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Problemes d’optimisation stochastique multi-étapes

Dans cette these nous étudions les problemes d’optimisation stochastique multi-étapes dans
le cadre hasard-décision (le risque vient en premier, la décision en seconde). En partant d’un
état donné x(, un décideur observe le résultat wy d’une variable aléatoire W1, puis décide
d’un controéle ug qui induit un cotut 66”1 (x0,up) connu et le systéme évolue vers un état futur
x1 & partir d’'une dynamique connue : x1 = fi"(xo,up). Aprés avoir observé un nouveau
résultat aléatoire, le décideur prend une nouvelle décision basée sur ce constat qui induit
un cout connu, le systeme évolue alors vers un état futur, et ainsi de suite jusqu’a ce que
T décisions aient été prises. A I’étape finale, on impose des contraintes sur 1’état final xzp,
modélisées par une fonction de cout final ¢. Le décideur vise a minimiser le colit moyen de
ses décisions.
Les problemes d’optimisation stochastique multi-étapes (MSP) peuvent étre décrits formelle-

ment par le probleme d’optimisation suivant

T—1
min E Z cf"t“ (X, Up) + v (X) |
X0 =
s.t. Xo = g donné, vt € [0,T — 1], (1.1)

Xt+1 = ftVVH—l (Xt7Ut)7
J(Ut) - U(X07W17 ce 7Wt+1)7

ou (Wt>te[[1,T]] est une suite donnée de variables aléatoires indépendantes ayant chacune des
valeurs dans un ensemble mesurable (W, W).

Résolution par programmation dynamique

Une approche pour résoudre les problemes MSP est la programmation dynamique, voir par
exemple [Bel54, Ber16, CCCDL15, PP14, SDR09]. On note X = R" l’espace d’état et U = R™
l’espace des commandes pour certains entiers n, m € N. Les espaces X et les U sont tous deux
dotés de leurs structures euclidienne et borélienne. Nous définissons les opérateurs de Bellman
ponctuels B} et les opérateurs de Bellman moyennés B; pour chaque ¢ € [0,7 — 1]. Pour
chaque réalisation possible w € W1 du bruit Wy, pour chaque fonction ¢ : X — R
prenant des valeurs réelles étendues dans R = R U {00}, la fonction BY¥ (¢) (-) : X — R est
définie par

Vo e X, By (¢)(x) = min (¢ (z.w) + 6(f"(w,u)) ) -

L’opérateur de Bellman moyenné 5; est la moyenne de tous les opérateurs de Bellman
ponctuels par rapport a la loi de probabilité de Wi 1. C’est-a-dire que pour chaque fonction
¢ : X = R, on pose

W . w w
Vo e X, B () (@) =E[BY" (9) (@)] = E[min (¢ (@.w) + (£ () )| -
L’opérateur Bellman moyenné peut étre vu comme un opérateur a une étape qui calcule
en un état donné z, le cout de la meilleure (en moyenne) commande. Notez que dans le
cadre hasard-décision, la commande est prise apres observation du bruit. La programmation



dynamique stipule que pour résoudre les problemes MSP (4.1), il suffit de résoudre le systéme
suivant d’équations de Bellman,

Vi=1 et Vte[0,T—1],Vi =B (Vig1) . (1.2)

Pour résoudre les équations de Bellman, il faut calculer récursivement en remontant dans le
temps les fonctions valeur (de Bellman) V;. Enfin, la valeur Vj(xz¢) est la solution du probléme
a plusieurs étapes (1.1).

Vers une atténuation du fléau de la dimension

Une limitation de la programmation dynamique pour résoudre les probléemes d’optimisation en
plusieurs étapes est ce qu’on appelle le ”fléau de la dimension” [Bel54]. C’est-a-dire que lorsque
I’espace d’état X est un espace vectoriel, toute méthode basée sur une grille pour calculer les
fonctions valeur a une complexité qui est exponentielle en la dimension de ’espace d’état
X. Un algorithme populaire (voir [GLP15, Guil4, GR12, PP91, Shall, ZAS18]) qui vise a
atténuer le fléau de la dimension est I’algorithme Stochastic Dual Dynamic Programming (ou
SDDP en abrégé) introduit par Pereira et Pinto en 1991. En supposant que les fonctions de
cott ¢}’ sont convexes et les dynamiques f;* sont linéaires, les fonctions valeur définies par la
Programmation Dynamique (3.3) sont convexes [GLP15]. Sous ces hypotheses, I’algorithme
SDDP vise & construire des les approximations des fonctions valeur en tant que suprema de
fonctions affines et ne repose pas sur une discrétisation de I'espace d’état. L’un des principaux
inconvénients de I'algorithme SDDP est ’absence d’un critére d’arrét efficace : il construit des
sur-approximations des fonctions valeur mais les approximations par le dessus (ou internes)
sont obtenues par & un schéma de Monte-Carlo colteux et les critéres arréts associés ne sont
pas déterministes. Nous suivons une autre voie pour fournir des sur approximations comme
expliqué maintenant.

Dans [Qul3, Ch. 8] et [Qul4], Qu a congu un algorithme qui construit des approximations
par le dessus de la fonction valeur survenant dans le cadre de problemes de commande opti-
male en horizon infini et continu ou ’ensemble des commandes est a la fois discret et continu.
Ce travail a été inspiré par celui de McEneaney [McEQ7] en utilisant des techniques issues
de D’algebre tropicale, aussi appelées techniques max-plus ou min-plus. Supposons que pour
chaque controle discret, les fonctions de cotit sont quadratiques convexes et la dynamique est
linéaire en 1’état et le controle continu. Si I’ensemble des contréles discrets est fini, alors en
exploitant la linéarité min-plus des opérateurs de Bellman B;, on peut montrer que les fonc-
tions valeur peuvent étre calculées comme un infimum ponctuel fini de fonctions quadratiques
convexes :

Vi = inf
t S EF (Z)t 3

ou F} est un ensemble fini de formes quadratiques convexes. De plus, dans ce cadre les éléments
de F} peuvent étre explicitement calculés par le biais de I’Equation Algébrique Discrete de
Riccati (DARE [LR95]). Ainsi, une schéma d’approximation qui calcule une suite croissante
de sous-ensembles (Ftk) de F; donne un algorithme qui converge aprés un nombre fini
d’itérations

keN
& k = lnf (ﬁ =~ IIlf (;/) = L .
! bt Ef*tk ‘ Pl ! !

Cependant, la taille de ’ensemble des fonctions F; qui doivent étre calculées a une croissance
exponentielle en 7' — ¢t. Dans [Qul4], face a la croissance exponentielle de F;, Qu a introduit



un schéma aléatoire qui ajoute & F “le meilleur” élément (étant donné les approximations
actuelles) de F; en un point tiré uniformément sur la sphere de I'unité.

Apercgu de la these

Chaque chapitre de cette theése a été écrit comme un chapitre indépendant. Le lecteur peut
les lire indépendamment des autres.

1. Aux chapitres 3 et 4, nous construisons un algorithme général qui englobe a la fois
I’algorithme SDDP et une adaptation du travail de Qu & un cadre stochastique, a temps
discret et a horizon fini. Notre algorithme construit itérativement des approximations
des fonctions valeur sous forme de combinaisons max-plus ou min-plus linéaires. Ces
deux chapitres constituent le cceur de la these.

2. Le chapitre 5 est une contribution sur le calcul d’une distance entre processus stochas-
tiques appelée la Distance Imbriquée. Nous présentons une relaxation entropique de la
Distance Imbriquée qui peut étre calculée efficacement.

3. Dans le chapitre 6, nous donnons un théoreme général sur I’échange entre intégration
et minimisation. Il généralise notamment celui de Giner [Gin09] et celui de Rockafellar
and Wets [RW09].

Dans chacune des sections suivantes, nous présentons plus en détail chaque chapitre et sa
contribution.

Programmation dynamique tropicale : le cas déterministe

On s’est d’abord intéressé au cadre simplifié des problemes déterministes d’optimisation multi-
étapes,

~
L

( min)exﬂl a(ze, ur) + ¢ (2r)
z=(z0,....2T
UZ(UQ,...UT_l)GUT t

st. Vte[0,T—1], xty1 = fe(x, ur) et ko € X donné .

Il
o

Dans ce contexte déterministe, on a cherché a comprendre comment, a chaque pas de temps,
une combinaison linéaire max-plus ou min-plus de fonctions élémentaires pourrait converger
vers la fonction valeur. On présente un algorithme itératif qui ajoute a chaque itération
une fonction élémentaire a la combinaison linéaire max-plus ou min-plus courante. Cet algo-
rithme, appelé Programmation Dynamique Tropicale (TDP), peut étre vu comme une variante
tropicale des approximations parametriques utilisées en Programmation Dynamique Approx-
imative (voir [Ber19, Powl11]) ou les fonctions valeurs sont approchées par des combinaisons
linéaires de fonctions élémentaires.

L’algorithme TDP détermine une fonction élémentaire a rajouter en tirant aléatoirement
un point, dit de raffinement. De plus, sachant que les fonctions valeurs vérifient le systeme
d’équations de Bellman, on souhaiterait que les approximations générées par TDP vérifient
aussi ce systéme d’équations.



TDP exige deux propriétés sur les fonctions élémentaires ajoutées itérativement aux ap-
proximations courantes de V;, t < T'. La premiere propriété, locale, est appelée ezactitude de
la fonction élémentaire. FElle demande a ce que la fonction élémentaire ¢; ajoutée vérifie la
t-eme équation de Bellman au point de raffinement z € X:

bi(r) = By (VFt+1) ().

La seconde propriété, globale, est appelée validité de la fonction élémentaire. Celle-ci exige
que la fonction élémentaire ¢; ajoutée au temps ¢ soit toujours en dessous ou au dessus de
I'image par le t-eme opérateur de Bellman B; de ’approximation courante au temps t + 1,
i.e. en notant Vg, , une combinaison max-plus or min-plus linéaire de fonctions élémentaires
(approchant Vi41),

o(-) > Bt (Vi) (), (pour des combinaisons min-plus linéaires)

o(-) < Bt (Vi) (). (pour des combinaisons max-plus linéaires)

Ainsi, ne disposant que d’information exacte qu’en les points de raffinement, il est en
général impossible de garantir que de telles combinaisons linéaires min-plus ou max-plus
vérifient le systeme d’équations de Bellman. Toutefois, nous avons établi une condition suff-
isante portant sur la richesse des points de raffinement afin que, presque sturement, asympto-
tiquement les approximations générées par TDP vérifient un systéeme d’équations de Bellman
restreintes. Si les restrictions ne sont a leur tour pas trop contraignantes, alors il est possible
de conclure que toute suite de fonctions vérifiant un tel systéme d’équations est égale a la
suite de fonctions valeurs, en des points d’intéréts.

On obtient de cette facon le premier résultat de cette these qui est une condition suffisante
portant sur la richesse des points de raffinement, asymétrique entre combinaison linéaire min-
plus et max-plus, afin d’obtenir convergence presque sure asymptotique des approximations
générées par TDP vers la fonction valeur en des points d’intéréts.

On a ensuite illustré (voir Figure 1.1) ce résultat de convergence en appliquant I’algorithme
TDP pour générer des approximations min-plus des fonctions valeurs (au dessus des fonctions
valeurs), comme infima de formes quadratiques convexes. Parallelement on a aussi généré des
sous-approximations des fonctions valeurs comme suprema de fonctions affines. Les sur-
approximations adaptent aux problemes multi-étapes (discrets en temps) un algorithme du a
Zheng Qu ([Qul4d]). Les sous-approximations sont générées par 'algorithme Dual Dynamic
Programming (DDP), version déterministe d’un algorithme introduit par Pereira et Pinto en
1991, une fois retranscrit dans le cadre de TDP. Sur la Figure 1.1, on a représenté 1’écart
entre sur approximations et sous approximations le long des trajectoires optimales des sous
approximations courantes.

Programmation dynamique tropicale : vers le cas stochastique

Dans [BDZ18, PdF13], on étudie des schémas d’approximation ou les sous-approximations
sont données sous forme de suprema de fonctions affines et les sur-approximations sont des
fonctions polyhédrales. Dans ce chapitre 4, nous cherchons a étendre, avec TDP, I’approche
de [BDZ18, PdF13] en considérant plus généralement que les sous-approximations sont des
combinaisons linéaires max-plus de certaines fonction de base et les sur-approximations sont
des combinaisons linéaires min-plus de certaines autres fonctions de base. On va :
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Figure 1.1: Ecart en fonction du temps ¢ entre une adaptation de la méthode de Qu (infima de
quadratiques convexes) et une variante déterministe de SDDP (suprema de fonctions affines).
Cet écart est évalué le long des trajectoires optimales courantes de la variante déterministe

de SDDP.
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Figure 1.2: Approximations U-SDDP des fonctions valeurs. L’écart entre sur-approximation

(infimum de quadratiques, en rouge) et sous-approximations (supremum de droites, en bleu)
tend vers 0 le long d’une trajectoire spécifique d’états (en pointillées).
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Figure 1.3: Approximations V-SDDP des fonctions valeurs. L’écart entre sur-approximation
(infimum de fonctions “en forme de V”, en rouge) et sous-approximations (supremum de
droites, en bleu) tend vers 0 le long d’une trajectoire spécifique d’états (en pointillées).



1. Elargir le cadre déterministe du Chapitre 3 au cadre des MSP Lipschitz (voir la Sec-
tion 4.2).

2. S’assurer que les sur et sous approximations convergent vers la véritable fonction valeur
V} sur un ensemble de points communs, (voir la Section 4.3). Le résultat de la Section 4.3
se généralise a tout schéma d’approximation min-plus/max-plus le résultat de [BDZ18]
qui a été donné pour un variante de SDDP.

3. Donner explicitement plusieurs moyens numériquement efficaces de construire des sous
approximations inférieures des fonctions valeur V;, comme combinaisons min-plus et
max-plus linéaires de fonctions simples, (voir la Section 4.4).

Relaxation entropique de la Distance Imbriquée

states probabilities states probabilities

1 2 3 4 5 6 7 8 000 025 1 2 3 4 5 6 7 & 000 025
stage,time stage,time
Figure 1.4: Deux arbres de scenarios X et Y avec (en bleu & droite) une approximation
continue de I'histogramme des feuilles. Leur Distance Imbriquée (ND) est de NDo(X,Y) =
1.009 et sa relaxation entropique (END) est de END2(X,Y) = 1.011, voir Section 5.3. Ces
arbres ont été générés via le package Julia ScenTrees.jl [KPP20)].

Dans le cadre de la programmation stochastique multi-étapes (MSP), Georg Pflug a intro-
duit en 2009 [Pfl09] la Distance Imbriquée, qui est un raffinement de la distance de Wasserstein
pour tenir compte de la proximité dans les filtrations entre deux processus stochastiques a
temps discret. Selon la dénomination habituelle dans la communauté de la programmation
stochastique (voir [HR09, PP14, SDR09]), nous désignons également par arbre de scénarios
un processus stochastique a temps discret qui est également discret et fini en espace.

Il existe de nombreuses distances différentes entre les arbres de scénarios. Cependant,
peu d’entre elles sont adaptées aux besoins des MSP : on voudrait garantir la continuité de
la fonction de valeur d’'une MSP par rapport aux arbres de scénarios, ¢.e. si deux arbres de
scénarios sont arbitrairement proches I'un de 'autre, alors la valeur de la MSP associée (avec
la méme structure sauf pour les arbres de scénarios) est également arbitrairement proche.

Une distance entre les arbres de scénarios est la distance de Wasserstein. Intuitivement, la
distance de Wasserstein entre deux probabilités p et ¢ (pour I'arbre de scénarios (Xt)teﬂl,T]7



considérer la loi de probabilité du T-uplet (X1,...,X7)) correspond au cout optimal de la
division et du transport de la masse de I'un a 'autre. On écrit 1, k¥ € N, pour le vecteur
(1;...;1) de R¥.

Définition 1 (Transport optimal discret et distances de Wasserstein). Soit n, m deuz entiers
et X = {x1,22,...,2,} et Y = {y1,...,ym} deur ensembles finis inclus dans Rt, t > 1.
Notons ¢ = (¢;5)i,; une matrice n x m positive appelée matrice de cott. Le cott de transport
optimal entre deux mesures de probabilité p et q sur respectivement X et Y, est la valeur du
probleme d’optimisation suivant

OT(p,q;¢) = min E Cijmij 8.t Tl =p et 71, =q. (1.4)
TI'ERixm 1<i<n
1<j<m

De plus, on définit la fonction de cotut ¢ par c(x;,y;) = cij pour chaque indice i,j. Lorsque
pour un certain réel r > 1, la fonction de coit c est égale a d” avec d une métrique sur X x Y,
alors OT(p, ¢; dr)l/r est la r-eme distance de Wasserstein entre p et q, notée Wy(p, q).

Nous nous référons aux ouvrages [PC19, Vil09] pour une présentation du transport opti-
mal.

Dans les problemes d’optimisation a deux étapes, sous certaines hypotheses de régularité,
la fonction valeur d’'une MSP & deux niveaux est lipschitzienne par rapport & la distance de
Wasserstein, voir [PP14, Chapitre 6]. Cependant, la fonction valeur d’'un MSP avec plus de 2
d’étapes n’est pas lipschitzienne par rapport a la distance de Wasserstein, comme le montre
I’Exemple 1, ot nous montrons que pour un MSP a 3 étapes, deux arbres de scénarios peuvent
étre arbitrairement proches I'un de 'autre dans la métrique de Wasserstein, mais I’écart entre
les valeurs des MSPs associés est arbitrairement grand.

Exemple 1 (La distance de Wasserstein n’est pas adaptée aux MSPs). Dans cet ezemple,
nous montrons que la distance 1-Wasserstein n’est pas pertinente pour évaluer la distance
entre les arbres de scénarios impliqués dans une MSP : une petite distance de Wasserstein
arbitraire entre deux arbres de scénarios peut étre associé a un €cart arbitrairement grand
entre les valeurs des MSPs associés.

Etant donné un arbre de scénario Z (processus stochastique discret en temps et en espace)
équipé de sa filtration naturelle (]:t)te[[o’z]]l, on voudrait acheter au cotl moyen minimal un
unique objet

2 utg € {01 1} )
v(Z) = m&n E Z Zyag | | ug est Fy -mesurable,
t=0 Z?:O ug = 1,

Soit A > € > 0, sur la Figure 1.5 on a représenté deux arbres de scénarios modélisant
le priz d’un objet pendant 3 pas de temps. Leurs filtrations naturelles sont différentes. Intu-
itivement, sur l’arbre de scénario de gauche, le décideur observe une variation de € du prix a
t =1 et sait qu’elle entrainera une forte hausse ou une forte baisse du prix a t = 2. Alors que
dans Uarbre de scénario de droite, le décideur ne reconnait pas cette information en t = 1.
Ezemple inspiré de [HRS06].

D’une part, nous avons la prorimité dans la métrique de 1-Wasserstein W comme

W(X,Y) = 2.

Yt € [0,2], Fe = 0(Zo, ..., Zs).



Figure 1.5: Gauche : arbre de scénarios X := (Xj, X1, X3). Droite : arbre de scénarios
Y = (Yo,Y1,Y2).

En revanche, les valeurs optimales sont v(X) = A;“ et v(Y) = A. Nous avons donc un écart
de valeurs arbitrairement important
A—e
X)—vY) = — .
(%) o) = 25 o oo

En 2012, Pflug et Pichler ont prouvé dans [PP12] que la Distance Imbriquée introduite
précédemment par Pflug est ’adaptation correcte de la distance de Wasserstein pour la pro-
grammation stochastique multi-étapes : sous des hypotheses de régularité, la fonction valeur
d’un MSP est continue de Lipschitz par rapport & la Distance Imbriquée entre les arbres de
scénarios. Depuis lors, elle a été utilisée comme outil pour quantifier la qualité des arbres
d’approximation : étant donné un arbre de scénario initial, on aimerait avoir un bon arbre
d’approximation avec moins de noeuds. La Distance Imbriquée quantifie la qualité d’un arbre
approximatif et le plan de transport optimal associé permet également de réduire les arbres
de scénario, voir par exemple [KP15, HVKM20).

La Distance Imbriquée est généralement calculée par un algorithme rétrograde dans le
temps (introduit dans [PP12], voir aussi [PS19, Definition 15]) qui revient a résoudre un
nombre exponentiel (en 7') de problémes de transport optimal en l’absence de structure
(indépendence) sur le processus de bruit. Il décompose dans le temps le calcul de la Dis-
tance Imbriquée comme le calcul dynamique d’un nombre fini de probléemes de transport
optimaux entre des probabilités conditionnelles avec des cotlits mis & jour en amont.

Le transport optimal entre des probabilités discretes de taille m peut étre résolu par
I’algorithme Hongrois avec une complexité de O(n?) (voir [EK72]) ou avec I’algorithme d’encheres
avec une complexité d’environ O(n3logn), voir [BC89].

En ajoutant un terme entropique a la formulation primale du probléme de transport
optimal associé au calcul d’un cotit de Wasserstein, un schéma de projection alternatif donne
lalgorithme de Sinkhorn, introduit en Transport Optimal dans [Cutl3]. En sélectionnant
soigneusement le terme de relaxation entropique, la complexité de I'algorithme de Sinkhorn
est d’environ O(n?).

En relaxant chaque probléeme de transport optimal impliqué dans le calcul récursif de la
Distance Imbriquée, on obtient une relaxation entropique de la Distance Imbriquée.

Le chapitre est organisé comme suit :

e Dans la section 5.2, nous définissons d’abord formellement la Distance Imbriquée comme
la valeur d’un systéeme dynamique de problemes de transport optimal entre des proba-
bilités conditionnelles avec des cotts variables. Ensuite, nous présentons une relaxation



entropique du probléme de transport optimal discret (1.4) et comment ce probleme de
transport optimal relaché peut étre résolu efficacement par ’algorithme de Sinkhorn.
Enfin, nous définissons une régularisation entropique naturelle de la Distance Imbriquée
en relaxant chaque probleme de transport optimal impliqué dans sa formulation dy-
namique.

e Dans la section 5.3, nous terminons ce chapitre 5 par une expérience numérique montrant
a la fois I'accélération de notre approche du calcul des Distance Imbriquées et sa précision
relative.

Echange entre intégration et minimisation

La question de I’échange entre intégration et minimisation est une question importante en
optimisation stochastique (ou 'intégration correspond & une espérance mathématique). Etant

; = .
donné un espace de mesure (Q, F, ,u) et un sous-ensemble U C R de fonctions, on se demande
quand I’égalité suivante est vraie

inf dp = inf udpy . 1.5
it [ vt = | g uas s

Le cadre mathématique et les conditions pour obtenir I’équation (1.5) peuvent étre trouvés
dans [BG01, EKT13, Gin09, RW09, SDR09]. Nous nous concentrons sur [Gin09] et [RW09].

Pour commencer, dans 1’équation (1.5), il convient de préciser dans quel sens l'intégrale [
doit étre comprise et dans quel sens les infima inf,ey u ou inf,epy [ wdp sont définis. Ensuite,
lorsque le sous-ensemble U sur lequel la minimisation est effectuée est un sous-ensemble de
LY(Q,F, u;R) et quand I'intégrale | est l'intégrale habituelle de Lebesgue, Giner a obtenu
dans [Gin09] une condition nécessaire et suffisante pour obtenir ’Equation (1.5). Dans ce
cadre, I'espace L'(Q, T, u;R) est doté de I'ordre habituel p-presque partout, et I'infimum est
inf ey u = essinf, ey u, qui est bien défini par [Nev70, Proposition I1.4.1]. Compte tenu d’un
sous-ensemble U € L*(Q, F, u; R) de fonctions, Giner établit que I'Equation (1.5) est vraie si
et seulement si, pour chaque famille finie uq,...,u, de U, nous avons

uelU 1<i<n

inf/(u— inf w;)dp <0.
Q

Cependant, la vérification de la condition ci-dessus n’est pas une tache facile, car elle dépend
conjointement de l'intégrale [ et du sous-ensemble U. De plus, on peut se demander si on
peut encore avoir ’Equation (1.5) pour des sous-ensembles U qui sont intégrables dans un
sens plus faible que Lebesgue intégrable.

Lorsqu’un sous-ensemble de fonctions U € L°(Q, F, u; R) est I'image d’un ensemble X par
une application f : L%(Q,F, u;R) — L°(Q,F, u;R), d.e. U = f(X), un célebre théoreme de
Rockafellar et Wets ([RW09, Theorem 14.60]) donne une condition sur ’application f et une
condition sur I’ensemble X de sorte que I’équation (1.5) soit vérifiée. Dans ce cas, on s’intéresse
a I’échange entre minimisation sur des sous-ensembles U de L°(Q, F, i; R) avec I'intégrale ex-
terne, une généralisation de I'intégrale de Lebesgue a L°(Q, F, u; R). Nous étudions l'intégrale
externe et ses propriétés dans I’Annexe 6.5.

Le chapitre est organisé comme suit. La section 6.2 est consacré a un théoreme d’échange
énoncé sur des ensembles partiellement ordonnés. Plus précisément, nous présentons un



théoreme d’échange abstrait de la forme

xé\XCI)(x) = (I)(xé\X z) . (1.6)
Une fois supposé des conditions sur 'application ® : X — Y et des propriétés structurelles
sur les ensembles X, Y, nous fournissons une condition nécessaire et suffisante pour que
I'Equation (1.6) soit vraie. Notre résultat s’inscrit dans la lignée de celui de Giner, car notre
condition nécessaire et suffisante utilise a la fois la cartographie ® et 'ensemble X.

La section 6.3 aborde la question d’origine sur I’échange entre minimisation et intégration
en utilisant les résultats de la section 6.2.

Nous espérons que notre théoreme d’échange abstrait ou que son application a 'intégrale
de Lebesgue étendue donne un apercu de la maniere dont on peut obtenir ’échange entre
I'intégration et minimisation comme dans I’équation (1.5), ainsi que sur la maniére dont nous
pouvons aller au-dela du cas intégral (mesures de risque en optimisation stochastique).






CHAPTER 2

English version




Multistage Stochastic optimization Problems

In this thesis we study multistage stochastic optimal control problems in the hazard-decision
framework (hazard comes first, decision second). Starting from a given state xg, a decision
maker observes the outcome w; of a random variable W1, then decides on a control ug which
induces a known cost ¢ (zo,up) and the system evolves to a future state =1 from a known
dynamic: z1 = fy"'(zo,up). Having observed a new random outcome, the decision maker
makes a new decision based on this observation which induces a known cost, then the system
evolves to a known future state, and so on until 7" decisions have been made. At the last step,
there are constraints on the final state xp which are modeled by a final cost function . The
decision maker aims to minimize the average cost of her decisions.

Multistage Stochastic optimization Problems (MSP) can be formally described by the
following optimization problem

T-1
min B | YV (Xe, U) + ¢(X1) |
X0 =
s.t. Xo = xg given,Vt € [0,T — 1], (2.1)

X1 = f o (Xe, Up),
O'(Ut) C O'(X(),Wl, - ,Wt+1),

where (Wt)te[[l,T] is a given sequence of independent random variables each with values in
some measurable set (W, W;).

Dynamic Programming

One approach to solving MSP problems is by dynamic programming, see for example [Bel54,
Berl6, CCCDL15, PP14, SDR09]. For some integers n,m € N, denote by X = R" the
state space and U = R™ the control space. Both X and U are endowed with their euclidean
structure and borelian structure. We define the pointwise Bellman operators B’ and the
average Bellman operators 9B, for every t € [0, 7 — 1]. For each possible realization w € Wy,
of the noise Wy 1, for every function ¢ : X — R taking extended real values in R = RU{4o00},
the function By (¢) (*) : X — R is defined by

Va € X, By (¢)(x) = min (e (z.w) + 6(f"(@,u)) ) -

Now, the average Bellman operator 9B; is the mean of all the pointwise Bellman operators
with respect to the probability law of W¢1. That is, for every ¢ : X — R, we have that

Vo e X, B () (@) =E[BY (9) ()] = E[min (¢ (@.w) + (£ (2,u) )| -
The average Bellman operator can be seen as a one stage operator which computes the value
of applying the best (average) control at a given state x. Note that in the hazard-decision
framework assumed here, the control is taken after observing the noise. Now, the Dynamic
Programming approach states that in order to solve MSP Problems (2.1), it suffices to solve
the following system of Bellman equations (2.2),

Vr=+ and Vte[0,T—1],Vi =B (Vi+1) . (2.2)



Solving the Bellman equations means computing recursively backward in time the (Bellman,)
value functions V;. Finally, the value Vj(xo) is the solution of the multistage Problem (2.1).

Damping the curse of dimensionnality

One issue of using Dynamic Programming to solve multistage optimization problems is the
so-called curse of dimensionality [Bel54]. That is, when the state space X is a vector space,
grid-based methods to compute the value functions have a complexity which is exponential
in the dimension of the state space X. One popular algorithm (see [GLP15, Guil4, GR12,
PP91, Shall, ZAS18]) that aims to dampen the curse of dimensionality is the Stochastic Dual
Dynamic Programming algorithm (or SDDP for short) introduced by Pereira and Pinto in
1991. Assuming that the cost functions ¢}’ are convex and the dynamics f;* are linear, the
value functions defined in the Dynamic Programming formulation (3.3) are convex [GLP15].
Under these assumptions, the SDDP algorithm aims to build lower (or outer) approximations
of the value functions as suprema of affine functions and does not rely on a discretization
of the state space. One of the main drawback of the SDDP algorithm is the lack of an
efficient stopping criterion: it builds lower approximations of the value functions but upper
(or inner) approximations are built through a Monte-Carlo scheme that is costly and the
associated stopping criteria is not deterministic. We follow another path to provide upper
approximations as explained now.

In [Qul3, Ch. 8] and [Qul4], Qu devised an algorithm which builds upper approximations
of a Bellman value function arising in an infinite horizon and continuous time framework
where the set of controls is both discrete and continuous. This work was inspired by the work
of McEneaney [McE07] using techniques coming from tropical algebra, also called max-plus
or min-plus techniques. Assume that for each fixed discrete control the cost functions are
convex quadratic and the dynamics are linear in both the state and the continuous control.
If the set of discrete controls is finite, then exploiting the min-plus linearity of the Bellman
operators B, one can show that the value functions can be computed as a finite pointwise
infimum of convex quadratic functions:

Vi = inf
t SEF (Z)t 3

where F; is a finite set of convex quadratic forms. Moreover, in this framework, the el-
ements of F; can be explicitly computed through the Discrete Algebraic Riccati Equation
(DARE [LR95]). Thus, an approximation scheme that computes an increasing sequence of
subsets (Ftk)k N of F}; yields an algorithm that converges after a finite number of improve-
ments

VE .= inf ¢~ inf ¢ = V.
t ek ol oy bt t

However, the size of the set of functions F; that need to be computed is growing exponentially
with 7' — ¢. In [Qul4], in order to address the exponential growth of F;, Qu introduced a
probabilistic scheme that adds to FJ¥ the “best” (given the current approximations) element
of F} at some point drawn on the unit sphere.



Outline of the thesis

Every chapter of this thesis was written as an independent chapter. The reader may read
them independently of the others.

1. In Chapter 3 and Chapter 4, we build a general algorithm that encompasses both
SDDP algorithm and an adaptation of Qu’s work to a stochastic, discrete time and
finite horizon framework. TDP iteratively builds approximations of the value functions
as max-plus or min-plus linear combinations. These two chapters form the core of the
thesis.

2. In the second part Chapter 5 is a contribution about the Nested Distance: we present
an entropic relaxation of the Nested Distance which can be computed efficiently.

3. In the third Chapter 6 we give a general theorem about the interchange between inte-
gration and minimization. It notably generalizes the one of Giner [Gin09] and the one
from Rockafellar and Wets [RW09].

In each of the following sections, we give a presentation of each chapter and its contribu-
tion.

Tropical Dynamic Programming: the deterministic case

First, we focus on the simplified framework of deterministic multistage optimisation problems,

~
L

min ce(xe, ue) + Y(ar)
a=(zo,...,er)€XTT1 ¥

u=(ug,...ur_1)€UT

st. vVt e [0,T—1], =xty1 = fe(xs, ur) and zg € X given .

Il
=)

In this deterministic context, we tried to understand how, at each time step, a linear max-plus
or min-plus combination of elementary functions could converge towards the value function.
An iterative algorithm is presented which adds at each iteration an elementary function
to the current max-plus or min-plus linear combination. This algorithm, called Tropical
Dynamic Programming (TDP), can be seen as a tropical variant of parametric approximations
used in Adaptive Dynamic Programming (see [Ber19, Pow11]) where the value functions are
approximated by linear combinations of basis functions.

TDP determines an elementary function to be added by randomly drawing a point, called
a trial point. Moreover, since the value functions verify Bellman’s system of equations, we
would like that the approximations generated by TDP verify this system of equations as well.

TDP requires two properties on the elementary function ¢, added iteratively to the current
approximation of V;, t < T. The first property, local, is called tightness of the elementary
function. It requires that the added elementary function verifies the ¢-th Bellman equation
at the trial point x € X:

¢t(x) =B, (VFt+1) (.T) .

The second property, global, is called the validity of the elementary function. It requires that
the elementary function ¢; added at time t is always below or above the image by the t-th
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Figure 2.1: Gap w.r.t. the time ¢ between an adaptation of Qu’s algorithm (infima of
convex quadratics) and a deterministic variant of SDDP (suprema of affine cuts). The gap is
evaluated along current optimal trajectories of deterministic SDDP.

Bellman operator B; of the current approximation at time ¢ + 1, i.e. denoting by Vg, a
max-plus or min-plus linear combinations of basic functions (approximating Vi41),

() > By (VFt +1) (), (for min-plus linear combinations)
o(-) < By (VFt +1) (). (for max-plus linear combinations)

Thus, having exact information about this system only at the trial points, it is generally
impossible to guarantee that such min-plus or max-plus linear combinations verify the Bellman
system of equations. However, we have established a sufficient condition regarding the richness
of the trial points such that, almost surely, asymptotically the approximations generated by
TDP verify a restricted Bellman system of equations. If the restrictions are in turn not too
restrictive, then it is possible to conclude that any sequence of functions verifying such a
system of equations is equal to the sequence of value functions at points of interest.

This gives us the first result of this thesis, Theorem 15 which is a sufficient condition
concerning the richness of the trial points, asymmetric between linear min-plus and max-plus
combinations, in order to obtain an almost sure asymptotic convergence of the approximations
generated by TDP towards the value function at points of interest.

This convergence result was then illustrated (see Figure 2.1) by applying the TDP algo-
rithm to generate min-plus approximations of the value functions (above the value functions),
as infima of convex quadratic shapes. At the same time, sub-approximations of the value func-
tions were also generated as suprema of affine functions. The upper approximations adapt
to multistage problems an algorithm from Zheng Qu ([Qul4]). Lower approximations are
generated by the Dual Dynamic Programming (DDP) algorithm, deterministic version of an
algorithm introduced by Pereira and Pinto in 1991, once transcribed into TDP. In Figure 1.1,
the difference between upper and lower approximations along the optimal trajectories of the
current lower approximations has been represented.

Tropical Dynamic Programming: toward the stochastic case

In [BDZ18, PdF13], is studied approximation schemes where lower approximations are given
as a suprema of affine functions and upper approximations are given as a polyhedral function.
We aim in this chapter 4 to extend, with TDP, the approach of [BDZ18, PdF13] considering
more generally that lower approximations are max-plus linear combinations of some basic
functions and upper approximations are min-plus linear combinations of some other basic
functions. In this chapter, we will:
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Figure 2.2: U-SDDP approximations of the value functions. We observe that the gap between
upper approximations (infimum of quadratics, in red) and lower approximations (supremum
of cuts, in red) vanishes along a specific trajectory of states (in dashed lines).
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Figure 2.3: V-SDDP approximations of the value functions. We observe that the gap between
upper approximations (infimum of “V-shaped functions”, in red) and lower approximations
(supremum of cuts, in blue) vanishes along a specific trajectory of states (in dashed lines).

1. Extend the deterministic framework of Chapter 3 to Lipschitz MSP defined in Equa-
tion (4.1) and introduce TDP, (see Section 4.2). The noises are independent and each
with finite support.

2. Ensure that upper and lower approximations converge to the true value functions on a
common set of points, see Section 4.3. The main result of (Section 4.3) generalizes to
any min-plus/max-plus approximation scheme the result of [BDZ18] which was stated
for a variant of SDDP.

3. Explicitly give several numerically efficient ways to build upper and lower approxima-
tions of the value functions, as min-plus and max-plus linear combinations of some
simple functions, see (Section 4.4).

Entropic relaxation of the Nested Distance

In Multistage Stochastic Programming (MSP), Georg Pflug introduced in 2009 [Pfl09] the
Nested Distance, which is a refinement of the Wasserstein distance to account proximity in
the filtrations between two discrete time stochastic processes. Following usual denomination
in the Stochastic Programming community (see [HR09, PP14, SDR09]), we also denote by
scenario tree a discrete time stochastic process which is also discrete and finite in space.
There are many different distances between scenario trees. However, few are suited for
MSP purposes: one would like to guarantee continuity of the value function of a MSP with
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Figure 2.4: Two scenario trees X and Y with (in blue, right) a continuous probability ap-
proximation of the histogram the leaves. Their Nested Distance is ND2(X,Y") = 1.009 and its

entropic relaxation is ENDo(X,Y)) = 1.011, see Section 5.3. The trees were generated using
the ScenTrees.jl package [KPP20).

respect to scenario trees, i.e. if two scenario trees are arbitrarily close to each other, then
the value of the associated MSP (with the same structure except for the scenario trees) is
arbitrarily close as well.

One distance between scenario tree is the Wasserstein distance. Intuitively, the Wasser-
stein distance between two probabilities p and ¢ (for scenario tree (X¢);ep1 77, consider the
probability law of the tuple (Xi,...,Xr)) corresponds to the optimal cost of splitting and
transporting the mass from one to the other. We write 14, & € N, for the vector (1;...;1) of
RE.

Definition 2 (Discrete optimal transport and Wasserstein distances). Let n, m be two integers
and X = {z1,29,...,2,} and Y = {y1,...,ym} be two finite sets included in R', t > 1.
Denote by ¢ = (cij)i; anxm positive matriz called cost matrix. The optimal transport cost
between two probability measures p and q on respectively X and Y, is the value of the following
optimization problem

OT(p,q;¢) = min Z cijmij s.t. Ty, =p and 1 1, = q. (2.4)
WGRixm 1<i<n
1<j<m

Now, define the cost function by c(x;,y;) = c;ij for every indexes i,j. When for some real
r > 1, the cost function c is equal to d” with d a metric on X x Y, then OT(p, ¢; d’")l/’" 1s the
r-th Wasserstein distance between p and q, denoted Wy (p, q).

We refer to the textbooks [PC19, Vil09] for a presentation and references on optimal
transport.

In two stage multistage optimization problems, under some regularity assumptions, the
value function of a bilevel MSP is Lipschitz continuous with respect to the Wasserstein dis-
tances, see [PP14, Chapter 6]. However the value function of MSP with more than 2 stages
is not continuous with respect to the Wasserstein distances, as seen in Example 1, where we



show that for a 3 stage MSP, two scenario trees can be arbitrarily close to each other in the
1-Wasserstein metric but the gap in the values of the associated MSPs is arbitrarily large.

Example 1 (The Wasserstein distance is not suited for MSP). In this ezample we illustrate
that the 1- Wasserstein is not an interesting metric to evaluate distance between scenario trees
imwolved in a MSP: an arbitrary small Wasserstein distance between two scenario trees may
yield an arbitrary large gap in values of the same MSP.

Given a scenario tree Z (see Definition 53 for a formal definition) with natural filtration
(ft)te[[(lg]]l, we want to buy a single object at the minimal average cost

2 ug € {0,1},
v(Z) =min E Z Zyag | | uyg is Fy -measurable,
v t=0 ZZ—‘:O ut = 17

Fiz A > ¢ > 0, here are two scenario tree modeling the price of an object during 3 time
steps. Their natural filtrations are different. Intuitively, on the left scenario tree, the decision
maker observes that an € variation of the price at t = 1 and knows that it will yield an
explosion (upward or downward) of the price at t = 2. Whereas on the right scenario tree,
the decision maker does not recognize such information at time t = 1. FExample adapted but
inspired from [HRS06].

Figure 2.5: Left: scenario tree X := (Xo, X1, X2). Right: scenario tree Y = (Yp, Y7, Y3).

On the one hand we have proximity in the 1-Wasserstein metric W as

W(X,Y) = 2e.

On the other hand, the optimal values are v(X) = A;re and v(Y) = A. Thus, we have an
arbitrarily large gap in values

€
[v(X) —o(Y)| = — Ajroo +o00.

In 2012, Pflug and Pichler proved in [PP12] that the Nested Distance previously intro-
duced by Pflug, is the correct adaptation of the Wasserstein distance for multistage stochastic
programming: under regularity assumptions, the value function of MSPs is Lipschitz contin-
uous with respect to the Nested Distance between scenario trees. Since then, it has been used
as a tool to quantify the quality of approximating trees: given an initial scenario tree, one

'For every t € [0,2], Fi = 0(Zo, ..., Zt).



would like to have a good approximating tree with fewer nodes. The Nested Distance both
quantifies the quality of an approximating tree and the associated optimal transport plan also
allows for reduction of scenario trees, see for example [KP15, HVKM20].

The Nested Distance is usually computed via a backward recursive algorithm (introduced
in [PP12], see also [PS19, Definition 15]) which amounts to solve an exponential number
(in T') number of optimal transportation problems if there is no further assumption (like
independence) on the noise process. It decomposes over the time the computation of the
Nested Distance as the dynamic computation of a finite number of optimal transport problems
between conditional probabilities with costs updated backward.

Optimal transport between discrete probabilities of size n can be solved by the Hungarian
algorithm with complexity O(n?) (see [EKT72]) or with the auction algorithm with complexity
roughly O(n?logn), see [BC8Y.

By adding an entropic term to the primal of the optimal transport problem associated
with the computation of a Wasserstein cost, an alternating projection scheme yield Sinkhorn’s
algorithm, introduced in Optimal Transport in [Cutl3] to compute Wasserstein distances.
By carefully selecting the entropic regularization term, Sinkhorn’s algorithm computes an
e-overestimation of the Wasserstein distance in O(n?log(n)e~3) operations.

Relaxing each optimal transport problem involved in the recursive computation of the
Nested Distance, we end up with an entropic regularization of the Nested Distance.

The chapter is organized as follows:

e In Section 5.2, we first formally define the Nested Distance as the value of a dynamic sys-
tem of optimal transport problems between conditional probabilites and varying costs.
Then, we present an entropic relaxation of the discrete optimal transport Problem (2.4)
and how this relaxed OT problem can be solved efficiently by Sinkhorn’s algorithm.
Lastly, we define a natural entropic regularization of the Nested Distance by relaxing
each OT problem involved in its dynamic formulation.

e In Section 5.3, we end this chapter 5 with a numerical experiment showing both the
speedup of our approach to compute Nested Distances and also its relative preciseness.

Interchange between integration and minimization

The question of interchanging integration and minimization is an important issue in stochastic
optimization (where integration corresponds to mathematical expectation). Loosely stated,

. =0 .
given a measure space (Q, F, ,u) and a subset U C R of functions, we wonder when does the

111f d“ — lllf dﬂ . 2.5

Mathematical framework and conditions to get Equation (2.5) can be found in [BGO1, EKT13,
Gin09, RW09, SDR09]. We focus on [Gin09] and [RW09].

To begin with, in Equation (2.5) one needs to clarify in which sense the integral [ is to
be understood and in which sense the infima inf,cpyu or inf,cy [udp are defined. Then,
when the subset U, over which minimization is performed, is a subset of L'(2,F, u;R) and
when the integral [ is the usual Lebesgue integral, Giner obtained in [Gin09] a necessary
and sufficient condition for (2.5) as follows. In this case, the space L'(Q, F, u; R) is endowed



with the usual p-pointwise order, and the infimum is inf,cy u = essinf,cy u, which is well-
defined by [Nev70, Proposition I1.4.1]. Given a subset U C L'(Q, F, u; R) of functions, Giner
establishes that Equation (2.5) holds true if and only if, for every finite family uq,...,u, in
U, we have
32 ol B e =0

However, checking the above condition is not an easy task, as it depends jointly on the
integral [ and on the subset U. Moreover, one may wonder if we can still have Equation (2.5)
for more general subsets U which are integrable in a weaker sense than Lebesgue integrable.

When a subset of functions U € L%(Q, F, u;R) is the image of a set X by a mapping
[, F, 1;R) — LY, T, u;R), i.e. U = f(X), a celebrated theorem of Rockafellar and
Wets ([RW09, Theorem 14.60]) gives a condition on the mapping f and a condition on the
set X so that Equation (2.5) holds. In this case, we deal with minimization over subsets U
of LO(Q, F,u;R) and interchange with the outer integral, a generalization of the Lebesgue
integral to L(Q, F, u; R). We study the outer integral and its properties in Appendix 6.5.

The Chapter is organized as follows. Sect. 6.2 is devoted to a minimization interchange
theorem on posets. More precisely, we provide an abstract interchange theorem of the form

:cé\X b(z) = @(mEAX z) . (2.6)
Once assumed conditions on the mapping ® : X — Y and structural properties of the sets
X, Y, we provide a necessary and sufficient condition so that Equation (2.6) holds true. Our
result is in the lineage of Giner’s, as our necessary and sufficient condition involves both the
mapping ¢ and the set X.

Sect. 6.3 then tackles the original question of interchange between minimization and in-
tegration by specifying the results of Section 6.2.

We hope that either our abstract interchange theorem or its application to the extended
Lebesgue integral provide insight as to how one may obtain the interchange between integra-
tion and minimization as in Equation (2.5), and as to how we can go beyond the integral case
(risk measures in stochastic optimization).
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3.1 Introduction

Throughout this chapter, we aim to study a deterministic optimal control problem with
discrete time. Informally, given a time ¢ and a state x; € X, one can apply a control u; € U
and the next state is given by the dynamic f;, that is 441 = fi (x4, us). Then, one wants
to minimize the sum of costs ¢; (x4, u;) induced by the controls starting from a given state
xo and during a given time horizon T'. Furthermore, one can add some final restrictions on
the states at time T which will be modeled by an additional cost function ¢ depending only
on the final state zp. We will call such optimal control problems, multistage optimization
problems and switched multistage optimization problems if the controls are both continuous
and discrete:

T—-1
min ce(xe, up) +Y(x 3.1a
Z:(m07,,,’mT)exT+1 pord t( t t) w( T) ( )
u=(ug,..ur—1)€VT
st. Vt € [0,T7—-1], z¢41 = fi(zs,us) and 29 € X given . (3.1b)

One can solve the multistage Problem (3.1) by Dynamic Programming as introduced by
Richard Bellman around 1950 [Bel54, Dre02]. This method breaks the multistage Prob-
lem (3.1) into T sub-problems that one can solve by backward recursion over time. More

. : =X =X )
precisely, denoting by B; : R~ — R the operator from the set of functions over X that may
take infinite values to itself, defined by

Bi(¢) : v~ ZIIEII[IJI (ct(:c,u) + o (fe(z, u))) , (3.2)

one can show (see for example [Berl6]) that solving Problem (3.1) amounts to solve the
following sequence of sub-problems:

Vr=1v and Vte[0,T—1] Vi=Bi(Vis1). (3.3)

We will call each operator B, the Bellman operator at time ¢t and each equation in (3.3) will
be called the Bellman equation at time t. Lastly, the function V; defined in Equation (3.3)
will be called the (Bellman) value function at time t. Note that the value of Problem (3.1)
is equal to the value function V{ at point x¢, that is Vj (xg), whereas solving the sequence of
sub-problems given by Equation (3.3) means to compute the value functions V; at each point
r € X and time t € [0, T—1].

We will state several assumptions on these operators in Section 3.2 under which we will
devise an algorithm to solve the system of Bellman Equation (3.3), also called the Dynamic
Programming formulation of the multistage problem. Let us stress on the fact that although
we want to solve the multistage Problem (3.1), we will mostly focus on its (equivalent) Dy-
namic Programming formulation given by Equation (3.3).

One issue of using Dynamic Programming to solve multistage optimization problems is the
so-called curse of dimensionality [Bel54]. That is, when the state space X is a vector space,
grid-based methods to compute the value functions have a complexity which is exponential
in the dimension of the state space X. One popular algorithm (see [GLP15, Guil4, GR12,
PP91, Shall, ZAS18]) that aims to dampen the curse of dimensionality is the Stochastic Dual
Dynamic Programming algorithm (or SDDP for short) introduced by Pereira and Pinto in
1991. Assuming that the cost functions ¢; are convex and the dynamics f; are linear, the value



functions defined in the Dynamic Programming formulation (3.3) are convex [GLP15]. Under
these assumptions, the SDDP algorithm aims to build lower (or outer) approximations of the
value functions as suprema of affine functions and thus, does not rely on a discretization of
the state space. In the aforementioned references, this approach is used to solve stochastic
multistage convex optimization problems, however in this chapter we will restrict our study
to deterministic multistage convex optimization problems as formulated in Problem (3.1). In
our deterministic framework, the SDDP algorithm boils down to the classical Nested Benders
decomposition and can be applied to our framework. One of the main drawback of the SDDP
algorithm (in the stochastic case) is the lack of an efficient stopping criterion: it builds lower
approximations of the value functions but upper (or inner) approximations are built through
a Monte-Carlo scheme that is costly and the associated stopping criteria is not deterministic.
We follow another path to provide upper approximations as explained now.

In [Qul3, Ch. 8] and [Qul4], Qu devised an algorithm which builds upper approximations
of a Bellman value function arising in an infinite horizon and continuous time framework
where the set of controls is both discrete and continuous. Qu’s work was inspired by the
work of McEneaney [McEQ7] using techniques coming from tropical algebra, also called max-
plus or min-plus techniques. Assume that X = R" and that for each fixed discrete control
the cost functions are convex quadratic and the dynamics are linear in both the state and
the continuous control. If the set of discrete controls is finite, then exploiting the min-plus
linearity of the Bellman operators B;, one can show that the value functions can be computed
as a finite pointwise infimum of convex quadratic functions:

Vi = inf
t bEF, Qst 3

where F; is a finite set of convex quadratic forms. Moreover, in this framework, the el-
ements of F; can be explicitly computed through the Discrete Algebraic Riccati Equation
(DARE [LR95]). Thus, an approximation scheme that computes an increasing sequence of
subsets (Ftk)k N of F; yields an algorithm that converges after a finite number of improve-
ments
- Sl S

However, the size of the set of functions F; that need to be computed is growing exponentially
with 7" — t. In [Qul4], in order to address the exponential growth of F;, Qu introduced a
probabilistic scheme that adds to F}¥ the “best” (given the current approximations) element
of F; at some point drawn on the unit sphere.

Our work aims to build a general algorithm that encompasses both a deterministic version
of the SDDP algorithm and an adaptation of Qu’s work to a discrete time and finite horizon
framework.

The remainder of this chapter is structured as follows. In Section 3.2, we make several
assumptions on the Bellman operators B; and define an algorithm which builds approxima-
tions of the value functions as a pointwise optimum (i.e. either a pointwise infimum or a
pointwise supremum) of basic functions in order to solve the associated Dynamic Program-
ming formulation (3.3) of the multistage Problem (3.1). At each iteration, the so-called basic
function that is added to the current approximation will have to satisfy two key properties
at a randomly drawn point, namely, tightness and validity. A key feature of the proposed
algorithm is that it can yield either upper or lower approximations. More precisely,
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Figure 3.1: The lower approximations Zf will be built as a supremum of basic functions (here

affine functions) that will always be below V;. Likewise, the upper approximations Vf will be
built as an infimum of some other basic functions (here quadratic functions) that will always
be above V;.

e if the basic functions are affine, then approximating the value functions by a pointwise
supremum of affine functions will yield the SDDP algorithm;

e if the basic functions are quadratic convex, then approximating the value functions by a
pointwise infimum of convex quadratic functions will yield an adaptation of Qu’s min-plus
algorithm.

In Section 3.3, we study the convergence of the approximations of the value functions
generated by our algorithm at a given time ¢ € [0,7]. We use an additional assumption
on the random points on which current approximations are improved, which state that they
need to cover a “rich enough set” and show that the approximating sequence converges almost
surely (over the draws) to the Bellman value function on a set of interest.

In the last sections, we will specify our algorithm to three special cases. In Section 3.4,
we prove that when building lower approximations as a supremum of affine cuts, the con-
dition on the draws is satisfied on the optimal current trajectory, as done in SDDP. Thus,
we get another point of view on the usual (see [GLP15, Shall]) asymptotic convergence of
SDDP, in the deterministic case. In Section 3.5, we describe an algorithm which builds upper
approximations as an infimum of quadratic forms. It will be a step toward addressing the
issue of computing efficient upper approximations for the SDDP algorithm. In Section 3.6,
we present on a toy example some numerical experiments where we simultaneously compute
lower approximations of the value functions by a deterministic version of SDDP of the value
functions and upper approximations of the value functions by a discrete time version of Qu’s
min-plus algorithm.

3.2 Notations and definitions

In the sequel, we will use the following notations
e X := R", endowed with its Euclidean structure and its Borel o-algebra denotes the set of
states.



e T, a finite integer that we will call the time horizon.

e opt, denotes a generic operation that is either the pointwise infimum or the pointwise
supremum of functions which we will call the pointwise optimum.

e R, denotes the extended real line endowed with the operations +0o + (—00) = —00 + 00 =
+00.

e dom¢, denotes the domain of ¢ € (@)X defined as the subset of X in which ¢(z) € R.

e F; and Fy, denote for every ¢ € [0,T], two subsets of the set (@)X such that F; C F;.

e ¢ is said to be a basic function if it is an element of F; for some ¢ € [0, T7].

e ix denotes, for every set X C X, the function equal to 0 on X and +oco elsewhere.

e For every ¢ € [0, 7] and every set of basic functions F; C Fy, we denote by Vg, its pointwise
optimum, Vg, := optycp, ¢, that is

VFt : X — @
x +—— opt{o(z)|o € Fi}. (3.4)

° (Bt)te[[o,T—l}] denotes a sequence of T operators from R* to @X, called the Bellman operators.
° (Vt)te{[o,T]]’ denotes, for a fixed function v : X — R, a sequence of value functions given by
the system of Bellman Equations (3.3).

Now, we make several assumptions on the structure of Problem (3.3). These assumptions
will be satisfied in the examples developed in Sections 3.4 to 3.6. These assumptions will
make it possible to propagate backward in time, regularity of the value function at the final
time t = T to the value function at the initial time ¢t = 0.

Assumption 1 (Structural assumptions).
—(a) Stability by pointwise optimum: for everyt € [0,T], if Fy C Fy then Vi, € Fy.

—(b) Stability by pointwise convergence: for every t € [0,T] if a sequence of functions
(¢F)ren C Fy converges pointwise to ¢ on the domain of Vi, then ¢ € Fy.

—(¢) Common regularity: for every t € [0,T], there exists a common (local) modulus of
continuity of all ¢ € Fy, i.e. for every x € dom(V}), there exist wyy : Ry — Ry U {400} which
is increasing, equal to 0 in 0, continuous at 0 and such that for every ¢ € Fy and for every
z’ € dom(V}), we have that |p(x) — ¢(a')] < wea(||z — 2')).

—(d) Final condition: the value function Vp at time T is a pointwise optimum for some
gwen subset Fr of Fr, that is ¢ := Vp,.

—(e) Stability by the Bellman operators: for everyt € [0,T —1], if ¢ € Fyt1, then By (¢)
belongs to .

~(f) Order preserving operators: for every t € [0,T — 1], the operators B, are order
preserving, i.e. if ¢, € Fyy1 are such that ¢ < o, then B (¢) < By (p).

—(g) Additively subhomogeneous operators: for every time step t € [0,T — 1], and
every given compact set Ky, there exists My > 0 such that the operator By restricted to Ky is
additively subhomogeneous over .11, meaning that for every constant function A > 0 and
every function ¢ € Fyy1, we have

By (¢ + A) + 0k, < Bi(¢) + AM; + Ok, .



~(h) Proper value functions: the solution (Vi),cpo 1y to the Bellman equations (3.3) never
takes the value —oo and is not identically equal to +oc0.

—(i) Compactness condition: for everyt € [0,T —1] and every compact set K; C dom(V;),
there exists a compact set Ky C dom(Viy1) such that, for every function ¢ € Fiy1 and
constant A > 0, we have

Bi(¢+ A+ 0k,,,) <Bi (o4 ) + Ik,

Remark 3. Assumption 1-(c) ensures that the domain of each function of F; includes the
domain of V. Note that if Fy is the set of all functions satisfying Assumption 1-(c), then As-
sumption 1-(b) is trivially satisfied. Also note that the domain of V; is known as in [GLP15].

Remark 4. Note that Assumption 1-(h) and 1-(i) do not change whether opt = inf or
opt = sup as the optimal control problem that we consider is formulated as a minimization
problem.

Lemma 5. For every t € [0,T] we have that V; € Fy.

Proof. By Assumption 1-(d) and Assumption 1-(a), Vr is in Fz. Now, assume that for some
t € [0,7—1] we have that V;4; € Fyyq1. By Assumption 1-(e), we have that V; = By(Vi41) € Fy
which ends the proof by backward induction. O

From a set of basic functions F; C Fy, one can build its pointwise optimum Vg, =
optgecr, ¢ We build a monotone sequence of approximations of the value functions as optima
of basic functions which will be computed through compatible selection functions as defined
below. We illustrate this definition in Figure 3.2.

If opt = inf, then we will build upper approximations of the value function V; as a min-
plus linear combinations of basic functions. If opt = sup, we will build lower approximations
as a max-plus linear combinations of basic functions.

Definition 6 (Compatible selection function). Let a time step t € [0,T — 1] be fized. A
compatible selection function, or simply selection function, is a function S; from 2F#+1 x X
to Fy satisfying the two following properties

— Validity: for every set of basic functions Fi11 C Fypq and every x € X, we have Sy [Fii1,x] <
B (VFt+1) (resp. Si [Fiy1,x] > By (VFt+1)) when opt = sup (resp. opt = inf).

— Tightness: for every set of basic functions Fyy1 C Fiyq and every x € X the functions
St [Fiq1,x) and By (VFt+1) coincide at point x, that is S [Fi41, 2] (x) = By (VFt+1) ().

Fort =T, we say that St : X — Fr is a compatible selection function if it is valid and
tight. There, St is valid if, for every x € X, the function St [x] remains below (resp. above)
the value function at time T when opt = sup (resp. opt = inf). Moreover, the function Sp
1s tight if it coincides with the value function at point x, that is for every x € X, we have

St [z] (x) = Vp(x).

Note that the Tightness assumption only asks for equality at the point x between the
functions S; [Fy4+1,x] and B, (th +1) and not necessarily everywhere. The only global prop-
erty between the functions S; [Fy41,z] and By (th +1) is an inequality given by the validity
assumption.

In Algorithm 1 we will generate, for every time ¢, a sequence of random points of crucial
importance that we will call trial points. They will be the ones where the selection functions
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Figure 3.2: In Sections 3.4 and 3.5, we will specify two selection functions, ¢7°P" and ¢} ,
respectively, that will respectively yield upper and lower approximations of the value func-
tions. In both cases, the selection function computes a basic function (in red or blue) which is
equal, at the point xf‘l, to the image by the Bellman operator of the current approximation
(in black), that is the tightness assumption. Moreover it remains above (or below) the image
by the Bellman operator of the current approximation, that is the validity assumption.

will be evaluated, given the set Ftk which characterizes the current approximation. In order to
generate those points, we will assume that we have at our disposition an Oracle which, given
T+1 sets of functions (characterizing the current approximations), computes 741 compact
sets and a probability law.

Definition 7 (Oracle). The Oracle takes as input T+1 sets of functions F = (Fy, ..., Fr)
included in Fy, ..., Fr respectively. Its output consists of T+1 compact sets Ky, ..., K, each
included in X, and of a probability measure Pr on the space XT T which are such that

— Initialization. If for every t € [0,T], Fy = 0, then return T+1 given compact sets and a
given probability measure.

— For every t € [0,T], K; C dom (V;).

— The support of Pg is included in Koy X ... x Kp.

For every time t € [0,T], we construct a sequence of functions (V;k) belonging to F;

keN
as follows. For every time ¢ € [0, 7] and for every k& > 0, we build a subset F}¥ of the set F;

and define the sequence of functions by pointwise optimum

VF =V = opt ¢. (3.5)
K PEFF

As described here, the functions are just byproducts of Algorithm 1, which only describes the
way the sets F}¥ are computed.

As the following algorithm was inspired by Qu’s work which uses tropical algebra tech-
niques, we will call this algorithm “Tropical Dynamic Programming”.

At each iteration, Algorithm 1 generates a trial point x¥ which only depends on the data
available at the current iteration. We loosely explain this point. Define for every k € N, FF =
(Ftk)te[[O,T]] and 2* = (xf)te[(),T]]- Then, there exists a deterministic function £ and a sequence
of independent random variables (W*)cy such that for every k € N, 2¥ = £(FF W) where
(W*)en is furthermore independent from F?. Throughout the remainder of the chapter,



Algorithm 1 Tropical Dynamic Programming (TDP)

Input: For every ¢t € [0,7], S; a compatible selection function and a Trial point Oracle
satisfying Definition 7.
Output: For every ¢ € [0,T7], a sequence of sets (Ftk)
Optye o.
Define for every t € [0,T7], F? := 0.
for £ > 0 do
Forward phase
Compute (K(IJ“, e K%,IP)"’) = Oracle (Fé“, ey F:,’f) .
Draw trial points (acf) over Ké“ x KFx ... x K% according to P¥ knowing the past

wen and the associated sequence vk =

te[0,T]
iterations.

Backward phase

Compute gbf}“ =Sy [F:,]‘i,:n’%]

Define P! = FEU {g}! |

for t from T'— 1 to 0 do
Compute cbf“ =& [FkH xf]

t+1 >
Define F™ .= FF U { f“}.
end for
end for

denote by (Q, F,P) a probability space on which the random variables (W*).en are defined
and independent.

We will denote by + the Minkowski sum between sets, by B the unit closed Euclidean
ball of X7*! and for every € X’*! and radius r > 0, B(x,r) is the Euclidean open ball
of radius r centered at z. Furthermore, we define for every t, K; := limpen K[ the set of all
possible limit points of KF. We make the following assumption on the Oracle which, loosely
stated, ensures that if a state z; is close to K, then x; is almost a limit point of the sequence
of trial points (zF)gen.

Assumption 2 (Trial point assumption). For every radius v’ > 0, there exists r > 0 such
that
VzeX, P[(x € Tmgen K* 4+ rB) = 2 € impenB(z*, )] = 1. (3.6)

Remark that (limpenK*) + rB = limgen(K* 4 7B), hence the lack of parenthesis. The
following lemma gives some more insight on the Trial point assumption.

Lemma 8. Consider the sequence of trial points (z¥)ren generated by Algorithm 1 with an
Oracle satisfying Assumption 2. Given v’ >0 and x € X, for every r" > 1', P-a.s.,

z € limpenB(2®, 1) = 2% € B(z,r") for infinitely many indices k € N . (3.7)
Conwversely, given " >0 and x € X, for every v’ > r", P-a.s.

2% € B(z,r") for infinitely many indices k € N = x € limpenB(2F, 7). (3.8)

'See [RW09, Definition 4.1 p. 109].



Proof. First, we prove Equation (3.7). Fix r” > ' > 0 and assume that x € limpenB(2F, '),
P-a.s.. Then, there exists an increasing function o : N — N and a sequence (y”®))zen C 7'B

such that z7*) 4 4o (k) s As " — 1" > 0, there exists a rank kg € N such that when
—+00

k > ko we have ||z — 27" 4 yo®)|| < ¢ — ¢/, By triangle inequality, we have
o — 27O <l 278 4 7O 4 | O < () 17 =

i.e. P-a.s., for every k > ko, x € B(z*,7"), which yields Equation (3.7).

Second, we prove Equation (3.8). Fix v/ > 7 > 0 and assume that z* € B(z,r") for
infinitely many indices k € N. Thus, P-a.s, there exists an increasing function ¢ : N — N and
a sequence (7)) en C 7B such that 27%) — 2 = yo®) As ¢/ > ¢ P-as. x € B(z*,+') and
z = z°®) — y7(*) Hence, we obtain Equation (3.8). O

Now, we give two examples of Oracles that satisfy the Trial point assumption 2. They are
used respectively in Section 3.4 and 3.5.

Example 2 (Independent uniform draws over the unit sphere). Consider the Oracle which
constantly outputs T + 1 times the unit Euclidean sphere S of X and the uniform probability
measure PF := o of ST on XT*TL.2 Here, we have for every k € N, K*¥ = ST+l Fiz an
arbitrary v’ > 0 and set r = 1r'/2, we prove that

Vo e X,P[x e (ST +rB) =z € mkeNB(fL'kaT’/)} =1.

Proof. Fix z € ST+ + B, we need to show that we have IP’[J: € erNB(:z:k,r’)] = 1. Now,
fix 7 > 0 such that » < 7 <’. Using Lemma 8-(3.8), it is enough to show that

P[z* € B(x,r") for infinitely many indices k € N] = 1. (3.9)
As 7" > r and x is distant from ST*! by less than r, the quantity P[z* € B(z,r")] =
oy[B(z,r") N ST+ is a positive constant in k. Thus, we have that >,y P[z¥ € B(z,r")] =

+00. Moreover, the sequence of events (z* € B(z,r))ren is independent, thus by Borel-
Cantelli’s Lemma, Equation (3.9) holds. O

Example 3 (Dirac on the current optimal trajectory). The sequence of probability measures
(P*)ren is recursively build as follows:
— Set PV := (09, .- 040) where 29 € KY for every t € [0,T].
— Given sets of functions Fé“, e ,iji. Start, by fixing :clg = g and compute forward in time,
for t € [0,T—1], optimal controls by uf € argmin, B}‘(VFtﬁl)(azf), and successive states by
vy = fi(@f,uf).
— Define a probability measures PF .= (5:55: cee 61,;%).

Consider the Oracle which, given sets of functions Fk,...,F:,'?, outputs the singleton
{2*} = {(&})iepo.r)} and the probability measure P* := (8,x) defined at previous step. Fix
r>0, take ' =1 >0 and x € XT+1. We obtain that

IP[Q; € (erN {2*} + TIB%)C or z € limpenB(zF,7)| =1,
——
=B(x*,r)

which is equivalent to the Trial point assumption with K* = {z*}.

2For every A € B(XTT), op(A) = C’Leb(7r;%+1 (AN STTY)), where Leb is the Lebesgue measure on X7,
Tgr+1 is the Euclidean projector on ST restricted to the ball B(0,1)T"! without 0 and C a normalization

constant.




3.3 Almost sure convergence on the set of accumulation points

In this section, we will prove the convergence result stated in Theorem 15. For this purpose,
we state several crucial properties of the approximation functions (V;k) keN generated by
Algorithm 1. They are direct consequences of the facts that the Bellman operators are order
preserving and that the basic functions building our approximations are computed through
compatible selection functions. Algorithm 1 is stochastic as trial points are drawn at each
iteration from P*. Therefore, equalities, inequalities and statements where the functions V¥
are involved hold P-almost surely. However, for the sake of simplicity, we will refrain from
always adding P-almost surely in equalities, inequalities and some statements.

Lemma 9. The sequence of functions (V;fk)keN’ for every t € [0,T], given by Equation (3.5)
and produced by Algorithm 1 satisfy the following properties.

1. Monotone approximations: for every indices k < k' and every t € [0,T], we have
that V;k > V}k/ > Vi when opt = inf and V;k < Vtk/ < V; when opt = sup.

2. For every k € N and every t € [0,T — 1], we have that B; (V1) < V{*¥ when opt = inf
and By (Vi) > Vi when opt = sup.

3. For every k > 1 and every t € [0,T — 1], we have By (V) <w,’f_1> =VF (m,’f_1>.

4. For every k > 1, we have fo (xl}_1> =Vr (xifp_l)

Proof. We prove each point when opt = inf. The case opt = sup is similar and left to the
reader.

o (1) (left inequality). Let ¢ € [0, 7] be fixed. By construction of Algorithm 1, the sequence of
sets (Ftk)k cy 18 non-decreasing. Now, using the definition of the sequence (V;k) ren given by
Equation (3.5) we have that V;*™! = VFthrl(iL') = inf¢€Ftk+1 ¢(x) < infycpr d(x) = Vir(x) =
V¥ and thus the sequence (Vtk) keN
e (2). We prove the assertion by induction on k € N. For k = 0, as F = (), we have V0 = +o0
for all ¢t € [0,7 — 1] and thus the assertion is true. Now, assume that for some k € N, we
have for all t € [0,T — 1]

is non-increasing.

B, (Vi) < vt (3.10)

Since (thil) wen 18 non-increasing by already proved Item (1) and B; is order preserving using

Assumption 1-(f), we have that B; (Vt]fﬁl> < By(VE ). This last inequality combined with

induction assumption given by Equation (3.10) gives the inequality
k k
B (Vi) < vib (3.11)
Moreover, we also have that

B <V"’+1> - B (V ) 1) < S [Fk'“,xk} — gt 3.12
! e (by (3.5)) ' thl (by St validity at z¥) s ‘ ! ( )



where the last equality is obtained by definition of function d)f“ in Algorithm 1. Thus,
combining Equation (3.11) and (3.12) we have that B;(VEL") < inf (VF, ;™). Finally, using
Equation (3.5) and Algorithm 1, we have that

inf (VF, o) = inf ( inf ¢, ¢f*1) = inf  ¢= inf ¢=VFL.
(t ! ) (¢€Ftk ! ) peFFU{prt1} peFFH !

Thus, we obtain that B; (T/;:i?) < inf (V}k, qb,’f“) = V;k‘*'l, which gives the induction assump-
tion for k£ 4 1 and concludes the proof of (2).

e (3). As the selection function &; is tight in the sense of Definition 6, we have by construction
of Algorithm 1 that Bt(%’fkl)(a:ffl) = ¢F(2F~1). Combining this equation with Item (2) and
the definition of V;*, one gets Lemma 9-(3).

e (4). Similarly, we have that Vy(zh ') = ¢k(25™1), which combined with the inequality
given in Item (1) and the definition of V¥ gives Lemma 9-(4).

e (1) (right inequality). We prove that V;¥ > V; for all for all k € N and all ¢ € [0,T]. Fix
k € N, we show that V¥ > V; for all t € [0,T] by backward recursion on time ¢. For t = T,
by validity of the selection functions given in Definition 6, for every ¢ € Fjli, we have that
¢ > Vpr. Thus VYI? = VFTIE = inf¢eF% ¢ > Vp. Now, suppose that for some ¢t € [0, — 1], we

have that Vi11 < V/%;. Then, using the definition of the value function in Equation (3.3),
the fact that the Bellman operators are order preserving and the inequality already proved
in Item (2) we obtain that: V; = B; (Vt+1) < Bt(Vt’il) < V[ | which gives the assertion for
time ¢t. This ends the proof. O

In the following two propositions, we state that the sequences (V;k) keN and (B; (Vt’fH)) kEN
converge uniformly on any compact included in the domain of V;. The limit function V;* of
(V;k) weny Will be a natural candidate to be the value function V;.

Lemma 10. Fizt € [0,T]. Let (¢*)ren be a monotonic sequence in Fy such that there exists
b1, P2 € Fy satisfying for every k € N ¢ < ¢F < ¢o. Then, the sequence (¢¥)ren converges
uniformly on every compact set included in dom(V;) to a function ¢* € Fy.

Proof. The proof relies on the Arzela-Ascoli theorem [Sch95, Theorem 2.13.30 p.347]. Since
¢1 and ¢9 belong to Fy, they are finite on dom(V;). Then, the sequence of functions (¢*)ren
is monotonic and bounded, so it converges pointwise on dom(V;) to a limit function ¢*. By
Assumption 1-(b), this implies that ¢* € F;.

Now, fix a compact set K C dom(V;). First, since (¢*)ren C Fy, we have that for every
k € N, dom(¢*) contains dom(V;) and the sequence of functions (¢¥)xen share a common
modulus of continuity. Second, supyey Sup,cx|¢*(z)| is finite as |¢1| and |¢o| are continu-
ous functions on the compact K. Hence, by Arzela-Ascoli theorem the monotonic sequence
(¢*)ren converges uniformly on the compact K towards the continuous function ¢*. O

Proposition 11 (Existence of an approximating limit). Let t € [0,T] be fized. The sequence
of functions (Vtk)k:eN defined by Equation (3.5) and Algorithm 1 P-a.s. converges uniformly
on every compact set included in the domain of Vi (solution of Equation (3.3)) to a function
Vi el,.

Proof. By Lemma 9-(1), for every k > 1 we have that V;' < V¥ <V;, when opt = sup (and
the inequalities are reversed when opt = inf). Now, we have that V;! € F; and by Lemma 5,



the mapping V; is also in F;. Moreover, by Lemma 9-(1), the sequence (V;¥);>1 is monotonic.
Thus, by Lemma 10, we have that (V;¥);>; converges uniformly on every compact set included
in dom(V}) towards a function V;* € Fy.

This ends the proof. O

Proposition 12. Lett € [0,T—1] be fized and V' be the function defined in Proposition 11.
The sequence B (Vt]fH) P-a.s. converges uniformly to the continuous function B (V;il) on
every compact sets included in the domain of V;.

Proof. First we consider the case opt = inf. As the sequence (V%) is non-increasing and

keN
using the fact that the operator B; is order preserving, the sequence (Bt(‘ﬁil))keN is also

non-increasing. Moreover, we have that

V> vk (Lemma 9-(1))
> Bt(v;g]j_ﬂ (Lemma 9-(2))
> Bi(Vig1) (Lemma 9-(1))
— V.

Thus, by Lemma 10, the sequence of functions (B;(V;";))x>1 converges uniformly on every
compact set included in dom(V;) to a function ¢ € F;. Let K; be a given compact set included
in dom(V;). We now show that the function ¢ is equal to B; (V%) on the given compact K; or
equivalently we show that ¢ + g, = B (Vt’fH) +0k,. As already shown in Proposition 11, we
have that th—il > Vi% 1, which combined with the fact that the operator B; is order preserving,
gives, for every k > 1, that By(V}®,) > B,(V/"1). Now, adding on both side of the previous
inequality the mapping dg, and taking the limit as k goes to infinity, we have that

For the converse inequality, start by recalling that, by the compactness condition (see As-
sumption 1-(i)), there exists a compact set Ky11 C dom(Vi41) such that, for every ¢ € Fyqq
and every A > 0, we have that

Bi (¢+>\+5Kt+l) SBt(¢+)‘)+5Kt- (3.13)

Now, by Proposition 11, the non-increasing sequence (V;’j_l) en converges uniformly to V% | €
F;1+1 on the compact set Ky41. Thus, for any fixed € > 0, there exists an integer kg € N, such
that we have
k k
V;f—i-l < V;t—f—l + 6Kt+1 < V;(i-l te+ 5Kt+1 )

for all k > ko. By Assumption 1-(f) and Assumption 1-(g), the operator B; is order preserving
and additively M;-subhomogeneous, thus we get using Equation (3.13) that

B, (Vt’fH) < B, (Vt'il + 5Kt+1) < BV + €+ 0k,,)s (by Assumption 1-(f))
< Bi(Vii1 +€) + 0k, (by Equation (3.13))
< Bi(Vi1) + Mie + 0k, - (by Assumption 1-(g))

Adding df, on the left hand side, we have for every k > ko that B; (V) + 0k, < By (Vi) +
Mie + dk,. Thus, taking the limit when %k goes to infinity we obtain that

¢+5Kt < B (V;(l—l) + Me + (5Kt'
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Figure 3.3: The optimality of the sets (St)te[[o,T]] means that in order to compute the restriction
of Bt (¢r41) on S, one only needs to know the values of ¢y11 on the set Sii1.

The result has been proved for all ¢ > 0 and we have thus shown that ¢ = B; (Vtil) on
the compact set K¢. We conclude that (B (Vtﬁl))k oy converges uniformly to the function
B (V;il) on the compact set K;. For the case opt = sup, mutatis mutantis we have that
B,(VE,) < By(Vy,). Similarly, as the sequence (V;*,) is non-decreasing and By is order
preserving, one gets that for every k large enough

Bt(vtj-l) > Bt(vtfi-l) + 6Kt+1 > Bt(Vt:-l +e+ 5Kt+1)'

Thus, by Equation (3.13) and M;-subhomogeneity we have that B;(V, ;) + 0k, < By(V/h,) +
Mie + dk,, which yields the result when £k goes to infinity. This ends the proof. O

We want to exploit the fact that our approximations of the final cost function are exact
in the sense that we have equality between lef and Vr at the points drawn in Algorithm 1,
that is, the tightness assumption of the selection function is much stronger at time 7T than
for times ¢t < T. Thus we want to propagate the information backward in time: starting from
time t = T we want to deduce information on the approximations for times ¢t < T

In order to show that V; = V,* on some set S¢, a dissymmetry between upper and lower
approximations is emphasized. We introduce the notion of optimal sets (St)te[[o,T]] with respect
to a sequence of functions <¢t)te[0,Tﬂ as a condition on the sets (St)te[[O,T]] such that in order
to compute the restriction of By (¢1+1) to S¢, one only needs to know ¢;41 on the set Spy;.
The Figure 3.3 illustrates this notion.

Definition 13 (Optimal sets). Let wt)te[[(),T]] be T+1 functions on X. A sequence of sets
(St)ieqo,ry s said to be (¢r)-optimal if for every t € [0,T —1], we have

Bt (¢r+1 + 05,41 ) + 05, = Bt (¢141) + ds,. (3.14)

When approximating from below, the optimality of sets is only needed for the limit func-
tions (Vt*)te[[o,T}]’ whereas when approximating from above, one needs the optimality of sets

with respect to the value functions (V;),c[o 77- It seems easier to ensure the (V;*)-optimality of
sets than (V;)-optimality as the function V;* is known through the sequence (Vtk) weny Whereas
the function V; is, a priori, unknown. This fact is discussed in Sections 3.4 and 3.5.

Lemma 14 (Uniqueness in restricted Bellman Equations). Let (X¢),cpoqp be a sequence of
sets such that for every t € [0,T], X; C dom(V;) and which is



— (V4)-optimal when opt = inf,
— (V¥)-optimal when opt = sup.
If the sequence of functions (V;f*)teﬂo,T]] satisfies the following restricted Bellman Equations:

Vi+6x, =v¢+0x, and Vte[0,T—1], B (Vi) +dx, = Vi* +0x, . (3.15)
Then, for every t € [0,T] and every x € X, we have that V;*(x) = Vi(z).

Proof. We prove the lemma by backward induction on time ¢ € [0,7]. We first treat the case
opt = inf. At time ¢t = T', since Vr is given by Equation (3.3), we have Vi = 1. We therefore
have by Equation (3.15) that Vi + dx, = ¢ + dx, = Vr + dx,,, which gives the fact that
functions Vi and V7 coincide on the set X7. Now, let time ¢ € [0, 7 — 1] be fixed and assume
that we have V7 | (z) = Viq1(z) for every x € X1, or equivalently:

Vi +0x,0 = Vigr +0x,4, - (3.16)

Using Lemma 9-(1), the sequence of functions (V}*)ey is lower bounded by V;. Taking the
limit in k, we obtain that V;* > V;, thus we only have to prove that V;* < V; on X, that is
Vit +d0x, < Vi + 0x,. We successively have:

Vi +0x, = By (Vi) +0x, (by (3.15))
< By (Vi1 +0x,.,) +0x, (B is order preserving)
= B; (Viy1 + 0x,,,) + 0x, (by induction assumption (3.16))
= B; (Vi41) + 0x, (by (3.14), (Xt)seqo,1q is (Vi)-optimal)
= Vi +0x,, (by (3-3))

which concludes the proof in the case of opt = inf.

Now we prove the case opt = sup in a similar way by backward induction on time ¢ € [0, T7.
As for the case opt = inf, at time ¢ = T, one has V 4+ dx, = Vr + dx,. Now assume that
for some ¢ € [0,T — 1] one has V% | + 0x,,, = Viy1 + 6x,,,. By Lemma 9-(1), the sequence
of functions (V/¥) is now upper bounded by V;. Thus, taking the limit in & we obtain that
V¥ < V; and we only need to prove that V;* + dx, > V; + dx,. We successively have:

Vi+6x, = By (Vit1) + 0x, (by (3.3))

< By (Vig1 +0x,.,) +0x, (B, is order preserving)

=B (Vi1 +0x,.,) + 0x, (by induction assumption (3.16))

=B (V1) +0x, ((Xt)teqo,rp 1s (Vi7)-optimal)

=V +6x,, (by (3.15))

This ends the proof. O

One cannot expect the limit function, V;*, to be equal everywhere to the value function,
Vi, given by Equation (3.3). However, one can expect an (almost sure over the draws) equality
between the two functions V; and V;* on all possible cluster points of sequences (y ),y With
Yk € Kf for all k£ € N, that is, on the set HK{“

Theorem 15 (Convergence of Tropical Dynamic Programming). Define K := lim,KF, for
every time t € [0,T]. Assume that, P-a.s. the sets (K{),cqo 17 are (Vz)-optimal when opt = inf
(resp. (V*)-optimal when opt = sup). Then, P-a.s. for every t € [0,T] the function V,*
defined in Proposition 11 is equal to the value function V; on K.



Proof. We will only consider the case opt = inf as the proof for the case opt = sup is

analogous. We will show that Equation (3.15) holds P-almost surely with X; = K/, ¢t € [0,7T].

The proof is decomposed in several steps

e Reformulation using the separability of X. Let C := (C;); € X7+ be compact in dom(Vj) x
. x dom(Vp). For every t € [0,T — 1], set Ay : ¢ € X — Vi* (@) — Be(Viq) (@) € R,

Ar:ar € X — V%(CCT) — VT(.%'T) € R and A := (A)te[[O,T]]' Also write K* := (K:)te[[O,T}]-

We want to show that

PlvzeC (ve K" = Alr)=0)| =1. (3.17)

By continuity of V;* — By(V;%;) (resp. Vi — Vp) for every t € [0,T — 1] (resp. ¢t = T') and
compactness of K, Equation (3.17) is equivalent to

P[ve >0,3r >0,z € K, (z € (K* +71B) = A(z) < e)} —1. (3.18)

Without loss of generality, by density, one may restrict € and r to the countable set Q% and
the set C to the set C' N (Q")T*!, that is, Equation (3.18) is equivalent to

Vee Q%,Ire Q% Vo e CN Q) Plre (K*+rB) = A(z) <¢] =1. (3.19)

For the remainder of the proof, we fix ¢ € Q7. Now, we exploit the equicontinuity of

the sequence of functions (VF)zen and (Bt(Vt’il))k ¢y in order to compute a suitable radius
"€ Q% so as to satisfy Equation (3.19). We separate the cases t =T and t < T..
e Equicontinuity and uniform convergence, case t = T. As the functions V- and V¥, for k € N
are in Fr, they share a common modulus of continuity on the compact Cr. Thus, they share
a common uniform modulus of continuity. Hence, there exists a radius rr € Q7 , such that
for every xp € Cr N Q", if yp € B(xp, rr) NdomVp, then

€
Vi (ar) — Vi (yr)| < 3 and [Vr(yr) — Vr(zr)| < 5 - (3.20)

wl o

Now, as (VT’“) ken converges uniformly to V7 on the compact Cr C domV7, there exists a rank
kr € N such that, if £ > kp, then for all x7 € Kp,

Vit (wr) = Vi(ar)| < 2. (3.21)

Wl m

e Equicontinuity and uniform convergence, case t € [0, T — 1]. The sequences (V}*)xen, resp.

(B:(V4))ken are uniformly equicontinuous on the compact C; C dom(V;). There exists a

radius r; € Q% such that for every x; € Cy, if y; € B(w4,7¢) N domV;, then for every k € N,
V() = VE ()| <

and  |[By(VEL (1)) — Bu(VEL (2))] < (3.22)

€ €

4 4
By uniform convergence of the sequence (V;¥)gen (resp. Bi(VE | )ren) to Vi (vesp. to Bi(Vy,))
on the compact C; C dom(V;), there exists a rank k; € N such that, if k£ > k¢, then for every

e € K
* € % €
Vi (1) = VI ()] < 7 and |B(Vi ) () = Bi(Vii ) ()] < 2 (3.23)



e There exists a draw xf  of the sequence of trial points (z)ren arbitrarily close to any given
point of K*. Throughout the remainder of the proof, we fix ranks k; € N and radii 7, € Q%
defined in Step 2 and set

k:= max k, ¢ Nand r :== min 7.
t€[0,1] t€0,77]

By the Trial point oracle assumption, there exists r € Q7 such that, for every z € C,
Plz € K* 4+ rB = = € limpenB(2*,7/2)] = 1. (3.24)

Now, fix z € CN(Q")T*!. By Equation (3.24), P-a.s., if v € K*+rB then x € limpenB(z¥,1r/2),
so by Lemma 8, (z¥)x € B(z,r) infinitely often. Hence, P-a.s., if x € K* + rB, then there
exists k* > k such that

¥ € B(x,r). (3.25)

e Conclusion. When ¢t = T', by triangle inequality, P-a.s. we have that

Alwr) < |Vi(er) = VE @)+ |[VF  ar) = Vg )
<e/3 by (3.21) and (3.25) <e/3 by (3.20)
K41,k o o
+ |Vp (a7 ) = Vr(er )| + [Vr(er ) — V(o))
=0 by Tightness Lemma 9-(4) <¢/3 by (351) and (3.25)
<e€.

When t € [0,T — 1], by triangle inequality, P-a.s. we have that

A(zy) < Vi (@) = VE @)+ [V () — VA ()]
<e/4 by (3.23) <e/4 by (3.22) and (3.25)
+ VI af) = BU(VE ()]
= 0 by Lemma 9-(3)
+ BU(VE (@f) — Bu(VEL ()| + [BU(VEL) () — Bi(Vi) ()]

<e/4 by (3.22) and (3.25) <e/4 by (3.23)

<e€.

Thus, we have shown Equation (3.19), i.e. P-a.s., for every ¢ € [0,7] we have V;* = B;(V;%,)
on K{. The sequence (V;*),cy satisfies the restricted Bellman Equation (3.15) with the
sequence (K),cy. The conclusion follows from the Uniqueness lemma (Lemma 14). O

3.4 SDDP selection function: lower approximations in the
linear-convex framework

We will show that our setting contains a similar framework of (the deterministic version of)
the SDDP algorithm as described in [GLP15] and yields the same result of convergence. Let
X = R" be a continuous state space and U = R™ a continuous control space. We want to



solve the following problem

T—-1
min Z ci(ze, up) + (o)
z=(x0,....,TT) —o

u=(ug,...ur—1)
s.t. 19 € X is given, (3.26)
vt e [[OvT]]7 Ty € Xa

Vit € [[O,T — 1]], ur € U, Tyl = ft(xt,ut).

We make similar assumptions as in the literature of SDDP (e.g. [GLP15]), note that in
our formulation, we have put the constraints on the states and controls on the cost functions.
We refer to [AE84] and [RW09] for results on set-valued mappings.

Assumption 3. For allt € [0,T — 1] we assume that:

1.

The dynamic fr : X x U — X is linear, fi(x,u) = Ayx + Byu, for some given matrices
A; and By of compatible dimensions.

The cost function ¢; : X x U — R is a proper lower semicontinuous (l.s.c.) conver
function which is L., -Lipschitz continuous on its (convezr) domain, dom(ct).

The projection on X of dom(c;), denoted X;, is a convex polytope with non-empty inte-
7407

. Define the set-valued mapping Uy : X = U, for every x € X

Ui(xz) :={u e U] (z,u) € dom(c;) and fi(x,u) € X141},

where we assume that

e For every x € Xy, Uy(x) is compact.

e The graph of the set-valued mapping U; has a non-empty interior.
e For every x € Xy, there exists u € Uy(z).3

e The set-valued mapping Uy is Ly,-Lipschitz continuous® (hence, both upper and lower
semicontinuous).

Moreover, at time t = T, we assume that Xp := dom(Vy) C X is conver and compact with
non-empty interior, the final cost function ¢ : X — R is a proper convez l.s.c. function with
known compact convex domain and v is Cp-Lipschitz continuous on its domain.

Remark 16. Under Assumption 3, the graph of the set-valued mapping Uy is convex, and its
domain is X;.

Remark 17. A sufficient condition to ensure that the set-valued mapping U, is Lipschitz con-
tinuous is given in [RW09, Example 9.35]: U is Lipschitz when its graph is convex polyhedral,
which is the classical framework of SDDP. Moreover a Lipschitz constant can be explicitly
computed.

3known as a Relatively Complete Recourse assumption.
‘For all 2,2’ € X, U(z') C U(x) + Ly, ||z’ — z||.



For every time step t € [0,7 — 1], recall the Bellman operator B, for every function
¢ :X = R by:

Bi() = inf (ei(-u) + 8(fi(- ) - (3.27)
Moreover, for every function ¢ : X — R and every (z,u) € X x U we define

B (¢) (x) := ¢ (x,u) + qﬁ(ft(m, u)) €eR. (3.28)

The Bellman equations of Problem (3.26) can be written using the Bellman operators B; given
by Equation (3.27):

Vrp=1 and Vte[0,T-1],V;:2 € X By(Viy1)(z) €R. (3.29)

In Proposition 18, we establish a stability property of the Bellman operators given by
Equation (3.27). The image of a Lipschitz continuous function by the operator B; will also
be Lipschitz continuous and we give an explicit (conservative) Lipschitz constant.

Proposition 18. Under Assumption 3, for every t € [0,T — 1], given a constant Liy1 > 0,
there exist a constant Ly > 0 such that if ¢ : X — R is convex Ls.c. proper with domain X1
and Lyiq-Lipschitz continuous on X1 then By (¢p) is convex l.s.c. proper with domain X
and L;-Lipschitz continuous on X;.

Proof of Proposition 18. Fix t € [0,T7 — 1] and let ¢ : X — R be a convex l.s.c. proper
function with domain X;;q and L4 1-Lipschitz continuous function on X;y;. We show that
dom (Bt(gb)) = X;. Let 2y € X; be arbitrary. By the RCR Assumption, there exist u; € Uy(zy)
such that f; (x4, ut) € Xyp1 and (a4, u) € dom(cy). As the domain of ¢ is X;y1, we have that

iIelIf[‘j (ct(xt,u) + gb(ft(xt,u))) < (xp,ur) + gﬁ(ft(a:t,ut)) < 400 .

Thus, we have shown that dom(B;(¢)) includes X;. Conversely, if ¢ X, then for every
u € U, we have ¢;(z,u) = 400, hence z ¢ dom(B;(¢)). This implies that dom(B(¢)) C X;
and the equality follows.

Moreover, the above infimum can be restricted to U;(z), which is compact. As the function
x — By (¢) (z) is convex (resp. l.s.c.) on Xy as (x,u) — ¢ (x,u)+ ¢ (fi (z,u)) is jointly convex
(resp. l.s.c. and Ui(z) is compact).

Since ¢(x,), ¢ are Ls.c. and fi(x,-) is continuous, the above infimum is attained. We
will denote by u, € U;(x) a minimizer, note that fi(z,uy) € Xyt1.

We finally show that the function B; (¢) is Lipschitz on X; with a constant L; > 0 that
only depends on the data of Problem (3.26). Fix z,2’ € X; and denote by u, € Ui(z’) an
optimal control at ', i.e. B, (¢)(2') = Bi(¢)(z'). For every u € Uy(z), we have that

Bi(#)(@) < Bu(9) (') + BY(@)(x) ~ B()(«')
= Bi() (') + (ci(w,u) — co(a', upr)) + (ﬁb(ft(%u)) - ¢(ft($/,ux/))>
< Bi(6)(@') + Loyl = '] + llu = ) (3.30)
+ Lo (Amax(AT 40" 2 = ']+ M (B B) 2w = ] ).

Indeed, as the domain of ¢;(x, -) is Uz(x), the domain of ¢ is X1 and that for every u € U(z),
we have f;(z,u) € Xi+1, Equation (3.30) holds for every u € Uy(x).



Now, we will bound from above |[u — uy| by |Jz — 2| multiplied by a constant. By
Assumption 3-(4) the set-valued mapping U, is Ly,-Lipschitz on its domain X;. Hence, by
definition, there exists @ € Uy(x) such that:

& — uy || < Ly, ||z — 2. (3.31)

Replacing u by @ in Equation (3.30), by Equation (3.31) we deduce that Bi(¢)(x)—B(¢)(x') <
Ly||z — 2'||, where the Lipschitz constant L; > 0 only depends on the data of Problem (3.26).
Mutatis mutandis, we have that Bi(¢)(z") — Bi(¢)(z) < L¢||x — 2’|, and the result follows. [

Remark 19. Knowing the value function at time t =T, by Proposition 18 we can compute
recursively backward in time the domain of Vi for each t < T': it is equal to the projection on
X of the domain of the cost function, which is Xy and known to the decision maker. Moreover
using Proposition 18 we have that, for every t, the value function Vi is convex l.s.c. proper
and Lipschitz continuous on its domain, with a computable constant.

As lower semicontinuous proper convex functions can be approximated by a supremum
of affine function, for every ¢t € [0,7] we define F;PP" to be the set of affine functions
p:xe€X—= (a,x)+beR,aeX be R with ||a]l2 < Ly if z € X; and 400 otherwise.
Moreover, we shall denote by FPPP the set of convex functions ¢ : X ~ R which are L;-
Lipschitz continuous on Xy, of domain X; and proper.

Proposition 20. Under Assumption 3, the Problem 3.26 and the Bellman operators defined
in Equation (3.29) satisfy the structural assumptions given in Assumption 1.

Proof. We prove successively each assumption listed in Assumption 1.

el-(a). Recall that we are here on the case opt = sup. Fix t € [0,7] and let F' C F{°°F be a
set of affine L;-Lipschitz continuous functions with domain X;. For every z,z’ € X;, we have
that

Vr(2) = Vr (2') | = | sup ¢(x) — sup ¢(a’)| < sup |¢(z) — ¢(a')| < Lillw — 2.
¢EF pEF ¢EF

Thus, the function Vg is L;-Lipschitz continuous. As a supremum of affine functions is convex
and l.s.c., Vp is also convex and l.s.c., we have thus shown that Vg € F;PPP.

e1-(b) and 1-(c). By construction, for all ¢ € [0,T], every element of F{°°F is L;-Lipschitz
continuous. Thus, by the previous point, F;PP" is also stable by pointwise convergence.
e1-(d). As 1) is convex proper and Lp-Lipschitz continuous on X7, it is a countable (as R™ is
separable) supremum of Lp-Lipschitz affine functions.

e1-(e). This has been shown in Proposition 18.

el-(f). Let ¢y and ¢ be two functions over X such that ¢1 < ¢9 i.e. for every x € X, we have
o1(z) < pa(z). We want to show that By (¢1) < B; (¢2). Let z € X, we have:

By (61) (#) = inf cila, u) + 61 (fi(a, u)

< inf ¢(x,u) + ¢o (fr(x,u))
uel

= Bi (¢2) (z).



el-(g). We will show that B; is additively homogeneous, hence one can choose M; = 1 in
Assumption 1-(g). Let A € R be a given constant and ¢ a given function in F; ;. We identify
the constant \ with the constant function A : x — A\ and we have for all z € X:

B (A+9) (@) = inf (erla,u) + A+ ) (filw,u)))

ue

= inf (e, ) + A+ 6(fl )

= )\+5161% (ct(x,u) + QS(ft(%U)))
= X+ Bi(¢)(x).

e 1-(h). By backward recursion on time step ¢t € [0,7] and by Proposition 18, for every time
step t € [0, 7] the function V; given by the Dynamic Programming Equation (3.29) is convex
and Ls-Lipschitz continuous on Xj;.

el-(i). Fix t € [0,T —1], an arbitrary element ¢ € F$PPP, a constant A > 0 and set ¢ := ¢+ \.
We will show that for every compact set Ky C Xy, there exist a compact set Ky11 C X¢i1
such that

B, (qé + 51%) Yok, =B, (¢) 4ok, (3.32)

which will imply the desired result. Now, Equation (3.32) is equivalent to the fact that for
every state z; € Ky, there exist a control u; € Uy(z) such that

fi(xe,up) € Kyy1  where  w; € arg n(n])a B (9)(xt) = cr(xe,u) + gzg(ft(:vt, u)) .
ueUs(z

Set Kyy1:= fi( Xy, U(Xy)), it satisfies Equation (3.32), we show that it is compact. As X; is
compact and f; is continuous, it is sufficient to prove that U;(X;) is compact, which is true as
Uy is upper semicontinuous (u.s.c.) and non-empty compact valued, see [AE84, Proposition
11 p.112]. This ends the proof O

Now, we define a compatible selection function for opt = sup. Let ¢ € [0,7 — 1] be fixed,
for any F' C F{PP" and x € X, we define the following optimization problem

min ce(z! u) + A (3.33a)
(2" u,\)EX e x U (') xR

st. #'=z and o(fi(z/,u) <X VoeF. (3.33b)

If we denote by b its optimal value and by a a Lagrange multiplier associated to the
constraint ' — x = 0 at the optimum, that is such that (z/,u; ), a) is a stationary point of
the Lagrangian c¢; (2/,u) + X\ — (a, 2’ — x), then we define

¢PPY (Fyx) =2’ = {a, 2" —x) + b+ x,(2) .
Finally, at time ¢t = T, for any F' C F3P°" and x € X, fix a € OV (x) and define
PP (Fox) =2 (a,2" —x) + V(7).

Proposition 21. For every time t € [0,T], the function ¢;°°F is a compatible selection
function for opt = sup in the sense of Definition 6.



Proof. Fix t € [0,T — 1], F C FP?" and z € X. Using Equation (3.27) we obtain that
B: (Vr) (z) is equal to b the optimal value of optimization problem (3.33a). Thus, since
¢;PPP (F,z) (xr) = b we obtain that the selection function is tight. It is also valid as a is a
subgradient of the convex function B, (Vp) at x. For t = T', the selection function ¢7°"" is
tight and valid by convexity of V. ]

If we want to apply the convergence result from Theorem 15, as we approximate from
below the value functions (opt = sup) then one has to make the draws according to some
sets KF such that the sets K; := limpenKF are V;* optimal. As done in the literature of
the Stochastic Dual Dynamic Programming algorithm (see for example [GLP15] and [ZAS18]
or [PP91]), one can study the case when the draws are made along the optimal trajectories
of the current approximations.

More precisely, fix k € N we define a sequence (x5, 2%,...,z%) by

:c’g =9 and Vte[0,T—1], fo = ft(xf,uf) ,

where uf € arg min,, BY (V;k) (xf) We say that such a sequence (zf, %, ..., %) is an optimal

trajectory for the k-th approxzimations starting from xg. We show that optimal trajectories
for the current approximations become (V;*)-optimal when k goes to infinity, using a result
of convergence in minimization by Rockafellar and Wets [RW09, Theorem 7.33].

Proposition 22. For ecvery k € N, let (:Elg,x’f, e ,ml}) be an optimal trajectory for the k-

th approzimations starting from xo and define a sequence of singletons for every t € [o, 7],
Kf = {af}. Then the sets (K{)iepo,ry defined by Ki = lim, Kf are (V;*)-optimal.

Proof. Fix t € [0,T—1], we want to show that Equation (3.14) is satisfied for K} which is
equivalent to prove that for every zf € K, we have that

By (Vi + iz, ) (w8) = Be (Vi) (7). (3.34)

Now, using the definition of the Bellman operators in Equation (3.27) and Equation (3.34)
we have to prove that there exists a control u;j € U(z}) such that

uf € {u } fi(x},u) € K{,} Nargmin (Ct(:c;f,u) + Vi (felay, u))) . (3.35)
ueUy(x})
Fix a7 € K} and extracting if needed a subsequence, without loss of generality, assume
that (xf) keN converges to xy. Fix k € N and the sequence of controls (ulg, e ,ui}fl) associated
with the optimal trajectory for the k-th approximations (xlg, . ,a:’%) We have that

uf € {ul fu(af,u) € Kfy ) narg i (alaf )+ VE (fabw)) . (3.36)
uelUt(z}

Extracting, if needed, a subsequence (u})nen of (uf)nen, we will show that the sequence
(uf' Jnen converges to some uj € argmin,cy,(ox) ct(zf,w) + Vi (fe(zf, u)). Equation (3.35)
will be satisfied as for every n € N, fi(z}',uf") € K}, the continuity of f; and definition of
K., will ensure that uj € {u| fi(z},u) € Kj,}.

We will use the result of convergence in minimization [RW09, Theorem 7.33]. We define

B¥:U =R, ur ¢(zF,u) + Vt’fH (ft(xf,u)) ,
B*:U—=R, u— ct(xf,u)—i—%il(ft(x:,u)) .



Recall that, under Assumption 3-(4), the set-valued mapping U; has compact values with
non-empty interior and is Ly,-Lipschitz continuous for some constant Lr > 0. Moreover,
the functions B* and every B*, k € N are convex, l.s.c., proper, inf-compact, with compact
domains Uy(z}) and Uy(zf), respectively. As U, is Lipschitz continuous, the sequence of
functions (B¥),en converges uniformly to B* on every compact K included in the interior of
dom(B*) = Uy(z}). Thus, by [RW09, Theorem 7.17.c|, (Bf)ren epiconverges to B*. Finally,
(uF)pen C fi( Xy, Up(X})) which is compact as Uy is u.s.c. and f; is continuous. We conclude
that we can extract a converging subsequence out of (uf)z. Denoting by u} € U(x}) its
limit, by [RW09, Theorem 7.33] we finally have that uf € argmin,c;; B*(u). This ends the
proof. O

Hence, when applying TDP with the SDDP selection function, we will refine the approxi-
mations along the current optimal trajectories, i.e. we use Oracle defined in Example 3. We
conclude this section by proving the convergence of TDP algorithm in the SDDP case.

Theorem 23 (Lower (outer) approximations of the value functions). Under Assumption 3,
for every t € [0,T], denote by (V;k)keN the sequence of functions generated by Tropical
Dynamic Programming with the selection function ¢;°°" and the draws made uniformly over
the sets Kf defined in Proposition 22. Then, the sequence (Vtk)k:eN is non-decreasing, bounded
from above by Vi, and converges uniformly to V;* on every compact set included in dom (V}).

Moreover, almost surely over the draws, V;* =V, on limkeNKtk.

Proof. As the structural assumptions Assumption 1 are satisfied, as the functions ¢;°°*, 0 <
t < T, are compatible selections and the sets (K{),cpo 1) are (V;")-optimal (case opt = sup)
by Theorem 15, we have the result. O

3.5 A min-plus selection function: upper approximations in
the linear-quadratic framework with both continuous and
discrete controls

In §3.5.1, we study the case where the cost functions and dynamics are homogeneous. We
conclude this section in §3.5.2 with an example which shows that using optimal trajectories
of the best current approximations as trial points in Tropical Dynamic Programming may
generate functions (V;k) reN Which do not converge to the value function V;. In the appendix
3.9, we show how one can use the homogeneous case to solve the non-homogeneous case by
augmenting the state dimension by one.

3.5.1 The pure homogeneous case

We will denote by M, the set of nxn real matrices and by S,, C M, the subset of symmetric
matrices.

Definition 24 (Pure quadratic form). We say that a function q : X — R is a pure quadratic
form if there exist a symmetric real matrix M € S,, such that for every x € X, we have
q(z) = " M.

Similarly, a function q : X x U — R is a pure quadratic form if there exist two symmetric
real matrices My € S, and My € Sy, such that for every xz € X, we have q(x,u) = T Mz +
UTMQU.



Let us insist that pure quadratic forms are not general 2-homogeneous quadratic forms in
the sense that they lack a mixing term of the form 2”7 Mu. In 3.9 we show why we do not
lose generality by studying this case instead of general polynomials of degree 2. Let X = R"”
be a continuous state space (endowed with its Euclidean and Borel structure), U = R™ a
continuous control space and V a finite set of discrete (or switching) controls. We want to
solve the following optimization problem

T—1
min (e, ug) + (o 3.37a
(x7u7U)EXT+1XUTXVT§ t ( t t) w( T) ( )
st xo € X given, and Vi € [0, T — 1], we1 = fi" (w1, ) - (3.37b)

Assumption 4. Lett € [0,T — 1] and v € V be arbitrary.

— The dynamic f} : X x U — X is linear. That is, ff(x,u) = Ajx + Bfu, for some given
matrices A} and B} of compatible dimensions.

~ The cost function c¢{ : X x U — R is a pure convexr quadratic form, ¢} (z,u) = 27 Cyx +
ul DYu, where the matriz CP is symmetric semidefinite positive and the matriz D} is sym-
metric definite positive.

— The final cost function v := infier, V5 is a finite infimum of pure convex quadratic form, of
matriz M; € S,, with i € It a finite set, such that there exists a constant ap > 0 satisfying
for everyi € I 0=M,; < ap Id.

One can write the Dynamic Programming equation for Problem 3.37 as follows

Vr=1¢ andVte[0,T-1],Vx € X, Vi(z) = in{f m{J (@, u) + Vi1 (ff (z,w) . (3.38)
veVue
The following result is crucial in order to study this example: the value functions are
2-homogeneous, allowing us to restrict their study to the unit sphere.

Proposition 25. For every time step t € [0,T], the value function Vi, solution of Equa-
tion (3.38) is 2-homogeneous, that is, for every x € X and every A\ € R, we have Vy(Ax) =
N2Vi(z).

Proof. We proceed by backward recursion on time step ¢ € [0,7]. For ¢ = T it is true by
Assumption 4. Assume that it is true for some t € [1,7]. Fix A € R, then by definition of
Vi_1, for every x € X, we have

Vit () = minmin ¢y (A, w) + Vi (fi21 (A, v))

o . . v / v /
= gggu,:rg}gwct_l(kx, ') + Vi (fioq (A, M)

which yields the result by 2-homogeneity of x — ¢;_; (x, u), linearity of f’ ; and 2-homogeneity
of V;. =

Thus, in order to compute V;, one only needs to know its values on the unit (Euclidean)
sphere S as for every non-zero z € X, Vi(z) = |z|? V}(‘F—”) Hence, we will refine our

approximations only on the sphere, that is we will draw trial points uniformly on the sphere
and use the Oracle defined in Example 2. Now, for every time t € [0,7—1] and every



switching control v € V we define the Bellman operator with fived switching control By for
every function ¢ : X — R by:

v .= inf Y(-. u C(eu 2 M
B(@) = inf et + 1A ClPe (e )

For every time t € [0, 7 — 1] we define the Bellman operator By for every function ¢ : X — R
by:

B (¢) := inf B} (¢). (3.39)

veV

This definition of the Bellman operator emphasizes that the unit sphere S is (V;)-optimal
in the sense of Definition 13. Note that for 2-homogeneous functions, we have that By (¢) =
infyev ey (-, u)+o(ff (-, u)). Using Equation (3.39), one can rewrite the Dynamic Programming
Equation (3.38) as

Vr=14 and Vte[0,7-1],Vi = Bi(Vit1) - (3.40)

Now, in order to apply the Tropical Dynamic Programming algorithm to Equation (3.40),
we need to check Assumption 1. Under Assumption 4, there exist an interval in the cone of
symmetric semidefinite matrices which is stable by every Bellman operator B; in the sense of
the proposition below. We will consider the Loewner order on the cone of (real) symmetric
semidefinite matrices, i.e. for every couple of matrices of symmetric matrices (M7, Ms) we
say that M; < My if, and only if, Ms — M; is semidefinite positive. Moreover we will
identify a pure quadratic form with its symmetric matrix, thus when we write an infimum
over symmetric matrices, we mean the pointwise infimum over their associated pure quadratic
forms.

Proposition 26 (Existence of a stable interval). Under Assumption 4, we define a sequence
of positive reals (at)sepo,r) by backward recursion on t € [0,T — 1] such that we have:

0= M = Qi1 Id=0 = Bt(M) =< oy Id, (341)
where ar is a given constant by Assumption 4.

Proof. First, given an arbitrary ¢ € [0,7], we want to show that if M > 0 then B,(M) >
0. As in Proposition 20 one can show that the Bellman operator B; is order preserving.
Therefore, if M > 0 then B,(M) = B,(0). Hence it is enough to show that B,(0) > 0. But
by Formula (3.53), we have that B;(0) = min,ey Cy > 0 (by Assumption 4) hence the result
follows.

Second, let t € [0,7 — 1] and ;41 > 0 be fixed. We consider a; > 0 defined by

o = max apst Amax (A7 (A7)") + Amax(C}) > 0, (3.42)

and we prove that if M < a1 Id then we have that By(M) =< a4 Id. For that purpose, con-
sider M such that M < a;;1 Id. Then, denoting by B, the matrix Id+ay,1Bf (DY)~ (BY)T,
we have that Amin(By) = 1 + @1 min(BY(DY) "1 (BY)T) > 1 using the fact that the matrix
B (DY)~1(BP)T is positive semi-definite by Assumptions 4. Now, we successively have for



any v € V

Amax (Bf (M )) < )\max( V(a1 Id)) (BY is order preserving)
= A (01 (A1) (B)) 7147 + O ) (using (3.53))
< at+1)\max<( ) (E:)*A”) + Amax(CY) (by Proposition 35)
< a1 Amax (AfAUT) max (B ) + Amax(CY) (by Proposition 35)
< 1 Ama (A7 A7) + Ama( Ct (85 Amax(BY)) = Amin (B)) " < 1)
< o, (using (3.42))

which gives that B (M) =< «; Id. Then, the same result follows for the operator B; using
Equation (3.39). This ends the proof. O

Using Proposition 26, one can deduce by backward recursion on t € [0, T —1] the existence
of intervals of matrices, in the Loewner order, which are stable by the Bellman operators.

Corollary 27. Under Assumption 4, using the sequence of positive reals (at)teﬂo,T]] defined
in Proposition 26, we define a sequence of positive reals (ﬁt)te[[O,T}] by Br = ar and Vt €
[0,T-1], B¢ := max(cy, Bi+1). Then, one has that

0=M= BT Id =Vt e [O,T — 1]], 0= Bt( . .BT_Q(BT_l(M))) = Bt 1d.

Fmin—plus
t

The basic functions will be pure quadratic convex forms bounded in the Loewner

sense by 0 and ;1
Fpieies = {(ﬁ:ZCGX'—)l‘TMxER‘MESm OijBtId},

and we define the following class of functions which will be stable by pointwise infimum of
elements in F} P,

]anin»plus = {VF ‘ F C F;nin—plus} . (343)

Exploiting the min additivity of the Bellman operator, which gives that B; (inf (¢1, QSQ)) =

inf (By(¢1), Bt(¢2)), and the fact that the final cost 1 is a finite infima of basic functions, one

deduces by backward induction on ¢ € [0, 7] that the value functions are finite infima of basic
functions.

Lemma 28. For every time t € [0,T], there exists a finite set F; of convex pure quadratic
forms such that
Vi = inf
¢ = inf ®.
Proof. Fort =T, set Fr := {¢;};c;,.. Now, assume that for some ¢ € [0,7 — 1], we have that
Vi1 = infyer, ., ¢, where Fiyq is a finite set of convex pure quadratic functions. Then, by
definition of the Bellman operators B; (see Equation (3.39)), we have that
Vi = By(Vi41) = inf B/ ( inf inf inf B inf B
t t(Vir1) e t(¢€Ft+1 o) = beFsir vl i () = ¢€Ft+1,’u€V( t(¢))

As the image by B; of a convex pure quadratic function is still a convex pure quadratic
function (see Appendix 3.7), setting F; := {B” )¢ € Fiyq and v € V} we obtain that
Vi = infyer, ¢, where F is a finite set of convex pure quadratic functions. Backward induction
on time ¢ € [0,7] ends the proof. O



Proposition 29. Under Assumption 4, the Problem 3.37 and the Bellman operators defined
in Equation (3.38) satisfy the structural assumptions given in Assumption 1.

Proof. We prove successively each assumption listed in Assumption 1.
e 1-(a). By construction, F;""™™ in Equation (3.43) is stable by pointwise infimum.

e 1-(b) and 1-(c). We will show that every element of F;""*"* is 23-Lipschitz continuous on
S. Let F' = {¢i};c; C Fy™ P with I C N and ¢; € Fy"™" ™" with associated symmetric matrix
M;. Fix z,y € S, we have successively

_ it T e T
\Ve(z) — Vr(y)| Iggfﬂ M;x gelﬁy M;y|

< max |z1 Mz — 3T Myy|

el
< max [z7 M; (v — y) +y" M (v = y)|
< max|(z +y, Mi(z — y))| (M = M)
3
<z 4yl - max | M; (x —y) || (Cauchy-Schwarz)
1€

< |z +yl - max [ M;[[|lz — y||
el

< Bellz +yll - [lo =yl (1Ml < Br)
< 2Billx =yl , (3.44)

since ||z + y|| < 2. Thus, every element of F;""™" is 23;-Lipschitz on S and by stability by
pointwise infimum, F}"™""* is stable by pointwise convergence.

e 1-(d). By Assumption 4, the final cost function 1 is an element of F7\" ",
e 1-(e). This is given by Corollary 27.
e 1-(f). Proceed as in Proposition 20.
e 1-(g). Fix a time step t € [0,7 — 1], a compact K; C dom(V;) (= X), a function ¢ € Fy /7"

4 t+1
and a constant A > 0. By definition of Fy7*"*, there exists a finite set F := {¢;},c; C Fyy7™™

such that ¢ = inf;c; ¢;. By Equation (3.56), for each i € I and v € V| there exists a linear
map L} such that

min ¢y (z,u) + ¢i(fy (2, u)) = ¢ (z, L (2)) + ¢i(f; (z, L (2))) , (3.45)

with ||LY|| < a41Ct, where Cy is a constant depending on the parameters of the control
problem only. Hence the maps z +— f/(x, LY (x)) are linear and their norm are bounded by
(a1 + 1)C} for some constant C] depending on the parameters of the control problem only.
Set My == ((ays1 +1)Cy||K¢|))?, where || Ky|| is the radius of a ball centered in 0 including K.
Therefore, for x € Ky, we have || f?(x,u)||*> < M;. Now, for x € K, using the bound on f; we



have

. J{ (@, u)
B A) () =minc} (z,u Uz, w)|]? (i + N) (o
veV

. v v v v 2 . 7(
< minc; (2, L (2)) + |/ (2, L (@))[I7(¢1 + A)( 7,
(
(

veV
. fP(x, LY
< mine} (e, LV (@) + |12 (2, L¥()) |2 (- L L @)
) i L

- (et @, LY @) + 6u(f7 (2, LY (@))) ) + MiA
= min (¢ (@, 0) + 6:(f7 (,0)) ) + MeA (by (3.45))

uel
veV

hence the desired result B; (¢ + \) (z) < M+ B(¢)(z).
e 1-(h). This is a consequence of Lemma 28.
e 1-(i) Fix ¢ € F; and A > 0. Denote by ¢ = ¢ + A. For every x € X, we have that

. . v v 27 f”(a:,u)
Bi(¢)(x) = (%glelﬁwct (z,u) + || f (z,u)|| ¢(M)

_ . v v 207 M
= 8, ) + M IR+ 09) (s )

= Bt(& + 53)(1’),

which implies the desired result.
O

Remark 30. We have shown that By is additively subhomogeneous with constant M. An
upper bound of M; can be computed as in the proof of Proposition 26, by bounding the greatest
eigenvalue of each matrices L.

We now define, for any ¢ € [0,7], a selection functions ¢;"*™"* and prove that it is a
compatible selection function. As each arg min mentioned below involves a finite set, selecting
an element in the arg min raises no issue.

Proposition 31. For every time t € [0,T], any F C F}""" and any x € X, define a

min-plus

function ¢} as follows

pois (1 ) {Bt<afgmin¢eF (Bt(@(f”))) Jor t#£T, (3.46)

! arg min, ¢ p i () for t=1T,

is a compatible selection function as defined in Definition 6.



Proof. Fix t = T. The function ¢} ™" is tight and valid as V- = 9. Now fix t € [0,T — 1].
Let F' C F}! jrnlp " and x € X be arbitrary. We have

BVe)(@) = Bi(inf 0)(x)

= it (b )+ nf o(f7 ) )

= inf inf (Cf(l", u) + ¢(fg}(x>u))>

PEF (u,v)eUxV
;Ielg“ (Bt (¢) (x))
= G (P (x)

Thus, ¢} is tight. By similar arguments, we have for every 2’ € X that
B,(Vp)(z') = ((;Iélg Bt(qb))(x/) < gt (Fx) () .

This shows that ¢;*"?"*(F,z) is valid and ends the proof. O

We conclude this section by proving the convergence of TDP algorithm in the Min-plus
case.

Theorem 32 (Upper (inner) approximations of the value functions). For every ¢t € [0,T7],
denote by (Vtk)keN the sequence of functions generated by Tropical Dynamic Programming
with the selection function ¢;"""™ and the draws made uniformly over the sphere K; := S.
Under Assumption 4, the sequence (V;k)keN s mon increasing, bounded from below by Vi and
converges uniformly to V;* on S. Moreover, almost surely over the draws, V;* =V, on S.

Proof. As the structural Assumption 1 are satisfied, as the functions ¢y, 0 <t < T are
compatible selections and the unit sphere S is V;-optimal (case opt = inf), we can apply
Theorem 15. O

3.5.2 Optimal trajectories for upper approximations may not converge

We now give an example showing that approximating from above may fail to converge when
the points are drawn along optimal trajectories for the current upper approximations of V; (in
contrast with Section 3.4 where we approximate from below V;). As shown by Proposition 36
there is no loss of generality in considering the framework of §3.5.1 but with non-homogeneous
functions.

We consider a (non-homogeneous) problem with only two time steps, that is 7' = 1 and
t € {0,1} such that
e The state space X and the control space U are equal to R.
e The linear dynamic is f(z,u) =z + u.
e The quadratic cost is c(z,u) = 22 + u?.
e The final cost function is the infimum, ¢ = inf(v1,1)2), of two given quadratic mappings,
Y1(z) = (x +2)% + 1 and Yo(z) = 22

The Bellman operator B, associated to this multistage optimization problem is defined for
every ¢ : X — R and every = € X by

B(¢)(z) = gg[r]l (22 + u? + ¢z +u)) = 2% + gél[r]l (v + ¢(z +u)) .



4!

To = —2 -1 xr; =—1

Figure 3.4: Illustration of the multistage (two stages here) optimization problem studied in
§3.5.2. The final cost function, ¥ = inf(1)1,19) is shown in the right subfigure and displays
of the images, by the Bellman operator B, of the functions ¢y and 9 are drawn in the left
subfigure. We have that B(y2)(xo) > B(11)(zo). At the final time ¢ = 1, the “best function”
at the point —1 is 19. The image by the k-th optimal dynamic of g = —2 is 1 = —1.

For the case where ¢ (-) = (- + a)? + b with a,b € R one has for every x € R

B(das) (@) = g:ﬂ +az+b. (3.47)

Fix zg = x’g = —2 for every k € N. As described in Algorithm 1, the approximations of the
value functions Vi and Vj are initialized to +o0o. Thus every control u € U is optimal in the
sense that u € argmin,, oy z? + (v/)? + ¢(z + ). Hence if we set 2 := —1 = f(zo,1) then
(w0, 2Y) is an optimal trajectory as described in Proposition 22.

We deduce from Equation (3.47) the following facts, illustrated in Figure 3.4.

1. The image of g is strictly greater than the image of ¥; by the Bellman operator B, i.e.
B(12)(—=2) > B(¢1)(—2).

2. The image by the k-th optimal dynamic of —2 is —1, i.e. setting uf := arg min,c;(—2)2+
(u')?2 + VFE(—2 4 ') (the argmin is here a singleton) one has

3. At the final step ¢ = 1, the best function at the point —1 is 1, i.e.
¥(=1) = inf(P1(=1),¢2(=2)) = ¢2(-2).

From those three facts, one can deduce starting xp = —2 and x; = —1, the optimal
trajectory for the current approximations will always be sent to x1 = —1. But, as shown in
the proof of Proposition 31 one can show that the image by B of an infimum is the infimum
of the images by B:

Vo(=2) = B(inf(¢1,12))(—2) = inf(B(¢1)(-2), B(¥1)(—2)).

Thus for every k € N, we have Vp(—2) = B(¢1)(—2) < B(¥1)(—2) = VF(—2). The constant
sequence VF(—2) fails to converge to Vp(—2).



3.6 Numerical experiments on a toy example

In §3.6.1, we propose a toy optimization Problem (3.48) on which we run TDP-SDDP and
TDP-Minplus. Problem (3.48) falls in the framework described in Section 3.4. Thus, we
are able to obtain lower approximations of V; using TDP-SDDP. TDP-Minplus cannot be
applied directly. We apply a “discretization” step to Problem (3.48) (see §3.6.2) which yields
Problem (3.49) parameterized by an integer N > 0. Then we apply to Problem (3.49) an
“homogenization” step (see §3.6.3) to obtain Problem (3.50). The value functions V; of the
original Problem (3.48) are bounded from above by V; y, the value functions of Problem (3.50).
We apply TDP-Minplus (described in Section 3.5) to Problem (3.50) which gives upper ap-
proximations of V; xy and a fortiori, of V;. In §3.6.6, we show numerical experiments which
show the convergence of this approximation scheme to V4.

3.6.1 A toy example: constrained linear-quadratic framework

Let B,y be two given reals such that 8 < ~, we study the following multistage linear quadratic
problem involving a constraint on one of the controls:

T-1
min Z ey, ug, v) + Y(xr) (3.48a)

(z,u,0)eXTH1xUT x [B,4]T —o

s.t. wp € Xgiven, and Vt € [0,T — 1], 441 = fe(we,u,ve) ,  (3.48Db)
where X = R” and U = R™, with quadratic convex costs functions of the form
ce(z,u,v) = 2T Cx + u” Dyu + v2d,,

where C; € S, Dy € St and d; > 0, linear dynamics fi(z,u,v) = Aww + Byu + vby, where
Ay (resp. By) is an x n (resp. m x m) matrix, b € X, and final cost function ¢ := 27 Mz
with M € Sf.

For every ¢ € [0, 77, the value function V; is L;-Lipschitz continuous and convex. Moreover
the Lipschitz constant L; > 0 can be explicitly computed. As done in Section 3.4 we will
generate lower approximations of the value functions V; through compatible selection functions
(""" )iefo,r7- In this example, the structural Assumptions 1 are not satisfied as the sets of
states and controls are not compacts. As we will still observe convergence of the lower
approximations (¢;""").c[o,r] generated by TDP to the value functions, this suggests that
the (classical) framework presented in Section 3.4 can be extended. This will be the object

of a future work and here we would like to stress on the numerical scheme and results.

3.6.2 Discretization of the constrained control

We approximate Problem (3.48) by discretizing the constrained control in order to obtain an
unconstrained switched multistage linear quadratic problem. More precisely, we fix an integer
N >2,set v; =+ z% for every i € [0, N — 1] and set V := {vg,v1,...vn—_1}. Then, we
define the following unconstrained switched multistage linear quadratic problem:
T—1
min Z et (xp, up) + () (3.49a)

(z,u,0)eXTHIXUT x VT —o

sit. xo € Xgiven, and Vt € [0,T — 1], xe1 = f (xe, ue) , (3.49b)



where for every v € V, f = fi(-,-,v) and ¢} = ¢(+,-,v). As the set of controls of Problem
(3.48) contains the set of controls of Problem (3.49), upper approximations of the value
functions of Problem (3.49) yield upper approximations of the value functions of Problem
(3.48). Thus we will construct upper approximations for Problem (3.49).

3.6.3 Homogenization of the costs and dynamics

We add a dimension to the state space in order to homogenize the costs and dynamics, when a
sequence of switching controls is fixed. Define the following homogenized costs and dynamics
for every t € [0,T — 1] by:

(5 )(0)-(2)-
& (2, u) = <y> <%t det) (y) + " Dy,

T
And as the final cost function is already homogeneous, ¥ (x,y) = <§) <J\04 8) (;j) Using

these homogenized functions we define a multistage optimization problem with one more
(compared to Problem (3.49)) dimension on the state variable:

T—
Z xtvytaut +w($TayT)

=0 (3.50)
{(xo, yo) € X x R is given,
s.t. ~

min
(z,y,u,0)EXTHIXRTHL xUT x VT

vt e [0, — 1], (zes1,Ye401) = Fr (T, ye, ue) -

One can deduce the value functions V; y of the multistage optimization problem (3.49)
(with non-homogeneous costs and dynamics) from the value functions V; y of (3.50) (with
homogeneous costs and dynamics) by Proposition 36. For every x € X, we have that

Vin(z) = Vin(z,1) . (3.51)

For every time step ¢ € [0,7] the value function f/t, ~ solution of Problem (3.50) is 2-
homogeneous. That is, for every (z,y) € X x R and every A € R, we have V; y (Az, \y) =

)\2127 ~ (x,y) . This will allow us to restrict the study of the value functions to the unit sphere,
which is compact.

3.6.4 Min-plus upper approximations of the value functions of Problem (3.50)

We apply the results of Section 3.5 as follows. Let v € V be a given switching control, in this
framework, the operator B} is defined as in Section 3.5 but with an augmented state. More
precisely, for every function ¢ : X x R — R and every point (z,y) € X x R:

f2(@,y,u)

1F¥ (2., U)II) '

B (6) (,y) = inf & (w, y,10) + |7, 3,10) 6



Then, for every time ¢ € [0,7 — 1], the Dynamic Programming operator B; associated to
Problem (3.50) satisfies By (¢) := inf,ey By (¢).

A key property of the operators By and B; is that they are min-additive, meaning that
for every functions ¢1, ¢ : X — R one has:

B (inf(¢1, ¢2)) = inf (B (¢1), By (¢2))

and a similar equation for B;. Moreover, by Riccati formula (see Equation (3.52)), the image
of a convex quadratic function by By is also a convex quadratic function.
Lemma 28 suggests to use the following set of basic functions:

F;nin»plus = Ft and ]Fltnin—plus — {VF ‘ F C F:fnin»plus} .

As done in Section 3.5, one could also have considered as basic functions the quadratic func-
tions bounded in the Loewner sense between 0 and ayI, where oy > 0, t € [0,T7], are real
numbers such that, if ¢ is a quadratic form bounded between 0 and ay411, then By (o) is
bounded between 0 and oyl.

Moreover, using the aforementioned properties, one will be able to compute BY (V) for
a given switching control v and By(Vp), for any finite set F' of convex quadratic functions.
Therefore, given a time ¢ € [0, T — 1], we define the selection function ¢;""™"* as follows. For
any given F' C Fy)7™™ and (z,y) € X x R,

£ (Fa,y) = By (9)

for some (v, ¢) € argmin By (¢) (z,y).
(v,9)€EVXF

Moreover, at time ¢ = T, for any F C F5"™™ and (z,y) € X x R, we set

FP (B, y) = o(z,y) = ¢().

Motivated by the 2-homogeneity of the value functions, the random draws of TDP for the
basic functions F;"™™* 1 <t < T and the selection functions ¢;"" ™" will be made uniformly
on the unit Euclidean sphere, which satisfies Definition 7. Indeed, by 2-homogeneity, it is
enough to know the value functions of (3.50) on the sphere to know them on the whole state
space.

3.6.5 Upper and lower approximations of the value functions

For a large number of discretization points N (defined in §3.6.2), one would expect that the
value functions V; y of (3.49) approximate the value functions V; of (3.48). Indeed, one can
show that for every time step ¢ € [0,77], the approximation error is bounded by C,7/N? in
X, for some constant C;y > 0. Thus, for large N, we have V; y ~ V; and by Equation (3.51),
for every N > 2, we have

Vin(1) =Ven 2 Vi

In the following Proposition we approximate 17,5 ~ from above by a min-plus algorithm and
Vi from below by SDDP and using the convergence result of Theorem 15 (admitting that the
result still holds for SDDP in this framework), we obtain the following one.



Iteration 7, N = 5 Iteration 18, N =5 Iteration 40, N =5

Values

75 00 50 75 0 B 75
Time step (1) Time step (t) Time step (1)

Figure 3.5: First example for 5 =1, v =5 with N =5 after 7 iterations (left), 18 iterations
(middle) and 40 iterations (right).

Theorem 33. For everyt € [0,T], denote by (V?)k N (resp. (VF)pen) the sequence of func-
€

min-plus

tions generated by TDP with the selection function ¢; (resp. ¢;°PF) and the draws made
uniformly over the Euclidean sphere of X x R (resp. made as described in Proposition 22).

Then the sequence (Vf)k N (resp. (V¥)ren) is non-increasing (resp. mnon-decreasing),
e ~ ~
bounded from below (resp. above) by Vi n (resp. Vi) and converges uniformly to Vi n (resp.
Vi) on any compact subset of X x R (resp. K; defined in Proposition 22).
3.6.6 Numerical experiments

The following data was used as a specific case of (3.48). For every time ¢t € [0,7 — 1],

Ay =(1-01)1d By =|: : b= | :
Cy=011d Dy =0.11d d; = 0.1.

The time horizon is T = 15, the states are in X = R" with n = 25, the unconstrained
continuous controls are in U = R with m = 3, the constrained continuous control is in [3, 7],
with [5,7] = [1,5] in the first example and [5,v] = [—3,5] in the second one. Moreover,
we start from the initial point z9 = 0.2 (1,...,1)T when TDP is applied with the selection

function ¢7PP* and the number of discretization points N is varying from 5 to 200, for TDP

min-plus

with the selection function ¢} . In Figures 3.5 and 3.6, we give graphs representing the

values VF(zF) and Vf (xF,1) at each time step ¢ € [0,7 — 1] where the sequence of states
(2F)ren is the optimal trajectory for the current lower approximations (VF)ien defined in
(22). From Theorem 33, we know that for every ¢ € [0,T — 1] the gap Vf(a:f, 1) — VE(k)
should be close to 0 as k increases assuming that N is large enough to have V; =~ V; .

On those two examples, we exhibit two convergence behaviors. On the first example, the
constrained control has to be greater than 1, thus avoiding 0 which would have been (or
almost) the optimal control if there were no constraint. The optimal constrained control is
the projection on U x [3,~] of the optimal unconstrained control, thus the switching control
is most of the time equal to the lower bound = 1.

From this observation we deduce two properties. First, the upper approximation given by
Qu algorithm is good, even for a small N, as the optimal switch is (most of the time) equal
to B. Second, this implies that at iteration k, the set FJ¥ is of small cardinality.

Moreover, in this example the number of switches is N = 5 thus few computations of
BY(¢)(z) need to be done in order to compute B;(¢)(x) for some » € X and ¢ € FF. Thus,



Iteration 7, N = 5 Iteration 18, N =5 Iteration 40, N =5

Values
Values
Values

25 50 75 o0 25 25 50 75 0 25 25 50 75 00 25
Time step (1) Time step (1) Time step (1)

Figure 3.6: Second example for § = —3, v = 5 with varying N = 5 (left), N = 50 (middle)
and N = 200 (right) after 20 iterations.
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Figure 3.7: Time spent for the first example (left) and the second example when N = 50
(middle) and N = 200 (right).



as shown on the left of Figure 3.7, the computation time of an iteration of Qu’s min-plus
algorithm is small compared to SDDP which does not exploit this property.

On the second example, the constrained control is in an interval containing 0. The switch-
ing control often changes and this means more computations. A compromise between com-
putational time and precision can be achieved (see Figure 3.7) in order to make the compu-
tational time of Qu algorithm similar to the one of SDDP algorithm.

Conclusion

In this chapter we have devised an algorithm, Tropical Dynamic Programming, that encom-
passes both a discrete time version of Qu’s min-plus algorithm and the SDDP algorithm in the
deterministic case. We have shown in the last section that Tropical Dynamic Programming
can be applied to two natural frameworks: one for min-plus and one for SDDP. In the case
where both framework intersects, one could apply Tropical Dynamic Programming with the
selection functions ¢ and get non-increasing upper approximations of the value func-
tion. Simultaneously, by applying Tropical Dynamic Programming with the selection function

$PPP one would get non-decreasing lower approximations of the value function. Moreover,
we have shown that the upper approximations are, almost surely, asymptotically equal to the
value function on the whole space of states X and that the lower approximations are, almost
surely, asymptotically equal to the value function on a set of interest.

Thus, in those particular cases we get converging bounds for Vjy(xg), which is the value of
the multistage optimization Problem 3.1, along with asymptotically exact minimizing policies.
In those cases, we have shown a possible way to address the issue of computing efficient upper
bounds when running the SDDP algorithm by running in parallel another algorithm (namely
TDP with min-plus selection functions).

In Section 3.6 we studied a way to simultaneously build lower and upper approximations
of the value functions using the results of the previous sections. However the discretization
and homogenization scheme that was described is rapidly limited by the dimension of the
control space, due to the need to discretize the constrained controls. We will provide in a
future work, a systematic scheme to use simultaneously SDDP and a min-plus methods which
is more efficient numerically and does not rely on discretization of the control space. Moreover
we will extend the current framework to multistage stochastic optimization problems with
finite white noises.

3.7 Algebraic Riccati Equation

This section gives complementary results for Section 3.5. We use the same framework and
notations introduced in Section 3.5.

Proposition 34. Fiz a discrete control v € V and a time step t € [0,T — 1].

~(a) The operator By : S,, — S, restricted to the pure quadratic forms (identified with S, the
space of the symmetric semidefinite positive matrices) is given by the discrete time algebraic
Riccati equation

v v v v v v v v v -1 v v
Bt (M) = Ct + (At)TMAt - (At )TMBt (Dt + Bt M(Bt )T) (Bt )TMAt . (3-52)



~(b) Moreover, when M € S;; Equation (3.52) can be rewritten as
-1
BY(M) = (A)" M (1+ By (D}) " (B))' M) A7 +C. (3.53)

Proof.
e We prove Equation (3.52). Note that if M is symmetric, then B}(M) is also symmetric.
Now, let t € {T—1,T-2,...,0} and M € S, be fixed. Let z € X, we have that

BYM) (@) = inf 7Gx+ D+ | (o) Sy S ()
v 177 G )l 117 ()]

= 5161[% 2TCYax +ul' Dfu+ f (x,u)” MfP (2, u)

=2TClx + 12{% ul DYu+ f¥ (@, u)T M fP(z,u). (3.54)

As u > f(z,u) is linear, D} > 0 and M > 0, we have that
g:u €U u' Diu+ ff(z,u)T Mf{ (z,u) € R
is strictly convex, hence is minimal when Vg(u) = 0 i.e. for u € U such that:
(D} + (BY)" MBY)u + (BY)"M(AY)z =0. (3.55)

Now we will show that DY + (BY)" M B} is invertible. As M € S, and DY € S, for every
u € U, we have:

WP (DY + (BY)" M BY)u = u” DYu+ (B{u)" M (B/u) > 0.
N—_——

>0 >0

We have shown that the symmetric matrix DY + (BY)" M B} is definite positive and thus
invertible. We conclude that Equation (3.55) is equivalent to:

v v v -1 v v

u=—(D} + (B))TMBY)™ (BY)" M (A})x . (3.56)

Finally, replacing Equation (3.56) in Equation (3.54) we get after simplifications that
BY(M)(w) = o7 (CF + (A7) M A}
— (A" MBY (D} + (BY)MBY) (B MAY )x

which gives Equation (3.52).
e Equation (3.53) follows from [LR95, Proposition 12.1.1 page 271]. O
3.8 Smallest and greatest eigenvalues

Here we recall some formulas on the lowest and greatest eigenvalues of a matrix. Denote the
smallest eigenvalue of a symmetric real matrix M by A\pin(M) (every eigenvalue of M is real)
and by A\pax(M) its greatest eigenvalue.



Proposition 35. Let n > 0 be given. We have the following matrix inequalities.
V(A,B) € %, Amax(A + B) < Mnax(A) + Aax(B) . (3.57a)
Y(A,B) € MyxSy , Amax(AT BA) < Aax (AT A) Aax(B) - (3.57b)

Proof. For any matrix M € M, the spectral norm of M, [|M||y,, (See [Cia89, Theorem 1.4.2])
is the subordinate matrix norm of the Euclidean norm on R"™. When the matrix M € S,, is
real symmetric, we have that M|y, = Amax(M) and for any real matrix M € M, we have
that Apax(MTM) = Apax(MM7T) = || M]2.

e Fix A)B € S,, we prove Equation (3.57a). As A+ B € S, and using the fact that a
subordinate matrix norm is a norm we have that Amax(A+ B) = [|[A+ Blly, < [|Allg, +
HBHSp = Amax(A) + Amax(B).

e Iix (A4, B) € M, xS,,. We prove Equation (3.57b) as follows

Amax(ATBA) = |ATBA|| (as ATBA€'S,)
< HATHSPHBHSPHAHSP ([I/lsp is submultiplicative as a matrix norm)
= 1411 By = Amax (AT 4)Amax(B) -

This ends the proof. O

3.9 Homogenization

We explain why, by adding another dimension to the state variable, there is no loss of general-
ity induced by studying pure quadratic forms in Problem 3.37 instead of positive polynomial
of degree 2, nor is there one for studying linear dynamics instead of affine dynamics.

First, we define the operator Ho that maps a function ¢ defined on a finite dimensional
vector space E to a 2-homogeneous function Ho (¢) defined on the extended domain E x R as
follows . .

7‘[2 : R — R
¢ — Ha(9):(2,9) — y2¢(§) if y # 0, 0 otherwise.
Thus, if ¢ is a positive polynomial of degree 2, then Hz(¢) is a 2-homogeneous convex
quadratic form (with possibly a mixed term in x and u). In a similar way, we define the
operator H; that maps any function ¢ defined on a domain E and taking values in E to a

1-homogeneous function H; (gb) as follows

Hi: EF — (ExR)EXE

(3.58)

¢ — Hi(9): (z,y) — (yo(%),y) if y # 0, 0 otherwise. (3.59)
Now consider (Bt),co 71 the Bellman operators associated to Problem 3.37
=X =X
B;: R — R
! (3.60)

¢ —> Bt(gf)) RS minugg cy(x,u) + o(ff(x,u)) ,

We denote by (Bﬁ)te[[oj,l]], the family of Bellman operators obtained through homoge-
nization (with E = X x U) as follows

=XxR —=XxR
Blt: R — R

@ — BZ{ (go) :(x,y) — mingey Ho (c%’) (m,u,y) (3.61)

veV



The next proposition relates the solution of Problem 3.37 with non-homogeneous functions
to the solution of the associated homogenized problem.

Proposition 36. Let (V;)cfo,17 (resp- (‘Z)te[[o,T}]) denote the solutions of the Dynamic Pro-
gramming Equation (3.3) system of equations associated with the operators (Bt)iejo,r—1] de-
fined by Equation (3.60) (resp. (Bzi)te[[oj_l]] defined by Equation (3.61)) and final cost 1)
(resp. HQ(Q,ZJ))) Then, for every x € X and t € [0,T] , we have that Vi(z) = ﬁ(m, 1).

Proof. First, it is easy to prove by backward recursion on time ¢t € [0, 7], that the mappings
V; for every t € [0,7], are 2-homogeneous. Second, we will show by backward recursion on
time that, for every ¢ € [0,T7], N

Vi = Ha (V3). (3.62)

Then, the result will follow by evaluating Equation (3.62) at y = 1. At the final time ¢t = T,
we have that

Vi := Ha(¥) = Ha (V).

Now, assume that for some ¢ € [0,7 — 1], we have that TN/tH = Ho (V}H), for (z,y) e X xR
we successively obtain that

Vi(z,y) = BlY (Vig1)(2,)

= min#, () (@, u,y) + Vi (7'[1 (ff) (@, u, y)) (2-homogeneity of V;41)
veV

= mi[[rjl Ha(c}) (z,u,y) + Ha(Vig1) (yft”(g, E)a y) (Induction hyp. and def.)
v

_ . 2 v E

= miny’cj (y,

T u )
)+ szZH(ftv(g, Q)) (by Equation (3.58))
veV

<&

. x
= % min V(=
u' €U Yy

) + Vt+1(f£’(§, o)) (' = u/y)
vevV

T
= Z/QBt(VtH)(;)
= Ha (Vi) (z,y) - (by Equation (3.58))
This ends the proof. O

Lastly, we briefly explain how to get rid of the possible mixed terms in both u and z in the
cost functions after homogenization. That is, there is no loss of generality to consider the case
of cost functions which are positive polynomials of degree 2 and affine cost than to consider
the case studied in §3.5.1, i.e. pure quadratic costs and linear functions. From Proposition 36,
we have seen that one can consider the case where the cost functions are 2-homogeneous with
linear dynamics. Assume (for the sake of simplicity, we omit the discrete control v here) that
the cost function ¢; is of the form

ci(z,u) = 2T Pz + 27 Pyu+ u” Psu,

where P;, P, and P3; are symmetric semidefinite positive matrices of coherent dimensions,
with P3 being definite positive. Moreover, fix a 2-homogeneous convex quadratic form v and
assume the dynamic f; to be linear of the form

fi(xz,u) := Az + Bu.



Setting Q1 := P; — inPg_lPQT, Qo = P3, L := %PglPQT, one has that the cost function

z,u) — c(z,u) = T Qix+u" Qou is a quadratic function without mixing term and (z, u) —
t

(x,u) := (A+ L)z + Bu is linear. Furthermore, by straightforward computations, one can

Je(z,u) = ( , by straig p ;

check that ¢; and f; satisfy:

ci(z,u+ Lz) = ¢j(z,u) and fi(z,u+ Lz) = f{(z,u). (3.63)

Note that as Q3 = P3, the matrix Q2 is symmetric definite positive and as ¢; is positive and
by Equation (3.63) for every x € X and u € U

2T Qux = ¢(x,0) = ¢;(x,0 + Lz) > 0,

then @ is symmetric semidefinite positive. Thus the quadratic function ¢} is convex and a
pure quadratic form in the sense of Definition 24.
Consider the Bellman operator associated with the costs ¢, and dynamics f/:

B: R — R

3.64
6 s B(9): v mingey e, u) + o(fi(a,w) (3.64)

. =X . .
Thus, for any function ¢ € R and every x € X, recall that U = R™ is unconstrained, so we
have that

Bi(¢)(w) = minci(z,w) + 6 fu(z,w)
= u':i&i?er ci(z,u+ Lz) + ¢(fi(x,u+ Lx))

= f}lé% iz, u') + o(fe(z,u'))
Bi(6)(x) = Bl(6) (@) (369

From Equation (3.65), one can deduce by backward recursion (as done in Proposition 36) on
the time step t € [0,77], that the value functions V; (resp. V}) of the Dynamic Programming
problem with Bellman operators B; (resp. B;) and final cost function ¢ (resp. 1 as well)
satisfy V; = V/
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4.1 Introduction

In this chapter we study multistage stochastic optimal control problems in the hazard-decision
framework (hazard comes first, decision second). Starting from a given state xg, a decision
maker observes the outcome w; of a random variable W1, then decides on a control ug which
induces a known cost ¢ (zo,up) and the system evolves to a future state =1 from a known
dynamic: z1 = fy"'(zo,up). Having observed a new random outcome, the decision maker
makes a new decision based on this observation which induces a known cost, then the system
evolves to a known future state, and so on until 7" decisions have been made. At the last step,
there are constraints on the final state xp which are modeled by a final cost function . The
decision maker aims to minimize the average cost of her decisions.

Multistage Stochastic optimization Problems (MSP) can be formally described by the
following optimization problem

mm E Zth+1 (X, Ug) + ¢(Xp) |,

s.t. Xo = x¢ given, Vt € [0,T — 1], (4.1)

\\%
Xip1 = f (X, Uy),
o(Ug) C 0(Xo, Wi1,..., W¢i1), (non-anticipativity)

where (Wt)te[[l,T]] is a given sequence of independent random variables each with values
in some measurable set (W;, W,). We refer to the random variable W1 as a noise and
throughout the remainder of the chapter we assume the following on the sequence of noises.

Assumption 5. Fach random variable Wy in Problem (4.1) has finite support and the se-
quence of random variable (Wt)ye 17 is independent.

One approach to solving MSP problems is by dynamic programming, see for example
[Berl6, CCCDL15, PP14, SDR09]. For some integers n,m € N, denote by X = R" the
state space and U = R™ the control space. Both X and U are endowed with their Euclidean
structure and Borelian structure. We define the pointwise Bellman operators B;’ and the
average Bellman operators B, for every t € [0,7 —1]. For each possible realization w € W1
of the noise W, 1, for every function ¢ : X — R taking extended real values in R = RU{=+oc0},
the function By (¢) (-) : X — R is defined by

Vo e X, B (¢)(x) = min (¢ (z.u) + o(f"(w,u)) -
Now, the average Bellman operator B, is the mean of all the pointwise Bellman operators
with respect to the probability law of Wy1. That is, for every ¢ : X — R, we have that
Vo e X, By(9) (@) = E[BY (6) ()] = E|min (V7 (2, 0) + o (Y (2 0) )|

uelU

The average Bellman operator can be seen as a one stage operator which computes the
value of applying the best (average) control at a given state xz. Note that in the hazard-
decision framework assumed here, the control is taken after observing the noise. Now, the
Dynamic Programming approach states that in order to solve MSP Problems (4.1), it suffices
to solve the following system of Bellman equations (4.2),

Vr=1 and Vte[0,T—1],V; =B (Vir1) . (4.2)



Solving the Bellman equations means computing recursively backward in time the (Bellman,)
value functions V;. Finally, the value Vj(xg) is the solution of the multistage Problem 4.1.
Grid-based approach to compute the value functions suffers from the so-called curse of
dimensionality. Assuming that the value functions {V;},co,r] are convex, one approach to
bypass this difficulty is proposed by Pereira and Pinto [PP91] with the Stochastic Dual Dy-
namic Programming (SDDP) algorithm which computes piecewise affine approximations of
each value function V;. At a given iteration k € N* of SDDP, for every time step ¢ € [0, 7], the
value function V; is approximated by Kf = maxgecp, ¢ where Fy is a finite set of affine func-
tions. Then, given a realization of the noise process (Wt)te[[LT]]v the decision maker computes
an optimal trajectory associated with the approximations (Kf)te[[o,T}] and adds a new function,

F1 (named cut) to the current collection F¥ which defines V¥, that is Fft1 = FFuU {gbf“}.

Although SDDP does not involve discretization of the state space, one of its computational
bottleneck is the lack of efficient stopping criterion: SDDP easily builds lower approxima-
tions of the value function but upper approximations are usually computed through a costly
Monte-Carlo scheme.

In order to build upper approximations of the value functions, Min-plus methods were
studied (e.g. [McE07, Qul4]) for optimal control problems in continuous time. When the value
functions {V;},e[o,7] are convex (or more generally, semiconcave), discrete time adaptations
of Min-plus methods build for each t € [1,T] approximations of convex value function V; as
finite infima of convex quadratic forms. That is, at given iteration k € N, we consider upper

. . —k . —k . . .
approximations defined as V;, = min scF ¢, where F; is a finite set of convex quadratic forms.
t

Then, a sequence of trial points (fﬂf)te[[o,Tﬂ is drawn (e.g. uniformly on the unit sphere as
in [Qul4]) and for every t € [0,7—1] a new function ¢¥*! is added, Ff“ = Ff U { f“}.

The function gbf“ should be compatible with the Bellman equation, in particular it should
be tight, i.e. the Bellman equations should be satisfied at the trial point,

B, (of1)) (aF) = ot @h).

In [ACT18], the authors present a common framework for a deterministic version of SDDP
and a discrete time version of Min-plus algorithms. Moreover, the authors give sufficient
conditions on the way the trial points have to be sampled in order to obtain asymptotic
convergence of either upper or lower approximations of the value functions. Under these
conditions, the main reason behind the convergence of these algorithm was shown to be that
the Bellman equations (4.2) are asymptotically satisfied on all cluster points of possible trial
points. In this chapter, we would like to extend the work of [ACT18] by introducing a new
algorithm called Tropical Dynamic Programming (TDP).

In [BDZ18, PdF13], are studied approximation schemes where lower approximations are
given as a suprema of affine functions and upper approximations are given as a polyhedral
function. We aim in this chapter to extend, with TDP, the approach of [BDZ18, PdF13]
by considering more generally that lower approximations are max-plus linear combinations
of some basic functions and upper approximations are min-plus linear combinations of other
basic functions where basic functions are defined later. TDP can be seen as a tropical variant
of parametric approximations used in Adaptive Dynamic Programming (see [Ber19, Pow11])
where the value functions are approximated by linear combinations of basis functions. In this
chapter, we will:



1. Extend the deterministic framework of [ACT18] to Lipschitz MSP defined in Equa-
tion (4.1) and introduce TDP, see Section 4.2.

2. Ensure that upper and lower approximations converge to the true value functions on a
common set of points, see Section 4.3. The main result of Section 4.3 generalizes to any
min-plus/max-plus approximation scheme the result of [BDZ18] which was stated for a
variant of SDDP.

3. Explicitly give several numerically efficient ways to build upper and lower approxima-
tions of the value functions, as min-plus and max-plus linear combinations of some
simple functions, see Section 4.4.

4.2 Tropical Dynamical Programming on Lipschitz MSP

4.2.1 Lipschitz MSP with independent finite noises

For every time step t € [1,7], we denote by supp (Wy) the support! of the discrete random
variable W, and for a given subset X C X, we denote by mx the euclidean projector on X.
State and control constraints for each time ¢ are modeled in the cost functions which may
possibly take infinite values outside of some given sets. Now, we introduce a sequence of
sets {Xt}te[[QT]] which only depend on the problem data and make the following compactness
assumption:

Assumption 6 (Compact state space). For every time t € [0,T], we assume that the set
Xy is a nonempty compact set in X where the sequence of sets { Xi}yco,r) s defined, for all
te[0,T - 1], by

X = ﬂ mx(dom¢}’) , (4.3)

wesupp(We41)

and fort =T by X7 = domy.

For each noise w € supp (W¢41), t € [0,T —1], we also introduce the constraint set-valued
mapping U : X = U defined for every x € X by

U (z) = {ueU|c(z,u) < +oo and f"(z,u) € Xi41} . (4.4)

We will assume that the data of Problem (4.1) is Lipschitz in the sense defined below. Let
us stress that we do not assume structure on the dynamics or costs like linearity or convexity,
only that they are Lipschitz.

Assumption 7 (Lipschitz MSP). For every time t € [0,T — 1], we assume that for each
w € supp (Wey1), the dynamic f{°, the cost ¢’ are Lipschitz continuous on domcy and
the set-valued mapping constraint U" is Lipschitz continuous on Xy, i.e. for some constant
Ly > 0, for every x1, w2 € Xt, we have?

da (U (1), U (2)) < Ly |1 — 2. (4.5)

'The support of the discrete random variable W, is equal to the set {w € W, | B(W¢ = w) > 0}.



Computing a (sharp) Lipschitz constant for the set-valued mapping U’ : X = U is
difficult. However, when the graph of the set-valued mapping U is polyhedral, as in the
linear-polyhedral framework studied in Section 4.4, one can compute a Lipschitz constant
for U}’. We make the following assumption in order to ensure that the domains of the value
functions V; are chosen by the decision maker. It can be seen as a recourse assumption.

Assumption 8 (Recourse assumption). Given t € [0,T—1], for every noise realization w €
supp (Wy) the set-valued mapping U : X = U defined in (4.4) is nonempty compact valued.

A priori, it might be difficult to compute the domain of each value function V;. However,
under the recourse Assumption 8, we have that domV; := X; and thus the domain of each
value function is known to the decision maker.

Lemma 37 (Known domains of V;). Under Assumptions 5 and 8, for every t € [0,T], the
domain of Vi is equal to X;.

Proof. We make the proof by backward induction on time. At time ¢t = T, we have Vp = 1 and
thus domV7 = domy = X7. Now, for a given ¢ € [0,7—1], we assume that domV;11 = X;41
and we prove that domV; = X;.

First, fix z € X;. Then, for every w € supp (Wg41), using Assumption 8, U (x) is
nonempty and thus Vi(x) < +oo. Moreover, by Assumptions 7 and Assumptions 8 the
optimization problem

min (cfg"(az, w) + Vi (f1(z, u))) = min (c}g”(:c, w) + Vi1 (f1 (2, u))),

uelU ueU (x)

consists in the minimization of a continuous function in u over a nonempty compact set.
Denote by u" € U’(x) a minimizer of this optimization problem. We have, denoting by
{Pw b wesupp(Wey 1) the discrete probability law of the random variable W1, that

Vi(z) = B¢ (Vi) (x)
— E[BY (Vi) ()]
= Z Puw irell% (c}f’(x,U) + V;H(f;”(a:,u)))

wesupp(We1)

=Y (@) Vi ()

wesupp(We41)

As every term in the right hand side of the previous equation is finite, we have Vi(z) < 400
and thus z € domV;.

Second, fix x ¢ X;. Then, there exists an element w € supp (W¢41) such that ¢}’ (z,u) =
+oo for every control u € U. We therefore have that Vi(x) = 400 and x ¢ domV;.

We conclude that domV; = X; which ends the proof. O

2The Hausdorff distance d3; between two nonempty compact sets X1, X in X is defined by

du (X1, Xs2) = mau((gcrlnea))((1 d(z1, X2), Jnax d(Xq1,x2)) = max(aclrlnea;((1 wggg d(z1,x2), Jnax xllréiQI d(z1,22)).



In Section 4.4, it will be crucial for numerical efficiency to have a good estimation of the
Lipschitz constant of the function 5, (thil)

We now prove that under Assumptions 7 and Assumptions 8, the operators 95; preserve
Lipschitz regularity. Given a L;41-Lipschitz function ¢ and w € supp (W¢41), in order to
compute a Lipschitz constant of the function B (¢) () we exploit the fact that the set-
valued constraint mapping U;” and the data of Problem 4.1 are Lipschitz in the sense of
Assumptions 7. This was mostly already done in [ACT18], but for the sake of completeness,
we will slightly adapt its statement and proof.

Proposition 38 (B, is Lipschitz regular). Let ¢ : X — R be given. Under Assumptions 5
to 8, if for some Liy1 > 0, ¢ is Lyp1-Lipschitz on Xyy1, then the function By (¢p) is Ly-
Lipschitz on X; for some constant Ly > 0 which only depends on the data of Problem 4.1 and
on Lt+1.

Proof. Let ¢ : X — R be a L;-Lipschitz function on X;.;. We will show that for each
w € supp (Wi41), the mapping B} (¢) (+) is Ly,-Lipschitz for some constant L,, which only
depends on the data of problem (4.1). Fix w € supp (W¢41) and z1,x2 € X;. Denote by u}

an optimal control at z and w, that is uj € argmin, gy (,,) (C%U(.’L'Q,U) + qb(fg”(xg,u))), or
equivalently, u3 satisfies
o' (2, u3) + O (fi (2, u5)) = By’ (9) (w2) - (4.6)
Then, for every u; € U’ (x1) we successively have
By (¢) (z1) < ¢ (z1,w1) + o(fi (z1,w1)) (as u1 € U’ (1) is admissible)
< BY (¢) (w2) + ¢ (w1, w1) + o (fi (21, u1)) — B (9) (22)
= By (6) (w2) + (¢ (w1,w1) = € (v2,u3)) + (£ (@1, w1)) = 6" (@2, u3)))
(using (4.6))
< BY (¢) (z2) + L[| — @] + |Jur — u3]]), (by Assumption 7)

where L = max(LC;u,LtHL fZ”)' Now, as the set-valued mapping U;" is Ly;w-Lipschitz, there
exists 1 € U{"(x1) such that

[t — w3l < Lyge [|z1 — 22].
Hence, setting Ly, := max(Lew, Lyy1Lygw)(1 4+ Lygw), we obtain
By (¢) (x1) = By (¢) (w2) < L1 — 2.

Reverting the role of 1 and 2 we get the converse inequality. Hence, we have shown that, for
every w € supp (Wgy1), the mapping B}’ (¢) is Ly,-Lipschitz. Thus, setting Ly = (>_,, Pwlw),
we have

B¢ (¢) (z1) = Bi(¢) (2) | < D pu|BP (¢) (x1) — BY (6) (22) |

wesupp(We1)

< < Z prw)”xl - xQH )

wesupp(We1)

as B}" (¢) is Ly,-Lipschitz. We obtain that the mapping B, (¢) is L;-Lipschitz continuous on
domV; and this concludes the proof. O



The explicit constant L; computed in the proof of Proposition 38 does not exploit any
possible structure of the data, e.g. linearity. In the presence of such structure or possible
decomposition, it is possible to greatly reduce the value of the constant L;. However, in the
sequel, we only care for the regularity result given in Proposition 38 and computing sharper
bounds under some specific structure is left for future works.

Using the fact that the final cost function ¢p = Vp is Lipschitz on X, by successive
applications of Proposition 38, one gets the following corollary.

Corollary 39 (The value functions of a Lipschitz MSP are Lipschitz continuous). For every
time step t € [0,T], the value function V; is Ly,-Lipschitz continuous on X; where Ly, > 0
is a constant which only depends on the data of Problem 4.1.

4.2.2 Tight and valid selection functions

We formally define now what we call basic functions. In the sequel, the notation in bold F;
will stand for a set of basic functions and F; will stand for a subset of F.

Definition 40 (Basic functions). Given t € [0,T], a basic function ¢ : X — R is a Ly,-
Lipschitz continuous function on X;, where the constant Ly, > 0 is defined in Corollary 39.

In order to ensure the convergence of the scheme detailed in the introduction, at each
iteration of TDP algorithm a basic functions which is be tight and wvalid in the sense below
is added to the current sets of basic functions. The idea behind these assumptions is to
ensure that the Bellman equations (4.2) will gradually be satisfied: it is too numerically hard
to find functions satisfying the Bellman equations (4.2), however tightness and validity can
be checked efficiently and this will be enough to ensure asymptotic convergence of our TDP
algorithm.

There is a dissymmetry for the validity assumption which depends on whether the decision
maker wants to build upper or lower approximations of the value functions. In §4.2.4, we will
assume that the decision maker has, at hist disposal, two sequences of selection functions
(gt)te[[O,T]] and (S;)seo,77- The former to select basic functions for the upper approximations
and the latter for the lower approximations of V;. We write S; when designing either S; or S,
and denote by VE (resp. EEt) the pointwise infimum (resp. pointwise supremum) of basic
functions in F, (resp. in F;) when approximating from above (resp. below) a maping V;. The
Figure 4.1 illustrates the formal definition of selection functions given below. Given a set Z,
we denote by P(Z) its power set, i.e. the set of all subsets included in Z.

Definition 41 (Selection functions). Let a time step t € [0,T — 1] be fized. A selection
function or simply selection function is a mapping Sy from P(Fi11)x Xy to ¥y satisfying the
following properties

o Tightness: for every set of basic functions Fiy1 C Fip1 and © € Xy, the mappings
Sy (Fyy1,2) and By (Vi) () coincide at point x, that is

S (Fiy1,2) (v) = By (VFt+1) ().
e Validity: for every set of basic functions Fyy+1 C Fyy1 and for every x € Xy we have

St (Fyy1,2) > By (Vi) (), (when building upper approximations)
Sy (Fyry1,2) < By (Vi) (). (when building lower approximations)



Vi

Xy

Figure 4.1: Given a time step t € [0,7 — 1], we illustrate the notions of tightness and validity
of selection functions. A selection function takes as input a trial point x in the domain X; of
Vi and a set of basic functions F; C Fyy; building the approximations at the future time step
t+1 (right: pointwise suprema or infima of the basic functions). Then, the Bellman operator
B, translates one step backward in time the right picture to the picture on the left.
Tightness of the selection function enforces that the output is a function equal to the Bellman
image of the future approximation of Vi1 at x; it is a local property.

Validity enforces that the output of the selection function remains below, or above, the Bell-
man image the approximation of V1 everywhere on the domain of V;; it is a global property.
More details on these examples of selection functions in Section 4.4.

Fort =T, we also say that St : X7 — Fr is a selection function if the mapping St is tight
and valid with a modified definition of tight and valid defined now. The mapping St is said
to be valid if, for every x € Xrp, the function St (x) remains above (resp. below) the value
function at time T when building upper approximations (resp. lower approximations). The
mapping St s said to be tight if it coincides with the value function at point x, that is, for
every x € Xt we have

St (x) (z) = Vp(x).

Remark 42. Note that the validity and tightness assumptions at timet = T are stronger than
at times t < T as the final cost function is a known data, we are allowed to enforce conditions
directly on the value function Vr and not just the on the image of the current approximations
at time t + 1 as it is the case when t < T.

4.2.3 The problem-child trajectory

From the previous section, given a set of basic functions and a point in X, a selection function
is used to computes a new basic function. We explain in this section the algorithm used to
select the points which are used for searching new basic functions.

In this section, we present how to build a trajectory of states, without discretization of the
whole state space. Selection functions for both upper and lower approximations of V; will be
evaluated along it. This trajectory of states, coined problem-child trajectory, was introduced
by Baucke, Downward and Zackeri in 2018 (see [BDZ18]) for a variant of SDDP first studied
by Philpott, de Matos and Finardi in 2013 (see [PdF13]).



We present in Algorithm 2 a generalized problem-child trajectory, it is the sequence of
states on which we evaluate selection functions.

Algorithm 2 Problem-child trajectory

Input: Two sequences of functions from X to R, ¢y,..., ¢ and QO, ceey QT with respective
domains equal to domV;.
Output: A sequence of states (zf,...,2%).

Set zj 1= xo.
for t € [0,7—1] do
for w € supp (W¢i41) do

Compute an optimal control uj’ for ¢, = at x; for the given w

L1
uy’ € arg min (C}“(;U;f, u)+ ¢, (fi(f, u))) (4.7)
uelU
end for
Compute “the worst” noise w* € supp (W¢41). 4.e. the one which maximizes the “future”
gap

w* € argmax ($t+1 — gﬂ) (fl}”(a:f,qu”))
wesupp(Wey1)

Compute the next state dynamics for noise w* and associated optimal control u;“’
ri =1 (2w’ ).

end for

One can interpret the problem child trajectory as the worst (for the noises) optimal
trajectory (for the controls) of the lower approximations. It is worth mentioning that the
problem-child trajectory is deterministic. The approximations of the value functions will
be refined along the problem-child trajectory only, thus avoiding a discretization of the state
space. The main computational drawback of such approach is the need to solve Problem (4.7)
|supp (W1)| + ...+ [supp (Wr)| times. Except on special instances like the linear-quadratic
case, one cannot expect to find a closed form expression for solutions of Equation (4.7).
However, we will see in Section 4.4 examples where Problem (4.7) can be solved by Linear
Programming or Quadratic Programming. Simply put, if one can solve efficiently the deter-
ministic problem (4.7) and if at each time step the set supp (W¢) remains of small cardinality,
then using the problem-child trajectory and the Tropical Dynamical Algorithm presented be-
low in Section 4.2.4, one can solve MSP problems with finite independent noises efficiently.
This might be an interesting framework in practice if at each step the decision maker has a
few different forecasts on which her inputs are significantly different.



4.2.4 Tropical Dynamic Programming

Algorithm 3 Tropical Dynamic Programming (TDP)

Input: For every ¢t € [0,77], two compatible selection functions S; and S,. A sequence of
independent random variables (Wt)te[[oj,l]], each with finite support.
Output: For every ¢t € [0,T], two sequence of sets (ff)keN, (FF)ren and the associated
functions Vf = infqbeff ¢ and Kf = SUD e o.
Define for every ¢ € [0, T], F? := () and FY := ().
for £ > 0 do
Forward phase
Compute the problem-child trajectory (azf)te[[oﬂ for the sequences (ka)te[[o,T]] and
t
(Epf)te[[o,T]] using Algorithm 2.
Backward phase B
At t =T, compute new basic functions ¢p := St (z%.) and Oy = Sr(xk).
Add them to current collections, f?rl = F];“ U {aT} and Ei}“ = E% U {?T}
for ¢ from T—1 to 0 do _ .
Compute new basic functions: ¢, := S; <Fti1 ,xf) and ¢, := 5, (Efill, xf)
Add them to the current collections: Ff“ = Ff U {@} and Ef“ = Ffu {g}
end for
end for

4.3 Asymptotic convergence of TDP along the problem-child
trajectory

In this section, we will assume that Assumptions (5) to (8) are satisfied. We recall that,
under Assumption 8, the sequence of sets { X; }4c[o,7) defined in Equation (4.3) is known and
for all t € [0,T] the domain of V; is equal to X;. We denote by (z§)ren the sequence of
trial points generated by TDP algorithm at time ¢ for every ¢ € [0,7], and by (uf)reny and
(wf)ren the optimal control and worst noises sequences associated for each time ¢ with =¥ in
the problem-child trajectory in Algorithm 2.

Now, observe that for every ¢t € [0,7], the approximations of V; generated by TDP,
(Vf Jren and (VF)ren, are respectively non-increasing and non-decreasing. Moreover, for
every index k € N we have

VE<V <V
We refer to [ACT18, Lemma 7] for a proof. Observing that the basic functions are all
Ly,-Lipschitz continuous on X; one can prove using Arzela-Ascoli Theorem the following
proposition.
Proposition 43 (Existence of an approximating limit). Let ¢t € [0,T] be fized, the sequences
of functions (K,’f)keN and (Vf)k N generated by Algorithm 3 converge uniformly on X; to
€

two functions V; and V:. Moreover, Vi and V: are Ly, -Lipschitz continuous on X; and
satisfy Vi <V, <V, .



Proof. Omitted as it is slight rewriting of [ACT18, Proposition 9]. O

If we extract a converging subsequence of trial points, then using compactness, extracting
a subsubsequence if needed, one can find a subsequence of trial points, and associated controls
that jointly converge.

Lemma 44. Fizt € [0,T — 1] and denote by (x)ren the sequence of trial points generated
by Algorithm 8 and by (uf)ren the sequence of associated optimal controls. There exists an
increasing function o : N — N and a state-control ordered pair (z},u;) € Xy xU such that

o (k)

Ly k 7 .73‘:;7
—+00
o ) (4.8)
’LLt _> ’LLt .
k——+o0

Proof. Fix a time step t € [0,7—1]. First, by construction of the problem-child trajectories,
the sequence (2F)ren remains in the subset X; that is 2 € X; for all k € N,

Second, we show that the sequence of controls (uF)xen is included in a compact subset of U.
Under Assumption 6, X; is a nonempty compact subset of X. For every w € supp (W¢41)
the set-valued mapping U is Lipschitz continuous on X; under Assumption 7, hence upper
semicontinuous® on X;. Moreover, under recourse Assumption 8, U} is nonempty compact
valued. Thus, by [AE84, Proposition 11 p.112], its image U (X;) of the compact X, is a
nonempty compact subset of U. Finally as the random variable W11 has a finite support
under Assumption 5, the set Ur := Uyesupp(w, 1) Ut (Xt) is a compact subset of U. The
sequence (uf)reny remains in Uy and therefore we conclude that it remains in a compact
subset of U.

Finally, as the sequence (2}, uF)ey is included in the compact subset X; xU; of XxU, one
can extract a converging subsequence, hence the result. O

Lastly, we will use the following elementary lemma, whose proof is omitted.

Lemma 45. Let (¢")ren be a sequence of functions that converges uniformly on a compact
K to a function g*. If (y*)ren is a sequence of points in K that converges to y* € K then
one has
ki k k(K
W) 2 9 W)

We now state the main result of this chapter. For a fixed ¢ € [0,T7], as the Bellman value
function V4 is always sandwiched between the sequences of upper and lower approximations,
if the gap between upper and lower approximations vanishes at a given state value x, then
upper and lower approximations will both converge to Vi(x). Note that, even though a MSP
is a stochastic optimization problem, the convergence result below is not. Indeed, we have
assumed (see Assumption 5) that the noises have finite supports, thus under careful selection
of scenario as done by the Problem-child trajectory, we get a “sure” convergence.

Theorem 46 (Vanishing gap along problem-child trajectories). Denote by (Vf Jken and
(Kf Jken the approzimations generated by the Tropical Dynamic Programming algorithm. For
every k € N denote by (l’f)ogth the current Problem-child trajectory.

3The compact valued set-valued mapping U : X =3 U is upper semicontinuous on Xy if, for all z; € Xy, if
an open set U C U contains U" (z¢) then {z € X | Uz C U} contains a neighborhood of ;.



Then, under Assumptions 5 to 8, we have that

Tk T7% 7 ok * [ ok
VAxf)—Kf(xf)—)O and Vi (xy) = Vi(xy),

k——+o0
for every accumulation point x¥ of the sequence (zF)ren.

Proof. We prove by backward recursion that, for every ¢ € [0,7T], for every accumulation
point x} of the sequence (z¥)ren, we have

Vi () = V(7). (4.9)

By a direct consequence of the tightness of the selection functions one has that for every
keN, V;(xg) = Vp(zh) = VA (2%). Thus, the equality (4.9) holds for ¢ = T by Lemma 45.

Now assume that for some ¢ € [0,7—1], for every accumulation point z},; of (2}, )ken
we have

V;—l(x:—&-l) = K;fk+1(x:+1)' (4-10)

On the one hand, for every index k € N one has

ViR ah) = B (Vi) («F) (Tightness)
> B, (z§+1> (x{f) : (Monotonicity)
—E [Bwt“ (sz) (mf)} (by definition of %B;)
- E[ Ve gk aV ey L vE (P , uV e (by Equation (4.7))
= Y P[Wen =] (e u) + VE( af )
wesupp(Wei1)

On the other hand, for every index k£ € N one has

VI (k) = B, (ijf) (:c,’f) (Tightness)

sl 52) (4]
< IE[ Wit (¥, Wt+1) + Vf-tll( Weta (¥, ufvtﬂ))} (Def. of pointwise B}")
(af,u

We ) } (Monotonicity)

7

= E{ Wtﬂ(fcfa th+1) +Vt+1( Wers

= Z P[Wii1 = w] <Ct (l"t sug’) + Vt—i-l(

wesupp(We41)

)
fi (ki) ) -

k
By definition of the problem-child trajectory, recall that uf = uiﬂt, thus we have xf =

k
0 (2F, uF) and for every k € N

0<V @) -Vt e < Y P[Wea = o] (Vi - VE) (2 (eh, i)

wesupp(We1)

7k k k k
< Vt+1(33t+1) - Kt—i—l(xt—i—l) .



Thus, we get that for every function o0 : N — N

o(k)+1, ok o(k)+1, ok o(k), ok o(k), ok
0 < V@) — @) < VIV @) - el . @
By Lemma 44 and continuity of the dynamics, there exists an increasing function o : N — N

o (k)
such that the sequence of future states xf_ﬁ) = tw . (:Bta(k) , uf(k)), k € N, converges to some

future state z},; € Xyy1. Thus, by Lemma 45 applied to the 2Ly, ,-Lipschitz functions

gF = V?ﬁ) — Kf_ﬁli), k € N and the sequence y* := x;(r]i), k € N we have that
—o(k), o(k o(k), ok T * * *
Vt—i(-l) (%J(rl)) - KtJ(rl) ($t+(1)) — V(i) — Vi (eig) -

k——+o0

Likewise, by Lemma 45 applied to the 2Ly,-Lipschitz functions gF = V?UC)H —Kf(k)ﬂ, keN
and the sequence y* := xf(k), k € N we have that

—o(k)+1, o(k o(k)+1, o(k Tk« * [k
Vi @) O @) — Vi) - Vi)

Thus, taking the limit in k& in Equation (4.11), we have that
0< V:(ﬁ) = Vi(zp) < V;—l(w;fk—i-l) = Vi (@)

By induction hypothesis (4.10) we have that V;l(xfﬂ) - Vi (zj,) = 0. Thus, we have
shown that

Vilap) = Viaf) .

This concludes the proof. O

4.4 TIllustrations in the linear-polyhedral framework

In this section, we first present a class of Lipschitz MSP that we call linear-polyhedral MSP
where dynamics are linear and costs are polyhedral, i.e. functions with convex polyhedral
epigraph. Second, we give three selection functions, one which generates polyhedral lower
approximations (see §4.4.2) and two which generates upper approximations, one as infima of
U-shaped functions (see §4.4.3) and one as infima of V-shaped functions (see §4.4.4).

In Table 4.1 we illustrate the flexibility made available by TDP to the decision maker to
approximate value functions. Implementations were done in the programming language Julia
1.4.2 using the optimization interface JuMP 0.21.3, [DHL17]. The code is available online
(https://github.com/BenoitTran/TDP) as a collection of Julia Notebooks.

Selection mapping || Tight | Valid | Averaged Computational difficulty
SDDP v v v Card(W¢41) LPs
U v X v Card(W¢41) - Card(F) QPs
A% v v X one LP

Table 4.1: Summary of the three selection functions presented in Section 4.4.


https://github.com/BenoitTran/TDP

4.4.1 Linear-polyhedral MSP

We want to solve MSPs where the dynamics are linear and the costs are polyhedral. That is,
we want to solve optimization problems of the form (4.1) where for each time step t € [0,7—1]
the state dynamics is linear, f{’(z,u) = A’z + Bj’u for some matrices A}’ and B}’ of suitable
dimensions and the cost is polyhedral:

c(x,u) = max <ci’w, (z5u)) + Ao + Spw(z,u), (4.12)
i€l

where I; is a finite set, ¢v* € XxTU, di’w is a scalar and P} is a convex polyhedron. The final
cost function 1 is of the form ¢(x) = max;cr, (¢, ) + d} + 0x, where X7 is a nonempty
convex polytope. We assume that Assumption 5, 6 and 8 are satisfied.

Proposition 47 (Linear-polyhedral MSP are Lipschitz MSP). Linear-polyhedral MSP are
Lipschitz MSP in the sense of Assumption 7.

Proof. By construction, the costs ¢}’ and the dynamics f;’ are Lipschitz continuous with
explicit constants. We show that, for every ¢ € [0,7—1] and every w € supp (W¢41), the
constraint set-valued mapping U;* is Lipschitz continuous. From [RW09, Example 9.35], it is
enough to show that the graph of U} is a convex polyhedron. By assumption dom ¢}’ is a con-
vex polyhedron and by recourse assumption, Graph U/* is nonempty. As a nonempty intersec-
tion of convex polyhedrons is a convex polyhedron, we only have to show that {(z,u) € XxU| f*(z,u) € Xy41.
is a convex polyhedron as well.

Using Equation (4.3) we have that X;;1 is given by Xy 11 = Nycoupp(Wii2)TX (dom ¢, ),
which is the nonempty intersection of convex polyhedrons. Thus, X;y1 is a convex poly-
hedron which implies that there exists a matrix (;4+1 and a vector by41 such that Xy =
{x eX | Qrr1x < bt+1}. Therefore, we obtain that the two following sets coincide

{(z,u) € XXU| f{"(z,u) € Xpy1} = {(z,u) € XxU| Quy1A¢x + Qri1B'u < b1} .

The latter being convex polyhedral we obtain that the former is convex polyhedral. This ends
the proof. 0

Now, observe that as linear-polyhedral MSP are Lipschitz MSP, by Corollary 39, the value
function V; is Ly,-Lipschitz continuous on X; for all ¢ € [0,7]. Moreover, under the recourse
assumption 8 we can show that the Bellman operators By;c[o,7—1] preserve polyhedrality in
the sense defined below.

Lemma 48 (B, preserves polyhedrality). For everyt € [0,T—1], if ¢ : X — R is a polyhedral
function, i.e. its epigraph is a convex polyhedron, then B, (¢) is a polyhedral function as well.

Proof. For every w € supp (W¢+1), we have shown in the proof of Proposition 47 that the
graph of U{* is a convex polyhedron. Thus, (z,u) — ¢’ (z,u) + ¢(f*(z,u)) + dcraphue (2, u)
is convex polyhedral and by [BL06, Proposition 5.1.8.¢], B}* (¢) is polyhedral as well. Finally,
under Assumption 5, we deduce that By (@) 1= >~ csupp(w,.q) Bt (@) is polyhedral as a finite
sum of polyhedral functions. This ends the proof. O



4.4.2 SDDP lower approximations

Stochastic Dual Dynamic Programming is a popular algorithm which was introduced by
Perreira and Pinto in 1991 (see [PP91]) and studied extensively since then, e.g. [ACd19,
BDZ18, BFFd20, Guil4, PG08, PdF13, Shall, ZAS18|.

Lemma 48 is the main intuitive justification of using SDDP in linear-polyhedral MSPs: if
the final cost function is polyhedral, as the operators {%t}te[[O,T—l}] preserve polyhedrality, by
backward induction on time, we obtain that the value function V; is polyhedral for every t €
[0,T]. Hence, the decision maker might be tempted to construct polyhedral approximations
of V; as well.

We now present a way to generate polyhedral lower approximations of value functions,
as done in the literature of SDDP, by defining a proper selection mapping. When the value
functions are convex, SDDP builds lower approximations as suprema of affine cuts. We put
SDDP in TDP’s framework by constructing a lower selection function.

First, for every time step ¢ € [0, 7], define the set of basic functions,

F5PPP {{a, ) +b+0x, | (a,b) € XxR s.t. |la]| < Ly, } .

At time t = T, given a trial point = € X7, we define S3°PF (z) = (ay, - — ) + by, where a, is
a subgradient of the convex polyhedral function ¢ at x and b, = ¢ (x). Tightness and validity
of §§,DDP follow from the given expression. Now, for ¢t € [0,7 — 1], we compute a tight and
valid cut for B} for each possible value of the noise w, then average it to get a tight and valid
cut for B;. The details are given in Algorithm 4.

Algorithm 4 SDDP Selection function SPPPY for t < T

Input: A set of basic functions F; | C E?_ElDP and a trial point z; € Xj.

Output: A tight and valid basic function ¢, € FPPDP.
for w € supp (W¢i41) do

Solve by linear programming b* := B}’ (XEt+l> (z) and compute a subgradient a® of

B (XEt+l> at x.
end for
Set ¢ := (a,-) + b+ dx, where a := Zwesupp(wt+1)pwaw and b = ZwESUpp(Wt+1)pwbw'

We say that S}’ is a selection function for B}, for a given noise value w € supp (Wgy1) if
Definition 41 is satisfied when replacing B; by BY. We now prove that SPPPF is a selection
function, i.e. it is tight and valid in the sense of Definition 41. It follows from the general fact
that by averaging functions which are tight and valid for the pointwise Bellman operators B;",
w € supp (Wg41), then one get a tight and valid function for the average Bellman operator
B;. Note that the average of affine functions is still an affine function, the set of basic
functions EtSDDP is stable by averaging.

Lemma 49. Let a time step t € [0,T—1] be fized and let be given for every noise value w €

SWt+1]

supp (W¢1) a selection function Si° for Bi’. Then, the mapping S; defined by S; = E[S,

is a selection mapping for B,.

Proof. Fix t € [0,T—1]. Given a trial point x € X; and a set of basic functions F, the
pointwise tightness (resp. validity) equality (resp. inequality) is satisfied for every realization



w of the noise Wy, 1, that is

Sy (Fox) (x) = BY (Vr) (2), (Pointwise tightness)
S (F,x) > By (Vr), (Pointwise validity when building upper approximations)
SY(Fyx) < B (Vp). (Pointwise validity when building lower approximations)

Recall that B; (Vr) () = E[BtWt“ (Vr) (x)], thus taking the expectation in the above equality
and inequalities, one gets the lemma. ]

Proposition 50 (SDDP Selection function). For every t € [0,T], the mapping STPPT is a
selection function in the sense of Definition 41.

Proof. For t =T, for every xp € Xp, by construction we have
SEPPE (1) = Y (wr) = V(o).

Thus, S5PPP is tight and it is valid as S5PPY (27) = (a,- — z7) + 1 (x7) is an affine minorant
of the convex function ¢ which is exact at zp. Now, fix ¢t € [0,T—1], a set of basic functions
F, C E?DDP and a trial point x; € X;. By construction, §tSDDP is tight as we have

SEPPP(Ey, ) (w0) = (a, 1 — 1) + E [Btwtﬂ (Egt) (It)} =B, (EEt) (z¢) .

Moreover, for every w € supp (W¢y1), a® (see Algorithm 4) is a subgradient of 5}* (EEJ at

z¢. Thus as a is equal to E[aW¢+1] it is a subgradient of B; (EL) at x;. Hence, the mapping

SPPPP s valid. m

4.4.3 U-upper approximations

We have seen in Lemma 49, that in order to construct a selection function for B;, it suffices
to construct a selection function for each pointwise Bellman operator B;’. In order to do so,
for upper approximations we exploit the min-additivity of the pointwise Bellman operators
Bi’. That is, given a set of functions F', we use the following decomposition

vt € [0,T—1],Vz € X,Vw € supp (Wi41), By <$1€1£ gi)) (r) = (;22 By (¢) (x) .

This is a decomposition of the computation of B;" (Vp) which is possible for upper approxima-
tions but not for lower approximations as for minimization problems, the Bellman operators
(average or pointwise) are min-plus linear but generally not max-plus linear.

However, in linear-polyhedral MSP, the value functions are polyhedral. Approximating
from above value function V; by infima of convex quadratics is not suited: in particular, one
cannot ensure validity of a quadratic at a kink of the polyhedral function V;. Still, we present
a selection function which is tight but not valid. In the numerical experiment of Figure 4.2,
we illustrate that the selection function defined below might not be valid, but the error is
still reasonable. Yet, this will motivate the use of other basic functions more suited to the
linear-polyhedral framework, as done in §4.4.4.

We consider basic functions that are U-shaped, i.e. of the form g||z — al[? + b for some
constant ¢ > 0, vector a and scalar b. We call such function a c-function. We now fix a



sequence of constants (c¢).efo,r] such that ¢; > Ly,. For every time ¢ € [0,7], we define the
set of basic functions

F = {%Hx—a|]2—|—b+5xt | (a,b) € XxR} .

At time t = T, we select the cp-quadratic mapping which is equal to ¥ at point € X7 and has
same (sub)gradient at x, i.e. gg(:z:) = Z|-—a|*+bwhere a = z— X and b = ¢(z) — | A||?
with A\ being a subgradient of ¢ at x.

The mapping ?E defined in Algorithm 5 is tight but not necessarily valid, see an illustra-
tion in Figure 4.2. As with SDDP, in order to build a tight selection function at ¢ < T for
B; we first compute a tight selection function for each B}’, w € supp (W¢41), which can be
done numerically by quadratic programming.

Algorithm 5 U Selection function ?E fort <T

Input: A set of Ly,-Lipschitz continuous U-shaped functions Fyy1 C FE 11 and a trial point
x; € Xy.

Output: A tight basic function ¢, € FE )
for w € supp (W¢i41) do

Solve by quadratic programming v* := B}* (VEH) () = inf3F,, BY (¢) (x) and com-

pute a¥ = x — 21X and b¥ = v¥ — & | A||> with A being a subgradient of By (Vle) at
.

end for

Set ¢ := % — a||* + b+ dx, where a := E[aWt] and b = E[%]- — a|* + bWVt+1].

4.4.4 V-upper approximations

We have seen in §4.4.3 that U-shaped basic functions may not be suited to approximate
polyhedral functions. In [PdF13], upper approximations which were polyhedral as well were
introduced. In this section we propose upper approximations of V; as infima of V-shaped
functions. Even though when V} is polyhedral the approach of [PdF13] seems the most natural,
their approximations cannot be easily expressed as a pointwise infima of basic functions.

In future works we will add a max-plus/min-plus projection step to TDP in order to
broaden the possibilities of converging approximations available to the decision maker. In
particular, polyhedral upper approximations as in [PdF13] will be covered.

In this section, by introducing a new tight and valid selection function, we would like to
emphasize on the flexibility already available to the decision maker by adopting the framework
of TDP.

We consider V-shaped functions, i.e. functions of the form L||x —a|l; +b with a € X =R"
and b € R and a constant L > 0. We define for every time step ¢ € [0,77], the set of basic
functions

v Ly,
F, ::{ - —al+b (a,b)GXXR}.

At time t = T, we compute a V-shaped function at i(z), i.e. given a trial point = € X,
. . = L . . .
using the expression S\T/(:c) = %H'—ﬂfHﬁ-ﬂJ(ﬂ?)- For time t € [0, T—1], the selection function
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Figure 4.2: U-SDDP approximations of the value functions. In the bottom right, the U-
shaped basic functions might not be valid when the trial point is associated with a kink
of value function. Still, we observe that the gap between upper and lower approximations
vanishes along the problem-child trajectory (in dashed lines).



is given in Algorithm 6. The main difference with the previous cases treated in §4.4.2 and
in §4.4.3 is that V-shaped functions are not stable by averaging as the average of several
V-shaped functions is a polyhedral function.

Algorithm 6 V Selection function ?X fort < T

Input: A set of Ly,-Lipschitz continuous V-shaped functions F;,1 C Fxrl and a trial point
ry € X;.

Output: A tight and valid basic function ¢, € Fy
Solve by linear programming b := B, (VEH) (x¢).

Set &, = |- — il + .

Proposition 51 (V Selection function). For every t € [0,T], the mapping ?,Y described in
Algorithm 6 is a selection function in the sense of Definition 41.

Proof. At time t = T, for every zr € Xp, we have §¥(:UT) = %H —zr|i + Y(zr).
Thus, §¥ (x7)(z7) = Y(x7r) and §¥ is a tight mapping. As the polyhedral function ¢ (z) =

max;e 1T<ciT,x> + diT + dx, is Ly,-Lipschitz continuous, by Cauchy-Schwarz inequality, for
every © € Xp and ¢ € Iy, we have

. ) 1
(cp,x —27) < |72z — 27]]2 < LVTWH@“ — 271

Adding (ci;r, xr)+ diT on both sides of the last inequality and taking the maximum over ¢ € I
we have that

) . 1 —=V
z) = max(ch,z) +dy < Ly, —||lz — x x7) = Sp(zr)(x),
U(x) l.e];d 7, T) +dp < VT\/ﬁll vl +¢(@r) = Sp(zr)(z)
which gives that §¥ is a valid mapping.

Now, fix t < T, we show that the mapping StV is tight and valid as well. By construction,
for every set of basic functions Fyy1 C FEH and trial point xz; € X;, we have

EE/(FH_l,Q,’t)(JZt) =b= %t < Ft+1> (.Z't) .

Hence, ?2/ is a tight mapping.

We check that gy is a valid mapping. First, as each basic function ¢ € Fyiq is Ly, e
Lipschitz continuous on X, we show that Vﬁur is Ly, ,-Lipschitz continuous on X; as well.
Given z1,xz9 € X, we have

1

Vg, (@1) = Vg, (@2)] =] inf ¢(z1) — inf @(z2)|

PEF 11 PEF 1
< sup [¢(z1) — ¢(z2)|
PEF 11

< Ly, ||z — 22|
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Figure 4.3: V-SDDP approximations of the value functions. As the selection function S}
does not average other basic functions to compute a new one (compare with S or SPPPF),
we lose the regularizing effect of averaging: the upper basic functions added are very sharp.
We still observe that the gap between upper and lower approximations vanishes along the
problem-child trajectory (in dashed lines).

As the Bellman operator 9B; is Lipschitz regular in the sense of Proposition 38, 93, (7E+1>

is Ly,-Lipschitz continuous.
Second, by min-additivity of the Bellman operator 28, we have that

PEF 11 PEF 11

, (vFHl)(x):ast( in ¢) (1) = inf By(9)(a).

Recall that by Lemma 48, the Bellman operator 9B8; preserves polyhedrality. As ¢ € F;yq is
polyhedral, ®B; (¢) is polyhedral as well and as in the case t = T, mutatis mutandis we have

that S, is valid. O

Conclusion

e TDP generates simultaneously monotonic approximations (V) and (Vf )i of V4.

e Each approximation is either a min-plus or maz-plus linear combinations of basic func-
tions.

e Each basic function should be tight and valid.



e The approximations are refined iteratively along the Problem-child trajectory without
discretizing the state space.

e The gap between upper and lower approximation vanishes along the Problem-child tra-
jectory.

e TDP generalizes a similar approach done in [PdF13] and proved by [BDZ18] for a variant
of SDDP in convex MSPs.

Perpectives

e Consider an additional min-plus/max-plus projection step of suprema/infima of basic
functions.

e Extensive numerical comparisons with existing methods, namely classical SDDP and
the upper approximations obtained by Fenchel duality of [LCCT18].

e Extend the scope of TDP to encompass Partially Observed Markov Decision Processes.

A comparison Lemma: Let ¢ : X — R be given and consider the set Ui[t), x| : Wy = U
such that U1, z](w) = argmin,, ¢y (cff’(a;, u) + o (f (z, u))) Now, given ¢ and ¢’ such that
¢ < ¢’ we obtain that forall z € X and
By (¢) (2) = Be (9) (x) = E[B (¢) (2)] —E[B"* (¢) ()]
= E[glelg <02M+1 (z,u) + ¢’ (ftWtH (, u)))} - E[gle%l (cyvt“ (z,u) + d)(ftwt“ (x, u)))}

<E[@¥ 0 ™) 4+ o (1 @) | - B[V ") + 6 (R @ V)] v

as we have for all uy’ € Ui¢, z](w) that min,ecy (c”,;“(x,u) —I—gzﬁ(fg”(x,u))) = ¢ (z,uy) +
O (@ up)) and minyey (e (2, u) + 0/ (8w, 0)) ) < e () + & (@, up))

< E[¢/(fyt+l (l’, u?’Vt-H)) _ (b(ftVVHl (:L', u?Nt+1)):|
<O (f (@ u)) — o (S (@ uf”))

where w* € arg max,, d)’(f}”(x,u%”)) - ¢(ftw(50a U}gv))
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5.1 Introduction: from the Wasserstein distance to the Nested
Distance

In Multistage Stochastic Programming (MSP), Georg Pflug introduced in 2009 [Pfl09] the
Nested Distance, which is a refinement of the Wasserstein distance to account for proximity
in the filtrations between two discrete time stochastic processes. Following usual denomination
in the Stochastic Programming community (see [HR09, PP14, SDR09]), we denote by scenario
tree a discrete time stochastic process which is also discrete and finite in space.

There are many different distances between scenario trees however few are suited for MSP
purposes: one would like to guarantee continuity of the value function of a MSP with respect
to scenario trees, i.e. if two scenario trees are arbitrarily close to each other, then the value
of the associated MSP (with the same structure except for the scenario trees) can be made
arbitrarily close as well.

One possible distance between scenario tree is the so-called Wasserstein distance. Intu-
itively, the Wasserstein distance between two probabilities p and ¢ (for scenario tree (Xt)te[[l,T]],
consider the probability law of the tuple (Xi,..., X)) corresponds to the optimal cost of
splitting and transporting the mass from one to the other. We write 15, k € N, for the vector
of R¥ made of ones.

Definition 52 (Discrete optimal transport and Wasserstein distances). Let n,m be two in-
tegers and X = {z1,22,...,2n} and Y = {y1, ..., ym} be two finite sets included in R for a
real t > 1. Denote by ¢ = (ci5)i; a n x m positive matriz called cost matrix. The optimal
transport cost between two probability measures p and q on respectively X and Y, is the value
of the following optimization problem

OT(p,q;¢) = min Z ¢ijmij s.t. mly, =p and 7’1, =q. (5.1)
TI’ERixm 1<i<n
1<j<m

Moreover, defining the cost function by c(xz;,y;) = ci;j for every indexes i,j, Problem (5.1)

can be written using probabilistic vocabulary as
OT(p, g;c) = (Xg}i)ns.th(XY) [e(X,Y)], (5.2)

X~p

Y~q
where the notation X ~ p (resp. Y ~ q) means that the probability law of the random variable
X €X (resp. Y € Y) is equal to p (resp. q) and the notation E x y is the expectation under

the probability law of the couple of random variables (X,Y).

Lastly, when for some real r > 1, the cost function c is equal to d” with d a metric on
XxY, then OT(p, q;d")Y/" is the r-th Wasserstein distance between p and q, denoted W, (p, q).

We refer to the textbooks [PC19, Vil09] for a presentation and references on optimal
transport.

In two stage multistage optimization problems, under some regularity assumptions, the
value function of a bilevel MSP is Lipschitz continuous with respect to the Wasserstein dis-
tances, see [PP14, Chapter 6]. However the value function of MSP with more than two stages
is not continuous with respect to the Wasserstein distances, as seen in Example 4, where we
show that for a three stages MSP, two scenario trees can be arbitrarily close to each other in
the 1-Wasserstein metric but the gap in value of the associated MSP is arbitrarily large.



Example 4 (The Wasserstein distance is not suited for MSP). In this ezample we illustrate
that the 1-Wasserstein is not a relevant metric to evaluate distance between scenario trees
tnvolved in a MSP: an arbitrary small Wasserstein distance between two scenario trees may
yield an arbitrary large gap in values of the same MSP.

Given a scenario tree Z (see Definition 53 for a formal definition) with natural filtration
(ft)te[[w]]l, we want to buy a single object at the minimal average cost

2 u; € {0,1},
v(Z) =min{ E ZZtut | uyg is F; -measurable,
u
=0 ZtT:(] u = 1,

Fix A> ¢ >0, in Figure 5.1 are two scenario tree modeling the price of an object during
3 time steps. Their natural filtrations are different. Intuitively, on the left scenario tree, the
decision maker observes an € variation of the price at t = 1 and knows that it will yield an
explosion (upward or downward) of the price at t = 2. Whereas on the right scenario tree,
the decision maker does not recognize such information at time t = 1. Example inspired from

[HRS06].

Figure 5.1: Left: scenario tree X = (Xp, X1, X2). Right: scenario tree Y = (Yp, Y7, Y2).
On the one hand we have proximity in the 1-Wasserstein metric W as
W(X,Y) = 2e.

On the other hand, the optimal values are v(X) = A;—e and v(Y) = A. Thus, we have an
arbitrarily large gap in values

A—e
pX) - o) =25 o oo

In 2012, Pflug and Pichler proved in [PP12] that the Nested Distance previously intro-
duced by Pflug [Pfl09], is the correct adaptation of the Wasserstein distance for multistage
stochastic programming: under regularity assumptions, the value function of MSPs is Lip-
schitz continuous with respect to the Nested Distance between scenario trees. Since then,
it has been used as a a pruning tool to obtain reduced trees with a certain guaranty of the
quality of the approximation. The Nested Distance both quantifies the quality of an approx-
imating tree and the associated optimal transport plan also allows for reduction of scenario
trees, see for example [KP15, HVKM20].

'For every t € [0,2], Fi = 0(Zo, ..., Zt).
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Figure 5.2: Two scenario trees X and Y with a continuous probability approximation of
the histogram the leaves. Their Nested Distance is ND2(X,Y) = 1.009 and its entropic

regularization is ENDo(X,Y) = 1.011, see Section 5.3. The trees were generated using the
ScenTrees.jl package [KPP20).

Without additional structure (like independence) of the scenario tree, the Nested Distance
is usually computed via a backward recursive algorithm (introduced in [PP12], see also [PS19,
Definition 15]) which amounts to solve an exponential number (in 7°) number of optimal trans-
portation problems. It decomposes over time the computation of the Nested Distance as the
dynamic computation of a finite number of optimal transport problems between conditional
probabilities with costs updated backward.

Optimal transport between discrete probabilities of size n can be solved by the Hungarian
algorithm with complexity O(n3) (see [EKT72]) or with the auction algorithm with complexity
roughly O(n3logn), see [BC8Y).

By adding an entropic term to the primal of the optimal transport problem associated
with the computation of a Wasserstein cost, an alternating projection scheme yield Sinkhorn’s
algorithm, introduced in Optimal Transport in [Cutl3] to compute Wasserstein distances.
By carefully selecting the entropic regularization term, Sinkhorn’s algorithm computes an
e-overestimation of the Wasserstein distance in O(n?log(n)e~3) operations.

Relaxing each optimal transport problem involved in the recursive computation of the
Nested Distance, we end up with an entropic regularization of the Nested Distance.

The remainder of the chapter is organized as follows

e In Section 5.2, we first formally define the Nested Distance as the value of a dynamic
system of optimal transport problems between conditional probabilites and varying
costs. Then, we present an entropic regularization of the discrete optimal transport
Problem (5.1) and how this relaxed OT problem can be solved efficiently by Sinkhorn’s
algorithm. Lastly, we define a natural entropic regularization of the Nested Distance by
relaxing each OT problem involved in its dynamic formulation.

e In Section 5.3, we end this chapter with a numerical experiment showing both the
speedup of our approach to compute Nested Distances and also its relative preciseness.



5.2 The Nested Distance and its entropic regularization

5.2.1 Dynamic computation of the Nested Distance

Throughout the remainder of the chapter, we fix an integer 7' > 1 and we consider that the
set of reals R is endowed with its usual distance and borelian structure. Moreover, for every
te[1,7], R =R x --- x R is seen as a filtered space endowed with its cylinder o-algebra.

Definition 53 (Scenario tree). Let (Xi)ie,r) be a discrete time stochastic process defined
on some probability space. The stochastic process (Xt)te[[l,T}] is a scenario tree if it is also
finite and discrete in space, i.e. for every time indexes 1 < s < t < T, the support Xs; of
Xst = (Xs, ..., Xy) defined by

Xgp i= {xs:t = (xsa cee a:Et) e R ’ P(XS =Tsy.. ., Xt = $t) > 0}

is non-empty, finite and ) P(Xs=xs,..., Xy =x) = 1.

Ts:t €EXs:t

Following [PS19], we define the Nested Distance between scenario trees as the value of a re-
cursive computation of optimal transportation between conditional probabilities with updated
costs. Given two scenario trees X = (Xi);e,7) and Y = (Yy)eqi 1y, for every s,t € [1,77,
we define the tuple of random variable variables X, = (Xs,...Xy) and Yy = (Y, ..., Y:).
Denote by x4 and ys.; any element of their support Xg.; and Y. (see Definition 53). Lastly,
for every t € [1,T], denote by P; and P, the probability laws of X, = (X1,...,X;) and
Y. = (Y1,...,Y}:), respectively.

Definition 54 (Nested Distance between scenario trees). Let X and Y be two scenario trees.
Givenr > 1, and the metric d(z,y) = ||[x—y|, on R, for everyt € [1,T], compute recursively
backward in time functions ¢; : Xi.7 X Yi.r — R by

cr(zir, yir) = d(zir, yir), Y(zer, yir) € Xir x Yo,
ci(@rr, yir) = OT(Prs1 (| X1t = 21:0), Pra (| Yiw = 1) i)Y, (5.3)
vt S IIl,T - 1]]7 v(371:T7y1:T) S X1:T X Y1:T-

Set ND,(X,Y) := OT(Pr, Pr,¢;)"/", it is the r-Nested Distance between the scenario trees
X andY.

Although for every ¢ € [1,7] the domain of ¢ is Xy.7 X Yy.7, only the process up to
t matters i.e. for every zi.p, 2. € Xip and y1.0,y).p € Yip such that z1., = 2, and
Y1+ = yi, we have ci(x1.r,y1.7) = (2, ylp). It follows from [PS19, Proposition 20] and
[PP12, Theorem 19] that the Nested Distances ND, introduced in Definition 54, are distances
on the space of scenario trees.

Remark 55. Solving Problem (5.3) amounts to solving an exponential (in T ) number of
Linear optimization Problems where the dimension of the variable to optimize is bounded by
n-m where n (resp. m) is maxeq.r—1]|Xee+1| (resp. maxyepr_1y|(Yee41)l)-

5.2.2 Entropic regularization of optimal transport problems

We will relax the OT Problem 5.1 by adding an entropy term to the objective function. The
Shannon entropy or simply entropy of a random variable Z with values in a finite subset Z



of cardinal k¥ € N in RY, ¢ > 1 and probability vector (p1;...;px) € (Ri)k is defined as

K
H(Z) =E[-log Z] = =) pilog(=).
i=1

By adding an entropy regularization term to the objective of an optimal transport Problem 5.2
(using the probabilistic notations), the linear objective function of a discrete OT problem
becomes strongly convex, hence damping the combinatorial aspects of OT.

Definition 56 (Regularized Optimal Transport). With the notations of Definition 52, for ev-
ery real v > 0 we define the following regularized optimal transport plan between probabilities
p € R" and g € R™ with cost matriz ¢ € R™*™

7 (p, i ¢) = arg min E[e(X, Y) — vH (L(X, V)], (5.4)
(X)Y)s.t.
X~p
Yr~q

where L(X,Y) is the probability law of the couple (X,Y) of random variables. Then, the
associated value is the regularized optimal transport OT,, between p and q

OT,(p,g;c) = Y cijl(my)iy- (5.5)
1<i<n
1<j<m

Remark 57. Note that as the reqularized optimal transport plan pi, also satisfies the con-
straints of the (unregeralized) optimal transport problem, we have for every v > 0 that
OT(p,q;c) < OT,(p,q;¢c). Moreover when y tends to 0, one recover the optimal transport
value, i.e.
OT,(p,q;¢) —» OT(p, q; ¢).
y—0

Given an integer t > 1, let p and ¢ be two probabilities on R! with respective finite support
of size n € N and m € N. We say that a n X m matrix « is a transport plan between p and q
if it is admissible in Problem (5.1), i.e. 7 satisfies the mass conservation constraints:

71, =pand 711, = q. (5.6)

The set of transport plans between p and ¢ is denoted by P(p, q).

We now present Sinkhorn’s algorithm and prove its convergence. This algorithm was
(re)discovered by Cuturi in [Cut13] who used it to solve the regularized optimization Prob-
lem (5.4). Proofs of the different following statements can be found in [Cut13] and [PC19,
Chapter 4], see also Appendix 5.4 for a sketch of proof with detailed references.

Theorem 58 (Sinkhorn’s algorithm and its convergence). Fix v > 0, an integer t > 1 and
let p and q be two probabilities on R! with respective finite support of size n € N and m € N.
The following assertions are true:

e Existence and uniqueness of an optimal transport plan 7*. There exists a unique trans-
port plan ™ which minimizes the reqularized optimal transport Problem (5.4) with cost
matriz ¢ = (cij)i; € R™™.



e The optimal transport plan is a rescaling of the Gibbs kernel G. There exists two

positive vectors u* € (R% )", v* € (RL)™ such that
7" = diag(u”)G diag(v™),
where G is the Gibbs kernel defined by G;; = exp(f%).

e Alternatively rescaling the lines and columns (Sinkhorn’s algorithm) of G converges
to . Alternatively rescaling the lines and columns of G in order to satisfy the mass
conservation constraints of Equation (5.6) converges to the optimal transport plan 7*.
More precisely, iterates (uy,vy) € (R%)" x (RL)™, k € N, defined by ug = 1,, vo = 1y,
and

(5.7)

k1 = 1n ./(Gug) (where ./ is the entrywise division)
Uk1 = L ./ (Guk+1),

converge to the optimal scaling vectors u* and v*.

e Sinkhorn’s algorithm converges linearly to n*. The Gibbs kernel is a positive matriz
and thus is contractant w.r.t. the Hilbert projective metric on the cone of positive vec-
tors. As a consequence, the convergence of Sinkhorn’s iterates (uy,vg)ren defined in
Equation (5.7) converge linearly to the optimal scaling vectors (u*,v*).

e Overall complexity. For every € > 0, considering for simplicity n = m, setting v =

Hog(m) - ginkhorn’s algorithm computes ™ € P(p,q) in O(n*log(n)e*) operations which

€
satisfies

Zﬂ'fjcij < OT(p,q;c) +e.

)

Remark 59. The Sinkhorn updates can be interpreted as alternatively projecting the n X m
matriz m, = diag(u)G diag(vy) to the affine sets Ay := {m € R™ | 71,, = p} and Ay :=
{77 e RY™ | 7’1, = q}. The projections are to be understood in Bregman’s semse: o =
argmin, c 4, KL(7||mox—1) and mop41 = argmin, ¢ o, KL(|| 7o) where KL is a renormalization
of the usual Kullback-Leibler divergence. We refer to [BCCT 15, PC19] for details on this
interpretation.

We comment on the optimal transport plan associated with the relaxed OT Problem (5.4).
When the regularization parameter -y is large, then the optimal transport plan is very diffuse:
in the left part of Figure 5.3, this means that the mass of each red dot is spread along
many different blue dots. The closer the regularization parameter v gets to 0, then the
combinatorial aspect of discrete OT appears gradually: each red dot is spread along few
different blue dots. This is expected, as if there were the same number of blue and red
dots in Figure 5.3, then the OT problem is an assignment problem. Informally, the entropic
regularization of Equation (5.4) dampens the combinatorial aspects of the optimal transport
problem of Equation (5.1).

5.2.3 Entropic regularization of the Nested Distance

We have seen in §5.2.2 how to compute efficient upper bound OT,, of the discrete optimal
transport problem OT. Hence, by replacing optimal transport problems by their relaxed
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Figure 5.3: Left: v = 0.008. Middle: v = 0.005. Right: v = 0.003. Effect of the regularization
parameter on the optimal transport plan of the relaxed OT Problem (5.4), between the red
cloud and the blue cloud. In all cases, a continuous edge (resp. dashed line) exists if more
than 30 percent (resp. 20 percent) of the red dot mass is moved to the associated blue one.

counterpart in the dynamic computation of the Nested Distance in Equation (5.3), we have
an entropic regularization of the Nested Distance noted END.

Note that a regularizing parameter v > 0 must be chosen for each optimal transport
problem in Equation (5.3). On the one hand, one would like to put 7 as small as possible
in order to have the best approximation of the unregularized OT problem. On the other
hand, as seen in Theorem 58, the optimal transport plan of the regularized OT problem OT,
is a rescaling of the Gibbs kernel (G;;) = exp(—%) and the Sinkhorn iterates involve this
kernel as well. When - is too close to 0, Sinkhorn’s algorithm shows numerical instabilities.
So we refrain from using a single regularizing parameter for every OT problem involved in
Equation (5.3). We simply put one that seems big enough to avoid numerical issues, namely
we set v = Z5E% which changes as the cost matrix is updated. Hence the regularizing
parameters do not explicitly appear in the notation END of the Entropic regularization of
the Nested Distance. For every time ¢ € [1: T — 1] and every node x1.; € X1, we define its
set of children $f:t = A{Z1.441 € Xyig1 | T1:t = 214}

Definition 60 (Entropic regularization of Nested Distance between scenario trees). Let X
and Y be two scenario trees. Given r > 1, and the metric d(z,y) = ||z — y||» over RT, for
every t € [1,T], compute recursively backward in time functions ¢; : X1.4 X Y14 — R by

cr(zir, yrr) = d@rr, yi1), Y(@rr, yir) € Xir x Yy,
(@1, y1:t) = OT (Prga (- | X1:t = @14), Prsa (- | Vi = ylzt);0§+1)1/r,
Vte [1,T —1], Y(z1:4,y1:t) € Xpog X Y1, ¥ = max ¢y (Tre41, Y1:041)/100.

T1:441€Tq 4
y1:t+1€yfﬁt

(5.8)

Set END,(X,Y) := OT,(Pr, Pr,c))"/", with v = max,,, ex,., ¢js1(x1:1,¥1:1)/100, it is the
Y1:1€Y1:1
Entropic regularization of the r-Nested Distance between the scenario trees X and Y .

Note that by Remark 59, for every r > 1 and scenario trees X and Y,

ND,(X,Y) < END,(X,Y).



Horizon T' | Time NDy (s) | Time ENDs (s) | Speedup | Relative error (%)
2 <1073 <10°* 6.20 3.30
4 0.035 0.0093 6.78 0.93
6 1.71 0.44 4.20 0.66
8 76.64 16.07 4.64 0.15
10 2328.34 550.93 4.03 0.048

Table 5.1: Average results after 10 runs. A Jupyter notebook in Julia 1.4.2 of this experiment
is available at https://github.com/BenoitTran/END.

Hence, even though END,. is not a distance between scenario trees, it still quantifies proximity
between scenario trees and maintains the main desirable feature of the Nested Distance:
denoting by v the value of a MSP satisfying the regularity assumptions of [PP12, Theorem
11], there exists a constant L > 0 such that for every scenario trees X and Y we have

5.3 Numerical experiment

We compare an implementation of the Nested Distance and an implementation of its
regularized counterpart.

First, we randomly generate a scenario tree of given depth T" by a forward procedure.
Starting from a root note, at each time step draw a uniformly random number of children
between 1 and 5. Every node at time ¢ has the given number of children whose values are
random as well. The tree generation is done using the Julia package ScenTrees.jl, see [KPP20).
The discrete optimal transport problems are solved using Gurobi (simplex method) instead
of an implementation of the Hungarian or auction algorithm.

We compute the Nested Distance and the Entropic regularization of the Nested Distance
for pairs of tree generated as above. In Figure 5.1 we give the average of 10 pairs of compar-
isons for a given horizon T'.

In Figure 5.1 the column ”Relative error” represents the ratio %ﬁjm. The results of
Figure 5.1 show that, even without carefully tuning the regularizing parameter ~ involved
in each intermediate optimal transport problem, the Entropic regularization of the Nested
Distance gives values that are close to its unregularized counterpart. The speedup (ratio
between the running time of NDg over END3) is interesting but needs to be compared with
an implementation of the Hungarian algorithm or the auction algorithm for optimal transport
purposes.

5.4 Proof of Theorem 58

Sketch of proof of Theorem 58. Fix ~v > 0, an integer ¢ > 1 and let p and ¢ be two prob-
abilities on R? with respective finite support of size n € N and m € N. The objective of
Problem (5.1) is strongly convex and the constraints are affine. As the marginal product p®q
satisfies the mass conservation constraints of Equation 5.6, it is admissible for Problem (5.4).
Thus, there exists a unique minimizer 7* € R™*™ to Problem (5.4).


https://github.com/BenoitTran/END

We now compute the minimizer 7* € R™ ™ of Problem (5.4). For every o« € R™ and
B € R™, the Lagrangian of Problem (5.1) is

Lima,B)= Y mjlcij + log(my)) + (o, 7l — p) + (8,77 1, — q).
1<i<n
1<j<m

The first order necessary condition of optimality

V(Za]) € [[Ln]] X [[Lm]]aﬁ(ﬂ- ;& 76 )ZO,
v)

is equivalent to for every (i,7) € [1,n] x [1,m],

1 o Cij 1 ﬁj*
mij = exp(—= — —)exp(——) exp(—= — —).
5 = expl— — %) exp(~ % exp(— — )

This implies that solutions of Problem (5.1) 7* are of the form
m* = diag(u")G diag(v®),

where the Gibbs kernel G € R™™ is a positive matrix G;; = exp(—%) and the vectors u* =

(exp(—% — %:))1991 € (RL)"™, v* = (exp(—% — %))1§j§m € (R%)™ are positive. Moreover,
7* has to satisfy the mass constraints of Equation (5.6), i.e. its row sums and column sums are
prescribed. Hence, by Sinkhorn’s Theorem [Sin67], 7* is unique and the Sinkhorn’s algorithm
which starts from ug = 1,, and vy = 1,,, and updates

{uk+1 =1, ./(Gvr) (where ./ is the entrywise division)

Vg1 = 1y ./ (Gug41),

converges to the optimal scaling vectors v* and v*.

Now, from [Bir57], the positive matrix G maps the convex cone of positive vectors into
itself. Exploiting this fact, the linear convergence of Sinkhorn’s algorithm was established in
[FL89).

The overall complexity of Sinkhorn’s algorithm was proved in [ANR17]. O
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6.1 Introduction

The question of interchanging integration and minimization is an important issue in stochastic
optimization (where integration corresponds to mathematical expectation). Loosely stated,

. =0 .
given a measured space (Q, F, ,u) and a subset X C R of functions, we wonder when does

the following equality hold
inf dp = inf zdu . 6.1
inf [ o= [ jng oo o

Mathematical framework and conditions to get Equation (6.1) can be found in [BG01, EKT13,
Gin09, RW09, SDR09]. We focus on [Gin09] and [RW09].

To begin with, in Equation (6.1) one needs to clarify in which sense the integral [ is to
be understood and in which sense the infima infxcx x or inf,.cx fa:du are defined. Then,
when the subset X, over which minimization is performed, is a subset of L'(2,F, u;R) and
when the integral [ is the usual Lebesgue integral, Giner obtained in [Gin09] a necessary
and sufficient condition for (6.1) as follows. In this case, the space L'(, F, u; R) is endowed
with the usual p-pointwise order, and the infimum is inf,cx © = essinf ¢ x «, which is well-
defined by [Nev70, Proposition I1.4.1]. Given a subset X C L*(Q, F, u; R) of functions, Giner
establishes that Equation (6.1) holds true if and only if, for every finite family z,...,z, in
X, we have

L A
However, checking the above condition is not an easy task, as it depends jointly on the
integral [ and on the subset X. Moreover, one may wonder if we can still have Equation (6.1)
for more general subsets X which are integrable in a weaker sense than Lebesgue integrable?

When a subset of functions X € L%(Q, F, u;R) is the image of a set U by a mapping
[, F, i R) — LY, T, u;R), i.e. X = f(U), a celebrated theorem of Rockafellar and
Wets ([RW09, Theorem 14.60]) gives a condition on the mapping f and a condition on the
set U so that Equation (6.1) holds. In this case, we deal with minimization over subsets X
of LO(Q,F, u;R) and interchange with the outer integral, a generalization of the Lebesgue
integral to LY(€2, F, u; R). We study the outer integral and its properties in Appendix 6.5.

The Chapter is organized as follows. Sect. 6.2 is devoted to a minimization interchange
theorem on posets. More precisely, we provide an abstract interchange theorem of the form

A d(x) = q)(xé\x z) . (6.2)

Once assumed conditions on the mapping ® : X — Y and structural properties of the sets
X, Y, we provide a necessary and sufficient condition so that Equation (6.2) holds true. Our
result is in the lineage of Giner’s, as our necessary and sufficient condition involves both the
mapping ¢ and the set X.

Sect. 6.3 then tackles the original question of interchange between minimization and in-
tegration by specifying the results of Section 6.2.

We hope that either our abstract interchange theorem or its application to the extended
Lebesgue integral provide insight as to how one may obtain the interchange between integra-
tion and minimization as in Equation (6.1), and as to how we can go beyond the integral case
(risk measures in stochastic optimization).



6.2 Minimization interchange theorem on posets

In §6.2.1 we present our main result, namely Theorem 63, which provides an abstract in-
terchange result in the form of Equation (6.2) for a mapping ® : X — Y (generalization of
the integral) between specific posets. We give necessary and sufficient condition on a subset
X C X, called ®-inf-directed such that the abstract interchange holds. Then, in §6.2.2 we
a sufficient condition, for the subset X C X to be ®-inf-directed, that is more practical to
check.

6.2.1 Main result

Before stating Theorem 63, we provide background on posets and lattices, as well as two new
definitions.

We say that (X, <) is a poset when X is a set and < is a partial order on X, that is, a
reflexive, antisymmetric and transitive binary relation.

Consider a poset (X, <) and a subset X C X. Any 2/ € X such that, for all z € X, we
have that x < 2’ is called an upper bound of the set X. If an upper bound 2’ € X of the set X
is such that 2/ < z”, for any other upper bound z” € X of the set X, then 2’ is unique and
is called the least upper bound of the set X. It is denoted by sup X or, more explicitly, by
Vzex ¢. In the same way, we define the greatest lower bound inf X or Azcx x. We say that
a poset (X, <) is a sup-semilattice (resp. inf-semilattice), or upper semilattice (resp. lower
semilattice), if every nonempty finite subset of X has a least upper bound (resp. greatest
lower bound). A lattice is both a sup-semilattice and an inf-semilattice.

We say that a poset (X, <) is a complete sup-semilattice (resp. complete inf-semilattice),
or complete upper semilattice (resp. complete lower semilattice), if every nonempty subset
of X has a least upper bound (resp. greatest lower bound). A complete lattice is both a
complete sup-semilattice and a complete inf-semilattice.

We say that a subset X C X has the countable sup property if V,cx x exists in X and
if there exists a sequence (zp,)nen in X such that Vyen 2, = Vieex z. In the same way, we
define the countable inf property.

Now, we introduce two new notions. The first one is that of sequentially-inf continu-
ity. The name is suggested by the fact that, when a mapping ® is order preserving and
both sequentially-inf continuous and sequentially-sup continuous as defined here, then it is
sequentially order continuous (denoted as “continuité monotone séquentielle” in [Nev70, p.
37]).

Definition 61. Let (X, <x) and (Y, =y) be two inf-semilattice (resp. sup-semilattice) and
¢ : X — Y be a mapping. We say that the mapping ® is sequentially-inf continuous (resp.
sequentially-sup continuous) when, for every nonincreasing (resp. mondecreasing) sequence
(Tn)nen n X, if Apen @y, exists in X and Npen @(xy,) exists in Y (resp. if Vpen @y exists in X
and Vpen ®(xy,) exists in Y ), then we have

= . = . .
A Sy B A w) (resp. ®(V ) vV @) (63)

The second notion is that of ®-inf-directed.

Definition 62. Let (X, <x) be a poset and (Y, =y) be a complete inf-semilattice (resp. sup-
semilattice) and ® : X — Y be a mapping. Let X C X be a subset of X. We say that the



subset X is ®-inf-directed (resp. X is ®-sup-directed) if, for every finite subset X C X, we
have that

ycé\Xi)(a:) <y @(xé\j( x) (resp. @(zé/)? x) <y xé/Xq)(a:)) . (6.4)

With these two definitions, we can now state our main theorem.

Theorem 63 (Minimization Interchange Theorem). Let (X, <x) be a poset and (Y, =y) be a
complete inf-semilattice. Let X C X be a subset of X, X C X be an inf-semilattice such that
XCcXcCX, and ®: X =Y be a mapping such that

1. the mapping ® is order preserving, i.e. for every z,x’ € X,

r 3x 2 = ®(x) 2y ¢(2) (6.5)

2. the mapping ® is sequentially-inf continuous, when restricted to the inf-semilattice X
(see Definition 61),

3. the subset X has the countable inf property, i.e. Ngzex x exists in X and there exists a
sequence (Tpn)nen in X such that

AN xp= N x. (6.6)
neN zeX
Then, we have the interchange formula
xé\X@(w) = @(xé\X ) (6.7)

if and only if the subset X is ®-inf-directed (as in Definition 62).

Proof. Let ® : X — Y and X C X be given satisfying Assumptions 1-2-3.

e We assume that the subset X is ®-inf-directed and we prove the interchange formula (6.7)
by means of two inequalities.
First, using the fact that ® is order preserving, we have that

(I)(zé\X z) 2y ®(2), Vo' e X . (6.8)

Thus, using that (Y, <y) is a complete inf-semilattice, we obtain that

P A z) 2y A P(x).

(:ceX ) =Y zeX ( )

Second, we prove the reverse inequality. Using Assumption 3, there exists a sequence {z, }nen,
whose terms are in X, and such that Apenyan, = Azex . Now, we define a new sequence
{27 nen by @7, = Ap<pa, for all n € N. So defined, 27, does not necessarily belong to the
subset X, but belongs to the lower semilattice X which contains X. Then, the sequence
(2], )nen is nonincreasing and satisfies the equalities

A x = A = A x. 6.9
neN Tn neN n zeX v ( )



Then, we get

) <y ®
mé\X (l‘) —Y (k/g\nxk)

as the subset X is ®-inf-directed, by assumption, and {z} |k < n} C X is finite
2y ®(zf,)

by definition of x/,, so that we deduce

/\X O(x) <y /\NCI)(l’fn) (as (Y, =<y) is a complete inf-semilattice by assumption)
xe ne

<y ®( A

=Y (HEN :L'n>

by (6.3) as the mapping ® is sequentially-inf continuous on the inf-semilattice X, and as

. eX

n

=®( A ). (using Equation (6.9))
rzeX

e Conversely, we assume that the interchange formula (6.7) holds for the subset X C X, and
we show that X is ®-inf-directed. .
For this purpose, we consider a finite subset X C X, and we get

N ®(x) =D A by the interch f 1
D (x) (IGX x) (by the interchange formula)
<y ®( Az
- (:Jcef( )

since the mapping @ is order preserving and Nzex = =x N\ 5 =

This concludes the proof. O

6.2.2 A sufficient condition for ®-directed sets

Given an order preserving and sequentially-inf-continuous mapping ® : X — Y, where the
posets X, Y have sufficient structure, the Minimization Interchange Theorem 63 shows that
a subset X € X is ®-inf-directed if, and only if, we have the abstract interchange formula
Neex @(x) = <I>(/\$€X a:) However, as made apparent in its name, checking if X is ®-
inf-directed is a condition that involves both X and its image by ®. We give a simple
sufficient condition on the subset X only which ensures that X is ®-inf-directed for every
order preserving mapping .

Let (X, =) be a poset. A sup-directed set X C X is a nonempty set with the property
that, for every =z, 2’ € X, there exists 2/ € X such that x < 2” and 2’ < 2”. An inf-directed
set X C X is a nonempty set with the property that, for every z, 2’ € X, there exists " € X
such that 2’/ < z and 2" < /.

We now prove in Lemma 64 that any inf-directed (resp. sup-directed) subset X C X is ®-
inf-directed (resp. ®-sup-directed). Informally, X being inf-directed is a sufficient condition
to ensure that a subset X is rich enough from below, namely ®-inf-directed for any order
preserving mapping .



Lemma 64 (Inf-directed implies ®-inf-directed). Let (X, <x) be a poset, X C X be a subset,
and (Y,=y) be a complete inf-semilattice. If the subset X is inf-directed then X is ®-inf-
directed for any order preserving mapping ® : (X, <x) — (Y, <y).

Proof. Suppose that X C X is an inf-directed subset of (X, <), and let ¢ : (X, <x) — (Y, <y)
be an order preserving mapping. We prove that the subset X is ®-inf-directed.

For this purpose, we consider a finite subset X C X. Then, by repeated application of the
inf-directed property, we get that there exists T € X such that 7 <x Ngex - We therefore
obtain that

A () =y () (as T € X)
reX
=y ®(A,c7) (as @ is order preserving and ¥ <x A . 37)
which ensures that X is ®-inf-directed and concludes the proof. ]

The converse is false, i.e. ®-inf-directed subsets are not necessarily inf-directed subsets
as detailed now in Example 5.

Example 5 (The converse of Lemma 64 is false). Consider Q@ = R equipped with its Borel
o-algebra B(R) and Lebesgue measure X. Define the poset X = Léa(Q,SF,,u;@) with the p-
pointwise order and the mapping ® : X — R being the Lebesgue integral (See Appendizx 6.5
for details). We claim that the subset X C X defined by X = (—nl(nmﬂ), n e N) C RR, is
D-inf-directed but not inf-directed.

First we calculate Npex ®(x) = Npex Jp ©(y) AM(dy) = Anen(—n) = —o0. Second, for every
finite subset of functions X = {pn,,...xn,} C X, we have Q(A ) = —kmaxi<ickn;.
Thus, we get that Azex ®(z) < (A, 57), hence the subset X is ®-inf-directed.

But X is not an inf-directed subset of (X, X). Indeed, let for all k € N, the function vy
be defined by Y, = —k1 py1) and let n and n' in N be fized such that n # n'. Assume that
there exists n” € N such that 1}, < 1p A . Then, we should have using the definition of
the functions {1 tren, that the support of ¥ynr» should contain the set (n,n+ 1)U (n/,n' +1).
However no function of X has for support the union of two unit intervals.

In this case observe that the interchange between integration and minimization holds true.
Indeed, on the one hand we have shown above that Nyex®(x) = —oc0 and on the other hand,
we have that

P(heexa) < [ - )ady) = —oo,

hence Npex®(z) = —00 = P(Agexx).

6.3 Interchange between minimization and integration

Throughout this section, we consider a measure space (2, F, ) and we refer the reader to
Appendix 6.5 for material regarding extended Lebesgue integrals. We apply the abstract
results of Section 6.2 to the case of subsets of X = L%B(Q,H’,p;ﬁ), the set of measurable
functions with Lebesgue integrable positive part, itself a subset of X = L%(Q, F, u; R), the set
of measurable functions, for which we consider the interchange with the mapping ® : X — R,
which is an extension of the Lebesgue integral to X called the outer integral.



In §6.3.1, we state a result on the interchange between (an extension of) the Lebesgue
integral and minimization for subsets of functions in L} (2, F, u;R) by specifying the Mini-
mization Interchange Theorem of §6.2.1 to the aforementioned case. Then, in §6.3.2, we give
sufficient conditions to ensure that a subset X C X is ®-inf-directed. Proofs are to be found
in §6.3.3. In §6.3.4, we use these sufficient conditions to recover both theorems of Giner and
Rockafellar-Wets as applications of the Interchange theorem stated in §6.3.1. Lastly, in §6.3.5,
we give another specialisation of the Minimization Interchange Theorem 63 to the case of the
poset X = {x Q—=R|z> 0} with the pointwise order and the Choquet integral & = fc.

6.3.1 Main result with integrals

We state the main result about the interchange between the outer integral [, : LY, T, u; R) —
R and minimization for subsets of measurable functions whose positive part has a finite in-
tegral. It is the specification of the Minimization Interchange Theorem 63 to the case of
® : LO%Q,F, 1;R) — R for subsets of X = L%(Q,?,p;@) with the mapping ® being the
outer integral. Note that, from Proposition 80, outer integral and extended Lebesgue inte-
grals coincide on either L%B(Q,ff,,u;@) or Lle(Q,ff,,u;ﬁ). Thus, Theorem 65 is stated with
the Lebesgue integral.

Theorem 65. Let X be a subset of LéB(Q,S",,u;R). The following equality

inf dp = infzd 6.10
izg [(oou= [ emiptoas 010
s valid if an only if X is integrably inf-directed, i.e. for every finite family x1,...,x, in X
we have
i < i i . .
xlg}f(/gmdu_ /ngilinxldu (6.11)

Proof. As being integrably inf-directed defined here coincide with being ®-inf-directed (see
Definition 62) when & = fQ is the outer integral, we will show that the assumptions of
Theorem 63 are fulfilled to obtain Theorem 65 as a specialization of Theorem 63. We prove
in §6.3.3 that the assumptions of Theorem 63 are satisfied. Indeed, by Proposition 71, the
structural assumptions on the domain of ® : L°(Q, F, u; R) — R are satisfied:

e The set X = L9(Q, F, u; R) with the p-pointwise order is a poset;
e The subset X = LéB(Q, F, 1;R) of X, is a complete inf-semilattice;
e Every subset X C X C X has the countable inf property.

Moreover, as Y = R with the usual order is a complete inf-semilattice, the structural assump-
tions on the codomain of ® are satisfied as well. Lastly, by Proposition 72, the outer integral
Jo : LY F, i R) —» Ris

e order preserving,
e sequentially-inf continuous when restricted to the inf-semilattice X = Léa(Q, F, 15 R).

This ends the proof. O



Note that as semi-integrable functions are linked by the relation (see Lemma 77)
US Ll@(Qvg'nu’@) < —TE Lé(Q,?,M,@),

one can deduce a symmetric result about the interchange between outer integral and maxi-
mization.

Theorem 66. Let X be a subset of LL(Q, F, u;R). The following equality

sup/xdu—/esssup:rd,u, (6.12)
zeX JQ Q zeX

is valid if an only if X is integrably sup-directed, i.e. for any finite family x1,...,x, in X
we have

/ sup x;dp < sup/xd,u. (6.13)
Q Q

1<i<n zeX

6.3.2 Corollaries

Here, we propose corollaries of Theorem 65 by providing conditions to obtain integrably inf-
directed subsets of L°(Q2, T, u;R) using the notion of decomposable subsets. The notion of
decomposable subsets is widely used in LP spaces and we refer to [Gin09] for a survey on
various related definitions.

Decomposable subsets

Here, in Definition 67, we consider the decomposable subset definition of [HU77].

Definition 67 (Decomposable subsets [HU77]). A subset X C L°(Q,F, u; R) is decomposable
if we have
Ve, €U, VAEF, 2la+ 2’14 € X . (6.14)

We now prove that decomposable subsets are ®-inf-directed, for any order preserving
mapping P.

Lemma 68 (Decomposable subsets are ®-inf-directed). Any decomposable subset X C LL(Q,F, 1 R)
is ®-inf-directed for any order preserving mapping © from Léa(Q, F, u; R), equipped with the
p-pointwise order, to the extended reals (R, <).

Proof. Let x and 2/ in X be given and consider the measurable set A = {z < z’}. We have
that A2z’ = 214 +2'14c € X since X is decomposable. We obtain that X is an inf-semilattice
and thus also an inf-directed set. Thus, using Lemma 64, the subset X is ®-inf-directed for
any order preserving mapping ®, from Léa(Q,fr", w; R) equipped with the p-pointwise order,
to the extended reals (R, <). O

Rockafellar-Wets decomposable subsets

We have just seen that decomposability implies inf-directed. Rockafellar and Wets introduced
a weaker notion of decomposability that Giner relates to ®-inf-directed where ® is the outer
integral. We recall a few definitions.



Let (92, F, 1) be a measure space with p being a o-finite measure. The upper set of U in
LY (9,7, 13 R), denoted by & U, is defined by

(T)U:{veLl(Q,?,u;ﬁ) | Jue Uwv>u} .

For d € N* and for any (F ® B(R?))-measurable function g : Q@ x RY — R, one can define a
mapping § on LO(, F, s RY) to LO(Q, F, 1; R) by

gru€ LQ,F, iR = g(-u(-) € L%, F, i R).

Definition 69 (Rockafellar-Wets decomposable). A subset U C L°(Q, F, u; R?) is Rockafellar-
Wets decomposable (w.r.t. the o-finite measure p1) if

yla+ulge €U, Vye LA, F, ;RY , VAeF, p(A) <+4oco, Yuel. (6.15)

Proposition 70 (Proposition 5.4 - [Gin09]). For any measurable function g : Q x R? - R,
if a subset U C LO(0, F, u; RY) is Rockafellar-Wets decomposable then X = T f(U) is an

(1)
integrably inf-directed subset of L°(Q2, T, u; R).

6.3.3 Proofs of Theorem 65 and Theorem 66

We check in Proposition 71 (structural properties of the spaces of measurable and semi-
integrable functions) and Proposition 72 (properties of the outer integral) that the assump-
tions of the Minimization Interchange Theorem 63 are satisfied.

Proposition 71 (Structural properties of the spaces of measurable and semi-integrable func-
tions).

e The set LY(Q, F, u;R), equipped with the p-pointwise order, is a complete lattice which
has both the countable sup and countable inf properties.

e The subset Lle(Q,frr, w;R) (resp. Lé(ﬂ,ffr, w;R)) is a complete sup-semilattice (resp.
inf-semilattice) which has the countable sup property (resp. countable inf property).

Proof.

e We consider the set L°(Q,F, u; R). First, the fact that it is a complete lattice is a con-
sequence of the existence of the essential supremum and essential infimum for any family
(countable or not) of class of random variables as proved in [Nev70, Proposition I1.4.1] (the
proof is for probability measures but it extends easily to o-finite measures). We rephrase
here the existence result of [Nev70, Proposition I1.4.1] for the essential infimum case. For
any class family (countable or not) {z;};c; in L°(Q,F, u;R), there exists a unique class
essinfic;x; € LO(Q, F, u;R) which is a greatest lower bound of the family {xi};c;- That
is, for any function z € L%(Q, T, u; R), we have

VieI,ngi@ggessiInfxi.
1€

The fact that there exists a countable subfamily {;, }, .y such that

essinfx; = inf x;,
el neN



is not stated explicitly in [Nev70, Proposition I1.4.1], but it is stated in the proof as an inter-
mediate result to obtain the essential infimum. It is immediate that the countable subfamily
can be chosen as a nonincreasing sequence. The case of the essential supremum is treated in
the same way.

e We consider the set LL (€, F, u; R) and consider a class family (countable or not) {ui};er in
Lle(Q, F,u;R). As Lle(Q, F, u; R) is a subset of L(2, F, u; R) we obtain (using the first part of
the proof) the existence of esssup;c; u; € L%(Q,F, ; R) and the existence of a nondecreasing
countable subfamily {u;, }, .y such that

esssup u; = sup u;,, -
el neN

Using the monotone convergence theorem for Lle(Q, F, 1; R), postponed in Proposition 78, we
obtain that esssup;c;u; € Lle(Q, F,u;R), as the supremum of a sequence in Lle(ﬂ, F, u; R).
As a consequence, the subset Lé(Q,?,u;R) is a complete sup-semilattice which has the
countable sup property.

The case of Lé}(Q, F, 1;R) can be treated in a similar way. and this ends the proof. [

Proposition 72 (Properties of the outer integral).

e The outer integral (6.31a) is an order preserving mapping between the posets L°(Q, F, ui; R)
and R.

e The outer integral (6.31a) is sequentially-sup continuous on the sup-semilattice LY (Q, F, pu; R)
and sequentially-inf continuous on the inf-semilattice LéB(Q, T, 1u; R).

Proof. Let (fn)neny be an nondecreasing sequence of functions in Lle(Q,ff, w;R). We put
f = Vaen fn, which belongs to the complete lattice L°(Q2, F, u;R). By Proposition 78, we
get that f € LL(Q,F,;R) and that Vyen [ fodp = [ fdu by (6.29). Thus, the outer
integral (6.31a) is sequentially-sup continuous on the sup-semilattice L} (€2, F, u; R).

By using the property that L%B(Q, F,;R) = —Lle(Q, F,1;R) and (77), we prove that the
outer integral (6.31a) is sequentially-inf continuous on the inf-semilattice Léa(Q, F,u;R). O

6.3.4 Comparison with the literature

Now, we combine the general interchange result of §6.3.1 with the conditions of §6.3.2 in order
to recover the interchange theorems of Giner and Rockafellar-Wets.

Comparison with Giner [Gin09]

Theorem 73 (Theorem 4.2. — [Gin09]). Let X be a subset of L'(Q2,F, u;R), the following

equality
inf dp = infxzd 6.16
izf [(odu= [ omiptadn ©19
s valid if an only if X is integrably inf-directed, i.e. for any finite family x1,...,z, in X we
have

inf /(a: — inf z;)dp <0. (6.17)
Q

reX 1<i<n



As L' (Q,F, ;R) € LL(Q,F, 13 R), the interchange formula in Theorem 65 is a slight
generalization to L%B(Q,?,M;@) of Giner’s Theorem 73 stated for subsets of L'(Q2, T, u;R).
This is no surprise, as we are indebted to Giner since Theorem 65 was greatly inspired by
Giner’s result.

Comparison with Rockafellar and Wets [RW09]

Let (2, F, ) be a measure space with p being a o-finite measure. As we work with subsets
of measurable functions, the integral used in this section is the outer integral as defined in
Appendix in Definition 79.

Theorem 74 (Theorem 14.60 [RW09]). Let U be a subset of LO(Q, F, u; R?) that is Rockafellar-
Wets decomposable. Let g : Q x R4 — R be a normal integrand. If there exists u € U such
that g(,ﬂ()) € L%B(Q,S’,H;Rd), one has that

ueR™

inf/ g(w,u(w)) dp(w) :/ (inf g(w,u))du(w) . (6.18)
uelU [¢) 9]
Moreover, as long as this common value is not —oo, one has for any u € U that
u € arg min/ 9(w, u(w)) dp(w) <= u € argming(w, u) p-a.s. .
ucelU Q u€R™

We prove that the Rockafellar-Wets interchange theorem can be deduced from Theorem 65
combined with [Gin09, Theorem 3.1].

Proof. (Equation (6.18) as a consequence of [Gin09, Theorem 3.1] and the Minimization
Interchange Theorem 63)

e We introduce the set X = {w — g(w,u(w)) } u € U}. Using the fact that g is a normal inte-
grand and that U is a subset of L°(Q, F, u; R?), we obtain that X is a subset of L9(Q, F, u; R)
[RW09, Theorem 14.37] and we can write

inf /*g(w,u(w)) dp(w) = A /* z(w)dp(w) . (6.19)

uelU Jo zeX Jo

Now, using the definition (6.31a) of the outer integral we have that

d = inf ! d . 2
A /Q s@)dul) = A it /Q 2 () dpu(w) (6.20)
>z

We therefore introduce the upper set of X in L'(Q, F, u; R) denoted by J) X and defined by

(I)X = {2/ e L', F, ;R) |z € X st. 2 <2’ pras. }. (6.21)

Combining Equation (6.19)-(6.21), we therefore get that

inf / g(w,u(w)) dp(w) = :):’E/\ X/Q:L"'(w) dp(w) . (6.22)

uel J T
1)



In addition, using the fact that there exists u € U such that g(,a()) € LL(QF, ;3 R) we
have that T = g(-, a()) belongs to X. Therefore, the set (T) X is not empty as T4 € (I) X.

e By [Gin09, Propositon 5.4], as ¢ is a normal integrand and thus measurable, the set J) U is
integrably inf-directed.
e The last step to obtain (6.18) is to prove that

inf glw,u)= A 2 (w),
o= A )
(1)
which is obtained using [Gin09, Theorem 3.1]. O

6.3.5 Interchange between minimization and Choquet’s integral

Fix (92, F) a measurable space. We specialize the Minimization Interchange Theorem 63 to
the poset of nonnegative measurable functions

X={z:Q— R|z >0 and measurable}

with the pointwise order and the Choquet integral ® = f € that we define below. We suggest
[Kaw18] and the references therein for properties of the Choquet integral.

A capacity ¢ : F — R is a function which is order preserving (VEF, F, € F,F) C Fy =
¢(F1) < ¢(Fy)) and such that ¢()) = 0. Given a capacity ¢, the Choquet integral of a
nonnegative measurable function z € X is defined by

/ch(w) de(w) = /R+ c(z >t)dt,

where the integral on the right-hand side is the Lebesgue integral of an nonincreasing function.

We say that a capacity c is continuous from above if for any nondecreasing sequence of sets

{Fu},en C F such that F' = NyenFy, € F then we have c(F,) " F. Lastly, a subset
n——+0o0

of functions X C X is Choquet integrably inf-directed if it is integrably inf-directed with the
Choquet integral.

Proposition 75. Let ¢ be a continuous from above capacity and X = {x;},.; C X a family
of nonnegative measurable functions with the countable-inf-property. We have

C C
/\/ xidc:/ N x; de
iel Jo o i€l

if, and only if, X is Choquet integrably inf-directed.

Proof. We check that the assumptions of Theorem 63 are satisfied. The set of nonnegative
measurable functions X = {x :Q—=R|z>0and measurable} endowed with the pointwise
order is an inf-semilattice.

The Choquet integral is order preserving on X (see [Kawl8, Proposition 2.3]).

As the capacity c¢ is countinuous from above, the monotone decreasing pointwise conver-
gence theorem holds (see [Kawl8, Theorem 3.2.(2)]): for every nonincreasing sequence of
functions {x,}, .y converging pointwise to x € X, we have

C C C
A T, dc = lim T, dec = rdc,
neN [¢) neN 0 0



so the Choquet integral is sequentially-inf-continuous on X.
Hence by Theorem 63, given X = {z;},.; C X a family of nonnegative functions with the

countable-inf-property, we have
C C
/\/ xidc:/ N z; dc
icl o q i€l

if, and only if, X is Choquet integrably inf-directed. O

6.4 Conclusion and perspectives

We were initially interested in minimization of functions and interchange with mappings
® which are not the integral. As said in the introduction, the question of interchanging
integration and minimization is an important issue in stochastic optimization (where integra-
tion corresponds to mathematical expectation). Now, when the mathematical expectation
is replaced with a risk measure, the question of interchange is less examined [SDR09]. An
important class of risk measures is made of suprema of integral expressions. This is why in
Section 6.2.1 we started with an abstract result on interchange and optimization followed by
an analysis of the integral case. There now remains to study when our abstract results apply
to suprema of integrals.

6.5 Extended Lebesgue and outer integrals

The set R = RU {+00} U{—oc} is endowed with its Borel o-algebra (see [BP12, Application
4.2] or [Nev70, Chap. II]), and with the following extended additions and multiplication.
We still denote by + the usual addition when extended to Ry = R U {+00} by +oo being
absorbant, and to R_ = R U {—o0o} by —co being absorbant. Then, we denote by + the
addition on R for which —oc is absorbant, i.e. (+00) 4+ (—00) = (—00) + (+00) = —00 and
by + the addition for which 400 is absorbant, i.e. (+00) 4+ (—00) = (—o0) + (+0) = +o00.
We set A x (£00) = £oo for A €]0, +00[, A X (£o00) = Foo for A €] — 00, 0[, and 0 x (£o0) = 0.

Throughout this section, we fix a o-finite measure space (£, F, ). The classical Lebesgue
integral w.r.t. the o-finite measure pu is defined for functions with values in R (real-valued
functions). As we are motivated by optimization, we need results for integrals of functions
with values in R (extended real-valued functions). For integration of measurable real-valued
functions w.r.t. a o-finite measure p, we refer the reader to [AB06, Chapter 11]; for integration
of measurable extended real-valued functions w.r.t. a probability measure u, we refer the
reader to [Nev70]; for integration of measurable extended real-valued functions w.r.t. a o-
finite measure p, we refer the reader to [Hal50, Chapter V]; for outer integration of extended
real-valued functions w.r.t. a o-finite measure u, we refer the reader to [BS96].

It happens that results about monotonicity, additivity, external multiplication and mono-
tone convergence of the integral are either scattered in the literature, or sometimes not for-
mulated. This is due to the fact that the extension of the Lebesgue integral to extended
real-valued functions gives rise to different expressions, which renders the exposition less sys-
tematic and elegant than with the Lebesgue integral of integrable real-valued functions. Also,
some results belong to folklore and its is hard to find trace of their proof, as they are consid-
ered obvious. However, for the purpose of optimizing integral expressions, we provide below



a systematic exposition of functional spaces L°(Q, F, u; R), L} (T, 1w R) and Lle(Q, F, 11 R),
and how the Lebesgue integral can be extended.

6.5.1 Functional space L°(Q2, 7, u;R) and the Lebesgue integral

We endow the set R of functions f: Q — R with the p-pointwise order < as follows: for
any f.g € R",

f<g <= JA€TF, u(A) =0, flw) <gw), YweQ\A. (6.23)

We denote by £°(€2, F; R) the set of measurable functions from Q to R and by L°(2, F, u; R)
the quotient £°(Q2,F;R)/ ~ where for any f,g € L%(Q,F;R), f ~ g if, and only if, f = ¢
p-almost everywhere. The p-pointwise order (6.23) induces an order on the set L(Q, F, u; R)
of equivalence classes, that we will also denote by < and call the pu-pointwise order. Thus,
the expression f > 0 makes sense for f € LO(Q, F, u;R). In the same way, we introduce the
p-pointwise order < on the set LO(Q, F, u;R) of equivalence classes. Thus, the expressions
—o00 < f, f < 400 and —oco < f < 400 make sense for f € LY(, T, u; R).

The set LO(Q,F, u;R) is stable under the two additions + or +, and under external
multiplication. We say that a subset of LY(Q2,F, u; R) is a convez cone, if it is stable under
the addition + and under external multiplication by a scalar in R..

We write [ for the Lebesgue integral deduced from the o-finite measure space (Q,F, p1).
The Lebesgue integral [ is defined on the convex cone

L5, 1R) = {f € L, F,i;R) | f >0}, (6.24)

where it takes values in R, given by the formula (see [AB06, Footnote 3, p. 411] for real-
valued functions)

/f = /fdu = sup {/Q pdu ‘ 0<p<f, ¢simple and nonnegative} , (6.25)

where simple nonnegative functions (or p-step functions) are functions of the form ¢(:) =
Y icr @ila,(-) with I finite and {A;};cr a sequence of measurable sets such that p(A;) < 400
for all i € I and the coefficients {«; };cr are positive and finite reals and the indicator function
1,4 of a subset of Q is defined by 14(x) =1if x € A and 14(z) =0if z &€ A.

The (extended) Lebesgue integral on LS)F(Q, F, u; R) has the following properties

monotone: Vf,g € LY (Q,F,;R), f<g = [f< [g,

additive: Vf,g € LY (Q,F, s R), [(f+9)=[f+ [,

positively homogeneous: Vf € L (2, F, ;R), VA € Ry, [(Af) =X [ f,

e monotone convergence: for any nondecreasing sequence (fn)nen in L9(Q,F, 13 R), then
[ =sup,en fn € LQF(Q,?,N;R) and lim,, 400 [ fn=[f.



6.5.2 Functional spaces L}, (Q, F, 1; R), LE(L T, R) and the extended Lebesgue

integral

For any function f : Q — R, we define its positive part f, = sup(0, f) and its negative part
f— =sup(0,—f). Obviously, we have f = fi + (—f_) (where we use the addition + as one of
the terms is zero for any value taken by the argument of the function f). We define the set

L7 = {f e LQ5B)| / Fidp < +oo} | (6.262)
Q
and the quotient set £} (€;R)\ ~ by

LY. B) = { € 17T i B)| /Q fidp < +o) (6.26D)
with the property that
feLyQ,F,;R) = f<+o0 (6.26¢)

because fQ frdpu <400 = fL <400 = f < fi < +4o0. In the same way, we define
LL(Q,F;R) = {f e L0, F; R) / fodu < +oo} , (6.27a)
L0, B) = {f € 17T iR /f ap < +oo} (6.27b)

with the properties that L5 (Q, F, s R) = —LL(Q,F, ;s R) and that f € LL(Q,F, ;;R) =
—o0 < f.

We say that a (class of) function(s) f € L°(Q,J,u;R) is semi-integrable if it belongs
to LE(Q,F, i R) U LE(Q, F, s R), that is, if either [, f1du < 400 or [, f-dp < +oo.
The Lebesgue mtegral is extended from the convex cone L9 (O 7E R), to semi-integrable
functions by ([Nev70, Proposition II-3-2], [AB06, Chapter 11] [Hal50, Chapter V)

/f:/f++<—/f | Ve LL(Q, 5, R) ULL(Q, F, i R) . (6.28)

The extended Lebesgue integral on semi-integrable functions has the following properties
(listed in [Nev70, Proposition I1-3-3])

e monotone: Vf,g € LL(Q,F, ;R)ULL(QLF, R), f<g = [f< [y,
o additive on L (Q, 7, s R): Vf, g € Li(L T, wR), [(f+9)=[f+ [g,
o additive on L5(Q, T, s R): Vf,g € LE(L T, i R), [(f+9)=[f+ [9,

e positively and negatively homogeneous: Vf € Lé;(Q,CF,,u;@) U Lle(Q7 F,u;R), YA € R,

JANH=X[T1,

e monotone convergence on L} 5,7, u, R): for any nonincreasing sequence (f, )nen in Lk ENCORSTR R),

then f, 1 f and f = inf,cn fn €Lt 5(Q, 7, w; R) and lim, 100 [ fr= [ f,

e monotone convergence on L} (€, F, u; R): for any nondecreasing sequence ( f,)nen in LE (0, F, 1

then f = sup,ey fn € Lle(Q,?,u, R) and f, | f and limy, 1o [ fn = [ f.

R),



We provide some of the proofs.

Lemma 76. For any functions f and g in Lle(Q,S'",,u;ﬁ), we have f + g € Lle(Q,ff,,u;@)
and

/Q(f+g)du=/gfdu+/ggdu, Ve Ly(Q,F,;R), g€ LE(Q,F,;R) .

Proof. We consider f,g € Lle(Q, F,u;R). Notice that, as f,g € Lle(Q, F, u;R), we have that
—o00 < f and —oc0 < g, so that we will use the addition +.
e We show that [,(f + ¢)dp < +o0. On the one hand, we have

(f+9)- =sup (0,—(f+g)) =sup (0,(—f) + (—g)) -

On the other hand, we have (—f) < f_ and (—g) < g, hence (—f) + (—g) < f- + g-
and thus (f +¢)- < f- 4+ g—. By monotonicity and additivity of the Lebesgue integral on
LY, F, 13 R), we deduce that

/Q(f+g)—du§/ﬂf_du+/ﬂg_du<+oo,

because [, f-dp < +oo and [, g— dpu < 400 by assumption (f,g € Ll@(Q,f}', w; R)). Hence,
f+9€Le(Q, T, R).

e We prove the additivity of the integral. Notice that, as f, g, f+g € L5(Q, F, u; R), we have
that —oo < f and —oo < g, and also that 0 < f_ < 400, 0 < g_ < +00,0 < (f +¢g)- < 400,
0< [of-du < +00,0< [qg-du < +o00, 0 < [o(f+9)- < 400, so that we will use the
addition +.

As, for any function h, we have that h = hy + (—h_), we immediately get that

f+9++(-(f+9-)=Ff+g=fr+ () +g++(—g-).

Now, if we add, to the left and right hand side of the above equality, the three nonnegative
reals (f +¢g)_, f— and g_ (none of them being +00), we obtain the equality

fH+g++f-tg=fr+gr+(f+g)-.

As this is an equality between sums of nonnegative functions, we apply the Lebesgue integral
on Lg(Q,&",p;R), and get

Lsodns [ fause [gan= [ fean+ [grans [ (o) du.

by additivity of the Lebesgue integral on Lg(Q,&",u;@). Now, the quantities fQ f—du,
Jo9-du and [(f + g)— dp are three nonnegative reals (none of them being +00) by as-
sumption (f,g € Lé(ﬂ,?,u;ﬁ) and property f + ¢ € Lle(Q,ff,,u;@)). Thus, we get, by
subtracting these three finite terms,

/Q(f-i-g)+dﬂ+(—/g(f+g)du)
=/Qf+du+(—/gfdu)+/Qg+du+(—/Qgdu),



hence, by (6.28),

/Q(erg)du:/Qfdqu/diu.

This ends the proof. O

Lemma 77. We have
[enau==[ au, v e th@ B ULL@.5 1T,
Q Q

Proof. This is an obvious consequence of (6.28), and of (—f)+ = f— and (—f)- = f4. O

Proposition 78 (Extended monotone convergence theorem for LY (2, F, 1; R)). Let (fy)nen

be an nondecreasing sequence of functions in Lle(Q,?,u;@), converging to f € @Q, that is,
fnt f. Then, f € Lle(Q,S",,u;@) and we have

ngrfoo/fndu = /fdu . (6.29)
Proof. Notice that, as f, € Lle(Q,SF,M;@), we have that —oo < f, for all n € N, so that we
will use the addition +.

As f > fi, we have that sup(0,—f) = f- < (f1)— = sup(0,—f1), hence [ f_du <
J(f1)—du < 400, where the last strict inequality is by assumption (f; € LL (0, F, ;R)). We
conclude that f € Lle(Q,S',,u;@).

As, by assumption, [(f1)_du < +oo, we conclude that (f1)— < +oo. We consider two
cases.

We suppose that [(f1)4du = +oo. As sup(0, f) = f+ > (f1)+ = sup(0, f1), we also
have that | fidu = +oo. As a consequence, we get that [ fidu = [(f1)+dp = 400, hence
[ fdu = [ fidp = +oc, by definition of the integral [ on LL (2, F, y; R). By monotonicity of
the integral [, we conclude that +co = [ fidp < lim, oo [ fndp < [ fidp = 400, hence
that (6.29) holds true.

We now suppose that [(f1)4+du < +0o. We deduce that (f1)4+ < +o00. As we had (f1)- <
+00, we deduce that —oco < f; < +00. Thus, we can define ¢, = f,+(—f1) and ¢ = f+(—f1),
which are functions in L°(Q, F, u; R) such that o = f+(—f1) > ¢n = fu+(—f1) > 0, because
fn = f1. As f1 takes values in R, we have that sup,,(fn + (—f1)) = sup,, fn + (—f1), hence we
obtain that ¢, 1 ¢. As ¢, > 0, by the monotone convergence theorem for (L9 (2, F, 1; R),

[), we get that
sup / pndp = lim / ondp = / edp .

As, by assumption, (f1)—du < +oo and [(f1)+du < 400, we get that f1 € L'(Q,F, u;R) and
that —oo < [ fidu < 400, hence obtaining

sup (/ sondu+/f1du) =81;Lp/sondu+/f1duz /tpdu+/f1du-

As ¢, > 0 and belongs to LO(Q,?,&K), we have that ¢, € Lle(Q,f}",M;@). In the same
way, we obtain that ¢ € Lle(Q, F,u;R). By the +-additivity property of the integral | on



Lle(Q, F, 11;R), we deduce that the first and last terms of the above equality are given by the
following expressions

sglp/(son + fi)dp = /(so + fi1)dp .

We obtain (6.29) because ¢, + f1 = fn, + (—f1) + f1 = fn since fi takes values in R, and, in
the same way, o + f1 = f + (= f1) + fi = f.

]
The classical vector space of integrable functions is
LN, F, i R) = LL(Q,F, 15 R) N LE(Q, F, 1 R) (6.30)
with the property that f € LY(Q,F,;;R) = —oo < f < +oo, that is, L}(Q, F, s R) =
LN, F, 15 R).
6.5.3 Outer integral on L°(Q, F, u; R)
We follow [BS96] for the following definitions.
Definition 79. We define the outer integral of a function by
/ fdp:inf{/ wdujw e LY, F, :R) and f gw}  VfeRY, (6.31a)
Q Q
and the inner integral by
@ —=Q
[ rau=swp{ [ vau]v e L@ T uR) and £ 20} ViR (6.31b)
* Q
where [ du is the classical Lebesgue integral for ) € LY, T, u;R).
It is straightforward that
Q * —q
/ fdug/fdu, VfeR ", (6.32a)
* Q
- Crans [ e, vr R (6.32)
Q Q
Q * —0
| ran==( naw, vre®". (6.320)

These outer and inner integrals extend the classical Lebesgue integral to the uncovered
case where both [, fi du and [, f— dpu equal +o0 as shown in the following Proposition.

Proposition 80. We have that
[ £ [ feant (= [ £an), v e @5 0E), (6.333)
Q Q Q

/*Qfd“:/Qf“l‘“-r (_/Qf—d”> , Vfe L%Q, T, R) . (6.33b)

As a consequence, the outer integral of f coincides with the extended Lebesgue integral (6.28)
on LEL(Q,F, s R) U LL(Q, F, s R), that is, when f is semi-integrable.



Proof. We consider f € L%, F, u;R) and we examine four possible cases in order to prove
Equation (6.33a) (then Equation (6.33b) is obtained from (6.32c)).

e Suppose that [, f+du < +oo and [, f—dp < 4oo (that is, f € LY(Q,F, 1;R)). Then we
have that p[{f = £o00}] = 0, and thus there exists a representant f € L'(Q, F, yu;R) in the
class, which is equal to f ( p-a.s. ). Thus, we have that [ fdu < [, fdp = Jo fdp as we
can use ¥ = f in the definition of the outer integral. Now, in order to prove the reverse
inequality, we have to consider two cases, depending whether fﬂ* f du is finite or is equal to
—00.

¢ In the case where f;; fdu is finite, we fix € > 0. Using Equation (6.31a), there exists
Ye € LY(Q,F,1;R) such that f < e and [,edp < [o fdu+ e Using the fact that
f € LY(9Q,7, u;R) and the monotonicity of the Lebesgue integral, we obtain

[ raus [veaus [ rane,

which finally gives [, fdu < [, fdp and therefore the equality [, fdu = [ fdp. Equa-
tion (6.33a) follows using Equation (6.28) as we have

[ran= [ ran= [ feaws - [ 10 = [ peans (- [ 1an).

¢ In the case where fg fdu = —oo, then using Equation (6.31a) there exists a sequence
{wn}nEN in LY(Q,F, u; R) such that f < 1, and Jo¥ndu < —n for all n € N. This implies
that [, f dpu = —oco, which contradicts the fact that f € LY, T, 13 R).

e Suppose that [, f du < 400 and and [, f- dpu = 400. Using the fact that f < fi we have
that f;; fdu < [o f+dp as we can use ¢ = f € LY(Q,F, u;R) in the definition (6.31a) of the
outer integral. Moreover, as fQ f— dp = 400, we can find a sequence {¢, },en of nonnegative
functions such that 1, € L' (€, F, u;R), ¢, < f_ and such that lim,, . fQ p dp = 400 for
all n € N (take ¥, = 1q, min(n, f_), where (£,,),en is @ monotone sequence of F-measurable
subsets of  covering 2 such that p©(£2,) < 400 which exists by o-finite property). Using the
fact that [, fy du < 400, we can find fi e LY, T, u; R) such that f, = fi+ pas. Thus,
for all n € N, we have that f < (fy — ) and (f — ) € LY(Q,F, 1;R). We obtain by

monotone convergence that

/Q*fdu</Qfl_%duz/ghd“_/ﬂw”d“n:loo_oo'

We therefore obtain Equation (6.33a) since both members of the equality are equal to —oo.

e Suppose that [, f+ dp = 400 and and [, f— du < 400. Then we prove that

{(p e LM, F, ;R | f < pras. }=0.

Indeed, assuming the existence of ¢ € L'(Q,F, u;R) such that f < 1, we would obtain
that fi < ¢ + f_ which, using the fact that v + f- € LY(,F, u;R), would imply that
f+ € LY, F, 13 R), contradicting the assumption that [, f4 du = +o0.

e Suppose that [, fidu = +oo and and [, f-dp = +oo. Using the definition of 4,
we get that the right hand side of Equation (6.33a) is equal to +00. Now, we show that



Equation (6.33a) holds true by proving that the set of functions ¢ € L'(92, F, u; R) such that
f <1 is empty. We proceed by contradiction. Assuming the existence of 1 € L'(, T, u; R)
such that f <, we would have

too= [ fedi= [ Fpedus [ v1pedes [vdu,
Q Q Q Q

contradicting the assumption that ¢ € L'(€,J, u;R). Therefore, in Equation (6.31a) we
obtain that f{; fdu = 400 and thus equality is ensured in Equation (6.33a).

This ends the proof. O
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A Uniform sampling on the unit sphere

In the numerical implementation of the min-plus algorithm described in Chapter 3, one needs
to sample uniformly on the unit euclidean sphere. It can be done by simply renormalizing a
uniform sample of gaussian distributions, or more generally, by renormalizing any sample of
random variables with a radial density w.r.t. the Lebesgue measure. Throughout this section
we fix n € N and consider the vector space R” to be endowed with its euclidean and borelian
structures.

Proposition 81. Let X be a random variable from a probability space (2, F,P) to R™. As-
sume that X has a density f with respect to the Lebesgue measure A\ on R™ and that f is
radial, that is there exist f : R — R such that for every x € R™ we have

fl@) = ().

Now denote by wg the projection on the unit sphere S. Then the random variable Y := mgo X
from (2, F,P) to the unit sphere is uniform in the sense that for every borelian A of the unit
sphere, we have that
o(A)
PY e A) = —+,
( ) (5)

where o is the pushforward measure of the Lebesque measure X by the restriction to the unit
ball (without 0) of mg.

Remark 82. By [LG06, p. 85-86] the measure o on (S,B(S)) defined in Proposition 81 is
finite and invariant by unitary transformations. Moreover it is unique in the sense that every
finite measure on (S, B(S)) invariant by unitary transformations is proportional to o.



Proof. Fix A a borelian of the unit sphere. We have that

P(Y € A) = /Q La(Y (w))P(dw)

~ [ Lawery)

=Preox (Y € A)

= Px(m5'(4))

- /R Lo(@)f(@)de (X has density f)

+o0
= / L1 (r2)f(rz)r"to(dz) dr ([LGO6, Theorem 7.2.1])
0 S

oo - n—1 .
:/0 f(r)r /Slﬂs1(A)(rz)a(dz) dr (f radial)

N S (f radial density)

O

Corollary 83. Letn > 1 and X = (X1, Xo,...,X,,) be an i.i.d. sampling of the standard

normal distribution. Then ‘é—” s an uniform random variable on the unit sphere.

Proof. By independance of (X1, X, ..., X,), the random variable X has a radial density with
respect to the Lebesgue measure on R™. Thus we can apply Proposition 81. O

B Approximating by independent scenario trees

Given a (non-independant) scenario tree X = (Xi,...,X7_1) one can build its marginal
process X' = (X{,...,X/}_;). The process X’ is independent and one may wonder if X’
minimizes dyp (X, -) for all independent scenario processes 7 We give a counter example here.
Informally, the idea behind is that the Nested Distance penalizes processes with different
different flow of information.

Example 6 (The marginal process does not minimizes the Nested Distance). When p is big
enough, one can drop the case where the decision maker gets 2 after getting 1: this will yield
a better approximation than the marginal process. In fact we have that

e When p < %, then ND(W,W”) > ND(W, W’).
e When p =%, then ND(W, W") = ND(W, W").
e When p > %, then ND(W,W") < ND(W,W’), for instance for p = 1:

ND(W, W") =1 <

DO o

= ND(W, W').



Figure 1: Left: initial scenario process X with 0 < p < 1. Middle: marginal process of
X', noted X’ where q = %(1 + p). Right: independant process Y such that if p > %, then
ND(X,Y) < ND(X, X).

C Tropical Dynamic Programming for POMDP

In this section, we present an on-going work to apply TDP on Partially Observed Markov
Decision Processes (POMDP).

C.1 Recalls on POMDP

Formally, a POMDP is described (in the finite settings) by a finite set of states X = {z1, ..., x|},
a finite set of actions U = {uy, ..., uy| }, a finite set of observations @ = {o1, ..., 0g|}, transition
probabilities of the Markov chain

P (zj,xj) = P{X41 = 2; | X4 = x;, U = u}, (34)
and conditional law of the observations
Qit1(0]z,u) = P{Ot11 = 0| Xy11 = 2, U = u} (35)

a real-valued cost function Li(x,u) for any ¢ € [0,7 — 1], a final cost K(z) and an initial
probability law in the simplex of R¥| called the initial belief by. We assume here that the
state space the control space and the observation space dimensions do not vary with time but
for the sake of clarity we will use the notation X; to designate the state space at time ¢ even
if it is equal to X and the same for control and observation states.

Under Markov assumptions, we can use at time ¢ a probability distribution b;, whose name
is a reminder of belief, over current states as a sufficient statistic for the history of actions and
observations up to time ¢. The space of beliefs is the simplex of RI¥l, denoted Ax|- The belief
dynamics, at time ¢, driven by action u; and observation oy is given by by the equation

biy1 = Tt(bt7ut70t+1) (36)

with by € A|X\ given by

b1 (we11) = Bre1Qeta (0041 |!Et+1jut)( > bla) P ($ta$t+1)) Vi € Xepr,  (37)

T E€X¢



where (11 is a normalization constant to ensure that b1 € Ajx|, that is

Bih= Y. Qulom !$t+1,ut)< > Ptut(ﬂftyxt—i-l)b(fxt)) :

Tt41 EXt+1 x€Xy

To simplify the notation we introduce the (sub-stochastic) matrix defined as follows

MO (@, 2441) = Qug1 (0041 | Tgr, we) P (g, 1) V(@g, Tg1) € XgxKyq

Ut ,0t+1 _ . . . .
where we have >°, >0 M, (xt,z¢41) = 1. Using matrix notations, where beliefs are
represented by row vector and 1 is a column vector full of ones, we can rewrite the beliefs
dynamics as

bt ut,0t+1

by M, ut’ot“ 1

In general the object of the optimization problem is to generate a policy that minimizes
expected finite horizon cost for the controlled Markov chain {X{*};cn with transition matrix
P". That is consider the minimization problem

7t (be, ut, 0441) = € A -

T—-1
J(bo) =  min ]E[Z Li(Xs, Uy) —|—K(XT)‘b0] . (38)
=0

Ui,...Up—1

It is classical to derive a Bellman equation for the beliefs given by the bellman operators
for t € [0,T — 1]

By(V) = inf Bi(V) , (39)
uel
where for each u € U and ¢ € [0,7 — 1], the Bellman operator B} is defined by
U _ U u,0 bMtu’O
BV)®) =bLE+ 3 OMI 1V (i) (40)

0€0¢41

where L is the column vector (L?(xt))mt cx,- Note that the mapping ory1 € Opp1 =
(b M, 1) is a probability distribution on Q41 (3 b M1 = 1).
The Bellman operator can be also written as

BY(V)(b) =bLy+ > P{(bV)V(Y), (41)
b’EAm‘

OE@t+1

where, P" is a controlled Markov chain transition matrix in the belief space. Indeed

(42)

By {OMED) when = i with 0 € Oy |
’ 0 if not ,

which is a classical Bellman equation of a controlled Markov chain but with a state space in
the belief space.
We conclude this section by the following lemma

Proposition 84. The value functions {Vt}te[[O,T}] solutions of the Bellman FEquation

IX]

Vb e R Ve(b) =bK and Vi€ [0,T-1] Vi(b) = inf B} (Viea)(b) , (43)
ue

where the operator By is given by Equation 40 are such that Vy(bo) is the optimal value of the
minimization problem given by Equation 38.



C.2 The Bellman operator defined in Equation (39) propagate Lipschitz
mappings

Proposition 85. Fort € [0,T—1], assume that the mappings Li(u,-) satisfy ||Li(u,-)|lco <
LY for all w € U and assume that a mapping K satisfy sup,ex |K(z)| = K < +o00. Then the
solution of the Bellman Equation (43) are Lipschitz mappings.

Proof.
e We consider the operator gf defined for mappings v R‘f_ﬂ — R by

Bi(V)(e)=cLy+ > V(eM) YeeRF (44)

OE@tJrl

where Ly stands for the column vector (L;(z, u))zex, and we recall that beliefs are row vectors.
We consider {V;};c[o,r] solution of the Bellman Equation

Vee R Vir(e)=cK and vte[0,7-1] @(e):igjéy(ml)(c). (45)

First, we straightforwardly obtain by backward induction that the value functions (‘Z)te[[O,T]]
are homogeneous of degree 1. Second we prove that the operator B;* preserves Lispchitz

regularity. We proceed as follows. Consider ¢ and ¢ in R'j_gl and suppose that [V (c)— V()| <
V|| — ¢|l1. Then we have that

BXV)() = BEV)(c) = (¢ — ¢)L¥ + > V(¢ M%) =V (eM;")
OG@tJrl
<L|d =i+ D VIEMM — e

0€0; 41

< ﬁ“cl — C”l +V Z ‘ Z (C,(ZU) — C(l‘))Mtu»O(;p,x/)

0€0;41 x€X

z'eX
<Ll =i+ VY[ (x) —cl@)] Y MM ()
zeX 0€0¢41

z'eX
< LI = e + VY| (@) — ()]

zeX

< (E+V)||c’—c||1.

As a pointwise minimum of Lipschitz mappings having the same Lipschitz constant is
Lipschitz, we obtain the same Lispchitz constant for the operators inf,cy g}f Then, using
the fact that Vp = K we obtain by backward induction that the Bellman value function XN/t
is (L(T —t) + K)-Lipschitz for ¢ € [0,T] where K = || K(*)]co-

e We prove now an intermediate result to link the solutions of the Bellman Equation (45) to
the Bellman Equation (43). Suppose that V is 1-homogeneous and such that V(b) = V (b)
for all b € Ajxj. Then, We prove that By (V)(b) = B{(V)(b) for all b € Ajg). For b€ A, we

!Since the state space if finite we identify mappings ¢ : X — R with vectors in R



successively have that

BH(V)(b) =bLy + > V(bM") (46)
0€@t+1
~ MM -
=bL} + Z (bMt"’ol)V(m) (V is 1-homogeneous)
0€0¢41 t
" wo bM’U,,O .
=bLi+ Y  (bM" 1)v(bM7;01) (V =V onAg)
0€011 t
=B/ (V)(b) . (47)

e Now we turn to solutions of Bellman Equation (43). Since Vp(c) = ¢K for all ¢ € le_g and
Vr(b) = bK for all b € Ax, the two mappings V7 and Vi coincide on the simplex of dimension

IX|. Then gathering the previous steps we obtain that V; and V; coincide also on the simplex
of dimension |X] for all ¢ € [0,T]. Finally, for all ¢ € [0,T] V; being (L(T —t) + K)-Lipschitz
we obtain the same result for V. O

C.3 Value of B,(Vi41) when V,; = minger,,, (o, b)

Assume that Vi1 : b — minger,,, (o, b) where I'y1y C RIXl. Then we obtain that

‘ bMY°
BiVi1)(0) = min (0L + 37 (M DVisa (7657 )) (48)
¢ 0€041 ¢
bM;"°
— min (bLY (bM°1) i <t7>) 49
mi ( ¢ min (G (19)
OE@t+1 t
= z%%l <bL“ + Z bM; "o (u, 0)) (with of (u, 0) = arg Minyer, %)
¢ 0€®t+1
- b( Mo (u ) 50
min > (50)
0€®t+1
= b 51
gélrri (a,b) (51)

with Ty = {L} + D 0€0u11 M{"°a*(u,0) |u € Uyand o*(u, 0) = argmin,r, , bMu 01} We there-
fore obtain that the Bellman value function at time ¢ has the same form as the Bellman value
function at time ¢ + 1.

We are in a context where the Bellman function that is to to be computed is polyhedral
concave with a huge polyhedron. It is thus tempting to use our algorithm with polyhedral
concave upper approximations and sup of quadratic or Lipschitz mappings as lower approxi-
mations.

The Problem-child trajectory technique is used in POMDP algorithms as an heuristic but
without a convergence proof as far as we have investigated.



C.4 A lower bound of B;(V;;1)

We consider a special case where Vi1 : X — R is given by Vi11(b) = <b,‘7}+1> and we
compute B (V1) as follows

By(Vis1)(b) = min (bL;L + Y be’OXZH)

u€eUy

0€®t+1
— min (bLY ’P“’bf/’)
min (B + Y Qealo]e! u)P (e, )h(@) Vi (o)

0€041,2eXs,x’ €Xyp1

—min (b7 + > Peab@Vin) (2, Qulolau) = 1)

ueclU
¢ xEXt,$/€Xt+1

> Y be)min (Le(wa) + Y Paa) V()
zeXy ac’EXt+1

= 3" b{a)Vi(x) = b .

xeXy
with R R
Vi(z) = min <Lt(u,x)+ 3 Pt”(x,x’)VtH(x’)). (52)

' e€Xiy1

Using the fact that at time T" we have that Vp = <b , Y7T> with YA/T = K we obtain that for all

te[0,T] Vi > <b , XA/t> where 17} is the Value function of the fully observed Bellman equation
associated to the POMDP.
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