y2cvt (
x

y
,
u

y
) + y2Vt+1(fvt (

x

y
,
u

y
)) (by Equation (3.58))

= y2 min
u′∈U
v∈V

cvt (
x

y
, u′) + Vt+1(fvt (

x

y
, u′)) (u′ = u/y)

= y2Bt(Vt+1)(
x

y
)

= H2

(
Vt
)
(x, y) . (by Equation (3.58))

This ends the proof.

Lastly, we briefly explain how to get rid of the possible mixed terms in both u and x in the
cost functions after homogenization. That is, there is no loss of generality to consider the case
of cost functions which are positive polynomials of degree 2 and affine cost than to consider
the case studied in §3.5.1, i.e. pure quadratic costs and linear functions. From Proposition 36,
we have seen that one can consider the case where the cost functions are 2-homogeneous with
linear dynamics. Assume (for the sake of simplicity, we omit the discrete control v here) that
the cost function ct is of the form

ct(x, u) := xTP1x+ xTP2u+ uTP3u,

where P1, P2 and P3 are symmetric semidefinite positive matrices of coherent dimensions,
with P3 being definite positive. Moreover, fix a 2-homogeneous convex quadratic form ψ and
assume the dynamic ft to be linear of the form

ft(x, u) := Ax+Bu.

Setting Q1 := P1 − 1
4P2P

−1
3 P T2 , Q2 := P3, L := 1

2P
−1
3 P T2 , one has that the cost function

(x, u) 7→ c′t(x, u) := xTQ1x+uTQ2u is a quadratic function without mixing term and (x, u) 7→
ft(x, u) := (A+ L)x+ Bu is linear. Furthermore, by straightforward computations, one can
check that ct and ft satisfy:

ct(x, u+ Lx) = c′t(x, u) and ft(x, u+ Lx) = f ′t(x, u). (3.63)

Note that as Q2 = P3, the matrix Q2 is symmetric definite positive and as ct is positive and
by Equation (3.63) for every x ∈ X and u ∈ U

xTQ1x = c′t(x, 0) = ct(x, 0 + Lx) ≥ 0,

then Q1 is symmetric semidefinite positive. Thus the quadratic function c′t is convex and a
pure quadratic form in the sense of Definition 24.

Consider the Bellman operator associated with the costs c′t and dynamics f ′t :

B′t : RX −→ RX

φ 7−→ B′t
(
φ
)

: x 7→ minu∈U c
′
t(x, u) + φ(f ′t(x, u)) ,

(3.64)

Thus, for any function φ ∈ RX
and every x ∈ X, recall that U = Rm is unconstrained, so we

have that

Bt(φ)(x) = min
u∈U

ct(x, u) + φ(ft(x, u))

= min
u′=u+Lx∈U

ct(x, u+ Lx) + φ(ft(x, u+ Lx))

= min
u′∈U

c′t(x, u
′) + φ(ft(x, u

′))

Bt(φ)(x) = B′t(φ)(x). (3.65)

From Equation (3.65), one can deduce by backward recursion (as done in Proposition 36) on
the time step t ∈ [[0, T]], that the value functions Vt (resp. V ′t) of the Dynamic Programming
problem with Bellman operators Bt (resp. B′t) and final cost function ψ (resp. ψ as well)
satisfy Vt = V ′t .

Chapter 4

Tropical Dynamic Programming:
toward the stochastic case

Contents

4.1 Introduction . 70

4.2 Tropical Dynamical Programming on Lipschitz MSP 72

4.2.1 Lipschitz MSP with independent finite noises 72

4.2.2 Tight and valid selection functions 75

4.2.3 The problem-child trajectory . 76

4.2.4 Tropical Dynamic Programming . 78

4.3 Asymptotic convergence of TDP along the problem-child trajectory 78

4.4 Illustrations in the linear-polyhedral framework 81

4.4.1 Linear-polyhedral MSP . 82

4.4.2 SDDP lower approximations . 83

4.4.3 U -upper approximations . 84

4.4.4 V -upper approximations . 85

4.1 Introduction

In this chapter we study multistage stochastic optimal control problems in the hazard-decision
framework (hazard comes first, decision second). Starting from a given state x0, a decision
maker observes the outcome w1 of a random variable W1, then decides on a control u0 which
induces a known cost cw1

0 (x0, u0) and the system evolves to a future state x1 from a known
dynamic: x1 = fw1

0 (x0, u0). Having observed a new random outcome, the decision maker
makes a new decision based on this observation which induces a known cost, then the system
evolves to a known future state, and so on until T decisions have been made. At the last step,
there are constraints on the final state xT which are modeled by a final cost function ψ. The
decision maker aims to minimize the average cost of her decisions.

Multistage Stochastic optimization Problems (MSP) can be formally described by the
following optimization problem

min
(X,U)

E

[
T−1∑
t=0

c
Wt+1
t (Xt,Ut) + ψ(XT)

]
,

s.t. X0 = x0 given,∀t ∈ [[0, T − 1]],

Xt+1 = f
Wt+1
t (Xt,Ut),

σ(Ut) ⊂ σ(X0,W1, . . . ,Wt+1), (non-anticipativity)

(4.1)

where (Wt)t∈[[1,T]] is a given sequence of independent random variables each with values
in some measurable set (Wt,Wt). We refer to the random variable Wt+1 as a noise and
throughout the remainder of the chapter we assume the following on the sequence of noises.

Assumption 5. Each random variable Wt in Problem (4.1) has finite support and the se-
quence of random variable (Wt)t∈[[1,T]] is independent.

One approach to solving MSP problems is by dynamic programming, see for example
[Ber16, CCCDL15, PP14, SDR09]. For some integers n,m ∈ N, denote by X = Rn the
state space and U = Rm the control space. Both X and U are endowed with their Euclidean
structure and Borelian structure. We define the pointwise Bellman operators Bwt and the
average Bellman operators Bt for every t ∈ J0, T −1K. For each possible realization w ∈Wt+1

of the noise Wt+1, for every function φ : X→ R taking extended real values in R = R∪{±∞},
the function Bwt (φ) (·) : X→ R is defined by

∀x ∈ X, , Bwt (φ) (x) = min
u∈U

(
cwt (x, u) + φ

(
fwt (x, u)

))
.

Now, the average Bellman operator Bt is the mean of all the pointwise Bellman operators
with respect to the probability law of Wt+1. That is, for every φ : X→ R, we have that

∀x ∈ X , Bt (φ) (x) = E
[
BWt+1
t (φ) (x)

]
= E

[
min
u∈U

(
c
Wt+1
t (x, u) + φ

(
f
Wt+1
t (x, u)

))]
.

The average Bellman operator can be seen as a one stage operator which computes the
value of applying the best (average) control at a given state x. Note that in the hazard-
decision framework assumed here, the control is taken after observing the noise. Now, the
Dynamic Programming approach states that in order to solve MSP Problems (4.1), it suffices
to solve the following system of Bellman equations (4.2),

VT = ψ and ∀t ∈ J0, T − 1K, Vt = Bt (Vt+1) . (4.2)

Solving the Bellman equations means computing recursively backward in time the (Bellman)
value functions Vt. Finally, the value V0(x0) is the solution of the multistage Problem 4.1.

Grid-based approach to compute the value functions suffers from the so-called curse of
dimensionality. Assuming that the value functions {Vt}t∈J0,T K are convex, one approach to
bypass this difficulty is proposed by Pereira and Pinto [PP91] with the Stochastic Dual Dy-
namic Programming (SDDP) algorithm which computes piecewise affine approximations of
each value function Vt. At a given iteration k ∈ N∗ of SDDP, for every time step t ∈ [[0, T]], the
value function Vt is approximated by V k

t = maxφ∈Fk φ where F k is a finite set of affine func-
tions. Then, given a realization of the noise process (Wt)t∈[[1,T]], the decision maker computes

an optimal trajectory associated with the approximations (V k
t)t∈[[0,T]] and adds a new function,

φk+1
t (named cut) to the current collection F kt which defines V k

t , that is F k+1
t = F kt ∪

{
φk+1
t

}
.

Although SDDP does not involve discretization of the state space, one of its computational
bottleneck is the lack of efficient stopping criterion: SDDP easily builds lower approxima-
tions of the value function but upper approximations are usually computed through a costly
Monte-Carlo scheme.

In order to build upper approximations of the value functions, Min-plus methods were
studied (e.g. [McE07, Qu14]) for optimal control problems in continuous time. When the value
functions {Vt}t∈J0,T K are convex (or more generally, semiconcave), discrete time adaptations
of Min-plus methods build for each t ∈ J1, T K approximations of convex value function Vt as
finite infima of convex quadratic forms. That is, at given iteration k ∈ N, we consider upper

approximations defined as V
k
t = min

φ∈Fkt
φ, where F

k
t is a finite set of convex quadratic forms.

Then, a sequence of trial points (xkt)t∈[[0,T]] is drawn (e.g. uniformly on the unit sphere as

in [Qu14]) and for every t ∈ [[0, T−1]] a new function φk+1
t is added, F

k+1
t = F

k
t ∪

{
φk+1
t

}
.

The function φk+1
t should be compatible with the Bellman equation, in particular it should

be tight, i.e. the Bellman equations should be satisfied at the trial point,

Bt

(
φk+1
t+1

)(
xkt

)
= φk+1

t (xkt).

In [ACT18], the authors present a common framework for a deterministic version of SDDP
and a discrete time version of Min-plus algorithms. Moreover, the authors give sufficient
conditions on the way the trial points have to be sampled in order to obtain asymptotic
convergence of either upper or lower approximations of the value functions. Under these
conditions, the main reason behind the convergence of these algorithm was shown to be that
the Bellman equations (4.2) are asymptotically satisfied on all cluster points of possible trial
points. In this chapter, we would like to extend the work of [ACT18] by introducing a new
algorithm called Tropical Dynamic Programming (TDP).

In [BDZ18, PdF13], are studied approximation schemes where lower approximations are
given as a suprema of affine functions and upper approximations are given as a polyhedral
function. We aim in this chapter to extend, with TDP, the approach of [BDZ18, PdF13]
by considering more generally that lower approximations are max-plus linear combinations
of some basic functions and upper approximations are min-plus linear combinations of other
basic functions where basic functions are defined later. TDP can be seen as a tropical variant
of parametric approximations used in Adaptive Dynamic Programming (see [Ber19, Pow11])
where the value functions are approximated by linear combinations of basis functions. In this
chapter, we will:

1. Extend the deterministic framework of [ACT18] to Lipschitz MSP defined in Equa-
tion (4.1) and introduce TDP, see Section 4.2.

2. Ensure that upper and lower approximations converge to the true value functions on a
common set of points, see Section 4.3. The main result of Section 4.3 generalizes to any
min-plus/max-plus approximation scheme the result of [BDZ18] which was stated for a
variant of SDDP.

3. Explicitly give several numerically efficient ways to build upper and lower approxima-
tions of the value functions, as min-plus and max-plus linear combinations of some
simple functions, see Section 4.4.

4.2 Tropical Dynamical Programming on Lipschitz MSP

4.2.1 Lipschitz MSP with independent finite noises

For every time step t ∈ [[1, T]], we denote by supp (Wt) the support1 of the discrete random
variable Wt and for a given subset X ⊂ X, we denote by πX the euclidean projector on X.
State and control constraints for each time t are modeled in the cost functions which may
possibly take infinite values outside of some given sets. Now, we introduce a sequence of
sets {Xt}t∈J0,T K which only depend on the problem data and make the following compactness
assumption:

Assumption 6 (Compact state space). For every time t ∈ [[0, T]], we assume that the set
Xt is a nonempty compact set in X where the sequence of sets {Xt}t∈J0,T K is defined, for all
t ∈ [[0, T − 1]], by

Xt :=
⋂

w∈supp(Wt+1)

πX(dom cwt) , (4.3)

and for t = T by XT = domψ.

For each noise w ∈ supp (Wt+1), t ∈ [[0, T −1]], we also introduce the constraint set-valued
mapping Uwt : X⇒ U defined for every x ∈ X by

Uwt (x) :=
{
u ∈ U

∣∣ cwt (x, u) < +∞ and fwt (x, u) ∈ Xt+1

}
. (4.4)

We will assume that the data of Problem (4.1) is Lipschitz in the sense defined below. Let
us stress that we do not assume structure on the dynamics or costs like linearity or convexity,
only that they are Lipschitz.

Assumption 7 (Lipschitz MSP). For every time t ∈ [[0, T − 1]], we assume that for each
w ∈ supp (Wt+1), the dynamic fwt , the cost cwt are Lipschitz continuous on dom cwt and
the set-valued mapping constraint Uwt is Lipschitz continuous on Xt, i.e. for some constant
LUwt > 0, for every x1, x2 ∈ Xt, we have2

dH
(
Uwt (x1),Uwt (x2)

)
≤ LUwt ‖x1 − x2‖. (4.5)

1The support of the discrete random variable Wt is equal to the set {w ∈Wt | P(Wt = w) > 0}.

Computing a (sharp) Lipschitz constant for the set-valued mapping Uwt : X ⇒ U is
difficult. However, when the graph of the set-valued mapping Uwt is polyhedral, as in the
linear-polyhedral framework studied in Section 4.4, one can compute a Lipschitz constant
for Uwt . We make the following assumption in order to ensure that the domains of the value
functions Vt are chosen by the decision maker. It can be seen as a recourse assumption.

Assumption 8 (Recourse assumption). Given t ∈ [[0, T−1]], for every noise realization w ∈
supp (Wt) the set-valued mapping Uwt : X⇒ U defined in (4.4) is nonempty compact valued.

A priori, it might be difficult to compute the domain of each value function Vt. However,
under the recourse Assumption 8, we have that domVt := Xt and thus the domain of each
value function is known to the decision maker.

Lemma 37 (Known domains of Vt). Under Assumptions 5 and 8, for every t ∈ [[0, T]], the
domain of Vt is equal to Xt.

Proof. We make the proof by backward induction on time. At time t = T , we have VT = ψ and
thus domVT = domψ = XT . Now, for a given t ∈ [[0, T−1]], we assume that domVt+1 = Xt+1

and we prove that domVt = Xt.

First, fix x ∈ Xt. Then, for every w ∈ supp (Wt+1), using Assumption 8, Uwt (x) is
nonempty and thus Vt(x) < +∞. Moreover, by Assumptions 7 and Assumptions 8 the
optimization problem

min
u∈U

(
cwt (x, u) + Vt+1

(
fwt (x, u)

))
= min

u∈Uwt (x)

(
cwt (x, u) + Vt+1

(
fwt (x, u)

))
,

consists in the minimization of a continuous function in u over a nonempty compact set.
Denote by uw ∈ Uwt (x) a minimizer of this optimization problem. We have, denoting by
{pw}w∈supp(Wt+1) the discrete probability law of the random variable Wt+1, that

Vt(x) = Bt (Vt+1) (x)

= E
[
BWt+1
t (Vt+1) (x)

]
=

∑
w∈supp(Wt+1)

pw inf
u∈U

(
cwt (x, u) + Vt+1

(
fwt (x, u)

))
=

∑
w∈supp(Wt+1)

pw

(
cwt (x, uw) + Vt+1

(
fwt (x, uw)

))
.

As every term in the right hand side of the previous equation is finite, we have Vt(x) < +∞
and thus x ∈ domVt.

Second, fix x /∈ Xt. Then, there exists an element w ∈ supp (Wt+1) such that cwt (x, u) =
+∞ for every control u ∈ U. We therefore have that Vt(x) = +∞ and x 6∈ domVt.

We conclude that domVt = Xt which ends the proof.

2The Hausdorff distance dH between two nonempty compact sets X1, X2 in X is defined by

dH(X1, X2) = max(max
x1∈X1

d(x1, X2), max
x2∈X2

d(X1, x2)) = max(max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)).

In Section 4.4, it will be crucial for numerical efficiency to have a good estimation of the
Lipschitz constant of the function Bt

(
V k
t+1

)
.

We now prove that under Assumptions 7 and Assumptions 8, the operators Bt preserve
Lipschitz regularity. Given a Lt+1-Lipschitz function φ and w ∈ supp (Wt+1), in order to
compute a Lipschitz constant of the function Bwt (φ) (·) we exploit the fact that the set-
valued constraint mapping Uwt and the data of Problem 4.1 are Lipschitz in the sense of
Assumptions 7. This was mostly already done in [ACT18], but for the sake of completeness,
we will slightly adapt its statement and proof.

Proposition 38 (Bt is Lipschitz regular). Let φ : X → R be given. Under Assumptions 5
to 8, if for some Lt+1 > 0, φ is Lt+1-Lipschitz on Xt+1, then the function Bt (φ) is Lt-
Lipschitz on Xt for some constant Lt > 0 which only depends on the data of Problem 4.1 and
on Lt+1.

Proof. Let φ : X → R be a Lt+1-Lipschitz function on Xt+1. We will show that for each
w ∈ supp (Wt+1), the mapping Bwt (φ) (·) is Lw-Lipschitz for some constant Lw which only
depends on the data of problem (4.1). Fix w ∈ supp (Wt+1) and x1, x2 ∈ Xt. Denote by u∗2
an optimal control at x2 and w, that is u∗2 ∈ arg minu∈Uwt (x2)

(
cwt (x2, u) + φ

(
fwt (x2, u)

))
, or

equivalently, u∗2 satisfies

cwt (x2, u
∗
2) + φ

(
fwt (x2, u

∗
2)
)

= Bwt (φ) (x2) . (4.6)

Then, for every u1 ∈ Uwt (x1) we successively have

Bwt (φ) (x1) ≤ cwt (x1, u1) + φ
(
fwt (x1, u1)

)
(as u1 ∈ Uwt (x1) is admissible)

≤ Bwt (φ) (x2) + cwt (x1, u1) + φ
(
fwt (x1, u1)

)
− Bwt (φ) (x2)

= Bwt (φ) (x2) +
(
cwt (x1, u1)− cwt (x2, u

∗
2)
)

+
(
φ
(
fwt (x1, u1)

)
− φ

(
fwt (x2, u

∗
2)
))

(using (4.6))

≤ Bwt (φ) (x2) + L
(∥∥x1 − x2

∥∥+
∥∥u1 − u∗2

∥∥), (by Assumption 7)

where L = max(Lcwt , Lt+1Lfwt). Now, as the set-valued mapping Uwt is LUwt -Lipschitz, there
exists ũ1 ∈ Uwt (x1) such that

‖ũ1 − u∗2‖ ≤ LUwt ‖x1 − x2‖.

Hence, setting Lw := max(Lcwt , Lt+1Lfwt)(1 + LUwt), we obtain

Bwt (φ) (x1)− Bwt (φ) (x2) ≤ Lt‖x1 − x2‖.

Reverting the role of x1 and x2 we get the converse inequality. Hence, we have shown that, for
every w ∈ supp (Wt+1), the mapping Bwt (φ) is Lw-Lipschitz. Thus, setting Lt = (

∑
w pwLw),

we have ∣∣Bt (φ) (x1)−Bt (φ) (x2)
∣∣ ≤ ∑

w∈supp(Wt+1)

pw
∣∣Bwt (φ) (x1)− Bwt (φ) (x2)

∣∣
≤
(∑
w∈supp(Wt+1)

pwLw

)
‖x1 − x2‖ ,

as Bwt (φ) is Lw-Lipschitz. We obtain that the mapping Bt (φ) is Lt-Lipschitz continuous on
domVt and this concludes the proof.

The explicit constant Lt computed in the proof of Proposition 38 does not exploit any
possible structure of the data, e.g. linearity. In the presence of such structure or possible
decomposition, it is possible to greatly reduce the value of the constant Lt. However, in the
sequel, we only care for the regularity result given in Proposition 38 and computing sharper
bounds under some specific structure is left for future works.

Using the fact that the final cost function ψ = VT is Lipschitz on XT , by successive
applications of Proposition 38, one gets the following corollary.

Corollary 39 (The value functions of a Lipschitz MSP are Lipschitz continuous). For every
time step t ∈ [[0, T]], the value function Vt is LVt-Lipschitz continuous on Xt where LVt > 0
is a constant which only depends on the data of Problem 4.1.

4.2.2 Tight and valid selection functions

We formally define now what we call basic functions. In the sequel, the notation in bold Ft

will stand for a set of basic functions and Ft will stand for a subset of Ft.

Definition 40 (Basic functions). Given t ∈ [[0, T]], a basic function φ : X → R is a LVt-
Lipschitz continuous function on Xt, where the constant LVt > 0 is defined in Corollary 39.

In order to ensure the convergence of the scheme detailed in the introduction, at each
iteration of TDP algorithm a basic functions which is be tight and valid in the sense below
is added to the current sets of basic functions. The idea behind these assumptions is to
ensure that the Bellman equations (4.2) will gradually be satisfied: it is too numerically hard
to find functions satisfying the Bellman equations (4.2), however tightness and validity can
be checked efficiently and this will be enough to ensure asymptotic convergence of our TDP
algorithm.

There is a dissymmetry for the validity assumption which depends on whether the decision
maker wants to build upper or lower approximations of the value functions. In §4.2.4, we will
assume that the decision maker has, at hist disposal, two sequences of selection functions
(St)t∈[[0,T]] and (St)t∈[[0,T]]. The former to select basic functions for the upper approximations

and the latter for the lower approximations of Vt. We write St when designing either St or St
and denote by VF t (resp. VF t) the pointwise infimum (resp. pointwise supremum) of basic

functions in F t (resp. in F t) when approximating from above (resp. below) a maping Vt. The
Figure 4.1 illustrates the formal definition of selection functions given below. Given a set Z,
we denote by P(Z) its power set, i.e. the set of all subsets included in Z.

Definition 41 (Selection functions). Let a time step t ∈ [[0, T − 1]] be fixed. A selection
function or simply selection function is a mapping St from P(Ft+1)×Xt to Ft satisfying the
following properties

• Tightness: for every set of basic functions Ft+1 ⊂ Ft+1 and x ∈ Xt, the mappings
St (Ft+1, x) and Bwt

(
VFt+1

)
(·) coincide at point x, that is

St (Ft+1, x) (x) = Bt

(
VFt+1

)
(x) .

• Validity: for every set of basic functions Ft+1 ⊂ Ft+1 and for every x ∈ Xt we have

St (Ft+1, x) ≥ Bt

(
VFt+1

)
(·) , (when building upper approximations)

St (Ft+1, x) ≤ Bt

(
VFt+1

)
(·) . (when building lower approximations)

Bt(VF t+1
)

Vt

Bt(VF t+1
)

X

Xt

SSDDP
t (F t, xt)

S
U

t (F t, x)

x

Bt

VF t+1

Vt+1

VF t+1

X

Xt+1

Figure 4.1: Given a time step t ∈ [[0, T −1]], we illustrate the notions of tightness and validity
of selection functions. A selection function takes as input a trial point x in the domain Xt of
Vt and a set of basic functions Ft ⊂ Ft+1 building the approximations at the future time step
t+ 1 (right: pointwise suprema or infima of the basic functions). Then, the Bellman operator
Bt translates one step backward in time the right picture to the picture on the left.
Tightness of the selection function enforces that the output is a function equal to the Bellman
image of the future approximation of Vt+1 at x; it is a local property.
Validity enforces that the output of the selection function remains below, or above, the Bell-
man image the approximation of Vt+1 everywhere on the domain of Vt; it is a global property.
More details on these examples of selection functions in Section 4.4.

For t = T , we also say that ST : XT → FT is a selection function if the mapping ST is tight
and valid with a modified definition of tight and valid defined now. The mapping ST is said
to be valid if, for every x ∈ XT , the function ST (x) remains above (resp. below) the value
function at time T when building upper approximations (resp. lower approximations). The
mapping ST is said to be tight if it coincides with the value function at point x, that is, for
every x ∈ XT we have

ST (x) (x) = VT (x).

Remark 42. Note that the validity and tightness assumptions at time t = T are stronger than
at times t < T as the final cost function is a known data, we are allowed to enforce conditions
directly on the value function VT and not just the on the image of the current approximations
at time t+ 1 as it is the case when t < T .

4.2.3 The problem-child trajectory

From the previous section, given a set of basic functions and a point in X, a selection function
is used to computes a new basic function. We explain in this section the algorithm used to
select the points which are used for searching new basic functions.

In this section, we present how to build a trajectory of states, without discretization of the
whole state space. Selection functions for both upper and lower approximations of Vt will be
evaluated along it. This trajectory of states, coined problem-child trajectory, was introduced
by Baucke, Downward and Zackeri in 2018 (see [BDZ18]) for a variant of SDDP first studied
by Philpott, de Matos and Finardi in 2013 (see [PdF13]).

We present in Algorithm 2 a generalized problem-child trajectory, it is the sequence of
states on which we evaluate selection functions.

Algorithm 2 Problem-child trajectory

Input: Two sequences of functions from X to R, φ0, . . . , φT and φ
0
, . . . , φ

T
with respective

domains equal to domVt.
Output: A sequence of states (x∗0, . . . , x

∗
T).

Set x∗0 := x0.
for t ∈ [[0, T−1]] do

for w ∈ supp (Wt+1) do
Compute an optimal control uwt for φ

t+1
at x∗t for the given w

uwt ∈ arg min
u∈U

(
cwt (x∗t , u) + φ

t+1

(
fwt (x∗t , u)

))
. (4.7)

end for
Compute “the worst” noise w∗ ∈ supp (Wt+1). i.e. the one which maximizes the “future”
gap

w∗ ∈ arg max
w∈supp(Wt+1)

(
φt+1 − φt+1

)(
fwt (x∗t , u

w
t)
)
.

Compute the next state dynamics for noise w∗ and associated optimal control uw
∗

t :

x∗t+1 = fw
∗

t (x∗t , u
w∗
t) .

end for

One can interpret the problem child trajectory as the worst (for the noises) optimal
trajectory (for the controls) of the lower approximations. It is worth mentioning that the
problem-child trajectory is deterministic. The approximations of the value functions will
be refined along the problem-child trajectory only, thus avoiding a discretization of the state
space. The main computational drawback of such approach is the need to solve Problem (4.7)
|supp (W1)|+ . . .+ |supp (WT)| times. Except on special instances like the linear-quadratic
case, one cannot expect to find a closed form expression for solutions of Equation (4.7).
However, we will see in Section 4.4 examples where Problem (4.7) can be solved by Linear
Programming or Quadratic Programming. Simply put, if one can solve efficiently the deter-
ministic problem (4.7) and if at each time step the set supp (Wt) remains of small cardinality,
then using the problem-child trajectory and the Tropical Dynamical Algorithm presented be-
low in Section 4.2.4, one can solve MSP problems with finite independent noises efficiently.
This might be an interesting framework in practice if at each step the decision maker has a
few different forecasts on which her inputs are significantly different.

4.2.4 Tropical Dynamic Programming

Algorithm 3 Tropical Dynamic Programming (TDP)

Input: For every t ∈ [[0, T]], two compatible selection functions St and St. A sequence of
independent random variables (Wt)t∈[[0,T−1]], each with finite support.

Output: For every t ∈ [[0, T]], two sequence of sets (F
k
t)k∈N, (F kt)k∈N and the associated

functions V
k
t = inf

φ∈Fkt
φ and V k

t = supφ∈Fkt
φ.

Define for every t ∈ [[0, T]], F
0
t := ∅ and F 0

t := ∅.
for k ≥ 0 do

Forward phase
Compute the problem-child trajectory (xkt)t∈[[0,T]] for the sequences (V

F
k
t
)t∈[[0,T]] and

(VFkt)t∈[[0,T]] using Algorithm 2.
Backward phase
At t = T , compute new basic functions φT := ST

(
xkT
)

and φ
T

:= ST (xkT).

Add them to current collections, F
k+1
T := F

k
T ∪

{
φT
}

and F k+1
T := F kT ∪

{
φ
T

}
.

for t from T−1 to 0 do
Compute new basic functions: φt := St

(
F
k+1
t+1 , x

k
t

)
and φ

t
:= St

(
F k+1
t+1 , x

k
t

)
.

Add them to the current collections: F
k+1
t := F

k
t ∪
{
φt
}

and F k+1
t := F kt ∪

{
φ
t

}
.

end for
end for

4.3 Asymptotic convergence of TDP along the problem-child
trajectory

In this section, we will assume that Assumptions (5) to (8) are satisfied. We recall that,
under Assumption 8, the sequence of sets {Xt}t∈J0,T K defined in Equation (4.3) is known and

for all t ∈ [[0, T]] the domain of Vt is equal to Xt. We denote by (xkt)k∈N the sequence of
trial points generated by TDP algorithm at time t for every t ∈ [[0, T]], and by (ukt)k∈N and
(wkt)k∈N the optimal control and worst noises sequences associated for each time t with xkt in
the problem-child trajectory in Algorithm 2.

Now, observe that for every t ∈ [[0, T]], the approximations of Vt generated by TDP,

(V
k
t)k∈N and (V k

t)k∈N, are respectively non-increasing and non-decreasing. Moreover, for
every index k ∈ N we have

V k
t ≤ Vt ≤ V

k
t .

We refer to [ACT18, Lemma 7] for a proof. Observing that the basic functions are all
LVt-Lipschitz continuous on Xt one can prove using Arzelà-Ascoli Theorem the following
proposition.

Proposition 43 (Existence of an approximating limit). Let t ∈ [[0, T]] be fixed, the sequences

of functions
(
V k
t

)
k∈N and

(
V
k
t

)
k∈N

generated by Algorithm 3 converge uniformly on Xt to

two functions V ∗t and V
∗
t . Moreover, V ∗t and V

∗
t are LVt-Lipschitz continuous on Xt and

satisfy V ∗t ≤ Vt ≤ V
∗
t .

Proof. Omitted as it is slight rewriting of [ACT18, Proposition 9].

If we extract a converging subsequence of trial points, then using compactness, extracting
a subsubsequence if needed, one can find a subsequence of trial points, and associated controls
that jointly converge.

Lemma 44. Fix t ∈ [[0, T − 1]] and denote by (xkt)k∈N the sequence of trial points generated
by Algorithm 3 and by (ukt)k∈N the sequence of associated optimal controls. There exists an
increasing function σ : N→ N and a state-control ordered pair (x∗t , u

∗
t) ∈ Xt×U such that

x
σ(k)
t −→

k→+∞
x∗t ,

u
σ(k)
t −→

k→+∞
u∗t .

(4.8)

Proof. Fix a time step t ∈ [[0, T−1]]. First, by construction of the problem-child trajectories,
the sequence (xkt)k∈N remains in the subset Xt that is xkt ∈ Xt for all k ∈ N.

Second, we show that the sequence of controls (ukt)k∈N is included in a compact subset of U.
Under Assumption 6, Xt is a nonempty compact subset of X. For every w ∈ supp (Wt+1)
the set-valued mapping Uwt is Lipschitz continuous on Xt under Assumption 7, hence upper
semicontinuous3 on Xt. Moreover, under recourse Assumption 8, Uwt is nonempty compact
valued. Thus, by [AE84, Proposition 11 p.112], its image Uwt (Xt) of the compact Xt is a
nonempty compact subset of U. Finally as the random variable Wt+1 has a finite support
under Assumption 5, the set Ut := ∪w∈supp(Wt+1) Uwt (Xt) is a compact subset of U. The

sequence (ukt)k∈N remains in Ut and therefore we conclude that it remains in a compact
subset of U.

Finally, as the sequence (xkt , u
k
t)k∈N is included in the compact subset Xt×Ut of X×U, one

can extract a converging subsequence, hence the result.

Lastly, we will use the following elementary lemma, whose proof is omitted.

Lemma 45. Let (gk)k∈N be a sequence of functions that converges uniformly on a compact
K to a function g∗. If (yk)k∈N is a sequence of points in K that converges to y∗ ∈ K then
one has

gk(yk) −→
k→+∞

g∗(y∗).

We now state the main result of this chapter. For a fixed t ∈ [[0, T]], as the Bellman value
function Vt is always sandwiched between the sequences of upper and lower approximations,
if the gap between upper and lower approximations vanishes at a given state value x, then
upper and lower approximations will both converge to Vt(x). Note that, even though a MSP
is a stochastic optimization problem, the convergence result below is not. Indeed, we have
assumed (see Assumption 5) that the noises have finite supports, thus under careful selection
of scenario as done by the Problem-child trajectory, we get a “sure” convergence.

Theorem 46 (Vanishing gap along problem-child trajectories). Denote by (V
k
t)k∈N and

(V k
t)k∈N the approximations generated by the Tropical Dynamic Programming algorithm. For

every k ∈ N denote by (xkt)0≤t≤T the current Problem-child trajectory.

3The compact valued set-valued mapping Uwt : X⇒ U is upper semicontinuous on Xt if, for all xt ∈ Xt, if
an open set U ⊂ U contains Uwt (xt) then {x ∈ X | Uwt x ⊂ U} contains a neighborhood of xt.

Then, under Assumptions 5 to 8, we have that

V
k
t (x

k
t)− V k

t (x
k
t) −→ 0

k→+∞
and V

∗
t (x
∗
t) = V ∗t (x

∗
t) ,

for every accumulation point x∗t of the sequence (xkt)k∈N.

Proof. We prove by backward recursion that, for every t ∈ [[0, T]], for every accumulation
point x∗t of the sequence (xkt)k∈N, we have

V
∗
t (x
∗
t) = V ∗t (x

∗
t). (4.9)

By a direct consequence of the tightness of the selection functions one has that for every

k ∈ N, V
k
T (xkT) = VT (xkT) = V k

T (xkT). Thus, the equality (4.9) holds for t = T by Lemma 45.
Now assume that for some t ∈ [[0, T−1]], for every accumulation point x∗t+1 of (xkt+1)k∈N

we have

V
∗
t+1(x∗t+1) = V ∗t+1(x∗t+1). (4.10)

On the one hand, for every index k ∈ N one has

V k+1
t (xkt) = Bt

(
V k+1
t+1

)(
xkt

)
, (Tightness)

≥ Bt

(
V k
t+1

)(
xkt

)
, (Monotonicity)

= E
[
BWt+1
t

(
V k
t+1

)(
xkt

)]
(by definition of Bt)

= E
[
c
Wt+1
t (xkt , u

Wt+1
t) + V k

t+1

(
f
Wt+1
t (xkt , u

Wt+1
t)

)]
(by Equation (4.7))

=
∑

w∈supp(Wt+1)

P
[
Wt+1 = w

](
cwt (xkt , u

w
t) + V k

t+1

(
fwt (xkt , u

w
t)
))

.

On the other hand, for every index k ∈ N one has

V
k+1
t (xkt) = Bt

(
V
k+1
t+1

)(
xkt

)
, (Tightness)

= E
[
BWt+1
t

(
V
k+1
t+1

)(
xkt

)]
≤ E

[
c
Wt+1
t (xkt , u

Wt+1
t) + V

k+1
t+1

(
f
Wt+1
t (xkt , u

Wt+1
t)

)]
(Def. of pointwise Bwt)

≤ E
[
c
Wt+1
t (xkt , u

Wt+1
t) + V

k
t+1

(
f
Wt+1
t (xkt , u

Wt+1
t)

)]
(Monotonicity)

=
∑

w∈supp(Wt+1)

P[Wt+1 = w]
(
cwt (xkt , u

w
t) + V

k
t+1

(
fwt (xkt , u

w
t)
))

.

By definition of the problem-child trajectory, recall that ukt := u
wkt
t , thus we have xkt+1 :=

f
wkt
t (xkt , u

k
t) and for every k ∈ N

0 ≤ V k+1
t (xkt)− V k+1

t (xkt) ≤
∑

w∈supp(Wt+1)

P
[
Wt+1 = w

](
(V

k
t+1 − V k

t+1)
(
fwt (xkt , u

w
t)
))

≤ V k
t+1(xkt+1)− V k

t+1(xkt+1) .

Thus, we get that for every function σ : N→ N

0 ≤ V σ(k)+1
t (x

σ(k)
t)− V σ(k)+1

t (x
σ(k)
t) ≤ V σ(k)

t+1 (x
σ(k)
t+1)− V σ(k)

t+1 (x
σ(k)
t+1) . (4.11)

By Lemma 44 and continuity of the dynamics, there exists an increasing function σ : N→ N

such that the sequence of future states x
σ(k)
t+1 = f

w
σ(k)
t+1

t (x
σ(k)
t , u

σ(k)
t), k ∈ N, converges to some

future state x∗t+1 ∈ Xt+1. Thus, by Lemma 45 applied to the 2LVt+1-Lipschitz functions

gk := V
σ(k)
t+1 − V

σ(k)
t+1 , k ∈ N and the sequence yk := x

σ(k)
t+1 , k ∈ N we have that

V
σ(k)
t+1 (x

σ(k)
t+1)− V σ(k)

t+1 (x
σ(k)
t+1) −→

k→+∞
V
∗
t+1(x∗t+1)− V ∗t+1(x∗t+1) .

Likewise, by Lemma 45 applied to the 2LVt-Lipschitz functions gk := V
σ(k)+1
t −V σ(k)+1

t , k ∈ N
and the sequence yk := x

σ(k)
t , k ∈ N we have that

V
σ(k)+1
t (x

σ(k)
t)− V σ(k)+1

t (x
σ(k)
t) −→

k→+∞
V
∗
t (x
∗
t)− V ∗t (x∗t) .

Thus, taking the limit in k in Equation (4.11), we have that

0 ≤ V ∗t (x∗t)− V ∗t (x∗t) ≤ V
∗
t+1(x∗t+1)− V ∗t+1(x∗t+1).

By induction hypothesis (4.10) we have that V
∗
t+1(x∗t+1) − V ∗t+1(x∗t+1) = 0. Thus, we have

shown that

V
∗
t (x
∗
t) = V ∗t (x

∗
t) .

This concludes the proof.

4.4 Illustrations in the linear-polyhedral framework

In this section, we first present a class of Lipschitz MSP that we call linear-polyhedral MSP
where dynamics are linear and costs are polyhedral, i.e. functions with convex polyhedral
epigraph. Second, we give three selection functions, one which generates polyhedral lower
approximations (see §4.4.2) and two which generates upper approximations, one as infima of
U -shaped functions (see §4.4.3) and one as infima of V -shaped functions (see §4.4.4).

In Table 4.1 we illustrate the flexibility made available by TDP to the decision maker to
approximate value functions. Implementations were done in the programming language Julia
1.4.2 using the optimization interface JuMP 0.21.3, [DHL17]. The code is available online
(https://github.com/BenoitTran/TDP) as a collection of Julia Notebooks.

Selection mapping Tight Valid Averaged Computational difficulty

SDDP 3 3 3 Card(Wt+1) LPs

U 3 7 3 Card(Wt+1) · Card(F) QPs

V 3 3 7 one LP

Table 4.1: Summary of the three selection functions presented in Section 4.4.

https://github.com/BenoitTran/TDP

4.4.1 Linear-polyhedral MSP

We want to solve MSPs where the dynamics are linear and the costs are polyhedral. That is,
we want to solve optimization problems of the form (4.1) where for each time step t ∈ [[0, T−1]]
the state dynamics is linear, fwt (x, u) = Awt x+Bw

t u for some matrices Awt and Bw
t of suitable

dimensions and the cost is polyhedral:

cwt (x, u) = max
i∈It

〈
ci,wt , (x;u)

〉
+ di,wt + δPwt (x, u) , (4.12)

where It is a finite set, ci,w ∈ X×U, di,wt is a scalar and Pwt is a convex polyhedron. The final
cost function ψ is of the form ψ(x) = maxi∈IT 〈ciT , x〉 + diT + δXT where XT is a nonempty
convex polytope. We assume that Assumption 5, 6 and 8 are satisfied.

Proposition 47 (Linear-polyhedral MSP are Lipschitz MSP). Linear-polyhedral MSP are
Lipschitz MSP in the sense of Assumption 7.

Proof. By construction, the costs cwt and the dynamics fwt are Lipschitz continuous with
explicit constants. We show that, for every t ∈ [[0, T−1]] and every w ∈ supp (Wt+1), the
constraint set-valued mapping Uwt is Lipschitz continuous. From [RW09, Example 9.35], it is
enough to show that the graph of Uwt is a convex polyhedron. By assumption dom cwt is a con-
vex polyhedron and by recourse assumption, Graph Uwt is nonempty. As a nonempty intersec-
tion of convex polyhedrons is a convex polyhedron, we only have to show that {(x, u) ∈ X×U | fwt (x, u) ∈ Xt+1}
is a convex polyhedron as well.

Using Equation (4.3) we have that Xt+1 is given by Xt+1 = ∩w∈supp(Wt+2)πX
(
dom cwt+1

)
,

which is the nonempty intersection of convex polyhedrons. Thus, Xt+1 is a convex poly-
hedron which implies that there exists a matrix Qt+1 and a vector bt+1 such that Xt+1 ={
x ∈ X

∣∣Qt+1x ≤ bt+1

}
. Therefore, we obtain that the two following sets coincide{

(x, u) ∈ X×U
∣∣ fwt (x, u) ∈ Xt+1

}
=
{

(x, u) ∈ X×U
∣∣Qt+1A

w
t x+Qt+1B

w
t u ≤ bt+1

}
.

The latter being convex polyhedral we obtain that the former is convex polyhedral. This ends
the proof.

Now, observe that as linear-polyhedral MSP are Lipschitz MSP, by Corollary 39, the value
function Vt is LVt-Lipschitz continuous on Xt for all t ∈ J0, T K. Moreover, under the recourse
assumption 8 we can show that the Bellman operators Btt∈J0,T−1K preserve polyhedrality in
the sense defined below.

Lemma 48 (Bt preserves polyhedrality). For every t ∈ [[0, T−1]], if φ : X→ R is a polyhedral
function, i.e. its epigraph is a convex polyhedron, then Bt (φ) is a polyhedral function as well.

Proof. For every w ∈ supp (Wt+1), we have shown in the proof of Proposition 47 that the
graph of Uwt is a convex polyhedron. Thus, (x, u) 7→ cwt (x, u) + φ

(
fwt (x, u)

)
+ δGraphUwt (x, u)

is convex polyhedral and by [BL06, Proposition 5.1.8.e], Bwt (φ) is polyhedral as well. Finally,
under Assumption 5, we deduce that Bt (φ) :=

∑
w∈supp(Wt+1) Bwt (φ) is polyhedral as a finite

sum of polyhedral functions. This ends the proof.

4.4.2 SDDP lower approximations

Stochastic Dual Dynamic Programming is a popular algorithm which was introduced by
Perreira and Pinto in 1991 (see [PP91]) and studied extensively since then, e.g. [ACd19,
BDZ18, BFFd20, Gui14, PG08, PdF13, Sha11, ZAS18].

Lemma 48 is the main intuitive justification of using SDDP in linear-polyhedral MSPs: if
the final cost function is polyhedral, as the operators {Bt}t∈J0,T−1K preserve polyhedrality, by
backward induction on time, we obtain that the value function Vt is polyhedral for every t ∈
[[0, T]]. Hence, the decision maker might be tempted to construct polyhedral approximations
of Vt as well.

We now present a way to generate polyhedral lower approximations of value functions,
as done in the literature of SDDP, by defining a proper selection mapping. When the value
functions are convex, SDDP builds lower approximations as suprema of affine cuts. We put
SDDP in TDP’s framework by constructing a lower selection function.

First, for every time step t ∈ [[0, T]], define the set of basic functions,

FSDDP
t :=

{
〈a, ·〉+ b+ δXt

∣∣ (a, b) ∈ X×R s.t. ‖a‖ ≤ LVt
}
.

At time t = T , given a trial point x ∈ XT , we define SSDDP
T (x) = 〈ax, · − x〉+ bx, where ax is

a subgradient of the convex polyhedral function ψ at x and bx = ψ(x). Tightness and validity
of SSDDP

T follow from the given expression. Now, for t ∈ J0, T − 1K, we compute a tight and
valid cut for Bwt for each possible value of the noise w, then average it to get a tight and valid
cut for Bt. The details are given in Algorithm 4.

Algorithm 4 SDDP Selection function SSDDP
t for t < T

Input: A set of basic functions F t+1 ⊂ FSDDP
t+1 and a trial point xt ∈ Xt.

Output: A tight and valid basic function φ
t
∈ FSDDP

t .
for w ∈ supp (Wt+1) do

Solve by linear programming bw := Bwt
(
VF t+1

)
(x) and compute a subgradient aw of

Bwt
(
VF t+1

)
at x.

end for
Set φ := 〈a, ·〉+ b+ δXt where a :=

∑
w∈supp(Wt+1) pwa

w and b =
∑

w∈supp(Wt+1) pwb
w.

We say that Swt is a selection function for Bwt , for a given noise value w ∈ supp (Wt+1) if
Definition 41 is satisfied when replacing Bt by Bwt . We now prove that SSDDP

t is a selection
function, i.e. it is tight and valid in the sense of Definition 41. It follows from the general fact
that by averaging functions which are tight and valid for the pointwise Bellman operators Bwt ,
w ∈ supp (Wt+1), then one get a tight and valid function for the average Bellman operator
Bt. Note that the average of affine functions is still an affine function, the set of basic
functions FSDDP

t is stable by averaging.

Lemma 49. Let a time step t ∈ [[0, T−1]] be fixed and let be given for every noise value w ∈
supp (Wt+1) a selection function Swt for Bwt . Then, the mapping St defined by St = E[S

Wt+1
t]

is a selection mapping for Bt.

Proof. Fix t ∈ [[0, T−1]]. Given a trial point x ∈ Xt and a set of basic functions F , the
pointwise tightness (resp. validity) equality (resp. inequality) is satisfied for every realization

w of the noise Wt+1, that is

Swt (F, x) (x) = Bwt (VF) (x) , (Pointwise tightness)

Swt (F, x) ≥ Bwt
(
VF
)
, (Pointwise validity when building upper approximations)

Swt (F, x) ≤ Bwt (VF) . (Pointwise validity when building lower approximations)

Recall that Bt (VF) (x) = E[BWt+1
t (VF) (x)], thus taking the expectation in the above equality

and inequalities, one gets the lemma.

Proposition 50 (SDDP Selection function). For every t ∈ [[0, T]], the mapping SSDDP
t is a

selection function in the sense of Definition 41.

Proof. For t = T , for every xT ∈ XT , by construction we have

SSDDP
T (xT) = ψ(xT) = VT (xT).

Thus, SSDDP
T is tight and it is valid as SSDDP

T (xT) = 〈a, · − xT 〉+ψ(xT) is an affine minorant
of the convex function ψ which is exact at xT . Now, fix t ∈ J0, T−1K, a set of basic functions
F t ⊂ FSDDP

t and a trial point xt ∈ Xt. By construction, SSDDP
t is tight as we have

SSDDP
t

(
F t, xt

)
(xt) = 〈a, xt − xt〉+ E

[
BWt+1
t

(
VF t

)
(xt)

]
= Bt

(
VF t

)
(xt) .

Moreover, for every w ∈ supp (Wt+1), aw (see Algorithm 4) is a subgradient of Bwt
(
VF t

)
at

xt. Thus as a is equal to E[aWt+1] it is a subgradient of Bt

(
VF t

)
at xt. Hence, the mapping

SSDDP
t is valid.

4.4.3 U-upper approximations

We have seen in Lemma 49, that in order to construct a selection function for Bt, it suffices
to construct a selection function for each pointwise Bellman operator Bwt . In order to do so,
for upper approximations we exploit the min-additivity of the pointwise Bellman operators
Bwt . That is, given a set of functions F , we use the following decomposition

∀t ∈ [[0, T−1]],∀x ∈ X,∀w ∈ supp (Wt+1) , Bwt
(

inf
φ∈F

φ

)
(x) = inf

φ∈F
Bwt (φ) (x) .

This is a decomposition of the computation of Bwt
(
VF
)

which is possible for upper approxima-
tions but not for lower approximations as for minimization problems, the Bellman operators
(average or pointwise) are min-plus linear but generally not max-plus linear.

However, in linear-polyhedral MSP, the value functions are polyhedral. Approximating
from above value function Vt by infima of convex quadratics is not suited: in particular, one
cannot ensure validity of a quadratic at a kink of the polyhedral function Vt. Still, we present
a selection function which is tight but not valid. In the numerical experiment of Figure 4.2,
we illustrate that the selection function defined below might not be valid, but the error is
still reasonable. Yet, this will motivate the use of other basic functions more suited to the
linear-polyhedral framework, as done in §4.4.4.

We consider basic functions that are U -shaped, i.e. of the form c
2‖x − a‖

2 + b for some
constant c > 0, vector a and scalar b. We call such function a c-function. We now fix a

sequence of constants (ct)t∈[[0,T]] such that ct > LVt . For every time t ∈ [[0, T]], we define the
set of basic functions

F
U
t =

{ct
2
‖x− a‖2 + b+ δXt

∣∣ (a, b) ∈ X×R
}
.

At time t = T , we select the cT -quadratic mapping which is equal to ψ at point x ∈ XT and has

same (sub)gradient at x, i.e. S
U
T (x) = cT

2 ‖·−a‖
2 + b where a = x− 1

cλ and b = ψ(x)− 1
2c‖λ‖

2

with λ being a subgradient of ψ at x.

The mapping S
U
t defined in Algorithm 5 is tight but not necessarily valid, see an illustra-

tion in Figure 4.2. As with SDDP, in order to build a tight selection function at t < T for
Bt we first compute a tight selection function for each Bwt , w ∈ supp (Wt+1), which can be
done numerically by quadratic programming.

Algorithm 5 U Selection function S
U
t for t < T

Input: A set of LVt-Lipschitz continuous U -shaped functions F t+1 ⊂ F
U
t+1 and a trial point

xt ∈ Xt.

Output: A tight basic function φt ∈ F
U
t .

for w ∈ supp (Wt+1) do

Solve by quadratic programming vw := Bwt
(
VF t+1

)
(x) = infφ∈F t+1

Bwt
(
φ
)

(x) and com-

pute aw = x − 1
cλ and bw = vw − 1

2c‖λ‖
2 with λ being a subgradient of Bwt

(
VF t+1

)
at

x.
end for
Set φ := ct

2 ‖· − a‖
2 + b+ δXt where a := E[aWt+1] and b = E[ct2 ‖· − a‖

2 + bWt+1].

4.4.4 V -upper approximations

We have seen in §4.4.3 that U -shaped basic functions may not be suited to approximate
polyhedral functions. In [PdF13], upper approximations which were polyhedral as well were
introduced. In this section we propose upper approximations of Vt as infima of V -shaped
functions. Even though when Vt is polyhedral the approach of [PdF13] seems the most natural,
their approximations cannot be easily expressed as a pointwise infima of basic functions.

In future works we will add a max-plus/min-plus projection step to TDP in order to
broaden the possibilities of converging approximations available to the decision maker. In
particular, polyhedral upper approximations as in [PdF13] will be covered.

In this section, by introducing a new tight and valid selection function, we would like to
emphasize on the flexibility already available to the decision maker by adopting the framework
of TDP.

We consider V -shaped functions, i.e. functions of the form L‖x−a‖1 +b with a ∈ X = Rn
and b ∈ R and a constant L > 0. We define for every time step t ∈ [[0, T]], the set of basic
functions

F
V
t :=

{LVt√
n
‖ · −a‖1 + b

∣∣∣ (a, b) ∈ X×R
}
.

At time t = T , we compute a V -shaped function at ψ(x), i.e. given a trial point x ∈ XT ,

using the expression S
V
T (x) =

LVT√
n
‖·−x‖1+ψ(x). For time t ∈ J0, T−1K, the selection function

Figure 4.2: U-SDDP approximations of the value functions. In the bottom right, the U -
shaped basic functions might not be valid when the trial point is associated with a kink
of value function. Still, we observe that the gap between upper and lower approximations
vanishes along the problem-child trajectory (in dashed lines).

is given in Algorithm 6. The main difference with the previous cases treated in §4.4.2 and
in §4.4.3 is that V -shaped functions are not stable by averaging as the average of several
V -shaped functions is a polyhedral function.

Algorithm 6 V Selection function S
V
t for t < T

Input: A set of LVt-Lipschitz continuous V-shaped functions F t+1 ⊂ F
V
t+1 and a trial point

xt ∈ Xt.

Output: A tight and valid basic function φt ∈ F
V
t .

Solve by linear programming b := Bt

(
VF t+1

)
(xt).

Set φt :=
LVt√
n
‖· − xt‖+ b.

Proposition 51 (V Selection function). For every t ∈ [[0, T]], the mapping S
V
t described in

Algorithm 6 is a selection function in the sense of Definition 41.

Proof. At time t = T , for every xT ∈ XT , we have S
V
T (xT) =

LVT√
n
‖· − xT ‖1 + ψ(xT).

Thus, S
V
T (xT)(xT) = ψ(xT) and S

V
T is a tight mapping. As the polyhedral function ψ(x) =

maxi∈IT 〈ciT , x〉 + diT + δXT is LVT -Lipschitz continuous, by Cauchy-Schwarz inequality, for
every x ∈ XT and i ∈ IT , we have

〈ciT , x− xT 〉 ≤ ‖ciT ‖2‖x− xT ‖2 ≤ LVT
1√
n
‖x− xT ‖1.

Adding 〈ciT , xT 〉+diT on both sides of the last inequality and taking the maximum over i ∈ IT
we have that

ψ(x) = max
i∈IT
〈ciT , x〉+ diT ≤ LVT

1√
n
‖x− xT ‖1 + ψ(xT) = S

V
T (xT)(x),

which gives that S
V
T is a valid mapping.

Now, fix t < T , we show that the mapping S
V
t is tight and valid as well. By construction,

for every set of basic functions F t+1 ⊂ F
U
t+1 and trial point xt ∈ Xt, we have

S
V
t (F t+1, xt)(xt) = b = Bt

(
VF t+1

)
(xt) .

Hence, S
V
t is a tight mapping.

We check that S
V
t is a valid mapping. First, as each basic function φ ∈ F t+1 is LVt+1-

Lipschitz continuous on Xt, we show that VF t+1
is LVt+1-Lipschitz continuous on Xt as well.

Given x1, x2 ∈ Xt, we have

|VF t+1
(x1)− VF t+1

(x2)| = | inf
φ∈F t+1

φ(x1)− inf
φ∈F t+1

φ(x2)|

≤ sup
φ∈F t+1

|φ(x1)− φ(x2)|

≤ LVt‖x1 − x2‖.

Figure 4.3: V-SDDP approximations of the value functions. As the selection function SV
t

does not average other basic functions to compute a new one (compare with SU
t or SSDDP

t),
we lose the regularizing effect of averaging: the upper basic functions added are very sharp.
We still observe that the gap between upper and lower approximations vanishes along the
problem-child trajectory (in dashed lines).

As the Bellman operator Bt is Lipschitz regular in the sense of Proposition 38, Bt

(
VF t+1

)
is LVt-Lipschitz continuous.

Second, by min-additivity of the Bellman operator Bt, we have that

Bt

(
VF t+1

)
(x) = Bt

(
inf

φ∈F t+1

φ

)
(x) = inf

φ∈F t+1

Bt (φ) (x) .

Recall that by Lemma 48, the Bellman operator Bt preserves polyhedrality. As φ ∈ F t+1 is
polyhedral, Bt (φ) is polyhedral as well and as in the case t = T , mutatis mutandis we have

that S
V
t is valid.

Conclusion

• TDP generates simultaneously monotonic approximations (V k
t)k and (V

k
t)k of Vt.

• Each approximation is either a min-plus or max-plus linear combinations of basic func-
tions.

• Each basic function should be tight and valid.

• The approximations are refined iteratively along the Problem-child trajectory without
discretizing the state space.

• The gap between upper and lower approximation vanishes along the Problem-child tra-
jectory.

• TDP generalizes a similar approach done in [PdF13] and proved by [BDZ18] for a variant
of SDDP in convex MSPs.

Perpectives

• Consider an additional min-plus/max-plus projection step of suprema/infima of basic
functions.

• Extensive numerical comparisons with existing methods, namely classical SDDP and
the upper approximations obtained by Fenchel duality of [LCC+18].

• Extend the scope of TDP to encompass Partially Observed Markov Decision Processes.

A comparison Lemma: Let ψ : X→ R be given and consider the set Ut[ψ, x] : Wt+1 ⇒ U
such that Ut[ψ, x](w) = arg minu∈U

(
cwt (x, u) + ψ

(
fwt (x, u)

))
. Now, given φ and φ′ such that

φ ≤ φ′ we obtain that forall x ∈ X and

Bt

(
φ′
)

(x)−Bt (φ) (x) = E
[
BWt+1
t

(
φ′
)

(x)
]
− E

[
BWt+1
t (φ) (x)

]
= E

[
min
u∈U

(
c
Wt+1
t (x, u) + φ′

(
f
Wt+1
t (x, u)

))]
− E

[
min
u∈U

(
c
Wt+1
t (x, u) + φ

(
f
Wt+1
t (x, u)

))]
≤ E

[
c
Wt+1
t (x, u

Wt+1
t) + φ′

(
f
Wt+1
t (x, u

Wt+1
t)

)]
− E

[
c
Wt+1
t (x, u

Wt+1
t) + φ

(
f
Wt+1
t (x, u

Wt+1
t)

)]
∀uWt+1

t ∈ Ut[φ, x](Wt+1)

as we have for all uwt ∈ Ut[φ, x](w) that minu∈U

(
cwt (x, u) + φ

(
fwt (x, u)

))
= cwt (x, uwt) +

φ
(
fwt (x, uwt)

)
and minu∈U

(
cwt (x, u) + φ′

(
fwt (x, u)

))
≤ cwt (x, uwt) + φ′

(
fwt (x, uwt)

)
≤ E

[
φ′
(
f
Wt+1
t (x, u

Wt+1
t)

)
− φ

(
f
Wt+1
t (x, u

Wt+1
t)

)]
≤ φ′

(
fw
∗

t (x, uw
∗

t)
)
− φ

(
fw
∗

t (x, uw
∗

t)
)

where w∗ ∈ arg maxw φ
′(fwt (x, uwt)

)
− φ

(
fwt (x, uwt)

)
.

Part III

Entropic regularization of the
Nested Distance

Chapter 5

Entropic regularization of the
Nested Distance

Contents

5.1 Introduction: from the Wasserstein distance to the Nested Dis-
tance . 94

5.2 The Nested Distance and its entropic regularization 97

5.2.1 Dynamic computation of the Nested Distance 97

5.2.2 Entropic regularization of optimal transport problems 97

5.2.3 Entropic regularization of the Nested Distance 99

5.3 Numerical experiment . 101

5.4 Proof of Theorem 58 . 101

5.1 Introduction: from the Wasserstein distance to the Nested
Distance

In Multistage Stochastic Programming (MSP), Georg Pflug introduced in 2009 [Pfl09] the
Nested Distance, which is a refinement of the Wasserstein distance to account for proximity
in the filtrations between two discrete time stochastic processes. Following usual denomination
in the Stochastic Programming community (see [HR09, PP14, SDR09]), we denote by scenario
tree a discrete time stochastic process which is also discrete and finite in space.

There are many different distances between scenario trees however few are suited for MSP
purposes: one would like to guarantee continuity of the value function of a MSP with respect
to scenario trees, i.e. if two scenario trees are arbitrarily close to each other, then the value
of the associated MSP (with the same structure except for the scenario trees) can be made
arbitrarily close as well.

One possible distance between scenario tree is the so-called Wasserstein distance. Intu-
itively, the Wasserstein distance between two probabilities p and q (for scenario tree (Xt)t∈[[1,T]],
consider the probability law of the tuple (X1, . . . , XT)) corresponds to the optimal cost of
splitting and transporting the mass from one to the other. We write 1k, k ∈ N, for the vector
of Rk made of ones.

Definition 52 (Discrete optimal transport and Wasserstein distances). Let n,m be two in-
tegers and X = {x1, x2, . . . , xn} and Y = {y1, . . . , ym} be two finite sets included in Rt for a
real t ≥ 1. Denote by c = (cij)i,j a n ×m positive matrix called cost matrix. The optimal
transport cost between two probability measures p and q on respectively X and Y, is the value
of the following optimization problem

OT(p, q; c) = min
π∈Rn×m+

∑
1≤i≤n
1≤j≤m

cijπij s.t. π1m = p and πT1n = q. (5.1)

Moreover, defining the cost function by c(xi, yj) = cij for every indexes i, j, Problem (5.1)
can be written using probabilistic vocabulary as

OT(p, q; c) = min
(X,Y) s.t.
X∼p
Y∼q

E(X,Y)[c(X,Y)], (5.2)

where the notation X ∼ p (resp. Y ∼ q) means that the probability law of the random variable
X ∈ X (resp. Y ∈ Y) is equal to p (resp. q) and the notation E(X,Y) is the expectation under
the probability law of the couple of random variables (X,Y).

Lastly, when for some real r ≥ 1, the cost function c is equal to dr with d a metric on
X×Y, then OT(p, q; dr)1/r is the r-th Wasserstein distance between p and q, denoted Wr(p, q).

We refer to the textbooks [PC19, Vil09] for a presentation and references on optimal
transport.

In two stage multistage optimization problems, under some regularity assumptions, the
value function of a bilevel MSP is Lipschitz continuous with respect to the Wasserstein dis-
tances, see [PP14, Chapter 6]. However the value function of MSP with more than two stages
is not continuous with respect to the Wasserstein distances, as seen in Example 4, where we
show that for a three stages MSP, two scenario trees can be arbitrarily close to each other in
the 1-Wasserstein metric but the gap in value of the associated MSP is arbitrarily large.

Example 4 (The Wasserstein distance is not suited for MSP). In this example we illustrate
that the 1-Wasserstein is not a relevant metric to evaluate distance between scenario trees
involved in a MSP: an arbitrary small Wasserstein distance between two scenario trees may
yield an arbitrary large gap in values of the same MSP.

Given a scenario tree Z (see Definition 53 for a formal definition) with natural filtration
(Ft)t∈[[0,2]]

1, we want to buy a single object at the minimal average cost

v(Z) = min
u

E

[
2∑
t=0

Ztut

]
|

ut ∈ {0, 1} ,
ut is Ft -measurable,∑T

t=0 ut = 1,

 .

Fix A� ε > 0, in Figure 5.1 are two scenario tree modeling the price of an object during
3 time steps. Their natural filtrations are different. Intuitively, on the left scenario tree, the
decision maker observes an ε variation of the price at t = 1 and knows that it will yield an
explosion (upward or downward) of the price at t = 2. Whereas on the right scenario tree,
the decision maker does not recognize such information at time t = 1. Example inspired from
[HRS06].

A

A+ ε

A− ε

2A

0

0.5

0.5

1

1

A A

2A

0

1

0.
5

0.5

Figure 5.1: Left: scenario tree X = (X0, X1, X2). Right: scenario tree Y = (Y0, Y1, Y2).

On the one hand we have proximity in the 1-Wasserstein metric W as

W(X,Y) = 2ε.

On the other hand, the optimal values are v(X) = A+ε
2 and v(Y) = A. Thus, we have an

arbitrarily large gap in values

|v(X)− v(Y)| = A− ε
2

→
A→+∞

+∞.

In 2012, Pflug and Pichler proved in [PP12] that the Nested Distance previously intro-
duced by Pflug [Pfl09], is the correct adaptation of the Wasserstein distance for multistage
stochastic programming: under regularity assumptions, the value function of MSPs is Lip-
schitz continuous with respect to the Nested Distance between scenario trees. Since then,
it has been used as a a pruning tool to obtain reduced trees with a certain guaranty of the
quality of the approximation. The Nested Distance both quantifies the quality of an approx-
imating tree and the associated optimal transport plan also allows for reduction of scenario
trees, see for example [KP15, HVKM20].

1For every t ∈ [[0, 2]], Ft = σ(Z0, . . . , Zt).

Figure 5.2: Two scenario trees X and Y with a continuous probability approximation of
the histogram the leaves. Their Nested Distance is ND2(X,Y) = 1.009 and its entropic
regularization is END2(X,Y) = 1.011, see Section 5.3. The trees were generated using the
ScenTrees.jl package [KPP20].

Without additional structure (like independence) of the scenario tree, the Nested Distance
is usually computed via a backward recursive algorithm (introduced in [PP12], see also [PS19,
Definition 15]) which amounts to solve an exponential number (in T) number of optimal trans-
portation problems. It decomposes over time the computation of the Nested Distance as the
dynamic computation of a finite number of optimal transport problems between conditional
probabilities with costs updated backward.

Optimal transport between discrete probabilities of size n can be solved by the Hungarian
algorithm with complexity O(n3) (see [EK72]) or with the auction algorithm with complexity
roughly O(n3 log n), see [BC89].

By adding an entropic term to the primal of the optimal transport problem associated
with the computation of a Wasserstein cost, an alternating projection scheme yield Sinkhorn’s
algorithm, introduced in Optimal Transport in [Cut13] to compute Wasserstein distances.
By carefully selecting the entropic regularization term, Sinkhorn’s algorithm computes an
ε-overestimation of the Wasserstein distance in O(n2 log(n)ε−3) operations.

Relaxing each optimal transport problem involved in the recursive computation of the
Nested Distance, we end up with an entropic regularization of the Nested Distance.

The remainder of the chapter is organized as follows

• In Section 5.2, we first formally define the Nested Distance as the value of a dynamic
system of optimal transport problems between conditional probabilites and varying
costs. Then, we present an entropic regularization of the discrete optimal transport
Problem (5.1) and how this relaxed OT problem can be solved efficiently by Sinkhorn’s
algorithm. Lastly, we define a natural entropic regularization of the Nested Distance by
relaxing each OT problem involved in its dynamic formulation.

• In Section 5.3, we end this chapter with a numerical experiment showing both the
speedup of our approach to compute Nested Distances and also its relative preciseness.

5.2 The Nested Distance and its entropic regularization

5.2.1 Dynamic computation of the Nested Distance

Throughout the remainder of the chapter, we fix an integer T > 1 and we consider that the
set of reals R is endowed with its usual distance and borelian structure. Moreover, for every
t ∈ [[1, T]], Rt = R× · · · × R is seen as a filtered space endowed with its cylinder σ-algebra.

Definition 53 (Scenario tree). Let (Xt)t∈[[1,T]] be a discrete time stochastic process defined
on some probability space. The stochastic process (Xt)t∈[[1,T]] is a scenario tree if it is also
finite and discrete in space, i.e. for every time indexes 1 ≤ s ≤ t ≤ T , the support Xs:t of
Xs:t = (Xs, . . . , Xt) defined by

Xs:t :=
{
xs:t = (xs, . . . , xt) ∈ Rt−s | P(Xs = xs, . . . , Xt = xt) > 0

}
is non-empty, finite and

∑
xs:t∈Xs:t P(Xs = xs, . . . , Xt = xt) = 1.

Following [PS19], we define the Nested Distance between scenario trees as the value of a re-
cursive computation of optimal transportation between conditional probabilities with updated
costs. Given two scenario trees X = (Xt)t∈[[1,T]] and Y = (Yt)t∈[[1,T]], for every s, t ∈ [[1, T]],
we define the tuple of random variable variables Xs:t = (Xs, . . . Xt) and Ys:t = (Ys, . . . , Yt).
Denote by xs:t and ys:t any element of their support Xs:t and Ys:t (see Definition 53). Lastly,
for every t ∈ [[1, T]], denote by Pt and P̃t the probability laws of X1:t = (X1, . . . , Xt) and
Y1:t = (Y1, . . . , Yt), respectively.

Definition 54 (Nested Distance between scenario trees). Let X and Y be two scenario trees.
Given r ≥ 1, and the metric d(x, y) = ‖x−y‖r on RT , for every t ∈ [[1, T]], compute recursively
backward in time functions ct : X1:T × Y1:T → R by

cT (x1:T , y1:T) = d(x1:T , y1:T), ∀(x1:T , y1:T) ∈ X1:T × Y1:T ,

ct(x1:T , y1:T) = OT(Pt+1(· | X1:t = x1:t), P̃t+1(· | Y1:t = y1:t); c
r
t+1)1/r,

∀t ∈ [[1, T − 1]], ∀(x1:T , y1:T) ∈ X1:T × Y1:T .

(5.3)

Set NDr(X,Y) := OT(PT , P̃T , c
r
1)1/r, it is the r-Nested Distance between the scenario trees

X and Y .

Although for every t ∈ [[1, T]] the domain of ct is X1:T × Y1:T , only the process up to
t matters i.e. for every x1:T , x

′
1:T ∈ X1:T and y1:T , y

′
1:T ∈ Y1:T such that x1:t = x′1:t and

y1:t = y′1:t we have ct(x1:T , y1:T) = ct(x
′
1:T , y

′
1:T). It follows from [PS19, Proposition 20] and

[PP12, Theorem 19] that the Nested Distances NDr introduced in Definition 54, are distances
on the space of scenario trees.

Remark 55. Solving Problem (5.3) amounts to solving an exponential (in T) number of
Linear optimization Problems where the dimension of the variable to optimize is bounded by
n ·m where n (resp. m) is maxt∈[[1:T−1]]|Xt:t+1| (resp. maxt∈[[1:T−1]]|(Yt:t+1)|).

5.2.2 Entropic regularization of optimal transport problems

We will relax the OT Problem 5.1 by adding an entropy term to the objective function. The
Shannon entropy or simply entropy of a random variable Z with values in a finite subset Z

of cardinal k ∈ N in Rt, t ≥ 1 and probability vector (p1; . . . ; pk) ∈ (R∗+)k is defined as

H(Z) = E[− logZ] = −
k∑
i=1

pi log(zi).

By adding an entropy regularization term to the objective of an optimal transport Problem 5.2
(using the probabilistic notations), the linear objective function of a discrete OT problem
becomes strongly convex, hence damping the combinatorial aspects of OT.

Definition 56 (Regularized Optimal Transport). With the notations of Definition 52, for ev-
ery real γ > 0 we define the following regularized optimal transport plan between probabilities
p ∈ Rn and q ∈ Rm with cost matrix c ∈ Rn×m

πγ(p, q; c) = arg min
(X,Y)s.t.
X∼p
Y∼q

E[c(X,Y)− γH(L(X,Y))], (5.4)

where L(X,Y) is the probability law of the couple (X,Y) of random variables. Then, the
associated value is the regularized optimal transport OTγ between p and q

OTγ(p, q; c) =
∑

1≤i≤n
1≤j≤m

cij(πγ)ij . (5.5)

Remark 57. Note that as the regularized optimal transport plan piγ also satisfies the con-
straints of the (unregeralized) optimal transport problem, we have for every γ > 0 that
OT(p, q; c) ≤ OTγ(p, q; c). Moreover when γ tends to 0, one recover the optimal transport
value, i.e.

OTγ(p, q; c) −→
γ→0

OT(p, q; c).

Given an integer t ≥ 1, let p and q be two probabilities on Rt with respective finite support
of size n ∈ N and m ∈ N. We say that a n×m matrix π is a transport plan between p and q
if it is admissible in Problem (5.1), i.e. π satisfies the mass conservation constraints:

π1m = p and πT1n = q. (5.6)

The set of transport plans between p and q is denoted by P(p, q).

We now present Sinkhorn’s algorithm and prove its convergence. This algorithm was
(re)discovered by Cuturi in [Cut13] who used it to solve the regularized optimization Prob-
lem (5.4). Proofs of the different following statements can be found in [Cut13] and [PC19,
Chapter 4], see also Appendix 5.4 for a sketch of proof with detailed references.

Theorem 58 (Sinkhorn’s algorithm and its convergence). Fix γ > 0, an integer t ≥ 1 and
let p and q be two probabilities on Rt with respective finite support of size n ∈ N and m ∈ N.
The following assertions are true:

• Existence and uniqueness of an optimal transport plan π∗. There exists a unique trans-
port plan π∗ which minimizes the regularized optimal transport Problem (5.4) with cost
matrix c = (cij)i,j ∈ Rn×m.

• The optimal transport plan is a rescaling of the Gibbs kernel G. There exists two
positive vectors u∗ ∈ (R∗+)n, v∗ ∈ (R∗+)m such that

π∗ = diag(u∗)Gdiag(v∗),

where G is the Gibbs kernel defined by Gij = exp(− cij
γ).

• Alternatively rescaling the lines and columns (Sinkhorn’s algorithm) of G converges
to π∗. Alternatively rescaling the lines and columns of G in order to satisfy the mass
conservation constraints of Equation (5.6) converges to the optimal transport plan π∗.
More precisely, iterates (uk, vk) ∈ (R∗+)n× (R∗+)m, k ∈ N, defined by u0 = 1n, v0 = 1m,
and {

uk+1 = 1n ./(Gvk) (where ./ is the entrywise division)

vk+1 = 1m ./(Guk+1),
(5.7)

converge to the optimal scaling vectors u∗ and v∗.

• Sinkhorn’s algorithm converges linearly to π∗. The Gibbs kernel is a positive matrix
and thus is contractant w.r.t. the Hilbert projective metric on the cone of positive vec-
tors. As a consequence, the convergence of Sinkhorn’s iterates (uk, vk)k∈N defined in
Equation (5.7) converge linearly to the optimal scaling vectors (u∗, v∗).

• Overall complexity. For every ε > 0, considering for simplicity n = m, setting γ =
4 log(n)

ε , Sinkhorn’s algorithm computes π∗ ∈ P(p, q) in O(n2 log(n)ε−3) operations which
satisfies ∑

ij

π∗ijcij ≤ OT(p, q; c) + ε.

Remark 59. The Sinkhorn updates can be interpreted as alternatively projecting the n ×m
matrix πk = diag(uk)Gdiag(vk) to the affine sets A1 :=

{
π ∈ Rn×m+ | π1m = p

}
and A2 :={

π ∈ Rn×m+ | πT1n = q
}

. The projections are to be understood in Bregman’s sense: π2k =
arg minπ∈A1

KL(π‖π2k−1) and π2k+1 = arg minπ∈A2
KL(π‖π2k) where KL is a renormalization

of the usual Kullback-Leibler divergence. We refer to [BCC+15, PC19] for details on this
interpretation.

We comment on the optimal transport plan associated with the relaxed OT Problem (5.4).
When the regularization parameter γ is large, then the optimal transport plan is very diffuse:
in the left part of Figure 5.3, this means that the mass of each red dot is spread along
many different blue dots. The closer the regularization parameter γ gets to 0, then the
combinatorial aspect of discrete OT appears gradually: each red dot is spread along few
different blue dots. This is expected, as if there were the same number of blue and red
dots in Figure 5.3, then the OT problem is an assignment problem. Informally, the entropic
regularization of Equation (5.4) dampens the combinatorial aspects of the optimal transport
problem of Equation (5.1).

5.2.3 Entropic regularization of the Nested Distance

We have seen in §5.2.2 how to compute efficient upper bound OTγ of the discrete optimal
transport problem OT. Hence, by replacing optimal transport problems by their relaxed

Figure 5.3: Left: γ = 0.008. Middle: γ = 0.005. Right: γ = 0.003. Effect of the regularization
parameter on the optimal transport plan of the relaxed OT Problem (5.4), between the red
cloud and the blue cloud. In all cases, a continuous edge (resp. dashed line) exists if more
than 30 percent (resp. 20 percent) of the red dot mass is moved to the associated blue one.

counterpart in the dynamic computation of the Nested Distance in Equation (5.3), we have
an entropic regularization of the Nested Distance noted END.

Note that a regularizing parameter γ > 0 must be chosen for each optimal transport
problem in Equation (5.3). On the one hand, one would like to put γ as small as possible
in order to have the best approximation of the unregularized OT problem. On the other
hand, as seen in Theorem 58, the optimal transport plan of the regularized OT problem OTγ

is a rescaling of the Gibbs kernel (Gij) = exp(− cij
γ) and the Sinkhorn iterates involve this

kernel as well. When γ is too close to 0, Sinkhorn’s algorithm shows numerical instabilities.
So we refrain from using a single regularizing parameter for every OT problem involved in
Equation (5.3). We simply put one that seems big enough to avoid numerical issues, namely
we set γ =

maxij cij
100 , which changes as the cost matrix is updated. Hence the regularizing

parameters do not explicitly appear in the notation END of the Entropic regularization of
the Nested Distance. For every time t ∈ [[1 : T − 1]] and every node x1:t ∈ X1:t, we define its
set of children x+

1:t := {x̃1:t+1 ∈ X1:t+1 | x̃1:t = x1:t}.

Definition 60 (Entropic regularization of Nested Distance between scenario trees). Let X
and Y be two scenario trees. Given r ≥ 1, and the metric d(x, y) = ‖x − y‖r over RT , for
every t ∈ [[1, T]], compute recursively backward in time functions ct : X1:t × Y1:t → R by

cT (x1:T , y1:T) = d(x1:T , y1:T), ∀(x1:T , y1:T) ∈ X1:T × Y1:T ,

ct(x1:t, y1:t) = OTγ(Pt+1(· | X1:t = x1:t), P̃t+1(· | Y1:t = y1:t); c
r
t+1)1/r,

∀t ∈ [[1, T − 1]], ∀(x1:t, y1:t) ∈ X1:t × Y1:t, γ = max
x1:t+1∈x+1:t
y1:t+1∈y+1:t

crt+1(x1:t+1, y1:t+1)/100.
(5.8)

Set ENDr(X,Y) := OTγ(PT , P̃T , c
r
1)1/r, with γ = maxx1:1∈X1:1

y1:1∈Y1:1

crt+1(x1:1, y1:1)/100, it is the

Entropic regularization of the r-Nested Distance between the scenario trees X and Y .

Note that by Remark 59, for every r ≥ 1 and scenario trees X and Y ,

NDr(X,Y) ≤ ENDr(X,Y).

Horizon T Time ND2 (s) Time END2 (s) Speedup Relative error (%)

2 < 10−3 < 10−4 6.20 3.30

4 0.035 0.0093 6.78 0.93

6 1.71 0.44 4.20 0.66

8 76.64 16.07 4.64 0.15

10 2328.34 550.93 4.03 0.048

Table 5.1: Average results after 10 runs. A Jupyter notebook in Julia 1.4.2 of this experiment
is available at https://github.com/BenoitTran/END.

Hence, even though ENDr is not a distance between scenario trees, it still quantifies proximity
between scenario trees and maintains the main desirable feature of the Nested Distance:
denoting by v the value of a MSP satisfying the regularity assumptions of [PP12, Theorem
11], there exists a constant L > 0 such that for every scenario trees X and Y we have

|v(X)− v(Y)| ≤ L ·NDr(X,Y) ≤ L · ENDr(X,Y).

5.3 Numerical experiment

We compare an implementation of the Nested Distance and an implementation of its
regularized counterpart.

First, we randomly generate a scenario tree of given depth T by a forward procedure.
Starting from a root note, at each time step draw a uniformly random number of children
between 1 and 5. Every node at time t has the given number of children whose values are
random as well. The tree generation is done using the Julia package ScenTrees.jl, see [KPP20].
The discrete optimal transport problems are solved using Gurobi (simplex method) instead
of an implementation of the Hungarian or auction algorithm.

We compute the Nested Distance and the Entropic regularization of the Nested Distance
for pairs of tree generated as above. In Figure 5.1 we give the average of 10 pairs of compar-
isons for a given horizon T .

In Figure 5.1 the column ”Relative error” represents the ratio END2−ND2
END2

. The results of
Figure 5.1 show that, even without carefully tuning the regularizing parameter γ involved
in each intermediate optimal transport problem, the Entropic regularization of the Nested
Distance gives values that are close to its unregularized counterpart. The speedup (ratio
between the running time of ND2 over END2) is interesting but needs to be compared with
an implementation of the Hungarian algorithm or the auction algorithm for optimal transport
purposes.

5.4 Proof of Theorem 58

Sketch of proof of Theorem 58. Fix γ > 0, an integer t ≥ 1 and let p and q be two prob-
abilities on Rt with respective finite support of size n ∈ N and m ∈ N. The objective of
Problem (5.1) is strongly convex and the constraints are affine. As the marginal product p⊗q
satisfies the mass conservation constraints of Equation 5.6, it is admissible for Problem (5.4).
Thus, there exists a unique minimizer π∗ ∈ Rn×m to Problem (5.4).

https://github.com/BenoitTran/END

We now compute the minimizer π∗ ∈ Rn×m of Problem (5.4). For every α ∈ Rn and
β ∈ Rm, the Lagrangian of Problem (5.1) is

L(π;α, β) =
∑

1≤i≤n
1≤j≤m

πij(cij + γ log(πij)) + 〈α, π1m − p〉+ 〈β, πT1n − q〉.

The first order necessary condition of optimality

∀(i, j) ∈ [[1, n]]× [[1,m]],
∂L
∂πij

(π∗;α∗, β∗) = 0,

is equivalent to for every (i, j) ∈ [[1, n]]× [[1,m]],

πij = exp(−1

2
− α∗i

γ
) exp(−cij

γ
) exp(−1

2
−
β∗j
γ

).

This implies that solutions of Problem (5.1) π∗ are of the form

π∗ = diag(u∗)Gdiag(v∗),

where the Gibbs kernel G ∈ Rn×m is a positive matrix Gij = exp(− cij
γ) and the vectors u∗ =

(exp(−1
2 −

α∗i
γ))1≤i≤n ∈ (R∗+)n, v∗ = (exp(−1

2 −
β∗j
γ))1≤j≤m ∈ (R∗+)m are positive. Moreover,

π∗ has to satisfy the mass constraints of Equation (5.6), i.e. its row sums and column sums are
prescribed. Hence, by Sinkhorn’s Theorem [Sin67], π∗ is unique and the Sinkhorn’s algorithm
which starts from u0 = 1n and v0 = 1m and updates{

uk+1 = 1n ./(Gvk) (where ./ is the entrywise division)

vk+1 = 1m ./(Guk+1),

converges to the optimal scaling vectors u∗ and v∗.
Now, from [Bir57], the positive matrix G maps the convex cone of positive vectors into

itself. Exploiting this fact, the linear convergence of Sinkhorn’s algorithm was established in
[FL89].

The overall complexity of Sinkhorn’s algorithm was proved in [ANR17].

Part IV

Interchange between integration
and minimization

Chapter 6

Interchange between integration
and minimization

Contents

6.1 Introduction . 106

6.2 Minimization interchange theorem on posets 107

6.2.1 Main result . 107

6.2.2 A sufficient condition for Φ-directed sets 109

6.3 Interchange between minimization and integration 110

6.3.1 Main result with integrals . 111

6.3.2 Corollaries . 112

6.3.3 Proofs of Theorem 65 and Theorem 66 113

6.3.4 Comparison with the literature . 114

6.3.5 Interchange between minimization and Choquet’s integral 116

6.4 Conclusion and perspectives . 117

6.5 Extended Lebesgue and outer integrals 117

6.5.1 Functional space L0(Ω,F, µ;R) and the Lebesgue integral 118

6.5.2 Functional spaces L1
⊕(Ω,F, µ;R), L1

	(Ω,F, µ;R) and the extended
Lebesgue integral . 119

6.5.3 Outer integral on L0(Ω,F, µ;R) . 122

6.1 Introduction

The question of interchanging integration and minimization is an important issue in stochastic
optimization (where integration corresponds to mathematical expectation). Loosely stated,

given a measured space
(
Ω,F , µ

)
and a subset X ⊂ RΩ

of functions, we wonder when does
the following equality hold

inf
x∈X

∫
Ω
x dµ =

∫
Ω

inf
x∈X

x dµ . (6.1)

Mathematical framework and conditions to get Equation (6.1) can be found in [BG01, EKT13,
Gin09, RW09, SDR09]. We focus on [Gin09] and [RW09].

To begin with, in Equation (6.1) one needs to clarify in which sense the integral
∫

is to
be understood and in which sense the infima infX∈X x or infx∈X

∫
x dµ are defined. Then,

when the subset X, over which minimization is performed, is a subset of L1(Ω,F, µ;R) and
when the integral

∫
is the usual Lebesgue integral, Giner obtained in [Gin09] a necessary

and sufficient condition for (6.1) as follows. In this case, the space L1(Ω,F, µ;R) is endowed
with the usual µ-pointwise order, and the infimum is infx∈X x = ess infx∈X x, which is well-
defined by [Nev70, Proposition II.4.1]. Given a subset X ⊂ L1(Ω,F, µ;R) of functions, Giner
establishes that Equation (6.1) holds true if and only if, for every finite family x1, . . . , xn in
X, we have

inf
x∈X

∫
Ω

(x− inf
1≤i≤n

xi) dµ ≤ 0 .

However, checking the above condition is not an easy task, as it depends jointly on the
integral

∫
and on the subset X. Moreover, one may wonder if we can still have Equation (6.1)

for more general subsets X which are integrable in a weaker sense than Lebesgue integrable?

When a subset of functions X ∈ L0(Ω,F, µ;R) is the image of a set U by a mapping
f : L0(Ω,F, µ;R) → L0(Ω,F, µ;R), i.e. X = f(U), a celebrated theorem of Rockafellar and
Wets ([RW09, Theorem 14.60]) gives a condition on the mapping f and a condition on the
set U so that Equation (6.1) holds. In this case, we deal with minimization over subsets X
of L0(Ω,F, µ;R) and interchange with the outer integral, a generalization of the Lebesgue
integral to L0(Ω,F, µ;R). We study the outer integral and its properties in Appendix 6.5.

The Chapter is organized as follows. Sect. 6.2 is devoted to a minimization interchange
theorem on posets. More precisely, we provide an abstract interchange theorem of the form

∧
x∈X

Φ(x) = Φ
(
∧
x∈X

x
)
. (6.2)

Once assumed conditions on the mapping Φ : X → Y and structural properties of the sets
X, Y, we provide a necessary and sufficient condition so that Equation (6.2) holds true. Our
result is in the lineage of Giner’s, as our necessary and sufficient condition involves both the
mapping Φ and the set X.

Sect. 6.3 then tackles the original question of interchange between minimization and in-
tegration by specifying the results of Section 6.2.

We hope that either our abstract interchange theorem or its application to the extended
Lebesgue integral provide insight as to how one may obtain the interchange between integra-
tion and minimization as in Equation (6.1), and as to how we can go beyond the integral case
(risk measures in stochastic optimization).

6.2 Minimization interchange theorem on posets

In §6.2.1 we present our main result, namely Theorem 63, which provides an abstract in-
terchange result in the form of Equation (6.2) for a mapping Φ : X → Y (generalization of
the integral) between specific posets. We give necessary and sufficient condition on a subset
X ⊂ X, called Φ-inf-directed such that the abstract interchange holds. Then, in §6.2.2 we
a sufficient condition, for the subset X ⊂ X to be Φ-inf-directed, that is more practical to
check.

6.2.1 Main result

Before stating Theorem 63, we provide background on posets and lattices, as well as two new
definitions.

We say that (X,�) is a poset when X is a set and � is a partial order on X, that is, a
reflexive, antisymmetric and transitive binary relation.

Consider a poset (X,�) and a subset X ⊂ X. Any x′ ∈ X such that, for all x ∈ X, we
have that x � x′ is called an upper bound of the set X. If an upper bound x′ ∈ X of the set X
is such that x′ � x′′, for any other upper bound x′′ ∈ X of the set X, then x′ is unique and
is called the least upper bound of the set X. It is denoted by supX or, more explicitly, by
∨x∈X x. In the same way, we define the greatest lower bound inf X or ∧x∈X x. We say that
a poset (X,�) is a sup-semilattice (resp. inf-semilattice), or upper semilattice (resp. lower
semilattice), if every nonempty finite subset of X has a least upper bound (resp. greatest
lower bound). A lattice is both a sup-semilattice and an inf-semilattice.

We say that a poset (X,�) is a complete sup-semilattice (resp. complete inf-semilattice),
or complete upper semilattice (resp. complete lower semilattice), if every nonempty subset
of X has a least upper bound (resp. greatest lower bound). A complete lattice is both a
complete sup-semilattice and a complete inf-semilattice.

We say that a subset X ⊂ X has the countable sup property if ∨x∈X x exists in X and
if there exists a sequence (xn)n∈N in X such that ∨n∈N xn = ∨x∈X x. In the same way, we
define the countable inf property.

Now, we introduce two new notions. The first one is that of sequentially-inf continu-
ity. The name is suggested by the fact that, when a mapping Φ is order preserving and
both sequentially-inf continuous and sequentially-sup continuous as defined here, then it is
sequentially order continuous (denoted as “continuité monotone séquentielle” in [Nev70, p.
37]).

Definition 61. Let (X,�X) and (Y,�Y) be two inf-semilattice (resp. sup-semilattice) and
Φ : X → Y be a mapping. We say that the mapping Φ is sequentially-inf continuous (resp.
sequentially-sup continuous) when, for every nonincreasing (resp. nondecreasing) sequence
(xn)n∈N in X, if ∧n∈N xn exists in X and ∧n∈N Φ(xn) exists in Y (resp. if ∨n∈N xn exists in X
and ∨n∈N Φ(xn) exists in Y), then we have

∧
n∈N

Φ(xn) �Y Φ(∧
n∈N

xn)
(

resp. Φ(∨
n∈N

xn) �Y ∨
n∈N

Φ(xn)
)
. (6.3)

The second notion is that of Φ-inf-directed.

Definition 62. Let (X,�X) be a poset and (Y,�Y) be a complete inf-semilattice (resp. sup-
semilattice) and Φ : X → Y be a mapping. Let X ⊂ X be a subset of X. We say that the

subset X is Φ-inf-directed (resp. X is Φ-sup-directed) if, for every finite subset X̃ ⊂ X, we
have that

∧
x∈X

Φ(x) �Y Φ(∧
x∈X̃

x)
(

resp. Φ(∨
x∈X̃

x) �Y ∨
x∈X

Φ(x)
)
. (6.4)

With these two definitions, we can now state our main theorem.

Theorem 63 (Minimization Interchange Theorem). Let (X,�X) be a poset and (Y,�Y) be a
complete inf-semilattice. Let X ⊂ X be a subset of X, X̃ ⊂ X be an inf-semilattice such that
X ⊂ X̃ ⊂ X, and Φ : X→ Y be a mapping such that

1. the mapping Φ is order preserving, i.e. for every x, x′ ∈ X,

x �X x
′ ⇒ Φ(x) �Y Φ(x′) , (6.5)

2. the mapping Φ is sequentially-inf continuous, when restricted to the inf-semilattice X̃
(see Definition 61),

3. the subset X has the countable inf property, i.e. ∧x∈X x exists in X and there exists a
sequence (xn)n∈N in X such that

∧
n∈N

xn = ∧
x∈X

x . (6.6)

Then, we have the interchange formula

∧
x∈X

Φ(x) = Φ
(
∧
x∈X

x
)

(6.7)

if and only if the subset X is Φ-inf-directed (as in Definition 62).

Proof. Let Φ : X→ Y and X ⊂ X be given satisfying Assumptions 1-2-3.

• We assume that the subset X is Φ-inf-directed and we prove the interchange formula (6.7)
by means of two inequalities.

First, using the fact that Φ is order preserving, we have that

Φ
(
∧
x∈X

x
)
�Y Φ(x′) , ∀x′ ∈ X . (6.8)

Thus, using that (Y,�Y) is a complete inf-semilattice, we obtain that

Φ
(
∧
x∈X

x
)
�Y ∧

x∈X
Φ(x) .

Second, we prove the reverse inequality. Using Assumption 3, there exists a sequence {xn}n∈N,
whose terms are in X, and such that ∧n∈N xn = ∧x∈X x. Now, we define a new sequence
{x′n}n∈N by x′n = ∧k≤n xk, for all n ∈ N. So defined, x′n does not necessarily belong to the

subset X, but belongs to the lower semilattice X̃ which contains X. Then, the sequence
(x′n)n∈N is nonincreasing and satisfies the equalities

∧
n∈N

x′n = ∧
n∈N

xn = ∧
x∈X

x . (6.9)

Then, we get

∧
x∈X

Φ(x) �Y Φ(∧
k≤n

xk)

as the subset X is Φ-inf-directed, by assumption, and {xk | k ≤ n} ⊂ X is finite

�Y Φ(x′n)

by definition of x′n, so that we deduce

∧
x∈X

Φ(x) �Y ∧
n∈N

Φ(x′n) (as (Y,�Y) is a complete inf-semilattice by assumption)

�Y Φ(∧
n∈N

x′n)

by (6.3) as the mapping Φ is sequentially-inf continuous on the inf-semilattice X̃, and as
x′n ∈ X̃

= Φ
(
∧
x∈X

x
)
. (using Equation (6.9))

• Conversely, we assume that the interchange formula (6.7) holds for the subset X ⊂ X, and
we show that X is Φ-inf-directed.

For this purpose, we consider a finite subset X̃ ⊂ X, and we get

∧
x∈X

Φ(x) = Φ(∧
x∈X

x) (by the interchange formula)

�Y Φ
(
∧
x∈X̃

x
)

since the mapping Φ is order preserving and ∧x∈X x �X ∧x∈X̃ x.

This concludes the proof.

6.2.2 A sufficient condition for Φ-directed sets

Given an order preserving and sequentially-inf-continuous mapping Φ : X → Y, where the
posets X, Y have sufficient structure, the Minimization Interchange Theorem 63 shows that
a subset X ∈ X is Φ-inf-directed if, and only if, we have the abstract interchange formula
∧x∈X Φ(x) = Φ

(
∧x∈X x

)
. However, as made apparent in its name, checking if X is Φ-

inf-directed is a condition that involves both X and its image by Φ. We give a simple
sufficient condition on the subset X only which ensures that X is Φ-inf-directed for every
order preserving mapping Φ.

Let (X,�) be a poset. A sup-directed set X ⊂ X is a nonempty set with the property
that, for every x, x′ ∈ X, there exists x′′ ∈ X such that x � x′′ and x′ � x′′. An inf-directed
set X ⊂ X is a nonempty set with the property that, for every x, x′ ∈ X, there exists x′′ ∈ X
such that x′′ � x and x′′ � x′.

We now prove in Lemma 64 that any inf-directed (resp. sup-directed) subset X ⊂ X is Φ-
inf-directed (resp. Φ-sup-directed). Informally, X being inf-directed is a sufficient condition
to ensure that a subset X is rich enough from below, namely Φ-inf-directed for any order
preserving mapping Φ.

Lemma 64 (Inf-directed implies Φ-inf-directed). Let (X,�X) be a poset, X ⊂ X be a subset,
and (Y,�Y) be a complete inf-semilattice. If the subset X is inf-directed then X is Φ-inf-
directed for any order preserving mapping Φ : (X,�X)→ (Y,�Y).

Proof. Suppose that X ⊂ X is an inf-directed subset of (X,�), and let Φ : (X,�X)→ (Y,�Y)
be an order preserving mapping. We prove that the subset X is Φ-inf-directed.

For this purpose, we consider a finite subset X̃ ⊂ X. Then, by repeated application of the
inf-directed property, we get that there exists x̃ ∈ X̃ such that x̃ �X ∧x∈X̃x. We therefore
obtain that

∧
x∈X

Φ(x) �Y Φ(x̃) (as x̃ ∈ X)

�Y Φ
(
∧x∈X̃x

)
, (as Φ is order preserving and x̃ �X ∧x∈X̃x)

which ensures that X is Φ-inf-directed and concludes the proof.

The converse is false, i.e. Φ-inf-directed subsets are not necessarily inf-directed subsets
as detailed now in Example 5.

Example 5 (The converse of Lemma 64 is false). Consider Ω = R equipped with its Borel
σ-algebra B(R) and Lebesgue measure λ. Define the poset X = L1

⊕(Ω,F, µ;R) with the µ-
pointwise order and the mapping Φ : X → R being the Lebesgue integral (See Appendix 6.5
for details). We claim that the subset X ⊂ X defined by X =

(
−n1(n,n+1), n ∈ N

)
⊂ RR, is

Φ-inf-directed but not inf-directed.

First we calculate ∧x∈XΦ(x) = ∧x∈X
∫
R x(y) λ(dy) = ∧n∈N(−n) = −∞. Second, for every

finite subset of functions X̃ = {xn1 , . . . xnk} ⊂ X, we have Φ(∧x∈X̃x) ≥ −kmax1≤i≤k ni.
Thus, we get that ∧x∈XΦ(x) ≤ Φ(∧x∈X̃x), hence the subset X is Φ-inf-directed.

But X is not an inf-directed subset of (X,�). Indeed, let for all k ∈ N, the function ψk
be defined by ψk = −k1(k,k+1) and let n and n′ in N be fixed such that n 6= n′. Assume that
there exists n′′ ∈ N such that ψn′′ ≤ ψn ∧ ψn′. Then, we should have using the definition of
the functions {ψk}k∈N, that the support of ψn′′ should contain the set (n, n+ 1)∪ (n′, n′ + 1).
However no function of X has for support the union of two unit intervals.

In this case observe that the interchange between integration and minimization holds true.
Indeed, on the one hand we have shown above that ∧x∈XΦ(x) = −∞ and on the other hand,
we have that

Φ(∧x∈Xx) ≤
∫ +∞

0
(1− y)λ(dy) = −∞,

hence ∧x∈XΦ(x) = −∞ = Φ(∧x∈Xx).

6.3 Interchange between minimization and integration

Throughout this section, we consider a measure space (Ω,F, µ) and we refer the reader to
Appendix 6.5 for material regarding extended Lebesgue integrals. We apply the abstract
results of Section 6.2 to the case of subsets of X̃ = L1

⊕(Ω,F, µ;R), the set of measurable
functions with Lebesgue integrable positive part, itself a subset of X = L0(Ω,F, µ;R), the set
of measurable functions, for which we consider the interchange with the mapping Φ : X→ R,
which is an extension of the Lebesgue integral to X called the outer integral.

In §6.3.1, we state a result on the interchange between (an extension of) the Lebesgue
integral and minimization for subsets of functions in L1

⊕(Ω,F, µ;R) by specifying the Mini-
mization Interchange Theorem of §6.2.1 to the aforementioned case. Then, in §6.3.2, we give
sufficient conditions to ensure that a subset X ⊂ X is Φ-inf-directed. Proofs are to be found
in §6.3.3. In §6.3.4, we use these sufficient conditions to recover both theorems of Giner and
Rockafellar-Wets as applications of the Interchange theorem stated in §6.3.1. Lastly, in §6.3.5,
we give another specialisation of the Minimization Interchange Theorem 63 to the case of the
poset X =

{
x : Ω→ R | x ≥ 0

}
with the pointwise order and the Choquet integral Φ =

∫ C
.

6.3.1 Main result with integrals

We state the main result about the interchange between the outer integral
∫

Ω : L0(Ω,F, µ;R)→
R and minimization for subsets of measurable functions whose positive part has a finite in-
tegral. It is the specification of the Minimization Interchange Theorem 63 to the case of
Φ : L0(Ω,F, µ;R) → R for subsets of X̃ = L0

⊕(Ω,F, µ;R) with the mapping Φ being the
outer integral. Note that, from Proposition 80, outer integral and extended Lebesgue inte-
grals coincide on either L1

⊕(Ω,F, µ;R) or L1
	(Ω,F, µ;R). Thus, Theorem 65 is stated with

the Lebesgue integral.

Theorem 65. Let X be a subset of L1
⊕(Ω,F, µ;R). The following equality

inf
x∈X

∫
Ω
x dµ =

∫
Ω

ess inf
x∈X

x dµ (6.10)

is valid if an only if X is integrably inf-directed, i.e. for every finite family x1, . . . , xn in X
we have

inf
x∈X

∫
Ω
x dµ ≤

∫
Ω

inf
1≤i≤n

xi dµ . (6.11)

Proof. As being integrably inf-directed defined here coincide with being Φ-inf-directed (see
Definition 62) when Φ =

∫
Ω is the outer integral, we will show that the assumptions of

Theorem 63 are fulfilled to obtain Theorem 65 as a specialization of Theorem 63. We prove
in §6.3.3 that the assumptions of Theorem 63 are satisfied. Indeed, by Proposition 71, the
structural assumptions on the domain of Φ : L0(Ω,F, µ;R)→ R are satisfied:

• The set X = L0(Ω,F, µ;R) with the µ-pointwise order is a poset;

• The subset X̃ = L1
⊕(Ω,F, µ;R) of X, is a complete inf-semilattice;

• Every subset X ⊂ X̃ ⊂ X has the countable inf property.

Moreover, as Y = R with the usual order is a complete inf-semilattice, the structural assump-
tions on the codomain of Φ are satisfied as well. Lastly, by Proposition 72, the outer integral∫

Ω : L0(Ω,F, µ;R)→ R is

• order preserving,

• sequentially-inf continuous when restricted to the inf-semilattice X̃ = L1
⊕(Ω,F, µ;R).

This ends the proof.

Note that as semi-integrable functions are linked by the relation (see Lemma 77)

x ∈ L1
	(Ω,F, µ;R)⇔ −x ∈ L1

⊕(Ω,F, µ;R),

one can deduce a symmetric result about the interchange between outer integral and maxi-
mization.

Theorem 66. Let X be a subset of L1
	(Ω,F, µ;R). The following equality

sup
x∈X

∫
Ω
x dµ =

∫
Ω

ess sup
x∈X

x dµ (6.12)

is valid if an only if X is integrably sup-directed, i.e. for any finite family x1, . . . , xn in X
we have ∫

Ω
sup

1≤i≤n
xi dµ ≤ sup

x∈X

∫
Ω
x dµ . (6.13)

6.3.2 Corollaries

Here, we propose corollaries of Theorem 65 by providing conditions to obtain integrably inf-
directed subsets of L0(Ω,F, µ;R) using the notion of decomposable subsets. The notion of
decomposable subsets is widely used in Lp spaces and we refer to [Gin09] for a survey on
various related definitions.

Decomposable subsets

Here, in Definition 67, we consider the decomposable subset definition of [HU77].

Definition 67 (Decomposable subsets [HU77]). A subset X ⊂ L0(Ω,F, µ;R) is decomposable
if we have

∀x, x′ ∈ U , ∀A ∈ F , x1A + x′1Ac ∈ X . (6.14)

We now prove that decomposable subsets are Φ-inf-directed, for any order preserving
mapping Φ.

Lemma 68 (Decomposable subsets are Φ-inf-directed). Any decomposable subset X ⊂ L1
⊕(Ω,F, µ;R)

is Φ-inf-directed for any order preserving mapping Φ from L1
⊕(Ω,F, µ;R), equipped with the

µ-pointwise order, to the extended reals (R,≤).

Proof. Let x and x′ in X be given and consider the measurable set A = {x ≤ x′}. We have
that x∧x′ = x1Aux′1Ac ∈ X since X is decomposable. We obtain that X is an inf-semilattice
and thus also an inf-directed set. Thus, using Lemma 64, the subset X is Φ-inf-directed for
any order preserving mapping Φ, from L1

⊕(Ω,F, µ;R) equipped with the µ-pointwise order,
to the extended reals (R,≤).

Rockafellar-Wets decomposable subsets

We have just seen that decomposability implies inf-directed. Rockafellar and Wets introduced
a weaker notion of decomposability that Giner relates to Φ-inf-directed where Φ is the outer
integral. We recall a few definitions.

Let (Ω,F , µ) be a measure space with µ being a σ-finite measure. The upper set of U in
L1(Ω,F, µ;R), denoted by ↑

(1)
U , is defined by

↑
(1)
U =

{
v ∈ L1(Ω,F, µ;R) | ∃u ∈ U, v ≥ u

}
.

For d ∈ N∗ and for any (F ⊗ B(Rd))-measurable function g : Ω × Rd → R, one can define a
mapping g̃ on L0(Ω,F, µ;Rd) to L0(Ω,F, µ;R) by

g̃ : u ∈ L0(Ω,F, µ;Rd) 7→ g
(
·, u(·)

)
∈ L0(Ω,F, µ;R).

Definition 69 (Rockafellar-Wets decomposable). A subset U ⊂ L0(Ω,F, µ;Rd) is Rockafellar-
Wets decomposable (w.r.t. the σ-finite measure µ) if

y1A + u1Ac ∈ U , ∀y ∈ L∞(A,F, µ;Rd) , ∀A ∈ F , µ(A) < +∞ , ∀u ∈ U . (6.15)

Proposition 70 (Proposition 5.4 - [Gin09]). For any measurable function g : Ω × Rd → R,
if a subset U ⊂ L0(Ω,F, µ;Rd) is Rockafellar-Wets decomposable then X = ↑

(1)
f̃(U) is an

integrably inf-directed subset of L0(Ω,F, µ;R).

6.3.3 Proofs of Theorem 65 and Theorem 66

We check in Proposition 71 (structural properties of the spaces of measurable and semi-
integrable functions) and Proposition 72 (properties of the outer integral) that the assump-
tions of the Minimization Interchange Theorem 63 are satisfied.

Proposition 71 (Structural properties of the spaces of measurable and semi-integrable func-
tions).

• The set L0(Ω,F, µ;R), equipped with the µ-pointwise order, is a complete lattice which
has both the countable sup and countable inf properties.

• The subset L1
	(Ω,F, µ;R) (resp. L1

⊕(Ω,F, µ;R)) is a complete sup-semilattice (resp.
inf-semilattice) which has the countable sup property (resp. countable inf property).

Proof.
• We consider the set L0(Ω,F, µ;R). First, the fact that it is a complete lattice is a con-
sequence of the existence of the essential supremum and essential infimum for any family
(countable or not) of class of random variables as proved in [Nev70, Proposition II.4.1] (the
proof is for probability measures but it extends easily to σ-finite measures). We rephrase
here the existence result of [Nev70, Proposition II.4.1] for the essential infimum case. For
any class family (countable or not) {xi}i∈I in L0(Ω,F, µ;R), there exists a unique class
ess infi∈I xi ∈ L0(Ω,F, µ;R) which is a greatest lower bound of the family {xi}i∈I . That
is, for any function x ∈ L0(Ω,F, µ;R), we have

∀i ∈ I, x ≤ xi ⇔ x ≤ ess inf
i∈I

xi .

The fact that there exists a countable subfamily {xin}n∈N such that

ess inf
i∈I

xi = inf
n∈N

xin

is not stated explicitly in [Nev70, Proposition II.4.1], but it is stated in the proof as an inter-
mediate result to obtain the essential infimum. It is immediate that the countable subfamily
can be chosen as a nonincreasing sequence. The case of the essential supremum is treated in
the same way.

•We consider the set L1
	(Ω,F, µ;R) and consider a class family (countable or not) {ui}i∈I in

L1
	(Ω,F, µ;R). As L1

	(Ω,F, µ;R) is a subset of L0(Ω,F, µ;R) we obtain (using the first part of
the proof) the existence of ess supi∈I ui ∈ L0(Ω,F, µ;R) and the existence of a nondecreasing
countable subfamily {uin}n∈N such that

ess sup
i∈I

ui = sup
n∈N

uin .

Using the monotone convergence theorem for L1
	(Ω,F, µ;R), postponed in Proposition 78, we

obtain that ess supi∈I ui ∈ L1
	(Ω,F, µ;R), as the supremum of a sequence in L1

	(Ω,F, µ;R).
As a consequence, the subset L1

	(Ω,F, µ;R) is a complete sup-semilattice which has the
countable sup property.

The case of L1
⊕(Ω,F, µ;R) can be treated in a similar way. and this ends the proof.

Proposition 72 (Properties of the outer integral).

• The outer integral (6.31a) is an order preserving mapping between the posets L0(Ω,F, µ;R)
and R.

• The outer integral (6.31a) is sequentially-sup continuous on the sup-semilattice L1
	(Ω,F, µ;R)

and sequentially-inf continuous on the inf-semilattice L1
⊕(Ω,F, µ;R).

Proof. Let (fn)n∈N be an nondecreasing sequence of functions in L1
	(Ω,F, µ;R). We put

f = ∨n∈N fn, which belongs to the complete lattice L0(Ω,F, µ;R). By Proposition 78, we
get that f ∈ L1

	(Ω,F, µ;R) and that ∨n∈N
∫
fndµ =

∫
fdµ by (6.29). Thus, the outer

integral (6.31a) is sequentially-sup continuous on the sup-semilattice L1
	(Ω,F, µ;R).

By using the property that L1
⊕(Ω,F, µ;R) = −L1

	(Ω,F, µ;R) and (77), we prove that the
outer integral (6.31a) is sequentially-inf continuous on the inf-semilattice L1

⊕(Ω,F, µ;R).

6.3.4 Comparison with the literature

Now, we combine the general interchange result of §6.3.1 with the conditions of §6.3.2 in order
to recover the interchange theorems of Giner and Rockafellar-Wets.

Comparison with Giner [Gin09]

Theorem 73 (Theorem 4.2. – [Gin09]). Let X be a subset of L1(Ω,F, µ;R), the following
equality

inf
x∈X

∫
Ω
x dµ =

∫
Ω

ess inf
x∈X

x dµ , (6.16)

is valid if an only if X is integrably inf-directed, i.e. for any finite family x1, . . . , xn in X we
have

inf
x∈X

∫
Ω

(x− inf
1≤i≤n

xi) dµ ≤ 0 . (6.17)

As L1(Ω,F, µ;R) ⊂ L1
⊕(Ω,F, µ;R), the interchange formula in Theorem 65 is a slight

generalization to L1
⊕(Ω,F, µ;R) of Giner’s Theorem 73 stated for subsets of L1(Ω,F, µ;R).

This is no surprise, as we are indebted to Giner since Theorem 65 was greatly inspired by
Giner’s result.

Comparison with Rockafellar and Wets [RW09]

Let (Ω,F , µ) be a measure space with µ being a σ-finite measure. As we work with subsets
of measurable functions, the integral used in this section is the outer integral as defined in
Appendix in Definition 79.

Theorem 74 (Theorem 14.60 [RW09]). Let U be a subset of L0(Ω,F, µ;Rd) that is Rockafellar-
Wets decomposable. Let g : Ω × Rd → R be a normal integrand. If there exists ū ∈ U such
that g

(
·, ū(·)

)
∈ L1

⊕(Ω,F, µ;Rd), one has that

inf
u∈U

∫ ∗
Ω
g
(
ω, u(ω)

)
dµ(ω) =

∫ ∗
Ω

(
inf
u∈Rn

g(ω, u)
)

dµ(ω) . (6.18)

Moreover, as long as this common value is not −∞, one has for any u ∈ U that

u ∈ arg min
u∈U

∫ ∗
Ω
g
(
ω, u(ω)

)
dµ(ω)⇐⇒ u ∈ arg min

u∈Rn
g(ω, u) µ-a.s. .

We prove that the Rockafellar-Wets interchange theorem can be deduced from Theorem 65
combined with [Gin09, Theorem 3.1].

Proof. (Equation (6.18) as a consequence of [Gin09, Theorem 3.1] and the Minimization
Interchange Theorem 63)

•We introduce the set X =
{
ω 7→ g(ω, u(ω))

∣∣u ∈ U}. Using the fact that g is a normal inte-
grand and that U is a subset of L0(Ω,F, µ;Rd), we obtain that X is a subset of L0(Ω,F, µ;R)
[RW09, Theorem 14.37] and we can write

inf
u∈U

∫ ∗
Ω
g
(
ω, u(ω)

)
dµ(ω) = ∧

x∈X

∫ ∗
Ω
x(ω) dµ(ω) . (6.19)

Now, using the definition (6.31a) of the outer integral we have that

∧
x∈X

∫ ∗
Ω
x(ω) dµ(ω) = ∧

x∈X
inf

x′∈L1(Ω,F,µ;R)
x′≥x

∫
Ω
x′(ω) dµ(ω) . (6.20)

We therefore introduce the upper set of X in L1(Ω,F, µ;R) denoted by ↑
(1)
X and defined by

↑
(1)
X =

{
x′ ∈ L1(Ω,F, µ;R)

∣∣∃x ∈ X s.t. x ≤ x′ µ-a.s.
}
. (6.21)

Combining Equation (6.19)-(6.21), we therefore get that

inf
u∈U

∫ ∗
Ω
g
(
ω, u(ω)

)
dµ(ω) = ∧

x′∈ ↑
(1)
X

∫
Ω
x′(ω) dµ(ω) . (6.22)

In addition, using the fact that there exists ū ∈ U such that g
(
·, ū(·)

)
∈ L1

⊕(Ω,F, µ;R) we
have that x = g

(
·, ū(·)

)
belongs to X. Therefore, the set ↑

(1)
X is not empty as x+ ∈ ↑(1)X.

• By [Gin09, Propositon 5.4], as g is a normal integrand and thus measurable, the set ↑
(1)
U is

integrably inf-directed.
• The last step to obtain (6.18) is to prove that

inf
u∈Rn

g(ω, u) = ∧
x′∈ ↑

(1)
X

x′(ω) ,

which is obtained using [Gin09, Theorem 3.1].

6.3.5 Interchange between minimization and Choquet’s integral

Fix (Ω,F) a measurable space. We specialize the Minimization Interchange Theorem 63 to
the poset of nonnegative measurable functions

X =
{
x : Ω→ R | x ≥ 0 and measurable

}
with the pointwise order and the Choquet integral Φ =

∫ C
that we define below. We suggest

[Kaw18] and the references therein for properties of the Choquet integral.
A capacity c : F → R is a function which is order preserving (∀F1, F2 ∈ F , F1 ⊂ F2 ⇒

c(F1) ≤ c(F2)) and such that c(∅) = 0. Given a capacity c, the Choquet integral of a
nonnegative measurable function x ∈ X is defined by∫ C

Ω
x(ω) dc(ω) =

∫
R+

c
(
x > t

)
dt ,

where the integral on the right-hand side is the Lebesgue integral of an nonincreasing function.
We say that a capacity c is continuous from above if for any nondecreasing sequence of sets
{Fn}n∈N ⊂ F such that F = ∩n∈NFn ∈ F then we have c(Fn) −→

n→+∞
F . Lastly, a subset

of functions X ⊂ X is Choquet integrably inf-directed if it is integrably inf-directed with the
Choquet integral.

Proposition 75. Let c be a continuous from above capacity and X = {xi}i∈I ⊂ X a family
of nonnegative measurable functions with the countable-inf-property. We have

∧
i∈I

∫ C
Ω
xi dc =

∫ C
Ω
∧
i∈I

xi dc

if, and only if, X is Choquet integrably inf-directed.

Proof. We check that the assumptions of Theorem 63 are satisfied. The set of nonnegative
measurable functions X =

{
x : Ω→ R | x ≥ 0 and measurable

}
endowed with the pointwise

order is an inf-semilattice.
The Choquet integral is order preserving on X (see [Kaw18, Proposition 2.3]).
As the capacity c is countinuous from above, the monotone decreasing pointwise conver-

gence theorem holds (see [Kaw18, Theorem 3.2.(2)]): for every nonincreasing sequence of
functions {xn}n∈N converging pointwise to x ∈ X, we have

∧
n∈N

∫ C
Ω
xn dc = lim

n∈N

∫ C
Ω
xn dc =

∫ C
Ω
x dc ,

so the Choquet integral is sequentially-inf-continuous on X.

Hence by Theorem 63, given X = {xi}i∈I ⊂ X a family of nonnegative functions with the
countable-inf-property, we have

∧
i∈I

∫ C
Ω
xi dc =

∫ C
Ω
∧
i∈I

xi dc

if, and only if, X is Choquet integrably inf-directed.

6.4 Conclusion and perspectives

We were initially interested in minimization of functions and interchange with mappings
Φ which are not the integral. As said in the introduction, the question of interchanging
integration and minimization is an important issue in stochastic optimization (where integra-
tion corresponds to mathematical expectation). Now, when the mathematical expectation
is replaced with a risk measure, the question of interchange is less examined [SDR09]. An
important class of risk measures is made of suprema of integral expressions. This is why in
Section 6.2.1 we started with an abstract result on interchange and optimization followed by
an analysis of the integral case. There now remains to study when our abstract results apply
to suprema of integrals.

6.5 Extended Lebesgue and outer integrals

The set R = R∪ {+∞}∪ {−∞} is endowed with its Borel σ-algebra (see [BP12, Application
4.2] or [Nev70, Chap. II]), and with the following extended additions and multiplication.
We still denote by + the usual addition when extended to R+ = R ∪ {+∞} by +∞ being
absorbant, and to R− = R ∪ {−∞} by −∞ being absorbant. Then, we denote by ·+ the
addition on R for which −∞ is absorbant, i.e. (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ and
by u the addition for which +∞ is absorbant, i.e. (+∞) u (−∞) = (−∞) u (+∞) = +∞.
We set λ× (±∞) = ±∞ for λ ∈]0,+∞[, λ× (±∞) = ∓∞ for λ ∈]−∞, 0[, and 0× (±∞) = 0.

Throughout this section, we fix a σ-finite measure space (Ω,F, µ). The classical Lebesgue
integral w.r.t. the σ-finite measure µ is defined for functions with values in R (real-valued
functions). As we are motivated by optimization, we need results for integrals of functions
with values in R (extended real-valued functions). For integration of measurable real-valued
functions w.r.t. a σ-finite measure µ, we refer the reader to [AB06, Chapter 11]; for integration
of measurable extended real-valued functions w.r.t. a probability measure µ, we refer the
reader to [Nev70]; for integration of measurable extended real-valued functions w.r.t. a σ-
finite measure µ, we refer the reader to [Hal50, Chapter V]; for outer integration of extended
real-valued functions w.r.t. a σ-finite measure µ, we refer the reader to [BS96].

It happens that results about monotonicity, additivity, external multiplication and mono-
tone convergence of the integral are either scattered in the literature, or sometimes not for-
mulated. This is due to the fact that the extension of the Lebesgue integral to extended
real-valued functions gives rise to different expressions, which renders the exposition less sys-
tematic and elegant than with the Lebesgue integral of integrable real-valued functions. Also,
some results belong to folklore and its is hard to find trace of their proof, as they are consid-
ered obvious. However, for the purpose of optimizing integral expressions, we provide below

a systematic exposition of functional spaces L0(Ω,F, µ;R), L1
⊕(Ω,F, µ;R) and L1

	(Ω,F, µ;R),
and how the Lebesgue integral can be extended.

6.5.1 Functional space L0(Ω,F, µ;R) and the Lebesgue integral

We endow the set RΩ
of functions f : Ω → R with the µ-pointwise order ≤ as follows: for

any f, g ∈ RΩ
,

f ≤ g ⇐⇒ ∃A ∈ F , µ(A) = 0 , f(ω) ≤ g(ω) , ∀ω ∈ Ω \A . (6.23)

We denote by L0(Ω,F;R) the set of measurable functions from Ω to R and by L0(Ω,F, µ;R)
the quotient L0(Ω,F;R)/ ∼ where for any f, g ∈ L0(Ω,F;R), f ∼ g if, and only if, f = g
µ-almost everywhere. The µ-pointwise order (6.23) induces an order on the set L0(Ω,F, µ;R)
of equivalence classes, that we will also denote by ≤ and call the µ-pointwise order. Thus,
the expression f ≥ 0 makes sense for f ∈ L0(Ω,F, µ;R). In the same way, we introduce the
µ-pointwise order < on the set L0(Ω,F, µ;R) of equivalence classes. Thus, the expressions
−∞ < f , f < +∞ and −∞ < f < +∞ make sense for f ∈ L0(Ω,F, µ;R).

The set L0(Ω,F, µ;R) is stable under the two additions ·+ or u, and under external
multiplication. We say that a subset of L0(Ω,F, µ;R) is a convex cone, if it is stable under
the addition + and under external multiplication by a scalar in R+.

We write
∫

for the Lebesgue integral deduced from the σ-finite measure space (Ω,F, µ).
The Lebesgue integral

∫
is defined on the convex cone

L0
+(Ω,F, µ;R) =

{
f ∈ L0(Ω,F, µ;R)

∣∣ f ≥ 0
}
, (6.24)

where it takes values in R+, given by the formula (see [AB06, Footnote 3, p. 411] for real-
valued functions)∫

f =

∫
f dµ = sup

{∫
Ω
ϕdµ

∣∣∣ 0 ≤ ϕ ≤ f , ϕ simple and nonnegative
}
, (6.25)

where simple nonnegative functions (or µ-step functions) are functions of the form ϕ(·) =∑
i∈I αi1Ai(·) with I finite and {Ai}i∈I a sequence of measurable sets such that µ(Ai) < +∞

for all i ∈ I and the coefficients {αi}i∈I are positive and finite reals and the indicator function
1A of a subset of Ω is defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A.

The (extended) Lebesgue integral on L0
+(Ω,F, µ;R) has the following properties

• monotone: ∀f, g ∈ L0
+(Ω,F, µ;R), f ≤ g =⇒

∫
f ≤

∫
g,

• additive: ∀f, g ∈ L0
+(Ω,F, µ;R),

∫
(f + g) =

∫
f +

∫
g,

• positively homogeneous: ∀f ∈ L0
+(Ω,F, µ;R), ∀λ ∈ R+,

∫
(λf) = λ

∫
f ,

• monotone convergence: for any nondecreasing sequence (fn)n∈N in L0
+(Ω,F, µ;R), then

f = supn∈N fn ∈ L0
+(Ω,F, µ;R) and limn→+∞

∫
fn =

∫
f .

6.5.2 Functional spaces L1
⊕(Ω,F, µ;R), L1

	(Ω,F, µ;R) and the extended Lebesgue
integral

For any function f : Ω → R, we define its positive part f+ = sup(0, f) and its negative part
f− = sup(0,−f). Obviously, we have f = f+ + (−f−) (where we use the addition + as one of
the terms is zero for any value taken by the argument of the function f). We define the set

L1
⊕(Ω,F;R) =

{
f ∈ L0(Ω,F;R)

∣∣∣ ∫
Ω
f+ dµ < +∞

}
, (6.26a)

and the quotient set L1
⊕(Ω;R)\ ∼ by

L1
⊕(Ω,F, µ;R) =

{
f ∈ L0(Ω,F, µ;R)

∣∣∣ ∫
Ω
f+ dµ < +∞

}
, (6.26b)

with the property that
f ∈ L1

⊕(Ω,F, µ;R) =⇒ f < +∞ (6.26c)

because
∫

Ω f+ dµ < +∞ =⇒ f+ < +∞ =⇒ f ≤ f+ < +∞. In the same way, we define

L1
	(Ω,F;R) =

{
f ∈ L0(Ω,F;R)

∣∣∣ ∫
Ω
f− dµ < +∞

}
, (6.27a)

L1
	(Ω,F, µ;R) =

{
f ∈ L0(Ω,F, µ;R)

∣∣∣ ∫
Ω
f− dµ < +∞

}
, (6.27b)

with the properties that L1
	(Ω,F, µ;R) = −L1

⊕(Ω,F, µ;R) and that f ∈ L1
	(Ω,F, µ;R) =⇒

−∞ < f .
We say that a (class of) function(s) f ∈ L0(Ω,F, µ;R) is semi-integrable if it belongs

to L1
⊕(Ω,F, µ;R) ∪ L1

	(Ω,F, µ;R), that is, if either
∫

Ω f+ dµ < +∞ or
∫

Ω f− dµ < +∞.
The Lebesgue integral is extended from the convex cone L0

+(Ω,F, µ;R), to semi-integrable
functions by ([Nev70, Proposition II-3-2], [AB06, Chapter 11], [Hal50, Chapter V])∫

f =

∫
f+ +

(
−
∫
f−

)
, ∀f ∈ L1

⊕(Ω,F, µ;R) ∪ L1
	(Ω,F, µ;R) . (6.28)

The extended Lebesgue integral on semi-integrable functions has the following properties
(listed in [Nev70, Proposition II-3-3])

• monotone: ∀f, g ∈ L1
⊕(Ω,F, µ;R) ∪ L1

	(Ω,F, µ;R), f ≤ g =⇒
∫
f ≤

∫
g,

• additive on L1
⊕(Ω,F, µ;R): ∀f, g ∈ L1

⊕(Ω,F, µ;R),
∫

(f + g) =
∫
f +

∫
g,

• additive on L1
	(Ω,F, µ;R): ∀f, g ∈ L1

	(Ω,F, µ;R),
∫

(f + g) =
∫
f +

∫
g,

• positively and negatively homogeneous: ∀f ∈ L1
⊕(Ω,F, µ;R) ∪ L1

	(Ω,F, µ;R), ∀λ ∈ R,∫
(λf) = λ

∫
f ,

• monotone convergence on L1
⊕(Ω,F, µ;R): for any nonincreasing sequence (fn)n∈N in L1

⊕(Ω,F, µ;R),
then fn ↑ f and f = infn∈N fn ∈ L1

⊕(Ω,F, µ;R) and limn→+∞
∫
fn =

∫
f ,

• monotone convergence on L1
	(Ω,F, µ;R): for any nondecreasing sequence (fn)n∈N in L1

	(Ω,F, µ;R),
then f = supn∈N fn ∈ L1

	(Ω,F, µ;R) and fn ↓ f and limn→+∞
∫
fn =

∫
f .

We provide some of the proofs.

Lemma 76. For any functions f and g in L1
	(Ω,F, µ;R), we have f + g ∈ L1

	(Ω,F, µ;R)
and ∫

Ω
(f + g) dµ =

∫
Ω
f dµ+

∫
Ω
g dµ , ∀f ∈ L1

	(Ω,F, µ;R) , g ∈ L1
	(Ω,F, µ;R) .

Proof. We consider f, g ∈ L1
	(Ω,F, µ;R). Notice that, as f, g ∈ L1

	(Ω,F, µ;R), we have that
−∞ < f and −∞ < g, so that we will use the addition +.
• We show that

∫
Ω(f + g) dµ < +∞. On the one hand, we have

(f + g)− = sup
(
0,−(f + g)

)
= sup

(
0, (−f) + (−g)

)
.

On the other hand, we have (−f) ≤ f− and (−g) ≤ g−, hence (−f) + (−g) ≤ f− + g−
and thus (f + g)− ≤ f− + g−. By monotonicity and additivity of the Lebesgue integral on
L0

+(Ω,F, µ;R), we deduce that∫
Ω

(f + g)− dµ ≤
∫

Ω
f− dµ+

∫
Ω
g− dµ < +∞ ,

because
∫

Ω f− dµ < +∞ and
∫

Ω g− dµ < +∞ by assumption (f, g ∈ L1
	(Ω,F, µ;R)). Hence,

f + g ∈ L1
	(Ω,F, µ;R).

•We prove the additivity of the integral. Notice that, as f, g, f + g ∈ L1
	(Ω,F, µ;R), we have

that −∞ < f and −∞ < g, and also that 0 ≤ f− < +∞, 0 ≤ g− < +∞, 0 ≤ (f + g)− < +∞,
0 ≤

∫
Ω f− dµ < +∞, 0 ≤

∫
Ω g− dµ < +∞, 0 ≤

∫
Ω(f + g)− < +∞, so that we will use the

addition +.
As, for any function h, we have that h = h+ + (−h−), we immediately get that

(f + g)+ +
(
−(f + g)−

)
= f + g = f+ + (−f−) + g+ + (−g−) .

Now, if we add, to the left and right hand side of the above equality, the three nonnegative
reals (f + g)−, f− and g− (none of them being +∞), we obtain the equality

(f + g)+ + f− + g− = f+ + g+ + (f + g)− .

As this is an equality between sums of nonnegative functions, we apply the Lebesgue integral
on L0

+(Ω,F, µ;R), and get∫
Ω

(f + g)+ dµ+

∫
Ω
f− dµ+

∫
Ω
g− dµ =

∫
Ω
f+ dµ+

∫
Ω
g+ dµ+

∫
Ω

(f + g)− dµ ,

by additivity of the Lebesgue integral on L0
+(Ω,F, µ;R). Now, the quantities

∫
Ω f− dµ,∫

Ω g− dµ and
∫

Ω(f + g)− dµ are three nonnegative reals (none of them being +∞) by as-
sumption (f, g ∈ L1

	(Ω,F, µ;R) and property f + g ∈ L1
	(Ω,F, µ;R)). Thus, we get, by

subtracting these three finite terms, ∫
Ω

(f + g)+ dµ+
(
−
∫

Ω
(f + g)− dµ

)
=

∫
Ω
f+ dµ+

(
−
∫

Ω
f− dµ

)
+

∫
Ω
g+ dµ+

(
−
∫

Ω
g− dµ

)
,

hence, by (6.28), ∫
Ω

(f + g) dµ =

∫
Ω
f dµ+

∫
Ω
g dµ .

This ends the proof.

Lemma 77. We have∫
Ω

(−f) dµ = −
∫

Ω
f dµ , ∀f ∈ L1

⊕(Ω,F, µ;R) ∪ L1
	(Ω,F, µ;R) .

Proof. This is an obvious consequence of (6.28), and of (−f)+ = f− and (−f)− = f+.

Proposition 78 (Extended monotone convergence theorem for L1
	(Ω,F, µ;R)). Let (fn)n∈N

be an nondecreasing sequence of functions in L1
	(Ω,F, µ;R), converging to f ∈ RΩ

, that is,
fn ↑ f . Then, f ∈ L1

	(Ω,F, µ;R) and we have

lim
n→+∞

∫
fndµ =

∫
fdµ . (6.29)

Proof. Notice that, as fn ∈ L1
	(Ω,F, µ;R), we have that −∞ < fn for all n ∈ N, so that we

will use the addition +.

As f ≥ f1, we have that sup(0,−f) = f− ≤ (f1)− = sup(0,−f1), hence
∫
f−dµ ≤∫

(f1)−dµ < +∞, where the last strict inequality is by assumption (f1 ∈ L1
	(Ω,F, µ;R)). We

conclude that f ∈ L1
	(Ω,F, µ;R).

As, by assumption,
∫

(f1)−dµ < +∞, we conclude that (f1)− < +∞. We consider two
cases.

We suppose that
∫

(f1)+dµ = +∞. As sup(0, f) = f+ ≥ (f1)+ = sup(0, f1), we also
have that

∫
f+dµ = +∞. As a consequence, we get that

∫
f+dµ =

∫
(f1)+dµ = +∞, hence∫

fdµ =
∫
f1dµ = +∞, by definition of the integral

∫
on L1

	(Ω,F, µ;R). By monotonicity of
the integral

∫
, we conclude that +∞ =

∫
f1dµ ≤ limn→+∞

∫
fndµ ≤

∫
f1dµ = +∞, hence

that (6.29) holds true.

We now suppose that
∫

(f1)+dµ < +∞. We deduce that (f1)+ < +∞. As we had (f1)− <
+∞, we deduce that−∞ < f1 < +∞. Thus, we can define ϕn = fn+(−f1) and ϕ = f+(−f1),
which are functions in L0(Ω,F, µ;R) such that ϕ = f+(−f1) ≥ ϕn = fn+(−f1) ≥ 0, because
fn ≥ f1. As f1 takes values in R, we have that supn(fn + (−f1)) = supn fn+ (−f1), hence we
obtain that ϕn ↑ ϕ. As ϕn ≥ 0, by the monotone convergence theorem for (L0

+(Ω,F, µ;R),∫
), we get that

sup
n

∫
ϕndµ = lim

n→+∞

∫
ϕndµ =

∫
ϕdµ .

As, by assumption, (f1)−dµ < +∞ and
∫

(f1)+dµ < +∞, we get that f1 ∈ L1(Ω,F, µ;R) and
that −∞ <

∫
f1dµ < +∞, hence obtaining

sup
n

(∫
ϕndµ+

∫
f1dµ

)
= sup

n

∫
ϕndµ+

∫
f1dµ =

∫
ϕdµ+

∫
f1dµ .

As ϕn ≥ 0 and belongs to L0(Ω,F, µ;R), we have that ϕn ∈ L1
	(Ω,F, µ;R). In the same

way, we obtain that ϕ ∈ L1
	(Ω,F, µ;R). By the +-additivity property of the integral

∫
on

L1
	(Ω,F, µ;R), we deduce that the first and last terms of the above equality are given by the

following expressions

sup
n

∫
(ϕn + f1)dµ =

∫
(ϕ+ f1)dµ .

We obtain (6.29) because ϕn + f1 = fn + (−f1) + f1 = fn since f1 takes values in R, and, in
the same way, ϕ+ f1 = f + (−f1) + f1 = f .

The classical vector space of integrable functions is

L1(Ω,F, µ;R) = L1
⊕(Ω,F, µ;R) ∩ L1

	(Ω,F, µ;R) , (6.30)

with the property that f ∈ L1(Ω,F, µ;R) =⇒ −∞ < f < +∞, that is, L1(Ω,F, µ;R) =
L1(Ω,F, µ;R).

6.5.3 Outer integral on L0(Ω,F, µ;R)

We follow [BS96] for the following definitions.

Definition 79. We define the outer integral of a function by∫ ∗
Ω
f dµ = inf

{∫
Ω
ψ dµ

∣∣∣ψ ∈ L1(Ω,F, µ;R) and f ≤ ψ
}
, ∀f ∈ RΩ

, (6.31a)

and the inner integral by∫ Ω

∗
f dµ = sup

{∫
Ω
ψ dµ

∣∣∣ψ ∈ L1(Ω,F, µ;R) and f ≥ ψ
}
, ∀f ∈ RΩ

, (6.31b)

where
∫

Ω ψ dµ is the classical Lebesgue integral for ψ ∈ L1(Ω,F, µ;R).

It is straightforward that∫ Ω

∗
f dµ ≤

∫ ∗
Ω
f dµ , ∀f ∈ RΩ

, (6.32a)

−
∫ ∗

Ω
f dµ ≤

∫ ∗
Ω

(−f)dµ , ∀f ∈ RΩ
, (6.32b)∫ Ω

∗
f dµ = −

(∫ ∗
Ω

(−f) dµ
)
, ∀f ∈ RΩ

. (6.32c)

These outer and inner integrals extend the classical Lebesgue integral to the uncovered
case where both

∫
Ω f+ dµ and

∫
Ω f− dµ equal +∞ as shown in the following Proposition.

Proposition 80. We have that∫ ∗
Ω
f dµ =

∫
Ω
f+ dµu

(
−
∫

Ω
f− dµ

)
, ∀f ∈ L0(Ω,F, µ;R) , (6.33a)∫ Ω

∗
f dµ =

∫
Ω
f+ dµ ·+

(
−
∫

Ω
f− dµ

)
, ∀f ∈ L0(Ω,F, µ;R) . (6.33b)

As a consequence, the outer integral of f coincides with the extended Lebesgue integral (6.28)
on L1

⊕(Ω,F, µ;R) ∪ L1
	(Ω,F, µ;R), that is, when f is semi-integrable.

Proof. We consider f ∈ L0(Ω,F, µ;R) and we examine four possible cases in order to prove
Equation (6.33a) (then Equation (6.33b) is obtained from (6.32c)).

• Suppose that
∫

Ω f+ dµ < +∞ and
∫

Ω f− dµ < +∞ (that is, f ∈ L1(Ω,F, µ;R)). Then we

have that µ[{f = ±∞}] = 0, and thus there exists a representant f̃ ∈ L1(Ω,F, µ;R) in the
class, which is equal to f (µ-a.s.). Thus, we have that

∫ ∗
Ω f dµ ≤

∫
Ω f̃ dµ =

∫
Ω f dµ as we

can use ψ = f̃ in the definition of the outer integral. Now, in order to prove the reverse
inequality, we have to consider two cases, depending whether

∫ ∗
Ω f dµ is finite or is equal to

−∞.

� In the case where
∫ ∗

Ω f dµ is finite, we fix ε > 0. Using Equation (6.31a), there exists
ψε ∈ L1(Ω,F, µ;R) such that f ≤ ψε and

∫
Ω ψε dµ ≤

∫ ∗
Ω f dµ + ε. Using the fact that

f ∈ L1(Ω,F, µ;R) and the monotonicity of the Lebesgue integral, we obtain∫
Ω
f dµ ≤

∫
Ω
ψε dµ ≤

∫ ∗
Ω
f dµ+ ε ,

which finally gives
∫

Ω f dµ ≤
∫ ∗

Ω f dµ and therefore the equality
∫

Ω f dµ =
∫ ∗

Ω f dµ. Equa-
tion (6.33a) follows using Equation (6.28) as we have∫ ∗

Ω
f dµ =

∫
Ω
f dµ =

∫
Ω
f+ dµ+ (−

∫
Ω
f− dµ) =

∫
Ω
f+ dµu

(
−
∫

Ω
f− dµ

)
.

� In the case where
∫ ∗

Ω f dµ = −∞, then using Equation (6.31a) there exists a sequence{
ψn
}
n∈N in L1(Ω,F, µ;R) such that f ≤ ψn and

∫
Ω ψn dµ ≤ −n for all n ∈ N. This implies

that
∫

Ω f dµ = −∞, which contradicts the fact that f ∈ L1(Ω,F, µ;R).

• Suppose that
∫

Ω f+ dµ < +∞ and and
∫

Ω f− dµ = +∞. Using the fact that f ≤ f+ we have
that

∫ ∗
Ω f dµ ≤

∫
Ω f+ dµ as we can use ψ = f+ ∈ L1(Ω,F, µ;R) in the definition (6.31a) of the

outer integral. Moreover, as
∫

Ω f− dµ = +∞, we can find a sequence {ψn}n∈N of nonnegative
functions such that ψn ∈ L1(Ω,F, µ;R), ψn ≤ f− and such that limn→∞

∫
Ω ψn dµ = +∞ for

all n ∈ N (take ψn = 1Ωn min(n, f−), where (Ωn)n∈N is a monotone sequence of F-measurable
subsets of Ω covering Ω such that µ(Ωn) < +∞ which exists by σ-finite property). Using the
fact that

∫
Ω f+ dµ < +∞, we can find f̃+ ∈ L1(Ω,F, µ;R) such that f+ = f̃+ µ-a.s. Thus,

for all n ∈ N, we have that f ≤ (f̃+ − ψn) and (f̃+ − ψn) ∈ L1(Ω,F, µ;R). We obtain by
monotone convergence that∫ ∗

Ω
f dµ ≤

∫
Ω
f̃+ − ψn dµ =

∫
Ω
f+ dµ−

∫
Ω
ψn dµ →

n→+∞
−∞ .

We therefore obtain Equation (6.33a) since both members of the equality are equal to −∞.

• Suppose that
∫

Ω f+ dµ = +∞ and and
∫

Ω f− dµ < +∞. Then we prove that

{ψ ∈ L1(Ω,F, µ;R) | f ≤ ψ µ-a.s. } = ∅ .

Indeed, assuming the existence of ψ ∈ L1(Ω,F, µ;R) such that f ≤ ψ, we would obtain
that f+ ≤ ψ + f− which, using the fact that ψ + f− ∈ L1(Ω,F, µ;R), would imply that
f+ ∈ L1(Ω,F, µ;R), contradicting the assumption that

∫
Ω f+ dµ = +∞.

• Suppose that
∫

Ω f+ dµ = +∞ and and
∫

Ω f− dµ = +∞. Using the definition of u,
we get that the right hand side of Equation (6.33a) is equal to +∞. Now, we show that

Equation (6.33a) holds true by proving that the set of functions ψ ∈ L1(Ω,F, µ;R) such that
f ≤ ψ is empty. We proceed by contradiction. Assuming the existence of ψ ∈ L1(Ω,F, µ;R)
such that f ≤ ψ, we would have

+∞ =

∫
Ω
f+ dµ =

∫
Ω
f1f≥0 dµ ≤

∫
Ω
ψ1f≥0 dµ ≤

∫
Ω
ψ dµ ,

contradicting the assumption that ψ ∈ L1(Ω,F, µ;R). Therefore, in Equation (6.31a) we
obtain that

∫ ∗
Ω f dµ = +∞ and thus equality is ensured in Equation (6.33a).

This ends the proof.

Miscellaneous results

Contents

A Uniform sampling on the unit sphere 125

B Approximating by independent scenario trees 126

C Tropical Dynamic Programming for POMDP 127

C.1 Recalls on POMDP . 127

C.2 The Bellman operator defined in Equation (39) propagate Lipschitz
mappings . 129

C.3 Value of Bt(Vt+1) when Vt+1 = minα∈Γt+1
〈α , b〉 130

C.4 A lower bound of Bt(Vt+1) . 131

A Uniform sampling on the unit sphere

In the numerical implementation of the min-plus algorithm described in Chapter 3, one needs
to sample uniformly on the unit euclidean sphere. It can be done by simply renormalizing a
uniform sample of gaussian distributions, or more generally, by renormalizing any sample of
random variables with a radial density w.r.t. the Lebesgue measure. Throughout this section
we fix n ∈ N and consider the vector space Rn to be endowed with its euclidean and borelian
structures.

Proposition 81. Let X be a random variable from a probability space (Ω,F ,P) to Rn. As-
sume that X has a density f with respect to the Lebesgue measure λ on Rn and that f is
radial, that is there exist f̃ : R→ R+ such that for every x ∈ Rn we have

f(x) = f̃(‖x‖).

Now denote by πS the projection on the unit sphere S. Then the random variable Y := πS ◦X
from (Ω,F ,P) to the unit sphere is uniform in the sense that for every borelian A of the unit
sphere, we have that

P(Y ∈ A) =
σ(A)

σ(S)
,

where σ is the pushforward measure of the Lebesgue measure λ by the restriction to the unit
ball (without 0) of πS.

Remark 82. By [LG06, p. 85-86] the measure σ on (S,B(S)) defined in Proposition 81 is
finite and invariant by unitary transformations. Moreover it is unique in the sense that every
finite measure on (S,B(S)) invariant by unitary transformations is proportional to σ.

Proof. Fix A a borelian of the unit sphere. We have that

P(Y ∈ A) =

∫
Ω

1A(Y (ω))P(dω)

=

∫
Rn

1A(y)PY (dy)

= PπS◦X(Y ∈ A)

= PX(π−1
S (A))

=

∫
Rn

1π−1
S (A)(x)f(x) dx (X has density f)

=

∫ +∞

0

∫
S

1π−1
S (A)(rz)f(rz)rn−1σ(dz) dr ([LG06, Theorem 7.2.1])

=

∫ +∞

0
f̃(r)rn−1

∫
S

1π−1
S (A)(rz)σ(dz) dr (f radial)

=

∫ +∞

0
f̃(r)rn−1

∫
S

1A(z)σ(dz)︸ ︷︷ ︸
=σ(A)

dr

=
σ(A)

σ(S)

∫ +∞

0

∫
S
f̃(r)rn−1σ(dz) dr

=
σ(A)

σ(S)
. (f radial density)

Corollary 83. Let n ≥ 1 and X = (X1, X2, . . . , Xn) be an i.i.d. sampling of the standard
normal distribution. Then X

‖X‖ is an uniform random variable on the unit sphere.

Proof. By independance of (X1, X2, . . . , Xn), the random variable X has a radial density with
respect to the Lebesgue measure on Rn. Thus we can apply Proposition 81.

B Approximating by independent scenario trees

Given a (non-independant) scenario tree X = (X1, . . . , XT−1) one can build its marginal
process X ′ = (X ′1, . . . , X

′
T−1). The process X ′ is independent and one may wonder if X ′

minimizes dND(X, ·) for all independent scenario processes ? We give a counter example here.
Informally, the idea behind is that the Nested Distance penalizes processes with different
different flow of information.

Example 6 (The marginal process does not minimizes the Nested Distance). When p is big
enough, one can drop the case where the decision maker gets 2 after getting 1: this will yield
a better approximation than the marginal process. In fact we have that

• When p < 1
3 , then ND(W,W ′′) > ND(W,W ′).

• When p = 1
3 , then ND(W,W ′′) = ND(W,W ′′).

• When p > 1
3 , then ND(W,W ′′) < ND(W,W ′), for instance for p = 1

2 :

ND(W,W ′′) = 1 <
3

2
= ND(W,W ′).

0

0

1

0

0

2

0.
5

0.5

1

p

1−
p

0

0

1

0

2

0

2
0.
5

0.5

q

1− q

q

1−
q

0

0

1

0

0

0.
5

0.5

1

1

Figure 1: Left: initial scenario process X with 0 < p < 1. Middle: marginal process of
X ′, noted X ′ where q = 1

2(1 + p). Right: independant process Y such that if p > 1
3 , then

ND(X,Y) < ND(X,X ′).

C Tropical Dynamic Programming for POMDP

In this section, we present an on-going work to apply TDP on Partially Observed Markov
Decision Processes (POMDP).

C.1 Recalls on POMDP

Formally, a POMDP is described (in the finite settings) by a finite set of states X = {x1, ..., x|X|},
a finite set of actions U = {u1, ..., u|U|}, a finite set of observations O = {o1, ..., o|O|}, transition
probabilities of the Markov chain

P ut (xi, xj) = P{Xt+1 = xj |Xt = xi, Ut = u} , (34)

and conditional law of the observations

Qt+1(o |x, u) = P{Ot+1 = o |Xt+1 = x, Ut = u} , (35)

a real-valued cost function Lt(x, u) for any t ∈ J0, T − 1K, a final cost K(x) and an initial
probability law in the simplex of R|X| called the initial belief b0. We assume here that the
state space the control space and the observation space dimensions do not vary with time but
for the sake of clarity we will use the notation Xt to designate the state space at time t even
if it is equal to X and the same for control and observation states.

Under Markov assumptions, we can use at time t a probability distribution bt, whose name
is a reminder of belief, over current states as a sufficient statistic for the history of actions and
observations up to time t. The space of beliefs is the simplex of R|X|, denoted ∆|X|. The belief
dynamics, at time t, driven by action ut and observation ot+1 is given by by the equation

bt+1 = τt(bt, ut, ot+1) (36)

with bt+1 ∈ ∆|X| given by

bt+1(xt+1) = βt+1Qt+1(ot+1 |xt+1, ut)
(∑
xt∈Xt

b(xt)P
ut
t (xt, xt+1)

)
∀xt+1 ∈ Xt+1 , (37)

where βt+1 is a normalization constant to ensure that bt+1 ∈ ∆|X|, that is

β−1
t+1 =

∑
xt+1∈Xt+1

Qt+1(ot+1 |xt+1, ut)
(∑
xt∈Xt

P utt (xt, xt+1)b(xt)
)
.

To simplify the notation we introduce the (sub-stochastic) matrix defined as follows

M
ut,ot+1

t (xt, xt+1) = Qt+1(ot+1 |xt+1, ut)P
ut
t (xt, xt+1) ∀(xt, xt+1) ∈ Xt×Xt+1 ,

where we have
∑

ot+1

∑
xt+1

M
ut,ot+1

t (xt, xt+1) = 1. Using matrix notations, where beliefs are
represented by row vector and 1 is a column vector full of ones, we can rewrite the beliefs
dynamics as

τt(bt, ut, ot+1) =
btM

ut,ot+1

t

btM
ut,ot+1

t 1
∈ ∆|X| .

In general the object of the optimization problem is to generate a policy that minimizes
expected finite horizon cost for the controlled Markov chain {Xu

t }t∈N with transition matrix
P u. That is consider the minimization problem

J(b0) = min
U1,...,UT−1

E
[T−1∑
t=0

Lt(Xt, Ut) +K(XT)
∣∣∣ b0] . (38)

It is classical to derive a Bellman equation for the beliefs given by the bellman operators
for t ∈ J0, T − 1K

Bt(V) = inf
u∈U
But (V) , (39)

where for each u ∈ U and t ∈ J0, T − 1K, the Bellman operator But is defined by

But (V)(b) = bLut +
∑

o∈Ot+1

(bMu,o
t 1)V

(bMu,o
t

bMu,o
t 1

)
. (40)

where Lut is the column vector
(
Lut (xt)

)
xt∈Xt . Note that the mapping ot+1 ∈ Ot+1 7→

(btM
ut,ot+1

t 1) is a probability distribution on Ot+1 (
∑

o∈Ot+1
btM

ut,ot+1

t 1 = 1).
The Bellman operator can be also written as

But (V)(b) = bLut +
∑

b′∈∆|X|

P
u
t (b, b′)V (b′) , (41)

where, P
u

is a controlled Markov chain transition matrix in the belief space. Indeed

P
u
t (b, b′) =

{
(bMu,o

t 1) when b′ =
btM

u,o
t

btM
u,o
t 1

with o ∈ Ot+1 ,

0 if not ,
(42)

which is a classical Bellman equation of a controlled Markov chain but with a state space in
the belief space.

We conclude this section by the following lemma

Proposition 84. The value functions {Vt}t∈J0,T K solutions of the Bellman Equation

∀b ∈ R|X|+ VT (b) = bK and ∀t ∈ J0, T−1K Vt(b) = inf
u∈U
But (Vt+1)(b) , (43)

where the operator But is given by Equation 40 are such that V0(b0) is the optimal value of the
minimization problem given by Equation 38.

C.2 The Bellman operator defined in Equation (39) propagate Lipschitz
mappings

Proposition 85. For t ∈ J0, T−1K, assume that the mappings Lt(u, ·) satisfy ‖Lt(u, ·)‖∞ ≤
L1 for all u ∈ U and assume that a mapping K satisfy supx∈X |K(x)| = K < +∞. Then the
solution of the Bellman Equation (43) are Lipschitz mappings.

Proof.

• We consider the operator B̃ut defined for mappings Ṽ : R|X|+ → R by

B̃ut (Ṽ)(c) = cLut +
∑

o∈Ot+1

Ṽ
(
cMu,o

t

)
∀c ∈ R|X| , (44)

where Lut stands for the column vector (Lt(x, u))x∈Xt and we recall that beliefs are row vectors.
We consider {Ṽt}t∈J0,T K solution of the Bellman Equation

∀c ∈ R|X|+ ṼT (c) = cK and ∀t ∈ J0, T−1K Ṽt(c) = inf
u∈U
B̃ut (Ṽt+1)(c) . (45)

First, we straightforwardly obtain by backward induction that the value functions (Ṽt)t∈J0,T K

are homogeneous of degree 1. Second we prove that the operator B̃ut preserves Lispchitz

regularity. We proceed as follows. Consider c and c′ in R|X|+ and suppose that |Ṽ (c)− Ṽ (c′)| ≤
V‖c′ − c‖1. Then we have that

B̃ut (Ṽ)(c′)− B̃ut (Ṽ)(c) = (c′ − c)Lut +
∑

o∈Ot+1

Ṽ
(
c′Mu,o

t

)
− V

(
cMu,o

t

)
≤ L‖c′ − c‖1 +

∑
o∈Ot+1

V‖c′Mu,o
t − cMu,o

t ‖1

≤ L‖c′ − c‖1 + V
∑

o∈Ot+1

x′∈X

∣∣∣∑
x∈X

(
c′(x)− c(x)

)
Mu,o
t (x, x′)

∣∣∣
≤ L‖c′ − c‖1 + V

∑
x∈X
|c′(x)− c(x)|

∑
o∈Ot+1

x′∈X

Mu,o
t (x, x′)

≤ L‖c′ − c‖1 + V
∑
x∈X
|c′(x)− c(x)|

≤
(
L+ V

)
‖c′ − c‖1 .

As a pointwise minimum of Lipschitz mappings having the same Lipschitz constant is
Lipschitz, we obtain the same Lispchitz constant for the operators infu∈U B̃ut . Then, using
the fact that V T = K we obtain by backward induction that the Bellman value function Ṽt
is (L(T − t) +K)-Lipschitz for t ∈ J0, T K where K = ‖K(·)‖∞.

• We prove now an intermediate result to link the solutions of the Bellman Equation (45) to
the Bellman Equation (43). Suppose that Ṽ is 1-homogeneous and such that Ṽ (b) = V (b)
for all b ∈ ∆|X|. Then, We prove that B̃ut (Ṽ)(b) = But (V)(b) for all b ∈ ∆|X|. For b ∈ ∆|X|, we

1Since the state space if finite we identify mappings φ : X→ R with vectors in R|X|

successively have that

B̃ut (Ṽ)(b) = bLut +
∑

o∈Ot+1

Ṽ
(
bMu,o

t

)
(46)

= bLut +
∑

o∈Ot+1

(bMu,o
t 1)Ṽ

(bMu,o
t

bMu,o
t 1

)
(Ṽ is 1-homogeneous)

= bLut +
∑

o∈Ot+1

(bMu,o
t 1)V

(bMu,o
t

bMu,o
t 1

)
(Ṽ = V on ∆|X|)

= But (V)(b) . (47)

• Now we turn to solutions of Bellman Equation (43). Since ṼT (c) = cK for all c ∈ R|X|+ and

VT (b) = bK for all b ∈ ∆|X|, the two mappings VT and ṼT coincide on the simplex of dimension

|X|. Then gathering the previous steps we obtain that Vt and Ṽt coincide also on the simplex
of dimension |X| for all t ∈ J0, T K. Finally, for all t ∈ J0, T K Ṽt being (L(T − t) +K)-Lipschitz
we obtain the same result for Vt.

C.3 Value of Bt(Vt+1) when Vt+1 = minα∈Γt+1 〈α , b〉

Assume that Vt+1 : b 7→ minα∈Γt+1 〈α , b〉 where Γt+1 ⊂ R|X|. Then we obtain that

Bt(Vt+1)(b) = min
u∈Ut

(
bLut +

∑
o∈Ot+1

(btM
u,o
t 1)Vt+1

(bMu,o
t

bMu,o
t 1

))
(48)

= min
u∈Ut

(
bLut +

∑
o∈Ot+1

(bMu,o
t 1) min

α∈Γt+1

(bMu,o
t α

bMu,o
t 1

))
(49)

= min
u∈Ut

(
bLut +

∑
o∈Ot+1

bMu,o
t α](u, o)

)
(with α](u, o) = arg minα∈Γt+1

bMu,o
t α

bMu,o
t 1

)

= min
u∈Ut

b
(
Lut +

∑
o∈Ot+1

Mu,o
t α](u, o)

)
(50)

= min
α∈Γt
〈α , b〉 , (51)

with Γt =
{
Lut +

∑
o∈Ot+1

Mu,o
t α](u, o)

∣∣u ∈ Ut andα](u, o) = arg minα∈Γt+1

bMu,o
t α

bMu,o
t 1

}
. We there-

fore obtain that the Bellman value function at time t has the same form as the Bellman value
function at time t+ 1.

We are in a context where the Bellman function that is to to be computed is polyhedral
concave with a huge polyhedron. It is thus tempting to use our algorithm with polyhedral
concave upper approximations and sup of quadratic or Lipschitz mappings as lower approxi-
mations.

The Problem-child trajectory technique is used in POMDP algorithms as an heuristic but
without a convergence proof as far as we have investigated.

C.4 A lower bound of Bt(Vt+1)

We consider a special case where Vt+1 : X → R is given by Vt+1(b) =
〈
b , V̂t+1

〉
and we

compute Bt(Vt+1) as follows

Bt(Vt+1)(b) = min
u∈Ut

(
bLut +

∑
o∈Ot+1

bMu,o
t V̂t+1

)
= min

u∈Ut

(
bLut +

∑
o∈Ot+1,x∈Xt,x′∈Xt+1

Qt+1(o |x′, u)P ut (x, x′)b(x)V̂t+1(x′)
)

= min
u∈Ut

(
bLut +

∑
x∈Xt,x′∈Xt+1

P ut (x, x′)b(x)V̂t+1(x′)
)

(
∑

oQt+1(o |x′, u) = 1)

≥
∑
x∈Xt

b(x) min
u∈Ut

(
Lt(u, x) +

∑
x′∈Xt+1

P ut (x, x′)V̂t+1(x′)
)

=
∑
x∈Xt

b(x)V̂t(x) = bV̂t ,

with
V̂t(x) = min

u∈Ut

(
Lt(u, x) +

∑
x′∈Xt+1

P ut (x, x′)V̂t+1(x′)
)
. (52)

Using the fact that at time T we have that VT =
〈
b , V̂T

〉
with V̂T = K we obtain that for all

t ∈ J0, T K Vt ≥
〈
b , V̂t

〉
where V̂t is the Value function of the fully observed Bellman equation

associated to the POMDP.

Bibliography

[AB06] C. D. Aliprantis & K. C. Border – Infinite Dimensional Analysis, Springer-
Verlag Berlin Heidelberg, New York, 2006 (English).

[ACd19] S. Ahmed, F. G. Cabral & B. F. P. da Costa – “Stochastic Lipschitz
Dynamic Programming”, arXiv:1905.02290 [math] (2019), p. 35.

[ACT18] M. Akian, J.-P. Chancelier & B. Tran – “A stochastic algorithm for de-
terministic multistage optimization problems”, arXiv:1810.12870 [math] (2018),
p. 34.

[AE84] J. P. Aubin & I. Ekeland – Applied nonlinear analysis: Jean-Pierre Aubin
and Ivar Ekeland, Pure and Applied Mathematics: A Wiley-Interscience Series
of Texts, Monographs, and Tracts, Wiley, New York, 1984.

[ANR17] J. Altschuler, J. Niles-Weed & P. Rigollet – “Near-linear time approxi-
mation algorithms for optimal transport via Sinkhorn iteration”, in Advances in
Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett, éds.), Curran Associates,
Inc., 2017, p. 1964–1974.

[BC89] D. P. Bertsekas & D. A. Castanon – “The auction algorithm for the trans-
portation problem”, Annals of Operations Research 20 (1989), no. 1, p. 67–96
(en).

[BCC+15] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna & G. Peyré – “It-
erative Bregman Projections for Regularized Transportation Problems”, SIAM
Journal on Scientific Computing 37 (2015), no. 2, p. A1111–A1138 (en).

[BDZ18] R. Baucke, A. Downward & G. Zakeri – “A deterministic algorithm for
solving stochastic minimax dynamic programmes”, Preprint, available on Opti-
mization Online (2018), p. 36 (en).

[Bel54] R. Bellman – “The theory of dynamic programming”, Bulletin of the American
Mathematical Society 60 (1954), no. 6, p. 503–515 (EN).

[Ber16] D. P. Bertsekas – Dynamic programming and optimal control, fourth éd.,
Athena Scientific Optimization and Computation Series, vol. 1, Athena Scientific,
Belmont, Mass, 2016 (eng).

[Ber19] D. P. Bertsekas – Reinforcement learning and optimal control, Athena Scien-
tific, 2019 (English).

[BFFd20] F. Beltrán, E. C. Finardi, G. M. Fredo & W. de Oliveira – “Improving
the performance of the stochastic dual dynamic programming algorithm using
Chebyshev centers”, Optimization and Engineering (2020) (en).

[BG01] A. Bourass & E. Giner – “Kuhn-Tucker Conditions and Integral Functionals”,
Journal of Convex Analysis 8 (2001), no. 2, p. 21 (en).

[Bir57] G. Birkhoff – “Extensions of Jentzsch’s Theorem”, Transactions of the Amer-
ican Mathematical Society 85 (1957), no. 1, p. 219.

[BL06] J. Borwein & A. Lewis – Convex Analysis and Nonlinear Optimization, CMS
Books in Mathematics, Springer New York, New York, NY, 2006.

[BP12] M. Briane & G. Pagès – Analyse théorie de l’intégration: convolution et trans-
formée de Fourier : cours & exercices corrigés, Vuibert, Paris, 2012 (French).

[BS96] D. P. Bertsekas & S. E. Shreve – Stochastic optimal control: The discrete
time case, Optimization and Neural Computation Series, Athena Scientific, Bel-
mont, Mass, 1996.

[CCCDL15] P. Carpentier, J.-P. Chancelier, G. Cohen & M. De Lara – Stochastic
Multi-Stage Optimization, Probability Theory and Stochastic Modelling, vol. 75,
Springer International Publishing, Cham, 2015.

[Cia89] P. G. Ciarlet – Introduction to Numerical Linear Algebra and Optimisation:,
first éd., Cambridge University Press, 1989.

[Cut13] M. Cuturi – “Sinkhorn distances: Lightspeed computation of optimal trans-
port”, in Advances in Neural Information Processing Systems 26 (C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger, éds.), Cur-
ran Associates, Inc., 2013, p. 2292–2300.

[DHL17] I. Dunning, J. Huchette & M. Lubin – “JuMP: A Modeling Language for
Mathematical Optimization”, SIAM Review 59 (2017), no. 2, p. 295–320 (en).

[Dre02] S. Dreyfus – “Richard Bellman on the Birth of Dynamic Programming”, Op-
erations Research 50 (2002), no. 1, p. 48–51 (en).

[EK72] J. Edmonds & R. M. Karp – “Theoretical Improvements in Algorithmic Ef-
ficiency for Network Flow Problems”, Journal of the ACM 19 (1972), no. 2,
p. 248–264 (en).

[EKT13] N. El Karoui & X. Tan – “Capacities, Measurable Selection and Dynamic Pro-
gramming Part I: Abstract Framework”, arXiv:1310.3363 [math] (2013), p. 28.

[FL89] J. Franklin & J. Lorenz – “On the scaling of multidimensional matrices”,
Linear Algebra and its Applications 114-115 (1989), p. 717–735 (en).

[Gin09] E. Giner – “Necessary and Sufficient Conditions for the Interchange Between
Infimum and the Symbol of Integration”, Set-Valued and Variational Analysis
17 (2009), no. 4, p. 321–357 (en).

[GLP15] P. Girardeau, V. Leclere & A. B. Philpott – “On the Convergence of De-
composition Methods for Multistage Stochastic Convex Programs”, Mathematics
of Operations Research 40 (2015), no. 1, p. 130–145 (en).

[GR12] V. Guigues & W. Römisch – “Sampling-Based Decomposition Methods for
Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures”,
SIAM Journal on Optimization 22 (2012), no. 2, p. 286–312 (en).

[Gui14] V. Guigues – “SDDP for some interstage dependent risk-averse problems and
application to hydro-thermal planning”, Computational Optimization and Ap-
plications 57 (2014), no. 1, p. 167–203 (en).

[Hal50] P. R. Halmos – Measure Theory, Graduate Texts in Mathematics, vol. 18,
Springer New York, New York, NY, 1950.

[HR09] H. Heitsch & W. Römisch – “Scenario tree modeling for multistage stochastic
programs”, Mathematical Programming 118 (2009), no. 2, p. 371–406 (en).

[HRS06] H. Heitsch, W. Römisch & C. Strugarek – “Stability of Multistage
Stochastic Programs”, SIAM Journal on Optimization 17 (2006), no. 2, p. 511–
525 (en).

[HU77] F. Hiai & H. Umegaki – “Integrals, conditional expectations, and martin-
gales of multivalued functions”, Journal of Multivariate Analysis 7 (1977), no. 1,
p. 149–182 (en).

[HVKM20] M. Horejšová, S. Vitali, M. Kopa & V. Moriggia – “Evaluation of sce-
nario reduction algorithms with nested distance”, Computational Management
Science 17 (2020), no. 2, p. 241–275 (en).

[Kaw18] J. Kawabe – “Convergence theorems of the Choquet integral for three types
of convergence of measurable functions”, Josai Mathematical Monographs 11
(2018), p. 55–74 (en).

[KP15] R. M. Kovacevic & A. Pichler – “Tree approximation for discrete time
stochastic processes: A process distance approach”, Annals of Operations Re-
search 235 (2015), no. 1, p. 395–421 (en).

[KPP20] K. Kirui, A. Pichler & G. Pflug – “ScenTrees.jl: A Julia Package for
Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Pro-
gramming”, Journal of Open Source Software 5 (2020), no. 46, p. 1912.

[LCC+18] V. Leclère, P. Carpentier, J.-P. Chancelier, A. Lenoir & F. Pacaud
– “Exact converging bounds for Stochastic Dual Dynamic Programming via
Fenchel duality”, 2018.

[LG06] J.-F. Le Gall – Intégration, Probabilités et Processus Aléatoires, polycopié de
cours éd., Available online, 2006.

[LR95] P. Lancaster & L. Rodman – Algebraic Riccati equations, Oxford Science
Publications, Oxford University Press, 1995.

[McE07] W. M. McEneaney – “A Curse-of-Dimensionality-Free Numerical Method for
Solution of Certain HJB PDEs”, SIAM Journal on Control and Optimization
46 (2007), no. 4, p. 1239–1276 (en).

[Nev70] J. Neveu – Bases mathématiques du calcul des probabilités, 2 ed. éd., Masson
et Cie, 1970.

[PC19] G. Peyré & M. Cuturi – “Computational Optimal Transport”, Foundations
and Trends® in Machine Learning 11 (2019), no. 5-6, p. 355–206 (en).

[PdF13] A. Philpott, V. de Matos & E. Finardi – “On Solving Multistage Stochastic
Programs with Coherent Risk Measures”, Operations Research 61 (2013), no. 4,
p. 957–970 (en).

[Pfl09] G. C. Pflug – “Version-Independence and Nested Distributions in Multistage
Stochastic Optimization”, SIAM Journal on Optimization 20 (2009), no. 3,
p. 1406–1420 (en).

[PG08] A. Philpott & Z. Guan – “On the convergence of stochastic dual dynamic pro-
gramming and related methods”, Operations Research Letters 36 (2008), no. 4,
p. 450–455 (en).

[Pow11] W. B. Powell – Approximate dynamic programming: Solving the curses of
dimensionality, 2nd ed éd., Wiley Series in Probability and Statistics, Wiley,
Hoboken, N.J, 2011.

[PP91] M. V. F. Pereira & L. M. V. G. Pinto – “Multi-stage stochastic optimization
applied to energy planning”, Mathematical Programming 52 (1991), no. 1-3,
p. 359–375 (en).

[PP12] G. C. Pflug & A. Pichler – “A Distance For Multistage Stochastic Opti-
mization Models”, SIAM Journal on Optimization 22 (2012), no. 1, p. 1–23
(en).

[PP14] — , Multistage Stochastic Optimization, Springer Series in Operations Research
and Financial Engineering, Springer International Publishing, Cham, 2014.

[PS19] A. Pichler & R. Schlotter – “Martingale characterizations of risk-averse
stochastic optimization problems”, Mathematical Programming (2019), p. 27
(en).

[Qu13] Z. Qu – “Nonlinear Perron-Frobenius theory and max-plus numerical methods
for Hamilton-Jacobi equations”, Thèse, Ecole Polytechnique X, 2013.

[Qu14] — , “A max-plus based randomized algorithm for solving a class of HJB PDEs”,
in 53rd IEEE Conference on Decision and Control, 2014, p. 1575–1580.

[RW09] R. T. Rockafellar & R. J.-B. Wets – Variational analysis, corr. 3. print éd.,
Die Grundlehren Der Mathematischen Wissenschaften in Einzeldarstellungen,
no. 317, Springer, Dordrecht, 2009 (eng).

[Sch95] L. Schwartz – Analyse. 1: Théorie des ensembles et topologie, nouv. tirage éd.,
Collection Enseignement Des Sciences, no. 42, Hermann, Paris, 1995.

[SDR09] A. Shapiro, D. Dentcheva & A. P. Ruszczyński – Lectures on stochastic
programming: Modeling and theory, MPS-SIAM Series on Optimization, no. 9,
Society for Industrial and Applied Mathematics : Mathematical Programming
Society, Philadelphia, 2009.

[Sha11] A. Shapiro – “Analysis of stochastic dual dynamic programming method”,
European Journal of Operational Research 209 (2011), no. 1, p. 63–72 (en).

[Sin67] R. Sinkhorn – “Diagonal Equivalence to Matrices with Prescribed Row and
Column Sums”, The American Mathematical Monthly 74 (1967), no. 4, p. 402.

[Vil09] C. Villani – Optimal Transport, Grundlehren Der Mathematischen Wis-
senschaften, vol. 338, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[ZAS18] J. Zou, S. Ahmed & X. A. Sun – “Stochastic dual dynamic integer program-
ming”, Mathematical Programming (2018), p. 42 (en).

	I Introduction
	Version Française
	English version

	II Tropical Dynamic Programming
	Tropical Dynamic Programming: the deterministic case
	Introduction
	Notations and definitions
	Almost sure convergence on the set of accumulation points
	SDDP selection function: lower approximations in the linear-convex framework
	A min-plus selection function: upper approximations in the linear-quadratic framework with both continuous and discrete controls
	Numerical experiments on a toy example
	Algebraic Riccati Equation
	Smallest and greatest eigenvalues
	Homogenization

	Tropical Dynamic Programming: toward the stochastic case
	Introduction
	Tropical Dynamical Programming on Lipschitz MSP
	Asymptotic convergence of TDP along the problem-child trajectory
	Illustrations in the linear-polyhedral framework

	III Entropic regularization of the Nested Distance
	Entropic regularization of the Nested Distance
	Introduction: from the Wasserstein distance to the Nested Distance
	The Nested Distance and its entropic regularization
	Numerical experiment
	Proof of Theorem 58

	IV Interchange between integration and minimization
	Interchange between integration and minimization
	Introduction
	Minimization interchange theorem on posets
	Interchange between minimization and integration
	Conclusion and perspectives
	Extended Lebesgue and outer integrals

	Miscellaneous results
	Uniform sampling on the unit sphere
	Approximating by independent scenario trees
	Tropical Dynamic Programming for POMDP

