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Abstract

English version

One key objective during the rehabilitation of people with lower-limb amputation fitted with a
prosthesis is the restoration of a physiological and energy-efficient gait pattern minimizing falling risks
due to the loss of balance. Few practical tools are available to provide quantitative data to assist the
follow-up of patients in the clinical routine. The development of wearable sensors offers opportunities
to quantitatively and objectively describe gait in ecological situations such as during
(tele)rehabilitation. In this context, the aim of the thesis is to contribute to the development of
wearable tools and protocols to support the functional rehabilitation of lower-limb amputees by
providing clinically relevant quantitative data.

Two complementary approaches have been implemented. The first approach consists in
developing biomechanical models of the human body in order to retrieve biomechanically founded
parameters. An original protocol allowing to accurately estimate the body center of mass acceleration
and instantaneous velocity has therefore been proposed based on gait data of ten people with
transfemoral amputation and was validated in one person with transfemoral amputation. The second
approach consists in identifying patterns in the signals measured by wearable sensors to extract
concise descriptors of the quality of gait, with reference to gait symmetry and dynamic balance. The
clinical relevance and reliability of these descriptors have been investigated for the first time in people
with lower-limb amputation.

The work produced in the course of this thesis has contributed to the clinical transfer of wearable
sensors into the clinical practice through the identification of clinically and biomechanically relevant
parameters and the validation of original algorithms allowing to quantitatively describe the gait of
people with lower-limb amputation.

Key words: Quantitative gait analysis, wearable sensors, center of mass, symmetry, balance,
people with lower-limb amputation

French version

Un des objectifs majeurs de la rééducation des personnes amputées de membre inférieur
appareillées est le retour a une marche sans défaut ni asymétrie, efficace énergétiquement et
minimisant le risque de chutes lié a la perte d’équilibre. Peu d’outils cliniques permettent aujourd’hui
de quantifier ces aspects de la locomotion. L’émergence de capteurs embarqués miniaturisés offre des
opportunités pour la description quantitative et écologique de la marche lors de la (télé)rééducation.
Dans ce contexte, I'objectif de la these était de contribuer au développement de protocoles embarqués
pour apporter des données quantitatives pertinentes lors de la rééducation a la marche des personnes
amputées de membre inférieur.

Deux approches complémentaires ont été adoptées. La premiére approche consiste a utiliser un
modele biomécanique du corps afin d’extraire des descripteurs quantifiés pertinents. Un protocole
original permettant d’estimer I'accélération et la vitesse instantanée du centre de masse a partir de 5
centrales inertielles a ainsi été proposé a partir d’une analyse préliminaire sur les données de marche
de dix personnes amputées transfémorales et a été validé chez une personne amputée transfémorale.



La seconde approche consiste a extraire des parametres concis par traitement du signal des données
brutes de capteurs positionnés sur le corps. La fiabilité et la pertinence clinique de la quantification de
tels parameétres pour caractériser la symétrie et I'équilibre de la marche ont été étudiées pour la
premiere fois chez les personnes amputées de membre inférieur.

L’ensemble des travaux produits au cours de cette these contribue ainsi au transfert vers la clinique
des outils embarqués d’analyse du mouvement par l'identification de parameétres biomécaniques et
cliniques pertinents et la validation d’algorithmes originaux permettant la quantification de la marche
des personnes amputées de membre inférieur.

Mots clés : Analyse quantifiée de la marche, capteurs embarqués, centre de masse, équilibre,
symétrie, personnes amputées de membre inférieur

[talian version

Un obiettivo chiave durante la riabilitazione di nella routine clinica di arto inferiore protesizzate &
il ripristino di un modello di deambulazione fisiologico e simmetrico, efficiente dal punto di vista
energetico, riducendo al minimo i rischi di caduta dovuti alla perdita di equilibrio. Ad oggi tuttavia,
sono rari gli strumenti in grado di fornire dati quantitativi e oggettivi per assistere concretamente la
valutazione dei pazienti nella routine clinica. Lo sviluppo di sensori indossabili offre un’opportunita per
descrivere quantitativamente e oggettivamente la deambulazione in situazioni ecologiche come
durante la riabilitazione (domiciliare o no). In questo contesto, la presente tesi si propone di
contribuire allo sviluppo di strumenti e protocolli indossabili a supporto della riabilitazione funzionale
degli amputati di arto inferiore attraverso I'estrazione di dati quantitativi e clinicamente rilevanti.

Il lavoro si articola secondo due approcci complementari. Il primo approccio consiste nello sviluppo
di modelli biomeccanici del corpo umano al fine di recuperare parametri biomeccanicamente rilevanti
nel contesto clinico. E stato quindi proposto un protocollo originale che permette di stimare
I'accelerazione e la velocita istantanea del centro di massa dell’intero corpo. Il protocollo e stato
sviluppato sulla base dei dati di deambulazione di dieci persone con amputazione transfemorale ed e
stato validato in una persona con amputazione transfemorale. Il secondo approccio consiste
nell'identificare caratteristiche nei segnali misurati dai sensori indossabili per estrarre descrittori
concisi della qualita della deambulazione, in termini di simmetria ed equilibrio dinamico. La rilevanza
clinica e I'affidabilita di questi descrittori sono state studiate per la prima volta in persone con
amputazione di arto inferiore.

Il lavoro svolto nel corso di questa tesi ha contribuito al trasferimento clinico di sensori indossabili
nella pratica clinica attraverso l'identificazione di parametri clinicamente e biomeccanicamente
rilevanti e la validazione di algoritmi originali che permettono di descrivere quantitativamente la
deambulazione di persone con amputazione di arto inferiore.

Parole chiave : Analisi quantitativa della deambulazione, sensori indossabili, centro di massa,
simmetria, equilibrio, persone con amputazione
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General introduction

In France, the number of people living with a major lower-limb loss in 2012 was estimated to lie
between 90,000 to 100,000 people, with an incidence of 8,300 cases per year (Villa, Bascou, et al.,
2017). In developed countries, most lower-limb amputations are performed as a result of peripheral
vascular diseases (from 80 to 90%), traumatic injuries (10 to 20 %), or tumors (< 5%) (Ziegler-Graham
et al., 2008; Carmona et al., 2014). Ageing of the population and increased prevalence of diabetes are
predicted to lead to a raise of the number of people living with a lower-limb loss in the next decades
(Lamandé et al., 2011). For instance, in the United States, the population of lower-limb amputees is
predicted to double between 2005 and 2050 (Ziegler-Graham et al., 2008).

Following an amputation of a lower limb, the objective of the rehabilitation process is the return
home of the patient with as much autonomy as possible in the activities of daily living and without
pain. Rehabilitation is supervised by a multidisciplinary team whose aim is reducing and supplementing
the functional loss induced by amputation. Following surgery, rehabilitation is focused on muscle
strengthening and residual limb acceptance. After prosthetic fitting, rehabilitation protocols target the
recovery of balance, the ability to perform autonomous transfers and the recovery of a gait pattern as
physiological as possible. An important focus of the functional rehabilitation is the reduction of gait
limping, asymmetries and compensations such as hip hiking or vaulting in order to prevent the over-
solicitation of the preserved articulations, which may introduce long-term disabilities and
comorbidities such as arthrosis or low-back pain (Sawers and Hafner, 2013; Villa, Bascou, et al., 2017).

Monitoring the patient’s progress relies on regular clinical assessments. Such assessments are
usually based upon visual observations performed by the multidisciplinary team in charge of the
rehabilitation (doctor, physiotherapist, occupational therapist, ortho-prosthetist...), on the
investigation of the patient’s perception about the prosthesis (perceived discomfort or pain), and on
the assessment of overall patient’s performance metrics during specific motor tasks (Cuesta-Vargas et
al., 2010; Hafner and Sanders, 2014). Metrics that are associated with a positive evolution of the
patient are generally qualitative and subjective; they often depend on the experience of the clinician
and, thus, lack inter-rater reliability and specificity. Obtaining objective and quantitative data through
rigorous protocols might help clinicians in accurately monitoring their patients’ progress or in
prescribing a prosthetic component adapted to a specific patient. This is particularly true regarding the
prescription of technologically advanced prosthetic components: in France, the public healthcare
system reimburses the costs associated to prosthetic fitting and prescribed equipment if the
rehabilitation therapists can document that it would truly benefit the patient.

However, few practical tools are available to provide quantitative data to assist the assessment of
patients in clinical routine. In fact, although clinical quantitative gait analysis in motion laboratories
has been extensively described in the literature, including in people with lower-limb amputation, it is
generally hardly accessible in the clinical practice because of a high system cost and portability
constraints (losa, Picerno, et al., 2016; Benson et al., 2018; Loiret et al., 2019). Miniaturization of
sensing technologies and advancement in processing techniques in the last decades have made
possible the development of affordable wearable inertial and pressure sensors for motion analysis
(Wong et al., 2007, 2015; Benson et al., 2018). Wearable sensors offer the advantages of being



portable and thus located directly onto the patient, enabling to record data outside the laboratory,
without limitation of the acquisition volume and without interfering with the clinical routine (Cuesta-
Vargas et al., 2010; Tura et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Magbool et al., 2015;
losa, Picerno, et al., 2016; Loiret, 2016; Benson et al., 2018).

In the context of evidence-based practice or medicine, wearable sensors are thus a very attractive
solution to provide quantitative data of interest for the rehabilitation of people with lower-limb
amputation. Indeed, potential clinical benefits of those sensors include long-term and remote
monitoring, real-time feedback, increased implication of the patient in his/her rehabilitation, home-
based and telerehabilitation opportunities, and a reduction of global rehabilitation costs (Hafner and
Sanders, 2014; losa, Picerno, et al., 2016; Villa, Bascou, et al., 2017). However, the transfer of this
technology in the clinical routine or for home-based rehabilitation for the assessment of lower-limb
represents a challenge (Cutti et al., 2015; losa, Picerno, et al., 2016). Indeed, wearable sensors depend
on a technology that differs from that of the gold standards gait analysis tools. As a consequence,
wearable sensors may not allow to directly quantify all the biomechanical parameters that are usually
retrieved in laboratory-based clinical gait analysis. For instance, no currently available wearable sensor
can directly provide a measure of its absolute position in an Earth-fixed reference frame.

It is therefore necessary to first identify clinically relevant parameters allowing the quantitative
and biomechanical description of lower-limb amputee gait which could be obtained from wearable
sensors. These parameters should be synthetic and should allow to globally evaluate gait function and
performance while providing an understanding of the underlying mechanical causes. This would
indeed allow to use these parameters both as indicators for the evaluation of the rehabilitation and
for the implementation of rehabilitation protocols. Once these parameters have been identified,
specific algorithms must be developed or adapted for their quantification from wearable sensors data.
A special attention must be drawn on limiting the number of sensors required in order to keep the
acquisition minimally invasive and as simple as possible so as to facilitate the transfer in clinics (cost
and time constraints), or even for home-based applications. Last but not least, the validity and
reproducibility of the retrieved parameters in people with lower-limb amputation must be assessed in
order to provide clinicians with reliable and easily interpretable data.

This thesis aims at providing a contribution towards the in-field functional assessment of people
with lower-limb amputation from wearable sensors. In this framework, the approach chosen consisted
in investigating both validated wearable tools and original algorithms with the aim of providing
clinicians with relevant quantitative data to support their practice during the functional rehabilitation
of people with lower-limb amputation. Although the algorithms developed within the framework of
the thesis were specifically developed for people with lower-limb amputation, similar approaches
could be adopted in other pathological gait as the use of wearable sensors in the clinical field would
similarly benefit both patients and the healthcare system.

The thesis was carried out in the framework of a joint Ph.D. between the IBHGC (/nstitut de
Biomécanique Humaine Georges Charpak, Arts et Métiers, Paris, France) and the LBNM (Laboratory of
Bioengineering and Neuromechanics of Movement, Foro Italico, Rome, Italy). It was financed by a
donation from the Fédération des Amputés de Guerre de France (FAGF) to INI/CERAH (Centre d’Etude
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et de Recherches pour I’Appareillage des personnes Handicapées, Antenne de Créteil, France), with the
aim to improve care of people with lower-limb amputation. A grant from the Université Franco-
Italienne was obtained to finance the mobility between France and Italy.

The research developed within this framework relies on previous collaborative works between the
IBHGC and INI/CERAH on the characterization of lower-limb amputee gait! and on the expertise of the
LBNM on the use of wearable motion sensors for the study of human movement?. Furthermore, the
joint supervision by IBHGC and LBNM materializes the collaboration between the laboratories, driven
by the complementarity of their expertise fields and their common interest for the study of human
motion. Finally, the research was supported by the clinical partnerships of INI/CERAH and IBHGC, in
particular with INI (Institution Nationale des Invalides, Paris, France), IRR (Institut Régional de
Réadaptation, Nancy France), the military hospital HIA Percy (Hépital d’Instruction des Armées Percy,
Clamart, France) and IRMA (Institut Robert Merle d’Aubigné, Valenton, France).

The thesis thus benefited from a multidisciplinary environment with the highly valuable
collaboration of biomechanical engineers and clinicians for the identification of clinically relevant
parameters and the development and/or validation of algorithms allowing their extraction from
wearable sensor data.

The first part of the manuscript focuses on the identification of clinically relevant biomechanical
parameters for amputee care that could be retrieved from wearable sensor data through a review of
the literature. Following a description of the rehabilitation pathway of people with lower-limb
amputation (chapter 1), an overview of state-of-the-art descriptors of lower-limb amputee gait is
presented (chapter 2). Finally, chapter 3 investigates how wearable sensors, and more especially
inertial measurement units and pressure insoles, could benefit both clinicians and people with lower-
limb amputation during their rehabilitation by reporting the outcome parameters usually derived from
these sensors. Following the conclusion of part 1, the aim of the thesis is further developed with the
selection of clinically relevant parameters whose quantification from wearable sensor data will be
investigated. These parameters aim at characterizing gait symmetry and balance and at describing the
kinematics of the center of mass. The latter indeed appears to be a relevant synthetic biomechanical
descriptor of gait performance, providing insight on both energy efficiency and kinematics
asymmetries.

The second part of the thesis proposes a framework for the wearable estimation of body center of
mass motion in people with lower-limb amputation. First, a review of the literature provides a
comprehensive overview of the main methods implemented in diverse populations to estimate the
motion of the body center of mass from magneto-inertial measurement units (chapter 1). The review
leads to the decision of implementing a multi-sensor approach and the optimal locations of sensors
are determined based on an analysis of the segmental contributions to the body center of mass
acceleration in ten people with transfemoral amputation (chapter 2). From there, magneto-inertial

1 See the Ph.D. theses of Héléne Pillet (Goujon, 2006), Coralie Villa (Villa, 2014) and Boris Dauriac (Dauriac,
2018).

2 See the Ph.D. theses of Elena Bergamini (Bergamini, 2011) and Valeria Belluscio (Belluscio, 2020) for
instance
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measurement units are used to validate the multi-sensor approach in an original framework that
allows an almost fully-wearable acquisition of body center of mass motion (chapter 3). Lastly, the
impact of errors in the identification of sensors positions relative to the segments on the body center
of mass acceleration is investigated (chapter 4).

The last and third part of this thesis proposes an alternative approach to that implemented in the
second part and investigates the feasibility of retrieving gait quality indices from wearable sensor data
in a rehabilitation set-up. First, five inertial-measurement-units-based gait-event detection algorithms
are comparatively assessed in seven people with transfemoral amputation in view of in-the-field
guantification of temporal asymmetry from one to two inertial measurement units (chapter 1). The
second chapter explores the feasibility and relevance of tracking gait quality indices issued from
wearable sensors during the rehabilitation of lower-limb amputees through the instrumentation of the

two-minute walking test.



Part 1: Identification of clinically relevant parameters for in-the-field
monitoring of the rehabilitation of people with lower-limb amputation
through a review of the state-of-the-art

Lower-limb amputation is a life-long handicap, affecting both the psychological and physical
integrity of a person and with a definitive impact on ambulation (Samuelsson et al., 2012). Following
rehabilitation and definitive prosthetic fitting, gait performance and capacities of the lower-limb
amputee are still limited compared to those of asymptomatic people (Bonnet, 2009). Indeed, walking
with a prosthesis requires a higher energy cost (Waters et al., 1976) and doesn’t always allow walking
outdoors on irregular terrain (Van Velzen et al., 2006), in slopes or stairs (Walker et al., 1994).
Furthermore, an asymmetrical gait pattern is often observed (Nolan et al., 2003; Sagawa et al., 2011),
which not only favors the onset of long-term comorbidities, but also has an impact on the esthetic of
walking thus affecting the patient’s social life (Gailey et al., 2008).

Obtaining quantitative data to characterize the gait or balance of lower-limb amputees during
rehabilitation could help detecting and reducing gait compensations and thus preventing the
occurrence of long-term comorbidities. Furthermore, it could assist physicians and prosthetists in the
prescription and alignment of prosthetic components. However, current clinical assessment tools do
not allow to obtain such quantitative parameters, and optical motion capture systems are
inappropriate in most clinical settings (Loiret et al., 2005). Therefore, the use of user-friendly and
relatively low-cost wearable sensors is an interesting approach even if they may not allow to quantify
the same biomechanical gait descriptors as usually retrieved in laboratory-based quantified gait
analysis.

The purpose of the first part of the thesis is thus to identify, from an exhaustive literature review,
gait parameters that could be obtained with inertial sensors and pressure insoles and that are clinically
relevant for the rehabilitation of people with lower-limb amputation. Following a global overview of
contextual elements on the rehabilitation pathway and the gait of people with lower-limb amputation
in the first chapter, chapter 2 focuses on the assessment of amputee gait both in clinics and in motion
analysis laboratories. Finally, the third chapter introduces inertial measurement units and pressure
insoles and provides an overview of their usage in the clinical and research fields.



Chapter 1 — Rehabilitation of people with lower-limb amputation

The number of people living with a major lower-limb loss (that is, amputations above the ankle
level) was estimated to lie between 90,000 to 100,000 people, with an incidence of 8,300 new
amputations per year in France in 2012 (Villa, Bascou, et al., 2017). Following the amputation of a
lower limb, people might be fitted with prosthetic devices to restore gait and balance functions of the
lost limb. Transtibial amputation, knee disarticulation and transfemoral amputation (Figure 1) account
for 99% of major amputations of the lower limbs (Villa, Bascou, et al., 2017), and as a consequence,
the present work will focus on these amputation levels.

& Transfemoral
Hip {
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Figure 1: Major lower-limb amputation levels

1.1. Prosthetic components

Limb amputation entails the loss of bony structures, joint(s) and muscles. Transfemoral and
transtibial prosthetic devices aim at replacing the lost limb and are constituted with prosthetic
modules manufactured in series production and — except in the cases of osseointegration —a custom-
made socket (Figure 2). The prosthesist assembles the components and realizes patient- and device-
specific settings of the prosthesis to allow an efficient, pain-free and esthetic gait.

The socket constitutes the interface between the residual limb and the prosthesis, and allows
prosthetic control through load transmission. As a consequence, a well fitted socket is essential to
ensure confort and pain-free use of the prosthesis. The socket is usually manufactured manually by
molding the residual limb of the patient. Recently, an alternative computer-aided design and
manufacturing process consisting in taking a 3D scan of the patient stump has been proposed. A liner
might be worn between the socket and the residual limb to improve comfort and prevent sliding of
the socket with respect to the stump.

The generic prosthetic modules consist in a prosthetic knee, for transfemoral amputees, and a
prosthetic foot, supplementing both the foot and the ankle. There is a large variety of existing knee
and foot devices. The choice of a specific device over another depends on the functional capacities of
the amputee as well as on his/her life project.
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Figure 2: Components of a transtibial (below knee) and a transfemoral (above-knee) prosthesis (taken from

https://www.orthomedics.us/)

The next two paragraphs will briefly introduce the key principles of the prosthetic foot and knee
components. For a more detailed presentation of the prosthetic components, the reader can refer to
the theses of Xavier Bonnet (Bonnet, 2009) and Boris Dauriac (Dauriac, 2018).

1.1.1. Prosthetic feet

There are three categories of prosthetic feet: “standard” feet, energy storing and returning feet
(ESR) and new-generation active feet (Bonnet, 2009). ESR feet have been introduced in 1981 and differ
from the rigid standard feet by the inclusion of deformable components, allowing to store energy at
the instant of foot contact and to restore it for propulsion. However, the returned energy is still lower
than the energy produced by a sound ankle. This partly explains the recent development of active new
generation feet. The latter also allow to adapt the behavior of the feet to the terrain or situation
encountered (slope, stairs, level ground...). There is a low hindsight on these types of feet, and they
are currently not reimbursed by the healthcare system in France.

1.1.2. Prosthetic knees

Similarly, there are three types of prosthetic knees: mechanical, microprocessor-controlled and
motorized knees (also called “active” knees). Prosthetic knees must ensure a stable and reliable
support when standing on the artificial limb while allowing the required mobility for making a step
forward or sitting. Stability during stance is ensured by design, either through a locking system which
can be activated manually or because during stance, the ground reaction forces imposes a knee
extension torque preventing flexion. In order to control the flexion and extension motion of the
prosthetic limb during the swing phase, a friction is applied on the knee. It can be purely mechanical,
pneumatic or hydraulic (Hafner and Askew, 2015). Microprocessor-controlled knees adjust the
hydraulic or pneumatic friction of the knee along the gait, thanks to sensors embedded in the
prosthetic device (Hafner and Askew, 2015; Dauriac, 2018). Finally, active knees include a motor, which
allow to actively control the position and motion of the knee joint (Hafner and Askew, 2015). Only one



active knee is commercialized worldwide, and it is not currently reimbursed by the healthcare system
in France.

1.2. The rehabilitation pathway

Following surgery, rehabilitation aims at restoring autonomy in the activities of daily living of the
amputee person (hygiene and alimentation, displacements, work, ...) with the highest quality of life
possible. To achieve this aim, a multidisciplinary team composed by physicians, physiotherapists,
occupational therapists, prosthetists and any other medical specialists required (for instance, a
psychologist) collaborates with the patient, who is also an active member of the team. The
rehabilitation and the prescribed prosthetic limb, when applicable, are adapted to the life project and
the functional capacities of the amputee person (Villa, Bascou, et al., 2017). The success of the
rehabilitation is multifactorial as it depends on the outcomes of the surgery and the amputation level,
the prosthetic components, the quality of the prosthesis fitting, the functional capacity of the patient
and his/her level of involvement in the rehabilitation. Assessment of the rehabilitation is therefore
complex as it requires to identify quantitative indicators corresponding to these multiple factors put
in regards with the life-project of the patient. Functional outcomes of the rehabilitation can however
be evaluated through biomechanical descriptors of gait, which can be used for therapeutic decision-
making along the rehabilitation.

The rehabilitation can be divided in three stages respectively corresponding to the postoperative,
pre-prosthetic and prosthetic phase of the rehabilitation (Esquenazi and DiGiacomo, 2001; Kovac et
al., 2015; Loiret, 2016). The post-operative and pre-prosthetic rehabilitation have been reported to
last about five to six weeks in people with vascular amputation while a minimum of three to four weeks
following surgery has been reported for wound healing in traumatic amputation (Kovac et al., 2015).
The duration of the prosthetic phase of the rehabilitation then lasts four to six weeks in people with
transtibial amputation, six-to-eight weeks in people with transfemoral amputation and is prolonged in
case of bilateral amputation (Kovac et al., 2015). It should be noted that the overall rehabilitation
duration depends on each patient and in particular on the scar healing process of the residual limb of
the person.

1.2.1. Post-operative and pre-prosthetic rehabilitation

Immediately after surgery, post-operative rehabilitation mainly
focuses on wound healing and pain management. Limb loss acceptance is
also a major focus of this early stage of the rehabilitation.

As soon as the patient is medically stable, mobility exercises involving
both the residual and contralateral legs are proposed by the
physiotherapists in order to preserve the range of motion of the residual
and sound leg articulations, to avoid contractures and to strengthen the
muscles that will be solicited during prosthetic gait. Muscle training of the
upper limbs must not be neglected to prepare the patient to the temporal

use of manual wheelchair or walking aids, such as crutches or a walker.
Early mobility is paramount for the success of the rehabilitation. Aided

Figure 3: Preparation for
prosthetic ambulation



ambulation training, without a prosthesis (Figure 3), is initiated to prepare the patient for prosthetic
gait training; muscle strengthening is accentuated.

The pre-prosthetic rehabilitation stage ends when the temporary prosthesis is delivered by the
prosthetist. It consists of a temporary socket made of plastic, molded on the residual limb, and of
prosthetic component(s) of simple design.

1.2.2. Prosthetic rehabilitation

Prosthetic training can be divided in two subphases. The ultimate aim of this stage is gait recovery
with a prosthesis.

First, unspecific training focuses on residual limb self-care, learning to don and doff the prosthesis,
and reaching a stable residual limb volume. At the beginning of this stage, special care is addressed to
skin monitoring. Balance and weight-bearing exercises are initiated, as well as prosthetic gait training
on level ground using the temporary prosthesis. First, the patient learns to walk between parallel bars,
and then walking aids are incrementally removed (Wilhoite et al., 2019).

The prosthetic components can evolve during this stage as the amputee person retrieves a
consistent gait pattern. Specific training aims at learning i) to control the prosthesis through the socket
and residual limb proprioception, and ii) to use the specific functionalities of the prosthetic
components. Muscle strengthening, endurance and balance are still trained along with gait on level
ground. Once the amputee person masters prosthetic gait on level ground, training on slopes and stairs
is addressed. Ultimately, the functional capacity of the amputee person and his or her life project will
drive the choice of the definitive prosthetic components. During this stage of the rehabilitation, an
important focus is the reduction of gait asymmetries or limping, which may arise from an insufficient
loading of the prosthetic lower limb, a lack of confidence on the prosthesis, muscle atrophy resulting
from the surgery, etc. Typical gait compensations observed in people with lower-limb amputation are
described in the next section (1.3).

During this stage, the volume of the residual limb reaches a (relatively) stable state, allowing to
replace the temporary socket with a “definitive” lighter and sturdier one, made of carbon.

1.2.3. Long-term clinical follow-up

Following discharge from the rehabilitation center, almost 90% of people with lower-limb
amputation return home (Villa, Bascou, et al., 2017) where they keep learning how to use their
prosthetic device in their daily-living environment. In the first months following discharge, several
appointments may be needed, for instance, to adapt the socket to the residual limb. Then, regular
appointments for patient follow-up and prosthetics adjustments are required all along the life of the
patient, generally on an annual basis (Kovac et al., 2015). Eventually, when a prosthetic component is
changed, there might be a need for specific rehabilitation sessions to assist the amputee in learning
how to control and to use the specific functionalities of the new prosthesis (Paradisi, 2016).



1.3. Typical gait compensations and asymmetries observed in people with lower-limb
amputation

Due to muscle loss following lower-limb amputation and to limitations inherent to prosthetic
components, several adaptations of the gait pattern can be observed in transtibial and transfemoral
amputees (Michaud et al., 2000; Goujon-Pillet et al., 2008; Villa, 2014). The aim of this section is to
propose an overview of some of the major compensations identified in the gait of people with lower-
limb amputation. In particular, the loss of ankle flexor muscles in both transtibial and transfemoral
amputation leads to a reduced propulsion (or push-off) at the end of the stance phase and an absence
of active dorsiflexion during the swing phase. This contributes to a decrease in power generation
(Seroussi et al., 1996) and in toe clearance (that is, a decreased distance between the foot and the
ground, see Figure 4) during the prosthetic swing phase. This phenomenon is even accentuated in
people with transfemoral amputation who cannot control knee flexion due to the loss of the knee joint
and of atrophied hip musculature.
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Figure 4: Foot clearance during the swing phase (taken from (Dadashi et al., 2013) )

Several compensatory strategies are thus implemented to increase toe clearance and avoid
tripping during the prosthetic swing phase. These compensations include hip circumduction, hip hiking,
and vaulting and are mostly observed in people with transfemoral amputation (Villa, 2014) :

- Hip circumduction (Figure 5a) consists in simultaneously abducting and rotating the residual
hip during the swing phase. This allows to maintain a reasonable toe clearance without flexing
the knee joint.

- Hip hiking (Figure 5b) consists in tilting the pelvis towards the stance leg in the frontal plane
to increase toe clearance. This strategy is observed during the prosthetic swing phase in both
people with transtibial and transfemoral amputation (Michaud et al., 2000; Goujon-Pillet et
al., 2008). In people with transfemoral amputation, hip hiking also occurs during the sound
swing phase, and it is assumed to result from a lateral trunk bending strategy to compensate
for weak hip abductors (Jaegers et al., 1995; Michaud et al., 2000; Goujon-Pillet et al., 2008).
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Vaulting (Figure 5c) is a compensation strategy consisting in a premature propulsive plantar
flexion of the sound ankle during the sound stance phase. It allows to improve toe clearance
by increasing the functional length of the sound leg.

Swing
foot

Figure 5: Most common gait deviations observed in amputee gait (Whittle, 2007)
a. Hip circumduction; b. Hip hiking; c. Vaulting

These compensations can often be detected, although not quantified, by the experienced eyes of

clinicians. As they result in over-solicitation of muscles and joints, leading to osteoarticular

comorbidities (Gailey et al., 2008; Esposito et al., 2015), they are targeted by the rehabilitation team.
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Chapter 2 — Current modalities for the assessment of the

rehabilitation

2.1.  Usefulness of quantitative data

Although most patients are fitted with a prosthesis and regain the ability to walk (Van Velzen et
al., 2006), recent systematic reviews found out that less than 62% of lower-limb amputees are able to
walk outdoors (Van Velzen et al., 2006) and that only 50 to 72% of people with transfemoral
amputation actually walk with their prosthesis (Sawers and Hafner, 2013). These difficulties may arise
from back pain and socket discomfort, due to ill-adapted prosthetic components or poor alignment
settings (Gailey et al., 2008), from limited functionalities of the prosthetic components (Dauriac, 2018),
from lack of confidence in the prosthetic devices (Miller et al., 2001) or from insufficient functional
capacities of the person with amputation (Sawers and Hafner, 2013). Furthermore, gait deviations such
as increased loading of the intact limb or abnormal efforts or moments at the contralateral joint may
lead to severe comorbidities such as osteoarthrosis, osteopenia and back pain (Gailey et al., 2008;
Dauriac, 2018), resulting in a poorer quality of life and activity participation in the community of people
with lower-limb amputation.

Being able to monitor amputees’ gait during the rehabilitation and long-term follow-up
appointments is therefore of paramount importance. Indeed, obtaining quantitative data to
characterize the gait or balance of lower-limb amputees during rehabilitation can help detecting and
reducing gait compensations and thus preventing the occurrence of long-term comorbidities (Hafner
and Sanders, 2014; Paradisi, 2016). Furthermore, such data can assist physicians and prosthetists in
the prescription and alignment of prosthetic devices as they can provide evidence-based reports to
compare different prosthetic devices or alignment settings (Sagawa et al., 2011; Boone et al., 2012;
Hafner and Sanders, 2014; Thomas-Pohl et al., 2019; Zhang et al., 2020). Systematic and objective gait
analysis of lower-limb amputees during rehabilitation could therefore assist both patients and
clinicians by providing evidence supporting and facilitating the rehabilitation (Heinemann et al., 2014),
or justifying the prescription of specific prosthetic components (Hawkins and Riddick, 2018).
Healthcare systems could also benefit from evidence-based practice as it could help identifying
rehabilitation strategies, facilitating home-based rehabilitation or assessing rehabilitation
performance earlier and, thus, could reduce treatment-related costs (Agrawal, 2016).

In order to be relevant during the rehabilitation, gait-characterizing quantitative data should be
synthetic and comprehensible —in order to be interpretable by both the patient and the clinician —and
should have a valid biomechanical basis. To simplify the interpretation of such quantitative data, a
limited number of parameters should be retrieved. A major difficulty lies within the tradeoff between
complexity, biomechanical-relevance and accuracy. Indeed, obtaining biomechanical accurate
guantitative data often implies to use a complex and high-cost system, requiring specific acquisition
protocols and technical skills for data post-processing, which is often not compatible with the
constraints in the clinical field.

The next two paragraphs aim at providing an overview of the clinical tools currently used for
rehabilitation assessment and of the biomechanical parameters that have been presented in the
literature to quantify lower-limb amputee gait.

12



2.2.  Quantitative gait assessment in current clinical practice

During rehabilitation, gait evaluation is mostly based on observational gait assessment and on
inputs from patients, such as capacity or comfort perception and retrospective self-reports of potential
incidents (Perry, 1992; Calmels et al., 2002; Hafner and Sanders, 2014; Heinemann et al., 2014). In
addition of being only qualitative, such assessments are subjective as they strongly depend on the
clinician’s interpretation (Hafner and Sanders, 2014; Muro-de-la-Herran et al., 2014) and on self-
reports from patients which might be biased by (in)voluntary omissions (Hafner and Sanders, 2014).

To complete clinical gait assessment with quantitative measures, various self-administered
guestionnaires and performance-based clinical tests are available (Arch et al., 2016). Although a few
guestionnaires quantifying perceived mobility, function, satisfaction, or quality of life of people with
lower-limb amputation have been validated in people with lower-limb amputation (Calmels et al.,
2002; Condie et al., 2006; Resnik and Borgia, 2011; Hawkins et al., 2014), responsiveness to change
was not always evaluated (Deathe et al., 2009; Heinemann et al., 2014). Furthermore, due to the
nature of the questions, most questionnaires are more suited for community-dwelling amputees
(Calmels et al., 2002; Condie et al., 2006). On the other hand, performance-based tests provide
objective or semi-objective assessments of the ability of patients to perform specific tasks (Hawkins
and Riddick, 2018). They consist either in summary scores or in walking tests.

Summary scores are obtained by aggregating scores from a set of tasks that aim at assessing
several aspects related to gait and/or balance. For instance, the Amputee Mobility Predictor (AMP)
score was designed specifically for people with lower-limb amputation to predict ambulation ability
after rehabilitation. It consists in 21 items, testing gait ability, transfer or balance. Each item is graded
between 0 and 2 depending on the use of assistive device and on the patient’s ability to perform the
task (can’t, partially can, can do) (Condie et al., 2006; Deathe et al., 2009). This test allows to estimate
the functional K-level of people with lower-limb amputation and is used for prosthesis prescription
during or after rehabilitation (Loiret et al., 2005).

Walking tests aim at assessing the mobility of a person and result in a single measure. They are
declined either in timed tests, where the distance covered within a specific duration is measured, or
in distance-based tests, where the time taken to perform an ambulation task along a specific circuit is
measured. In addition to being reliable and valid in multiple populations (Hawkins et al., 2014), these
tests are easy to implement and quick to administer, which allow their regular use for rehabilitation
assessment (Loiret et al., 2005; Condie et al., 2006; Agrawal, 2016). Furthermore, timed tests allow the
estimation of walking speed, which is a prominent descriptor of gait function (Perry, 1992; Fritz and
Lusardi, 2009; Batten et al., 2019). The two-minute walking test (2MWT) and the Timed-Up and Go
(TUG) test are among the most frequently administered and most recommended tests in the literature
(Condie et al., 2006; Hawkins et al., 2014; Hawkins and Riddick, 2018). Both tests provide valid
assessments of mobility in people with amputation (Deathe et al, 2009). During the 2MWT,
participants are asked to walk back and forth at their self-selected speed along a long straight-corridor
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or along a square path for two minutes. The
achieved distance, and thus, the average walking

speed, is used to assess the global function of the The Timed Up and Go Test
participant. The TUG test (Figure 6) has been used B
to quantify balance ability in addition to mobility, S“"““"d;

as it consists in several motor-tasks: rising from a
chair, walking 3 meters, turning back and sitting Svep 2 Wtk s atres

back on a chair. The time taken to complete this

Step 4: Walk 3 metres

circuit is measured during the test, and it has been Step S: Sit down
shown to be well correlated to the Berg Balance

Scale (Loiret et al., 2005). The latter evaluates
balance ability but requires a minimum of 15 Figure 6: Timed-Up and Go test

minutes (Heinemann et al., 2014), contrary to the (from https://www.frailtytoolkit.org)
TUG which takes only up to two minutes to

complete (Calmels et al., 2002; Condie et al., 2006).

A recent study has assessed test-retest validity of the most current performance-based and self-
reported outcome measures used in the population of people with lower-limb amputation, and found
that the AMP, 2MWT and TUG tests are reliable, while the authors reported that the minimally
detectable changes observed were higher than expected (Resnik and Borgia, 2011). However,
reproducibility assessment was based on a sample of 44 lower-limb amputees without distinction of
amputation level or etiology, while both these factors have been shown to significantly influence gait
performance and overall quality of life (Waters et al., 1976; Miller et al., 2001; Gailey et al., 2008).
Furthermore, responsiveness and minimal clinically-significant differences of the tests were not
reported (Resnik and Borgia, 2011; Hawkins and Riddick, 2018).

While these scores can provide relevant information on the gait of people with lower-limb
amputation, they are not self-sufficient (Calmels et al., 2002); for instance, an indication of high
performance to the 2MWT does not provide information regarding the quality of gait (symmetry,
articular range of motion, ...) or the ability to fully use the prosthetic components. Complete and
objective evaluation of gait through reliable and valid quantitative descriptors is possible using
biomechanical gait analysis which is most frequently performed with optical motion capture systems
and force plates in motion analysis laboratories. A large body of literature has thus focused on the
study of lower-limb amputees’ gait in motion analysis laboratories. Therefore, the next section aims at
identifying the most reported descriptors of gait in people with lower-limb amputation through an
overview of the main findings of the literature on amputees’ locomotion.

2.3.  Quantitative gait assessment in motion analysis laboratories

Gait analysis aims at analyzing how and how well a person walks (Cappozzo, 1984). As a
consequence, two categories of gait descriptors studied in motion analysis laboratories can be defined:

- Function assessment parameters, whose aim is to describe motion and its origin. This category
of descriptors can be put in relation with the parameters describing impairments of body
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functions according to the International Classification of Functioning, Disability and Health
(ICF)3.

- Performance assessment parameters, aiming at assessing and describing the quality of motion
(such as gait symmetry or efficiency)

Since gait is a cyclical motion, these parameters are generally assessed over a stride, or gait cycle.
This allows to interpret them and to identify normal/pathological gait patterns by comparing, for
instance, the parameters’ evolution or peak values at different instants of the gait cycle (Figure 7).

Paragraph 2.3.1 introduces the gait cycle and derived spatiotemporal parameters. Then, the
following paragraphs provide an overview of the characterization of amputee gait through function
and performance assessment parameters quantified in motion analysis laboratories.

2.3.1. Gait cycle and spatiotemporal parameters

Gait segmentation is the process of dividing gait into cycles. Conventionally, the instant of initial
foot contact is generally used for this purpose. The prosthetic gait cycle thus corresponds to the period
between two successive contacts of the prosthetic foot (Figure 7).

Several terminologies can be found in the literature to describe the different events composing
the gait cycle; the denominations “initial contact” (also heel strike or heel contact in the literature) and
“final contact” (also terminal contact, foot off or toe off) will be used in this thesis due to the absence
of proper heel strike or toe off in some pathological gait (Tunca et al., 2017). Initial and final contact
events are of interest because they respectively mark the beginning and the end of the stance phase.
Stride length and duration are defined as the distance covered or the elapsed time between two
successive initial contacts of the same foot (during a cycle). Their determination allows to estimate
walking velocity. Another relevant spatiotemporal parameter is step length (resp. duration), which is
defined as the distance between both feet (resp. elapsed time) between two consecutive initial
contacts of two subsequent feet.

<+
3 , 2 x < = \
’ Double Prosthetic Stance Phase ; Double Prosthetic Swing Phase |
E Stance Controlateral Swing Phase ; Stance Sound Stance Phase
Prosthetic Initial Controlateral Final Controlateral IC Prosthetic FC Prosthetic IC
Contact (IC) Contact (FC)

Figure 7: Prosthetic gait cycle and main gait events

3 The ICF is a framework developed by the WHO (https://www.who.int/classifications/icf/en/)
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In a systematic review in 2011, Sagawa and coworkers found that gait velocity, cadence, stride and
step length are the most common parameters used to describe the gait of people with lower-limb
amputation (Sagawa et al., 2011). These parameters are easy to measure and interpret and are
considered as global gait descriptors (Sagawa et al., 2011). They indeed allow to detect the presence
and quantify gait impairment but do not provide information regarding the cause of impairment.

2.3.2. Function assessment parameters

Following lower-limb amputation, the loss of articular and muscle complexes results in significant
changes in the gait pattern, whether at the kinematic or the kinetic levels. Important kinematic
adaptations (segments orientation, joint range of motion, ...) may be observed with the naked eyes.
However, the use of dedicated instruments, such as optoelectronic systems, is required for their
guantification or for refined assessments, for instance when aiming at assessing the evolution of a joint
angle within a patient following the prescription of a new prosthetic device or a new rehabilitation
protocol. Furthermore, laboratory-based biomechanical gait analysis allows to quantify kinetic
parameters that cannot be estimated without instrumentation, such as intersegmental moments, or
the contributions of each joint in the generated mechanical power. Function assessment parameters
have been extensively studied in people with lower-limb amputation and this paragraph aims at
providing an overview of the relevant literature. Detailed description of the acquisition of such
parameters using optical motion capture systems and force plates can be found in the literature
(Cappozzo et al., 2005; Goujon, 2006).

a. Kinematic gait analysis

The use of optical motion capture data allows to retrieve curves describing the evolution of
segment orientations and joint angles during a gait cycle. Comparing the curve patterns of people with
lower-limb amputation to that of an asymptomatic population has allowed to identify some
specificities of lower-limb amputee gait (Sagawa et al., 2011). Similarly, comparing the angle patterns
of a person in a pre/post configuration may allow to identify the impact of a prosthetic device or
rehabilitation procedure on gait.

Gait compensations typically observed in the gait of people with lower-limb amputation (see
section 1.3 in Chapter 1) can often be evidenced using such kinematic parameters. Hip circumduction
has for instance been characterized with the measure of the maximal value of the hip abduction angle
during swing (Dauriac, 2018), hip hiking with elevation of the pelvis in the frontal plane. An increase in
trunk motion was also observed in the frontal plane in people with transtibial amputation and in all
the three anatomical planes in people with transfemoral amputation compared to sound subjects
(Jaegers et al., 1995; Goujon-Pillet et al., 2008; Rueda et al., 2013).

Additional kinematic adaptations are observed at the hip joint in people with transfemoral
amputations for prosthetic knee control. For instance, swing phase knee flexion is initiated by the
premature recruitment of hip flexor muscles (Bonnet et al., 2014). Furthermore, instead of maintaining
a constant hip flexion at early stance as in sound subjects, the residual hip tends to have an extension
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motion from prosthetic initial contact to secure

the knee in extension (Jaegers et al., 1995; Villa, % 80 4

2014). During prosthetic stance, differently r_%’ 60 7

from what is observed in sound subjects, the &5 40 |

knee remains in extension in people with é 20 L

transfemoral amputation (Figure 8), even when 52: 0

the prosthetic knee allows some flexion 0 | i | |
(Detrembleur et al., 2005; Sagawa et al., 2011). 0 20 40 60 80 100

As a result, the knee cannot be used as a shock % Gait cycle
absorber during stance. This phenomenon is Figure 8: Knee flexion angle in asymptomatic subjects

(grey curve) and in transfemoral amputees (black curve).

also observed, at a lesser degree, in people with Taken from (Detrembleur et al. 2005)

transtibial amputation (Sagawa et al., 2011).

The characterization of such kinematic adaptations provides accurate information on specific body
segments or joints. Therefore, the study of a large number of parameters or features extracted from
curve patterns (e.g. maximal flexion angle) of various body segments or joints is required to obtain a
global description of gait.

Kinematics of the body center of mass

From a mechanical standpoint, locomotion can also be described by the motion of the body center
of mass, resulting from the summation of forces and moments exerted on each body segment
(Saunders et al., 1953; Detrembleur et al., 2000; Pavei et al., 2017; Tesio and Rota, 2019). Interestingly,
the study of the body center of mass motion provides global information regarding the gait of a person
from a single parameter. Indeed, kinematic alterations at the segment or joint level have repercussion
on the body center of mass motion (Saunders et al., 1953). For instance, the absence of prosthetic
knee flexion results in an increased amplitude of the body center of mass excursion during the gait
cycle of people with transfemoral amputation (Tesio et al., 1998; Detrembleur et al., 2005) which was
shown to reach up to 4.1 times that of asymptomatic subjects in (Detrembleur et al., 2005).
Asymmetries in the gait pattern can also be detected in the 3D path of the body center of mass (Minetti
et al., 2011; Pavei et al., 2017; Askew et al., 2019), and a high degree of asymmetry of the 2D body
center of mass path in the horizontal plane has been evidenced in people with transtibial amputation
(Askew et al., 2019). The vertical components of the excursion and velocity of the center of mass
(Strutzenberger et al., 2019; Ochoa-Diaz and Padilha L. Bo, 2020) also allow to evidence some degree

T 0.10
L
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o Figure 9: Body center of mass vertical relative
s 0.00 excursion during the prosthetic limb gait cycle in
8 ' people with transfemoral amputees (black curve) and
g asymptomatic subjects (grey curve), adapted from
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of asymmetry (Figure 9). It was for instance shown that the vertical displacement of the body center
of mass was lower during the prosthetic stance than the sound limb stance (Tesio et al., 1998; Agrawal
et al., 2009) in both people with transtibial and transfemoral amputation, possibly due to prosthetic
feet design, and in particular, to the lower effective foot length ratio of prosthetic feet compared to
physiological feet (Agrawal et al., 2009).

Biomechanical gait analysis allows the estimation of body center of mass motion from two
approaches: either from force plates data (using the second law of Newton) or from segmental
analysis, that is, from the weighted summation of the motion of each individual segment center of
mass. In the first case, using force plates data, the acceleration of the body center of mass is computed
from the measured ground reactions forces as well as body weight. Obtaining the body center of mass
trajectory or instantaneous velocity requires to integrate the acceleration, and therefore to formulate
hypotheses on the integration constants. In the second case, when estimating the body center of mass
motion from segmental analysis, the measure of the positions of optical motion capture markers must
be coupled with an inertial model in order to obtain the mass of each segment (required for the
weighted sum) and the position of each segment’s center of mass in its respective anatomical frame.
Therefore, different inertial models may yield different estimates of the body center of mass trajectory
(Pavei et al., 2017). To obtain the velocity or the acceleration of the body center of mass, its position
must be differentiated. The use of a low-pass filter to remove signal noise inherent to the
differentiation process may result in an over-smoothed signal. In both these laboratory-based
approaches, the retrieval of body center of mass motion is not as straightforward as the retrieval of
segment orientation or joint angle, but it provides a synthetic parameter for gait evaluation.

b. Kinetic gait analysis

Kinetic gait analysis focuses on parameters that explain the origin of motion. For instance, ground
reaction forces and moments, measured by force plates, allow to measure the external forces applied
on a body. Ground reaction forces exerted under each limb individually are of particular interest for
the rehabilitation of people with lower-limb amputation (Loiret et al., 2019). Indeed, the latter allows

single stance <

Generated
power

Dissipated
power

Sound ankle flexion power
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% of gait cycle

Figure 10: Flexion power at the ankle in asymptomatic subjects (solid line) and in a person with
transfemoral amputation with vaulting (dotted line). Taken from (Drevelle et al., 2014)
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to quantify how a person loads his/her prosthesis. Inverse dynamics approaches allow to retrieve the
articular moments, forces and power at each joint from the measured ground reaction forces and
moments as well as joint kinematics. Similar as for kinematic parameters, a multitude of joint kinetic
parameters can be retrieved from biomechanical gait analysis, resulting in a complete and accurate
description of “localized” gait kinetics. The flexion power peak measured at the sound ankle during
stance (Figure 10) was for instance shown to allow the quantification of vaulting (Drevelle et al.,
2014). In early stance at the intact limb of both transtibial and transfemoral amputees, the increase in
the sound hip extensor muscles work and the resulting hip moment have been assumed to facilitate
the forward translation of the pelvis in absence of propulsion from the prosthetic ankle (Seroussi et
al., 1996; Silverman et al., 2008; Prinsen et al., 2011; Sagawa et al., 2011).

Kinetics of the body center of mass

Some mechanical parameters offering a global overview of gait kinetics have also been proposed
and are computed at the body center of mass. The net mechanical work at the body center of mass,
which results from the mechanical work generated or dissipated by each joint for the translation of
the body center of mass, is a synthesized global gait descriptor. The net mechanical work can be
computed as the time integral of the body center of mass power. The former is itself computed as the
time derivative of the sum of the kinetic and potential energies. Neglecting the kinetic energy due to
the rotations of the body segments relative to the body center of mass, the power of the body center
of mass (Pgcopm) can be calculated as the dot product of the external forces applied on the body center
of mass (F.,;) with the body center of mass velocity (Vgcom) :

Pgcom = Z Fext-VBcom

Itis therefore a relatively simple parameter to compute and can be estimated from force platforms
data alone (Donelan et al., 2002b). Furthermore, the external mechanical work represents the
mechanical component of the metabolic energy required for locomotion, explaining the contributions
of the musculoskeletal body structures without considerations of a person’s metabolism or
anthropometric measures.

However, the external mechanical work was found not to allow the discrimination of people with
transfemoral amputation from sound participants (Gitter et al.,, 1995; Askew et al., 2019) and
therefore, not to explain the 27 % increase of metabolic energy required when walking with a
prosthesis in transfemoral amputees (Gitter et al., 1995). This might be explained by compensations
in the generated and dissipated power by each leg during the double stance of walking. The individual
limb method was therefore proposed to estimate the mechanical energy produced by each lower-limb
individually (Pyes; and Prigp for the left and right limbs respectively) including during the double
stance phase of a gait cycle (Donelan et al., 2002b) :

Pgcom = Fieft-Vcom + Fright-VBcom = Preft + Prignt
Using this approach, several authors have also evidenced that the loss of mechanical energy
production due to prosthetic components is compensated by an increase in power generation at the
intact limb (Houdijk et al., 2009; Bonnet et al., 2014). This asymmetry in power generation was found
to increase with amputation level, with, for instance the affected limb generating 0.09 J/kg and 0.16
J/kg in people with transfemoral and transtibial amputation in late stance compared to work
production of 0.34 J/kg and 0.27 J/kg respectively by the intact limb (Houdijk et al., 2009; Bonnet et
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al., 2014) and to increase with walking speed. The compensation of the decreased power generation
of the intact limb by the increased power generation of the prosthetic limb may therefore explain why
total external mechanical energy fails to account for the increased metabolic energy consumption
observed in lower-limb amputee gait (Donelan et al., 2002a; Houdijk et al., 2009; Bonnet et al., 2014).
Based on these findings, an index of asymmetry between the external work generated by the intact
and the prosthetic limbs was therefore proposed in (Agrawal et al., 2009) to compare different
prosthetic feet and was found to differentiate different designs of feet. The asymmetry in external
work was also found to be more sensitive than the asymmetry in vertical body center of mass
displacement and step length asymmetry in nine people with transtibial amputation (Askew et al.,
2019), corroborating previous findings according to which the study of the mechanical work generated
by lower-limb amputees might allow to identify asymmetries that are not detected using mere
kinematic analyses (Tesio et al., 1998; Tesio and Rota, 2019). All in all, the analysis of the external
mechanical work using the individual limb method allows to provide insight on gait deficiencies
(asymmetries, energetic consumption).

c. Synthesis on the function assessment parameters

To sum up, the study of kinematic and kinetic parameters during locomotion allows to describe
alterations and functional adaptations adopted by people with lower-limb amputation while walking.
Most of the compensatory motions adopted were shown to involve the intact limb and the residual
hip joint, especially in people with transfemoral amputation. These abnormal solicitations are
evidenced by analyses of joint and segment ranges of motion and joint moments and powers, which
require to analyze the curve patterns of multiple joints or segments. Alternatively, the study of the
body center of mass motion and mechanical energy via the individual limb method have been shown
to provide synthetic information regarding the gait of people with lower limb amputation, although at
the cost of complexification of interpretation (evaluating the body center of mass motion being less
tangible than that of a physical point of the body, such as the knee joint).

2.3.3.  Performance assessment parameters

Motion performance can be evaluated using criteria related to the quality and the efficiency of the
locomotor act. In this thesis, the notion of “gait quality” will be used to describe parameters relative
to gait symmetry (homogenous solicitation of the prosthetic and the sound limb, aesthetic gait) and to
gait balance, while the notion of “gait efficiency” will be related to the metabolic cost of ambulation,
cognitive demand associated with walking and to the actual activity performance in the community
(walking speed, activity level and participation).

a. Gait quality indices

i. Symmetry

Gait symmetry is relative to the similarity of successive contralateral limb strides or steps.
Symmetry indices are generally computed to characterize three aspects of gait: limb loading (loading
symmetry), step length (spatial symmetry) and stance phase duration (temporal symmetry - see Figure
7). Prosthetic gait has been shown to be highly asymmetrical with, in general, more time spent in
stance phase on the intact limb than on the prosthetic limb, longer prosthetic steps than contralateral
steps and higher loading of the intact limb than the prosthetic limb (Jaegers et al., 1995; Nolan et al.,
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2003; Goujon, 2006; Sagawa et al., 2011; Roerdink et al., 2012; Cutti et al., 2018). Asymmetry has been
also shown to be more variable than in people without orthopedic disorders (Dingwell et al., 1996;
Nolan et al., 2003; Hof et al., 2007). Visual and auditive feedback have been shown to improve stance
time and loading symmetry in people with transtibial amputation (Dingwell et al., 1996; Yang et al.,
2012) and thus constitute an interesting track for rehabilitation. Indeed, spatiotemporal and loading
asymmetries may lead to long-term comorbidities and are thus targeted in rehabilitation protocols
(Nolan et al., 2003; Loiret, 2016; Villa, Bascou, et al.,, 2017). However, several authors have
hypothesized that step length and duration asymmetries might be implemented for increasing gait
stability, and that functional rehabilitation should not solely focus on the restoration of spatiotemporal
symmetry (Hof et al., 2007; Roerdink et al., 2012; Hak et al., 2014). Similarly, in a recent study based
on the gait of only two people with knee disarticulation, stance duration asymmetry was assumed to
be an efficient compensation to insufficient prosthetic push off and work generation (Mohamed et al.,
2019). Therefore, while such global parameters are useful to rapidly assess the overall gait
performance or quality, they do not provide an understanding of the underlying mechanical causes.
These parameters should thus be completed with mechanical descriptors in order to both quantify and
mitigate gait deviations.

Gait symmetry can also be quantified through body center of mass-derived parameters. Indeed,
various abnormal kinematic patterns (for instance, in knee flexion) are reflected in an asymmetric
pattern of the body center of mass motion (Tesio et al., 1998; Agrawal et al., 2009; Askew et al., 2019;
Strutzenberger et al., 2019) or in the external work done by each lower-limb (Agrawal et al., 2009;
Houdijk et al., 2009; Bonnet et al., 2014; Askew et al., 2019). Asymmetry in external work has been
shown to discriminate different prosthetic feet (Agrawal et al., 2009; Askew et al., 2019) and to be
positively correlated with the metabolic cost of walking (Askew et al., 2019).

ii. Balance

The term “gait stability”, widely found in the literature on human motion analysis, is often used to
describe a “gait that does not lead to fall”, while stability, in a mechanical standpoint, relates to the
ability of a system to develop forces or moments in order to restore a state of equilibrium after a
perturbation (Bruijn et al. 2013; Robert 2019). Most parameters describing “gait stability” in the
literature are in fact parameters which aim at quantifying the risk of falling while parameters describing
the mechanisms implemented by the body as a whole (seen as a mechanical system) preventing the
occurrence of falling following a perturbation are rarely described. In what follows, the terminology
“balance control” will be used to describe parameters associated with the risk of falling during gait.

People with lower-limb amputation are more prone to falling than the asymptomatic age-matched
population. One in two people with transfemoral amputation reports falling at least once a year, and
a third of lower-limb amputees report avoiding activities due to fear of falling (Miller et al. 2001;
Frossard et al. 2010). Thus, quantifying and understanding the underlying mechanisms of balance is
paramount for the rehabilitation of lower-limb amputees and for prostheses design.

Postural balance

Postural balance is studied in gait analysis laboratories using force-platform derived
measurements, such as the center of pressure sway during stance (Winter, 1995). Control of balance
during stance relies on the processing of multiple sensory inputs and results in sway that increases
when some sensory inputs are disrupted (Najafi et al., 2012), for instance when somatosensory
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feedback is impaired, such as in people with amputation. The latter thus exhibit a wider center of
pressure path at the intact foot than at the prosthetic foot or compared to sound subjects. New
generation feet provide control over the ankle mobility and are thus assumed to increase balance. The
benefits of new generation prosthetic feet were recently investigated through the analysis of center
of pressure excursions while standing on level ground and in slopes (Thomas-Pohl et al., 2019).

Balance control during gait
In 2005, Hof and coworkers have introduced new parameters to quantify dynamic stability: the
“extrapolated center of mass” and “margin of stability” (Figure 11). These notions allow to expand to
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Figure 11: Definition of the Margin of Stability (MoS) as the backward
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gait the stability criterion defined in stance (according to which the projection of the body center of
mass should lie within the base of support) by taking into account the velocity of the body center of
mass (Hof et al., 2005). Since then, multiple studies have focused on the study of these parameters, in
particular in people with lower-limb amputation who were shown to have a reduced margin of stability
compared to asymptomatic people (Hof et al., 2007; Hak et al., 2014). Using the concept of the
extrapolated center of mass, the authors demonstrated that decreasing step length allows to
compensate for the reduction of margin of stability induced by the decreasing velocity of the body
center of mass following prosthetic push off (Hak et al., 2014). Therefore, they conclude that step
length asymmetry might be a functional adjustment for increased stability.

b. Gait efficiency

i. Metabolic energy cost

Energy expenditure allows to measure gait efficiency. Indeed, locomotion aims at translating the
body in space while minimizing energy expenditure (Saunders et al., 1953; Waters and Mulroy, 1999).
Metabolic energy expenditure is estimated through the measure of oxygen uptake during the steady
state of a physical task (Waters et al., 1976; Perry, 1992). Metabolic energy rate is the amount of
energy demand per unit time and was shown to be similar for people with lower-limb amputation and
sound subjects, except for people with vascular transfemoral amputation (Waters et al., 1976).
However, metabolic energy cost, computed as the ratio of metabolic energy rate per walking speed,
was shown to increase with amputation level for a given etiology and with etiology for a given
amputation level (Waters et al., 1976; Waters and Mulroy, 1999; Schmalz et al., 2002; Detrembleur et
al., 2005). This raise in energy expenditure as a function of the walking speed is supposed to be caused
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by kinematic compensations and by the increase of power generated by the residual and sound joints
to cope with the reduced or the absence of power provided by prosthetic components (Sagawa et al.,
2011; Piazza et al., 2017; Askew et al., 2019). Reduction of metabolic energy cost following
rehabilitation or modifications to prosthetic components is used to demonstrate the efficiency of an
intervention or a new prosthetic design (Waters and Mulroy, 1999; Schmalz et al., 2002; Askew et al.,
2019). Indirect calorimetry is not always available in motion analysis laboratories (Bonnet et al., 2014).
Furthermore, metabolic energy consumption is highly dependent on physiological parameters
(gender, obesity, fatigue, digestion...) and its measure with spirometry devices suffers from calibration
errors which might alter sensitivity (Ghillebert et al., 2019). Therefore, the computation of mechanical
energy, very accessible in laboratory-based motion analysis, can allow to retrieve the mechanical
determinants of metabolic energy (van de Walle et al., 2012). In particular, the work done during step-
to-step transition was shown to correlate well and to partially explain metabolic energy cost (Donelan
et al., 2002a; Houdijk et al., 2009).

ii. Cognitive load

While self-reports and questionnaires indicate that prosthetic gait is often associated with a
significant cognitive load (Miller et al., 2001; Morgan et al.,, 2018), the dual-task paradigm
implemented in research hasn’t allowed to consistently refute or accept this hypothesis (Morgan et
al., 2018). In recent studies, cognitive and gait performance were observed to significantly decrease in
both experienced and newly prosthetic ambulators during dual tasks (Frengopoulos et al., 2018;
Hunter et al., 2018), confirming that walking represent a cognitive load in people with lower-limb
amputation. However, based on the literature, concurrent dual task while walking didn’t differentially
affect people with amputation and sound participants (Morgan et al., 2018). In a recent review
investigating dual task paradigm in people with lower-limb amputation, the authors suggest that in-
lab level walking may not be sufficiently challenging to be representative of the cognitive load
encountered in daily living and that the chosen outcome measures (gait velocity, spatiotemporal and
loading asymmetry, step width) may not be sensitive enough to discriminate groups (Morgan et al.,
2018).

iii. Activity level

Physical activity level in the community cannot be assessed in motion analysis laboratories using
conventional measuring systems. However, gait walking speed has been shown to increase with the K-
level which is used to predict community-based mobility (Batten et al. 2019). This global functional
outcome is quantified both in research settings and in rehabilitation due to its reliability, sensitivity
and ability to predict overall health status and quality of life (Fritz and Lusardi, 2009). The lower self-
selected speed of people with lower-limb amputation compared to sound subjects might therefore be
interpreted as decreased ambulatory performance (Frengopoulos et al.,, 2018). Furthermore,
comfortable walking speed can be seen as a measure of gait efficiency loss (Waters and Mulroy, 1999):
indeed, it seems to be regulated in people with lower-limb amputation so that metabolic energy rate
of walking remains in the range of that of sound subjects (Waters et al., 1976; Waters and Mulroy,
1999).
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2.4.  Limitations of clinical and laboratory-based gait analysis and perspectives

The aim of this chapter was to provide an overview of the available tools/parameters for gait
assessment of people with lower-limb amputation during the rehabilitation and subsequent follow-up
visits in clinics and in motion analysis laboratories. Objective gait analysis allows to accurately
characterize and evaluate gait function and performance. However, administering laboratory-based
biomechanical gait analysis in clinical practice is not always possible due to high system costs, time-
consuming protocols and analysis complexity (Perry, 1992; Calmels et al., 2002; Cuesta-Vargas et al.,
2010; Loiret et al., 2019). Thus, clinicians mostly rely on their experienced eyes and on validated clinical
tests to identify the degree of impairment of their patients, to evaluate their progression or to plan
new rehabilitation strategies. Therefore, few quantitative data are available to support the assessment
of the functional rehabilitation of people with lower-limb amputation.

In the last two decades, miniaturization of sensing technologies and advancement in processing
techniques and communication protocols have made wearable technology accessible to gait analysis
(Wongetal., 2007, 2015). Wearable sensors have the advantages of being portable — they can be worn
by patients without hindering or constraining their motion — and are not limited to a predefined
acquisition volume, which allows recording data outside of laboratories. Therefore, their use in clinical
and research gait analysis offers multiple perspectives such as ecological measurements, simplified
protocols, real-time feedback, long-term and remote monitoring or home-based and telerehabilitation
opportunities (Hafner and Sanders, 2014; losa, Picerno, et al., 2016; Villa, Bascou, et al., 2017).
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Chapter 3 — Wearable motion analysis

As introduced in the previous section, wearable sensors are a very attractive alternative to
laboratory-based instruments for gait analysis. However, they differ from gold standard optical motion
capture systems and force plates by the nature of the measured data. Therefore, obtaining relevant
gait descriptors with wearable sensors may not be straightforward (Cutti et al., 2015; losa, Picerno, et
al., 2016). The objective of this chapter is to introduce the most common wearable sensor technologies
and to provide an overview of their outputs. This will allow to introduce the challenges faced regarding
the use of wearable sensors for the rehabilitation of people with lower-limb amputation and therefore,
the issues that will be addressed in this thesis.

3.1. Presentation of wearable sensors

Different sensing technologies have been described in the literature on wearable gait analysis.
They include, but are not limited to, electrogoniometers, magnetic and inertial sensors
(accelerometers, gyroscope, or their combination — also known as inertial measurement units or
magneto-inertial measurement units when a magnetometer is included), pressure sensors, force
sensors, surface EMGs, and sensing fabric (Wong et al., 2007, 2015; Patel et al., 2012; Muro-de-la-
Herran et al., 2014). Table 1 summarizes their main properties and applications, as well as challenges
associated with their use.

Inertial sensors consist in the most used technology in wearable gait analysis (Wong et al., 2007,
2015; Muro-de-la-Herran et al., 2014). For instance, 62.5% of the published literature on wearable gait
analysis in 2012-2013 dealt with inertial sensors (Muro-de-la-Herran et al., 2014). Together with
pressure insoles, inertial sensors are the wearable technology the more susceptible to capture
kinematic and kinetic parameters that are usually retrieved using optical motion capture and force
plate systems (Muro-de-la-Herran et al., 2014). Therefore, the next two paragraphs will provide a more
detailed description of inertial and pressure sensors and the literature review in section 3.2 will focus
on gait descriptors that can be measured or estimated using these two categories of sensors.
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Table 1: Measured quantities and challenges encountered when using wearable sensors

MIMU = (Magneto-)Inertial Measurement Unit; ECG = Electro-cardiogram

Sensor

Measured
quantity

Estimated / Computed data

Biomechanical model

Challenges

Relative joint angle (Muro-de-la-

- High sensitivity, requires careful placement (Wong et al., 2015)

Electrogoniometer Flexion angle
g & Herran et al., 2014) / - Complex setup procedures (Wong et al., 2015)
- May hinder motion (Wong et al., 2015)
-S t velocity, displ t .
egment velocity, displacemen - Noisy measurement (Wong et al., 2015)
(Muro-de-la-Herran et al., 2014) . . . .
. . - Integration drift (losa, Picerno, et al., 2016) ; might be
- Joint angle (losa, Picerno, et al., / compensated for using kinematic models

Inertial sensors

Accelerometer
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Linear
acceleration

2016) in static, posture (Redfield et
al., 2013b; losa, Picerno, et al.,
2016)

- Sensor-to-segment calibration required (Wong et al., 2015;
Poitras et al., 2019)

- Gait event detection and
spatiotemporal parameters (Pacini
Panebianco et al., 2018)

- Number of steps (Patel et al.,
2012; Benson et al., 2018)

Kinematic models for spatial
parameters

- Gait alterations and low speed may compromise the
identification of events from acceleration signals in pathological
gait (Trojaniello, Cereatti and Della Croce, 2014)

- Gait stability (Guaitolini et al.,
2019)

Inverted pendulum model:
extrapolated center of mass
theory

- Integration drift (losa, Picerno, et al., 2016)
- Orientation inconsistency (Picerno et al., 2011; Guaitolini et al.,
2019)

- Fall-risk prediction & balance
assessment (Wong et al., 2007; losa,
Picerno, et al., 2016; Ghislieri et al.,
2019)

- Removal of gravity necessary (orientation) (Benson et al., 2018)
- Lack of information regarding sensitivity (Ghislieri et al., 2019)
and validity of original parameters (Benson et al., 2018)

- Symmetry indices (losa, Picerno, et
al., 2016; Benson et al., 2018)

- Original parameters that may lack validity (Benson et al., 2018)




Measured

Sensor . Estimated / Computed data Biomechanical model Challenges
quantity
Regression between
- Energy expenditure (Ladlow et al., measured acceleration, - Regression equations are specific to populations (Ladlow et al.,
2017) physiological parameters & 2017)
oxygen consumption
- Segment angular acceleration, . . . - Integration drift (losa, Picerno, et al., 2016)
. . Kinematic models might be . . .
orientation S - Sensor-to-segment calibration required (Wong et al., 2015;
used to limit drift .
- Joint angles (Poitras et al., 2019) Poitras et al., 2019)
Gyroscope  Angular velocity . . - Gait alterations may compromise the identification of events
- Gait event detection and . . . . . . . L
. . . Kinematic model for spatial ~ from gyroscope signals in pathological gait (Jasiewicz et al., 2006)
spatiotemporal parameters (Pacini . . . .
. parameters - Symmetry assumption for spatial parameters estimation
Panebianco et al., 2018) -
(Aminian et al., 2002)
- Easy set up (Wong et al. 2015)
Same as accelerometer and / - May require complex algorithms (Muro-de-la-Herran et al.,
gyroscope 2014)
- Sensitive to magnetic disturbances when magnetometer is
Linear + included (Picerno et al., 2011; Wong et al., 2015)
i - Walki Li 1., 2010;
acceleratlon,. alking speed (Li et al., 2010; Kinematic model - Integration drift (losa, Picerno, et al., 2016)
MIMU angular velocity | Benson et al., 2018)
and magnetic -G d tion f Inertial model + f . _— .
(. & round reaction ort;es r?er .|a mo el v foree - Double stance indetermination (Shahabpoor and Pavic, 2017
field) (Shahabpoor and Pavic, 2017; distribution between feet Ancillao et al., 2018)
Ancillao et al., 2018) during double stance v
- Articular joints and moments Inertial model + kinematic
(Karatsidis et al., 2017) chain + contact detection

Force sensor

3D force

3D GRF (Liu et al., 2011)

- Cumbersome to wear (Guo et al., 2017; Ancillao et al., 2018)

- Modification of footwear (Ancillao et al., 2018)
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Measured

Sensor . Estimated / Computed data Biomechanical model Challenges
quantity
Foot switch
. . Gait event detection / cycle .
f - P I - Nonl W tal., 201
( orcg sensing Pressure applied segmentation (Magbool et al,, 2017) / onlinear response (Wong et al., 2015)
resistors)
- Gait event detection (Loiret et al.,
2019) - Requiring size adapted to patient's shoes (Wong et al., 2015)
- Temporal parameters, asymmetry / - Requiring calibration for threshold-based gait event detection
g in stance phase duration (Cutti et (Loiret et al., 2019)
@ al., 2018; Loiret et al., 2019)
[
; - Pressure distribution (Wong et al.,
5 Pressure pressure applied 2015), center of pressure path - Wear (Wong et al., 2015)
o . ) - . . - .
£ insoles - Stability measures derived from / Requiring calibration to mitigate wear effects / hysteresis (Abdul
. Razak et al., 2012; Wong et al., 2015)
pressure distribution (Howcroft,
Lemaire, et al., 2016)
i Vert.lcal component of the. ng)und - Requiring subject-specific calibration (Wong et al., 2015)
reaction force, asymmetry in limb . . . . . .
. . . / - Complex algorithm (nonlinearities) to derive force estimations
loading (Cutti et al., 2018; Loiret et (Wong et al,, 2015)
al., 2019) getat,
- Muscle activity and muscle fatigue ; - Highly dependent on placement (training required) (Wong et al.,
Muscle (Frigo and Crenna, 2009) 2015) -
Surface EMG activation - Only superficial muscles can be measured (Wong et al., 2015)
atterns o ] ) - Motion hindrance (Frigo and Crenna, 2009; Wong et al., 2015)
P - Motion intention (Wentink et al., / - Cross-talk of muscles / interferences (Frigo and Crenna, 2009;
2013; Wong et al., 2015) Wong et al., 2015)
Strain - Segment orientation (Wong et al., / - Sensitivity to temperature and humidity (Wong et al., 2007;
. ) measurement 2007; Fleury et al., 2015) Fleury et al., 2015)
Sensing fabric . .
; . - Motion artifact (Fleury et al., 2015)
ECG - Physiological parameters (Patel et / di ; | | 201
al., 2012; Fleury et al., 2015) - User discomfort (Fleury et al., 5)
. Distance - Stride length, step length (Muro- - Sensitivity to sensor placement (Muro-de-la-Herran et al., 2014)
Ultrasonic sensor /
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de-la-Herran et al., 2014)

- Low accuracy compared to inertial sensors (Wong et al., 2015)



3.1.1. Inertial sensors

Inertial measurement units (IMUs) consist of a combination of uni-, two- or three-axial
orthogonally mounted accelerometer and gyroscope in a single case. They may also include a
magnetometer; in that case they are generally called “Magneto-Inertial Measurement Units” (MIMUs).
M/IMUs provide the values of angular velocity, linear acceleration and — when magnetometers are
included — magnetic field components along the axes of the orthonormal coordinate system of the
MIMU case (referred to as the “MIMU local frame” in this thesis). Each sensor included in a MIMU
provides information about the 3D orientation of the MIMU local frame in a global Earth-fixed frame
(Figure 12): accelerometers output can be used to determine the inclination of the sensor case
compared to gravity, angular velocities provided by gyroscopes can be integrated to orientation angles
and, when available, magnetic field measures can provide the heading, or magnetic North direction.

z
Z
1 Y
Local MIMU frame
g
'

Magnetic
North Global Earth-fixed reference frame

X

Figure 12: MIMU local frame and global Earth-fixed reference frame sensed

by the MIMU (vertical z-axis aligned with gravity (g), x-axis aligned with the

magnetic North)
However, each orientation estimate is affected by errors and must therefore be used under specific
assumptions. Indeed, the accelerometer output contains both linear accelerations due to sensor
motion and to gravity. Accelerometer-derived orientation estimates are thus more reliable in static or
slow-motion conditions, when the gravity component can be isolated (Sabatini, 2011; losa, Picerno, et
al., 2016). Even in such conditions, accelerometers may only be used to estimate the inclination
relative to the gravity vector, but not relative to the heading. Magnetometer readings can be used as
a complementary information but are perturbated in the presence of ferromagnetic materials (Picerno
et al., 2011; Wong et al., 2015; losa, Picerno, et al., 2016). Conversely, gyroscopic data can be
integrated to provide relative 3D orientation. However, gyroscope signals are generally biased, which
results in drift when integrating angular velocity (Bergamini et al., 2014). Sensor fusion is therefore
used to combine the advantages and mitigate the weaknesses of each sensor so as to provide accurate
estimates of the orientation of the MIMU local frame relative to a global Earth-fixed frame (Bergamini
et al., 2014; Ligorio et al., 2016; Poitras et al., 2019). Two main categories of fusion filters have been
implemented: stochastic and complementary filters (Bergamini et al., 2014). Kalman filters, which
belong to the first category, use the measured signals at an instant and a representation of each sensor
and its associated noise to predict the orientation at a further instant. The predicted and measured
orientation are then fused. Complementary filters take advantage of the specificities of each sensor’s
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spectral characteristics (known a priori) to estimate the orientation, without modeling the noise
characteristics of each sensor (Figure 13). For instance, they associate more trust to gyroscope
readings in the high frequency domain and more trust to accelerometer/magnetometer readings in
the low frequency range (Lopez-Nava and Angelica, 2016). Kalman filters and complementary filters
were shown to equally mitigate the integration drift in locomotion tasks lasting up to 3 minutes
(Bergamini et al., 2014). Most of the commercially available MIMUs integrate a fusion filter.

x> @y 8, [ Accelerometer | g“ l

Accelerometer: /; derived attituds _a_\l/
¢

95 9y 92 5 Gyroscope "B’g_> Complementary_—'“)qb

Gyroscope ; . = —*{
derived attitude ™ ¥, ; filters —y
My, 1, M, |
Magnetometer ke it N Mggnetomefcr - Ym
derived heading

Figure 13: Working principle of complementary filters. Estimation of MIMU local frame orientation (roll ¢, pitch 6, yaw {) in
a global Earth-fixed reference frame from triaxial accelerometer (ay, ay, a;), gyroscope (gx, gy, g;) and magnetometer
(my, m,, m,) readngs. Taken from (Amin et al., 2014)

3.1.2. Pressure insoles

Various sensing technologies are used in

pressure inso|esl the most common being Initial contact Mid stance Terminal stance

resistive (as in foot switches), capacitive,
piezoelectric and piezoresistive sensors (Abdul
Razak et al., 2012). Depending on the technology
and number of embedded sensors, pressure
insoles provide either the pressure distribution or
the normal load applied on the insole or both

Ground Reaction Force

(Abdul Razak et al., 2012; Wong et al., 2015; Loiret N (et N right

et al., 2019) (Figure 14). Insole designs whose o G

output is the pressure distribution may also 1500 1500

provide the path of the center of pressure and I

allow to estimate the normal component of the = /__ﬁ/ e el
ground reaction force, which is non-linearly 50074 ‘ \ 500 e A
related to the applied pressure (Wong et al., / \ / \1
2015). Whatever the design, insoles have to be % 20 %0 66 8 100x 0 20 40 60 80
rigorously calibrated before interpreting force  rig e 14: Example of pressure insoles output (from

data (Wong et al., 2015; Loiret et al., 2019). https://peakpodiatry.com.au)
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3.2.

Outcome parameters derived from wearable sensors

can be used to monitor functional and performance outcomes of people with lower-limb amputation.
3.2.1.

This section aims at describing to which extent pressure insoles and inertial measurement units
Spatiotemporal parameters

As reported in section 2.3.1, spatiotemporal parameters are paramount to describe gait function.
Temporal parameters can be directly derived from gait events detection. This can be achieved with
insoles, using a threshold on the pressure or force detected (Magbool et al., 2015; Loiret et al., 2019),
or with inertial sensors, by identifying key features within the output signals. A large body of literature

has focused on inertial sensors-based gait events detection (Pacini Panebianco et al., 2018), with some

attempts in comparison (Trojaniello, Cereatti and Della Croce, 2014; Trojaniello et al., 2015; Storm et

pattern of people with lower-limb amputation or other pathologies may compromise the validity of
al., 2017).

al., 2016; Pacini Panebianco et al., 2018) and few applications in people with lower-limb amputation
the algorithms that were not developed for this specific population (Trojaniello et al., 2015; Tunca et

(Selles et al., 2005; Magbool et al., 2017; Ledoux, 2018). It should be noted that alterations in the gait

While both inertial sensors and pressure insoles can be used for temporal parameters assessment,
only inertial sensors allow to quantify spatial parameters. Two different approaches have been
gait cycle is paramount.

reported in the literature. In any case, the detection of either one or several events pertaining to the

The first approach consists in defining a kinematic model of gait (Figure 15). Two models based on
a single inverted pendulum have been proposed for people with lower limb amputation from a

gyroscope located on the thigh (Miyazaki, 1997) or an accelerometer located at the lower-back (Zijlstra

and Hof, 2003; Houdijk et al., 2008). The accuracy of prosthetic and sound step length estimates was
not discussed (Miyazaki, 1997; Houdijk et al., 2008). Aminian and coworkers have developed a more
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Figure 15: From left to right: Miyazaki's gait kinematic model (Miyazaki, 1997) ; Aminian's kinematic model (Aminian et
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al., 2002) ; Inverted pendulum model used by Zijlstra and Hof (Zijlstra and Hof, 2003) to estimate step length. Image
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complex model including both shanks and thighs which allows gait event detection using three
gyroscopes (Aminian et al., 2002). Swing phase is modeled as a double pendulum while stance phase is
modeled as an inverted pendulum model. Integration of angular rates of the gyroscopes and
knowledge of thighs and shanks lengths enable to obtain an estimate of stride length by trigonometry.
All the developed models assume that gait is symmetrical, which is not the case in people with lower-
limb amputation, especially those undergoing rehabilitation.

The second methodological approach to obtain spatial parameters with inertial sensors consists in
the direct integration of the anteroposterior acceleration measured at the trunk (Kose et al., 2012),
shank (Li et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018) or foot (Sabatini et
al., 2005; Mariani et al., 2010) between successive gait events. Hypotheses on the velocity of the foot
(Sabatini et al., 2005; Jasiewicz et al., 2006; Mariani et al., 2010) or shank (Li et al., 2010; Yang and Li,
2012a; Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018) at specific instants of the cycle
have to be assumed in order to correct the integration drift. Since the relative position of two inertial
sensors is not known, methods based on sensors mounted on shank or foot only provide spatial
parameters relative to strides, but not to steps. Conversely, using a waist-mounted MIMU, Kése and
coworkers obtained an estimate of step length, with the assumption of equal speed at the beginning
and end of the gait cycle (Kose et al., 2012). None of these methods have been validated on people
with lower-limb amputation.

3.2.2. Function assessment parameters

Function assessment parameters can be divided in kinematic and kinetic gait descriptors. The first
category of parameters can exclusively be estimated with MIMUs, while both pressure and inertial
sensors can be used to estimate the kinetics of human motion using wearable sensors.

a. Kinematic parameters

There is an extensive literature on the validity of using MIMUs to estimate kinematic parameters
such as segment orientation, joint angles and range of motion (Picerno et al., 2008; Cuesta-Vargas et
al., 2010; Seel et al., 2014; Lebel et al., 2017; Poitras et al., 2019). Indeed, since sensors included in a
MIMU can be fused to estimate the orientation of the MIMU local frame in a global Earth-fixed
reference frame (see section 3.1.1), MIMUs have quickly emerged as a promising wearable alternative
to optical motion capture systems (Wong et al., 2007, 2015; losa, Picerno, et al., 2016). However, noisy
measurements and drift entailed in the numerical integration of sensor data does not make the
estimation of such parameters trivial (Bergamini et al., 2014; losa, Picerno, et al., 2016). Furthermore,
it must be noted that, to derive clinically-relevant information, the orientation of MIMU local frames
with respect to the underlying segments, also known as sensor-to-segment alignment, has to be
obtained (losa, Picerno, et al., 2016; Picerno, 2017; Poitras et al., 2019).

Four types of sensor-to-segment calibration methods have therefore been proposed in the
literature: manual, static, functional and anatomical calibrations (Figure 16) (Pacher et al., 2020).
Manual calibration procedures consist in aligning the MIMUs case (and hence the MIMU local frame)
with at least one segment axis. Although easy to set-up and time-efficient, this method is highly
dependent on the operator and its reliability has not been assessed (Pacher et al., 2020). For static
calibration, the participant is required to take specific static postures in which a segment axis is
assumed to be aligned with the gravity vector or joint angles are assumed to be known (in general: 0°
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or 90°). This hypothesis may be a bit strong, especially in pathological gait (Zabat et al., 2019). Cutti
and coworkers have proposed to measure the residual joint angles using a goniometer (Cutti et al.,
2010) to the cost of increased calibration duration (Pacher et al., 2020). Functional calibrations require
the participants to realize single-plane rotations in order to estimate the segment axis in the MIMU
frame. For applications in pathological gait, passive motions can be induced by an operator (Cutti et
al., 2010; Pacher et al., 2020). These methods are more complex to set up as the operators must ensure
that there is no out-of-plane motion (Pacher et al., 2020) and depend on the biomechanical model
assumed to represent joint motion (Poitras et al., 2019). Finally, anatomical calibration relies on the
determination of anatomical landmarks to construct anatomical frames similarly to what is done in
optical motion capture analysis (Picerno et al., 2008). Due to the complex additional instrument and
longer set up, this calibration method is less prevalent in the literature (Pacher et al., 2020). Sensor-
to-segment calibration methods have been developed and validated for different populations, tasks,
and sensor locations. Therefore, in the absence of comparative studies, there is currently no consensus
on the most adapted method (Pacher et al., 2020).

?

Figure 16: Example of sensor-to-segment calibration procedures
a. Static calibration (taken from (Liu et al., 2019));

b. Functional calibration (taken from (Seel et al., 2014)),

c. Anatomical calibration (taken from (Picerno et al., 2008))
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Assuming segments to be rigid solids, segment-to-
sensor calibration provides the constant transformation
between MIMUs and anatomical frames and, thus, allows to )
deduce segment orientations and joint angles in the global d
Earth-fixed reference frame associated to MIMUs (Figure j_ - \//Wyv
17). The validity of MIMU-based joint angles and segment L
orientations appear to depend on the joint or segment
considered as well as on the task performed (Cuesta-Vargas
et al.,, 2010; Lebel et al.,, 2017; Poitras et al., 2019). 232 ) \J
Furthermore, joint angles appear to be less accurately {l<_‘s ::: *.
estimated than segment orientations (Lebel et al., 2017; §—
Poitras et al.,, 2019), possibly due to summation of ‘\SZ /
orientation errors (Lebel et al.,, 2017) and to soft-tissue ) i
artefact impacting MIMUs alignments on segments of both  Figure 17: knee joint angle estimation using a
sides of a joint (Zabat et al., 2019). This could also result g?igzho%;? a shank MIMU. Taken from (Favre et
from inconsistencies between the global Earth-fixed
reference frames sensed by different MIMUs (Picerno et al., 2011), in particular in the presence of
non-homogeneous magnetic field (Picerno et al., 2008; Lebel et al., 2018). Nevertheless, while
conflicting evidence has been reported for upper-limbs and complex motions, fair-to-excellent
reliability and strong validity has been reported in sound subjects for joint angles estimated during
walking (Poitras et al., 2019). In particular, flexion/extension angles are best estimated, probably due
to the higher range of motion of joints and segments in the sagittal plane while walking (losa, Picerno,
et al., 2016; Poitras et al., 2019). Most of the literature on MIMU-based kinematics have focused on
asymptomatic subjects (losa, Picerno, et al., 2016) and methods have rarely been validated for people
with pathological gait (Poitras et al., 2019) or adopted in clinical research (losa, Picerno, et al., 2016).
It is to be noted that Cutti and coworkers have devised a protocol for kinematic gait analysis of people
with lower-limb amputation (Cutti et al., 2010). While reliability has been reported in people with
transtibial amputation, construct validity was not investigated (Cutti et al., 2015). Furthermore, equal
to higher accuracy levels were reported for lower-limb flexion/extension angles estimated visually by
orthopedic surgeons and other clinical specialists in quasi-static conditions (Kianifar et al., 2019).
Therefore, although MIMUs appear promising, more studies are required to confirm the added value
of MIMUs for dynamic joint angle assessment in the clinical field.

b. Kinetic parameters

MIMUs and pressure insoles have also been investigated for the estimation of ground reaction
forces (Shahabpoor and Pavic, 2017; Ancillao et al., 2018). Pressure insoles only provide the vertical
component of the ground reaction force, while MIMUs are susceptible to allow the retrieval of all three
components. Using single or multi-segment biomechanical models, MIMUs have been used to
estimate the body center of mass acceleration (Karatsidis et al., 2017; Shahabpoor et al., 2018;
Mohamed Refai et al., 2020). From there, application of the Newton’s second law leads to the
estimation of the total ground reaction force, in the absence of other external forces (for instance,
when carrying a load). The vertical component of ground reaction force was shown to be accurately
estimated in most cases, but poorer validity was found for mediolateral and anteroposterior
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components (Ancillao et al., 2018). Furthermore, only few models have been proposed to distribute
the force between the right and left foot during the double stance of the gait cycle of asymptomatic
subjects (Ren et al., 2008; Villeger et al., 2014; Yang and Mao, 2015; Ancillao et al., 2018; Erfan
Shahabpoor and Pavic, 2018), with some attempts using machine learning approaches (Leporace et
al., 2015; Tan et al., 2019; Arumukhom Revi et al., 2020).

Several attempts to estimate intersegmental forces and moments in asymptomatic participants
have been reported combining kinematics and ground reaction forces estimated with MIMUs (Yang
and Mao, 2015; Faber et al., 2016; Karatsidis et al., 2017). One study reported the joint use of MIMUs
and insoles for the estimation of intersegmental forces and moments in asymptomatic subjects
(Khurelbaatar et al., 2015) and another proposed an inverse dynamic approach based on inertial
sensing and musculoskeletal modeling (Karatsidis et al., 2019). In all studies, poorer accuracy was
reported for the non-vertical components of the forces and non-sagittal components of the moments.

Finally, few studies investigated the feasibility of using MIMUs to estimate work or power, with
limited to poor accuracy achieved (Zijlstra et al., 2010; Pavei et al., 2020).

3.2.3. Performance assessment parameters

While MIMUs and insoles may not be as valid as the gold standard for function assessment
parameters, a large number of applications to monitor locomotion quality and efficiency have emerged
with wearable sensors. In particular, monitoring of daily-living ambulatory performance and of upright
balance has been facilitated with the introduction of inertial sensors in the field of motion analysis,
and original parameters have been proposed for gait quality assessment (losa, Picerno, et al., 2016;
Benson et al., 2018). The following overview of the literature on performance assessment parameters
aims at identifying those that might be relevant to support the biomechanical and clinical assessment
of the rehabilitation of people with lower-limb amputation.

a. Gait quality indices

i Symmetry

Spatiotemporal and loading symmetry have been investigated using both MIMUs and pressure
insoles. In particular, loading and temporal symmetry can be easily monitored with pressure insoles
(Nolan et al., 2003; Cutti et al., 2018; Loiret et al., 2019), whose use was validated against force plates
in people with transfemoral amputation for this specific purpose (Loiret et al., 2019). Regarding
MIMUs, although a large number of studies have focused on gait events detection and temporal
parameters quantification (see section 3.2.1), none reported the use of MIMUs to compute a
symmetry index based on gait cycle temporal parameters.

However, several parameters based on MIMU signal processing have emerged from the literature
for symmetry assessment (Benson et al., 2018). Thus, a coefficient based on the autocorrelation of the
anteroposterior acceleration measured at the trunk has been proposed to quantify temporal
asymmetry (Moe-Nilssen and Helbostad, 2004). A statistically significant but moderate correlation was
found between the autocorrelation coefficients and insoles-based temporal asymmetry in people with
transfemoral amputation (Tura et al., 2010). Similarly, a global parameter has been proposed and
widely adopted in recent literature to quantify global gait symmetry through spectral analysis of upper-
body acceleration data: the harmonic ratio (Smidt et al., 1971; Menz et al., 2003). Based on the
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observation that, in asymptomatic gait, the pelvis, trunk and head segments move symmetrically with
respect to the anatomical planes with a periodicity of a step along the direction of progression and the
vertical direction, and with a period of a stride (two steps) along the mediolateral direction (Figure 18),
the Fourier decomposition of the displacement or acceleration signal measured at the upper body
within each stride is expected to contain even harmonics in the anteroposterior and vertical directions
and odd harmonics in the mediolateral direction (Smidt et al., 1971; Cappozzo, 1981). These harmonics
are considered to describe the stereotype pattern of locomotion, and are called ‘intrinsic’, while other
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Figure 18: Lower-back acceleration of an asymptomatic person while walking with
right (vertical solid line) and left (vertical dotted line) heel contacts. Taken from

(Bellanca et al., 2013)
A —anteroposterior direction; B — vertical direction; C — mediolateral direction

harmonics are considered to disturb the inherent locomotion pattern and are called ‘extrinsic’
(Cappozzo, 1981). The harmonic ratio was first introduced as the ratio of the sum of the amplitudes of
intrinsic harmonics to the sum of the amplitudes of extrinsic harmonics of the acceleration signal
measured at pelvis level (Smidt et al., 1971; Menz et al., 2003). The improved harmonic ratio (Pasciuto
et al., 2017) was then introduced to overcome limitations in the calculations of the harmonic ratio
(Bellanca et al., 2013) and is expressed as a percentage of total symmetry. Both the harmonic and
improved harmonic ratios have been studied in people with lower-limb amputation (losa et al., 2014;
Pasciuto et al., 2017) and were reported to be related to dynamic balance and fall risk in amputees

and stroke patients respectively (losa et al., 2014; Bergamini et al., 2017).

ii. Balance

Postural balance

Postural balance has been described in gait analysis laboratories using the center of pressure (CoP)
sway path during stance (see section 2.3.3). The use of wearable sensors such as pressure insoles
(Lemaire et al., 2006; Kendell et al., 2010) or inertial sensors located near the center of mass (Betker
et al., 2006; Najafi et al., 2012; Al-Jawad et al., 2013; Noamani et al., 2020) may allow to retrieve the
sway path of the CoP or of the projection of the body center of mass while standing. Parameters
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extracted from the sway path, such as sway velocity and the lateral or anteroposterior range of the
CoP can be used to characterize postural balance (Kendell et al., 2010; Al-Jawad et al., 2013; Hsu et al.,
2014) (Figure 19).
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Figure 19: Example of body center of mass sway trajectory retrieved with MIMUs for three equilibrium tasks with increasing
difficulty, from (Al-Jawad et al. 2013)

Alternatively, the root-mean-square (RMS) of accelerations, after subtraction of the gravity
component, were proposed as estimators of postural balance as they quantify the dispersion of the
accelerations while no motion is supposed to occur (Mancini et al., 2012; Al-Jawad et al., 2013).
Although not directly comparable to the CoP sway path, the RMS accelerations in the horizontal plane
were shown to provide reliable and clinically relevant information regarding postural balance in both
sound participants and participants with Parkinson’s disease (Mancini et al., 2012; Ghislieri et al.,
2019).

Balance control during gait

In the literature, balance control during gait has been defined either as the ability to maintain
continuous motion despite internal small perturbations (Kendell et al., 2010, 2016; Lamoth et al., 2010;
losa et al., 2014), the ability to minimize oscillations transferred from the lower-limbs to the upper-
body (losa et al., 2014; Summa et al., 2016; Bergamini et al., 2017), or, in a simpler manner, as “gait
that do not lead to fall” (Bruijn et al., 2013). A variety of parameters has been proposed in the literature
to quantify gait balance based on those definitions. They are either parameters derived from the
center of pressure or center of mass trajectory, parameters extracted from dynamical system theory
and derived from raw signals, or coefficients directly extracted from root-mean-square (RMS) of
accelerations. Therefore, two approaches can be identified: a biomechanical-model based approach
and a signal processing approach which consists in proposing parameters based on the measured

signals rather than processing the signals to derive a priori defined parameters.

Regarding the first approach, balance control has been assessed through the analysis of
parameters derived from the center of pressure (CoP) trajectory estimated with pressure insoles
(Lemaire et al., 2006; Kendell et al., 2010, 2016). A set of parameters derived from the CoP path were
proposed to characterize dynamic balance and compensatory adjustments: unexpected
anteroposterior and mediolateral direction changes or deviations, maximal lateral position of the CoP
and cell trigger frequency. They have been analyzed in the population with lower-limb amputation and
were shown to predict classical clinical balance scores (Kendell et al., 2010, 2016; Howcroft, Lemaire,
et al., 2016). Higher values were obtained for all parameters quantified on the intact limb compared
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to the prosthetic limb, suggesting that adjustments for balance mostly occur with the intact limb on
both transtibial and transfemoral amputee groups (Kendell et al., 2010, 2016; Howcroft, Lemaire, et
al., 2016). This could be expected given that the prosthetic limb lacks functional neuromuscular
structures due to the amputation. The theory of dynamic margin of stability developed by Hof and
coworkers has also recently been transposed to wearable gait analysis in asymptomatic young and
elderly participants (Arvin et al., 2016; Guaitolini et al., 2019; Fino et al., 2020). Only one proof-of-
concept study provided an estimate of the margin of stability that was validated against a gold
standard, but the method is complex as it requires seven MIMUs and the use of an optical motion
capture system for sensor-to-segment calibration and anthropometric measurements (Guaitolini et
al., 2019).

The second approach implemented for balance control assessment allows to compute parameters
or indices directly from the signals measured by wearable sensors. This ensures a high accuracy to the
detriment of hindsight on the retrieved parameters and therefore, a lower understanding of these
parameters. However, a large number of studies have proposed to analyze dynamic balance using such
an approach and MIMUs (Benson et al., 2018; Ghislieri et al., 2019)

The measurement of RMS of upper body accelerations, especially at lower-back level, is one of the
most reported parameter reported for dynamic balance assessment with inertial sensors (Kavanagh
and Menz, 2008; Howcroft et al., 2013; losa, Picerno, et al., 2016). High RMS of upper body
accelerations have been shown to be associated with higher risk of falls and decreased balance
(Howcroft et al., 2015; Summa et al., 2016; Bergamini et al., 2017; Paradisi et al., 2019). Furthermore,
RMS of upper body accelerations have been shown to discriminate levels of walking ability in people
with lower-limb amputation (losa et al., 2014).

Attenuation coefficients (Mazza et al.,
2009), based on the ratio of RMS of
accelerations measured at successive levels

HEAD (H) [

of the trunk (pelvis, sternum, head), have
been computed to quantify the ability to
minimize upper body accelerations in
people with transtibial amputation (Paradisi
et al., 2019) (Figure 20). An amplification of
the acceleration variability was observed
from the sternum to the head. The resulting
head instability might explain the impaired
.. balance in people with lower-limb

‘ amputation (Paradisi et al., 2019). Indeed,
head stability is essential to ensure a steady

optical flow and a trustworthy processing of
Figure 20: Set-up of IMUs for the analysis of accelerations

transmission from lower-limbs to the upper body, from (Bergamini et
al., 2017). IMUs located on the right and left tibia were used for gait control of equilibrium (Berthoz and Pozzo,

segmentation 1994; Kavanagh and Menz, 2008; losa,
Picerno, et al., 2016; Summa et al., 2016).

vestibular signals which contribute to the
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The maximum Lyapunov exponent, a parameter extracted from dynamical systems theory, has
been extensively used in recent years in different populations (Bruijn et al., 2013). This parameter
characterizes the resistance of a system to internal perturbations (which are, when the system is the
body, perturbations inherent to the neuromuscular system). It quantifies the divergence rate between
initially similar “trajectories” in a multi-dimensional state space, the latter being reconstructed from
the pelvis accelerations and their time-delayed copies for instance (Figure 21). Larger values of
Lyapunov exponent correspond to larger variability and lower gait stability. Although the Lyapunov
exponent could differentiate people with lower-limb amputation from healthy controls (Lamoth et al.,
2010), it might not be sensitive enough to detect changes within a subject (van Schooten et al., 2013)
during his/her rehabilitation or following a modification of his/her prosthetic devices. Indeed, in a test-
retest study, the smallest detectable difference found between-session was higher than the difference
between elderly fallers and non-fallers (van Schooten et al., 2013). Thus, this parameter does not seem
to be adequate to monitor patients’ progression during their rehabilitation.
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b. Gait efficiency

When considering parameters related to gait efficiency (ambulatory capacity in the community,
energy cost, cognitive demand associated with gait) obtained through wearable protocols, those have
been exclusively obtained with MIMUs or accelerometers.

i Actimetry

Actimetry literally means the measure of activity. This term encompasses the detection of the
nature of the activity, but also the estimation of its intensity. Recently, accelerometers have been
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extensively used for the measure of activity, with several commercial solutions developed (Kavanagh
and Menz, 2008; Hafner and Sanders, 2014).

In quasi-static situations, accelerometers can be used as inclinometers to estimate the orientation
of the body segment to which they are attached. Using this principle, accelerometers located on the
residual limb and/or on the prosthesis of a lower-limb amputee can be used to detect donning and
doffing of the prosthesis and to classify postures between standing and sitting (Redfield et al., 20133;
Gardner et al., 2016). More recently, manufacturers have shown interest in recognizing the situation
encountered by the prosthetic user (stairs — slopes — level ground) in order to adapt the behavior of
the prosthesis to its environment (Dauriac, 2018). These classification schemes could also benefit
rehabilitation, as they could provide reliable information regarding the between-session exercises
performed by people with amputation (Preece et al., 2009; Hafner and Sanders, 2014).

Regarding physical activity level, it can first be estimated through the number of steps performed,
which can be extracted from features in the acceleration signals. In the context of people with lower-
limb amputation, a distal attachment of the accelerometer on the prosthetic limb seems to be more
appropriate as sharper peaks will be detected than at the pelvis, even if the accelerometer would only
detect prosthetic steps (Rosenbaum Chou et al., 2009; Redfield et al., 2013a; Dauriac, 2018). Intensity
levels of the performed physical activity can be estimated based on the amount of steps performed
during a specific time or based on thresholds on the acceleration magnitude summed over a specific
time window (Santos-lozano et al., 2014). Furthermore, energy expenditure has been estimated using
accelerometry: indeed, linear regressions based on acceleration features and anthropomorphic
measurements have been validated against indirect calorimetry for several populations, including
lower-limb amputees (Santos-lozano et al., 2014; Ladlow et al., 2017). The most appropriate position
of the accelerometer was found to be the waist on the side of the residual limb, possibly due to hip
hiking (Ladlow et al., 2017). However, no further analysis enabled to establish a relationship between
gait compensations and the increased accuracy of the energy expenditure regression with the
accelerometer at this location.

ii. Cognitive load

In order to evidence higher cognitive demand associated with walking in transfemoral amputee
gait, Lamoth and coworkers assessed the evolution of the sample entropy of the pelvis acceleration
signals while performing a dual-task compared to single-task or when walking outdoors on irregular
terrains compared to indoors (Lamoth et al., 2010). Sample entropy is a measure of similarity between
two asynchronous time-series taken within the same original time-series (Richman and Randall
Moorman, 2000). It was found to decrease while performing a dual-task and to increase while walking
outdoors, meaning that acceleration signals measured at the pelvis are less repeatable and predictable
when performing a dual task compared to a single task but more repeatable when walking on irregular
terrain than indoors. This might be associated with an increased voluntary control of walking in
constraining conditions, reflecting the need of the person with amputation to concentrate on where
to position his/her prosthetic leg to prevent falls — and a decreased control when performing
simultaneously another demanding task (Lamoth et al., 2010). The authors also investigated the scaling
exponent, which indicates the presence of long-range correlations within a signal through Detrended
Fluctuation Analysis (DFA). This exponent had been shown to evolve in children as they grow up and
in people with cognitive impairment (Hausdorff et al., 2001). However, no difference were found

40



between the scaling exponents of experienced transfemoral amputees and asymptomatic people
(Lamoth et al., 2010). It should be noted that the scaling exponent has not been investigated in people
with lower-limb amputation during their rehabilitation, when they have not yet completed prosthetic
gait training.

3.3. Synthesis of the literature and limitations

This literature overview on wearable sensors highlighted the diversity of quantitative parameters
describing locomotion that can be obtained with MIMUs and/or pressure insoles. Attention shall be
drawn on the fact that most methods to get those parameters were developed and validated on
healthy subjects, and that they often rely on specific features of MIMUs raw data signals. Thus, they
might not be directly applicable to people with lower-limb amputation, especially those undergoing
rehabilitation. Indeed, slow walking speed and three- or four-points gait, such as when using crutches
or other walking aids, have been shown to modify gait patterns or attenuate signal features.

Furthermore, due to the nature of the signals obtained with MIMUs and pressure insoles, obtaining
classical gait analysis parameters such as intersegmental moments, power, or position, is not
straightforward and may not achieve a sufficient accuracy (section 3.2.2). However, these sensors have
been extensively used to evaluate locomotion quality through balance and symmetry indices,
introducing new parameters that are usually not measured in motion laboratory-based gait analysis
(section 3.2.3). The relevance and validity of these indices for the assessment of lower-limb amputee
gait quality remains to be verified.

In the few studies focusing on the gait of people with lower-limb amputation, recruited
participants were generally experienced walkers, who did not require the use of assisting devices. Only
two studies were conducted with non-experienced walkers. The first one monitored their daily physical
activity, in term of number of steps, in the six weeks following the amputation with a device that had
not been validated in this context (Samuelsen et al., 2017). The second evaluated gait quality of people
with transtibial and transfemoral amputation at dismissal from the rehabilitation center, in terms of
stability (using RMS of accelerations) and symmetry (using indices of temporal symmetry and harmonic
ratio) (losa et al., 2014). Before clinical implementation to monitor patient’s progression during
rehabilitation, the methods shall be both adapted and validated on this specific population, and test-
retest reliability shall be assessed in order to measure the sensitivity of the method and its ability to
detect clinically-relevant changes.
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Conclusion

The purpose of this first part was to identify gait parameters that could be obtained with inertial
sensors and pressure insoles and that are clinically relevant for the rehabilitation of people with lower-
limb amputation.

The first two chapters have introduced contextual elements on amputee care, in particular
regarding the tools used in clinics for gait evaluation. It appears that simplicity and rapidity of
implementation are critical for an assessment tool to be adopted in clinical routine. For instance,
walking tests are often performed as they are reliable and easy to set up. Several authors have
therefore proposed the instrumentation of TUG and timed-tests with wearable sensors in order to
extract additional parameters (Nguyen et al., 2017; Belluscio et al., 2018). Chapter 2 has also allowed
to identify relevant parameters used to assess the gait of people with lower-limb amputation in motion
analysis laboratories. In addition to joint angles and segment orientations — which allow to quantify
gait deviations that are visible to the clinicians — the study of the body center of mass motion appears
relevant as it is a synthetic parameter that may reflect gait asymmetries and that is related to the
mechanical energy, and hence, the energy expenditure. Monitoring asymmetry in spatiotemporal and
loading parameters also appears to be critical as it is correlated with the onset of comorbidities.
Interestingly, few studies investigate balance of lower-limb amputee gait, probably due to the lack of
dynamic balance descriptors proposed with optical motion capture systems and force plates.

The third chapter has introduced wearable sensors and, most particularly, pressure insoles and
MIMUs, as well as their applications for human motion analysis. An extensive body of literature has
investigated the use of MIMUs for kinematic analysis, including in pathological gait, but, comparatively,
few studies have investigated the ability of MIMUs to track kinetic parameters and the body center of
mass motion. Most of the literature proposing wearable methods for ground reaction forces and
moments estimation were published in the last five years and developed and validated on
asymptomatic participants. Finally, MIMUs and pressure insoles were also found to capture a large
diversity of original gait quality parameters, characterizing, in particular, gait balance and symmetry.
These gait quality descriptors can be obtained from a limited number of sensors and are compatible
with clinical walking tests. Interestingly, two distinct approaches seem to emerge when using wearable
sensors for gait analysis. The first approach aims at retrieving biomechanical parameters, similarly as
with laboratory-based instruments. In most cases, these parameters can be quantified with complex
algorithms requiring several synchronized sensors and a model of the human body (see for instance
the kinematic models and assumptions required for deriving full body joint kinematics or for ground
reaction force distribution during double stance phase). The second approach proposes quantitative
parameters derived from the measure of raw signals from a limited number of wearable sensors and
allows to quickly retrieve concise parameters able to quantify global aspects of gait related with
dynamic balance or symmetry. These parameters should therefore be easily intelligible although they
may differ from the usually derived parameters from laboratory-based biomechanical gait analysis.

The purpose of the thesis could be further defined based on these findings and will be specified in
the next section.
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Aim of the thesis

The aim of this thesis is to contribute in the development of wearable tools to support the
assessment of the functional rehabilitation of people with lower-limb amputation.

Based on the findings of the literature review presented in the first part of this thesis, it appears
that, to be relevant, such tools must allow to quickly retrieve quantitative and intelligible parameters
describing the gait of people with lower-limb amputation and its alterations. For instance, the
acquisition set up should allow to instrument clinical tests that are currently performed during the
rehabilitation or to obtain relevant data within a few steps in order not to interfere with the
rehabilitation. Ideally, a minimal number of sensors should be used to reduce as possible the set-up
duration. Furthermore, a limited number of output parameters should be retrieved in order to
facilitate interpretation and limit the duration of the analysis.

Dynamic balance and gait symmetry seem to be of particular interest for clinical assessment as
these aspects of locomotion are able to quantify gait deficiency. However, these parameters alone do
not allow to get a complete picture of gait functional alterations and performance. The analysis of the
body center of mass motion appears therefore relevant to complete gait assessment. Indeed, it allows
to identify the presence of kinematic alterations and may provide insight on the metabolic cost of
walking without requiring the analysis of individual joint motions or intersegmental forces, therefore
limiting the number of quantified parameters.

The aim of the thesis is therefore to develop algorithms allowing the wearable characterization of
these different aspects of gait following two approaches which were identified in the literature.

The first approach aims at retrieving biomechanically relevant parameters from wearable sensors
through modeling of the human body as a set of rigid body segments, similar as what is done in
laboratory-based gait analysis. This approach allows to retrieve biomechanical parameters that have
demonstrated their usefulness in quantitative gait analysis at the cost of complex algorithms
development. Thus, the second part of the manuscript proposes an original wearable framework to
estimate 3D motion (acceleration and instantaneous velocity) of the body center of mass from a
limited number of sensors. The framework will be developed and validated on the data of a person
with transfemoral amputation taking laboratory-based instruments and a full-body inertial model as
criterion measurements.

The second approach aims at processing wearable sensors’ signals and at identifying features in
the retrieved signals that may relate to gait descriptors. A large amount of studies has thus proposed
to quantify gait balance and symmetry using this approach. In particular, the analysis of acceleration
signals measured at the pelvis, trunk or head levels in different populations was proposed to quantify
gait balance. Temporal parameters and symmetry were computed from the analysis of pressure insoles
signals or from the detection of gait events instants of occurrence, identified as specific features in the
signals of a single-pelvis or two lower-limb-mounted MIMUs. Such parameters issued from signal
processing have not always been studied in people with lower-limb amputation while they might be
relevant for this specific population. The third part of the thesis therefore aims at contributing to the
creation of knowledge regarding these recent parameters by providing reference values for the
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population of lower-limb amputees. In addition, a comparative evaluation of MIMU-based gait events
detection algorithms taken from the literature will be proposed to investigate their validity for
temporal symmetry assessment in people with lower-limb amputation.

These two complementary approaches allow to contribute to the development of wearable gait
analysis protocols for the in-field assessment of the rehabilitation of people with lower-limb
amputation. The first approach allows the development of an original framework and contributes to
fundamental research on wearable gait analysis. The second approach contributes to the creation of
knowledge and aims at better characterizing recently developed gait indices. This approach is
therefore closer to the clinical transfer of wearable tools for rehabilitation. However, further validation
steps are required prior to implementing these methods in the rehabilitation process.

In order to develop both these approaches, several data sets, which have been either collected in
the course of the PhD or which had already been collected in the context of previous work, were post-
processed. Figure 22 provides an overview of the data that has been used during the thesis for the
development of algorithms and creation of knowledge.
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Master Julia Facione, ENSAM/CERAH Part, chapters 2-4
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Figure 22: Graph of the experimental data used in the course of the thesis for the development of the original framework (Part 2) or the
creation of knowledge regarding recently developed wearable sensor-base gait quality indices (Part 3). Each framed box corresponds to
a data collection and indicates the number of participants, the nature of the trials and the acquisition systems used.

Two datasets that had been collected during masters occurring in 2016 were processed in the course of the present thesis and were
partially completed by acquiring supplementary data in the course of the PhD.

The dataset in blue box correspond to data collected using only laboratory-based instruments while datasets in yellow boxes were
collected using only wearable sensors. Protocols involving both laboratory-based and wearable capture systems are framed in green
boxes.

TF = people with transfemoral amputation; TT = people with transtibial amputation; AS = asymptomatic subjects; OMCS = Optical Motion
Capture Systems; IMUs = (magneto-)Inertial Measurement Units; 2MWT = 2-minute walking test; TUG = Timed-Up-and-Go test

The thesis benefited from the availability of data from a cohort of nine people with transfemoral
amputation, recorded with laboratory-based instruments. This data (used in Chapter 2 Part 2) allowed
the development of the wearable framework proposed in the third chapter of Part 2.
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Part 2: Development of a wearable framework for the estimation of
the body center of mass 3D motion during gait of people with lower-
limb amputation

This part of the thesis aims at retrieving, from the analysis of wearable sensors’ signals,
biomechanically relevant parameters that have proven to be meaningful for the analysis of lower-limb
amputee gait: the 3D motion of the body center of mass (BCoM). Indeed, the study of the BCoM path
may allow to characterize gait alterations that are not visible to the naked eyes of clinicians and has
been shown to evidence an asymmetrical gait pattern (Askew et al., 2019; Tesio and Rota, 2019).
Furthermore, BCoM velocity can be combined with ground reaction forces under each foot to estimate
mechanical work and energy, providing insight on gait efficiency (Donelan et al., 2002a). Eventually,
the combination of ground reaction forces and kinematic parameters would allow to obtain
intersegmental kinetics. As a consequence, the estimation of 3D BCoM motion and individual limb
ground reaction force is of particular relevance for gait analysis of people with lower-limb amputation
(see Part 1, section 2.3.2). To the author’s knowledge, the feasibility of quantifying these parameters
using wearable sensors has never been investigated in people with lower-limb amputation.

From a mechanical standpoint, the kinematics and dynamics of the body center of mass (BCoM)
are important parameters of the locomotion which directly result from the application of external
forces (Tesio and Rota, 2019). The application of the fundamental principles of dynamic indeed yields
the following equations for linear and rotation motions:

Mpoay Acom = XiFi,,, + Mpoayg (1)
SA:dﬂ‘l'mbod Vg X Vgcom = Li M; (2)
dt y CoM 14 ext
Where all the following quantities are expressed in an Earth-fixed reference frame:
(Agcom isthe BCoM acceleration
Mpoqy is the mass of the body
g is the gravitational acceleration
F;, , arethe external forces applied on the body
6,4 isthe dynamical moment of the body expressed at the point A
0 4 is the angular momentum of the body expressed at the point A
Vg4, Vgcom are the linear velocity computed of the points A and the BCoM respectively
M are the external moments exerted on the body, applied at the point A

iAext

The first equation indicates that the linear motion of the body is explained by the external forces
that are exerted on the body and can be used to describe the translation motion of the body. The
second equation, less frequently used to describe human motion (Herr and Popovic, 2008), indicates
that the rotation motion of the body around a point A is explained by the external moments applied
at this point. Equation 2 can be simplified as follows when expressed at the BCoM:

5 _ dogcom M
BCoM — —dt - iBCoM,ext
i

When no external moments are applied on a body, the angular momentum is a conserved quantity.
While this is not the case in human legged locomotion, several authors have demonstrated that the
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angular momentum takes small values during gait in spite of prominent segmental contributions.
Therefore, the angular momentum has been assumed to be highly regulated by the central nervous
system in order to minimize angular excursions of the body (Popovic et al., 2004; Herr and Popovic,
2008). Fluctuations of the angular momentum are evidenced by the dynamic momentum and have
been shown to be a promising indicator of gait balance, in particular in stroke and in lower-limb
amputee patients (Silverman et al., 2008; Nott et al., 2014; Neptune and Vistamehr, 2019). Therefore,
the study of the angular momentum appears relevant for the rehabilitation of people with lower-limb
amputation. Developing algorithms allowing to estimate the angular momentum and its fluctuations
from wearable sensors is a relevant track of research for future works (Neptune and Vistamehr, 2019).

In this part of the thesis, however, only the first equation of the fundamental principles of
dynamics will be investigated. It indeed allows to retrieve the 3D motion of the BCoM and provides
hindsight on gait asymmetry and mechanical energy parameters, which could be used to support the
functional rehabilitation of people with lower-limb amputation. Therefore, the feasibility of estimating
the 3D acceleration, velocity or displacement of the BCoM in people with lower-limb amputation from
wearable sensors appears highly relevant.

In motion analysis laboratories, BCoM acceleration can be immediately retrieved from force plates
using equation (1). Integration of the BCoM acceleration with proper initial conditions yields the
instantaneous velocity of the BCoM, which can be further integrated to estimate the trajectory of the
BCoM. When force plates are not available, an optical motion capture system coupled with an inertial
model providing, for each segment, its mass and the position of its center of mass (SCoM) in the
anatomical frame defined by segment-mounted markers can be used instead. Indeed, using a
representation of the body as a chain of linked rigid segments of mass m;, the BCoM position can be
retrieved using equation (3) from the positions T'scom,; Of the segments’ center of mass:

m;

TBcoM = i  T'scom; (3)

Mpod
Then, by differentiating equation (3), the velocity or the acceleration of the BCoM can be retrieved
from optical motion capture data:

oy
Apcom = Lip

ascom; (4)
Eventually, the ground reaction force can be estimated using equation (1), providing that the

person is not carrying extra weight and no other external forces are applied on the body.

When using wearable sensors such as MIMUs, the output data is not the same as the one provided
by force plates or optical motion capture system. Indeed, MIMUs provide the acceleration of the origin
of the sensor case, the angular velocity and the magnetic field in the MIMU local frame but do not
provide the absolute position of the sensor in a global Earth-fixed frame. Furthermore, even if a full
body MIMU set could be adopted to track the kinematics of all body segments, similarly to what is
done with optical motion capture systems, instrumenting the whole body with sensors is not advisable
for clinical transfer of the protocol. Indeed, a trade-off between accuracy and complexity of the
acquisition protocol is essential for applications in the clinical field, where clinicians may only have a
limited time to spend with the patient (Huntley et al., 2017). Therefore, a specific protocol must be
developed for the estimation of the 3D motion of the BCoM from wearable sensors.

This part of the thesis therefore aims at contributing to the development of a wearable gait analysis
protocol for the estimation of 3D BCoM acceleration and instantaneous velocity. The first chapter
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provides an overview of the existing wearable methods for the estimation of 3D BCoM motion, as well
as their validity. Then, the second chapter aims at identifying contributions of each body segment to
the BCoM acceleration so as to identify optimal combinations of sensors and their positioning for an
accurate estimation of BCoM acceleration in people with transfemoral amputation while limiting the
number of required sensors. The study implemented in this second chapter was based on the data of
a cohort of ten people with transfemoral amputation for which only force plates and optical motion
capture data were available. Chapter 3 consists in a proof-of-concept study regarding the application
of the identified combinations of sensors for the estimation of 3D BCoM acceleration and velocity in a
wearable framework, using magneto-inertial measurement data. Challenges associated to the use of
MIMUs will be identified and tackled in this chapter. Finally, a sensitivity analysis investigating the
impact of sensors mispositioning on the estimation of the BCoM acceleration will be proposed in
chapter 4. The methodology developed in this last chapter could be applied to other segment models
or to other BCoM derived parameters, such as the instantaneous velocity of the center of mass.
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Chapter 1 — 3D motion of the body center of mass: state-of-the-art

of wearable sensor-based methods

1.1. Overview of wearable-sensor based methods

In the last decade, the number of studies investigating the feasibility of acquiring 3D ground
reaction forces (GRF) or 3D motion of the body center of mass (BCoM) through its acceleration, velocity
or displacement using wearable sensors has considerably increased. To facilitate the transfer of
methods for the in-field assessment of 3D BCoM motion or total GRF, it is essential to keep the number
of required sensors as low as possible while obtaining sufficient accuracy (Ancillao et al., 2018).

Table 2 presents an overview of the published literature where developed methods for the
acquisition of total GRF or 3D BCoM motion were validated against a gold standard and involved the
sole use of MIMUs and/or pressure insoles. It should be noted that methods developed and compared
to a gold standard for the estimation of GRF under each foot independently were not included if the
comparison between total GRF and the gold standard was not provided. However, two recent reviews
investigated the validity of such methods and reported that, in general, poor accuracy for the
anteroposterior and mediolateral component of GRF was achieved when using pressure insoles and/or
MIMUs (Shahabpoor and Pavic, 2017; Ancillao et al., 2018). Better results were achieved using machine
learning paradigm, although these methods were in their infancy at the time of the reviews (Ancillao
et al., 2018; Tan et al., 2019). Recently, promising mixed inertial and musculoskeletal approaches were
developed (Dorschky et al., 2019, 2020; Karatsidis et al., 2019). Readers are advised to refer to the
abovementioned reviews for more details on single-limb GRF estimation (Shahabpoor and Pavic, 2017;
Ancillao et al., 2018).

Regarding methods investigating the 3D path of the BCoM or the total GRF, 17 studies (reported
in Table 2) were retrieved in the literature. All methods involved from 1 to 17 MIMUs with only one
study combining pressure insoles to MIMUs for stance phase detection (Yuan and I. M. Chen, 2014).
Eleven studies involved the use of a MIMU at pelvis or trunk level as an approximation of the BCoM
(Meichtry et al., 2007; Esser et al., 2009; Floor-Westerdijk et al., 2012; Yuan and |. Chen, 2014;
Regterschot et al., 2014; Myklebust et al., 2015; Najafi et al., 2015; Sabatini and Mannini, 2016; E.
Shahabpoor and Pavic, 2018; Lintmeijer et al., 2018; Mohamed Refai et al., 2020), with two studies
using other MIMUs to complete or correct the estimation (Yuan and I. Chen, 2014; Sabatini and
Mannini, 2016) and two studies simultaneously evaluating multi-sensor configurations and concluding
on their superiority (Najafi et al., 2015; Lintmeijer et al., 2018). The remaining six studies investigated
only multi-sensor configurations for the 3D BCoM motion (Zijlstra et al., 2010; Faber et al., 2016; Fasel,
Sporri, et al., 2017; Karatsidis et al., 2017; Shahabpoor et al., 2018; Pavei et al., 2020). Three main
categories of biomechanical models could be identified based on the approach chosen: models based
on single-sensor approximation of the BCoM, on multi-segment inertial models, or on kinematic chain.
Two methods consisted on mixed approaches involving machine learning methodology (Sabatini and
Mannini, 2016; E. Shahabpoor and Pavic, 2018).

The developed methods were validated on asymptomatic populations, either for straight walking
(9 studies), for sports motion (4 studies: golf swing, cross-country skiing, alpine skiing, rowing), for
jumping (1 study), for sit-to-stand transfer (2 studies), or trunk bending motion (1 study). Regarding
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the BCoM outcome parameters, studies investigated either the accuracy of the estimation of the
acceleration (9 studies: 4 studies investigated 3D motion, 4 studies validated only the vertical
component and the study on rowing only investigated the accuracy in the estimation of the
anteroposterior component), the velocity (6 studies: half investigated the 3D velocity and the other
half the vertical component) and/or the displacement (8 studies: 7 investigated the 3D component and
the last one the vertical component). Optical motion capture data, force plates or instrumented
treadmill were used for validation, except in one study where tri-axial force sensors were used under
each foot (Mohamed Refai et al., 2020). Among the seven studies using an optical motion capture
system for validation, two used a full-body inertial model (Floor-Westerdijk et al., 2012; Myklebust et
al., 2015; Fasel, Sporri, et al., 2017) while the other used markers directly on top of MIMUs for
validation.

The next two paragraphs will discuss the accuracy achieved respectively using single-sensor and
multi-sensor approaches.
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Table 2: Estimation of 3D motion of the body center of mass (BCoM) from wearable sensors.

Acc. = acceleration; Vel. = velocity; Disp. = displacement; Traj.= trajectory; AP = anteroposterior; ML = mediolateral;, CC = craniocaudal;, M/IMU =(Magneto-)Inertial Measurement Units; OMCS =
Optical Motion Capture Systems; AS = Asymptomatic subjects; BW = Body Weight; (N)RMSE = (Normalized) Root Mean Square Error.

BCoM Approximation = method where a single MIMU was used and assumed to be representative of the BCoM motion

al., 2007)

(BCoM approximation)

- Straight walking
-12 AS

BCOM motion Method Validation
Authors Reference, situation
Acc. | Vel. | Disp. | Method type Wearable sensor . " | Results
population
(Esseretal., |CC |[CC |CC Biomechanical model | 1 MIMU at lower-back (L4) - OMCS (marker on top | High correlations of peak-to-peak vertical acceleration, velocity and
2009) (BCoM approximation) of MIMU) displacement (ICC > 0.78). Significant difference in vertical velocity (< 2.5%)
- Straight walking
-5AS
(Faberetal, |3D |- - Biomechanical model | MVN suit: 17 MIMUs - Force plates CC: RMS ~ 10 N ~ 1% peak value, Pearson r>>0.98
2016) (Inertial model) - Trunk bending AP, ML: RMS ~ 10N ~ 0.12 ms2, r*~0.6
-9AS
(Fasel, - - 3D Biomechanical model | 7 to 11 MIMUs (shanks, - OMCS (full body Overall accuracy < 26 mm for full body model.
Sporri, et al., traj. | (kinematic chain) thighs, sacrum, sternum, inertial model) When arms are not taken into account, decreased accuracy in 3D (-3mm), AP
2017) head + arms, wrists) - Sloped skiing and CC direction (up to 8 mm), but no impact on precision
- 11 skiers
(Floor- - - 3D Biomechanical model |3 MIMUs (Sacrum + Right & | - OMCS (full body Full body vs general compensated single sensor
Westerdijk (BCoM approximation) | Left shanks for gait inertial model) ICC: AP: 0.68; ML: 0.77; V: 0.96
etal., 2012) segmentation) - Straight walking RMS (mm): AP: 5.52; ML: 4.44; V: 3.17
- 8 AS (50-75 years)
(Karatsidis 3D |- - Biomechanical model | MVN suit: 17 MIMUs - Force plates Estimation of individual limb GRF. During single stance (GRF = mass *
etal., 2017) (BInertial model) - Straight walking acceleration of BCoM):
-11AS NRMSE(%): AP=10.0; ML=35.4; V=9.0
(Lintmeijer | AP |- - Biomechanical model | 13 MIMUs + single pelvis - Force plates single-pelvis MIMU: good reliability (ICC > 0.91) but elevated mean NRMSE
etal., 2018) (inertial model vs MIMU - Rowing (9.15%).
BCoM approximation) - 9 rowers Full body standardized model should be preferred (ICC > 0.98%, NRMSE < 3.7 %)
(Meichtry et | - 3D |3D Biomechanical model | 3D accelerometer at L3 - Force plates - L3 leads the CoM in AP direction

- larger acceleration amplitudes but significant correlations in RMS
accelerations
- larger vertical excursions but high correlations (> 0.9)
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BCOM motion Method Validation
Authors Acc. | Vel. | Disp. | Method type Wearable sensor ReferenFe, situation, | pesults
population
(Mohamed |3D |- - Biomechanical model | 3 MIMUs (sacrum + feet for | - Force sensors under - Significative correlations in all directions (AP > 0.7 except for asymmetric
Refai et al., (BCoM approximation) | reference frame) each foot walking, CC > 0.75 except for slow walking, ML < 0.55)
2020) - Walking tasks including | - RMS < 7.4 % BW in all directions
turns - NRMSE: Horizontal plane: 12.1% +/- 3.3%
-8 AS Vertical 10.2 +/- 1.2%
(Myklebust | - - 3D Biomechanical model |1 MIMU at S1 - OMCS (full body IMU captures CC excursion of S1 marker with accuracy < 2%
etal., 2015) (BCoM approximation) inertial model) + 1 RMS error ~ 5% in ML but up to 72% in AP and CC excursions
marker at S1 level
- cross-country skiing
- 6 skiers
(Najafietal., | - - 3D Biomechanical model | 1to 3 MIMUs (shank, thigh, |- Pressure platform /5 - 2-link model optimal accuracy/simplicity ratio (r >0.93 in AP and ML ; but up
2015) (comparison of 3 x-link | back) OMCS markers to 14,6% error in ML motion)
models) - Golf swing - High correlations with OMCS-based CoM during dynamic swing ( 0.91 in AP
-4 AS + 18 golfers and 0.71 in ML; RMSE 12% and 15.52 % in AP and ML)
(Paveietal., |- - 3D Biomechanical model | MVN suit: 17 MIMUs - Force plates - 3D contour : good reliability (ICC = 0.86) but poor shape agreement (3D RMSD
2020) (Inertial model) - Straight walking =17 mm), especially in AP and ML directions- Very poor accuracy in BCOM
- 12 young AS displacement (mean RMS > 37% in AP and ML and up to 98% of RMS error in AP
direction)
(Regterschot |CC | CC |- Biomechanical model |2 MIMUs (sternum, right - Force plates - Time-series were not compared.
et al., 2016), (comparison of 2 waist) - Sit-to-stand transfers - Strong to very strong association between hip sensor and platforms but only
BCoM approximation) - 27 older adults maximal acceleration was within 10% of the reference value. Systematic
overestimation of all other measures
=> adequate validity of hip MIMU but insufficient accuracy
(Sabatini - 3D |- Mixed machine 2 MIMUs (L5, right shank) - OMCS (rigid clusters of | -LoA of cyclical component (+/- 1.96 std):
and learning approach and markers on top of -ML=0,07 m/s (+/- 0.10 m/s)
Mannini, biomechanical model MIMUs) - AP =0.03 m/s (+/- 0.05 m/s)
2016) (BCoM approximation) - treadmill / straight- -CC=0.06 m/s (+/- 0.10 m/s)
walking -RMS error of average velocity : 0.06 m/s (0.07 m/s) (Average RMSE about 4%
-12AS/5AS above 4km/h if task-specific training vs 5% when non-task specific training)
(E. cCc |- - Mixed machine 1 MIMU at C7 - Force plates / insoles - in-lab validation
Shahabpoor learning approach - treadmill / outdoor NRMSE vGRF = 5.6 % +/- 1.5% with dynamic time warping vs 7.5% +/- 1.7 %
and Pavic, (dynamic-time free-walking without
2018) warping) & -6AS/10AS - outdoor validation
biomechanical model range NRMSE = 7-11%
(BCoM approximation)
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BCOM motion Method Validation
Authors Acc. | Vel. | Disp. | Method type Wearable sensor ReferenFe, situation, | pesults
population
(Shahabpoor | 3D | - - Biomechanical model | 3 MIMUs: C7, L5, right thigh - 3-IMU model:
etal., 2018) (Inertial model: (located the closest possible NRMSE 16% in AP, 18% in ML and 7% in V
comparison of to SCoM) => NRMSE can be decreased by 3-5 % with subject training (12 MIMUs)
different models) => Non-linear model by including 1-lagged term improved NRMSE by 2%
- Outodoor validation
=> Model 2 NRMSE 8.7 % for vertical GRF
(Yuanandl. |- 3D |3D Biomechanical model | 3 MIMUs (pelvis, thigh, - OMCS - Marker ontop |- RMSE AP 0,051 m/s (< 3 % of max velocity) / 3.8 cm (total length: 3.6 m)
M. Chen, (fusion of kinematic shank) of pelvis MIMU -RMSE V0,029 m/s/3.2cm
2014) chain + BCoM & pressure insoles (stance - Jumping forward - RMSE ML 0,13 m/s (lack of accuracy) /5.2 cm
approximation) phase) -1AS
(Zijlstra et cC |cC |- Biomechanical model | 3 MIMUs (sternum, pelvis, - Force plates - weighted average of sternum and waist sensor achieved highest correlations
al., 2010) (comparison of inertial | right waist) - Sit-to-stand transfers (mean 0.99 / 0.94 for young/elderly) and good accuracy (NRMSE from 11.5 to
models) -5AS + 12 elderly 13%).
- Pelvis MIMU achieved good accuracy (NRMSE < 13.4%) but correlations as low
as 0.56 for slow motion. Sternum MIMU highly correlated (r > 0.85) but high
NRMSE (> 24%)
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1.2. Single-sensor approach

In general, single-segment approaches are based on the assumption that a single sensor positioned
at pelvis level allows to capture BCoM motion with great accuracy (Gard et al., 2004; Floor-Westerdijk
et al., 2012; Huntley et al., 2017). The underlying hypotheses within this theory are that the BCoM is
fixed in the pelvis reference frame — and therefore, that it is not influenced by the other body segments
motions relative to the pelvis’ (Eames et al., 1999; Floor-Westerdijk et al., 2012) — and that pelvis
rotations can be considered as sufficiently small so that the relative motion of a skin-mounted marker
compared to the BCoM due to these rotations are negligible (Gard et al., 2004). Although these
assumptions can be valid in people with asymptomatic gait at self-selected or slower speeds (Gard et
al., 2004), they were shown not to be acceptable in pathological gait where the single-marker method
implemented in laboratory-based gait analysis was shown to result in significant overestimations in
the estimated BCoM excursion (average error of up to 5 cm within a step in the anteroposterior
direction in post-stroke participants) compared to a full body inertial model (Eames et al., 1999;
Huntley et al., 2017). BCoM excursions were also shown to be overestimated using a single marker at
pelvis level in the asymptomatic population, especially when performing dynamical motion (Pavei et
al., 2017).

Despite this conflicting evidence, the single-marker approach remains attractive because it offers
a simple and quick estimate of BCoM motion with a good agreement in the motion patterns compared
to force plates or full body data (Gard et al., 2004; Huntley et al., 2017). Therefore, several authors
have investigated the validity of using a single MIMU at pelvis level to approximate BCoM motion
(Meichtry et al., 2007; Esser et al., 2009; Floor-Westerdijk et al., 2012; Yuan and |. Chen, 2014;
Regterschot et al., 2014; Myklebust et al., 2015; Najafi et al., 2015; Sabatini and Mannini, 2016; E.
Shahabpoor and Pavic, 2018; Lintmeijer et al., 2018; Mohamed Refai et al., 2020).

In three studies (Esser et al., 2009; Yuan and Chen, 2012; Sabatini and Mannini, 2016), the single-
MIMU-based BCoM motion was compared to that obtained with reflective markers positioned above
the sensor and not to a gold standard (full body inertial model or force plate data). However, the
methods were applied in asymptomatic subjects, where the sacral approximation of the BCoM can be
considered valid during straight walking and comfortable speed (Gard et al., 2004). In (Esser et al.,
2009), vertical peak-to-peak acceleration, velocity and excursion of the BCoM obtained with a MIMU
positioned at L4 were compared to that derived from a MIMU-mounted marker. Although high
agreement was found for these three parameters against marker data, the amplitude of vertical
velocity motion was slightly (< 0.04 m.s?), but significantly, underestimated with the MIMU (Esser et
al., 2009). Errors might have been introduced during the integration process of acceleration data. Both
other methods, which provide results in the three directions of motion, rely on additional sensors to
improve the integration and the estimation of BCoM velocity (Yuan and I. Chen, 2014; Sabatini and
Mannini, 2016). Furthermore, these methods provide the instantaneous walking velocity while the
former only provided an estimate of the mean-subtracted walking velocity.

The remaining single-sensor-based studies investigated the validity of the single-MIMU approach
against either force plate data or full body inertial models in different situations. When the considered
situation included significant upper body motion, such as when skiing (Myklebust et al., 2015),

performing golf swing (Najafi et al., 2015) or rowing (Lintmeijer et al., 2018), a significant decrease in
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accuracy was observed, in particular in the anteroposterior direction. This might be explained by higher
range of motion of the trunk and arms, compared to walking. Furthermore, decreased agreement of
the anteroposterior and mediolateral acceleration were observed in asymptomatic subjects walking
with a forced asymmetrical gait pattern compared to normal walking (Mohamed Refai et al., 2020).
These results seem to indicate that including a sensor on the trunk, rather than solely on the pelvis,
might be necessary for pathological gait, in particular in people with lower-limb amputation who were
shown to present wider range of motion of the trunk segment (Goujon-Pillet et al., 2008). This
proposition was already underlined in (Meichtry et al., 2007) where the anteroposterior acceleration
measured at L3 was found to precede the BCoM acceleration in the asymptomatic population. This
phase difference, which was not observed in the vertical direction, might explain the overestimation
of mechanical energy parameters when using the sacral method compared to full body or force plate
data (Meichtry et al., 2007; Pavei et al., 2017). Higher excursions of the BCoM were found in all three
directions when using the single sensor approximation compared to a gold standard during sit-to-stand
transfer (Regterschot et al., 2016) and straight walking (Meichtry et al., 2007; Floor-Westerdijk et al.,
2012), similarly as when using a single optical motion capture marker (Pavei et al., 2017).

Asintroduced in the first paragraph, pelvis rotations and in particular pelvis tilt may be accountable
for the increased range of motion of a skin-mounted device compared to a fixed point within the pelvis
(Gard et al., 2004; Floor-Westerdijk et al., 2012). In order to mitigate the effect of pelvis rotations on
the BCoM displacement estimated with the single sensor approach, Floor-Westerdijk and coworkers
used a generic translation vector to transfer the acceleration measured at the sacrum to a point within
the pelvis, considered to be the BCoM (Floor-Westerdijk et al., 2012). This resulted in a significative
improvement of the accuracy and agreement of the displacement of the BCoM in the mediolateral
direction as evidenced by the reduction of root mean square error by 40% (RMS = 4.27 mm instead of
7.16 mm) and the increase of the intraclass correlation coefficient (ICC going from 0.64 to 0.77)
between the MIMU-based and the segmental analysis-based BCoM. Agreement in the anteroposterior
direction remained moderate (ICC = 0.68) as the method didn’t correct for the lag observed between
pelvis and BCoM motion.

Finally, Shahabpoor and Pavic proposed a machine learning approach to increase the accuracy of
the vertical component of the BCoM acceleration estimated using a single MIMU (E. Shahabpoor and
Pavic, 2018). The vertical BCoM acceleration was estimated using the acceleration measured at C7
corrected by a time-varying factor. The former was derived from a dynamic time warping approach
that was applied to the average time-series of difference between C7 and BCoM vertical accelerations.
This approach allowed to reduce the error achieved when using a constant coefficient by up to 25 %,
yielding an average error of 5.6 %. The validity of this approach was not investigated for the
anteroposterior and mediolateral components of the acceleration or of any other BCoM kinematic
descriptor, therefore, the added value of the complex machine learning approach compared to a
constant coefficient method applied at pelvis level is questionable.

1.3. Multi-sensor approach

Two main approaches are described in the literature when dealing with multiple sensors. The most
common approach consists in the wearable version of the full body inertial model (Faber et al., 2016;
Karatsidis et al., 2017; Lintmeijer et al., 2018; Pavei et al., 2020), possibly simplified using a reduced
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number of sensors (Zijlstra et al., 2010; Najafi et al., 2012; Shahabpoor et al., 2018) while the second
approach relies on a kinematic chain (Yuan and |. Chen, 2014; Fasel, Sporri, et al., 2017).

1.3.1. Inertial model

Methods based on the inertial model paradigm rely on the fact that the 3D BCoM kinematics can
be retrieved through the weighted sum of the kinematics of the body segments centers of mass
(SCoM). First, segment-mounted MIMUs allow to retrieve the acceleration of the SCoM which are then
fused to estimate BCoM acceleration, and, after integration, BCoM velocity or trajectory. An inertial
model provides, for each included segment, the position of its center of mass in the segment
anatomical frame as well as the mass of the segment.

Four studies have investigated the accuracy of a full-body inertial model associated with MIMUs
for the estimation of BCoM motion. The first three studies use the xSens MVN suit (consisting of 17
MIMUs positioned at specific locations on the body), therefore, unknown proprietary algorithms
allowed to retrieve the SCoM accelerations from MIMU measurements. Two of these studies
compared the 3D BCoM acceleration retrieved from the xSens MVN suit to force plates data during
straight walking (Karatsidis et al., 2017) and a trunk bending task (Faber et al., 2016). In both cases,
poorer accuracy was achieved for the anteroposterior and mediolateral directions than for the vertical
direction and only moderate correlations were found between the lateral component estimated with
the MIMU-based inertial model and the force plates (average of 35% of errors in the mediolateral
direction during single stance in straight walking in (Karatsidis et al., 2017)). Another study investigated
the accuracy of the 3D BCoM trajectory output of the MVN suit compared to force plate and optical
motion capture (OMC) data (Pavei et al., 2020). The MIMU-based 3D BCoM path was found to have a
different shape than that obtain with force plate or OMC data, with significant errors. Average errors
were in fact above 35% in both the anteroposterior and mediolateral directions and leaded to an
overestimation of the external work of more than 100%. In the fourth study, Lintmeijer and coworkers
investigated the use of a 13-segment inertial model to track the BCoM acceleration in the
anteroposterior direction while rowing. Each of the thirteen MIMUs was manually positioned at the
longitudinal position of the SCoM of the underlying segment and was considered to directly provide
the SCoM acceleration. Contrary to when using a single sensor at the pelvis, the 13-MIMU set allowed
to estimate accurately the anteroposterior acceleration of the BCoM (Lintmeijer et al., 2018). Such
results may not be achieved in different motions such as walking.

The four above-mentioned studies involved a full-body inertial model and the use of 13 to 17
MIMUs. For the sake of simplicity and time-efficiency, a wearable protocol intended for the clinical
field should include the minimal number of sensors possible (Najafi et al., 2015; Ancillao et al., 2018;
Jeong et al., 2018). Therefore, three authors proposed a reduced set of MIMUs for the estimation of
BCoM kinematics.

For instance, a model combining the trunk and pelvis segments was proposed to estimate BCoM
kinematics and the vertical power exerted at the BCoM to lift the body (or “lifting power”) during sit-
to-stand transfers of elderly people from only two MIMUs (Zijlstra et al., 2010). Although this model
resulted in a significant overestimation of the vertical acceleration of the BCoM (about 11%), the
simple MIMU-based estimation was found to be highly correlated with the vertical BCoM motion and
allowed to predict the peak of lifting power estimated with force plate data. Najafi and coworkers
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proposed a two-link model, integrating MIMUs rigidly attached to a shank and the trunk for the
evaluation of BCoM motion during golf swing. High correlations were obtained with errors in the
horizontal BCoM displacement below 16% (Najafi et al., 2015). The model developed could be used to
estimate postural stability in clinics (Najafi et al., 2015) but may not be transferable to gait. Last but
not least, Shahabpoor and coworkers proposed a methodology to identify the optimal locations of
MIMUs for the estimation of 3D BCoM acceleration (Shahabpoor et al., 2018). In a population of young
asymptomatic subjects, a weighted average of the SCoM accelerations of the trunk, pelvis and a thigh
SCoMderived from an OMC system were shown to estimate the 3D BCoM acceleration with good
accuracy in the vertical direction (7% of errors), and moderate accuracy in the anteroposterior and
mediolateral directions (respectively 16 and 18%). Subject-specific training of the model and/or the
use of non-linear relationship were shown to improve the results in the horizontal plane (< 15%). The
validity of the method when using acceleration data derived from MIMUs and for outdoor ambulation
was investigated in the vertical direction using pressure insoles and MIMUs rigidly mounted on each
segment, near the underlying SCoM. Mean errors of 8.7% were achieved in the vertical BCoM
acceleration with subject-specific training (Shahabpoor et al., 2018).

1.3.2. Kinematic chain

Kinematic chain approaches allow to retrieve the trajectory of
segments and joint centers of rotation based on the knowledge of the
length and orientation of segments, as well as the localization of joint
centers of rotation in the anatomical frames.

In (Yuan and I. Chen, 2014), the center of mass is assumed to lie at
the pelvis level. Under the assumption of ankle null velocity during
stance phase, velocity at the knee joint can be estimated assuming that
the tibia is a rigid solid, that its orientation is correctly captured by a
MIMU positioned on the tibia, and knowing the distance between the
ankle and the knee joints. The same process in then applied to obtain
the velocity as the hip joint and ultimately at the pelvis. This estimation
of the velocity is fused with that obtained by direct integration of the
acceleration measured by the pelvis MIMU in order to correct the drift
inherent to the integration. During swing phase, the assumption of null
velocity does not hold and the velocity is estimated only by the direct
integration of the pelvis MIMU acceleration. This allows to estimate the
velocity of the BCoM with three MIMUs, located at the shank, thigh and

pelvis of one leg (Figure 23). The method was validated on a single

asymptomatic subject, performing a forward jump. While the method
was proven to be accurate in the vertical direction, relatively low accuracy
was achieved for the mediolateral component and errors in the
anteroposterior direction reached 3% of the maximal velocity. The absence
of other segment-to-sensor calibration than manual alignment may
partially explain the inaccuracies, especially in the mediolateral direction.
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Figure 23: Kinematic chain, taken from
(Yuan and I. Chen, 2014). R; are the
orientation outputs of MIMUs j, [,
are the vector linking joint j to k, w; j, is
the angular velocity vector of segment j
in the global reference frame



1.3.3.  Fusion of inertial model and kinematic chain approaches

The method proposed by Fasel and coworkers requires to define both a kinematic chain and a full-
body inertial model (Fasel, Sporri, et al., 2017). The anthropometric inertial model is used to retrieve,
for each segment, its mass and dimensions as well as the position of its center of mass in its anatomical
frame. The position of the SCoM in the reference global frame are then retrieved using a kinematic
chain approach. This subsequently allows to obtain an estimate of the BCoM position as the weighted
sum of the SCoM positions, similar as when using an optical motion capture system. To achieve this
aim, the first step consists in computing the orientation of 11 MIMUs mounted on the body relative to
the underlying segments using functional and/or static calibrations. During the skiing trials, the
application of the kinematic chain allows to retrieve the trajectory of the joint centers of rotations
relative to the root point of the kinematic chain (here, the lumbar joint center) using the segment
orientations (known thanks to the MIMUs rigidly mounted on the segments) and the segments
dimensions (obtained using anthropometric tables). The inertial model provides the position of each
SCoM relative to their respective joint centers of rotation in the segment frame. Therefore, using the
rigid body assumption and the trajectory of the joints center of rotations thanks to the kinematic chain,
it allows to compute the SCoM trajectory. Finally, a weighted average of SCoM positions at each
timestamp was computed to estimate BCoM trajectory. The position of the BCoM relative to the
lumbar joint center was tracked with better accuracy in the vertical and mediolateral than in the
anteroposterior directions, with a 3D accuracy of less than 26 mm (Fasel, Sporri, et al., 2017). In the
perspective of model simplification, the authors evaluated the accuracy achieved with seven sensors,
removing the arms from the model. Accuracy and precision did not change significantly, suggesting
that the arms contribution to the BCoM motion in the investigated situation was negligible.
Interestingly, the method was shown to achieve a decreased accuracy in the kinematics of the most
distal segments, due to errors accumulation with the kinematic chain paradigm.

1.4. Synthesis and selection of the most appropriate methods for the wearable
estimation of BCoM kinematics in people with lower-limb amputation

None of the methods identified in the literature were applied to the gait of people with lower-limb
amputation. Therefore, the advantages and drawbacks of each of the retrieved methods should be
weighted and put in regards with the specificities of the lower-limb amputee gait pattern in order to
identify the most promising methods for BCoM kinematics estimation in amputee gait. In particular, it
should be kept in mind that a trade-off between simplicity (number of sensors, calibration procedures)
and accuracy is essential for clinical transfer of wearable protocols.

Three categories of methods have emerged from the literature regarding the estimation of BCoM
derived parameters: single-sensor approaches, multi-segment inertial models and kinematic chains.

Single sensor approaches are attractive because of their simplicity (Gard et al., 2004; Esser et al.,
2009; Jeong et al., 2018). However, they were shown to overestimate BCoM range of motion and to
lack accuracy in the mediolateral and anteroposterior directions, similar as their optical motion capture
counterpart. Indeed, significant differences were found between the BCoM displacement and
acceleration in the mediolateral direction retrieved with the sacral method compared to the multi-
segment analysis in asymptomatic subjects (Jeong et al., 2018). Furthermore, when analyzing
movements involving a wide upper body range of motion or an asymmetrical gait pattern, the sacral
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method was deemed inappropriate (Meichtry et al., 2007; Myklebust et al., 2015; Huntley et al., 2017;
Lintmeijer et al., 2018; Mohamed Refai et al., 2020). Therefore, this method is not likely to allow the
accurate capture of 3D BCoM motion in amputee gait. Indeed, people with lower-limb amputation
were shown to display an increased range of motion of the pelvis and the trunk (Michaud et al., 2000;
Goujon-Pillet et al., 2008).

Multi-sensor inertial models allow to retrieve the BCoM acceleration from a weighted sum of
accelerations measured by a set of MIMUs. A large variety of MIMU sets has been retrieved from the
literature, including from two to 17 MIMUs when using the commercialized MVN suit. This approach
assumes that MIMUs rigidly attached to body segments can allow to estimate the accelerations of the
underlying SCoMs. Therefore, a large number of MIMUs should be employed in order to capture the
accelerations of all the segments pertaining to the body. In general, MIMUs are carefully positioned as
closely as possible to the underlying SCoM and the accelerations measured by the MIMUs are used as
proxy measurements of the SCoM accelerations (Lintmeijer et al., 2018; Shahabpoor et al., 2018). As
MIMUs provide the acceleration in the MIMU local frame, their output must be transferred in a global
reference frame prior to computing their weighted average (Lintmeijer et al., 2018; Shahabpoor et al.,
2018). Care must be taken to ensure that the orientation output is not influenced by magnetic
disturbances (Lintmeijer et al., 2018; Shahabpoor et al., 2018). In order to reduce the number of
sensors required, several authors have investigated the feasibility of simplifying inertial models by
considering only the motion of up to three segments (Zijlstra et al., 2010; Najafi et al., 2015;
Shahabpoor et al., 2018), with one approach implemented in a walking task.

The last approach is that of the kinematic chain. It can either be used with the estimation that the
BCoM lies within a segment pertaining to the kinematic chain, such as the pelvis (Yuan and I. Chen,
2014) or it must be coupled with an inertial model in order to estimate SCoM motion from the motion
of the joint centers of rotation (Fasel, Sporri, et al., 2017). In any case, the kinematic chain method
imposes to use MIMUs on all adjacent segments pertaining to the kinematic chain. Furthermore,
accurate sensor-to-segment alignments are crucial since the method relies on the orientation of
segments to estimate the segments’ trajectories and since errors build up along the kinematic chain
(Fasel, Sporri, et al., 2017). The coupled kinematic chain and inertial model proposed by Fasel and
coworkers yielded an accurate estimation of the BCoM excursion but required 7 MIMUs and didn’t
provide the absolute kinematics of the BCoM in an Earth-fixed reference frame since the root point of
the kinematic chain was the lumbar joint center.

Based on this overview of the literature, single-sensor approaches do not seem relevant for lower-
limb amputee gait as BCoM trajectory and acceleration estimated using this approach or its laboratory-
based counterpart were shown to be overestimated in pathological and asymmetrical gait. However,
since a trade-off between accuracy and simplicity of the protocol is crucial, full-body inertial models or
complete kinematic chain neither appear relevant. Therefore, the multi-sensor approach consisting in
simplifying inertial models represents an interesting track for the estimation of BCoM kinematics from
MIMUs for the gait of people with lower-limb amputation. In particular, the method developed by
Shahabpoor and coworkers could be adapted in the population of people with lower-limb amputation
in order to identify the optimal segments network required for the estimation of 3D BCoM motion.
The next chapter thus aims at investigating the feasibility of deriving an optimal sensor network for
the estimation of BCoM acceleration in people with transfemoral amputation, using optical motion
capture data.

58



Chapter 2 — Optimal sensor network for the estimation of 3D body

center of mass acceleration in people with transfemoral amputation

This chapter will be submitted as an article. Part of the validation study, with a slightly different
post-processing, was submitted as an abstract for the 45™ Congress of the Société de Biomécanique.
The work of Joseph Basel, Msc, is duly acknowledged.

2.1. Introduction

The study of biomechanical parameters derived from body center of mass (BCoM) motion may
reveal crucial information about gait impairment (Minetti et al., 2011; Pavei et al., 2017; Tesio and
Rota, 2019), especially in people with lower-limb amputation (Agrawal et al., 2009; Bonnet et al., 2014,
Askew et al., 2019; Tesio and Rota, 2019). Indeed, from a mechanical standpoint, the kinematics and
dynamics of the body center of mass (BCoM) are important parameters of the locomotion which
directly result from the application of external forces (Tesio and Rota, 2019). The 3D path of the BCoM
allows to describe the displacement of the body as a whole (Pavei et al., 2020). BCoM acceleration,
velocity and displacement have been shown to provide insight on dynamical stability (Hof et al., 2005;
Hak et al., 2014; Al Abiad et al., 2020), gait efficiency (Donelan et al., 2002a; Bonnet et al., 2014; Askew
et al., 2019), and gait asymmetries (Agrawal et al., 2009; Minetti et al., 2011) both in the asymptomatic
population and in the population of lower-limb amputees. Although 3D BCoM motion is of particular
interest to describe pathological gait, it is scarcely studied in clinical routine (Tesio and Rota, 2019),
partly due to the high cost and complexity of optoelectronic motion capture systems and force plates
which allow the acquisition of BCoM-derived parameters.

Recently, the use of magneto-inertial measurement units (MIMUs) has been proposed as an
alternative to the gold standards for the capture of BCoM derived parameters (Floor-Westerdijk et al.,
2012; Ancillao et al., 2018; Shahabpoor et al., 2018; Pavei et al., 2020). MIMUs are indeed small, light,
and low-cost wearable sensors, embedding orthogonally mounted accelerometers, gyroscopes and
magnetometers. The latter provide the linear acceleration, angular velocity and local magnetic field
along the axes of an inertial frame defined by the MIMU case (“MIMU local frame”) and their fusion
allows to estimate the orientation of the MIMU local frame relative to a global Earth-fixed frame
(Bergamini et al., 2014). Therefore, provided MIMUs are securely attached to segments and carefully
aligned with the underlying anatomical frames, they can be used to estimate segmental orientation
and motion and ultimately, similarly as optoelectronic systems, segments’ centers of mass (SCoM) and
3D BCoM motion.

For the sake of simplicity, most wearable protocols developed for 3D BCoM motion tracking
involve a single sensor at pelvis level (Meichtry et al., 2007; Floor-Westerdijk et al., 2012; Ancillao et
al., 2018). Yet, several works evidenced that the sacral method tends to overestimate the 3D path of
the BCoM (Meichtry et al., 2007; Pavei et al., 2017). In particular, the mediolateral (Jeong et al., 2018;
Mohamed Refai et al., 2020) and anteroposterior (Meichtry et al., 2007; Myklebust et al., 2015; Najafi
et al., 2015) components of BCoM trajectory and acceleration were shown not to be accurately
captured when using the sacral method in the asymptomatic population, especially when adopting an
asymmetrical gait pattern or performing motion involving the upper body (amplitude of the sacral
marker displacement compared to that of BCoM displacement of 124 mm vs 46 mm in the
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anteroposterior direction in cross-country skiiers - Myklebust et al. 2015 ; correlations of the sacral-
method-based acceleration with the BCoM acceleration inferior to 0.56 in the anteroposterior and
mediolateral directions in sound participants mimicking an asymmetrical gait pattern - Mohamed Refai
et al. 2020). As a consequence, multi-segment analyses, including 11 to 17 MIMUs, have also been
proposed (Fasel, Sporri, et al., 2017; Karatsidis et al., 2017; Lintmeijer et al., 2018; Pavei et al., 2020).
In (Fasel, Sporri, et al., 2017), the BCoM trajectory was for instance estimated using 11 MIMUs with
high 3D accuracy (25.7 mm for the norm and errors < 8.6 mm along each axis) in 11 athletes performing
indoor alpine skiing. Similarly, in (Lintmeijer et al., 2018), the anteroposterior component of the BCoM
acceleration was estimated accurately compared to force plates (NRMSE = 3.8 %, intraclass correlation
coefficient > 0.988) using thirteen MIMUs located on the body segments of nine rowers.

To the authors’ knowledge, no study investigated the feasibility of estimating 3D BCoM motion
with MIMUs in people with lower-limb amputation. While single-sensor approaches may not be
accurate enough for pathological gait, finding a balance between the number of MIMUs and accuracy
is essential (Ancillao et al., 2018; Jeong et al., 2018). In this prospect, Shahabpoor and coworkers
recently proposed a method to select a reduced number of MIMUs for the estimation of 3D BCoM
acceleration in the asymptomatic population (Shahabpoor et al., 2018). Three MIMUs located on the
trunk, pelvis and one thigh allowed to accurately estimate the vertical component of BCoM
acceleration (normalized root mean square errors NRMSE < 8.7% of the reference BCoM acceleration
amplitude). While the need to consider the 3D nature of BCoM movement has been widely
acknowledged (Minetti et al., 2011; Pavei et al., 2017; Tesio and Rota, 2019), moderate accuracy was
achieved in the mediolateral and anteroposterior components (NRMSE > 16 %) when adopting this
configuration with an optical motion capture system (Shahabpoor et al., 2018). Nonetheless, the
method developed appears promising and could be adapted in people with lower-limb amputation.

The aim of the present study was therefore to identify optimal sensor networks for the estimation
of 3D BCoM acceleration in people with transfemoral amputation. First, segmental contributions to
the BCoM acceleration will be investigated using optical motion capture system data and a full body
inertial model. Based on these results, the accuracy of 3D BCoM acceleration estimated using different
combinations of the most contributing segments will be investigated.
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2.2. Methods

2.2.1. Participants

The study was designed according to the Declaration of Helsinki
and was granted ethical approval (Comité de Protection des Personnes
CPP NX06036). Ten people with traumatic transfemoral amputation
(age: 41.5 £ 11.3 years; mass: 68.8 + 15.2 kg; height: 1.73 £ 0.07 m; 8
males) gave written informed consent to participate in the study
(Table 3). Inclusion criteria were people with transfemoral unilateral
amputation due to trauma or tumor, fitted with a definitive prosthesis,
able to walk at various speeds without any assistance. Participants
walked with their usual passive microprocessor-controlled knee with
an energy storing and return foot, the alignment of which was
controlled by a prosthetist prior to data collection.

2.2.2. Measurement protocol

Each participant was equipped with a full-body marker set (Al
Abiad et al., 2020 - see Appendix A — Marker set used in Part 2 details).
An optoelectronic system (VICON, Oxford, UK, 200 Hz) recorded
markers positions while the participant was keeping a static standing
posture and four photographs (front, back, both sides) were being
taken (Figure 24). Following the static calibration trial, participants had

Figure 24: Static standing posture

to walk at self-selected speed along an 8 m pathway, with 3 force plates (AMTI, 1000 Hz) in the middle.

Only trials with three successive foot contacts on the force plates (i.e. a complete stride) were

considered for further analysis.

Table 3: Participants' characteristics

Participant Gender a/gles) ::;ght :\Ill(z)s S BwmI dA;T::::::)rr;) ::T':utation Prosthetic knee  Prosthetic foot
TF1 M 58 1,8 68 21,9 31 TF Mauch SNS Variflex
TF2 M 48 1,8 64 19,7 1 TF C-leg Triton
TF3 M 54 1,8 85 25,9 7 TF C-leg 1C40

TF4 M 43 1,6 72 26,7 3 KD Rheo knee Variflex
TF5 F 49 1,7 53 19,4 25 KD Total Knee Elation
TF6 M 44 1,7 47 16,6 18 TF C-leg Silhouette
TF7 F 26 1,7 65 23,9 2,5 Gritti Rheo knee Elation
TF8 M 26 1,8 56 17,3 1,5 TF C-leg Pro-Flex
TF9 M 32 1,8 95 29,3 7 TF Rheo knee XC Pro-Flex
TF10 M 35 1,7 83 29,1 9,5 KD C-leg Triton
Mean 41,5 1,73 688 23,0 10,5

SD 11,3 0,07 15,2 4,7 10,6

BMI, body mass index; F, female; M, male; TF, Transfemoral amputation; KD, Knee disarticulation, SD, standard deviation.
The prosthetic devices are from Ottobock (C-Leg, Triton, and 1C40) from Osslir (Rheo Knee, Mauch SNS, Total knee TK200, Variflex,
Elation and Pro-Flex) and from Freedom Innovation (Silhouette).
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2.2.3. Data processing

A 15-segment hybrid inertial model defined according to Pillet and coworkers (Pillet et al., 2010),
was used to obtain body segmental inertial parameters. Prosthetic limbs were represented by a
concentrated mass estimated from the manufacturers’ notices similarly to (Al Abiad et al., 2020).
Markers and force plate data were filtered using a zero-phase fourth order Butterworth low-pass filter,
with a cut-off frequency of 5 Hz. Each segment’s center of mass (SCoM) and inertial-model based BCoM
accelerations were computed from marker data. Before each differentiation, marker-based signals
were low pass filtered using the abovementioned Butterworth filter. Additionally, reference BCoM
acceleration (@gcomyres) Was derived from ground reaction force time-series (GRF) following
Newton’s second law (equation 1, with my,q,, the mass of the body and g the gravitational
acceleration). Gait cycles were segmented using a 20 N threshold on the ground reaction force data
and acceleration data was time-normalized to percent of the gait cycle.

GRF = Mpody (aBCoM,ref - g) (1)

a. Segmental contributions

Segmental contributions to the BCoM accelerations were defined according to two criteria as
defined in (Shahabpoor et al., 2018): the relative weight of SCoM accelerations in BCoM acceleration
and the similarity of SCoM acceleration patterns with that of the BCoM derived from the inertial model.

The weight of the contribution of each segment (Contrib,,,.) in BCOM acceleration was defined

segi
as the SCoM acceleration (asc,u,) Weighted by the relative mass of the segment in the body (equation
2, My, being the it" segment mass). Contribution weights were normalized by peak-to-peak BCoM
acceleration and expressed as a percentage of total contributions. Segmental contribution weights

were then averaged for each segment over all the participants.

Contribg.,, = —y ascom; (2)

Regarding the similarity of SCoM accelerations, the Pearson’s cross-correlation coefficient was
computed between each pair of segment accelerations as well as between each SCoM acceleration
and the inertial model based BCoM acceleration, for the anteroposterior (AP), mediolateral (ML) and
vertical (V) directions, yielding three 16x16 symmetric cross-correlation matrices per gait cycle. For
each direction and for each subject, the retrieved cross-correlation matrices were averaged over all
the retrieved gait cycles to yield subject-specific cross-correlation matrices. Finally, the cross-
correlation matrices were averaged over all subjects.

The most relevant contributing segments were then identified based on their respective weight
and similarity to the BCoM acceleration derived from the inertial model.

b. Optimal sensor networks

The identification of the most contributing segments to the BCoM acceleration allowed to define
several MIMU-based sensor networks with a minimal number of sensors for the estimation of BCoM
acceleration, including three to six sensor locations. Furthermore, two methods were investigated for
the construction of optimal sensor networks (OSN). In the first method, the OSN-based BCoM
acceleration was computed as the sum of the segmental contributions for the N included segments
(OSN type 1, equation 3):
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a = YV Contrib_ = YN, U g (3)
BCoM,OSN; = Xi=1 segi = LASITN i, @SCoM;

The second method was based on the model proposed in (Shahabpoor et al., 2018). In order to account
for the whole-body mass, the mass of each of the non-selected segments (mseg].) was attributed to
the main contributor whose acceleration was the more correlated to that of the non-selected segment,

based on the average cross-correlation matrix (OSN type 2, equation 4).

Mgeg:+ Zl-E_Nr- i Mseqg
_ N ; _ N seg;t &j=1 TjiMseg;
Agcomosn, = Li=1 @i Contrib = ¥,

a ) 4
Mbody SCoM; 4)

) r;; = 1, ifincluded segment i was the more correlated with segment j
with { 7;; = 0, if included segment k # i was the more correlated with segment j

The inertial-model-based and the OSN-models-based BCoM acceleration were compared to the
force plates-based reference BCoM acceleration. A leave-one-out methodology was used for the
validation of the second type of OSN-based BCoM acceleration (equation 4) so that, for each
participant, cross-correlation coefficients used to build the model were not used in the validation
dataset. Reference and models-based BCoM accelerations were compared over the central prosthetic
gait cycle of each trial using Pearson’s linear correlation coefficients and their p-value as well as peak-
to-peak normalized root-mean square errors (NRMSE) as proposed in (Ren et al., 2008), averaged over
all patients. An alpha-level of 0.05 was used for assessing the correlations significance. The results
achieved with a single sensor at the pelvis center of mass (@gcompelvis = @scom,pelvis ) are also
provided as an indication of the performance of the single sensor method. Given the low sample size,
only descriptive statistics was provided.

2.3. Results

A total of 25 complete prosthetic gait cycles were retrieved for the analysis, with an average of 3
gait cycles per participant (range 1-6).

a. Segmental contributions

Both absolute and relative average segmental contribution weights were represented as stacked
bar plots every 2% of the prosthetic gait cycle (Figure 25). These representations allow to observe the
weight of individual segments as well as the between-segments compensations. For instance, the
upper-limbs were shown to contribute for less than 20% in the BCoM acceleration in all directions
(Figure 25 d.-f.) and contributions from the right and left sides to cancel each other in the
anteroposterior direction (Figure 25 a.). The trunk contributes to an average of about 30 % of BCoM
acceleration in the vertical and mediolateral directions and to 16 % of the anteroposterior direction,
which makes it the major contributor of BCoM acceleration.

In the anteroposterior direction, BCoM acceleration results from opposite actions of the different
segments. In particular, prosthetic and sound limbs contributions are opposed in signs to each other.
However, lower-limb actions do not cancel each other. On average, during the prosthetic gait cycle,
the sound leg contributes to 47.4 % of the anteroposterior acceleration while the prosthetic leg
contributes to 18.7 % of the BCoM anteroposterior acceleration, with most of each leg’s contribution
occurring in their respective swing phase.
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In the mediolateral direction, the percentage contribution of upper and lower limbs appears to be
near constant along the full gait cycle. The upper limbs contribute to 13.6 %, the sound lower limb to
26.0 % and the prosthetic lower limb to 15.5 % of the BCoM acceleration. Thus, the head, trunk and
pelvis segments contribute to an average of 45.0 % of BCoM acceleration. The average head
contribution in the mediolateral direction (9.3 %) is almost as high as that of a thigh (sound thigh:
13.9 %, prosthetic thigh: 11.0 %). It is interesting to note that the average contributions of the
prosthetic shank and foot are below 2.5 % over the gait cycle.

In the vertical direction, the trunk and the thigh in swing phase appear to be the major contributors
of BCoM acceleration, contributing for about 50 % of the latter. Over the full prosthetic gait cycle, the
HAT (head, upper-limb, trunk and pelvis) segments contribute to 54 %, the prosthetic lower limb to 16
% and the sound lower limb to 30 % of the vertical acceleration. The prosthetic thigh contribution in
swing phase (8 % on average) was found to be less than that of the sound thigh (about 22.5 %). During
prosthetic midstance, the sound foot also appears to contribute to the vertical acceleration by up to
24.5 % while its contribution is below 3 % during sound-limb stance phase.

SCoM and BCoM accelerations cross-correlations matrices in the anteroposterior, mediolateral
and vertical directions along the prosthetic gait cycle are displayed in Figure 26.

While significant and strong correlations were found between the accelerations of the BCoM, and
that of centers of mass of the trunk, pelvis, prosthetic thigh and both shanks in the anteroposterior
direction, the strong correlation of the head center of mass acceleration with the BCoM acceleration
in the anteroposterior direction was found to be non-significant for at least one participant, but the
correlation was significant on average. Interestingly, the anteroposterior accelerations of the centers
of mass of the sound thigh and shank were negatively correlated with that of the BCoM. Moderate to
strong correlations were found between the accelerations of the centers of mass of the sound upper
limb and the BCoM acceleration. Strong and significative correlations were found between the
accelerations of the BCoM and that of the centers of mass of the pelvis, trunk and sound thigh in the
mediolateral direction while moderate correlations were found for the prosthetic thigh. For the latter
segment, correlations were not significant for all participants, although significant on average (p-value
< 0.05).

Eventually, very strong and significant correlations were found between the BCoM acceleration
and that of the HAT SCoM in the vertical direction. The acceleration of the centers of mass of both
thighs was also strongly and significantly correlated with the BCoM.
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(a.-c.) Segmental contributions normalized per axial BCOM peak-to-peak acceleration;

(d.-f.) Segmental contributions expressed as percent of total absolute contribution;
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Figure 26: Average cross-correlation matrices of segments (P stands for
Prosthetic side, and S for Sound side), inertial model-based Body center of
mass acceleration (BCoM) and reference BCoM (from ground reaction
force, BCoM GRF) along the prosthetic gait cycle in the (a.) anteroposterior,
(b.) mediolateral, and (c.) vertical directions. Crossed correlations indicate
that the correlation was non-significative for at least one participant.The
darker an bigger the circle, the stronger the correlation (blue tones:
positive correlation, red tone: negative correlations)
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To conclude, the trunk, the pelvis and both
thighs appear to be the main contributors of
the BCoM in all three directions both in terms
of similarity and weight. The head is also a
prominent contributor of BCoM acceleration in
the mediolateral direction, but head motion
may be voluntarily uncorrelated to whole body
motion, as evidenced by the non-significant
correlations between the acceleration of the
center of mass of the head and the BCoM
acceleration in the anteroposterior and
mediolateral direction. For both the prosthetic
and sound limbs, ipsilateral shank and foot
segments were found to have their SCoM
accelerations  significantly and  highly
correlated with each other, and to be
significant contributors in the anteroposterior
and vertical direction of the BCoM acceleration
during the contralateral stance phase.

Based on these observations, the trunk,
pelvis, and segments from both lower limbs
were considered as promising sensor locations
for BCoM acceleration estimation.

b. Optimal sensor networks

Several networks combining from three to
six segment locations were considered for
further analysis (Table 4). Estimated BCoM
accelerations with these models or using
single-segment paradigms were compared to
reference BCoM acceleration, using the leave-
one-out paradigm for OSN models of type 2. It
should be noted that the inertial-model-based
BCoM acceleration achieved mean errors of
106 +1.3%,10.7 £3.2 % and 11.2 £ 6.4 % in
the anteroposterior, mediolateral and vertical
directions respectively. All models achieved
higher accuracy and agreement in the vertical
than in the anteroposterior or mediolateral
directions, with higher variability achieved
along the mediolateral axis. The redistribution
of the masses of excluded segments to those
included in the model according to equation 4



didn’t result in a significant improvement compared to the weighted sum method (equation 3) and
generally led to a slight decrease in the correlation with the reference BCoM acceleration in the
anteroposterior direction. For two models including the trunk and the shanks or feet, OSN type 2
models even resulted in a significant decrease of accuracy (up to -21 % of NRMSE in the anteroposterior
direction) and agreement. All models including three sensors or more estimated the BCoM
acceleration with higher accuracy and agreement than the sacral method in the anteroposterior and
mediolateral directions. Only models including five segments or more achieved NRMSE below 15% in
all three directions, except for one model with three sensors which resulted in NMRSE below 16.3 %
in all directions.

Table 4: Comparison of body center of mass (BCoM) acceleration derived from various optimal sensor network (OSN) models
to the reference acceleration issued from force plates. OSN of type 1 correspond to models where BCoM acceleration was
estimated as the weighted sum of contributions of the included segments (see equation 3), while type 2 OSN models take into
account the excluded segments’ masses by redistributing them to their most correlated included segments (equation 4).
Results are provided as mean (standard deviation)

Green shaded cases correspond to NRMSE < 15% and/or Pearson’s linear correlation coefficient r > 0.80

NRMSE = Normalized root mean square error; AP = Anteroposterior; ML = Mediolateral; CC = Craniocaudal

Number of Included OSN tvpe NRMSE (%) Pearson's r
segments segments P AP ML cc AP ML cc

1 Delvis N/A 253 (2.4) 26.2(80) 11.2(2.0) | 0.65(0.07) 0.60(0.28) | 0.91 (0.05)
1 Trunk N/A 200(2.8) 208(3.1) 10.6(2.0) | 0.74(0.08) 0.84(0.07) | 0.92 (0.04)
1 233(2.8) 24.8(6.6) 14.4(2.8) | 0.84(0.04) 0.62(0.19) | 0.84 (0.10)
3 Pelvis, thighs 5 21.0(2.8) 21.4(6.1) 11.3(2.5) | 0.81(0.04) 0.73(0.15) | 0.90 (0.05)
1 180(1.8) 13.0(3.6) 113(25) | 0.87(0.03) 0.91(0.08) | 0.90(0.07)

3 Trunk, thighs
5 18.1(1.9) 13.9(27) 10.5(2.4) | 0.85(0.03) 0.89 (0.06) | 0.91 (0.05)
1 15.0(2.8) 163(3.9) 11.0(24) | 0.82(0.06) 0.86(0.07) | 0.91 (0.04)

Trunk, shank
3 runk, shanks 5 36.5(4.1) 21.1(57) 10.4(2.2) |-0.08(0.26) 0.74(0.18) | 0.92 (0.04)
1 256(44) 183(41) 123(24) | 0.51(0.15) 0.84(0.09) | 0.88 (0.07)

Trunk, f

3 runk, feet 5 34.4(37) 202(6.7) 11.1(22) |0.18(0.20) 0.75(0.17) | 0.91 (0.05)
Trunk, pelvis 1 18.0(1.8) 13.0(3.5) 11.1(24) | 0.86(0.03) 0.91(0.08) | 0.90 (0.06)
4 thighs 5 186(2.1) 12.9(3.1) 10.6(2.4) | 0.84(0.03) 0.91(0.07) | 0.91(0.05)
Trunk, thighs, 1 133(1.8) 14.1(51) 11.2(23) | 0.92(0.02) 0.89(0.10) | 0.90 (0.06)
> shanks 5 103(13) 13.0(3.6) 10.5(25) | 0.93(0.02) 0.91(0.06) | 0.91(0.05)
Trunk, thighs, 1 11.9(19) 13.5(3.9) 10.7(26) | 0.91(0.02) 0.90(0.08) | 0.91 (0.05)
> feet 5 13.7(26) 13.9(41) 10.3(2.5) | 0.86(0.06) 0.89(0.09) | 0.92 (0.04)
] Trunk, pelvis 1 12.7(15) 142(49) 11.0(24) | 0.93(0.02) 0.90(0.10) | 0.91 (0.06)
thighs, shanks 5 10.5(1.4) 13.4(3.9) 10.6(2.5) | 0.93(0.02) 0.91(0.08) | 0.91(0.05)
] Trunk, pelvis 1 11.8(21) 135(3.7) 10.5(26) | 0.91(0.03) 0.90(0.07) | 0.92 (0.05)
thighs, feet 5 135(26) 13.6(4.0) 10.4(2.5) | 0.86(0.05) 0.90(0.09) | 0.92 (0.04)

The estimated BCoM acceleration with the pelvis sacral method, and two OSN models (OSN type
1 including the trunk and shanks segments, which is the only model achieving errors < 16.3% in all
three directions while including less than 4 sensors and the OSN type 2 including the trunk, pelvis, both
thighs and both shanks which yielded the better results) are represented in Figure 27 against the
reference BCoM acceleration derived from force plates data.
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2.4, Discussion

a. Segmental contributions

The first objective of the study was to investigate segmental contributions to the BCoM
acceleration in people with transfemoral amputation.

Similarly as in asymptomatic gait (Gillet et al., 2003), the trunk was found to be the major
contributor of BCoM acceleration in the vertical and mediolateral directions while the lower limbs, and
more especially the thighs, the prime force generator in the direction of progression in people with
transfemoral amputation. The accelerated masses of the trunk and both thighs were found to
contribute to more than 50% of BCoM acceleration in all three directions, and up to 59% in average
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for the vertical direction. These segments happen to be the heaviest of the body, which may explain
their significant weight in the BCoM acceleration.

The analysis of trunk and pelvis contributions in BCoM acceleration was of particular interest as
they are often used in the literature as proxy measures of the BCoM motion (Gard et al., 2004; Pavei
et al., 2017; E. Shahabpoor and Pavic, 2018). Trunk acceleration correlations with BCoM acceleration
were shown to be stronger than that of the pelvis in the anteroposterior and mediolateral directions
(Pearson r > 0.79 for the trunk while 0.66 > r > 0.63 for the pelvis). In both cases, stronger and
significative correlations were found in the vertical direction (r > 0.9). These results support previous
findings regarding the sacral method, which might be accurate enough for the study of vertical BCoM
motion (Gard et al., 2004) while unsuited to accurately track BCoM motion in the mediolateral or
anteroposterior direction (Meichtry et al., 2007; Jeong et al., 2018).

Interestingly, contrary to what was observed in asymptomatic subjects (Shahabpoor et al., 2018),
segmental percent contributions in the vertical direction were not found to be near-constant during
the prosthetic stance phase (Figure 25f.). Increased weight of sound leg accelerations is indeed
observed at the beginning of the prosthetic gait cycle, following sound-limb push-off. This might result
from ankle plantarflexion at terminal stance which was shown to be a major determinant of vertical
BCoM motion (Hayot et al., 2013). In the anteroposterior direction, the lower limbs were found to
constitute the primary contributor of BCoM acceleration, with the sound limb accounting for almost
half of total BCoM acceleration. This asymmetry in contribution weight might be partly explained by
the lower mass of the prosthetic leg compared to the contralateral limb. An alternative explanation
might lie with the specific gait compensations implemented by people with transfemoral amputation.
Indeed, compensatory mechanisms at the sound limb, especially involving the hip and ankle joints, are
common in this population (Sagawa et al., 2011; Bonnet et al., 2014; Drevelle et al., 2014) and may
contribute to increased accelerations of the contralateral thigh, shank and foot segments during gait.
However, it was beyond the scope of the present study to investigate kinematic compensations
adopted by the participants. Shanks and feet accelerations were shown to be highly correlated with
each other in all directions, and shanks to be significantly and strongly correlated with BCoM
acceleration in the anteroposterior direction. Furthermore, the sound lower-limb segments contribute
in average to 34% of BCoM acceleration during the first half of the gait cycle. In light of these results,
the inclusion of either shank or foot sensors seems relevant for the construction of OSN for BCoM
acceleration estimation. Although the interest of including shank sensors was not reported for the
asymptomatic population (Shahabpoor et al., 2018), shank sagittal angles were previously shown to
predict BCoM displacement along with thigh and HAT segments in the asymptomatic population
(Mohan Varma and Sujatha, 2017; Arumukhom Revi et al., 2020).

Similarly as in (Shahabpoor et al., 2018), the head and upper limbs were discarded from the list of
potential sensor locations for the wearable estimation of BCoM acceleration. Indeed, while the head
was shown to be a prominent contributor of BCoM acceleration in the mediolateral direction, head
motion can often be decorrelated from whole-body motion as pointed out by the non-significant
correlation of its accelerations with that of the BCoM. Eventually, the upper limbs were found to be
minor contributors in terms of weight (< 10% for each limb). This might be due both to their reduced
mass relative to the body’s (Dumas et al., 2007) or to the fact that arms have a limited range of motion
during straight walking. Furthermore, in a study investigating the feasibility of wearable tracking of
BCoM displacement while skiing, Fasel and coworkers showed that accuracy and precision of BCoM
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displacement was not much impacted by the removal of upper-limbs sensors due to the out-of-phase
motion of the arms (Fasel, Sporri, et al., 2017). However, it should be kept in mind that the upper limbs
may play a more important role in other ambulation situations and should therefore not be
systematically discarded.

b. Optimal sensor networks

Following the identification of the major contributors to BCoOM acceleration, several OSN were
devised including from three to six segments. The higher weight and agreement of trunk acceleration
with BCoM acceleration compared to the pelvis one favored the investigation of three and five-sensor
models involving the trunk and lower-limb segments. Relevance of this choice was confirmed by the
achieved results: poorer accuracy was achieved when using the pelvis in a single-segment paradigm
compared to when using the trunk and adding the pelvis to a trunk-based OSN model improved the
NRMSE by less than 1 % (Table 4). Thus, our results advocate for the inclusion of the trunk segment
when tracking body motion in people with transfemoral amputation. This is in agreement to previous
literature reporting significant trunk 3D motion in this population (Goujon-Pillet et al., 2008).

The added-value of including several segments compared to the trunk-only or pelvis-only models
for the anteroposterior and mediolateral components of BCoM acceleration is demonstrated in Table
4 and Figure 27. This confirms previous findings showing that the single sensor paradigm is not suited
to accurately capture 3D BCoM motion, especially in pathological or voluntary asymmetrical gait (Gard
et al., 2004; Meichtry et al., 2007; Pavei et al., 2017; Jeong et al., 2018; Mohamed Refai et al., 2020).
In particular, increased range of motion of the upper body in people with transfemoral amputation,
especially of the pelvis in the sagittal plane (Goujon-Pillet et al., 2008), may explain the limited
agreement and higher excursions of the BCoM acceleration estimated with a single sensor compared
to the reference BCoM acceleration in the anteroposterior direction . To the contrary, the pattern of
3D BCoM acceleration estimated using a 6-segment OSN-type 2 model including the trunk, pelvis, both
thighs and shanks was found to closely match reference BCoM acceleration (Figure 27).

Following a similar procedure for the selection of segments in the asymptomatic population,
Shahabpoor and coworkers developed an OSN model of type 2 including the trunk, the pelvis and a
thigh. Errors achieved on the training set (four asymptomatic participants, 20 trials) in the
anteroposterior, mediolateral and vertical directions were respectively 16 + 2.0 %, 18 £ 6.7 % and 7
1.7 %, and increased up to 32% in the mediolateral direction on the inter-subject validation set (two
asymptomatic participants, 2 trials). While higher errors were achieved in the vertical direction by all
the developed models within the present study, all the proposed OSN models including at least 5
segments and one 3-sensor model achieved higher accuracy in the anteroposterior and mediolateral
directions. In particular, the 5-segment OSN-type 1 models, which did not require to compute
segmental acceleration cross-correlation coefficients for mass redistribution, achieved the same error
as Shahabpoor’s with subject-specific training (Shahabpoor et al., 2018). In the authors’ opinion,
instrumenting a participant with 5 MIMUs is less cumbersome than performing a 17-MIMU calibration
to obtain the subject-specific cross-correlation matrix required for the development of OSN-type 2
models. The number of sensors included can be further reduced to three MIMUs when aiming at
capturing only the anteroposterior (respectively, mediolateral) component of BCoM acceleration
where enough accuracy is achieved with the instrumentation of trunk and shanks (respectively, thighs)
segments (Table 4).
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Karatsidis and coworkers investigated the accuracy of the ground reaction force estimated using a
17-MIMU model. During the single-stance phase of the gait cycle, their model yielded lower errors in
the anteroposterior and vertical directions (NRMSE of 10.0 % and 9.0 % respectively) but low accuracy
(35.4% NRMSE) and agreement (r = 0.61) were achieved for the mediolateral component (Karatsidis et
al., 2017). They achieved similar accuracy when using MIMUs and optical motion capture systems,
indicating that high mediolateral errors might be due to the anthropometric model implemented
rather than to the use of MIMUs.

c. Perspectives

In order to further reduce the number of sensors included in OSN models, an interesting track of
research would be to propose kinematic models of groups of segments. For instance, the shanks and
feet segments were shown to similarly contribute to the BCoM acceleration and their SCoM
accelerations were significantly correlated. Therefore, a kinematic model representing the shank and
foot as a rigid segment, such as proposed in (Hansen et al., 2000, 2004), might allow to retrieve the
acceleration of the center of mass of the foot/shank complex and therefore may contribute to an
increase of accuracy of the OSN models without requiring supplementary sensors. Similarly, a
kinematic model linking the pelvis and thigh segments may allow to capture the motion of both the
pelvis and the thighs from a single sensor attached to the pelvis. Indeed, the rotation of the pelvis
(captured through the angular velocity measured by a pelvis sensor) may provide indications on the
thighs motion. However, it was not in the scope of this study to investigate such kinematic models and
these merely constitute interesting path of reflection for future work.

d. Limitations and sources of errors

The contribution analysis presented in this study was performed by comparing individual SCoM
accelerations to that of the BCoM using an hybrid geometric and proportional model (Pillet et al.,
2010). Since anthropometric models were shown to influence the BCoM motion pattern (Catena et al.,
2017; Pavei et al., 2017), different results may have been achieved using other body segmental inertial
parameters. Nevertheless, the present analysis provided the same major contributors of BCoM
acceleration as in the literature on asymptomatic population (Gillet et al., 2003; Shahabpoor et al.,
2018), with specificities that appear to be related to the specific gait pattern of people with
transfemoral amputation. The inertial model used to compute SCoM and BCoM accelerations achieved
mean NRMSE of 10.6 £ 1.3 %, 10.7 £ 3.2 % and 11.2 £ 6.4 % in the anteroposterior, mediolateral and
vertical directions respectively (Figure 25c). This may explain why no further improvement in accuracy
was achieved by the different OSN models-based estimations when adding segments, in particular in
the vertical direction. Errors of the OSN-based and inertial model-based vertical BCoM accelerations
may have resulted from the filtering and differentiation processes of marker data.

OSN models presented within this study were developed and validated with data derived from
optical motion capture rather than wearable sensors. Therefore, their validity should be verified when
using MIMUs. The latter provide raw acceleration and angular velocity measured at the origin and
along the axes of the MIMU local frame as well as orientation data in a global reference frame. To
transfer the measured accelerations at the SCoM, the position of each MIMU relative to the underlying
SCoM must be obtained and angular velocity differentiated. These processes may introduce errors
compromising the accuracy of BCoM estimates (losa, Picerno, et al., 2016; Karatsidis et al., 2017).

71



Furthermore, the orientation output estimated from MIMU signals have been shown to be affected by
ferromagnetic perturbations (Lebel et al., 2018), that may result from the ground within buildings or
prosthetic components. In such conditions, different MIMUs may sense different global Earth-fixed
frames (Picerno et al., 2011), which may introduce new errors when computing BCoM acceleration
from a weighted average of estimated SCoM acceleration. However, similar accuracy achieved with
optical motion capture systems compared to MIMUs in (Karatsidis et al., 2017) is promising and tend
to indicate that transferring the OSN models developed within this study in a wearable framework
might achieve similar accuracy.

2.5. Conclusions

This study investigated the feasibility of estimating BCoM acceleration in people with transfemoral
amputation from the acceleration of a limited number of segment-mounted wearable sensors.
Including a minimum of five segments provided an accurate estimation of 3D BCoM acceleration
compared to the literature while only three segments were necessary for the estimation of 2D
acceleration. The trunk segment was shown to be crucial for the estimation of BCoM acceleration and
should be instrumented along with a minimum of two lower-limb segments. The models were
developed using data from optical motion capture system associated with an inertial model. Thus,
applicability of the method with wearable sensors will be verified in future works. Indeed, MIMUs
might be affected by higher signal noise and ferromagnetic perturbations, which may compromise the
accuracy of the estimated BCoM acceleration. Furthermore, the method relies on the correct
estimation of SCoM accelerations. Therefore, the investigation of the impact of MIMUs positioning
relative to the center of mass of underlying segments and the development of wearable methods
allowing the identification of these relative positions represent research tracks of interest. Finally, the
suitability of the proposed OSN models to accurately capture BCoM velocity and displacement, which
are relevant parameters for motion analysis in people with transfemoral amputation, should also be
investigated in the future. Future works will therefore investigate the transfer of the best OSN models
to a wearable framework, the sensitivity of BCoM acceleration estimation to MIMUs positioning and
the applicability of the models to track other BCoM-derived parameters.
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Chapter 3 — Estimation of 3D body center of mass kinematics in a

fully wearable framework

The previous chapter investigated the feasibility of using a reduced number of sensors for the
estimation of the body center of mass (BCoM) acceleration in people with transfemoral amputation.
The study allowed to select various optimal sensor networks (OSN) which provided accurate estimates
of the BCoM acceleration using the acceleration measured at the centers of mass of three to six
segments. However, the results obtained for the selected OSN were derived from optical motion
capture (OMC) data. Therefore, the suitability of the OSN networks and of the overall methodology
should be verified when using MIMUs. In particular, several challenges, that will be detailed in section
3.1, arise with the use of MIMUs. Indeed, for each MIMU, the acceleration is measured at the origin of
the MIMU local frame and must be transferred to the center of mass of the underlying segment
(SCoM), which is not immediate since MIMUs do not provide an estimation of their position.
Furthermore, the obtained acceleration must be fused in a consistent Earth-fixed reference frame to
estimate BCoM acceleration. Yet, the Earth-fixed reference frames sensed by several MIMUs may not
be consistent across MIMUs (Picerno et al., 2011; Lebel et al., 2018; Guaitolini et al., 2019), which
might lead to errors when fusing data from multiple sensors. These problems are not encountered
when using OMC data. Indeed, while OMC markers do not directly provide the trajectory of the SCoM,
their coordinates allow to define the segment anatomical frames position and orientation in the OMC
Earth-fixed reference frame. Thus, a full body inertial model coupled with OMC data allows to retrieve
the SCoM position in the OMC reference frame. Using MIMUs therefore imposes to develop a specific
framework prior to estimating BCoM acceleration from the OSN models selected in the previous
section.

Once BCoM acceleration is accurately estimated from wearable sensors, obtaining the
instantaneous velocity of the BCoM appears relevant. Indeed, the instantaneous velocity of the BCoM
can provide insight on the energy cost of walking (Donelan et al., 2002b; Detrembleur et al., 2005) as
well as on gait balance (Hof et al., 2005, 2007). Furthermore, the average BCoM velocity or “walking
speed” is a key descriptor of health status and gait function in pathological gait, including in people
with lower-limb amputation (Batten et al., 2019). While OMC-based BCoM position is differentiated to
obtain BCoM instantaneous velocity, computing the instantaneous BCoM velocity from MIMU-based
BCoM acceleration is not straightforward. Indeed, integration of MIMU signals leads to drift due to the
presence of noise in the raw signal and must therefore be corrected to obtain an accurate estimation
of BCoM instantaneous velocity.

The aim of this chapter is therefore to propose and validate a wearable framework to use MIMUs
in the selected OSN configurations for the estimation of BCoM acceleration and instantaneous velocity.
The first section of this chapter will provide an overview of the methods implemented in the literature
to tackle the abovementioned issues and to justify the choices made for the development of a
wearable framework. The former should be as compatible as possible with clinical constraints in order
to allow its transfer in the field: setup and acquisition durations should be as short as possible, with a
minimal number of sensors, simple calibration procedures and minimal operator implication in the
post-processing. In the subsequent sections, the framework will be introduced and validated as a
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proof-of-concept in one person with transfemoral amputation against force platforms (BCoM
acceleration) and optical motion capture data (BCoM acceleration and velocity).

3.1. State-of-the-art: scientific challenges associated with the use of optimal MIMU

networks for BCoM acceleration and velocity estimation

The aim of this section is to provide an overview of the scientific challenges associated with the
estimation of BCoM acceleration and instantaneous velocity from a network of connected MIMUs.

In the study presented in the previous chapter, various optimal segment networks allowing an
accurate estimation of BCoM acceleration from a set of segment-mounted markers were identified.
The suitability of these OSN must be verified when using segment-mounted MIMUs instead of markers.
Using equation 5, where N is the number of MIMUs included in the OSN, f3; is the weight associated
to the SCoM acceleration estimated with the it* MIMU (agCOMi) in an Earth-fixed global reference

frame R, the acceleration of the BCoM can be estimated in R; as follows:
G _ VN G
Agcom = Xi=1Bi Ascom;,  (5)
The acceleration of each SCoM of the segments included in the OSN can be estimated in the MIMU

local frame Ry y, following equation 6, where all the mechanical quantities are expressed in Ry yy,
(as indicated by the exponent MIMU;):

MIMU; _ _MIMU; MIMU; MIMU; , _MIMU; MiMu, MIMU;
Ascom; = Bormu; T Lormu; N Lomu, Normu,-scom; ) T \Lomu,”) N Totmu,—scom, (6)
with

MIMU; . th )
fasCDMi is the i*" SCoM acceleration

aZIATUUi" is the acceleration measured by the i*® MIMU rigidly attached to the i*" segment

(expressed at the origin of the MIMU local frame)

) QOM,Z"UZ" is the angular velocity measured by the i*" MIMU rigidly attached to the i* segment

MIMU;

(.QMIMU‘) is the angular acceleration of the i*® MIMU obtained from differentitation of .Qo,MUi

oIMU,

MIMU;

T oIMU,—sCoM; is the the translation vector from the origin of the it*MIMU to the underlying

SCoM in the MIMU local frame

In the former equation, all quantities can be retrieved or computed from MIMUs raw signals except

. . . _MIMU;
for the translation vector from the origin of the MIMU to the underlying SCoM: roIMUil—sCoM,-' Indeed,

MIMUs do not provide information about their absolute position. Therefore, several authors have
proposed alternative ways to estimate SCoM acceleration from MIMU signals without using equation
6. The objective of section 3.1.1 is thus to provide an overview of the methods proposed in the
literature for the estimation of SCoM accelerations from MIMU signals with a special attention on
wearable methods that allow to retrieve MIMUs positions relative to the center of mass of the
underlying segment.

Then, in order to estimate BCoM acceleration from the fusion of SCoM accelerations (equation 5),
the formers must be expressed in a common global Earth-fixed reference frame (equation 7):
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G _ MIMU;
a5com;, = Pe-mimu; Ascom, (7)

The relative orientation of each MIMU local frame in this global reference frame Pg_ppy, must
be obtained, which implies to first resolve the inconsistencies between the Earth-fixed reference
frames sensed by each MIMU. Section 3.1.2. provides an overview of the literature dealing with the
definition of a consistent Earth-fixed reference frame across MIMUs.

Eventually, an overview of the methods proposed in the literature for the computation of BCoM
instantaneous velocity from BCoM acceleration will be provided in section 3.1.3.

3.1.1. Estimation of SCoM acceleration from MIMU signals

Several approaches have been retrieved in the literature regarding the estimation of SCoM motion
from MIMU signals and are summarized in the following subsections.

a. Approximation of the relative MIMU/SCoM position

The first approach, implemented in two studies, consists in using MIMUs manually positioned at
the longitudinal location of the SCoM (as reported in anthropometric tables) and in considering that
the acceleration of the segment-mounted MIMUs correspond to the SCoM accelerations (Lintmeijer
et al., 2018; Shahabpoor et al., 2018). This approximation is equivalent to writing 7'oimy,—scom; = 0in
equation 6, which necessary yields to errors since the SCoM lies inside the segment and the MIMU on
the skin surface. The impact of this approximation has never been investigated on the estimated SCoM
accelerations or velocities.

b. Kinematic chain approach

Several authors have associated a kinematic chain
model to an inertial model in order to recover SCoM
positions in a global Earth-fixed frame from MIMUs
measurements. This approach does not require to
obtain the relative positions between each pair of
MIMU and SCoM but requires computing the relative
orientation between each segment anatomical frame
and its respective MIMU local frame (sensor-to-
segment calibration). Indeed, the kinematic chain
approach (Figure 28) consists in representing the
segments as rigid bodies connected by joints and at

successively computing the trajectory of each joint J; ;4
linking the segments S; and Si+1(r]Gi i1,) from the known

trajectory of the previous joint center of rotation J;_; ;

Figure 28: Kinematic chain approach. Example of a 3-segment

( r]Gi_Li ), the known orientation of the segment S; chain. Segment S; is linked with segments S;_; and S;,; at the

(Pg_s;), and the dimensions of the segment S; (given by
the vector linking the successive joints J;_q ; and J; ;;qin  matrix P;_g,.

):

. S;
the segment anatomical frame: ;' _,
]l—l,l ]l,l+1
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joints J;_1; and J; ;41 respectively. S; segment orientation in
the global reference frame R is given by the transformation



G
r]i,i+1

(8)

The rigid body assumption allows to derive the trajectory of any point pertaining to any segment

— .G Si
= Vi + PG—SL' X r]i—l,i_]i,i+1

of the kinematic chain, and hence, to any SCoM, using equation 9, provided that its position relative
to one of the joints (rfi"_“ _SCoMi) is known in the segment anatomical frame (which is possible using

anthropometric tables such as (Dumas et al., 2007).

G — .G Si
rSCOMl' - r]i—l,i + PG—S,: X r]i—l,i_SCOMi (9)

Therefore, provided that the sensor-to-segment calibration gives an accurate estimate of the
relative orientation of the segment anatomical frame in the MIMU local frame (Pypy,—s;), the
orientation of the MIMU local frame in the global Earth-fixed reference frame can be used (P;_pmu,)

to estimate the SCoM trajectory in the global frame:

G —_ .G Si
rscom; = Tji_y; T Pe-mimu; X Puimu;—s; X )i 1i— SCoM; (10)

In (Fasel, Sporri, et al., 2017), a full-body MIMU set was used to estimate the BCoM displacement
while skiing. A kinematic chain was designed, taking the orientation of MIMUs to derive segment
orientations and using segments dimensions from anthropometric tables, scaled to the participants
body height. This step allowed to estimate the position of each joint center of rotation relative to the
root point of the kinematic chain (in this case, the lumbar joint center) in a global frame. Using an
inertial model derived from anthropometric tables, the position of the center of mass of each segment
was estimated in its respective segment anatomical frame. Then, using the rigid body assumption,
SCoM positions were finally deduced in the global frame. Finally, a weighted average of SCoM positions
at each timestamp was computed to estimate the BCoM trajectory in the global frame. All in all, the
association of a 7-segment kinematic chain and an inertial model allowed to estimate the BCoM
displacement relative to the lumbar joint center with good accuracy and precision (< 11.2 mm for each
axis) without requiring the knowledge of MIMU positions relative to their respective underlying SCoM
(Fasel, Sporri, et al., 2017). However, the method requires the use of MIMUs on all the body segments
pertaining to the kinematic chain, compromising the development of models with a limited number of
sensors while this was shown to be paramount for clinical applications. Furthermore, the accuracy of
kinematic chain outputs is highly dependent on an accurate sensor-to-segment calibration. Indeed,
pose estimation derived from kinematic chains was shown to be highly sensitive to MIMU orientation
on the underlying segment (Kianifar et al., 2019).

The 17-MIMU MVN suit developed by Xsens uses proprietary kinematic and inertial models that
seem similar to those described above (Schepers et al., 2018). Indeed, a static posture calibration
associated with anthropometric measurements allows to define a kinematic chain for the estimation
of joint angles and segment orientations. A proportional inertial model then allows to recover SCoM
positions in the segment anatomical frames and thus to compute BCoM trajectory in a global reference
Earth-fixed frame (Karatsidis et al., 2017; Pavei et al., 2020). Validity of SCoM accelerations issued from
the MVN framework were not reported in the literature, but the BCoM trajectory was shown to be
affected by large errors (3D root mean square error of 17 + 5 mm, overestimation of the
anteroposterior amplitude by 89 + 47 %) which were assumed to result from signal drift, magnetic
perturbations or biomechanical models inaccuracies (Pavei et al., 2020).
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c. Approaches implemented for the retrieval of MIMU absolute positions

Several authors have developed approaches to retrieve the absolute positions of MIMUs in a global
Earth-fixed frame for the estimation of joint angles, either to predict acceleration and angular velocity
signals and fuse them with the measured ones for drift and noise correction (Kianifar et al., 2019) or
to reconstruct segment pose using a redundant formulation and an optimization procedure (Miezal et
al., 2016; Teufl et al., 2018, 2019). These approaches could be adapted in order to retrieve both MIMU
and SCoM positions and therefore, compute the relative MIMU and SCoM position in the global Earth-
fixed frame.

In order to initialize MIMUs position in the global Earth-fixed reference frame, Teufl and coworkers
used marker position data acquired during a static posture with optical motion capture system (Teufl
et al., 2019). Similarly, Dejnabadi and coworkers took photographs of participants equipped with
MIMUs while ensuring that the camera field of view was aligned with the body sagittal plane. This
allowed to a posteriori estimate MIMUs’ positions and orientations relative to the underlying body
segments (Dejnabadi et al., 2006). In both studies, the aim of the authors was to recover MIMUs’
positions in a global Earth-fixed reference frame which required the use of an external device. It is
interesting to note that the external device was only needed for the initialization of MIMUs positions
and orientations. Such procedures could be adapted in order to obtain for MIMUs and SCoM positions
in a common reference frame (rg,M,,i_sC,,Mi ), as well as MIMUs orientation in the global frame

(Pg—mimu,)- The relative position of the SCoM in the MIMU local frame could then be computed

MIMU; - . . . .
(roIMUi‘_sCoMi = PG_lM,MUi X rf,;,MUi_sCOMi ), allowing to estimate the acceleration of the SCoM in

the MIMU local frame using equation 6. It has to be noted that SCoM positions are defined in their
own segment anatomical frames. Thus, to derive SCoM positions in a common global frame, either
segment orientation in the same global frame as that sensed by MIMUs or MIMU-to-segment
calibration must be computed.

d. Synthesis of the literature

From this overview of the literature, it seems that no study has estimated the acceleration of a
SCoM from a segment-mounted MIMU by using the rigid body assumption and the distribution of
accelerations (equation 6). Indeed, retrieving the relative position of MIMU and SCoM does not seem
trivial and seems to require the use of external devices, such as optoelectronic motion capture systems
or photographs. Therefore, some authors have assumed that the MIMUs directly lie at the SCoM.

An alternative approach allows to estimate SCoM accelerations without having to obtain MIMUs
and SCoM relative positions. However, it requires to model human gait with a kinematic chain. This
not only imposes to use MIMUs positioned on each segment of the kinematic chain but also to perform
accurate sensor-to-segment calibration in order to retrieve the orientation of the segments’
anatomical frames in the global reference frame.
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3.1.2. Definition of a consistent global frame across MIMUSs

Figure 29: Magnetic field distortions due
to construction materials within buildings.
Taken from (Lebel et al. 2018)

RM[MUthigh

When estimating the BCoM acceleration from a weighted sum of
MIMU-based SCoM accelerations, it is crucial to ensure that all SCoM
accelerations are expressed in a consistent global Earth-fixed reference
frame prior to performing data fusion. Theoretically, angular velocity,
linear acceleration and magnetic field sensed by a MIMU can be fused to
obtain MIMU orientation in a Earth-fixed global reference frame
(Madgwick et al., 2011; Sabatini, 2011; Bergamini et al., 2014) (refer to
section 3.1.1 in Part 1). Magnetic perturbations, which may arise from
objects in the acquisition environment (Picerno et al., 2011; Sabatini,
2011), from prosthetic components (Garofalo, 2010) and from
construction materials within buildings (Picerno et al., 2011; Sabatini,
2011; Lebel et al., 2018), have been shown to inconsistently affect the
reference frame sensed by each MIMU (Picerno et al., 2011; Lebel et al.,
2018). For instance, MIMUs that are the farthest from the ground were
shown to be the less affected by magnetic perturbations in indoor
environments (Miezal et al., 2016; Lebel et al., 2018) (see Figure 29) . As
a consequence of magnetic field distortion, several MIMUs may point to
different “magnetic North”, and thus, may sense different Earth-fixed
reference frames (Picerno et al., 2011; Lebel et al., 2018; Guaitolini et
al., 2019) (Figure 30). Although a large body of literature has focused on
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Figure 30: Inconsistencies of the Earth-fixed global frames sensed by two MIMUs — Example for MIMUs located on the
thigh and trunk.

Rymy, is the MIMU local frame, Pymy,—gr, the transformation matrix from the MIMU local frame to the global
reference frame Rgp, sensed by the MIMU (i = trunk, thigh)
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the development/comparison and validation of orientation filters (Sabatini, 2011; Bergamini et al.,
2014; Caruso et al., 2019), very few studies investigated the (in)consistency of the reference frames
sensed by several MIMUs.

a. Correction of MIMU-sensed Earth-fixed reference frame inconsistencies using an

external device

Several authors have shown that correcting for the global frame inconsistency between MIMUs at
the beginning of a trial may allow to decrease the errors in joint accuracy estimation during the whole
trial (Palermo et al., 2014; Lebel et al., 2015, 2018). This correction was performed either with an
optical motion capture system or using photographs but required in any case the use of an external
device.

Increased accuracy in joint angle estimation was observed when using an optical motion capture
system to determine the initial orientation of MIMUs in a common consistent global frame (Palermo
et al., 2014) or to a posteriori correct initial orientation errors (Lebel et al., 2015). Similarly, when
validating a MIMU-based algorithm, some authors have preferred to use orientation outputs from an
optical motion capture system so as to isolate the errors due to inconsistencies in the Earth-fixed
reference frames sensed by different MIMUs from those inherent to the model/algorithm (Teufl et al.,
2018; Guaitolini et al., 2019). However, these corrections impose to use an optical motion capture
system, which compromises the transfer of the method in the field due to high system cost and limited
portability.

In (Lebel et al., 2018), the initial relative orientation of two segment-mounted MIMUs is derived
from a camera pose estimation algorithm which compares the dotted pattern on MIMU-fitting boxes
from a photograph taken while standing in a static posture. Then, this initial relative orientation is used
to correct for both MIMUs their orientation computed with proprietary algorithm outputs. Although
this method also imposes the use of an external system and is incompatible with real-time processing,
it was shown to significantly increase the accuracy in MIMU-based ankle angle estimation (error
decreased from 6.7° to 2.4° for all planes of motion) and to drastically reduce the effect of magnetic
perturbations occurring in the starting environment (maximum difference explained by the starting
environment remained statistically significant but decreased from 8° to 0.6°) (Lebel et al., 2018).
Furthermore, taking a photograph is not as cumbersome and constraining as capturing a full body
static acquisition with an optical motion capture system.

b. Correction of MIMU-sensed Earth-fixed reference frame inconsistencies using
hypotheses relative to segment orientations in the global Earth-fixed reference frame

In arecent study, a magnetometer-free approach was proposed to estimate joint angles from IMUs
(Ligorio et al., 2020). First, participants are asked to stand in a static posture (the N-pose), in which the
segments orientations are assumed to be known in a global Earth-fixed reference frame (longitudinal
axes of the segment anatomical frames aligned with the vertical direction). Sensor-to segment
calibration is performed in two steps. First, using the accelerometers readings in the N-pose allows to
retrieve the longitudinal axis of all segments’ anatomical frames in the MIMU local frame during the
static posture. Then, functional motion allows to retrieve the mediolateral functional axis of all
segments in the MIMU local frame. Using the triad algorithm, segments orientations in the MIMU local
frame is computed. Using the N-pose configuration, MIMU orientation can be deduced in the global
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reference frame which therefore allows to correct the inconsistencies between the Earth-fixed
reference frames sensed by the segment-mounted MIMUs. While the algorithm displayed similar tilt
errors than a MIMU-based Kalman filter compared to an optical motion capture system, higher errors
were achieved for the estimation of the heading (6.8 degrees against 4.6 degrees).

c. Synthesis of the literature

Two approaches have been proposed in the literature to compute segment orientation from
MIMUs in a consistent global frame. One approach relies on external devices to compute the relative
orientation between the MIMU-sensed Earth-fixed reference frame R;r and a global Earth-fixed
reference frame R using an external device (photographs, optical motion capture). The alternative
approach, presented in a recent study, relies on assumptions regarding the position of body segments
in the global Earth-fixed reference frame R, at a given instant and uses the sensor-to-segment
calibration to deduce the MIMU or segment orientation at all instants in R.

3.1.3. Computation of the instantaneous velocity of the BCoM from MIMUs

The third issue when dealing with MIMUs is the drift resulting from integration of noisy signals. If
the actual velocity is known at certain instants t,,, the drift can be compensated for a posteriori: the
computed velocity is compared to the known velocity and the difference is used for the correction of
the velocity between t,,_4 and t,,. Generally, a linear drift function is defined (Hannink et al., 2017).
Taking advantage of the cyclical nature of gait, the instantaneous velocity of the BCoM can be
computed for each stride and further decomposed into two components: an average component in
the direction of progression (“average walking speed”) and a 3D cyclical component with null mean
velocity.

a. 3D cyclical component of the BCoM velocity

The cyclical component of the instantaneous velocity of the BCoM is generally estimated from
numerical integration of the lower-back acceleration, followed by a high-pass filter (Pfau et al., 2005;
Meichtry et al., 2007; Kbse et al., 2012). More recently, an analytical integration method, based on the
Fourier series decomposition of the pelvis acceleration signal, was shown to yield promising results
with limits of agreement < 0.10 m/s as compared with optical motion capture (Sabatini et al., 2015;
Sabatini and Mannini, 2016). These integration methods were validated for the estimation of lower-
back velocity in asymptomatic subjects and remain to be tested for the integration of BCoM
acceleration in people with lower-limb amputation.

b. Average BCoM velocity

Regarding the average BCoM velocity, or walking speed, three methods have been described in
the literature for its estimation from MIMUs: abstraction models, human gait models, and direct
integration of linear acceleration (Yang and Li, 2012b).

Abstraction models consist in machine learning frameworks: a relationship is learnt between
MIMU signals and a reference walking speed, without support of a biomechanical model. This type of
methods allows to estimate the average walking speed from raw MIMU data without introducing error
from signal integration. For instance, using the angular velocity and acceleration signals from shank
MIMUs, average root mean square errors below 5 % were achieved for the average walking speed
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(speed =4 km/h) when walking on treadmill or overground (Sabatini and Mannini, 2016). Higher errors
were obtained at slower walking speeds (9 % at 3 km/h). Although no such study was found in the
literature, machine learning frameworks could be designed to estimate the instantaneous velocity of
the BCoM. In (Betker et al., 2006), the authors developed an abstraction model for the estimation of
BCoM trajectory from trunk and shank accelerations in quasi-static conditions (body sway). While
encouraging results were achieved, the method was not transposed to gait nor to instantaneous
velocity computation.

Contrary to abstraction models, human gait models and direct integration methods aim at
estimating the average walking speed through the ratio of stride length by stride duration.

In general, human gait models use inverted pendulum for gait representation and estimate the
average walking speed (for more details, see Part 1, section 3.2.1. or refer to (Yang and Li, 2012b)).
One such model, developed and validated in seven people with transfemoral amputation, achieved
relative errors within +/- 15 % (Miyazaki, 1997). Recently, Dauriac and coworkers have proposed a
kinematic model specific to people with transfemoral amputation for the estimation of the average
walking speed from a single MIMU on the prosthetic shank (Dauriac et al., 2019). The model takes
advantage of the absence of knee flexion during early stance of people with transfemoral amputation
to represent the prosthetic lower limb as a single rigid body. Furthermore, the model assumes that the
BCoM velocity is the same as the one of the residual hip center of rotation. Combining an inverted
pendulum representation and roll-over-shapes characteristics of the foot-shank complex (Figure 31),
the sagittal plane instantaneous walking speed of the body center of mass is estimated during the first
half of the cycle. Averaging the anteroposterior component over the first half of the gait cycle, the
average walking speed is estimated with a root mean square error of 0.09 m/s (9%).

Lastly, the average walking speed has been estimated through direct double integration of the
linear acceleration of the foot (Mariani et al., 2010; Kitagawa and Ogihara, 2016) or shank (Li et al.,
2010; Yang and Li, 2012a) in the direction of progression, using the zero-velocity update paradigm
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Figure 31: Kinematic model for body center of mass (CoM) ,";M'm"""" Foot Chéariene
velocity —estimation in  people with transfemoral il I} i 1
amputation. C, r are the characteristics of the roll over —
shape, Sis the contact point of the foot with the ground (So bearlarmul cllFplpeeient Siride Lengih
when the shank is vertical), 6 is the shank angle, and L the
CoM height. Vy and Vj are the projections of the CoM Figure 32: Double integration of linear acceleration of the foot in the
direction of progression between two successive foot flat (FF) events.

velocity (Vcom) in the global frame Ro. _ _
From (Dauriac et al., 2019) Adapted from (Kitagawa and Ogihara, 2016)
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(Figure 32). Taking advantage of the null velocity of the foot at mid-stance (detected through the foot-
flat event or shank-vertical event depending on MIMU position), the acceleration is double integrated
between two detected events and drift can be compensated for after the first integration. The average
walking speed is then computed as the distance covered between two detected events, divided by the
duration between those two events. Using foot-mounted MIMUs, Mariani and coworkers reported
stride velocity values within 1.5 + 5.8 % of stride velocity in the asymptomatic population (Mariani et
al., 2010). Yang and Li estimated the walking speed from shank mounted MIMUs with an average root
mean square error of 4.2 % in people walking on a treadmill (Yang and Li, 2012a).

c. Instantaneous velocity of an anatomical point

A kinematic model recently developed by Duraffourg and coworkers allows to estimate the
instantaneous velocity and the trajectory of the knee joint from a shank mounted MIMU in people
with transfemoral amputation ambulating overground (Duraffourg et al., 2019). The method could be
adapted for the estimation of walking speed from the distance covered by the shank within a stride.
Stride length was found to be underestimated by 5.1 % of its nominal value in 3 people with
transfemoral amputation. The method consists in estimating the knee joint velocity from the foot roll-
over-shape characteristics while in unipodal stance, similarly as in (Dauriac et al., 2019), and at double
integrating the knee joint acceleration derived from the acceleration measured by the shank-mounted
MIMU (using rigid body assumption) during the swing phase (Figure 33).

IR A

Figure 33: Knee joint center (K) trajectory estimation from a shank mounted MIMU (positioned at 1) using the roll over shape
paradigm (C representing the center of the foot roll-over-shape). Taken from (Duraffourg et al., 2019)

Itis worth noting that the instantaneous walking speed of the BCoM in an Earth-fixed global frame
(both the average and the cyclical components) could also be estimated directly from kinematic chain
gait models, with the assumption that the BCoM lies within the pelvis (Yuan and I. M. Chen, 2014).
However, such kinematic chain models do not include the trunk, and impose to use MIMUs on all the
segments pertaining to the kinematic chain. Such a model would therefore not be compatible with the
selected OSN (see Chapter 2, Part 2) and was not investigated.

d. Synthesis of the literature

Table 5 below summarizes the results achieved in the literature for the estimation of the average
walking speed and instantaneous BCoM velocity. The studies that only indicated results regarding the

accuracy of stride length estimation are not reported.
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Authors | Population Sensors Method Results Reference for the
average walking speed

(Aminian | 20 AS 4 gyroscopes | Kinematic model RMSE =0.06 m/s (6.7 %) Stopwatch (time to cover 20 m)
etal., (both thighs | (average walking
2002) and shanks) | speed)
(Dauriac |9 TF 1 shank- Kinematic model RMSE = 0.09 m/s (9 %) Treadmill speed
etal., mounted (average walking
2019) IMU speed)
(Mariani | 20 AS 2 feet Double integration | Average error =0.014 + 0.056 m/s Optical motion capture system
etal., mounted (average walking (1.5+5.8%) (feet markers)
2010) IMUs speed)
(Miyazaki, | 7 TF 1 thigh- Kinematic model RMSE +/-15% Stopwatch (time to cover 40 m)
1997) mounted (average walking

gyroscope speed)
(Sabatini || 17 AS 1 pelvis- Double integration | LoA of cyclical component (+ 1.96 std) Treadmill speed
and mounted (cyclical overground walking:
Mannini, MIMU component) + -ML=%0.10 m/s
2016) abstraction model |- AP = +0.05m/s

(average walking -CC=+0.10m/s
speed) RMS error of average velocity : 0.06 m/s
(0.07 m/s) (Average RMSE about 5%
above 4km/h)

(Sabatini | 5 AS 1 foot- Double integration | RMSE = 0.05 m/s Treadmill speed
etal., mounted (average walking
2005) IMU speed)
(Yang and || 7 AS 1 shank- Double integration | RMSE =4.2 % Treadmill speed
Li, 2012a) mounted (average walking

IMU speed)

Table 5: Synthesis of the methods for BCoM instantaneous velocity and average walking speed estimation in the literature.
TF = people with transfemoral amputation, AS = Asymptomatic participants;, RMSE = root mean square error; AP =
Anteroposterior; ML = mediolateral; CC = craniocaudal; LoA = Limits of agreement

3.1.4. Towards the implementation of an OSN-based framework for the estimation of

BCoM acceleration and velocity: how to tackle the challenges associated with
MIMUs

The aim of this section is to introduce the choices made for the implementation of a fully wearable

protocol for the estimation of 3D BCoM acceleration and velocity, based on the state-of-the-art
(sections 3.1.1 to 3.1.3).

The first step requires to estimate the acceleration of SCoM from MIMUs mounted on selected

body segments. From the literature (see section 3.1.1), it appears that, for each segment, the
translation vector from the origin of the MIMU to the SCoM in the MIMU local frame (7o my;—scom;)
could be first obtained in an Earth-fixed reference frame during a static calibration using an external
device such as a photo camera (Dejnabadi et al., 2006) or an optical motion capture system (Teufl et
al., 2018; Guaitolini et al., 2019). The obtained translation vector could then be computed in the MIMU
local reference frame using the MIMU orientation in the same global Earth-fixed reference frame R
as the one in which the relative positions are known (Figure 34). The advantage of the method is that
it does not require to obtain an accurate sensor-to-segment calibration, and therefore, does not rely
on an accurate sensor positioning nor on the need to perform calibration motions which might be too
demanding for people with gait impairment or untrained users.
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Figure 34: Retrieval of the relative position of segment center of mass (SCoM) and the segment-mounted MIMU in the MIMU

local frame - example for the trunk MIMU.
1-MIMU orientation in the Earth-fixed global reference frame R is known (transformation matrix Py mu,, ne—6)

2 —The positions of the SCoM and of the origin of the MIMU (0;3y) are known in R at t,, during the static calibration thanks

to an external device (calibrated photographs, optical motion capture)

R
3 —The relative position of the MIMU and the underlying SCoM is deduced in R at ty: roI”MUt Y—SCOMpyuni

4 — Using the knowledge of MIMU orientation in R, the relative position of the MIMU and the underlying SCoM is computed
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In (Choe et al., 2019), the authors propose to perform a static posture sensor-to-segment
calibration while the participants are facing the magnetic North direction, as indicated by a compass,
in order to ensure that the segments orientations are known in the same Earth-fixed reference frame
as the one sensed by MIMUs. This implies that the formers consistently sense the magnetic North
direction. However, such ideal conditions are not often encountered, especially indoors (Picerno et al.,
2011; Lebel et al., 2018). Indeed, the Earth-fixed reference frames sensed by several MIMUs are
generally different (Guaitolini et al., 2019) (see also Figure 30), which results in errors when fusing data
from several MIMUs (Lebel et al., 2018). As reported in the literature (see section 3.1.2), a posteriori
correction of inter-MIMU inconsistency using the static part at the beginning of data acquisition allows
to significantly reduce the influence of magnetic perturbations on the output biomechanical
parameters all along the acquisition. Therefore, identifying a common global Earth-fixed reference
frame R in which the orientation of each MIMU local frame Ry, can be assumed to be known at
a specific instant t,, and then computing the relative orientation of the Earth-fixed reference frames
R sensed by each MIMU iin this consistent common global Earth-fixed reference frame (Pgr,_¢) at
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the same instant represents an interesting solution. The transformation matrices Pgr,—¢ being
constant (as they describe the relative orientation of a pair of Earth-fixed reference frames) (Lebel et
al., 2018), this allows to compute the orientation of each MIMU local frame Ry y, in Rg at all time
(Figure 35). Finally, using the transformation matrix from R to Rymu,, the relative position of each
MIMU and its underlying SCoM is known in the MIMU local frame, which subsequently allows to
estimate the SCoM acceleration in the MIMU local frame using equation (6). Then, using the
transformation matrix from Ry, to R allows to express each SCoM acceleration in a consistent

global reference frame to finally estimate the BCoM acceleration from an OSN (equation 5).
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Figure 35: Computation of the orientation of a MIMU local frame in a global Earth fixed reference frame, using a static

calibration - example for the trunk MIMU
1 —Known orientation of MIMU local frame Ry umuy,, .. iN its associated Earth-fixed reference frame Rgp,, . atall instants ¢
of the acquisition (transformation matrix Payiay,,,nx—GF i OPtaINEd from sensor fusion)

2 —In a predefined static posture taken at t,, the orientation of the MIMU local frame in the Earth-fixed global frame R can

be assumed to be known (Pymy,, -6 (o))
3 — The constant relative orientation P, . _ between the MIMU-sensed Earth fixed reference frame Rgp,, . . and the
Earth-fixed global frame R is computed using the knowledge of Pyimu,,umi—6 @3N PMIMUuni—GFirun 3L E = to

4 — Using (1) and (3), the orientation of the MIMU local frame in the global Earth-fixed reference frame R; can be computed

at all timestamps t of the acquisition

Once the BCoM acceleration has been computed in an Earth-fixed global reference frame, the
instantaneous BCoM velocity can be estimated from a combination of direct integration of the BCoM
acceleration (cyclical component) and a kinematic model of the shank (average component).

In the next section, the framework development and implementation will be presented in detail.

3.2. Material and Methods

3.2.1. Framework overview

The development of the framework can be divided in three steps aiming at:
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a) computing the 3D acceleration of each segment’s center of mass (SCoM) from MIMUs

data,
b) merging SCoM accelerations in a consistent common global frame R, and
c) estimating the 3D BCoM acceleration and velocity from a weighted average of selected

SCoM accelerations.
From chapter 2, the trunk, thighs, shanks and feet were identified as the major contributors in 3D

BCoM acceleration in people with transfemoral amputation and several promising OSN were identified
for the estimation of BCoM acceleration from the acceleration of these segments. Therefore, 7 MIMUs,
manually aligned with the longitudinal axes of the segments, are adopted.

a. Computing 3D SCoM acceleration

Following Pillet et al. (2010), a 15-segment subject-specific inertial model, personalized using
calibrated photographs in a static posture, is used to obtain the SCoM positions in an optical motion
capture system (OMCS) reference frame R ycs- For each MIMU, the position of its origin is manually
identified on the photographs, which allows to compute its relative position with respect to the

underlying SCoM (7o ymy,—scom;) In Romcs-

Multiple synchronized MIMUs may be inconsistently affected by sustained distortions of the
magnetic field (Picerno et al., 2011; Picerno, 2017; Lebel et al., 2018), leading to MIMUs sensing a
different direction of the Magnetic North. Therefore, although the vertical axis/attitude of the
reference global frames R, sensed by each MIMU coincides with that of the OMCS, the heading is
inconsistent across MIMUs and differs to that of the OMCS. Therefore, the orientation output provided
by each MIMU Pg g,y my;cannot be directly used to estimate the transformation matrix Poycs—mimu;
from Ry my,; 10 Ropycs in static. Instead, knowledge of MIMUs alignment on the underlying segments
and hypotheses on the orientation of segments during the initial static posture are used. Indeed, the
static posture in which the participant is being photographed has been defined such that he is standing
facing the direction of progression. As a first approximation, it is assumed that, in this position, the
axes of the segment local frames are aligned with the axes of Ry cs, and thus, that, for each MIMU,
the axes of the local frame (Ry;y,) are aligned with those of Ry s in static. A first approximation of
Pomcs—mimu; c€an therefore be derived. This approximation is then corrected for each MIMU using the
attitude output issued by the MIMU and ensuring that an orthonormal reference frame is built. Figure
36 details this procedure for the MIMU positioned on the trunk.

In the end, this allows to express the vector ryyy,_scom; in Rmimy,, and to compute SCoM

accelerations in their respective sensor frame as follows:

Ascom, = Aormu; + Limu, A (Limu, A Timu,—scom;) T21mu, NTimu,-scom,
where a,yy, and 2y, are respectively the acceleration and the angular velocity measured by

the MIMU; in the sensor frame Ry py, and f),MUi is obtained using a 5-point stencil differentiation.
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Figure 36: Approximation of the orientation of a MIMU local frame in the optical motion capture system (OMCS) global reference frame during the initial
static posture att = ty — Example for the trunk MIMU.

- Pyimuy—cr is retrieved from the orientation output of the MIMU at t = ¢t (1)

- Pyimy—omcs is unknown at t = t, (2) but it might be approximated using (3):
Using the orientation output of the MIMU, the vertical direction zgr of the MIMU-sensed Earth-fixed frame is known in Ry;py- Furthermore, since
MIMUs attitude is not affected by magnetic perturbations, the vertical direction detection by MIMUs is robust and is consistent with that of the
OMCS global frame Ropcs- Therefore, zgr = Zomcs in Rymy- Furthermore, the manual alignment of the MIMU on body segments and the static
posture taken by the participant ensures that the x and y axes of the MIMU local frame are close to that of the OMCS. This allows to use the cross-
product to compute the x and y axes of the OMCS in Ry (4).

- Lastly, Pyimu—omcs is obtained at t = t, as the inverse of Poyes—mmmu (5)

b. Merging SCoM accelerations in a consistent common global frame
Since MIMUs sense inconsistent Earth-fixed reference frames (R ... ), a common global reference
L

frame R; must be defined consistently for each MIMU. The reference frame sensed by the trunk

MIMU Rgp, . ., rotated so that one axis is coincident with the direction of progression, is chosen as
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the common global reference frame ( R; = R,(0) X RGF i S€€ Figure 37). This arbitrary choice is
supported by the fact that all the best performing OSN models identified in Chapter 2 include a sensor
at the trunk. Furthermore, the trunk MIMU is less susceptible to magnetic perturbations than the other
MIMUs, as it lies farther from the ground (Lebel et al., 2018) and it endures low height variation while
walking (Miezal et al., 2016). Lastly, the direction of progression can be inferred from the orientation
output of the trunk MIMU since it is positioned such that its z-axis is oriented towards the direction of

Direction of progression {DoP)

Ruimu i (t0)

PMIM Utrunk—GFtrunk (t())

Identification of the rotation
R,(6) required to ensure
that the trunk global
reference frame has one axis
pointing towards the
direction of progression
(DoP)

AT

Figure 37: Rotation R,(0) of the trunk-MIMU sensed Earth-fixed frame (R¢p,, .. ) to align one of its axis with the direction of
progression, using the orientation of the trunk MIMU local frame (Rypmu,,y)
progression.

For each MIMU, the constant transformation matrix P;_r,between the MIMU's sensed reference
frame Rgp, and the common global reference frame R; = R,(6) X Rgp,,.., is obtained during the
initial static posture at the beginning of each acquisition using the known orientation in Ry cs of both
the trunk MIMU (Poycs—Mimu ) @nd MIMU; (Poycs—mimu,) (Figure 36, cf paragraph a), as well as

their known orientation outputs (Py mu,, i —GFerume PMIMU—GF):
P6_GFoum = R2(0)
Pe—cr; = Po—6Frumi X PeFouni—6F; = Rz(0) X Per 6,
Pggr; = Rz(0) X Pir,pie~MIMU o (80) X Prtimvgyamic—omcs (t0) X Pomcs—mimu; (o) X Primu—cr; (o)
Using the constant transformation matrix P;_¢r;» and the orientation output provided by each
MIMU ( Pyimu—6r, = Pgﬁi_M,MUi ), the acceleration of each SCoM can be expressed in a consistent

global reference frame at all timestamps:

G _ MIMU;
ascom; () = Pe-gr; X Pori—mmu; () X @geoy ' (1)
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c. Estimating 3D BCoM acceleration and velocity:

i Selected OSN

Based on the results of chapter 2, three OSN models including 3 to 5 segments are considered as
good candidates for the estimation of BCoM acceleration and velocity (Table 6). BCoM acceleration
and velocity estimated using a uniqgue MIMU at the trunk level will also be analyzed to demonstrate
the added value of using multiple sensors instead of a single sensor.

Table 6: List of the optimal sensor networks (OSN) implemented for the estimation of 3D BCoM acceleration and velocity

Number of
Included segments
segments
5 Trunk, thighs, shanks
5 Trunk, thighs, feet
3 Trunk, shanks
1 Trunk

ii. 3D BCoM acceleration

For each OSN model, SCoM accelerations of the included segments are expressed in R; and fused
to compute 3D BCoM acceleration, with mg,.4, the mass of the it" segment derived from the
personalized inertial model, and N the number of segments included in the OSN:

Mseg;

— YN
Agcom = Yi=1 SN mees SCoM;
j=1 segj

iii. 3D BCoM velocity

The 3D BCoM velocity is computed stride-per-stride as the sum of the average walking speed and
the cyclical component. Stride segmentation is performed at the prosthetic heel strike from shank
MIMU readings (Trojaniello, Cereatti, Pelosin, et al., 2014). Subsequently, the average component of
3D BCoM velocity is computed from a prosthetic shank-mounted MIMU following (Duraffourg et al.,
2019) and will be designated as the “average walking speed” in the following paragraphs. The cyclical
component was computed from direct numerical integration of 3D OSN-derived BCoM linear
acceleration followed by high-pass filtering (Steins et al., 2014).

3.2.2. Framework implementation

a. Experimental protocol

One male individual with transfemoral amputation (mass: 83 kg, stature: 1.69 m) gave his written
informed consent to participate in the study. He was instrumented with a full-body marker set (Al
Abiad et al., 2020) and 7 MIMUs (Xsens, 100 Hz) on the feet, shanks, thighs and trunk, each mounted
on a 3D-printed plastic support with housings for 4 reflective markers. An OMCS (VICON, 200 Hz)
recorded the markers’ positions while 4 photographs (front, back, both sides) were taken. Then,
starting from a static standing posture, the participant walked at self-selected speed along an 8 m
pathway, with 3 force plates (AMTI, 1000 Hz) in the middle. Synchronization between instruments was
achieved by an electronic trigger signal. Only trials with three successive foot contacts on the force
plates (i.e. a complete stride), were considered for further analysis.
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b. Data processing

Data were filtered using a zero-phase 4™-order Butterworth filter. Cut-off frequencies were
identified using a trial-and-error approach (5 Hz for marker and MIMU raw data, 10 Hz for force plates).
Reference SCoM accelerations were obtained by double derivation of OMCS-based SCoM positions.
Each differentiation step was followed by a zero-phase low-pass Butterworth 4™ order filter with cut-
off frequencies 8 Hz (velocity) and 10 Hz (acceleration). Reference 3D BCoM acceleration was
computed from the force plates’ signal while reference 3D BCoM velocity was computed from the
inertial model, to avoid error propagations due to ill-chosen integration constants when estimating
the velocity from force platforms. For each OSN, reference and MIMU-based SCoM and BCoM
accelerations/velocities were compared using Pearson’s correlation coefficient p, root mean square
error (RMSE) and peak-to-peak normalized RMSE (NRMSE) averaged over the trials. Errors in the
estimation of BCoM velocity was also quantified in percent of the average walking speed in the
direction of progression (ARMSE). The average and standard deviation of the (normalized) RMSE
respectively indicate the accuracy and precision of the methods.

3.3. Results

Seven trials, resulting in thirteen strides, were analyzed. Only the middle strides occurring entirely
on the force plates were analyzed for the investigation of BCoM acceleration accuracy, whereas the
whole set of strides was analyzed for the SCoM acceleration and BCoM velocity.

i SCoM and BCoM acceleration

Results of the comparison between MIMU-derived and inertial-model based SCoM accelerations
are provided in Table 7. Correlations between MIMU-based and reference SCoM acceleration were
small at both feet and moderate at the sound shank in the mediolateral direction but were strong
otherwise (p > 0.7).

Table 7: Accuracy of segments' center of mass accelerations estimated with MIMU compared to the optical motion capture
reference in terms of root mean square errors (RMSE), normalized RMSE, and Pearson’s correlation coefficients (p)

RMSE (m.s-?) NRMSE (%) Pearson’s p
Anterf)- Medio- Vertical Anter?- Medio- Vertical Anter?- Medio- Vertical
Segment posterior | lateral posterior lateral posterior | lateral
Mean (standard deviation)
Prof‘:ztet'c 2.94(0.61) | 2.74(0.65) | 2.00(0.21) | 5.2(1.1) 26.1(4.0) | 66(0.7) | 0.97(0.01) | 0.27(0.14) | 0.96(0.01)
Sound foot | 3.64(1.10) | 3.99 (0.70) | 3.31(1.05) | 6.3(1.9) 22.1(54) | 84(14) |0.96(0.03) |0.19(0.18) | 0.90(0.06)
Prg;;:it'c 1.58(0.33) | 1.21(0.39) | 1.38(0.08) | 5.0(1.0) 16.7(5.3) | 12.4(0.8) | 0.97(0.01) | 0.71(0.16) | 0.88(0.02)
Sound shank | 2.08(0.43) | 1.49 (0.43) | 1.56 (0.19) | 8.9(L6) 189 (4.1) | 12.4(1.9) | 0.93(0.03) | 0.42(0.20) | 0.83(0.05)
Pr‘:;ﬁg:t'c 1.94 (0.07) | 0.50(0.11) | 0.79(0.02) | 18.5 (0.6) 7.6 (1.7) 7.5(0.4) | 0.83(0.03) | 0.94(0.04) | 0.96 (0.00)
Sound thigh | 2.10(0.66) | 0.72(0.12) | 0.94(0.33) | 105(1.5) | 14.6(1.8) | 9.5(1.7) | 0.85(0.10) | 0.74 (0.08) | 0.90(0.07)
Trunk 0.95(0.05) | 0.48(0.04) | 0.43(0.22) | 12.8(1.1) | 129(11) | 57(2.4) |0.73(0.04) | 0.89(0.02) | 0.97(0.03)
Average (all |, ) 099) | 1.47 (1.25) | 1.39(0.95) | 10.0(4.6) | 16.6(63) | 9.1(2.8 |0.87(0.10) | 0.62(0.30) | 0.92(0.06)
segments)
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Results of the comparison between MIMU-derived OSN-based and force platform-based BCoM
accelerations are provided in Table 8. Correlations between MIMU-based and reference BCoM
acceleration were strong for all OSN models in all directions (p > 0.7). The added value of using multiple
sensors instead of a single sensor at trunk level is demonstrated by the increased accuracy and the
better fit of reference BCoM acceleration in the anteroposterior and mediolateral directions when
using OSN (Table 8, Figure 38).

Table 8: Accuracy of Optimal sensor network (OSN)-based MIMU-derived BCoM acceleration as compared with force platform-
based acceleration in terms of root mean square errors (RMSE), normalized RMSE, and Pearson’s correlation coefficients (p)

RMSE (m/s?) NRMSE (%) Pearson’s p

Antero- Medio- Antero- | Medio- Antero- Medio-
OSN n er? edio Vertical n er? edio Vertical n er? edio Vertical

(included posterior lateral posterior | lateral posterior lateral

segments) Mean (standard deviation)

Tr“g:;::('sghs' 0.54(0.02) | 0.32(0.03) | 0.57 (0.06) | 13.7(0.9) | 14.0 (2.1)| 8.5(0.5) | 0.93(0.01) | 0.89(0.04) | 0.95(0.01)
Tr“n';ézr'ghs' 0.33(0.02) | 0.37(0.03) | 0.51(0.05) | 9.7(0.7) |13.7(0.7)| 7.4(0.4) | 0.93(0.01) | 0.88(0.02) | 0.96(0.01)
Trunk, shanks | 0.40(0.06) | 0.50(0.05) | 0.54(0.04) | 11.6 (2.1) | 21.5(2.7)| 7.7(0.4) | 0.89(0.03) | 0.74(0.08) | 0.96 (0.00)
Trunk 0.66 (0.05) | 0.70(0.05) | 0.63(0.06) | 17.0(1.2) | 23.5(2.0)| 8.8(0.6) | 0.78(0.02) | 0.76 (0.05) | 0.95 (0.00)

BCoM velocity

Accuracy of OSN-derived BCoM velocity compared to the reference inertial model is presented in

Table 9. OSN-derived and reference BCoM velocity averaged over the thirteen prosthetic strides are
displayed in Figure 39. Interestingly, the OSN models that achieved the best estimation of BCoM
velocity were different from those that achieved the best fit for BCoM acceleration. The five-MIMU
OSN model including the shanks performed better than that including the feet in all directions, as
displayed by the higher Pearson’s correlation coefficients and the lower RMSE. BCoM velocity
estimated with the trunk SCoM acceleration achieved a good fit of BCoM velocity with excellent
correlations in the mediolateral and vertical direction (p > 0.90), but only a moderate agreement in the
anteroposterior direction. Furthermore, high errors were achieved by this model in the

anteroposterior and mediolateral direction (RMSE > 0.08 m.s™?).

Table 9: Accuracy of body center of mass (BCoM) velocity derived from the optimal sensor network (OSN)-based BCoM
acceleration compared to the reference velocity computed from optical motion capture in terms of root mean square error
(RMSE), RMSE normalized to average walking speed (ARMSE) and peak-to-peak normalized RMSE (NRMSE)

RMSE (m.s?) ARMSE (%) NRMSE (%) Pearson’s p
OSN (included ] . .
segments) Anter?- Medio- Vertical Anterf)- Anterf)- Medio- Vertical Anterf)- Medio- Vertical
posterior lateral posterior | posterior | lateral posterior lateral
Trunk, thighs,
chanks 0.05 (0.02) | 0.05 (0.01) | 0.03 (0.00) | 4.1(1.2) |16.7(5.1)|13.2(3.0)|6.0(0.8) | 0.94 (0.04) | 0.96 (0.03) | 0.99 (0.00)
Trunk, thighs,
feet 0.05 (0.01) | 0.06 (0.02) | 0.03 (0.01) | 4.2(1.0) |20.8(6.2)|15.6(3.9)|6.0(0.6) | 0.85(0.05) | 0.90 (0.04) | 0.99 (0.01)
Trunk, shanks [/ 0.04 (0.02) | 0.05(0.01) | 0.03 (0.01)| 3.5(1.3) |15.1(6.1)|13.7(2.4)|6.7(1.0) | 0.92 (0.02) | 0.94 (0.01) | 0.99 (0.00)
Trunk 0.08 (0.01) | 0.09 (0.01) | 0.04 (0.01)| 6.7 (0.7) |27.7(3.3)|20.8(1.7) | 7.6 (0.8) | 0.57 (0.06) | 0.92 (0.02) | 0.99 (0.00)
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Figure 38: Acceleration of the body center of mass derived from force platforms measures (gray straight line), optimal sensor
networks consisting in the weighted sum of center of mass accelerations of the included segments (colored dashed and dotted
lines), in the anteroposterior direction (AP), mediolateral direction (ML) and vertical direction (CC). Shaded regions represent the
interval [mean — standard deviation ; mean + standard deviation] for the estimates of the BCoM acceleration averaged over the 7
gait cycles of the participant.
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Figure 39: Body center of mass (BCoM) velocity as estimated by OSN-derived models [upper-left corner (blue dotted lines): trunk, thighs, feet;
upper-right corner (orange dashed-lines): trunk, thighs, shanks; lower-left corner (yellow dashed lines): trunk and shanks; lower-right corner
(green dashed lines): trunk] in comparison with the reference BCoM velocity obtained by optical motion capture (gray straight line). Shaded
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the thirtheen prosthetic gait cycles of the participant in the anteroposterior (AP), mediolateral (ML) and vertical (CC) direction.
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3.4. Discussion

This proof-of-concept study aimed at proposing and validating a framework for the estimation of
BCoM acceleration and velocity from an optimal network of MIMUs. Based on the results of an optical
motion capture-based study (Chapter 2), several OSN were investigated, including from 3 to 5 MIMUs
positioned on the trunk and on either a pair or more of the following segments: thighs, shanks and
feet. The added value of using an optimal network of sensors instead of a single sensor at trunk level
was also investigated by comparing the accuracy of the various OSN estimates to that obtained with
the trunk MIMU. This pilot study demonstrated the feasibility of accurately estimating the 3D BCoM
instantaneous walking velocity and acceleration using five MIMUs in people with transfemoral
amputation. The fact that the protocol was validated in a single case study should however be kept in
mind before generalization of the achieved results to the population of transfemoral amputees.

i SCoM and BCoM acceleration

In the developed framework, the BCoM acceleration is estimated through a weighted average of
SCoM accelerations. To the author’s knowledge, this is the first study that reported accuracy results
for the estimation of SCoM accelerations from MIMUs.

Interestingly, when more than 3 sensors were used for BCoM accelerations, higher errors were
achieved on average for the estimation of accelerations at the SCoMs than at the BCoM. Accelerations
estimated at the shanks and feet were shown to have the highest errors and to poorly (sound limb) or
moderately (prosthetic limb) fit the reference SCoM acceleration in the mediolateral direction. A
possible reason for this discrepancy lies on the assumptions made regarding the alignment of segment
anatomical axes with those of the global reference frame in static. Indeed, the participant was not
specifically asked to stand with his feet parallel, which would have justified this hypothesis for the feet
segments. Natural outward alignment of the feet of 20° have been reported in the literature (Tunca et
al., 2017) and would have necessarily an impact on the orientation of both the feet and the shanks.
However, OSN that included feet and thighs segments were shown to be superior to their counterparts
using shank-mounted MIMUs in terms of accuracy with the BCoM acceleration (Table 8).

BCoM acceleration estimated using a single sensor at trunk level in the present study resulted in
lower accuracy in the anteroposterior and mediolateral directions than reported by Mohamed Refai
and coworkers with a single MIMU at pelvis level in eight asymptomatic participants (Mohamed Refai
et al., 2020). However, the presented framework achieved higher accuracy in the vertical direction and
higher consistency with the reference acceleration pattern in the mediolateral and vertical directions,
as demonstrated by higher correlation coefficients. When estimated using several sensors, OSN-
derived BCoM acceleration results were in agreement with those reported in healthy subjects using
optical motion capture system-based accelerations (Shahabpoor et al., 2018). Indeed, using three
sensors (trunk and shanks mounted MIMUs), our method achieved similar to improved accuracy (mean
NRMSE) and better precision (standard deviation of the NRMSE) compared to the one proposed by
Shahabpoor and coworkers using the acceleration of three different segments (trunk, pelvis and a
thigh) in sound participants (present study vs sound-participants : 11.6 + 2.1% vs 16 + 2.0 % in the
anteroposterior direction, 21.5 + 2.7 % vs 18 £ 6.7 % in the mediolateral directionand 7.7 £ 0.4 % vs 7
+ 1.7 % in the vertical direction). The increased precision in the present study may have resulted from
the validation of the method on a unique participant whereas six asymptomatic subjects ambulating
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at different walking speeds were recruited in (Shahabpoor et al., 2018). It is worth noting that, in the
former study, BCoM acceleration was estimated from a weighted average of SCoM accelerations
derived from optical motion capture measurement. Therefore, decreased accuracy and precision is
expected when transposing the method with MIMUs. The validity of the method presented in
(Shahabpoor et al., 2018) when using wearable sensors was only investigated in the vertical direction,
where a mean accuracy of 8.7 % was achieved in the vertical direction (1.7 % decreased in accuracy).
Therefore, the results achieved in the current study using a 3-MIMU configuration are very promising.

Increasing the number of MIMUs allowed to improve the accuracy of the estimated BCoM
acceleration, in particular in the mediolateral direction (Table 8). Interestingly, the five-MIMU OSN
including the thighs and shanks sensors resulted in an improved accuracy only in the mediolateral
direction compared to the three-MIMU OSN, while an increase accuracy in the anteroposterior
direction was also observed when considering the five-MIMU OSN including the thighs and feet
sensors. High consistency between reference and MIMU-based 3D BCoM acceleration patterns was
observed with all the OSN models investigated, with perceivable deviations in the mediolateral
direction for the three-MIMU model (Figure 38, Table 8).

In the light of these results, the three-segment OSN model including both shanks and the trunk
appears to be optimal when the sagittal plane BCoM acceleration is targeted (anteroposterior and
vertical directions). When the 3D BCoM acceleration must be estimated with high accuracy, a five-
sensor model including the trunk, both thighs and either both feet or both shanks is to be preferred.

ii. BCoM velocity

BCoM velocity was computed stride per stride using the sum of a cyclical component and an
average walking speed in the direction of progression. The average walking speed was estimated as
the ratio of the shank MIMU displacement along the direction of progression within a stride to the
stride duration, using the kinematic model specifically developed for people with lower-limb
amputation in (Duraffourg et al., 2019). The use of this model imposes the use of a MIMU mounted on
the prosthetic shank, even when considering OSN models for BCoM acceleration estimation that did
not include a sensor at the shank. In order to keep the number of sensors at a minimal, it is therefore
preferred, with this integration method, to use OSN models including the shanks segments rather than
the feet. Otherwise, integrating the foot acceleration between successive foot flat periods could allow
to estimate the average walking speed (Kitagawa and Ogihara, 2016). However, reliable detection of
foot flat events from inertial sensors may not be straightforward in people with lower-limb
amputation.

BCoM velocity estimated from a single sensor at trunk level was shown to be slightly in advance of
phase in the anteroposterior direction (Figure 39) and to lack accuracy in the anteroposterior and
mediolateral directions (average RMSE > 0.08 m.s?) (Table 9). The use of multiple sensors arranged in
OSN allowed to improve the estimated velocity by up to 12.6 % in the anteroposterior direction.
Interestingly, the three-MIMU OSN including the trunk and shanks provided the most accurate
estimate of BCoM velocity in the anteroposterior direction, with errors in the order of 3.5 + 1.3 % of
the average walking speed (average RMSE = 0.04 m.s). Adding supplementary sensors at the thighs
resulted in a better fit of curve pattern in the anteroposterior and mediolateral directions (Figure 39)
but in a slight decrease of accuracy in the anteroposterior direction (RMSE of 0.05 + 0.01 m.s?,
corresponding to 4.1 + 1.0 % of the average walking speed), due to the overestimation of BCoM
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velocity peaks in that direction (Figure 39). Therefore, although 3 MIMUs allowed to estimate BCoM
acceleration and velocity with a good accuracy index, using 5 MIMUs on the trunk, thighs and shanks
should be preferred if a strong accuracy is required especially in the mediolateral direction. The model
including the feet sensors achieved lower accuracy in the anteroposterior and mediolateral direction
than the models including the shanks. This might be a consequence of the assumption of parallel feet
required for computing the relative orientation of the reference frames sensed by the feet MIMUs in
the global reference frame (see equations in part 3.2.1b).

Few studies in the literature have focused on the estimation of the instantaneous BCoM velocity,
compromising the comparison of our results. Furthermore, all former studies investigating the
instantaneous BCoM velocity used the assumption that the BCoM was fixed in the pelvis anatomical
frame. Sabatini and Mannini investigated a method for the estimation of the instantaneous velocity of
a MIMU positioned at the pelvis compared to the velocity of an optical motion capture marker
positioned on top of the MIMU (Sabatini and Mannini, 2016). Validation results are proposed
separately for the cyclical component (limits of agreement [+ 1.96 standard deviation] of + 0.10 m.s*
in the anteroposterior and mediolateral direction, and + 0.05 m.s*in the vertical direction) and average
component (RMSE = 0.07 m.s* when ambulating overground). A smaller dataset was used in the
present study but higher accuracy was achieved for the cyclical component (+ 1.96 standard deviation
of the RMSE: + 0.01 m.st in all directions, including when using a single sensor at the trunk level).

Regarding the average walking speed, multiple authors have proposed algorithms for its
estimation using inertial sensors (Yang and Li, 2012b). Only two studies reported an estimate of the
average walking speed within less than 4.1 % of its nominal value. In (Mariani et al., 2010) the average
walking speed was estimated from double integration of the acceleration of a foot mounted MIMU in
twenty sound participants (young and elderly) and achieved higher accuracy but lower precision (1.5
+ 5.8 % of the actual walking velocity) than the proposed method. Using a shank MIMU and a kinematic
model relying on stance knee flexion, which is absent in people with transfemoral amputation, Yang
and coworkers estimated the average walking speed within 4.0 % of its nominal value.

iii. Limitations and perspectives

The developed framework allowed to estimate the instantaneous walking speed and acceleration
of the body center of mass from five MIMUs positioned on the trunk, thighs and shanks segments of
one person with transfemoral amputation. Results should be confirmed in a larger cohort prior to
generalization.

The aim of the present study was to propose a wearable framework as compatible as possible with
clinical use. Currently, the framework requires the use of a camera and an optoelectronic system for
the personalization of the geometric inertial model and the estimation of the relative position of each
MIMU to the center of mass of the underlying segment in the intermediary global frame (static). The
use of these external devices, and especially of the optical motion capture system, compromises the
transfer of the framework in the clinical field. The optical motion capture system was used for the
calibration of photographs and for the construction of an initial geometric inertial model based on
anatomical landmarks. Projections of the initial volumes on face and profile photographs were
manually reshaped so as to fit the participant’s body contours based on face and profile photographs
(Pillet et al., 2010). Therefore, using an alternate system for the calibration of photographs — or a
method that does not require to take photographs at all — would facilitate the transfer of the
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framework in the clinical field. Regarding the first solution, using a device of known shapes and
dimensions may allow to calibrate photographs. Regarding a possible alternative to taking
photographs, body segmental inertial parameters and positions of anatomical landmarks and MIMUs
could be retrieved from body meshes obtained with a 3D scanner. A semi-automatic method, requiring
less than 1 minute of acquisition, has been proposed and validated in nine sound participants (Robert
et al., 2017). Its validity in impaired people, in particular in people with a lower-limb prosthesis,
remains to be verified. All in all, making the framework fully wearable does not appear to be a major
issue even if it would require some further development and validation. It should be noted that the
method would still rely on an external portable device (camera/3D scanner) in order to retrieve the
SCoM and MIMU positions in a consistent intermediary global frame (the scanner or camera frame).
The impact of errors in the estimations of the relative positions of MIMUs and SCoM on the output
parameters (SCoM and BCoM acceleration, BCoM velocity) should therefore be investigated in a
further study.

It should be noted that, in order to obtain the relative position of MIMUs and SCoM in the MIMU
local frame, the framework uses a static calibration during which both the relative SCoM/MIMU
positions and the orientations of MIMUs are estimated in an intermediary global frame. To do so,
MIMUs were aligned with the longitudinal axes of segments while the latter were supposed to have
their axes aligned with that of the intermediary reference frame. It should be stressed that this sensor-
to-segment calibration was required only to derive the position of SCoM in their respective MIMU local
frames and was not directly used for the fusion of SCoM accelerations. Furthermore, inclination of
MIMUs with respect to the vertical were corrected using the orientation output provided by the
MIMUs. Therefore, the impact of misorientation of MIMUs on segment is believed to be minimal,
which would not have been the case if the aim of this study was to derive joint angles (Miezal et al.,
2016; Kianifar et al., 2019). Verification of this hypothesis should also be investigated in further studies.

The framework could finally be enhanced in order to obtain complementary biomechanical
parameters. A growing interest for the estimation of individual limb ground reaction forces from
MIMUs can be inferred from recent literature. In people with lower-limb amputation, in particular,
receiving/giving feedback on the load distributed to each lower limb represents an interesting track
for the rehabilitation (Loiret et al., 2019). Several models proposing a smooth transition of the weight
from one limb to another have been investigated in the literature (Ren et al., 2008; Karatsidis et al.,
2017) but may not be adapted for impaired gait. Therefore, developing a method allowing to estimate
the ground reaction force under each foot from MIMU-based BCoM acceleration in people with
transfemoral amputation represents a relevant track for future works. Furthermore, when combined
with the instantaneous BCoM velocity, the individual ground reaction force can provide insight on
mechanical energy exchanges (Donelan et al., 2002b; Bonnet et al., 2014).

3.5. Conclusions

The framework’s results are encouraging and suggest that MIMUs may be a valid alternative to
lab-based instruments when the 3D BCoM acceleration or velocity is targeted. Indeed, using a set of
five MIMUs on the trunk, thighs and shanks allowed to estimate 3D BCOM acceleration and velocity in
a person with transfemoral amputation with a strong agreement with reference data obtained from
force platforms (acceleration: p > 0.89) and an optical motion capture (velocity: p > 0.94) and high
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accuracy (NRMSE in the anteroposterior, mediolateral and vertical directions of 11.6 + 2.1 %, 14.0 £
2.1 %, 7.7 £ 0.4 % for the acceleration and 16.7 + 5.1 %, 13.2 + 3.0 %, 6.0 + 0.8 % for the velocity).
Results of this proof-of-concept study still need to be confirmed on a larger cohort.

In medium-term, future studies will aim at assessing i) the accuracy achieved when a fully wearable
framework (that is, without an optical motion capture system) is implemented and ji) the impact of
MIMU misplacement on the estimation of SCoM and BCoM kinematic parameters. In the long term,
suitability of the OSN to estimate the ground reaction force under each foot should be investigated.

98



Chapter 4 — The impact of inertial measurement units positioning
error on the estimated accelerations of body and segments’ centers of

mass: a sensitivity analysis

The previous chapters indicate that, in people with transfemoral amputation, body center of mass
(BCoM) acceleration can be estimated from a weighted average of the accelerations of the centers of
mass of a set of 5 segments. The formers can be estimated from the signals measured by MIMUs rigidly
mounted on each of the segments using the following equation — provided that the SCoM position in

the MIMU local frame 7, yuy—scom is known:

Ascom = Aormu + Loimy N (-QoIMU AToiMU—-sCom ) + Qoimu N Tormu-scom

With agcom, the acceleration of the SCoM, a,;yy and 2,y the acceleration and angular velocity
measured by the MIMU and 2,y the angular acceleration obtained from differentiation of the
angular velocity. All the quantities are expressed in the MIMU local frame.

With the hypothesis that MIMUs are rigidly mounted on each segment, the relative position of
MIMUs and the underlying SCoM is constant in the MIMU local frame. Therefore, its retrieval at a
specific instant, for example, during a static calibration, is enough. In light of the above, it is clear that
the accurate determination of the position of each MIMU with respect to the relevant SCoM is crucial
to obtain an accurate estimation of SCoM and BCoM accelerations.

In the framework presented in chapter 3, SCoM and MIMUSs’ positions are retrieved in a consistent
intermediary global frame using calibrated photographs taken with the participant in a static standing
posture. SCoM positions are obtained along with other body segmental inertial parameters by fitting
a geometric inertial model on face and profile photographs while the positions of MIMUs are
recovered by clicking on the locations of MIMUs origins on the same calibrated photographs. The
vector describing the relative position of each pair of SCoM and MIMU origin must then be transferred
in the MIMU local frame, which requires the knowledge of the MIMU orientation in the intermediary
global frame. Thus, two main sources of errors may impact the accuracy of the vector rypyu—scom in
MIMU local frame when using the presented framework: mislocation errors (due to errors in
calibrating the photographs or clicking on the wrong position) and orientation errors, due to the
assumptions made regarding MIMUs orientation in the intermediate global frame. When estimating
BCoM acceleration, the accelerations estimated at each SCoOM must then be fused in a consistent
global reference frame.

The sensitivity of MIMU-derived biomechanical parameters to MIMU positions and orientations
has recently been studied in the literature for the estimation of joint angles and of ground reaction
forces (Kianifar et al., 2019; Tan et al., 2019). In both cases, sensor-to-segment orientations were found
to be more critical than MIMUs positions on segments (Kianifar et al., 2019; Tan et al., 2019). Regarding
the study that focused on ground reaction forces (Tan et al., 2019), the formers were estimated with
a machine learning approach using raw acceleration and angular velocity data, expressed in their
respective MIMU local frames, as inputs. No sensor-to-segment calibration procedure was used to pre-
process raw MIMU data and expressed them in a common global reference frame prior to using them
for the estimation of SCoM acceleration. Modifying the orientation of MIMUs on segments necessarily
impacted both angular velocity and acceleration raw data used as inputs, while modifying the position

99



of a MIMU on a segment had only repercussions on the acceleration signals. Therefore, the greater
impact of orientation errors compared to position errors could be expected in their study.

When investigating SCoM or BCoM acceleration following the framework proposed in Chapter 2,
sensor-to-segment orientation is not critical, since only the orientations of MIMUs in an intermediary
global frame during a static posture is required to define a between-MIMU consistent global frame.
Orientation errors of two natures could occur with the framework implementation. During the static
posture, the hypotheses of manual alignments of the MIMUs on the segments could lead to errors and
should be quantified. During the dynamic trials, there could be residual errors due to the orientation
computation from sensor data leading to inconsistencies between the reference frames sensed by
multiple MIMUs, which would impact the acceleration of the BCoM. However, it is believed that these
errors are not as critical as those made when clicking on MIMUs on photographs. Therefore, in this
chapter, we focused solely on the impact of MIMUs mislocation on SCoM and BCoM accelerations. The
impact of orientation errors due to the hypotheses of manual alignment of sensors and due to the
computation of orientation from sensor data should nonetheless be investigated in future studies.

The impact of the MIMUs location errors on SCoM and BCoM accelerations of an ambulating
transfemoral amputee was analyzed through a sensitivity analysis. First, the potential range of
localization error was investigated by two independent operators, who retrieved five times the
position of MIMUs origins after having recalibrated the photographs. Then, a simulation-based
sensitivity analysis was performed. It consisted in estimating SCoM and BCoM accelerations when
introducing errors in the relative position of MIMUs and their respective SCoM. Estimated SCoM and
BCoM accelerations were then compared to the reference value, which allowed to assess the impact
of MIMUs mispositioning on SCoM and BCoM acceleration. Finally, the sensitivity analysis allowed to
identify the MIMUs whose accurate location is critical for the estimation of SCoM and BCoM
accelerations. This work was produced during the master internship of J. Basel, whose contribution is
duly acknowledged. The content of this chapter will be submitted as an article in IEEE Transactions on
Biomedical Engineering.
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4.1. Definition of the possible magnitude of errors in the identification of MIMUs

positions

The MIMU-based framework presented in the previous
chapter allows to estimate the relative position of each segment-
mounted MIMU with respect to the underlying SCoM in the
optical motion reference frame using calibrated photographs.
Errors made when identifying MIMU positions on the
photographs would inevitably impact the estimation of SCoM
acceleration. To properly define the magnitude of error to be
used in the sensitivity analysis performed in this study, namely
the amount of position variation to be simulated for each
segment-mounted MIMU, the range of errors that could be made
when identifying MIMU positions on photographs was
calculated.

To this aim, four back, face and profile photographs (Figure
40) were taken with the participant standing in a static posture
while optical motion capture (OMC) recorded the position of 59
markers attached to the body and 20 markers positioned on five
3D printed boxes embedding MIMUs mounted on the trunk,
thighs and shanks. MIMU positions were retrieved by clicking on

olMU

Figure 40: Left side photo of the subject equipped
with MIMUs and optoelectronic markers. Zoom
on the CAD-designed structure on the subject’s
sound thigh. On the photo, the MIMU and CAD

] . . . . structure are covered with strap band
their locations on the photographs, calibrated following (Pillet et

al., 2010) by two operators who repeated the whole process five times (calibration + position
identification). Photograph-based and OMC-based positions of each MIMU origin were calculated for
each operator and results are reported in Table 10.

Absolute errors in the identification of MIMU positions were found to reach up to 0.02 m (Table
10). This value was thus considered for the sensitivity analysis. It should be noted that errors in MIMU
identification could be reduced by improving the visibility of the MIMU origins on the
photographs/scan (see Figure 40), for instance, by positioning a colored sticker on top of the MIMU
origin when positioning the MIMU on the participants. Furthermore, this could pave the way for
automatic detection of MIMU positions, thus reducing the post-processing time and inter-operator
errors.

Table 10: Mean and range of errors (in m) observed following the five repetitions performed by the two operators for the
identification of each MIMU origin.
P: prosthetic; S: sound, ML: medio-lateral, AP: anteroposterior, V: vertical

Mean error (m) Min error (m) Max error (m)
AP ML Vv AP ML Vv AP ML Vv
Operator 1

ShankP 0.012 0.007 0.012 -0.018 -0.010 -0.020 -0.001 0.010 0.005
ShankS 0.009 0.003 0.004 -0.017 -0.003 -0.005 -0.005 0.004 0.005
ThighP 0.016 0.005 0.007 -0.021 0.002 -0.010 -0.010 0.008 0.000

ThighS 0.015 0.005 0.006 0.008 -0.010 -0.004 0.018 -0.001 0.010
Trunk 0.007 0.007 0.012 0.003 0.001 0.005 0.010 0.011 0.020
Al 0.012 0.005 0.008 -0.021 -0.010 -0.020 0.018 0.011 0.020
Segments
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Mean error (m) Min error (m) Max error (m)
AP ML Vv AP ML Vv AP ML Vv
Operator 2
ShankP 0.009 0.004 0.003 -0.018 -0.007 -0.003 0.006 0.005 0.004
ShankS 0.009 0.008 0.011 -0.014 -0.004 -0.016 0.004 0.011 0.006
ThighP 0.016 0.005 0.011 -0.020 -0.002 -0.014 -0.012 0.009 0.013
ThighS 0.005 0.010 0.012 -0.009 -0.015 -0.018 0.006 0.013 0.006

Trunk 0.006 0.015 0.008 -0.009 0.008 0.003 0.001 0.020 0.011
Al 0.009 0.008 0.009 -0.02 -0.015 -0.018 0.006 0.020 0.013
Segments

Operator 1 + Operator 2
ShankP 0.011 0.006 0.009 -0.018 -0.010 -0.020 0.006 0.010 0.005
ShankS 0.009 0.006 0.008 -0.017 -0.004 -0.016 0.004 0.011 0.006
ThighP 0.016 0.005 0.009 -0.021 -0.002 -0.014 -0.010 0.009 0.013
ThighS 0.011 0.008 0.009 -0.009 -0.015 -0.018 0.018 0.013 0.010

Trunk 0.006 0.012 0.010 -0.009 0.001 0.003 0.010 0.020 0.020
Al 0.011 0.007 0.009 -0.021 -0.015 -0.020 0.018 0.020 0.020
Segments

4.2. Sensitivity analysis: impact of MIMUSs localization errors on the accuracy of the

estimated accelerations of body and segments centers of mass
4.2.1. Material and Methods

a. Experimental method

This study was approved by the local ethical committee. A transfemoral amputee subject (mass:
83.1 kg, height: 1.69 m) gave written informed consent to participate to the study. He was equipped
with a set of 5 MIMUs (Xsens Technologies B.V., Enschede, The Netherlands, 100 sample-s-1) located
on the trunk (over the sternum), both prosthetic and sound thighs (ThighP, ThighS) and shanks
(ShankP, ShanksS). Each MIMU was inserted in a customized 3D-printed rigid support equipped with 4
reflective markers (Figure 40). Additionally, as described in (Al Abiad et al., 2020), 59 reflective markers
were positioned on the patient’s anatomical landmarks and an optical motion capture system (OMC)
was used to record the 3D trajectory of the set of markers (Vicon system, Oxford Metrics, UK, 100 Hz).
The participant was asked to walk in a straight line at his natural speed along an 8 m pathway with
three force plates (AMTI, Advanced Mechanical Technology, Inc, Massachussets, USA, 1000 Hz) in its
middle. OMC, force plates and MIMU data were synchronized with an electronical trigger. Data
acquisition was performed over a total of seven trials. For each trial, only the prosthetic stride
performed at steady state walking speed and occurring on the force plates was considered in the
analysis.

b. Data Processing

All raw data from the acquisition were filtered using a Butterworth zero-lag 4th order low pass
filter with cut-off frequencies set at 5 Hz (MIMUs and markers) and 10 Hz (force plates).

i Reference accelerations

SCoM 3D positions were estimated from OMC measurements using a 15-segment inertial model
as reported in (Pillet et al., 2010). These positions were differentiated and low-pass filtered using the
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same filter as described above and cut off frequencies set at 8 Hz and 10 Hz for the first and second
differentiation respectively to obtain the reference SCoM accelerations. Reference BCoM acceleration
was extracted from the filtered force plates data. Reference accelerations were expressed in the OMC
inertial reference frame Ry c such that the y-axis was aligned with the direction of progression
(anteroposterior, AP), the z-axis vertical and opposing gravity (vertical, V) and the x-axis orthonormal
to both (mediolateral, ML).

ii. MIMU-based accelerations

3D orientation and position of each MIMU local frame Ry py With respect to Rppc were
computed using the markers located on the 3D-printed rigid cluster. The transformation matrix from
Ruymmu 1o Royc was obtained and allowed to express both gravity-free accelerations and angular
velocities measured by each MIMU in Ry c-

Afterwards, the vector going from MIMU origin to the center of mass of the underlying segment,
MIMU — SCoM, was obtained and expressed in Ry, for each MIMU. MIMU-based estimation of the

SCoM accelerations in Ry, a¥iMU. were then computed as follows:

— dn
aMIMU — Goe + % A MIMU — sCoM + Qypu A (Qay A MIMU — SCoM) (1)

with appp and 2y being the MIMU-measured gravity-free linear acceleration and angular
velocity signals expressed in Ropc-

Finally, BCoM acceleration was estimated as a weighted average of the estimated SCoM

MIM
accelerations (a}?MV) using:
n
aMIMU  _ m; gMIMU (o)
BCoM ~— SCoM,
= Mpody

Where: n is the number of segments considered and my,,4, and m; are respectively the masses

of the body and of the i*" segment.

The accelerations aféMl and alf!MY were compared to reference data using the normalized

root-mean square error (NRMSE) (Ren et al., 2008) and the Pearson’s correlation coefficient averaged
over the seven analyzed strides along the Ry directions.

iii. Sensitivity analysis

A sensitivity analysis was performed to investigate the impact of an erroneous identification of
each MIMU location, and thus an error on the components of the vector MIMU — SCoM on the
NRMSE between MIMU-based and reference SCoM and BCoM accelerations.

To achieve this aim, errors in the identification of MIMU positions on the relevant body segments
reaching up to 0.02 m in all three directions (AP, ML and V) were introduced. This range of errors was
estimated experimentally (see section 4.1). Simulations were performed where each MIMU position

was varied from its actual position (pomc Poar Pov) by £0.02 m along each Ry axis. The resulting SCoM
accelerations were estimated using equation (3):

e Ao
MV = Gymo + % A (MIMU = SCoM) + A

+ Lyimy A (-QMIMU A (MIMU — SCoM) + A) 3)
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Where: @y and m are the linear acceleration and angular velocity measured by the MIMU
and expressed in Ry, Whereas an erroneous term A= (Ayp , Ay, Ay) was added to the vector
MIMU — sCoM with A;€ {—0.02m,0m,0.02 m}fori = AP, ML,V.

The NRMSE between reference and MIMU-based SCoM and BCoM accelerations, referred

hereafter as Y5¢°Mi and Y?C€°M were then computed. This allowed to construct a so-called mechanical
model for each SCoM or BCoM acceleration linking the NRMSE (outputs) to the input errors.

Using the experimental design methodology (Goupy, 2016), the relation between each component
of the NRMSE (AP, ML, V) and the simulated mislocation of MIMUs along the AP, ML, and V axes
(hereafter designated as “factors”) can also be modelled with a polynomial model of degree up to 2 as
described in equation (4), resulting in three models per MIMU (for the AP, ML, V components of the
relevant SCoM acceleration) and for the BCoM:

n n n
Yerar (X) = by + Z bix; + Z Z bijxix; + Z bii(x)? (4)
=1 i=1

i=1 j>i

acci
where: Y_, !

stac 1S the estimated NRMSE between reference and MIMU-based accelerations in the i

direction (acc) and X is a vector containing the n = 3N factors x; corresponding to the positions of
the N MIMUs used for the estimation (N = 1 for SCOM acceleration and N =5 for BCoM acceleration).

Sensitivity of SCoM accelerations estimations

For each MIMU, three polynomial models were devised to emulate the SCoM acceleration along
each axis of the OMC, following equation (4) with three input factors x;: par, PmL, Pv, describing the
MIMU position along the three axes of Rgpyc- Then, after normalization of the factors’ values into
[-1; 1], a three-level full factorial design allowed to choose the experimental points resulting in 33
combinations of the factors (i.e. 27 different position simulations) per MIMU (Table 11).

Choice of the polynomial model’s complexity

The model complexity corresponds to the degree of the polynomial model and therefore depends
on the inclusion of the interaction and/or quadratic terms in equation (4). The choice of polynomial
model complexity is determined based on the residual variance of the polynomial model with respect
to the mechanical model and will be justified in section 4.2.2.b.i.

Table 11 : Levels of the factors used for each polynomial model emulating a component of a SCoM acceleration

Level of the factors
Factors . .
Low-level (-1) | Mid-level (0) High-level (+1)
par (M) poar — 0.02 Poap poar + 0.02
pML (m) pOML —0.02 pOML pOML + 0.02
pv(m) pov—0.02 pov pov+ 0.02

Quantification of the sensitivities

Based on the experimental design methodology, the influence of each factor (i.e., the coordinate
of the simulated MIMU origin along each axis of Ry ) on the accuracy of the SCoM acceleration
estimate is defined as the total percentage of variance of the output due to this factor (Goupy, 2016).

First, the sensitivity of the output Y;Zﬁi to each monomial (i.e., linear (b;x;), interaction (bjjx;x;) or
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quadratic term (b;;x;*)) of the polynomial model is computed. With the input factors considered as
independent and uniformly distributed in [-1, 1], the following equations can be written:

1
s; = var(byx;) = bi*var(x;) = b;* x 3

4
Sii = var(bxiz) = biizvar(xiz) — biiz % E

<
Sy = var(bi]-xixj) = bijzvar(xi)var(xj) = bijz X —

9
6 6 6
var(iee) = ) s+ Y sut Y Y sy
i=1 i=1

i=1 j>i
The sensitivity to the i" factor x; can be obtained as follows:

- §;=s;+ Xjs;; for the linear model with interactions

- S5 =s;+ Xjsi + sy for the quadratic model with interactions

The sensitivities S; were then expressed as a percentage of the total variance (var(Ys‘iZii))

Sensitivity of BCoM accelerations estimations

Three polynomial models of the highest complexity defined for the SCoM models were built for
the BCoM accelerations sensitivity analysis following equation (4) with n = 15 factors corresponding to
the three position factors of each of the five MIMUs. In order to limit the number of simulations (k*°
with k the number of levels per factor), a two-level factorial design (factors taking the levels + 1) was
considered sufficient if the model was linear with interactions whereas a three-level factorial design
(factors taking the levels = 1 and 0) was implemented if the model was quadratic with interaction
(Goupy, 2016). As for SCoM acceleration models, the suitability of the complexity chosen will be
verified using an analysis of the residual variance of the polynomial models compared to the
mechanical models.

4.2.2. Results

a. Reference and MIMU-based accelerations

Reference and MIMU-based estimations of the BCoM acceleration components in ML, AP and V
directions are reported in Figure 41. Accuracy of the MIMU-based BCoM and SCoM accelerations in

acceleration (m/s?)

MIMUs  Forceplates

0 0.50 1.00 1,50

Time (s)

Figure 41: Comparison of BCoM accelerations obtained with MIMU (straight lines) and force plates
(dotted lines) during one trial in the anteroposterior (AP), mediolateral (ML) and vertical (V) directions
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terms of NRMSE values and correlation coefficients compared to the reference accelerations are
presented in Table 12. It should be stressed that the MIMU-based estimations presented in Figure 41
and Table 12 were obtained with the correct identification of the sensor position, i.e. with pomt, Poar
and pov as defined with the rigid marker clusters (Figure 40). Results show relatively low errors (< 15.4
+2.5%inAP,<11.8+1.3%in ML, <12.5+2.0% in V) and mostly good correlations between reference
and MIMU-based accelerations (r > 0.77).

Table 12: Comparison of the computed SCoM and BCoM accelerations to reference values, quantified using the average and

standard deviation of the NRMSE (%) and average Pearson’s r correlations over the 6 trials.

AP ML \'
NRMSE (%) 14.1(1.9) 9.8 (1.2) 5.2(2.3)
Trunk
Pearson’s r 0.77 (0.03) 0.94 (0.02) 0.98 (0.03)
NRMSE (%) 9.9(2.2) 10.2 (1.3) 7.5(2.0)
ThighS
Pearson’s r 0.85 (0.10) 0.83 (0.08) 0.93 (0.06)
NRMSE (%) 12.5(1.5) 5.7 (1.9) 5.5(1.2)
SCoM ThighP
Pearson’s r 0.89 (0.03) 0.96 (0.03) 0.97 (0.01)
NRMSE (%) 8.0(1.8) 10.1(1.5) 12.0 (1.5)
ShankS
Pearson’sr 0.94 (0.04) 0.81(0.13) 0.84 (0.05)
NRMSE (%) 4.8(1.2) 5.8 (0.7) 12.5 (2.0)
ShankP
Pearson’s r 0.98 (0.01) 0.97 (0.01) 0.87 (0.04)
NRMSE (%) 15.4 (2.5) 11.8 (1.3) 8.7 (0.5)
BCoM Whole Body
Pearson’sr 0.93 (0.01) 0.94 (0.02) 0.95 (0.01)

b. Sensitivity analysis

i. Sensitivity of SCoM accelerations estimations

Choice of the polynomial model’s complexity

Residual variances achieved by the polynomial models developed for the ML component of the
SCoM acceleration of each segment are presented in Table 13. Residual variances of the same order
of magnitude were observed for the other components of the acceleration. Both the quadratic and
multilinear models with interactions presented low residual variances for all segments and axes (o 2
<0.159, except for the prosthetic shank in the vertical direction - o 2 < 0.662) with the lowest values
for the quadratic models (Table 13).

Table 13: Residual variances o? of the linear model with interactions and quadratic model for each segment in the mediolateral
direction

Model o2 (Trunk) o2 (ThighS) o? (ThighP) o2 (ShankS) | o? (ShankP)
Linear + 0.095 0.147 0.044 0.143 0.065
interactions

Quadratic <0.001 0.001 0.001 0.002 <0.001

Based on these results, the linear model with interactions was considered as an optimal
compromise between accuracy and simplicity. Indeed, the achieved maximal residual variance with
the multilinear models (0.662) represents a standard deviation of o = 0.8% which, compared to NRMSE
of the order of 10% (Table 12), was considered as largely acceptable. The model complexity

106



corresponding to a first order polynomial model with interactions was selected for all MIMUs and all
acceleration components. Therefore, all results presented hereafter were obtained using models with
this complexity.

Quantification of the sensitivities
The results of the sensitivity analysis for each SCoM acceleration component (AP, ML, V) are
summed up in Figure 42.

ey, .- I, [y, xPae B Py Py -pAF’XpV‘

100 [
80 [~
60 [~
40 -
20 -

AP ML V AP ML AP ML V AP ML V AP ML V
Trunk ThlghS ThighP ShankS ShankP

Sensitivity of SCoM accelerations
to MIMUs positions (%)

Figure 42: Sensitivities of the SCoM accelerations to each factor x; and interactions between factors
(x;*x;) with x; ={pap,pmLPv} expressed in percent of the total variance. For each MIMU location, the
sensitivities of each component of the SCoM acceleration (AP, ML, V) to the factors are displayed

For the lower limbs, par was found to be the major influencer for the ML and V components of
SCoM acceleration, whereas py was the one for the AP component. Regarding the prosthetic shank,
however, the influence of pyvdominated that of pap in all three directions. The trunk segment displayed
a different behavior with respect to the other segments and was the only one where the MIMU
mediolateral position pm. displayed a prominent role. Finally, the interactions between factors showed
minor influences on the accelerations’ estimations. The most important influence of interaction factors
was obtained for the prosthetic shank where the interactions between pML and pAP and between pAP
and pV explained 15.1 % of the total variance of the rRMSE in the mediolateral direction.

The range of variation of the estimation accuracy A,gpysg, (%) caused by simulated errors in the
identification of the MIMU positions over all the simulations are presented in Table 14 for each
component of SCoM acceleration (AP, ML, V). Errors in the identification of the MIMU positions
resulted in modification of the estimation accuracy of SCoMs acceleration between —1.6 % <
Arpmse,p< +1.7 % in AP, —=1.5 % < Arguysi,,, < +1.6 % in ML and —5.6 % < A,pysg, < + 6.8 %
in V compared to the NRMSE obtained when these MIMUs positions were correctly identified (Table
12).
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Table 14: Range of variation of the SCoM estimation accuracy A,gusg, (%) caused by errors in the identification of the
corresponding MIMU positions over all the simulations. Results are presented for each component of SCoM acceleration (AP,
ML, V).

Trunk
AP ML \)
Lower range of A,pysg, (%) -0.2 -0.7 -04
Upper range of A, gysg; (%) +0.2 +1.1 +0.6

Sound Thigh

AP ML \'
Lower range of A gysg, (%) -0.5 -0.6 -1.1
Upper range of A, gysg; (%) +0.3 +0.7 +1.1

Prosthetic Thigh

AP ML \)
Lower range of A,gysg, (%) -1.6 -1.4 -11
Upper range of A, gy g, (%) +14 +15 +1.2

Sound Shank

AP ML \'
Lower range of A,gysg; (%) -1.6 -1.5 -4.2
Upper range of A, gy g, (%) +1.7 +1.6 +3.7

Prosthetic Shank

AP ML \'
Lower range of A,gysg, (%) -1.1 -0.5 -5.6
Upper range of A gysi; (%) +1.1 +0.8 +6.9

ii. Sensitivity of BCoM acceleration estimations

Choice of the polynomial model’s complexity
The three multilinear models including interactions developed for the sensitivity analysis of the
BCoM acceleration presented low residual variances values (o % < 103) (Table 15).

Table 15: Residual variances o2 of the linear model with interactions for each BCoM component

Model o2 (AP) o%(ML) o2 (V)

Linear+ interactions <0.001 0.001 <0.001

Consequently, a two-level factorial design was considered to be sufficient to emulate the
mechanical models corresponding to the BCoM acceleration. The sensitivity analysis was subsequently

performed with the 15 factors of the models resulting in 21° simulations.
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Quantification of the sensitivities

Figure 43 highlights the factors that
have the most influence on the accuracy of
the estimation of each component (AP,
ML, V) of the BCoM acceleration. For
better readability and clarity, only the
factors accounting for more than 1 % of the
total variance are shown in the figure. The
BCoM acceleration appears to be mostly
sensitive to trunk, sound thigh and sound
shank factors, particularly to the
anteroposterior and vertical localizations
of the MIMUs mounted on these
segments. Indeed, all together, pap Trunk,
pvTrunk, pap ThighS, py ThighS, par Shanks,
and pv Shanks explain 92 %, 77 % and 79%
of the sensitivity of the estimation of the
AP, ML, V BCoM acceleration components
respectively. It should be noted that the
anteroposterior localization of the trunk
MIMU only as a significant impact on the
mediolateral component of the BCoM
acceleration (accounting for 10.5 % of the
total variance).

Similarly to the SCoM analysis, the
NRMSE ranges of the variation A, gy sg; (%)
obtained over all the simulations, when
simulating an error in the identification of
MIMUs positions was computed (Table
16). The different combinations of errors in
the identification of the MIMUs positions
resulted in modification of the estimation
accuracy of the BCoM acceleration
between — 3.4% and + 2.8 % compared to
the NRMSE obtained when these MIMUs
positions were correctly identified (Table
16).

109

50
o
S
*§§: 40
- 0 8
8 €3
322
o 30
285
02 g
mEg
“ o 2 20f
2o ¢
£22
5= <
2o 10
Q
w
0
50
o
S
s 40f
2% <
CDEO
M = B
=85 30
925
O‘BE
CDEE
S o5 20F
~2 T
2= 0
TE=
5 =
ge 0]
(]
w
ol
o 5 o O ¥ © K &
¥ NSNS & N N &
O . . &
S
Y
50
c
S
T 407
2%
()
8§58
= 2 |
58§ 30
8%3
mE 8
L = .
ot 20
oo
g7
£ =
28 10F
)
w
0 [

N < & Q
& hS & A
<& «"\\Q e &i‘

Q v 2
QY Q\“\/ QW Q¥ R Q?g ! Q\g R

Figure 43: Barplot of the results of the sensitivity analysis expressed in % of total
variance for each BCoM acceleration component (ML, AP, V). Sensitivities are
presented here for the factors x; and interactions between factors (x;*x;) that
account for more than 1% of the total variance.



Table 16: Maximum range of variation of the estimation accuracy A,gysg; (%) caused by errors in the identification of the
MIMUs positions over all the simulations. Results are presented for each component of BCoM acceleration (ML, AP, V).

AP ML Vv
Lower limit for A, gysi; (%) -34 -2.2 -1.0
Upper limit for A, gysg; (%) +2.8 +2.3 +1.4

4.2.3. Discussion

The present work investigated the impact of the incorrect identification of the position of five
segment-mounted MIMUs on the estimation of the corresponding SCoM and BCoM accelerations.

a. Reference and MIMU-based accelerations

The implemented MIMU-based framework for the estimations of SCoM and BCoM accelerations
provided relatively accurate results (high agreement: r >0.77, and low errors: < 15.4 % in AP, < 11.8 %
in ML, < 12.5 % in V) compared to reference-based acceleration. Overall, SCoM acceleration
estimations showed higher agreements at the prosthetic limbs than at the sound limbs. This can be
due, in part, to the fact that MIMUs positioned on the prosthetic limb are not affected by soft-tissues
artefacts contrary to those positioned on the sound limbs.

b. Sensitivity Analysis

Using an experimental design methodology, the sensitivity of each component of the SCoM and
BCoM accelerations to errors in the identification of each MIMU position was estimated using optimal
polynomial models.

i. Sensitivity of SCoM acceleration estimations

Quantification of the sensitivities

The sensitivity analysis allowed to identify the factors having the greatest influence on the accuracy
of the estimations of the accelerations of each SCoM. For the lower limbs, incorrect location along the
anteroposterior axis mainly influences the vertical component of the acceleration, whereas incorrect
location along the vertical axis impacts mainly the mediolateral and anteroposterior acceleration
components. It is worth noting that for the prosthetic shank, the vertical localization of the MIMU
displays a dominant role over the anteroposterior one even for the vertical component of the
acceleration. The localization of MIMUs along the mediolateral direction was shown not to have a
major impact on the estimation of their corresponding SCoM acceleration, except for the trunk and to
a lesser extent for the sound thigh. This may be explained by the fact that, during gait, the angular
velocity of the lower limbs is mainly directed around the mediolateral axis and has a very low
magnitude around the vertical axis. Consequently, modifications of the MIMU positions along the
flexion-extension axis of the lower-limb segments are not expected to have a major impact on SCoM
accelerations (see equation (1) and the properties of the cross-product). This observation shows that
the influence of errors in the identified position of MIMUs depends on the considered segment /
motion. This has to be particularly taken into consideration in altered gait patterns such as those of
people with amputation.

Importantly, erroneous identification of MIMU positions of +0.02 m triggered errors between
— 5.6 % < Anrmse < +6.9 % for all SCoMs and all acceleration components considered, but only between
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- 1.6 % < Anrmse < +1.7 % when the shanks are not considered. Considering NRMSE of the order of 10
% between MIMU-based measurement and reference values, these variations cannot be considered
negligible, especially for the shanks. The higher impact of erroneous position identification of shank-
mounted MIMUs on the estimated accelerations of their respective SCoM could be explained by the
high angular velocity of the shanks compared to the other segments considered. Taken together, these
observations suggest that specific attention must be given to the correct identification of the sensor
positions, especially for the AP and V directions and for the shank-mounted MIMUs, in order to limit
the resulting errors.

ii. Sensitivity of BCoM acceleration estimations

Quantification of the sensitivities

The results observed for the sensitivity of SCoM acceleration estimations clearly impacted those
related to the BCoM acceleration. For a given segment, the direction of the MIMU localization error
(AP, ML, V) that was shown to be the most influent for the SCoM acceleration estimation accuracy also
played a role in the accuracy of the BCoM acceleration estimate. For instance, erroneous identification
of the positions of sound shank-mounted MIMU along the vertical direction was found to greatly
influence the BCoM acceleration estimates in the AP direction as was observed for the SCoM (Figure
43, Figure 42).

Variations in NRMSE of up to 2.8 %, 2.3 % and 1.4 % were observed in AP, ML and V directions
respectively. The higher NRMSE variations for the AP and ML components might be explained by the
lower amplitude of BCoM acceleration along these directions compared to that along the vertical
direction (Figure 41). These variations should also be interpreted at the light of the accuracy obtained
between MIMU- and reference-based acceleration estimation, namely NRMSE of the order of 15 % in
ML and AP, and 5 % in V (Table 12). It is interesting to note that the BCoM acceleration was more
affected that the SCoM accelerations in the AP and ML direction but not in the vertical direction. This
may be due to the fact that for the SCoM, the maximal variations of NRMSE along the vertical direction
were obtained for the shank segments, which have a lower mass compared to that of the thighs and
trunk, especially for the prosthetic side. Therefore, when computing the BCoM acceleration from a
weighted sum of the SCoM acceleration, the variability in the shanks SCoM acceleration accuracy had
a lower impact on the BCoM.

Comparison of the present results with the existing literature must be performed with caution due
to the different methodologies and target parameters. Specifically, Tan and coworkers (Tan et al.,
2019) used a one-at-a-time sensitivity analysis to assess the impact of MIMU placement errors on the
estimation of ground reaction force (GRF). In this case, interactions of several MIMU placement errors
were not considered. The authors reported that, when a single sensor was misplaced, the accuracy of
GRF estimation was decreased by up to 0.9 %, 2.2 %, and 1.1 % in the AP, ML and V directions
respectively. It is interesting to stress that in (Tan et al., 2019), no sensor was revealed as having a
significantly dominant impact on the accuracy of the GRF estimation. This may be due to the fact that
the authors implemented a machine learning framework for the estimation of GRF from raw data of
segment-mounted MIMUs, without a priori attributing more weight to specific sensors. This machine
learning framework may also explain the fact that the magnitude of positioning errors (0.1 m vs 0.02 m)
had a negligible influence on the accuracy of the GRF estimation.
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The results of the sensitivity analysis performed on BCoM accelerations in the present study
advocate the need for an accurate detection of MIMUs positions, especially for the trunk, sound thigh
and shank along both the vertical and anteroposterior directions. The important influence of the
localization of the trunk and sound thigh might be explained by the fact that they are the heaviest
segments of the body and that BCoM acceleration is estimated using a weighted average of SCoM
acceleration based on their mass. The sound shank influence may therefore result from the higher
angular velocity of shanks segments (almost twice that of the other included segments) while walking
and the relatively high mass of the sound shank compared to prosthetic segments. Limiting the errors
in the estimations of SCoM accelerations, especially at the shank, is expected to have a positive impact
on the accuracy of the whole-body CoM acceleration estimates. Indeed, if a particular attention is
given to the identification of the positions of these three MIMUs in the AP and V directions, the
variations in NRMSE previously observed may be reduced from 2.8 %, 2.3 % and 1.4 % to 0.9 %, 0.7 %,
0.6 % in AP, ML and V directions, respectively.

c. Limitations and perspectives

The generalizability of the discussed results must be interpreted at the light of the following
considerations: first, a larger cohort of participants are needed to confirm present findings. Second,
simulated errors in the identification of MIMUs positions were introduced along the axes of the
reference frame Ry, therefore, results could be different if MIMUs were misplaced along the axes
of the segments anatomical frames. However, the errors introduced in the simulations covered a cubic
zone centered on the correct location of the MIMU'’s origin. Furthermore, the static calibration phase
was performed with the patient standing in an upright posture facing the direction of progression so
that segment anatomical axes were assumed to be aligned with those of the global frame Ry (one
axis aligned with the gravity and one axis with the direction of progression). It can be thus assumed
that, in case the anatomical frame should be considered instead of Ry, the position identification
errors would cover a similar cubic zone, leading to negligible variations in the obtained sensitivities.
Moreover, it is worth underlining that the 0.02 m range of errors in the identification of MIMU
positions is a conservative value, being the maximum error observed (see section 4.1), and thus
representing a worst-case scenario presumably covering the range of errors that would be observed
in practice. Finally, in the present study, the impact of MIMU orientation errors was not investigated
despite the latter was found to critically impact the accuracy of GRF estimation (Tan et al., 2019). It
should be considered, however, that in (Tan et al., 2019) raw MIMU signals were used as inputs of a
machine learning model and were not expressed in a global or anatomical reference frame. Conversely,
in the MIMU-based framework proposed in the present study, the SCoM accelerations were expressed
in a global reference frame before being summed to estimate the BCoM acceleration. Errors typical of
sensor-fusion filters used to obtain MIMU 3D orientation remain to be considered. However, these
errors are expected to have a minor impact with respect to what reported in (Tan et al., 2019). Further
studies should verify this hypothesis and quantify the impact of orientation errors on both SCoM and
BCoM accelerations.

4.2.4. Conclusion

The present study investigated the impact of an erroneous identification of the positions of a set
of body-mounted MIMUs on the estimation accuracy of SCoM and BCoM accelerations during walking
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in a subject with transfemoral amputation. An optical motion capture system and force plates were
used as reference for SCoM and BCoM accelerations estimates, respectively. The performed sensitivity
analyses allowed to identify the MIMUs whose localization along certain axes allowed to reduce the
variation of errors in the estimated SCoM and BCoM accelerations. Specifically, an accurate
identification of MIMUs positioned on the trunk and sound lower limbs along the anteroposterior and
vertical axes was proved to limit the variability of the accuracy of the estimated BCoM acceleration
below 1 %. These preliminary results need to be confirmed on a larger cohort. Future works are also
required in order to consider also the impact of MIMU orientation errors on the estimated
accelerations.
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Conclusion

This part of the thesis aimed at contributing to the development of a wearable gait analysis
protocol for the estimation of 3D body center of mass (BCoM) motion.

Several strategies have emerged from the literature (chapter 1) to estimate BCoM acceleration,
velocity or displacement, using one to several MIMUs. While single-sensor approaches may
overestimate BCoM motion, in particular in people with lower-limb amputation, finding a balance
between accuracy and the number of MIMUs is crucial for the application of wearable protocols in the
clinical field. Therefore, in chapter 2, the contributions of each segment to the BCoM acceleration were
investigated in order to identify the optimal locations for sensor positioning. Several optimal sensor
networks (OSN), including three to six segments, appeared relevant for the estimation of BCoM
acceleration in people with transfemoral amputation. However, the study was implemented with
optical motion capture data of ten people with transfemoral amputation. When using MIMUs mounted
on body segments, obtaining the acceleration of segments centers of mass in a global reference frame
is not direct. Furthermore, MIMUs cannot always be positioned on bony landmarks and may therefore
be more subjected to soft tissue artefacts. As a result, the identified OSN may not be as successful
when using wearable sensors. The aim of chapter 3 was therefore to investigate the suitability of
MIMUs for the estimation of 3D BCoM motion, and was further divided in three objectives: i)
introducing a fully wearable framework for gait analysis, ii) verifying that the OSN identified in chapter
2 were indeed relevant when using wearable sensors and jii) investigating the suitability of the
identified OSN and developed framework for the estimation of instantaneous BCoM velocity. A set of
5 MIMUs positioned on the thighs, shanks and trunk were shown to allow an accurate estimation of
these quantities. It has to be noted that, if the output measure of interest is BCoM acceleration in the
anteroposterior and/or vertical directions, the thigh-mounted sensors can be removed while
increasing the accuracy. The developed framework was thus successful in allowing the accurate
estimation of BCoM acceleration and instantaneous velocity from a limited number of sensors (NRMSE
<£16.7 %, 14.0 % and 7.7% in the anteroposterior, mediolateral and vertical directions). The results
obtained in chapter 3 should be confirmed on a larger cohort in order to further validate the relevance
of MIMUs as an alternative to lab-based instruments for the retrieval and analysis of 3D BCoM motion
in people with transfemoral amputation. Furthermore, the framework currently requires the use of an
optoelectronic system. However, a wearable alternative could be easily developed in order to facilitate
its implementation outside of dedicated laboratories: it could easily rely on either a 3D body scan or a
camera associated with a simple calibration device. The dependency of the results on the identification
of MIMUs positions relative to the segments center of mass would still be an issue. Therefore, in
chapter 4, a sensitivity analysis was performed to investigate the impact of erroneous identification of
MIMUs’ positions on the estimation of the BCoM acceleration estimated using the OSN consisting of
trunk, thighs, and shanks mounted MIMUs. Imprecisions in positioning of each MIMU of up to 2 cm in
any direction induced a decrease of BCoM acceleration accuracy of up to 3.9 %, 4.6 % and 2.6 % in the
anteroposterior, mediolateral and vertical direction respectively. Sensors located at the trunk and the
sound thigh and shank were shown to explain most of the observed variance (more than 80 %, 81 %
and 66 % in the anteroposterior, mediolateral and vertical directions respectively). A precise
positioning of these sensors appears crucial for an accurate estimation of BCoM acceleration as it
allows to reduce the decrease of accuracy of the BCoM acceleration estimate to 1.5%, 1.7% and 1.2%
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in the anteroposterior, mediolateral and vertical directions respectively. The conclusions could differ
when using other segment models. However, as the sound leg and the trunk represent the heaviest
segments of the body, their influence on BCoM acceleration accuracy is expected to be prominent in
other OSN including these segments. The methodology proposed in this chapter could also be applied
to other BCoM derived parameters, such as the instantaneous velocity of the center of mass.

Allin all, the work achieved in this direction tend to indicate that MIMUs are a valid alternative for
the estimation of 3D BCoM motion in people with transfemoral amputation. Results should be
confirmed on a larger cohort and validation should be extended to other BCoM-derived parameters
such as 3D BCoM displacement or power. The former would require a supplementary integration step
and the knowledge of the initial absolute position of the BCoM. Regarding the latter, further
developments are needed since BCoM power can be estimated from the sum of the scalar product of
instantaneous BCoM velocity with the ground reaction force under each foot. Several algorithms have
been proposed for the smooth distribution of the ground reaction force between both feet, but they
may not be adapted to people with lower-limb amputation.
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Part 3: Characterization of gait quality in people with lower-limb
amputation using concise parameters issued from wearable signal
processing

In the previous part, the feasibility of using wearable sensors to derive biomechanical parameters,
such as the instantaneous body center of mass acceleration and velocity, has been demonstrated. As
illustrated in the literature review of Part 1, wearable sensors have also been proposed to characterize
gait using parameters computed through simple signal processing or through the identification of
features in raw signals, without requiring the development of complex biomechanical models of the
human body. As for parameters based on biomechanical models, these signal-processing-based gait
descriptors must also be validated for a specific population and use. The aim of this third part is,
therefore, to target these parameters in order to investigate whether wearable sensors could be used
to obtain intelligible and clinically relevant quantitative information. This could be done without long
set-up and processing times that are often required to characterize and monitor the gait of people
with lower-limb amputation along their rehabilitation.

In particular, the overview of the literature in Part 1 allowed to identify several parameters for the
guantitative assessment of gait symmetry and balance control during gait that require neither a large
number of sensors nor a complex modeling of the human body, making them more mature for a
transfer to clinical environment. Indeed, monitoring gait symmetry and assessing the risk of falling are
both crucial elements of the rehabilitation of a person with lower-limb amputation as these aspects
were shown to lead to the development of comorbidities and have an impact on the activity or social
participation level after discharge from the rehabilitation center (Gailey et al., 2008; Highsmith et al.,
2016). Furthermore, tracking and quantifying gait (a)symmetry along the rehabilitation process can
assist clinicians in refocusing rehabilitation strategies and targets (Cutti et al., 2018). While some
aspects of gait (a)symmetry can be visually identified by observing the gait pattern and paying
attention to feet placement while walking, other aspects, such as loading asymmetry (see Part 1,
section 2.3.3.a.i) or poor balance are difficult to quantify with the naked eye. All these gait deficiencies
are hardly tracked accurately in the clinical routine due to the lack of ecological and quantitative
assessment tools.

Falling risk might be assessed through aggregate scores, such as the Berg Balance Scale or through
clinical walking tests. The Berg Balance Scale consists in 14 balance/mobility exercises rated from 0 to
4 depending on the time required to accomplish the task. Although this aggregate score was shown to
be valid for fall risk assessment in people with lower limb amputation, it was not able to distinguish
people at greater risk of falling and may therefore lack of sensitivity (Major et al., 2013). Furthermore,
the Berg Balance Scales requires fifteen to twenty minutes for administration, which compromises its
frequent use during the rehabilitation. Clinical walking tests on the other hand are easily performed
in the rehabilitation due to the simple short set-up and acquisition time, but they result in a single
guantitative data, characterizing the performance in realizing the test through the measure of the time
needed or distance covered during the test. The achieved score allows to characterize the overall gait
performance but does not capture the way this performance is obtained: a higher score could for
example be achieved by someone walking faster although with increased gait asymmetry. Since
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asymmetry may lead to comorbidities, improvement in performance should be interpreted with
caution. Due to the sensitivity and rapidity of administration of these standardized clinical walking
tests, it appears relevant to instrument them with wearable sensors in order to retrieve additional
objective and quantitative metrics allowing the simultaneous characterization of both gait
performance and quality in the clinical field.

With wearable sensors, gait symmetry can be quantified by comparing the duration of the sound
and prosthetic limb stance phases, which is possible once gait events are detected with pressure
insoles (by using a threshold on the estimated vertical component of the ground reaction force) or
IMUs (by identifying features in IMU signals indicative of a gait event). In the latter case, a large number
of algorithms have been proposed using IMUs on the shanks, feet or on the pelvis for gait event
detection with no indications regarding the most suited to transfemoral prosthetic gait. Furthermore,
the algorithms were validated in the literature for the detection of gait events and for the estimation
of temporal parameters but their accuracy in estimating temporal asymmetry was not verified.
Therefore, a complete comparative analysis of the algorithms developed for the people with lower-
limb amputation appears relevant.

Other parameters quantifying gait symmetry have been proposed by computing metrics based on
signal processing. As an example, the improved harmonic ratio, computed using the Fourier
decomposition of the acceleration measured by a pelvis-mounted MIMU, has been largely adopted in
recent years to describe overall gait symmetry (see Part 1, section 3.2.3.a.i). This parameter offers the
advantages of requiring a single IMU and of providing a global score for the symmetry of locomotion.
However, its interpretation may not be straightforward as it does not provide indications relative to
the origin(s) of the detected asymmetry.

Regarding balance control assessment during gait, several authors have proposed to equip the
upper body with three IMUs located at pelvis, sternum and head levels. The ratio of the root mean
square of the measured acceleration at two subsequent levels are computed in order to investigate
the transmission of accelerations from the lower limbs to the head (Summa et al., 2016; Bergamini et
al., 2017; Belluscio et al., 2018; Paradisi et al., 2019). The underlying idea is that, in typical gait,
accelerations are attenuated from lower to upper body levels in order to stabilize the optic flow, allow
for a more effective processing of the vestibular system signals, and a consequent control of
equilibrium (Berthoz and Pozzo, 1994). Therefore, assessing the acceleration pattern as well as their
attenuation from the lower limbs to the head seems relevant for the assessment of fall risk.

The validity, accuracy and reliability of the above-mentioned parameters quantifying symmetry or
dynamic balance retrieved using IMUs and pressure insoles should be investigated in people with
lower-limb amputation, so as to verify their relevance for clinical assessment during the rehabilitation.
In particular, it should be verified that the above-mentioned parameters do measure what they are
intended to measure (the “construct”) and that they allow to discriminate people with different level
of the construct (here, it would be the ability to discriminate within people with lower-limb amputation
those who are at a higher risk of falling or those who present higher gait asymmetry) (Portney and
Watkins, 2015). The reliability of a parameter refers to the level of consistency between two
measurements of the same parameter in the same circumstances. It allows to determine the minimal
detectable change, that is, the minimal difference observable that can be considered as reflecting a
real change in the parameter and not as measurement error or inherent variability. This value must be
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confronted with the minimal clinically important difference which reflects when a change in the value
of the parameter reflects a positive or negative change from a clinical point of view. Quantifying all
these aspects requires a large amount of research and represents the first crucial step towards the
transfer of these wearable gait quality indices from research to the clinical field (Portney and Watkins,
2015).

This part of the thesis aims at contributing to gaining insight on these concise parameters and
algorithms in the prospect of using these parameters for gait quality assessment during the
rehabilitation of people with lower-limb amputation. The feasibility and validity of characterizing gait
symmetry and balance control in people with lower-limb amputation using these parameters will be
explored. In the first chapter, the feasibility of assessing temporal symmetry in people with
transfemoral amputation using IMUs and various gait event detection algorithms will be investigated
by comparing state-of-the-art algorithms retrieved in the literature. Then, in a second chapter, the
relevance of using symmetry or balance descriptors derived from signal processing of wearable sensors
during the rehabilitation will be investigated on a cohort of nine people with transtibial amputation
and nine asymptomatic subjects. A special focus on the improved harmonic ratio will be proposed in
this chapter in order to overcome limitations in its computation and interpretability.
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Chapter 1 — Feasibility of determining temporal symmetry from

MIMUs in people with transfemoral amputation

In recent years, inertial measurement units (designated as IMUs in this chapter, since no
magnetometer is required) have been proposed as an alternative to force platforms and pressure
sensors for the detection of gait events (i.e. initial and final contacts). Gait event detection is indeed
crucial for gait analysis as it allows gait cycle segmentation, which is often necessary for the analysis of
biomechanical features within kinematic or kinetic data or even for the computation of stride-related
parameters. Furthermore, the time interval between different gait events allows to define the
different phases of the gait cycle and therefore to compute spatiotemporal parameters. While multiple
algorithms have been developed in the literature (see Pacini Panebianco et al. 2018), no
recommendation on the most suited algorithm for transfemoral prosthetic gait could be retrieved in
the literature. Furthermore, despite the clinical importance of (a)symmetry quantification in lower-
limb amputee gait, the impact of gait event timing errors on gait (a)symmetry has never been
investigated in people with transfemoral amputation walking freely on level ground.

Therefore, the aim of this study was to implement and compare five algorithms taken from the
literature to assess their accuracy in providing temporal parameters and estimating gait asymmetry in
people with transfemoral amputation during level walking.

This study was published in the review Medical & Biological Engineering & Computing:

E. Simonetti, E. Bergamini, C. Villa, J. Bascou, G. Vannozzi, H. Pillet. Gait events detection using
inertial measurement units in people with transfemoral amputation: a comparative study, Medical
& Biological Engineering & Computing, 58:461-470 (2020).

1.1. Introduction

The accurate detection of gait events (GEs) is crucial for the biomechanical assessment of gait
function in people with pathological walking patterns (Perry, 1992). The identification of initial contact
(IC) or final contact (FC) events, respectively marking stance initiation and termination, allows for gait
cycle segmentation and is essential to extract and interpret relevant features from biomechanical and
physiological gait variables such as joint angles or muscle activity (Perry, 1992).

In people with lower-limb amputation, whose gait is known to be highly asymmetrical due to joint
function loss (Nolan et al., 2003; Bastas et al., 2018), the identification of gait phases is particularly
relevant for both prosthetic design and rehabilitation fields. For example, micro-processor-controlled
prostheses generally adopt different behaviors according to the gait cycle phase (Ledoux, 2018).
Furthermore, stance or swing phase durations and temporal symmetry indices are widely used to
evaluate gait in the clinical field. Quantifying these parameters can indeed assist therapists in decision-
making during rehabilitation, as well as in prosthetics prescription, fitting and alignment (Aminian et
al., 2002; Cutti et al., 2015; Bastas et al., 2018).

In recent years, wearable sensors, such as pressure insoles or inertial measurement units (IMUs),
have been proposed as a portable and low-cost alternative to force platforms, instrumented mats or
treadmills for the detection of GEs. While some specific pressure insoles have been validated against
force platforms (Barnett et al., 2001; Loiret et al., 2019), their use is limited to the obtention of GEs
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and vertical ground reaction forces. On the other hand, IMUs, which include accelerometers and
gyroscopes, can provide kinematic information in addition to GE detection. Thus, multiple algorithms
have been developed for IC and FC identification from linear accelerations and/or angular velocities
measured by IMUs (Pacini Panebianco et al., 2018). Many authors have recommended the use of a
single sensor at pelvis level to minimize invasiveness and gait alteration (Zijlstra and Hof, 2003;
Gonzalez et al., 2010; Bonnet et al., 2012; Kose et al., 2012; Bastas et al., 2018). However, in
pathological gait, a robust detection of both IC and FC events is compromised because of gait inherent
variability and stronger attenuation of feet-ground impacts at trunk level (Trojaniello et al., 2015;
Pacini Panebianco et al., 2018). Consequently, algorithms based on the use of two IMUs located on
both shanks (Salarian et al., 2004; Selles et al., 2005; Jasiewicz et al., 2006; Catalfamo et al., 2010;
Greene et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Maqgbool et al., 2017; Bertoli et al., 2018;
Ledoux, 2018) or feet (Sabatini et al., 2005; Jasiewicz et al., 2006; Mariani et al., 2013) have been
developed and are generally considered to be more accurate (Trojaniello, Cereatti, Pelosin, et al., 2014;
Trojaniello et al., 2015; Pacini Panebianco et al., 2018).

Given the number of available algorithms, the comparison of their accuracy in GE detection is
relevant. However, most studies differ in their acquisition protocol, in the population investigated and
in the reported results, which makes the comparison challenging. Indeed, while the accuracy of the
timings of detected GEs is always discussed, the ability of the algorithms to detect all GEs without false
positives, or the consequence of the timing errors on clinically relevant parameters, such as cycle
durations or symmetry indices, is not always disclosed. Although there have been some attempts in
performing comparative studies in the literature (Jasiewicz et al., 2006; Trojaniello, Cereatti and Della
Croce, 2014; Trojaniello et al., 2015; Storm et al., 2016), none focused on people with transfemoral
amputation (TF). In addition, as most algorithms rely on the extraction of specific features from IMU
signals, some may not be relevant for the population of TF because of deviations in their gait pattern,
such as hip hiking, vaulting, delayed knee flexion, and temporal and spatial asymmetries (Nolan et al.,
2003; Loiret et al., 2019).

This work aimed at comparing the performance of different state-of-the-art algorithms in TF
walking freely on level ground. Performance was quantified in terms of i) sensitivity and positive
predictive value of GE detection, ii) accuracy of GEs timings and iii) accuracy of derived temporal
parameters and of stance phase duration Absolute Symmetry Index (SPD-ASI) values. Furthermore, the
robustness to different walking speeds was also investigated. Data from pressure insoles validated
against force platforms in people with transfemoral amputation (Loiret et al., 2019) were used for
reference values assessment.

1.2. Material and methods

1.2.1. Participants

The study was designed according to the Declaration of Helsinki, and was granted ethical approval
(CPP IDF VI, N° 2014-A01938-39). Seven TF (age: 47.3 £ 9.9 years, 5 males, mass: 74.5 + 11.9 kg; height:
1.80 = 0.10 m) gave written informed consent to participate in the study (Table 17). Inclusion criteria
were people with transfemoral unilateral amputation due to trauma or tumor, fitted with a definitive
prosthesis, able to walk at various speeds without any assistance. The participants walked with their
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usual passive microprocessor-controlled knee with an energy storing and return foot, the alignment of

which was controlled by a prosthetist prior to data collection.

) Time since ) ) Average self-selected

(yﬁiis) Hz‘:;‘ t I\(/Ikags)s Gender Etiology amputation Prcl)(s::tlc Profs;t::tlc walking speeds (m.s”)
(years) Slow Comfortable Fast
TFO1 47 1.54 72 F Tumor 35 Rheo Knee  Variflex LP  0.72 1.02 1.25
TFO2 52 1.69 75 M Trauma 34 Rheo Knee Variflex XC  0.92 1.13 1.48
TFO3 34 1.70 51 F Tumor 27 C-Leg Trias 0.92 1.04 1.40
TFO4 43 1.90 82 M Trauma 5 C-Leg Triton 1.00 1.16 1.35
TFO5 64 1.84 86 M Trauma 6 Rheo Knee Talux 0.49 0.76 0.96
TFO6 39 1.79 85 M Trauma 3 C-Leg Triton 0.89 1.06 1.25
TFO7 52 1.84 72 M Trauma 23 C-Leg Pro-Flex 0.89 1.20 1.61

Table 17: Participants characteristics.

The prosthetic devices are from Ottobock (C-Leg, Triton, and Trias) and from Ossir (Rheo Knee, Variflex LP, Variflex XC, Talux

and Pro-Flex)

1.2.2. Measurement protocol

Three IMUs (MTw xSens, Netherlands, 100 samples:s-
1), embedding a tri-axial accelerometer (x 16 g) and a tri-
axial gyroscope (+ 2000 deg/s), were used and positioned
on the lower trunk (L4/L5 level) and on both shanks
(laterally, below the tibial tuberosity level) of each
participant (Figure 44). IMUs were manually alighed with
the anatomical axes of the underlying segments. Reference
GE were obtained using pressure insoles (Loadsol, Novel,
Germany, 100 samples:s-1). These insoles have been
reported to be reliable and to accurately estimate both
vertical ground reaction force and stance phase duration in
TF (Loiret et al., 2019) and were, thus, considered a valid
gold standard.

y
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~ ‘/

Figure 44: Placement
measurement units and their associated

local frames

of

the inertial

Participants walked freely along an 8-meter level walkway, at three self-selected speeds (slow,

comfortable and fast), measured with a stopwatch. At least three trials of each condition were

recorded. The average walking speeds of each participant are reported in Table 17. Participants were

asked to stand upright for at least 3 seconds at the beginning and at the end of each trial, and to

perform a downward kicking motion with the heel of their sound foot to synchronize the IMUs with

the insoles.

1.2.3. Data processing

IMUs and insoles data were post-processed using MATLAB® software (The MathWorks Inc., MA,

US). Synchronization was performed semi-automatically by aligning the kicking-motion peaks in the

sound-limb shank vertical acceleration and insole signals.
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a. ICand FC events detection

Reference IC and FC events were identified using a 20 N threshold on the insoles' ground reaction
force signals (Selles et al., 2005; Loiret et al., 2019).

Regarding the IMUs’ signals, five GE detection algorithms were selected based on a literature
review. The first three algorithms were the only one retrieved that were specifically designed for
people with lower-limb amputation. The two remaining algorithms were selected as they are
representative of the state-of-the-art and appeared to be promising candidates in TF. Indeed, one of
them was validated on an extensive cohort of people with different pathologies that significantly
affected gait, and the second one used only one sensor, which is an interesting perspective for clinical
applications. The algorithms, designated by the acronyms M-N, with N the initial(s) of the first author’s
name, are introduced hereafter:

1) M-S: based on shank vertical and anteroposterior acceleration signals, validated against force
platform data in ten people with transtibial amputation (TT) (Selles et al., 2005),

2) M-M: based on shank mediolateral angular velocity, validated using footswitches in eight
asymptomatic subjects and in two people with lower-limb amputation (one TT and one TF) (Magbool
etal., 2017),

3) M-L: based on shank mediolateral angular velocity, flexion-extension angle and axial
acceleration, validated on five TF walking on an instrumented treadmill (Ledoux, 2018),

4) M-T: based on shank mediolateral angular velocity and accelerations, validated against pressure
mat data on an extensive cohort consisting of 80 elderly, 125 people with Parkinson’s Disease, 31
people with mild cognitive impairment and on ten persons with hemiparesis (Trojaniello, Cereatti,
Pelosin, et al., 2014; Bertoli et al., 2018) as well as in ten asymptomatic subjects in an urban
environment using pressure insoles (Storm et al., 2016),

5) M-MC: based on pelvis vertical acceleration and angular velocity signals, validated in
asymptomatic subjects compared to instrumented mat data (McCamley et al., 2012) and in 30 people
with pathological gait in a former comparative study (Trojaniello et al., 2015).

M-L, M-MC, M-S, M-M and M-T were implemented based on their descriptions in the literature
(Selles et al., 2005; McCamley et al., 2012; Magbool et al., 2017; Bertoli et al., 2018; Ledoux, 2018),
using only the target sensor signals as inputs. A brief description of the operating principles of each
algorithm is reported in Table 18. Additional details can be found in the original articles. For M-MC,
the pelvis angular velocity failed to discriminate between left- and right-side events, supposedly due
to the asymmetrical gait pattern of TF (Goujon-Pillet et al., 2008). Therefore, the mediolateral
acceleration was used instead.
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Algorithm

M-S (Selles
etal.,
2005)

M-M
(Magbool
etal.,
2017)

M-L
(Ledoux,
2018)

M-T
(Bertoli et
al., 2018)

M-MC
(McCamley
etal.,
2012)

Signal used Signal used for
foriC FC

Vertical Vertical and AP
acceleration  acceleration of
of the shank  the shank

Shank ML angular velocity

Shank vertical acceleration, ML
angular velocity, and
flexion/extension angle

Shank sagittal angular velocity
and AP acceleration

Vertical & ML acceleration of
the pelvis

General Principle

Gait is segmented into approximate strides by identifying the minima in
the low-pass filtered shank vertical acceleration. Within each identified
stride, the vertical acceleration is low-pass filtered with a cut-off
frequency depending on the estimated stride duration. Peaks identified in
the filtered signal enable to define intervals in which to look for gait
events. ICs are then identified as maxima in the vertical acceleration and
FCs are identified as minima in the AP acceleration in their respective
intervals.

Mid-swing instants are detected as maxima in the filtered ML shank
angular velocity. ICs are then defined as the first or subsequent negative
local minima following mid-swing, associated with negative slope and FCs
are defined as local minima occurring at least 300 ms after ICs, with speed
lower than a set threshold

This state-machine algorithm uses the shank ML angular velocity, the
shank vertical acceleration, and the shank angle (obtained using a
complementary filter of the shank acceleration and angular velocity) as
inputs to detect transitions between the “swing” state and the “stance”
state. Stance is detected at zero-crossings in the vertical acceleration, if
the angular velocity is negative and the shank angle is above a threshold.
It should occur after at least 200 ms of swing. Swing is detected when the
vertical acceleration is increasing above a negative threshold, the angular
velocity is negative, and the shank angle is below a negative threshold. It
occurs after at least 400ms of stance. A set of similar conditions enable to
identify the first transition to swing (FC) or stance (IC).

Peak identification in the ML angular velocity signal enables to define
intervals in which to look for gait events. In these intervals, ICs are
identified as the minima in ML angular velocity preceding a maximum AP
acceleration and FCs are identified as minima in the AP acceleration
preceding the last maximum in AP acceleration.

The vertical acceleration is filtered with a Gaussian continuous wavelet
transform. ICs are identified as the minima in the filtered acceleration.
FCs are identified as the maxima in the differentiated signal. In this study,
the ML acceleration was used to distinguish right and left gait events
occurrence, while the vertical angular velocity was used in the original
study.

Table 18: Description of the operating principle of the implemented algorithms.
AP = Anteroposterior; ML = Mediolateral; IC = Initial Contact event; FC = Final Contact event

b. Temporal parameters and symmetry index computation

The following temporal parameters were estimated for each trial and method (insoles- and IMU-

based algorithms):
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Stride duration (time between two consecutive ICs of the same foot), computed based on

prosthetic ICs;

Prosthetic and sound limb stance phase duration (time between an IC and the subsequent

FC of the same foot);

Prosthetic and sound limb initial double support duration (time between an IC and the

subsequent FC of the contralateral foot), further referred to as prosthetic or sound limb

double support duration.



Stance phase duration symmetry between the prosthetic and sound limbs was also assessed for

each stride using the Absolute Symmetry Index (ASI): ASI = % X 100, where S and P are the

stance phase durations for the sound and prosthetic limbs respectively (Nolan et al., 2003).
1.2.4. Algorithms performance assessment

a. GE detection rate

Sensitivity, defined as the number of correctly detected algorithm-derived GEs divided by the
number of reference GEs, and positive predictive value (PPV), i.e. the number of correctly detected
algorithm-derived GEs divided by the total number of detected GEs (including extra events), are often
used in the literature to assess algorithms’ performance in terms of detection rate (Salarian et al.,
2004; Trojaniello et al., 2015). However, the criterion used to classify an algorithm-detected event as
either correct, missed or extra is usually missing. In this work, we propose to compute the number of

algorithm-detected events such that | t,.qp — tecel < % StDyer (1) with:

- tygg the timing of a reference GE,
- tgcr the timing of algorithm-derived GEs,
- StDy¢s the median stride duration computed from reference ICs.
If no algorithm-detected event fulfilled condition (1), an event was missed. Conversely, if several
algorithm-detected events fulfilled condition (1), only the closest to the reference event was
considered as correctly detected, and the others were discarded as extra events.

Sensitivity and PPV were computed for all the algorithms to compare their GE detection rate. While
the occurrence of a missed event can be detected based on the duration between successive detected
events, the identification of a correct event among several possible candidates is not possible without
a reference. Therefore, to be used in real-life settings, an algorithm must be extremely robust in this
respect. Consequently, for the subsequent accuracy analysis, only the algorithms scoring a PPV above
99%, representing a negligible number of extra events, were considered.

For each algorithm, PPV and sensitivity were quantified for the entire trials in order to assess the
algorithm ability to detect all events, including those of the first and last steps which mark gait initiation
and termination. For the rest of the analysis, the initiation and termination steps were not considered
for the sake of comparison with the literature.

b. Accuracy of GEs timings

For each algorithm, the difference between the timing of each IMU-based and the corresponding
reference GE was computed. Positive and negative errors respectively indicate delayed and anticipated
event detection.

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry
index

For each algorithm, stride, stance and double support durations, as well as symmetry derived from

IMU-based GEs were computed. IMU-based temporal parameter estimates errors were expressed in

seconds and in percentage of the reference parameter, with positive and negative values indicating,
respectively, overestimation and underestimation of temporal parameters.
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1.2.5.  Statistical analysis

Descriptive statistics (medians and interquartile ranges [IQR]) were computed over all participants
for each walking speed for reference GE timings and temporal parameters, for IMU-based GE and
temporal parameter errors as well as for SPD-ASI derived from the insoles and the algorithms.

Normality of the median values was verified using the Shapiro-Wilk test and, according to the test
result, either a Friedman test or a one-way repeated-measure ANOVA was performed to investigate
the effect of the “walking speed” factor on the errors. Post-hoc pairwise comparisons (Wilcoxon
signed-rank tests or t-tests depending on the normality of the data) with Holm-Bonferroni correction
were then performed where any difference was found.

If the main effect of “walking speed” persisted, pairwise comparisons were used to investigate the
presence of significant differences between each pair of methods, for each level of walking speed,
considering separately prosthetic- and sound-limb parameters when relevant. Conversely, if no main
effect of “walking speed” was found, medians and IQR were computed over all three walking speeds
for each participant and method, and pairwise comparisons were then executed on this new dataset.

Wilcoxon signed-rank tests were used to investigate the effect of the limb considered, that is, to
determine whether errors where significantly different at the sound and prosthetic side for each
parameter and each algorithm.

The statistical analysis was performed using SPSS (IBM SPSS Statistics 23, NY, USA). The level of
significance was set to 0.05 for all statistical tests.

1.3. Results

Due to technical issues with the insoles, GEs of two participants had to be discarded at the sound
limb, leaving a total of 454 sound steps for 623 prosthetic steps considered in the analysis. Table 19
reports the descriptive statistics of the temporal parameters derived from the insoles.

Table 19: Reference temporal parameters derived from insoles data.
* Stride durations were estimated based on prosthetic IC timings

Gait Stance phase duration Double support duration
Walking . . . .
velocity Stride duration (s)* Side
speed level

(m.s-1) (s) (% stride) (s) (% stride)
med (IQR) med (IQR) med (IQR) med (IQR) med (IQR) med (IQR)
Slow 0.89 (0.12) | 1.33 (0.14) Sound 0.91 (0.14) | 68.9 (5.2) | 0.17 (0.04) | 13.2 (2.4)
Prosthetic | 0.81 (0.11) | 60.9 (2.4) | 0.22 (0.06) | 16.4 (4.0)
Comfortable | 1.06 (0.12) | 1.16 (0.13) Sound 0.77 (0.10) | 67.0 (3.4) | 0.14 (0.02) | 12.1 (2.2)
Prosthetic | 0.68 (0.08) | 58.7 (3.3) | 0.16 (0.04) | 13.3 (2.1)
Fast 1.35 (0.19) | 1.00 (0.13) Sound 0.65 (0.12) | 64.7 (4.9) | 0.10 (0.03) | 10.5 (1.4)
Prosthetic | 0.56 (0.07) | 56.9 (2.6) | 0.12 (0.04) | 11.6 (3.4)
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a. GE detection rate

Sensitivity and PPV for each algorithm are reported in Table 20. Only M-T and M-L showed a PPV
higher than 99% and were further analyzed. Both algorithms had extra and missed detections, however

those of M-T never occurred outside of the first and last steps of gait.

Table 20: Sensitivity and positive predictive value of the five IMU-based algorithms in gait event detection

Method Sensitivity Positive Predictive Value
Prosthetic limb Sound limb Prosthetic limb Sound limb
Initial Final Initial Final Initial Final Initial Final

contact contact contact contact contact contact contact contact

M-S 93.4% 92.7% 94.0% 92.8% 99.1% 97.3% 95.2% 95.7%
M-M 98.6% 98.8% 97.4% 98.2% 99.7% 100.0% 98.3% 99.8%
M-L 88.4% 88.8% 84.2% 85.0% 100.0% 100.0% 100.0% 100.0%
M-T 99.1% 99.1% 98.8% 98.8% 100.0% 100.0% 99.8% 99.8%
M-MC 93.4% 91.9% 91.2% 90.6% 97.1% 96.0% 96.1% 96.1%

b. Accuracy of GEs timings

No significant effect of the “walking speed” factor was found on the errors obtained for GE timings,
neither for M-T nor for M-L. GEs were generally detected with a small anticipation with M-L and with
a short delay using M-T (Figure 45). There was no effect of the “limb” on the IC timings estimated with
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Figure 45: Errors [ms] of IC and FC timings obtained with M-T and M-L algorithms at all speeds with respect to reference events
estimated with the insoles. Mean values are indicated with a diamond-shaped point and median values are reported above each
boxplot. Significant differences (p < 0.05) are marked with an asterisk*. Outliers are not represented. In general, M-T and M-L resulted
in a low number of outliers (< 3 %), but M-L resulted in 8.02% of outliers for sound IC.
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either algorithm. Conversely, FC timings estimated with M-T were significantly more accurate (t(4) = -
3.626, p-value = 0.022) at the sound limb than at the prosthetic limb while the contrary was observed
with M-L (t(4) = -5.171, p-value = 0.007).

When comparing the algorithms in terms of errors, M-T was found to be less accurate than M-L
for prosthetic FC detection (t(6)=4.890, p-value = 0.003), but more accurate for both prosthetic IC (Z =
- 2.214, p-value = 0.027) and sound FC detection (t(4)= 6.674 p-value = 0.003).

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry
index

There was no effect of the “walking speed” factor on the median errors of gait temporal parameter
estimates. While there was no difference between the algorithms for the stride duration, statistically
significant differences were obtained for stance phase and double support duration estimates (Figure
46 and Table 21). Furthermore, a significant effect of the “limb” was observed for stance phase
durations for both algorithms (M-T: t(4) = -3.940, p-value = 0.017 ; M-L: t(4) = -2.781, p-value = 0.05)
and for double support duration for M-T (t(4) = 4.877, p-value = 0.008).

Table 21: Errors [ms] of gait temporal parameters estimated with M-T and M-L compared to insoles. Results of the statistical
tests are reported, with significant differences between M-T and M-L values marked with asterisks (*: p-value < 0.05)

Statistical tests
M-T M-L
Temporal (on % values)
parameter
(in milliseconds) median (1QR) median (1QR) p- score
value
Stride duration 0 (20) 0 (20) 0.317 Z=-1.000
§ound stance phase 10 (40) .40 (70) 0.017 H4) = 3.927
duration *
Prosthetic stance 0.003
phase duration 70 (60) 0 (40) " t(6) = 4.817
Sound double 0.009
support duration 70 (53) 0 (60) . t(4) = -4.788
Prosthetic double 0.001
support duration 10 (40) -40 (40) . t(4)=-8.953

Median SPD-ASI values were averaged across all participants and walking speeds for each method
(insoles, M-T and M-L) as no significant effect of the “walking speed” factor was found. SPD-ASI
estimates obtained with M-T and M-L were found to be significantly different than those derived from
the insoles (Table 22).

Table 22: Mean and standard deviation over all participants of the median stance phase duration ASI derived from insoles and
obtained with M-T and M-L algorithms. Results of the statistical tests are reported, with significant differences between insoles-
or IMU-based ASI values marked with an asterisk*

ASI Algorithm ASl Insoles T-test
Algorithm
mean (sd) mean (sd) p-value score
M-L 6.72% (3.44 %) 0.048 * t(4) =2.807
12.79% (2.85 %)
M-T 4.16 % (5.05 %) 0.013 * t(4)=4.274
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Figure 46: Errors [%] of gait temporal parameters estimated with M-T and M-L expressed in percentage of the actual gait
temporal parameters derived from the insoles data, at all speeds. From top to bottom: stride duration, stance phase duration,
double support duration.

Mean values are indicated with a diamond-shaped point and median values are reported above each boxplot. Significant
differences (p < 0.05) are marked with an asterisk*. Outliers are not represented. In general, M-T and M-L resulted in a low
number of outliers (< 4.5 %), except for strides for M-T (13.7% of outliers) and for sound double support estimates for M-L (9.1
% of outliers)

1.4 Discussion

This study aimed at i) comparing the accuracy of state-of-the-art IMU-based algorithms in
detecting both IC and FC events and ii) assessing the impact of GE timing errors on the estimation of
gait temporal parameters and symmetry in TF.

Gait temporal parameters and walking speeds obtained with pressure insoles were similar to those
reported in the literature for the considered population (Goujon et al., 2006; Goujon-Pillet et al., 2008).

a. GE detection rate

To be relevant in an ecological context, GE detection algorithms must not detect extra events as
they would be impossible to identify without a reference. Given their PPV values inferior to 99%, two
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of the algorithms developed for lower-limb amputees (M-S and M-M) and the single-sensor-based
algorithm (M-MC) were discarded from the analysis*.

The modification applied to M-MC algorithm allowed to improve the discrimination between right
and left side events, thus reducing the number of extra events (less than 4% of extra FC in our data,
while up to 11.2% of extra FC were found in hemiparetic patients in a former study (Trojaniello et al.,
2015)), although not sufficiently. However, the number of missed events was higher than in the
literature (McCamley et al., 2012; Trojaniello et al., 2015), which might be due to specific gait
alterations of prosthetic gait, such as the lack of propulsion inherent to prosthetic components (Nolan
etal., 2003).

Neither missed or extra events were reported by the authors of the two other algorithms M-S and
M-M. However, it should be noted M-S was designed and validated in TT, whose gait pattern differs
from that of TF. Furthermore, while all steps were considered in our analysis, including transition,
acceleration, and deceleration steps, Selles and coworkers only analyzed steps that occurred on a force
platform, ensuring to consider only steady-state steps (Selles et al., 2005).

Magqgbool and coworkers reported a 100% detection rate by comparing the absolute number of
events detected by M-M and by footswitches, without considering an objective criterion to ensure that
each detected event would correspond to a footswitch event (Magbool et al., 2017). Furthermore, the
algorithm was developed and validated on asymptomatic subjects and on only one TF and one TT who
might have presented very few gait alterations, thus preventing the generalization of their results to
the population of lower-limb amputees.

In what follows, only results obtained with M-L and M-T algorithms will be discussed.

A surprisingly high number of events were missed by M-L in the present study, despite its reported
excellent sensitivity in TFs (Ledoux, 2018). The thresholds originally proposed in (Ledoux, 2018) were
specifically devised for treadmill ambulation, which was shown to reduce gait inherent inter-stride
variability compared to level ground ambulation (Hollman et al., 2016). This may have hindered the
algorithm’s capacity to detect all events when walking in a less constraining situation. Furthermore, if
an event is undetected by the algorithm, the following event will also be missed because of the state-
machine design of M-L. Regarding M-T, no extra or missed events occurred in the steady phase of gait,
as reported in former studies (Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018). This
directly results from the efficient design of M-T: the algorithm first detects maxima in the shank angular
velocity and uses this information at both sides to segment gait into cycles and to identify restrained
intervals of time where one and only one event (either an IC or a FC) has to occur. For all the
investigated parameters, both algorithms were found to be robust to various self-selected walking
speeds, confirming results reported for M-T (Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al.,
2018).

4 Due to high positive predictive values, close to the criterion chosen for this study, the algorithm M-M was
further investigated as well. However, the algorithm displayed a poor accuracy and repeatability in detecting gait
events, and therefore in estimating temporal parameters. See Appendix B — Comparative assessment of M-M
algorithm for more details.
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b. GE detection accuracy

Prosthetic IC and FC detections with M-L were as accurate as those reported in the original study
(Ledoux, 2018), but slightly less precise. This may also result from the higher gait variability of
overground- compared to treadmill-walking. Estimated FC timings were less accurate for the sound
limb than the prosthetic limb, likely due to the adoption of identical thresholds for both limbs, as
reported by the author (Ledoux, 2018). Defining limb-specific thresholds was beyond the scope of this
study, but it might improve sound FC timing accuracy.

M-T achieved similar or even improved GE timing accuracy compared to that reported using other
algorithms specifically designed for people with lower-limb amputation (Selles et al., 2005; Magbool
et al., 2017). Furthermore, the achieved accuracy for IC detection in our participants is comparable to
that of people with Parkinson’s Disease (Trojaniello, Cereatti, Pelosin, et al., 2014). Both these results
corroborate previous statements that M-T might be suitable for clinical routine detection of gait events
(Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018). All in all, M-T achieved equivalent or
higher accuracy than M-L in GE detection except for prosthetic FC. The algorithms differ not only in the
signals that are used as inputs, but also in their design: M-T is based on peak-detection while M-L is a
threshold-based algorithm. The latter strategy might be more efficient for prosthetic FC detection: the
smoother movement occurring at FC compared to IC (Trojaniello, Cereatti and Della Croce, 2014) and
the attenuated propulsion at the prosthetic limb (Nolan et al., 2003) might result in a smoothed signal,
detrimental to the peak-identification strategy.

It should be noted that the sampling frequency (100 Hz) might have induced a delay of up to 10
ms between algorithms-derived and insoles-detected events. This constant delay has however no
impact on the estimated durations.

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry
index

Both algorithms provide stride duration estimates acceptable for clinical use (Trojaniello, Cereatti
and Della Croce, 2014), with null median errors and IQR of 20 ms.

Regarding stance and double support durations, errors result from the discrepancy between ICand
FC timing errors. In our study, temporal parameters errors were mostly driven by relatively high errors
in FC detection at the sound limb for M-L and at the prosthetic limb for M-T compared to IC.

The errors achieved for stance phase duration are acceptable at the prosthetic limb with M-L and
at the sound limb with M-T (Trojaniello, Cereatti and Della Croce, 2014), with a similar accuracy to that
of the original article (Trojaniello, Cereatti, Pelosin, et al., 2014). Furthermore, the achieved errors with
either algorithm at either limb are inferior to the minimal change detectable by pressure insoles in
people with lower limb amputation (Timmermans et al., 2019). Combining both algorithms by using
M-T approach for gait segmentation and interval identification, and then taking advantage of either
M-T or M-L detection approaches for the sound or prosthetic limb respectively, might provide more
accurate estimates of stance phase duration at both limbs. This would in turn enable a long-term
monitoring of a patient's progress during his rehabilitation, but test-retest reliability should be
evaluated prior to using the combined algorithm in a clinical setting for longitudinal monitoring.

Regarding double support duration, percentage errors achieved high values and variability at both
sides with both algorithms. Therefore, although double support duration is a clinically relevant
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parameter reflecting stability and weight shifting ability in TF (Goujon et al., 2006; Kendell et al., 2010),
the use of either M-T or M-L algorithms for its estimation is not recommended.

Regarding temporal gait symmetry, the discrepancy between sound and prosthetic stance phase
duration errors explains the observed SPD-ASI inaccuracy. The algorithms tend to significantly
underestimate sound stance-phase duration or to overestimate prosthetic stance-phase duration,
resulting in a falsely low asymmetry index. Thus, neither M-T nor M-L can be safely used to assess
stance phase duration asymmetry between the prosthetic and the sound limb.

This confirms the need of a more robust algorithm at both the prosthetic and sound limbs for
temporal parameters, which in turn would enable to obtain reliable SPD-ASI estimates in TF.

Although the participants of the study were found to be representative of the population with TF
(Goujon et al., 2006; Goujon-Pillet et al., 2008), the small sample size in this study should be considered
prior to results generalization.

1.5. Conclusions

This study analyzed the performance of different IMU-based algorithms and gives indications
about their accuracy for GE detection in people with transfemoral amputation. Two of the investigated
algorithms, using one IMU on each shank, provide acceptable estimates of stride and stance phase
durations considering the minimal detectable change of these parameters by pressure insoles.
However, test-retest reliability of the IMU-derived estimates remains to be evaluated prior to using
these algorithms for longitudinal monitoring of gait. Furthermore, both algorithms lack in accuracy
when estimating either double support duration or the temporal asymmetry index. A new algorithm,
combining the strengths of M-T and M-L should be devised to improve gait event detection and
temporal parameters estimation in people with transfemoral amputation. The results of the present
study support the use of a priori gait cycle segmentation using the shank mediolateral angular velocity
and tend to indicate that threshold-based detection should be preferred to peak-based detection at
the prosthetic limb, at least for FC event detection.
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Chapter 2 — Investigation of the relevance of gait quality indices
issued from wearable gait analysis during the rehabilitation of people

with lower-limb amputation

As briefly discussed in the introduction of Part 3, several parameters have been proposed in the
literature to quantify gait symmetry and the balance using wearable sensors. The aim of this chapter
is to investigate the feasibility and relevance of tracking such parameters during the rehabilitation of
people with lower-limb amputation.

Gait Symmetry

In the previous chapter, state-of-the-art algorithms for IMU-based gait event detection were
shown not to allow an accurate estimation of stance-phase duration symmetry in people with
transfemoral amputation. However, other wearable sensors — namely, pressure insoles — have been
validated and used for the quantification of temporal and loading asymmetry in transtibial and
transfemoral amputees (Nolan et al., 2003; Cutti et al., 2018; Loiret et al., 2019). Pressure insoles are
more expensive than IMUs and necessitate to be bought in a large range of sizes so as to fit most
people shoe sizes. Furthermore, insoles require to be calibrated for each patient and are sensitive to
temperature changes (Herbert-Copley et al., 2013), which imposes to prepare insoles up to fifteen
minutes prior to the acquisition time. The calibration process requires to alternatively load each insole
with the full weight of the tested person without external support. Loss of proprioception in the
prosthetic leg may jeopardize a successful calibration of insoles as it disrupts balance, compromising
the accuracy of insole-based measures (Loiret et al.,, 2019). For all these reasons, and although
temporal and loading symmetry indices can rapidly be retrieved from insoles signals, pressure insoles
can be considered more constraining for gait monitoring during the rehabilitation of people with
lower-limb amputation than IMUs.

In the literature, several parameters have been proposed to quantify gait symmetry from
acceleration signals measured by a trunk or pelvis mounted IMU. In particular, the harmonic ratio (HR),
oritsimproved version, the iHR, has been widely used in research in recent years (Bellanca et al., 2013;
losa et al., 2014; Riva et al., 2014; Pasciuto et al., 2017; Belluscio et al., 2018; Buckley et al., 2018).
Based on the frequential analysis of the accelerations measured by a single IMU at pelvis level, this
parameter allows to rapidly quantify step-to-step symmetry (Bellanca et al., 2013; Pasciuto et al.,
2017). The advantage of this parameter over temporal and loading asymmetry indices is that it relies
on the use of a single IMU, which is interchangeable across any participant (as it is independent of any
anthropometric measurement). Interestingly, the HR/iHR is generally computed stride per stride, but
several authors have proposed to compute it over a complete gait trial to avoid the propagation of
errors due to erroneous gait segmentation methods (Riva et al., 2013; Howcroft, Kofman, et al., 2016).
While several standardized guidelines have been proposed in the literature for its computation
(Buckley et al., 2017; Pasciuto et al., 2017), the impact of the segmentation method (or absence
thereof) was never investigated. More importantly, how this parameter relates to usual symmetry
indices is not clear and may hinder its interpretation by clinicians. In order to gain insight on this recent
symmetry index, it appears therefore relevant j) to analyze the impact on the iHR values of different
segmentation methods and of the absence of segmentation at all, and ii) to comparatively assess usual
parameters of temporal and loading symmetry and the iHR in the same population of lower-limb
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amputees. To the authors knowledge, this was never done in any population and the iHR was never
computed in people with transtibial amputation.

Balance control during gait

People with balance impairment have been shown in the literature to be less able than sound
subjects to maintain a steady optical flow and vestibular system while walking, due to the transmission
of oscillations from the lower limbs to the upper body (Mazza et al., 2008; losa, Picerno, et al., 2016).
Therefore, balance control has been quantified in wearable gait analysis literature by studying the
oscillations transmitted to the head by the lower-limbs during gait (Menz et al., 2003; Mazza et al.,
2008; losa, Picerno, et al., 2016; Bergamini et al., 2017). Two parameters issued from the measured
raw acceleration signals have been described to this end: the root mean square of acceleration (RMSa)
and the attenuation coefficients (AC). RMSa provides a measure of the amplitude of dispersion of the
acceleration, which has been shown to increase with walking speed (Menz et al., 2003; losa, Picerno,
et al., 2016) and, when normalized to walking speed, with the level of impairment in pathological gait
(Bergaminietal., 2017). The ratio of RMSa signals at different levels of the upper body (pelvis/sternum,
sternum/head or pelvis/head) have been used to evaluate the transmission of oscillations from the
lower limbs to the head (Mazza et al., 2008). Both these parameters have been studied in the
population of people with transtibial amputation (Paradisi et al., 2019). In that study, the participants
were required to perform three successive 10-m walking test and the average values of the RMSa and
AC at the three levels were computed and compared between 20 transtibial amputees and 20
asymptomatic subjects. A few number of strides as typically walked within a 10-m pathway may not
allow to obtain reliable measures of variability (Riva et al., 2014). Therefore, it would be interesting to
assess the reliability of these parameters in the population of people with lower-limb amputation
before providing reference values in this population.

Gap analysis and aim of the chapter
The aim of this chapter was to contribute filling the following observed gaps from the literature:

- Parameters have been proposed for assessing gait symmetry and balance from IMUs and
were investigated in people with lower-limb amputation, but their reliability was not
assessed prior to providing reference values;

- While RMSa, AC, and temporal or loading symmetry indices were evaluated in people with
transtibial amputation, the iHR was never quantified in this population. Furthermore,
these parameters were never assessed simultaneously in the same sample of transtibial
amputees, compromising a complete description of their gait using these parameters.
Similar remarks apply to the gait of transfemoral amputees;

- While the iHR is increasingly used in clinical research, no consensus exists about the need
for stride segmentation or not. In addition, this parameter was never compared to more
standard symmetry indices such as the Absolute Symmetry Index (ASI) of stance-phase
duration (temporal symmetry) or of the vertical ground reaction force peak occurring in
early stance (loading symmetry) (Nolan et al., 2003; Loiret et al., 2019).

The chapter is organized in two sections in order to contribute filling these gaps. The first section
aims at investigating whether RMSa, AC, iHR and temporal and loading ASI are likely to be reliable and
relevant for gait monitoring along the rehabilitation of people with transtibial amputation. To do so,
these gait quality indices were assessed during two repetitions of the two-minute walking test (2MWT)
in people with transtibial amputation and sound participants. This work was performed in
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collaboration with Julie Durand, physiotherapist at Institution Nationale des Invalides, during her
master internship. Her implication in the data collection and analysis is duly acknowledged. In the
second section, a special focus on the computation and interpretation of the iHR will be proposed.
First, the iHR will be computed using different segmentation methods and no segmentation in order
to clarify the uncertainties regarding its computation. Then, the relation between the iHR and both
temporal and loading ASI will be investigated using the data collected in the course of Julie Durand’s
internship.

2.1. Feasibility and relevance of gait quality monitoring from IMUs- and insoles-

derived parameters in people with lower-limb amputation

Gait quality represents a crucial aspect of gait and is therefore monitored during the rehabilitation
of people suffering from motor impairment. In particular, monitoring gait symmetry and assessing the
risk of falling are crucial elements of the rehabilitation of a person with transtibial amputation as these
aspects were shown to lead to the development of comorbidities and have an impact on the activity
or social participation level after discharge from the rehabilitation center (Gailey et al., 2008;
Highsmith et al., 2016). Few tools are available in the clinical field to quantitatively and objectively
monitor the evolution of gait symmetry and fall risk along the rehabilitation process. Optical motion
capture systems are not always available and are not adapted to frequent assessment due to the long
set up and complex post-processing. On the other hand, clinical walking tests, which are quick to
administer, provide a single metric of performance which is not sufficient to gain insight into the way
a performance is obtained and, thus, to effectively targeting rehabilitation (Deathe et al., 2009).

Recently, the development of small and affordable wearable sensors for gait analysis such as
inertial measurement units (IMUs) and pressure insoles has allowed the introduction of new
parameters for the in-field quantification of gait balance and symmetry (losa, Picerno, et al., 2016).
Pressure insoles allow to estimate the load exerted on each lower limb through the measure of the
pressure applied on each insole. This allows to quantify two aspects of gait symmetry, namely loading
and temporal symmetry (Nolan et al., 2003). Similarly, IMUs positioned on the upper body (pelvis,
lower trunk and head) have been proposed to quantify gait symmetry and stability through the analysis
of the frequency content and dispersion of the accelerations measured at these locations (Menz et al.,
2003; Mazza et al., 2008; Pasciuto et al., 2017). Several authors have therefore proposed multi-sensor
protocols for the assessment of balance in various pathological populations by computing gait quality
indices over a few steps taken while walking in straight line (Summa et al., 2016; Bergamini et al., 2017;
Paradisi et al., 2019). Poorer gait balance was shown to be associated with decreased gait symmetry,
increased values of acceleration signals, lower average walking speed and inability to attenuate the
accelerations transmitted from the lower limbs to the head, highlighting the construct validity of the
proposed indices (losa, Bini, et al., 2016; Bergamini et al., 2017; Buckley et al., 2018). None of these
studies evaluated the reliability of the proposed multi-sensor wearable protocols. Yet, quantifying the
minimal detectable change obtained for a parameter using a defined protocol is paramount to verify
the relevance and feasibility of monitoring the evolution of this parameter along the rehabilitation
process (Portney and Watkins, 2015). Furthermore, previous studies evidenced that acceleration-
based gait quality indices often require to be computed over a large number of steps in order to be
reliable (Riva et al., 2014; Pasciuto et al., 2017). Therefore, computing gait quality indices over few
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strides may not allow to achieve sufficient reliability. In this respect, instrumenting the two-minute
walking test (2MWT) with wearable sensors would allow to capture a great number of straight-line
strides along a standardized protocol, often administered in clinical practice. The 2MWT appears to be
particularly relevant for gait assessment of people with transtibial amputation as it was shown to be a
valid indicator of mobility in this population, to be related to fall risk, and is compatible with frequent
assessment along the rehabilitation as it is sufficiently brief so as to perform other rehabilitation
exercises and allows the use of assistive devices (Brooks et al., 2001; Major et al., 2013; Reid et al.,
2015; Gaunaurd et al., 2020).

The aim of this study was therefore to contribute filling the identified gaps by i) identifying the
parameters that are repeatable within-participant and within-session when performing two
repetitions of the 2MWT, ii) providing reference values for people with lower-limb amputation and
sound participants in order to comparatively characterize both populations and to obtain target values
for the rehabilitation, jii) providing an estimate of the minimal detectable change by each parameter
using this protocol, in order to identify parameters susceptible to be relevant for the rehabilitation.

2.1.1. Material and methods

a. Participants

The study was designed according to the Declaration of Helsinki and was granted ethical approval
(CPP N° 2018-A03477-48). Nine people with transtibial amputation (age: 51.2 + 10.5 years, 8 males,
mass: 78.6 £+ 17.3 kg; height: 1.73 £ 0.09 m, time since amputation: 3.5 + 6.0 years) and nine
asymptomatic participants (age: 30.1 £ 11.1 years, 7 males, mass: 80.9 + 22.3 kg; height: 1.80 + 0.13
m) gave written informed consent to participate in the study. Both groups were matched for gender,
height and mass. Inclusion criteria for lower-limb amputees were people with unilateral transtibial
amputation due to trauma or tumor, fitted with a definitive prosthesis worn on a daily basis, able to
walk two minutes without any assistance. The amputee participants walked with their usual prosthesis.
Exclusion criteria for both populations were the concomitance of an orthopedic or neurologic

pathology. — i3

b. Acquisition protocol

Each participant was equipped with a pair of
pressure insoles (Loadsol, Novel, Germany, 100
samples-s-1) matching his/her shoe sizes and with
three IMUs (MTw xSens, Netherlands, 100 samples-s-
1), embedding a tri-axial accelerometer (+ 16 g) and a
tri-axial gyroscope (+ 2000 deg/s), positioned on the
lower trunk (L4/L5 level), on the center of the sternum
and on the occipital bone of the head (Figure 48).
Insoles were calibrated following the instructions of
the manufacturer, by alternatively loading each IMU

with the full body weight after a minimum of fifteen

minutes of wear for sensors warm-up (Loiret et al.,  Figure 48: Participant equipment with IMUs and insoles.
For the acquisitions, IMUs on the pelvis, sternum, and head were
positioned under the Velcro straps to prevent sensors sliding.
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2019). Each participant was given some time to get used to the sensors and to ensure that they did not
hinder his/her motion.

Afterwards, each participant was asked to perform two repetitions of the 2MWT. Participants were
instructed to walk as far as possible along a corridor or squared path including straight lines of at least
25 m within the two minutes, but were not encouraged during the test, in accordance with the test
administration guidelines (Brooks et al., 2001). For synchronization purpose between IMUs and
insoles, each repetition of the 2MWT was followed by a 10-s recording of wearable sensors signals
during which each participant was standing in a static posture and was asked to strike the ground with
his/her prosthetic leg. The distance covered during the test was measured using graduations present
in the corridor and a tap meter. Following the first trial, the participant could rest as long as necessary.

c. Data processing

IMUs and insoles data were post-processed using MATLAB® software (The MathWorks Inc., MA,
US). Synchronization was performed semi-automatically by aligning the kicking-motion peaks
occurring at the end of the 2MWT trial in the pelvis vertical acceleration and insole signals.
Synchronization delays had been a priori evaluated to be within 1 frame at 100 Hz using an electronic
trigger in a motion analysis laboratory to synchronize IMUs, insoles and force plates data. For each
2MWT, the average velocity of progression was computed as the ratio of the distance covered during
the test divided by the test duration, i.e. two minutes.

Proper alignment of the IMUs with craniocaudal (CC), anteroposterior (AP), and mediolateral (ML)
anatomical axes was ensured through a verticalization procedure during the initial static posture of
each 2MWT (Bergamini et al., 2014). Only steady state straight-walking strides were considered within
each test for the computation of gait quality indices. Turning strides were identified using the yaw
angular velocity measured by the pelvis IMU and were discarded from the analysis.

Gait segmentation was performed using a 20 N threshold on the insoles' ground reaction force
signals (Loiret et al., 2019). Gait quality indices were then computed for each stride:

- Temporal and loading asymmetry were quantified using, respectively, the stance phase
duration (SPD) of each lower limb and the magnitude of the weight acceptance peak (Fz1)
in early stance with the absolute symmetry index:

5-P

AS] = ——— %X 100, where S and P are the SPD or Fz1 values for the sound and
0.5 (S +P)

prosthetic limbs respectively (Nolan et al., 2003).
- The improved Harmonic Ratio (iHR) was computed for each of the 3 acceleration
components measured at the pelvis level (Pasciuto et al., 2017). Its computation is based

on a spectral analysis of the acceleration and yields values between 0% (step-to-step

J

asymmetry) and 100% (perfect step-to-step symmetry): iHR = Z1sjsn# .100

i
where Pij and Pej respectively refer to the power associated with the intrinsic harmonics
(contributing to gait symmetry) and extrinsic harmonics (leading to deviation from a
symmetrical pattern) of the acceleration signal (Cappozzo, 1981)

- After mean subtraction of the complete acceleration signals, root mean square of the
accelerations (RMS) were computed for each stride and each IMU along the three
anatomical axes of the underlying segment. RMS values were then divided by the average
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walking speed in order to mitigate the dependency of accelerations with velocity and will
be designated hereafter as RMSa.

- The capacity to minimize the oscillations transferred from the lower to the upper body
was quantified through the attenuation coefficients (AC) between each level pair of the
body (ACps, ACpn, and ACsy between pelvis/sternum, pelvis/head and sternum/head
respectively), and for each acceleration component (Paradisi et al., 2019):

RMSa
ACXY = 1 - Y.
RMSay

Attenuation of the accelerations from lower to upper body levels corresponds to

positive coefficients, while amplification yields negative coefficients.
For each 2MWT of each patient, the median and interquartile range (IQR) of each of the gait quality
index was computed over all the analyzed strides, yielding 23 quantitative parameters in addition to
the distance covered during the test.

d. Statistical analysis

For each gait quality index, normality of the median values was verified using the Shapiro-Wilk
test. According to the test result, either parametric tests (paired t-tests) or non-parametric tests
(Wilcoxon signed-rank tests) were implemented to compare the outcomes of the two repetitions of
the 2MWT within each population. This step allowed to identify gait quality indices that were
repeatable within-session for each population. The repeatability coefficient of each gait quality index
was computed following Bland and Altman as twice the standard deviation of the differences between
the two repetitions of the 2MWT (Bland and Altman, 1986). Since the standard deviation of the
differences allows to estimate the standard error of measurement, the repeatability coefficient is an
estimate of the minimal detectable change with a 95% confidence interval, and is expressed in the
same units as the original index (Weir, 2005).

Then, for the parameters that were found to be repeatable in both the asymptomatic and
transtibial amputee populations, descriptive statistics (medians, IQR) were computed over the gait
quality indices for each population. Either parametric tests or non-parametric unpaired tests
(respectively, t-tests or Wilcoxon tests) were implemented to compare the outcomes of the first
repetition of the 2MWT across both populations.

The statistical analysis was performed using R® version 3.5.1. The alpha level of significance was
set to 0.05 for all statistical tests.

2.1.2. Results

Identification of within-session repeatable gait quality indices and estimation of the
minimally detectable change

Table 23 provides a visual representation of the results of the statistical tests comparing the
outcomes of the two repetitions of 2MWT within each population. Two parameters displayed a
statistically significant difference within session: the attenuation coefficients between the pelvis and
sternum in the vertical direction in the asymptomatic population and the RMSa measured at sternum
level in the anteroposterior direction in the transtibial amputee population. Therefore, both these
parameters will be discarded from further analysis.
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Table 23: Visual representation of the statistical comparisons of the median scores achieved during the two repetitions of the 2-
minute walking test (2MWT) for all gait quality indices in asymptomatic participants and people with transtibial amputation. Green
empty cells indicate gait quality indices that were not found to differ between both repetitions of the 2MWT while orange cells
filled with an asterisk indicate gait quality index for which a statistical difference (a-level of significance = 0.05) between
repetitions of the tests.
iHR = improved Harmonic Ratio;, RMSa = Root Mean Square of Accelerations divided by the average walking speed; AC =
Attenuation Coefficient; ASI = Absolute Symmetry Index

Gait quality
indices

Anteroposterior

Asymptomatic participants
Mediolateral

Vertical

Anteroposterior

Transtibial amputee participants

Mediolateral

Vertical

iHR

RMSa pelvis

RMSa sternum

RMSa head

AC pelvis/sternum

AC pelvis/head

AC sternum/head

Temporal ASI

Asymptomatic
participants

Transtibial
amputees

Loading ASI

2MWT distance

The repeatability coefficients, which represent an estimate of the minimal detectable difference

were computed for each population and each parameter except the two that displayed within-session

difference (Table 24). Higher repeatability coefficients were observed in people with transtibial

amputation except for the stance-phase duration ASI and the covered distance.

Table 24: Repeatability coefficients computed for people with transtibial amputation and sound participants based on the
two repetitions of the 2-minute walking test for the distance covered during the test and the selected gait quality indices.
iHR = improved Harmonic Ratio; RMSa = Root Mean Square of Accelerations divided by the average walkng speed; AC =
Attenuation Coefficient; ASI = Absolute Symmetry Index; AP = Anteroposterior; ML = Mediolateral; VV = Vertical.

iHR RMSa RMSa RMSa AC pelvis | AC pelvis | AC sternum | Temporal | Loading | Distance
(%) | pelvis (s?) | sternum (s) | head (s) | / sternum | [/ head / head ASI (%) | ASI (%) (m)
AP | 7.4 0.50 / 0.55 0.58 0.53 0.54
Transtibial 10 1155 | 032 0.73 0.22 0.58 0.17 0.42 2.8 10.0 14.6
amputees
\' 8.3 0.53 0.50 0.62 / 0.18 0.15
AP | 1.0 0.20 / 0.31 0.18 0.25 0.48
Sound Fon b a3 0.08 0.05 0.14 0.08 0.16 0.15 3.3 3.3 17.4
participants
\) 1.3 0.26 0.15 0.21 / 0.08 0.07

ii. Description of the transtibial and asymptomatic populations using gait quality indices

The median values of each gait quality index and the covered distance obtained during the first

repetition of the 2MWT for both populations were assessed and compared (Table 25). In addition to

the covered distance, ten out of the 21 remaining gait quality indices were shown to be statistically

different between the populations of asymptomatic participants and transtibial amputees.
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Table 25: Median and interquartile range (IQR) of the median scores achieved during the first repetition of the 2-minute walking
test (2MWT) by the sound participants and the transtibial amputees. Significant difference (Sig.) between both populations are
indicated using an asterisk (a-level of significance = 0.05).

iHR = improved Harmonic Ratio; RMSa = Root Mean Square of Accelerations divided by the average walkng speed; AC =
Attenuation Coefficient; ASI = Absolute Symmetry Index

Anteroposterior Mediolateral Vertical
Median (IQR) Median (IQR) Median (IQR)
Sound Transtibial i Sound Transtibial i Sound Transtibial i
participants | amputees B participants | amputees B participants | amputees B
iHR (%) 96.9(2.1) |[859(6.5) |* 85.2 (11.1) |71.4(8.4) |* 97.6 (1.5) [89.1(6.6) |*
RMSa pelvis (s1) 2.05(0.93) |1.78(0.88) 1.77 (1.19) |1.60(0.70) |* 3.13(0.76) |2.47 (1.41)
RMSa sternum (s1) |/ / 1.09 (0.51) |1.27(0.39) |* 3.37(1.29) |2.56(1.24)
RMSa head (s1) 1.17 (0.58) |1.69(0.75) |* 1.00 (0.27) |1.53(0.30) |* 3.35(1.07) |2.55(1.20)
AC pelvis/sternum | 0.35(0.29) |0.19(0.29) 0.31(0.45) |0.27(0.25) / /
AC pelvis/head 0.50(0.38) |-0.03(0.69) |* 0.20(0.47) |0.05 (0.20) -0.01 (0.12) |-0.01(0.15)
AC sternum/head 0.26 (0.52) [-0.39(0.91) |* 0.03 (0.15) |-0.20(0.23) | * 0.01 (0.09) |0.00(0.12)
Sound Transtibial si
participants | amputees 6.
Temporal ASI (%) -1.4(3.58) 8.8(9.3)
Loading ASI (%) 0.6 (12.2) 5.6 (21.3)
2MWT distance (m) | 192 (16) 140 (35) *

The RMSa measured at the pelvis level along the three directions was lower in amputee people
compared to sound participants, although this difference was significant only for the mediolateral
component. To the contrary, RMSa was significantly higher in amputees compared to sound
participants in the mediolateral direction for the sternum and in both mediolateral and
anteroposterior directions for the head. For all three levels of the upper body, RMSa along the vertical
direction were lower in transtibial amputees although not significantly.

The symmetry indices (iHR, temporal and loading ASl) indicated a trend of reduced symmetry in
people with transtibial amputation compared to sound participants, but only the iHR differences
proved to be statistically significant between populations.

Attenuation coefficients were similar across both populations in the vertical direction. Conversely,
people with transtibial amputation exhibited lower coefficients, sometimes negative, in the
anteroposterior and mediolateral directions for the pelvis-to-head and pelvis-to-sternum coefficients.

2.1.3. Discussion

The aim of this study was to investigate the relevance and feasibility of monitoring gait quality
using indices obtained using wearable sensors such as IMUs and pressure insoles. First, the
repeatability intra-session of the identified gait quality indices was investigated in both populations of
transtibial and sound participants. Eleven out of the 22 repeatable indices (including the distance
covered during a 2MWT) were shown to allow to discriminate transtibial amputees from sound
subjects.
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Identification of within-session repeatable gait quality indices and estimation of the

minimally detectable change

Except for the attenuation coefficients between the pelvis and sternum in the vertical direction in
the asymptomatic population and the RMSa measured at sternum level in the anteroposterior
direction in the transtibial amputee population, no gait quality index displayed a statistically significant
difference between both repetitions of the 2MWT. It was thus decided to discard these indices from
further analysis. Indeed, they were considered less susceptible of detecting subtle changes within a
population.

Conversely, the parameters included in the analysis were deemed repeatable as no difference was
detected between both repetitions of the 2MWT. However, the present results must be interpreted in
the light of the following two considerations: first, it is possible that no difference was detected due
to the small samples included in this study. Second, the repeatability coefficients obtained in this study
are likely to underestimate the minimal detectable change by each pair of sensor and gait quality index.
Indeed, these indices were acquired within the same session, without removing and repositioning the
sensors. A different positioning of sensors would have affected the measured signals, and hence, the
values of the retrieved parameters. Similarly, inherent day-to-day variability within participants could
have contributed in the increase of the repeatability coefficients.

Except for the distance covered within a 2MWT, no prior study reports repeatability coefficients
or minimal detectable changes for the parameters and the population investigated in this study.
Therefore, for the gait quality indices obtained with wearable sensors, it is not possible to compare
the computed repeatability coefficients with the literature. Regarding the distance, Resnik and
coworkers evaluated the test-retest reliability of the 2MWT in a sample constituted with 44 lower-limb
amputees, including 19 (43.2%) people with transtibial amputation and 25 (56.8%) people with
transfemoral or though-knee amputation, who performed a 2MWT twice within a week. The minimal
detectable change with a 90% confident interval reported in their study is 34.3 m against 14.6 m with
a 95% confidence interval in the present study (Resnik and Borgia, 2011). Since the distance
measurement is not affected by sensor relocation, it is expected that the study design is not
accountable for most of the observed difference. In the study retrieved from the literature, the
participants could use mobility aids (although it is not mentioned if any of the participants did require
any assistance when performing the test), participants were older than in the current study (mean age:
66 * 13 years) and a little more than half of them were amputated at a higher level, while age and level
of amputation have been shown to be associated with decreased functional capacities. Therefore, we
assume that the results achieved in the present study are more susceptible to represent the population
of experienced walkers with transtibial amputation. According to our results, the 2MWT is thus able
to detect score changes as low as 15 m. A between-session configurations should nevertheless be
implemented to confirm our results on a bigger sample size.

In general, higher repeatability coefficients (and thus, higher minimal detectable changes) were
observed in people with transtibial amputation compared to sound participants, except for the stance-
phase duration ASI and the distance (Table 24). This reflects a higher inter-subject variability within
the population of people with transtibial amputation compared to sound subjects. The different
prostheses used by the recruited participants and the large range of durations since amputation may
explain the observed variability in this population. The values of the repeatability coefficients provide
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trends regarding the possible minimal detectable changes in people with transtibial amputation and
in sound participants. However, in order to interpret if a gait quality index obtained following the
presented protocol can detect sufficiently subtle changes to track patients’ progression during the
rehabilitation, baseline values and values achieved during the rehabilitation are required. Therefore, a
study involving a regular follow-up of people with transtibial amputation undergoing rehabilitation is
necessary. Comparing the repeatability coefficients to the 2MWT score changes observed between
baseline and follow-up / discharge would allow to conclude on the relevance of the selected
parameters for rehabilitation monitoring.

ii. Description of the transtibial and asymptomatic populations using gait quality indices

Apart from the iHR, all the gait quality indices reported in the present study had already been
investigated in the population of people with transtibial amputation in the literature, although never
concomitantly.

The distance covered during the 2MWT by both populations is consistent with the values reported
in the literature for both sound adults (Bohannon et al., 2015) and people with transtibial amputation
(Gaunaurd et al., 2020). Furthermore, this confirms that self-selected speed of people with transtibial
amputation is lower than that of sound participants. This reduced walking speed might not only be the
sign of higher metabolic cost of walking (Waters et al., 1976) but also of decreased stability as it was
shown to be one of the mechanisms allowing to increase the margin of stability (Hak et al., 2014).

Sound participants achieved similar iHR scores as those reported in the literature (Bergamini et al.,
2017; Pasciuto et al., 2017). Regarding the scores achieved by people with transtibial amputation,
while no reference value could be retrieved in the literature, results seem consistent. Indeed, the
achieved iHR scores by people with transtibial amputation in this study were closer to those of
asymptomatic population than people with transfemoral amputation (Pasciuto et al., 2017), who were
previously shown to have a more asymmetrical gait pattern than people with transtibial amputation
(Nolan et al., 2003; losa et al., 2014; Cutti et al., 2018). losa and coworkers have evaluated the HR in
people with transtibial and transfemoral amputation at dismissal of the rehabilitation center (losa et
al., 2014). The HR was shown to be less reliable and more difficult to interpret than its improved
version (Pasciuto et al., 2017) and therefore was not investigated in the present study. However, the
authorsin (losa et al., 2014) observed the same trend as retrieved here: the gait of transtibial amputees
was shown to be statistically more asymmetrical than that of sound participants.

Asymmetry was also quantified in the present study using the ASI computed based on the stance-
phase duration (temporal ASl) and the vertical acceptance peak occurring in the first half of the stance
phase (loading ASI). These parameters have been described in (Nolan et al., 2003) in a population of
four people with transtibial amputation, four people with transfemoral amputation and six sound
subjects walking along a straight line at various speeds. Similarly as in (Nolan et al., 2003), people with
transtibial amputation were shown to spend more time and put more weight on their sound leg than
on the prosthetic leg. The asymmetries observed in the present study were less important than those
reported in (Nolan et al., 2003), which might be explained by the higher distance and number of steps
covered in the present study, allowing to select strides pertaining to the steady state of gait. Although
people with transtibial amputation exhibited more temporal and loading asymmetries than sound
participants, the difference between both populations was not found to be significant.
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Itis interesting to note that among the 3 different kind of parameters quantifying gait (a)symmetry,
the iHR displayed less between-subjects variability than the conventional asymmetry parameters and
was the only index allowing to discriminate people with transtibial amputation from sound participants
(Table 25).

Interestingly, RMSa measured at the pelvis level was lower in the group of transtibial amputees
than in sound participants in all directions, even if the difference was only statistically significant for
the mediolateral acceleration. In the literature, pelvis RMS values were higher in pathological gait than
in normal gait at pelvis level when normalized to walking speed (Summa et al., 2016; Bergamini et al.,
2017; Belluscio et al., 2019). In (Paradisi et al., 2019), RMS accelerations at the pelvis level were found
to be significantly higher in the transtibial amputation group than in the control group in the
mediolateral direction, but the RMS was not normalized to walking speed while the former was shown
to be significantly more important in the control group. Another reason for this difference might again
lie in the reduced time since amputation in the population investigated in the present study compared
to that recruited in (Paradisi et al., 2019). Indeed, in (losa et al., 2014), lower-limb amputees evaluated
at discharge from the rehabilitation exhibited significantly lower RMS values at the pelvis level along
the anteroposterior and mediolateral directions compared to the control group. The less time spent
walking with a prosthesis may contribute to a lower trust in the prosthesis, resulting in voluntarily
restraining motion at the pelvis level to enhance control over the prosthesis.

Conversely, sternum and head RMSa were significantly higher in amputees compared to sound
participants in both the mediolateral and anteroposterior directions. Attenuations of the accelerations
from pelvis to sternum in the anteroposterior and mediolateral directions were insufficient to regulate
the RMSa at the sternum level in the transtibial amputee group. The higher RMSa at the sternum in
the mediolateral direction may result from gait compensations involving the trunk in the frontal plane
of people with transtibial amputation (Michaud et al., 2000). In the amputee group, negative
attenuation coefficients were observed from the sternum to the head, thus leading to an amplification
of the accelerations and increased RMSa at head level compared to sternum level, confirming results
from the literature (Paradisi et al., 2019). Similarly, reduced attenuations of accelerations from the
pelvis-to-head accelerations were observed in our sample of amputees compared to sound
participants or even to the transtibial amputees described in (Paradisi et al., 2019). This seems to
indicate a lower stability of the transtibial amputees recruited in the present study, which might be
explained by the reduced time interval since amputation of some participants. The difficulty to
attenuate accelerations from the lower limbs in the anteroposterior and mediolateral directions may
result from the reduced counter-rotation of pelvis and trunk segments in the transverse plane
observed in people with lower-limb amputation (Goujon-Pillet et al., 2008) and was also observed in
patients with subacute stroke (Bergamini et al., 2017). This may lead to instability of the head, thus
compromising a steady optical flow and vestibular proprioception, which in turn may lead to an
increased fall risk.

All in all, the quantified parameters during the 2MWT tended to indicate a decreased dynamic
balance in people with transtibial amputation compared to sound participants, even if only eleven of
the twenty-two remaining parameters (including the distance) allowed to discriminate the two
populations. It should be noted that this study doesn’t allow to conclude on the most relevant
parameters for rehabilitation monitoring in people with lower-limb amputation. Indeed, the eleven
parameters that differ between populations may not display a progression during the rehabilitation
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and therefore, may not be responsive to change. In particular, the attenuation coefficients were shown
not to display a significative difference between assessments occurring before and after vestibular
rehabilitation training in people with stroke (Tramontano et al., 2018). Conversely, the parameters
that were not found to be statistically different in sound participants and people with transtibial
amputation that have terminated their rehabilitation may display a wide margin of progression during
the rehabilitation. Therefore, obtaining baseline values at the beginning of — or in the course of —
rehabilitation is paramount to draw conclusions on the relevance of the considered parameters.
However, some assumptions can be drawn by comparing the values of the repeatability coefficients of
each gait index with the median values achieved in rehabilitated transtibial amputees. For instance,
the high variability of attenuation coefficients within the population of people with transtibial
amputation leads to repeatability coefficients that are way higher than the achieved median values as
well as than the difference of median values between transtibial amputees and sound participants. As
a consequence, these parameters are not expected to capture subtle changes that may occur during
the rehabilitation of people with transtibial amputation. Conversely, the repeatability coefficients of
the three components of the iHR are very low compared to the median iHR values of people with
transtibial amputation while being lower than the observed difference between both populations. It
therefore appears that the iHR could allow the detection of subtle improvements in the symmetry of
transtibial amputee gait. These hypotheses should be verified in a study involving transtibial amputees
undergoing rehabilitation, which, in turn, would allow to quantify and compare gait quality indices
measured at several periods of the rehabilitation.

This study allowed to demonstrate the feasibility of instrumenting people with transtibial
amputation during their rehabilitation to quantify gait quality indices. The latter were acquired by a
physiotherapist during a 2MWT, which is a clinical test easy to implement and usually performed in
clinical practice. The participants reported no discomfort or motion hindrance due to the sensors. In
order to facilitate the implementation of the protocol in the clinical routine, automation of the post-
processing is required (in particular, sensors synchronization) as it would allow to obtain an immediate
report at the end of the rehabilitation session.

2.1.4. Conclusions

This study investigated the feasibility and relevance of tracking gait quality indices derived from
IMUs or pressure insoles signals during two-minute walking tests (2MWT) performed by people with
transtibial amputation. Most of the investigated gait quality indices (improved harmonic ratio, root
mean square of head, sternum and pelvis accelerations, loading and temporal gait symmetry and
attenuation coefficients from the lower-limbs to the upper-body) were shown to be repeatable within
session, and therefore to be good candidates for such a monitoring. Furthermore, ten out of the
twenty-three investigated indices showed that people with transtibial amputation exhibited an
asymmetrical gait pattern and were more prone to falling than asymptomatic people. A between-
session test-retest reliability study should be implemented to confirm the observed trends regarding
the reliability of the gait quality indices derived from wearable sensors in transtibial amputee gait. A
study allowing to retrieve baseline values of the indices at the beginning and during the rehabilitation
must be implemented in order to identify the indices that allow to detect a progression of the
participants during the rehabilitation and therefore to confirm the relevance of the instrumented
2MWT for the follow-up of people with transtibial amputation along their rehabilitation.
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2.2. Computation and interpretation of the improved harmonic ratio in people with

lower-limb amputation

Despite its wide use for gait symmetry quantification in the recent literature, the computation and
interpretation of the improved harmonic ratio (iHR) retains some uncertainties.

This section will therefore be divided in two subsections. The first subsection aims at clarifying
whether the iHR must be computed on segmented gait cycles or if it could be computed on the whole
gait signal without segmentation, and if the segmentation method has an impact on the computed
score. This study was presented at the 2019 congress of the Société de Biomécanique and uses the
data described in the first chapter of Part 3. The second subsection aims at investigating the
relationship between the iHR and traditional temporal and loading asymmetry indices, which are used
in the clinical practice and are easily interpretable. Indeed, while the iHR was shown to discriminate
people with transtibial amputation from sound participants, where commonly used temporal or
loading asymmetry indices failed (see section 2.1 above), its interpretation in terms of the (a)symmetry
origin or causes remains questionable. This study uses the data collected on nine people with
transtibial amputation, presented in the preceding section.

2.2.1. Investigating symmetry in amputee gait through the Improved Harmonic Ratio:
influence of the stride segmentation method

a. Introduction

The quantification of gait symmetry is extremely important in several clinical contexts. Among the
many indices used to describe gait symmetry, the Harmonic Ratio (HR), which is based on a stride-by-
stride spectral analysis of trunk accelerations, is often used (Bellanca et al., 2013). Recently, an
improved version of this index (iHR) has been proposed, relying on a rigorous mathematical definition
and on values ranging from 0 to 100% (Pasciuto et al., 2017). The influence of acceleration realignment
procedures (Buckley et al., 2017), as well as of the number of considered strides and harmonics on HR
and/or iHR values have been assessed in the literature, and standardized guidelines have been
proposed in this respect (minimum of 20 strides and 20 harmonics should be considered) (Riva et al.,
2014, Pasciuto et al., 2017). Concerning stride segmentation approaches, several methods are usually
adopted in the literature, based on different signals (ground reaction forces, pelvis or shank
accelerations or angular velocities), thus corresponding to different instants of time within the gait
cycle. The whole signal has also been considered, to avoid the propagation of errors due to inaccurate
segmentation (Riva et al., 2013). Nevertheless, despite its role in the computation of iHR, the impact
of the stride segmentation method has never been adressed, especially in people characterized by high
gait asymmetry, such as people with lower-limb amputation. Thus, the aim of this study was to
investigate the influence of different stride segmentation methods and of the absence thereof on iHR
values obtained during gait in people with transfemoral amputation.

b. Methods

i. Participants & protocol

This study was granted ethical approval (CPP IDF VI, N° 2014-A01938-39) and seven people with
transfemoral amputation (5 males, age: 47.3+ 9.9 years, mass: 74.5+11.9 kg) gave written informed
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consent prior to their participation. They were instrumented with a pair of pressure insoles (Novel, 100
Hz) and two inertial measurement units (Xsens, 100 Hz) located on their lower trunk (L4/L5 level) and
prosthetic shank. Participants walked a minimum of three times at their self-selected speed along an
8-meter linear pathway. At the beginning of each trial, they were required to stay in a static posture
for 3 seconds and to perform a kicking task for synchronization purpose.

ii. Data processing

Proper alignment of the trunk unit with craniocaudal (CC), anteroposterior (AP), and mediolateral
(ML) anatomical axes was ensured through a verticalization procedure during the initial static posture
of each trial (Bergamini et al., 2014). Only steady state strides were considered by discarding the first
and last strides of each trial. The iHR was then computed, for each stride and each anatomical axis,
using four different segmentation methods, representative of the state of the art:

e Insoles (REF) (used as a reference): based on the timings of initial foot contacts,
determined using a 20 N threshold on the insole signals;

e Shank (TIB): based on local maxima in the measured ML shank angular velocity signals,
roughly corresponding to the middle of the swing phase;

e Pelvis (PEL): based on the local maxima in the measured ML lower-trunk angular velocity
signals, occurring slightly after initial contacts;

e Zijlstra (ZS): based on an algorithm which identifies initial contacts in the AP acceleration
measured at the lower-trunk (Zijlstra and Hof, 2003).

In addition, no stride segmentation (ABS) was also considered, corresponding to the calculation of

the iHR on the whole signal for each gait trial, from the first to the last initial contacts detected by the
insoles.

For each patient and each segmentation method, the medians and interquartile ranges (IQRs) of
the iHR were computed. The IQR/median ratio (IMR) was also calculated to estimate the iHR reliability.

iii. Statistics

A Shapiro-Wilk test was performed on the iHR medians and IMR. According to the results of this
test, a one-way Repeated Measures ANOVA, or a Friedman test, was performed to investigate if
significant differences existed between REF and the other methods (TIB, PEL, ZS, ABS). Pairwise
comparisons were analyzed using post-hoc paired t-tests or Wilcoxon signed-rank tests and
considering a Holm-Bonferroni correction. Finally, Pearson’s or Spearman’s correlations were used to

investigate correlations between iHR values obtained with IS and the other four methods. The
significance level (o) was set to 0.05 for all statistical tests.

c. Results and discussion
A total of 405 strides pertaining to the steady-state phase of gait were analyzed.

Regarding the iHR obtained with IS, results were consistent with those obtained in the literature
for the same population (Pasciuto et al., 2017) (Figure 49). Only iHR scores obtained without
segmentation (ABS) were significantly different to those obtained using insoles (REF), for all three axes
(Figure 49 — p < 0.0125 ; Figure 50). Furthermore, iHR scores derived from TIB, PEL, and ZS were very
strongly and significantly correlated with the reference iHR (r>0.97, p<0.05). Conversely, correlations
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between REF- and ABS-based iHRs were only moderate and not significant in two out of three
directions.
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Figure 49: Median values of the iHR scores for each segmentation method (REF = reference, insole-based method; TIB = shank-
based segmentation ; ZS = segmentation based on Zijlstra’s algorithm, PEL = lower-trunk based segmentation) and in the
absence thereof (ABS = no segmentation) and each participant along all three anatomical axes : anteroposterior (AP),
mediolateral (ML), vertical (CC).
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Figure 50: Median and interquartile range values over all participants for all the segmentation methods (REF = reference, insole-
based method; TIB = shank-based segmentation ; ZS = segmentation based on Zijlstra’s algorithm, PEL = lower-trunk based
segmentation) along all three anatomical axes : anteroposterior (AP), mediolateral (ML), vertical (CC).

Concerning the iHR reliability, consistently with previous findings (Pasciuto et al., 2017), IMR values
were found to be higher in the ML than in AP or CC direction (Table 26). No statistically significant
difference was found between IMRs obtained with IS and any other methods, for each axis.
Nevertheless, TS-based iHR IMRs tended to be higher than those obtained with the other segmentation
methods.
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Table 26: Mean and standard deviations of the iHR IMRs (ratio of the interquartile range and median), for each segmentation
method (REF = reference, insole-based method; TIB = shank-based segmentation ; ZS = segmentation based on Zijlstra’s
algorithm, PEL = lower-trunk based segmentation) and in the absence thereof (ABS = no segmentation) for the different
anatomical axis (anteroposterior [AP], mediolateral [ML], vertical [CC]).

iHR IMR values [%]

AP ML CcC
S REF 11.3+5.9 21.4+9.7 12.7+5.6
:r_§ 3 TIB 11.3+£2.0 28.1+22.9 7.2+44
S % VA 12.7+7.4 20.4+8.4 13.1+£3.5
go S PEL 12.6+£8.1 34.6+£16.0 15.4+5.8
& ABS 6.9+32.2 49.8 £ 60.4 5.6+14.0

d. Conclusions

This study showed that computing iHR on the whole acceleration signal provides significantly
different results than using any of the assessed stride segmentation method. When using stride
segmentation methods, care should be taken to ensure that the method chosen provides a reliable
segmentation for the specific population under study. In particular, special attention must be paid
when using pelvis accelerations due to feet impacts attenuation and inherent signal variability at trunk
level (Trojaniello et al., 2015).

2.2.2. Investigating symmetry in amputee gait through the Improved Harmonic Ratio:
comparison with commonly used loading and temporal symmetry indices

In order to investigate the relationship between the iHR and conventional gait symmetry indices,
the data previously collected during a 2MWT performed by nine sound participants and nine people
with transtibial amputation were used (see section 2.1.1). The median iHR values along the three
directions and the median absolute symmetry indices (ASl) of stance-phase duration (temporal
symmetry) or of the vertical ground reaction force peak occurring in early stance (loading symmetry)
(Nolan et al., 2003) of each participant were retrieved during the first repetition of the 2MWT.
Spearman correlations were then computed between the temporal and loading ASI and the iHR
computed in all three directions, for the population of transtibial amputees and for the sound
population. The level of significance was set to 0.05.

The achieved correlations between the iHR and the ASI are reported in Table 27.
Table 27: Spearman's correlations (p) and associate p-values between the improved harmonic ratio (iHR) computed in the

anteroposterior (AP), mediolateral (ML) and vertical (V) directions and the temporal and loading absolute symmetry index (ASI)
in nine people with transtibial amputation and nine asymptomatic participants.

Sound participants (n = 9) Transtibial amputee participants (n = 9)

Loading ASI Temporal ASI Loading ASI Temporal ASI
p p-value p p-value p p-value P p-value
iHR AP 0.15 >0.05 -0.17 >0.05 0.15 >0.05 -0.03 >0.05
iHR ML 0.18 >0.05 0.48 >0.05 -0.08 >0.05 0.05 >0.05
iHRV 0.60 >0.05 0.58 >0.05 0.43 >0.05 -0.17 >0.05

None of the correlations were found to be significant (p-value > 0.05). Furthermore, the strength
of the correlations between each pair of iHR component and ASI were shown to differ across
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populations (see for instance the correlation between the iHR in the mediolateral direction and the
temporal ASl in both populations in Table 27). Therefore, it can be concluded that the iHR components
are not associated with either gait temporal or loading symmetry.

The former indices are easier to interpret than the iHR but were shown not to allow the
discrimination between people with transtibial amputation and sound participants. Therefore, they
may not allow to detect changes within patients or to detect the differences between transtibial
amputees displaying different levels of asymmetry. Conversely, the iHR allowed to discriminate people
with transtibial amputation from sound participants and displayed small repeatability coefficients,
indicating that it may allow the detection of subtle changes of (a)symmetry within participants.
Furthermore, the iHR is computed from the acceleration signals of one sensor positioned at the pelvis,
which doesn’t require to be calibrated. It therefore provides a more ecological measure than the ASI
derived from pressure insoles data. However, it should be noted that the pelvis is chosen as a point to
emulate the body center of mass. The validity of this assumption when computing the iHR should
however be verified in pathological gait, as it was shown that the pelvis acceleration does not
accurately emulate the body center of mass acceleration in people with transfemoral amputation for
instance (see chapter 2, part 3). Furthermore, the clinical interpretation of the iHR is not
straightforward. It seems to identify overall gait (a)symmetry and, based on its definition, it is likely
influenced by asymmetrical gait pattern of contralateral limbs. However, it is not currently possible to
conclude on the origin(s) of the detected asymmetries. Further investigations are therefore required
to shed light on the interpretation of the iHR in people with lower-limb amputation. It might be
relevant to investigate the impact of asymmetries in joint patterns on the iHR values in order to better
further understand this parameter.
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Conclusion

This part of the thesis aimed at investigating the feasibility, relevance and intra-session reliability
of using wearable sensors to describe gait quality using parameters derived from direct signal
processing, which neither require a biomechanical model of the human nor of the performed motion.
These parameters can be retrieved from a low number of sensors by instrumenting clinical walking
tests, making them particularly relevant for an ecological monitoring of rehabilitation.

In the first chapter, the feasibility of deriving temporal parameters from gait events identified in
the signals of a single or two segment-mounted IMUs was investigated. Five algorithms taken from the
literature were implemented and tested using gait data of people with transfemoral amputation. Two
algorithms were found to allow an accurate detection of initial and final contact events. However, they
tended to either underestimate the sound stance phase or to overestimate the prosthetic stance phase
durations, which prevents their use for the quantification of temporal asymmetry. Further work is
required to improve the algorithms in order to use them for temporal asymmetry monitoring in people
with transfemoral amputation. The adequacy of the developed algorithms to the gait of people with
transtibial amputation, which does not exhibit the same compensations as that of transfemoral
amputees, should also be investigated. Although IMUs do not appear to be mature yet for temporal
parameters tracking in people with transfemoral amputation, pressure insoles represent a valid
wearable alternative (Loiret et al., 2019).

In the second chapter, the feasibility and relevance of tracking gait quality indices in people with
transtibial amputation undergoing rehabilitation by instrumenting the two-minute walking test
(2MWT) with pressure insoles and IMUs was investigated. In order to fulfill this aim, gait quality indices
(improved harmonic ratio [iHR], root mean square of accelerations [RMSa] and attenuation
coefficients between the pelvis, sternum and head) were computed in both rehabilitated people with
transtibial amputation and sound participants. The study therefore allowed to obtain reference values
for the population of transtibial amputees and to characterize the risk of falling and gait asymmetry of
this population by comparison to sound participants with the above-mentioned gait quality indices. In
particular, this study was the first to provide values for the iHR in people with transtibial amputation.
The first step conducted in this study is necessary in order to obtain target values during the
rehabilitation. Furthermore, the participants were asked to perform two repetitions of the 2MWT,
which allowed to obtain a first estimate of the minimal detectable change by each pair of sensor/gait
index. Although the retrieved repeatability coefficients may underestimate the actual minimal
detectable changes, this study was the first proposing to assess the intra-session reliability of gait
quality indices acquired during a clinical test. However, without knowing the values taken by these gait
quality indices by people undergoing rehabilitation, the feasibility of actually detecting a gait quality
improvement or deterioration using the proposed protocol cannot be confirmed yet. However, it is
worth noting that the protocol presented in this study proved to be compatible with clinical context
and could be directly implemented during the rehabilitation of patients.

Furthermore, although ten of the investigated gait quality indices corroborated the literature
regarding the higher risk of falling and reduced gait symmetry of people with transtibial amputation
compared to the asymptomatic population, there is still a lack of hindsight on these gait descriptors,
making their interpretation difficult. As an example, the iHR, computed from pelvis acceleration
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signals, indicates overall gait (a)symmetry, but does not provide any indication regarding the origin of
the asymmetry. In particular, this index was found not to be correlated with either temporal or loading
symmetry computed with the absolute symmetry index. It is believed that kinematic asymmetries,
such as an asymmetric knee flexion during gait, might have repercussions on the iHR, but the protocol
implemented did not allow to verify this hypothesis. Computing the iHR on the trajectory of the pelvis
or body center of mass may facilitate its interpretation but would considerably complexify its
computation from IMUs.

To conclude, wearable sensors offer the opportunity of easily tracking gait while being minimally
invasive. Multiple indices have been proposed in the literature to describe segments and body motion
from the analysis of raw signals extracted from these sensors. For instance, the root mean square of
the acceleration within a stride computed at different levels of the upper body has been proposed to
describe the transmission and attenuations of oscillations from the lower limbs to the head while
walking. Although the methodology is interesting, work has to be done in order to gain insight to
interpret these parameters. This study contributed to a better understanding and mastering of
wearable-based gait quality indices, advancing towards providing better tools for therapeutic follow
up. In order to further enhance the understanding of these parameters, future studies should focus on
establishing reference values on larger samples of pathological or asymptomatic populations while
comparing the wearable-based gait quality indices to gold standards. This will facilitate the clinical
interpretation of the retrieved gait quality indices and therefore will promote the clinical transfer of
wearable gait quality analysis, thus having an actual impact on the clinical decision making.
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General conclusion

The aim of this thesis was to contribute to the development of a wearable framework to support
the in-field assessment of people with lower-limb amputation during their functional rehabilitation.

The first step to achieve this aim was to identify clinically relevant parameters that could be
qguantified using wearable sensor data. Therefore, the first part of the thesis aimed at providing an
overview of the literature with regards to lower-limb amputee care (chapter 1), biomechanical
parameters usually retrieved in lower-limb amputee gait analysis (chapter 2), and opportunities
offered by wearable sensors through a presentation of the different technologies and the derived
parameters from wearable sensor data analysis (chapter 3). In that last chapter, a special focus on
pressure insoles and magneto-inertial measurement units (MIMUs) was developed, since these
technologies were found to allow capturing a wide variety of gait descriptors, including a set of
parameters that are usually retrieved to describe the gait of people with lower-limb amputation.
Interestingly, since wearable sensors rely on different technologies compared to the gold standard
optical motion capture systems or force platforms, the output parameters derived from wearable gait
analysis may differ from those of usual laboratory-based gait analysis. In fact, two different approaches
have emerged from the literature when dealing with wearable sensors, and most particularly with
MIMUs. A first approach consists in developing biomechanical models of the human body or the
motion (e.g. inertial model, inverted pendulum, kinematic chains) in order to retrieve biomechanically-
founded parameters, similar to those that could be obtained (often more quickly and easily) with
laboratory-based instruments. A second approach consists in identifying patterns in the signals
measured by wearable sensors to extract new features describing a specific motion or pathology, to
learn the relationship between the observed features and a relevant reference gait descriptor, or to
link features in the signal to observed events. In this second approach, an a priori model of the human
body or motion is not necessary, and the post-processing may seem closer to signal processing than
biomechanical analysis. Both these complementary approaches were deemed relevant and were
therefore implemented in the course of the thesis, with the aim to retrieve global descriptors of the
lower-limb amputee gait allowing to quantify gait deficiencies and to relate those to mechanical
parameters. The overview of the literature presented in the first part of the manuscript allowed to
identify such global descriptors as being the kinematics of the center of mass and synthetic descriptors
of balance and symmetry.

The second part of the manuscript, then, proposed a framework for wearable gait analysis based
on a biomechanical model-based approach. This framework aimed at providing an accurate estimation
of body center of mass kinematics from a minimal number of sensors, in order to be compatible with
the clinical routine. First, optimal sensor locations were identified through the analysis of the
contributions of fifteen segments (head, trunk, upper arms, forearms, hands, pelvis, thighs, shanks and
feet) to the total body center of mass acceleration in ten people with transfemoral amputation, using
a full-body inertial model and an optical motion capture system (chapter 2). In the third chapter, an
almost fully wearable framework was proposed to retrieve body center of mass motion from inertial
measurement units positioned on the identified segments. The framework allowed to estimate both
body center of mass acceleration and instantaneous velocity from only five sensors located on the
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trunk, thighs and shanks with high agreement compared to reference laboratory-based instruments in
one person with transfemoral amputation (Pearson’s coefficients of correlation r > 0.89 for the
acceleration components and r > 0.94 for the instantaneous velocity). To the authors’ knowledge, this
is the first study that allowed to estimate the instantaneous velocity of the body center of mass in an
inertial Earth-fixed reference frame from wearable sensors, without having formulated the hypothesis
that the center of mass of the body lies in the pelvis reference frame. The same methodology could be
applied in sound or other pathological gait to develop appropriate optimal sensor networks for these
populations. Finally, an original study was proposed in chapter 4 to investigate the robustness of the
developed framework to erroneous identification of sensors positions. The methodology proposed in
this chapter could be easily adapted to other sensor networks or other biomechanical parameters (for
instance, the instantaneous velocity). It could also be implemented to investigate the impact of errors
resulting from the proposed static calibration and assumptions in the computed MIMUs orientations
in a common global reference frame. It is therefore a precious tool to investigate the impact of sensor
positioning or localization on a parameter of interest.

The work achieved in this framework has, however, some limitations, the most obvious being that
the original algorithms and methods proposed in chapter 3 and 4 were developed and validated on
the data from a single person with transfemoral amputation, partly due to the pandemic situation in
2020. More patients should be recruited in order to confirm the validity and relevance of the
framework for body center of mass motion tracking. A second important limitation is that the wearable
framework proposed in this work is quite cumbersome due to the need of multiple sensing modalities.
The protocol could be simplified and made 100% wearable by using a 3D body scanner instead of
calibrated photographs and an optical motion capture system. However, the accuracy of the scan-
based geometric inertial model and of MIMUs positions retrieved from the scan should be evaluated.
A few tracks for improvement regarding the framework consist in improving the identification of
MIMUs location by positioning MIMUs on top of the stretch Velcro bands and/or by positioning colored
stickers on top of the location of MIMUs origin. This could pave the way for the development of an
algorithm that would automatically detect the position of MIMUs origins on the photograph or
textured mesh issued from the 3D body scan in order to reduce the intervention of the operator.
Eventually, the development of a kinematic model of the lower limbs and/or pelvis could allow to
further reduce the number of required sensors.

In parallel with these improvements, the framework could be expanded to propose the
quantification of other clinically relevant parameters. For instance, the instantaneous body center of
mass velocity could further be integrated to estimate the body center of mass displacement or
excursion, which was used for instance to quantify inter-limb symmetry in prosthetic gait (Askew et
al., 2019). Another parameter of great interest, especially for the rehabilitation of people with lower-
limb amputation (Cutti et al., 2018; Loiret et al., 2019) is the ground reaction force under each foot
while walking. Several models have been proposed but they generally use the assumption of
symmetrical gait to distribute the force during the double stance phase of gait (Ancillao et al., 2018),
which is obviously not applicable in people with lower-limb amputation. Last but not least, combining
the estimation of the ground reaction force under each foot with the instantaneous velocity of the
body center of mass would allow to investigate mechanical energy exchanges with the individual limb
method (Donelan et al., 2002b), therefore providing relevant information regarding the effect of a
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rehabilitation procedure or a prosthetic component on gait efficiency (Bonnet et al., 2014; Askew et
al., 2019).

In the third part of the manuscript, the relevance and feasibility of the second wearable gait
analysis approach — which consists in identifying features or computing metrics from the signals of
wearable sensors without the use of biomechanical modelling — was investigated in people with lower-
limb amputation, with the perspective of a clinical transfer for rehabilitation monitoring.

First, the accuracy of state-of-the-art methods for temporal parameter estimation using IMUs was
assessed in people with amputation. To this aim, five inertial-measurement-units-based gait event
detection algorithms were implemented and tested in people with transfemoral amputation. Although
two of the five algorithms displayed a good accuracy in the timing of occurrence of initial and final
contact events, validating their use for gait cycle segmentation, they tended to either underestimate
the sound stance phase duration or to overestimate the prosthetic stance phase duration, resulting in
the underestimation of stance phase duration asymmetry. This comparative analysis thus highlighted
the need for the development and extended validation of algorithms that are specific to people with
transfemoral amputation ambulating overground. It however provided a few tracks to enhance the
current algorithms in order to further improve gait event detection.

In the second chapter, a protocol consisting in the instrumentation of the two-minute walking test
(2MWT) with three inertial measurement units and two pressure insoles was proposed. It allowed to
guantify recent gait quality indices in a group of transtibial amputees and of sound participants and
was proved to be compatible with the rehabilitation. The investigated indices allowed to quantify
either gait symmetry or the ability to attenuate acceleration from the lower limbs to the upper body,
which was described in the literature as a pre-requisite to stabilize the head while walking and
therefore, avoid falling. The study allowed to comparatively assess the population of transtibial
amputees and of sound participants, and showed that people with transtibial amputation walk with a
more asymmetrical gait than young and healthy participants (as evidenced by a lower improved
harmonic ratio) and were more prone to falling (as evidenced by the higher root mean square
accelerations at the head and sternum level and the low-to-negative attenuation coefficients exhibited
by people with transtibial amputation). The study was the first to propose an estimation of the
reliability of the investigated gait quality indices in both people with transtibial amputation and healthy
participants. However, the participants were tested twice within the same session, which limited the
influence of intra-participant variability and prevented to consider errors which could occur while
setting up or calibrating sensors in the repeatability analysis. Therefore, the estimated minimal
detectable changes found in this study are to be carefully interpreted as they may be underestimated.
Still, the results obtained allowed to provide original reference values for these indices in rehabilitated
people with transtibial amputation. In order to complete these results and advance towards clinical
transfer of the protocol, future studies should focus on retrieving the values of these gait quality
indices during the rehabilitation. Only then would it be possible to confirm the relevance of a gait
quality index for monitoring gait symmetry and/or assessing the risk of falling during the rehabilitation.
Lastly, there is still a lack of hindsight on the investigated gait quality indices, especially the improved
harmonic ratio, which makes their interpretation difficult and compromise their use in the clinical field
for clinical gait assessment. Concomitantly assessing the investigated gait quality indices with wearable
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sensors and kinematic and balance biomechanical parameters issued from laboratory-based
instruments may provide relevant information regarding how to interpret these parameters and how
to benefit from these indices in the rehabilitation pathway. Furthermore, standardized protocols
across laboratories may allow to develop a database to better characterize different populations using
these parameters.

All in all, the work achieved during this thesis allowed to investigate two complementary
approaches for the wearable gait analysis of people with lower-limb amputation. The first approach
allowed to develop a comprehensive method based on a biomechanical model that allows to
characterize the kinematics of the body center of mass with promising results, which should be
confirmed on larger cohorts. This method could be used to adapt and monitor the effects of
rehabilitation protocols as the retrieved synthetic global parameter (the instantaneous velocity or
acceleration of the body center of mass) is directly linked to segmental motion. More development is
required to improve the usability of wearable gait analysis in the clinical field (user-friendly acquisition
system, quick post-processing, easy interpretation) and other synthetic parameters could be retrieved
based on the proposed protocol. The second approach allowed to further validate a wearable
framework that is mature for in-the-field quantification of gait quality indices that are intelligible to
both the patients and the clinicians and allow to evaluate gait symmetry and balance. More work is
required to further understand the implications of the different gait quality indices, notably the
improved harmonic ratio, in order to propose rehabilitation protocols targeting these aspects of gait.

It is worth noting that all the methodologies that were proposed in this framework and developed
for people with lower-limb amputation could be adapted to other pathologies as well. It should
however be kept in mind that if the methodologies are transferable, most of the proposed algorithms
rely on specificities of the gait of people with lower-limb amputation and may require some specific
development for other populations.
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Appendix A — Marker set used in Part 2

In the second part of the present manuscript, the participants were equipped with a full-body
marker set as displayed in the following figures (Figure appendix 1, Figure appendix 2).

The marker clusters on the thorax (markers THOXX) and feet (PHXX and PBXX) were only present

on the patient equipped with inertial measurement units (see chapters 3 and 4):
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Figure appendix 1 - Full-body marker set (face view)
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Appendix B — Comparative assessment of M-M algorithm

Given that M-M algorithm had both a very good sensitivity and high positive predictive values
(PPV), close to that set as a criterion for further investigation, the possibility to decrease the PPV
threshold criterion was considered.

Therefore, the accuracy achieved by this algorithm in detecting gait events and estimating
temporal parameters was investigated.

However, results obtained with M-M are very poor compared to the other two algorithms, with a
large dispersion of timing errors for gait event detection, and a data distribution far from the normality
(as evidenced by a mean very different than the median) (see Figure appendix 3).

In the authors’ opinion, due to the huge variability of its results, the M-M algorithm cannot be
adopted in an actual clinical context and therefore, providing its results in the core of the manuscript
was thought not to add significant/useful information to the study. Last but not least, making a clear
graphical representation of the results was jeopardized by this error variability, as can be seen in the
figures below (gait event detection timing in Figure appendix 3 and temporal parameters errors in
Figure appendix 4). For all these reasons, we finally decided to strictly respect the PPV threshold and
to restrain the analysis to M-L and M-T algorithms.

200

-200 1

4001

Sound Prosthetic Sound Prosthetic

Figure appendix 3: Gait event timing errors with M-M, M-L and M-T (ms). Mean values are indicated with the diamond
shape within the boxplot.
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Résumé détaillé de la these en francais

1. Introduction et objectifs de la these

1.1.Objectifs et déroulement de la rééducation des personnes amputées de membre
inférieur
L’amputation d’un membre inférieur a un impact définitif sur les capacités locomotrices et la
qualité de vie des personnes amputées (Gailey et al., 2008; Samuelsson et al., 2012). Apres
I'amputation, les patients sont pris en charge par une équipe multidisciplinaire constituée d’un
médecin MPR (Médecine Physique et de Réadaptation), de kinésithérapeutes et ergothérapeutes, d'un
orthoprothésiste, et de tout autre personnel soignant jugé nécessaire (pour assurer, par exemple, un
suivi psychologique). Cette équipe en charge de la rééducation a vocation a assurer le retour du patient
a son domicile avec la meilleure qualité de vie possible. Pour ce faire, la rééducation a pour objectif de
réduire les limitations fonctionnelles induites par I'amputation. Lorsque les capacités du patient le lui
permettent, un appareillage peut étre proposé. Dés lors, la rééducation s’attache a restaurer
I’équilibre postural et de la marche ainsi qu’a restituer une marche la plus physiologique possible. En
effet, les compensations et asymétries mises en place par la personne amputée appareillée peuvent
conduire au développement de comorbidités (arthrose, lombalgie chronique...) notamment du fait des
sur-sollicitations des articulations controlatérales qu’elles entrainent (Sawers and Hafner, 2013; Villa,
Bascou, et al., 2017).

Pour suivre I'évolution du patient pendant la rééducation, des évaluations régulieres sont
nécessaires. En clinique, celles-ci s’appuient principalement sur les observations des cliniciens ainsi
que sur le ressenti du patient a propos de sa prothése (notamment inconfort et douleurs) (Cuesta-
Vargas et al., 2010; Hafner and Sanders, 2014). Des indicateurs de performance peuvent étre attribués
par les cliniciens lors de la réalisation de taches motrices spécifiques, telles que définies par des tests
ou scores cliniques. Souvent, ces indicateurs sont en partie subjectifs car dépendent de I'appréciation
et de I'expérience du clinicien. Certains tests cliniques, tels que le Timed-Up-and-Go test ou le test de
deux minutes, consistent a réaliser une tache locomotrice bien définie visant a évaluer la mobilité. Ces
tests reposent alors sur une mesure quantitative objective telle que la durée nécessaire pour la
réalisation de la tache ou la distance parcourue pendant la durée de la tache. Typiquement, ces deux
tests ont été validés chez les personnes amputées de membre inférieur (Deathe et al., 2009) et sont
ainsi régulierement réalisés lors de la rééducation afin d’obtenir une donnée quantitative d’évaluation
de la performance lors de la marche. Toutefois, une bonne performance ne traduit pas nécessairement
une bonne qualité de marche (Calmels et al., 2002). Ainsi, I'évaluation de la rééducation doit prendre
en compte d’autres aspects, tels que la symétrie et la régularité de la marche, I'occurrence de perte
d’équilibre, etc.

1.2. Intéréts et limites des laboratoires d’analyse du mouvement

Les laboratoires d’analyse du mouvement, constitués en général de plateformes de force et d’un
systeme optoélectronique, permettent d’obtenir de trés nombreuses données quantitatives de la
marche (Cappozzo et al., 2005; Goujon, 2006). lls ont largement été utilisés en recherche pour
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caractériser la locomotion des personnes amputées de membre inférieur (Goujon-Pillet et al., 2008;
Houdijk et al., 2009; Sagawa et al., 2011; Villa, Loiret, et al., 2017).

Les parametres spatiotemporels de la marche font partie des parameétres les plus étudiés en,
laboratoire d’analyse du mouvement chez les personnes amputées de membre inférieur (Sagawa et
al., 2011). lls peuvent étre calculés a partir de la trajectoire de marqueurs optoélectroniques au niveau
des pieds et/ou de I'instant de dépassement de seuil d’effort détecté sur les plateformes de force. Les
parametres spatiotemporels permettent notamment de calculer la vitesse de marche, indicateur
associé a la qualité de vie et au niveau fonctionnel d’une personne (Perry, 1992; Batten et al., 2019),
ainsi que les asymétries de durée d’appui ou de longueur de pas, mises en évidence chez les personnes
amputées (Jaegers et al., 1995; Goujon et al., 2006; Roerdink et al., 2012) et pouvant traduire une
instabilité a la marche (Hof et al., 2005; Hak et al., 2014).

Les systemes optoélectroniques permettent de décrire les trajectoires de segments ou
articulations du corps pendant la marche et, lorsqu’associés a un modele inertiel représentant le corps
comme un ensemble de solides indéformables, d’obtenir la cinématique du centre de masse du corps
(analyse segmentaire). Les asymétries du schéma de marche que I'on retrouve chez les personnes
amputées de membre inférieur au niveau segmentaire ou articulaire ont des répercussions sur la
trajectoire ou la vitesse du centre de masse du corps (Tesio et al., 1998; Agrawal et al., 2009; Askew et
al., 2019; Strutzenberger et al., 2019). Ainsi, I'analyse de la cinématique du centre de masse issue des
laboratoires d’analyse du mouvement permet de s’affranchir de I'analyse de la cinématique de chaque
articulation ou segment tout en mettant en évidence la présence de compensations ou asymétries lors
de la marche.

Les plateformes de force, quant a elles, fournissent des informations sur les efforts et moments de
réaction au sol qui s’appliquent au corps au cours de la marche. Par application de la seconde loi de
Newton, la somme des efforts de réaction au sol permet ainsi de calculer la cinématique du centre de
masse lorsqu’aucun autre effort externe n’est appliqué au corps. Les efforts de réaction au sol sous
chaque pied présentent un intérét non négligeable lors de la rééducation des personnes amputées de
membre inférieur en quantifiant la mise en charge de la prothése et les éventuelles asymétries de
charge entre le membre sain et prothétique (Loiret et al., 2019). Par ailleurs, en combinant les efforts
de réaction au sol et les informations de la cinématique articulaire, il est possible de calculer les efforts
et moments articulaires. Enfin, lorsqu’associés a la vitesse instantanée du centre de masse, les efforts
de réaction au sol sous chaque pied fournissent des informations sur le cot énergétique de la marche,
a travers les échanges d’énergie mécanique (Donelan et al., 2002a; Bonnet et al., 2014)

La quantification de tous ces aspects biomécaniques de la marche est pertinente lors de la
rééducation des personnes amputées de membre inférieur. Elle fournit en effet des renseignements a
la fois sur la qualité et la performance de la marche. Par ailleurs, elle permet de fournir des données
objectives et quantitatives d’évaluation de la marche, ce qui est de plus en plus attendu en pratique
cliniqgue avec I'’émergence de « la pratique fondée sur la preuve » (« evidence-based practice »),
notamment pour prescrire des composants prothétiques les plus adaptés possibles a un patient ou
pour en justifier le remboursement (Hafner and Sanders, 2014; Agrawal, 2016; Hawkins and Riddick,
2018). En revanche, les laboratoires d’analyse du mouvement sont trés colteux, nécessitent un
technicien/ingénieur formé et imposent une prise de mesure uniqguement en laboratoire, ce qui limite
leur utilisation en routine clinique (Loiret et al., 2005). Par ailleurs, les données issues des laboratoires
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d’analyse du mouvement, certes complétes et précises, sont trées nombreuses, ce qui peut allonger et
complexifier I'interprétation des mesures pour le clinicien. C'est pourquoi, l'utilisation de systemes
d’acquisition de données alternatifs, moins colteux et permettant une évaluation globale de Ila
marche, est attractive pour la rééducation.

1.3.Emergence des capteurs embarqués et opportunités pour la rééducation des personnes
amputées de membre inférieur

La miniaturisation de capteurs et I'émergence de solutions embarquées abordables pour I'analyse
du mouvement ces derniéres années offrent de nombreuses opportunités de prise de mesure
guantitative en situation écologique (Wong et al., 2007, 2015; losa, Picerno, et al., 2016; Benson et al.,
2018). Ainsi, les technologies embarquées telles que les centrales inertielles ou les semelles de
pression pourraient permettre d’obtenir des données quantitatives de la marche, sans perturber celle-
ci, au cours d’exercices de rééducation. Ceci compléeterait le suivi actuel de la rééducation grace a des
données quantitatives et objectives acquises au cours de séances avec les praticiens, mais également
en télé-rééducation. A terme, |'utilisation de la technologie embarquée au cours de la rééducation

pourrait également bénéficier au systeme de santé publique
en réduisant les colts globaux de la rééducation (Hafner and
Sanders, 2014). Cependant, le transfert en clinique de ces
outils n’est pas immédiat (Cutti et al., 2015; losa, Picerno, et
al.,, 2016). En effet, les technologies sous-jacentes des
capteurs embarqués different de celles des laboratoires
d’analyse de mouvement.

Les centrales inertielles (magneto-inertial measurement
units, ou MIMU en anglais) fournissent des données
guantifiant le mouvement (accélération et vitesse angulaire)
ainsi que le champ magnétique terrestre dans un repére
inertiel associé au boitier du capteur (en mouvement). Par
ailleurs, I'orientation des centrales inertielles dans un repeére
inertiel terrestre (fixe), comprenant un axe aligné avec
I'accélération de gravité (verticale) et un axe aligné avec le
nord magnétique (Roetenberg, 2006; Sabatini, 2011) est
obtenue par fusion des informations des différents capteurs
qui
éventuellement magnétometre, Figure 51) (Sabatini, 2011;

la composent (accélérometre, gyroscope et
Bergamini et al., 2014; Ligorio et al., 2020). En revanche, la
position de la centrale inertielle dans ce repére ne peut pas
étre obtenue directement. L'intégration de la vitesse angulaire
ou de [l'accélération mesurée par la centrale, aprés
soustraction de I'accélération de la gravité, permettent
d’obtenir respectivement les déplacements angulaires et
linéaires de la centrale. On retrouve alors, aux conditions
initiales pres, les parametres qui sont directement issus des

systemes optoélectroniques mais ceux-ci sont soumis a une
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dérive du fait du bruit contenu dans les signaux bruts des capteurs (losa, Picerno, et al., 2016; Hannink
et al., 2017). De nombreuses études se sont alors attachées a développer des algorithmes permettant
d’obtenir des parametres biomécaniques éprouvés tels que les angles articulaires (Picerno, 2017;
Poitras et al., 2019; Pacher et al., 2020). Ceux-ci nécessitent toutefois de connaitre |'orientation
relative de la centrale et du segment sous-jacent, ce qui requiert de procéder a des calibrations
fonctionnelles ou anatomiques pouvant allonger le temps d’acquisition (Pacher et al., 2020). A
I'inverse, de nombreux parametres obtenus directement a partir des données brutes des capteurs, en
particulier des accélérations, ont émergé et sont utilisés pour caractériser notamment I'équilibre et la
symétrie de la marche (losa, Picerno, et al., 2016; Benson et al., 2018; Ghislieri et al., 2019).

Les semelles de pression peuvent fournir la composante verticale de |'effort de réaction du sol
s’appliquant sur la semelle, ce qui permet de caractériser la symétrie temporelle ou de charge lors de
la marche (Nolan et al. 2003; Cutti et al. 2018; Loiret et al. 2019 - Figure 52). Toutefois, les autres
composantes de I'effort de réaction du sol ou le moment de réaction au sol obtenues avec les
plateformes de force ne peuvent étre obtenu directement a partir des semelles de pression.

Ainsi, dans le but d’accompagner la rééducation avec des capteurs embarqués, il apparait donc
nécessaire d’identifier les paramétres biomécaniques pertinents qui puissent étre caractérisés a 'aide
de ces capteurs et de développer des algorithmes spécifiques aux technologies embarquées pour les
obtenir. Il faut par ailleurs noter que, pour faciliter I'utilisation en clinique de la technologie
embarquée, I'acquisition de données doit étre la plus courte et la moins invasive possible, les cliniciens
ayant souvent peu de temps a passer avec leurs patients. Ainsi, limiter le nombre de capteurs
nécessaires et simplifier au maximum les protocoles d’acquisitions de données est primordial. Enfin,
les altérations du schéma de marche des personnes amputées se reflétant dans les signaux mesurés
par les capteurs positionnés sur ces personnes, il est nécessaire de s’assurer que les algorithmes
développés prennent en compte les spécificités de la marche des personnes amputées et soient validés
pour cette population.

1.4.Objectif de la these

L'objectif de cette thése est donc de contribuer au développement d’outils ou protocoles
embarqués permettant de quantifier la marche des personnes amputées de membre inférieur au cours
de leur rééducation. Les protocoles développés devront permettre d’obtenir rapidement des données
guantitatives pertinentes. Suite a la revue de littérature présentée dans les sections précédentes,
I'acquisition d’indicateurs décrivant la qualité de la marche (symétrie, équilibre) et la cinématique du
centre de masse (qui permet notamment d’identifier des altérations du schéma de marche et donne
des informations sur I'efficacité énergétique de celle-ci) semble particulierement pertinente. Une
attention particuliere sera portée a la compatibilité de ces protocoles a une utilisation en clinique. En
outre, des données pertinentes devront pouvoir étre obtenues a partir d’'un nombre minimal de
capteurs, soit a partir de données acquises rapidement en quelques pas, soit en instrumentant des
tests cliniques éprouvés et validés chez les personnes amputées de membre inférieur, tel que le test
de deux minutes, afin de ne pas perturber la rééducation.

Afin de répondre a ces objectifs, deux approches complémentaires ont été implémentées et
suivies au cours de cette thése.
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La seconde partie de la these présentera donc une premiére approche, qui consiste a extraire des
parameétres biomécaniques pertinents et éprouvés a partir des données des capteurs embarqués.
Cette approche s’appuie sur le développement d’algorithmes parfois complexes, nécessitant de
modéliser le corps et/ou le mouvement. La seconde partie de la thése aura donc pour but de proposer
un protocole embarqué et un algorithme original permettant d’estimer 'accélération et la vitesse
instantanée du centre de masse d’une personne amputée au niveau transfémoral a partir d’'un nombre
limité de centrales inertielles.

Dans la troisieme partie de la thése, une approche alternative sera mise en place. La seconde
approche consiste en effet a extraire des parameétres des signaux bruts des capteurs, sans avoir recours
a une modélisation complexe du corps ou du mouvement. Les signaux bruts des capteurs embarqués
étant différents de ceux issus des instruments présents dans les laboratoires d’analyse du mouvement,
la pertinence du suivi de parameétres issus de ces capteurs pour la caractérisation de la marche des
personnes amputées de membre inférieur n’est pas établie. Ainsi, la troisieme partie de la thése a pour
objectif d’examiner la faisabilité et la pertinence clinique de I'utilisation des capteurs embarqués pour
la caractérisation de la symétrie et de I’équilibre de la marche chez les personnes amputées de membre
inférieur.

2. Approche biomécanique : développement d’un protocole embarqué pour I'acquisition
de la cinématique du centre de masse chez les personnes amputées au niveau

transfémoral

La pertinence de I'acquisition de la cinématique du centre de masse a été mise en évidence dans
la revue de littérature restituée dans I'état de I'art de la partie précédente. Ainsi, cette partie de la
these a pour objectif de proposer un protocole et un algorithme permettant d’acquérir la cinématique
du centre de masse a l'aide de capteurs embarqués. Dans la littérature, plusieurs méthodes ont été
proposées dans ce but et validées chez des sujets sains. Elles peuvent étre catégorisées en deux
typologies selon le nombre de centrales inertielles utilisées.

La premiere typologie de méthodes est basée sur I’hypothése qu’un unique capteur positionné au
niveau du bassin permet d’acquérir la cinématique du centre de masse (Esser et al., 2009; Floor-
Westerdijk et al., 2012) et peut s’assimiler a la méthode du marqueur sacral avec des systéemes
optoélectroniques (Gard et al., 2004; Pavei et al., 2017). Lorsque la tache étudiée implique des
mouvements importants du haut du corps ou dans le cas d’'une marche asymétrique, les méthodes a
capteur/marqueur unique au niveau du bassin ont montré une tendance a surestimer I'excursion du
centre de masse (Eames et al., 1999; Meichtry et al., 2007; Myklebust et al., 2015; Huntley et al., 2017,
Pavei et al., 2017; Mohamed Refai et al., 2020). Pour cette raison, ces méthodes, bien que tres
attractives par leur simplicité (Huntley et al., 2017; Jeong et al., 2018), ne semblent pas pertinentes
pour étudier la cinématique du centre de masse chez les personnes amputées de membre inférieur.
Une seconde catégorie de méthodes consiste alors a estimer la trajectoire (ou vitesse ou accélération)
du centre de masse du corps a I'aide d’'une moyenne pondérée de la trajectoire (ou vitesse ou
accélération) des centres de masse des segments du corps, comme ce qui est fait a I'aide de systémes
optoélectroniques et d’'un modele inertiel par analyse segmentaire. Dans le cas de cette méthode
multi-segmentaire, deux approches sont proposées dans la littérature : soit les accélérations des
centres de masse des segments sont directement estimées a l'aide des centrales inertielles
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positionnées sur lesdits segments (Lintmeijer et al., 2018; Shahabpoor et al., 2018), soit les positions
des centres de masse des segments sont estimées de maniere récursive en utilisant une chaine
cinématique et I'estimation de I'orientation de chaque segment donnée par la centrale inertielle
positionnée sur celui-ci (Fasel, Sporri, et al., 2017; Karatsidis et al., 2017). Une phase d’intégration ou
de dérivation peut étre alors nécessaire selon que I'on recherche la trajectoire ou I'accélération du
centre de masse. Ces deux approches impliquent d’utiliser de nombreux capteurs (11 a 17 capteurs
d’apres les méthodes retrouvées dans la littérature - Karatsidis et al. 2017; Pavei et al. 2017; Fasel et
al. 2017), limitant 'utilisabilité de la méthode en clinique.

Plusieurs auteurs ont envisagé de diminuer le nombre de capteurs nécessaires (Zijlstra et al., 2010;
Fasel, Sporri, et al., 2017; Shahabpoor et al., 2018).

Dans le cas de la chalne cinématique, des capteurs doivent toutefois étre positionnés sur tous les
segments de la chaine, limitant ainsi la réduction possible du nombre de capteurs (7 au lieu de 11, en
enlevant les capteurs positionnés sur les bras dans (Fasel, Sporri, et al., 2017) par exemple). Par
ailleurs, cette approche implique de connaitre précisément |'orientation relative entre les repéres
locaux des centrales inertielles et les repéres anatomiques des segments (Kianifar et al., 2019), ce qui
peut étre chronophage et nécessiter des instruments additionnels (Picerno et al., 2008; Cutti et al.,
2010; Pacher et al., 2020).

En ce qui concerne I'approche qui repose sur la moyenne pondérée des accélérations des centres
de masse de segments, une méthode intéressante a été proposée pour déterminer les localisations
optimales de capteurs pour I'estimation de I'accélération du centre de masse au cours de la marche
chez des sujets sains, et pourrait étre adaptée aux personnes amputées (Shahabpoor et al., 2018). Les
auteurs ont montré que l'accélération du centre de masse pouvait étre estimée a l'aide des
accélérations des centres de masse des segments du tronc, du bassin et de la cuisse chez les sujets
sains (erreur quadratique moyenne - RMSE < 18 % dans les trois directions - Shahabpoor et al. 2018).

On peut également noter I'existence d’'une méthode reposant sur le principe de la chaine
cinématique, mais faisant I’'hypothése que le centre de masse est fixe dans le repére anatomique du
bassin (Yuan and I. Chen, 2014). Cette méthode permet de réduire les erreurs induites par I'intégration
directe de I'accélération d’une centrale positionnée au bassin, mais repose sur la méme hypothése
d’'immobilité du centre de masse du corps par rapport au bassin que la méthode sacrale et est ainsi
tout autant susceptible de surestimer les excursions du centre de masse.

Cette analyse de la littérature nous a alors conduit a nous diriger vers une approche multi-
segmentaire, ne reposant pas sur le principe de la chaine cinématique. Dans un premier temps, suivant
la méthodologie proposée par (Shahabpoor et al., 2018), une analyse des contributions segmentaires
dans I'accélération du centre de masse du corps a été menée a I'aide d’un systéme optoélectronique
afin d’identifier les localisations optimales de centrales inertielles pour I'estimation de I'accélération
du centre de masse du corps chez les personnes amputées transfémorales se déplagant sur sol plan.
Ceci a permis d’identifier différents modeles optimaux permettant d’estimer I'accélération du centre
de masse du corps a I'aide d’'un nombre restreint de centrales inertielles (section 2.1). Dans un second
temps, cette approche a été transférée et validée en embarqué sur les données de marche d’une
personne amputée transfémorale. Un protocole original permettant d’obtenir les accélérations des
centres de masse segmentaires puis du corps a partir d’'un nombre minimal de centrales inertielles a
ainsi été proposé (section 2.2). Pour finir, la précision des accélérations des centres de masse des
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segments étant dépendante de la précision avec laquelle la position relative des centrales inertielles
et des centres de masse des segments est obtenue, I'influence des erreurs dans la localisation des
centrales inertielles sur I'estimation des accélérations des centres de masse des segments et du corps
a été explorée a I'aide d’une analyse de sensibilité (section 2.3).

2.1.ldentification des contributions des segments et estimation de I'accélération du centre
de masse du corps a partir d’un nombre restreint de segments

L'objectif de cette premiere étude était d'une part, d’identifier les segments contribuant le plus a
I"accélération du centre de masse du corps chez les personnes amputées transfémorales, et d’autre
part, d’évaluer différents modeles d’estimation de I'accélération du centre de masse du corps a partir
des accélérations des centres de masse des segments préalablement identifiés (« accélérations
segmentaires »).

Dix personnes amputées au niveau transfémoral (dge : 41,5 + 11,3 ans ; masse : 68,8 + 15,2 kg ;
taille : 1,73 £ 0,07 m ; 8 hommes et 2 femmes) ont participé a cette étude. Chaque participant a été
équipé de marqueurs optoélectroniques sur le corps complet selon (Al Abiad et al., 2020). Lors d’une
phase statique en position debout, les positions des marqueurs ont été enregistrées avec un systéme
optoélectronique (VICON, Oxford, UK, 200 Hz) simultanément a la prise de photos de face et profil. A
la suite de cette acquisition, les participants ont effectué plusieurs allers a vitesse confortable dans la
salle d’analyse du mouvement selon une ligne rectiligne de 8 m au milieu de laquelle se trouvaient
trois plateformes de force (AMTI, 1000 Hz). Dans le cadre de cette étude, seuls les essais pour lesquels
trois appuis consécutifs sur les plateformes de force étaient détectés ont été conservés afin d’isoler un
cycle complet sur les plateformes. Les parameétres inertiels segmentaires (masse des segments et
positions des centres de masse dans les repéres anatomiques segmentaires) ont été définis a l'aide
d’un modele inertiel comprenant 15 segments, personnalisé selon (Pillet et al., 2010) a partir des
photographies de face et profil des participants. Les accélérations des centres de masse des segments
(SCoM) et du centre de masse du corps (BCoM) ont alors été obtenues.

Les contributions des segments dans |'accélération du centre de masse du corps ont été calculées
selon deux criteres, définis dans (Shahabpoor et al., 2018):

e Le « poids » des accélérations segmentaires dans I'accélération du centre de masse du
Mseg;

——* @Agcom; AVEC Myey, la masse du segment, my,q,, la masse
Mpody t t

du corps et agcop,l'accélération du centre de masse du segment obtenue par double

corps, (Contribgeq, =

dérivation)
e Lasimilarité des accélérations segmentaires a celle du centre de masse du corps exprimée
a l'aide du coefficient de corrélation de Pearson selon les directions antéropostérieure
(AP), médio-latérale (ML) et verticale (V).
Les contributions moyennes de chaque segment ont été obtenues en prenant la moyenne sur
I’ensemble des participants.

Une fois les contributeurs les plus importants identifiés, deux types de réseaux de segments
optimaux (OSN) ont été proposés pour estimer I"accélération du centre de masse du corps a partir d’'un
nombre restreint de segments (< 6) :
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OSN d 1: = YN Contrib_ = YN oo
etypel:  apcomosn, = li=1Contrib_, = Ji=15x Ascom;
gi Z]‘:1msegj
m .+21-E_Nr--m .
. _ N . _ N segi j=1 Jtrseg
OSN de type 2: aBCoM,OSNZ = i=1 & Contrlbsegi = i=1 as(;oMi

Mpody
Le deuxiéme type de réseau de segments correspond au modeéle proposé dans (Shahabpoor et al.,
2018). Il requiert le calcul de la matrice de corrélation croisée entre chaque paire d’accélérations
segmentaires. La masse de chacun des segments j non inclus est alors redistribuée au segment k inclus
qui présente le coefficient de corrélation le plus élevé (r;;—, = 1let7;;», = 0 dans I'équation ci-
dessus).

Les accélérations du BCoM obtenues a 'aide des deux types d’OSN ont ensuite été comparées a
I'accélération de référence du BCOM (@pcom,ref), Calculée a partir des efforts mesurés par les
plateformes de force. La précision des accélérations estimées a été évaluée a I'aide du coefficient de
corrélation de Pearson et des erreurs moyennes quadratiques (NRMSE, exprimée en % de I'amplitude
de I'accélération de référence). Les modeles incluant uniquement le segment du tronc ou du bassin
ont également été investigués (par exemple, @gcom = Ascom bassin)-

Les « poids » moyens des contributions segmentaires sont représentés sur la Figure 53. Celle-ci
permet de mettre en avant que les segments contribuant le plus dans I'accélération du centre de
masse du corps en termes de « poids » sont le tronc, le bassin, les cuisses ainsi que la téte. Les bras
contribuent pour moins de 10 % dans l'accélération du centre de masse du corps et ont des
contributions opposées selon I'axe antéropostérieur. Les autres segments jambiers (tibia, pied) sont
également des contributeurs importants.

Les similarités des accélérations segmentaires avec I'accélération du centre de masse du corps,
guantifiées a travers les corrélations de Pearson (non représentées dans ce résumé), permettent de
mettre en évidence des corrélations significatives et importantes entre le centre de masse du corps et
le tronc, le bassin, les cuisses et les tibias. Les accélérations des tibias sont également fortement et
significativement corrélées avec celles des pieds. L'accélération de la téte n’est pas systématiquement
significativement corrélée a celle du centre de masse du corps, ce qui peut étre d{i a des mouvements
volontairement décorrélés de la téte par rapport au reste du corps.

Finalement, le tronc, le bassin, ainsi que les segments des membres inférieurs apparaissent comme
des contributeurs majeurs de I'accélération du centre de masse du corps.
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Figure 53: Contributions segmentaires a I'accélération du centre de masse du corps (BCoM) comparées a la contribution totale issue du
modele inertiel (ligne noire) et/ou a I'accélération de référence issue des plateformes de force (GRF — ligne pointillée) dans les directions
antéropostérieure (a.et d.), médio-latérale (b. et e.) et verticale (c. et f.).

(a.-c.) Contributions segmentaires axiales normalisées par I'amplitude des contributions totales (accélération du modele inertiel);

(d.-f.) Contributions segmentaires exprimées en pourcentage de la contribution totale
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Plusieurs OSN ont ainsi été construits incluant 3 a 6 segments parmi le tronc, bassin, les cuisses

ainsi que les tibias ou les pieds (Figure 54).
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Figure 54: Moyenne et écart-type de 'accélération du
centre de masse du corps (BCoM) au cours d’un cycle
prothétique (prosthetic gait cycle) estimée avec la
méthode sacrale (bassin, courbe bleue en pointillés),
I’OSN de type 1 incluant le tronc et les tibias (courbe
jaune discontinue), I'OSN de type 2 incluant le tronc,
le bassin, les cuisses et les tibias (courbe orange
continue) comparées a |'accélération de référence
issue des plateformes de force (courbe grise) le long
des axes antéropostérieur (AP), médio-latéral (ML) et
vertical (CC).

Les zones colorées autour des courbes représentent
les intervalles [moyenne — 1 écart-type ; moyenne + 1
écart-type]

La comparaison de I'accélération de référence aux accélérations issues des OSN, ainsi qu’a celles
issues des deux modeles n’incluant que le tronc ou que le bassin comme segment, ont permis de

mettre en évidence plusieurs éléments :

e Une approche multi-segmentaire permet d’estimer avec une plus grande précision

|"accélération du BCoM
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e L’inclusion du segment tronc, plus grand contributeur a I'accélération du corps, est a
privilégier plutét que celle du segment bassin pour les modeles OSN

e Un modele OSN de type 1 a trois segments, incluant le tronc et les deux tibias, permet
d’estimer I'accélération du BCoM avec plus grande précision (NRMSE < 16.3%, coefficient
de Pearson r > 0,82) que le modeéle a 3 segments proposé dans (Shahabpoor et al., 2018)
pour les sujets sains

o Les modeéles OSN incluant 5 segments (tronc, cuisse et tibias ou pieds) permettent
d’estimer I'accélération du centre de masse du corps avec précision (NRMSE < 14%,
coefficient de Pearson r > 0,89)

e Les OSN de type 2, plus complexes car requérant notamment le calcul des matrices de
corrélation croisées entre les différentes accélérations segmentaires, n’améliorent
généralement pas I'estimation de I'accélération du BCoM par rapport aux OSN de type 1.
Ces derniers sont donc a privilégier.

Il est a noter que la comparaison de I'accélération de référence du BCoM a celle issue du modéle
inertiel a partir duquel les modéles OSN ont été construits fournit des erreurs de I'ordre de 11 % dans
les trois plans, ce qui peut expliquer pourquoi les modéles OSN fournissent des erreurs minimales de
I’ordre de 10,5 %.

Les modeles OSN proposés dans cette étude ont été construits et validés a partir de données
obtenues a I'aide de marqueurs optoélectroniques. La validité de l'utilisation de centrales inertielles
pour estimer I'accélération du centre de masse du corps reste donc a démontrer.

2.2.Développement d’un protocole embarqué pour I'estimation de I'accélération et de la

vitesse instantanée du centre de masse des personnes amputées transfémorales

L’'objectif de cette seconde étude était ainsi de vérifier que la méthodologie et les OSN de type 1
identifiés lors de I'étude précédente peuvent étre utilisés avec des centrales inertielles pour
I’estimation de I'accélération du centre de masse du corps agCOM,OSNl dans un repere global R selon
I’équation (1) ci-dessous :

Mseg;

G _ ¢N
ApcoM,0SN, = Yi=1 SV Meeq
j= Ji

G
ascom; (1)

oU Mgy, €t agCOMi désignent respectivement la masse et I'accélération du centre de masse du i“"*¢

segment inclut dans le modele OSN.

Plusieurs difficultés sont rencontrées lorsque I'on utilise des centrales inertielles. Tout d’abord,
chaque centrale inertielle fournit une mesure de I'accélération a I'origine du repére local de la centrale,
qui doit étre transférée au centre de masse du segment (SCoM). Pour appliquer la loi de distribution
des accélérations dans un solide rigide indéformable, il est alors nécessaire de connaitre la position
relative entre le SCoM et la centrale inertielle :
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MIMU; _ _MIMU; MIMU; MIMU; . _MIMU; Mimu, MIMU;
Ascom; = Bormu; T Loy, N Lomu, Normu,-scom; )+ (Lormu,”) N Totmu,—scom, ()

Dans I’équation (2), toutes les quantités sont exprimées dans le repére local de la centrale inertielle

Rumimu; et:

MIMU

i 1 14 . .ome
sCoM; est I'accélération du i SCoM

(a

MIMU

Ao imu;

" est I'accélération mesurée par la i centrale, attachée rigidement au i segment

MIMU; . . . -eme
3 Roimy, st la vitesse angulaire mesurée par la i™“centrale

MiMU; T . e . MIMU;
(.(lolMUi ) est I'accélération angulaire obtenue par différentation de 2,57y,

MIMU; . . o e .
T oIMU,—sCoM; est le vecteur de translation reliant l'origine de la i*"*“centrale au SCoM sous-jacent

Dans la littérature, certains auteurs ont proposé de positionner les centrales inertielles au niveau
des SCoM (Lintmeijer et al., 2018; Shahabpoor et al., 2018) et d’utiliser directement la mesure de
I'accélération de la centrale comme une estimation de celle du SCoM correspondant, afin de
s’affranchir de la détermination de la position relative entre une centrale inertielle et le SCoM sous-
jacent. Ceci peut conduire a une erreur d’estimation importante de I'accélération selon les segments
considérés et les mouvements effectués. En effet, cela revient a considérer la distance relative entre
la centrale inertielle et le SCoM comme étant nulle lorsque I'on applique la formule de distribution des
accélérations (équation 2) et donc a négliger la vitesse angulaire du segment. Cependant, déterminer
précisément la position relative entre une centrale et le SCoM du segment sur lequel elle est
rigidement attachée n’est pas immédiat car les données issues des centrales inertielles ne permettent
pas de remonter a leur position absolue. Plusieurs auteurs ont donc proposé d’utiliser des
photographies calibrées ou un systeme optoélectronique afin d’estimer la position absolue de
centrales inertielles dans un repére global lors d’une calibration statique (Dejnabadi et al., 2006; Teufl
et al., 2018; Guaitolini et al., 2019). Ces méthodes pourraient étre adaptées pour obtenir a la fois la
position absolue de la centrale et du SCoM sous-jacent.

Une fois les accélérations des SCoM estimées dans les repéres locaux des centrales Ryyy, a I'aide
de I'’équation (2), il est nécessaire de les exprimer dans un repére global commun R avant de pouvoir
utiliser I’équation (1) pour estimer I'accélération du BCoM :

G _ MIMU;
aSCoMi - PG—MIMUi aSCoMl- (3)

(avec Pg_pimu,, I'orientation relative entre le repére R et le repére Ry uy;)

Or, si les capteurs contenus dans une centrale inertielle peuvent étre, en théorie, fusionnés pour
estimer 'orientation de la centrale dans un repere global comprenant un axe aligné avec la verticale
et un axe aligné avec le nord magnétique, ces capteurs sont, en pratique, impactés différemment par
des distorsions locales dans le champ magnétique mesuré par la centrale. Il en résulte que les repéres
de référence R;r percus par différentes centrales peuvent étre incohérents (Picerno et al. 2011; Lebel
et al. 2018; Guaitolini et al. 2019 - Figure 5). Il est donc nécessaire de définir un repere global commun
dans lequel exprimer les accélérations des SCoM.
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Figure 55 : Incohérence entre les repéres de référence percus par deux centrales inertielles — Exemple pour des centrales
positionnées au niveau du tronc et de la cuisse

Rymu,, e repére local de la centrale i, Pymy,—gr, 1a matrice de transformation entre le repere local et le repére de
référence Rgp, percu par la centrale (i = tronc, cuisse)

Enfin, une fois I'accélération du BCoM obtenue dans un repere global, il semble pertinent de
chercher a exprimer la vitesse instantanée du BCoM. Celle-ci peut étre décomposée en une
composante cyclique et une composante moyenne. La vitesse de marche moyenne est en effet utilisée
en clinique pour décrire le statut fonctionnel global d’'un patient (Batten et al., 2019), et la vitesse
instantanée (composant cyclique et moyenne) peut étre utilisée pour obtenir des informations sur le
co(t énergétique (Donelan et al., 2002b; Detrembleur et al., 2005) ou sur I'équilibre dynamique (Hof
et al., 2005, 2007) de la marche. L'intégration directe de |'accélération du BCoM obtenue a I'aide des
centrales inertielles peut dériver du fait de la présence de bruit dans les signaux des centrales. Pour
limiter cette dérive, la vitesse instantanée du BCoM peut étre obtenue en deux temps, en calculant
d’une part la composante moyenne sur un cycle de marche et d’autre part la composante cyclique. La
premiere peut étre estimée via le ratio de la distance parcourue par le tibia pendant un pas et la durée
du pas (obtenue par exemple en utilisant le modéle cinématique du tibia proposé dans (Duraffourg et
al., 2019)), tandis que la seconde peut étre estimée par intégration directe de I'accélération, suivie de
|"application d’un filtre passe-haut pour enlever la composante moyenne et le bruit du signal (Steins et
al., 2014).

L’objectif de cette étude était donc de proposer un protocole permettant d’estimer I'accélération
et la vitesse instantanée du BCoM a partir de centrales inertielles montées sur des segments, en
utilisant des réseaux optimaux de capteurs (OSN), via I'estimation de I'accélération des SCoM dans un
repére global commun et I'intégration de I'accélération du BCoM.

Une personne amputée transfémorale (83kg, 1,69m, homme) ayant participé a I'étude décrite
dans la section précédente a été équipée, en plus des marqueurs optoélectroniques, de 7 centrales
inertielles positionnées sur le tronc, les cuisses, les tibias et les pieds.
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Tout comme dans I'étude précédente, les photographies prises pendant la phase statique de
I"acquisition sont calibrées a I'aide du systéme optoélectronique et sont utilisées pour définir un
modele inertiel personnalisé selon (Pillet et al., 2010). Ceci permet d’obtenir les positions des SCoM
dans le repere global du systeme optoélectronique Ropcs. L'identification des positions des centrales
inertielles dans ce méme repeére est alors possible par DLT (Direct Linear Transform) en cliquant sur les
photographies calibrées. Ceci permet de calculer la position relative des centrales inertielles et des
SCoM dans le repére Ropycs- Il est alors nécessaire d’obtenir la matrice de passage entre le repére local
de chaque centrale inertielle Ry yy, et le repere Ropycs pour exprimer la position relative de la
centrale et du SCoM dans le repére local de la centrale.

Comme indiqué plus haut, il n’est pas possible d’utiliser directement les matrices d’orientation
fournies par les centrales inertielles, celles-ci étant susceptibles de fournir I'orientation des centrales
dans des reperes globaux différents. En revanche, des hypothéses sur I'alignement manuel des
centrales sur les segments et sur I'alignement des segments en position debout peuvent étre utilisées
pour estimer I'orientation relative Popycs—mimy; €ntre les centrales et le repere global du systeme
optoélectronique (Ligorio et al., 2020). On peut en effet supposer dans un premier temps que pendant
I"acquisition statique en position debout, deux des axes anatomiques des segments sont alignés avec
la verticale et la direction de progression. Si les centrales sont parfaitement alignées sur les segments,
on obtient donc une premiere estimation de l'orientation relative Poycs—mimu,; - En pratique,
I"alignement manuel des centrales peut comprendre des erreurs. Cette hypothése forte peut donc étre
corrigée en utilisant I'orientation de la centrale par rapport a la verticale (donnée par la centrale
inertielle et non perturbée par les distorsions magnétiques) pour obtenir une nouvelle estimation plus
correcte de Poycs—mimu,- La Figure 56 détaille les étapes d’obtention de cette matrice pour la

centrale située sur le tronc.
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Figure 56: Approximation de |'orientation du repére local d’une centrale inertielle Ry dans le repere du systeme optoélectronique (Ropcs)
pendant I'acquisition statique en posture debouta t = t, — Exemple pour la centrale du tronc.
- La matrice Pymu—cgr €st directement obtenue en sortie de la centrale a t = ¢t (1)
- Lamatrice Pymu—omcs €St inconnue a t = ty (2) mais peut étre estimée en utilisant (3a) + (3b) :
Une premiére approximation de la matrice de transformation du repere global Ropcs vers le repére local de la MIMU Py pyes—mimu
est obtenue en utilisant des hypotheses concernant I'alignement manuelle de la centrale positionnée sur le tronc dans Ropcs (32).
Ensuite, en utilisant la détection de la direction verticale par la centrale, robuste car indépendante du magnétometre (I'axe zgr du
repere de référence percu par la centrale est confondu avec I'axe vertical zoycs de Roucs), Une seconde approximation peut étre
calculée (4).
- Enfin, Pyymu—omcs €st obtenue at = ty en prenant I'inverse de Poycs—mmmu (5)
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La calibration statique permet d’obtenir pour chaque centrale inertielle :

e Son orientation dans le repéere de la photographie calibrée, ici le repere Ry cs, @ I'instant
to de la statique : Poycs—mimu; (to)

e L'orientation relative (constante) des repéres pergus par deux centrales inertielles
différentes PGFi_GFj. En effet, celle-ci s'obtient a I'aide de l'orientation directement

fournie par les centrales dans leur repére global (Pgp, —mimu, ) €t par leur matrice

d’orientation dans le repere Roycs (Pomcs—mimu,) OU leurs inverses :
- Pgrigr; = Pgr,—mimu; (to) X Pyimu;—omcs(to) X Pomcs-mimu; (o) X
Puimy;-6r;(to)

Pour les essais dynamiques, le repere de référence percu par la centrale du tronc Rgp,, ., tourné

pour avoir un axe orienté selon la direction de progression (Figure 57) est utilisé comme repeére global

commun a toutes les centrales R : Pgr, ¢ = R;(6)

repere global de référence comme suit : Pyyy,—¢(t) = Puimu,—cr,(t) X Pgr,

Direction de progression (DdP)

Ruimu,, one (o)

Primyone—GFerone (to)
nome; THEenE Figure 57: Rotation R,(8) du repére de

référence percu par la centrale du tronc

(RGF,,on.) POUr aligner 'un des axes du repere

de référence a la direction de progression. La
B rotation nécessaire est déterminée a I'aide de
I'orientation du repere local de la centrale
Ryimu,,,,.) dans son repere global. En effet, |a
centrale est positionnée sur le corps du
participant tel qu’un des axes pointe vers la
DoP direction de progression.

Ruimu,, o (to)

Tesssasnnnap

Rgr,, ... (o)

tronc

On obtient alors, a tout instant t, I'orientation d’'une centrale inertielle MIMU; dans ce nouveau
L
_GFtronc X PGFtronc_G

En somme:

e La calibration statique permet d’obtenir la position relative entre chaque centrale

inertielle et SCOM sous-jacent dans le repére Ry cs puis dans celui de la centrale Ry yy;, :

MIMU;
ToImu;-scom;

e On peut utiliser cette position relative, constante dans le repére de la centrale au cours
des acquisitions, pour déterminer I'accélération de chacun des SCoM dans le repére local

- S MIMU; ,
de la centrale qui lui est associée : Ascom; (équation 2)

e On peut finalement utiliser I'orientation donnée en sortie de la centrale inertielle
PM,MUi_GFi(t) et I'orientation relative entre le repeére de référence associé a la centrale et
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le repére global commun obtenu a partir de la centrale du tronc PgF,—¢ pour estimer
I’accélération du SCoM dans le repére global : afCoMi (équation 3)

e On peut utiliser les OSN pour estimer I'accélération du BCoM dans le repere global a partir

d’une moyenne pondérée des accélérations des SCoM : a4 (équation 1)
e Enfin, on peut estimer pour chaque cycle de marche la vitesse instantanée du BCoM en

décomposant la vitesse en une composante moyenne et une composante cyclique.

Le protocole décrit ci-avant a été mis en place pour tester et valider I'utilisation de différents
réseaux de capteurs tels qu’indiqués dans le Tableau 1 pour I'estimation de I’accélération et la vitesse
instantanée du centre de masse du corps. La précision de I’estimation de I'accélération et de la vitesse
a I'aide d’une centrale unique au niveau du tronc a également été étudiée.

Tableau 1: Liste des réseaux de capteurs testés

Nombre de .
Segments inclus
segments
5 Tronc, cuisses, tibias
5 Trong, cuisses, pieds
3 Tronc, tibias
1 Tronc

Les accélérations des SCoM et du BCoM ainsi que la vitesse instantanée du BCoM obtenues a I'aide
des centrales inertielles ont été comparées aux accélérations et vitesse de référence obtenues a I'aide
des plateformes de force (accélération du BCoM) ou du modeéle inertiel du corps complet (accélération
des SCoM et vitesse du BCoM). La précision des estimations a été évaluée a I'aide des coefficients de
corrélation de Pearson (r), des erreurs quadratiques moyennes (RMSE), des RMSE normalisées par
I"amplitude de la valeur de référence (NRMSE) et, pour la vitesse moyenne, de la RMSE exprimée en
pourcentage de la vitesse moyenne de référence.

Les résultats obtenus dans cette étude sont encourageants et suggérent que les centrales
inertielles sont une alternative valide aux instruments des laboratoires d’analyse du mouvement pour
I’obtention de I'accélération et de la vitesse instantanée du centre de masse chez les personnes
amputées au niveau transfémoral. L’utilisation de cing centrales inertielles situées au niveau du tronc,
des deux cuisses et des deux tibias permet d’estimer avec précision I'accélération et la vitesse du
centre de masse obtenues avec les plateformes de force et le systéme optoélectronique (coefficients
de Pearson r>0.89 et r > 0.94 respectivement, NRMSE = 11,6 £+2,1%; 14,0+ 2,1%; 7,7 £ 0,4 % pour
I'accélération et 16,7 £ 5,1 %; 13,2 + 3,0 %; 6,0 + 0,8 % pour la vitesse dans les directions
antéropostérieure, médio-latérale et verticale respectivement — voir Figure 58). La vitesse moyenne
de marche est notamment estimée avec une précision de 0,05 m/s (RMSE) correspondant a 4,1 % de
la vitesse nominale. Seules deux études dans la littérature ont permis une estimation de la vitesse de
marche avec une précision similaire ou accrue, chez des sujets sains (Mariani et al., 2010; Yang and Li,
2012a). Dans le futur, plus de sujets devront étre recrutés afin de confirmer les résultats obtenus avec
ce protocole et ce réseau de capteurs chez les personnes amputées transfémorales. Par ailleurs, le
protocole devra étre adapté afin de permettre une acquisition en embarqué, sans nécessiter un
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systeme optoélectronique. Pour cela, un systeme de calibration simplifié ou I'utilisation d’'un scanner
3D est envisagé. Ces méthodes reposeront toujours sur I'estimation a posteriori de la position relative
des centrales et des centres de masse de segments. C’'est pourquoi I'impact des erreurs de localisation
des centrales inertielles sur I'estimation de I’accélération ou de la vitesse du centre de masse doit étre

étudiée.
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Figure 58: Accélération (a gauche) et vitesse instantanée (a droite) du centre de masse du corps obtenues a 'aide de cing centrales

W
% gait cycle % gait cycle

inertielles situées sur le tronc, les cuisses et les tibias (courbe orange discontinue) comparé a la référence (courbe grise)

2.3.Analyse de sensibilité de I'accélération du centre de masse du corps aux erreurs de

localisation des centrales inertielles

L’'objectif de cette étude était d’étudier I'impact de I'erreur d’estimation de la localisation des
centrales inertielles sur I'accélération du centre de masse obtenue a 'aide du protocole précédent et
de cing centrales inertielles situées sur le tronc, les cuisses et les tibias.

Une analyse de sensibilité a été menée pour répondre a cette problématique, en utilisant les
données de I'étude précédente. Dans un premier temps, 'amplitude maximale d’erreur possible sur la
localisation des centrales inertielles a été estimée. Les centrales étaient insérées dans des supports
rigides imprimés en 3D contenant quatre marqueurs optoélectroniques et permettant ainsi d’obtenir
I'orientation et la position des centrales dans le repére du systeme optoélectronique. Pour estimer
I"amplitude d’erreurs de localisation possible avec le protocole décrit dans la section précédente, deux
opérateurs ont calibré les photographies de face, dos et profils du participant en posture statique et
ont cliqué sur les positions des origines des centrales inertielles a cing reprises chacun. Les positions
obtenues en cliquant sur les photos ont été comparées aux valeurs de référence fournies par le
systeme optoélectronique. Des erreurs allant jusque 2 cm ont ainsi été mises en évidence.

Les accélérations des centres de masse des segments (SCoM) et du centre de masse du corps

(BCoM ) ont ensuite été estimées en simulant une mauvaise localisation des centrales, c’est-a-dire, une
et MIMU; . . . . .
erreur dans l'estimation du vecteur roIMUi_sCOMi(cf équation 2 de la section précédente), pouvant

aller jusque 2 cm dans chacune des directions de I'espace (antéropostérieur, médio-latérale et
verticale, selon les axes du repere Rppcs). Afin de quantifier uniquement les erreurs liées a une

178



mauvaise localisation des centrales, les orientations des centrales inertielles étaient déterminées dans
le repére Ropycs @ I'aide des marqueurs positionnés sur les ancillaires les contenant, plutét qu’en
utilisant la méthode décrite dans I'étude précédente (Figure 59).

Figure 59 : Photo du profil droit du participant équipé de centrales inertielles et
de marqueurs. Les centrales sont insérées dans des ancillaires rigides imprimés
en 3D spécifiquement congus pour cette application et équipés de 4 marqueurs
optoélectroniques (HD, HG, BD, BG).

La matrice de passage entre le repere local de la centrale (origine oMU, axes
Xivu » Yimu) €t le repere de I'ancillaire (Xgne, Yanc) €St connue par conception
et permet d’obtenir l'orientation de I'IMU dans le repére du systeme
optoélectronique.

En utilisant la théorie des plans d’expériences (Goupy, 2016), tous les cas possibles d’erreurs de
positionnement, simultanées ou non, des cing centrales inertielles ont été simulés. L’erreur entre les
accélérations des SCoM et du BCoM simulées a I'aide des données des centrales inertielles et les
accélérations de références (modele inertiel pour le SCoM et plateformes de force pour le BCoM) a été
calculée. Par ailleurs, pour chacun des composants des accélérations, un modele polynomial
multilinéaire avec interactions a été proposé pour décrire la relation entre les erreurs de localisation
de chaque centrale selon les axes du repéere Rypcs et la précision de I'estimation (en termes de
NRMSE) de I'accélération obtenue a I'aide des centrales inertielles. L’étude des variances associées aux
différents termes du polyndme permet d’estimer le pourcentage de variance dans la précision de
I’estimation de I'accélération (NRMSE) expliqué par chacune des erreurs de localisation (Goupy, 2016).

Les erreurs de localisation des centrales inertielles engendrent des variations dans la précision de
I’estimation des accélérations des centres de masse des segments entre - 5.6 % et 6.9 % (tous segments
et axes confondus) et entre - 1.6 % et 1.7 % en ne considérant que le tronc et les cuisses. Les plus
grandes variations de l'erreur identifiées pour les tibias dans les directions antéropostérieure et
verticale peuvent s’expliquer par la plus grande vitesse angulaire du tibia dans le plan sagittal par
rapport aux autres segments. La précision des accélérations des SCoM des membres inférieurs est
principalement affectée par les erreurs de localisation des centrales selon les axes antéropostérieur et
vertical. Les erreurs de position selon la direction médio-latérale ont une influence prépondérante
uniquement sur la précision de I'accélération du tronc dans la direction antéropostérieure et dans une
moindre mesure, dans la direction verticale ainsi que sur la précision de I’accélération de la cuisse dans
la direction antéropostérieure (Figure 61). Ces différences entre les segments peuvent s’expliquer par
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Sensitivity of SCoM accelerations

les différents mouvements des segments lors de la marche (tronc vs segments des membres
inférieurs).

Concernant I’estimation de I'accélération du BCoM, I'analyse de sensibilité a permis de mettre en
évidence qu’une localisation précise des centrales inertielles du tronc, de la cuisse saine et du tibia sain
selon les directions antéropostérieure et verticale permet de réduire la variabilité de I'estimation de
I'accélération du centre de masse du corps (Figure 60 — exemple pour la composante
antéropostérieure du BCoM). En effet, des erreurs dans les localisations de ces centrales selon ces
directions expliquent 92 %, 77 % et 79 % de la variation de la précision de I'estimation de I'accélération
du BCoM dans les directions antéropostérieure, médio-latérale et verticale respectivement.
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Figure 61 : Sensibilité de la précision des accélérations des segments Figure 60: Sensibilité de la précision de la composante
(S = sain ; P = prothétique) selon les directions médio-latérales (ML), antéropostérieure de |'accélération du centre de masse du
antéro-postérieures (AP) et verticales (V) en fonction des erreurs de corps au positionnement  antéropostérieur  (pAP),
localisation pX des centrales et de leurs interactions pX*pY (X, Y = AP, médiolatéral (pML) ou vertical (pV) des segments (tibia sain :
ML, V) ShanksS, tronc : Trunk, cuisse saine : ThighS)

La variabilité de la précision de I'accélération du BCoM estimée a I'aide de la méthodologie
présentée ici peut étre maintenue a moins de 1 % en identifiant correctement les localisations
antéropostérieure et verticale des centrales du tronc ainsi que des tibia et cuisse du c6té sain. Le rble
prépondérant de ces centrales peut s’expliquer par la masse prépondérante du tronc et de la jambe
saine par rapport aux autres segments chez une personne amputé au niveau transfémoral ainsi que
par la plus grande vitesse des tibias dans le plan sagittal au cours de la marche.

La présente analyse de sensibilité ne s’est pas intéressée a I'impact des erreurs d’orientation des
centrales inertielles, contrairement a ce qui a pu étre fait dans (Tan et al., 2019). Dans I'analyse de
sensibilité implémentée ici, les accélérations des SCoM sont estimées dans un repére global avant
d’étre fusionnées pour estimer |'accélération du BCoM. Ainsi, en utilisant le protocole proposé dans
cette étude, un mauvais alignement manuel de la centrale avec les axes anatomiques des segments ne
devrait pas conduire a une erreur prépondérante dans I'estimation des accélérations. Au contraire,
dans I'étude de (Tan et al., 2019), I'accélération du BCoM est estimée a I'aide d’'une approche
d’apprentissage machine prenant en entrées les données brutes de centrales inertielles, ce qui peut
expliquer la forte influence des erreurs d’orientation des centrales sur la sortie du modele. Dans le
protocole implémenté ici, seules des erreurs d’orientation des centrales dans le repére de référence
commun aux centrales devraient avoir un impact, supposé négligeable. Cette hypothése devra étre
vérifiée dans de prochaines études.
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3. Deuxieme approche : faisabilité et pertinence clinique de la caractérisation de la qualité

de la marche (équilibre, symétrie) a I'aide de capteurs embarqués

Dans cette partie, |a faisabilité et la pertinence clinique de I'utilisation de centrales inertielles et/ou
de semelles de pression pour caractériser la symétrie et I'équilibre de la marche des personnes
amputées sont explorées.

Une premiere étude avait pour objectif de déterminer si les algorithmes de détection des
événements de la marche a partir de centrales inertielles peuvent étre utilisés pour estimer la symétrie
temporelle de la marche chez les personnes amputées de membre inférieur (section 3.1). La seconde
étude explore la faisabilité d’utiliser des indices de qualité de la marche issus du traitement des signaux
de capteurs embarqués pour suivre I'évolution de personnes amputées de membre inférieur au cours
de leur rééducation a I'aide de I'instrumentation du test de deux minutes (section 3.2).

3.1.Utilisation des centrales inertielles pour I'estimation de la symétrie de durée d’appui

chez les personnes amputées transfémorales

De trés nombreux algorithmes ont été proposés dans la littérature afin d’identifier les événements
du cycle de marche, notamment les instants de début et de fin de contact du pied au sol, a partir de
centrales inertielles. Le foisonnement de la littérature rend difficile la sélection d’un algorithme pour
une certaine population et une situation donnée. Ainsi, le but de cette étude était de comparer cinqg
algorithmes de détection des événements de la marche issus de la littérature afin d’évaluer la
faisabilité d’utiliser des centrales inertielles pour estimer des paraméetres temporels et 'lasymétrie de
durée de phase d’appui chez les personnes amputées transfémorales.

Trois des algorithmes, utilisant deux centrales inertielles au niveau de chaque tibia, ont été choisis
car ils ont été développés et validés sur les données de marche de personnes amputées de membre
inférieur (Selles et al., 2005; Maqgbool et al., 2017; Ledoux, 2018). Un algorithme utilisant une unique
centrale au niveau du tronc (McCamley et al., 2012), jamais testé chez les personnes amputées, a
également été sélectionné car une étude comparative dans la littérature I'avait identifié comme
I'algorithme utilisant une seule centrale le plus performant pour la détection d’événements de la
marche dans des populations pathologiques (Trojaniello et al., 2015). Enfin, un dernier algorithme
utilisant deux centrales au niveau des tibias a également été implémenté (Trojaniello, Cereatti, Pelosin,
et al., 2014). Ce dernier algorithme a été trés largement validé sur une population importante de sujets
pathologiques (236 patients parmi lesquels 125 Parkinsoniens et 31 hémi-parétiques — Bertoli et al.
2018). La performance des algorithmes a été appréciée au regard de la fréquence de détection des
événements, de la précision de I'estimation des parametres temporels et enfin de la précision de
I’estimation de I'asymétrie de durée de phase d’appui. Des semelles de pression, validées chez les
personnes amputées transfémorales (Loiret et al., 2019), ont été utilisées comme référence.

Sept personnes amputées au niveau transfémoral (dge : 47,3 £ 9,9 ans ; masse : 74,5 + 11,9 kg ;
taille: 1,80 + 0,10 m; 5 hommes) ont participé a cette étude et ont réalisé plusieurs passages de
marche sur sol plan horizontal a vitesse confortable, rapide et lente. Au total, 454 pas sains et 623 pas
prothétiques ont été considérés dans I'analyse.

Seuls deux des cing algorithmes présentaient une valeur positive prédictive de plus de 99 % (taux
de faux positifs < 1 %) pour la détection des instants de contact initial et final pour les pas prothétiques
et sains (Trojaniello, Cereatti, Pelosin, et al., 2014; Ledoux, 2018). Un faible taux de faux positif est
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primordial pour une utilisation de ces algorithmes sans méthode de référence, ainsi, seuls ces
algorithmes sont étudiés en détails. Ces deux algorithmes permettent la détection des instants de
contact du pied au sol avec une précision suffisante. Toutefois, la divergence des erreurs de détection
des événements de contact final pour le pied sain (Ledoux, 2018) ou le pied prothétique (Trojaniello,
Cereatti, Pelosin, et al., 2014) contribue a la surestimation systématique du temps d’appui prothétique
ou a la sous-estimation du temps d’appui sain, qui conduit finalement a la sous-estimation de
I"asymétrie de durée de phase d’appui avec chacun des deux algorithmes. De méme, une trop grande
variabilité dans la détection des événements nuit a la précision de I'estimation de la durée de double
d’appui, pourtant pertinente pour juger de I'équilibre dynamique des personnes amputées au niveau
transfémoral (Goujon et al., 2006; Kendell et al., 2010).

En conclusion, cette étude a démontré que, si les instants de contact initial identifiés a I’aide des
algorithmes de détection des événements de la marche peuvent étre utilisés pour segmenter la
marche des personnes amputées transfémorales de maniere robuste, des développements
complémentaires sont nécessaires pour les utiliser en clinique pour suivre I'asymétrie temporelle de
la marche.

3.2.Pertinence clinique du suivi des indices d’équilibre et de symétrie de la marche obtenus
a l'aide des capteurs embarqués chez les personnes amputées de membre inférieur

Ces dernieres années, de trées nombreuses études se sont intéressées a la caractérisation de la
symétrie de la marche et de I'équilibre dynamique a I'aide d’indices dérivés des signaux de centrales
inertielles portées sur le haut du corps (Mazza et al., 2008; losa et al., 2014; Summa et al., 2016;
Bergamini et al., 2017; Pasciuto et al., 2017; Belluscio et al., 2018) ou de semelles de pression (Nolan
et al., 2003; Cutti et al., 2018; Loiret et al., 2019), dans de diverses pathologies. Ces indices de qualité
de la marche comprennent :

- Les symétries de durée d’appui et de charge quantifiées a I'aide de semelles de pression et de

I’Absolute Symmetry Index ou ASI (Figure 62).

- ASI = % X 100, avec S et P les valeurs de la durée de la phase d’appui ou du

pic d’effort Fz1 pour les jambes saines et prothétiques respectivement (Nolan et al., 2003).

Vertical GRF

Fz1 right I ............

Threshold for gait
event detection

i i}
Right stance duration

, duration Time
Figure 62 : Durée de phase d’appui (stance duration) et pic d’effort de début d’appui (Fz1)
dérivé de la composante normale des efforts de réaction au sol (Vertical GRF) avec des
semelles de pression droite (Right — courbe bleue) et gauche (Left — courbe orange)
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- Le ratio harmonique, selon sa plus récente définition, le iHR, calculé a partir d’une analyse
fréquentielle des accélérations mesurées par une centrale au niveau du bassin selon les trois
directions de I'espace (Pasciuto et al., 2017).

iHR = 215j5n% .100 avec Pij et Pej la puissance associée, respectivement, aux
e i

harmoniques intrinséques (contribuant a la symétrie de la marche) ou extrinséques (traduisant

une déviation d’un schéma de marche symétrique) de I'accélération (Cappozzo, 1981)

- Les valeurs efficaces des accélérations ou RMS, calculées au niveau du bassin, du sternum et
de la téte selon les trois directions de I'espace. A vitesse égale, une plus grande valeur de RMS
traduit une instabilité du segment auquel elle est mesurée.

- Les coefficients d’atténuation entre le bassin et le sternum, le sternum et la téte et le bassin

et la téte, calculés a partir du ratio des RMS des accélérations entre deux niveaux successifs du
RMSay
RMSay'

- Un coefficient positif indique une atténuation des accé

haut du corps (Paradisi et al., 2019) : ACxy = 1 —

érations du niveau bas vers le
niveau haut alors qu’un coefficient négatif indique une amplification des accélérations. Cette
définition repose sur I'idée que, dans un schéma de marche physiologique, les accélérations
dues au mouvement des jambes sont transmises vers le haut du corps en étant atténuées pour
assurer un flux optique stable et une interprétation efficace des signaux du systéme
vestibulaire

Ces 23 indices ont été calculés dans diverses populations, y compris chez les personnes amputées
au niveau transtibial, a I'exception de I'iHR. Toutefois, les protocoles d’acquisition des données
different d’une étude a une autre, et aucune ne donne une vue d’ensemble de ces indices dans un
méme échantillon de personnes amputées. Par ailleurs, aucune étude n’a examiné la répétabilité des
indices de qualité de la marche, ce qui est essentiel pour caractériser la sensibilité des indices a
détecter une évolution réelle de la qualité de la marche.

Cette étude avait donc pour objectif de répondre a ces limitations en étudiant simultanément tous
les indices sus-cités chez neuf sujets sains et neuf sujets amputés au niveau transtibial au cours de
deux tests de deux minutes, instrumentés avec trois centrales inertielles au niveau du bassin, du
sternum et de la téte, et équipés d’une paire de semelles de pression. Par ailleurs, les valeurs de I'iHR
obtenues au cours des tests ont été comparées aux indices d’asymétrie obtenus avec les semelles (ASI)
a I'aide du coefficient de corrélation de Pearson dans le but de clarifier le sens de ce paramétre de
symétrie globale.

Les indices répétables d’un test a I'autre ont d’abord été identifiés puis ont été utilisés pour
caractériser les populations de sujets sains et d’amputés transtibiaux. Ensuite, la différence minimale
détectable par chacun des indices a été estimée a I'aide du coefficient de répétabilité proposé par
(Bland and Altman, 1986).

Sur les 23 indices étudiés, 21 indices ne présentent pas de différences significatives entre le
premier et le second test de deux minutes pour les deux populations. De méme, la distance parcourue
est similaire entre les deux tests. Les deux indices présentant des différences significatives ont donc
été écartés de I'analyse car ne semblent pas pouvoir caractériser de maniére fiable une population a
I'aide d’un test de deux minutes. Pour les autres indices, des valeurs cohérentes avec la littérature ont
été retrouvées. Les 21 indices restants ainsi que la distance parcourue pendant le test de deux minutes
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ont alors été utilisés pour caractériser les populations saine et amputée. Seuls onze des parameétres (y
compris la distance parcourue) permettent de distinguer les personnes amputées transtibiales des
sujets sains et démontrent un moins bon équilibre dynamique et une asymétrie accrue des personnes
amputées par rapport aux sujets sains (Tableau 2).

Tableau 2 : Médiane et écart interquartile (IQR) des valeurs des indices de qualité de la marche quantifiés lors du premier test
de deux minutes pour les sujets sains et amputés. Les différences significatives entre les deux populations (valeur p < 0,05)
sont identifiées par la présence d’un astérisque dans la colonne Sig. (significativité)

Anteropostérieur Médio-latéral Vertical
Médiane (IQR) Médiane (IQR) Médiane (IQR)

Sujets sains :'r:r:);:its;ux Sig. Sujets sains tA:r:)sl':it:isaux Sig. Sujets sains :\:r:os:itlfisaux Sig.
iHR (%) 96,9 (2,1) 85,9 (6,5) * 85,2 (11,1) |71,4(8,4) * 97,6 (1,5) 89,1 (6,6) *
RMSa pelvis (s) 2,05 (0,93) 1,78 (0,88) 1,77 (1,19) |1,60(0,70) |* 3,13(0,76) |2,47(1,41)
RMSa sternum (s) |/ / 1,09 (0,51) |1,27(0,39) |* 3,37(1,29) |2,56(1,24)
RMSa téte (s1) 1,17 (0,58) |1,69(0,75) |* 1,00 (0,27) |1,53(0,30) |* 3,35(1,07) |2,55(1,20)
AC pelvis/sternum | 0,35(0,29) |0,19(0,29) 0,31 (0,45) |0,27(0,25) / /
AC pelvis/téte 0,50 (0,38) |-0,03 (0,69) |* 0,20 (0,47) | 0,05 (0,20) -0,01 (0,12) |-0,01 (0,15)
AC sternum/téte 0,26 (0,52) |-0,39(0,91) |* 0,03 (0,15) |-0,20(0,23) | * 0,01 (0,09) |0,00(0,12)

Sujets sains :'r::sl:itlfiilux Sig.
ASI temporelle (%) |-1,4(3,58) 8,8(9,3)
ASI charge (%) 0,6 (12,2) 5,6 (21,3)
Distance test (m) 192 (16) 140 (35) *

Il est intéressant de noter que I'iHR est le seul des trois paramétres de symétrie qui présente une
différence significative entre les deux populations. Des études plus poussées sur l'interprétation de
I'iHR sont nécessaires : en effet, cet indice de symétrie ne présente aucune corrélation avec les ASI
caractérisant la symétrie temporelle et de charge ni chez les sujets sains ni chez les personnes
amputées au niveau transtibial. Si dix des parameétres ne permettent pas de différencier les sujets sains
des sujets amputés, ils ne sont pour autant pas nécessairement a écarter lors du suivi des patients en
cours de rééducation. Il est en effet tout a fait possible qu’une différence existe en début de
rééducation et qu’elle soit comblée au cours de la rééducation fonctionnelle des personnes amputées.
Seule une étude permettant d’obtenir les valeurs caractérisant les personnes amputées en cours de
rééducation peut permettre de conclure sur I'intérét des indices pour le suivi en cours de rééducation.
En effet, la comparaison des valeurs des indices au cours de la rééducation et a la fin de celle-ci avec
la différence minimale détectable permettrait de juger si les indices sont sensibles aux évolutions de
la marche et donc pertinents pour suivre les progrés des patients au cours de leur rééducation. Il est
toutefois intéressant de noter qu’au regard des valeurs élevées des différences minimales détectables
des coefficients d’atténuation trouvées dans cette étude, il est probable que ceux-ci ne permettent
pas de détecter une évolution des patients au cours de la rééducation.

Cette étude a contribué a améliorer la compréhension des indices de qualité de la marche. La
faisabilité de la caractérisation de ces indices en clinique lors du test de deux minutes, validé chez les
personnes amputées, a par ailleurs été démontrée. Afin de conclure sur la pertinence du suivi de ces
indices, il est nécessaire d’obtenir des valeurs de référence en cours de rééducation. Ceci permettra
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de mettre en évidence si les indices sont suffisamment sensibles pour détecter une évolution de la
qualité de la marche au cours de la rééducation, et ainsi de conclure sur leur pertinence clinique.

4. Conclusion générale

L’objectif de cette these était de contribuer au développement d’outils et protocoles embarqués
permettant I’évaluation quantitative des personnes amputées de membre inférieur pendant leur
rééducation.

La premiere partie de la these a permis d’identifier les parametres biomécaniques et cliniques
pertinents, potentiellement quantifiables a 'aide de centrales inertielles ou de semelles de pression.
Deux approches complémentaires ont alors été implémentées pour développer des algorithmes
originaux ou valider, chez les personnes amputées de membre inférieur, des outils existants
permettant de quantifier la cinématique du centre de masse, la symétrie de la marche et I'équilibre
dynamique.

La premiére approche, fondée sur la modélisation biomécanique du corps, a été implémentée dans
la seconde partie de la thése (section 2 du résumé). Un algorithme original permettant d’estimer avec
précision I'accélération et la vitesse instantanée du centre de masse a I'aide de cing centrales
inertielles a pu ainsi étre proposé et validé chez une personne amputée transfémorale. La robustesse
du protocole aux erreurs de localisation des centrales inertielles pour I’estimation de I'accélération du
centre de masse du corps a été étudiée a travers une étude de sensibilité. Cette analyse pourrait étre
complétée par une étude de I'impact des erreurs d’orientation héritées des hypotheses d’alignement
des centrales pour la définition d’un repere global commun. Le travail effectué dans ce cadre n’est pas
exempt de limites. L’analyse de sensibilité et le protocole ont été développé et validé sur les données
d’une unique personne amputée. Davantage de patients devraient étre recrutés afin de confirmer la
validité et la pertinence du protocole proposé. Par ailleurs, en |'état, le protocole repose sur I’ utilisation
d’un systeme optoélectronique pour la calibration des photographies nécessaires a I'obtention du
modele inertiel personnalisé et la position absolue des centrales inertielles. Des développements et
un travail de validation sont donc nécessaires pour se passer de |'utilisation du systéme opto-
électronique, par exemple, en utilisant des scanners 3D. Enfin, le protocole pourrait étre adapté pour
permettre d’acquérir d’autres parameétres biomécaniques pertinents tels que le déplacement du
centre de masse et les efforts de réaction au sol sous chaque pied.

La seconde approche, fondée sur |’exploitation des signaux des capteurs embarqués pour identifier
des indices caractérisant le mouvement, a été implémentée dans la troisieme partie de la these
(section 3 du résumé) dans le but d’examiner la pertinence d’algorithmes ou d’indices de qualité de la
marche déja proposés dans la littérature pour le suivi de la rééducation des personnes amputées de
membre inférieur. Une premiere étude avait pour objectif d’évaluer la faisabilité de I'utilisation des
centrales inertielles pour caractériser I'asymétrie temporelle de la marche. Si deux des cing
algorithmes de détection des événements de la marche permettent d’identifier avec suffisamment de
précision les instants d’occurrence des événements de contact initial et final, une tendance a sous-
estimer I'asymétrie de durée de phase d’appui a été mise en évidence, proscrivant I'usage des
algorithmes dans ce but. Dans une deuxieme étude, l'instrumentation du test de deux minutes avec
des centrales inertielles sur le haut du corps et des semelles de pression a été proposée. Cette étude
a permis de démontrer la faisabilité de caractériser, en milieu clinique, la qualité de la marche des
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personnes amputées transtibiales en termes d’équilibre dynamique et de symétrie a I'aide d’indices
issus des capteurs embarqués. La pertinence des indices a été explorée a I'aide d’une étude de
répétabilité intra-session, dont les résultats devront étre confirmés sur une étude de répétabilité inter-
session avec une cohorte de personnes amputées plus importante. Par ailleurs, il est nécessaire de
comparer les valeurs de référence obtenues au cours de I'étude aux valeurs prises par les indices au
cours de la rééducation afin de vérifier la sensibilité au changement des indices et de conclure sur leur
utilité pour le suivi clinique de patients pendant la rééducation.

Les deux approches implémentées dans cette these ont donc contribué, chacune a leur échelle, au
transfert vers la clinique des capteurs embarqués. La premiére a, en effet, exploré de nouvelles pistes
d’utilisation des capteurs embarqués chez les personnes amputées de membre inférieur tandis que la
seconde a approfondi les connaissances et le degré de validation d’indices de qualité de la marche chez
les personnes amputées. Des travaux complémentaires de validation sont toutefois nécessaires avant
de pouvoir implémenter les protocoles proposés en clinique. Il est intéressant de noter que les
algorithmes et protocoles proposés dans cette thése pourraient également servir a évaluer la marche
d’autres populations que celle des personnes amputées de membre inférieur, mais de légeres
adaptations des algorithmes pourraient étre nécessaires (par exemple, concernant le choix des
segments a instrumenter pour la cinématique du centre de masse) et la validation des indicateurs ou
algorithmes devra étre vérifiée au préalable dans la population visée.
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FRANCO 1. T A LO
1TALIENNE FRANCESE

Contribution to the development and validation of
wearable-sensor-based methodologies for gait assessment
and rehabilitation of people with lower limb amputation

Résumé

Un des objectifs majeurs de la rééducation des personnes amputées de membre inférieur appareillées est le retour
a une marche physiologique, efficace énergétiquement et minimisant le risque de chutes li¢ a la perte d’équilibre.
Peu d’outils cliniques permettent aujourd’hui de quantifier ces aspects de la locomotion. L’émergence de
capteurs embarqués miniaturisés offre des opportunités pour la description quantitative et écologique de la
marche. Dans ce contexte, I’objectif de la thése était de contribuer au développement de protocoles embarqués
pour apporter des données quantitatives pertinentes lors de la rééducation a la marche des personnes amputées
de membre inférieur. Deux approches complémentaires ont été adoptées. La premiére approche consiste a utiliser
un modele biomécanique du corps afin d’extraire des descripteurs quantifiés pertinents. Un protocole permettant
d’estimer 1’accélération et la vitesse instantanée du centre de masse a partir de 5 centrales inertielles a ainsi été
propos¢ a partir d’une analyse préliminaire sur les données de marche de dix personnes amputées transfémorales
et a été validé chez une personne amputée transfémorale. La seconde approche consiste a extraire des parameétres
concis par traitement du signal des données brutes des capteurs. La fiabilité et la pertinence clinique de la
quantification de tels parameétres pour caractériser la symétrie et 1’équilibre de la marche ont été étudiées pour la
premicre fois chez les personnes amputées de membre inférieur. L’ensemble des travaux produits au cours de
cette thése contribue ainsi au transfert vers la clinique des outils embarqués d’analyse du mouvement par
I’identification de parameétres biomécaniques et cliniques pertinents et la validation d’algorithmes originaux
permettant la quantification de la marche des amputés de membre inférieur.

Mots clés : Analyse quantifiée de la marche, capteurs embarqués, centre de masse, €quilibre dynamique,
symétrie, personnes amputées de membre inférieur

Résumé en anglais

One key objective during the rehabilitation of people with lower-limb amputation fitted with a prosthesis is the
restoration of a physiological and energy-efficient gait pattern minimizing falling risks due to the loss of balance.
Few practical tools are available to provide quantitative data to assist the follow-up of patients in the clinical
routine. The development of wearable sensors offers opportunities to quantitatively and objectively describe gait
in ecological situations. In this context, the aim of the thesis is to contribute to the development of wearable tools
and protocols to support the functional rehabilitation of lower-limb amputees by providing clinically relevant
quantitative data. Two complementary approaches have been implemented. The first approach consists in
developing biomechanical models of the human body in order to retrieve biomechanically founded parameters.
A protocol allowing to accurately estimate the body center of mass acceleration and instantaneous velocity has
therefore been proposed based on gait data of ten people with transfemoral amputation and was validated in one
person with transfemoral amputation. The second approach consists in identifying patterns in the signals
measured by wearable sensors to extract concise descriptors of gait symmetry and dynamic balance. The clinical
relevance and reliability of these descriptors have been investigated for the first time in people with lower-limb
amputation. The work produced in the course of this thesis has contributed to the clinical transfer of wearable
sensors into the clinical practice through the identification of clinically and biomechanically relevant parameters
and the validation of original algorithms allowing to quantitatively describe the gait of lower-limb amputees.
Key words: Quantitative gait analysis, wearable sensors, center of mass, symmetry, dynamic balance, people
with lower-limb amputation




