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Abstract 

English version 

One key objective during the rehabilitation of people with lower-limb amputation fitted with a 

prosthesis is the restoration of a physiological and energy-efficient gait pattern minimizing falling risks 

due to the loss of balance. Few practical tools are available to provide quantitative data to assist the 

follow-up of patients in the clinical routine. The development of wearable sensors offers opportunities 

to quantitatively and objectively describe gait in ecological situations such as during 

(tele)rehabilitation. In this context, the aim of the thesis is to contribute to the development of 

wearable tools and protocols to support the functional rehabilitation of lower-limb amputees by 

providing clinically relevant quantitative data.  

Two complementary approaches have been implemented. The first approach consists in 

developing biomechanical models of the human body in order to retrieve biomechanically founded 

parameters. An original protocol allowing to accurately estimate the body center of mass acceleration 

and instantaneous velocity has therefore been proposed based on gait data of ten people with 

transfemoral amputation and was validated in one person with transfemoral amputation. The second 

approach consists in identifying patterns in the signals measured by wearable sensors to extract 

concise descriptors of the quality of gait, with reference to gait symmetry and dynamic balance. The 

clinical relevance and reliability of these descriptors have been investigated for the first time in people 

with lower-limb amputation. 

The work produced in the course of this thesis has contributed to the clinical transfer of wearable 

sensors into the clinical practice through the identification of clinically and biomechanically relevant 

parameters and the validation of original algorithms allowing to quantitatively describe the gait of 

people with lower-limb amputation. 

Key words: Quantitative gait analysis, wearable sensors, center of mass, symmetry, balance, 

people with lower-limb amputation 

French version 

Un des objectifs majeurs de la rééducation des personnes amputées de membre inférieur 

appareillées est le retour à une marche sans défaut ni asymétrie, efficace énergétiquement et 

minimisant le risque de chutes liĠ à la peƌte d͛ĠƋuiliďƌe. Peu d͛outils cliniques permettent aujouƌd͛hui 
de quantifier ces aspects de la locomotion. L͛ĠŵeƌgeŶĐe de capteurs embarqués miniaturisés offre des 

opportunités pour la description quantitative et écologique de la marche lors de la (télé)rééducation. 

Dans ce contexte, l͛oďjeĐtif de la thğse était de contribuer au développement de protocoles embarqués 

pour apporter des données quantitatives pertinentes lors de la rééducation à la marche des personnes 

amputées de membre inférieur.  

Deux approches complémentaires ont été adoptées. La première approche consiste à utiliser un 

modèle biomécanique du Đoƌps afiŶ d͛eǆtƌaiƌe des descripteurs quantifiés pertinents. Un protocole 

oƌigiŶal peƌŵettaŶt d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ et la ǀitesse iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse à partir de 5 

centrales inertielles a ainsi été proposé à paƌtiƌ d͛uŶe aŶalǇse pƌĠliŵiŶaiƌe suƌ les doŶŶĠes de ŵaƌĐhe 
de dix personnes amputées transfémorales et a été validé chez une personne amputée transfémorale. 
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La seconde approche consiste à extraire des paramètres concis par traitement du signal des données 

brutes de capteurs positionnés sur le corps. La fiabilité et la pertinence clinique de la quantification de 

tels paramètres pour caractériser la sǇŵĠtƌie et l͛ĠƋuiliďƌe de la ŵaƌĐhe ont été étudiées pour la 

première fois chez les personnes amputées de membre inférieur.  

L͛eŶseŵďle des tƌaǀauǆ produits au cours de cette thèse contribue ainsi au transfert vers la clinique 

des outils embarƋuĠs d͛aŶalǇse du ŵouǀeŵeŶt paƌ l͛ideŶtifiĐatioŶ de paƌaŵğtƌes ďioŵĠĐaŶiƋues et 
cliniques pertinents et la ǀalidatioŶ d͛algoƌithŵes oƌigiŶauǆ peƌŵettaŶt la ƋuaŶtifiĐatioŶ de la ŵaƌĐhe 
des personnes amputées de membre inférieur. 

Mots clés : Analyse quantifiée de la marche, capteurs embarqués, centre de masse, équilibre, 

symétrie, personnes amputées de membre inférieur 

Italian version 

Un obiettivo chiave durante la riabilitazione di nella routine clinica di arto inferiore protesizzate è 

il ripristino di un modello di deambulazione fisiologico e simmetrico, efficiente dal punto di vista 

energetico, riducendo al minimo i rischi di caduta dovuti alla perdita di equilibrio. Ad oggi tuttavia, 

sono rari gli strumenti in grado di fornire dati quantitativi e oggettivi per assistere concretamente la 

valutazione dei pazienti nella routine clinica. Lo sǀiluppo di seŶsoƌi iŶdossaďili offƌe uŶ͛oppoƌtuŶità peƌ 
descrivere quantitativamente e oggettivamente la deambulazione in situazioni ecologiche come 

durante la riabilitazione (domiciliare o no). In questo contesto, la presente tesi si propone di 

contribuire allo sviluppo di strumenti e protocolli indossabili a supporto della riabilitazione funzionale 

degli aŵputati di aƌto iŶfeƌioƌe attƌaǀeƌso l͛estƌazioŶe di dati ƋuaŶtitativi e clinicamente rilevanti. 

Il lavoro si articola secondo due approcci complementari. Il primo approccio consiste nello sviluppo 

di modelli biomeccanici del corpo umano al fine di recuperare parametri biomeccanicamente rilevanti 

nel contesto clinico. È stato quindi proposto un protocollo originale che permette di stimare 

l'accelerazioŶe e la ǀeloĐità istaŶtaŶea del ĐeŶtƌo di ŵassa dell͛iŶteƌo Đoƌpo. Il pƌotoĐollo ğ stato 
sviluppato sulla base dei dati di deambulazione di dieci persone con amputazione transfemorale ed è 

stato validato in una persona con amputazione transfemorale. Il secondo approccio consiste 

nell'identificare caratteristiche nei segnali misurati dai sensori indossabili per estrarre descrittori 

concisi della qualità della deambulazione, in termini di simmetria ed equilibrio dinamico. La rilevanza 

clinica e l'affidabilità di questi descrittori sono state studiate per la prima volta in persone con 

amputazione di arto inferiore. 

Il lavoro svolto nel corso di questa tesi ha contribuito al trasferimento clinico di sensori indossabili 

nella pratica clinica attraverso l'identificazione di parametri clinicamente e biomeccanicamente 

rilevanti e la validazione di algoritmi originali che permettono di descrivere quantitativamente la 

deambulazione di persone con amputazione di arto inferiore. 

Parole chiave : Analisi quantitativa della deambulazione, sensori indossabili, centro di massa, 

simmetria, equilibrio, persone con amputazione 
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General introduction 

In France, the number of people living with a major lower-limb loss in 2012 was estimated to lie 

between 90,000 to 100,000 people, with an incidence of 8,300 cases per year (Villa, Bascou, et al., 

2017). In developed countries, most lower-limb amputations are performed as a result of peripheral 

vascular diseases (from 80 to 90%), traumatic injuries (10 to 20 %), or tumors (< 5%) (Ziegler-Graham 

et al., 2008; Carmona et al., 2014). Ageing of the population and increased prevalence of diabetes are 

predicted to lead to a raise of the number of people living with a lower-limb loss in the next decades 

(Lamandé et al., 2011). For instance, in the United States, the population of lower-limb amputees is 

predicted to double between 2005 and 2050 (Ziegler-Graham et al., 2008). 

Following an amputation of a lower limb, the objective of the rehabilitation process is the return 

home of the patient with as much autonomy as possible in the activities of daily living and without 

pain. Rehabilitation is supervised by a multidisciplinary team whose aim is reducing and supplementing 

the functional loss induced by amputation. Following surgery, rehabilitation is focused on muscle 

strengthening and residual limb acceptance. After prosthetic fitting, rehabilitation protocols target the 

recovery of balance, the ability to perform autonomous transfers and the recovery of a gait pattern as 

physiological as possible. An important focus of the functional rehabilitation is the reduction of gait 

limping, asymmetries and compensations such as hip hiking or vaulting in order to prevent the over-

solicitation of the preserved articulations, which may introduce long-term disabilities and 

comorbidities such as arthrosis or low-back pain (Sawers and Hafner, 2013; Villa, Bascou, et al., 2017).  

Monitoring the patieŶt͛s pƌogƌess relies on regular clinical assessments. Such assessments are 

usually based upon visual observations performed by the multidisciplinary team in charge of the 

rehabilitation (doctor, physiotherapist, occupational therapist, ortho-prosthetist...), on the 

iŶǀestigatioŶ of the patieŶt͛s peƌĐeptioŶ aďout the pƌosthesis ;peƌĐeiǀed discomfort or pain), and on 

the assessŵeŶt of oǀeƌall patieŶt͛s peƌfoƌŵaŶĐe ŵetƌiĐs duƌiŶg speĐifiĐ ŵotoƌ tasks (Cuesta-Vargas et 

al., 2010; Hafner and Sanders, 2014). Metrics that are associated with a positive evolution of the 

patient are generally qualitative and subjective; they often depend on the experience of the clinician 

and, thus, lack inter-rater reliability and specificity. Obtaining objective and quantitative data through 

rigorous protocols might help clinicians in acĐuƌatelǇ ŵoŶitoƌiŶg theiƌ patieŶts͛ pƌogƌess or in 

prescribing a prosthetic component adapted to a specific patient. This is particularly true regarding the 

prescription of technologically advanced prosthetic components: in France, the public healthcare 

system reimburses the costs associated to prosthetic fitting and prescribed equipment if the 

rehabilitation therapists can document that it would truly benefit the patient. 

However, few practical tools are available to provide quantitative data to assist the assessment of 

patients in clinical routine. In fact, although clinical quantitative gait analysis in motion laboratories 

has been extensively described in the literature, including in people with lower-limb amputation, it is 

generally hardly accessible in the clinical practice because of a high system cost and portability 

constraints (Iosa, Picerno, et al., 2016; Benson et al., 2018; Loiret et al., 2019). Miniaturization of 

sensing technologies and advancement in processing techniques in the last decades have made 

possible the development of affordable wearable inertial and pressure sensors for motion analysis 

(Wong et al., 2007, 2015; Benson et al., 2018). Wearable sensors offer the advantages of being 
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portable and thus located directly onto the patient, enabling to record data outside the laboratory, 

without limitation of the acquisition volume and without interfering with the clinical routine (Cuesta-

Vargas et al., 2010; Tura et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Maqbool et al., 2015; 

Iosa, Picerno, et al., 2016; Loiret, 2016; Benson et al., 2018).  

In the context of evidence-based practice or medicine, wearable sensors are thus a very attractive 

solution to provide quantitative data of interest for the rehabilitation of people with lower-limb 

amputation. Indeed, potential clinical benefits of those sensors include long-term and remote 

monitoring, real-time feedback, increased implication of the patient in his/her rehabilitation, home-

based and telerehabilitation opportunities, and a reduction of global rehabilitation costs (Hafner and 

Sanders, 2014; Iosa, Picerno, et al., 2016; Villa, Bascou, et al., 2017). However, the transfer of this 

technology in the clinical routine or for home-based rehabilitation for the assessment of lower-limb 

represents a challenge (Cutti et al., 2015; Iosa, Picerno, et al., 2016). Indeed, wearable sensors depend 

on a technology that differs from that of the gold standards gait analysis tools. As a consequence, 

wearable sensors may not allow to directly quantify all the biomechanical parameters that are usually 

retrieved in laboratory-based clinical gait analysis. For instance, no currently available wearable sensor 

can directly provide a measure of its absolute position in an Earth-fixed reference frame.  

It is therefore necessary to first identify clinically relevant parameters allowing the quantitative 

and biomechanical description of lower-limb amputee gait which could be obtained from wearable 

sensors. These parameters should be synthetic and should allow to globally evaluate gait function and 

performance while providing an understanding of the underlying mechanical causes. This would 

indeed allow to use these parameters both as indicators for the evaluation of the rehabilitation and 

for the implementation of rehabilitation protocols. Once these parameters have been identified, 

specific algorithms must be developed or adapted for their quantification from wearable sensors data. 

A special attention must be drawn on limiting the number of sensors required in order to keep the 

acquisition minimally invasive and as simple as possible so as to facilitate the transfer in clinics (cost 

and time constraints), or even for home-based applications. Last but not least, the validity and 

reproducibility of the retrieved parameters in people with lower-limb amputation must be assessed in 

order to provide clinicians with reliable and easily interpretable data. 

 

 This thesis aims at providing a contribution towards the in-field functional assessment of people 

with lower-limb amputation from wearable sensors. In this framework, the approach chosen consisted 

in investigating both validated wearable tools and original algorithms with the aim of providing 

clinicians with relevant quantitative data to support their practice during the functional rehabilitation 

of people with lower-limb amputation. Although the algorithms developed within the framework of 

the thesis were specifically developed for people with lower-limb amputation, similar approaches 

could be adopted in other pathological gait as the use of wearable sensors in the clinical field would 

similarly benefit both patients and the healthcare system. 

 

The thesis was carried out in the framework of a joint Ph.D. between the IBHGC (Institut de 

Biomécanique Humaine Georges Charpak, Arts et Métiers, Paris, France) and the LBNM (Laboratory of 

Bioengineering and Neuromechanics of Movement, Foro Italico, Rome, Italy).  It was financed by a 

donation from the Fédération des Amputés de Guerre de France (FAGF) to INI/CERAH (CeŶtƌe d’Etude 
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et de ReĐheƌĐhes pouƌ l’Appaƌeillage des peƌsoŶŶes HaŶdiĐapĠes, Antenne de Créteil, France), with the 

aim to improve care of people with lower-limb amputation. A grant from the Université Franco-

Italienne was obtained to finance the mobility between France and Italy. 

 

The research developed within this framework relies on previous collaborative works between the 

IBHGC and INI/CERAH on the characterization of lower-limb amputee gait1  and on the expertise of the 

LBNM on the use of wearable motion sensors for the study of human movement2. Furthermore, the 

joint supervision by IBHGC and LBNM materializes the collaboration between the laboratories, driven 

by the complementarity of their expertise fields and their common interest for the study of human 

motion. Finally, the research was supported by the clinical partnerships of INI/CERAH and IBHGC, in 

particular with INI (Institution Nationale des Invalides, Paris, France), IRR (Institut Régional de 

Réadaptation, Nancy France), the military hospital HIA Percy (Hôpital d’IŶstƌuĐtioŶ des AƌŵĠes PeƌĐǇ, 

Clamart, France) and IRMA (IŶstitut Roďeƌt Meƌle d’AuďigŶĠ, ValeŶtoŶ, France). 

The thesis thus benefited from a multidisciplinary environment with the highly valuable 

collaboration of biomechanical engineers and clinicians for the identification of clinically relevant 

parameters and the development and/or validation of algorithms allowing their extraction from 

wearable sensor data.  

 

The first part of the manuscript focuses on the identification of clinically relevant biomechanical 

parameters for amputee care that could be retrieved from wearable sensor data through a review of 

the literature. Following a description of the rehabilitation pathway of people with lower-limb 

amputation (chapter 1), an overview of state-of-the-art descriptors of lower-limb amputee gait is 

presented (chapter 2). Finally, chapter 3 investigates how wearable sensors, and more especially 

inertial measurement units and pressure insoles, could benefit both clinicians and people with lower-

limb amputation during their rehabilitation by reporting the outcome parameters usually derived from 

these sensors. Following the conclusion of part 1, the aim of the thesis is further developed with the 

selection of clinically relevant parameters whose quantification from wearable sensor data will be 

investigated. These parameters aim at characterizing gait symmetry and balance and at describing the 

kinematics of the center of mass. The latter indeed appears to be a relevant synthetic biomechanical 

descriptor of gait performance, providing insight on both energy efficiency and kinematics 

asymmetries. 

The second part of the thesis proposes a framework for the wearable estimation of body center of 

mass motion in people with lower-limb amputation. First, a review of the literature provides a 

comprehensive overview of the main methods implemented in diverse populations to estimate the 

motion of the body center of mass from magneto-inertial measurement units (chapter 1). The review 

leads to the decision of implementing a multi-sensor approach and the optimal locations of sensors 

are determined based on an analysis of the segmental contributions to the body center of mass 

acceleration in ten people with transfemoral amputation (chapter 2). From there, magneto-inertial 

 

1 See the Ph.D. theses of Hélène Pillet (Goujon, 2006), Coralie Villa (Villa, 2014) and Boris Dauriac (Dauriac, 
2018). 

2 See the Ph.D. theses of Elena Bergamini (Bergamini, 2011) and Valeria Belluscio (Belluscio, 2020) for 
instance 
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measurement units are used to validate the multi-sensor approach in an original framework that 

allows an almost fully-wearable acquisition of body center of mass motion (chapter 3). Lastly, the 

impact of errors in the identification of sensors positions relative to the segments on the body center 

of mass acceleration is investigated (chapter 4). 

The last and third part of this thesis proposes an alternative approach to that implemented in the 

second part and investigates the feasibility of retrieving gait quality indices from wearable sensor data 

in a rehabilitation set-up. First, five inertial-measurement-units-based gait-event detection algorithms 

are comparatively assessed in seven people with transfemoral amputation in view of in-the-field 

quantification of temporal asymmetry from one to two inertial measurement units (chapter 1). The 

second chapter explores the feasibility and relevance of tracking gait quality indices issued from 

wearable sensors during the rehabilitation of lower-limb amputees through the instrumentation of the 

two-minute walking test. 
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Part 1: Identification of clinically relevant parameters for in-the-field 

monitoring of the rehabilitation of people with lower-limb amputation 

through a review of the state-of-the-art 

Lower-limb amputation is a life-long handicap, affecting both the psychological and physical 

integrity of a person and with a definitive impact on ambulation (Samuelsson et al., 2012). Following 

rehabilitation and definitive prosthetic fitting, gait performance and capacities of the lower-limb 

amputee are still limited compared to those of asymptomatic people (Bonnet, 2009). Indeed, walking 

with a prosthesis requires a higher energy cost (Waters et al., 1976) and doesŶ͛t alǁaǇs alloǁ walking 

outdoors on irregular terrain (Van Velzen et al., 2006), in slopes or stairs (Walker et al., 1994). 

Furthermore, an asymmetrical gait pattern is often observed (Nolan et al., 2003; Sagawa et al., 2011), 

which not only favors the onset of long-term comorbidities, but also has an impact on the esthetic of 

walking thus affecting the patieŶt͛s soĐial life (Gailey et al., 2008). 

Obtaining quantitative data to characterize the gait or balance of lower-limb amputees during 

rehabilitation could help detecting and reducing gait compensations and thus preventing the 

occurrence of long-term comorbidities. Furthermore, it could assist physicians and prosthetists in the 

prescription and alignment of prosthetic components. However, current clinical assessment tools do 

not allow to obtain such quantitative parameters, and optical motion capture systems are 

inappropriate in most clinical settings (Loiret et al., 2005). Therefore, the use of user-friendly and 

relatively low-cost wearable sensors is an interesting approach even if they may not allow to quantify 

the same biomechanical gait descriptors as usually retrieved in laboratory-based quantified gait 

analysis.  

The purpose of the first part of the thesis is thus to identify, from an exhaustive literature review, 

gait parameters that could be obtained with inertial sensors and pressure insoles and that are clinically 

relevant for the rehabilitation of people with lower-limb amputation. Following a global overview of 

contextual elements on the rehabilitation pathway and the gait of people with lower-limb amputation 

in the first chapter, chapter 2 focuses on the assessment of amputee gait both in clinics and in motion 

analysis laboratories. Finally, the third chapter introduces inertial measurement units and pressure 

insoles and provides an overview of their usage in the clinical and research fields. 
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Chapter 1 – Rehabilitation of people with lower-limb amputation 

The number of people living with a major lower-limb loss (that is, amputations above the ankle 

level) was estimated to lie between 90,000 to 100,000 people, with an incidence of 8,300 new 

amputations per year in France in 2012 (Villa, Bascou, et al., 2017). Following the amputation of a 

lower limb, people might be fitted with prosthetic devices to restore gait and balance functions of the 

lost limb. Transtibial amputation, knee disarticulation and transfemoral amputation (Figure 1) account 

for 99% of major amputations of the lower limbs (Villa, Bascou, et al., 2017), and as a consequence, 

the present work will focus on these amputation levels.  

1.1. Prosthetic components 

Limb amputation entails the loss of bony structures, joint(s) and muscles. Transfemoral and 

transtibial prosthetic devices aim at replacing the lost limb and are constituted with prosthetic 

modules manufactured in series production and – except in the cases of osseointegration – a  custom-

made socket (Figure 2). The prosthesist assembles the components and realizes patient- and device-

specific settings of the prosthesis to allow an efficient, pain-free and esthetic gait. 

The socket  constitutes the interface between the residual limb and the prosthesis, and allows 

prosthetic control through load transmission. As a consequence, a well fitted socket is essential to 

ensure confort and pain-free use of the prosthesis. The socket is usually manufactured manually by 

molding the residual limb of the patient. Recently, an alternative computer-aided design and 

manufacturing process consisting in taking a 3D scan of the patient stump has been proposed. A liner 

might be worn between the socket and the residual limb to improve comfort and prevent sliding of 

the socket with respect to the stump. 

The generic prosthetic modules consist in a prosthetic knee, for transfemoral amputees, and a 

prosthetic foot, supplementing both the foot and the ankle. There is a large variety of existing knee 

and foot devices. The choice of a specific device over another depends on the functional capacities of 

the amputee as well as on his/her life project.  

Figure 1: Major lower-limb amputation levels 
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The next two paragraphs will briefly introduce the key principles of the prosthetic foot and knee 

components. For a more detailed presentation of the prosthetic components, the reader can refer to 

the theses of Xavier Bonnet (Bonnet, 2009) and Boris Dauriac (Dauriac, 2018).  

1.1.1. Prosthetic feet 

There are three categoƌies of pƌosthetiĐ feet: ͞staŶdaƌd͟ feet, eŶeƌgǇ stoƌiŶg aŶd ƌetuƌŶiŶg feet 
(ESR) and new-generation active feet (Bonnet, 2009). ESR feet have been introduced in 1981 and differ 

from the rigid standard feet by the inclusion of deformable components, allowing to store energy at 

the instant of foot contact and to restore it for propulsion. However, the returned energy is still lower 

than the energy produced by a sound ankle. This partly explains the recent development of active new 

generation feet. The latter also allow to adapt the behavior of the feet to the terrain or situation 

encountered (slope, staiƌs, leǀel gƌouŶd…Ϳ. There is a low hindsight on these types of feet, and they 

are currently not reimbursed by the healthcare system in France. 

1.1.2. Prosthetic knees 

Similarly, there are three types of prosthetic knees: mechanical, microprocessor-controlled and 

motorized knees ;also Đalled ͞aĐtiǀe͟ kŶeesͿ. Prosthetic knees must ensure a stable and reliable 

support when standing on the artificial limb while allowing the required mobility for making a step 

forward or sitting. Stability during stance is ensured by design, either through a locking system which 

can be activated manually or because during stance, the ground reaction forces imposes a knee 

extension torque preventing flexion. In order to control the flexion and extension motion of the 

prosthetic limb during the swing phase, a friction is applied on the knee. It can be purely mechanical, 

pneumatic or hydraulic (Hafner and Askew, 2015). Microprocessor-controlled knees adjust the 

hydraulic or pneumatic friction of the knee along the gait, thanks to sensors embedded in the 

prosthetic device (Hafner and Askew, 2015; Dauriac, 2018). Finally, active knees include a motor, which 

allow to actively control the position and motion of the knee joint (Hafner and Askew, 2015). Only one 

Figure 2: Components of a transtibial (below knee) and a transfemoral (above-knee) prosthesis (taken from 

https://www.orthomedics.us/) 
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active knee is commercialized worldwide, and it is not currently reimbursed by the healthcare system 

in France. 

1.2. The rehabilitation pathway 

Following surgery, rehabilitation aims at restoring autonomy in the activities of daily living of the 

amputee person (hygiene and alimentation, displacements, work, …) with the highest quality of life 

possible. To achieve this aim, a multidisciplinary team composed by physicians, physiotherapists, 

occupational therapists, prosthetists and any other medical specialists required (for instance, a 

psychologist) collaborates with the patient, who is also an active member of the team. The 

rehabilitation and the prescribed prosthetic limb, when applicable, are adapted to the life project and 

the functional capacities of the amputee person (Villa, Bascou, et al., 2017). The success of the 

rehabilitation is multifactorial as it depends on the outcomes of the surgery and the amputation level, 

the prosthetic components, the quality of the prosthesis fitting, the functional capacity of the patient 

and his/her level of involvement in the rehabilitation.  Assessment of the rehabilitation is therefore 

complex as it requires to identify quantitative indicators corresponding to these multiple factors put 

in regards with the life-project of the patient. Functional outcomes of the rehabilitation can however 

be evaluated through biomechanical descriptors of gait, which can be used for therapeutic decision-

making along the rehabilitation. 

The rehabilitation can be divided in three stages respectively corresponding to the postoperative, 

pre-prosthetic and prosthetic phase of the rehabilitation ;EsƋueŶazi aŶd DiGiaĐoŵo, ϮϬϬϭ; Koǀač et 

al., 2015; Loiret, 2016). The post-operative and pre-prosthetic rehabilitation have been reported to 

last about five to six weeks in people with vascular amputation while a minimum of three to four weeks 

following surgery has been reported for wound healing in traumatic amputation ;Koǀač et al., 2015). 

The duration of the prosthetic phase of the rehabilitation then lasts four to six weeks in people with 

transtibial amputation, six-to-eight weeks in people with transfemoral amputation and is prolonged in 

case of bilateral amputation ;Koǀač et al., 2015). It should be noted that the overall rehabilitation 

duration depends on each patient and in particular on the scar healing process of the residual limb of 

the person. 

1.2.1. Post-operative and pre-prosthetic rehabilitation 

Immediately after surgery, post-operative rehabilitation mainly 

focuses on wound healing and pain management. Limb loss acceptance is 

also a major focus of this early stage of the rehabilitation.  

As soon as the patient is medically stable, mobility exercises involving 

both the residual and contralateral legs are proposed by the 

physiotherapists in order to preserve the range of motion of the residual 

and sound leg articulations, to avoid contractures and to strengthen the 

muscles that will be solicited during prosthetic gait. Muscle training of the 

upper limbs must not be neglected to prepare the patient to the temporal 

use of manual wheelchair or walking aids, such as crutches or a walker. 

Early mobility is paramount for the success of the rehabilitation. Aided Figure 3: Preparation for 

prosthetic ambulation 
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ambulation training, without a prosthesis (Figure 3), is initiated to prepare the patient for prosthetic 

gait training; muscle strengthening is accentuated. 

The pre-prosthetic rehabilitation stage ends when the temporary prosthesis is delivered by the 

prosthetist. It consists of a temporary socket made of plastic, molded on the residual limb, and of 

prosthetic component(s) of simple design. 

1.2.2. Prosthetic rehabilitation 

Prosthetic training can be divided in two subphases. The ultimate aim of this stage is gait recovery 

with a prosthesis. 

First, unspecific training focuses on residual limb self-care, learning to don and doff the prosthesis, 

and reaching a stable residual limb volume. At the beginning of this stage, special care is addressed to 

skin monitoring. Balance and weight-bearing exercises are initiated, as well as prosthetic gait training 

on level ground using the temporary prosthesis. First, the patient learns to walk between parallel bars, 

and then walking aids are incrementally removed (Wilhoite et al., 2019). 

The prosthetic components can evolve during this stage as the amputee person retrieves a 

consistent gait pattern. Specific training aims at learning i) to control the prosthesis through the socket 

and residual limb proprioception, and ii) to use the specific functionalities of the prosthetic 

components. Muscle strengthening, endurance and balance are still trained along with gait on level 

ground. Once the amputee person masters prosthetic gait on level ground, training on slopes and stairs 

is addressed. Ultimately, the functional capacity of the amputee person and his or her life project will 

drive the choice of the definitive prosthetic components. During this stage of the rehabilitation, an 

important focus is the reduction of gait asymmetries or limping, which may arise from an insufficient 

loading of the prosthetic lower limb, a lack of confidence on the prosthesis, muscle atrophy resulting 

from the surgery, etc. Typical gait compensations observed in people with lower-limb amputation are 

described in the next section (1.3). 

During this stage, the volume of the residual limb reaches a (relatively) stable state, allowing to 

replace the teŵpoƌaƌǇ soĐket ǁith a ͞defiŶitiǀe͟ lighter and sturdier one, made of carbon. 

1.2.3. Long-term clinical follow-up 

Following discharge from the rehabilitation center, almost 90% of people with lower-limb 

amputation return home (Villa, Bascou, et al., 2017) where they keep learning how to use their 

prosthetic device in their daily-living environment. In the first months following discharge, several 

appointments may be needed, for instance, to adapt the socket to the residual limb. Then, regular 

appointments for patient follow-up and prosthetics adjustments are required all along the life of the 

patient, generally on an annual basis ;Koǀač et al., 2015). Eventually, when a prosthetic component is 

changed, there might be a need for specific rehabilitation sessions to assist the amputee in learning 

how to control and to use the specific functionalities of the new prosthesis (Paradisi, 2016). 
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1.3. Typical gait compensations and asymmetries observed in people with lower-limb 

amputation 

Due to muscle loss following lower-limb amputation and to limitations inherent to prosthetic 

components, several adaptations of the gait pattern can be observed in transtibial and transfemoral 

amputees (Michaud et al., 2000; Goujon-Pillet et al., 2008; Villa, 2014). The aim of this section is to 

propose an overview of some of the major compensations identified in the gait of people with lower-

limb amputation. In particular, the loss of ankle flexor muscles in both transtibial and transfemoral 

amputation leads to a reduced propulsion (or push-off) at the end of the stance phase and an absence 

of active dorsiflexion during the swing phase. This contributes to a decrease in power generation 

(Seroussi et al., 1996) and in toe clearance (that is, a decreased distance between the foot and the 

ground, see Figure 4) during the prosthetic swing phase. This phenomenon is even accentuated in 

people with transfemoral amputation who cannot control knee flexion due to the loss of the knee joint 

and of atrophied hip musculature.  

Several compensatory strategies are thus implemented to increase toe clearance and avoid 

tripping during the prosthetic swing phase. These compensations include hip circumduction, hip hiking, 

and vaulting and are mostly observed in people with transfemoral amputation (Villa, 2014) : 

- Hip circumduction (Figure 5a) consists in simultaneously abducting and rotating the residual 

hip during the swing phase. This allows to maintain a reasonable toe clearance without flexing 

the knee joint.  

- Hip hiking (Figure 5b) consists in tilting the pelvis towards the stance leg in the frontal plane 

to increase toe clearance. This strategy is observed during the prosthetic swing phase in both 

people with transtibial and transfemoral amputation (Michaud et al., 2000; Goujon-Pillet et 

al., 2008). In people with transfemoral amputation, hip hiking also occurs during the sound 

swing phase, and it is assumed to result from a lateral trunk bending strategy to compensate 

for weak hip abductors (Jaegers et al., 1995; Michaud et al., 2000; Goujon-Pillet et al., 2008).  

Figure 4: Foot clearance during the swing phase (taken from (Dadashi et al., 2013) ) 
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- Vaulting (Figure 5c) is a compensation strategy consisting in a premature propulsive plantar 

flexion of the sound ankle during the sound stance phase. It allows to improve toe clearance 

by increasing the functional length of the sound leg.  

These compensations can often be detected, although not quantified, by the experienced eyes of 

clinicians. As they result in over-solicitation of muscles and joints, leading to osteoarticular 

comorbidities (Gailey et al., 2008; Esposito et al., 2015), they are targeted by the rehabilitation team.  

 

a. c. b. 

Figure 5: Most common gait deviations observed in amputee gait (Whittle, 2007) 

a. Hip circumduction; b. Hip hiking; c. Vaulting 
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Chapter 2 – Current modalities for the assessment of the 

rehabilitation 

2.1. Usefulness of quantitative data 

Although most patients are fitted with a prosthesis and regain the ability to walk (Van Velzen et 

al., 2006), recent systematic reviews found out that less than 62% of lower-limb amputees are able to 

walk outdoors (Van Velzen et al., 2006) and that only 50 to 72% of people with transfemoral 

amputation actually walk with their prosthesis (Sawers and Hafner, 2013). These difficulties may arise 

from back pain and socket discomfort, due to ill-adapted prosthetic components or poor alignment 

settings (Gailey et al., 2008), from limited functionalities of the prosthetic components (Dauriac, 2018), 

from lack of confidence in the prosthetic devices (Miller et al., 2001) or from insufficient functional 

capacities of the person with amputation (Sawers and Hafner, 2013). Furthermore, gait deviations such 

as increased loading of the intact limb or abnormal efforts or moments at the contralateral joint may 

lead to severe comorbidities such as osteoarthrosis, osteopenia and back pain (Gailey et al., 2008; 

Dauriac, 2018), resulting in a poorer quality of life and activity participation in the community of people 

with lower-limb amputation.  

Being aďle to ŵoŶitoƌ aŵputees͛ gait duƌiŶg the ƌehaďilitatioŶ aŶd loŶg-term follow-up 

appointments is therefore of paramount importance. Indeed, obtaining quantitative data to 

characterize the gait or balance of lower-limb amputees during rehabilitation can help detecting and 

reducing gait compensations and thus preventing the occurrence of long-term comorbidities (Hafner 

and Sanders, 2014; Paradisi, 2016). Furthermore, such data can assist physicians and prosthetists in 

the prescription and alignment of prosthetic devices as they can provide evidence-based reports to 

compare different prosthetic devices or alignment settings (Sagawa et al., 2011; Boone et al., 2012; 

Hafner and Sanders, 2014; Thomas-Pohl et al., 2019; Zhang et al., 2020). Systematic and objective gait 

analysis of lower-limb amputees during rehabilitation could therefore assist both patients and 

clinicians by providing evidence supporting and facilitating the rehabilitation (Heinemann et al., 2014), 

or justifying the prescription of specific prosthetic components (Hawkins and Riddick, 2018). 

Healthcare systems could also benefit from evidence-based practice as it could help identifying 

rehabilitation strategies, facilitating home-based rehabilitation or assessing rehabilitation 

performance earlier and, thus, could reduce treatment-related costs (Agrawal, 2016). 

In order to be relevant during the rehabilitation, gait-characterizing quantitative data should be 

synthetic and comprehensible – in order to be interpretable by both the patient and the clinician – and 

should have a valid biomechanical basis. To simplify the interpretation of such quantitative data, a 

limited number of parameters should be retrieved. A major difficulty lies within the tradeoff between 

complexity, biomechanical-relevance and accuracy. Indeed, obtaining biomechanical accurate 

quantitative data often implies to use a complex and high-cost system, requiring specific acquisition 

protocols and technical skills for data post-processing, which is often not compatible with the 

constraints in the clinical field.  

The next two paragraphs aim at providing an overview of the clinical tools currently used for 

rehabilitation assessment and of the biomechanical parameters that have been presented in the 

literature to quantify lower-limb amputee gait. 
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2.2. Quantitative gait assessment in current clinical practice  

During rehabilitation, gait evaluation is mostly based on observational gait assessment and on 

inputs from patients, such as capacity or comfort perception and retrospective self-reports of potential 

incidents (Perry, 1992; Calmels et al., 2002; Hafner and Sanders, 2014; Heinemann et al., 2014). In 

addition of being only qualitative, such assessments are subjective as they strongly depend on the 

ĐliŶiĐiaŶ͛s iŶteƌpƌetatioŶ (Hafner and Sanders, 2014; Muro-de-la-Herran et al., 2014) and on self-

reports from patients which might be biased by (in)voluntary omissions (Hafner and Sanders, 2014). 

To complete clinical gait assessment with quantitative measures, various self-administered 

questionnaires and performance-based clinical tests are available (Arch et al., 2016). Although a few 

questionnaires quantifying perceived mobility, function, satisfaction, or quality of life of people with 

lower-limb amputation have been validated in people with lower-limb amputation (Calmels et al., 

2002; Condie et al., 2006; Resnik and Borgia, 2011; Hawkins et al., 2014), responsiveness to change 

was not always evaluated (Deathe et al., 2009; Heinemann et al., 2014). Furthermore, due to the 

nature of the questions, most questionnaires are more suited for community-dwelling amputees 

(Calmels et al., 2002; Condie et al., 2006). On the other hand, performance-based tests provide 

objective or semi-objective assessments of the ability of patients to perform specific tasks (Hawkins 

and Riddick, 2018). They consist either in summary scores or in walking tests. 

Summary scores are obtained by aggregating scores from a set of tasks that aim at assessing 

several aspects related to gait and/or balance. For instance, the Amputee Mobility Predictor (AMP) 

score was designed specifically for people with lower-limb amputation to predict ambulation ability 

after rehabilitation. It consists in 21 items, testing gait ability, transfer or balance. Each item is graded 

between 0 and 2 depending on the use of assistive device and on the patient͛s ability to perform the 

task ;ĐaŶ͛t, paƌtiallǇ ĐaŶ, ĐaŶ doͿ (Condie et al., 2006; Deathe et al., 2009). This test allows to estimate 

the functional K-level of people with lower-limb amputation and is used for prosthesis prescription 

during or after rehabilitation (Loiret et al., 2005). 

Walking tests aim at assessing the mobility of a person and result in a single measure. They are 

declined either in timed tests, where the distance covered within a specific duration is measured, or 

in distance-based tests, where the time taken to perform an ambulation task along a specific circuit is 

measured. In addition to being reliable and valid in multiple populations (Hawkins et al., 2014), these 

tests are easy to implement and quick to administer, which allow their regular use for rehabilitation 

assessment (Loiret et al., 2005; Condie et al., 2006; Agrawal, 2016). Furthermore, timed tests allow the 

estimation of walking speed, which is a prominent descriptor of gait function (Perry, 1992; Fritz and 

Lusardi, 2009; Batten et al., 2019). The two-minute walking test (2MWT) and the Timed-Up and Go 

(TUG) test are among the most frequently administered and most recommended tests in the literature 

(Condie et al., 2006; Hawkins et al., 2014; Hawkins and Riddick, 2018). Both tests provide valid 

assessments of mobility in people with amputation (Deathe et al., 2009). During the 2MWT, 

participants are asked to walk back and forth at their self-selected speed along a long straight-corridor 



14 

 

or along a square path for two minutes. The 

achieved distance, and thus, the average walking 

speed, is used to assess the global function of the 

participant. The TUG test (Figure 6) has been used 

to quantify balance ability in addition to mobility, 

as it consists in several motor-tasks: rising from a 

chair, walking 3 meters, turning back and sitting 

back on a chair. The time taken to complete this 

circuit is measured during the test, and it has been 

shown to be well correlated to the Berg Balance 

Scale (Loiret et al., 2005). The latter evaluates 

balance ability but requires a minimum of 15 

minutes (Heinemann et al., 2014), contrary to the 

TUG which takes only up to two minutes to 

complete (Calmels et al., 2002; Condie et al., 2006).  

A recent study has assessed test-retest validity of the most current performance-based and self-

reported outcome measures used in the population of people with lower-limb amputation, and found 

that the AMP, 2MWT and TUG tests are reliable, while the authors reported that the minimally 

detectable changes observed were higher than expected (Resnik and Borgia, 2011). However, 

reproducibility assessment was based on a sample of 44 lower-limb amputees without distinction of 

amputation level or etiology, while both these factors have been shown to significantly influence gait 

performance and overall quality of life (Waters et al., 1976; Miller et al., 2001; Gailey et al., 2008). 

Furthermore, responsiveness and minimal clinically-significant differences of the tests were not 

reported (Resnik and Borgia, 2011; Hawkins and Riddick, 2018). 

While these scores can provide relevant information on the gait of people with lower-limb 

amputation, they are not self-sufficient (Calmels et al., 2002); for instance, an indication of high 

performance to the 2MWT does not provide information regarding the quality of gait (symmetry, 

aƌtiĐulaƌ ƌaŶge of ŵotioŶ, …Ϳ oƌ the aďilitǇ to fullǇ use the pƌosthetiĐ components. Complete and 

objective evaluation of gait through reliable and valid quantitative descriptors is possible using 

biomechanical gait analysis which is most frequently performed with optical motion capture systems 

and force plates in motion analysis laboratories. A large body of literature has thus focused on the 

study of lower-limb amputees͛ gait in motion analysis laboratories. Therefore, the next section aims at 

identifying the most reported descriptors of gait in people with lower-limb amputation through an 

overview of the main findings of the literature on aŵputees͛ locomotion. 

2.3. Quantitative gait assessment in motion analysis laboratories 

Gait analysis aims at analyzing how and how well a person walks (Cappozzo, 1984). As a 

consequence, two categories of gait descriptors studied in motion analysis laboratories can be defined: 

- Function assessment parameters, whose aim is to describe motion and its origin. This category 

of descriptors can be put in relation with the parameters describing impairments of body 

Figure 6: Timed-Up and Go test  

(from https://www.frailtytoolkit.org) 
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functions according to the International Classification of Functioning, Disability and Health 

(ICF)3. 

- Performance assessment parameters, aiming at assessing and describing the quality of motion 

(such as gait symmetry or efficiency) 

Since gait is a cyclical motion, these parameters are generally assessed over a stride, or gait cycle. 

This allows to interpret them and to identify normal/pathological gait patterns by comparing, for 

instance, the parameters͛ eǀolutioŶ or peak values at different instants of the gait cycle (Figure 7).  

Paragraph 2.3.1 introduces the gait cycle and derived spatiotemporal parameters. Then, the 

following paragraphs provide an overview of the characterization of amputee gait through function 

and performance assessment parameters quantified in motion analysis laboratories.  

2.3.1. Gait cycle and spatiotemporal parameters 

Gait segmentation is the process of dividing gait into cycles. Conventionally, the instant of initial 

foot contact is generally used for this purpose. The prosthetic gait cycle thus corresponds to the period 

between two successive contacts of the prosthetic foot (Figure 7).  

Several terminologies can be found in the literature to describe the different events composing 

the gait cycle; the deŶoŵiŶatioŶs ͞initial contact͟ (also heel strike or heel contact in the literature) and 

͞final contact͟ (also terminal contact, foot off or toe off) will be used in this thesis due to the absence 

of proper heel strike or toe off in some pathological gait (Tunca et al., 2017). Initial and final contact 

events are of interest because they respectively mark the beginning and the end of the stance phase. 

Stride length and duration are defined as the distance covered or the elapsed time between two 

successive initial contacts of the same foot (during a cycle). Their determination allows to estimate 

walking velocity. Another relevant spatiotemporal parameter is step length (resp. duration), which is 

defined as the distance between both feet (resp. elapsed time) between two consecutive initial 

contacts of two subsequent feet.  

 

3 The ICF is a framework developed by the WHO (https://www.who.int/classifications/icf/en/) 

Figure 7: Prosthetic gait cycle and main gait events 
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In a systematic review in 2011, Sagawa and coworkers found that gait velocity, cadence, stride and 

step length are the most common parameters used to describe the gait of people with lower-limb 

amputation (Sagawa et al., 2011). These parameters are easy to measure and interpret and are 

considered as global gait descriptors (Sagawa et al., 2011). They indeed allow to detect the presence 

and quantify gait impairment but do not provide information regarding the cause of impairment.  

2.3.2. Function assessment parameters 

Following lower-limb amputation, the loss of articular and muscle complexes results in significant 

changes in the gait pattern, whether at the kinematic or the kinetic levels. Important kinematic 

adaptations (segments orientation, joint raŶge of ŵotioŶ, …Ϳ may be observed with the naked eyes. 

However, the use of dedicated instruments, such as optoelectronic systems, is required for their 

quantification or for refined assessments, for instance when aiming at assessing the evolution of a joint 

angle within a patient following the prescription of a new prosthetic device or a new rehabilitation 

protocol. Furthermore, laboratory-based biomechanical gait analysis allows to quantify kinetic 

parameters that cannot be estimated without instrumentation, such as intersegmental moments, or 

the contributions of each joint in the generated mechanical power. Function assessment parameters 

have been extensively studied in people with lower-limb amputation and this paragraph aims at 

providing an overview of the relevant literature. Detailed description of the acquisition of such 

parameters using optical motion capture systems and force plates can be found in the literature 

(Cappozzo et al., 2005; Goujon, 2006). 

a. Kinematic gait analysis 

The use of optical motion capture data allows to retrieve curves describing the evolution of 

segment orientations and joint angles during a gait cycle. Comparing the curve patterns of people with 

lower-limb amputation to that of an asymptomatic population has allowed to identify some 

specificities of lower-limb amputee gait (Sagawa et al., 2011). Similarly, comparing the angle patterns 

of a person in a pre/post configuration may allow to identify the impact of a prosthetic device or 

rehabilitation procedure on gait.  

Gait compensations typically observed in the gait of people with lower-limb amputation (see 

section 1.3 in Chapter 1) can often be evidenced using such kinematic parameters. Hip circumduction 

has for instance been characterized with the measure of the maximal value of the hip abduction angle 

during swing (Dauriac, 2018), hip hiking with elevation of the pelvis in the frontal plane. An increase in 

trunk motion was also observed in the frontal plane in people with transtibial amputation and in all 

the three anatomical planes in people with transfemoral amputation compared to sound subjects 

(Jaegers et al., 1995; Goujon-Pillet et al., 2008; Rueda et al., 2013). 

Additional kinematic adaptations are observed at the hip joint in people with transfemoral 

amputations for prosthetic knee control. For instance, swing phase knee flexion is initiated by the 

premature recruitment of hip flexor muscles (Bonnet et al., 2014). Furthermore, instead of maintaining 

a constant hip flexion at early stance as in sound subjects, the residual hip tends to have an extension 
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motion from prosthetic initial contact to secure 

the knee in extension (Jaegers et al., 1995; Villa, 

2014). During prosthetic stance, differently 

from what is observed in sound subjects, the 

knee remains in extension in people with 

transfemoral amputation (Figure 8), even when 

the prosthetic knee allows some flexion 

(Detrembleur et al., 2005; Sagawa et al., 2011). 

As a result, the knee cannot be used as a shock 

absorber during stance. This phenomenon is 

also observed, at a lesser degree, in people with 

transtibial amputation (Sagawa et al., 2011). 

The characterization of such kinematic adaptations provides accurate information on specific body 

segments or joints. Therefore, the study of a large number of parameters or features extracted from 

curve patterns (e.g. maximal flexion angle) of various body segments or joints is required to obtain a 

global description of gait.  

Kinematics of the body center of mass 

From a mechanical standpoint, locomotion can also be described by the motion of the body center 

of mass, resulting from the summation of forces and moments exerted on each body segment 

(Saunders et al., 1953; Detrembleur et al., 2000; Pavei et al., 2017; Tesio and Rota, 2019). Interestingly, 

the study of the body center of mass motion provides global information regarding the gait of a person 

from a single parameter. Indeed, kinematic alterations at the segment or joint level have repercussion 

on the body center of mass motion (Saunders et al., 1953). For instance, the absence of prosthetic 

knee flexion results in an increased amplitude of the body center of mass excursion during the gait 

cycle of people with transfemoral amputation (Tesio et al., 1998; Detrembleur et al., 2005) which was 

shown to reach up to 4.1 times that of asymptomatic subjects in (Detrembleur et al., 2005). 

Asymmetries in the gait pattern can also be detected in the 3D path of the body center of mass (Minetti 

et al., 2011; Pavei et al., 2017; Askew et al., 2019), and a high degree of asymmetry of the 2D body 

center of mass path in the horizontal plane has been evidenced in people with transtibial amputation 

(Askew et al., 2019). The vertical components of the excursion and velocity of the center of mass 

(Strutzenberger et al., 2019; Ochoa-Diaz and Padilha L. Bó, 2020) also allow to evidence some degree 

Figure 8: Knee flexion angle in asymptomatic subjects 

(grey curve) and in transfemoral amputees (black curve). 

Taken from (Detrembleur et al. 2005) 

Figure 9: Body center of mass vertical relative 

excursion during the prosthetic limb gait cycle in 

people with transfemoral amputees (black curve) and 

asymptomatic subjects (grey curve), adapted from 

(Strutzenberger et al. 2019). 
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of asymmetry (Figure 9). It was for instance shown that the vertical displacement of the body center 

of mass was lower during the prosthetic stance than the sound limb stance (Tesio et al., 1998; Agrawal 

et al., 2009) in both people with transtibial and transfemoral amputation, possibly due to prosthetic 

feet design, and in particular, to the lower effective foot length ratio of prosthetic feet compared to 

physiological feet (Agrawal et al., 2009). 

Biomechanical gait analysis allows the estimation of body center of mass motion from two 

approaches: either from force plates data (using the second law of Newton) or from segmental 

analysis, that is, from the weighted summation of the motion of each individual segment center of 

mass. In the first case, using force plates data, the acceleration of the body center of mass is computed 

from the measured ground reactions forces as well as body weight. Obtaining the body center of mass 

trajectory or instantaneous velocity requires to integrate the acceleration, and therefore to formulate 

hypotheses on the integration constants. In the second case, when estimating the body center of mass 

motion from segmental analysis, the measure of the positions of optical motion capture markers must 

be coupled with an inertial model in order to obtain the mass of each segment (required for the 

ǁeighted suŵͿ aŶd the positioŶ of eaĐh segŵeŶt͛s ĐeŶteƌ of ŵass iŶ its ƌespeĐtiǀe aŶatoŵiĐal fƌaŵe. 
Therefore, different inertial models may yield different estimates of the body center of mass trajectory 

(Pavei et al., 2017). To obtain the velocity or the acceleration of the body center of mass, its position 

must be differentiated. The use of a low-pass filter to remove signal noise inherent to the 

differentiation process may result in an over-smoothed signal. In both these laboratory-based 

approaches, the retrieval of body center of mass motion is not as straightforward as the retrieval of 

segment orientation or joint angle, but it provides a synthetic parameter for gait evaluation. 

b. Kinetic gait analysis 

Kinetic gait analysis focuses on parameters that explain the origin of motion. For instance, ground 

reaction forces and moments, measured by force plates, allow to measure the external forces applied 

on a body. Ground reaction forces exerted under each limb individually are of particular interest for 

the rehabilitation of people with lower-limb amputation (Loiret et al., 2019). Indeed, the latter allows 

Figure 10: Flexion power at the ankle in asymptomatic subjects (solid line) and in a person with 

transfemoral amputation with vaulting (dotted line). Taken from (Drevelle et al., 2014) 
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to quantify how a person loads his/her prosthesis. Inverse dynamics approaches allow to retrieve the 

articular moments, forces and power at each joint from the measured ground reaction forces and 

moments as well as joint kinematics. Similar as for kinematic parameters, a multitude of joint kinetic 

parameters can be retrieved from biomechanical gait analysis, resulting in a complete and accurate 

description of ͞localized͟ gait kinetics. The flexion power peak measured at the sound ankle during 

stance  (Figure 10) was for instance shown to allow the quantification of vaulting  (Drevelle et al., 

2014). In early stance at the intact limb of both transtibial and transfemoral amputees, the increase in 

the sound hip extensor muscles work and the resulting hip moment have been assumed to facilitate 

the forward translation of the pelvis in absence of propulsion from the prosthetic ankle (Seroussi et 

al., 1996; Silverman et al., 2008; Prinsen et al., 2011; Sagawa et al., 2011). 

Kinetics of the body center of mass 

Some mechanical parameters offering a global overview of gait kinetics have also been proposed 

and are computed at the body center of mass. The net mechanical work at the body center of mass, 

which results from the mechanical work generated or dissipated by each joint for the translation of 

the body center of mass, is a synthesized global gait descriptor. The net mechanical work can be 

computed as the time integral of the body center of mass power. The former is itself computed as the 

time derivative of the sum of the kinetic and potential energies. Neglecting the kinetic energy due to 

the rotations of the body segments relative to the body center of mass, the power of the body center 

of mass (𝑃஻஼௢ெ) can be calculated as the dot product of the external forces applied on the body center 

of mass (ࢋࡲ𝒙࢚) with the body center of mass velocity (ࡹ࢕࡯࡮࢜) : 𝑃஻஼௢ெ .࢚𝒙ࢋࡲ∑ =  ࡹ࢕࡯࡮࢜

It is therefore a relatively simple parameter to compute and can be estimated from force platforms 

data alone (Donelan et al., 2002b). Furthermore, the external mechanical work represents the 

mechanical component of the metabolic energy required for locomotion, explaining the contributions 

of the musculoskeletal body structures without considerations of a peƌsoŶ͛s metabolism or 

anthropometric measures.  

However, the external mechanical work was found not to allow the discrimination of people with 

transfemoral amputation from sound participants (Gitter et al., 1995; Askew et al., 2019) and 

therefore, not to explain the 27 % increase of metabolic energy required when walking with a 

prosthesis in transfemoral amputees (Gitter et al., 1995). This might be explained by compensations 

in the generated and dissipated power by each leg during the double stance of walking. The individual 

limb method was therefore proposed to estimate the mechanical energy produced by each lower-limb 

individually (𝑃௟௘௙௧  and 𝑃௥௜௚ℎ௧  for the left and right limbs respectively) including during the double 

stance phase of a gait cycle (Donelan et al., 2002b) : 𝑃஻஼௢ெ .࢚ࢌࢋ࢒ࡲ = ࡹ࢕࡯࡮࢜ + .࢚ࢎࢍ࢏࢘ࡲ ࡹ࢕࡯࡮࢜ = 𝑃௟௘௙௧ + 𝑃௥௜௚ℎ௧  
 Using this approach, several authors have also evidenced that the loss of mechanical energy 

production due to prosthetic components is compensated by an increase in power generation at the 

intact limb (Houdijk et al., 2009; Bonnet et al., 2014). This asymmetry in power generation was found 

to increase with amputation level, with, for instance the affected limb generating 0.09 J/kg and 0.16 

J/kg in people with transfemoral and transtibial amputation in late stance compared to work 

production of 0.34 J/kg and 0.27 J/kg respectively by the intact limb (Houdijk et al., 2009; Bonnet et 



20 

 

al., 2014) and to increase with walking speed. The compensation of the decreased power generation 

of the intact limb by the increased power generation of the prosthetic limb may therefore explain why 

total external mechanical energy  fails to account for the increased metabolic energy consumption 

observed in lower-limb amputee gait (Donelan et al., 2002a; Houdijk et al., 2009; Bonnet et al., 2014).  

Based on these findings, an index of asymmetry between the external work generated by the intact 

and the prosthetic limbs was therefore proposed in (Agrawal et al., 2009) to compare different 

prosthetic feet and was found to differentiate different designs of feet. The asymmetry in external 

work was also found to be more sensitive than the asymmetry in vertical body center of mass 

displacement and step length asymmetry in nine people with transtibial amputation (Askew et al., 

2019), corroborating previous findings according to which the study of the mechanical work generated 

by lower-limb amputees might allow to identify asymmetries that are not detected using mere 

kinematic analyses (Tesio et al., 1998; Tesio and Rota, 2019). All in all, the analysis of the external 

mechanical work using the individual limb method allows to provide insight on gait deficiencies 

(asymmetries, energetic consumption). 

c. Synthesis on the function assessment parameters 

To sum up, the study of kinematic and kinetic parameters during locomotion allows to describe 

alterations and functional adaptations adopted by people with lower-limb amputation while walking. 

Most of the compensatory motions adopted were shown to involve the intact limb and the residual 

hip joint, especially in people with transfemoral amputation. These abnormal solicitations are 

evidenced by analyses of joint and segment ranges of motion and joint moments and powers, which 

require to analyze the curve patterns of multiple joints or segments. Alternatively, the study of the 

body center of mass motion and mechanical energy via the individual limb method have been shown 

to provide synthetic information regarding the gait of people with lower limb amputation, although at 

the cost of complexification of interpretation (evaluating the body center of mass motion being less 

tangible than that of a physical point of the body, such as the knee joint).  

2.3.3. Performance assessment parameters 

Motion performance can be evaluated using criteria related to the quality and the efficiency of the 

locomotor act. In this thesis, the ŶotioŶ of ͞gait ƋualitǇ͟ will be used to describe parameters relative 

to gait symmetry (homogenous solicitation of the prosthetic and the sound limb, aesthetic gait) and to 

gait balance, while the ŶotioŶ of ͞gait effiĐieŶĐǇ͟ ǁill ďe ƌelated to the ŵetaďoliĐ Đost of aŵďulatioŶ, 
cognitive demand associated with walking and to the actual activity performance in the community 

(walking speed, activity level and participation). 

a. Gait quality indices  

i. Symmetry  

Gait symmetry is relative to the similarity of successive contralateral limb strides or steps. 

Symmetry indices are generally computed to characterize three aspects of gait: limb loading (loading 

symmetry), step length (spatial symmetry) and stance phase duration (temporal symmetry - see Figure 

7). Prosthetic gait has been shown to be highly asymmetrical with, in general, more time spent in 

stance phase on the intact limb than on the prosthetic limb, longer prosthetic steps than contralateral 

steps and higher loading of the intact limb than the prosthetic limb (Jaegers et al., 1995; Nolan et al., 
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2003; Goujon, 2006; Sagawa et al., 2011; Roerdink et al., 2012; Cutti et al., 2018). Asymmetry has been 

also shown to be more variable than in people without orthopedic disorders (Dingwell et al., 1996; 

Nolan et al., 2003; Hof et al., 2007). Visual and auditive feedback have been shown to improve stance 

time and loading symmetry in people with transtibial amputation (Dingwell et al., 1996; Yang et al., 

2012) and thus constitute an interesting track for rehabilitation. Indeed, spatiotemporal and loading 

asymmetries may lead to long-term comorbidities and are thus targeted in rehabilitation protocols 

(Nolan et al., 2003; Loiret, 2016; Villa, Bascou, et al., 2017). However, several authors have 

hypothesized that step length and duration asymmetries might be implemented for increasing gait 

stability, and that functional rehabilitation should not solely focus on the restoration of spatiotemporal 

symmetry (Hof et al., 2007; Roerdink et al., 2012; Hak et al., 2014). Similarly, in a recent study based 

on the gait of only two people with knee disarticulation, stance duration asymmetry was assumed to 

be an efficient compensation to insufficient prosthetic push off and work generation (Mohamed et al., 

2019). Therefore, while such global parameters are useful to rapidly assess the overall gait 

performance or quality, they do not provide an understanding of the underlying mechanical causes. 

These parameters should thus be completed with mechanical descriptors in order to both quantify and 

mitigate gait deviations. 

Gait symmetry can also be quantified through body center of mass-derived parameters. Indeed, 

various abnormal kinematic patterns (for instance, in knee flexion) are reflected in an asymmetric 

pattern of the body center of mass motion (Tesio et al., 1998; Agrawal et al., 2009; Askew et al., 2019; 

Strutzenberger et al., 2019) or in the external work done by each lower-limb (Agrawal et al., 2009; 

Houdijk et al., 2009; Bonnet et al., 2014; Askew et al., 2019). Asymmetry in external work has been 

shown to discriminate different prosthetic feet (Agrawal et al., 2009; Askew et al., 2019) and to be 

positively correlated with the metabolic cost of walking (Askew et al., 2019).  

ii. Balance   

The teƌŵ ͞gait staďilitǇ͟, ǁidelǇ fouŶd iŶ the liteƌatuƌe oŶ huŵaŶ ŵotioŶ aŶalǇsis, is ofteŶ used to 
desĐƌiďe a ͞gait that does Ŷot lead to fall͟, ǁhile staďilitǇ, iŶ a ŵeĐhaŶiĐal staŶdpoiŶt, relates to the 

ability of a system to develop forces or moments in order to restore a state of equilibrium after a 

perturbation (Bruijn et al. 2013; Robert 2019). Most paƌaŵeteƌs desĐƌiďiŶg ͞gait staďilitǇ͟ iŶ the 
literature are in fact parameters which aim at quantifying the risk of falling while parameters describing 

the mechanisms implemented by the body as a whole (seen as a mechanical system) preventing the 

occurrence of falling following a perturbation are rarely described. In what follows, the terminology 

͞ďalaŶĐe control͟ ǁill ďe used to describe parameters associated with the risk of falling during gait. 

People with lower-limb amputation are more prone to falling than the asymptomatic age-matched 

population. One in two people with transfemoral amputation reports falling at least once a year, and 

a third of lower-limb amputees report avoiding activities due to fear of falling (Miller et al. 2001; 

Frossard et al. 2010). Thus, quantifying and understanding the underlying mechanisms of balance is 

paramount for the rehabilitation of lower-limb amputees and for prostheses design. 

Postural balance 

Postural balance is studied in gait analysis laboratories using force-platform derived 

measurements, such as the center of pressure sway during stance (Winter, 1995). Control of balance 

during stance relies on the processing of multiple sensory inputs and results in sway that increases 

when some sensory inputs are disrupted (Najafi et al., 2012), for instance when somatosensory 
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feedback is impaired, such as in people with amputation. The latter thus exhibit a wider center of 

pressure path at the intact foot than at the prosthetic foot or compared to sound subjects. New 

generation feet provide control over the ankle mobility and are thus assumed to increase balance. The 

benefits of new generation prosthetic feet were recently investigated through the analysis of center 

of pressure excursions while standing on level ground and in slopes (Thomas-Pohl et al., 2019). 

Balance control during gait 

In 2005, Hof and coworkers have introduced new parameters to quantify dynamic stability: the 

͞eǆtƌapolated ĐeŶteƌ of ŵass͟ aŶd ͞ŵaƌgiŶ of staďilitǇ͟ (Figure 11). These notions allow to expand to 

gait the stability criterion defined in stance (according to which the projection of the body center of 

mass should lie within the base of support) by taking into account the velocity of the body center of 

mass (Hof et al., 2005). Since then, multiple studies have focused on the study of these parameters, in 

particular in people with lower-limb amputation who were shown to have a reduced margin of stability 

compared to asymptomatic people (Hof et al., 2007; Hak et al., 2014). Using the concept of the 

extrapolated center of mass, the authors demonstrated that decreasing step length allows to 

compensate for the reduction of margin of stability induced by the decreasing velocity of the body 

center of mass following prosthetic push off (Hak et al., 2014). Therefore, they conclude that step 

length asymmetry might be a functional adjustment for increased stability.  

b. Gait efficiency 

i. Metabolic energy cost 

Energy expenditure allows to measure gait efficiency. Indeed, locomotion aims at translating the 

body in space while minimizing energy expenditure (Saunders et al., 1953; Waters and Mulroy, 1999). 

Metabolic energy expenditure is estimated through the measure of oxygen uptake during the steady 

state of a physical task (Waters et al., 1976; Perry, 1992). Metabolic energy rate is the amount of 

energy demand per unit time and was shown to be similar for people with lower-limb amputation and 

sound subjects, except for people with vascular transfemoral amputation (Waters et al., 1976). 

However, metabolic energy cost, computed as the ratio of metabolic energy rate per walking speed, 

was shown to increase with amputation level for a given etiology and with etiology for a given 

amputation level (Waters et al., 1976; Waters and Mulroy, 1999; Schmalz et al., 2002; Detrembleur et 

al., 2005). This raise in energy expenditure as a function of the walking speed is supposed to be caused 

Figure 11: Definition of the Margin of Stability (MoS) as the backward 

distance between the extrapolated center of mass (xCoM) and the posterior 

limit of the base of support (BoS). The xCoM is calculated as the addition of 

the position of the center of mass (CoM) and its velocity (vCoM) divided by 

the eigenfrequency of an inverted pendulum of length l (leg length). From 

(Hak et al., 2014) 
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by kinematic compensations and by the increase of power generated by the residual and sound joints 

to cope with the reduced or the absence of power provided by prosthetic components (Sagawa et al., 

2011; Piazza et al., 2017; Askew et al., 2019). Reduction of metabolic energy cost following 

rehabilitation or modifications to prosthetic components is used to demonstrate the efficiency of an 

intervention or a new prosthetic design (Waters and Mulroy, 1999; Schmalz et al., 2002; Askew et al., 

2019). Indirect calorimetry is not always available in motion analysis laboratories (Bonnet et al., 2014). 

Furthermore, metabolic energy consumption is highly dependent on physiological parameters 

(gender, obesity, fatigue, digestioŶ…Ϳ and its measure with spirometry devices suffers from calibration 

errors which might alter sensitivity (Ghillebert et al., 2019). Therefore, the computation of mechanical 

energy, very accessible in laboratory-based motion analysis, can allow to retrieve the mechanical 

determinants of metabolic energy (van de Walle et al., 2012). In particular, the work done during step-

to-step transition was shown to correlate well and to partially explain metabolic energy cost (Donelan 

et al., 2002a; Houdijk et al., 2009).  

ii. Cognitive load 

While self-reports and questionnaires indicate that prosthetic gait is often associated with a 

significant cognitive load (Miller et al., 2001; Morgan et al., 2018), the dual-task paradigm 

implemented in research hasŶ͛t alloǁed to consistently refute or accept this hypothesis (Morgan et 

al., 2018). In recent studies, cognitive and gait performance were observed to significantly decrease in 

both experienced and newly prosthetic ambulators during dual tasks (Frengopoulos et al., 2018; 

Hunter et al., 2018), confirming that walking represent a cognitive load in people with lower-limb 

amputation. However, based on the literature, concurrent dual task while walking didŶ͛t diffeƌeŶtiallǇ 
affect people with amputation and sound participants (Morgan et al., 2018). In a recent review 

investigating dual task paradigm in people with lower-limb amputation, the authors suggest that in-

lab level walking may not be sufficiently challenging to be representative of the cognitive load 

encountered in daily living and that the chosen outcome measures (gait velocity, spatiotemporal and 

loading asymmetry, step width) may not be sensitive enough to discriminate groups (Morgan et al., 

2018). 

iii. Activity level 

Physical activity level in the community cannot be assessed in motion analysis laboratories using 

conventional measuring systems. However, gait walking speed has been shown to increase with the K-

level which is used to predict community-based mobility (Batten et al. 2019). This global functional 

outcome is quantified both in research settings and in rehabilitation due to its reliability, sensitivity 

and ability to predict overall health status and quality of life (Fritz and Lusardi, 2009). The lower self-

selected speed of people with lower-limb amputation compared to sound subjects might therefore be 

interpreted as decreased ambulatory performance (Frengopoulos et al., 2018). Furthermore, 

comfortable walking speed can be seen as a measure of gait efficiency loss (Waters and Mulroy, 1999): 

indeed, it seems to be regulated in people with lower-limb amputation so that metabolic energy rate 

of walking remains in the range of that of sound subjects (Waters et al., 1976; Waters and Mulroy, 

1999).  
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2.4. Limitations of clinical and laboratory-based gait analysis and perspectives 

The aim of this chapter was to provide an overview of the available tools/parameters for gait 

assessment of people with lower-limb amputation during the rehabilitation and subsequent follow-up 

visits in clinics and in motion analysis laboratories. Objective gait analysis allows to accurately 

characterize and evaluate gait function and performance. However, administering laboratory-based 

biomechanical gait analysis in clinical practice is not always possible due to high system costs, time-

consuming protocols and analysis complexity (Perry, 1992; Calmels et al., 2002; Cuesta-Vargas et al., 

2010; Loiret et al., 2019). Thus, clinicians mostly rely on their experienced eyes and on validated clinical 

tests to identify the degree of impairment of their patients, to evaluate their progression or to plan 

new rehabilitation strategies. Therefore, few quantitative data are available to support the assessment 

of the functional rehabilitation of people with lower-limb amputation.  

In the last two decades, miniaturization of sensing technologies and advancement in processing 

techniques and communication protocols have made wearable technology accessible to gait analysis 

(Wong et al., 2007, 2015). Wearable sensors have the advantages of being portable – they can be worn 

by patients without hindering or constraining their motion – and are not limited to a predefined 

acquisition volume, which allows recording data outside of laboratories. Therefore, their use in clinical 

and research gait analysis offers multiple perspectives such as ecological measurements, simplified 

protocols, real-time feedback, long-term and remote monitoring or home-based and telerehabilitation 

opportunities (Hafner and Sanders, 2014; Iosa, Picerno, et al., 2016; Villa, Bascou, et al., 2017).  
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Chapter 3 – Wearable motion analysis 

As introduced in the previous section, wearable sensors are a very attractive alternative to 

laboratory-based instruments for gait analysis. However, they differ from gold standard optical motion 

capture systems and force plates by the nature of the measured data. Therefore, obtaining relevant 

gait descriptors with wearable sensors may not be straightforward (Cutti et al., 2015; Iosa, Picerno, et 

al., 2016). The objective of this chapter is to introduce the most common wearable sensor technologies 

and to provide an overview of their outputs. This will allow to introduce the challenges faced regarding 

the use of wearable sensors for the rehabilitation of people with lower-limb amputation and therefore, 

the issues that will be addressed in this thesis. 

3.1. Presentation of wearable sensors  

Different sensing technologies have been described in the literature on wearable gait analysis. 

They include, but are not limited to, electrogoniometers, magnetic and inertial sensors 

(accelerometers, gyroscope, or their combination – also known as inertial measurement units or 

magneto-inertial measurement units when a magnetometer is included), pressure sensors, force 

sensors, surface EMGs, and sensing fabric (Wong et al., 2007, 2015; Patel et al., 2012; Muro-de-la-

Herran et al., 2014). Table 1 summarizes their main properties and applications, as well as challenges 

associated with their use. 

Inertial sensors consist in the most used technology in wearable gait analysis (Wong et al., 2007, 

2015; Muro-de-la-Herran et al., 2014). For instance, 62.5% of the published literature on wearable gait 

analysis in 2012-2013 dealt with inertial sensors (Muro-de-la-Herran et al., 2014). Together with 

pressure insoles, inertial sensors are the wearable technology the more susceptible to capture 

kinematic and kinetic parameters that are usually retrieved using optical motion capture and force 

plate systems (Muro-de-la-Herran et al., 2014). Therefore, the next two paragraphs will provide a more 

detailed description of inertial and pressure sensors and the literature review in section 3.2 will focus 

on gait descriptors that can be measured or estimated using these two categories of sensors.  
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Table 1: Measured quantities and challenges   encountered when using wearable sensors 

MIMU = (Magneto-)Inertial Measurement Unit; ECG = Electro-cardiogram 

Sensor 
Measured 

quantity 
Estimated / Computed data Biomechanical model Challenges 

Electrogoniometer Flexion angle 
Relative joint angle (Muro-de-la-
Herran et al., 2014) 

/ 

- High sensitivity, requires careful placement (Wong et al., 2015) 

- Complex setup procedures (Wong et al., 2015) 

- May hinder motion (Wong et al., 2015) 

In
e

rt
ia

l 
se

n
so

rs
 

Accelerometer 
Linear 
acceleration 

- Segment velocity, displacement 
(Muro-de-la-Herran et al., 2014) 

/ 

- Noisy measurement (Wong et al., 2015) 
- Integration drift (Iosa, Picerno, et al., 2016) ; might be 
compensated for using kinematic models 
- Sensor-to-segment calibration required (Wong et al., 2015; 
Poitras et al., 2019) 

- Joint angle (Iosa, Picerno, et al., 
2016) in static, posture (Redfield et 

al., 2013b; Iosa, Picerno, et al., 
2016)  

- Gait event detection and 
spatiotemporal parameters (Pacini 
Panebianco et al., 2018) 
- Number of steps (Patel et al., 
2012; Benson et al., 2018) 

Kinematic models for spatial 
parameters 

- Gait alterations and low speed may compromise the 
identification of events from acceleration signals in pathological 
gait (Trojaniello, Cereatti and Della Croce, 2014) 

- Gait stability (Guaitolini et al., 
2019) 

Inverted pendulum model: 
extrapolated center of mass 
theory 

- Integration drift (Iosa, Picerno, et al., 2016) 
- Orientation inconsistency (Picerno et al., 2011; Guaitolini et al., 
2019) 

- Fall-risk prediction & balance 
assessment (Wong et al., 2007; Iosa, 
Picerno, et al., 2016; Ghislieri et al., 
2019) 

/ 
- Removal of gravity necessary (orientation) (Benson et al., 2018) 
- Lack of information regarding sensitivity (Ghislieri et al., 2019) 
and validity of original parameters (Benson et al., 2018) 

- Symmetry indices (Iosa, Picerno, et 

al., 2016; Benson et al., 2018) 
/ - Original parameters that may lack validity (Benson et al., 2018) 
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Sensor 
Measured 

quantity 
Estimated / Computed data Biomechanical model Challenges 

- Energy expenditure (Ladlow et al., 
2017) 

Regression between 
measured acceleration, 
physiological parameters & 
oxygen consumption 

- Regression equations are specific to populations (Ladlow et al., 
2017) 

Gyroscope Angular velocity 

- Segment angular acceleration, 
orientation 

Kinematic models might be 
used to limit drift 

- Integration drift (Iosa, Picerno, et al., 2016)  
- Sensor-to-segment calibration required (Wong et al., 2015; 
Poitras et al., 2019) - Joint angles (Poitras et al., 2019) 

- Gait event detection and 
spatiotemporal parameters (Pacini 
Panebianco et al., 2018) 

Kinematic model for spatial 
parameters 

- Gait alterations may compromise the identification of  events 
from gyroscope signals in pathological gait (Jasiewicz et al., 2006) 
- Symmetry assumption for spatial parameters estimation 
(Aminian et al., 2002) 

MIMU 

Linear 
acceleration, 
angular velocity 
(and magnetic 
field) 

Same as accelerometer and 

gyroscope  
/ 

- Easy set up (Wong et al. 2015) 
- May require complex algorithms (Muro-de-la-Herran et al., 
2014) 
- Sensitive to magnetic disturbances when magnetometer is 
included (Picerno et al., 2011; Wong et al., 2015) +  

- Walking speed (Li et al., 2010; 
Benson et al., 2018) 

Kinematic model - Integration drift (Iosa, Picerno, et al., 2016) 

- Ground reaction forces 
(Shahabpoor and Pavic, 2017; 
Ancillao et al., 2018) 

Inertial model + force 
distribution between feet 
during double stance 

- Double stance indetermination (Shahabpoor and Pavic, 2017; 
Ancillao et al., 2018) 

- Articular joints and moments 
(Karatsidis et al., 2017) 

Inertial model + kinematic 
chain + contact detection 

  

Force sensor 3D force 3D GRF (Liu et al., 2011) / 
- Cumbersome to wear (Guo et al., 2017; Ancillao et al., 2018) 

- Modification of footwear (Ancillao et al., 2018) 
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Sensor 
Measured 

quantity 
Estimated / Computed data Biomechanical model Challenges 

P
re

ss
u

re
 s

e
n

so
rs

 

Foot switch 
(force-sensing 

resistors) 
Pressure applied 

Gait event detection / cycle 
segmentation (Maqbool et al., 2017) 

/ - Nonlinear response (Wong et al., 2015) 

Pressure 
insoles 

Pressure applied 

- Gait event detection (Loiret et al., 
2019) 
- Temporal parameters, asymmetry 
in stance phase duration (Cutti et 

al., 2018; Loiret et al., 2019) 

/ 
- Requiring size adapted to patient's shoes (Wong et al., 2015) 
- Requiring calibration for threshold-based gait event detection 
(Loiret et al., 2019) 

- Pressure distribution (Wong et al., 
2015), center of pressure path 

/ 
- Wear (Wong et al., 2015) 
- Requiring calibration to mitigate wear effects / hysteresis (Abdul 
Razak et al., 2012; Wong et al., 2015) 

- Stability measures derived from 
pressure distribution (Howcroft, 
Lemaire, et al., 2016) 

- Vertical component of the ground 
reaction force, asymmetry in limb 
loading (Cutti et al., 2018; Loiret et 

al., 2019)  

/ 
 - Requiring subject-specific calibration (Wong et al., 2015) 
- Complex algorithm (nonlinearities) to derive force estimations 
(Wong et al., 2015) 

Surface EMG 
Muscle 
activation 
patterns 

- Muscle activity and muscle fatigue  
(Frigo and Crenna, 2009) 

/ 
- Highly dependent on placement (training required) (Wong et al., 
2015) 
- Only superficial muscles can be measured (Wong et al., 2015) 
- Motion hindrance (Frigo and Crenna, 2009; Wong et al., 2015) 
- Cross-talk of muscles / interferences (Frigo and Crenna, 2009; 
Wong et al., 2015) 

- Motion intention (Wentink et al., 
2013; Wong et al., 2015) 

/ 

Sensing fabric 

Strain 
measurement 

- Segment orientation (Wong et al., 
2007; Fleury et al., 2015) 

 / - Sensitivity to temperature and humidity (Wong et al., 2007; 
Fleury et al., 2015) 
- Motion artifact (Fleury et al., 2015) 
- User discomfort (Fleury et al., 2015) ECG  

- Physiological parameters (Patel et 

al., 2012; Fleury et al., 2015) 
/ 

Ultrasonic sensor 
Distance 
between sensors 

- Stride length, step length (Muro-
de-la-Herran et al., 2014) 

/ 
- Sensitivity to sensor placement (Muro-de-la-Herran et al., 2014) 
- Low accuracy compared to inertial sensors (Wong et al., 2015) 
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3.1.1. Inertial sensors 

Inertial measurement units (IMUs) consist of a combination of uni-, two- or three-axial 

orthogonally mounted accelerometer and gyroscope in a single case. They may also include a 

magnetometer; in that case they are geŶeƌallǇ Đalled ͞ MagŶeto-Inertial MeasuƌeŵeŶt UŶits͟ ;MIMUs). 

M/IMUs provide the values of angular velocity, linear acceleration and – when magnetometers are 

included – magnetic field components along the axes of the orthonormal coordinate system of the 

MIMU case (referred to as the ͞MIMU local frame͟ iŶ this thesis). Each sensor included in a MIMU 

provides information about the 3D orientation of the MIMU local frame in a global Earth-fixed frame 

(Figure 12): accelerometers output can be used to determine the inclination of the sensor case 

compared to gravity, angular velocities provided by gyroscopes can be integrated to orientation angles 

and, when available, magnetic field measures can provide the heading, or magnetic North direction. 

However, each orientation estimate is affected by errors and must therefore be used under specific 

assumptions. Indeed, the accelerometer output contains both linear accelerations due to sensor 

motion and to gravity. Accelerometer-derived orientation estimates are thus more reliable in static or 

slow-motion conditions, when the gravity component can be isolated (Sabatini, 2011; Iosa, Picerno, et 

al., 2016). Even in such conditions, accelerometers may only be used to estimate the inclination 

relative to the gravity vector, but not relative to the heading. Magnetometer readings can be used as 

a complementary information but are perturbated in the presence of ferromagnetic materials (Picerno 

et al., 2011; Wong et al., 2015; Iosa, Picerno, et al., 2016). Conversely, gyroscopic data can be 

integrated to provide relative 3D orientation. However, gyroscope signals are generally biased, which 

results in drift when integrating angular velocity (Bergamini et al., 2014). Sensor fusion is therefore 

used to combine the advantages and mitigate the weaknesses of each sensor so as to provide accurate 

estimates of the orientation of the MIMU local frame relative to a global Earth-fixed frame (Bergamini 

et al., 2014; Ligorio et al., 2016; Poitras et al., 2019). Two main categories of fusion filters have been 

implemented: stochastic and complementary filters (Bergamini et al., 2014). Kalman filters, which 

belong to the first category, use the measured signals at an instant and a representation of each sensor 

and its associated noise to predict the orientation at a further instant. The predicted and measured 

orientation are then fused. Complementary filters take advantage of the specificities of each sensor͛s 

Figure 12: MIMU local frame and global Earth-fixed reference frame sensed 

by the MIMU (vertical z-axis aligned with gravity (g), x-axis aligned with the 

magnetic North) 
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spectral characteristics (known a priori) to estimate the orientation, without modeling the noise 

characteristics of each sensor (Figure 13). For instance, they associate more trust to gyroscope 

readings in the high frequency domain and more trust to accelerometer/magnetometer readings in 

the low frequency range (Lopez-Nava and Angelica, 2016). Kalman filters and complementary filters 

were shown to equally mitigate the integration drift in locomotion tasks lasting up to 3 minutes 

(Bergamini et al., 2014). Most of the commercially available MIMUs integrate a fusion filter.  

3.1.2. Pressure insoles 

Various sensing technologies are used in 

pressure insoles, the most common being 

resistive (as in foot switches), capacitive, 

piezoelectric and piezoresistive sensors (Abdul 

Razak et al., 2012). Depending on the technology 

and number of embedded sensors, pressure 

insoles provide either the pressure distribution or 

the normal load applied on the insole or both 

(Abdul Razak et al., 2012; Wong et al., 2015; Loiret 

et al., 2019) (Figure 14). Insole designs whose 

output is the pressure distribution may also 

provide the path of the center of pressure and 

allow to estimate the normal component of the 

ground reaction force, which is non-linearly 

related to the applied pressure (Wong et al., 

2015). Whatever the design, insoles have to be 

rigorously calibrated before interpreting force 

data (Wong et al., 2015; Loiret et al., 2019).  
Figure 14: Example of pressure insoles output (from 

https://peakpodiatry.com.au) 

Figure 13: Working principle of complementary filters. Estimation of MIMU local frame orientation (roll φ, pitch θ, yaw ψ) in 

a global Earth-fixed reference frame from triaxial accelerometer ሺܽ௫ , ܽ௬ , ܽ௭ሻ, gyroscope  ሺ𝑔௫ , 𝑔௬ , 𝑔௭ሻ and magnetometer 

(݉௫ , ݉௬, ݉௭ሻ readngs. Taken from (Amin et al., 2014) 
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3.2. Outcome parameters derived from wearable sensors 

This section aims at describing to which extent pressure insoles and inertial measurement units 

can be used to monitor functional and performance outcomes of people with lower-limb amputation.  

3.2.1. Spatiotemporal parameters 

As reported in section 2.3.1, spatiotemporal parameters are paramount to describe gait function. 

Temporal parameters can be directly derived from gait events detection. This can be achieved with 

insoles, using a threshold on the pressure or force detected (Maqbool et al., 2015; Loiret et al., 2019), 

or with inertial sensors, by identifying key features within the output signals. A large body of literature 

has focused on inertial sensors-based gait events detection (Pacini Panebianco et al., 2018), with some 

attempts in comparison (Trojaniello, Cereatti and Della Croce, 2014; Trojaniello et al., 2015; Storm et 

al., 2016; Pacini Panebianco et al., 2018) and few applications in people with lower-limb amputation 

(Selles et al., 2005; Maqbool et al., 2017; Ledoux, 2018). It should be noted that alterations in the gait 

pattern of people with lower-limb amputation or other pathologies may compromise the validity of 

the algorithms that were not developed for this specific population (Trojaniello et al., 2015; Tunca et 

al., 2017). 

While both inertial sensors and pressure insoles can be used for temporal parameters assessment, 

only inertial sensors allow to quantify spatial parameters. Two different approaches have been 

reported in the literature. In any case, the detection of either one or several events pertaining to the 

gait cycle is paramount.  

The first approach consists in defining a kinematic model of gait (Figure 15). Two models based on 

a single inverted pendulum have been proposed for people with lower limb amputation from a 

gyroscope located on the thigh (Miyazaki, 1997) or an accelerometer located at the lower-back (Zijlstra 

and Hof, 2003; Houdijk et al., 2008). The accuracy of prosthetic and sound step length estimates was 

not discussed (Miyazaki, 1997; Houdijk et al., 2008). Aminian and coworkers have developed a more 

Figure 15: From left to right: Miyazaki's gait kinematic model (Miyazaki, 1997) ; Aminian's kinematic model (Aminian et 

al., 2002) ; Inverted pendulum model used by Zijlstra and Hof (Zijlstra and Hof, 2003) to estimate step length. Image 

from Dauriac, 2018 
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complex model including both shanks and thighs which allows gait event detection using three 

gyroscopes (Aminian et al., 2002). Swing phase is modeled as a double pendulum while stance phase is 

modeled as an inverted pendulum model. Integration of angular rates of the gyroscopes and 

knowledge of thighs and shanks lengths enable to obtain an estimate of stride length by trigonometry. 

All the developed models assume that gait is symmetrical, which is not the case in people with lower-

limb amputation, especially those undergoing rehabilitation. 

The second methodological approach to obtain spatial parameters with inertial sensors consists in 

the direct integration of the anteroposterior acceleration measured at the trunk (Köse et al., 2012), 

shank (Li et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018) or foot (Sabatini et 

al., 2005; Mariani et al., 2010) between successive gait events. Hypotheses on the velocity of the foot 

(Sabatini et al., 2005; Jasiewicz et al., 2006; Mariani et al., 2010) or shank (Li et al., 2010; Yang and Li, 

2012a; Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018) at specific instants of the cycle 

have to be assumed in order to correct the integration drift. Since the relative position of two inertial 

sensors is not known, methods based on sensors mounted on shank or foot only provide spatial 

parameters relative to strides, but not to steps. Conversely, using a waist-mounted MIMU, Köse and 

coworkers obtained an estimate of step length, with the assumption of equal speed at the beginning 

and end of the gait cycle (Köse et al., 2012). None of these methods have been validated on people 

with lower-limb amputation.  

3.2.2. Function assessment parameters 

Function assessment parameters can be divided in kinematic and kinetic gait descriptors. The first 

category of parameters can exclusively be estimated with MIMUs, while both pressure and inertial 

sensors can be used to estimate the kinetics of human motion using wearable sensors. 

a. Kinematic parameters 

There is an extensive literature on the validity of using MIMUs to estimate kinematic parameters 

such as segment orientation, joint angles and range of motion (Picerno et al., 2008; Cuesta-Vargas et 

al., 2010; Seel et al., 2014; Lebel et al., 2017; Poitras et al., 2019). Indeed, since sensors included in a 

MIMU can be fused to estimate the orientation of the MIMU local frame in a global Earth-fixed 

reference frame (see section 3.1.1), MIMUs have quickly emerged as a promising wearable alternative 

to optical motion capture systems (Wong et al., 2007, 2015; Iosa, Picerno, et al., 2016). However, noisy 

measurements and drift entailed in the numerical integration of sensor data does not make the 

estimation of such parameters trivial (Bergamini et al., 2014; Iosa, Picerno, et al., 2016). Furthermore, 

it must be noted that, to derive clinically-relevant information, the orientation of MIMU local frames 

with respect to the underlying segments, also known as sensor-to-segment alignment, has to be 

obtained (Iosa, Picerno, et al., 2016; Picerno, 2017; Poitras et al., 2019). 

Four types of sensor-to-segment calibration methods have therefore been proposed in the 

literature: manual, static, functional and anatomical calibrations (Figure 16) (Pacher et al., 2020). 

Manual calibration procedures consist in aligning the MIMUs case (and hence the MIMU local frame) 

with at least one segment axis. Although easy to set-up and time-efficient, this method is highly 

dependent on the operator and its reliability has not been assessed (Pacher et al., 2020). For static 

calibration, the participant is required to take specific static postures in which a segment axis is 

assumed to be aligned with the gravity vector or joint angles are assumed to be known (in general: 0° 
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or 90°). This hypothesis may be a bit strong, especially in pathological gait (Zabat et al., 2019). Cutti 

and coworkers have proposed to measure the residual joint angles using a goniometer (Cutti et al., 

2010) to the cost of increased calibration duration (Pacher et al., 2020). Functional calibrations require 

the participants to realize single-plane rotations in order to estimate the segment axis in the MIMU 

frame. For applications in pathological gait, passive motions can be induced by an operator (Cutti et 

al., 2010; Pacher et al., 2020). These methods are more complex to set up as the operators must ensure 

that there is no out-of-plane motion (Pacher et al., 2020) and depend on the biomechanical model 

assumed to represent joint motion (Poitras et al., 2019). Finally, anatomical calibration relies on the 

determination of anatomical landmarks to construct anatomical frames similarly  to what is done in 

optical motion capture analysis (Picerno et al., 2008). Due to the complex additional instrument and 

longer set up, this calibration method is less prevalent in the literature (Pacher et al., 2020). Sensor-

to-segment calibration methods have been developed and validated for different populations, tasks, 

and sensor locations. Therefore, in the absence of comparative studies, there is currently no consensus 

on the most adapted method (Pacher et al., 2020).  

Figure 16: Example of sensor-to-segment calibration procedures 

a. Static calibration (taken from (Liu et al., 2019));  

b. Functional calibration (taken from (Seel et al., 2014)), 

c. Anatomical calibration (taken from (Picerno et al., 2008)) 
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Assuming segments to be rigid solids, segment-to-

sensor calibration provides the constant transformation 

between MIMUs and anatomical frames and, thus, allows to 

deduce segment orientations and joint angles in the global 

Earth-fixed reference frame associated to MIMUs (Figure 

17). The validity of MIMU-based joint angles and segment 

orientations appear to depend on the joint or segment 

considered as well as on the task performed (Cuesta-Vargas 

et al., 2010; Lebel et al., 2017; Poitras et al., 2019). 

Furthermore, joint angles appear to be less accurately 

estimated than segment orientations (Lebel et al., 2017; 

Poitras et al., 2019), possibly due to summation of 

orientation errors (Lebel et al., 2017) and to soft-tissue 

artefact impacting MIMUs alignments on segments of both 

sides of a joint (Zabat et al., 2019). This could also result 

from inconsistencies between the global Earth-fixed 

reference frames sensed by different MIMUs (Picerno et al., 2011), in particular in the presence of 

non-homogeneous magnetic field (Picerno et al., 2008; Lebel et al., 2018). Nevertheless, while 

conflicting evidence has been reported for upper-limbs and complex motions, fair-to-excellent 

reliability and strong validity has been reported in sound subjects for joint angles estimated during 

walking (Poitras et al., 2019). In particular, flexion/extension angles are best estimated, probably due 

to the higher range of motion of joints and segments in the sagittal plane while walking (Iosa, Picerno, 

et al., 2016; Poitras et al., 2019). Most of the literature on MIMU-based kinematics have focused on 

asymptomatic subjects (Iosa, Picerno, et al., 2016) and methods have rarely been validated for people 

with pathological gait (Poitras et al., 2019) or adopted in clinical research (Iosa, Picerno, et al., 2016). 

It is to be noted that Cutti and coworkers have devised a protocol for kinematic gait analysis of people 

with lower-limb amputation (Cutti et al., 2010). While reliability has been reported in people with 

transtibial amputation, construct validity was not investigated (Cutti et al., 2015). Furthermore, equal 

to higher accuracy levels were reported for lower-limb flexion/extension angles estimated visually by 

orthopedic surgeons and other clinical specialists in quasi-static conditions (Kianifar et al., 2019). 

Therefore, although MIMUs appear promising, more studies are required to confirm the added value 

of MIMUs for dynamic joint angle assessment in the clinical field.  

b. Kinetic parameters 

MIMUs and pressure insoles have also been investigated for the estimation of ground reaction 

forces (Shahabpoor and Pavic, 2017; Ancillao et al., 2018). Pressure insoles only provide the vertical 

component of the ground reaction force, while MIMUs are susceptible to allow the retrieval of all three 

components. Using single or multi-segment biomechanical models, MIMUs have been used to 

estimate the body center of mass acceleration (Karatsidis et al., 2017; Shahabpoor et al., 2018; 

Mohamed Refai et al., 2020). From there, application of the NeǁtoŶ͛s seĐoŶd laǁ leads to the 

estimation of the total ground reaction force, in the absence of other external forces (for instance, 

when carrying a load). The vertical component of ground reaction force was shown to be accurately 

estimated in most cases, but poorer validity was found for mediolateral and anteroposterior 

Figure 17: Knee joint angle estimation using a 

thigh and a shank MIMU. Taken from (Favre et 

al., 2008). 
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components (Ancillao et al., 2018). Furthermore, only few models have been proposed to distribute 

the force between the right and left foot during the double stance of the gait cycle of asymptomatic 

subjects (Ren et al., 2008; Villeger et al., 2014; Yang and Mao, 2015; Ancillao et al., 2018; Erfan 

Shahabpoor and Pavic, 2018), with some attempts using machine learning approaches (Leporace et 

al., 2015; Tan et al., 2019; Arumukhom Revi et al., 2020).  

Several attempts to estimate intersegmental forces and moments in asymptomatic participants 

have been reported combining kinematics and ground reaction forces estimated with MIMUs (Yang 

and Mao, 2015; Faber et al., 2016; Karatsidis et al., 2017). One study reported the joint use of MIMUs 

and insoles for the estimation of intersegmental forces and moments in asymptomatic subjects 

(Khurelbaatar et al., 2015) and another proposed an inverse dynamic approach based on inertial 

sensing and musculoskeletal modeling (Karatsidis et al., 2019). In all studies, poorer accuracy was 

reported for the non-vertical components of the forces and non-sagittal components of the moments.  

Finally, few studies investigated the feasibility of using MIMUs to estimate work or power, with 

limited to poor accuracy achieved (Zijlstra et al., 2010; Pavei et al., 2020). 

3.2.3. Performance assessment parameters 

While MIMUs and insoles may not be as valid as the gold standard for function assessment 

parameters, a large number of applications to monitor locomotion quality and efficiency have emerged 

with wearable sensors. In particular, monitoring of daily-living ambulatory performance and of upright 

balance has been facilitated with the introduction of inertial sensors in the field of motion analysis, 

and original parameters have been proposed for gait quality assessment (Iosa, Picerno, et al., 2016; 

Benson et al., 2018). The following overview of the literature on performance assessment parameters 

aims at identifying those that might be relevant to support the biomechanical and clinical assessment 

of the rehabilitation of people with lower-limb amputation. 

a. Gait quality indices  

i. Symmetry  

Spatiotemporal and loading symmetry have been investigated using both MIMUs and pressure 

insoles. In particular, loading and temporal symmetry can be easily monitored with pressure insoles 

(Nolan et al., 2003; Cutti et al., 2018; Loiret et al., 2019), whose use was validated against force plates 

in people with transfemoral amputation for this specific purpose (Loiret et al., 2019). Regarding 

MIMUs, although a large number of studies have focused on gait events detection and temporal 

parameters quantification (see section 3.2.1), none reported the use of MIMUs to compute a 

symmetry index based on gait cycle temporal parameters.  

However, several parameters based on MIMU signal processing have emerged from the literature 

for symmetry assessment (Benson et al., 2018). Thus, a coefficient based on the autocorrelation of the 

anteroposterior acceleration measured at the trunk has been proposed to quantify temporal 

asymmetry (Moe-Nilssen and Helbostad, 2004). A statistically significant but moderate correlation was 

found between the autocorrelation coefficients and insoles-based temporal asymmetry in people with 

transfemoral amputation (Tura et al., 2010). Similarly, a global parameter has been proposed and 

widely adopted in recent literature to quantify global gait symmetry through spectral analysis of upper-

body acceleration data: the harmonic ratio (Smidt et al., 1971; Menz et al., 2003). Based on the 
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observation that, in asymptomatic gait, the pelvis, trunk and head segments move symmetrically with 

respect to the anatomical planes with a periodicity of a step along the direction of progression and the 

vertical direction, and with a period of a stride (two steps) along the mediolateral direction (Figure 18), 

the Fourier decomposition of the displacement or acceleration signal measured at the upper body 

within each stride is expected to contain even harmonics in the anteroposterior and vertical directions 

and odd harmonics in the mediolateral direction (Smidt et al., 1971; Cappozzo, 1981). These harmonics 

are considered to describe the stereotype pattern of loĐoŵotioŶ, aŶd aƌe Đalled ͚iŶtƌiŶsiĐ͛, ǁhile otheƌ 

harmonics are considered to disturb the iŶheƌeŶt loĐoŵotioŶ patteƌŶ aŶd aƌe Đalled ͚eǆtƌiŶsiĐ͛ 
(Cappozzo, 1981). The harmonic ratio was first introduced as the ratio of the sum of the amplitudes of 

intrinsic harmonics to the sum of the amplitudes of extrinsic harmonics of the acceleration signal 

measured at pelvis level (Smidt et al., 1971; Menz et al., 2003). The improved harmonic ratio (Pasciuto 

et al., 2017) was then introduced to overcome limitations in the calculations of the harmonic ratio 

(Bellanca et al., 2013) and is expressed as a percentage of total symmetry. Both the harmonic and 

improved harmonic ratios have been studied in people with lower-limb amputation (Iosa et al., 2014; 

Pasciuto et al., 2017) and were reported to be related to dynamic balance and fall risk in amputees 

and stroke patients respectively (Iosa et al., 2014; Bergamini et al., 2017).  

ii. Balance  

Postural balance 

Postural balance has been described in gait analysis laboratories using the center of pressure (CoP) 

sway path during stance (see section 2.3.3). The use of wearable sensors such as pressure insoles 

(Lemaire et al., 2006; Kendell et al., 2010) or inertial sensors located near the center of mass (Betker 

et al., 2006; Najafi et al., 2012; Al-Jawad et al., 2013; Noamani et al., 2020) may allow to retrieve the 

sway path of the CoP or of the projection of the body center of mass while standing. Parameters 

Figure 18: Lower-back acceleration of an asymptomatic person while walking with 

right (vertical solid line) and left (vertical dotted line) heel contacts. Taken from 

(Bellanca et al., 2013) 

A – anteroposterior direction; B – vertical direction; C – mediolateral direction 
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extracted from the sway path, such as sway velocity and the lateral or anteroposterior range of the 

CoP can be used to characterize postural balance (Kendell et al., 2010; Al-Jawad et al., 2013; Hsu et al., 

2014) (Figure 19).  

Alternatively, the root-mean-square (RMS) of accelerations, after subtraction of the gravity 

component, were proposed as estimators of postural balance as they quantify the dispersion of the 

accelerations while no motion is supposed to occur (Mancini et al., 2012; Al-Jawad et al., 2013). 

Although not directly comparable to the CoP sway path, the RMS accelerations in the horizontal plane 

were shown to provide reliable and clinically relevant information regarding postural balance in both 

souŶd paƌtiĐipaŶts aŶd paƌtiĐipaŶts ǁith PaƌkiŶsoŶ͛s disease (Mancini et al., 2012; Ghislieri et al., 

2019). 

Balance control during gait 

In the literature, balance control during gait has been defined either as the ability to maintain 

continuous motion despite internal small perturbations (Kendell et al., 2010, 2016; Lamoth et al., 2010; 

Iosa et al., 2014), the ability to minimize oscillations transferred from the lower-limbs to the upper-

body (Iosa et al., 2014; Summa et al., 2016; Bergamini et al., 2017), or, in a simpler manner, as ͞gait 
that do Ŷot lead to fall͟ (Bruijn et al., 2013). A variety of parameters has been proposed in the literature 

to quantify gait balance based on those definitions. They are either parameters derived from the 

center of pressure or center of mass trajectory, parameters extracted from dynamical system theory 

and derived from raw signals, or coefficients directly extracted from root-mean-square (RMS) of 

accelerations. Therefore, two approaches can be identified: a biomechanical-model based approach 

and a signal processing approach which consists in proposing parameters based on the measured 

signals rather than processing the signals to derive a priori defined parameters.  

Regarding the first approach, balance control has been assessed through the analysis of 

parameters derived from the center of pressure (CoP) trajectory estimated with pressure insoles 

(Lemaire et al., 2006; Kendell et al., 2010, 2016). A set of parameters derived from the CoP path were 

proposed to characterize dynamic balance and compensatory adjustments: unexpected 

anteroposterior and mediolateral direction changes or deviations, maximal lateral position of the CoP 

and cell trigger frequency. They have been analyzed in the population with lower-limb amputation and 

were shown to predict classical clinical balance scores (Kendell et al., 2010, 2016; Howcroft, Lemaire, 

et al., 2016). Higher values were obtained for all parameters quantified on the intact limb compared 

Figure 19: Example of body center of mass sway trajectory retrieved with MIMUs for three equilibrium tasks with increasing 

difficulty, from (Al-Jawad et al. 2013) 
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to the prosthetic limb, suggesting that adjustments for balance mostly occur with the intact limb on 

both transtibial and transfemoral amputee groups (Kendell et al., 2010, 2016; Howcroft, Lemaire, et 

al., 2016). This could be expected given that the prosthetic limb lacks functional neuromuscular 

structures due to the amputation. The theory of dynamic margin of stability developed by Hof and 

coworkers has also recently been transposed to wearable gait analysis in asymptomatic young and 

elderly participants (Arvin et al., 2016; Guaitolini et al., 2019; Fino et al., 2020). Only one proof-of-

concept study provided an estimate of the margin of stability that was validated against a gold 

standard, but the method is complex as it requires seven MIMUs and the use of an optical motion 

capture system for sensor-to-segment calibration and anthropometric measurements (Guaitolini et 

al., 2019).  

The second approach implemented for balance control assessment allows to compute parameters 

or indices directly from the signals measured by wearable sensors. This ensures a high accuracy to the 

detriment of hindsight on the retrieved parameters and therefore, a lower understanding of these 

parameters. However, a large number of studies have proposed to analyze dynamic balance using such 

an approach and MIMUs (Benson et al., 2018; Ghislieri et al., 2019) 

The measurement of RMS of upper body accelerations, especially at lower-back level, is one of the 

most reported parameter reported for dynamic balance assessment with inertial sensors (Kavanagh 

and Menz, 2008; Howcroft et al., 2013; Iosa, Picerno, et al., 2016). High RMS of upper body 

accelerations have been shown to be associated with higher risk of falls and decreased balance 

(Howcroft et al., 2015; Summa et al., 2016; Bergamini et al., 2017; Paradisi et al., 2019). Furthermore, 

RMS of upper body accelerations have been shown to discriminate levels of walking ability in people 

with lower-limb amputation (Iosa et al., 2014).  

Attenuation coefficients (Mazzà et al., 

2009), based on the ratio of RMS of 

accelerations measured at successive levels 

of the trunk (pelvis, sternum, head), have 

been computed to quantify the ability to 

minimize upper body accelerations in 

people with transtibial amputation (Paradisi 

et al., 2019) (Figure 20). An amplification of 

the acceleration variability was observed 

from the sternum to the head. The resulting 

head instability might explain the impaired 

balance in people with lower-limb 

amputation (Paradisi et al., 2019). Indeed, 

head stability is essential to ensure a steady 

optical flow and a trustworthy processing of 

vestibular signals which contribute to the 

control of equilibrium (Berthoz and Pozzo, 

1994; Kavanagh and Menz, 2008; Iosa, 

Picerno, et al., 2016; Summa et al., 2016).  

Figure 20: Set-up of IMUs for the analysis of accelerations 

transmission from lower-limbs to the upper body, from (Bergamini et 

al., 2017). IMUs located on the right and left tibia were used for gait 

segmentation 
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The maximum Lyapunov exponent, a parameter extracted from dynamical systems theory, has 

been extensively used in recent years in different populations (Bruijn et al., 2013). This parameter 

characterizes the resistance of a system to internal perturbations (which are, when the system is the 

body, perturbations inherent to the neuromuscular system). It quantifies the divergence rate between 

iŶitiallǇ siŵilaƌ ͞tƌajeĐtoƌies͟ iŶ a ŵulti-dimensional state space, the latter being reconstructed from 

the pelvis accelerations and their time-delayed copies for instance (Figure 21). Larger values of 

Lyapunov exponent correspond to larger variability and lower gait stability. Although the Lyapunov 

exponent could differentiate people with lower-limb amputation from healthy controls (Lamoth et al., 

2010), it might not be sensitive enough to detect changes within a subject (van Schooten et al., 2013) 

during his/her rehabilitation or following a modification of his/her prosthetic devices. Indeed, in a test-

retest study, the smallest detectable difference found between-session was higher than the difference 

between elderly fallers and non-fallers (van Schooten et al., 2013). Thus, this parameter does not seem 

to be adequate to monitor patieŶts͛ pƌogƌessioŶ duƌiŶg theiƌ ƌehaďilitatioŶ. 

  

b. Gait efficiency 

When considering parameters related to gait efficiency (ambulatory capacity in the community, 

energy cost, cognitive demand associated with gait) obtained through wearable protocols, those have 

been exclusively obtained with MIMUs or accelerometers.  

i. Actimetry 

Actimetry literally means the measure of activity. This term encompasses the detection of the 

nature of the activity, but also the estimation of its intensity. Recently, accelerometers have been 

Figure 21: Computation of the Lyapunov exponent, 

from  (van Schooten et al., 2013)  

A) Original time-series (trunk accelerations).  

B) State space reconstruction of the time-series.  

C) Identification of the nearest neighbours for each 

point in the state-space.  

D) The Lyapunov exponent is the slope of the 

logarithmic curve of the divergence between 

neighbouring points. 
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extensively used for the measure of activity, with several commercial solutions developed (Kavanagh 

and Menz, 2008; Hafner and Sanders, 2014). 

In quasi-static situations, accelerometers can be used as inclinometers to estimate the orientation 

of the body segment to which they are attached. Using this principle, accelerometers located on the 

residual limb and/or on the prosthesis of a lower-limb amputee can be used to detect donning and 

doffing of the prosthesis and to classify postures between standing and sitting (Redfield et al., 2013a; 

Gardner et al., 2016). More recently, manufacturers have shown interest in recognizing the situation 

encountered by the prosthetic user (stairs – slopes – level ground) in order to adapt the behavior of 

the prosthesis to its environment (Dauriac, 2018). These classification schemes could also benefit 

rehabilitation, as they could provide reliable information regarding the between-session exercises 

performed by people with amputation (Preece et al., 2009; Hafner and Sanders, 2014).  

Regarding physical activity level, it can first be estimated through the number of steps performed, 

which can be extracted from features in the acceleration signals. In the context of people with lower-

limb amputation, a distal attachment of the accelerometer on the prosthetic limb seems to be more 

appropriate as sharper peaks will be detected than at the pelvis, even if the accelerometer would only 

detect prosthetic steps (Rosenbaum Chou et al., 2009; Redfield et al., 2013a; Dauriac, 2018). Intensity 

levels of the performed physical activity can be estimated based on the amount of steps performed 

during a specific time or based on thresholds on the acceleration magnitude summed over a specific 

time window (Santos-lozano et al., 2014). Furthermore, energy expenditure has been estimated using 

accelerometry: indeed, linear regressions based on acceleration features and anthropomorphic 

measurements have been validated against indirect calorimetry for several populations, including 

lower-limb amputees (Santos-lozano et al., 2014; Ladlow et al., 2017). The most appropriate position 

of the accelerometer was found to be the waist on the side of the residual limb, possibly due to hip 

hiking (Ladlow et al., 2017). However, no further analysis enabled to establish a relationship between 

gait compensations and the increased accuracy of the energy expenditure regression with the 

accelerometer at this location.  

ii. Cognitive load 

In order to evidence higher cognitive demand associated with walking in transfemoral amputee 

gait, Lamoth and coworkers assessed the evolution of the sample entropy of the pelvis acceleration 

signals while performing a dual-task compared to single-task or when walking outdoors on irregular 

terrains compared to indoors (Lamoth et al., 2010). Sample entropy is a measure of similarity between 

two asynchronous time-series taken within the same original time-series (Richman and Randall 

Moorman, 2000). It  was found to decrease while performing a dual-task and to increase while walking 

outdoors, meaning that acceleration signals measured at the pelvis are less repeatable and predictable 

when performing a dual task compared to a single task but more repeatable when walking on irregular 

terrain than indoors. This might be associated with an increased voluntary control of walking in 

constraining conditions, reflecting the need of the person with amputation to concentrate on where 

to position his/her prosthetic leg to prevent falls – and a decreased control when performing 

simultaneously another demanding task (Lamoth et al., 2010). The authors also investigated the scaling 

exponent, which indicates the presence of long-range correlations within a signal through Detrended 

Fluctuation Analysis (DFA). This exponent had been shown to evolve in children as they grow up and 

in people with cognitive impairment (Hausdorff et al., 2001). However, no difference were found 
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between the scaling exponents of experienced transfemoral amputees and asymptomatic people 

(Lamoth et al., 2010). It should be noted that the scaling exponent has not been investigated in people 

with lower-limb amputation during their rehabilitation, when they have not yet completed prosthetic 

gait training. 

3.3. Synthesis of the literature and limitations  

This literature overview on wearable sensors highlighted the diversity of quantitative parameters 

describing locomotion that can be obtained with MIMUs and/or pressure insoles. Attention shall be 

drawn on the fact that most methods to get those parameters were developed and validated on 

healthy subjects, and that they often rely on specific features of MIMUs raw data signals. Thus, they 

might not be directly applicable to people with lower-limb amputation, especially those undergoing 

rehabilitation. Indeed, slow walking speed and three- or four-points gait, such as when using crutches 

or other walking aids, have been shown to modify gait patterns or attenuate signal features.  

Furthermore, due to the nature of the signals obtained with MIMUs and pressure insoles, obtaining 

classical gait analysis parameters such as intersegmental moments, power, or position, is not 

straightforward and may not achieve a sufficient accuracy (section 3.2.2). However, these sensors have 

been extensively used to evaluate locomotion quality through balance and symmetry indices, 

introducing new parameters that are usually not measured in motion laboratory-based gait analysis 

(section 3.2.3). The relevance and validity of these indices for the assessment of lower-limb amputee 

gait quality remains to be verified. 

In the few studies focusing on the gait of people with lower-limb amputation, recruited 

participants were generally experienced walkers, who did not require the use of assisting devices. Only 

two studies were conducted with non-experienced walkers. The first one monitored their daily physical 

activity, in term of number of steps, in the six weeks following the amputation with a device that had 

not been validated in this context (Samuelsen et al., 2017). The second evaluated gait quality of people 

with transtibial and transfemoral amputation at dismissal from the rehabilitation center, in terms of 

stability (using RMS of accelerations) and symmetry (using indices of temporal symmetry and harmonic 

ratio) (Iosa et al., 2014). Before clinical implementation to monitor patieŶt͛s pƌogƌessioŶ during 

rehabilitation, the methods shall be both adapted and validated on this specific population, and test-

retest reliability shall be assessed in order to measure the sensitivity of the method and its ability to 

detect clinically-relevant changes. 
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Conclusion 

The purpose of this first part was to identify gait parameters that could be obtained with inertial 

sensors and pressure insoles and that are clinically relevant for the rehabilitation of people with lower-

limb amputation.  

The first two chapters have introduced contextual elements on amputee care, in particular 

regarding the tools used in clinics for gait evaluation. It appears that simplicity and rapidity of 

implementation are critical for an assessment tool to be adopted in clinical routine. For instance, 

walking tests are often performed as they are reliable and easy to set up. Several authors have 

therefore proposed the instrumentation of TUG and timed-tests with wearable sensors in order to 

extract additional parameters (Nguyen et al., 2017; Belluscio et al., 2018). Chapter 2 has also allowed 

to identify relevant parameters used to assess the gait of people with lower-limb amputation in motion 

analysis laboratories. In addition to joint angles and segment orientations – which allow to quantify 

gait deviations that are visible to the clinicians – the study of the body center of mass motion appears 

relevant as it is a synthetic parameter that may reflect gait asymmetries and that is related to the 

mechanical energy, and hence, the energy expenditure. Monitoring asymmetry in spatiotemporal and 

loading parameters also appears to be critical as it is correlated with the onset of comorbidities. 

Interestingly, few studies investigate balance of lower-limb amputee gait, probably due to the lack of 

dynamic balance descriptors proposed with optical motion capture systems and force plates.  

The third chapter has introduced wearable sensors and, most particularly, pressure insoles and 

MIMUs, as well as their applications for human motion analysis. An extensive body of literature has 

investigated the use of MIMUs for kinematic analysis, including in pathological gait, but, comparatively, 

few studies have investigated the ability of MIMUs to track kinetic parameters and the body center of 

mass motion. Most of the literature proposing wearable methods for ground reaction forces and 

moments estimation were published in the last five years and developed and validated on 

asymptomatic participants. Finally, MIMUs and pressure insoles were also found to capture a large 

diversity of original gait quality parameters, characterizing, in particular, gait balance and symmetry. 

These gait quality descriptors can be obtained from a limited number of sensors and are compatible 

with clinical walking tests. Interestingly, two distinct approaches seem to emerge when using wearable 

sensors for gait analysis. The first approach aims at retrieving biomechanical parameters, similarly as 

with laboratory-based instruments. In most cases, these parameters can be quantified with complex 

algorithms requiring several synchronized sensors and a model of the human body (see for instance 

the kinematic models and assumptions required for deriving full body joint kinematics or for ground 

reaction force distribution during double stance phase). The second approach proposes quantitative 

parameters derived from the measure of raw signals from a limited number of wearable sensors and 

allows to quickly retrieve concise parameters able to quantify global aspects of gait related with 

dynamic balance or symmetry. These parameters should therefore be easily intelligible although they 

may differ from the usually derived parameters from laboratory-based biomechanical gait analysis.  

The purpose of the thesis could be further defined based on these findings and will be specified in 

the next section. 
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Aim of the thesis 

The aim of this thesis is to contribute in the development of wearable tools to support the 

assessment of the functional rehabilitation of people with lower-limb amputation.  

Based on the findings of the literature review presented in the first part of this thesis, it appears 

that, to be relevant, such tools must allow to quickly retrieve quantitative and intelligible parameters 

describing the gait of people with lower-limb amputation and its alterations. For instance, the 

acquisition set up should allow to instrument clinical tests that are currently performed during the 

rehabilitation or to obtain relevant data within a few steps in order not to interfere with the 

rehabilitation. Ideally, a minimal number of sensors should be used to reduce as possible the set-up 

duration. Furthermore, a limited number of output parameters should be retrieved in order to 

facilitate interpretation and limit the duration of the analysis.  

Dynamic balance and gait symmetry seem to be of particular interest for clinical assessment as 

these aspects of locomotion are able to quantify gait deficiency. However, these parameters alone do 

not allow to get a complete picture of gait functional alterations and performance. The analysis of the 

body center of mass motion appears therefore relevant to complete gait assessment. Indeed, it allows 

to identify the presence of kinematic alterations and may provide insight on the metabolic cost of 

walking without requiring the analysis of individual joint motions or intersegmental forces, therefore 

limiting the number of quantified parameters.  

 

The aim of the thesis is therefore to develop algorithms allowing the wearable characterization of 

these different aspects of gait following two approaches which were identified in the literature. 

The first approach aims at retrieving biomechanically relevant parameters from wearable sensors 

through modeling of the human body as a set of rigid body segments, similar as what is done in 

laboratory-based gait analysis. This approach allows to retrieve biomechanical parameters that have 

demonstrated their usefulness in quantitative gait analysis at the cost of complex algorithms 

development. Thus, the second part of the manuscript proposes an original wearable framework to 

estimate 3D motion (acceleration and instantaneous velocity) of the body center of mass from a 

limited number of sensors. The framework will be developed and validated on the data of a person 

with transfemoral amputation taking laboratory-based instruments and a full-body inertial model as 

criterion measurements.  

The second approach aims at processing wearable sensors͛ sigŶals and at identifying features in 

the retrieved signals that may relate to gait descriptors. A large amount of studies has thus proposed 

to quantify gait balance and symmetry using this approach. In particular, the analysis of acceleration 

signals measured at the pelvis, trunk or head levels in different populations was proposed to quantify 

gait balance. Temporal parameters and symmetry were computed from the analysis of pressure insoles 

signals or from the detection of gait events instants of occurrence, identified as specific features in the 

signals of a single-pelvis or two lower-limb-mounted MIMUs. Such parameters issued from signal 

processing have not always been studied in people with lower-limb amputation while they might be 

relevant for this specific population. The third part of the thesis therefore aims at contributing to the 

creation of knowledge regarding these recent parameters by providing reference values for the 
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population of lower-limb amputees. In addition, a comparative evaluation of MIMU-based gait events 

detection algorithms taken from the literature will be proposed to investigate their validity for 

temporal symmetry assessment in people with lower-limb amputation. 

 

These two complementary approaches allow to contribute to the development of wearable gait 

analysis protocols for the in-field assessment of the rehabilitation of people with lower-limb 

amputation. The first approach allows the development of an original framework and contributes to 

fundamental research on wearable gait analysis. The second approach contributes to the creation of 

knowledge and aims at better characterizing recently developed gait indices. This approach is 

therefore closer to the clinical transfer of wearable tools for rehabilitation. However, further validation 

steps are required prior to implementing these methods in the rehabilitation process. 

In order to develop both these approaches, several data sets, which have been either collected in 

the course of the PhD or which had already been collected in the context of previous work, were post-

processed. Figure 22 provides an overview of the data that has been used during the thesis for the 

development of algorithms and creation of knowledge.  

The thesis benefited from the availability of data from a cohort of nine people with transfemoral 

amputation, recorded with laboratory-based instruments. This data (used in Chapter 2 Part 2) allowed 

the development of the wearable framework proposed in the third chapter of Part 2. 

Figure 22: Graph of the experimental data used in the course of the thesis for the development of the original framework (Part 2) or the 

creation of knowledge regarding recently developed wearable sensor-base gait quality indices (Part 3). Each framed box corresponds to 

a data collection and indicates the number of participants, the nature of the trials and the acquisition systems used.  

Two datasets that had been collected during masters occurring in 2016 were processed in the course of the present thesis and were 

partially completed by acquiring supplementary data in the course of the PhD.  

The dataset in blue box correspond to data collected using only laboratory-based instruments while datasets in yellow boxes were 

collected using only wearable sensors. Protocols involving both laboratory-based and wearable capture systems are framed in green 

boxes.  

TF = people with transfemoral amputation; TT = people with transtibial amputation; AS = asymptomatic subjects; OMCS = Optical Motion 

Capture Systems; IMUs = (magneto-)Inertial Measurement Units; 2MWT = 2-minute walking test; TUG = Timed-Up-and-Go test 
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Part 2: Development of a wearable framework for the estimation of 

the body center of mass 3D motion during gait of people with lower-

limb amputation 

This part of the thesis aims at ƌetƌieǀiŶg, fƌoŵ the aŶalǇsis of ǁeaƌaďle seŶsoƌs͛ sigŶals, 
biomechanically relevant parameters that have proven to be meaningful for the analysis of lower-limb 

amputee gait: the 3D motion of the body center of mass (BCoM). Indeed, the study of the BCoM path 

may allow to characterize gait alterations that are not visible to the naked eyes of clinicians and has 

been shown to evidence an asymmetrical gait pattern (Askew et al., 2019; Tesio and Rota, 2019). 

Furthermore, BCoM velocity can be combined with ground reaction forces under each foot to estimate 

mechanical work and energy, providing insight on gait efficiency (Donelan et al., 2002a). Eventually, 

the combination of ground reaction forces and kinematic parameters would allow to obtain 

intersegmental kinetics. As a consequence, the estimation of 3D BCoM motion and individual limb 

ground reaction force is of particular relevance for gait analysis of people with lower-limb amputation 

(see Part 1, section 2.3.2). To the authoƌ͛s kŶoǁledge, the feasiďilitǇ of ƋuaŶtifǇiŶg these paƌaŵeters 

using wearable sensors has never been investigated in people with lower-limb amputation. 

From a mechanical standpoint, the kinematics and dynamics of the body center of mass (BCoM) 

are important parameters of the locomotion which directly result from the application of external 

forces (Tesio and Rota, 2019). The application of the fundamental principles of dynamic indeed yields 

the following equations for linear and rotation motions: ݉௕௢ௗ௬ ࡹ࢕࡯࡮ࢇ = ∑ ௜࢚𝒙ࢋ࢏ࡲ +݉௕௢ௗ௬(1)     ࢍ 𝜹࡭ ࢚ࢊ࡭𝝈ࢊ = +݉௕௢ௗ௬࡭࢜ × ࡹ࢕࡯࡮࢜ = ∑ ௜࢚𝒙ࢋ,࡭࢏ࡹ         (2) 

Where all the following quantities are expressed in an Earth-fixed reference frame:  

{   
  
࢚𝒙ࢋ࢏ࡲ                                                                                              is the gƌaǀitatioŶal aĐĐeleƌatioŶ ࢍ                                                                                                     is the BCoM aĐĐeleƌatioŶ                                                                                               ݉௕௢ௗ௬ is the ŵass of the ďodǇ   ࡹ࢕࡯࡮ࢇ       aƌe the eǆteƌŶal foƌĐes applied oŶ the ďodǇ                                                                  𝜹࡭   is the dǇŶaŵiĐal ŵoŵeŶt of the ďodǇ eǆpƌessed at the poiŶt A                                    𝝈࡭ is the aŶgulaƌ ŵoŵeŶtuŵ of the ďodǇ eǆpƌessed at the poiŶt A                                     ࡭࢜,             aƌe the eǆteƌŶal ŵoŵeŶts eǆeƌted oŶ the ďodǇ, applied at the poiŶt A   ࢚𝒙ࢋ,࡭࢏ࡹ aƌe the liŶeaƌ ǀeloĐitǇ Đoŵputed of the poiŶts A aŶd the BCoM ƌespeĐtiǀelǇ ࡹ࢕࡯࡮࢜

 

The first equation indicates that the linear motion of the body is explained by the external forces 

that are exerted on the body and can be used to describe the translation motion of the body. The 

second equation, less frequently used to describe human motion (Herr and Popovic, 2008), indicates 

that the rotation motion of the body around a point A is explained by the external moments applied 

at this point. Equation 2 can be simplified as follows when expressed at the BCoM: 𝜹ࡹ࢕࡯࡮ ࢚ࢊࡹ࢕࡯࡮𝝈ࢊ = ௜࢚𝒙ࢋ,ࡹ࢕࡯࡮࢏ࡹ∑=  

When no external moments are applied on a body, the angular momentum is a conserved quantity. 

While this is not the case in human legged locomotion, several authors have demonstrated that the 
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angular momentum takes small values during gait in spite of prominent segmental contributions. 

Therefore, the angular momentum has been assumed to be highly regulated by the central nervous 

system in order to minimize angular excursions of the body (Popovic et al., 2004; Herr and Popovic, 

2008). Fluctuations of the angular momentum are evidenced by the dynamic momentum and have 

been shown to be a promising indicator of gait balance, in particular in stroke and in lower-limb 

amputee patients (Silverman et al., 2008; Nott et al., 2014; Neptune and Vistamehr, 2019). Therefore, 

the study of the angular momentum appears relevant for the rehabilitation of people with lower-limb 

amputation. Developing algorithms allowing to estimate the angular momentum and its fluctuations 

from wearable sensors is a relevant track of research for future works (Neptune and Vistamehr, 2019).  

In this part of the thesis, however, only the first equation of the fundamental principles of 

dynamics will be investigated. It indeed allows to retrieve the 3D motion of the BCoM and provides 

hindsight on gait asymmetry and mechanical energy parameters, which could be used to support the 

functional rehabilitation of people with lower-limb amputation. Therefore, the feasibility of estimating 

the 3D acceleration, velocity or displacement of the BCoM in people with lower-limb amputation from 

wearable sensors appears highly relevant. 

In motion analysis laboratories, BCoM acceleration can be immediately retrieved from force plates 

using equation (1). Integration of the BCoM acceleration with proper initial conditions yields the 

instantaneous velocity of the BCoM, which can be further integrated to estimate the trajectory of the 

BCoM. When force plates are not available, an optical motion capture system coupled with an inertial 

model providing, for each segment, its mass and the position of its center of mass (SCoM) in the 

anatomical frame defined by segment-mounted markers can be used instead. Indeed, using a 

representation of the body as a chain of linked rigid segments of mass ݉௜, the BCoM position can be 

retrieved using equation (3) from the positions ࢏ࡹ࢕࡯ࡿ࢘ of the segŵeŶts͛ ĐeŶteƌ of ŵass:  ࡹ࢕࡯࡮࢘ = ∑ ௠೔௠್೚೏𝑦 ௜࢏ࡹ࢕࡯ࡿ࢘         (3) 

Then, by differentiating equation (3), the velocity or the acceleration of the BCoM can be retrieved 

from optical motion capture data:  ࡹ࢕࡯࡮ࢇ = ∑ ௠೔௠್೚೏𝑦 ௜࢏ࡹ࢕࡯ࡿࢇ         (4) 

Eventually, the ground reaction force can be estimated using equation (1), providing that the 

person is not carrying extra weight and no other external forces are applied on the body. 

When using wearable sensors such as MIMUs, the output data is not the same as the one provided 

by force plates or optical motion capture system. Indeed, MIMUs provide the acceleration of the origin 

of the sensor case, the angular velocity and the magnetic field in the MIMU local frame but do not 

provide the absolute position of the sensor in a global Earth-fixed frame. Furthermore, even if a full 

body MIMU set could be adopted to track the kinematics of all body segments, similarly to what is 

done with optical motion capture systems, instrumenting the whole body with sensors is not advisable 

for clinical transfer of the protocol. Indeed, a trade-off between accuracy and complexity of the 

acquisition protocol is essential for applications in the clinical field, where clinicians may only have a 

limited time to spend with the patient (Huntley et al., 2017). Therefore, a specific protocol must be 

developed for the estimation of the 3D motion of the BCoM from wearable sensors.  

This part of the thesis therefore aims at contributing to the development of a wearable gait analysis 

protocol for the estimation of 3D BCoM acceleration and instantaneous velocity. The first chapter 
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provides an overview of the existing wearable methods for the estimation of 3D BCoM motion, as well 

as their validity. Then, the second chapter aims at identifying contributions of each body segment to 

the BCoM acceleration so as to identify optimal combinations of sensors and their positioning for an 

accurate estimation of BCoM acceleration in people with transfemoral amputation while limiting the 

number of required sensors. The study implemented in this second chapter was based on the data of 

a cohort of ten people with transfemoral amputation for which only force plates and optical motion 

capture data were available.  Chapter 3 consists in a proof-of-concept study regarding the application 

of the identified combinations of sensors for the estimation of 3D BCoM acceleration and velocity in a 

wearable framework, using magneto-inertial measurement data. Challenges associated to the use of 

MIMUs will be identified and tackled in this chapter. Finally, a sensitivity analysis investigating the 

impact of sensors mispositioning on the estimation of the BCoM acceleration will be proposed in 

chapter 4. The methodology developed in this last chapter could be applied to other segment models 

or to other BCoM derived parameters, such as the instantaneous velocity of the center of mass. 
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Chapter 1 – 3D motion of the body center of mass: state-of-the-art 

of wearable sensor-based methods  

1.1. Overview of wearable-sensor based methods 

In the last decade, the number of studies investigating the feasibility of acquiring 3D ground 

reaction forces (GRF) or 3D motion of the body center of mass (BCoM) through its acceleration, velocity 

or displacement using wearable sensors has considerably increased. To facilitate the transfer of 

methods for the in-field assessment of 3D BCoM motion or total GRF, it is essential to keep the number 

of required sensors as low as possible while obtaining sufficient accuracy (Ancillao et al., 2018).  

Table 2 presents an overview of the published literature where developed methods for the 

acquisition of total GRF or 3D BCoM motion were validated against a gold standard and involved the 

sole use of MIMUs and/or pressure insoles. It should be noted that methods developed and compared 

to a gold standard for the estimation of GRF under each foot independently were not included if the 

comparison between total GRF and the gold standard was not provided. However, two recent reviews 

investigated the validity of such methods and reported that, in general, poor accuracy for the 

anteroposterior and mediolateral component of GRF was achieved when using pressure insoles and/or 

MIMUs (Shahabpoor and Pavic, 2017; Ancillao et al., 2018). Better results were achieved using machine 

learning paradigm, although these methods were in their infancy at the time of the reviews (Ancillao 

et al., 2018; Tan et al., 2019). Recently, promising mixed inertial and musculoskeletal approaches were 

developed (Dorschky et al., 2019, 2020; Karatsidis et al., 2019). Readers are advised to refer to the 

abovementioned reviews for more details on single-limb GRF estimation (Shahabpoor and Pavic, 2017; 

Ancillao et al., 2018).  

Regarding methods investigating the 3D path of the BCoM or the total GRF, 17 studies (reported 

in Table 2) were retrieved in the literature. All methods involved from 1 to 17 MIMUs with only one 

study combining pressure insoles to MIMUs for stance phase detection (Yuan and I. M. Chen, 2014). 

Eleven studies involved the use of a MIMU at pelvis or trunk level as an approximation of the BCoM 

(Meichtry et al., 2007; Esser et al., 2009; Floor-Westerdijk et al., 2012; Yuan and I. Chen, 2014; 

Regterschot et al., 2014; Myklebust et al., 2015; Najafi et al., 2015; Sabatini and Mannini, 2016; E. 

Shahabpoor and Pavic, 2018; Lintmeijer et al., 2018; Mohamed Refai et al., 2020), with two studies 

using other MIMUs to complete or correct the estimation (Yuan and I. Chen, 2014; Sabatini and 

Mannini, 2016) and two studies simultaneously evaluating multi-sensor configurations and concluding 

on their superiority (Najafi et al., 2015; Lintmeijer et al., 2018). The remaining six studies investigated 

only multi-sensor configurations for the 3D BCoM motion (Zijlstra et al., 2010; Faber et al., 2016; Fasel, 

Spörri, et al., 2017; Karatsidis et al., 2017; Shahabpoor et al., 2018; Pavei et al., 2020). Three main 

categories of biomechanical models could be identified based on the approach chosen: models based 

on single-sensor approximation of the BCoM, on multi-segment inertial models, or on kinematic chain. 

Two methods consisted on mixed approaches involving machine learning methodology (Sabatini and 

Mannini, 2016; E. Shahabpoor and Pavic, 2018). 

The developed methods were validated on asymptomatic populations, either for straight walking 

(9 studies), for sports motion (4 studies: golf swing, cross-country skiing, alpine skiing, rowing), for 

jumping (1 study), for sit-to-stand transfer (2 studies), or trunk bending motion (1 study). Regarding 
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the BCoM outcome parameters, studies investigated either the accuracy of the estimation of the 

acceleration (9 studies: 4 studies investigated 3D motion, 4 studies validated only the vertical 

component and the study on rowing only investigated the accuracy in the estimation of the 

anteroposterior component), the velocity (6 studies: half investigated the 3D velocity and the other 

half the vertical component) and/or the displacement (8 studies: 7 investigated the 3D component and 

the last one the vertical component). Optical motion capture data, force plates or instrumented 

treadmill were used for validation, except in one study where tri-axial force sensors were used under 

each foot (Mohamed Refai et al., 2020). Among the seven studies using an optical motion capture 

system for validation, two used a full-body inertial model (Floor-Westerdijk et al., 2012; Myklebust et 

al., 2015; Fasel, Spörri, et al., 2017) while the other used markers directly on top of MIMUs for 

validation. 

The next two paragraphs will discuss the accuracy achieved respectively using single-sensor and 

multi-sensor approaches. 
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Table 2: Estimation of 3D motion of the body center of mass (BCoM) from wearable sensors. 

Acc. = acceleration; Vel. = velocity; Disp. = displacement; Traj.= trajectory;  AP = anteroposterior; ML = mediolateral; CC = craniocaudal; M/IMU =(Magneto-)Inertial Measurement Units; OMCS = 

Optical Motion Capture Systems; AS = Asymptomatic subjects; BW = Body Weight; (N)RMSE = (Normalized) Root Mean Square Error.  

BCoM Approximation = method where a single MIMU was used and assumed to be representative of the BCoM motion 

Authors 

BCOM motion Method Validation 

Acc. Vel. Disp. Method type Wearable sensor 
Reference, situation, 

population 
Results 

(Esser et al., 
2009) 

CC CC CC Biomechanical model 
(BCoM approximation) 

1 MIMU at lower-back (L4) - OMCS (marker on top 
of MIMU) 
- Straight walking 
- 5 AS  

High correlations of peak-to-peak vertical acceleration, velocity and 
displacement (ICC > 0.78). Significant difference in vertical velocity (< 2.5%) 

(Faber et al., 
2016) 

3D - - Biomechanical model 
(Inertial model) 

MVN suit: 17 MIMUs - Force plates 
- Trunk bending 
- 9 AS 

CC: RMS ~ 10 N ~ 1% peak value, Pearson r²>0.98 
AP, ML: RMS ~ 10N ~ 0.12 ms-2, r²~0.6 

(Fasel, 
Spörri, et al., 
2017) 

- - 3D 
traj.  

Biomechanical model 
(kinematic chain) 

7 to 11 MIMUs (shanks, 
thighs, sacrum, sternum, 
head + arms, wrists) 

- OMCS (full body 
inertial model) 
- Sloped skiing  
- 11 skiers 

Overall accuracy < 26 mm for full body model. 
When arms are not taken into account, decreased accuracy in 3D (-3mm), AP 
and CC direction (up to 8 mm), but no impact on precision 

(Floor-
Westerdijk 
et al., 2012) 

- - 3D Biomechanical model 
(BCoM approximation) 

3 MIMUs (Sacrum + Right & 
Left shanks for gait 
segmentation) 

- OMCS (full body 
inertial model) 
- Straight walking 
- 8 AS (50-75 years) 

Full body vs general compensated single sensor 
ICC: AP: 0.68; ML: 0.77; V: 0.96  
RMS (mm): AP: 5.52; ML: 4.44; V: 3.17 

(Karatsidis 
et al., 2017) 

3D - - Biomechanical model 
(BInertial model) 

MVN suit: 17 MIMUs - Force plates 
- Straight walking 
- 11 AS 

Estimation of individual limb GRF. During single stance (GRF = mass * 
acceleration of BCoM): 
NRMSE(%): AP=10.0; ML=35.4; V=9.0 

(Lintmeijer 
et al., 2018) 

AP - - Biomechanical model 
(inertial model vs 
BCoM approximation) 

13 MIMUs + single pelvis 
MIMU 

- Force plates 
- Rowing 
- 9 rowers 

single-pelvis MIMU: good reliability (ICC > 0.91) but elevated mean NRMSE 
(9.15%). 
Full body standardized model should be preferred (ICC > 0.98%, NRMSE < 3.7 %) 

(Meichtry et 

al., 2007) 
- 3D 3D Biomechanical model 

(BCoM approximation) 
3D accelerometer at L3 - Force plates 

- Straight walking 
- 12 AS 

- L3 leads the CoM in AP direction  
- larger acceleration amplitudes but significant correlations in RMS 
accelerations 
- larger vertical excursions but high correlations (> 0.9) 
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Authors 

BCOM motion Method Validation 

Acc. Vel. Disp. Method type Wearable sensor 
Reference, situation, 

population 
Results 

(Mohamed 
Refai et al., 
2020) 

3D - - Biomechanical model 
(BCoM approximation) 

3 MIMUs (sacrum + feet for 
reference frame) 

- Force sensors under 
each foot 
- Walking tasks including 
turns 
- 8 AS 

- Significative correlations in all directions (AP > 0.7 except for asymmetric 
walking, CC > 0.75 except for slow walking, ML < 0.55) 
- RMS < 7.4 % BW in all directions 
- NRMSE: Horizontal plane: 12.1% +/- 3.3% 
Vertical 10.2 +/- 1.2% 

(Myklebust 
et al., 2015) 

- - 3D Biomechanical model 
(BCoM approximation) 

1 MIMU at S1 - OMCS (full body 
inertial model) + 1 
marker at S1 level 
- cross-country skiing 
- 6 skiers 

IMU captures CC excursion of S1 marker with accuracy < 2% 
RMS error ~ 5% in ML but up to 72% in AP and CC excursions  

(Najafi et al., 
2015) 

- - 3D Biomechanical model 
(comparison of 3 x-link 
models) 

1 to 3 MIMUs (shank, thigh, 
back) 

- Pressure platform / 5 
OMCS markers 
- Golf swing 
- 4 AS + 18 golfers 

- 2-link model optimal accuracy/simplicity ratio (r > 0.93 in AP and ML ; but up 
to 14,6% error in ML motion)  
- High correlations with OMCS-based CoM during dynamic swing  ( 0.91 in AP 
and 0.71 in ML; RMSE 12% and 15.52 % in AP and ML) 

(Pavei et al., 
2020) 

- - 3D Biomechanical model 
(Inertial model) 

MVN suit: 17 MIMUs - Force plates 
- Straight walking 
- 12 young AS 

- 3D contour : good reliability (ICC = 0.86) but poor shape agreement (3D RMSD 
= 17 mm), especially in AP and ML directions- Very poor accuracy in BCOM 
displacement (mean RMS > 37% in AP and ML and up to 98% of RMS error in AP 
direction) 

(Regterschot 
et al., 2016),  

CC CC - Biomechanical model 
(comparison of 2 
BCoM approximation) 

2 MIMUs (sternum, right 
waist) 

- Force plates 
- Sit-to-stand transfers 
- 27 older adults 

- Time-series were not compared. 
- Strong to very strong association between hip sensor and platforms but only 
maximal acceleration was within 10% of the reference value. Systematic 
overestimation of all other measures 
=> adequate validity of hip MIMU but insufficient accuracy 

(Sabatini 
and 
Mannini, 
2016) 

- 3D - Mixed machine 
learning approach and 
biomechanical model 
(BCoM approximation) 

2 MIMUs (L5, right shank) - OMCS (rigid clusters of 
markers on top of 
MIMUs) 
- treadmill / straight-
walking  
- 12 AS / 5 AS 

-LoA of cyclical component (+/- 1.96 std): 
- ML = 0,07 m/s (+/- 0.10 m/s) 
- AP = 0.03 m/s (+/- 0.05 m/s) 
- CC = 0.06 m/s (+/- 0.10 m/s) 
-RMS error of average velocity : 0.06 m/s (0.07 m/s) (Average RMSE about 4% 
above 4km/h if task-specific training vs 5% when non-task specific training)  

(E. 
Shahabpoor 
and Pavic, 
2018) 

CC - - Mixed machine 
learning approach 
(dynamic-time 
warping) & 
biomechanical model 
(BCoM approximation) 

1 MIMU at C7 - Force plates / insoles 
- treadmill / outdoor 
free-walking  
- 6 AS / 10 AS 

- in-lab validation 
NRMSE vGRF = 5.6 % +/- 1.5% with dynamic time warping vs 7.5% +/- 1.7 % 
without 
- outdoor validation 
range NRMSE = 7-11% 
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Authors 

BCOM motion Method Validation 

Acc. Vel. Disp. Method type Wearable sensor 
Reference, situation, 

population 
Results 

(Shahabpoor 
et al., 2018) 

3D - - Biomechanical model 
(Inertial model: 
comparison of 
different models) 

3 MIMUs: C7, L5, right thigh 
(located the closest possible 
to SCoM) 

- 3-IMU model: 
NRMSE 16% in AP, 18% in ML and 7% in V 
=> NRMSE can be decreased by 3-5 % with subject training (12 MIMUs) 
=> Non-linear model by including 1-lagged term improved NRMSE by 2% 
- Outodoor validation 
=> Model 2 NRMSE 8.7 % for vertical GRF  

(Yuan and I. 
M. Chen, 
2014) 

- 3D 3D Biomechanical model 
(fusion of kinematic 
chain + BCoM 
approximation) 

3 MIMUs (pelvis, thigh, 
shank) 
& pressure insoles (stance 
phase) 

- OMCS - Marker on top 
of pelvis MIMU 
- Jumping forward 
- 1 AS 

- RMSE AP 0,051 m/s (< 3 % of max velocity) / 3.8 cm (total length: 3.6 m) 
- RMSE V 0,029 m/s / 3.2 cm  
- RMSE ML 0,13 m/s (lack of accuracy) / 5.2 cm 

(Zijlstra et 

al., 2010) 
CC CC - Biomechanical model 

(comparison of inertial 
models) 

3 MIMUs (sternum, pelvis, 
right waist) 

- Force plates 
- Sit-to-stand transfers 
- 5 AS + 12 elderly 

- weighted average of sternum and waist sensor achieved highest correlations 
(mean 0.99 / 0.94 for young/elderly) and good accuracy (NRMSE from 11.5 to 
13%). 
- Pelvis MIMU achieved good accuracy (NRMSE < 13.4%) but correlations as low 
as 0.56 for slow motion. Sternum MIMU highly correlated (r > 0.85) but high 
NRMSE (> 24%) 
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1.2. Single-sensor approach 

In general, single-segment approaches are based on the assumption that a single sensor positioned 

at pelvis level allows to capture BCoM motion with great accuracy (Gard et al., 2004; Floor-Westerdijk 

et al., 2012; Huntley et al., 2017). The underlying hypotheses within this theory are that the BCoM is 

fixed in the pelvis reference frame – and therefore, that it is not influenced by the other body segments 

motions relative to the pelǀis͛ (Eames et al., 1999; Floor-Westerdijk et al., 2012) – and that pelvis 

rotations can be considered as sufficiently small so that the relative motion of a skin-mounted marker 

compared to the BCoM due to these rotations are negligible (Gard et al., 2004). Although these 

assumptions can be valid in people with asymptomatic gait at self-selected or slower speeds (Gard et 

al., 2004), they were shown not to be acceptable in pathological gait where the single-marker method 

implemented in laboratory-based gait analysis was shown to result in significant overestimations in 

the estimated BCoM excursion (average error of up to 5 cm within a step in the anteroposterior 

direction in post-stroke participants) compared to a full body inertial model (Eames et al., 1999; 

Huntley et al., 2017). BCoM excursions were also shown to be overestimated using a single marker at 

pelvis level in the asymptomatic population, especially when performing dynamical motion (Pavei et 

al., 2017).  

Despite this conflicting evidence, the single-marker approach remains attractive because it offers 

a simple and quick estimate of BCoM motion with a good agreement in the motion patterns compared 

to force plates or full body data (Gard et al., 2004; Huntley et al., 2017). Therefore, several authors 

have investigated the validity of using a single MIMU at pelvis level to approximate BCoM motion 

(Meichtry et al., 2007; Esser et al., 2009; Floor-Westerdijk et al., 2012; Yuan and I. Chen, 2014; 

Regterschot et al., 2014; Myklebust et al., 2015; Najafi et al., 2015; Sabatini and Mannini, 2016; E. 

Shahabpoor and Pavic, 2018; Lintmeijer et al., 2018; Mohamed Refai et al., 2020). 

In three studies (Esser et al., 2009; Yuan and Chen, 2012; Sabatini and Mannini, 2016), the single-

MIMU-based BCoM motion was compared to that obtained with reflective markers positioned above 

the sensor and not to a gold standard (full body inertial model or force plate data). However, the 

methods were applied in asymptomatic subjects, where the sacral approximation of the BCoM can be 

considered valid during straight walking and comfortable speed (Gard et al., 2004). In (Esser et al., 

2009), vertical peak-to-peak acceleration, velocity and excursion of the BCoM obtained with a MIMU 

positioned at L4 were compared to that derived from a MIMU-mounted marker. Although high 

agreement was found for these three parameters against marker data, the amplitude of vertical 

velocity motion was slightly (< 0.04 m.s-1), but significantly, underestimated with the MIMU (Esser et 

al., 2009). Errors might have been introduced during the integration process of acceleration data. Both 

other methods, which provide results in the three directions of motion, rely on additional sensors to 

improve the integration and the estimation of BCoM velocity (Yuan and I. Chen, 2014; Sabatini and 

Mannini, 2016). Furthermore, these methods provide the instantaneous walking velocity while the 

former only provided an estimate of the mean-subtracted walking velocity. 

The remaining single-sensor-based studies investigated the validity of the single-MIMU approach 

against either force plate data or full body inertial models in different situations. When the considered 

situation included significant upper body motion, such as when skiing (Myklebust et al., 2015), 

performing golf swing (Najafi et al., 2015) or rowing (Lintmeijer et al., 2018), a significant decrease in 
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accuracy was observed, in particular in the anteroposterior direction. This might be explained by higher 

range of motion of the trunk and arms, compared to walking. Furthermore, decreased agreement of 

the anteroposterior and mediolateral acceleration were observed in asymptomatic subjects walking 

with a forced asymmetrical gait pattern compared to normal walking (Mohamed Refai et al., 2020). 

These results seem to indicate that including a sensor on the trunk, rather than solely on the pelvis, 

might be necessary for pathological gait, in particular in people with lower-limb amputation who were 

shown to present wider range of motion of the trunk segment (Goujon-Pillet et al., 2008). This 

proposition was already underlined in (Meichtry et al., 2007) where the anteroposterior acceleration 

measured at L3 was found to precede the BCoM acceleration in the asymptomatic population. This 

phase difference, which was not observed in the vertical direction, might explain the overestimation 

of mechanical energy parameters when using the sacral method compared to full body or force plate 

data (Meichtry et al., 2007; Pavei et al., 2017). Higher excursions of the BCoM were found in all three 

directions when using the single sensor approximation compared to a gold standard during sit-to-stand 

transfer (Regterschot et al., 2016) and straight walking (Meichtry et al., 2007; Floor-Westerdijk et al., 

2012), similarly as when using a single optical motion capture marker (Pavei et al., 2017).  

As introduced in the first paragraph, pelvis rotations and in particular pelvis tilt may be accountable 

for the increased range of motion of a skin-mounted device compared to a fixed point within the pelvis 

(Gard et al., 2004; Floor-Westerdijk et al., 2012). In order to mitigate the effect of pelvis rotations on 

the BCoM displacement estimated with the single sensor approach, Floor-Westerdijk and coworkers 

used a generic translation vector to transfer the acceleration measured at the sacrum to a point within 

the pelvis, considered to be the BCoM (Floor-Westerdijk et al., 2012). This resulted in a significative 

improvement of the accuracy and agreement of the displacement of the BCoM in the mediolateral 

direction as evidenced by the reduction of root mean square error by 40% (RMS = 4.27 mm instead of 

7.16 mm) and the increase of the intraclass correlation coefficient (ICC going from 0.64 to 0.77) 

between the MIMU-based and the segmental analysis-based BCoM. Agreement in the anteroposterior 

direction remained moderate (ICC = 0.68) as the ŵethod didŶ͛t ĐoƌƌeĐt foƌ the lag oďseƌǀed ďetǁeeŶ 
pelvis and BCoM motion.  

Finally, Shahabpoor and Pavic proposed a machine learning approach to increase the accuracy of 

the vertical component of the BCoM acceleration estimated using a single MIMU (E. Shahabpoor and 

Pavic, 2018). The vertical BCoM acceleration was estimated using the acceleration measured at C7 

corrected by a time-varying factor. The former was derived from a dynamic time warping approach 

that was applied to the average time-series of difference between C7 and BCoM vertical accelerations. 

This approach allowed to reduce the error achieved when using a constant coefficient by up to 25 %, 

yielding an average error of 5.6 %. The validity of this approach was not investigated for the 

anteroposterior and mediolateral components of the acceleration or of any other BCoM kinematic 

descriptor, therefore, the added value of the complex machine learning approach compared to a 

constant coefficient method applied at pelvis level is questionable. 

1.3. Multi-sensor approach 

Two main approaches are described in the literature when dealing with multiple sensors. The most 

common approach consists in the wearable version of the full body inertial model (Faber et al., 2016; 

Karatsidis et al., 2017; Lintmeijer et al., 2018; Pavei et al., 2020), possibly simplified using a reduced 
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number of sensors (Zijlstra et al., 2010; Najafi et al., 2012; Shahabpoor et al., 2018) while the second 

approach relies on a kinematic chain (Yuan and I. Chen, 2014; Fasel, Spörri, et al., 2017). 

1.3.1. Inertial model 

Methods based on the inertial model paradigm rely on the fact that the 3D BCoM kinematics can 

be retrieved through the weighted sum of the kinematics of the body segments centers of mass 

(SCoM). First, segment-mounted MIMUs allow to retrieve the acceleration of the SCoM which are then 

fused to estimate BCoM acceleration, and, after integration, BCoM velocity or trajectory. An inertial 

model provides, for each included segment, the position of its center of mass in the segment 

anatomical frame as well as the mass of the segment. 

Four studies have investigated the accuracy of a full-body inertial model associated with MIMUs 

for the estimation of BCoM motion. The first three studies use the xSens MVN suit (consisting of 17 

MIMUs positioned at specific locations on the body), therefore, unknown proprietary algorithms 

allowed to retrieve the SCoM accelerations from MIMU measurements. Two of these studies 

compared the 3D BCoM acceleration retrieved from the xSens MVN suit to force plates data during 

straight walking (Karatsidis et al., 2017) and a trunk bending task (Faber et al., 2016). In both cases, 

poorer accuracy was achieved for the anteroposterior and mediolateral directions than for the vertical 

direction and only moderate correlations were found between the lateral component estimated with 

the MIMU-based inertial model and the force plates (average of 35% of errors in the mediolateral 

direction during single stance in straight walking in (Karatsidis et al., 2017)). Another study investigated 

the accuracy of the 3D BCoM trajectory output of the MVN suit compared to force plate and optical 

motion capture (OMC) data (Pavei et al., 2020). The MIMU-based 3D BCoM path was found to have a 

different shape than that obtain with force plate or OMC data, with significant errors. Average errors 

were in fact above 35% in both the anteroposterior and mediolateral directions and leaded to an 

overestimation of the external work of more than 100%. In the fourth study, Lintmeijer and coworkers 

investigated the use of a 13-segment inertial model to track the BCoM acceleration in the 

anteroposterior direction while rowing. Each of the thirteen MIMUs was manually positioned at the 

longitudinal position of the SCoM of the underlying segment and was considered to directly provide 

the SCoM acceleration. Contrary to when using a single sensor at the pelvis, the 13-MIMU set allowed 

to estimate accurately the anteroposterior acceleration of the BCoM (Lintmeijer et al., 2018). Such 

results may not be achieved in different motions such as walking. 

The four above-mentioned studies involved a full-body inertial model and the use of 13 to 17 

MIMUs. For the sake of simplicity and time-efficiency, a wearable protocol intended for the clinical 

field should include the minimal number of sensors possible (Najafi et al., 2015; Ancillao et al., 2018; 

Jeong et al., 2018). Therefore, three authors proposed a reduced set of MIMUs for the estimation of 

BCoM kinematics. 

For instance, a model combining the trunk and pelvis segments was proposed to estimate BCoM 

kinematics and the vertical power eǆeƌted at the BCoM to lift the ďodǇ ;oƌ ͞liftiŶg poǁeƌ͟Ϳ during sit-

to-stand transfers of elderly people from only two MIMUs (Zijlstra et al., 2010). Although this model 

resulted in a significant overestimation of the vertical acceleration of the BCoM (about 11%), the 

simple MIMU-based estimation was found to be highly correlated with the vertical BCoM motion and 

allowed to predict the peak of lifting power estimated with force plate data. Najafi and coworkers 
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proposed a two-link model, integrating MIMUs rigidly attached to a shank and the trunk for the 

evaluation of BCoM motion during golf swing. High correlations were obtained with errors in the 

horizontal BCoM displacement below 16% (Najafi et al., 2015). The model developed could be used to 

estimate postural stability in clinics (Najafi et al., 2015) but may not be transferable to gait. Last but 

not least, Shahabpoor and coworkers proposed a methodology to identify the optimal locations of 

MIMUs for the estimation of 3D BCoM acceleration (Shahabpoor et al., 2018). In a population of young 

asymptomatic subjects, a weighted average of the SCoM accelerations of the trunk, pelvis and a thigh 

SCoMderived from an OMC system were shown to estimate the 3D BCoM acceleration with good 

accuracy in the vertical direction (7% of errors), and moderate accuracy in the anteroposterior and 

mediolateral directions (respectively 16 and 18%). Subject-specific training of the model and/or the 

use of non-linear relationship were shown to improve the results in the horizontal plane (< 15%). The 

validity of the method when using acceleration data derived from MIMUs and for outdoor ambulation 

was investigated in the vertical direction using pressure insoles and MIMUs rigidly mounted on each 

segment, near the underlying SCoM. Mean errors of 8.7% were achieved in the vertical BCoM 

acceleration with subject-specific training (Shahabpoor et al., 2018). 

1.3.2. Kinematic chain 

Kinematic chain approaches allow to retrieve the trajectory of 

segments and joint centers of rotation based on the knowledge of the 

length and orientation of segments, as well as the localization of joint 

centers of rotation in the anatomical frames. 

In (Yuan and I. Chen, 2014), the center of mass is assumed to lie at 

the pelvis level. Under the assumption of ankle null velocity during 

stance phase, velocity at the knee joint can be estimated assuming that 

the tibia is a rigid solid, that its orientation is correctly captured by a 

MIMU positioned on the tibia, and knowing the distance between the 

ankle and the knee joints. The same process in then applied to obtain 

the velocity as the hip joint and ultimately at the pelvis. This estimation 

of the velocity is fused with that obtained by direct integration of the 

acceleration measured by the pelvis MIMU in order to correct the drift 

inherent to the integration. During swing phase, the assumption of null 

velocity does not hold and the velocity is estimated only by the direct 

integration of the pelvis MIMU acceleration. This allows to estimate the 

velocity of the BCoM with three MIMUs, located at the shank, thigh and 

pelvis of one leg (Figure 23). The method was validated on a single 

asymptomatic subject, performing a forward jump. While the method 

was proven to be accurate in the vertical direction, relatively low accuracy 

was achieved for the mediolateral component and errors in the 

anteroposterior direction reached 3% of the maximal velocity. The absence 

of other segment-to-sensor calibration than manual alignment may 

partially explain the inaccuracies, especially in the mediolateral direction.  

Figure 23: Kinematic chain, taken from 

(Yuan and I. Chen, 2014). ௝ܴ  are the 

orientation outputs of MIMUs ݆ , ௝݈,௞′  
are the vector linking joint ݆ to ݇, 𝜔௝,௕  is 

the angular velocity vector of segment ݆ 
in the global reference frame 
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1.3.3. Fusion of inertial model and kinematic chain approaches 

The method proposed by Fasel and coworkers requires to define both a kinematic chain and a full-

body inertial model (Fasel, Spörri, et al., 2017). The anthropometric inertial model is used to retrieve, 

for each segment, its mass and dimensions as well as the position of its center of mass in its anatomical 

frame. The position of the SCoM in the reference global frame are then retrieved using a kinematic 

chain approach. This subsequently allows to obtain an estimate of the BCoM position as the weighted 

sum of the SCoM positions, similar as when using an optical motion capture system. To achieve this 

aim, the first step consists in computing the orientation of 11 MIMUs mounted on the body relative to 

the underlying segments using functional and/or static calibrations. During the skiing trials, the 

application of the kinematic chain allows to retrieve the trajectory of the joint centers of rotations 

relative to the root point of the kinematic chain (here, the lumbar joint center) using the segment 

orientations (known thanks to the MIMUs rigidly mounted on the segments) and the segments 

dimensions (obtained using anthropometric tables). The inertial model provides the position of each 

SCoM relative to their respective joint centers of rotation in the segment frame. Therefore, using the 

rigid body assumption and the trajectory of the joints center of rotations thanks to the kinematic chain, 

it allows to compute the SCoM trajectory. Finally, a weighted average of SCoM positions at each 

timestamp was computed to estimate BCoM trajectory. The position of the BCoM relative to the 

lumbar joint center was tracked with better accuracy in the vertical and mediolateral than in the 

anteroposterior directions, with a 3D accuracy of less than 26 mm (Fasel, Spörri, et al., 2017). In the 

perspective of model simplification, the authors evaluated the accuracy achieved with seven sensors, 

removing the arms from the model. Accuracy and precision did not change significantly, suggesting 

that the arms contribution to the BCoM motion in the investigated situation was negligible. 

Interestingly, the method was shown to achieve a decreased accuracy in the kinematics of the most 

distal segments, due to errors accumulation with the kinematic chain paradigm.  

1.4. Synthesis and selection of the most appropriate methods for the wearable 

estimation of BCoM kinematics in people with lower-limb amputation 

None of the methods identified in the literature were applied to the gait of people with lower-limb 

amputation. Therefore, the advantages and drawbacks of each of the retrieved methods should be 

weighted and put in regards with the specificities of the lower-limb amputee gait pattern in order to 

identify the most promising methods for BCoM kinematics estimation in amputee gait. In particular, it 

should be kept in mind that a trade-off between simplicity (number of sensors, calibration procedures) 

and accuracy is essential for clinical transfer of wearable protocols. 

Three categories of methods have emerged from the literature regarding the estimation of BCoM 

derived parameters: single-sensor approaches, multi-segment inertial models and kinematic chains.  

Single sensor approaches are attractive because of their simplicity (Gard et al., 2004; Esser et al., 

2009; Jeong et al., 2018). However, they were shown to overestimate BCoM range of motion and to 

lack accuracy in the mediolateral and anteroposterior directions, similar as their optical motion capture 

counterpart. Indeed, significant differences were found between the BCoM displacement and 

acceleration in the mediolateral direction retrieved with the sacral method compared to the multi-

segment analysis in asymptomatic subjects (Jeong et al., 2018). Furthermore, when analyzing 

movements involving a wide upper body range of motion or an asymmetrical gait pattern, the sacral 
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method was deemed inappropriate (Meichtry et al., 2007; Myklebust et al., 2015; Huntley et al., 2017; 

Lintmeijer et al., 2018; Mohamed Refai et al., 2020). Therefore, this method is not likely to allow the 

accurate capture of 3D BCoM motion in amputee gait. Indeed, people with lower-limb amputation 

were shown to display an increased range of motion of the pelvis and the trunk (Michaud et al., 2000; 

Goujon-Pillet et al., 2008). 

Multi-sensor inertial models allow to retrieve the BCoM acceleration from a weighted sum of 

accelerations measured by a set of MIMUs. A large variety of MIMU sets has been retrieved from the 

literature, including from two to 17 MIMUs when using the commercialized MVN suit. This approach 

assumes that MIMUs rigidly attached to body segments can allow to estimate the accelerations of the 

underlying SCoMs. Therefore, a large number of MIMUs should be employed in order to capture the 

accelerations of all the segments pertaining to the body. In general, MIMUs are carefully positioned as 

closely as possible to the underlying SCoM and the accelerations measured by the MIMUs are used as 

proxy measurements of the SCoM accelerations (Lintmeijer et al., 2018; Shahabpoor et al., 2018). As 

MIMUs provide the acceleration in the MIMU local frame, their output must be transferred in a global 

reference frame prior to computing their weighted average (Lintmeijer et al., 2018; Shahabpoor et al., 

2018). Care must be taken to ensure that the orientation output is not influenced by magnetic 

disturbances (Lintmeijer et al., 2018; Shahabpoor et al., 2018). In order to reduce the number of 

sensors required, several authors have investigated the feasibility of simplifying inertial models by 

considering only the motion of up to three segments (Zijlstra et al., 2010; Najafi et al., 2015; 

Shahabpoor et al., 2018), with one approach implemented in a walking task.  

 The last approach is that of the kinematic chain. It can either be used with the estimation that the 

BCoM lies within a segment pertaining to the kinematic chain, such as the pelvis (Yuan and I. Chen, 

2014) or it must be coupled with an inertial model in order to estimate SCoM motion from the motion 

of the joint centers of rotation (Fasel, Spörri, et al., 2017). In any case, the kinematic chain method 

imposes to use MIMUs on all adjacent segments pertaining to the kinematic chain. Furthermore, 

accurate sensor-to-segment alignments are crucial since the method relies on the orientation of 

segŵeŶts to estiŵate the segŵeŶts͛ tƌajeĐtoƌies aŶd siŶĐe errors build up along the kinematic chain 

(Fasel, Spörri, et al., 2017). The coupled kinematic chain and inertial model proposed by Fasel and 

coworkers yielded aŶ aĐĐuƌate estiŵatioŶ of the BCoM eǆĐuƌsioŶ ďut ƌeƋuiƌed ϳ MIMUs aŶd didŶ͛t 
provide the absolute kinematics of the BCoM in an Earth-fixed reference frame since the root point of 

the kinematic chain was the lumbar joint center. 

Based on this overview of the literature, single-sensor approaches do not seem relevant for lower-

limb amputee gait as BCoM trajectory and acceleration estimated using this approach or its laboratory-

based counterpart were shown to be overestimated in pathological and asymmetrical gait. However, 

since a trade-off between accuracy and simplicity of the protocol is crucial, full-body inertial models or 

complete kinematic chain neither appear relevant. Therefore, the multi-sensor approach consisting in 

simplifying inertial models represents an interesting track for the estimation of BCoM kinematics from 

MIMUs for the gait of people with lower-limb amputation. In particular, the method developed by 

Shahabpoor and coworkers could be adapted in the population of people with lower-limb amputation 

in order to identify the optimal segments network required for the estimation of 3D BCoM motion. 

The next chapter thus aims at investigating the feasibility of deriving an optimal sensor network for 

the estimation of BCoM acceleration in people with transfemoral amputation, using optical motion 

capture data. 
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Chapter 2 – Optimal sensor network for the estimation of 3D body 

center of mass acceleration in people with transfemoral amputation 

This chapter will be submitted as an article. Part of the validation study, with a slightly different 

post-processing, was submitted as an abstract for the 45th Congress of the Société de Biomécanique. 

The work of Joseph Basel, Msc, is duly acknowledged.   

2.1. Introduction 

The study of biomechanical parameters derived from body center of mass (BCoM) motion may 

reveal crucial information about gait impairment (Minetti et al., 2011; Pavei et al., 2017; Tesio and 

Rota, 2019), especially in people with lower-limb amputation (Agrawal et al., 2009; Bonnet et al., 2014; 

Askew et al., 2019; Tesio and Rota, 2019). Indeed, from a mechanical standpoint, the kinematics and 

dynamics of the body center of mass (BCoM) are important parameters of the locomotion which 

directly result from the application of external forces (Tesio and Rota, 2019). The 3D path of the BCoM 

allows to describe the displacement of the body as a whole (Pavei et al., 2020). BCoM acceleration, 

velocity and displacement have been shown to provide insight on dynamical stability (Hof et al., 2005; 

Hak et al., 2014; Al Abiad et al., 2020), gait efficiency (Donelan et al., 2002a; Bonnet et al., 2014; Askew 

et al., 2019), and gait asymmetries (Agrawal et al., 2009; Minetti et al., 2011) both in the asymptomatic 

population and in the population of lower-limb amputees. Although 3D BCoM motion is of particular 

interest to describe pathological gait, it is scarcely studied in clinical routine (Tesio and Rota, 2019), 

partly due to the high cost and complexity of optoelectronic motion capture systems and force plates 

which allow the acquisition of BCoM-derived parameters. 

Recently, the use of magneto-inertial measurement units (MIMUs) has been proposed as an 

alternative to the gold standards for the capture of BCoM derived parameters (Floor-Westerdijk et al., 

2012; Ancillao et al., 2018; Shahabpoor et al., 2018; Pavei et al., 2020). MIMUs are indeed small, light, 

and low-cost wearable sensors, embedding orthogonally mounted accelerometers, gyroscopes and 

magnetometers. The latter provide the linear acceleration, angular velocity and local magnetic field 

along the axes of an inertial frame defined by the MIMU case ;͞MIMU loĐal fƌaŵe͟Ϳ and their fusion 

allows to estimate the orientation of the MIMU local frame relative to a global Earth-fixed frame 

(Bergamini et al., 2014). Therefore, provided MIMUs are securely attached to segments and carefully 

aligned with the underlying anatomical frames, they can be used to estimate segmental orientation 

and motion and ultimately, similarly as optoelectronic systems, segments͛ centers of mass (SCoM) and 

3D BCoM motion. 

For the sake of simplicity, most wearable protocols developed for 3D BCoM motion tracking 

involve a single sensor at pelvis level (Meichtry et al., 2007; Floor-Westerdijk et al., 2012; Ancillao et 

al., 2018). Yet, several works evidenced that the sacral method tends to overestimate the 3D path of 

the BCoM (Meichtry et al., 2007; Pavei et al., 2017). In particular, the mediolateral (Jeong et al., 2018; 

Mohamed Refai et al., 2020) and anteroposterior (Meichtry et al., 2007; Myklebust et al., 2015; Najafi 

et al., 2015) components of BCoM trajectory and acceleration were shown not to be accurately 

captured when using the sacral method in the asymptomatic population, especially when adopting an 

asymmetrical gait pattern or performing motion involving the upper body (amplitude of the sacral 

marker displacement compared to that of BCoM displacement of 124 mm vs 46 mm in the 
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anteroposterior direction in cross-country skiiers - Myklebust et al. 2015 ; correlations of the sacral-

method-based acceleration with the BCoM acceleration inferior to 0.56 in the anteroposterior and 

mediolateral directions in sound participants mimicking an asymmetrical gait pattern - Mohamed Refai 

et al. 2020). As a consequence, multi-segment analyses, including 11 to 17 MIMUs, have also been 

proposed  (Fasel, Sporri, et al., 2017; Karatsidis et al., 2017; Lintmeijer et al., 2018; Pavei et al., 2020). 

In (Fasel, Spörri, et al., 2017), the BCoM trajectory was for instance estimated using 11 MIMUs with 

high 3D accuracy (25.7 mm for the norm and errors < 8.6 mm along each axis) in 11 athletes performing 

indoor alpine skiing. Similarly, in (Lintmeijer et al., 2018), the anteroposterior component of the BCoM 

acceleration was estimated accurately compared to force plates (NRMSE = 3.8 %, intraclass correlation 

coefficient > 0.988) using thirteen MIMUs located on the body segments of nine rowers. 

To the authors͛ knowledge, no study investigated the feasibility of estimating 3D BCoM motion 

with MIMUs in people with lower-limb amputation. While single-sensor approaches may not be 

accurate enough for pathological gait, finding a balance between the number of MIMUs and accuracy 

is essential (Ancillao et al., 2018; Jeong et al., 2018). In this prospect, Shahabpoor and coworkers 

recently proposed a method to select a reduced number of MIMUs for the estimation of 3D BCoM 

acceleration in the asymptomatic population (Shahabpoor et al., 2018). Three MIMUs located on the 

trunk, pelvis and one thigh allowed to accurately estimate the vertical component of BCoM 

acceleration (normalized root mean square errors NRMSE < 8.7% of the reference BCoM acceleration 

amplitude). While the need to consider the 3D nature of BCoM movement has been widely 

acknowledged (Minetti et al., 2011; Pavei et al., 2017; Tesio and Rota, 2019), moderate accuracy was 

achieved in the mediolateral and anteroposterior components (NRMSE > 16 %) when adopting this 

configuration with an optical motion capture system (Shahabpoor et al., 2018). Nonetheless, the 

method developed appears promising and could be adapted in people with lower-limb amputation.  

The aim of the present study was therefore to identify optimal sensor networks for the estimation 

of 3D BCoM acceleration in people with transfemoral amputation. First, segmental contributions to 

the BCoM acceleration will be investigated using optical motion capture system data and a full body 

inertial model. Based on these results, the accuracy of 3D BCoM acceleration estimated using different 

combinations of the most contributing segments will be investigated. 
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2.2. Methods  

2.2.1. Participants 

The study was designed according to the Declaration of Helsinki 

and was granted ethical approval (Comité de Protection des Personnes 

CPP NX06036). Ten people with traumatic transfemoral amputation 

(age: 41.5 ± 11.3 years; mass: 68.8 ± 15.2 kg; height: 1.73 ± 0.07 m; 8 

males) gave written informed consent to participate in the study 

(Table 3). Inclusion criteria were people with transfemoral unilateral 

amputation due to trauma or tumor, fitted with a definitive prosthesis, 

able to walk at various speeds without any assistance. Participants 

walked with their usual passive microprocessor-controlled knee with 

an energy storing and return foot, the alignment of which was 

controlled by a prosthetist prior to data collection. 

2.2.2. Measurement protocol 

Each participant was equipped with a full-body marker set (Al 

Abiad et al., 2020 - see Appendix A – Marker set used in Part 2 details). 

An optoelectronic system (VICON, Oxford, UK, 200 Hz) recorded 

markers positions while the participant was keeping a static standing 

posture and four photographs (front, back, both sides) were being 

taken (Figure 24). Following the static calibration trial, participants had 

to walk at self-selected speed along an 8 m pathway, with 3 force plates (AMTI, 1000 Hz) in the middle. 

Only trials with three successive foot contacts on the force plates (i.e. a complete stride) were 

considered for further analysis.  

Table 3: Participants' characteristics 

Participant Gender 
Age 

(years) 

Height 

(m) 

Mass 

(Kg) 
BMI 

Amputation 

delay (years) 

Amputation 

level 
Prosthetic knee Prosthetic foot 

TF1 M 58 1,8 68 21,9 31 TF Mauch SNS Variflex 

TF2 M 48 1,8 64 19,7 1 TF C-leg Triton 

TF3 M 54 1,8 85 25,9 7 TF C-leg 1C40 

TF4 M 43 1,6 72 26,7 3 KD Rheo knee Variflex 

TF5 F 49 1,7 53 19,4 25 KD Total Knee  Elation 

TF6 M 44 1,7 47 16,6 18 TF C-leg Silhouette 

TF7 F 26 1,7 65 23,9 2,5 Gritti Rheo knee Elation 

TF8 M 26 1,8 56 17,3 1,5 TF C-leg Pro-Flex 

TF9 M 32 1,8 95 29,3 7 TF Rheo knee XC Pro-Flex 

TF10 M 35 1,7 83 29,1 9,5 KD C-leg Triton 

Mean   41,5 1,73 68,8 23,0 10,5       

SD   11,3 0,07 15,2 4,7 10,6       

BMI, body mass index; F, female; M, male; TF, Transfemoral amputation; KD, Knee disarticulation, SD, standard deviation.  
The prosthetic devices are from Ottobock (C-Leg, Triton, and 1C40) from Ossür (Rheo Knee, Mauch SNS, Total knee TK200, Variflex, 

Elation and Pro-Flex) and from Freedom Innovation (Silhouette). 

Figure 24: Static standing posture 
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2.2.3.   Data processing 

A 15-segment hybrid inertial model defined according to Pillet and coworkers (Pillet et al., 2010), 

was used to obtain body segmental inertial parameters. Prosthetic limbs were represented by a 

concentrated mass estimated from the ŵaŶufaĐtuƌeƌs͛ Ŷotices similarly to (Al Abiad et al., 2020). 

Markers and force plate data were filtered using a zero-phase fourth order Butterworth low-pass filter, 

with a cut-off frequency of 5 Hz. Each segment͛s center of mass (SCoM) and inertial-model based BCoM 

accelerations were computed from marker data. Before each differentiation, marker-based signals 

were low pass filtered using the abovementioned Butterworth filter. Additionally, reference BCoM 

acceleration (ࢌࢋ࢘,ࡹ࢕࡯࡮ࢇ ) was derived from ground reaction force time-series (ࡲࡾࡳ ) following 

NeǁtoŶ͛s seĐoŶd laǁ (equation 1, with ݉௕௢ௗ௬,  the mass of the body and g the gravitational 

acceleration). Gait cycles were segmented using a 20 N threshold on the ground reaction force data 

and acceleration data was time-normalized to percent of the gait cycle. ࡲࡾࡳ = ݉௕௢ௗ௬ ሺࢌࢋ࢘,ࡹ࢕࡯࡮ࢇ −  ሻ    ሺͳሻࢍ
a. Segmental contributions 

 Segmental contributions to the BCoM accelerations were defined according to two criteria as 

defined in (Shahabpoor et al., 2018): the relative weight of SCoM accelerations in BCoM acceleration 

and the similarity of SCoM acceleration patterns with that of the BCoM derived from the inertial model.  

The weight of the contribution of each segment (࢏ࢍࢋ࢙࢈࢏࢚࢘࢔࢕࡯) in BCoM acceleration was defined 

as the SCoM acceleration (࢏ࡹ࢕࡯ࡿࢇሻ weighted by the relative mass of the segment in the body (equation 

2, ݉௦௘௚೔  being the ݅௧ℎ segment mass). Contribution weights were normalized by peak-to-peak BCoM 

acceleration and expressed as a percentage of total contributions. Segmental contribution weights 

were then averaged for each segment over all the participants. ࢏ࢍࢋ࢙࢈࢏࢚࢘࢔࢕࡯ = ௠ೞ೐𝑔೔௠್೚೏𝑦   ሺʹሻ     ࢏ࡹ࢕࡯ࡿࢇ 
Regarding the similarity of SCoM accelerations, the PeaƌsoŶ͛s Đƌoss-correlation coefficient was 

computed between each pair of segment accelerations as well as between each SCoM acceleration 

and the inertial model based BCoM acceleration, for the anteroposterior (AP), mediolateral (ML) and 

vertical (V) directions, yielding three 16x16 symmetric cross-correlation matrices per gait cycle. For 

each direction and for each subject, the retrieved cross-correlation matrices were averaged over all 

the retrieved gait cycles to yield subject-specific cross-correlation matrices. Finally, the cross-

correlation matrices were averaged over all subjects.  

The most relevant contributing segments were then identified based on their respective weight 

and similarity to the BCoM acceleration derived from the inertial model. 

b. Optimal sensor networks 

The identification of the most contributing segments to the BCoM acceleration allowed to define 

several MIMU-based sensor networks with a minimal number of sensors for the estimation of BCoM 

acceleration, including three to six sensor locations. Furthermore, two methods were investigated for 

the construction of optimal sensor networks (OSN). In the first method, the OSN-based BCoM 

acceleration was computed as the sum of the segmental contributions for the ܰ included segments 

(OSN type 1, equation 3): 
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૚ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ = ∑ ே௜=ଵ࢈࢏࢚࢘࢔࢕࡯ ࢏ࢍࢋ࢙  = ∑ ௠ೞ೐𝑔೔∑ ௠ೞ೐𝑔ೕೕಿ=1 ே௜=ଵ࢏ࡹ࢕࡯ࡿࢇ        ሺ͵ሻ  
The second method was based on the model proposed in (Shahabpoor et al., 2018). In order to account 

for the whole-body mass, the mass of each of the non-selected segments (݉௦௘௚ೕ) was attributed to 

the main contributor whose acceleration was the more correlated to that of the non-selected segment, 

based on the average cross-correlation matrix (OSN type 2, equation 4). ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ૛ = ∑ 𝜶࢈࢏࢚࢘࢔࢕࡯ ࢏ே௜=ଵ ࢏ࢍࢋ࢙  = ∑ ௠ೞ೐𝑔೔+ ∑ ௥ೕ,೔ ௠ೞ೐𝑔ೕ15−ೀ=1௠್೚೏𝑦 ே௜=ଵ࢏ࡹ࢕࡯ࡿࢇ       ሺͶሻ  
with { ௝,௜ݎ = ͳ,  if iŶĐluded segŵeŶt ݅ ǁas the ŵoƌe Đoƌƌelated ǁith segŵeŶt ݆  ݎ௝,௜ = Ͳ, if iŶĐluded segŵeŶt ݇ ≠ ݅ ǁas the ŵoƌe Đoƌƌelated ǁith segŵeŶt ݆ 

The inertial-model-based and the OSN-models-based BCoM acceleration were compared to the 

force plates-based reference BCoM acceleration. A leave-one-out methodology was used for the 

validation of the second type of OSN-based BCoM acceleration (equation 4) so that, for each 

participant, cross-correlation coefficients used to build the model were not used in the validation 

dataset. Reference and models-based BCoM accelerations were compared over the central prosthetic 

gait ĐǇĐle of eaĐh tƌial usiŶg PeaƌsoŶ͛s linear correlation coefficients and their p-value as well as peak-

to-peak normalized root-mean square errors (NRMSE) as proposed in (Ren et al., 2008), averaged over 

all patients. An alpha-level of 0.05 was used for assessing the correlations significance. The results 

achieved with a single sensor at the pelvis center of mass (࢙࢏࢜࢒ࢋ࢖,ࡹ࢕࡯ࡿࢇ = ࢙࢏࢜࢒ࢋ࢖,ࡹ࢕࡯࡮ࢇ ) are also 

provided as an indication of the performance of the single sensor method. Given the low sample size, 

only descriptive statistics was provided.  

2.3. Results 

A total of 25 complete prosthetic gait cycles were retrieved for the analysis, with an average of 3 

gait cycles per participant (range 1-6).  

a. Segmental contributions 

Both absolute and relative average segmental contribution weights were represented as stacked 

bar plots every 2% of the prosthetic gait cycle (Figure 25). These representations allow to observe the 

weight of individual segments as well as the between-segments compensations. For instance, the 

upper-limbs were shown to contribute for less than 20% in the BCoM acceleration in all directions 

(Figure 25 d.-f.) and contributions from the right and left sides to cancel each other in the 

anteroposterior direction (Figure 25 a.). The trunk contributes to an average of about 30 % of BCoM 

acceleration in the vertical and mediolateral directions and to 16 % of the anteroposterior direction, 

which makes it the major contributor of BCoM acceleration. 

In the anteroposterior direction, BCoM acceleration results from opposite actions of the different 

segments. In particular, prosthetic and sound limbs contributions are opposed in signs to each other. 

However, lower-limb actions do not cancel each other. On average, during the prosthetic gait cycle, 

the sound leg contributes to 47.4 % of the anteroposterior acceleration while the prosthetic leg 

contributes to 18.7 % of the BCoM anteroposterior acceleration, ǁith ŵost of eaĐh leg͛s ĐoŶtƌiďutioŶ 
occurring in their respective swing phase.   
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In the mediolateral direction, the percentage contribution of upper and lower limbs appears to be 

near constant along the full gait cycle. The upper limbs contribute to 13.6 %, the sound lower limb to 

26.0 % and the prosthetic lower limb to 15.5 % of the BCoM acceleration. Thus, the head, trunk and 

pelvis segments contribute to an average of 45.0 % of BCoM acceleration. The average head 

contribution in the mediolateral direction (9.3 %) is almost as high as that of a thigh (sound thigh: 

13.9 %, prosthetic thigh: 11.0 %). It is interesting to note that the average contributions of the 

prosthetic shank and foot are below 2.5 % over the gait cycle.  

In the vertical direction, the trunk and the thigh in swing phase appear to be the major contributors 

of BCoM acceleration, contributing for about 50 % of the latter. Over the full prosthetic gait cycle, the 

HAT (head, upper-limb, trunk and pelvis) segments contribute to 54 %, the prosthetic lower limb to 16 

% and the sound lower limb to 30 % of the vertical acceleration. The prosthetic thigh contribution in 

swing phase (8 % on average) was found to be less than that of the sound thigh (about 22.5 %). During 

prosthetic midstance, the sound foot also appears to contribute to the vertical acceleration by up to 

24.5 % while its contribution is below 3 % during sound-limb stance phase. 

SCoM and BCoM accelerations cross-correlations matrices in the anteroposterior, mediolateral 

and vertical directions along the prosthetic gait cycle are displayed in Figure 26.   

While significant and strong correlations were found between the accelerations of the BCoM, and 

that of centers of mass of the trunk, pelvis, prosthetic thigh and both shanks in the anteroposterior 

direction, the strong correlation of the head center of mass acceleration with the BCoM acceleration 

in the anteroposterior direction was found to be non-significant for at least one participant, but the 

correlation was significant on average. Interestingly, the anteroposterior accelerations of the centers 

of mass of the sound thigh and shank were negatively correlated with that of the BCoM. Moderate to 

strong correlations were found between the accelerations of the centers of mass of the sound upper 

limb and the BCoM acceleration. Strong and significative correlations were found between the 

accelerations of the BCoM and that of the centers of mass of the pelvis, trunk and sound thigh in the 

mediolateral direction while moderate correlations were found for the prosthetic thigh. For the latter 

segment, correlations were not significant for all participants, although significant on average (p-value 

< 0.05).  

Eventually, very strong and significant correlations were found between the BCoM acceleration 

and that of the HAT SCoM in the vertical direction. The acceleration of the centers of mass of both 

thighs was also strongly and significantly correlated with the BCoM.  
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Figure 25: Segmental contributions in the body center of mass (BCoM) acceleration compared to total contributions and /or  inertial-model 

based acceleration and reference acceleration (GRF) in the anteroposterior direction (a. and d.), in the mediolateral direction (b. and e.) and 

in the craniocaudal direction (c. and f.).  

(a.-c.) Segmental contributions normalized per axial BCoM peak-to-peak acceleration;  

(d.-f.) Segmental contributions expressed as percent of total absolute contribution;   
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To conclude, the trunk, the pelvis and both 

thighs appear to be the main contributors of 

the BCoM in all three directions both in terms 

of similarity and weight. The head is also a 

prominent contributor of BCoM acceleration in 

the mediolateral direction, but head motion 

may be voluntarily uncorrelated to whole body 

motion, as evidenced by the non-significant 

correlations between the acceleration of the 

center of mass of the head and the BCoM 

acceleration in the anteroposterior and 

mediolateral direction. For both the prosthetic 

and sound limbs, ipsilateral shank and foot 

segments were found to have their SCoM 

accelerations significantly and highly 

correlated with each other, and to be 

significant contributors in the anteroposterior 

and vertical direction of the BCoM acceleration 

during the contralateral stance phase. 

Based on these observations, the trunk, 

pelvis, and segments from both lower limbs 

were considered as promising sensor locations 

for BCoM acceleration estimation.  

b. Optimal sensor networks 

Several networks combining from three to 

six segment locations were considered for 

further analysis (Table 4). Estimated BCoM 

accelerations with these models or using 

single-segment paradigms were compared to 

reference BCoM acceleration, using the leave-

one-out paradigm for OSN models of type 2. It 

should be noted that the inertial-model-based 

BCoM acceleration achieved mean errors of 

10.6 ± 1.3 %, 10.7 ± 3.2 % and 11.2 ± 6.4 % in 

the anteroposterior, mediolateral and vertical 

directions respectively. All models achieved 

higher accuracy and agreement in the vertical 

than in the anteroposterior or mediolateral 

directions, with higher variability achieved 

along the mediolateral axis. The redistribution 

of the masses of excluded segments to those 

included in the model according to equation 4 

Figure 26: Average cross-correlation matrices of segments (P stands for 

Prosthetic side, and S for Sound side), inertial model-based Body center of 

mass acceleration (BCoM) and reference BCoM (from ground reaction 

force, BCoM GRF) along the prosthetic gait cycle in the (a.) anteroposterior, 

(b.) mediolateral, and (c.) vertical directions. Crossed correlations indicate 

that the correlation was non-significative for at least one participant.The 

darker an bigger the circle, the stronger the correlation (blue tones: 

positive correlation, red tone: negative correlations) 
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didŶ͛t ƌesult iŶ a significant improvement compared to the weighted sum method (equation 3) and 

generally led to a slight decrease in the correlation with the reference BCoM acceleration in the 

anteroposterior direction. For two models including the trunk and the shanks or feet, OSN type 2 

models even resulted in a significant decrease of accuracy (up to -21 % of NRMSE in the anteroposterior 

direction) and agreement. All models including three sensors or more estimated the BCoM 

acceleration with higher accuracy and agreement than the sacral method in the anteroposterior and 

mediolateral directions. Only models including five segments or more achieved NRMSE below 15% in 

all three directions, except for one model with three sensors which resulted in NMRSE below 16.3 % 

in all directions.  

Table 4: Comparison of body center of mass (BCoM) acceleration derived from various optimal sensor network (OSN) models 

to the reference acceleration issued from force plates. OSN of type 1 correspond to models where BCoM acceleration was 

estimated as the weighted sum of contributions of the included segments (see equation 3), while type 2 OSN models take into 

aĐĐouŶt the eǆĐluded segŵeŶts’ ŵasses ďǇ ƌedistƌiďutiŶg theŵ to theiƌ ŵost Đoƌƌelated iŶĐluded segŵeŶts ;eƋuatioŶ ϰͿ.   
Results are provided as mean (standard deviation) 

Green shaded cases correspond to NRMSE < ϭϱ% aŶd/oƌ PeaƌsoŶ’s liŶeaƌ ĐoƌƌelatioŶ ĐoeffiĐieŶt ƌ ш Ϭ.8Ϭ  
NRMSE = Normalized root mean square error; AP = Anteroposterior; ML = Mediolateral; CC = Craniocaudal 

Number of 

segments 

Included 

segments 
OSN type 

NRMSE (%) Pearson's r 

AP ML CC AP ML CC 

1 Pelvis N/A 25.3 (2.4) 26.2 (8.0) 11.2 (2.0) 0.65 (0.07) 0.60 (0.28) 0.91 (0.05) 

1 Trunk N/A 20.0 (2.8) 20.8 (3.1) 10.6 (2.0) 0.74 (0.08) 0.84 (0.07) 0.92 (0.04) 

3 Pelvis, thighs 
1 23.3 (2.8) 24.8 (6.6) 14.4 (2.8) 0.84 (0.04) 0.62 (0.19) 0.84 (0.10) 

2 21.0 (2.8) 21.4 (6.1) 11.3 (2.5) 0.81 (0.04) 0.73 (0.15) 0.90 (0.05) 

3 Trunk, thighs 
1 18.0 (1.8) 13.0 (3.6) 11.3 (2.5) 0.87 (0.03) 0.91 (0.08) 0.90 (0.07) 

2 18.1 (1.9) 13.9 (2.7) 10.5 (2.4) 0.85 (0.03) 0.89 (0.06) 0.91 (0.05) 

3 Trunk, shanks 
1 15.0 (2.8) 16.3 (3.9) 11.0 (2.4) 0.82 (0.06) 0.86 (0.07) 0.91 (0.04) 

2 36.5 (4.1) 21.1 (5.7) 10.4 (2.2) -0.08 (0.26) 0.74 (0.18) 0.92 (0.04) 

3 Trunk, feet 
1 25.6 (4.4) 18.3 (4.1) 12.3 (2.4) 0.51 (0.15) 0.84 (0.09) 0.88 (0.07) 

2 34.4 (3.7) 20.2 (6.7) 11.1 (2.2) 0.18 (0.20) 0.75 (0.17) 0.91 (0.05) 

4 
Trunk, pelvis, 

thighs 

1 18.0 (1.8) 13.0 (3.5) 11.1 (2.4) 0.86 (0.03) 0.91 (0.08) 0.90 (0.06) 

2 18.6 (2.1) 12.9 (3.1) 10.6 (2.4) 0.84 (0.03) 0.91 (0.07) 0.91 (0.05) 

5 
Trunk, thighs, 

shanks 

1 13.3 (1.8) 14.1 (5.1) 11.2 (2.3) 0.92 (0.02) 0.89 (0.10) 0.90 (0.06) 

2 10.3 (1.3) 13.0 (3.6) 10.5 (2.5) 0.93 (0.02) 0.91 (0.06) 0.91 (0.05) 

5 
Trunk, thighs, 

feet 
1 11.9 (1.9) 13.5 (3.9) 10.7 (2.6) 0.91 (0.02) 0.90 (0.08) 0.91 (0.05) 

2 13.7 (2.6) 13.9 (4.1) 10.3 (2.5) 0.86 (0.06) 0.89 (0.09) 0.92 (0.04) 

6 
Trunk, pelvis, 
thighs, shanks 

1 12.7 (1.5) 14.2 (4.9) 11.0 (2.4) 0.93 (0.02) 0.90 (0.10) 0.91 (0.06) 

2 10.5 (1.4) 13.4 (3.9) 10.6 (2.5) 0.93 (0.02) 0.91 (0.08) 0.91 (0.05) 

6 
Trunk, pelvis, 
thighs, feet 

1 11.8 (2.1) 13.5 (3.7) 10.5 (2.6) 0.91 (0.03) 0.90 (0.07) 0.92 (0.05) 

2 13.5 (2.6) 13.6 (4.0) 10.4 (2.5) 0.86 (0.05) 0.90 (0.09) 0.92 (0.04) 

 

The estimated BCoM acceleration with the pelvis sacral method, and two OSN models (OSN type 

1 including the trunk and shanks segments, which is the only model achieving errors < 16.3% in all 

three directions while including less than 4 sensors and the OSN type 2 including the trunk, pelvis, both 

thighs and both shanks which yielded the better results) are represented in Figure 27 against the 

reference BCoM acceleration derived from force plates data.  
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2.4. Discussion 

a. Segmental contributions 

The first objective of the study was to investigate segmental contributions to the BCoM 

acceleration in people with transfemoral amputation.  

Similarly as in asymptomatic gait (Gillet et al., 2003), the trunk was found to be the major 

contributor of BCoM acceleration in the vertical and mediolateral directions while the lower limbs, and 

more especially the thighs, the prime force generator in the direction of progression  in people with 

transfemoral amputation. The accelerated masses of the trunk and both thighs were found to 

contribute to more than 50% of BCoM acceleration in all three directions, and up to 59% in average 

Figure 27: Average acceleration of the body 

center of mass (BCoM) as estimated with the 

sacral method (Pelvis, blue dotted line), the 

optimal sensor network (OSN) model of type 1 

including the trunk and shanks segments 

(yellow dashed line), the OSN of type 2 model 

including the trunk, pelvis, thighs and shanks 

segments (orange straight line) compared to 

the reference BCoM acceleration in the 

anteroposterior (AP), mediolateral (ML) and 

vertical (CC) directions. 

Shaded regions represent the interval 

[mean – standard deviation, mean + standard 

deviation] for each estimate of the BCoM 

acceleration 
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for the vertical direction. These segments happen to be the heaviest of the body, which may explain 

their significant weight in the BCoM acceleration. 

The analysis of trunk and pelvis contributions in BCoM acceleration was of particular interest as 

they are often used in the literature as proxy measures of the BCoM motion (Gard et al., 2004; Pavei 

et al., 2017; E. Shahabpoor and Pavic, 2018). Trunk acceleration correlations with BCoM acceleration 

were shown to be stronger than that of the pelvis in the anteroposterior and mediolateral directions 

(Pearson r > 0.79 for the trunk while 0.66 > r > 0.63 for the pelvis). In both cases, stronger and 

significative correlations were found in the vertical direction (r > 0.9). These results support previous 

findings regarding the sacral method, which might be accurate enough for the study of vertical BCoM 

motion (Gard et al., 2004) while unsuited to accurately track BCoM motion in the mediolateral or 

anteroposterior direction (Meichtry et al., 2007; Jeong et al., 2018).  

Interestingly, contrary to what was observed in asymptomatic subjects (Shahabpoor et al., 2018), 

segmental percent contributions in the vertical direction were not found to be near-constant during 

the prosthetic stance phase (Figure 25f.). Increased weight of sound leg accelerations is indeed 

observed at the beginning of the prosthetic gait cycle, following sound-limb push-off. This might result 

from ankle plantarflexion at terminal stance which was shown to be a major determinant of vertical 

BCoM motion (Hayot et al., 2013). In the anteroposterior direction, the lower limbs were found to 

constitute the primary contributor of BCoM acceleration, with the sound limb accounting for almost 

half of total BCoM acceleration. This asymmetry in contribution weight might be partly explained by 

the lower mass of the prosthetic leg compared to the contralateral limb. An alternative explanation 

might lie with the specific gait compensations implemented by people with transfemoral amputation. 

Indeed, compensatory mechanisms at the sound limb, especially involving the hip and ankle joints, are 

common in this population (Sagawa et al., 2011; Bonnet et al., 2014; Drevelle et al., 2014) and may 

contribute to increased accelerations of the contralateral  thigh, shank and foot segments during gait. 

However, it was beyond the scope of the present study to investigate kinematic compensations 

adopted by the participants. Shanks and feet accelerations were shown to be highly correlated with 

each other in all directions, and shanks to be significantly and strongly correlated with BCoM 

acceleration in the anteroposterior direction. Furthermore, the sound lower-limb segments contribute 

in average to 34% of BCoM acceleration during the first half of the gait cycle. In light of these results, 

the inclusion of either shank or foot sensors seems relevant for the construction of OSN for BCoM 

acceleration estimation. Although the interest of including shank sensors was not reported for the 

asymptomatic population (Shahabpoor et al., 2018), shank sagittal angles were previously shown to 

predict BCoM displacement along with thigh and HAT segments in the asymptomatic population 

(Mohan Varma and Sujatha, 2017; Arumukhom Revi et al., 2020). 

Similarly as in (Shahabpoor et al., 2018), the head and upper limbs were discarded from the list of 

potential sensor locations for the wearable estimation of BCoM acceleration. Indeed, while the head 

was shown to be a prominent contributor of BCoM acceleration in the mediolateral direction, head 

motion can often be decorrelated from whole-body motion as pointed out by the non-significant 

correlation of its accelerations with that of the BCoM. Eventually, the upper limbs were found to be 

minor contributors in terms of weight (< 10% for each limb). This might be due both to their reduced 

mass ƌelatiǀe to the ďodǇ͛s (Dumas et al., 2007) or to the fact that arms have a limited range of motion 

during straight walking. Furthermore, in a study investigating the feasibility of wearable tracking of 

BCoM displacement while skiing, Fasel and coworkers showed that accuracy and precision of BCoM 
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displacement was not much impacted by the removal of upper-limbs sensors due to the out-of-phase 

motion of the arms (Fasel, Spörri, et al., 2017). However, it should be kept in mind that the upper limbs 

may play a more important role in other ambulation situations and should therefore not be 

systematically discarded.  

b. Optimal sensor networks 

Following the identification of the major contributors to BCoM acceleration, several OSN were 

devised including from three to six segments. The higher weight and agreement of trunk acceleration 

with BCoM acceleration compared to the pelvis one favored the investigation of three and five-sensor 

models involving the trunk and lower-limb segments. Relevance of this choice was confirmed by the 

achieved results: poorer accuracy was achieved when using the pelvis in a single-segment paradigm 

compared to when using the trunk and adding the pelvis to a trunk-based OSN model improved the 

NRMSE by less than 1 % (Table 4). Thus, our results advocate for the inclusion of the trunk segment 

when tracking body motion in people with transfemoral amputation. This is in agreement to previous 

literature  reporting significant trunk 3D motion in this population (Goujon-Pillet et al., 2008). 

The added-value of including several segments compared to the trunk-only or pelvis-only models 

for the anteroposterior and mediolateral components of BCoM acceleration is demonstrated in Table 

4 and Figure 27. This confirms previous findings showing that the single sensor paradigm is not suited 

to accurately capture 3D BCoM motion, especially in pathological or voluntary asymmetrical gait (Gard 

et al., 2004; Meichtry et al., 2007; Pavei et al., 2017; Jeong et al., 2018; Mohamed Refai et al., 2020). 

In particular, increased range of motion of the upper body in people with transfemoral amputation, 

especially of the pelvis in the sagittal plane (Goujon-Pillet et al., 2008), may explain the limited 

agreement and higher excursions of the BCoM acceleration estimated with a single sensor compared 

to the reference BCoM acceleration in the anteroposterior direction . To the contrary, the pattern of 

3D BCoM acceleration estimated using a 6-segment OSN-type 2 model including the trunk, pelvis, both 

thighs and shanks was found to closely match reference BCoM acceleration (Figure 27).  

Following a similar procedure for the selection of segments in the asymptomatic population, 

Shahabpoor and coworkers developed an OSN model of type 2 including the trunk, the pelvis and a 

thigh. Errors achieved on the training set (four asymptomatic participants, 20 trials) in the 

anteroposterior, mediolateral and vertical directions were respectively 16 ± 2.0 %, 18 ± 6.7 % and 7 ± 

1.7 %, and increased up to 32% in the mediolateral direction on the inter-subject validation set (two 

asymptomatic participants, 2 trials). While higher errors were achieved in the vertical direction by all 

the developed models within the present study, all the proposed OSN models including at least 5 

segments and one 3-sensor model achieved higher accuracy in the anteroposterior and mediolateral 

directions. In particular, the 5-segment OSN-type 1 models, which did not require to compute 

segmental acceleration cross-correlation coefficients for mass redistribution, achieved the same error 

as Shahabpoor͛s with subject-specific training (Shahabpoor et al., 2018). IŶ the authoƌs͛ opiŶioŶ, 

instrumenting a participant with 5 MIMUs is less cumbersome than performing a 17-MIMU calibration 

to obtain the subject-specific cross-correlation matrix required for the development of OSN-type 2 

models. The number of sensors included can be further reduced to three MIMUs when aiming at 

capturing only the anteroposterior (respectively, mediolateral) component of BCoM acceleration 

where enough accuracy is achieved with the instrumentation of trunk and shanks (respectively, thighs) 

segments (Table 4).  
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Karatsidis and coworkers investigated the accuracy of the ground reaction force estimated using a 

17-MIMU model. During the single-stance phase of the gait cycle, their model yielded lower errors in 

the anteroposterior and vertical directions (NRMSE of 10.0 % and 9.0 % respectively) but low accuracy 

(35.4% NRMSE) and agreement (r = 0.61) were achieved for the mediolateral component (Karatsidis et 

al., 2017). They achieved similar accuracy when using MIMUs and optical motion capture systems, 

indicating that high mediolateral errors might be due to the anthropometric model implemented 

rather than to the use of MIMUs.  

c. Perspectives 

In order to further reduce the number of sensors included in OSN models, an interesting track of 

research would be to propose kinematic models of groups of segments. For instance, the shanks and 

feet segments were shown to similarly contribute to the BCoM acceleration and their SCoM 

accelerations were significantly correlated. Therefore, a kinematic model representing the shank and 

foot as a rigid segment, such as proposed in (Hansen et al., 2000, 2004), might allow to retrieve the 

acceleration of the center of mass of the foot/shank complex and therefore may contribute to an 

increase of accuracy of the OSN models without requiring supplementary sensors. Similarly, a 

kinematic model linking the pelvis and thigh segments may allow to capture the motion of both the 

pelvis and the thighs from a single sensor attached to the pelvis. Indeed, the rotation of the pelvis 

(captured through the angular velocity measured by a pelvis sensor) may provide indications on the 

thighs motion. However, it was not in the scope of this study to investigate such kinematic models and 

these merely constitute interesting path of reflection for future work.  

d. Limitations and sources of errors 

The contribution analysis presented in this study was performed by comparing individual SCoM 

accelerations to that of the BCoM using an hybrid geometric and proportional model (Pillet et al., 

2010). Since anthropometric models were shown to influence the BCoM motion pattern (Catena et al., 

2017; Pavei et al., 2017), different results may have been achieved using other body segmental inertial 

parameters. Nevertheless, the present analysis provided the same major contributors of BCoM 

acceleration as in the literature on asymptomatic population (Gillet et al., 2003; Shahabpoor et al., 

2018), with specificities that appear to be related to the specific gait pattern of people with 

transfemoral amputation. The inertial model used to compute SCoM and BCoM accelerations achieved 

mean NRMSE of 10.6 ± 1.3 %, 10.7 ± 3.2 % and 11.2 ± 6.4 % in the anteroposterior, mediolateral and 

vertical directions respectively (Figure 25c). This may explain why no further improvement in accuracy 

was achieved by the different OSN models-based estimations when adding segments, in particular in 

the vertical direction. Errors of the OSN-based and inertial model-based vertical BCoM accelerations 

may have resulted from the filtering and differentiation processes of marker data. 

OSN models presented within this study were developed and validated with data derived from 

optical motion capture rather than wearable sensors. Therefore, their validity should be verified when 

using MIMUs. The latter provide raw acceleration and angular velocity measured at the origin and 

along the axes of the MIMU local frame as well as orientation data in a global reference frame. To 

transfer the measured accelerations at the SCoM, the position of each MIMU relative to the underlying 

SCoM must be obtained and angular velocity differentiated. These processes may introduce errors 

compromising the accuracy of BCoM estimates (Iosa, Picerno, et al., 2016; Karatsidis et al., 2017). 
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Furthermore, the orientation output estimated from MIMU signals have been shown to be affected by 

ferromagnetic perturbations (Lebel et al., 2018), that may result from the ground within buildings or 

prosthetic components. In such conditions, different MIMUs may sense different global Earth-fixed 

frames (Picerno et al., 2011), which may introduce new errors when computing BCoM acceleration 

from a weighted average of estimated SCoM acceleration. However, similar accuracy achieved with 

optical motion capture systems compared to MIMUs in (Karatsidis et al., 2017) is promising and tend 

to indicate that transferring the OSN models developed within this study in a wearable framework 

might achieve similar accuracy. 

2.5. Conclusions 

This study investigated the feasibility of estimating BCoM acceleration in people with transfemoral 

amputation from the acceleration of a limited number of segment-mounted wearable sensors. 

Including a minimum of five segments provided an accurate estimation of 3D BCoM acceleration 

compared to the literature while only three segments were necessary for the estimation of 2D 

acceleration. The trunk segment was shown to be crucial for the estimation of BCoM acceleration and 

should be instrumented along with a minimum of two lower-limb segments. The models were 

developed using data from optical motion capture system associated with an inertial model. Thus, 

applicability of the method with wearable sensors will be verified in future works. Indeed, MIMUs 

might be affected by higher signal noise and ferromagnetic perturbations, which may compromise the 

accuracy of the estimated BCoM acceleration. Furthermore, the method relies on the correct 

estimation of SCoM accelerations. Therefore, the investigation of the impact of MIMUs positioning 

relative to the center of mass of underlying segments and the development of wearable methods 

allowing the identification of these relative positions represent research tracks of interest. Finally, the 

suitability of the proposed OSN models to accurately capture BCoM velocity and displacement, which 

are relevant parameters for motion analysis in people with transfemoral amputation, should also be 

investigated in the future. Future works will therefore investigate the transfer of the best OSN models 

to a wearable framework, the sensitivity of BCoM acceleration estimation to MIMUs positioning and 

the applicability of the models to track other BCoM-derived parameters. 
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Chapter 3 – Estimation of 3D body center of mass kinematics in a 

fully wearable framework 

 The previous chapter investigated the feasibility of using a reduced number of sensors for the 

estimation of the body center of mass (BCoM) acceleration in people with transfemoral amputation. 

The study allowed to select various optimal sensor networks (OSN) which provided accurate estimates 

of the BCoM acceleration using the acceleration measured at the centers of mass of three to six 

segments. However, the results obtained for the selected OSN were derived from optical motion 

capture (OMC) data. Therefore, the suitability of the OSN networks and of the overall methodology 

should be verified when using MIMUs. In particular, several challenges, that will be detailed in section 

3.1, arise with the use of MIMUs. Indeed, for each MIMU, the acceleration is measured at the origin of 

the MIMU local frame and must be transferred to the center of mass of the underlying segment 

(SCoM), which is not immediate since MIMUs do not provide an estimation of their position. 

Furthermore, the obtained acceleration must be fused in a consistent Earth-fixed reference frame to 

estimate BCoM acceleration. Yet, the Earth-fixed reference frames sensed by several MIMUs may not 

be consistent across MIMUs (Picerno et al., 2011; Lebel et al., 2018; Guaitolini et al., 2019), which 

might lead to errors when fusing data from multiple sensors. These problems are not encountered 

when using OMC data. Indeed, while OMC markers do not directly provide the trajectory of the SCoM, 

their coordinates allow to define the segment anatomical frames position and orientation in the OMC 

Earth-fixed reference frame. Thus, a full body inertial model coupled with OMC data allows to retrieve 

the SCoM position in the OMC reference frame. Using MIMUs therefore imposes to develop a specific 

framework prior to estimating BCoM acceleration from the OSN models selected in the previous 

section.  

Once BCoM acceleration is accurately estimated from wearable sensors, obtaining the 

instantaneous velocity of the BCoM appears relevant. Indeed, the instantaneous velocity of the BCoM 

can provide insight on the energy cost of walking (Donelan et al., 2002b; Detrembleur et al., 2005) as 

well as on gait balance (Hof et al., 2005, 2007). Fuƌtheƌŵoƌe, the aǀeƌage BCoM ǀeloĐitǇ oƌ ͞ǁalkiŶg 
speed͟ is a keǇ desĐƌiptoƌ of health status and gait function in pathological gait, including in people 

with lower-limb amputation (Batten et al., 2019). While OMC-based BCoM position is differentiated to 

obtain BCoM instantaneous velocity, computing the instantaneous BCoM velocity from MIMU-based 

BCoM acceleration is not straightforward. Indeed, integration of MIMU signals leads to drift due to the 

presence of noise in the raw signal and must therefore be corrected to obtain an accurate estimation 

of BCoM instantaneous velocity.  

The aim of this chapter is therefore to propose and validate a wearable framework to use MIMUs 

in the selected OSN configurations for the estimation of BCoM acceleration and instantaneous velocity. 

The first section of this chapter will provide an overview of the methods implemented in the literature 

to tackle the abovementioned issues and to justify the choices made for the development of a 

wearable framework. The former should be as compatible as possible with clinical constraints in order 

to allow its transfer in the field: setup and acquisition durations should be as short as possible, with a 

minimal number of sensors, simple calibration procedures and minimal operator implication in the 

post-processing. In the subsequent sections, the framework will be introduced and validated as a 
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proof-of-concept in one person with transfemoral amputation against force platforms (BCoM 

acceleration) and optical motion capture data (BCoM acceleration and velocity). 

3.1. State-of-the-art: scientific challenges associated with the use of optimal MIMU 

networks for BCoM acceleration and velocity estimation 

The aim of this section is to provide an overview of the scientific challenges associated with the 

estimation of BCoM acceleration and instantaneous velocity from a network of connected MIMUs.  

In the study presented in the previous chapter, various optimal segment networks allowing an 

accurate estimation of BCoM acceleration from a set of segment-mounted markers were identified. 

The suitability of these OSN must be verified when using segment-mounted MIMUs instead of markers. 

Using equation 5, where ܰ is the number of MIMUs included in the OSN, ߚ௜ is the weight associated 

to the SCoM acceleration estimated with the ݅௧ℎ MIMU (ࡳ࢏ࡹ࢕࡯ࡿࢇ ) in an Earth-fixed global reference 

frame ܴீ, the acceleration of the BCoM can be estimated in ܴீ as follows: ࡳࡹ࢕࡯࡮ࢇ  = ∑ β௜ ࡳ࢏ࡹ࢕࡯ࡿࢇே௜=ଵ        (5) 

The acceleration of each SCoM of the segments included in the OSN can be estimated in the MIMU 

local frame ܴெூெ௎೔  following equation 6, where all the mechanical quantities are expressed in ܴெூெ௎೔  
(as indicated by the exponent ࡹࡵࡹ𝑼࢏):  ࡹࡵࡹ࢏ࡹ࢕࡯࢙ࢇ𝑼࢏ = ࢏𝑼ࡹࡵࡹ࢏𝑼ࡹࡵ࢕ࢇ + 𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏ ∧ ቀ𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏ ∧ ࢏𝑼ࡹࡵࡹࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘ ௜ ቁ + ቀ𝜴ࡹࡵ࢕𝑼𝒊ࡹࡵࡹ𝑼𝒊ቁ̇    ∧ ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘        ሺ͸ሻ 
with 

{  
   
  
   
࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙ࢇ     is the ݅௧ℎ SCoM aĐĐeleƌatioŶ                                                                                                              ࡹࡵ࢕ࢇ𝑼ࡹࡵࡹ࢏𝑼࢏  is the aĐĐeleƌatioŶ ŵeasuƌed ďǇ the ݅௧ℎ MIMU ƌigidlǇ attaĐhed to the ݅௧ℎ segŵeŶt              

 ;eǆpƌessed at the oƌigiŶ of the MIMU loĐal fƌaŵeͿ                                                         𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏  is the aŶgulaƌ ǀeloĐitǇ ŵeasuƌed ďǇ the ݅௧ℎ MIMU ƌigidlǇ attaĐhed to the  ݅௧ℎ segŵeŶt        ቀ𝜴ࡹࡵ࢕𝑼𝒊ࡹࡵࡹ𝑼𝒊ቁ̇  is the aŶgulaƌ aĐĐeleƌatioŶ of the ݅௧ℎ MIMU oďtaiŶed fƌoŵ diffeƌeŶtitatioŶ of 𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏   
࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘       is the the tƌaŶslatioŶ ǀeĐtoƌ fƌoŵ the oƌigiŶ of the ݅௧ℎMIMU to the uŶdeƌlǇiŶg         SCoM iŶ the MIMU loĐal fƌaŵe                                                                   

 

In the former equation, all quantities can be retrieved or computed from MIMUs raw signals except 

for the translation vector from the origin of the MIMU to the underlying SCoM: ࡹࡵ࢕࢘𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼࢏ . Indeed, 

MIMUs do not provide information about their absolute position. Therefore, several authors have 

proposed alternative ways to estimate SCoM acceleration from MIMU signals without using equation 

6. The objective of section 3.1.1 is thus to provide an overview of the methods proposed in the 

literature for the estimation of SCoM accelerations from MIMU signals with a special attention on 

wearable methods that allow to retrieve MIMUs positions relative to the center of mass of the 

underlying segment. 

Then, in order to estimate BCoM acceleration from the fusion of SCoM accelerations (equation 5), 

the formers must be expressed in a common global Earth-fixed reference frame (equation 7): 
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=   ࡳ࢏ࡹ࢕࡯ࡿࢇ  𝑃 −ெூெ௎೔  (7)         ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯ࡿࢇ 

The relative orientation of each MIMU local frame in this global reference frame 𝑃 −ெூெ௎೔  must 

be obtained, which implies to first resolve the inconsistencies between the Earth-fixed reference 

frames sensed by each MIMU. Section 3.1.2. provides an overview of the literature dealing with the 

definition of a consistent Earth-fixed reference frame across MIMUs.  

Eventually, an overview of the methods proposed in the literature for the computation of BCoM 

instantaneous velocity from BCoM acceleration will be provided in section 3.1.3. 

3.1.1. Estimation of SCoM acceleration from MIMU signals 

Several approaches have been retrieved in the literature regarding the estimation of SCoM motion 

from MIMU signals and are summarized in the following subsections.  

a. Approximation of the relative MIMU/SCoM position 

The first approach, implemented in two studies, consists in using MIMUs manually positioned at 

the longitudinal location of the SCoM (as reported in anthropometric tables) and in considering that 

the acceleration of the segment-mounted MIMUs correspond to the SCoM accelerations (Lintmeijer 

et al., 2018; Shahabpoor et al., 2018). This approximation is equivalent to writing  ࡹࡵ࢕࢘𝑼࢏ࡹ࢕࡯࢙−࢏ = ૙⃗⃗  in 

equation 6, which necessary yields to errors since the SCoM lies inside the segment and the MIMU on 

the skin surface. The impact of this approximation has never been investigated on the estimated SCoM 

accelerations or velocities. 

b.  Kinematic chain approach 

Several authors have associated a kinematic chain 

model to an inertial model in order to recover SCoM 

positions in a global Earth-fixed frame from MIMUs 

measurements. This approach does not require to 

obtain the relative positions between each pair of 

MIMU and SCoM but requires computing the relative 

orientation between each segment anatomical frame 

and its respective MIMU local frame (sensor-to-

segment calibration). Indeed, the kinematic chain 

approach (Figure 28) consists in representing the 

segments as rigid bodies connected by joints and at 

successively computing the trajectory of each joint ܬ௜,௜+ଵ 

linking the segments ௜ܵ and ܵ௜+ଵ(࢘௃೔,೔+1ࡳ ) from the known 

trajectory of the previous joint center of rotation ܬ௜−ଵ,௜  
( ࡳ௃೔−1,೔࢘ ), the known orientation of the segment ௜ܵ 
(𝑃 −ௌ೔), and the dimensions of the segment ௜ܵ (given by 

the vector linking the successive joints ܬ௜−ଵ,௜ and ܬ௜,௜+ଵin 

the segment anatomical frame: ࢏ࡶ࢘−૚,࢏,࢏ࡶ−࢏+૚࢏ࡿ ):  

Figure 28: Kinematic chain approach. Example of a 3-segment 

chain. Segment ܵ௜ is linked with segments ܵ௜−ଵ and ܵ௜+ଵ at the 

joints ܬ௜−ଵ,௜  and ܬ௜,௜+ଵ  respectively. ܵ௜  segment orientation in 

the global reference frame ܴீ  is given by the transformation 

matrix 𝑃 −ௌ೔ . 
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ࡳ௃೔,೔+1࢘  = ࡳ௃೔−1,೔࢘  +  𝑃 −ௌ೔ ࢏ࡿ૚+࢏,࢏ࡶ−࢏,૚−࢏ࡶ࢘ ×      (8) 

 The rigid body assumption allows to derive the trajectory of any point pertaining to any segment 

of the kinematic chain, and hence, to any SCoM, using equation 9, provided that its position relative 

to one of the joints (࢏ࡶ࢘−૚,࢏ࡿ࢏ࡹ࢕࡯ࡿ − ࢏ ) is known in the segment anatomical frame (which is possible using 

anthropometric tables such as (Dumas et al., 2007). ࡳ࢏ࡹ࢕࡯ࡿ࢘  = ࡳ࢏,૚−࢏ࡶ࢘    +  𝑃 −ௌ೔  × ࢏ࡿ࢏ࡹ࢕࡯ࡿ − ࢏,૚−࢏ࡶ࢘        (9) 

Therefore, provided that the sensor-to-segment calibration gives an accurate estimate of the 

relative orientation of the segment anatomical frame in the MIMU local frame (𝑃ெூெ௎೔−ௌ೔ ), the 

orientation of the MIMU local frame in the global Earth-fixed reference frame can be used (𝑃 −ெூெ௎೔) 
to estimate the SCoM trajectory in the global frame: ࡳ࢏ࡹ࢕࡯ࡿ࢘  = ࡳ࢏,૚−࢏ࡶ࢘   + 𝑃 −ெூெ௎೔  × 𝑃ெூெ௎೔−ௌ೔ × ࢏ࡿ࢏ࡹ࢕࡯ࡿ − ࢏,૚−࢏ࡶ࢘              ሺͳͲሻ 

In (Fasel, Spörri, et al., 2017), a full-body MIMU set was used to estimate the BCoM displacement 

while skiing. A kinematic chain was designed, taking the orientation of MIMUs to derive segment 

orientations and using segments dimensions from anthropometric tables, scaled to the participants 

body height. This step allowed to estimate the position of each joint center of rotation relative to the 

root point of the kinematic chain (in this case, the lumbar joint center) in a global frame. Using an 

inertial model derived from anthropometric tables, the position of the center of mass of each segment 

was estimated in its respective segment anatomical frame. Then, using the rigid body assumption, 

SCoM positions were finally deduced in the global frame. Finally, a weighted average of SCoM positions 

at each timestamp was computed to estimate the BCoM trajectory in the global frame. All in all, the 

association of a 7-segment kinematic chain and an inertial model allowed to estimate the BCoM 

displacement relative to the lumbar joint center with good accuracy and precision (< 11.2 mm for each 

axis) without requiring the knowledge of MIMU positions relative to their respective underlying SCoM 

(Fasel, Spörri, et al., 2017). However, the method requires the use of MIMUs on all the body segments 

pertaining to the kinematic chain, compromising the development of models with a limited number of 

sensors while this was shown to be paramount for clinical applications. Furthermore, the accuracy of 

kinematic chain outputs is highly dependent on an accurate sensor-to-segment calibration. Indeed, 

pose estimation derived from kinematic chains was shown to be highly sensitive to MIMU orientation 

on the underlying segment (Kianifar et al., 2019).  

The 17-MIMU MVN suit developed by Xsens uses proprietary kinematic and inertial models that 

seem similar to those described above (Schepers et al., 2018). Indeed, a static posture calibration 

associated with anthropometric measurements allows to define a kinematic chain for the estimation 

of joint angles and segment orientations. A proportional inertial model then allows to recover SCoM 

positions in the segment anatomical frames and thus to compute BCoM trajectory in a global reference 

Earth-fixed frame (Karatsidis et al., 2017; Pavei et al., 2020). Validity of SCoM accelerations issued from 

the MVN framework were not reported in the literature, but the BCoM trajectory was shown to be 

affected by large errors (3D root mean square error of 17 ± 5 mm, overestimation of the 

anteroposterior amplitude by  89 ± 47 %) which were assumed to result from signal drift, magnetic 

perturbations or biomechanical models inaccuracies (Pavei et al., 2020).  
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c. Approaches implemented for the retrieval of MIMU absolute positions 

Several authors have developed approaches to retrieve the absolute positions of MIMUs in a global 

Earth-fixed frame for the estimation of joint angles, either to predict acceleration and angular velocity 

signals and fuse them with the measured ones for drift and noise correction (Kianifar et al., 2019) or 

to reconstruct segment pose using a redundant formulation and an optimization procedure (Miezal et 

al., 2016; Teufl et al., 2018, 2019). These approaches could be adapted in order to retrieve both MIMU 

and SCoM positions and therefore, compute the relative MIMU and SCoM position in the global Earth-

fixed frame. 

In order to initialize MIMUs position in the global Earth-fixed reference frame, Teufl and coworkers 

used marker position data acquired during a static posture with optical motion capture system (Teufl 

et al., 2019). Similarly, Dejnabadi and coworkers took photographs of participants equipped with 

MIMUs while ensuring that the camera field of view was aligned with the body sagittal plane. This 

allowed to a posteriori estimate MIMUs͛ positions and orientations relative to the underlying body 

segments (Dejnabadi et al., 2006). In both studies, the aim of the authors was to recover MIMUs͛ 
positions in a global Earth-fixed reference frame which required the use of an external device. It is 

interesting to note that the external device was only needed for the initialization of MIMUs positions 

and orientations. Such procedures could be adapted in order to obtain for MIMUs and SCoM positions 

in a common reference frame (ࡹࡵ࢕࢘𝑼ࡳ࢏ࡹ࢕࡯࢙−࢏ ), as well as MIMUs orientation in the global frame 

(𝑃 −ெூெ௎೔ ).  The relative position of the SCoM in the MIMU local frame could then be computed 

࢏𝑼ࡹࡵࡹ ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘) = 𝑃 −ெூெ௎೔−ଵ  × ࡳ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘  ), allowing to estimate the acceleration of the SCoM in 

the MIMU local frame using equation 6. It has to be noted that SCoM positions are defined in their 

own segment anatomical frames. Thus, to derive SCoM positions in a common global frame, either 

segment orientation in the same global frame as that sensed by MIMUs or MIMU-to-segment 

calibration must be computed.  

d. Synthesis of the literature 

From this overview of the literature, it seems that no study has estimated the acceleration of a 

SCoM from a segment-mounted MIMU by using the rigid body assumption and the distribution of 

accelerations (equation 6). Indeed, retrieving the relative position of MIMU and SCoM does not seem 

trivial and seems to require the use of external devices, such as optoelectronic motion capture systems 

or photographs. Therefore, some authors have assumed that the MIMUs directly lie at the SCoM.  

An alternative approach allows to estimate SCoM accelerations without having to obtain MIMUs 

and SCoM relative positions. However, it requires to model human gait with a kinematic chain. This 

not only imposes to use MIMUs positioned on each segment of the kinematic chain but also to perform 

accurate sensor-to-segment calibration in order to retrieve the orientation of the segŵeŶts͛ 
anatomical frames in the global reference frame.    



78 

 

3.1.2. Definition of a consistent global frame across MIMUs 

When estimating the BCoM acceleration from a weighted sum of 

MIMU-based SCoM accelerations, it is crucial to ensure that all SCoM 

accelerations are expressed in a consistent global Earth-fixed reference 

frame prior to performing data fusion. Theoretically, angular velocity, 

linear acceleration and magnetic field sensed by a MIMU can be fused to 

obtain MIMU orientation in a Earth-fixed global reference frame 

(Madgwick et al., 2011; Sabatini, 2011; Bergamini et al., 2014) (refer to 

section 3.1.1 in Part 1). Magnetic perturbations, which may arise from 

objects in the acquisition environment (Picerno et al., 2011; Sabatini, 

2011), from prosthetic components (Garofalo, 2010) and from 

construction materials within buildings (Picerno et al., 2011; Sabatini, 

2011; Lebel et al., 2018), have been shown to inconsistently affect the 

reference frame sensed by each MIMU (Picerno et al., 2011; Lebel et al., 

2018). For instance, MIMUs that are the farthest from the ground were 

shown to be the less affected by magnetic perturbations in indoor 

environments (Miezal et al., 2016; Lebel et al., 2018) (see Figure 29) . As 

a consequence of magnetic field distortion, several MIMUs may point to 

diffeƌeŶt ͞ŵagŶetiĐ Noƌth͟, and thus, may sense different Earth-fixed 

reference frames (Picerno et al., 2011; Lebel et al., 2018; Guaitolini et 

al., 2019) (Figure 30). Although a large body of literature has focused on 

Figure 29: Magnetic field distortions due 

to construction materials within buildings. 

Taken from (Lebel et al. 2018) 

 

Figure 30: Inconsistencies of the Earth-fixed global frames sensed by two MIMUs – Example for MIMUs located on the 

thigh and trunk. ܴெூெ௎೔  is the MIMU local frame, 𝑃ெூெ௎೔−ீி೔  the transformation matrix from the MIMU local frame to the global 

reference frame ܴீி೔  sensed by the MIMU (݅ = ,݇݊ݑݎݐ   (ℎ݅𝑔ℎݐ
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the development/comparison and validation of orientation filters (Sabatini, 2011; Bergamini et al., 

2014; Caruso et al., 2019), very few studies investigated the (in)consistency of the reference frames 

sensed by several MIMUs.  

a. Correction of MIMU-sensed Earth-fixed reference frame inconsistencies using an 

external device 

Several authors have shown that correcting for the global frame inconsistency between MIMUs at 

the beginning of a trial may allow to decrease the errors in joint accuracy estimation during the whole 

trial (Palermo et al., 2014; Lebel et al., 2015, 2018). This correction was performed either with an 

optical motion capture system or using photographs but required in any case the use of an external 

device. 

Increased accuracy in joint angle estimation was observed when using an optical motion capture 

system to determine the initial orientation of MIMUs in a common consistent global frame (Palermo 

et al., 2014) or to a posteriori correct initial orientation errors (Lebel et al., 2015). Similarly, when 

validating a MIMU-based algorithm, some authors have preferred to use orientation outputs from an 

optical motion capture system so as to isolate the errors due to inconsistencies in the Earth-fixed 

reference frames sensed by different MIMUs from those inherent to the model/algorithm (Teufl et al., 

2018; Guaitolini et al., 2019). However, these corrections impose to use an optical motion capture 

system, which compromises the transfer of the method in the field due to high system cost and limited 

portability.  

In (Lebel et al., 2018), the initial relative orientation of two segment-mounted MIMUs is derived 

from a camera pose estimation algorithm which compares the dotted pattern on MIMU-fitting boxes 

from a photograph taken while standing in a static posture. Then, this initial relative orientation is used 

to correct for both MIMUs their orientation computed with proprietary algorithm outputs. Although 

this method also imposes the use of an external system and is incompatible with real-time processing, 

it was shown to significantly increase the accuracy in MIMU-based ankle angle estimation (error 

decreased from 6.7° to 2.4° for all planes of motion) and to drastically reduce the effect of magnetic 

perturbations occurring in the starting environment (maximum difference explained by the starting 

environment remained statistically significant but decreased from 8° to 0.6°) (Lebel et al., 2018). 

Furthermore, taking a photograph is not as cumbersome and constraining as capturing a full body 

static acquisition with an optical motion capture system.  

b. Correction of MIMU-sensed Earth-fixed reference frame inconsistencies using 

hypotheses relative to segment orientations in the global Earth-fixed reference frame 

In a recent study, a magnetometer-free approach was proposed to estimate joint angles from IMUs 

(Ligorio et al., 2020). First, participants are asked to stand in a static posture (the N-pose), in which the 

segments orientations are assumed to be known in a global Earth-fixed reference frame (longitudinal 

axes of the segment anatomical frames aligned with the vertical direction). Sensor-to segment 

calibration is performed in two steps. First, using the accelerometers readings in the N-pose allows to 

retrieve the longitudinal axis of all segments͛ anatomical frames in the MIMU local frame during the 

static posture. Then, functional motion allows to retrieve the mediolateral functional axis of all 

segments in the MIMU local frame. Using the triad algorithm, segments orientations in the MIMU local 

frame is computed. Using the N-pose configuration, MIMU orientation can be deduced in the global 
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reference frame which therefore allows to correct the inconsistencies between the Earth-fixed 

reference frames sensed by the segment-mounted MIMUs. While the algorithm displayed similar tilt 

errors than a MIMU-based Kalman filter compared to an optical motion capture system, higher errors 

were achieved for the estimation of the heading (6.8 degrees against 4.6 degrees). 

c. Synthesis of the literature 

Two approaches have been proposed in the literature to compute segment orientation from 

MIMUs in a consistent global frame. One approach relies on external devices to compute the relative 

orientation between the MIMU-sensed Earth-fixed reference frame ܴீி  and a global Earth-fixed 

reference frame ܴீ using an external device (photographs, optical motion capture). The alternative 

approach, presented in a recent study, relies on assumptions regarding the position of body segments 

in the global Earth-fixed reference frame ܴீ  at a given instant and uses the sensor-to-segment 

calibration to deduce the MIMU or segment orientation at all instants in ܴீ. 

3.1.3. Computation of the instantaneous velocity of the BCoM from MIMUs 

The third issue when dealing with MIMUs is the drift resulting from integration of noisy signals. If 

the actual velocity is known at certain instants ݐ௡, the drift can be compensated for a posteriori: the 

computed velocity is compared to the known velocity and the difference is used for the correction of 

the velocity between ݐ௡−ଵ and ݐ௡. Generally, a linear drift function is defined (Hannink et al., 2017). 

Taking advantage of the cyclical nature of gait, the instantaneous velocity of the BCoM can be 

computed for each stride and further decomposed into two components: an average component in 

the diƌeĐtioŶ of pƌogƌessioŶ ;͞aǀeƌage ǁalkiŶg speed͟Ϳ aŶd a ϯD ĐǇĐliĐal ĐoŵpoŶeŶt with null mean 

velocity.  

a. 3D cyclical component of the BCoM velocity 

The cyclical component of the instantaneous velocity of the BCoM is generally estimated from 

numerical integration of the lower-back acceleration, followed by a high-pass filter (Pfau et al., 2005; 

Meichtry et al., 2007; Köse et al., 2012). More recently, an analytical integration method, based on the 

Fourier series decomposition of the pelvis acceleration signal, was shown to yield promising results 

with limits of agreement < 0.10 m/s as compared with optical motion capture (Sabatini et al., 2015; 

Sabatini and Mannini, 2016). These integration methods were validated for the estimation of lower-

back velocity in asymptomatic subjects and remain to be tested for the integration of BCoM 

acceleration in people with lower-limb amputation. 

b. Average BCoM velocity 

Regarding the average BCoM velocity, or walking speed, three methods have been described in 

the literature for its estimation from MIMUs: abstraction models, human gait models, and direct 

integration of linear acceleration (Yang and Li, 2012b).  

Abstraction models consist in machine learning frameworks: a relationship is learnt between 

MIMU signals and a reference walking speed, without support of a biomechanical model. This type of 

methods allows to estimate the average walking speed from raw MIMU data without introducing error 

from signal integration. For instance, using the angular velocity and acceleration signals from shank 

MIMUs, average root mean square errors below 5 % were achieved for the average walking speed 
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;speed ш 4 km/h) when walking on treadmill or overground (Sabatini and Mannini, 2016). Higher errors 

were obtained at slower walking speeds (9 % at 3 km/h). Although no such study was found in the 

literature, machine learning frameworks could be designed to estimate the instantaneous velocity of 

the BCoM. In (Betker et al., 2006), the authors developed an abstraction model for the estimation of 

BCoM trajectory from trunk and shank accelerations in quasi-static conditions (body sway). While 

encouraging results were achieved, the method was not transposed to gait nor to instantaneous 

velocity computation. 

Contrary to abstraction models, human gait models and direct integration methods aim at 

estimating the average walking speed through the ratio of stride length by stride duration. 

In general, human gait models use inverted pendulum for gait representation and estimate the 

average walking speed (for more details, see Part 1, section 3.2.1. or refer to (Yang and Li, 2012b)). 

One such model, developed and validated in seven people with transfemoral amputation, achieved 

relative errors within +/- 15 % (Miyazaki, 1997). Recently, Dauriac and coworkers have proposed a 

kinematic model specific to people with transfemoral amputation for the estimation of the average 

walking speed from a single MIMU on the prosthetic shank (Dauriac et al., 2019). The model takes 

advantage of the absence of knee flexion during early stance of people with transfemoral amputation 

to represent the prosthetic lower limb as a single rigid body. Furthermore, the model assumes that the 

BCoM velocity is the same as the one of the residual hip center of rotation. Combining an inverted 

pendulum representation and roll-over-shapes characteristics of the foot-shank complex (Figure 31), 

the sagittal plane instantaneous walking speed of the body center of mass is estimated during the first 

half of the cycle. Averaging the anteroposterior component over the first half of the gait cycle, the 

average walking speed is estimated with a root mean square error of 0.09 m/s (9%). 

Lastly, the average walking speed has been estimated through direct double integration of the 

linear acceleration of the foot (Mariani et al., 2010; Kitagawa and Ogihara, 2016) or shank (Li et al., 

2010; Yang and Li, 2012a) in the direction of progression, using the zero-velocity update paradigm 

FF FF 

Figure 32: Double integration of linear acceleration of the foot in the 

direction of progression between two successive foot flat (FF) events. 

Adapted from (Kitagawa and Ogihara, 2016) 

Figure 31: Kinematic model for body center of mass (CoM) 

velocity estimation in people with transfemoral 

amputation. C, r are the characteristics of the roll over 

shape, S is the contact point of the foot with the ground  (S0 

when the shank is vertical), 𝜃 is the shank angle, and L the 

CoM height. Vx and Vy are the projections of the CoM 

velocity (VCoM) in the global frame R0. 

From (Dauriac et al., 2019) 
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(Figure 32). Taking advantage of the null velocity of the foot at mid-stance (detected through the foot-

flat event or shank-vertical event depending on MIMU position), the acceleration is double integrated 

between two detected events and drift can be compensated for after the first integration. The average 

walking speed is then computed as the distance covered between two detected events, divided by the 

duration between those two events. Using foot-mounted MIMUs, Mariani and coworkers reported 

stride velocity values within 1.5 ± 5.8 % of stride velocity in the asymptomatic population (Mariani et 

al., 2010). Yang and Li estimated the walking speed from shank mounted MIMUs with an average root 

mean square error of 4.2 % in people walking on a treadmill (Yang and Li, 2012a).  

c. Instantaneous velocity of an anatomical point 

A kinematic model recently developed by Duraffourg and coworkers allows to estimate the 

instantaneous velocity and the trajectory of the knee joint from a shank mounted MIMU in people 

with transfemoral amputation ambulating overground (Duraffourg et al., 2019). The method could be 

adapted for the estimation of walking speed from the distance covered by the shank within a stride. 

Stride length was found to be underestimated by 5.1 % of its nominal value in 3 people with 

transfemoral amputation. The method consists in estimating the knee joint velocity from the foot roll-

over-shape characteristics while in unipodal stance, similarly as in (Dauriac et al., 2019), and at double 

integrating the knee joint acceleration derived from the acceleration measured by the shank-mounted 

MIMU (using rigid body assumption) during the swing phase  (Figure 33). 

 It is worth noting that the instantaneous walking speed of the BCoM in an Earth-fixed global frame 

(both the average and the cyclical components) could also be estimated directly from kinematic chain 

gait models, with the assumption that the BCoM lies within the pelvis (Yuan and I. M. Chen, 2014). 

However, such kinematic chain models do not include the trunk, and impose to use MIMUs on all the 

segments pertaining to the kinematic chain. Such a model would therefore not be compatible with the 

selected OSN (see Chapter 2, Part 2) and was not investigated.  

d. Synthesis of the literature 

Table 5 below summarizes the results achieved in the literature for the estimation of the average 

walking speed and instantaneous BCoM velocity. The studies that only indicated results regarding the 

accuracy of stride length estimation are not reported. 

 

 

Figure 33: Knee joint center (K) trajectory estimation from a shank mounted MIMU (positioned at I) using the roll over shape 

paradigm (C representing the center of the foot roll-over-shape). Taken from (Duraffourg et al., 2019) 
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Authors Population Sensors Method Results 
Reference for the  

average walking speed 

(Aminian 
et al., 
2002) 

20 AS 4 gyroscopes 
(both thighs 
and shanks) 

Kinematic model 
(average walking 
speed) 

RMSE = 0.06 m/s (6.7 %) Stopwatch (time to cover 20 m) 

(Dauriac 
et al., 
2019) 

9 TF 1 shank-
mounted 
IMU 

Kinematic model 
(average walking 
speed) 

RMSE = 0.09 m/s (9 %) Treadmill speed 

(Mariani 
et al., 
2010) 

20 AS 2 feet 
mounted 
IMUs 

Double integration 
(average walking 
speed) 

Average error = 0.014 ± 0.056 m/s  
(1.5 ± 5.8 %) 

Optical motion capture system 
(feet markers) 

(Miyazaki, 
1997) 

7 TF 1 thigh-
mounted 
gyroscope 

Kinematic model 
(average walking 
speed) 

RMSE +/- 15 % Stopwatch (time to cover 40 m) 

(Sabatini 
and 
Mannini, 
2016) 

17 AS 1 pelvis-
mounted 
MIMU 

Double integration 
(cyclical 
component) + 
abstraction model 
(average walking 
speed) 

LoA of cyclical component (± 1.96 std)  
overground walking: 
- ML = ± 0.10 m/s 
- AP =  ± 0.05 m/s 
- CC = ± 0.10 m/s 
RMS error of average velocity : 0.06 m/s 
(0.07 m/s) (Average RMSE about 5% 
above 4km/h)  

Treadmill speed 

(Sabatini 
et al., 
2005) 

5 AS 1 foot-
mounted 
IMU 

Double integration 
(average walking 
speed) 

RMSE = 0.05 m/s Treadmill speed 

(Yang and 
Li, 2012a) 

7 AS 1 shank-
mounted 
IMU 

Double integration 
(average walking 
speed) 

RMSE = 4.2 %  Treadmill speed 

Table 5: Synthesis of the methods for BCoM instantaneous velocity and average walking speed estimation in the literature.  

TF = people with transfemoral amputation, AS = Asymptomatic participants; RMSE = root mean square error; AP = 

Anteroposterior; ML = mediolateral; CC = craniocaudal; LoA = Limits of agreement 

3.1.4. Towards the implementation of an OSN-based framework for the estimation of 

BCoM acceleration and velocity: how to tackle the challenges associated with 

MIMUs 

The aim of this section is to introduce the choices made for the implementation of a fully wearable 

protocol for the estimation of 3D BCoM acceleration and velocity, based on the state-of-the-art 

(sections 3.1.1 to 3.1.3).  

The first step requires to estimate the acceleration of SCoM from MIMUs mounted on selected 

body segments. From the literature (see section 3.1.1), it appears that, for each segment, the 

translation vector from the origin of the MIMU to the SCoM in the MIMU local frame (ࡹࡵ࢕࢘𝑼࢏ࡹ࢕࡯࢙−࢏) 
could be first obtained in an Earth-fixed reference frame during a static calibration using an external 

device such as a photo camera (Dejnabadi et al., 2006) or an optical motion capture system (Teufl et 

al., 2018; Guaitolini et al., 2019). The obtained translation vector could then be computed in the MIMU 

local reference frame using the MIMU orientation in the same global Earth-fixed reference frame ܴீ 

as the one in which the relative positions are known (Figure 34). The advantage of the method is that 

it does not require to obtain an accurate sensor-to-segment calibration, and therefore, does not rely 

on an accurate sensor positioning nor on the need to perform calibration motions which might be too 

demanding for people with gait impairment or untrained users. 
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In (Choe et al., 2019), the authors propose to perform a static posture sensor-to-segment 

calibration while the participants are facing the magnetic North direction, as indicated by a compass, 

in order to ensure that the segments orientations are known in the same Earth-fixed reference frame 

as the one sensed by MIMUs. This implies that the formers consistently sense the magnetic North 

direction. However, such ideal conditions are not often encountered, especially indoors (Picerno et al., 

2011; Lebel et al., 2018). Indeed, the Earth-fixed reference frames sensed by several MIMUs are 

generally different (Guaitolini et al., 2019) (see also Figure 30), which results in errors when fusing data 

from several MIMUs (Lebel et al., 2018). As reported in the literature (see section 3.1.2), a posteriori 

correction of inter-MIMU inconsistency using the static part at the beginning of data acquisition allows 

to significantly reduce the influence of magnetic perturbations on the output biomechanical 

parameters all along the acquisition. Therefore, identifying a common global Earth-fixed reference 

frame ܴீ  in which the orientation of each MIMU local frame ܴெூெ௎೔  can be assumed to be known at 

a specific instant ݐ଴, and then computing the relative orientation of the Earth-fixed reference frames ܴீி sensed by each MIMU in this consistent common global Earth-fixed reference frame (𝑃 ி೔−ீ) at 

Figure 34: Retrieval of the relative position of segment center of mass (SCoM) and the segment-mounted MIMU in the MIMU 

local frame - example for the trunk MIMU.  

1 – MIMU orientation in the Earth-fixed global reference frame ܴீ is known (transformation matrix 𝑃ெூெ௎೟ೝೠ೙ೖ−ீ)  

2 – The positions of the SCoM and of the origin of the MIMU (݋ூெ௎) are known in ܴீ at ݐ଴, during the static calibration thanks 

to an external device (calibrated photographs, optical motion capture) 

3 – The relative position of the MIMU and the underlying SCoM is deduced in ܴீ at ݐ଴:  ࡹࡵ࢕࢘𝑼ࢍࡾ࢑࢔࢛࢚࢘ࡹ࢕࡯ࡿ−࢑࢔࢛࢚࢘
  

4 – Using the knowledge of MIMU orientation in ܴீ, the relative position of the MIMU and the underlying SCoM is computed 

in the MIMU local frame ܴெூெ௎೟ೝೠ೙ೖ at ݐ଴ : ࡹࡵ࢕࢘𝑼ࢍࡾ࢑࢔࢛࢚࢘ࡹ࢕࡯ࡿ−࢑࢔࢛࢚࢘ ሺݐ଴ሻ. With the rigid body assumption, this vector is constant 

and ࡹࡵ࢕࢘𝑼ࢍࡾ࢑࢔࢛࢚࢘ࡹ࢕࡯ࡿ−࢑࢔࢛࢚࢘ ሺݐ ሻ is known for all timestamps ݐ 
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the same instant represents an interesting solution. The transformation matrices 𝑃 ி೔−ீ  being 

constant (as they describe the relative orientation of a pair of Earth-fixed reference frames) (Lebel et 

al., 2018), this allows to compute the orientation of each MIMU local frame ܴெூெ௎೔  in ܴீ  at all time 

(Figure 35).  Finally, using the transformation matrix from ܴீ to ܴெூெ௎೔ , the relative position of each 

MIMU and its underlying SCoM is known in the MIMU local frame, which subsequently allows to 

estimate the SCoM acceleration in the MIMU local frame using equation (6). Then, using the 

transformation matrix from ܴெூெ௎೔  to ܴீ allows to express each SCoM acceleration in a consistent 

global reference frame to finally estimate the BCoM acceleration from an OSN (equation 5). 

Once the BCoM acceleration has been computed in an Earth-fixed global reference frame, the 

instantaneous BCoM velocity can be estimated from a combination of direct integration of the BCoM 

acceleration (cyclical component) and a kinematic model of the shank (average component).  

In the next section, the framework development and implementation will be presented in detail. 

3.2. Material and Methods 

3.2.1. Framework overview 

The development of the framework can be divided in three steps aiming at:  

Figure 35: Computation of the orientation of a MIMU local frame in a global Earth fixed reference frame, using a static 

calibration - example for the trunk MIMU 

1 – Known orientation of MIMU local frame ܴெூெ௎೟ೝೠ೙ೖ  in its associated Earth-fixed reference frame ܴீி೟ೝೠ೙ೖ at all instants ݐ 
of the acquisition (transformation matrix 𝑃ெூெ௎೟ೝೠ೙ೖ−ீி೟ೝೠ೙ೖ  obtained from sensor fusion)  

2 – In a predefined static posture taken at ݐ଴, the orientation of the MIMU local frame in the Earth-fixed global frame ܴீ can 

be assumed to be known (𝑃ெூெ௎೟ೝೠ೙ೖ−ீሺݐ଴ሻ) 
3 – The constant relative orientation 𝑃 ி೟ೝೠ೙ೖ−ீ  between the MIMU-sensed Earth fixed reference frame  ܴீி೟ೝೠ೙ೖ  and the 

Earth-fixed global frame ܴீ is computed using the knowledge of 𝑃ெூெ௎೟ೝೠ೙ೖ−ீ  and 𝑃ெூெ௎೟ೝೠ೙ೖ−ீி೟ೝೠ೙ೖ at ݐ =  ଴ݐ 

4 – Using (1) and (3), the orientation of the MIMU local frame in the global Earth-fixed reference frame ܴீ can be computed 

at all timestamps ݐ of the acquisition 
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a) ĐoŵputiŶg the ϯD aĐĐeleƌatioŶ of eaĐh segŵeŶt͛s ĐeŶteƌ of ŵass ;SCoM) from MIMUs 

data,  

b) merging SCoM accelerations in a consistent common global frame ࡳࡾ, and  

c) estimating the 3D BCoM acceleration and velocity from a weighted average of selected 

SCoM accelerations.  

From chapter 2, the trunk, thighs, shanks and feet were identified as the major contributors in 3D 

BCoM acceleration in people with transfemoral amputation and several promising OSN were identified 

for the estimation of BCoM acceleration from the acceleration of these segments. Therefore, 7 MIMUs, 

manually aligned with the longitudinal axes of the segments, are adopted. 

a. Computing 3D SCoM acceleration 

Following Pillet et al. (2010), a 15-segment subject-specific inertial model, personalized using 

calibrated photographs in a static posture, is used to obtain the SCoM positions in an optical motion 

capture system (OMCS) reference frame ܴைெ஼ௌ. For each MIMU, the position of its origin is manually 

identified on the photographs, which allows to compute its relative position with respect to the 

underlying SCoM (ࡹࡵ࢕࢘𝑼࢏ࡹ࢕࡯࢙−࢏) in ܴைெ஼ௌ.  

Multiple synchronized MIMUs may be inconsistently affected by sustained distortions of the 

magnetic field (Picerno et al., 2011; Picerno, 2017; Lebel et al., 2018), leading to MIMUs sensing a 

different direction of the Magnetic North. Therefore, although the vertical axis/attitude of the 

reference global frames ܴீி೔  sensed by each MIMU coincides with that of the OMCS, the heading is 

inconsistent across MIMUs and differs to that of the OMCS. Therefore, the orientation output provided 

by each MIMU 𝑃 ி೔−ெூெ௎೔cannot be directly used to estimate the transformation matrix 𝑃ைெ஼ௌ−ெூெ௎೔  
from ܴெூெ௎೔  to ܴைெ஼ௌ in static. Instead, knowledge of MIMUs alignment on the underlying segments 

and hypotheses on the orientation of segments during the initial static posture are used. Indeed, the 

static posture in which the participant is being photographed has been defined such that he is standing 

facing the direction of progression. As a first approximation, it is assumed that, in this position, the 

axes of the segment local frames are aligned with the axes of ܴைெ஼ௌ, and thus, that, for each MIMU, 

the axes of the local frame (ܴெூெ௎೔ሻ are aligned with those of ܴைெ஼ௌ in static. A first approximation of 𝑃ைெ஼ௌ−ெூெ௎೔  can therefore be derived. This approximation is then corrected for each MIMU using the 

attitude output issued by the MIMU and ensuring that an orthonormal reference frame is built. Figure 

36  details this procedure for the MIMU positioned on the trunk.  

In the end, this allows to express the vector ࡹࡵ࢘𝑼࢏ࡹ࢕࡯࢙−࢏  in ࡹࡵࡹࡾ𝑼࢏ , and to compute SCoM 

accelerations in their respective sensor frame as follows: ࢏ࡹ࢕࡯࢙ࢇ = ࢏𝑼ࡹࡵ࢕ࢇ +𝜴ࡹࡵ𝑼࢏ ∧ (𝜴ࡹࡵ𝑼࢏ ࢏𝑼ࡹࡵ𝜴̇+ (࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢘ ∧ ∧ ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢘   
where ࡹࡵ࢕ࢇ𝑼࢏ and 𝜴ࡹࡵ𝑼࢏  are respectively the acceleration and the angular velocity measured by 

the MIMUi in the sensor frame ࡹࡵࡹࡾ𝑼࢏ and 𝛺ܷ̇݅ܯܫ  is obtained using a 5-point stencil differentiation. 
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b. Merging SCoM accelerations in a consistent common global frame  

Since MIMUs sense inconsistent Earth-fixed reference frames ሺܴ݅ܨܩሻ, a common global reference 

frame ܴܩ  must be defined consistently for each MIMU. The reference frame sensed by the trunk 

MIMU ܴ݇݊ݑݎݐܨܩ , rotated so that one axis is coincident with the direction of progression, is chosen as 

Figure 36: Approximation of the orientation of a MIMU local frame in the optical motion capture system (OMCS) global reference frame during the initial 

static posture at ݐ =  .଴  – Example for the trunk MIMUݐ 

- 𝑃ெூெ௎−ீி  is retrieved from the orientation output of the MIMU at ݐ =  ଴ (1)ݐ

- 𝑃ெூெ௎−ைெ஼ௌ is unknown at ݐ =  :଴ (2) but it might be approximated using (3)ݐ

Using the orientation output of the MIMU, the vertical direction ீݖி  of the MIMU-sensed Earth-fixed frame is known in ܴெூெ௎. Furthermore, since 

MIMUs attitude is not affected by magnetic perturbations, the vertical direction detection by MIMUs is robust and is consistent with that of the 

OMCS global frame ܴைெ஼ௌ. Therefore, ீݖி =  ைெ஼ௌ in ܴெூெ௎. Furthermore, the manual alignment of the MIMU on body segments and the staticݖ

posture taken by the participant ensures that the ݔ and ݕ axes of the MIMU local frame are close to that of the OMCS. This allows to use the cross-

product to compute the ݔ and ݕ axes of the OMCS in ܴெூெ௎ (4).  

- Lastly, 𝑃ெூெ௎−ைெ஼ௌ is obtained at ݐ =  ଴ as the inverse of 𝑃ைெ஼ௌ−ெூெ௎ (5)ݐ 
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the common global reference frame ሺ ܴீ = ܴ௭ሺ𝜃ሻ ×  ܴீி೟ೝೠ೙ೖ, see Figure 37). This arbitrary choice is 

supported by the fact that all the best performing OSN models identified in Chapter 2 include a sensor 

at the trunk. Furthermore, the trunk MIMU is less susceptible to magnetic perturbations than the other 

MIMUs, as it lies farther from the ground (Lebel et al., 2018) and it endures low height variation while 

walking (Miezal et al., 2016). Lastly, the direction of progression can be inferred from the orientation 

output of the trunk MIMU since it is positioned such that its z-axis is oriented towards the direction of 

progression.  

For each MIMUi, the constant transformation matrix 𝑃 −ீி೔ďetǁeeŶ the MIMU͛s seŶsed reference 

frame ܴீி೔  and the common global reference frame ܴீ = ܴ௭ሺ𝜃ሻ  × ܴீி೟ೝೠ೙ೖ is obtained during the 

initial static posture at the beginning of each acquisition using the known orientation in ܴைெ஼ௌ of both 

the trunk MIMU ሺ𝑃ைெ஼ௌ−ெூெ௎೟ೝೠ೙ೖሻ and MIMUi ሺ𝑃ைெ஼ௌ−ெூெ௎೔ሻ (Figure 36, cf paragraph a), as well as 

their known orientation outputs (𝑃ெூெ௎೟ೝೠ೙ೖ−ீி೟ೝೠ೙ೖ , 𝑃ெூெ௎೔−ீி೔ሻ:  𝑃 −ீி೟ೝೠ೙ೖ = ܴ௭ሺ𝜃ሻ 𝑃 −ீி೔ = 𝑃 −ீி೟ೝೠ೙ೖ × 𝑃 ி೟ೝೠ೙ೖ−ீி೔ =  ܴ௭ሺ𝜃ሻ × 𝑃 ி೟ೝೠ೙ೖ−ீி೔  𝑃 −ீி೔ = ܴ௭ሺ𝜃ሻ × 𝑃 ி೟ೝೠ೙ೖ−ெூெ௎೟ೝೠ೙ೖሺt଴ሻ × 𝑃ெூெ௎೟ೝೠ೙ೖ−ைெ஼ௌ ሺt଴ሻ × 𝑃ைெ஼ௌ−ெூெ௎೔ሺt଴ሻ × 𝑃ெூெ௎೔−ீி೔ሺt଴ሻ 
Using the constant transformation matrix 𝑃 −ீி೔, and the orientation output provided by each 

MIMU ( 𝑃ெூெ௎೔−ீி೔ =  𝑃 ி೔−ெூெ௎೔−ଵ  ), the acceleration of each SCoM can be expressed in a consistent 

global reference frame at all timestamps:  ீ࢏ࡹ࢕࡯࢙ࢇ ሺ࢚ሻ =  𝑃 −ீி೔  ×  𝑃 ி೔−ெூெ௎೔ ሺݐሻ  ×  ሻ࢚ሺ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙ࢇ 

Figure 37: Rotation ܴ௭ሺ𝜃ሻ of the trunk-MIMU sensed Earth-fixed frame (ܴீி೟ೝೠ೙ೖሻ to align one of its axis with the direction of 

progression, using the orientation of the trunk MIMU local frame (ܴெூெ௎೟ೝೠ೙ೖ) 
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c. Estimating 3D BCoM acceleration and velocity:  

i. Selected OSN 

Based on the results of chapter 2, three OSN models including 3 to 5 segments are considered as 

good candidates for the estimation of BCoM acceleration and velocity (Table 6). BCoM acceleration 

and velocity estimated using a unique MIMU at the trunk level will also be analyzed to demonstrate 

the added value of using multiple sensors instead of a single sensor.  

Table 6: List of the optimal sensor networks (OSN) implemented for the estimation of 3D BCoM acceleration and velocity 

Number of 

segments 
Included segments 

5 Trunk, thighs, shanks 

5 Trunk, thighs, feet 

3 Trunk, shanks 

1 Trunk 

ii. 3D BCoM acceleration 

For each OSN model, SCoM accelerations of the included segments are expressed in ܴீ and fused 

to compute 3D BCoM acceleration, with ݉ௌ௘௚೔  the mass of the ݅௧ℎ  segment derived from the 

personalized inertial model, and ܰ the number of segments included in the OSN: 

ࡹ࢕࡯࡮ࢇ   = ∑ ௠ೞ೐𝑔೔∑ ௠ೞ೐𝑔ೕೕಿ=1 ே௜=ଵ࢏ࡹ࢕࡯ࡿࢇ   

iii. 3D BCoM velocity 

The 3D BCoM velocity is computed stride-per-stride as the sum of the average walking speed and 

the cyclical component. Stride segmentation is performed at the prosthetic heel strike from shank 

MIMU readings (Trojaniello, Cereatti, Pelosin, et al., 2014). Subsequently, the average component of 

3D BCoM velocity is computed from a prosthetic shank-mounted MIMU following (Duraffourg et al., 

2019) aŶd ǁill ďe desigŶated as the ͞aǀeƌage ǁalkiŶg speed͟ iŶ the folloǁiŶg paƌagƌaphs. The ĐǇĐliĐal 
component was computed from direct numerical integration of 3D OSN-derived BCoM linear 

acceleration followed by high-pass filtering (Steins et al., 2014). 

3.2.2. Framework implementation 

a. Experimental protocol 

One male individual with transfemoral amputation (mass: 83 kg, stature: 1.69 m) gave his written 

informed consent to participate in the study. He was instrumented with a full-body marker set (Al 

Abiad et al., 2020) and 7 MIMUs (Xsens, 100 Hz) on the feet, shanks, thighs and trunk, each mounted 

on a 3D-printed plastic support with housings for 4 reflective markers. An OMCS (VICON, 200 Hz) 

ƌeĐoƌded the ŵaƌkeƌs͛ positioŶs ǁhile 4 photographs (front, back, both sides) were taken. Then, 

starting from a static standing posture, the participant walked at self-selected speed along an 8 m 

pathway, with 3 force plates (AMTI, 1000 Hz) in the middle. Synchronization between instruments was 

achieved by an electronic trigger signal. Only trials with three successive foot contacts on the force 

plates (i.e. a complete stride), were considered for further analysis.  
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b. Data processing 

Data were filtered using a zero-phase 4th-order Butterworth filter. Cut-off frequencies were 

identified using a trial-and-error approach (5 Hz for marker and MIMU raw data, 10 Hz for force plates). 

Reference SCoM accelerations were obtained by double derivation of OMCS-based SCoM positions. 

Each differentiation step was followed by a zero-phase low-pass Butterworth 4th order filter with cut-

off frequencies 8 Hz (velocity) and 10 Hz (acceleration). Reference 3D BCoM acceleration was 

Đoŵputed fƌoŵ the foƌĐe plates͛ sigŶal ǁhile ƌefeƌeŶĐe ϯD BCoM ǀeloĐitǇ ǁas Đoŵputed fƌom the 

inertial model, to avoid error propagations due to ill-chosen integration constants when estimating 

the velocity from force platforms. For each OSN, reference and MIMU-based SCoM and BCoM 

aĐĐeleƌatioŶs/ǀeloĐities ǁeƌe Đoŵpaƌed usiŶg PeaƌsoŶ͛s ĐoƌƌelatioŶ ĐoeffiĐieŶt ρ, root mean square 

error (RMSE) and peak-to-peak normalized RMSE (NRMSE) averaged over the trials. Errors in the 

estimation of BCoM velocity was also quantified in percent of the average walking speed in the 

direction of progression (ARMSE). The average and standard deviation of the (normalized) RMSE 

respectively indicate the accuracy and precision of the methods. 

3.3. Results  

Seven trials, resulting in thirteen strides, were analyzed. Only the middle strides occurring entirely 

on the force plates were analyzed for the investigation of BCoM acceleration accuracy, whereas the 

whole set of strides was analyzed for the SCoM acceleration and BCoM velocity. 

i. SCoM and BCoM acceleration 

Results of the comparison between MIMU-derived and inertial-model based SCoM accelerations 

are provided in Table 7. Correlations between MIMU-based and reference SCoM acceleration were 

small at both feet and moderate at the sound shank in the mediolateral direction but were strong 

otheƌǁise ;ρ > 0.7). 

Table 7: Accuracy of segments' center of mass accelerations estimated with MIMU compared to the optical motion capture 

reference iŶ teƌŵs of ƌoot ŵeaŶ sƋuaƌe eƌƌoƌs ;RMSEͿ, Ŷoƌŵalized RMSE, aŶd PeaƌsoŶ’s ĐoƌƌelatioŶ ĐoeffiĐients (ρ) 

  RMSE (m.s-²) NRMSE (%) Pearson’s ρ 

Segment 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Medio-

lateral 
Vertical 

Mean (standard deviation) 

Prosthetic 
foot 

2.94 (0.61) 2.74 (0.65) 2.00 (0.21) 5.2 (1.1) 26.1 (4.0) 6.6 (0.7) 0.97 (0.01) 0.27 (0.14) 0.96 (0.01) 

Sound foot 3.64 (1.10) 3.99 (0.70) 3.31 (1.05) 6.3 (1.9) 22.1 (5.4) 8.4 (1.4) 0.96 (0.03) 0.19 (0.18) 0.90 (0.06) 

Prosthetic 
shank 

1.58 (0.33) 1.21 (0.39) 1.38 (0.08) 5.0 (1.0) 16.7 (5.3) 12.4 (0.8) 0.97 (0.01) 0.71 (0.16) 0.88 (0.02) 

Sound shank 2.08 (0.43) 1.49 (0.43) 1.56 (0.19) 8.9 (1.6) 18.9 (4.1) 12.4 (1.9) 0.93 (0.03) 0.42 (0.20) 0.83 (0.05) 

Prosthetic 
thigh 

1.94 (0.07) 0.50 (0.11) 0.79 (0.02) 18.5 (0.6) 7.6 (1.7) 7.5 (0.4) 0.83 (0.03) 0.94 (0.04) 0.96 (0.00) 

Sound thigh 2.10 (0.66) 0.72 (0.12) 0.94 (0.33) 10.5 (1.5) 14.6 (1.8) 9.5 (1.7) 0.85 (0.10) 0.74 (0.08) 0.90 (0.07) 

Trunk 0.95 (0.05) 0.48 (0.04) 0.43 (0.22) 12.8 (1.1) 12.9 (1.1) 5.7 (2.4) 0.73 (0.04) 0.89 (0.02) 0.97 (0.03) 

Average (all 

segments)  
2.04 (0.99) 1.47 (1.25) 1.39 (0.95) 10.0 (4.6) 16.6 (6.3) 9.1 (2.8) 0.87 (0.10) 0.62 (0.30) 0.92 (0.06) 
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Results of the comparison between MIMU-derived OSN-based and force platform-based BCoM 

accelerations are provided in Table 8. Correlations between MIMU-based and reference BCoM 

aĐĐeleƌatioŶ ǁeƌe stƌoŶg foƌ all OSN ŵodels iŶ all diƌeĐtioŶs ;ρ > Ϭ.ϳͿ. The added ǀalue of usiŶg ŵultiple 
sensors instead of a single sensor at trunk level is demonstrated by the increased accuracy and the 

better fit of reference BCoM acceleration in the anteroposterior and mediolateral directions when 

using OSN (Table 8, Figure 38). 

Table 8: Accuracy of Optimal sensor network (OSN)-based MIMU-derived BCoM acceleration as compared with force platform-

based acceleration in terms of root mean square eƌƌoƌs ;RMSEͿ, Ŷoƌŵalized RMSE, aŶd PeaƌsoŶ’s ĐoƌƌelatioŶ ĐoeffiĐieŶts ;ρ) 

  RMSE (m/s²) NRMSE (%) Pearson’s ρ 

OSN 

(included 

segments) 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Medio-

lateral 
Vertical 

Mean (standard deviation) 

Trunk, thighs, 
shanks 

0.54 (0.02) 0.32 (0.03) 0.57 (0.06) 13.7 (0.9) 14.0 (2.1) 8.5 (0.5) 0.93 (0.01) 0. 89 (0.04) 0.95 (0.01) 

Trunk, thighs, 
feet 

0.33 (0.02) 0.37 (0.03) 0.51 (0.05) 9.7 (0.7) 13.7 (0.7) 7.4 (0.4) 0.93 (0.01) 0.88 (0.02) 0.96 (0.01) 

Trunk, shanks 0.40 (0.06) 0.50 (0.05) 0.54 (0.04) 11.6 (2.1) 21.5 (2.7) 7.7 (0.4) 0.89 (0.03) 0.74 (0.08) 0.96 (0.00) 

Trunk 0.66 (0.05) 0.70 (0.05) 0.63 (0.06) 17.0 (1.2) 23.5 (2.0) 8.8 (0.6) 0.78 (0.02) 0.76 (0.05) 0.95 (0.00) 

ii. BCoM velocity 

Accuracy of OSN-derived BCoM velocity compared to the reference inertial model is presented in 

Table 9. OSN-derived and reference BCoM velocity averaged over the thirteen prosthetic strides are 

displayed in Figure 39. Interestingly, the OSN models that achieved the best estimation of BCoM 

velocity were different from those that achieved the best fit for BCoM acceleration. The five-MIMU 

OSN model including the shanks performed better than that including the feet in all directions, as 

displaǇed ďǇ the higheƌ PeaƌsoŶ͛s correlation coefficients and the lower RMSE. BCoM velocity 

estimated with the trunk SCoM acceleration achieved a good fit of BCoM velocity with excellent 

ĐoƌƌelatioŶs iŶ the ŵediolateƌal aŶd ǀeƌtiĐal diƌeĐtioŶ ;ρ > Ϭ.ϵϬͿ, but only a moderate agreement in the 

anteroposterior direction. Furthermore, high errors were achieved by this model in the 

anteroposterior and mediolateral direction (RMSE > 0.08 m.s-1). 

Table 9: Accuracy of body center of mass (BCoM) velocity derived from the optimal sensor network (OSN)-based BCoM 

acceleration compared to the reference velocity computed from optical motion capture in terms of root mean square error 

(RMSE), RMSE normalized to average walking speed (ARMSE) and peak-to-peak normalized RMSE (NRMSE) 

OSN (included 

segments) 

RMSE (m.s-1) ARMSE (%) NRMSE (%) Pearson’s ρ 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Antero-

posterior 

Medio-

lateral 
Vertical 

Antero-

posterior 

Medio-

lateral 
Vertical 

Trunk, thighs, 

shanks 
0.05 (0.02) 0.05 (0.01) 0.03 (0.00) 4.1 (1.2) 16.7 (5.1) 13.2 (3.0) 6.0 (0.8) 0.94 (0.04) 0.96 (0.03) 0.99 (0.00) 

Trunk, thighs, 

feet 
0.05 (0.01) 0.06 (0.02) 0.03 (0.01) 4.2 (1.0) 20.8 (6.2) 15.6 (3.9) 6.0 (0.6) 0.85 (0.05) 0.90 (0.04) 0.99 (0.01) 

Trunk, shanks 0.04 (0.02) 0.05 (0.01) 0.03 (0.01) 3.5 (1.3) 15.1 (6.1) 13.7 (2.4) 6.7 (1.0) 0.92 (0.02) 0.94 (0.01) 0.99 (0.00) 

Trunk 0.08 (0.01) 0.09 (0.01) 0.04 (0.01) 6.7 (0.7) 27.7 (3.3) 20.8 (1.7) 7.6 (0.8) 0.57 (0.06) 0.92 (0.02) 0.99 (0.00) 
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Figure 38: Acceleration of the body center of mass derived from force platforms measures (gray straight line), optimal sensor 

networks consisting in the weighted sum of center of mass accelerations of the included segments (colored dashed and dotted 

lines), in the anteroposterior direction (AP), mediolateral direction (ML) and vertical direction (CC). Shaded regions represent the 

interval [mean – standard deviation ; mean + standard deviation] for the estimates of the BCoM acceleration averaged over the 7 

gait cycles of the participant. 
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Figure 39: Body center of mass (BCoM) velocity as estimated by OSN-derived models [upper-left corner (blue dotted lines): trunk, thighs, feet; 

upper-right corner (orange dashed-lines): trunk, thighs, shanks; lower-left corner (yellow dashed lines): trunk and shanks; lower-right corner 

(green dashed lines): trunk] in comparison with the reference BCoM velocity obtained by optical motion capture (gray straight line). Shaded 

regions represent the interval [ mean – standard deviation, mean + standard deviation] for each estimate of the BCoM velocity averaged over  

the thirtheen prosthetic gait cycles of the participant in the anteroposterior (AP), mediolateral (ML) and vertical (CC) direction.  
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3.4. Discussion 

This proof-of-concept study aimed at proposing and validating a framework for the estimation of 

BCoM acceleration and velocity from an optimal network of MIMUs. Based on the results of an optical 

motion capture-based study (Chapter 2), several OSN were investigated, including from 3 to 5 MIMUs 

positioned on the trunk and on either a pair or more of the following segments: thighs, shanks and 

feet. The added value of using an optimal network of sensors instead of a single sensor at trunk level 

was also investigated by comparing the accuracy of the various OSN estimates to that obtained with 

the trunk MIMU. This pilot study demonstrated the feasibility of accurately estimating the 3D BCoM 

instantaneous walking velocity and acceleration using five MIMUs in people with transfemoral 

amputation. The fact that the protocol was validated in a single case study should however be kept in 

mind before generalization of the achieved results to the population of transfemoral amputees. 

i. SCoM and BCoM acceleration 

In the developed framework, the BCoM acceleration is estimated through a weighted average of 

SCoM aĐĐeleƌatioŶs. To the authoƌ͛s kŶoǁledge, this is the fiƌst studǇ that ƌepoƌted aĐĐuƌaĐǇ ƌesults 
for the estimation of SCoM accelerations from MIMUs.  

Interestingly, when more than 3 sensors were used for BCoM accelerations, higher errors were 

achieved on average for the estimation of accelerations at the SCoMs than at the BCoM. Accelerations 

estimated at the shanks and feet were shown to have the highest errors and to poorly (sound limb) or 

moderately (prosthetic limb) fit the reference SCoM acceleration in the mediolateral direction. A 

possible reason for this discrepancy lies on the assumptions made regarding the alignment of segment 

anatomical axes with those of the global reference frame in static. Indeed, the participant was not 

specifically asked to stand with his feet parallel, which would have justified this hypothesis for the feet 

segments. Natural outward alignment of the feet of 20° have been reported in the literature (Tunca et 

al., 2017) and would have necessarily an impact on the orientation of both the feet and the shanks. 

However, OSN that included feet and thighs segments were shown to be superior to their counterparts 

using shank-mounted MIMUs in terms of accuracy with the BCoM acceleration (Table 8). 

BCoM acceleration estimated using a single sensor at trunk level in the present study resulted in 

lower accuracy in the anteroposterior and mediolateral directions than reported by Mohamed Refai 

and coworkers with a single MIMU at pelvis level in eight asymptomatic participants (Mohamed Refai 

et al., 2020). However, the presented framework achieved higher accuracy in the vertical direction and 

higher consistency with the reference acceleration pattern in the mediolateral and vertical directions, 

as demonstrated by higher correlation coefficients. When estimated using several sensors, OSN-

derived BCoM acceleration results were in agreement with those reported in healthy subjects using 

optical motion capture system-based accelerations (Shahabpoor et al., 2018). Indeed, using three 

sensors (trunk and shanks mounted MIMUs), our method achieved similar to improved accuracy (mean 

NRMSE) and better precision (standard deviation of the NRMSE) compared to the one proposed by 

Shahabpoor and coworkers using the acceleration of three different segments (trunk, pelvis and a 

thigh) in sound participants (present study vs sound-participants : 11.6 ± 2.1% vs 16 ± 2.0 % in the 

anteroposterior direction, 21.5 ± 2.7 % vs 18 ± 6.7 % in the mediolateral direction and 7.7 ± 0.4 % vs 7 

± 1.7 % in the vertical direction). The increased precision in the present study may have resulted from 

the validation of the method on a unique participant whereas six asymptomatic subjects ambulating 
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at different walking speeds were recruited in (Shahabpoor et al., 2018). It is worth noting that, in the 

former study, BCoM acceleration was estimated from a weighted average of SCoM accelerations 

derived from optical motion capture measurement. Therefore, decreased accuracy and precision is 

expected when transposing the method with MIMUs. The validity of the method presented in 

(Shahabpoor et al., 2018) when using wearable sensors was only investigated in the vertical direction, 

where a mean accuracy of 8.7 % was achieved in the vertical direction (1.7 % decreased in accuracy). 

Therefore, the results achieved in the current study using a 3-MIMU configuration are very promising.  

Increasing the number of MIMUs allowed to improve the accuracy of the estimated BCoM 

acceleration, in particular in the mediolateral direction (Table 8). Interestingly, the five-MIMU OSN 

including the thighs and shanks sensors resulted in an improved accuracy only in the mediolateral 

direction compared to the three-MIMU OSN, while an increase accuracy in the anteroposterior 

direction was also observed when considering the five-MIMU OSN including the thighs and feet 

sensors. High consistency between reference and MIMU-based 3D BCoM acceleration patterns was 

observed with all the OSN models investigated, with perceivable deviations in the mediolateral 

direction for the three-MIMU model (Figure 38, Table 8). 

In the light of these results, the three-segment OSN model including both shanks and the trunk 

appears to be optimal when the sagittal plane BCoM acceleration is targeted (anteroposterior and 

vertical directions). When the 3D BCoM acceleration must be estimated with high accuracy, a five-

sensor model including the trunk, both thighs and either both feet or both shanks is to be preferred.  

ii. BCoM velocity 

BCoM velocity was computed stride per stride using the sum of a cyclical component and an 

average walking speed in the direction of progression. The average walking speed was estimated as 

the ratio of the shank MIMU displacement along the direction of progression within a stride to the 

stride duration, using the kinematic model specifically developed for people with lower-limb 

amputation in (Duraffourg et al., 2019). The use of this model imposes the use of a MIMU mounted on 

the prosthetic shank, even when considering OSN models for BCoM acceleration estimation that did 

not include a sensor at the shank. In order to keep the number of sensors at a minimal, it is therefore 

preferred, with this integration method, to use OSN models including the shanks segments rather than 

the feet. Otherwise, integrating the foot acceleration between successive foot flat periods could allow 

to estimate the average walking speed (Kitagawa and Ogihara, 2016). However, reliable detection of 

foot flat events from inertial sensors may not be straightforward in people with lower-limb 

amputation. 

BCoM velocity estimated from a single sensor at trunk level was shown to be slightly in advance of 

phase in the anteroposterior direction (Figure 39) and to lack accuracy in the anteroposterior and 

mediolateral directions (average RMSE > 0.08 m.s-1) (Table 9). The use of multiple sensors arranged in 

OSN allowed to improve the estimated velocity by up to 12.6 % in the anteroposterior direction. 

Interestingly, the three-MIMU OSN including the trunk and shanks provided the most accurate 

estimate of BCoM velocity in the anteroposterior direction, with errors in the order of 3.5 ± 1.3 % of 

the average walking speed (average RMSE = 0.04 m.s-1). Adding supplementary sensors at the thighs 

resulted in a better fit of curve pattern in the anteroposterior and mediolateral directions (Figure 39) 

but in a slight decrease of accuracy in the anteroposterior direction (RMSE of 0.05 ± 0.01 m.s-1, 

corresponding to 4.1 ± 1.0 % of the average walking speed), due to the overestimation of BCoM 
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velocity peaks in that direction (Figure 39). Therefore, although 3 MIMUs allowed to estimate BCoM 

acceleration and velocity with a good accuracy index, using 5 MIMUs on the trunk, thighs and shanks 

should be preferred if a strong accuracy is required especially in the mediolateral direction. The model 

including the feet sensors achieved lower accuracy in the anteroposterior and mediolateral direction 

than the models including the shanks. This might be a consequence of the assumption of parallel feet 

required for computing the relative orientation of the reference frames sensed by the feet MIMUs in 

the global reference frame (see equations in part 3.2.1b). 

Few studies in the literature have focused on the estimation of the instantaneous BCoM velocity, 

compromising the comparison of our results. Furthermore, all former studies investigating the 

instantaneous BCoM velocity used the assumption that the BCoM was fixed in the pelvis anatomical 

frame. Sabatini and Mannini investigated a method for the estimation of the instantaneous velocity of 

a MIMU positioned at the pelvis compared to the velocity of an optical motion capture marker 

positioned on top of the MIMU (Sabatini and Mannini, 2016). Validation results are proposed 

separately for the cyclical component (limits of agreement [± 1.96 standard deviation] of ± 0.10 m.s-1 

in the anteroposterior and mediolateral direction, and ± 0.05 m.s-1 in the vertical direction) and average 

component (RMSE = 0.07 m.s-1 when ambulating overground). A smaller dataset was used in the 

present study but higher accuracy was achieved for the cyclical component (± 1.96 standard deviation 

of the RMSE: ± 0.01 m.s-1 in all directions, including when using a single sensor at the trunk level).  

Regarding the average walking speed, multiple authors have proposed algorithms for its 

estimation using inertial sensors (Yang and Li, 2012b). Only two studies reported an estimate of the 

average walking speed within less than 4.1 % of its nominal value. In (Mariani et al., 2010) the average 

walking speed was estimated from double integration of the acceleration of a foot mounted MIMU in 

twenty sound participants (young and elderly) and achieved higher accuracy but lower precision (1.5 

± 5.8 % of the actual walking velocity) than the proposed method. Using a shank MIMU and a kinematic 

model relying on stance knee flexion, which is absent in people with transfemoral amputation, Yang 

and coworkers estimated the average walking speed within 4.0 % of its nominal value. 

iii. Limitations and perspectives 

The developed framework allowed to estimate the instantaneous walking speed and acceleration 

of the body center of mass from five MIMUs positioned on the trunk, thighs and shanks segments of 

one person with transfemoral amputation. Results should be confirmed in a larger cohort prior to 

generalization.  

The aim of the present study was to propose a wearable framework as compatible as possible with 

clinical use. Currently, the framework requires the use of a camera and an optoelectronic system for 

the personalization of the geometric inertial model and the estimation of the relative position of each 

MIMU to the center of mass of the underlying segment in the intermediary global frame (static). The 

use of these external devices, and especially of the optical motion capture system, compromises the 

transfer of the framework in the clinical field. The optical motion capture system was used for the 

calibration of photographs and for the construction of an initial geometric inertial model based on 

anatomical landmarks. Projections of the initial volumes on face and profile photographs were 

ŵaŶuallǇ ƌeshaped so as to fit the paƌtiĐipaŶt͛s ďodǇ ĐoŶtouƌs ďased oŶ faĐe aŶd pƌofile photogƌaphs 
(Pillet et al., 2010). Therefore, using an alternate system for the calibration of photographs – or a 

method that does not require to take photographs at all – would facilitate the transfer of the 
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framework in the clinical field. Regarding the first solution, using a device of known shapes and 

dimensions may allow to calibrate photographs. Regarding a possible alternative to taking 

photographs, body segmental inertial parameters and positions of anatomical landmarks and MIMUs 

could be retrieved from body meshes obtained with a 3D scanner. A semi-automatic method, requiring 

less than 1 minute of acquisition, has been proposed and validated in nine sound participants (Robert 

et al., 2017). Its validity in impaired people, in particular in people with a lower-limb prosthesis, 

remains to be verified. All in all, making the framework fully wearable does not appear to be a major 

issue even if it would require some further development and validation. It should be noted that the 

method would still rely on an external portable device (camera/3D scanner) in order to retrieve the 

SCoM and MIMU positions in a consistent intermediary global frame (the scanner or camera frame). 

The impact of errors in the estimations of the relative positions of MIMUs and SCoM on the output 

parameters (SCoM and BCoM acceleration, BCoM velocity) should therefore be investigated in a 

further study.  

It should be noted that, in order to obtain the relative position of MIMUs and SCoM in the MIMU 

local frame, the framework uses a static calibration during which both the relative SCoM/MIMU 

positions and the orientations of MIMUs are estimated in an intermediary global frame. To do so, 

MIMUs were aligned with the longitudinal axes of segments while the latter were supposed to have 

their axes aligned with that of the intermediary reference frame. It should be stressed that this sensor-

to-segment calibration was required only to derive the position of SCoM in their respective MIMU local 

frames and was not directly used for the fusion of SCoM accelerations. Furthermore, inclination of 

MIMUs with respect to the vertical were corrected using the orientation output provided by the 

MIMUs. Therefore, the impact of misorientation of MIMUs on segment is believed to be minimal, 

which would not have been the case if the aim of this study was to derive joint angles (Miezal et al., 

2016; Kianifar et al., 2019). Verification of this hypothesis should also be investigated in further studies. 

The framework could finally be enhanced in order to obtain complementary biomechanical 

parameters. A growing interest for the estimation of individual limb ground reaction forces from 

MIMUs can be inferred from recent literature. In people with lower-limb amputation, in particular, 

receiving/giving feedback on the load distributed to each lower limb represents an interesting track 

for the rehabilitation (Loiret et al., 2019). Several models proposing a smooth transition of the weight 

from one limb to another have been investigated in the literature (Ren et al., 2008; Karatsidis et al., 

2017) but may not be adapted for impaired gait. Therefore, developing a method allowing to estimate 

the ground reaction force under each foot from MIMU-based BCoM acceleration in people with 

transfemoral amputation represents a relevant track for future works. Furthermore, when combined 

with the instantaneous BCoM velocity, the individual ground reaction force can provide insight on 

mechanical energy exchanges (Donelan et al., 2002b; Bonnet et al., 2014). 

3.5. Conclusions 

The fƌaŵeǁoƌk͛s ƌesults aƌe eŶĐouƌagiŶg aŶd suggest that MIMUs may be a valid alternative to 

lab-based instruments when the 3D BCoM acceleration or velocity is targeted. Indeed, using a set of 

five MIMUs on the trunk, thighs and shanks allowed to estimate 3D BCOM acceleration and velocity in 

a person with transfemoral amputation with a strong agreement with reference data obtained from 

foƌĐe platfoƌŵs ;aĐĐeleƌatioŶ: ρ > Ϭ.ϴϵͿ aŶd aŶ optiĐal ŵotioŶ Đaptuƌe ;ǀeloĐitǇ: ρ > Ϭ.ϵϰͿ aŶd high 
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accuracy (NRMSE in the anteroposterior, mediolateral and vertical directions of 11.6 ± 2.1 %, 14.0 ± 

2.1 %, 7.7 ± 0.4 % for the acceleration and 16.7 ± 5.1 %, 13.2 ± 3.0 %, 6.0 ± 0.8 % for the velocity). 

Results of this proof-of-concept study still need to be confirmed on a larger cohort.  

In medium-term, future studies will aim at assessing i) the accuracy achieved when a fully wearable 

framework (that is, without an optical motion capture system) is implemented and ii) the impact of 

MIMU misplacement on the estimation of SCoM and BCoM kinematic parameters. In the long term, 

suitability of the OSN to estimate the ground reaction force under each foot should be investigated. 



99 

 

Chapter 4 – The impact of inertial measurement units positioning 

eƌƌoƌ oŶ the estiŵated aĐĐeleƌatioŶs of ďodǇ aŶd segŵeŶts’ ĐeŶteƌs of 
mass: a sensitivity analysis 

The previous chapters indicate that, in people with transfemoral amputation, body center of mass 

(BCoM) acceleration can be estimated from a weighted average of the accelerations of the centers of 

mass of a set of 5 segments. The formers can be estimated from the signals measured by MIMUs rigidly 

mounted on each of the segments using the following equation – provided that the SCoM position in 

the MIMU local frame ࡹࡵ࢕࢘𝑼−ࡹ࢕࡯ࡿ is known: ࡹ࢕࡯ࡿࢇ = 𝑼ࡹࡵ࢕ࢇ + 𝜴ࡹࡵ࢕𝑼 ∧ (𝜴ࡹࡵ࢕𝑼 ∧ (  ࡹ࢕࡯࢙−𝑼ࡹࡵ࢕࢘ + 𝜴̇ࡹࡵ࢕𝑼  ∧     ࡹ࢕࡯ࡿ−𝑼ࡹࡵ࢕࢘ 
With ࡹ࢕࡯ࡿࢇ, the acceleration of the SCoM, ࡹࡵ࢕ࢇ𝑼 and 𝜴ࡹࡵ࢕𝑼 the acceleration and angular velocity 

measured by the MIMU and 𝜴̇ࡹࡵ࢕𝑼  the angular acceleration obtained from differentiation of the 

angular velocity. All the quantities are expressed in the MIMU local frame. 

With the hypothesis that MIMUs are rigidly mounted on each segment, the relative position of 

MIMUs and the underlying SCoM is constant in the MIMU local frame. Therefore, its retrieval at a 

specific instant, for example, during a static calibration, is enough. In light of the above, it is clear that 

the accurate determination of the position of each MIMU with respect to the relevant SCoM is crucial 

to obtain an accurate estimation of SCoM and BCoM accelerations.  

In the framework presented in chapter 3, SCoM aŶd MIMUs͛ positioŶs aƌe ƌetƌieǀed iŶ a ĐoŶsistent 

intermediary global frame using calibrated photographs taken with the participant in a static standing 

posture. SCoM positions are obtained along with other body segmental inertial parameters by fitting 

a geometric inertial model on face and profile photographs while the positions of MIMUs are 

recovered by clicking on the locations of MIMUs origins on the same calibrated photographs. The 

vector describing the relative position of each pair of SCoM and MIMU origin must then be transferred 

in the MIMU local frame, which requires the knowledge of the MIMU orientation in the intermediary 

global frame. Thus, two main sources of errors may impact the accuracy of the vector ࡹࡵ࢕࢘𝑼−ࡹ࢕࡯ࡿ in 

MIMU local frame when using the  presented framework: mislocation errors (due to errors in 

calibrating the photographs or clicking on the wrong position) and orientation errors, due to the 

assumptions made regarding MIMUs orientation in the intermediate global frame. When estimating 

BCoM acceleration, the accelerations estimated at each SCoM must then be fused in a consistent 

global reference frame.  

The sensitivity of MIMU-derived biomechanical parameters to MIMU positions and orientations 

has recently been studied in the literature for the estimation of joint angles and of ground reaction 

forces (Kianifar et al., 2019; Tan et al., 2019). In both cases, sensor-to-segment orientations were found 

to be more critical than MIMUs positions on segments (Kianifar et al., 2019; Tan et al., 2019). Regarding 

the study that focused on ground reaction forces (Tan et al., 2019), the formers were estimated with 

a machine learning approach using raw acceleration and angular velocity data, expressed in their 

respective MIMU local frames, as inputs. No sensor-to-segment calibration procedure was used to pre-

process raw MIMU data and expressed them in a common global reference frame prior to using them 

for the estimation of SCoM acceleration. Modifying the orientation of MIMUs on segments necessarily 

impacted both angular velocity and acceleration raw data used as inputs, while modifying the position 
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of a MIMU on a segment had only repercussions on the acceleration signals. Therefore, the greater 

impact of orientation errors compared to position errors could be expected in their study. 

When investigating SCoM or BCoM acceleration following the framework proposed in Chapter 2, 

sensor-to-segment orientation is not critical, since only the orientations of MIMUs in an intermediary 

global frame during a static posture is required to define a between-MIMU consistent global frame. 

Orientation errors of two natures could occur with the framework implementation. During the static 

posture, the hypotheses of manual alignments of the MIMUs on the segments could lead to errors and 

should be quantified. During the dynamic trials, there could be residual errors due to the orientation 

computation from sensor data leading to inconsistencies between the reference frames sensed by 

multiple MIMUs, which would impact the acceleration of the BCoM. However, it is believed that these 

errors are not as critical as those made when clicking on MIMUs on photographs. Therefore, in this 

chapter, we focused solely on the impact of MIMUs mislocation on SCoM and BCoM accelerations. The 

impact of orientation errors due to the hypotheses of manual alignment of sensors and due to the 

computation of orientation from sensor data should nonetheless be investigated in future studies. 

The impact of the MIMUs location errors on SCoM and BCoM accelerations of an ambulating 

transfemoral amputee was analyzed through a sensitivity analysis. First, the potential range of 

localization error was investigated by two independent operators, who retrieved five times the 

position of MIMUs origins after having recalibrated the photographs. Then, a simulation-based 

sensitivity analysis was performed. It consisted in estimating SCoM and BCoM accelerations when 

introducing errors in the relative position of MIMUs and their respective SCoM. Estimated SCoM and 

BCoM accelerations were then compared to the reference value, which allowed to assess the impact 

of MIMUs mispositioning on SCoM and BCoM acceleration. Finally, the sensitivity analysis allowed to 

identify the MIMUs whose accurate location is critical for the estimation of SCoM and BCoM 

accelerations. This work was produced during the master internship of J. Basel, whose contribution is 

duly acknowledged. The content of this chapter will be submitted as an article in IEEE Transactions on 

Biomedical Engineering. 
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4.1. Definition of the possible magnitude of errors in the identification of MIMUs 

positions 

The MIMU-based framework presented in the previous 

chapter allows to estimate the relative position of each segment-

mounted MIMU with respect to the underlying SCoM in the 

optical motion reference frame using calibrated photographs. 

Errors made when identifying MIMU positions on the 

photographs would inevitably impact the estimation of SCoM 

acceleration. To properly define the magnitude of error to be 

used in the sensitivity analysis performed in this study, namely 

the amount of position variation to be simulated for each 

segment-mounted MIMU, the range of errors that could be made 

when identifying MIMU positions on photographs was 

calculated. 

To this aim, four back, face and profile photographs (Figure 

40) were taken with the participant standing in a static posture 

while optical motion capture (OMC) recorded the position of 59 

markers attached to the body and 20 markers positioned on five 

3D printed boxes embedding MIMUs mounted on the trunk, 

thighs and shanks. MIMU positions were retrieved by clicking on 

their locations on the photographs, calibrated following (Pillet et 

al., 2010) by two operators who repeated the whole process five times (calibration + position 

identification). Photograph-based and OMC-based positions of each MIMU origin were calculated for 

each operator and results are reported in Table 10. 

Absolute errors in the identification of MIMU positions were found to reach up to 0.02 m (Table 

10). This value was thus considered for the sensitivity analysis. It should be noted that errors in MIMU 

identification could be reduced by improving the visibility of the MIMU origins on the 

photographs/scan (see Figure 40), for instance, by positioning a colored sticker on top of the MIMU 

origin when positioning the MIMU on the participants. Furthermore, this could pave the way for 

automatic detection of MIMU positions, thus reducing the post-processing time and inter-operator 

errors. 

Table 10: Mean and range of errors (in m) observed following the five repetitions performed by the two operators for the 

identification of each MIMU origin.  

P: prosthetic; S: sound, ML: medio-lateral, AP: anteroposterior, V: vertical 

 Mean error (m) Min error (m) Max error (m) 

 AP ML V AP ML V AP ML V 

 Operator 1 

ShankP 0.012 0.007 0.012 -0.018 -0.010 -0.020 -0.001 0.010 0.005 

ShankS 0.009 0.003 0.004 -0.017 -0.003 -0.005 -0.005 0.004 0.005 

ThighP 0.016 0.005 0.007 -0.021 0.002 -0.010 -0.010 0.008 0.000 

ThighS 0.015 0.005 0.006 0.008 -0.010 -0.004 0.018 -0.001 0.010 

Trunk 0.007 0.007 0.012 0.003 0.001 0.005 0.010 0.011 0.020 

All 
Segments 

0.012 0.005 0.008 -0.021 -0.010 -0.020 0.018 0.011 0.020 

Figure 40: Left side photo of the subject equipped 

with MIMUs and optoelectronic markers. Zoom 

on the CAD-designed structure on the subject’s 
sound thigh. On the photo, the MIMU and CAD 

structure are covered with strap band  
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 Mean error (m) Min error (m) Max error (m) 

 AP ML V AP ML V AP ML V 

 Operator 2 

ShankP 0.009 0.004 0.003 -0.018 -0.007 -0.003 0.006 0.005 0.004 

ShankS 0.009 0.008 0.011 -0.014 -0.004 -0.016 0.004 0.011 0.006 

ThighP 0.016 0.005 0.011 -0.020 -0.002 -0.014 -0.012 0.009 0.013 

ThighS 0.005 0.010 0.012 -0.009 -0.015 -0.018 0.006 0.013 0.006 

Trunk 0.006 0.015 0.008 -0.009 0.008 0.003 0.001 0.020 0.011 

All 
Segments 

0.009 0.008 0.009 -0.02 -0.015 -0.018 0.006 0.020 0.013 

 Operator 1 + Operator 2 

ShankP 0.011 0.006 0.009 -0.018 -0.010 -0.020 0.006 0.010 0.005 

ShankS 0.009 0.006 0.008 -0.017 -0.004 -0.016 0.004 0.011 0.006 

ThighP 0.016 0.005 0.009 -0.021 -0.002 -0.014 -0.010 0.009 0.013 

ThighS 0.011 0.008 0.009 -0.009 -0.015 -0.018 0.018 0.013 0.010 

Trunk 0.006 0.012 0.010 -0.009 0.001 0.003 0.010 0.020 0.020 

All 
Segments 

0.011 0.007 0.009 -0.021 -0.015 -0.020 0.018 0.020 0.020 

4.2. Sensitivity analysis: impact of MIMUs localization errors on the accuracy of the 

estimated accelerations of body and segments centers of mass  

4.2.1. Material and Methods 

a. Experimental method 

This study was approved by the local ethical committee. A transfemoral amputee subject (mass: 

83.1 kg, height: 1.69 m) gave written informed consent to participate to the study. He was equipped 

with a set of 5 MIMUs (Xsens Technologies B.V., Enschede, The Netherlands, 100 sample·s-1) located 

on the trunk (over the sternum), both prosthetic and sound thighs (ThighP, ThighS) and shanks 

(ShankP, ShankS). Each MIMU was inserted in a customized 3D-printed rigid support equipped with 4 

reflective markers (Figure 40). Additionally, as described in (Al Abiad et al., 2020), 59 reflective markers 

ǁeƌe positioŶed oŶ the patieŶt͛s aŶatoŵiĐal laŶdŵaƌks aŶd aŶ optiĐal ŵotioŶ Đaptuƌe sǇsteŵ ;OMCͿ 
was used to record the 3D trajectory of the set of markers (Vicon system, Oxford Metrics, UK, 100 Hz). 

The participant was asked to walk in a straight line at his natural speed along an 8 m pathway with 

three force plates (AMTI, Advanced Mechanical Technology, Inc, Massachussets, USA, 1000 Hz) in its 

middle. OMC, force plates and MIMU data were synchronized with an electronical trigger. Data 

acquisition was performed over a total of seven trials. For each trial, only the prosthetic stride 

performed at steady state walking speed and occurring on the force plates was considered in the 

analysis. 

b. Data Processing 

All raw data from the acquisition were filtered using a Butterworth zero-lag 4th order low pass 

filter with cut-off frequencies set at 5 Hz (MIMUs and markers) and 10 Hz (force plates). 

i. Reference accelerations 

SCoM 3D positions were estimated from OMC measurements using a 15-segment inertial model 

as reported in (Pillet et al., 2010). These positions were differentiated and low-pass filtered using the 
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same filter as described above and cut off frequencies set at 8 Hz and 10 Hz for the first and second 

differentiation respectively to obtain the reference SCoM accelerations. Reference BCoM acceleration 

was extracted from the filtered force plates data. Reference accelerations were expressed in the OMC 

inertial reference frame ܴைெ஼  such that the y-axis was aligned with the direction of progression 

(anteroposterior, AP), the z-axis vertical and opposing gravity (vertical, V) and the x-axis orthonormal 

to both (mediolateral, ML). 

ii. MIMU-based accelerations 

3D orientation and position of each MIMU local frame ܴெூெ௎  with respect to ܴைெ஼  were 

computed using the markers located on the 3D-printed rigid cluster. The transformation matrix from ܴெூெ௎  to ܴைெ஼  was obtained and allowed to express both gravity-free accelerations and angular 

velocities measured by each MIMU in ܴைெ஼.  

Afterwards, the vector going from MIMU origin to the center of mass of the underlying segment, ܷܯܫܯ − ⃗⃗ܯ݋ܥܵ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  was obtained and expressed in ܴைெ஼ for each MIMU. MIMU-based estimation of the 

SCoM accelerations in ܴைெ஼, ܽௌ஼௢ெெூெ௎, were then computed as follows: ܽௌ஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  ܽெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   +  ݀𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ݐ݀⃗  ܷܯܫܯ ˄  − ⃗⃗ܯ݋ܥݏ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ˄ (𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ܷܯܫܯ ˄ ⃗  − ⃗⃗ܯ݋ܥܵ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )   ሺͳሻ 

with ܽெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ being the MIMU-measured gravity-free linear acceleration and angular 

velocity signals expressed in ܴைெ஼.  

Finally, BCoM acceleration was estimated as a weighted average of the estimated SCoM 

accelerations (ܽௌ஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) using: ܽ஻஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  ∑ ݉௜݉௕௢ௗ௬ ܽௌ஼௢ெ𝑖ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗௡
௜=ଵ      ሺʹሻ 

Where: ݊ is the number of segments considered and  ݉௕௢ௗ௬ and ݉௜ are respectively the masses 

of the body and of the ݅௧ℎ segment. 

The accelerations  ܽௌ஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and ܽ஻஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ were compared to reference data using the normalized 

root-mean square error (NRMSE) (Ren et al., 2008) and the PeaƌsoŶ͛s ĐoƌƌelatioŶ ĐoeffiĐieŶt aǀeƌaged 
over the seven analyzed strides along the ܴைெ஼  directions.  

iii. Sensitivity analysis 

A sensitivity analysis was performed to investigate the impact of an erroneous identification of 

each MIMU location, and thus an error on the components of the vector ܷܯܫܯ − ⃗⃗ܯ݋ܥܵ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   on the 

NRMSE between MIMU-based and reference SCoM and BCoM accelerations. 

To achieve this aim, errors in the identification of MIMU positions on the relevant body segments 

reaching up to 0.02 m in all three directions (AP, ML and V) were introduced. This range of errors was 

estimated experimentally (see section 4.1). Simulations were performed where each MIMU position 

was varied from its actual position (p0ML p0AP p0V) by ±0.02 m along each ܴைெ஼ axis. The resulting SCoM 

accelerations were estimated using equation (3): ܽௌ஼௢ெெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  ܽெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   +  ݀𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ݐ݀⃗   ˄ ሺܷܯܫܯ − ሻܯ݋ܥܵ + ∆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ˄ ቀ𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ˄ ሺܷܯܫܯ − ሻܯ݋ܥܵ + ∆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ቁ   ሺ͵ሻ 
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Where: ܽெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝛺ெூெ௎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are the linear acceleration and angular velocity measured by the MIMU 

and expressed in ܴைெ஼ , whereas an erroneous term ∆⃗⃗  = ሺ∆஺௉ , ∆ெ௅ , ∆௏ሻ was added to the vector ܷܯܫܯ − ⃗⃗ܯ݋ܥݏ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with ∆௜∈ {−Ͳ.Ͳʹ ݉, Ͳ ݉, Ͳ.Ͳʹ  ݉} for ݅ = 𝐴𝑃,ܮܯ, ܸ. 

The NRMSE between reference and MIMU-based SCoM and BCoM accelerations, referred 

hereafter as ܻ௦஼௢ெ೔  and ܻ௕஼௢ெ, were then computed. This allowed to construct a so-called mechanical 

model for each SCoM or BCoM acceleration linking the NRMSE (outputs) to the input errors.  

Using the experimental design methodology (Goupy, 2016), the relation between each component 

of the NRMSE (AP, ML, V) and the simulated mislocation of MIMUs along the AP, ML, and V axes 

;heƌeafteƌ desigŶated as ͞faĐtoƌs͟Ϳ ĐaŶ also ďe ŵodelled ǁith a polynomial model of degree up to 2 as 

described in equation (4), resulting in three models per MIMU (for the AP, ML, V components of the 

relevant SCoM acceleration) and for the BCoM: 

௦ܻ௧௔௧௔௖௖೔ሺܺሻ =  ܾ଴ +∑ܾ௜ݔ௜௡
௜=ଵ + ∑∑ܾ௜௝ݔ௜ݔ௝ + ∑ܾ௜௜ሺݔ௜ሻ²௡

௜=ଵ௝>௜
௡
௜=ଵ    ሺͶሻ 

where: ௦ܻ௧௔௧௔௖௖೔  is the estimated NRMSE between reference and MIMU-based accelerations in the  ݅ 
direction (ܽܿܿ) and ܺ is a vector containing the ݊ = ͵ܰ factors ݔ௜ corresponding to the positions of 

the ܰ MIMUs used for the estimation (ܰ = 1 for SCoM acceleration and ܰ = 5 for BCoM acceleration). 

Sensitivity of SCoM accelerations estimations 

For each MIMU, three polynomial models were devised to emulate the SCoM acceleration along 

each axis of the OMC, following equation (4)  with three input factors ݔ௜: pAP, pML, pV, describing the 

MIMU position along the three axes of ܴைெ஼ . TheŶ, afteƌ ŶoƌŵalizatioŶ of the faĐtoƌs͛ ǀalues into 

[- 1 ; 1], a three-level full factorial design allowed to choose the experimental points resulting in 33 

combinations of the factors (i.e. 27 different position simulations) per MIMU (Table 11). 

Choice of the polynomial model’s ĐoŵpleǆitǇ 

The model complexity corresponds to the degree of the polynomial model and therefore depends 

on the inclusion of the interaction and/or quadratic terms in equation (4). The choice of polynomial 

model complexity is determined based on the residual variance of the polynomial model with respect 

to the mechanical model and will be justified in section 4.2.2.b.i. 

Table 11 : Levels of the factors used for each polynomial model emulating a component of a SCoM acceleration 

Factors 

Level of the factors 

Low-level  (-1) Mid-level (0) High-level (+1) 

pAP (m) p0AP – 0.02 p0AP p0AP + 0.02 
pML (m) p0ML – 0.02 p0ML p0ML + 0.02 

pV (m) p0V – 0.02 p0V p0V + 0.02 

 

Quantification of the sensitivities 

Based on the experimental design methodology, the influence of each factor (i.e., the  coordinate 

of the simulated MIMU origin along each axis of ܴைெ஼) on the accuracy of the SCoM acceleration 

estimate is defined as the total percentage of variance of the output due to this factor (Goupy, 2016). 

First, the sensitivity of the output ௦ܻ௧௔௧௔௖௖೔ to each monomial (i.e., linear (b୧ݔ௜), interaction (b୧୨ݔ௜ݔ௝) or 
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quadratic term (b୧୧ݔ௜² )) of the polynomial model is computed. With the input factors considered as 

independent and uniformly distributed in [-1, 1], the following equations can be written: 

{  
  
   
௜ݏ  = ௜ሻݔሺb୧ݎܽݒ =  b୧ଶݎܽݒሺݔ௜ሻ =  b୧ଶ × ͳ͵ ݏ௜௜ = ௜ଶሻݔሺbݎܽݒ =  b୧୧ଶݎܽݒሺݔ௜ଶሻ =  b୧୧ଶ × ͶͶͷݏ௜௝ = (௝ݔ௜ݔb୧୨)ݎܽݒ =  b୧୨ଶݎܽݒሺݔ௜ሻݎܽݒሺݔ௝ሻ =  b୧୨ଶ × ͳͻvar( ௦ܻ௧௔௧௔௖௖೔) = ௜଺ݏ∑

୧=ଵ ௜௜଺ݏ∑ +
୧=ଵ ௜௝୨>୧ݏ∑∑ +

଺
୧=ଵ  

 

The sensitivity to the ith factor ݔ௜ can be obtained as follows: 

- ௜ܵ = ௜ݏ + ∑ ௜௝௝ݏ  for the linear model with interactions  

- ௜ܵ = ௜ݏ + ∑ ௜௝௝ݏ +   ௜௜ for the quadratic model with interactionsݏ

The sensitivities ௜ܵ were then expressed as a percentage of the total variance (ݎܽݒሺ ௦ܻ௧௔௧௔௖௖೔ሻ) 

Sensitivity of BCoM accelerations estimations 

Three polynomial models of the highest complexity defined for the SCoM models were built for 

the BCoM accelerations sensitivity analysis following equation (4) with ݊ = 15 factors corresponding to 

the three position factors of each of the five MIMUs. In order to limit the number of simulations (݇ଵହ 

with ݇ the number of levels per factor), a two-level factorial design (factors taking the levels ± 1) was 

considered sufficient if the model was linear with interactions whereas a three-level factorial design 

(factors taking the levels ± 1 and 0) was implemented if the model was quadratic with interaction 

(Goupy, 2016). As for SCoM acceleration models, the suitability of the complexity chosen will be 

verified using an analysis of the residual variance of the polynomial models compared to the 

mechanical models. 

4.2.2. Results  

a. Reference and MIMU-based accelerations 

Reference and MIMU-based estimations of the BCoM acceleration components in ML, AP and V 

directions are reported in Figure 41. Accuracy of the MIMU-based BCoM and SCoM accelerations in 

Figure 41: Comparison of BCoM accelerations obtained with MIMU (straight lines) and force plates 

(dotted lines) during one trial in the anteroposterior (AP), mediolateral (ML) and vertical (V) directions 
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terms of NRMSE values and correlation coefficients compared to the reference accelerations are 

presented in Table 12. It should be stressed that the MIMU-based estimations presented in Figure 41 

and Table 12 were obtained with the correct identification of the sensor position, i.e. with p0ML, p0AP 

and p0V as defined with the rigid marker clusters (Figure 40). Results show relatively low errors (< 15.4 

± 2.5 % in AP, < 11.8 ± 1.3 % in ML, < 12.5 ± 2.0 % in V) and mostly good correlations between reference 

and MIMU-based accelerations (r > 0.77). 

Table 12: Comparison of the computed SCoM and BCoM accelerations to reference values, quantified using the average and 

standard deviation of the NRMSE ;%Ϳ aŶd aǀeƌage PeaƌsoŶ’s ƌ ĐoƌƌelatioŶs oǀeƌ the ϲ tƌials. 

   AP ML V 

SCoM 

Trunk 
NRMSE (%) 14.1 (1.9) 9.8 (1.2) 5.2 (2.3) 

PeaƌsoŶ͛s ƌ 0.77 (0.03) 0.94 (0.02) 0.98 (0.03) 

ThighS 
NRMSE (%) 9.9 (2.2) 10.2 (1.3) 7.5 (2.0) 

PeaƌsoŶ͛s r 0.85 (0.10) 0.83 (0.08) 0.93 (0.06) 

ThighP 
NRMSE (%) 12.5 (1.5) 5.7 (1.9) 5.5 (1.2) 

PeaƌsoŶ͛s ƌ 0.89 (0.03) 0.96 (0.03) 0.97 (0.01) 

ShankS 
NRMSE (%) 8.0 (1.8) 10.1 (1.5) 12.0 (1.5) 

PeaƌsoŶ͛s ƌ 0.94 (0.04) 0.81 (0.13) 0.84 (0.05) 

ShankP 
NRMSE (%) 4.8 (1.2) 5.8 (0.7) 12.5 (2.0) 

PeaƌsoŶ͛s ƌ 0.98 (0.01) 0.97 (0.01) 0.87 (0.04) 

BCoM Whole Body 
NRMSE (%) 15.4 (2.5) 11.8 (1.3) 8.7 (0.5) 

PeaƌsoŶ͛s ƌ 0.93 (0.01) 0.94 (0.02) 0.95 (0.01) 

b. Sensitivity analysis 

i. Sensitivity of SCoM accelerations estimations 

ChoiĐe of the polǇŶoŵial ŵodel’s ĐoŵpleǆitǇ 

Residual variances achieved by the polynomial models developed for the ML component of the 

SCoM acceleration of each segment are presented in Table 13. Residual variances of the same order 

of magnitude were observed for the other components of the acceleration. Both the quadratic and 

multilinear models with interactions presented low residual variances for all segments and axes ;σ ² 
ч 0.159, except for the prosthetic shank in the vertical direction - σ ² ч 0.662) with the lowest values 

for the quadratic models  (Table 13). 

Table 13: Residual variances σ² of the linear model with interactions and quadratic model for each segment in the mediolateral 

direction 

Model σ² ;TrunkͿ σ² ;ThighSͿ σ² ;ThighPͿ σ² ;ShankS) σ² ;ShankP) 

Linear + 
interactions 

0.095 0.147 0.044 0.143 0.065 

Quadratic < 0.001 0.001 0.001 0.002 <0.001 

 

Based on these results, the linear model with interactions was considered as an optimal 

compromise between accuracy and simplicity. Indeed, the achieved maximal residual variance with 

the multilinear models (0.662) repƌeseŶts a staŶdaƌd deǀiatioŶ of σ = Ϭ.8% which, compared to NRMSE 

of the order of 10% (Table 12), was considered as largely acceptable. The model complexity 
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corresponding to a first order polynomial model with interactions was selected for all MIMUs and all 

acceleration components. Therefore, all results presented hereafter were obtained using models with 

this complexity. 

Quantification of the sensitivities 

The results of the sensitivity analysis for each SCoM acceleration component (AP, ML, V) are 

summed up in Figure 42.  

For the lower limbs, pAP was found to be the major influencer for the ML and V components of 

SCoM acceleration, whereas pV was the one for the AP component. Regarding the prosthetic shank, 

however,  the influence of pV dominated that of pAP in all three directions. The trunk segment displayed 

a different behavior with respect to the other segments and was the only one where the MIMU 

mediolateral position pML displayed a prominent role. Finally, the interactions between factors showed 

minor influences on the aĐĐeleƌatioŶs͛ estiŵatioŶs. The ŵost important influence of interaction factors 

was obtained for the prosthetic shank where the interactions between pML and pAP and between pAP 

and pV explained 15.1 % of the total variance of the rRMSE in the mediolateral direction. 

The range of variation of the estimation accuracy ∆௥ோெௌா೔  (%) caused by simulated errors in the 

identification of the MIMU positions over all the simulations are presented in Table 14 for each 

component of SCoM acceleration (AP, ML, V). Errors in the identification of the MIMU positions 

resulted in modification of the estimation accuracy of SCoMs acceleration between  −ͳ.͸ % < ∆௥ோெௌா𝐴𝑃< +ͳ.͹ % in AP, −ͳ.ͷ % <  ∆௥ோெௌாಾಽ< +ͳ.͸ % in ML and −ͷ.͸ % <  ∆௥ோெௌா𝑉< + ͸.ͺ % 

in V compared to the NRMSE obtained when these MIMUs positions were correctly identified (Table 

12). 

 

Figure 42: Sensitivities of the SCoM accelerations to each factor ݔ௜  and interactions between factors 

௝ݔ*௜ݔ) ) with ݔ௜  ={pAP,pML,pV} expressed in percent of the total variance. For each MIMU location, the 

sensitivities of each component of the SCoM acceleration (AP, ML, V) to the factors are displayed 
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Table 14: Range of variation of the SCoM estimation accuracy ∆௥ோெௌா೔  (%) caused by errors in the identification of the 

corresponding MIMU positions over all the simulations. Results are presented for each component of SCoM acceleration (AP, 

ML, V). 

Trunk 

 AP ML V 

Lower range of ∆௥ோெௌா೔  (%) - 0.2 - 0.7 - 0.4 

Upper range of ∆௥ோெௌா೔  (%) + 0.2 + 1.1 + 0.6 
 

 

Sound Thigh 

 AP ML V 

Lower range of ∆௥ோெௌா೔  (%) - 0.5 - 0.6 - 1.1 

Upper range of ∆௥ோெௌா೔  (%) + 0.3 + 0.7 + 1.1 
 

 

Prosthetic Thigh 

 AP ML V 

Lower range of ∆௥ோெௌா೔  (%) - 1.6 - 1.4 - 1.1 

Upper range of ∆௥ோெௌா೔  (%) + 1.4 + 1.5 + 1.2 
 

 

Sound Shank 

 AP ML V 

Lower range of ∆௥ோெௌா೔  (%) - 1.6 - 1.5 - 4.2 

Upper range of ∆௥ோெௌா೔  (%) + 1.7 + 1.6 + 3.7 
 

 

Prosthetic Shank 

 AP ML V 

Lower range of ∆௥ோெௌா೔  (%) - 1.1 - 0.5 - 5.6 

Upper range of ∆௥ோெௌா೔  (%) + 1.1 + 0.8 + 6.9 

  
 

ii. Sensitivity of BCoM acceleration estimations 

Choice of the polynomial ŵodel’s ĐoŵpleǆitǇ 

The three multilinear models including interactions developed for the sensitivity analysis of the 

BCoM aĐĐeleƌatioŶ pƌeseŶted loǁ ƌesidual ǀaƌiaŶĐes ǀalues ;σ ² ч 10-3) (Table 15).  

Table 15: Residual variances σ² of the linear model with interactions for each BCoM component 

Model σ² ;AP) σ²;ML) σ² (V) 

Linear+ interactions < 0 .001 0.001 < 0 .001 

 

Consequently, a two-level factorial design was considered to be sufficient to emulate the 

mechanical models corresponding to the BCoM acceleration. The sensitivity analysis was subsequently 

performed with the 15 factors of the models resulting in ʹଵହ simulations. 
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Quantification of the sensitivities 

Figure 43 highlights the factors that 

have the most influence on the accuracy of 

the estimation of each component (AP, 

ML, V) of the BCoM acceleration. For 

better readability and clarity, only the 

factors accounting for more than 1 % of the 

total variance are shown in the figure. The 

BCoM acceleration appears to be mostly 

sensitive to trunk, sound thigh and sound 

shank factors, particularly to the 

anteroposterior and vertical localizations 

of the MIMUs mounted on these 

segments. Indeed, all together, pAP Trunk, 

pV Trunk, pAP ThighS, pV ThighS, pAP ShankS, 

and pV ShankS explain 92 %, 77 % and 79% 

of the sensitivity of the estimation of the 

AP, ML, V BCoM acceleration components 

respectively. It should be noted that the 

anteroposterior localization of the trunk 

MIMU only as a significant impact on the 

mediolateral component of the BCoM 

acceleration (accounting for 10.5 % of the 

total variance). 

Similarly to the SCoM analysis, the 

NRMSE ranges of the variation ∆௥ோெௌா೔  (%) 

obtained over all the simulations, when 

simulating an error in the identification of 

MIMUs positions was computed (Table 

16). The different combinations of errors in 

the identification of the MIMUs positions 

resulted in modification of the estimation 

accuracy of the BCoM acceleration 

between – 3.4% and + 2.8 % compared to 

the NRMSE obtained when these MIMUs 

positions were correctly identified (Table 

16). 

 

 

 

 
Figure 43: Barplot of the results of the sensitivity analysis expressed in % of total 

variance for each BCoM acceleration component (ML, AP, V). Sensitivities are 

presented here for the factors ݔ௜  and interactions between factors (ݔ௜*ݔ௝ ) that 

account for more than 1% of the total variance. 
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Table 16: Maximum range of variation of the estimation accuracy ∆௥ோெௌா೔   (%) caused by errors in the identification of the 

MIMUs positions over all the simulations. Results are presented for each component of BCoM acceleration (ML, AP, V). 

 AP ML V 

Lower limit for ∆௥ோெௌா೔  (%) - 3.4 - 2.2 - 1.0 

Upper limit for ∆௥ோெௌா೔  (%) + 2.8 + 2.3 +1.4 

4.2.3. Discussion 

The present work investigated the impact of the incorrect identification of the position of five 

segment-mounted MIMUs on the estimation of the corresponding SCoM and BCoM accelerations.  

a. Reference and MIMU-based accelerations 

The implemented MIMU-based framework for the estimations of SCoM and BCoM accelerations 

provided relatively accurate results (high agreement: r > 0.77, and low errors: < 15.4 % in AP, < 11.8 % 

in ML, < 12.5 % in V) compared to reference-based acceleration. Overall, SCoM acceleration 

estimations showed higher agreements at the prosthetic limbs than at the sound limbs. This can be 

due, in part, to the fact that MIMUs positioned on the prosthetic limb are not affected by soft-tissues 

artefacts contrary to those positioned on the sound limbs. 

b. Sensitivity Analysis 

Using an experimental design methodology, the sensitivity of each component of the SCoM and 

BCoM accelerations to errors in the identification of each MIMU position was estimated using optimal 

polynomial models. 

i. Sensitivity of SCoM acceleration estimations 

Quantification of the sensitivities 

The sensitivity analysis allowed to identify the factors having the greatest influence on the accuracy 

of the estimations of the accelerations of each SCoM. For the lower limbs, incorrect location along the 

anteroposterior axis mainly influences the vertical component of the acceleration, whereas incorrect 

location along the vertical axis impacts mainly the mediolateral and anteroposterior acceleration 

components. It is worth noting that for the prosthetic shank, the vertical localization of the MIMU 

displays a dominant role over the anteroposterior one even for the vertical component of the 

acceleration. The localization of MIMUs along the mediolateral direction was shown not to have a 

major impact on the estimation of their corresponding SCoM acceleration, except for the trunk and to 

a lesser extent for the sound thigh. This may be explained by the fact that, during gait, the angular 

velocity of the lower limbs is mainly directed around the mediolateral axis and has a very low 

magnitude around the vertical axis. Consequently, modifications of the MIMU positions along the 

flexion-extension axis of the lower-limb segments are not expected to have a major impact on SCoM 

accelerations (see equation (1) and the properties of the cross-product). This observation shows that 

the influence of errors in the identified position of MIMUs depends on the considered segment / 

motion. This has to be particularly taken into consideration in altered gait patterns such as those of 

people with amputation. 

Importantly, erroneous identification of MIMU positions of ± 0.02 m triggered errors between 

– 5.6 % < ΔNRMSE < +6.9 % for all SCoMs and all acceleration components considered, but only between 
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- 1.6 % < ΔNRMSE < +1.7 % when the shanks are not considered. Considering NRMSE of the order of 10 

% between MIMU-based measurement and reference values, these variations cannot be considered 

negligible, especially for the shanks. The higher impact of erroneous position identification of shank-

mounted MIMUs on the estimated accelerations of their respective SCoM could be explained by the 

high angular velocity of the shanks compared to the other segments considered. Taken together, these 

observations suggest that specific attention must be given to the correct identification of the sensor 

positions, especially for the AP and V directions and for the shank-mounted MIMUs, in order to limit 

the resulting errors.  

ii. Sensitivity of BCoM acceleration estimations 

Quantification of the sensitivities 

The results observed for the sensitivity of SCoM acceleration estimations clearly impacted those 

related to the BCoM acceleration. For a given segment, the direction of the MIMU localization error 

(AP, ML, V) that was shown to be the most influent for the SCoM acceleration estimation accuracy also 

played a role in the accuracy of the BCoM acceleration estimate. For instance, erroneous identification 

of the positions of sound shank-mounted MIMU along the vertical direction was found to greatly 

influence the BCoM acceleration estimates in the AP direction as was observed for the SCoM (Figure 

43, Figure 42).  

Variations in NRMSE of up to 2.8 %, 2.3 % and 1.4 % were observed in AP, ML and V directions 

respectively. The higher NRMSE variations for the AP and ML components might be explained by the 

lower amplitude of BCoM acceleration along these directions compared to that along the vertical 

direction (Figure 41). These variations should also be interpreted at the light of the accuracy obtained 

between MIMU- and reference-based acceleration estimation, namely NRMSE of the order of 15 % in 

ML and AP, and 5 % in V (Table 12). It is interesting to note that the BCoM acceleration was more 

affected that the SCoM accelerations in the AP and ML direction but not in the vertical direction. This 

may be due to the fact that for the SCoM, the maximal variations of NRMSE along the vertical direction 

were obtained for the shank segments, which have a lower mass compared to that of the thighs and 

trunk, especially for the prosthetic side. Therefore, when computing the BCoM acceleration from a 

weighted sum of the SCoM acceleration, the variability in the shanks SCoM acceleration accuracy had 

a lower impact on the BCoM. 

Comparison of the present results with the existing literature must be performed with caution due 

to the different methodologies and target parameters. Specifically, Tan and coworkers (Tan et al., 

2019) used a one-at-a-time sensitivity analysis to assess the impact of MIMU placement errors on the 

estimation of ground reaction force (GRF). In this case, interactions of several MIMU placement errors 

were not considered. The authors reported that, when a single sensor was misplaced, the accuracy of 

GRF estimation was decreased by up to 0.9 %, 2.2 %, and 1.1 % in the  AP, ML and V directions 

respectively. It is interesting to stress that in (Tan et al., 2019), no sensor was revealed as having a 

significantly dominant impact on the accuracy of the GRF estimation. This may be due to the fact that 

the authors implemented a machine learning framework for the estimation of GRF from raw data of 

segment-mounted MIMUs, without a priori attributing more weight to specific sensors. This machine 

learning framework may also explain the fact that the magnitude of positioning errors (0.1 m vs 0.02 m) 

had a negligible influence on the accuracy of the GRF estimation.  
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The results of the sensitivity analysis performed on BCoM accelerations in the present study 

advocate the need for an accurate detection of MIMUs positions, especially for the trunk , sound thigh 

and shank along both the vertical and anteroposterior directions. The important influence of the 

localization of the trunk and sound thigh might be explained by the fact that they are the heaviest 

segments of the body and that BCoM acceleration is estimated using a weighted average of SCoM 

acceleration based on their mass. The sound shank influence may therefore result from the higher 

angular velocity of shanks segments (almost twice that of the other included segments) while walking 

and the relatively high mass of the sound shank compared to prosthetic segments. Limiting the errors 

in the estimations of SCoM accelerations, especially at the shank, is expected to have a positive impact 

on the accuracy of the whole-body CoM acceleration estimates. Indeed, if a particular attention is 

given to the identification of the positions of these three MIMUs in the AP and V directions, the 

variations in NRMSE previously observed may be reduced from 2.8 %, 2.3 % and 1.4 % to 0.9 %, 0.7 %, 

0.6 % in AP, ML and V directions, respectively. 

c. Limitations and perspectives 

The generalizability of the discussed results must be interpreted at the light of the following 

considerations: first, a larger cohort of participants are needed to confirm present findings. Second, 

simulated errors in the identification of MIMUs positions were introduced along the axes of the 

reference frame ܴைெ஼, therefore, results could be different if MIMUs were misplaced along the axes 

of the segments anatomical frames. However, the errors introduced in the simulations covered a cubic 

zone centered on the correct location of the MIMU͛s oƌigiŶ. Furthermore, the static calibration phase 

was performed with the patient standing in an upright posture facing the direction of progression so 

that segment anatomical axes were assumed to be aligned with those of the  global frame ܴைெ஼ (one 

axis aligned with the gravity and one axis with the direction of progression). It can be thus assumed 

that, in case the anatomical frame should be considered instead of ܴைெ஼, the position identification 

errors would cover a similar cubic zone, leading to negligible variations in the obtained sensitivities. 

Moreover, it is worth underlining that the 0.02 m range of errors in the identification of MIMU 

positions is a conservative value, being the maximum error observed (see section 4.1), and thus 

representing a worst-case scenario presumably covering the range of errors that would be observed 

in practice. Finally, in the present study, the impact of MIMU orientation errors was not investigated 

despite the latter was found to critically impact the accuracy of GRF estimation (Tan et al., 2019). It 

should be considered, however, that in (Tan et al., 2019) raw MIMU signals were used as inputs of a 

machine learning model and were not expressed in a global or anatomical reference frame. Conversely, 

in the MIMU-based framework proposed in the present study, the SCoM accelerations were expressed 

in a global reference frame before being summed to estimate the BCoM acceleration. Errors typical of 

sensor-fusion filters used to obtain MIMU 3D orientation remain to be considered. However, these 

errors are expected to have a minor impact with respect to what reported in (Tan et al., 2019). Further 

studies should verify this hypothesis and quantify the impact of orientation errors on both SCoM and 

BCoM accelerations. 

4.2.4. Conclusion  

The present study investigated the impact of an erroneous identification of the positions of a set 

of body-mounted MIMUs on the estimation accuracy of SCoM and BCoM accelerations during walking 
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in a subject with transfemoral amputation. An optical motion capture system and force plates were 

used as reference for SCoM and BCoM accelerations estimates, respectively. The performed sensitivity 

analyses allowed to identify the MIMUs whose localization along certain axes allowed to reduce the 

variation of errors in the estimated SCoM and BCoM accelerations. Specifically, an accurate 

identification of MIMUs positioned on the trunk and sound lower limbs along the anteroposterior and 

vertical axes was proved to limit the variability of the accuracy of the estimated BCoM acceleration 

below 1 %. These preliminary results need to be confirmed on a larger cohort. Future works are also 

required in order to consider also the impact of MIMU orientation errors on the estimated 

accelerations. 
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Conclusion 

This part of the thesis aimed at contributing to the development of a wearable gait analysis 

protocol for the estimation of 3D body center of mass (BCoM) motion.  

Several strategies have emerged from the literature (chapter 1) to estimate BCoM acceleration, 

velocity or displacement, using one to several MIMUs. While single-sensor approaches may 

overestimate BCoM motion, in particular in people with lower-limb amputation, finding a balance 

between accuracy and the number of MIMUs is crucial for the application of wearable protocols in the 

clinical field. Therefore, in chapter 2, the contributions of each segment to the BCoM acceleration were 

investigated in order to identify the optimal locations for sensor positioning. Several optimal sensor 

networks (OSN), including three to six segments, appeared relevant for the estimation of BCoM 

acceleration in people with transfemoral amputation. However, the study was implemented with 

optical motion capture data of ten people with transfemoral amputation. When using MIMUs mounted 

on body segments, obtaining the acceleration of segments centers of mass in a global reference frame 

is not direct. Furthermore, MIMUs cannot always be positioned on bony landmarks and may therefore 

be more subjected to soft tissue artefacts. As a result, the identified OSN may not be as successful 

when using wearable sensors. The aim of chapter 3 was therefore to investigate the suitability of 

MIMUs for the estimation of 3D BCoM motion, and was further divided in three objectives: i) 

introducing a fully wearable framework for gait analysis, ii) verifying that the OSN identified in chapter 

2 were indeed relevant when using wearable sensors and iii) investigating the suitability of the 

identified OSN and developed framework for the estimation of instantaneous BCoM velocity. A set of 

5 MIMUs positioned on the thighs, shanks and trunk were shown to allow an accurate estimation of 

these quantities. It has to be noted that, if the output measure of interest is BCoM acceleration in the 

anteroposterior and/or vertical directions, the thigh-mounted sensors can be removed while 

increasing the accuracy. The developed framework was thus successful in allowing the accurate 

estimation of BCoM acceleration and instantaneous velocity from a limited number of sensors (NRMSE 

ч ϭϲ.ϳ %, ϭϰ.Ϭ % aŶd ϳ.ϳ% iŶ the aŶteƌoposteƌioƌ, ŵediolateƌal aŶd ǀeƌtical directions). The results 

obtained in chapter 3 should be confirmed on a larger cohort in order to further validate the relevance 

of MIMUs as an alternative to lab-based instruments for the retrieval and analysis of 3D BCoM motion 

in people with transfemoral amputation. Furthermore, the framework currently requires the use of an 

optoelectronic system. However, a wearable alternative could be easily developed in order to facilitate 

its implementation outside of dedicated laboratories: it could easily rely on either a 3D body scan or a 

camera associated with a simple calibration device. The dependency of the results on the identification 

of MIMUs positions relative to the segments center of mass would still be an issue. Therefore, in 

chapter 4, a sensitivity analysis was performed to investigate the impact of erroneous identification of 

MIMUs͛ positioŶs oŶ the estimation of the BCoM acceleration estimated using the OSN consisting of 

trunk, thighs, and shanks mounted MIMUs. Imprecisions in positioning of each MIMU of up to 2 cm in 

any direction induced a decrease of BCoM acceleration accuracy of up to 3.9 %, 4.6 % and 2.6 % in the 

anteroposterior, mediolateral and vertical direction respectively. Sensors located at the trunk and the 

sound thigh and shank were shown to explain most of the observed variance (more than 80 %, 81 % 

and 66 % in the anteroposterior, mediolateral and vertical directions respectively). A precise 

positioning of these sensors appears crucial for an accurate estimation of BCoM acceleration as it 

allows to reduce the decrease of accuracy of the BCoM acceleration estimate to 1.5%, 1.7% and 1.2% 
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in the anteroposterior, mediolateral and vertical directions respectively. The conclusions could differ 

when using other segment models. However, as the sound leg and the trunk represent the heaviest 

segments of the body, their influence on BCoM acceleration accuracy is expected to be prominent in 

other OSN including these segments. The methodology proposed in this chapter could also be applied 

to other BCoM derived parameters, such as the instantaneous velocity of the center of mass.  

All in all, the work achieved in this direction tend to indicate that MIMUs are a valid alternative for 

the estimation of 3D BCoM motion in people with transfemoral amputation. Results should be 

confirmed on a larger cohort and validation should be extended to other BCoM-derived parameters 

such as 3D BCoM displacement or power. The former would require a supplementary integration step 

and the knowledge of the initial absolute position of the BCoM. Regarding the latter, further 

developments are needed since BCoM power can be estimated from the sum of the scalar product of 

instantaneous BCoM velocity with the ground reaction force under each foot. Several algorithms have 

been proposed for the smooth distribution of the ground reaction force between both feet, but they 

may not be adapted to people with lower-limb amputation.  
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Part 3: Characterization of gait quality in people with lower-limb 

amputation using concise parameters issued from wearable signal 

processing 

In the previous part, the feasibility of using wearable sensors to derive biomechanical parameters, 

such as the instantaneous body center of mass acceleration and velocity, has been demonstrated. As 

illustrated in the literature review of Part 1, wearable sensors have also been proposed to characterize 

gait using parameters computed through simple signal processing or through the identification of 

features in raw signals, without requiring the development of complex biomechanical models of the 

human body. As for parameters based on biomechanical models, these signal-processing-based gait 

descriptors must also be validated for a specific population and use. The aim of this third part is, 

therefore, to target these parameters in order to investigate whether wearable sensors could be used 

to obtain intelligible and clinically relevant quantitative information. This could be done without long 

set-up and processing times that are often required to characterize and monitor the gait of people 

with lower-limb amputation along their rehabilitation. 

In particular, the overview of the literature in Part 1 allowed to identify several parameters for the 

quantitative assessment of gait symmetry and balance control during gait that require neither a large 

number of sensors nor a complex modeling of the human body, making them more mature for a 

transfer to clinical environment. Indeed, monitoring gait symmetry and assessing the risk of falling are 

both crucial elements of the rehabilitation of a person with lower-limb amputation as these aspects 

were shown to lead to the development of comorbidities and have an impact on the activity or social 

participation level after discharge from the rehabilitation center (Gailey et al., 2008; Highsmith et al., 

2016). Furthermore, tracking and quantifying gait (a)symmetry along the rehabilitation process can 

assist clinicians in refocusing rehabilitation strategies and targets (Cutti et al., 2018). While some 

aspects of gait (a)symmetry can be visually identified by observing the gait pattern and paying 

attention to feet placement while walking, other aspects, such as loading asymmetry (see Part 1, 

section 2.3.3.a.i) or poor balance are difficult to quantify with the naked eye. All these gait deficiencies 

are hardly tracked accurately in the clinical routine due to the lack of ecological and quantitative 

assessment tools.  

Falling risk might be assessed through aggregate scores, such as the Berg Balance Scale or through 

clinical walking tests. The Berg Balance Scale consists in 14 balance/mobility exercises rated from 0 to 

4 depending on the time required to accomplish the task. Although this aggregate score was shown to 

be valid for fall risk assessment in people with lower limb amputation, it was not able to distinguish 

people at greater risk of falling and may therefore lack of sensitivity (Major et al., 2013). Furthermore, 

the Berg Balance Scales requires fifteen to twenty minutes for administration, which compromises its 

frequent use during the rehabilitation.  Clinical walking tests on the other hand are easily performed 

in the rehabilitation due to the simple short set-up and acquisition time, but they result in a single 

quantitative data, characterizing the performance in realizing the test through the measure of the time 

needed or distance covered during the test. The achieved score allows to characterize the overall gait 

performance but does not capture the way this performance is obtained: a higher score could for 

example be achieved by someone walking faster although with increased gait asymmetry. Since 



118 

 

asymmetry may lead to comorbidities, improvement in performance should be interpreted with 

caution. Due to the sensitivity and rapidity of administration of these standardized clinical walking 

tests, it appears relevant to instrument them with wearable sensors in order to retrieve additional 

objective and quantitative metrics allowing the simultaneous characterization of both gait 

performance and quality in the clinical field. 

With wearable sensors, gait symmetry can be quantified by comparing the duration of the sound 

and prosthetic limb stance phases, which is possible once gait events are detected with pressure 

insoles (by using a threshold on the estimated vertical component of the ground reaction force) or 

IMUs (by identifying features in IMU signals indicative of a gait event). In the latter case, a large number 

of algorithms have been proposed using IMUs on the shanks, feet or on the pelvis for gait event 

detection with no indications regarding the most suited to transfemoral prosthetic gait. Furthermore, 

the algorithms were validated in the literature for the detection of gait events and for the estimation 

of temporal parameters but their accuracy in estimating temporal asymmetry was not verified. 

Therefore, a complete comparative analysis of the algorithms developed for the people with lower-

limb amputation appears relevant.  

Other parameters quantifying gait symmetry have been proposed by computing metrics based on 

signal processing. As an example, the improved harmonic ratio, computed using the Fourier 

decomposition of the acceleration measured by a pelvis-mounted MIMU, has been largely adopted in 

recent years to describe overall gait symmetry (see Part 1, section 3.2.3.a.i). This parameter offers the 

advantages of requiring a single IMU and of providing a global score for the symmetry of locomotion. 

However, its interpretation may not be straightforward as it does not provide indications relative to 

the origin(s) of the detected asymmetry.  

Regarding balance control assessment during gait, several authors have proposed to equip the 

upper body with three IMUs located at pelvis, sternum and head levels. The ratio of the root mean 

square of the measured acceleration at two subsequent levels are computed in order to investigate 

the transmission of accelerations from the lower limbs to the head (Summa et al., 2016; Bergamini et 

al., 2017; Belluscio et al., 2018; Paradisi et al., 2019). The underlying idea is that, in typical gait, 

accelerations are attenuated from lower to upper body levels in order to stabilize the optic flow, allow 

for a more effective processing of the vestibular system signals, and a consequent control of 

equilibrium (Berthoz and Pozzo, 1994). Therefore, assessing the acceleration pattern as well as their 

attenuation from the lower limbs to the head seems relevant for the assessment of fall risk. 

The validity, accuracy and reliability of the above-mentioned parameters quantifying symmetry or 

dynamic balance retrieved using IMUs and pressure insoles should be investigated in people with 

lower-limb amputation, so as to verify their relevance for clinical assessment during the rehabilitation. 

In particular, it should be verified that the above-mentioned parameters do measure what they are 

intended to measure ;the ͞ĐoŶstƌuĐt͟Ϳ and that they allow to discriminate people with different level 

of the construct (here, it would be the ability to discriminate within people with lower-limb amputation 

those who are at a higher risk of falling or those who present higher gait asymmetry) (Portney and 

Watkins, 2015). The reliability of a parameter refers to the level of consistency between two 

measurements of the same parameter in the same circumstances. It allows to determine the minimal 

detectable change, that is, the minimal difference observable that can be considered as reflecting a 

real change in the parameter and not as measurement error or inherent variability. This value must be 
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confronted with the minimal clinically important difference which reflects when a change in the value 

of the parameter reflects a positive or negative change from a clinical point of view. Quantifying all 

these aspects requires a large amount of research and represents the first crucial step towards the 

transfer of these wearable gait quality indices from research to the clinical field (Portney and Watkins, 

2015).   

This part of the thesis aims at contributing to gaining insight on these concise parameters and 

algorithms in the prospect of using these parameters for gait quality assessment during the 

rehabilitation of people with lower-limb amputation. The feasibility and validity of characterizing gait 

symmetry and balance control in people with lower-limb amputation using these parameters will be 

explored. In the first chapter, the feasibility of assessing temporal symmetry in people with 

transfemoral amputation using IMUs and various gait event detection algorithms will be investigated 

by comparing state-of-the-art algorithms retrieved in the literature. Then, in a second chapter, the 

relevance of using symmetry or balance descriptors derived from signal processing of wearable sensors 

during the rehabilitation will be investigated on a cohort of nine people with transtibial amputation 

and nine asymptomatic subjects. A special focus on the improved harmonic ratio will be proposed in 

this chapter in order to overcome limitations in its computation and interpretability. 
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Chapter 1 – Feasibility of determining temporal symmetry from 

MIMUs in people with transfemoral amputation  

In recent years, inertial measurement units (designated as IMUs in this chapter, since no 

magnetometer is required) have been proposed as an alternative to force platforms and pressure 

sensors for the detection of gait events (i.e. initial and final contacts). Gait event detection is indeed 

crucial for gait analysis as it allows gait cycle segmentation, which is often necessary for the analysis of 

biomechanical features within kinematic or kinetic data or even for the computation of stride-related 

parameters. Furthermore, the time interval between different gait events allows to define the 

different phases of the gait cycle and therefore to compute spatiotemporal parameters. While multiple 

algorithms have been developed in the literature (see Pacini Panebianco et al. 2018), no 

recommendation on the most suited algorithm for transfemoral prosthetic gait could be retrieved in 

the literature. Furthermore, despite the clinical importance of (a)symmetry quantification in lower-

limb amputee gait, the impact of gait event timing errors on gait (a)symmetry has never been 

investigated in people with transfemoral amputation walking freely on level ground.  

Therefore, the aim of this study was to implement and compare five algorithms taken from the 

literature to assess their accuracy in providing temporal parameters and estimating gait asymmetry in 

people with transfemoral amputation during level walking.  

This study was published in the review Medical & Biological Engineering & Computing: 

E. Simonetti, E. Bergamini, C. Villa, J. Bascou, G. Vannozzi, H. Pillet. Gait events detection using 

inertial measurement units in people with transfemoral amputation: a comparative study, Medical 

& Biological Engineering & Computing, 58:461–470 (2020).  

1.1. Introduction 

The accurate detection of gait events (GEs) is crucial for the biomechanical assessment of gait 

function in people with pathological walking patterns (Perry, 1992). The identification of initial contact 

(IC) or final contact (FC) events, respectively marking stance initiation and termination, allows for gait 

cycle segmentation and is essential to extract and interpret relevant features from biomechanical and 

physiological gait variables such as joint angles or muscle activity (Perry, 1992).  

In people with lower-limb amputation, whose gait is known to be highly asymmetrical due to joint 

function loss (Nolan et al., 2003; Bastas et al., 2018), the identification of gait phases is particularly 

relevant for both prosthetic design and rehabilitation fields. For example, micro-processor-controlled 

prostheses generally adopt different behaviors according to the gait cycle phase (Ledoux, 2018). 

Furthermore, stance or swing phase durations and temporal symmetry indices are widely used to 

evaluate gait in the clinical field. Quantifying these parameters can indeed assist therapists in decision-

making during rehabilitation, as well as in prosthetics prescription, fitting and alignment (Aminian et 

al., 2002; Cutti et al., 2015; Bastas et al., 2018).  

In recent years, wearable sensors, such as pressure insoles or inertial measurement units (IMUs), 

have been proposed as a portable and low-cost alternative to force platforms, instrumented mats or 

treadmills for the detection of GEs. While some specific pressure insoles have been validated against 

force platforms (Barnett et al., 2001; Loiret et al., 2019), their use is limited to the obtention of GEs 
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and vertical ground reaction forces. On the other hand, IMUs, which include accelerometers and 

gyroscopes, can provide kinematic information in addition to GE detection. Thus, multiple algorithms 

have been developed for IC and FC identification from linear accelerations and/or angular velocities 

measured by IMUs (Pacini Panebianco et al., 2018). Many authors have recommended the use of a 

single sensor at pelvis level to minimize invasiveness and gait alteration (Zijlstra and Hof, 2003; 

González et al., 2010; Bonnet et al., 2012; Köse et al., 2012; Bastas et al., 2018). However, in 

pathological gait, a robust detection of both IC and FC events is compromised because of gait inherent 

variability and stronger attenuation of feet-ground impacts at trunk level (Trojaniello et al., 2015; 

Pacini Panebianco et al., 2018). Consequently, algorithms based on the use of two IMUs located on 

both shanks (Salarian et al., 2004; Selles et al., 2005; Jasiewicz et al., 2006; Catalfamo et al., 2010; 

Greene et al., 2010; Trojaniello, Cereatti, Pelosin, et al., 2014; Maqbool et al., 2017; Bertoli et al., 2018; 

Ledoux, 2018) or feet (Sabatini et al., 2005; Jasiewicz et al., 2006; Mariani et al., 2013) have been 

developed and are generally considered to be more accurate (Trojaniello, Cereatti, Pelosin, et al., 2014; 

Trojaniello et al., 2015; Pacini Panebianco et al., 2018). 

Given the number of available algorithms, the comparison of their accuracy in GE detection is 

relevant. However, most studies differ in their acquisition protocol, in the population investigated and 

in the reported results, which makes the comparison challenging. Indeed, while the accuracy of the 

timings of detected GEs is always discussed, the ability of the algorithms to detect all GEs without false 

positives, or the consequence of the timing errors on clinically relevant parameters, such as cycle 

durations or symmetry indices, is not always disclosed. Although there have been some attempts in 

performing comparative studies in the literature (Jasiewicz et al., 2006; Trojaniello, Cereatti and Della 

Croce, 2014; Trojaniello et al., 2015; Storm et al., 2016), none focused on people with transfemoral 

amputation (TF). In addition, as most algorithms rely on the extraction of specific features from IMU 

signals, some may not be relevant for the population of TF because of deviations in their gait pattern, 

such as hip hiking, vaulting, delayed knee flexion, and temporal and spatial asymmetries (Nolan et al., 

2003; Loiret et al., 2019).  

This work aimed at comparing the performance of different state-of-the-art algorithms in TF 

walking freely on level ground. Performance was quantified in terms of i) sensitivity and positive 

predictive value of GE detection, ii) accuracy of GEs timings and iii) accuracy of derived temporal 

parameters and of stance phase duration Absolute Symmetry Index (SPD-ASI) values. Furthermore, the 

robustness to different walking speeds was also investigated. Data from pressure insoles validated 

against force platforms in people with transfemoral amputation (Loiret et al., 2019) were used for 

reference values assessment. 

1.2. Material and methods  

1.2.1. Participants 

The study was designed according to the Declaration of Helsinki, and was granted ethical approval 

(CPP IDF VI, N° 2014-A01938-39). Seven TF (age: 47.3 ± 9.9 years, 5 males, mass: 74.5 ± 11.9 kg; height: 

1.80 ± 0.10 m) gave written informed consent to participate in the study (Table 17). Inclusion criteria 

were people with transfemoral unilateral amputation due to trauma or tumor, fitted with a definitive 

prosthesis, able to walk at various speeds without any assistance. The participants walked with their 
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usual passive microprocessor-controlled knee with an energy storing and return foot, the alignment of 

which was controlled by a prosthetist prior to data collection. 

 

 Age 

(years) 

Height 

(m) 

Mass 

(kg) 
Gender Etiology 

Time since 

amputation 

(years) 

Prosthetic 

Knee 

Prosthetic 

foot 

Average self-selected 

walking speeds (m.s-1) 

Slow Comfortable Fast 

TF01 47 1.54 72 F Tumor 35 Rheo Knee Variflex LP 0.72 1.02 1.25 

TF02 52 1.69 75 M Trauma 34 Rheo Knee Variflex XC 0.92 1.13 1.48 

TF03 34 1.70 51 F Tumor 27 C-Leg Trias 0.92 1.04 1.40 

TF04 43 1.90 82 M Trauma 5 C-Leg Triton 1.00 1.16 1.35 

TF05 64 1.84 86 M Trauma 6 Rheo Knee Talux 0.49 0.76 0.96 

TF06 39 1.79 85 M Trauma 3 C-Leg Triton 0.89 1.06 1.25 

TF07 52 1.84 72 M Trauma 23 C-Leg Pro-Flex 0.89 1.20 1.61 

Table 17: Participants characteristics.  

The prosthetic devices are from Ottobock (C-Leg, Triton, and Trias) and from Ossür (Rheo Knee, Variflex LP, Variflex XC, Talux 

and Pro-Flex) 

1.2.2. Measurement protocol 

Three IMUs (MTǁ ǆSeŶs, NetheƌlaŶds, ϭϬϬ saŵples∙s-

1), embedding a tri-axial accelerometer (± 16 g) and a tri-

axial gyroscope (± 2000 deg/s), were used and positioned 

on the lower trunk (L4/L5 level) and on both shanks 

(laterally, below the tibial tuberosity level) of each 

participant (Figure 44). IMUs were manually aligned with 

the anatomical axes of the underlying segments. Reference 

GE were obtained using pressure insoles (Loadsol, Novel, 

GeƌŵaŶǇ, ϭϬϬ saŵples∙s-1). These insoles have been 

reported to be reliable and to accurately estimate both 

vertical ground reaction force and stance phase duration in 

TF (Loiret et al., 2019) and were, thus, considered a valid 

gold standard. 

Participants walked freely along an 8-meter level walkway, at three self-selected speeds (slow, 

comfortable and fast), measured with a stopwatch. At least three trials of each condition were 

recorded. The average walking speeds of each participant are reported in Table 17. Participants were 

asked to stand upright for at least 3 seconds at the beginning and at the end of each trial, and to 

perform a downward kicking motion with the heel of their sound foot to synchronize the IMUs with 

the insoles.  

1.2.3. Data processing 

IMUs and insoles data were post-processed using MATLAB® software (The MathWorks Inc., MA, 

US). Synchronization was performed semi-automatically by aligning the kicking-motion peaks in the 

sound-limb shank vertical acceleration and insole signals.  

Figure 44: Placement of the inertial 

measurement units and their associated 

local frames 
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a. IC and FC events detection 

Reference IC and FC events were identified using a 20 N threshold on the insoles' ground reaction 

force signals (Selles et al., 2005; Loiret et al., 2019).  

RegaƌdiŶg the IMUs͛ sigŶals, fiǀe GE deteĐtioŶ algoƌithŵs ǁeƌe seleĐted ďased oŶ a liteƌatuƌe 
review. The first three algorithms were the only one retrieved that were specifically designed for 

people with lower-limb amputation. The two remaining algorithms were selected as they are 

representative of the state-of-the-art and appeared to be promising candidates in TF. Indeed, one of 

them was validated on an extensive cohort of people with different pathologies that significantly 

affected gait, and the second one used only one sensor, which is an interesting perspective for clinical 

applications. The algorithms, designated by the acronyms M-N, with N the initial(s) of the first author͛s 
name, are introduced hereafter:  

1) M-S: based on shank vertical and anteroposterior acceleration signals, validated against force 

platform data in ten people with transtibial amputation (TT) (Selles et al., 2005), 

2) M-M: based on shank mediolateral angular velocity, validated using footswitches in eight 

asymptomatic subjects and in two people with lower-limb amputation (one TT and one TF) (Maqbool 

et al., 2017), 

3) M-L: based on shank mediolateral angular velocity, flexion-extension angle and axial 

acceleration, validated on five TF walking on an instrumented treadmill (Ledoux, 2018), 

4) M-T: based on shank mediolateral angular velocity and accelerations, validated against pressure 

ŵat data oŶ aŶ eǆteŶsiǀe Đohoƌt ĐoŶsistiŶg of ϴϬ eldeƌlǇ, ϭϮϱ people ǁith PaƌkiŶsoŶ͛s Disease, ϯϭ 
people with mild cognitive impairment and on ten persons with hemiparesis (Trojaniello, Cereatti, 

Pelosin, et al., 2014; Bertoli et al., 2018) as well as in ten asymptomatic subjects in an urban 

environment using pressure insoles (Storm et al., 2016), 

5) M-MC: based on pelvis vertical acceleration and angular velocity signals, validated in 

asymptomatic subjects compared to instrumented mat data (McCamley et al., 2012) and in 30 people 

with pathological gait in a former comparative study (Trojaniello et al., 2015). 

M-L, M-MC, M-S, M-M and M-T were implemented based on their descriptions in the literature 

(Selles et al., 2005; McCamley et al., 2012; Maqbool et al., 2017; Bertoli et al., 2018; Ledoux, 2018), 

using only the target sensor signals as inputs. A brief description of the operating principles of each 

algorithm is reported in Table 18. Additional details can be found in the original articles. For M-MC, 

the pelvis angular velocity failed to discriminate between left- and right-side events, supposedly due 

to the asymmetrical gait pattern of TF (Goujon-Pillet et al., 2008). Therefore, the mediolateral 

acceleration was used instead.  
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Algorithm 
Signal used 

for IC 

Signal used for 

FC 
General Principle 

M-S (Selles 
et al., 
2005) 

Vertical 
acceleration 
of the shank 

Vertical and AP 
acceleration of 
the shank 

Gait is segmented into approximate strides by identifying the minima in 
the low-pass filtered shank vertical acceleration. Within each identified 
stride, the vertical acceleration is low-pass filtered with a cut-off 
frequency depending on the estimated stride duration. Peaks identified in 
the filtered signal enable to define intervals in which to look for gait 
events. ICs are then identified as maxima in the vertical acceleration and 
FCs are identified as minima in the AP acceleration in their respective 
intervals. 

M-M 
(Maqbool 
et al., 
2017) 

Shank ML angular velocity Mid-swing instants are detected as maxima in the filtered ML shank 
angular velocity. ICs are then defined as the first or subsequent negative 
local minima following mid-swing, associated with negative slope and FCs 
are defined as local minima occurring at least 300 ms after ICs, with speed 
lower than a set threshold  

M-L 
(Ledoux, 
2018) 

Shank vertical acceleration, ML 
angular velocity, and 
flexion/extension angle 

This state-machine algorithm uses the shank ML angular velocity, the 
shank vertical acceleration, and the shank angle (obtained using a 
complementary filter of the shank acceleration and angular velocity) as 
inputs to detect transitions between the ͞sǁiŶg͟ state aŶd the ͞staŶĐe͟ 
state. Stance is detected at zero-crossings in the vertical acceleration, if 
the angular velocity is negative and the shank angle is above a threshold. 
It should occur after at least 200 ms of swing. Swing is detected when the 
vertical acceleration is increasing above a negative threshold, the angular 
velocity is negative, and the shank angle is below a negative threshold. It 
occurs after at least 400ms of stance. A set of similar conditions enable to 
identify the first transition to swing (FC) or stance (IC). 

M-T 
(Bertoli et 

al., 2018) 

Shank sagittal angular velocity 
and AP acceleration 

Peak identification in the ML angular velocity signal enables to define 
intervals in which to look for gait events. In these intervals, ICs are 
identified as the minima in ML angular velocity preceding a maximum AP 
acceleration and FCs are identified as minima in the AP acceleration 
preceding the last maximum in AP acceleration. 

M-MC 
(McCamley 
et al., 
2012) 

Vertical & ML acceleration of 
the pelvis 

The vertical acceleration is filtered with a Gaussian continuous wavelet 
transform. ICs are identified as the minima in the filtered acceleration. 
FCs are identified as the maxima in the differentiated signal. In this study, 
the ML acceleration was used to distinguish right and left gait events 
occurrence, while the vertical angular velocity was used in the original 
study. 

Table 18: Description of the operating principle of the implemented algorithms.  

AP = Anteroposterior; ML = Mediolateral; IC = Initial Contact event; FC = Final Contact event 

b. Temporal parameters and symmetry index computation 

The following temporal parameters were estimated for each trial and method (insoles- and IMU-

based algorithms): 

- Stride duration (time between two consecutive ICs of the same foot), computed based on 

prosthetic ICs; 

- Prosthetic and sound limb stance phase duration (time between an IC and the subsequent 

FC of the same foot);  

- Prosthetic and sound limb initial double support duration (time between an IC and the 

subsequent FC of the contralateral foot), further referred to as prosthetic or sound limb 

double support duration. 



125 

 

Stance phase duration symmetry between the prosthetic and sound limbs was also assessed for 

each stride using the Absolute Symmetry Index (ASI):  𝐴ܵܫ =  ௌ−௉଴.ହ ሺௌ + ௉ሻ × ͳͲͲ, where ܵ  and 𝑃  are the 

stance phase durations for the sound and prosthetic limbs respectively (Nolan et al., 2003). 

1.2.4. Algorithms performance assessment 

a. GE detection rate 

Sensitivity, defined as the number of correctly detected algorithm-derived GEs divided by the 

number of reference GEs, and positive predictive value (PPV), i.e. the number of correctly detected 

algorithm-derived GEs divided by the total number of detected GEs (including extra events), are often 

used iŶ the liteƌatuƌe to assess algoƌithŵs͛ peƌfoƌŵance in terms of detection rate (Salarian et al., 

2004; Trojaniello et al., 2015). However, the criterion used to classify an algorithm-detected event as 

either correct, missed or extra is usually missing. In this work, we propose to compute the number of 

algorithm-detected events such that | ݐ௥ீா − |௔ீாݐ ≤ ଵଶ    :௥௘௙ ሺͳሻ  withܦݐܵ 

௥ீாݐ -  the timing of a reference GE, 

௔ீாݐ -  the timing of algorithm-derived GEs, 

 .௥௘௙ the median stride duration computed from reference ICsܦݐܵ -

If no algorithm-detected event fulfilled condition (1), an event was missed. Conversely, if several 

algorithm-detected events fulfilled condition (1), only the closest to the reference event was 

considered as correctly detected, and the others were discarded as extra events. 

Sensitivity and PPV were computed for all the algorithms to compare their GE detection rate. While 

the occurrence of a missed event can be detected based on the duration between successive detected 

events, the identification of a correct event among several possible candidates is not possible without 

a reference. Therefore, to be used in real-life settings, an algorithm must be extremely robust in this 

respect. Consequently, for the subsequent accuracy analysis, only the algorithms scoring a PPV above 

99%, representing a negligible number of extra events, were considered.  

For each algorithm, PPV and sensitivity were quantified for the entire trials in order to assess the 

algorithm ability to detect all events, including those of the first and last steps which mark gait initiation 

and termination. For the rest of the analysis, the initiation and termination steps were not considered 

for the sake of comparison with the literature. 

b. Accuracy of GEs timings  

For each algorithm, the difference between the timing of each IMU-based and the corresponding 

reference GE was computed. Positive and negative errors respectively indicate delayed and anticipated 

event detection. 

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry 

index 

For each algorithm, stride, stance and double support durations, as well as symmetry derived from 

IMU-based GEs were computed. IMU-based temporal parameter estimates errors were expressed in 

seconds and in percentage of the reference parameter, with positive and negative values indicating, 

respectively, overestimation and underestimation of temporal parameters. 



126 

 

1.2.5. Statistical analysis 

Descriptive statistics (medians and interquartile ranges [IQR]) were computed over all participants 

for each walking speed for reference GE timings and temporal parameters, for IMU-based GE and 

temporal parameter errors as well as for SPD-ASI derived from the insoles and the algorithms.  

Normality of the median values was verified using the Shapiro-Wilk test and, according to the test 

result, either a Friedman test or a one-way repeated-measure ANOVA was performed to investigate 

the effeĐt of the ͞ǁalkiŶg speed͟ faĐtoƌ oŶ the eƌƌoƌs. Post-hoc pairwise comparisons (Wilcoxon 

signed-rank tests or t-tests depending on the normality of the data) with Holm-Bonferroni correction 

were then performed where any difference was found.  

If the ŵaiŶ effeĐt of ͞ǁalkiŶg speed͟ peƌsisted, paiƌǁise ĐoŵpaƌisoŶs ǁeƌe used to iŶǀestigate the 
presence of significant differences between each pair of methods, for each level of walking speed, 

considering separately prosthetic- and sound-limb parameters when relevant. Conversely, if no main 

effeĐt of ͞ǁalkiŶg speed͟ ǁas fouŶd, ŵediaŶs aŶd IQR ǁeƌe Đoŵputed oǀeƌ all thƌee ǁalkiŶg speeds 
for each participant and method, and pairwise comparisons were then executed on this new dataset. 

Wilcoxon signed-rank tests were used to investigate the effect of the limb considered, that is, to 

determine whether errors where significantly different at the sound and prosthetic side for each 

parameter and each algorithm. 

The statistical analysis was performed using SPSS (IBM SPSS Statistics 23, NY, USA). The level of 

significance was set to 0.05 for all statistical tests. 

1.3. Results 

Due to technical issues with the insoles, GEs of two participants had to be discarded at the sound 

limb, leaving a total of 454 sound steps for 623 prosthetic steps considered in the analysis. Table 19 

reports the descriptive statistics of the temporal parameters derived from the insoles. 

Table 19: Reference temporal parameters derived from insoles data. 

* Stride durations were estimated based on prosthetic IC timings 

Walking 

speed level 

Gait 

velocity 

(m.s-1) 

Stride duration (s)* Side 

Stance phase duration Double support duration 

(s) (% stride) (s) (% stride) 

 med (IQR) med (IQR)  med (IQR) med (IQR) med (IQR) med (IQR) 

Slow 0.89   (0.12) 1.33   (0.14) Sound 0.91   (0.14) 68.9   (5.2) 0.17   (0.04) 13.2   (2.4) 

Prosthetic 0.81   (0.11) 60.9   (2.4) 0.22   (0.06) 16.4   (4.0) 

Comfortable 1.06   (0.12) 1.16   (0.13) Sound 0.77   (0.10) 67.0   (3.4) 0.14   (0.02) 12.1   (2.2) 

Prosthetic 0.68   (0.08) 58.7   (3.3) 0.16   (0.04) 13.3   (2.1) 

Fast 1.35   (0.19) 1.00   (0.13) Sound 0.65   (0.12) 64.7   (4.9) 0.10   (0.03) 10.5   (1.4) 

Prosthetic 0.56   (0.07) 56.9   (2.6) 0.12   (0.04) 11.6   (3.4) 
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a. GE detection rate  

Sensitivity and PPV for each algorithm are reported in Table 20. Only M-T and M-L showed a PPV 

higher than 99% and were further analyzed. Both algorithms had extra and missed detections, however 

those of M-T never occurred outside of the first and last steps of gait. 

Table 20: Sensitivity and positive predictive value of the five IMU-based algorithms in gait event detection 

Method Sensitivity Positive Predictive Value 

Prosthetic limb Sound limb Prosthetic limb Sound limb 

Initial 

contact 

Final 

contact 

Initial 

contact 

Final 

contact 

Initial 

contact 

Final 

contact 

Initial 

contact 

Final 

contact 

M-S 93.4% 92.7% 94.0% 92.8% 99.1% 97.3% 95.2% 95.7% 

M-M 98.6% 98.8% 97.4% 98.2% 99.7% 100.0% 98.3% 99.8% 

M-L 88.4% 88.8% 84.2% 85.0% 100.0% 100.0% 100.0% 100.0% 

M-T 99.1% 99.1% 98.8% 98.8% 100.0% 100.0% 99.8% 99.8% 

M-MC 93.4% 91.9% 91.2% 90.6% 97.1% 96.0% 96.1% 96.1% 

b. Accuracy of GEs timings 

No sigŶifiĐaŶt effeĐt of the ͞ ǁalkiŶg speed͟ faĐtoƌ ǁas found on the errors obtained for GE timings, 

neither for M-T nor for M-L. GEs were generally detected with a small anticipation with M-L and with 

a short delay using M-T (Figure 45Ϳ. Theƌe ǁas Ŷo effeĐt of the ͞liŵď͟ oŶ the IC tiŵiŶgs estiŵated ǁith 

Figure 45: Errors [ms] of IC and FC timings obtained with M-T and M-L algorithms at all speeds with respect to reference events 

estimated with the insoles. Mean values are indicated with a diamond-shaped point and median values are reported above each 

boxplot. Significant differences (p < 0.05) are marked with an asterisk*. Outliers are not represented. In general, M-T and M-L resulted 

in a low number of outliers (< 3 %), but M-L resulted in 8.02% of outliers for sound IC. 
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either algorithm. Conversely, FC timings estimated with M-T were significantly more accurate (t(4) = -

3.626, p-value = 0.022) at the sound limb than at the prosthetic limb while the contrary was observed 

with M-L (t(4) = -5.171, p-value = 0.007).  

When comparing the algorithms in terms of errors, M-T was found to be less accurate than M-L 

for prosthetic FC detection (t(6)=4.890, p-value = 0.003), but more accurate for both prosthetic IC (Z = 

- 2.214, p-value = 0.027) and sound FC detection (t(4)= 6.674 p-value = 0.003). 

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry 

index 

Theƌe ǁas Ŷo effeĐt of the ͞ ǁalkiŶg speed͟ faĐtoƌ on the median errors of gait temporal parameter 

estimates. While there was no difference between the algorithms for the stride duration, statistically 

significant differences were obtained for stance phase and double support duration estimates (Figure 

46 and Table 21Ϳ. Fuƌtheƌŵoƌe, a sigŶifiĐaŶt effeĐt of the ͞liŵď͟ ǁas oďseƌǀed foƌ staŶĐe phase 
durations for both algorithms (M-T: t(4) = -3.940, p-value = 0.017 ;  M-L: t(4) = -2.781, p-value = 0.05) 

and for double support duration for M-T (t(4) = 4.877, p-value = 0.008).   

Table 21: Errors [ms] of gait temporal parameters estimated with M-T and M-L compared to insoles. Results of the statistical 

tests are reported, with significant differences between M-T and M-L values marked with asterisks (*: p-ǀalue ч Ϭ.ϬϱͿ 

Temporal 

parameter 

(in milliseconds) 

M-T M-L 
Statistical tests 

(on % values) 

median (IQR) median (IQR) 
p-

value 
score 

Stride duration 0 (20) 0 (20) 0.317 Z = - 1.000 

Sound stance phase 
duration 

10 (40) -40 (70) 
0.017 

* 
t(4) = 3.927 

Prosthetic stance 
phase duration 

70 (60) 0 (40) 
0.003 

* 
t(6) = 4.817 

Sound double 
support duration 

70 (53) 0 (60) 
0.009 

* 
t(4) = -4.788 

Prosthetic double 
support duration 

10 (40) -40 (40) 
0.001 

* 
t(4)= -8.953 

 

Median SPD-ASI values were averaged across all participants and walking speeds for each method 

(insoles, M-T and M-LͿ as Ŷo sigŶifiĐaŶt effeĐt of the ͞ǁalkiŶg speed͟ faĐtoƌ ǁas fouŶd. SPD-ASI 

estimates obtained with M-T and M-L were found to be significantly different than those derived from 

the insoles (Table 22). 

Table 22: Mean and standard deviation over all participants of the median stance phase duration ASI derived from insoles and 

obtained with M-T and M-L algorithms. Results of the statistical tests are reported, with significant differences between insoles- 

or IMU-based ASI values marked with an asterisk*   

Algorithm 

ASI Algorithm ASI Insoles T-test 

mean (sd) mean (sd) p-value score 

M-L 6.72 % (3.44 %) 

12.79 % (2.85 %) 

0.048 * t(4) = 2.807 

M-T 4.16 % (5.05 %) 0.013 * t(4) = 4.274 
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1.4. Discussion 

This study aimed at i) comparing the accuracy of state-of-the-art IMU-based algorithms in 

detecting both IC and FC events and ii) assessing the impact of GE timing errors on the estimation of 

gait temporal parameters and symmetry in TF. 

Gait temporal parameters and walking speeds obtained with pressure insoles were similar to those 

reported in the literature for the considered population (Goujon et al., 2006; Goujon-Pillet et al., 2008). 

a. GE detection rate  

To be relevant in an ecological context, GE detection algorithms must not detect extra events as 

they would be impossible to identify without a reference. Given their PPV values inferior to 99%, two 

Figure 46: Errors [%] of gait temporal parameters estimated with M-T and M-L expressed in percentage of the actual gait 

temporal parameters derived from the insoles data, at all speeds. From top to bottom: stride duration, stance phase duration, 

double support duration. 

Mean values are indicated with a diamond-shaped point and median values are reported above each boxplot. Significant 

differences (p < 0.05) are marked with an asterisk*. Outliers are not represented. In general, M-T and M-L resulted in a low 

number of outliers (< 4.5 %), except for strides for M-T (13.7% of outliers) and for sound double support estimates for M-L (9.1 

% of outliers) 
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of the algorithms developed for lower-limb amputees (M-S and M-M) and the single-sensor-based 

algorithm (M-MC) were discarded from the analysis4.  

The modification applied to M-MC algorithm allowed to improve the discrimination between right 

and left side events, thus reducing the number of extra events (less than 4% of extra FC in our data, 

while up to 11.2% of extra FC were found in hemiparetic patients in a former study (Trojaniello et al., 

2015)), although not sufficiently. However, the number of missed events was higher than in the 

literature (McCamley et al., 2012; Trojaniello et al., 2015), which might be due to specific gait 

alterations of prosthetic gait, such as the lack of propulsion inherent to prosthetic components (Nolan 

et al., 2003).  

Neither missed or extra events were reported by the authors of the two other algorithms M-S and 

M-M. However, it should be noted M-S was designed and validated in TT, whose gait pattern differs 

from that of TF. Furthermore, while all steps were considered in our analysis, including transition, 

acceleration, and deceleration steps, Selles and coworkers only analyzed steps that occurred on a force 

platform, ensuring to consider only steady-state steps (Selles et al., 2005).  

Maqbool and coworkers reported a 100% detection rate by comparing the absolute number of 

events detected by M-M and by footswitches, without considering an objective criterion to ensure that 

each detected event would correspond to a footswitch event (Maqbool et al., 2017). Furthermore, the 

algorithm was developed and validated on asymptomatic subjects and on only one TF and one TT who 

might have presented very few gait alterations, thus preventing the generalization of their results to 

the population of lower-limb amputees.  

In what follows, only results obtained with M-L and M-T algorithms will be discussed. 

A surprisingly high number of events were missed by M-L in the present study, despite its reported 

excellent sensitivity in TFs (Ledoux, 2018). The thresholds originally proposed in (Ledoux, 2018) were 

specifically devised for treadmill ambulation, which was shown to reduce gait inherent inter-stride 

variability compared to level ground ambulation (Hollman et al., 2016). This may have hindered the 

algoƌithŵ͛s ĐapaĐitǇ to deteĐt all eǀeŶts ǁheŶ ǁalkiŶg iŶ a less ĐoŶstƌaiŶiŶg situatioŶ. Fuƌtheƌŵoƌe, if 
an event is undetected by the algorithm, the following event will also be missed because of the state-

machine design of M-L. Regarding M-T, no extra or missed events occurred in the steady phase of gait, 

as reported in former studies (Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018). This 

directly results from the efficient design of M-T: the algorithm first detects maxima in the shank angular 

velocity and uses this information at both sides to segment gait into cycles and to identify restrained 

intervals of time where one and only one event (either an IC or a FC) has to occur. For all the 

investigated parameters, both algorithms were found to be robust to various self-selected walking 

speeds, confirming results reported for M-T (Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 

2018). 

 

4 Due to high positive predictive values, close to the criterion chosen for this study, the algorithm M-M was 
further investigated as well. However, the algorithm displayed a poor accuracy and repeatability in detecting gait 
events, and therefore in estimating temporal parameters. See Appendix B – Comparative assessment of M-M 
algorithm for more details. 
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b. GE detection accuracy 

Prosthetic IC and FC detections with M-L were as accurate as those reported in the original study 

(Ledoux, 2018), but slightly less precise. This may also result from the higher gait variability of 

overground- compared to treadmill-walking. Estimated FC timings were less accurate for the sound 

limb than the prosthetic limb, likely due to the adoption of identical thresholds for both limbs, as 

reported by the author (Ledoux, 2018). Defining limb-specific thresholds was beyond the scope of this 

study, but it might improve sound FC timing accuracy.  

M-T achieved similar or even improved GE timing accuracy compared to that reported using other 

algorithms specifically designed for people with lower-limb amputation (Selles et al., 2005; Maqbool 

et al., 2017). Furthermore, the achieved accuracy for IC detection in our participants is comparable to 

that of people ǁith PaƌkiŶsoŶ͛s Disease (Trojaniello, Cereatti, Pelosin, et al., 2014). Both these results 

corroborate previous statements that M-T might be suitable for clinical routine detection of gait events 

(Trojaniello, Cereatti, Pelosin, et al., 2014; Bertoli et al., 2018). All in all, M-T achieved equivalent or 

higher accuracy than M-L in GE detection except for prosthetic FC. The algorithms differ not only in the 

signals that are used as inputs, but also in their design: M-T is based on peak-detection while M-L is a 

threshold-based algorithm. The latter strategy might be more efficient for prosthetic FC detection: the 

smoother movement occurring at FC compared to IC (Trojaniello, Cereatti and Della Croce, 2014) and 

the attenuated propulsion at the prosthetic limb (Nolan et al., 2003) might result in a smoothed signal, 

detrimental to the peak-identification strategy. 

It should be noted that the sampling frequency (100 Hz) might have induced a delay of up to 10 

ms between algorithms-derived and insoles-detected events. This constant delay has however no 

impact on the estimated durations. 

c. Impact of GEs timings errors on estimates of gait temporal parameters and symmetry 

index 

Both algorithms provide stride duration estimates acceptable for clinical use (Trojaniello, Cereatti 

and Della Croce, 2014), with null median errors and IQR of 20 ms.  

Regarding stance and double support durations, errors result from the discrepancy between IC and 

FC timing errors. In our study, temporal parameters errors were mostly driven by relatively high errors 

in FC detection at the sound limb for M-L and at the prosthetic limb for M-T compared to IC.  

The errors achieved for stance phase duration are acceptable at the prosthetic limb with M-L and 

at the sound limb with M-T (Trojaniello, Cereatti and Della Croce, 2014), with a similar accuracy to that 

of the original article (Trojaniello, Cereatti, Pelosin, et al., 2014). Furthermore, the achieved errors with 

either algorithm at either limb are inferior to the minimal change detectable by pressure insoles in 

people with lower limb amputation (Timmermans et al., 2019). Combining both algorithms by using 

M-T approach for gait segmentation and interval identification, and then taking advantage of either 

M-T or M-L detection approaches for the sound or prosthetic limb respectively, might provide more 

accurate estimates of stance phase duration at both limbs. This would in turn enable a long-term 

monitoring of a patient's progress during his rehabilitation, but test-retest reliability should be 

evaluated prior to using the combined algorithm in a clinical setting for longitudinal monitoring. 

Regarding double support duration, percentage errors achieved high values and variability at both 

sides with both algorithms. Therefore, although double support duration is a clinically relevant 
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parameter reflecting stability and weight shifting ability in TF (Goujon et al., 2006; Kendell et al., 2010), 

the use of either M-T or M-L algorithms for its estimation is not recommended.  

Regarding temporal gait symmetry, the discrepancy between sound and prosthetic stance phase 

duration errors explains the observed SPD-ASI inaccuracy. The algorithms tend to significantly 

underestimate sound stance-phase duration or to overestimate prosthetic stance-phase duration, 

resulting in a falsely low asymmetry index. Thus, neither M-T nor M-L can be safely used to assess 

stance phase duration asymmetry between the prosthetic and the sound limb. 

This confirms the need of a more robust algorithm at both the prosthetic and sound limbs for 

temporal parameters, which in turn would enable to obtain reliable SPD-ASI estimates in TF.  

Although the participants of the study were found to be representative of the population with TF 

(Goujon et al., 2006; Goujon-Pillet et al., 2008), the small sample size in this study should be considered 

prior to results generalization.  

1.5. Conclusions 

This study analyzed the performance of different IMU-based algorithms and gives indications 

about their accuracy for GE detection in people with transfemoral amputation. Two of the investigated 

algorithms, using one IMU on each shank, provide acceptable estimates of stride and stance phase 

durations considering the minimal detectable change of these parameters by pressure insoles. 

However, test-retest reliability of the IMU-derived estimates remains to be evaluated prior to using 

these algorithms for longitudinal monitoring of gait. Furthermore, both algorithms lack in accuracy 

when estimating either double support duration or the temporal asymmetry index. A new algorithm, 

combining the strengths of M-T and M-L should be devised to improve gait event detection and 

temporal parameters estimation in people with transfemoral amputation. The results of the present 

study support the use of a priori gait cycle segmentation using the shank mediolateral angular velocity 

and tend to indicate that threshold-based detection should be preferred to peak-based detection at 

the prosthetic limb, at least for FC event detection.  
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Chapter 2 – Investigation of the relevance of gait quality indices 

issued from wearable gait analysis during the rehabilitation of people 

with lower-limb amputation 

As briefly discussed in the introduction of Part 3, several parameters have been proposed in the 

literature to quantify gait symmetry and the balance using wearable sensors. The aim of this chapter 

is to investigate the feasibility and relevance of tracking such parameters during the rehabilitation of 

people with lower-limb amputation. 

Gait Symmetry 

In the previous chapter, state-of-the-art algorithms for IMU-based gait event detection were 

shown not to allow an accurate estimation of stance-phase duration symmetry in people with 

transfemoral amputation. However, other wearable sensors – namely, pressure insoles – have been 

validated and used for the quantification of temporal and loading asymmetry in transtibial and 

transfemoral amputees (Nolan et al., 2003; Cutti et al., 2018; Loiret et al., 2019). Pressure insoles are 

more expensive than IMUs and necessitate to be bought in a large range of sizes so as to fit most 

people shoe sizes. Furthermore, insoles require to be calibrated for each patient and are sensitive to 

temperature changes (Herbert-Copley et al., 2013), which imposes to prepare insoles up to fifteen 

minutes prior to the acquisition time. The calibration process requires to alternatively load each insole 

with the full weight of the tested person without external support. Loss of proprioception in the 

prosthetic leg may jeopardize a successful calibration of insoles as it disrupts balance, compromising 

the accuracy of insole-based measures (Loiret et al., 2019). For all these reasons, and although 

temporal and loading symmetry indices can rapidly be retrieved from insoles signals, pressure insoles 

can be considered more constraining for gait monitoring during the rehabilitation of people with 

lower-limb amputation than IMUs.  

In the literature, several parameters have been proposed to quantify gait symmetry from 

acceleration signals measured by a trunk or pelvis mounted IMU. In particular, the harmonic ratio (HR), 

or its improved version, the iHR, has been widely used in research in recent years (Bellanca et al., 2013; 

Iosa et al., 2014; Riva et al., 2014; Pasciuto et al., 2017; Belluscio et al., 2018; Buckley et al., 2018). 

Based on the frequential analysis of the accelerations measured by a single IMU at pelvis level, this 

parameter allows to rapidly quantify step-to-step symmetry (Bellanca et al., 2013; Pasciuto et al., 

2017). The advantage of this parameter over temporal and loading asymmetry indices is that it relies 

on the use of a single IMU, which is interchangeable across any participant (as it is independent of any 

anthropometric measurement). Interestingly, the HR/iHR is generally computed stride per stride, but 

several authors have proposed to compute it over a complete gait trial to avoid the propagation of 

errors due to erroneous gait segmentation methods (Riva et al., 2013; Howcroft, Kofman, et al., 2016). 

While several standardized guidelines have been proposed in the literature for its computation 

(Buckley et al., 2017; Pasciuto et al., 2017), the impact of the segmentation method (or absence 

thereof) was never investigated. More importantly, how this parameter relates to usual symmetry 

indices is not clear and may hinder its interpretation by clinicians. In order to gain insight on this recent 

symmetry index, it appears therefore relevant i) to analyze the impact on the iHR values of different 

segmentation methods and of the absence of segmentation at all, and ii) to  comparatively assess usual 

parameters of temporal and loading symmetry and the iHR in the same population of lower-limb 
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amputees. To the authors knowledge, this was never done in any population and the iHR was never 

computed in people with transtibial amputation.  

Balance control during gait 

People with balance impairment have been shown in the literature to be less able than sound 

subjects to maintain a steady optical flow and vestibular system while walking, due to the transmission 

of oscillations from the lower limbs to the upper body (Mazzà et al., 2008; Iosa, Picerno, et al., 2016). 

Therefore, balance control has been quantified in wearable gait analysis literature by studying the 

oscillations transmitted to the head by the lower-limbs during gait (Menz et al., 2003; Mazzà et al., 

2008; Iosa, Picerno, et al., 2016; Bergamini et al., 2017). Two parameters issued from the measured 

raw acceleration signals have been described to this end: the root mean square of acceleration (RMSa) 

and the attenuation coefficients (AC). RMSa provides a measure of the amplitude of dispersion of the 

acceleration, which has been shown to increase with walking speed (Menz et al., 2003; Iosa, Picerno, 

et al., 2016) and, when normalized to walking speed, with the level of impairment in pathological gait 

(Bergamini et al., 2017). The ratio of RMSa signals at different levels of the upper body (pelvis/sternum, 

sternum/head or pelvis/head) have been used to evaluate the transmission of oscillations from the 

lower limbs to the head (Mazzà et al., 2008). Both these parameters have been studied in the 

population of people with transtibial amputation (Paradisi et al., 2019). In that study, the participants 

were required to perform three successive 10-m walking test and the average values of the RMSa and 

AC at the three levels were computed and compared between 20 transtibial amputees and 20 

asymptomatic subjects. A few number of strides as typically walked within a 10-m pathway may not 

allow to obtain reliable measures of variability (Riva et al., 2014). Therefore, it would be interesting to 

assess the reliability of these parameters in the population of people with lower-limb amputation 

before providing reference values in this population. 

Gap analysis and aim of the chapter 

The aim of this chapter was to contribute filling the following observed gaps from the literature: 

- Parameters have been proposed for assessing gait symmetry and balance from IMUs and 

were investigated in people with lower-limb amputation, but their reliability was not 

assessed prior to providing reference values; 

- While RMSa, AC, and temporal or loading symmetry indices were evaluated in people with 

transtibial amputation, the iHR was never quantified in this population. Furthermore, 

these parameters were never assessed simultaneously in the same sample of transtibial 

amputees, compromising a complete description of their gait using these parameters. 

Similar remarks apply to the gait of transfemoral amputees; 

- While the iHR is increasingly used in clinical research, no consensus exists about the need 

for stride segmentation or not. In addition, this parameter was never compared to more 

standard symmetry indices such as the Absolute Symmetry Index (ASI) of stance-phase 

duration (temporal symmetry) or of the vertical ground reaction force peak occurring in 

early stance (loading symmetry) (Nolan et al., 2003; Loiret et al., 2019). 

The chapter is organized in two sections in order to contribute filling these gaps. The first section 

aims at investigating whether RMSa, AC, iHR and temporal and loading ASI are likely to be reliable and 

relevant for gait monitoring along the rehabilitation of people with transtibial amputation. To do so, 

these gait quality indices were assessed during two repetitions of the two-minute walking test (2MWT) 

in people with transtibial amputation and sound participants. This work was performed in 
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collaboration with Julie Durand, physiotherapist at Institution Nationale des Invalides, during her 

master internship. Her implication in the data collection and analysis is duly acknowledged. In the 

second section, a special focus on the computation and interpretation of the iHR will be proposed. 

First, the iHR will be computed using different segmentation methods and no segmentation in order 

to clarify the uncertainties regarding its computation. Then, the relation between the iHR and both 

temporal and loading ASI will be investigated using the data colleĐted iŶ the Đouƌse of Julie DuƌaŶd͛s 
internship.  

2.1. Feasibility and relevance of gait quality monitoring from IMUs- and insoles-

derived parameters in people with lower-limb amputation 

Gait quality represents a crucial aspect of gait and is therefore monitored during the rehabilitation 

of people suffering from motor impairment. In particular, monitoring gait symmetry and assessing the 

risk of falling are crucial elements of the rehabilitation of a person with transtibial amputation as these 

aspects were shown to lead to the development of comorbidities and have an impact on the activity 

or social participation level after discharge from the rehabilitation center (Gailey et al., 2008; 

Highsmith et al., 2016). Few tools are available in the clinical field to quantitatively and objectively 

monitor the evolution of gait symmetry and fall risk along the rehabilitation process. Optical motion 

capture systems are not always available and are not adapted to frequent assessment due to the long 

set up and complex post-processing. On the other hand, clinical walking tests, which are quick to 

administer, provide a single metric of performance which is not sufficient to gain insight into the way 

a performance is obtained and, thus, to effectively targeting rehabilitation (Deathe et al., 2009).  

Recently, the development of small and affordable wearable sensors for gait analysis such as 

inertial measurement units (IMUs) and pressure insoles has allowed the introduction of new 

parameters for the in-field quantification of gait balance and symmetry (Iosa, Picerno, et al., 2016). 

Pressure insoles allow to estimate the load exerted on each lower limb through the measure of the 

pressure applied on each insole. This allows to quantify two aspects of gait symmetry, namely loading 

and temporal symmetry (Nolan et al., 2003). Similarly, IMUs positioned on the upper body (pelvis, 

lower trunk and head) have been proposed to quantify gait symmetry and stability through the analysis 

of the frequency content and dispersion of the accelerations measured at these locations (Menz et al., 

2003; Mazzà et al., 2008; Pasciuto et al., 2017). Several authors have therefore proposed multi-sensor 

protocols for the assessment of balance in various pathological populations by computing gait quality 

indices over a few steps taken while walking in straight line (Summa et al., 2016; Bergamini et al., 2017; 

Paradisi et al., 2019). Poorer gait balance was shown to be associated with decreased gait symmetry, 

increased values of acceleration signals, lower average walking speed and inability to attenuate the 

accelerations transmitted from the lower limbs to the head, highlighting the construct validity of the 

proposed indices (Iosa, Bini, et al., 2016; Bergamini et al., 2017; Buckley et al., 2018). None of these 

studies evaluated the reliability of the proposed multi-sensor wearable protocols. Yet, quantifying the 

minimal detectable change obtained for a parameter using a defined protocol is paramount to verify 

the relevance and feasibility of monitoring the evolution of this parameter along the rehabilitation 

process (Portney and Watkins, 2015). Furthermore, previous studies evidenced that acceleration-

based gait quality indices often require to be computed over a large number of steps in order to be 

reliable (Riva et al., 2014; Pasciuto et al., 2017). Therefore, computing gait quality indices over few 
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strides may not allow to achieve sufficient reliability. In this respect, instrumenting the two-minute 

walking test (2MWT) with wearable sensors would allow to capture a great number of straight-line 

strides along a standardized protocol, often administered in clinical practice. The 2MWT appears to be 

particularly relevant for gait assessment of people with transtibial amputation as it was shown to be a 

valid indicator of mobility in this population, to be related to fall risk, and is compatible with frequent 

assessment along the rehabilitation as it is sufficiently brief so as to perform other rehabilitation 

exercises and allows the use of assistive devices (Brooks et al., 2001; Major et al., 2013; Reid et al., 

2015; Gaunaurd et al., 2020). 

The aim of this study was therefore to contribute filling the identified gaps by i) identifying the 

parameters that are repeatable within-participant and within-session when performing two 

repetitions of the 2MWT, ii) providing reference values for people with lower-limb amputation and 

sound participants in order to comparatively characterize both populations and to obtain target values 

for the rehabilitation, iii) providing an estimate of the minimal detectable change by each parameter 

using this protocol, in order to identify parameters susceptible to be relevant for the rehabilitation.  

2.1.1. Material and methods 

a. Participants 

The study was designed according to the Declaration of Helsinki and was granted ethical approval 

(CPP N° 2018-A03477-48). Nine people with transtibial amputation (age: 51.2 ± 10.5 years, 8 males, 

mass: 78.6 ± 17.3 kg; height: 1.73 ± 0.09 m, time since amputation: 3.5 ± 6.0 years) and nine 

asymptomatic participants (age: 30.1 ± 11.1 years, 7 males, mass: 80.9 ± 22.3 kg; height: 1.80 ± 0.13 

m) gave written informed consent to participate in the study. Both groups were matched for gender, 

height and mass. Inclusion criteria for lower-limb amputees were people with unilateral transtibial 

amputation due to trauma or tumor, fitted with a definitive prosthesis worn on a daily basis, able to 

walk two minutes without any assistance. The amputee participants walked with their usual prosthesis. 

Exclusion criteria for both populations were the concomitance of an orthopedic or neurologic 

pathology.   

b. Acquisition protocol 

Each participant was equipped with a pair of 

pressure insoles (Loadsol, Novel, Germany, 100 

saŵples∙s-1) matching his/her shoe sizes and with 

thƌee IMUs ;MTǁ ǆSeŶs, NetheƌlaŶds, ϭϬϬ saŵples∙s-

1), embedding a tri-axial accelerometer (± 16 g) and a 

tri-axial gyroscope (± 2000 deg/s), positioned on the 

lower trunk (L4/L5 level), on the center of the sternum 

and on the occipital bone of the head (Figure 48). 

Insoles were calibrated following the instructions of 

the manufacturer, by alternatively loading each IMU 

with the full body weight after a minimum of fifteen 

minutes of wear for sensors warm-up (Loiret et al., Figure 48: Participant equipment with IMUs and insoles.  

For the acquisitions, IMUs on the pelvis, sternum, and head were 

positioned under the Velcro straps to prevent sensors sliding. 
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2019). Each participant was given some time to get used to the sensors and to ensure that they did not 

hinder his/her motion.  

Afterwards, each participant was asked to perform two repetitions of the 2MWT. Participants were 

instructed to walk as far as possible along a corridor or squared path including straight lines of at least 

25 m within the two minutes, but were not encouraged during the test, in accordance with the test 

administration guidelines (Brooks et al., 2001). For synchronization purpose between IMUs and 

insoles, each repetition of the 2MWT was followed by a 10-s recording of wearable sensors signals 

during which each participant was standing in a static posture and was asked to strike the ground with 

his/her prosthetic leg. The distance covered during the test was measured using graduations present 

in the corridor and a tap meter. Following the first trial, the participant could rest as long as necessary. 

c. Data processing 

IMUs and insoles data were post-processed using MATLAB® software (The MathWorks Inc., MA, 

US). Synchronization was performed semi-automatically by aligning the kicking-motion peaks 

occurring at the end of the 2MWT trial in the pelvis vertical acceleration and insole signals. 

Synchronization delays had been a priori evaluated to be within 1 frame at 100 Hz using an electronic 

trigger in a motion analysis laboratory to synchronize IMUs, insoles and force plates data. For each 

2MWT, the average velocity of progression was computed as the ratio of the distance covered during 

the test divided by the test duration, i.e. two minutes. 

Proper alignment of the IMUs with craniocaudal (CC), anteroposterior (AP), and mediolateral (ML) 

anatomical axes was ensured through a verticalization procedure during the initial static posture of 

each 2MWT (Bergamini et al., 2014). Only steady state straight-walking strides were considered within 

each test for the computation of gait quality indices. Turning strides were identified using the yaw 

angular velocity measured by the pelvis IMU and were discarded from the analysis. 

Gait segmentation was performed using a 20 N threshold on the insoles' ground reaction force 

signals (Loiret et al., 2019). Gait quality indices were then computed for each stride: 

- Temporal and loading asymmetry were quantified using, respectively, the stance phase 

duration (SPD) of each lower limb and the magnitude of the weight acceptance peak (Fz1) 

in early stance with the absolute symmetry index:  𝐴ܵܫ =  ௌ−௉଴.ହ ሺௌ + ௉ሻ× ͳͲͲ, where ܵ and 𝑃 are the SPD or Fz1 values for the sound and 

prosthetic limbs respectively (Nolan et al., 2003). 

- The improved Harmonic Ratio (iHR) was computed for each of the 3 acceleration 

components measured at the pelvis level (Pasciuto et al., 2017). Its computation is based 

on a spectral analysis of the acceleration and yields values between 0% (step-to-step 

asymmetry) and 100% (perfect step-to-step symmetry): ܴ݅ܪ =  ∑ ௉೔ೕ௉೐ೕ+௉೔ೕ  . ͳͲͲଵ≤௝≤௡   

where 𝑃௜௝ and 𝑃௘௝  respectively refer to the power associated with the intrinsic harmonics 

(contributing to gait symmetry) and extrinsic harmonics (leading to deviation from a 

symmetrical pattern) of the acceleration signal (Cappozzo, 1981) 

- After mean subtraction of the complete acceleration signals, root mean square of the 

accelerations (RMS) were computed for each stride and each IMU along the three 

anatomical axes of the underlying segment. RMS values were then divided by the average 
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walking speed in order to mitigate the dependency of accelerations with velocity and will 

be designated hereafter as RMSa. 

- The capacity to minimize the oscillations transferred from the lower to the upper body 

was quantified through the attenuation coefficients (AC) between each level pair of the 

body (ACPS, ACPH, and ACSH between pelvis/sternum, pelvis/head and sternum/head 

respectively), and for each acceleration component (Paradisi et al., 2019):  𝐴ܥ௑௒ = ͳ − ோெௌ௔ೊோெௌ௔೉.  

Attenuation of the accelerations from lower to upper body levels corresponds to 

positive coefficients, while amplification yields negative coefficients.  

For each 2MWT of each patient, the median and interquartile range (IQR) of each of the gait quality 

index was computed over all the analyzed strides, yielding 23 quantitative parameters in addition to 

the distance covered during the test. 

d. Statistical analysis 

For each gait quality index, normality of the median values was verified using the Shapiro-Wilk 

test. According to the test result, either parametric tests (paired t-tests) or non-parametric tests 

(Wilcoxon signed-rank tests) were implemented to compare the outcomes of the two repetitions of 

the 2MWT within each population. This step allowed to identify gait quality indices that were 

repeatable within-session for each population. The repeatability coefficient of each gait quality index 

was computed following Bland and Altman as twice the standard deviation of the differences between 

the two repetitions of the 2MWT (Bland and Altman, 1986). Since the standard deviation of the 

differences allows to estimate the standard error of measurement, the repeatability coefficient is an 

estimate of the minimal detectable change with a 95% confidence interval, and is expressed in the 

same units as the original index (Weir, 2005). 

Then, for the parameters that were found to be repeatable in both the asymptomatic and 

transtibial amputee populations, descriptive statistics (medians, IQR) were computed over the gait 

quality indices for each population. Either parametric tests or non-parametric unpaired tests 

(respectively, t-tests or Wilcoxon tests) were implemented to compare the outcomes of the first 

repetition of the 2MWT across both populations.  

The statistical analysis was performed using R® version 3.5.1. The alpha level of significance was 

set to 0.05 for all statistical tests. 

2.1.2. Results 

i. Identification of within-session repeatable gait quality indices and estimation of the 

minimally detectable change 

Table 23 provides a visual representation of the results of the statistical tests comparing the 

outcomes of the two repetitions of 2MWT within each population. Two parameters displayed a 

statistically significant difference within session: the attenuation coefficients between the pelvis and 

sternum in the vertical direction in the asymptomatic population and the RMSa measured at sternum 

level in the anteroposterior direction in the transtibial amputee population. Therefore, both these 

parameters will be discarded from further analysis. 
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The repeatability coefficients, which represent an estimate of the minimal detectable difference 

were computed for each population and each parameter except the two that displayed within-session 

difference (Table 24). Higher repeatability coefficients were observed in people with transtibial 

amputation except for the stance-phase duration ASI and the covered distance. 

Table 24: Repeatability coefficients computed for people with transtibial amputation and sound participants based on the 

two repetitions of the 2-minute walking test for the distance covered during the test and the selected gait quality indices. 

iHR = improved Harmonic Ratio; RMSa = Root Mean Square of Accelerations divided by the average walkng speed; AC = 

Attenuation Coefficient; ASI = Absolute Symmetry Index; AP = Anteroposterior; ML = Mediolateral; V = Vertical. 

ii. Description of the transtibial and asymptomatic populations using gait quality indices 

The median values of each gait quality index and the covered distance obtained during the first 

repetition of the 2MWT for both populations were assessed and compared (Table 25). In addition to 

the covered distance, ten out of the 21 remaining gait quality indices were shown to be statistically 

different between the populations of asymptomatic participants and transtibial amputees.  

 

 

Table 23: Visual representation of the statistical comparisons of the median scores achieved during the two repetitions of the 2-

minute walking test (2MWT) for all gait quality indices in asymptomatic participants and people with transtibial amputation. Green 

empty cells indicate gait quality indices that were not found to differ between both repetitions of the 2MWT while orange cells 

filled with an asterisk indicate gait quality index for which a statistical difference ;α-level of significance = 0.05) between 

repetitions of the tests.  

iHR = improved Harmonic Ratio; RMSa = Root Mean Square of Accelerations divided by the average walking speed; AC = 

Attenuation Coefficient; ASI = Absolute Symmetry Index 

Gait quality 

indices 

Asymptomatic participants Transtibial amputee participants 

Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical 

iHR       

RMSa pelvis       

RMSa sternum    *   

RMSa head       

AC pelvis/sternum   *    

AC pelvis/head       

AC sternum/head       

       

 
Asymptomatic 

participants 

Transtibial 

amputees 
    

Temporal ASI       

Loading ASI       

2MWT distance       

  
iHR 

(%) 

RMSa 

pelvis (s-1) 

RMSa 

sternum (s-1) 

RMSa 

head (s-1) 

AC pelvis 

/ sternum 

AC pelvis 

/ head 

AC sternum 

/ head 

Temporal 

ASI (%) 

Loading 

ASI (%) 

Distance 

(m) 

Transtibial 

amputees 

AP 7.4 0.50 / 0.55 0.58 0.53 0.54 

2.8 10.0 14.6 ML 10.2 0.32 0.73 0.22 0.58 0.17 0.42 

V 8.3 0.53 0.50 0.62 / 0.18 0.15 

Sound 

participants 

AP 1.0 0.20 / 0.31 0.18 0.25 0.48 

3.3 3.3 17.4 ML 4.3 0.08 0.05 0.14 0.08 0.16 0.15 

V 1.3 0.26 0.15 0.21 / 0.08 0.07 
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Table 25: Median and interquartile range (IQR) of the median scores achieved during the first repetition of the 2-minute walking 

test (2MWT) by the sound participants and the transtibial amputees. Significant difference (Sig.) between both populations are 

indicated usiŶg aŶ asteƌisk ;α-level of significance = 0.05).  

iHR = improved Harmonic Ratio; RMSa = Root Mean Square of Accelerations divided by the average walkng speed; AC = 

Attenuation Coefficient; ASI = Absolute Symmetry Index 

 

Anteroposterior 

Median (IQR) 

 

Mediolateral 

Median (IQR) 

 

Vertical 

Median (IQR) 

Sound 

participants 

Transtibial 

amputees 
Sig. 

Sound 

participants 

Transtibial 

amputees 
Sig. 

Sound 

participants 

Transtibial 

amputees 
Sig. 

iHR (%) 96.9 (2.1) 85.9 (6.5) * 85.2 (11.1) 71.4 (8.4) * 97.6 (1.5) 89.1 (6.6) * 

RMSa pelvis (s-1) 2.05 (0.93) 1.78 (0.88)  1.77 (1.19) 1.60 (0.70) * 3.13 (0.76) 2.47 (1.41)  

RMSa sternum (s-1) / /  1.09 (0.51) 1.27 (0.39) * 3.37 (1.29) 2.56 (1.24)  

RMSa head (s-1) 1.17 (0.58) 1.69 (0.75) * 1.00 (0.27) 1.53 (0.30) * 3.35 (1.07) 2.55 (1.20)  

AC pelvis/sternum 0.35 (0.29) 0.19 (0.29)  0.31 (0.45) 0.27 (0.25)  / /  

AC pelvis/head 0.50 (0.38) -0.03 (0.69) * 0.20 (0.47) 0.05 (0.20)  -0.01 (0.12) -0.01 (0.15)  

AC sternum/head 0.26 (0.52) -0.39 (0.91) * 0.03 (0.15) -0.20 (0.23) * 0.01 (0.09) 0.00 (0.12)  

 

 

 
Sound 

participants 

Transtibial 

amputees 
Sig. 

Temporal ASI (%) -1.4 (3.58) 8.8 (9.3)  

Loading ASI (%) 0.6 (12.2) 5.6 (21.3)  

2MWT distance (m) 192 (16) 140 (35) * 

 

The RMSa measured at the pelvis level along the three directions was lower in amputee people 

compared to sound participants, although this difference was significant only for the mediolateral 

component. To the contrary, RMSa was significantly higher in amputees compared to sound 

participants in the mediolateral direction for the sternum and in both mediolateral and 

anteroposterior directions for the head. For all three levels of the upper body, RMSa along the vertical 

direction were lower in transtibial amputees although not significantly.  

The symmetry indices (iHR, temporal and loading ASI) indicated a trend of reduced symmetry in 

people with transtibial amputation compared to sound participants, but only the iHR differences 

proved to be statistically significant between populations. 

 Attenuation coefficients were similar across both populations in the vertical direction. Conversely, 

people with transtibial amputation exhibited lower coefficients, sometimes negative, in the 

anteroposterior and mediolateral directions for the pelvis-to-head and pelvis-to-sternum coefficients. 

2.1.3. Discussion 

The aim of this study was to investigate the relevance and feasibility of monitoring gait quality 

using indices obtained using wearable sensors such as IMUs and pressure insoles. First, the 

repeatability intra-session of the identified gait quality indices was investigated in both populations of 

transtibial and sound participants. Eleven out of the 22 repeatable indices (including the distance 

covered during a 2MWT) were shown to allow to discriminate transtibial amputees from sound 

subjects.  
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i. Identification of within-session repeatable gait quality indices and estimation of the 

minimally detectable change 

Except for the attenuation coefficients between the pelvis and sternum in the vertical direction in 

the asymptomatic population and the RMSa measured at sternum level in the anteroposterior 

direction in the transtibial amputee population, no gait quality index displayed a statistically significant 

difference between both repetitions of the 2MWT. It was thus decided to discard these indices from 

further analysis. Indeed, they were considered less susceptible of detecting subtle changes within a 

population.  

Conversely, the parameters included in the analysis were deemed repeatable as no difference was 

detected between both repetitions of the 2MWT. However, the present results must be interpreted in 

the light of the following two considerations: first, it is possible that no difference was detected due 

to the small samples included in this study. Second, the repeatability coefficients obtained in this study 

are likely to underestimate the minimal detectable change by each pair of sensor and gait quality index. 

Indeed, these indices were acquired within the same session, without removing and repositioning the 

sensors. A different positioning of sensors would have affected the measured signals, and hence, the 

values of the retrieved parameters. Similarly, inherent day-to-day variability within participants could 

have contributed in the increase of the repeatability coefficients. 

Except for the distance covered within a 2MWT, no prior study reports repeatability coefficients 

or minimal detectable changes for the parameters and the population investigated in this study. 

Therefore, for the gait quality indices obtained with wearable sensors, it is not possible to compare 

the computed repeatability coefficients with the literature. Regarding the distance, Resnik and 

coworkers evaluated the test-retest reliability of the 2MWT in a sample constituted with 44 lower-limb 

amputees, including 19 (43.2%) people with transtibial amputation and 25 (56.8%) people with 

transfemoral or though-knee amputation, who performed a 2MWT twice within a week. The minimal 

detectable change with a 90% confident interval reported in their study is 34.3 m against 14.6 m with 

a 95% confidence interval in the present study (Resnik and Borgia, 2011). Since the distance 

measurement is not affected by sensor relocation, it is expected that the study design is not 

accountable for most of the observed difference. In the study retrieved from the literature, the 

participants could use mobility aids (although it is not mentioned if any of the participants did require 

any assistance when performing the test), participants were older than in the current study (mean age: 

66 ± 13 years) and a little more than half of them were amputated at a higher level, while age and level 

of amputation have been shown to be associated with decreased functional capacities. Therefore, we 

assume that the results achieved in the present study are more susceptible to represent the population 

of experienced walkers with transtibial amputation. According to our results, the 2MWT is thus able 

to detect score changes as low as 15 m. A between-session configurations should nevertheless be 

implemented to confirm our results on a bigger sample size. 

In general, higher repeatability coefficients (and thus, higher minimal detectable changes) were 

observed in people with transtibial amputation compared to sound participants, except for the stance-

phase duration ASI and the distance (Table 24). This reflects a higher inter-subject variability within 

the population of people with transtibial amputation compared to sound subjects. The different 

prostheses used by the recruited participants and the large range of durations since amputation may 

explain the observed variability in this population. The values of the repeatability coefficients provide 
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trends regarding the possible minimal detectable changes in people with transtibial amputation and 

in sound participants. However, in order to interpret if a gait quality index obtained following the 

presented protocol can detect suffiĐieŶtlǇ suďtle ĐhaŶges to tƌaĐk patieŶts͛ pƌogƌessioŶ duƌiŶg the 
rehabilitation, baseline values and values achieved during the rehabilitation are required. Therefore, a 

study involving a regular follow-up of people with transtibial amputation undergoing rehabilitation is 

necessary. Comparing the repeatability coefficients to the 2MWT score changes observed between 

baseline and follow-up / discharge would allow to conclude on the relevance of the selected 

parameters for rehabilitation monitoring. 

ii. Description of the transtibial and asymptomatic populations using gait quality indices 

Apart from the iHR, all the gait quality indices reported in the present study had already been 

investigated in the population of people with transtibial amputation in the literature, although never 

concomitantly.  

The distance covered during the 2MWT by both populations is consistent with the values reported 

in the literature for both sound adults (Bohannon et al., 2015) and people with transtibial amputation 

(Gaunaurd et al., 2020). Furthermore, this confirms that self-selected speed of people with transtibial 

amputation is lower than that of sound participants. This reduced walking speed might not only be the 

sign of higher metabolic cost of walking (Waters et al., 1976) but also of decreased stability as it was 

shown to be one of the mechanisms allowing to increase the margin of stability (Hak et al., 2014). 

Sound participants achieved similar iHR scores as those reported in the literature (Bergamini et al., 

2017; Pasciuto et al., 2017). Regarding the scores achieved by people with transtibial amputation, 

while no reference value could be retrieved in the literature, results seem consistent. Indeed, the 

achieved iHR scores by people with transtibial amputation in this study were closer to those of 

asymptomatic population than people with transfemoral amputation (Pasciuto et al., 2017), who were 

previously shown to have a more asymmetrical gait pattern than people with transtibial amputation 

(Nolan et al., 2003; Iosa et al., 2014; Cutti et al., 2018). Iosa and coworkers have evaluated the HR in 

people with transtibial and transfemoral amputation at dismissal of the rehabilitation center (Iosa et 

al., 2014). The HR was shown to be less reliable and more difficult to interpret than its improved 

version (Pasciuto et al., 2017) and therefore was not investigated in the present study. However, the 

authors in (Iosa et al., 2014) observed the same trend as retrieved here: the gait of transtibial amputees 

was shown to be statistically more asymmetrical than that of sound participants.  

Asymmetry was also quantified in the present study using the ASI computed based on the stance-

phase duration (temporal ASI) and the vertical acceptance peak occurring in the first half of the stance 

phase (loading ASI). These parameters have been described in (Nolan et al., 2003) in a population of 

four people with transtibial amputation, four people with transfemoral amputation and six sound 

subjects walking along a straight line at various speeds. Similarly as in (Nolan et al., 2003), people with 

transtibial amputation were shown to spend more time and put more weight on their sound leg than 

on the prosthetic leg. The asymmetries observed in the present study were less important than those 

reported in (Nolan et al., 2003), which might be explained by the higher distance and number of steps 

covered in the present study, allowing to select strides pertaining to the steady state of gait. Although 

people with transtibial amputation exhibited more temporal and loading asymmetries than sound 

participants, the difference between both populations was not found to be significant. 
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It is interesting to note that among the 3 different kind of parameters quantifying gait (a)symmetry, 

the iHR displayed less between-subjects variability than the conventional asymmetry parameters and 

was the only index allowing to discriminate people with transtibial amputation from sound participants 

(Table 25).  

Interestingly, RMSa measured at the pelvis level was lower in the group of transtibial amputees 

than in sound participants in all directions, even if the difference was only statistically significant for 

the mediolateral acceleration. In the literature, pelvis RMS values were higher in pathological gait than 

in normal gait at pelvis level when normalized to walking speed (Summa et al., 2016; Bergamini et al., 

2017; Belluscio et al., 2019). In (Paradisi et al., 2019), RMS accelerations at the pelvis level were found 

to be significantly higher in the transtibial amputation group than in the control group in the 

mediolateral direction, but the RMS was not normalized to walking speed while the former was shown 

to be significantly more important in the control group. Another reason for this difference might again 

lie in the reduced time since amputation in the population investigated in the present study compared 

to that recruited in (Paradisi et al., 2019). Indeed, in (Iosa et al., 2014), lower-limb amputees evaluated 

at discharge from the rehabilitation exhibited significantly lower RMS values at the pelvis level along 

the anteroposterior and mediolateral directions compared to the control group. The less time spent 

walking with a prosthesis may contribute to a lower trust in the prosthesis, resulting in voluntarily 

restraining motion at the pelvis level to enhance control over the prosthesis.  

Conversely, sternum and head RMSa were significantly higher in amputees compared to sound 

participants in both the mediolateral and anteroposterior directions. Attenuations of the accelerations 

from pelvis to sternum in the anteroposterior and mediolateral directions were insufficient to regulate 

the RMSa at the sternum level in the transtibial amputee group. The higher RMSa at the sternum in 

the mediolateral direction may result from gait compensations involving the trunk in the frontal plane 

of people with transtibial amputation (Michaud et al., 2000). In the amputee group, negative 

attenuation coefficients were observed from the sternum to the head, thus leading to an amplification 

of the accelerations and increased RMSa at head level compared to sternum level, confirming results 

from the literature (Paradisi et al., 2019). Similarly, reduced attenuations of accelerations from the  

pelvis-to-head accelerations were observed in our sample of amputees compared to sound 

participants or even to the transtibial amputees described in (Paradisi et al., 2019). This seems to 

indicate a lower stability of the transtibial amputees recruited in the present study, which might be 

explained by the reduced time interval since amputation of some participants. The difficulty to 

attenuate accelerations from the lower limbs in the anteroposterior and mediolateral directions may 

result from the reduced counter-rotation of pelvis and trunk segments in the transverse plane 

observed in people with lower-limb amputation (Goujon-Pillet et al., 2008) and was also observed in 

patients with subacute stroke (Bergamini et al., 2017). This may lead to instability of the head, thus 

compromising a steady optical flow and vestibular proprioception, which in turn may lead to an 

increased fall risk. 

All in all, the quantified parameters during the 2MWT tended to indicate a decreased dynamic 

balance in people with transtibial amputation compared to sound participants, even if only eleven of 

the twenty-two remaining parameters (including the distance) allowed to discriminate the two 

populatioŶs. It should ďe Ŷoted that this studǇ doesŶ͛t alloǁ to ĐoŶĐlude oŶ the ŵost ƌeleǀaŶt 
parameters for rehabilitation monitoring in people with lower-limb amputation. Indeed, the eleven 

parameters that differ between populations may not display a progression during the rehabilitation 
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and therefore, may not be responsive to change. In particular, the attenuation coefficients were shown 

not to display a significative difference between assessments occurring before and after vestibular 

rehabilitation training in people with stroke (Tramontano et al., 2018). Conversely, the parameters 

that were not found to be statistically different in sound participants and people with transtibial 

amputation that have terminated their rehabilitation may display a wide margin of progression during 

the rehabilitation. Therefore, obtaining baseline values at the beginning of – or in the course of – 

rehabilitation is paramount to draw conclusions on the relevance of the considered parameters. 

However, some assumptions can be drawn by comparing the values of the repeatability coefficients of 

each gait index with the median values achieved in rehabilitated transtibial amputees. For instance, 

the high variability of attenuation coefficients within the population of people with transtibial 

amputation leads to repeatability coefficients that are way higher than the achieved median values as 

well as than the difference of median values between transtibial amputees and sound participants. As 

a consequence, these parameters are not expected to capture subtle changes that may occur during 

the rehabilitation of people with transtibial amputation. Conversely, the repeatability coefficients of 

the three components of the iHR are very low compared to the median iHR values of people with 

transtibial amputation while being lower than the observed difference between both populations. It 

therefore appears that the iHR could allow the detection of subtle improvements in the symmetry of 

transtibial amputee gait. These hypotheses should be verified in a study involving transtibial amputees 

undergoing rehabilitation, which, in turn, would allow to quantify and compare gait quality indices 

measured at several periods of the rehabilitation.  

This study allowed to demonstrate the feasibility of instrumenting people with transtibial 

amputation during their rehabilitation to quantify gait quality indices. The latter were acquired by a 

physiotherapist during a 2MWT, which is a clinical test easy to implement and usually performed in 

clinical practice. The participants reported no discomfort or motion hindrance due to the sensors. In 

order to facilitate the implementation of the protocol in the clinical routine, automation of the post-

processing is required (in particular, sensors synchronization) as it would allow to obtain an immediate 

report at the end of the rehabilitation session. 

2.1.4. Conclusions  

This study investigated the feasibility and relevance of tracking gait quality indices derived from 

IMUs or pressure insoles signals during two-minute walking tests (2MWT) performed by people with 

transtibial amputation. Most of the investigated gait quality indices (improved harmonic ratio, root 

mean square of head, sternum and pelvis accelerations, loading and temporal gait symmetry and 

attenuation coefficients from the lower-limbs to the upper-body) were shown to be repeatable within 

session, and therefore to be good candidates for such a monitoring. Furthermore, ten out of the 

twenty-three investigated indices showed that people with transtibial amputation exhibited an 

asymmetrical gait pattern and were more prone to falling than asymptomatic people. A between-

session test-retest reliability study should be implemented to confirm the observed trends regarding 

the reliability of the gait quality indices derived from wearable sensors in transtibial amputee gait. A 

study allowing to retrieve baseline values of the indices at the beginning and during the rehabilitation 

must be implemented in order to identify the indices that allow to detect a progression of the 

participants during the rehabilitation and therefore to confirm the relevance of the instrumented 

2MWT for the follow-up of people with transtibial amputation along their rehabilitation. 
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2.2. Computation and interpretation of the improved harmonic ratio in people with 

lower-limb amputation 

Despite its wide use for gait symmetry quantification in the recent literature, the computation and 

interpretation of the improved harmonic ratio (iHR) retains some uncertainties. 

This section will therefore be divided in two subsections. The first subsection aims at clarifying 

whether the iHR must be computed on segmented gait cycles or if it could be computed on the whole 

gait signal without segmentation, and if the segmentation method has an impact on the computed 

score. This study was presented at the 2019 congress of the Société de Biomécanique and uses the 

data described in the first chapter of Part 3. The second subsection aims at investigating the 

relationship between the iHR and traditional temporal and loading asymmetry indices, which are used 

in the clinical practice and are easily interpretable. Indeed, while the iHR was shown to discriminate 

people with transtibial amputation from sound participants, where commonly used temporal or 

loading asymmetry indices failed (see section 2.1 above), its interpretation in terms of the (a)symmetry 

origin or causes remains questionable. This study uses the data collected on nine people with 

transtibial amputation, presented in the preceding section. 

2.2.1. Investigating symmetry in amputee gait through the Improved Harmonic Ratio: 

influence of the stride segmentation method 

a. Introduction 

The quantification of gait symmetry is extremely important in several clinical contexts. Among the 

many indices used to describe gait symmetry, the Harmonic Ratio (HR), which is based on a stride-by-

stride spectral analysis of trunk accelerations, is often used (Bellanca et al., 2013). Recently, an 

improved version of this index (iHR) has been proposed, relying on a rigorous mathematical definition 

and on values ranging from 0 to 100% (Pasciuto et al., 2017). The influence of acceleration realignment 

procedures (Buckley et al., 2017), as well as of the number of considered strides and harmonics on HR 

and/or iHR values have been assessed in the literature, and standardized guidelines have been 

proposed in this respect (minimum of 20 strides and 20 harmonics should be considered) (Riva et al., 

2014; Pasciuto et al., 2017). Concerning stride segmentation approaches, several methods are usually 

adopted in the literature, based on different signals (ground reaction forces, pelvis or shank 

accelerations or angular velocities), thus corresponding to different instants of time within the gait 

cycle. The whole signal has also been considered, to avoid the propagation of errors due to inaccurate 

segmentation (Riva et al., 2013). Nevertheless, despite its role in the computation of iHR, the impact 

of the stride segmentation method has never been adressed, especially in people characterized by high 

gait asymmetry, such as people with lower-limb amputation. Thus, the aim of this study was to 

investigate the influence of different stride segmentation methods and of the absence thereof on iHR 

values obtained during gait in people with transfemoral amputation. 

b. Methods  

i.  Participants & protocol 

This study was granted ethical approval (CPP IDF VI, N° 2014-A01938-39) and seven people with 

transfemoral amputation (5 males, age: 47.3± 9.9 years, mass: 74.5±11.9 kg) gave written informed 
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consent prior to their participation. They were instrumented with a pair of pressure insoles (Novel, 100 

Hz) and two inertial measurement units (Xsens, 100 Hz) located on their lower trunk (L4/L5 level) and 

prosthetic shank. Participants walked a minimum of three times at their self-selected speed along an 

8-meter linear pathway. At the beginning of each trial, they were required to stay in a static posture 

for 3 seconds and to perform a kicking task for synchronization purpose. 

ii. Data processing 

Proper alignment of the trunk unit with craniocaudal (CC), anteroposterior (AP), and mediolateral 

(ML) anatomical axes was ensured through a verticalization procedure during the initial static posture 

of each trial (Bergamini et al., 2014). Only steady state strides were considered by discarding the first 

and last strides of each trial. The iHR was then computed, for each stride and each anatomical axis, 

using four different segmentation methods, representative of the state of the art: 

• Insoles (REF) (used as a reference): based on the timings of initial foot contacts, 

determined using a 20 N threshold on the insole signals; 

• Shank (TIB): based on local maxima in the measured ML shank angular velocity signals, 

roughly corresponding to the middle of the swing phase; 

• Pelvis (PEL): based on the local maxima in the measured ML lower-trunk angular velocity 

signals, occurring slightly after initial contacts; 

• Zijlstra (ZS): based on an algorithm which identifies initial contacts in the AP acceleration 

measured at the lower-trunk (Zijlstra and Hof, 2003). 

In addition, no stride segmentation (ABS) was also considered, corresponding to the calculation of 

the iHR on the whole signal for each gait trial, from the first to the last initial contacts detected by the 

insoles. 

For each patient and each segmentation method, the medians and interquartile ranges (IQRs) of 

the iHR were computed. The IQR/median ratio (IMR) was also calculated to estimate the iHR reliability. 

iii. Statistics 

A Shapiro-Wilk test was performed on the iHR medians and IMR. According to the results of this 

test, a one-way Repeated Measures ANOVA, or a Friedman test, was performed to investigate if 

significant differences existed between REF and the other methods (TIB, PEL, ZS, ABS). Pairwise 

comparisons were analyzed using post-hoc paired t-tests or Wilcoxon signed-rank tests and 

considering a Holm-BoŶfeƌƌoŶi ĐoƌƌeĐtioŶ. FiŶallǇ, PeaƌsoŶ͛s oƌ SpeaƌŵaŶ͛s ĐoƌƌelatioŶs ǁeƌe used to 
investigate correlations between iHR values obtained with IS and the other four methods. The 

sigŶifiĐaŶĐe leǀel ;αͿ ǁas set to Ϭ.Ϭϱ foƌ all statistiĐal tests. 

c. Results and discussion 

A total of 405 strides pertaining to the steady-state phase of gait were analyzed.  

Regarding the iHR obtained with IS, results were consistent with those obtained in the literature 

for the same population (Pasciuto et al., 2017) (Figure 49). Only iHR scores obtained without 

segmentation (ABS) were significantly different to those obtained using insoles (REF), for all three axes 

(Figure 49 – p < 0.0125 ; Figure 50). Furthermore, iHR scores derived from TIB, PEL, and ZS were very 

strongly and significantly correlated with the reference iHR (r>0.97, p<0.05). Conversely, correlations 
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between REF- and ABS-based iHRs were only moderate and not significant in two out of three 

directions. 

Concerning the iHR reliability, consistently with previous findings (Pasciuto et al., 2017), IMR values 

were found to be higher in the ML than in AP or CC direction (Table 26). No statistically significant 

difference was found between IMRs obtained with IS and any other methods, for each axis. 

Nevertheless, TS-based iHR IMRs tended to be higher than those obtained with the other segmentation 

methods. 
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Figure 49: Median values of the iHR scores for each segmentation method (REF = reference, insole-based method; TIB = shank-

ďased segŵeŶtatioŶ ; ZS = segŵeŶtatioŶ ďased oŶ Zijlstƌa’s algoƌithŵ, PEL = loǁeƌ-trunk based segmentation) and in the 

absence thereof (ABS = no segmentation) and each participant along all three anatomical axes : anteroposterior (AP), 

mediolateral (ML), vertical (CC).  

Figure 50: Median and interquartile range values over all participants for all the segmentation methods (REF = reference, insole-

based method; TIB = shank-based segmentation ; ZS = segmentatioŶ ďased oŶ Zijlstƌa’s algoƌithŵ, PEL = loǁeƌ-trunk based 

segmentation) along all three anatomical axes : anteroposterior (AP), mediolateral (ML), vertical (CC). 
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Table 26: Mean and standard deviations of the iHR IMRs (ratio of the interquartile range and median), for each segmentation 

method (REF = reference, insole-based method; TIB = shank-based segmentation ; ZS = segmeŶtatioŶ ďased oŶ Zijlstƌa’s 
algorithm, PEL = lower-trunk based segmentation) and in the absence thereof (ABS = no segmentation) for the different 

anatomical axis (anteroposterior [AP], mediolateral [ML], vertical [CC]). 
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 REF 11.3 ± 5.9 21.4 ± 9.7 12.7 ± 5.6 

TIB 11.3 ± 2.0 28.1 ± 22.9 7.2 ± 4.4 
ZS 12.7 ± 7.4 29.4 ± 8.4 13.1 ± 3.5 

PEL 12.6 ± 8.1 34.6 ± 16.0 15.4 ± 5.8 
ABS 6.9 ± 32.2 49.8 ± 60.4 5.6 ± 14.0 

d. Conclusions 

This study showed that computing iHR on the whole acceleration signal provides significantly 

different results than using any of the assessed stride segmentation method. When using stride 

segmentation methods, care should be taken to ensure that the method chosen provides a reliable 

segmentation for the specific population under study. In particular, special attention must be paid 

when using pelvis accelerations due to feet impacts attenuation and inherent signal variability at trunk 

level (Trojaniello et al., 2015). 

2.2.2. Investigating symmetry in amputee gait through the Improved Harmonic Ratio: 

comparison with commonly used loading and temporal symmetry indices 

In order to investigate the relationship between the iHR and conventional gait symmetry indices, 

the data previously collected during a 2MWT performed by nine sound participants and nine people 

with transtibial amputation were used (see section 2.1.1). The median iHR values along the three 

directions and the median absolute symmetry indices (ASI) of stance-phase duration (temporal 

symmetry) or of the vertical ground reaction force peak occurring in early stance (loading symmetry) 

(Nolan et al., 2003) of each participant were retrieved during the first repetition of the 2MWT. 

Spearman correlations were then computed between the temporal and loading ASI and the iHR 

computed in all three directions, for the population of transtibial amputees and for the sound 

population. The level of significance was set to 0.05. 

The achieved correlations between the iHR and the ASI are reported in Table 27.  

Table 27: SpeaƌŵaŶ's ĐoƌƌelatioŶs ;ρͿ aŶd assoĐiate p-values between the improved harmonic ratio (iHR) computed in the 

anteroposterior (AP), mediolateral (ML) and vertical (V) directions and the temporal and loading absolute symmetry index (ASI) 

in nine people with transtibial amputation and nine asymptomatic participants. 

 

 

Sound participants (n = 9)  Transtibial amputee participants (n = 9)  

 Loading ASI Temporal ASI Loading ASI Temporal ASI 

 ρ p-value ρ p-value ρ p-value ρ p-value 

iHR AP 0.15 > 0.05 -0.17 > 0.05 0.15 > 0.05 -0.03 > 0.05 

iHR ML 0.18 > 0.05 0.48 > 0.05 -0.08 > 0.05 0.05 > 0.05 

iHR V 0.60 > 0.05 0.58 > 0.05 0.43 > 0.05 -0.17 > 0.05 

 

None of the correlations were found to be significant (p-value > 0.05). Furthermore, the strength 

of the correlations between each pair of iHR component and ASI were shown to differ across 
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populations (see for instance the correlation between the iHR in the mediolateral direction and the 

temporal ASI in both populations in Table 27). Therefore, it can be concluded that the iHR components 

are not associated with either gait temporal or loading symmetry. 

The former indices are easier to interpret than the iHR but were shown not to allow the 

discrimination between people with transtibial amputation and sound participants. Therefore, they 

may not allow to detect changes within patients or to detect the differences between transtibial 

amputees displaying different levels of asymmetry. Conversely, the iHR allowed to discriminate people 

with transtibial amputation from sound participants and displayed small repeatability coefficients, 

indicating that it may allow the detection of subtle changes of (a)symmetry within participants. 

Furthermore, the iHR is computed from the acceleration signals of one sensor positioned at the pelvis, 

which doesŶ͛t ƌeƋuiƌe to ďe Đaliďƌated. It theƌefoƌe pƌoǀides a ŵoƌe eĐologiĐal ŵeasuƌe thaŶ the ASI 
derived from pressure insoles data. However, it should be noted that the pelvis is chosen as a point to 

emulate the body center of mass. The validity of this assumption when computing the iHR should 

however be verified in pathological gait, as it was shown that the pelvis acceleration does not 

accurately emulate the body center of mass acceleration in people with transfemoral amputation for 

instance (see chapter 2, part 3). Furthermore, the clinical interpretation of the iHR is not 

straightforward. It seems to identify overall gait (a)symmetry and, based on its definition, it is likely 

influenced by asymmetrical gait pattern of contralateral limbs. However, it is not currently possible to 

conclude on the origin(s) of the detected asymmetries. Further investigations are therefore required 

to shed light on the interpretation of the iHR in people with lower-limb amputation. It might be 

relevant to investigate the impact of asymmetries in joint patterns on the iHR values in order to better 

further understand this parameter.  
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Conclusion 

This part of the thesis aimed at investigating the feasibility, relevance and intra-session reliability 

of using wearable sensors to describe gait quality using parameters derived from direct signal 

processing, which neither require a biomechanical model of the human nor of the performed motion. 

These parameters can be retrieved from a low number of sensors by instrumenting clinical walking 

tests, making them particularly relevant for an ecological monitoring of rehabilitation.  

In the first chapter, the feasibility of deriving temporal parameters from gait events identified in 

the signals of a single or two segment-mounted IMUs was investigated. Five algorithms taken from the 

literature were implemented and tested using gait data of people with transfemoral amputation. Two 

algorithms were found to allow an accurate detection of initial and final contact events. However, they 

tended to either underestimate the sound stance phase or to overestimate the prosthetic stance phase 

durations, which prevents their use for the quantification of temporal asymmetry. Further work is 

required to improve the algorithms in order to use them for temporal asymmetry monitoring in people 

with transfemoral amputation. The adequacy of the developed algorithms to the gait of people with 

transtibial amputation, which does not exhibit the same compensations as that of transfemoral 

amputees, should also be investigated. Although IMUs do not appear to be mature yet for temporal 

parameters tracking in people with transfemoral amputation, pressure insoles represent a valid 

wearable alternative (Loiret et al., 2019). 

In the second chapter, the feasibility and relevance of tracking gait quality indices in people with 

transtibial amputation undergoing rehabilitation by instrumenting the two-minute walking test 

(2MWT) with pressure insoles and IMUs was investigated. In order to fulfill this aim, gait quality indices 

(improved harmonic ratio [iHR], root mean square of accelerations [RMSa] and attenuation 

coefficients between the pelvis, sternum and head) were computed in both rehabilitated people with 

transtibial amputation and sound participants. The study therefore allowed to obtain reference values 

for the population of transtibial amputees and to characterize the risk of falling and gait asymmetry of 

this population by comparison to sound participants with the above-mentioned gait quality indices. In 

particular, this study was the first to provide values for the iHR in people with transtibial amputation. 

The first step conducted in this study is necessary in order to obtain target values during the 

rehabilitation. Furthermore, the participants were asked to perform two repetitions of the 2MWT, 

which allowed to obtain a first estimate of the minimal detectable change by each pair of sensor/gait 

index. Although the retrieved repeatability coefficients may underestimate the actual minimal 

detectable changes, this study was the first proposing to assess the intra-session reliability of gait 

quality indices acquired during a clinical test. However, without knowing the values taken by these gait 

quality indices by people undergoing rehabilitation, the feasibility of actually detecting a gait quality 

improvement or deterioration using the proposed protocol cannot be confirmed yet. However, it is 

worth noting that the protocol presented in this study proved to be compatible with clinical context 

and could be directly implemented during the rehabilitation of patients.  

Furthermore, although ten of the investigated gait quality indices corroborated the literature 

regarding the higher risk of falling and reduced gait symmetry of people with transtibial amputation 

compared to the asymptomatic population, there is still a lack of hindsight on these gait descriptors, 

making their interpretation difficult. As an example, the iHR, computed from pelvis acceleration 
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signals, indicates overall gait (a)symmetry, but does not provide any indication regarding the origin of 

the asymmetry. In particular, this index was found not to be correlated with either temporal or loading 

symmetry computed with the absolute symmetry index. It is believed that kinematic asymmetries, 

such as an asymmetric knee flexion during gait, might have repercussions on the iHR, but the protocol 

implemented did not allow to verify this hypothesis. Computing the iHR on the trajectory of the pelvis 

or body center of mass may facilitate its interpretation but would considerably complexify its 

computation from IMUs. 

To conclude, wearable sensors offer the opportunity of easily tracking gait while being minimally 

invasive. Multiple indices have been proposed in the literature to describe segments and body motion 

from the analysis of raw signals extracted from these sensors. For instance, the root mean square of 

the acceleration within a stride computed at different levels of the upper body has been proposed to 

describe the transmission and attenuations of oscillations from the lower limbs to the head while 

walking. Although the methodology is interesting, work has to be done in order to gain insight to 

interpret these parameters. This study contributed to a better understanding and mastering of 

wearable-based gait quality indices, advancing towards providing better tools for therapeutic follow 

up. In order to further enhance the understanding of these parameters, future studies should focus on 

establishing reference values on larger samples of pathological or asymptomatic populations while 

comparing the wearable-based gait quality indices to gold standards. This will facilitate the clinical 

interpretation of the retrieved gait quality indices and therefore will promote the clinical transfer of 

wearable gait quality analysis, thus having an actual impact on the clinical decision making. 
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General conclusion 

The aim of this thesis was to contribute to the development of a wearable framework to support 

the in-field assessment of people with lower-limb amputation during their functional rehabilitation.  

The first step to achieve this aim was to identify clinically relevant parameters that could be 

quantified using wearable sensor data. Therefore, the first part of the thesis aimed at providing an 

overview of the literature with regards to lower-limb amputee care (chapter 1), biomechanical 

parameters usually retrieved in lower-limb amputee gait analysis (chapter 2), and opportunities 

offered by wearable sensors through a presentation of the different technologies and the derived 

parameters from wearable sensor data analysis (chapter 3). In that last chapter, a special focus on 

pressure insoles and magneto-inertial measurement units (MIMUs) was developed, since these 

technologies were found to allow capturing a wide variety of gait descriptors, including a set of 

parameters that are usually retrieved to describe the gait of people with lower-limb amputation. 

Interestingly, since wearable sensors rely on different technologies compared to the gold standard 

optical motion capture systems or force platforms, the output parameters derived from wearable gait 

analysis may differ from those of usual laboratory-based gait analysis. In fact, two different approaches 

have emerged from the literature when dealing with wearable sensors, and most particularly with 

MIMUs. A first approach consists in developing biomechanical models of the human body or the 

motion (e.g. inertial model, inverted pendulum, kinematic chains) in order to retrieve biomechanically-

founded parameters, similar to those that could be obtained (often more quickly and easily) with 

laboratory-based instruments. A second approach consists in identifying patterns in the signals 

measured by wearable sensors to extract new features describing a specific motion or pathology, to 

learn the relationship between the observed features and a relevant reference gait descriptor, or to 

link features in the signal to observed events. In this second approach, an a priori model of the human 

body or motion is not necessary, and the post-processing may seem closer to signal processing than 

biomechanical analysis. Both these complementary approaches were deemed relevant and were 

therefore implemented in the course of the thesis, with the aim to retrieve global descriptors of the 

lower-limb amputee gait allowing to quantify gait deficiencies and to relate those to mechanical 

parameters.  The overview of the literature presented in the first part of the manuscript allowed to 

identify such global descriptors as being the kinematics of the center of mass and synthetic descriptors 

of balance and symmetry. 

 

The second part of the manuscript, then, proposed a framework for wearable gait analysis based 

on a biomechanical model-based approach. This framework aimed at providing an accurate estimation 

of body center of mass kinematics from a minimal number of sensors, in order to be compatible with 

the clinical routine. First, optimal sensor locations were identified through the analysis of the 

contributions of fifteen segments (head, trunk, upper arms, forearms, hands, pelvis, thighs, shanks and 

feet) to the total body center of mass acceleration in ten people with transfemoral amputation, using 

a full-body inertial model and an optical motion capture system (chapter 2). In the third chapter, an 

almost fully wearable framework was proposed to retrieve body center of mass motion from inertial 

measurement units positioned on the identified segments. The framework allowed to estimate both 

body center of mass acceleration and instantaneous velocity from only five sensors located on the 
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trunk, thighs and shanks with high agreement compared to reference laboratory-based instruments in 

oŶe peƌsoŶ ǁith tƌaŶsfeŵoƌal aŵputatioŶ ;PeaƌsoŶ͛s ĐoeffiĐieŶts of ĐoƌƌelatioŶ ƌ > Ϭ.ϴϵ foƌ the 
acceleration components and r > 0.94 for the instantaneous velocity). To the authors͛ knowledge, this 

is the first study that allowed to estimate the instantaneous velocity of the body center of mass in an 

inertial Earth-fixed reference frame from wearable sensors, without having formulated the hypothesis 

that the center of mass of the body lies in the pelvis reference frame. The same methodology could be 

applied in sound or other pathological gait to develop appropriate optimal sensor networks for these 

populations. Finally, an original study was proposed in chapter 4 to investigate the robustness of the 

developed framework to erroneous identification of sensors positions. The methodology proposed in 

this chapter could be easily adapted to other sensor networks or other biomechanical parameters (for 

instance, the instantaneous velocity). It could also be implemented to investigate the impact of errors 

resulting from the proposed static calibration and assumptions in the computed MIMUs orientations 

in a common global reference frame. It is therefore a precious tool to investigate the impact of sensor 

positioning or localization on a parameter of interest.  

The work achieved in this framework has, however, some limitations, the most obvious being that 

the original algorithms and methods proposed in chapter 3 and 4 were developed and validated on 

the data from a single person with transfemoral amputation, partly due to the pandemic situation in 

2020. More patients should be recruited in order to confirm the validity and relevance of the 

framework for body center of mass motion tracking. A second important limitation is that the wearable 

framework proposed in this work is quite cumbersome due to the need of multiple sensing modalities. 

The protocol could be simplified and made 100% wearable by using a 3D body scanner instead of 

calibrated photographs and an optical motion capture system. However, the accuracy of the scan-

based geometric inertial model and of MIMUs positions retrieved from the scan should be evaluated. 

A few tracks for improvement regarding the framework consist in improving the identification of 

MIMUs location by positioning MIMUs on top of the stretch Velcro bands and/or by positioning colored 

stickers on top of the location of MIMUs origin. This could pave the way for the development of an 

algorithm that would automatically detect the position of MIMUs origins on the photograph or 

textured mesh issued from the 3D body scan in order to reduce the intervention of the operator. 

Eventually, the development of a kinematic model of the lower limbs and/or pelvis could allow to 

further reduce the number of required sensors. 

In parallel with these improvements, the framework could be expanded to propose the 

quantification of other clinically relevant parameters. For instance, the instantaneous body center of 

mass velocity could further be integrated to estimate the body center of mass displacement or 

excursion, which was used for instance to quantify inter-limb symmetry in prosthetic gait (Askew et 

al., 2019). Another parameter of great interest, especially for the rehabilitation of people with lower-

limb amputation (Cutti et al., 2018; Loiret et al., 2019) is the ground reaction force under each foot 

while walking. Several models have been proposed but they generally use the assumption of 

symmetrical gait to distribute the force during the double stance phase of gait (Ancillao et al., 2018), 

which is obviously not applicable in people with lower-limb amputation. Last but not least, combining 

the estimation of the ground reaction force under each foot with the instantaneous velocity of the 

body center of mass would allow to investigate mechanical energy exchanges with the individual limb 

method (Donelan et al., 2002b), therefore providing relevant information regarding the effect of a 
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rehabilitation procedure or a prosthetic component on gait efficiency (Bonnet et al., 2014; Askew et 

al., 2019).  

 

In the third part of the manuscript, the relevance and feasibility of the second wearable gait 

analysis approach – which consists in identifying features or computing metrics from the signals of 

wearable sensors without the use of biomechanical modelling – was investigated in people with lower-

limb amputation, with the perspective of a clinical transfer for rehabilitation monitoring.  

First, the accuracy of state-of-the-art methods for temporal parameter estimation using IMUs was 

assessed in people with amputation. To this aim, five inertial-measurement-units-based gait event 

detection algorithms were implemented and tested in people with transfemoral amputation. Although 

two of the five algorithms displayed a good accuracy in the timing of occurrence of initial and final 

contact events, validating their use for gait cycle segmentation, they tended to either underestimate 

the sound stance phase duration or to overestimate the prosthetic stance phase duration, resulting in 

the underestimation of stance phase duration asymmetry. This comparative analysis thus highlighted 

the need for the development and extended validation of algorithms that are specific to people with 

transfemoral amputation ambulating overground. It however provided a few tracks to enhance the 

current algorithms in order to further improve gait event detection. 

In the second chapter, a protocol consisting in the instrumentation of the two-minute walking test 

(2MWT) with three inertial measurement units and two pressure insoles was proposed. It allowed to 

quantify recent gait quality indices in a group of transtibial amputees and of sound participants and 

was proved to be compatible with the rehabilitation. The investigated indices allowed to quantify 

either gait symmetry or the ability to attenuate acceleration from the lower limbs to the upper body, 

which was described in the literature as a pre-requisite to stabilize the head while walking and 

therefore, avoid falling. The study allowed to comparatively assess the population of transtibial 

amputees and of sound participants, and showed that people with transtibial amputation walk with a 

more asymmetrical gait than young and healthy participants (as evidenced by a lower improved 

harmonic ratio) and were more prone to falling (as evidenced by the higher root mean square 

accelerations at the head and sternum level and the low-to-negative attenuation coefficients exhibited 

by people with transtibial amputation). The study was the first to propose an estimation of the 

reliability of the investigated gait quality indices in both people with transtibial amputation and healthy 

participants. However, the participants were tested twice within the same session, which limited the 

influence of intra-participant variability and prevented to consider errors which could occur while 

setting up or calibrating sensors in the repeatability analysis. Therefore, the estimated minimal 

detectable changes found in this study are to be carefully interpreted as they may be underestimated. 

Still, the results obtained allowed to provide original reference values for these indices in rehabilitated 

people with transtibial amputation. In order to complete these results and advance towards clinical 

transfer of the protocol, future studies should focus on retrieving the values of these gait quality 

indices during the rehabilitation. Only then would it be possible to confirm the relevance of a gait 

quality index for monitoring gait symmetry and/or assessing the risk of falling during the rehabilitation. 

Lastly, there is still a lack of hindsight on the investigated gait quality indices, especially the improved 

harmonic ratio, which makes their interpretation difficult and compromise their use in the clinical field 

for clinical gait assessment. Concomitantly assessing the investigated gait quality indices with wearable 
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sensors and kinematic and balance biomechanical parameters issued from laboratory-based 

instruments may provide relevant information regarding how to interpret these parameters and how 

to benefit from these indices in the rehabilitation pathway. Furthermore, standardized protocols 

across laboratories may allow to develop a database to better characterize different populations using 

these parameters. 

 

All in all, the work achieved during this thesis allowed to investigate two complementary 

approaches for the wearable gait analysis of people with lower-limb amputation. The first approach 

allowed to develop a comprehensive method based on a biomechanical model that allows to 

characterize the kinematics of the body center of mass with promising results, which should be 

confirmed on larger cohorts. This method could be used to adapt and monitor the effects of 

rehabilitation protocols as the retrieved synthetic global parameter (the instantaneous velocity or 

acceleration of the body center of mass) is directly linked to segmental motion. More development is 

required to improve the usability of wearable gait analysis in the clinical field (user-friendly acquisition 

system, quick post-processing, easy interpretation) and other synthetic parameters could be retrieved 

based on the proposed protocol. The second approach allowed to further validate a wearable 

framework that is mature for in-the-field quantification of gait quality indices that are intelligible to 

both the patients and the clinicians and allow to evaluate gait symmetry and balance. More work is 

required to further understand the implications of the different gait quality indices, notably the 

improved harmonic ratio, in order to propose rehabilitation protocols targeting these aspects of gait. 

It is worth noting that all the methodologies that were proposed in this framework and developed 

for people with lower-limb amputation could be adapted to other pathologies as well. It should 

however be kept in mind that if the methodologies are transferable, most of the proposed algorithms 

rely on specificities of the gait of people with lower-limb amputation and may require some specific 

development for other populations. 
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Appendix A – Marker set used in Part 2 

In the second part of the present manuscript, the participants were equipped with a full-body 

marker set as displayed in the following figures (Figure appendix 1, Figure appendix 2). 

The marker clusters on the thorax (markers THOXX) and feet (PHXX and PBXX) were only present 

on the patient equipped with inertial measurement units (see chapters 3 and 4): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure appendix 1 - Full-body marker set (face view) 
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Figure appendix 2 - Full-body marker set (back view) 
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Appendix B – Comparative assessment of M-M algorithm 

Given that M-M algorithm had both a very good sensitivity and high positive predictive values 

(PPV), close to that set as a criterion for further investigation, the possibility to decrease the PPV 

threshold criterion was considered.  

Therefore, the accuracy achieved by this algorithm in detecting gait events and estimating 

temporal parameters was investigated. 

However, results obtained with M-M are very poor compared to the other two algorithms, with a 

large dispersion of timing errors for gait event detection, and a data distribution far from the normality 

(as evidenced by a mean very different than the median) (see Figure appendix 3).  

IŶ the authoƌs͛ opiŶion, due to the huge variability of its results, the M-M algorithm cannot be 

adopted in an actual clinical context and therefore, providing its results in the core of the manuscript 

was thought not to add significant/useful information to the study. Last but not least, making a clear 

graphical representation of the results was jeopardized by this error variability, as can be seen in the 

figures below (gait event detection timing in Figure appendix 3 and temporal parameters errors in 

Figure appendix 4). For all these reasons, we finally decided to strictly respect the PPV threshold and 

to restrain the analysis to M-L and M-T algorithms. 

 

Figure appendix 3: Gait event timing errors with M-M, M-L and M-T (ms). Mean values are indicated with the diamond 

shape within the boxplot. 
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Figure appendix 4: Temporal parameters errors in % as obtained with M-M, M-L, M-T 
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Résumé détaillé de la thèse en français 

1. Introduction et objectifs de la thèse 

1.1. Objectifs et déroulement de la rééducation des personnes amputées de membre 

inférieur 

L͛aŵputatioŶ d͛uŶ ŵeŵďƌe iŶfĠƌieuƌ a uŶ iŵpaĐt définitif sur les capacités locomotrices et la 

qualité de vie des personnes amputées (Gailey et al., 2008; Samuelsson et al., 2012). Après 

l͛aŵputatioŶ, les patieŶts soŶt pƌis eŶ Đhaƌge paƌ uŶe ĠƋuipe ŵultidisĐipliŶaiƌe ĐoŶstituĠe d͛uŶ 
ŵĠdeĐiŶ MPR ;MĠdeĐiŶe PhǇsiƋue et de RĠadaptatioŶͿ, de kiŶĠsithĠƌapeutes et eƌgothĠƌapeutes, d͛uŶ 
orthoprothésiste, et de tout autre personnel soignant jugé nécessaire (pour assurer, par exemple, un 

suivi psychologique). Cette équipe en charge de la rééducation a vocation à assurer le retour du patient 

à son domicile avec la meilleure qualité de vie possible. Pour ce faire, la rééducation a pour objectif de 

ƌĠduiƌe les liŵitatioŶs foŶĐtioŶŶelles iŶduites paƌ l͛aŵputatioŶ. LoƌsƋue les ĐapaĐitĠs du patieŶt le lui 
peƌŵetteŶt, uŶ appaƌeillage peut ġtƌe pƌoposĠ. Dğs loƌs, la ƌĠĠduĐatioŶ s͛attaĐhe à ƌestauƌeƌ 
l͛ĠƋuiliďƌe postuƌal et de la ŵaƌĐhe aiŶsi Ƌu͛à ƌestituer une marche la plus physiologique possible. En 

effet, les compensations et asymétries mises en place par la personne amputée appareillée peuvent 

ĐoŶduiƌe au dĠǀeloppeŵeŶt de ĐoŵoƌďiditĠs ;aƌthƌose, loŵďalgie ĐhƌoŶiƋue…Ϳ ŶotaŵŵeŶt du fait des 

sur-solliĐitatioŶs des aƌtiĐulatioŶs ĐoŶtƌolatĠƌales Ƌu͛elles eŶtƌaiŶeŶt (Sawers and Hafner, 2013; Villa, 

Bascou, et al., 2017).  

Pouƌ suiǀƌe l͛ĠǀolutioŶ du patient pendant la rééducation, des évaluations régulières sont 

nécessaires. En clinique, celles-Đi s͛appuient principalement sur les observations des cliniciens ainsi 

que sur le ressenti du patient à propos de sa prothèse (notamment inconfort et douleurs) (Cuesta-

Vargas et al., 2010; Hafner and Sanders, 2014). Des indicateurs de performance peuvent être attribués 

par les cliniciens lors de la réalisation de tâches motrices spécifiques, telles que définies par des tests 

ou sĐoƌes ĐliŶiƋues. SouǀeŶt, Đes iŶdiĐateuƌs soŶt eŶ paƌtie suďjeĐtifs Đaƌ dĠpeŶdeŶt de l͛appƌĠĐiatioŶ 
et de l͛eǆpĠƌieŶĐe du ĐliŶiĐieŶ. Certains tests cliniques, tels que le Timed-Up-and-Go test ou le test de 

deux minutes, consistent à réaliser une tâche locomotrice bien définie visant à évaluer la mobilité. Ces 

tests reposent alors sur une mesure quantitative objective telle que la durée nécessaire pour la 

réalisation de la tâche ou la distance parcourue pendant la durée de la tâche. Typiquement, ces deux 

tests ont été validés chez les personnes amputées de membre inférieur (Deathe et al., 2009) et sont 

aiŶsi ƌĠguliğƌeŵeŶt ƌĠalisĠs loƌs de la ƌĠĠduĐatioŶ afiŶ d͛oďteŶiƌ uŶe doŶŶĠe ƋuaŶtitatiǀe d͛ĠǀaluatioŶ 
de la performance lors de la marche. Toutefois, une bonne performance ne traduit pas nécessairement 

une bonne qualité de marche (Calmels et al., 2002). AiŶsi, l͛ĠǀaluatioŶ de la ƌĠĠduĐation doit prendre 

eŶ Đoŵpte d͛autƌes aspeĐts, tels Ƌue la sǇŵĠtƌie et la ƌĠgulaƌitĠ de la ŵaƌĐhe, l͛oĐĐuƌƌeŶĐe de peƌte 
d͛ĠƋuiliďƌe, etĐ. 

1.2.  IŶtĠƌġts et liŵites des laďoƌatoiƌes d’aŶalǇse du ŵouveŵeŶt 

Les laďoƌatoiƌes d͛aŶalǇse du ŵouǀeŵeŶt, ĐoŶstituĠs eŶ gĠŶĠƌal de platefoƌŵes de foƌĐe et d͛uŶ 
sǇstğŵe optoĠleĐtƌoŶiƋue, peƌŵetteŶt d͛oďteŶiƌ de tƌğs Ŷoŵďƌeuses doŶŶĠes ƋuaŶtitatiǀes de la 
marche (Cappozzo et al., 2005; Goujon, 2006). Ils ont largement été utilisés en recherche pour 
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caractériser la locomotion des personnes amputées de membre inférieur (Goujon-Pillet et al., 2008; 

Houdijk et al., 2009; Sagawa et al., 2011; Villa, Loiret, et al., 2017).  

Les paramètres spatiotemporels de la marche font partie des paramètres les plus étudiés en, 

laďoƌatoiƌe d͛aŶalǇse du ŵouǀeŵeŶt Đhez les peƌsoŶŶes aŵputĠes de ŵeŵďƌe inférieur (Sagawa et 

al., 2011). Ils peuvent être calculés à partir de la trajectoire de marqueurs optoélectroniques au niveau 

des pieds et/ou de l͛iŶstaŶt de dĠpasseŵeŶt de seuil d͛effoƌt dĠteĐtĠ suƌ les platefoƌŵes de foƌĐe. Les 

paramètres spatiotemporels permettent notamment de calculer la vitesse de marche, indicateur 

associé à la qualité de ǀie et au Ŷiǀeau foŶĐtioŶŶel d͛uŶe peƌsoŶŶe (Perry, 1992; Batten et al., 2019), 

ainsi que les asǇŵĠtƌies de duƌĠe d͛appui ou de loŶgueuƌ de pas, ŵises eŶ ĠǀideŶĐe Đhez les peƌsoŶŶes 
amputées (Jaegers et al., 1995; Goujon et al., 2006; Roerdink et al., 2012) et pouvant traduire une 

instabilité à la marche (Hof et al., 2005; Hak et al., 2014). 

Les systèmes optoélectroniques permettent de décrire les trajectoires de segments ou 

aƌtiĐulatioŶs du Đoƌps peŶdaŶt la ŵaƌĐhe et, loƌsƋu͛assoĐiĠs à uŶ ŵodğle iŶeƌtiel ƌepƌĠseŶtaŶt le Đoƌps 
comme un ensemble de solides iŶdĠfoƌŵaďles, d͛oďteŶiƌ la ĐiŶĠŵatiƋue du ĐeŶtƌe de ŵasse du Đoƌps 
(analyse segmentaire). Les asǇŵĠtƌies du sĐhĠŵa de ŵaƌĐhe Ƌue l͛oŶ ƌetƌouǀe Đhez les peƌsoŶŶes 
amputées de membre inférieur au niveau segmentaire ou articulaire ont des répercussions sur la 

trajectoire ou la vitesse du centre de masse du corps (Tesio et al., 1998; Agrawal et al., 2009; Askew et 

al., 2019; Strutzenberger et al., 2019). AiŶsi, l͛aŶalǇse de la ĐiŶĠŵatiƋue du ĐeŶtƌe de ŵasse issue des 
laďoƌatoiƌes d͛aŶalǇse du ŵouǀeŵeŶt peƌŵet de s͛affƌaŶĐhiƌ de l͛aŶalǇse de la ĐiŶĠŵatiƋue de ĐhaƋue 
articulation ou segment tout en mettant en évidence la présence de compensations ou asymétries lors 

de la marche.  

Les plateformes de force, quant à elles, fournissent des informations sur les efforts et moments de 

ƌĠaĐtioŶ au sol Ƌui s͛appliƋueŶt au Đoƌps au Đours de la marche. Par application de la seconde loi de 

Newton, la somme des efforts de réaction au sol permet ainsi de calculer la cinématique du centre de 

ŵasse loƌsƋu͛auĐuŶ autƌe effoƌt eǆteƌŶe Ŷ͛est appliƋuĠ au Đoƌps. Les effoƌts de ƌĠaĐtioŶ au sol sous 
chaque pied présentent un intérêt non négligeable lors de la rééducation des personnes amputées de 

membre inférieur en quantifiant la mise en charge de la prothèse et les éventuelles asymétries de 

charge entre le membre sain et prothétique (Loiret et al., 2019). Par ailleurs, en combinant les efforts 

de réaction au sol et les informations de la cinématique articulaire, il est possible de calculer les efforts 

et ŵoŵeŶts aƌtiĐulaiƌes. EŶfiŶ, loƌsƋu͛assoĐiĠs à la ǀitesse iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse, les effoƌts 
de réaction au sol sous chaque pied fournissent des informations sur le coût énergétique de la marche, 

à tƌaǀeƌs les ĠĐhaŶges d͛ĠŶeƌgie ŵĠĐaŶiƋue (Donelan et al., 2002a; Bonnet et al., 2014) 

La quantification de tous ces aspects biomécaniques de la marche est pertinente lors de la 

rééducation des personnes amputées de membre inférieur. Elle fournit en effet des renseignements à 

la fois sur la qualité et la performance de la marche. Par ailleurs, elle permet de fournir des données 

objectives et ƋuaŶtitatiǀes d͛ĠǀaluatioŶ de la ŵaƌĐhe, Đe Ƌui est de plus eŶ plus atteŶdu eŶ pƌatiƋue 
ĐliŶiƋue aǀeĐ l͛ĠŵeƌgeŶĐe de « la pratique fondée sur la preuve » (« evidence-based practice »), 

notamment pour prescrire des composants prothétiques les plus adaptés possibles à un patient ou 

pour en justifier le remboursement (Hafner and Sanders, 2014; Agrawal, 2016; Hawkins and Riddick, 

2018). EŶ ƌeǀaŶĐhe, les laďoƌatoiƌes d͛aŶalǇse du ŵouǀeŵeŶt soŶt tƌğs Đoûteuǆ, ŶĠĐessiteŶt uŶ 
technicien/ingénieur formé et imposent une prise de mesure uniquement en laboratoire, ce qui limite 

leur utilisation en routine clinique (Loiret et al., 2005). Par ailleurs, les données issues des laboratoires 
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d͛aŶalǇse du ŵouǀeŵeŶt, Đeƌtes Đoŵplètes et précises, sont très nombreuses, ce qui peut allonger et 

Đoŵpleǆifieƌ l͛iŶteƌpƌĠtatioŶ des ŵesuƌes pouƌ le ĐliŶiĐieŶ. C͛est pouƌƋuoi, l͛utilisatioŶ de sǇstğŵes 
d͛aĐƋuisitioŶ de doŶŶĠes alteƌŶatifs, ŵoiŶs Đoûteuǆ et peƌŵettaŶt uŶe ĠǀaluatioŶ gloďale de la 

marche, est attractive pour la rééducation. 

1.3. Emergence des capteurs embarqués et opportunités pour la rééducation des personnes 

amputées de membre inférieur 

La ŵiŶiatuƌisatioŶ de Đapteuƌs et l͛ĠŵeƌgeŶĐe de solutioŶs eŵďaƌƋuĠes aďoƌdaďles pouƌ l͛aŶalǇse 

du mouvement ces dernières années offrent de nombreuses opportunités de prise de mesure 

quantitative en situation écologique (Wong et al., 2007, 2015; Iosa, Picerno, et al., 2016; Benson et al., 

2018). Ainsi, les technologies embarquées telles que les centrales inertielles ou les semelles de 

pƌessioŶ pouƌƌaieŶt peƌŵettƌe d͛oďteŶiƌ des doŶŶĠes ƋuaŶtitatiǀes de la ŵarche, sans perturber celle-

Đi, au Đouƌs d͛eǆeƌĐiĐes de ƌĠĠduĐatioŶ. CeĐi Đoŵplğteƌait le suivi actuel de la rééducation grâce à des 

données quantitatives et objectives acquises au cours de séances avec les praticiens, mais également 

en télé-rééducation. A teƌŵe, l͛utilisatioŶ de la teĐhŶologie eŵďaƌƋuĠe au Đouƌs de la ƌĠĠduĐatioŶ 
pourrait également bénéficier au système de santé publique 

en réduisant les coûts globaux de la rééducation (Hafner and 

Sanders, 2014). Cependant, le transfert en clinique de ces 

outils Ŷ͛est pas iŵŵĠdiat (Cutti et al., 2015; Iosa, Picerno, et 

al., 2016). En effet, les technologies sous-jacentes des 

capteurs embarqués diffèrent de celles des laboratoires 

d͛aŶalǇse de ŵouǀeŵeŶt.  

Les centrales inertielles (magneto-inertial measurement 

units, ou MIMU en anglais) fournissent des données 

quantifiant le mouvement (accélération et vitesse angulaire) 

ainsi que le champ magnétique terrestre dans un repère 

inertiel associé au boîtier du capteur (en mouvement). Par 

ailleuƌs, l͛oƌieŶtatioŶ des ĐeŶtƌales inertielles dans un repère 

inertiel terrestre (fixe), comprenant un axe aligné avec 

l͛aĐĐĠlĠƌatioŶ de gƌaǀitĠ ;ǀeƌtiĐaleͿ et uŶ aǆe aligŶé avec le 

nord magnétique (Roetenberg, 2006; Sabatini, 2011) est 

obtenue par fusion des informations des différents capteurs 

qui la composent (accéléromètre, gyroscope et 

éventuellement magnétomètre, Figure 51) (Sabatini, 2011; 

Bergamini et al., 2014; Ligorio et al., 2020). En revanche, la 

position de la centrale inertielle dans ce repère ne peut pas 

être obtenue directemeŶt. L͛iŶtĠgƌatioŶ de la ǀitesse aŶgulaiƌe 
ou de l͛aĐĐélération mesurée par la centrale, après 

soustƌaĐtioŶ de l͛aĐĐĠlĠƌatioŶ de la gƌaǀitĠ, permettent 

d͛oďteŶiƌ ƌespeĐtiǀeŵeŶt les dĠplaĐeŵeŶts aŶgulaiƌes et 
linéaires de la centrale. On retrouve alors, aux conditions 

initiales près, les paramètres qui sont directement issus des 

systèmes optoélectroniques mais ceux-ci sont soumis à une 

Figure 51 : Orientation du repère local d'une centrale 

inertielle (local MIMU frame) dans le repère terrestre 

de référence (Earth-fixed reference frame) perçu par la 

centrale (axe z vertical aligné aǀeĐ l’accélération de 

gravité g et axe x dirigé vers le nord magnétique) 

Figure 52: Semelle de pression fournissant la 

distribution des pressioŶs au Đouƌs de l’appui ;eŶ 
haut) et la composante normale des efforts de 

réaction au sol (en bas).  

Tiré de https://peakpodiatry.com.au 
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dérive du fait du bruit contenu dans les signaux bruts des capteurs (Iosa, Picerno, et al., 2016; Hannink 

et al., 2017). De nombreuses études se sont alors attachées à développer des algorithmes permettant 

d͛oďteŶiƌ des paƌaŵğtƌes ďioŵĠĐaŶiƋues ĠpƌouǀĠs tels Ƌue les aŶgles aƌtiĐulaiƌes (Picerno, 2017; 

Poitras et al., 2019; Pacher et al., 2020). Ceux-Đi ŶĠĐessiteŶt toutefois de ĐoŶŶaŠtƌe l͛oƌieŶtatioŶ 
relative de la centrale et du segment sous-jacent, ce qui requiert de procéder à des calibrations 

fonctionnelles ou aŶatoŵiƋues pouǀaŶt alloŶgeƌ le teŵps d͛aĐƋuisitioŶ (Pacher et al., 2020).  A 

l͛iŶǀeƌse, de Ŷoŵďƌeuǆ paƌaŵğtƌes oďteŶus diƌeĐteŵeŶt à paƌtiƌ des doŶŶĠes ďƌutes des Đapteurs, en 

particulier des accélérations, ont émergé et soŶt utilisĠs pouƌ ĐaƌaĐtĠƌiseƌ ŶotaŵŵeŶt l͛ĠƋuiliďƌe et la 
symétrie de la marche (Iosa, Picerno, et al., 2016; Benson et al., 2018; Ghislieri et al., 2019).  

Les seŵelles de pƌessioŶ peuǀeŶt fouƌŶiƌ la ĐoŵposaŶte ǀeƌtiĐale de l͛effoƌt de ƌĠaĐtioŶ du sol 
s͛appliƋuaŶt suƌ la seŵelle, Đe Ƌui peƌŵet de ĐaƌaĐtĠƌiseƌ la sǇŵĠtƌie temporelle ou de charge lors de 

la marche (Nolan et al. 2003; Cutti et al. 2018; Loiret et al. 2019 - Figure 52). Toutefois, les autres 

ĐoŵposaŶtes de l͛effoƌt de ƌĠaĐtioŶ du sol ou le ŵoŵeŶt de ƌĠaĐtioŶ au sol oďteŶues aǀeĐ les 
plateformes de force ne peuvent être obtenu directement à partir des semelles de pression.  

AiŶsi, daŶs le ďut d͛aĐcompagner la rééducation avec des capteurs embarqués, il apparaît donc 

ŶĠĐessaiƌe d͛ideŶtifieƌ les paƌaŵğtƌes ďioŵĠĐaŶiƋues peƌtiŶeŶts Ƌui puisseŶt ġtƌe ĐaƌaĐtĠƌisĠs à l͛aide 
de ces capteurs et de développer des algorithmes spécifiques aux technologies embarquées pour les 

obteŶiƌ. Il faut paƌ ailleuƌs Ŷoteƌ Ƌue, pouƌ faĐiliteƌ l͛utilisatioŶ eŶ ĐliŶiƋue de la teĐhŶologie 
eŵďaƌƋuĠe, l͛aĐƋuisitioŶ de doŶŶĠes doit ġtƌe la plus Đouƌte et la ŵoiŶs iŶǀasive possible, les cliniciens 

ayant souvent peu de temps à passer avec leurs patients. Ainsi, limiter le nombre de capteurs 

ŶĠĐessaiƌes et siŵplifieƌ au ŵaǆiŵuŵ les pƌotoĐoles d͛aĐƋuisitioŶs de doŶŶĠes est pƌiŵoƌdial. EŶfiŶ, 
les altérations du schéma de marche des personnes amputées se reflétant dans les signaux mesurés 

par les capteurs positioŶŶĠs suƌ Đes peƌsoŶŶes, il est ŶĠĐessaiƌe de s͛assuƌeƌ Ƌue les algoƌithŵes 
développés prennent en compte les spécificités de la marche des personnes amputées et soient validés 

pour cette population. 

1.4. Objectif de la thèse 

L͛oďjeĐtif de cette thèse est doŶĐ de ĐoŶtƌiďueƌ au dĠǀeloppeŵeŶt d͛outils ou pƌotoĐoles 
embarqués permettant de quantifier la marche des personnes amputées de membre inférieur au cours 

de leur rééducation. Les protocoles développés devront permettre d͛oďteŶiƌ ƌapidement des données 

quantitatives pertinentes. Suite à la revue de littérature présentée dans les sections précédentes, 

l͛aĐƋuisitioŶ d͛iŶdiĐateuƌs dĠĐƌiǀaŶt la ƋualitĠ de la ŵaƌĐhe ;sǇŵĠtƌie, ĠƋuiliďƌeͿ et la ĐiŶĠŵatiƋue du 
centre de masse (qui permet notaŵŵeŶt d͛ideŶtifieƌ des altérations du schéma de marche et donne 

des iŶfoƌŵatioŶs suƌ l͛effiĐaĐitĠ ĠŶeƌgĠtiƋue de Đelle-ci) semble particulièrement pertinente. Une 

attention particulière sera portée à la compatibilité de ces protocoles à une utilisation en clinique. En 

outre, des données pertinentes devront pouǀoiƌ ġtƌe oďteŶues à paƌtiƌ d͛uŶ Ŷoŵďƌe ŵiŶiŵal de 
capteurs, soit à partir de données acquises rapidement en quelques pas, soit en instrumentant des 

tests cliniques éprouvés et validés chez les personnes amputées de membre inférieur, tel que le test 

de deux minutes, afin de ne pas perturber la rééducation. 

 Afin de répondre à ces objectifs, deux approches complémentaires ont été implémentées et 

suivies au cours de cette thèse.  



165 

 

La seconde partie de la thèse présentera donc une première approche, qui consiste à extraire des 

paramètres biomécaniques pertinents et éprouvés à partir des données des capteurs embarqués. 

Cette appƌoĐhe s͛appuie suƌ le dĠǀeloppeŵeŶt d͛algoƌithŵes paƌfois Đoŵpleǆes, ŶĠĐessitaŶt de 

modéliser le corps et/ou le mouvement. La seconde partie de la thèse aura donc pour but de proposer 

uŶ pƌotoĐole eŵďaƌƋuĠ et uŶ algoƌithŵe oƌigiŶal peƌŵettaŶt d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ et la ǀitesse 
iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse d͛uŶe peƌsoŶŶe aŵputĠe au niveau transfémoral à paƌtiƌ d͛uŶ Ŷoŵďƌe 
limité de centrales inertielles.   

Dans la troisième partie de la thèse, une approche alternative sera mise en place. La seconde 

approche consiste en effet à extraire des paramètres des signaux bruts des capteurs, sans avoir recours 

à une modélisation complexe du corps ou du mouvement. Les signaux bruts des capteurs embarqués 

étant différents de ceuǆ issus des iŶstƌuŵeŶts pƌĠseŶts daŶs les laďoƌatoiƌes d͛aŶalǇse du ŵouǀeŵeŶt, 
la pertinence du suivi de paramètres issus de ces capteurs pour la caractérisation de la marche des 

peƌsoŶŶes aŵputĠes de ŵeŵďƌe iŶfĠƌieuƌ Ŷ͛est pas Ġtaďlie. AiŶsi, la tƌoisiğŵe paƌtie de la thğse a pouƌ 
oďjeĐtif d͛eǆaŵiŶeƌ la faisaďilitĠ et la peƌtiŶeŶĐe ĐliŶiƋue de l͛utilisatioŶ des Đapteuƌs embarqués pour 

la caractérisation de la symétrie et de l͛ĠƋuiliďƌe de la ŵaƌĐhe Đhez les peƌsoŶŶes aŵputĠes de ŵeŵďƌe 
inférieur.  

2. Approche biomécanique : dĠǀeloppeŵeŶt d’uŶ pƌotoĐole eŵďaƌƋuĠ pouƌ l’aĐƋuisitioŶ 
de la cinématique du centre de masse chez les personnes amputées au niveau 

transfémoral 

La peƌtiŶeŶĐe de l͛aĐƋuisitioŶ de la ĐiŶĠŵatiƋue du ĐeŶtƌe de ŵasse a ĠtĠ ŵise eŶ ĠǀideŶĐe daŶs 
la ƌeǀue de littĠƌatuƌe ƌestituĠe daŶs l͛Ġtat de l͛aƌt de la paƌtie pƌĠĐĠdeŶte. AiŶsi, Đette paƌtie de la 
thèse a pour objectif de proposer un protocole et un algoƌithŵe peƌŵettaŶt d͛aĐƋuĠƌiƌ la ĐiŶĠŵatiƋue 
du ĐeŶtƌe de ŵasse à l͛aide de Đapteuƌs eŵďaƌƋuĠs. DaŶs la littĠƌatuƌe, plusieurs méthodes ont été 

proposées dans ce but et validées chez des sujets sains. Elles peuvent être catégorisées en deux 

typologies selon le nombre de centrales inertielles utilisées.  

La pƌeŵiğƌe tǇpologie de ŵĠthodes est ďasĠe suƌ l͛hǇpothğse Ƌu͛uŶ uŶiƋue Đapteuƌ positioŶŶĠ au 
Ŷiǀeau du ďassiŶ peƌŵet d͛aĐƋuĠƌiƌ la ĐiŶĠŵatiƋue du ĐeŶtƌe de ŵasse (Esser et al., 2009; Floor-

Westerdijk et al., 2012) et peut s͛assiŵileƌ à la ŵĠthode du ŵaƌƋueuƌ saĐƌal aǀeĐ des sǇstğŵes 
optoélectroniques (Gard et al., 2004; Pavei et al., 2017). Lorsque la tâche étudiée implique des 

ŵouǀeŵeŶts iŵpoƌtaŶts du haut du Đoƌps ou daŶs le Đas d͛uŶe ŵaƌĐhe asǇŵĠtƌiƋue, les ŵĠthodes à 
capteur/marqueur unique au niveau du bassin ont montrĠ uŶe teŶdaŶĐe à suƌestiŵeƌ l͛eǆĐuƌsioŶ du 
centre de masse (Eames et al., 1999; Meichtry et al., 2007; Myklebust et al., 2015; Huntley et al., 2017; 

Pavei et al., 2017; Mohamed Refai et al., 2020). Pour cette raison, ces méthodes, bien que très 

attractives par leur simplicité (Huntley et al., 2017; Jeong et al., 2018), ne semblent pas pertinentes 

pour étudier la cinématique du centre de masse chez les personnes amputées de membre inférieur. 

Une seconde catégorie de méthodes consiste alors à estimer la trajectoire (ou vitesse ou accélération) 

du ĐeŶtƌe de ŵasse du Đoƌps à l͛aide d͛uŶe ŵoǇeŶŶe poŶdĠƌĠe de la tƌajeĐtoiƌe ;ou ǀitesse ou 
accélération) des centres de masse des segments du corps, comme ce qui est fait à l͛aide de systèmes 

optoĠleĐtƌoŶiƋues et d͛uŶ ŵodğle iŶeƌtiel paƌ aŶalǇse segŵeŶtaiƌe. DaŶs le Đas de Đette ŵĠthode 
multi-segmentaire, deux approches sont proposées dans la littérature : soit les accélérations des 

centres de masse des segments sont directement estimées à l͛aide des ĐeŶtƌales iŶeƌtielles 



166 

 

positionnées sur lesdits segments (Lintmeijer et al., 2018; Shahabpoor et al., 2018), soit les positions 

des centres de masse des segments sont estimées de manière récursive en utilisant une chaîne 

ĐiŶĠŵatiƋue et l͛estiŵatioŶ de l͛oƌieŶtatioŶ de ĐhaƋue segŵeŶt doŶŶĠe paƌ la ĐeŶtƌale iŶeƌtielle 
positionnée sur celui-ci (Fasel, Sporri, et al., 2017; Karatsidis et al., 2017). UŶe phase d͛iŶtĠgƌatioŶ ou 
de dĠƌiǀatioŶ peut ġtƌe aloƌs ŶĠĐessaiƌe seloŶ Ƌue l͛oŶ ƌeĐheƌĐhe la tƌajeĐtoiƌe ou l͛aĐĐĠlĠƌatioŶ du 
ĐeŶtƌe de ŵasse. Ces deuǆ appƌoĐhes iŵpliƋueŶt d͛utiliseƌ de Ŷoŵďƌeuǆ Đapteuƌs ;ϭϭ à ϭϳ Đapteuƌs 
d͛apƌğs les ŵĠthodes ƌetƌouǀĠes daŶs la littĠƌatuƌe - Karatsidis et al. 2017; Pavei et al. 2017; Fasel et 

al. 2017), liŵitaŶt l͛utilisaďilitĠ de la ŵĠthode eŶ ĐliŶiƋue.  

Plusieurs auteurs ont envisagé de diminuer le nombre de capteurs nécessaires (Zijlstra et al., 2010; 

Fasel, Spörri, et al., 2017; Shahabpoor et al., 2018).  

Dans le cas de la chaîne cinématique,  des capteurs doivent toutefois être positionnés sur tous les 

segments de la chaîne, limitant ainsi la réduction possible du nombre de capteurs (7 au lieu de 11, en 

enlevant les capteurs positionnés sur les bras dans (Fasel, Spörri, et al., 2017) par exemple). Par 

ailleurs, cette approche implique de connaître précisĠŵeŶt l͛oƌientation relative entre les repères 

locaux des centrales inertielles et les repères anatomiques des segments (Kianifar et al., 2019), ce qui 

peut être chronophage et nécessiter des instruments additionnels (Picerno et al., 2008; Cutti et al., 

2010; Pacher et al., 2020).  

EŶ Đe Ƌui ĐoŶĐeƌŶe l͛appƌoĐhe Ƌui ƌepose suƌ la ŵoǇeŶŶe poŶdĠƌĠe des aĐĐĠlĠƌatioŶs des centres 

de masse de segments, une méthode intéressante a été proposée pour déterminer les localisations 

optiŵales de Đapteuƌs pouƌ l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse au Đouƌs de la ŵaƌĐhe 
chez des sujets sains, et pourrait être adaptée aux personnes amputées (Shahabpoor et al., 2018). Les 

auteuƌs oŶt ŵoŶtƌĠ Ƌue l͛aĐĐĠlĠƌation du centre de masse pouvait être estiŵĠe à l͛aide des 
accélérations des centres de masse des segments du tronc, du bassin et de la cuisse chez les sujets 

sains (erreur quadratique moyenne - RMSE < 18 % dans les trois directions - Shahabpoor et al. 2018). 

OŶ peut ĠgaleŵeŶt Ŷoteƌ l͛eǆisteŶĐe d͛uŶe méthode reposant sur le principe de la chaîne 

ĐiŶĠŵatiƋue, ŵais faisaŶt l͛hǇpothğse Ƌue le ĐeŶtƌe de ŵasse est fiǆe daŶs le ƌepğƌe aŶatoŵiƋue du 
bassin (Yuan and I. Chen, 2014). Cette ŵĠthode peƌŵet de ƌĠduiƌe les eƌƌeuƌs iŶduites paƌ l͛iŶtĠgƌatioŶ 
diƌeĐte de l͛aĐĐĠlĠƌatioŶ d͛uŶe ĐeŶtƌale positioŶŶĠe au bassin, mais repose sur la même hypothèse 

d͛iŵŵoďilitĠ du ĐeŶtƌe de ŵasse du Đoƌps paƌ ƌappoƌt au ďassiŶ Ƌue la ŵĠthode saĐƌale et est aiŶsi 
tout autant susceptible de surestimer les excursions du centre de masse.  

Cette analyse de la littérature nous a alors conduit à nous diriger vers une approche multi-

segmentaire, ne reposant pas sur le principe de la chaîne cinématique. Dans un premier temps, suivant 

la méthodologie proposée par (Shahabpoor et al., 2018), une analyse des contributions segmentaires 

daŶs l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps a ĠtĠ ŵeŶĠe à l͛aide d͛uŶ sǇstğŵe optoĠlectronique 

afiŶ d͛ideŶtifieƌ les loĐalisatioŶs optiŵales de ĐeŶtƌales iŶeƌtielles pouƌ l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ 
du centre de masse du corps chez les personnes amputées transfémorales se déplaçant sur sol plan. 

CeĐi a peƌŵis d͛ideŶtifieƌ diffĠƌeŶts ŵodğles optiŵauǆ peƌŵettaŶt d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe 
de ŵasse du Đoƌps à l͛aide d͛uŶ Ŷoŵďƌe ƌestƌeiŶt de ĐeŶtƌales inertielles (section 2.1). Dans un second 

temps, cette approche a été transférée et validée en embarqué suƌ les doŶŶĠes de ŵaƌĐhe d͛uŶe 
personne amputée transfémorale. UŶ pƌotoĐole oƌigiŶal peƌŵettaŶt d͛oďteŶiƌ les aĐĐĠlĠƌatioŶs des 
ĐeŶtƌes de ŵasse segŵeŶtaiƌes puis du Đoƌps à paƌtiƌ d͛uŶ Ŷoŵďƌe ŵiŶiŵal de ĐeŶtƌales iŶeƌtielles a 
ainsi été proposé (section 2.2). Pour finir, la précision des accélérations des centres de masse des 
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segments étant dépendante de la précision avec laquelle la position relative des centrales inertielles 

et des centres de masse des segments est obtenue, l͛influence des erreurs dans la localisation des 

ĐeŶtƌales iŶeƌtielles suƌ l͛estiŵatioŶ des aĐĐĠlĠƌatioŶs des ĐeŶtƌes de ŵasse des segŵeŶts et du Đoƌps 
a ĠtĠ eǆploƌĠe à l͛aide d͛uŶe aŶalǇse de seŶsiďilitĠ ;seĐtioŶ 2.3). 

2.1. Identification des contributions des segments et estiŵatioŶ de l’aĐĐĠlĠƌatioŶ du ĐeŶtƌe 
de ŵasse du Đoƌps à paƌtiƌ d’uŶ Ŷoŵďƌe ƌestƌeiŶt de segŵeŶts 

L͛oďjeĐtif de Đette pƌeŵiğƌe Ġtude Ġtait d͛uŶe paƌt, d͛ideŶtifieƌ les segŵeŶts ĐoŶtƌiďuaŶt le plus à 
l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps Đhez les peƌsoŶŶes aŵputĠes tƌaŶsfĠŵoƌales, et d͛autƌe 
paƌt, d͛Ġǀalueƌ diffĠƌeŶts ŵodğles d͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps à paƌtiƌ 
des accélérations des centres de masse des segments préalablement identifiés (« accélérations 

segmentaires »). 

Dix personnes amputées au niveau transfémoral (âge : 41,5 ± 11,3 ans ; masse : 68,8 ± 15,2 kg ; 

taille : 1,73 ± 0,07 m ; 8 hommes et 2 femmes) ont participé à cette étude. Chaque participant a été 

équipé de marqueurs optoélectroniques sur le corps complet selon (Al Abiad et al., 2020). Loƌs d͛uŶe 
phase statique en position debout, les positions des marqueurs ont été enregistrées avec un système 

optoélectronique (VICON, Oxford, UK, 200 Hz) simultanément à la prise de photos de face et profil. A 

la suite de cette acquisition, les participants ont effectué plusieurs allers à vitesse confortable dans la 

salle d͛aŶalǇse du ŵouǀeŵeŶt seloŶ uŶe ligŶe ƌectiligne de 8 m au milieu de laquelle se trouvaient 

trois plateformes de force (AMTI, 1000 Hz). Dans le cadre de cette étude, seuls les essais pour lesquels 

tƌois appuis ĐoŶsĠĐutifs suƌ les platefoƌŵes de foƌĐe ĠtaieŶt dĠteĐtĠs oŶt ĠtĠ ĐoŶseƌǀĠs afiŶ d͛isoler un 

cycle complet sur les plateformes. Les paramètres inertiels segmentaires (masse des segments et 

positions des centres de masse dans les repères anatomiques segmentaires) ont ĠtĠ dĠfiŶis à l͛aide 
d͛uŶ modèle inertiel comprenant 15 segments, personnalisé selon (Pillet et al., 2010) à partir des 

photographies de face et profil des participants. Les accélérations des centres de masse des segments 

(SCoM) et du centre de masse du corps (BCoM) ont alors été obtenues. 

Les ĐoŶtƌiďutioŶs des segŵeŶts daŶs l͛accélération du centre de masse du corps ont été calculées 

selon deux critères, définis dans (Shahabpoor et al., 2018):  

• Le « poids » des aĐĐĠlĠƌatioŶs segŵeŶtaiƌes daŶs l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du 

corps, (࢏ࢍࢋ࢙࢈࢏࢚࢘࢔࢕࡯ = ௠ೞ೐𝑔೔௠್೚೏𝑦 ࢏ࡹ࢕࡯ࡿࢇ   avec ݉௦௘௚೔  la masse du segment, ݉௕௢ௗ௬  la masse 

du corps et ࢏ࡹ࢕࡯ࡿࢇ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du segŵeŶt oďteŶue paƌ douďle 
dérivation)  

• La similarité des accélérations segmentaires à celle du centre de masse du corps exprimée 

à l͛aide du ĐoeffiĐieŶt de ĐoƌƌĠlatioŶ de Pearson selon les directions antéropostérieure 

(AP), médio-latérale (ML) et verticale (V).  

Les contributions moyennes de chaque segment ont été obtenues en prenant la moyenne sur 

l͛eŶseŵďle des paƌtiĐipaŶts. 

Une fois les contributeurs les plus importants identifiés, deux types de réseaux de segments 

optiŵauǆ ;OSNͿ oŶt ĠtĠ pƌoposĠs pouƌ estiŵeƌ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps à paƌtiƌ d͛uŶ 
Ŷoŵďƌe ƌestƌeiŶt de segŵeŶts ;ч ϲͿ : 
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OSN de type 1 :    ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ૚ = ∑ ே௜=ଵ࢈࢏࢚࢘࢔࢕࡯ ࢏ࢍࢋ࢙  = ∑ ௠ೞ೐𝑔೔∑ ௠ೞ೐𝑔ೕೕಿ=1 ே௜=ଵ࢏ࡹ࢕࡯ࡿࢇ      
OSN de type 2 :    ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ૛ = ∑ ே௜=ଵ࢏ࢍࢋ࢙࢈࢏࢚࢘࢔࢕࡯ ௜ߙ   = ∑ ௠ೞ೐𝑔೔+ ∑ ௥ೕ,೔ ௠ೞ೐𝑔ೕ15−ೀ=1௠್೚೏𝑦 ே௜=ଵ࢏ࡹ࢕࡯ࡿࢇ       
Le deuxième type de réseau de segments correspond au modèle proposé dans (Shahabpoor et al., 

2018). Il requiert le calcul de la matrice de corrélation croisée entre chaƋue paiƌe d͛aĐĐĠlĠƌatioŶs 
segmentaires. La masse de chacun des segments ݆ non inclus est alors redistribuée au segment ݇ inclus 

qui présente le coefficient de corrélation le plus élevé (ݎ௝,௜=௞  =  ͳ et ݎ௝,௜≠௞  =  Ͳ daŶs l͛ĠƋuatioŶ Đi-
dessus).  

Les aĐĐĠlĠƌatioŶs du BCoM oďteŶues à l͛aide des deuǆ tǇpes d͛OSN oŶt eŶsuite été comparées à 

l͛aĐĐĠlĠƌation de référence du BCoM (ࢌࢋ࢘,ࡹ࢕࡯࡮ࢇ ), calculée à partir des efforts mesurés par les 

platefoƌŵes de foƌĐe. La pƌĠĐisioŶ des aĐĐĠlĠƌatioŶs estiŵĠes a ĠtĠ ĠǀaluĠe à l͛aide du ĐoeffiĐieŶt de 
corrélation de Pearson et des erreurs moyennes quadratiques ;NRMSE, eǆpƌiŵĠe eŶ % de l͛aŵplitude 
de l͛aĐĐĠlĠƌatioŶ de ƌĠfĠƌeŶĐeͿ. Les ŵodğles iŶĐluaŶt uŶiƋueŵeŶt le segŵeŶt du tƌoŶĐ ou du ďassiŶ 
ont également été investigués (par exemple, ࡹ࢕࡯࡮ࢇ  .ሻ࢔࢏࢙࢙ࢇ࢈,ࡹ࢕࡯ࡿࢇ =

Les « poids » moyens des contributions segmentaires sont représentés sur la Figure 53. Celle-ci 

peƌŵet de ŵettƌe eŶ aǀaŶt Ƌue les segŵeŶts ĐoŶtƌiďuaŶt le plus daŶs l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de 
masse du corps en termes de « poids » sont le tronc, le bassin, les cuisses ainsi que la tête. Les bras 

ĐoŶtƌiďueŶt pouƌ ŵoiŶs de ϭϬ % daŶs l͛aĐĐĠlĠƌation du centre de masse du corps et ont des 

ĐoŶtƌiďutioŶs opposĠes seloŶ l͛aǆe aŶtĠƌopostĠƌieuƌ. Les autƌes segŵeŶts jaŵďieƌs ;tiďia, piedͿ sont 

également des contributeurs importants.  

Les siŵilaƌitĠs des aĐĐĠlĠƌatioŶs segŵeŶtaiƌes aǀeĐ l͛aĐĐĠlĠƌatioŶ du centre de masse du corps, 

quantifiées à travers les corrélations de Pearson (non représentées dans ce résumé), permettent de 

mettre en évidence des corrélations significatives et importantes entre le centre de masse du corps et 

le tronc, le bassin, les cuisses et les tibias. Les accélérations des tibias sont également fortement et 

sigŶifiĐatiǀeŵeŶt ĐoƌƌĠlĠes aǀeĐ Đelles des pieds. L͛aĐĐĠlĠƌatioŶ de la tġte Ŷ͛est pas sǇstĠŵatiƋueŵeŶt 
significativement corrélée à celle du centre de masse du corps, ce qui peut être dû à des mouvements 

volontairement décorrélés de la tête par rapport au reste du corps.  

Finalement, le tronc, le bassin, ainsi que les segments des membres inférieurs apparaissent comme 

des ĐoŶtƌiďuteuƌs ŵajeuƌs de l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du corps. 
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Figure 53: CoŶtƌiďutioŶs segŵeŶtaiƌes à l’aĐĐĠlĠƌatioŶ du ĐeŶtƌe de masse du corps (BCoM) comparées à la contribution totale issue du 

modèle inertiel (ligne noire) et/ou à l’aĐĐĠlĠƌation de référence issue des plateformes de force (GRF – ligne pointillée) dans les directions 

antéropostérieure (a.et d.), médio-latérale (b. et e.) et verticale (c. et f.).  

(a.-c.) Contributions segmentaires axiales ŶoƌŵalisĠes paƌ l’aŵplitude des contributions totales (accélération du modèle inertiel);  

(d.-f.) Contributions segmentaires exprimées en pourcentage de la contribution totale 
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Plusieurs OSN ont ainsi été construits incluant 3 à 6 segments parmi le tronc, bassin, les cuisses 

ainsi que les tibias ou les pieds (Figure 54).  

La ĐoŵpaƌaisoŶ de l͛aĐĐĠlĠƌatioŶ de ƌĠfĠƌeŶĐe auǆ aĐĐĠlĠƌatioŶs issues des OSN, aiŶsi Ƌu͛à Đelles 
issues des deuǆ ŵodğles Ŷ͛iŶĐluaŶt Ƌue le tƌoŶĐ ou Ƌue le ďassiŶ Đoŵŵe segŵeŶt, oŶt peƌŵis de 
mettre en évidence plusieurs éléments : 

• Une approche multi-segŵeŶtaiƌe peƌŵet d͛estiŵeƌ aǀeĐ uŶe plus gƌaŶde pƌĠĐisioŶ 
l͛aĐĐĠlĠƌatioŶ du BCoM 

Figure 54: Moyenne et écart-tǇpe de l’accélération du 

centre de masse du corps (BCoM) au couƌs d’uŶ ĐǇĐle 
prothétique (prosthetic gait cycle) estimée avec la 

méthode sacrale (bassin, courbe bleue en pointillés), 

l’OSN de tǇpe ϭ iŶcluant le tronc et les tibias (courbe 

jaune discontinue), l’OSN de type 2 incluant le tronc, 

le bassin, les cuisses et les tibias (courbe orange 

continue) ĐoŵpaƌĠes à l’aĐĐĠlĠƌatioŶ de ƌĠfĠƌeŶĐe 
issue des plateformes de force (courbe grise) le long 

des axes antéropostérieur (AP), médio-latéral (ML) et 

vertical (CC). 

Les zones colorées autour des courbes représentent 

les intervalles [moyenne – 1 écart-type ; moyenne + 1 

écart-type] 
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• L͛iŶĐlusioŶ du segŵeŶt tƌoŶĐ, plus gƌaŶd ĐoŶtƌiďuteuƌ à l͛aĐĐĠlĠƌatioŶ du Đoƌps, est à 
privilégier plutôt que celle du segment bassin pour les modèles OSN 

• Un modèle OSN de type 1 à trois segments, incluant le tronc et les deux tibias, permet 

d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ du BCoM aǀeĐ plus gƌaŶde pƌĠĐisioŶ ;NRMSE < ϭϲ.ϯ%, ĐoeffiĐieŶt 
de Pearson r > 0,82) que le modèle à 3 segments proposé dans (Shahabpoor et al., 2018) 

pour les sujets sains 

• Les modèles OSN incluant 5 segments (tronc, cuisse et tibias ou pieds) permettent 

d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps aǀeĐ pƌĠĐisioŶ ;NRMSE < ϭϰ%, 
coefficient de Pearson r > 0,89)  

• Les OSN de type 2, plus complexes car requérant notamment le calcul des matrices de 

corrélatioŶ ĐƌoisĠes eŶtƌe les diffĠƌeŶtes aĐĐĠlĠƌatioŶs segŵeŶtaiƌes, Ŷ͛aŵĠlioƌeŶt 
gĠŶĠƌaleŵeŶt pas l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du BCoM paƌ ƌappoƌt auǆ OSN de tǇpe ϭ. 
Ces derniers sont donc à privilégier. 

Il est à Ŷoteƌ Ƌue la ĐoŵpaƌaisoŶ de l͛aĐĐĠlĠƌatioŶ de ƌĠférence du BCoM à celle issue du modèle 

iŶeƌtiel à paƌtiƌ duƋuel les ŵodğles OSN oŶt ĠtĠ ĐoŶstƌuits fouƌŶit des eƌƌeuƌs de l͛oƌdƌe de ϭϭ % daŶs 
les trois plans, ce qui peut expliquer pourquoi les modèles OSN fournissent des erreurs minimales de 

l͛oƌdƌe de 10,5 %.  

Les modèles OSN proposés dans cette étude ont été construits et validés à partir de données 

oďteŶues à l͛aide de ŵaƌƋueuƌs optoĠleĐtƌoŶiƋues. La ǀaliditĠ de l͛utilisatioŶ de ĐeŶtƌales iŶeƌtielles 
pouƌ estiŵeƌ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đorps reste donc à démontrer.  

2.2. DĠveloppeŵeŶt d’uŶ pƌotoĐole eŵďaƌƋuĠ pouƌ l’estiŵatioŶ de l’aĐĐĠlĠƌatioŶ et de la 
vitesse instantanée du centre de masse des personnes amputées transfémorales 

L͛oďjeĐtif de Đette seĐoŶde Ġtude était ainsi de vérifier que la méthodologie et les OSN de type 1 

ideŶtifiĠs loƌs de l͛Ġtude pƌĠĐĠdeŶte peuǀeŶt ġtƌe utilisĠs aǀeĐ des ĐeŶtƌales iŶeƌtielles pouƌ 
l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ૚ࡳ  dans un repère global ܴீ selon 

l͛ĠƋuatioŶ ;ϭͿ Đi-dessous : ࡺࡿࡻ,ࡹ࢕࡯࡮ࢇ૚ࡳ =  ∑ ௠ೞ೐𝑔೔∑ ௠ೞ೐𝑔ೕೕಿ=1 ே௜=ଵࡳ࢏ࡹ࢕࡯ࡿࢇ    (1) 

où ݉௦௘௚೔  et ࡳ࢏ࡹ࢕࡯ࡿࢇ  désignent respectivement la masse et l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de masse du ݅è௠௘ 

segment inclut dans le modèle OSN. 

Plusieurs difficultés sont rencontrées loƌsƋue l͛oŶ utilise des ĐeŶtƌales iŶeƌtielles. Tout d͛aďoƌd, 
ĐhaƋue ĐeŶtƌale iŶeƌtielle fouƌŶit uŶe ŵesuƌe de l͛aĐĐĠlĠƌatioŶ à l͛oƌigiŶe du ƌepğƌe loĐal de la centrale, 

qui doit être transférée au centre de masse du segment (SCoM). Pour appliquer la loi de distribution 

des accélérations dans un solide rigide indéformable, il est alors nécessaire de connaitre la position 

relative entre le SCoM et la centrale inertielle : 

 

 

 

 



172 

 

࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙ࢇ = ࢏𝑼ࡹࡵࡹ࢏𝑼ࡹࡵ࢕ࢇ + 𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏ ∧ ቀ𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏ ∧ ࢏𝑼ࡹࡵࡹࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘ ௜ ቁ + ቀ𝜴ࡹࡵ࢕𝑼𝒊ࡹࡵࡹ𝑼𝒊ቁ̇    ∧ ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘   (2) 

DaŶs l͛ĠƋuatioŶ ;ϮͿ, toutes les ƋuaŶtitĠs soŶt eǆpƌiŵĠes daŶs le ƌepğƌe loĐal de la ĐeŶtƌale iŶeƌtielle ܴெூெ௎೔  et : 

{  
  
   
࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙ࢇ   est l'aĐĐĠlĠƌatioŶ du ݅è݉݁ SCoM                                                                                                              ࡹࡵ࢕ࢇ𝑼ࡹࡵࡹ࢏𝑼࢏  est l'aĐĐĠlĠƌatioŶ ŵesuƌĠe paƌ la ݅è݉݁ ĐeŶtƌale, attaĐhĠe ƌigideŵeŶt au ݅è݉݁ segŵeŶt                𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏  est la ǀitesse aŶgulaiƌe ŵesuƌĠe paƌ la ݅è݉݁ĐeŶtƌale                                                                              (𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏)̇  est l'aĐĐĠlĠƌatioŶ aŶgulaiƌe oďteŶue paƌ diffĠƌeŶtatioŶ de 𝜴ࡹࡵ࢕𝑼ࡹࡵࡹ࢏𝑼࢏                                               

࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘      est le ǀeĐteuƌ de tƌaŶslatioŶ ƌeliaŶt l'oƌigiŶe de la ݅è݉݁ĐeŶtƌale au SCoM sous-jaĐeŶt   
 

Dans la littérature, certains auteurs ont proposé de positionner les centrales inertielles au niveau 

des SCoM (Lintmeijer et al., 2018; Shahabpoor et al., 2018) et d͛utiliseƌ diƌeĐteŵeŶt la ŵesuƌe de 
l͛aĐĐĠlĠƌation de la centrale comme une estimation de celle du SCoM correspondant, afin de 

s͛affƌaŶĐhiƌ de la dĠteƌŵiŶatioŶ de la positioŶ ƌelatiǀe eŶtƌe uŶe ĐeŶtƌale iŶeƌtielle et le SCoM sous-

jacent. Ceci peut conduiƌe à uŶe eƌƌeuƌ d͛estiŵatioŶ iŵpoƌtaŶte de l͛aĐĐĠlération selon les segments 

considérés et les mouvements effectués. En effet, cela revient à considérer la distance relative entre 

la ĐeŶtƌale iŶeƌtielle et le SCoM Đoŵŵe ĠtaŶt Ŷulle loƌsƋue l͛oŶ appliƋue la formule de distribution des 

accélérations (équation 2) et donc à négliger la vitesse angulaire du segment. Cependant, déterminer 

précisément la position relative entre une centrale et le SCoM du segment sur lequel elle est 

ƌigideŵeŶt attaĐhĠe Ŷ͛est pas immédiat car les données issues des centrales inertielles ne permettent 

pas de ƌeŵoŶteƌ à leuƌ positioŶ aďsolue. Plusieuƌs auteuƌs oŶt  doŶĐ pƌoposĠ d͛utiliseƌ des 
photogƌaphies ĐaliďƌĠes ou uŶ sǇstğŵe optoĠleĐtƌoŶiƋue afiŶ d͛estiŵeƌ la positioŶ aďsolue de 

ĐeŶtƌales iŶeƌtielles daŶs uŶ ƌepğƌe gloďal loƌs d͛une calibration statique (Dejnabadi et al., 2006; Teufl 

et al., 2018; Guaitolini et al., 2019). Ces méthodes pourraient être adaptées pour obtenir à la fois la 

position absolue de la centrale et du SCoM sous-jacent. 

Une fois les accélérations des SCoM estimées dans les repères locaux des centrales ܴெூெ௎೔  à l͛aide 

de l͛ĠƋuatioŶ ;ϮͿ, il est ŶĠĐessaiƌe de les eǆpƌiŵeƌ daŶs uŶ ƌepğƌe gloďal ĐoŵŵuŶ ܴீ avant de pouvoir 

utiliseƌ l͛ĠƋuatioŶ ;ϭͿ pouƌ estiŵeƌ l͛aĐĐĠlĠƌatioŶ du BCoM : ࡳ࢏ࡹ࢕࡯ࡿࢇ = 𝑃 −ெூெ௎೔   (3)  ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯ࡿࢇ 

(avec 𝑃 −ெூெ௎೔, l͛oƌieŶtatioŶ ƌelatiǀe eŶtƌe le ƌepère ܴீ et le repère ܴெூெ௎೔) 
 Or, si les capteurs contenus dans une centrale inertielle peuvent être, en théorie, fusionnés pour 

estiŵeƌ l͛oƌieŶtatioŶ de la ĐeŶtƌale daŶs uŶ ƌepère global comprenant un axe aligné avec la verticale 

et un axe aligné avec le nord magnétique, ces capteurs sont, en pratique, impactés différemment par 

des distorsions locales dans le champ magnétique mesuré par la centrale. Il en résulte que les repères 

de référence ܴீி perçus par différentes centrales peuvent être incohérents (Picerno et al. 2011; Lebel 

et al. 2018; Guaitolini et al. 2019 - Figure 5). Il est donc nécessaire de définir un repère global commun 

dans lequel exprimer les accélérations des SCoM.  
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EŶfiŶ, uŶe fois l͛aĐĐĠlĠƌatioŶ du BCoM obtenue dans un repère global, il semble pertinent de 

chercher à exprimer la vitesse instantanée du BCoM. Celle-ci peut être décomposée en une 

composante cyclique et une composante moyenne. La vitesse de marche moyenne est en effet utilisée 

en clinique pouƌ dĠĐƌiƌe le statut foŶĐtioŶŶel gloďal d͛uŶ patieŶt (Batten et al., 2019), et la vitesse 

instantanée (composant cyclique et moyenne) peut être utilisée pour obtenir des informations sur le 

coût énergétique (Donelan et al., 2002b; Detrembleur et al., 2005) ou sur l͛ĠƋuiliďƌe dǇŶaŵiƋue (Hof 

et al., 2005, 2007) de la marche. L͛iŶtĠgƌatioŶ diƌeĐte de l͛aĐĐĠlĠƌatioŶ du BCoM oďteŶue à l͛aide des 
centrales inertielles peut dériver du fait de la présence de bruit dans les signaux des centrales. Pour 

limiter cette dérive, la vitesse instantanée du BCoM peut être obtenue en deux temps, en calculant 

d͛uŶe paƌt la ĐoŵposaŶte ŵoǇeŶŶe suƌ uŶ ĐǇĐle de ŵaƌĐhe et d͛autƌe paƌt la ĐoŵposaŶte ĐǇĐliƋue. La 
première peut être estimée via le ratio de la distance parcourue par le tibia pendant un pas et la durée 

du pas (obtenue par exemple en utilisant le modèle cinématique du tibia proposé dans (Duraffourg et 

al., 2019)), tandis que la seconde peut être estimée par intégration directe de l͛aĐĐĠlĠƌatioŶ, suiǀie de 
l͛appliĐatioŶ d͛uŶ filtƌe passe-haut pour enlever la composante moyenne et le bruit du signal (Steins et 

al., 2014). 

L’oďjeĐtif de Đette étude était donc de proposer un protocole peƌŵettaŶt d͛estiŵeƌ l͛aĐĐĠlĠƌatioŶ 
et la vitesse instantanée du BCoM à partir de centrales inertielles montées sur des segments, en 

utilisant des réseaux optimaux de capteurs (OSN), via l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ des SCoM daŶs uŶ 
repère global commun et l͛iŶtĠgƌatioŶ de l͛aĐĐĠlĠƌatioŶ du BCoM. 

UŶe peƌsoŶŶe aŵputĠe tƌaŶsfĠŵoƌale ;ϴϯkg, ϭ,ϲϵŵ, hoŵŵeͿ aǇaŶt paƌtiĐipĠ à l͛Ġtude dĠĐƌite 
dans la section précédente a été équipée, en plus des marqueurs optoélectroniques, de 7 centrales 

inertielles positionnées sur le tronc, les cuisses, les tibias et les pieds.  

Figure 55 : Incohérence entre les repères de référence perçus par deux centrales inertielles – Exemple pour des centrales 

positionnées au niveau du tronc et de la cuisse ܴெூெ௎೔ , le repère local de la centrale ݅, 𝑃ெூெ௎೔−ீி೔  la matrice de transformation entre le repère local et le repère de 

référence ܴீி೔  perçu par la centrale (݅ = ,ܿ݊݋ݎݐ   (݁ݏݏ݅ݑܿ
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Tout Đoŵŵe daŶs l͛Ġtude pƌĠĐĠdeŶte, les photogƌaphies pƌises peŶdaŶt la phase statiƋue de 
l͛aĐƋuisitioŶ soŶt ĐaliďƌĠes à l͛aide du sǇstème optoélectronique et sont utilisées pour définir un 

modèle inertiel personnalisé selon (Pillet et al., 2010). CeĐi peƌŵet d͛oďteŶiƌ les positioŶs des SCoM 
dans le repère global du système optoélectronique ܴைெ஼ௌ. L͛identification des positions des centrales 

inertielles dans ce même repère est alors possible par DLT (Direct Linear Transform) en cliquant sur les 

photographies calibrées. Ceci permet de calculer la position relative des centrales inertielles et des 

SCoM dans le repère ܴைெ஼ௌ. Il est aloƌs ŶĠĐessaiƌe d͛oďteŶiƌ la ŵatƌiĐe de passage eŶtƌe le ƌepğƌe loĐal 
de chaque centrale inertielle ܷ݅ܯܫܯܴ   et le repère ܴைெ஼ௌ  pour exprimer la position relative de la 

centrale et du SCoM dans le repère local de la centrale. 

Comme indiqué plus haut, il Ŷ͛est pas possiďle d͛utiliseƌ diƌeĐteŵeŶt les ŵatƌiĐes d͛oƌieŶtatioŶ 
fournies par les centrales inertielles, celles-Đi ĠtaŶt susĐeptiďles de fouƌŶiƌ l͛oƌieŶtatioŶ des ĐeŶtƌales 
dans des repères globaux différents. En reǀaŶĐhe, des hǇpothğses suƌ l͛aligŶeŵeŶt ŵaŶuel des 
ĐeŶtƌales suƌ les segŵeŶts et suƌ l͛aligŶeŵeŶt des segŵeŶts eŶ positioŶ deďout peuǀeŶt ġtre utilisées 

pouƌ estiŵeƌ l͛oƌieŶtatioŶ ƌelatiǀe 𝑃ைெ஼ௌ−ெூெ௎೔  entre les centrales et le repère global du système 

optoélectronique (Ligorio et al., 2020). On peut en effet supposer dans un premier temps que pendant 

l͛aĐƋuisitioŶ statiƋue eŶ positioŶ deďout, deuǆ des axes anatomiques des segments sont alignés avec 

la verticale et la direction de progression. Si les centrales sont parfaitement alignées sur les segments, 

oŶ oďtieŶt doŶĐ uŶe pƌeŵiğƌe estiŵatioŶ de l͛oƌieŶtatioŶ ƌelatiǀe 𝑃ைெ஼ௌ−ெூெ௎೔ . En pratique, 

l͛aligŶeŵeŶt ŵaŶuel des ĐeŶtƌales peut ĐoŵpƌeŶdƌe des eƌƌeuƌs. Cette hǇpothğse foƌte peut doŶĐ ġtƌe 
ĐoƌƌigĠe eŶ utilisaŶt l͛oƌieŶtatioŶ de la centrale par rapport à la verticale (donnée par la centrale 

inertielle et non perturbée par les distorsions magnétiques) pour obtenir une nouvelle estimation plus 

correcte de  𝑃ைெ஼ௌ−ெூெ௎೔ . La Figure 56 dĠtaille les Ġtapes d͛oďteŶtioŶ de Đette ŵatƌiĐe pouƌ la 
centrale située sur le tronc.  
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Figure 56: Approximation de l’oƌieŶtatioŶ du ƌepğƌe loĐal d’uŶe ĐeŶtƌale iŶeƌtielle ܴெூெ௎ dans le repère du système optoélectronique (ܴைெ஼ௌ) 

peŶdaŶt l’aĐƋuisitioŶ statiƋue eŶ postuƌe deďout à ݐ =  .଴  – Exemple pour la centrale du troncݐ 

- La matrice 𝑃ெூெ௎−ீி  est directement obtenue en sortie de la centrale à ݐ =  ଴ (1)ݐ

- La matrice 𝑃ெூெ௎−ைெ஼ௌ est inconnue à ݐ =  : ଴ (2) mais peut être estimée en utilisant (3a) + (3b)ݐ

Une première approximation de la matrice de transformation du repère global ܴைெ஼ௌ vers le repère local de la MIMU 𝑃ைெ஼ௌ−ெூெ௎   

est oďteŶue eŶ utilisaŶt des hǇpothğses ĐoŶĐeƌŶaŶt l’alignement manuelle de la centrale positionnée sur le tronc dans ܴைெ஼ௌ (3a).  
Ensuite, en utilisant la détection de la direction verticale par la centrale, robuste car indépendante du ŵagŶĠtoŵğtƌe ;l’aǆe ீݖி  du 

repère de ƌĠfĠƌeŶĐe peƌçu paƌ la ĐeŶtƌale est ĐoŶfoŶdu aǀeĐ l’aǆe ǀeƌtiĐal ݖைெ஼ௌ de ܴைெ஼ௌ), une seconde approximation peut être 

calculée (4).  

- Enfin, 𝑃ெூெ௎−ைெ஼ௌ est obtenue à ݐ =  ଴ eŶ pƌeŶaŶt l’iŶǀeƌse de 𝑃ைெ஼ௌ−ெூெ௎ (5)ݐ 
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La ĐaliďƌatioŶ statiƋue peƌŵet d͛oďteŶiƌ pouƌ ĐhaƋue ĐeŶtƌale iŶeƌtielle : 

• Son orientation dans le repère de la photographie calibrée, ici le repère ܴைெ஼ௌ, à l͛iŶstaŶt ݐ଴ de la statique : 𝑃ைெ஼ௌ−ெூெ௎೔ሺݐ଴ሻ 
• L͛oƌieŶtatioŶ ƌelatiǀe (constante) des repères perçus par deux centrales inertielles 

différentes  𝑃 ி೔−ீிೕ . En effet, celle-Đi s͛oďtieŶt à l͛aide de l͛oƌieŶtatioŶ diƌeĐteŵeŶt 

fournie par les centrales dans leur repère global (𝑃 ிೖ−ெூெ௎ೖ ) et par leur matrice 

d͛oƌieŶtatioŶ daŶs le ƌepğƌe ܴைெ஼ௌ ሺ𝑃ைெ஼ௌ−ெூெ௎ೖሻ ou leurs inverses : 

-  𝑃 ி೔−ீிೕ = 𝑃 ி೔−ெூெ௎೔ሺݐ଴ሻ × 𝑃ெூெ௎೔−ைெ஼ௌሺݐ଴ሻ × 𝑃ைெ஼ௌ−ெூெ௎ೕሺݐ଴ሻ ×𝑃ெூெ௎ೕ−ீிೕሺݐ଴ሻ  
Pour les essais dynamiques, le repère de référence perçu par la centrale du tronc ܴீி೟ೝ೚೙೎, tourné 

pour avoir un axe orienté selon la direction de progression (Figure 57) est utilisé comme repère global 

commun à toutes les centrales ܴீ :   𝑃 ி೟ೝ೚೙೎−ீ = ܴ௭ሺ𝜃ሻ 

On obtient alors, à tout instant ݐ, l͛oƌieŶtatioŶ d͛uŶe ĐeŶtƌale iŶeƌtielle ܯܫܯ ௜ܷ  dans ce nouveau 

repère global de référence comme suit :  𝑃ெூெ௎೔−ீሺݐሻ =  𝑃ெூெ௎೔−ீி೔ሺݐሻ × 𝑃 ி೔−ீி೟ೝ೚೙೎ ×  𝑃 ி೟ೝ೚೙೎−ீ 

En somme : 

• La ĐaliďƌatioŶ statiƋue peƌŵet d͛oďteŶiƌ la positioŶ ƌelatiǀe eŶtƌe ĐhaƋue ĐeŶtƌale 
inertielle et SCoM sous-jacent dans le repère ܴைெ஼ௌ puis dans celui de la centrale ܴெூெ௎೔ ࢏𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼ࡹࡵ࢕࢘ :   

• On peut utiliser cette position relative, constante dans le repère de la centrale au cours 

des aĐƋuisitioŶs, pouƌ dĠteƌŵiŶeƌ l͛aĐĐĠlĠƌatioŶ de ĐhaĐuŶ des SCoM daŶs le ƌepğƌe local 

de la centrale qui lui est associée : ࡹࡵࡹ࢏ࡹ࢕࡯ࡿࢇ𝑼࢏ (équation 2) 

• OŶ peut fiŶaleŵeŶt utiliseƌ l͛oƌieŶtatioŶ doŶŶĠe eŶ soƌtie de la ĐeŶtƌale iŶeƌtielle 𝑃ெூெ௎೔−ீி೔ሺݐሻ et l͛oƌieŶtatioŶ ƌelatiǀe eŶtƌe le ƌepğƌe de ƌĠfĠƌeŶĐe assoĐiĠ à la centrale et 

 

Figure 57: Rotation ܴ௭ሺ𝜃ሻ  du repère de 

référence perçu par la centrale du tronc 

(ܴீி೟ೝ೚೙೎ሻ pouƌ aligŶeƌ l’uŶ des aǆes du ƌepğƌe 
de référence à la direction de progression. La 

ƌotatioŶ ŶĠĐessaiƌe est dĠteƌŵiŶĠe à l’aide de 
l’oƌieŶtation du repère local de la centrale ܴெூெ௎೟ೝ೚೙೎) dans son repère global. En effet, la 

centrale est positionnée sur le corps du 

paƌtiĐipaŶt tel Ƌu’uŶ des aǆes poiŶte ǀeƌs la 
direction de progression. 
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le repère global commun obtenu à partir de la centrale du tronc  𝑃 ி೔−ீ  pour estimer 

l͛aĐĐĠlĠƌatioŶ du SCoM daŶs le ƌepğƌe gloďal : ࡳ࢏ࡹ࢕࡯ࡿࢇ  (équation 3) 

• OŶ peut utiliseƌ les OSN pouƌ estiŵeƌ l͛aĐĐĠlĠƌatioŶ du BCoM daŶs le ƌepğƌe global à partir 

d͛uŶe ŵoǇeŶŶe poŶdĠƌĠe des accélérations des SCoM : ࡳࡹ࢕࡯࡮ࢇ  (équation 1) 

• Enfin, on peut estimer pour chaque cycle de marche la vitesse instantanée du BCoM en 

décomposant la vitesse en une composante moyenne et une composante cyclique. 

Le protocole décrit ci-avant a été mis eŶ plaĐe pouƌ testeƌ et ǀalideƌ l͛utilisatioŶ de diffĠƌeŶts 
ƌĠseauǆ de Đapteuƌs tels Ƌu͛iŶdiƋuĠs daŶs le Tableau 1 pouƌ l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ et la ǀitesse 
iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse du Đoƌps. La pƌĠĐisioŶ de l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ et de la ǀitesse 
à l͛aide d͛uŶe ĐeŶtƌale uŶiƋue au Ŷiǀeau du tƌoŶĐ a ĠgaleŵeŶt ĠtĠ ĠtudiĠe. 

Tableau 1: Liste des réseaux de capteurs testés 

Nombre de 

segments 
Segments inclus 

5 Tronc, cuisses, tibias 

5 Tronc, cuisses, pieds 

3 Tronc, tibias 

1 Tronc 

 

Les accélérations des SCoM et du BCoM aiŶsi Ƌue la ǀitesse iŶstaŶtaŶĠe du BCoM oďteŶues à l͛aide 
des ĐeŶtƌales iŶeƌtielles oŶt ĠtĠ ĐoŵpaƌĠes auǆ aĐĐĠlĠƌatioŶs et ǀitesse de ƌĠfĠƌeŶĐe oďteŶues à l͛aide 
des plateformes de force (accélération du BCoM) ou du modèle inertiel du corps complet (accélération 

des SCoM et ǀitesse du BCoMͿ. La pƌĠĐisioŶ des estiŵatioŶs a ĠtĠ ĠǀaluĠe à l͛aide des ĐoeffiĐieŶts de 
corrélation de Pearson (r), des erreurs quadratiques moyennes (RMSE), des RMSE normalisées par 

l͛aŵplitude de la ǀaleuƌ de ƌĠfĠƌeŶĐe ;NRMSEͿ et, pour la vitesse moyenne, de la RMSE exprimée en 

pourcentage de la vitesse moyenne de référence. 

Les résultats obtenus dans cette étude sont encourageants et suggèrent que les centrales 

inertielles sont une alternative valide aux instruments des laboratoires d͛aŶalǇse du ŵouǀeŵeŶt pouƌ 
l͛oďteŶtioŶ de l͛aĐĐĠlĠƌatioŶ et de la ǀitesse iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse Đhez les peƌsoŶŶes 
aŵputĠes au Ŷiǀeau tƌaŶsfĠŵoƌal. L͛utilisation de cinq centrales inertielles situées au niveau du tronc, 

des deux cuisses et des deuǆ tiďias peƌŵet d͛estiŵeƌ aǀeĐ pƌĠĐisioŶ l͛aĐĐĠlĠƌatioŶ et la ǀitesse du 
centre de masse obtenues avec les plateformes de force et le système optoélectronique (coefficients 

de Pearson r > 0.89 et r > 0.94 respectivement, NRMSE = 11,6 ± 2,1 % ; 14,0 ± 2,1 % ; 7,7 ± 0,4 % pour 

l͛aĐĐĠlĠƌatioŶ et 16,7 ± 5,1 % ; 13,2 ± 3,0 % ; 6,0 ± 0,8 % pour la vitesse dans les directions 

antéropostérieure, médio-latérale et verticale respectivement – voir Figure 58). La vitesse moyenne 

de marche est notamment estimée avec une précision de 0,05 m/s (RMSE) correspondant à 4,1 % de 

la vitesse nominale. Seules deux études dans la littérature ont permis une estimation de la vitesse de 

marche avec une précision similaire ou accrue, chez des sujets sains (Mariani et al., 2010; Yang and Li, 

2012a). Dans le futur, plus de sujets devront être recrutés afin de confirmer les résultats obtenus avec 

ce protocole et ce réseau de capteurs chez les personnes amputées transfémorales. Par ailleurs, le 

protocole devra être adapté afin de permettre une acquisition en embarqué, sans nécessiter un 
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système optoélectronique. Pouƌ Đela, uŶ sǇstğŵe de ĐaliďƌatioŶ siŵplifiĠ ou l͛utilisatioŶ d͛un scanner 

ϯD est eŶǀisagĠ. Ces ŵĠthodes ƌeposeƌoŶt toujouƌs suƌ l͛estimation a posteriori de la position relative 

des centrales et des centres de masse de segments. C͛est pouƌƋuoi l͛iŵpaĐt des erreurs de localisation 

des centrales iŶeƌtielles suƌ l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ ou de la ǀitesse du ĐeŶtƌe de ŵasse doit ġtƌe 
étudiée.  

2.3. Analyse de sensibilité de l’aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps auǆ eƌƌeuƌs de 
localisation des centrales inertielles 

L͛oďjeĐtif de Đette Ġtude Ġtait d͛Ġtudieƌ l͛iŵpaĐt de l͛eƌƌeuƌ d͛estiŵatioŶ de la loĐalisatioŶ des 
ĐeŶtƌales iŶeƌtielles suƌ l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse oďteŶue à l͛aide du pƌotoĐole pƌĠĐĠdeŶt et 
de cinq centrales inertielles situées sur le tronc, les cuisses et les tibias.  

Une analyse de sensibilité a été menée pour répondre à cette problématique, en utilisant les 

doŶŶĠes de l͛Ġtude pƌĠĐĠdeŶte. DaŶs uŶ pƌeŵieƌ teŵps, l͛aŵplitude ŵaǆiŵale d͛eƌƌeuƌ possiďle suƌ la 
localisation des centrales inertielles a été estimée. Les centrales étaient insérées dans des supports 

rigides imprimés en 3D contenant quatre marqueurs optoélectroniques et peƌŵettaŶt aiŶsi d͛oďteŶiƌ 
l͛oƌieŶtatioŶ et la positioŶ des ĐeŶtƌales daŶs le ƌepğƌe du sǇstğŵe optoĠleĐtƌoŶiƋue. Pouƌ estiŵeƌ 
l͛aŵplitude d͛eƌƌeurs de localisation possible avec le protocole décrit dans la section précédente, deux 

opérateurs ont calibré les photographies de face, dos et profils du participant en posture statique et 

ont cliqué sur les positions des origines des centrales inertielles à cinq reprises chacun. Les positions 

obtenues en cliquant sur les photos ont été comparées aux valeurs de référence fournies par le 

système optoélectronique. Des erreurs allant jusque 2 cm ont ainsi été mises en évidence. 

Les accélérations des centres de masse des segments (SCoM) et du centre de masse du corps 

(BCoM) ont ensuite été estimées en simulant une mauǀaise loĐalisatioŶ des ĐeŶtƌales, Đ͛est-à-dire, une 

eƌƌeuƌ daŶs l͛estiŵatioŶ du ǀeĐteuƌ ࡹࡵ࢕࢘𝑼ࡹࡵࡹ࢏ࡹ࢕࡯࢙−࢏𝑼࢏ (cf équation 2 de la section précédente), pouvant 

alleƌ jusƋue Ϯ Đŵ daŶs ĐhaĐuŶe des diƌeĐtioŶs de l͛espaĐe ;aŶtĠƌopostĠƌieuƌ, ŵĠdio-latérale et 

verticale, selon les axes du repère ܴைெ஼ௌ ). Afin de quantifier uniquement les erreurs liées à une 

Figure 58: Accélération (à gauche) et vitesse iŶstaŶtaŶĠe ;à dƌoiteͿ du ĐeŶtƌe de ŵasse du Đoƌps oďteŶues à l’aide de Đinq centrales 

inertielles situées sur le tronc, les cuisses et les tibias (courbe orange discontinue) comparé à la référence (courbe grise) 
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mauvaise localisation des centrales, les orientations des centrales inertielles étaient déterminées dans 

le repère ܴைெ஼ௌ à l͛aide des ŵaƌƋueuƌs positioŶŶĠs suƌ les aŶĐillaiƌes les ĐoŶteŶaŶt, plutƀt Ƌu͛eŶ 
utilisaŶt la ŵĠthode dĠĐƌite daŶs l͛Ġtude pƌĠĐĠdeŶte ;Figure 59). 

EŶ utilisaŶt la thĠoƌie des plaŶs d͛eǆpĠƌieŶĐes (Goupy, 2016), tous les Đas possiďles d͛eƌƌeuƌs de 
positioŶŶeŵeŶt, siŵultaŶĠes ou ŶoŶ, des ĐiŶƋ ĐeŶtƌales iŶeƌtielles oŶt ĠtĠ siŵulĠs. L͛eƌƌeuƌ eŶtƌe les 
aĐĐĠlĠƌatioŶs des SCoM et du BCoM siŵulĠes à l͛aide des données des centrales inertielles et les 

accélérations de références (modèle inertiel pour le SCoM et plateformes de force pour le BCoM) a été 

calculée. Par ailleurs, pour chacun des composants des accélérations, un modèle polynomial 

multilinéaire avec interactions a été proposé pour décrire la relation entre les erreurs de localisation 

de chaque centrale selon les axes du repère ܴைெ஼ௌ  et la pƌĠĐisioŶ de l͛estiŵatioŶ ;eŶ teƌŵes de 
NRMSEͿ de l͛aĐĐĠlĠƌatioŶ oďteŶue à l͛aide des ĐeŶtƌales iŶeƌtielles. L͛Ġtude des ǀaƌiaŶĐes assoĐiĠes auǆ 
différents termes du polynƀŵe peƌŵet d͛estiŵeƌ le pouƌĐeŶtage de ǀaƌiaŶĐe daŶs la pƌĠĐisioŶ de 

l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ ;NRMSEͿ eǆpliƋuĠ paƌ ĐhaĐuŶe des eƌƌeuƌs de loĐalisatioŶ (Goupy, 2016). 

Les erreurs de localisation des centrales inertielles engendrent des variations dans la précision de 

l͛estiŵatioŶ des aĐĐĠlĠƌatioŶs des ĐeŶtƌes de ŵasse des segŵeŶts eŶtƌe - 5.6 % et 6.9 % (tous segments 

et axes confondus) et entre - 1.6 % et 1.7 % en ne considérant que le tronc et les cuisses. Les plus 

gƌaŶdes ǀaƌiatioŶs de l͛eƌƌeuƌ ideŶtifiĠes pouƌ les tiďias daŶs les diƌeĐtioŶs aŶtĠƌopostĠƌieuƌe et 
ǀeƌtiĐale peuǀeŶt s͛eǆpliƋueƌ paƌ la plus grande vitesse angulaire du tibia dans le plan sagittal par 

rapport aux autres segments. La précision des accélérations des SCoM des membres inférieurs est 

principalement affectée par les erreurs de localisation des centrales selon les axes antéropostérieur et 

vertical. Les erreurs de position selon la direction médio-latérale ont une influence prépondérante 

uŶiƋueŵeŶt suƌ la pƌĠĐisioŶ de l͛aĐĐĠlĠƌatioŶ du tƌoŶĐ daŶs la direction antéropostérieure et dans une 

moindre mesure, dans la direction verticale ainsi que sur la précision de l͛accélération de la cuisse dans 

la direction antéropostérieure (Figure 61Ϳ. Ces diffĠƌeŶĐes eŶtƌe les segŵeŶts peuǀeŶt s͛eǆpliƋueƌ paƌ 

Figure 59 : Photo du profil droit du participant équipé de centrales inertielles et 

de marqueurs. Les centrales sont insérées dans des ancillaires rigides imprimés 

en 3D spécifiquement conçus pour cette application et équipés de 4 marqueurs 

optoélectroniques (HD, HG, BD, BG).   

La matrice de passage entre le repère local de la centrale (origine oIMU, axes ݔூெ௎ , ݕூெ௎Ϳ et le ƌepğƌe de l’aŶĐillaiƌe ;ݔ௔௡௖, ݕ௔௡௖) est connue par conception 

et peƌŵet d’oďteŶiƌ l’oƌieŶtatioŶ de l’IMU daŶs le ƌepğƌe du sǇstğŵe 
optoélectronique.  
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les différents mouvements des segments lors de la marche (tronc vs segments des membres 

inférieurs).  

CoŶĐeƌŶaŶt l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du BCoM, l͛aŶalǇse de seŶsiďilitĠ a peƌŵis de ŵettƌe eŶ 
ĠǀideŶĐe Ƌu͛uŶe localisation précise des centrales inertielles du tronc, de la cuisse saine et du tibia sain 

selon les directions antéropostérieure et verticale permet de réduire la variabilité de l͛estimation de 

l͛aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du Đoƌps (Figure 60 – exemple pour la composante 

antéropostérieure du BCoM). En effet, des erreurs dans les localisations de ces centrales selon ces 

directions expliquent 92 %, 77 % et 79 % de la variatioŶ de la pƌĠĐisioŶ de l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ 
du BCoM dans les directions antéropostérieure, médio-latérale et verticale respectivement.  

 

La variabilité de la précision de l͛accélération du BCoM estimée à l͛aide de la méthodologie 

présentée ici peut être maintenue à moins de 1 % en identifiant correctement les localisations 

antéropostérieure et verticale des centrales du tronc ainsi que des tibia et cuisse du côté sain. Le rôle 

prépondérant de ces centrales peut s͛eǆpliƋueƌ paƌ la ŵasse pƌĠpoŶdĠƌaŶte du tƌoŶĐ et de la jaŵďe 
saine par rapport aux autres segments chez une personne amputé au niveau transfémoral ainsi que 

par la plus grande vitesse des tibias dans le plan sagittal au cours de la marche. 

La pƌĠseŶte aŶalǇse de seŶsiďilitĠ Ŷe s͛est pas iŶtĠƌessĠe à l͛iŵpaĐt des eƌƌeuƌs d͛oƌieŶtatioŶ des 
centrales inertielles, contrairement à ce qui a pu être fait dans (Tan et al., 2019). DaŶs l͛aŶalǇse de 

sensibilité implémentée ici, les accélérations des SCoM sont estimées dans un repère global avant 

d͛ġtƌe fusioŶŶĠes pouƌ estiŵeƌ l͛aĐĐĠlĠƌatioŶ du BCoM. Ainsi, en utilisant le protocole proposé dans 

cette étude, un mauvais alignement manuel de la centrale avec les axes anatomiques des segments ne 

devrait pas conduire à une erreur prépondérante daŶs l͛estiŵatioŶ des aĐĐĠlĠƌatioŶs. Au ĐoŶtƌaiƌe, 
daŶs l͛Ġtude de (Tan et al., 2019), l͛aĐĐĠlĠƌatioŶ du BCoM est estiŵĠe à l͛aide d͛uŶe appƌoĐhe 
d͛appƌeŶtissage ŵaĐhiŶe pƌeŶaŶt eŶ eŶtƌĠes les doŶŶées brutes de centrales inertielles, ce qui peut 

expliquer la forte influence des erreurs d͛oƌientation des centrales sur la sortie du modèle. Dans le 

pƌotoĐole iŵplĠŵeŶtĠ iĐi, seules des eƌƌeuƌs d͛oƌieŶtatioŶ des ĐeŶtƌales daŶs le ƌepğƌe de ƌĠfĠƌeŶĐe 
commun aux centrales devraient avoir un impact, supposé négligeable. Cette hypothèse devra être 

vérifiée dans de prochaines études. 

Figure 61 : Sensibilité de la précision des accélérations des segments 

(S = sain ; P = prothétique) selon les directions médio-latérales (ML), 

antéro-postérieures (AP) et verticales (V) en fonction des erreurs de 

localisation pX des centrales et de leurs interactions pX*pY (X, Y = AP, 

ML, V) 

 

Figure 60: Sensibilité de la précision de la composante 

aŶtĠƌopostĠƌieuƌe de l’aĐĐĠlĠƌatioŶ du ĐeŶtƌe de ŵasse du 
corps au positionnement antéropostérieur (pAP), 

médiolatéral (pML) ou vertical (pV) des segments (tibia sain : 

ShankS, tronc : Trunk, cuisse saine : ThighS) 
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3. Deuxième approche : faisabilité et pertinence clinique de la caractérisation de la qualité 

de la marche (équilibre, symétrie) à l’aide de Đapteuƌs eŵďaƌƋuĠs 

Dans cette partie, la faisabilité et la pertinence clinique de l͛utilisation de centrales inertielles et/ou 

de seŵelles de pƌessioŶ pouƌ ĐaƌaĐtĠƌiseƌ la sǇŵĠtƌie et l͛ĠƋuiliďƌe de la ŵaƌĐhe des peƌsoŶŶes 
amputées sont explorées. 

Une première étude avait pour objectif de déterminer si les algorithmes de détection des 

événements de la marche à partir de centrales inertielles peuvent être utilisés pour estimer la symétrie 

temporelle de la marche chez les personnes amputées de membre inférieur (section 3.1). La seconde 

étude explore la faisabilité d͛utiliseƌ des iŶdiĐes de ƋualitĠ de la ŵaƌĐhe issus du tƌaiteŵeŶt des sigŶauǆ 
de Đapteuƌs eŵďaƌƋuĠs pouƌ suiǀƌe l͛ĠǀolutioŶ de peƌsoŶŶes aŵputĠes de ŵeŵďƌe iŶfĠrieur au cours 

de leuƌ ƌĠĠduĐatioŶ à l͛aide de l͛iŶstrumentation du test de deux minutes (section 3.2). 

3.1. UtilisatioŶ des ĐeŶtƌales iŶeƌtielles pouƌ l’estiŵatioŶ de la sǇŵĠtƌie de duƌĠe d’appui 
chez les personnes amputées transfémorales 

De tƌğs Ŷoŵďƌeuǆ algoƌithŵes oŶt ĠtĠ pƌoposĠs daŶs la littĠƌatuƌe afiŶ d͛ideŶtifieƌ les événements 

du cycle de marche, notamment les instants de début et de fin de contact du pied au sol, à partir de 

centrales inertielles. Le foisonnement de la littĠƌatuƌe ƌeŶd diffiĐile la sĠleĐtioŶ d͛uŶ algoƌithŵe pouƌ 
une certaine population et une situation donnée. Ainsi, le but de cette étude était de comparer cinq 

algoƌithŵes de dĠteĐtioŶ des ĠǀĠŶeŵeŶts de la ŵaƌĐhe issus de la littĠƌatuƌe afiŶ d͛Ġǀaluer la 

faisaďilitĠ d͛utiliseƌ des ĐeŶtƌales iŶeƌtielles pouƌ estiŵeƌ des paƌaŵğtƌes teŵpoƌels et l͛asǇŵĠtrie de 

duƌĠe de phase d͛appui Đhez les peƌsoŶŶes aŵputĠes tƌaŶsfĠŵoƌales.  

Trois des algorithmes, utilisant deux centrales inertielles au niveau de chaque tibia, ont été choisis 

car ils ont été développés et validés sur les données de marche de personnes amputées de membre 

inférieur (Selles et al., 2005; Maqbool et al., 2017; Ledoux, 2018). Un algorithme utilisant une unique 

centrale au niveau du tronc (McCamley et al., 2012), jamais testé chez les personnes amputées, a 

égalemeŶt ĠtĠ sĠleĐtioŶŶĠ Đaƌ uŶe Ġtude Đoŵpaƌatiǀe daŶs la littĠƌatuƌe l͛aǀait ideŶtifiĠ Đoŵŵe 
l͛algoƌithŵe utilisaŶt uŶe seule ĐeŶtƌale le plus peƌfoƌŵaŶt pouƌ la dĠteĐtioŶ d͛ĠǀĠŶeŵeŶts de la 
marche dans des populations pathologiques (Trojaniello et al., 2015). Enfin, un dernier algorithme 

utilisant deux centrales au niveau des tibias a également été implémenté (Trojaniello, Cereatti, Pelosin, 

et al., 2014). Ce dernier algorithme a été très largement validé sur une population importante de sujets 

pathologiques (236 patients parmi lesquels 125 Parkinsoniens et 31 hémi-parétiques – Bertoli et al. 

2018). La performance des algorithmes a été appréciée au regard de la fréquence de détection des 

ĠǀĠŶeŵeŶts, de la pƌĠĐisioŶ de l͛estiŵation des paramètres temporels et enfin de la précision de 

l͛estiŵatioŶ de l͛asǇŵĠtƌie de duƌĠe de phase d͛appui. Des seŵelles de pƌessioŶ, validées chez les 

personnes amputées transfémorales (Loiret et al., 2019), ont été utilisées comme référence. 

Sept personnes amputées au niveau transfémoral (âge : 47,3 ± 9,9 ans ; masse : 74,5 ± 11,9 kg ; 

taille : 1,80 ± 0,10 m ; 5 hommes) ont participé à cette étude et ont réalisé plusieurs passages de 

marche sur sol plan horizontal à vitesse confortable, rapide et lente. Au total, 454 pas sains et 623 pas 

pƌothĠtiƋues oŶt ĠtĠ ĐoŶsidĠƌĠs daŶs l͛aŶalǇse. 

Seuls deux des cinq algorithmes présentaient une valeur positive prédictive de plus de 99 % (taux 

de faux positifs < 1 %) pour la détection des instants de contact initial et final pour les pas prothétiques 

et sains (Trojaniello, Cereatti, Pelosin, et al., 2014; Ledoux, 2018). Un faible taux de faux positif est 
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primordial pour une utilisation de ces algorithmes sans méthode de référence, ainsi, seuls ces 

algorithmes sont étudiés en détails. Ces deux algorithmes permettent la détection des instants de 

contact du pied au sol avec une précision suffisante. Toutefois, la divergence des erreurs de détection 

des événements de contact final pour le pied sain (Ledoux, 2018) ou le pied prothétique (Trojaniello, 

Cereatti, Pelosin, et al., 2014) contribue à la surestimation sǇstĠŵatiƋue du teŵps d͛appui pƌothĠtiƋue 
ou à la sous-estiŵatioŶ du teŵps d͛appui saiŶ, Ƌui ĐoŶduit fiŶaleŵeŶt à la sous-estimation de 

l͛asǇŵĠtƌie de duƌĠe de phase d͛appui aǀeĐ ĐhaĐuŶ des deuǆ algoƌithŵes. De ŵġŵe, uŶe tƌop gƌaŶde 
variabilité dans la déteĐtioŶ des ĠǀĠŶeŵeŶts Ŷuit à la pƌĠĐisioŶ de l͛estiŵatioŶ de la duƌĠe de douďle 
d͛appui, pouƌtaŶt peƌtiŶeŶte pouƌ jugeƌ de l͛ĠƋuiliďƌe dǇŶaŵiƋue des peƌsoŶŶes aŵputĠes au Ŷiǀeau 
transfémoral (Goujon et al., 2006; Kendell et al., 2010). 

EŶ ĐoŶĐlusioŶ, Đette Ġtude a dĠŵoŶtƌĠ Ƌue, si les iŶstaŶts de ĐoŶtaĐt iŶitial ideŶtifiĠs à l͛aide des 
algorithmes de détection des événements de la marche peuvent être utilisés pour segmenter la 

marche des personnes amputées transfémorales de manière robuste, des développements 

ĐoŵplĠŵeŶtaiƌes soŶt ŶĠĐessaiƌes pouƌ les utiliseƌ eŶ ĐliŶiƋue pouƌ suiǀƌe l͛asǇŵĠtƌie teŵpoƌelle de 

la marche. 

3.2. PeƌtiŶeŶĐe ĐliŶiƋue du suivi des iŶdiĐes d’ĠƋuiliďƌe et de sǇŵĠtƌie de la ŵaƌĐhe oďteŶus 
à l’aide des Đapteuƌs eŵďaƌƋuĠs Đhez les peƌsoŶŶes aŵputĠes de ŵeŵďƌe iŶfĠƌieuƌ 

Ces dernières années, de très nombreuses études se sont intéressées à la caractérisation de la 

sǇŵĠtƌie de la ŵaƌĐhe et de l͛ĠƋuiliďƌe dǇŶaŵiƋue à l͛aide d͛iŶdiĐes dĠƌiǀĠs des sigŶauǆ de ĐeŶtƌales 
inertielles portées sur le haut du corps (Mazzà et al., 2008; Iosa et al., 2014; Summa et al., 2016; 

Bergamini et al., 2017; Pasciuto et al., 2017; Belluscio et al., 2018) ou de semelles de pression (Nolan 

et al., 2003; Cutti et al., 2018; Loiret et al., 2019), dans de diverses pathologies. Ces indices de qualité 

de la marche comprennent : 

- Les symétries de duƌĠe d͛appui et de Đhaƌge ƋuaŶtifiĠes à l͛aide de seŵelles de pƌessioŶ et de 

l͛Aďsolute SǇŵŵetƌǇ IŶdeǆ ou ASI (Figure 62).  

- 𝐴ܵܫ =  ௌ−௉଴.ହ ሺௌ + ௉ሻ× ͳͲͲ, avec ܵ et 𝑃 les valeurs de la durée de la phase d͛appui ou du 

piĐ d͛effoƌt Fzϭ pouƌ les jaŵďes saiŶes et pƌothĠtiƋues ƌespeĐtiǀeŵeŶt (Nolan et al., 2003). 

Figure 62 : Durée de phase d’appui ;stance durationͿ et piĐ d’effoƌt de dĠďut d’appui ;Fz1) 

dérivé de la composante normale des efforts de réaction au sol (Vertical GRF) avec des 

semelles de pression droite (Right – courbe bleue) et gauche (Left – courbe orange) 
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- Le ratio harmonique, selon sa plus récente définition, le iHR, ĐalĐulĠ à paƌtiƌ d͛uŶe aŶalǇse 
fréquentielle des accélérations mesurées par une centrale au niveau du bassin selon les trois 

diƌeĐtioŶs de l͛espaĐe (Pasciuto et al., 2017). ܴ݅ܪ =  ∑ ௉೔ೕ௉೐ೕ+௉೔ೕ  . ͳͲͲଵ≤௝≤௡   avec 𝑃௜௝ et 𝑃௘௝  la puissance associée, respectivement, aux 

harmoniques intrinsèques (contribuant à la symétrie de la marche) ou extrinsèques (traduisant 

uŶe dĠǀiatioŶ d͛uŶ sĐhĠŵa de marche symétrique) de l͛aĐĐĠlĠƌatioŶ (Cappozzo, 1981) 

- Les valeurs efficaces des accélérations ou RMS, calculées au niveau du bassin, du sternum et 

de la tġte seloŶ les tƌois diƌeĐtioŶs de l͛espaĐe. A ǀitesse Ġgale, uŶe plus gƌaŶde ǀaleuƌ de RMS 
traduit une instabilité du segment auquel elle est mesurée. 

- Les ĐoeffiĐieŶts d͛attĠŶuatioŶ eŶtƌe le ďassiŶ et le steƌŶuŵ, le steƌŶuŵ et la tġte et le bassin 

et la tête, calculés à partir du ratio des RMS des accélérations entre deux niveaux successifs du 

haut du corps (Paradisi et al., 2019) : 𝐴ܥ௑௒ = ͳ − ோெௌ௔ೊோெௌ௔೉.  

- Un coefficient positif indique une atténuation des accélérations du niveau bas vers le 

Ŷiǀeau haut aloƌs Ƌu͛uŶ ĐoeffiĐieŶt ŶĠgatif iŶdiƋue uŶe aŵplifiĐatioŶ des aĐĐĠlĠƌatioŶs. Cette 
dĠfiŶitioŶ ƌepose suƌ l͛idĠe que, dans un schéma de marche physiologique, les accélérations 

dues au mouvement des jambes sont transmises vers le haut du corps en étant atténuées pour 

assurer un flux optique stable et une interprétation efficace des signaux du système 

vestibulaire  

Ces 23 indices ont été calculés dans diverses populations, y compris chez les personnes amputées 

au Ŷiǀeau tƌaŶstiďial, à l͛eǆĐeptioŶ de l͛iHR. Toutefois, les pƌotoĐoles d͛aĐƋuisitioŶ des doŶŶĠes 
diffğƌeŶt d͛uŶe Ġtude à uŶe autƌe, et auĐuŶe Ŷe doŶŶe uŶe ǀue d͛eŶseŵďle de Đes iŶdiĐes daŶs uŶ 
même échantilloŶ de peƌsoŶŶes aŵputĠes. Paƌ ailleuƌs, auĐuŶe Ġtude Ŷ͛a eǆaŵiŶĠ la ƌĠpĠtaďilitĠ des 
indices de qualité de la marche, ce qui est essentiel pour caractériser la sensibilité des indices à 

détecter une évolution réelle de la qualité de la marche. 

Cette étude avait donc pour objectif de répondre à ces limitations en étudiant simultanément tous 

les indices sus-cités chez neuf sujets sains et neuf sujets amputés au niveau transtibial au cours de 

deux tests de deux minutes, instrumentés avec trois centrales inertielles au niveau du bassin, du 

steƌŶuŵ et de la tġte, et ĠƋuipĠs d͛uŶe paiƌe de seŵelles de pƌessioŶ. Paƌ ailleuƌs, les ǀaleuƌs de l͛iHR 
oďteŶues au Đouƌs des tests oŶt ĠtĠ ĐoŵpaƌĠes auǆ iŶdiĐes d͛asǇŵĠtƌie oďtenus avec les semelles (ASI) 

à l͛aide du Đoefficient de corrélation de Pearson dans le but de clarifier le sens de ce paramètre de 

symétrie globale. 

Les iŶdiĐes ƌĠpĠtaďles d͛uŶ test à l͛autƌe oŶt d͛aďoƌd ĠtĠ ideŶtifiĠs puis oŶt ĠtĠ utilisĠs pouƌ 
caractériseƌ les populatioŶs de sujets saiŶs et d͛aŵputés transtibiaux. Ensuite, la différence minimale 

dĠteĐtaďle paƌ ĐhaĐuŶ des iŶdiĐes a ĠtĠ estiŵĠe à l͛aide du ĐoeffiĐieŶt de ƌĠpĠtaďilitĠ pƌoposĠ paƌ 
(Bland and Altman, 1986). 

Sur les 23 indices étudiés, 21 indices ne présentent pas de différences significatives entre le 

premier et le second test de deux minutes pour les deux populations. De même, la distance parcourue 

est similaire entre les deux tests. Les deux indices présentant des différences significatives ont donc 

ĠtĠ ĠĐaƌtĠs de l͛aŶalǇse Đaƌ Ŷe seŵďleŶt pas pouǀoiƌ ĐaƌaĐtĠƌiseƌ de manière fiable une population à 

l͛aide d͛un test de deux minutes. Pour les autres indices, des valeurs cohérentes avec la littérature ont 

été retrouvées. Les 21 indices restants ainsi que la distance parcourue pendant le test de deux minutes 
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ont alors été utilisés pour caractériser les populations saine et amputée. Seuls onze des paramètres (y 

compris la distance parcourue) permettent de distinguer les personnes amputées transtibiales des 

sujets sains et démontrent un moins bon équilibre dynamique et une asymétrie accrue des personnes 

amputées par rapport aux sujets sains (Tableau 2). 

Tableau 2 : Médiane et écart interquartile (IQR) des valeurs des indices de qualité de la marche quantifiés lors du premier test 

de deux minutes pour les sujets sains et amputés. Les différences significatives entre les deux populations (valeur p < 0,05) 

sont identifiées par la présence d’uŶ astĠƌisƋue daŶs la ĐoloŶŶe Sig. ;sigŶifiĐatiǀitĠͿ 

 

Anteropostérieur 

Médiane (IQR) 

 

Médio-latéral 

Médiane (IQR) 

 

Vertical 

Médiane (IQR) 

Sujets sains 
Amputés 

transtibiaux 
Sig. Sujets sains 

Amputés 

transtibiaux 
Sig. Sujets sains 

Amputés 

transtibiaux 
Sig. 

iHR (%) 96,9 (2,1) 85,9 (6,5) * 85,2 (11,1) 71,4 (8,4) * 97,6 (1,5) 89,1 (6,6) * 

RMSa pelvis (s-1) 2,05 (0,93) 1,78 (0,88)  1,77 (1,19) 1,60 (0,70) * 3,13 (0,76) 2,47 (1,41)  

RMSa sternum (s-1) / /  1,09 (0,51) 1,27 (0,39) * 3,37 (1,29) 2,56 (1,24)  

RMSa tête (s-1) 1,17 (0,58) 1,69 (0,75) * 1,00 (0,27) 1,53 (0,30) * 3,35 (1,07) 2,55 (1,20)  

AC pelvis/sternum 0,35 (0,29) 0,19 (0,29)  0,31 (0,45) 0,27 (0,25)  / /  

AC pelvis/tête 0,50 (0,38) -0,03 (0,69) * 0,20 (0,47) 0,05 (0,20)  -0,01 (0,12) -0,01 (0,15)  

AC sternum/tête 0,26 (0,52) -0,39 (0,91) * 0,03 (0,15) -0,20 (0,23) * 0,01 (0,09) 0,00 (0,12)  

 

 

 Sujets sains 
Amputés 

transtibiaux 
Sig. 

ASI temporelle (%) -1,4 (3,58) 8,8 (9,3)  

ASI charge (%) 0,6 (12,2) 5,6 (21,3)  

Distance test (m) 192 (16) 140 (35) * 

 

Il est iŶtĠƌessaŶt de Ŷoteƌ Ƌue l͛iHR est le seul des trois paramètres de symétrie qui présente une 

diffĠƌeŶĐe sigŶifiĐatiǀe eŶtƌe les deuǆ populatioŶs. Des Ġtudes plus poussĠes suƌ l͛iŶteƌpƌĠtatioŶ de 
l͛iHR soŶt ŶĠĐessaiƌes : en effet, cet indice de symétrie ne présente aucune corrélation avec les ASI 

caractérisant la symétrie temporelle et de charge ni chez les sujets sains ni chez les personnes 

amputées au niveau transtibial. Si dix des paramètres ne permettent pas de différencier les sujets sains 

des sujets amputés, ils ne sont pour autant pas nécessairement à écarter lors du suivi des patients en 

Đouƌs de ƌĠĠduĐatioŶ. Il est eŶ effet tout à fait possiďle Ƌu͛uŶe diffĠƌeŶĐe eǆiste eŶ dĠďut de 
ƌĠĠduĐatioŶ et Ƌu͛elle soit ĐoŵďlĠe au Đouƌs de la ƌĠĠduĐatioŶ foŶĐtioŶŶelle des peƌsoŶŶes aŵputĠes. 
Seule une étude peƌŵettaŶt d͛oďteŶiƌ les ǀaleuƌs ĐaƌaĐtĠƌisaŶt les peƌsoŶŶes aŵputĠes eŶ Đouƌs de 
ƌĠĠduĐatioŶ peut peƌŵettƌe de ĐoŶĐluƌe suƌ l͛iŶtĠƌġt des iŶdiĐes pouƌ le suiǀi eŶ Đouƌs de ƌĠĠduĐatioŶ. 
En effet, la comparaison des valeurs des indices au cours de la rééducation et à la fin de celle-ci avec 

la différence minimale détectable permettrait de juger si les indices sont sensibles aux évolutions de 

la marche et donc pertinents pour suivre les progrès des patients au cours de leur rééducation. Il est 

toutefois intéressaŶt de Ŷoteƌ Ƌu͛au ƌegaƌd des ǀaleuƌs ĠleǀĠes des diffĠƌeŶĐes ŵiŶiŵales dĠteĐtaďles 
des ĐoeffiĐieŶts d͛attĠŶuatioŶ tƌouǀĠes daŶs Đette Ġtude, il est pƌoďaďle Ƌue Đeuǆ-ci ne permettent 

pas de détecter une évolution des patients au cours de la rééducation. 

Cette étude a contribué à améliorer la compréhension des indices de qualité de la marche. La 

faisabilité de la caractérisation de ces indices en clinique lors du test de deux minutes, validé chez les 

personnes amputées, a par ailleurs été démontrée. Afin de conclure sur la pertinence du suivi de ces 

iŶdiĐes, il est ŶĠĐessaiƌe d͛oďteŶiƌ des ǀaleuƌs de ƌĠfĠƌeŶĐe eŶ Đouƌs de ƌĠĠduĐatioŶ. CeĐi peƌŵettƌa 
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de mettre en évidence si les indices sont suffisamment sensibles pour détecter une évolution de la 

qualité de la marche au cours de la rééducation, et ainsi de conclure sur leur pertinence clinique. 

4. Conclusion générale 

L͛oďjeĐtif de Đette thğse Ġtait de ĐoŶtƌiďueƌ au dĠǀeloppeŵeŶt d͛outils et pƌotoĐoles eŵďaƌƋuĠs 
peƌŵettaŶt l͛ĠǀaluatioŶ ƋuaŶtitatiǀe des peƌsoŶŶes amputées de membre inférieur pendant leur 

rééducation.  

La pƌeŵiğƌe paƌtie de la thğse a peƌŵis d͛ideŶtifieƌ les paƌaŵğtƌes ďioŵĠĐaŶiƋues et cliniques 

peƌtiŶeŶts, poteŶtielleŵeŶt ƋuaŶtifiaďles à l͛aide de ĐeŶtƌales iŶeƌtielles ou de seŵelles de pƌessioŶ. 
Deux approches complémentaires ont alors été implémentées pour développer des algorithmes 

originaux ou valider, chez les personnes amputées de membre inférieur, des outils existants 

permettant de quantifier la cinématique du centre de masse, la symétrie de la ŵaƌĐhe et l͛ĠƋuiliďƌe 
dynamique. 

La première approche, fondée sur la modélisation biomécanique du corps, a été implémentée dans 

la seconde partie de la thèse (section 2 du ƌĠsuŵĠͿ. UŶ algoƌithŵe oƌigiŶal peƌŵettaŶt d͛estiŵeƌ avec 

pƌĠĐisioŶ l͛aĐĐĠlĠƌatioŶ et la ǀitesse iŶstaŶtaŶĠe du ĐeŶtƌe de ŵasse à l͛aide de ĐiŶƋ ĐeŶtƌales 
inertielles a pu ainsi être proposé et validé chez une personne amputée transfémorale. La robustesse 

du protocole aux erreurs de localisation des centrales iŶeƌtielles pouƌ l͛estiŵatioŶ de l͛aĐĐĠlĠƌatioŶ du 
centre de masse du corps a été étudiée à travers une étude de sensibilité. Cette analyse pourrait être 

ĐoŵplĠtĠe paƌ uŶe Ġtude de l͛iŵpaĐt des eƌƌeuƌs d͛oƌieŶtatioŶ hĠƌitĠes des hǇpothğses d͛aligŶeŵeŶt 
des ĐeŶtƌales pouƌ la dĠfiŶitioŶ d͛uŶ ƌepğƌe gloďal ĐoŵŵuŶ. Le tƌaǀail effeĐtuĠ daŶs Đe Đadƌe Ŷ͛est pas 
eǆeŵpt de liŵites. L͛aŶalǇse de seŶsiďilitĠ et le pƌotoĐole oŶt ĠtĠ dĠǀeloppĠ et ǀalidĠ suƌ les doŶŶĠes 
d͛uŶe uŶiƋue peƌsoŶŶe aŵputĠe. DaǀaŶtage de patients devraient être recrutés afin de confirmer la 

validité et la pertinence du pƌotoĐole pƌoposĠ. Paƌ ailleuƌs, eŶ l͛Ġtat, le pƌotoĐole ƌepose suƌ l͛utilisatioŶ 
d͛uŶ sǇstğŵe optoĠleĐtƌoŶiƋue pouƌ la ĐaliďƌatioŶ des photogƌaphies ŶĠĐessaiƌes à l͛oďteŶtioŶ du 

modèle inertiel personnalisé et la position absolue des centrales inertielles. Des développements et 

uŶ tƌaǀail de ǀalidatioŶ soŶt doŶĐ ŶĠĐessaiƌes pouƌ se passeƌ de l͛utilisatioŶ du sǇstğŵe opto-

électronique, par exemple, en utilisant des scanners 3D. Enfin, le protocole pourrait être adapté pour 

peƌŵettƌe d͛aĐƋuĠƌiƌ d͛autƌes paramètres biomécaniques pertinents tels que le déplacement du 

centre de masse et les efforts de réaction au sol sous chaque pied.  

La seĐoŶde appƌoĐhe, foŶdĠe suƌ l͛eǆploitatioŶ des signaux des capteurs embarqués pour identifier 

des indices caractérisant le mouvement, a été implémentée dans la troisième partie de la thèse 

(section 3 du ƌĠsuŵĠͿ daŶs le ďut d͛eǆaŵiŶeƌ la peƌtiŶeŶĐe d͛algoƌithŵes ou d͛iŶdiĐes de qualité de la 

marche déjà proposés dans la littérature pour le suivi de la rééducation des personnes amputées de 

ŵeŵďƌe iŶfĠƌieuƌ. UŶe pƌeŵiğƌe Ġtude aǀait pouƌ oďjeĐtif d͛Ġǀalueƌ la faisaďilitĠ de l͛utilisatioŶ des 
centrales inertielles pour caractériseƌ l͛asǇŵĠtrie temporelle de la marche. Si deux des cinq 

algoƌithŵes de dĠteĐtioŶ des ĠǀĠŶeŵeŶts de la ŵaƌĐhe peƌŵetteŶt d͛ideŶtifieƌ aǀeĐ suffisaŵŵeŶt de 
pƌĠĐisioŶ les iŶstaŶts d͛oĐĐuƌƌeŶĐe des ĠǀĠŶeŵeŶts de ĐoŶtaĐt iŶitial et fiŶal, uŶe teŶdaŶĐe à sous-

estiŵeƌ l͛asǇŵĠtƌie de duƌĠe de phase d͛appui a ĠtĠ ŵise eŶ ĠǀideŶĐe, pƌosĐƌiǀaŶt l͛usage des 
algoƌithŵes daŶs Đe ďut. DaŶs uŶe deuǆiğŵe Ġtude, l͛iŶstƌuŵeŶtatioŶ du test de deuǆ ŵiŶutes aǀeĐ 
des centrales inertielles sur le haut du corps et des semelles de pression a été proposée. Cette étude 

a permis de démontrer la faisabilité de caractériser, en milieu clinique, la qualité de la marche des 
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peƌsoŶŶes aŵputĠes tƌaŶstiďiales eŶ teƌŵes d͛ĠƋuiliďƌe dǇŶaŵiƋue et de sǇŵĠtƌie à l͛aide d͛iŶdiĐes 
issus des capteurs embarqués. La peƌtiŶeŶĐe des iŶdiĐes a ĠtĠ eǆploƌĠe à l͛aide d͛uŶe Ġtude de 
répétabilité intra-session, dont les résultats devront être confirmés sur une étude de répétabilité inter-

session avec une cohorte de personnes amputées plus importante. Par ailleurs, il est nécessaire de 

comparer les valeurs de ƌĠfĠƌeŶĐe oďteŶues au Đouƌs de l͛Ġtude auǆ ǀaleuƌs pƌises paƌ les iŶdiĐes au 
cours de la rééducation afin de vérifier la sensibilité au changement des indices et de conclure sur leur 

utilité pour le suivi clinique de patients pendant la rééducation. 

Les deux approches implémentées dans cette thèse ont donc contribué, chacune à leur échelle, au 

transfert vers la clinique des capteurs embarqués. La première a, en effet, exploré de nouvelles pistes 

d͛utilisation des capteurs embarqués chez les personnes amputées de membre inférieur tandis que la 

seĐoŶde a appƌofoŶdi les ĐoŶŶaissaŶĐes et le degƌĠ de ǀalidatioŶ d͛iŶdiĐes de ƋualitĠ de la ŵaƌĐhe Đhez 
les personnes amputées. Des travaux complémentaires de validation sont toutefois nécessaires avant 

de pouvoir implémenter les protocoles proposés en clinique. Il est intéressant de noter que les 

algorithmes et protocoles proposés dans cette thèse pourraient également servir à évaluer la marche 

d͛autƌes populatioŶs Ƌue celle des personnes amputées de membre inférieur, mais de légères 

adaptations des algorithmes pourraient être nécessaires (par exemple, concernant le choix des 

segments à instrumenter pour la cinématique du centre de masse) et la validation des indicateurs ou 

algorithmes devra être vérifiée au préalable dans la population visée. 
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Emeline SIMONETTI 

Contribution to the development and validation of 
wearable-sensor-based methodologies for gait assessment 
and rehabilitation of people with lower limb amputation 

Résumé 

Un des objectifs majeurs de la rééducation des personnes amputées de membre inférieur appareillées est le retour 
à une marche physiologique, efficace énergétiquement et minimisant le risque de chutes lié à la perte d’équilibre. 
Peu d’outils cliniques permettent aujourd’hui de quantifier ces aspects de la locomotion. L’émergence de 
capteurs embarqués miniaturisés offre des opportunités pour la description quantitative et écologique de la 
marche. Dans ce contexte, l’objectif de la thèse était de contribuer au développement de protocoles embarqués 
pour apporter des données quantitatives pertinentes lors de la rééducation à la marche des personnes amputées 
de membre inférieur. Deux approches complémentaires ont été adoptées. La première approche consiste à utiliser 
un modèle biomécanique du corps afin d’extraire des descripteurs quantifiés pertinents. Un protocole permettant 
d’estimer l’accélération et la vitesse instantanée du centre de masse à partir de 5 centrales inertielles a ainsi été 
proposé à partir d’une analyse préliminaire sur les données de marche de dix personnes amputées transfémorales 
et a été validé chez une personne amputée transfémorale. La seconde approche consiste à extraire des paramètres 
concis par traitement du signal des données brutes des capteurs. La fiabilité et la pertinence clinique de la 
quantification de tels paramètres pour caractériser la symétrie et l’équilibre de la marche ont été étudiées pour la 
première fois chez les personnes amputées de membre inférieur. L’ensemble des travaux produits au cours de 
cette thèse contribue ainsi au transfert vers la clinique des outils embarqués d’analyse du mouvement par 
l’identification de paramètres biomécaniques et cliniques pertinents et la validation d’algorithmes originaux 
permettant la quantification de la marche des amputés de membre inférieur.  
Mots clés : Analyse quantifiée de la marche, capteurs embarqués, centre de masse, équilibre dynamique, 
symétrie, personnes amputées de membre inférieur 

 

Résumé en anglais 

One key objective during the rehabilitation of people with lower-limb amputation fitted with a prosthesis is the 
restoration of a physiological and energy-efficient gait pattern minimizing falling risks due to the loss of balance. 
Few practical tools are available to provide quantitative data to assist the follow-up of patients in the clinical 
routine. The development of wearable sensors offers opportunities to quantitatively and objectively describe gait 
in ecological situations. In this context, the aim of the thesis is to contribute to the development of wearable tools 
and protocols to support the functional rehabilitation of lower-limb amputees by providing clinically relevant 
quantitative data. Two complementary approaches have been implemented. The first approach consists in 
developing biomechanical models of the human body in order to retrieve biomechanically founded parameters. 
A protocol allowing to accurately estimate the body center of mass acceleration and instantaneous velocity has 
therefore been proposed based on gait data of ten people with transfemoral amputation and was validated in one 
person with transfemoral amputation. The second approach consists in identifying patterns in the signals 
measured by wearable sensors to extract concise descriptors of gait symmetry and dynamic balance. The clinical 
relevance and reliability of these descriptors have been investigated for the first time in people with lower-limb 
amputation. The work produced in the course of this thesis has contributed to the clinical transfer of wearable 
sensors into the clinical practice through the identification of clinically and biomechanically relevant parameters 
and the validation of original algorithms allowing to quantitatively describe the gait of lower-limb amputees. 
Key words: Quantitative gait analysis, wearable sensors, center of mass, symmetry, dynamic balance, people 
with lower-limb amputation 


