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M. Tamer BAŞAR, Professeur, Coordinated Science Laboratory, University of Illinois Rapporteur
M. Samson LASAULCE, Directeur de recherche, CNRS, CentraleSupélec Rapporteur
M. Merouane DEBBAH, Professeur, CentraleSupélec Examinateur
M. Rida LARAKI, Directeur de recherche, CNRS, Université Paris Dauphine Examinateur
M. Jean-Marc KELIF, Ingénieur de recherche, Orange Labs Examinateur
M. Marceau COUPECHOUX, Maître de conférences, INFRES, Telecom ParisTech Directeur
M. Rachid EL-AZOUZI, Professeur, LIA, Univertité d’Avignon Directeur
M. Eitan ALTMAN, Directeur de recherche, INRIA Encadrant

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr



ii



Acknowledgments

Before starting the PhD, I met a few people to gather advices, opinions and feedbacks about this
postgraduate formation that was supposed to make me a researcher. At this time, I thought "So,
when they say it is a unique experience they probably mean that its a lot of work because of the pa-
pers to be published and all these things I will have to learn." . This was true but highly incomplete.
How could I have imagine a three years period of my life that would actually heavily depend on
skills and people I did not know about?

I discovered that the PhD is more than doing science. It is also about people. Those that you
already know and those that you do not but discover. You interact with them, learn from them and
sometimes work or cooperate with them. In any case, it is unique because every person is.

I would like to thank Eitan Altman, Marceau Coupechoux, Rachid El-Azouzi and Jean-Marc
Kélif for having guided me through this important step of my life. You are exceptional people and
researchers. It was an honor working with you and I hope that you enjoyed these years as much as
I did. Thank you also to Richard Combes for having accepted me as an intern for a few months. It
was great working with you and I could not have expected a better ending.

I also would to thank my manager Laurent Labéguerie at Orange for both his outstanding hu-
man skills and his valuable lessons as well as my colleagues at Orange Labs and Telecom ParisTech.

Finally, I would like to thank the jury members and the reviewers of the manuscript, Director
of Research Samson Lasaulce and Professor Tamer Baa̧r.

iii



iv



Résumé
Jeux Coopératifs et d’Appariements Stables dans les Réseaux

Dans cette thèse, nous proposons des solutions à plusieurs problèmes d’ allocation de ressources
et d’associations dans les réseaux. Pour cela, nous employons les jeux coopératifs, particulière-
ment les jeux d’appariements stables, classiquement utilisés en économie pour l’analyse de marchés
bifaces et la conception de leurs mécanismes d’allocations. Dans la première partie, nous intro-
duisons les jeux de négociation et d’appariements stables. Dans une seconde partie, nous pro-
posons un nouveau mécanisme stable d’association des utilisateurs en WiFi réduisant l’impact de
l’anomalie du protocole. Nous présentons également une analyse d’un problème de stockage de
videos et un nouvel algorithme d’énumération de structures stables. Dans une troisième partie,
nous analysons des conditions pour la stabilité de certains schémas d’équité connus en termes de
mesures d’aversion au risque. Dans une quatrième partie, nous analysons la stabilité d’une place
de marché biface de crowdsourcing avec contraintes d’ordonnancement de tâches. La classique
propriété de substitution des biens n’étant pas satisfaite, nous introduisons des nouvelles condi-
tions et montrons l’existence d’appariements stables. Nous proposons également une résolution
du problème par une formulation non-coopérative en forme extensive.

MOTS-CLEFS: réseaux, réseaux sans fil, allocation de ressources, appariements, théorie des
jeux, jeux coopératifs, stabilité, marchés bifaces

Abstract
Cooperative Games and Stable Matchings in Networks

In this thesis, we propose new solutions to matching problems in networks. We use coop-
erative games, particularly stable matchings, classically used in economy to analyze two-sided
markets and design matching mechanisms. In the first part, we introduce bargaining and stable
matching games. In the second part, we propose a new stable matching mechanism for user as-
sociation in WiFi reducing the impact of the anomaly in the protocol. Furthermore, we analyze a
video caching problem and show a new algorithm enumerating stable structures. In the third part,
we analyze conditions for the stability of some fairness schemes in terms of risk aversion indica-
tors. In the fourth part, we analyze the stability of a two-sided crowdsourcing marketplace with
scheduling constraints on the tasks. The classical substitutability condition does not hold in this
case. We introduce new conditions and show the existence of stable matchings. We also solve the
crowdsourcing problem as a non-cooperative game in extensive form.

KEY-WORDS: networks, wireless networks, resource allocation, matchings, game theory, sta-
bility, cooperation, two-sided markets
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Résumé détaillé en français

0.1 Introduction

Au cours des dernières années, le développement des réseaux et l’innovation dans les services con-
nectés ont donné aux entreprises et utilisateurs de nouvelles opportunités de création de valeur,
consommation et de communications. Les plateformes en lignes ont émergé comme places de
marchés virtuelles où plusieurs millions d’utilisateurs peuvent s’échanger des biens ou des ser-
vices. Dans ces systèmes, l’offre et la demande forment un marché biface permettant une com-
pétition en ligne des agents sur les ressources. Beaucoup de ces marchés sont régulés par des rè-
gles et mécanismes (tels les enchères) qui définissent la façon dont les agents participent à la com-
pétition. Ces systèmes bénéficient de la connectivité globale d’Internet et des réseaux de commu-
nication hautes performances (fixes ou sans-fils) qui permettent un accès aux services à de nom-
breux agents et une diffusion à grande échelle de l’information. Les modèles économiques, les
habitudes des consommateurs et les technologies ont changé ensemble pour se combiner dans de
nouvelles solutions et systèmes plaçant les réseaux au coeur d’une révolution. De nouveaux prob-
lèmes sont apparus tels que la gestion d’énormes volumes de données, la pertinence des informa-
tions transmises ou l’automatisation de la prise de décision. Cependant, en dépit de leur nombre
croissant, les places de marchés et leurs mécanismes ne sont pas nécessairement nouveaux. Beau-
coup ont déjà été étudiés en économie, théorie des jeux et réseaux. Une approche couronnée de
succès, fondée sur le théorie des jeux coopératifs, est appelée théorie des appariements stables.
Les résultats développés ont révélés des propriétés insoupçonnées de mécanismes d’allocation
de ressources et les recherches ont développé une méthodologie puissante pour les étudier et en
concevoir de nouveaux.

0.2 Contributions et plan

Dans cette thèse, on étudie le lien entre certains problèmes des réseaux et les analyses des marchés
bifaces par la théorie des jeux. Plus particulièrement, on traite quatre problèmes en utilisant
la théorie des appariements stables. Dans le chapitre 2, on donne une brève introduction à la
coopération en théorie des jeux en se concentrant sur le problème de marchandage et la solu-
tion de Nash à ce problème. Dans le chapitre 3, on introduit la théorie des appariements stables,
utilisée tout au long de cette thèse pour développer des solutions aux problèmes posés. Dans le
chapitre 4, on montre que dans certaines conditions, le protocole WiFi peut être modélisé comme
un marchandage de Nash. Dans le chapitre 5, on étudie le problème de la gestion des connexions
WiFi. On montre que le système peut être modélisé comme une place de marché biface avec un
schéma coopératif d’allocation de ressources tels que traités par les jeux. On propose un nou-
veau mécanisme stable d’appariements réduisant l’impact de la congestion et de l’anomalie du
protocole, problèmes bien connus induit par l’impact mutuel des agents communicants. Dans
le chapitre 6, on applique certains éléments de la solution précédente au problème de mise en
cache de vidéos dans les réseaux. On propose un nouveau mécanisme de stockage entre vidéos
d’un fournisseur de contenu et les serveurs d’un opérateur. La solution prend en compte l’impact
mutuel des vidéos et les gains de qualité induits par des serveurs différenciés. Dans notre modèle,
on suppose un marchandage de Nash sur les revenus générés par le stockage et on considère un
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jeu général de formation de coalitions avec potentiel. On définit un nouvel algorithme énumératif
de structures core stables. Pour améliorer la compréhension du lien entre allocation de ressources
et stabilité, en chapitre 7, on étudie l’alpha-équité proportionnelle généralisée. On utilise des ré-
sultats récents de la théorie des jeux pour montrer que les conditions de concavité sur les fonc-
tions d’utilités des agents pour l’existence de structures core stables peuvent être simplement for-
mulées en termes d’indicateurs d’aversion au risque. Dans le chapitre 8, on étudie un marché bi-
face de production participative (crowdsourcing) avec contrats et contraintes d’ordonnancement
de tâches. On suppose la stabilité pair-à-pair comme concept de solution et on fournit des con-
ditions suffisantes d’existence d’appariements stables. On mène également une analyse via une
reformulation par les jeux non-coopératifs. Ce problème est important pour la conception de
plateformes de production participative plus complexes et complètes permettant plus de coor-
dination dans la distribution des tâches au sein des entreprises participantes ainsi qu’entre elles.
Finalement, au chapitre 9 on expose des problèmes ouverts.

0.3 Coopération et négociation

Dans ce chapitre, on introduit la théorie des jeux coopératifs. On se concentre sur les problèmes
de marchandages et la solution de Nash qui sera utilisée avec les jeux d’appariements dans les
chapitres 4 et 5 pour étudier l’allocation de ressource WiFi et développer un mécanisme d’association
ainsi que dans le chapitre 6 pour développer un mécanisme de mise en cache de vidéos.

Dans un jeu coopératif, les joueurs peuvent faire des choix stratégiques non-coopératifs mais
ont aussi des opportunités conjointes introduites par les ententes mutuelles. Dans ce cadre, on
peut s’attendre à l’apparition de nouvelles formes de stabilité et concepts de solution dans la prise
de décision. Un point particulièrement important est que la coopération, par l’ensemble des nou-
velles possibilités stratégiques qu’elle introduit, induit un problème de sélection d’équilibre. Ce
problème est à l’origine de la théorie de la négociation (arbitrage, marchandage) qui est en fait
une théorie de la sélection coopérative d’équilibres. Un exemple simple est proposé par le jeu
du partage des dollars. Supposons deux joueurs devant se partager cent dollars. Si la demande
des deux est inférieure ou égale à cent dollars, alors chacun obtient la part demandée. Si la de-
mande dépasse les cent dollars, alors les joueurs ne reçoivent rien. Dans ce cas, toute demande
telle que la somme des montants (positifs) est égale à cent dollars est un équilibre de Nash. Parmi
ces équilibres, donner cinquante dollars à chacun est un partage équitable. Il s’agit sans doute
du partage que suggérerait un arbitre impartial, ce qui confère à cette allocation une propriété
spécifique d’attraction que les autres équilibres n’ont pas.

0.3.1 Le marchandage de Nash

Il existe de nombreux schémas et processus possibles d’arbitrage. Le modèle de marchandage de
Nash repose sur l’hypothèse que le résultat d’un marchandage entre agents devrait être une fonc-
tion de l’ensemble des opportunités conjointement atteignables mesurées en utilité et de menaces
qui bloqueraient le processus de négociation en cas de désaccord en garantissant à chaque joueur
une quantité d’utilité connue. L’arbitrage proposé par Nash repose sur cinq axiomes. Le premier
axiome requiert la faisabilité et la Pareto-efficience de l’allocation. Le second demande une ra-
tionalité individuelle: aucun joueur ne devrait accepter moins que l’utilité qu’il peut garantir par
application de sa menace. Le troisième requiert une invariance de la solution par transforma-
tion affine positive de l’utilité alors que le quatrième requiert une conservation de la solution à la
suppression des allocations qui ne sont pas des équilibres. Finalement, le dernier axiome requiert
une symétrie telle que l’allocation soit la même pour des agents identiques en termes d’utilité. Soit
B ΩR2 l’ensemble compacte 1 convexe2 des allocations d’utilités conjoitement atteignables par les
joueurs, appelé ensemble faisable. Soit t = (t1, t2) un vecteur de R2 appelé vecteur de menaces et

1Fermé et borné
28x,y 2 B,8∏ 2 [0,1],∏x + (1°∏)y 2 B
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� la fonction associant à tout jeu de marchandage (B,t) une allocation de l’utilité dans B. Nash
a montré qu’il existe une unique fonction de solution �(., .) satisfaisant les cinq axiomes appelés
axiomes de Nash.

�(B,t) 2 argmaxu2B,u∏t(u1 ° t1)(u2 ° t2) (1)

Ce résultat fondamental a part la suite été généralisé aux jeux de marchandage à n joueurs. Une
solution relâchant l’axiome de symétrie par introduction de puissances de négociation a égale-
ment été proposée.

0.4 Appariements stables

Dans ce chapitre, on introduit la théorie des appariements stables, une branche fructueuse de la
théorie des jeux utilisée pour l’analyse de certains marchés bifaces et leurs mécanismes. Il s’agit du
principal outil de théorie des jeux utilisé dans cette thèse. Les résultats présentés dans ce chapitre
seront utilisés en chapitre 5 pour concevoir un mécanisme d’appariement stable contrôlé pour le
problème d’association en WiFi, en chapitre 6, pour concevoir un mécanisme d’appariement sta-
ble pour la mise en cache de vidéos, en chapitre 7, pour analyser les conditions de concavité requi-
ses pour la stabilité de l’allocation alpha-équitable généralisée et en chapitre 8 pour concevoir un
mécanisme d’appariement stable pour plateforme de production participative avec contraintes
d’ordonnancement.

Depuis les travaux fondateurs de Gale et Shapley sur les marriage stables et le problème d’adm-
ission au collège, les jeux d’appariements stables ont été largement étudiés. La contribution ini-
tiale a été développée pour couvrir un grand nombre d’applications. Cet outil est particulièrement
adapté à l’analyse des places de marchés pour lesquelles la participation des agents et leurs incita-
tions dépendent du mécanisme d’appariement utilisé. Si le mécanisme n’est pas stable, les agents
peuvent considérer des solution alternatives pour s’associer entre eux. Ce phénomène est appelé
désagrégation du marché.

0.4.1 Le Problème du marriage stable

Le problème du marriage stable a été analysé par Gale et Shapley en 1962. Ils ont montré l’existence
systématique de marriages stables dans un marché biface d’hommes et femmes en utilisant un al-
gorithme connu sous le nom de Deferred Acceptance Algorithm (DAA).

Considérons un ensemble d’hommes M de cardinalité M et un ensemble de femmes W de car-
dinalité W. Chaque homme a des préférences données par une relation d’ordre sur les femmes,
et chaque femme a des préférences données par une relation d’ordre sur les hommes. Le prob-
lème du marriage est le jeu d’association entre hommes et femmes avec préférences. Un équili-
bre particulier a été définit pour ce jeu: la stabilité pair-à-pair. Un marriage (ou appariement)
µ : M [W )M [W entre hommes et femmes est une function d’association telle que tout joueur
soit associé à son partenaire (ou lui même s’il reste seul)

• µ(m) 2W [ {m} pour tout m 2M

• µ(w) 2M [ {w} pour tout w 2W

• µ(m) = w ssi µ(w) = m

On dit d’un appariement qu’il est stable pair-à-pair si aucun participant ne préfère quitter son
conjoint pour rester seul ou s’il n’existe pas un homme et une femme non-mariés ensembles qui
préfèreraient tous deux quitter leurs conjoints pour se marier ensemble. Formellement, un ap-
pariement µ est stable pair-à-pair si,

• Il est individuellement rationel: µ(i )¬
i

i pour tout i 2M [W

• Il n’y a pas de paire bloquante: 6 9(m, w) 2M £W t.q. µ(m) 6= w , w ¬
m
µ(m) et m¬

w
µ(w)
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Le résultat fondamental de Gale et Shapley est le suivant,

Theorem. Il existe un mariage stable pour tout jeu de mariage.

En d’autres termes, dans tout jeu de mariage (donc quelques soient les préférences) il est pos-
sible de marier les participants tel que personne ne veuille divorcer. De plus, il a également été
démontré que l’utilisation de l’algorithme DAA résulte en un appariement tel que tout postulant
est au moins aussi bien (selon ses préférences) dans l’appariement résultant du DAA qu’il ne le
serait dans tout autre marriage stable. Il s’agit d’un autre résultat fort qui montre que la procédure
DAA proposée est optimale pour une des faces du marché.

0.4.2 Le problème d’admission au collège

Le problème d’admission au collège est une extension naturelle du problème d’association un-
à-un de marriages stables au cadre plusieurs-à-un où chaque étudiant est appairé à un collège
mais chaque collège peut être associé à plusieurs étudiants dans la limite de son quota. Dans la
version la plus élémentaire du problème, chaque étudiant a des préférences sur les collèges et les
collèges ont des préférences sur les groupes d’étudiants qu’ils peuvent recevoir. Dans des config-
urations plus avancées, les préférences des joueurs peuvent dépendre de façon plus générale de
l’appariement du marché ou d’éléments additionnels tels que des rémunérations (cas des marchés
de l’emplois entre travailleurs et entreprises). Par exemple, les étudiants peuvent avoir des préfé-
rences sur leurs collègues. Nous réservons ces cas (d’externalités) pour les sections suivantes. Les
préférences des collèges sur les groupes peuvent également répondre à des règles simples de com-
position de préférences sur les étudiants individuels.

Soit un ensemble de collèges C de cardinalité C et un ensemble d’étudiants S de cardinalité
S. Un appariement plusieurs-à-un faisable µ est une fonction de C [S dans les familles non-
ordonnées de C [S tel que:

• |µ(s)| = 1 pour chaque étudiant s and µ(s) = 1 si µ(s) 62C ;

• |µ(c)| = qc pour chaque collège c, et si le nombre d’étudiants dansµ(c), disons r , est inférieur
ou égal à qc , alors µ(c) contient qc ° r copies de c;

• µ(s) = c si et seulement si s 2µ(c)

Dans le problème d’admission au collège, on peut encore considérer la stabilité pair-à-pair
définie précédemment comme notion d’équilibre. Néanmoins, la notion de groupe est devenue
importante par introduction de préférences sur les groupes pour les collèges. Si ces préférences
sont telles qu’en fait elles peuvent être réduites aux préférences individuelles, alors la stabilité
pair-à-pair peut être suffisante. Néanmoins, dans le cas général il est nécéssaire de considérer les
déviations de groupes de joueurs ou coalitions. En ce sens, deux autres définitions d’équilibre ont
été proposées, la core stabilité et la stabilité de groupe. On présente la core stabilité.

Definition. Un appariement µ0 domine un autre appariement µ via une coalition C dans C [S si
pour tout étudiant s et collège c dans C,

• Si c 0 =µ0(s) alors c 0 2 C

• Si s0 2µ0(c) alors s0 2 C

• µ0(s)¬
s
µ(s)

• µ0(s)¬
s
µ(s)

Definition. Le core, C(P), d’un jeu est l’ensemble des appariements non-dominés par un autre ap-
pariement.
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La notion de core faible requiert la relaxation de préférences strictes de tout joueur de la coali-
tion C à une préférence faible pour tout joueur de C et stricte pour au moins un étudiant et au
moins un collège de C. Le core faible est contenu dans le core et on peut montrer qu’avec cer-
taines préférences le core faible correspond aux matchings stables pair-à-pair.

0.4.3 Le modèles des entreprises et travailleurs: fonction de choix, subtituabilité et
salariés

Dans cette section, on considère le modèles d’entreprises et travailleurs. Il permet entre autres
l’introduction de rémunérations versées par les entreprises aux travailleurs en échange de l’exécut-
ion de tâches. Dans cette section, on considère les fonctions de choix comme formulation des
préférences alternatives aux relations d’ordres et on présente la substituabilité comme condition
suffisante d’existence d’appariements stables.

Considérons le problème d’admission au collège de la section précédente mais transformons
désormais les étudiants S en travailleurs W et les collèges C en entreprises F . Supposons que
chaque paire de la forme (entreprise,travailleur) soit caractérisée par un rémunération versée au
travailleur. Les préférences des joueurs sont formulés à l’aide de fonctions de choix. Par exemple,
la fonction de choix d’une firme associe à tout groupe de travailleurs son préféré.

Definition. Pour tout sous-ensemble S µW , l’ensemble choisi par f est S0 = Ch f (S) tel que S0 µ S et
S0 ∫ f S00 pour tout S00 µ S.

Les préférences ou choix des firmes sur les groupes peuvent être définies par des complémen-
tarités complexes entre travailleurs. Dans certains cas, elles peuvent aussi limiter ces complémen-
tarités. Un exemple de ce type est donné par la propriété de substituabilité.

Definition. Les préférences d’une entreprise f sur les ensembles de travailleurs a la propriété de
substituabilité si, pour tout ensemble S contenant les travailleurs w and w 0, si w est dans r f (S\w 0)
alors w est dans r f (S).

On a le résultat suivant :

Theorem. Quand les préférences des firmes satisfont la propriété de substituabilité, l’ensemble des
appariements stables est toujours non-vide.

0.4.4 Complémentarités et effets de pairs

Dans de nombreux cas les hypothèses telles que la propriété de substituabilité des préférences
ne sont pas vérifiées. De plus, un modèle plus complexe doit tenir compte des d’effets de pairs
où les travailleurs peuvent avoir des préférences sur leurs collègues. Un travailleur n’émet plus
seulement des préférences sur les entreprises ou les tâches à exécuter mais sur les groupes de
joueurs composés d’autres travailleurs et d’une entreprise. Ces effets de pairs sont un cas par-
ticulier d’externalités qui considèrent l’impact de l’appariement courant (état du marché) sur
les préférences des individus. De récentes analyses du probléme de formation de coalitions ou
d’appariements stables avec complémentarités et effets de pairs ont mis en évidence de nouvelles
conditions suffisantes (sur les préférences) d’existence d’appariements core stables. Pour exem-
ple, si l’ensemble des coalitions satisfait une certaine régularité (trois conditions de régularité C1-
C2-C3), que les préférences des agents sont alignées pair-à-pair sur un riche profile de préférences
(trois conditions de richesses R1-R2-R3) alors il existe des appariements core stables.

Theorem. Supposons que la famille de coalition C satisfasse les conditions C1 and C2, et que le
domaine de préférences R satisfasse R1. Si tous les profiles de préférences de R sont alignés pair-
à-pair, alors (i) tout π

N
2 R admet une structure stable de coalitions et (ii) la structure stable de

coalitions est unique pour tout profile de préférences strictes π
N

2 R qui est aligné pair-à-pair sur la

grande coalition.
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Dans les cas où au sein d’une coalition les joueurs se partagent une valeur ou une ressource
selon une règle de partage donnée ces résultats peuvent aussi être déclinés. On a le résultat suiv-
ant,

Corollary. Supposons que la famille de coalitions C satisfasse C1-C3 et que la règle de partage D
soit régulière. Il y a une structure stable de coalitions pour tout profile de préférences induit part la
règle de partage si et seulement si il existe des fonctions d’utilités ui : R+ ! R+, i 2 N croissantes,
différentiables, et strictement log-concave, telles que ui

u0
i
(0) = 0 et

(Di ,C(y))i2C = argmaxP
i2C

si ,C∑v(C)

Y

i2C
ui (si ), y 2R+,C 2C \{N } (2)

Il s’agit d’un résultat particulièrement important que nous utilisons au chapitre 5 pour mon-
trer l’existence d’appariements stables dans les réseaux WiFi. En effet, on montre au chapitre 4 que
le protocole WiFi induit des débits saturés qui résultent d’un marchandage de Nash équivalent sat-
isfaisant les conditions requises par le corollaire précédent pour l’existence d’appariements core
stables. En chapitre 7, on analyse les conditions de concavité sur les utilités pour le cas particulier
de l’allocation alpha-équitable généralisée. On montre que dans ce cas, ces conditions peuvent
être analysées en termes de mesures d’aversion au risque.

0.4.5 Appariements avec contrats et externalités

Il est possible d’enrichir les appariements en transformant la relation binaire d’association en con-
trats qui paramètres l’appariement entre les joueurs. Ainsi, pour une même paire (travailleur,entre-
prise) l’appariement entre les deux joueurs peut être défini différemment selon les contrats. La
formulation avec contrats généralise les modèles de marriage, étudiants et collèges, travailleurs
et entreprises et même certains modèles d’enchères. Ils couvrent également les cas d’association
plusieurs-à-plusieurs où travailleurs et entreprises peuvent tous signer plusieurs contrats.

Considérons les ensemble finis des firmes F et des travailleurs W . Définissons l’ensemble des
contracts entre travailleurs et entreprises comme l’ensemble des accords pair-à-pair qui peuvent
être signés. Un contrat stipule, un travailleur, une entreprise et des termes additionnels tels une
ou plusieurs tâches, une rémunération, des responsabilités, des contraintes d’execution ou une
pénalité en cas de non-exécution. Par définition, un appariement est un ensemble de contrats.
Les fonctions de choix des agents sont désormais définies sur les contrats. Une définition possible
est la suivante.

Definition. On construit le choix de l’agent i dans tout ensemble X étant donné µ, ci (X|µ), tel que:

ci (X|µ)[µ°i ∫i X0
i [µ°i pour tout X0

i µ Xi (3)

On a la définition suivante de la stabilité pair-à-pair d’un appariement µ.

Definition. Un travailleur i et une firme j forment une paire bloquante pour l’appariement µ si il
existe un contrat x 2 Xi \X j tel que x 62 µ et x 2 ci

°
µ[x|µ

¢
\ c j

°
µ[x|µ

¢
. Un appariement µ est

stable pair-à-pair si,

• il est individuellement rationnel pour chaque agent: ci (µ|µ) =µi pour tout i 2N ,

• il n’y a pas de paire bloquante.

Pour montrer l’existence d’appariements stables plusieurs-à-plusieurs avec contrats et exter-
nalités, deux conditions fondamentales ont été proposées dans la littérature, la non-pertinence
des contrats rejetés et la substituabilité des contrats. On a les définitions suivantes.

Definition. Une fonction de choix ci satisfait la non-pertinence des contrats rejetés si pour tous
X,X0 µX , on a

ci (X0) µ X µ X0 ) ci (X0) = ci (X) (4)
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Definition. La fonction de choix Cµ telle que Cµ(X|µ) = [
i2µ

ci (Xi |µ°i ) satisfait la propriété de substi-

tuabilité si pour tous X, X0, µ, µ0 µX ,

X0 ∂ X & µ0∫̃µµ) Rµ(X0|µ0) ∂ Rµ(X|µ) (5)

où ∫̃µ est un préordre consistent avec Cµ.

On a le théorème d’existence suivant.

Theorem. Supposons que les fonctions de choix satisfassent la subtituabilité et la non-pertinence
des contrats rejetés. Alors l’algorithme converge, sa sortie est stable et

µF(T) =µW(T) = AF(T)\AW(T) (6)

où µF(T), µW(T), AF(T), AW(T) sont des ensembles résultants des choix et rejets des joueurs tels que
décrits dans l’algoritme.

Comme pour l’existence des marriages stables, la démonstration du théorème utilise un algo-
rithme similaire au DAA appelé Modified Deferred Acceptance Algorithm. Ce résultat est étudié
de façon extensive au chapitre 8 dans lequel nous présentons les conditions de convergence vers
un équilibre stable d’un algorithme pour place de marché de production participative avec con-
traintes d’ordonnancement de tâches par la théorie des appariements stables avec contrats et ex-
ternalités. Plus particulièrement, on propose de définir la substituabilité contrainte et on montre
un théorème d’existence d’appariements stables similaire au précédent.

Algorithm 1: Le Modified Deferred Acceptance Algorithm
Data: � = (F ,W , {ci },X )
Result: µ

1 Phase 1: Construction d’un appariement auxiliaire µ§ tel que µ§ ∫F CF(X |µ)
2 -Définir µ0 = ;;
3 while 6 9l < k tel que µl =µk do
4 -k = k+1;
5 -µk = CF(X |µk°1)

6 -Définir µ§ =µk ;
7 Phase 2: Construction d’un appariement stable
8 -Définir AF(1) = X , AW(1) = ;, µF(1) =µ§ et µW(1) = ;;
9 while AF(k) 6= AF(k °1), AW(k) 6= AW(k °1),µF(k) =µF(k °1),µW(k) =µW(k °1) do

10 - k = k+1;
11

AF(k) = X \RW(AW(k °1)|µW(k °1)) (7)

AW(k) = X \RF(AF(k °1)|µF(k °1)) (8)

µF(k) = CF(AF(k °1)|µF(k °1)) (9)

µW(k) = CW(AW(k °1)|µW(k °1)) (10)

0.5 Négociation de Nash pour allocation de ressources en WiFi

Dans ce chapitre, on montre que le protocole IEEE 802.11 (consistant en une compétition entre
noeuds hétérogènes pour un accès au medium) peut être modélisé comme un marchandage de
Nash satisfaisant les conditions d’existence d’appariements core stables entre noeuds. Plus parti-
culièrement, les débits individuels sont obtenus comme solution de Nash correspondant au point
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Figure 1: Protocole WiFi. Gauche: Un ensemble de nœuds (noirs) et leurs flux (flèches). Par exemple, le
nœud 1 a un flux à transmettre au nœud 2. Milieu: Le compteur (backoff ) du nœud 1 est écoulé. Le nœud
envoie une demande de transmission RTS (Request to Send) au nœud 2. Droite: Le nœud 2 la reçoit et
décode la demande RTS. Il envoie un message d’accord pour transmission CTS (Clear To Send).

de marchandage dans un espace d’utilité induit par des fonctions d’utilités paramétrées par les
flux à transmettre par les agents du système.

Ces fonctions d’utilité associent l’espace de négociation en utilités à un simplexe de débits
défini par la fonction caractéristique du WiFi associant à toute coalition son débit total saturé.
Chaque joueur du système WiFi a une fonction d’utilité ui telle que

ui (si ,C) = sÆi
i ,C (11)

où Æi 2 [0;1] est défini selon

Æi =

|Bi |P
j =1

pi j Li j

P
i2N

|Bi |P
j =1

pi j Li j

(12)

Le marchandage se fait dans l’espace d’utilité induit par l’ensemble des allocations faisables en
débits,

S =

(

s 2R|C||
X

i2C
si ,C =

"
X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C) & si ,C ∏ 0 8i 2 C

)

(13)

Figure 2: Protocole WiFi. Gauche: Le nœud 1 envoie un paquet à son débit. Milieu: Le paquet du nœud 1 a
été transmis. Les compteurs de backoff dćomptent le temps. Droite: Les compteurs du nœud 1 et du nœud
2 sont écoulés. Les deux nœud envoient une demande RTS et il y a collision de ces demandes. Aucun nœud
ne peut dćoder les demandes RTS. Aucun accusé CTS n’est émis.
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Figure 3: Protocole WiFi. Gauche: Le compteur de backoff du nœud 3 est écoulé. Le nœud envoie une
demande RTS. Milieu: Le nœud 5 décode et répond par un CTS. Droite: Le nœud 3 transmet un paquet à
son débit. Ce débit est plus faible que le débit du nœud 1. L’émission du paquet du nœud 3 prend plus de
temps que celle du paquet du nœud 1. Dans ce temps additionnel, aucun noeud ne peut émettre.

où ∑(C) est une fonction des joueurs de la coalition et des paramètres du système. Ce résultat
est utilisé en chapitre 5 pour définir un mécanisme d’appariement contrôlé pour le problème
d’association WiFi.

0.6 Une analyse du WiFi par les jeux coopératifs

Dans les réseaux WiFi, la méthode classique d’association fondée sur la meilleure puissance reçue
et l’anomalie du protocol MAC peuvent mener à des points d’accès surchargés et des perfor-
mances inégales ou mauvaises. Dans ce chapitre, nous proposons une approche alternative de
l’association fondée sur la théorie des jeux coopératifs. On modélise l’allocation de ressources et
l’association des utilisateurs aux points d’accès comme un jeu d’appariements avec des joueurs
(utilisateurs ou points d’accès) rationnels maximisant leurs débits individuels. En utilisant les ré-
sultats des chapitres 3 et 4, on montre que le protocol WiFi IEEE 802.11 en implémentation avec
Fonction de Coordination Distribuée (DCF - Distributed Coordination Function) fait partie des
schémas d’allocation de ressources qui induisent la core stabilité des appariements. Le jeu utilise
de façon extensive le marchandage de Nash modélisant l’allocation WiFi et certaines de ses pro-
priétés pour contrôler les incitations des joueurs pour des appariements aux propriétés intéres-
santes en termes de partage de charge dans le réseau. On montre que le mécanisme proposé
peut effectivement améliorer l’efficacité du WiFi et réduire les effets de pairs tels que l’anomalie
de la couche MAC. Ce mécanisme d’association peut être implémenté sans modification de cette
dernière.

Definition (Jeu d’Allocation de Ressources et d’Association d’Utilisateurs). Le jeu d’allocation de
ressources et d’associations est défini comme un jeu d’appariement plusieurs-à-un à N joueurs en
forme caractéristique avec la régle de partage D et des débits physiques µ = {µw f }(w, f )2W £F : � = (W [
F , v,R+N,D,µ). Chaque paire de joueurs de la forme (w, f ) 2 W [F est dotée d’un débit physique
µw f d’un espace de débit ⇥ = {µ1, . . . ,µm}. Pour ce jeu, on définit l’ensemble des coalitions C :

C = {{ f }[ J, f 2F , J µW , |J|∑ q f }[ {{w}, w 2W }. (14)

Le jeu d’appariement que nous considérons est caractérisé par des complémentarités dans le
sens où les points d’accès ont des préférences sur les groupes d’appareils utilisateurs qui leurs sont
connectés et des effets de pairs dans le sens où les appareils utilisateurs se préoccupent des autres
appareils connectés au même point d’accès qu’eux (i.e. dans la même cellule ou coalition). Tous
les joueurs émettent des préférences sur des groupes. En effet, par définition de l’implémentation
DCF du protocole IEEE 802.11, le débit d’un utilisateur ne dépend pas seulement de son débit
physique mais aussi de son groupe de connectivité par la taille et la composition. Il s’agit du
classique problème d’association mais avec des joueurs (appareils utilisateurs et points d’accès)
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LB

F

⌦

v

�

(ui (.))i2N

(s§i ,C)i2C,C2C

µ MAC
W q̂ ṽ

(u§
i ,C) i2C

C2C µ (ri ,C)i2C,C2µ

MECHANISM 802.11 MAC

Figure 4: Diagramme bloc du mécanisme dans sa forme la plus générale. Les points d’accès partagent la
charge dans le bloc LB qui attribue aux points d’accès les objectifs q̂. La fonction caractéristique v du jeu
de coalition original est contrôlée dans ⌦ qui donne la fonction caractéristique contrôlée ṽ . La négoca-
tion de Nash � est jouée dans chaque coalition pour l’allocation de la valeur de la coalition. Les joueurs
émettent leurs préférences sur les coalitions à partir de leurs allocations et prennent part à un mécanisme
d’appariement stable dans le bloc µ. Ce bloc donne une association µ entre points d’accès et utilisateurs.
Finalement, dans le bloc MAC les noeuds transmettent leurs paquets selon le protocole IEEE 802.11 MAC
non-modifié.

égoïstes et rationnels cherchant à maximiser leurs propres débits. On montre dans ce problème
l’existence d’appariements core stable, par définition de la règle de partage (donnant la perfor-
mance en espérance) induite par le protocole à accès aléatoire et multiple IEEE 802.11 DCF. Néan-
moins, l’utilisation de la core stabilité en tant que concept de solution donne des appariements
avec un grand nombre d’appareils utilisateurs non-connectés. Cet effet est appelé problème de
chômage. Pour le contrer et donner aux noeuds incitation à s’associer les uns aux autres, on
conçoit un mécanisme décentralisé en trois étapes. L’objectif est de contrôler l’ensemble des
appariements stables. En d’autres termes, on manipule le core de façon à le transposer sur un
ensemble d’appariements aux propriétés intéressantes en termes d’équilibrage de charge et de
nombre de joueurs connectés.

Dans la première étape, les points d’accès se partagent la charge. La règle de partage est sup-
posée générique et résulte en une charge cible par point d’accès définie en nombre de connexions
qui devraient être réalisées à l’équilibre.

Dans la seconde étape, le jeu de coalition (modélisant l’interaction des noeuds par le proto-
cole, résultant en un débit total et un vecteur d’allocation par coalition) est contrôlé pour inciter
les agents à réaliser l’équilibrage de charge. Le contrôle est fondé sur une mesure d’aversion au
risque appelée peur de la ruine. Le contrôle est appliqué à la fonction caractéristique du jeu et on
obtient les résultats suivants.

Proposition. Soit un jeu de coalitions � = (F [W , v, {ui }i2N) en forme caractéristique ayant pour
règle de partage le marchandage de Nash sur v(C) dans toute coalition C de C . De plus, supposons
des fonctions d’utilités strictement croissantes et concaves 3 ui : R.+ ! R+, i 2 N . L’ensemble des
transformations ⌦, de l’ensemble des fonctions caractéristiques dans lui-même, qui donne incita-
tion aux joueurs pour un sous-ensemble de coalitions C 0 dans C doit satisfaire:

FC0 ±⌦(v)(C0) < FC ±⌦(v)(C) 8C0 2C 0,8C 2C \C 0 (15)

où C0 \C 6= ;, FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

et ± est la fonction de composition.

Corollary. Soit un jeu de coalitions � = (F [W , v, {ui }i2N) en forme caractéristique avec le marcha-
ndage de Nash sur v(C) pour règle de partage dans chaque coalition C 2C . De plus, supposons des
fonctions d’utilités ui :R+ !R+, i 2N strictement croissantes et concaves. L’ensemble des transfor-
mations ⌦ de l’ensemble des fonctions caractéristiques dans lui-même qui induit des préférences à
sommet unique4 (sommet à q̂ f ) en cardinalités sur les coalitions contenant un AP f 2 F doivent

3De telles fonctions d’utilité sont bijectives, donc injectives. Le Théorème 10 s’applique.
4"single-peaked preferences"

10



CONTENTS

satisfaire:
max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q+1

FC ±⌦(v)(C), 8q ∏ q̂ f (16)

et
max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q°1

FC ±⌦(v)(C), 8q ∑ q̂ f (17)

où FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

.

Dans la troisième étape, les joueurs jouent le jeu d’appariement stable avec des préférences in-
duites par les paiements contrôlés (débits) obtenus à l’issue de la deuxième étape. L’appariement
core stable donnant l’association finale est obtenu par un algorithme décentralisé. Nous pro-
posons une version modifiée du DAA, appelée Backward Deferred Acceptance Algorithm (BDAA),
pour les jeux d’appariements avec complémentarités et effets de pairs. Dans notre problème,
BDAA converge vers l’unique appariement core stable et comme pour DAA, la complexité de BDAA
est polynomiale en le nombre de propositions.

Algorithm 2: Backward Deferred Acceptance
Data: Pour chaque AP: L’ensembles de utilisateurs acceptables (couverts) et les débits physiques

AP-utilisateurs.
Pour chaque utilisateur: L’ensemble des APs acceptables (couvrant).
Result: Un appariement core stable S

1 begin
2 Etape 1: Initialisation;
3 Etape 1.a: Tous les APs et utilisateurs sont marqués non-engagés. L( f ) = L§( f ) = ;, 8 f ;
4 Etape 1.b: Chaque AP f évalue les coalitions possibles avec ses utilisateurs acceptables, les paiements

utilisateurs correspondants et émet sa liste de préférences P#( f );
5 Etape 1.c: Chaque AP f transmet à ses utilisateurs acceptables le débit le plus élevé qu’ils peuvent

obtenir dans les coalitions contenant f ;
6 Etape 1.d: Chaque utilisateur w émet sa liste de préférences réduites P0(w);
7 Etape 2 (BDAA);
8 Etape 2.a, Proposition des mobiles: Selon P0(w), chaque utilisateur non-engagé w propose à son AP

acceptable préféré parmi ceux auquels il n’a pas déjà proposé. Si cet AP est déjà engagé dans une
coalition, tous les joueurs de cette coalition sont marqués non-engagés ;

9 Etape 2.b, Mise-à-jour des listes: Chaque AP f met à jour sa liste avec l’ensemble de ses proposants:
L( f ) √° L( f )[ {proposants} and L§( f ) √° L( f );

10 Etape 2.c, Contre-propositions: Chaque AP f évalue l’ensemble des coalitions avec les utilisateurs de
sa liste dynamique L§( f ) et contre-propose aux utilisateurs de sa coalition préférée selon P#( f );

11 Etape 2.d, Acceptations/Rejets: En se basant sur les contre-propositions reçues et sur les meilleurs
paiements atteignables envoyés en Etape 1.c par les APs auxquels ils n’ont pas encore proposé, les
utilisateurs acceptent ou rejettent les contre-propositions;

12 Etape 2.e: Si tous les utilisateur de la coalition préférée acceptent la contre-proposition d’un AP f ,
tous ces utilisateurs et f quittent leurs précédentes coalitions;

13 tous les joueurs de ces coalitions sont marqués non-engagés;
14 les utilisateurs ayant acceptés la contre-proposition et f sont marqués engagés dans cette nouvelle

coalition;
15 Etape 2.f: Chaque AP f non-engagé met à jour sa liste dynamique en supprimant les utilisateurs

ayant rejeté sa contre-proposition et étant engagés à un autre AP:
16 L§( f ) √° L§( f )\{rejetants engagés};
17 Etape 2.g: Retour en Etape 2.c tant que la liste dynamique L§ d’au moins un AP a diminué strictement

(au sens de l’inclusion) en Etape 2.f;
18 Etape 2.h: Retour en Etape 2.a tant qu’il y a des utilisateurs non-engagés qui peuvent proposer;
19 Etape 2.i: Tous les joueurs engagés dans une coalition sont appariés.

On montre par simulations numériques que notre mécanisme ne garantit pas seulement la
stabilité, mais réduit aussi l’impact de l’anomalie. En effet, l’équilibre de l’association repose sur
les incitations des agents à contrer les effets collatéraux négatifs du protocole. Les gains sont sig-
nificatifs, en particulier dans les scénarios de congestion où les débits individuels peuvent être
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(a) Appariement stable résultant du
mécanisme avec contrôle par coûts
gaussiens et BDAA.
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(b) Optimum global avec contrôle par
coûts Gaussiens.
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(c) Optimum global sans contrôle.

Figure 5: Un appariement stable dans un scénario de déploiement. Comparaison des associations obtenues
avec (a) BDAA, (b) une recherche de l’optimum global avec contrôle par coûts gaussiens de varianceæ = 0.2,
(c) une recherche de l’optimum global sans contrôle.

multipliés par trois. On observe un coût de contrôle et de stabilité qui peuvent atteindre 50%
dans certains scénarios. Néanmoins, le coût de la stabilité est faible en valeurs de débits modi-
fiés. Ces travaux constituent une première dans le champ des jeux de coalitions contrôlés pour les
appariements core stables en réseaux sans fils distribués.

0.7 Mise en cache de vidéos et algorithme enumératif basé sur les cliques

Dans ce chapitre, nous analysons un problème de mise en cache de vidéos entre un créateur de
contenus et un fournisseur de service en utilisant les jeux d’appariements. On donne un nouvel
algorithme énumératif de structure core stables dans les jeux de coalitions à potentiels. Cet algo-
rithme utilise le graphe d’intersection des coalitions et peut donner à tout instant (si arrêté) une
énumération des appariements (ou structures si l’on considère le problème général de formation
de coalitions) core stables partiellement construits.

0.7.1 Jeux de coalitions à potentiels

Soit� = (N , v, {ui }i2N } un jeu de coalitions en forme caractéristique où N désigne l’ensemble des
joueurs de cardinalité N, {ui }i2N dénote l’ensemble de leurs fonctions d’utilité et v : N !R est la
fonction caractéristique du jeu. On définit l’ensemble de coalitions C . La fonction de potentiel �
est un potentiel ordinal pour le jeu � si pour tout joueur i 2N ,

ui (C) > ui (C0) ssi �(C) >�(C0), pour chaque C,C0 2C (18)

où ui (C) est l’utilité du joueur i pour son paiement dans la coalition C.
Un jeu de coalitions en forme caractéristique avec joueurs N admettant un potentiel ordinal �
est appelé jeu de coalitions à potentiel ordinal en forme caractéristique et dénoté

� = (N , v, {ui }i2N ,�) (19)

À titre d’exemple, on considère un modèle de mise en cache de vidéos entre un créateur de
contenus et un fournisseur de service basé sur le marchandage de Nash pour le partage des revenus
générés. On tient compte de la différenciation de qualité de service des serveurs du fournisseur
et de l’impact mutuel des vidéos (notamment induit par le système de recommandations). Ce jeu
d’appariement est un jeu de coalitions à potentiel ordinal en forme caractéristique. Dans ce cas,
le potentiel est une mesure d’aversion au risque appelée peur de la ruine.
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Algorithm 3: Algorithme basé sur les cliques pour la recherche de structures stables.
Data: Le graph pondéré de compatibilité de coalitions (G ,�)
Result: L’ensemble des structures stables S

1 begin
2 Step 1 (Initialisation);
3 S :=⌃1 (⌃1 ensemble de cliques maximales de G1);
4 p(S ) = 0 (vecteur de taille |S |, les structures dans S n’ont pas encore été visitées;
5 Step 2 (Formation de la forêt);
6 while 9S 2S t.q. p(S) = 0 do
7 prendre S t.q. p(S) = 0;
8 p(S) = 1;
9 if W Ω S ou F Ω S (si la structure inclut l’un ou les deux ensembles de joueurs, aucune

coalition ne peut êtrue ajoutée) then
10 break;

11 if C max
S = ; (C max

S ensemble de coalitions compatibles avec S de valeurs maximales
then

12 break;

13 S := S \S;
14 for S0 2⌃0

S (⌃0
S ensemble de cliques maximales dans C max

S ) do
15 S := S [ {S0 [S} (complète la structure par l’enfant S0 [S);
16 p(S0 [S) = 0;

0.7.2 Un algorithme énumératif

Dans cette section, on propose un nouvel algorithme énumératif de structures core stables pour
les jeux de coalitions à potentiel ordinal. Le fonctionnement de cet algorithme repose sur l’énumération
de cliques du graphe d’intersections de coalitions et de matrice d’adjacence A = (ai j )(i , j )2C 2 telle
que

ai j =

(
1 if Ci 6= C j and Ci \C j = {;}

0 if Ci = C j or Ci \C j 6= {;}

L’algorithme construit de façon itérative une forêt telle que chaque arbre est enraciné par un
noeud correspondant à une clique maximale obtenue à l’initialisation. Tout noeud est une struc-
ture stable. Un noeud qui n’est pas une feuille de l’arbre est une structure stable d’un sous-jeu
(propriété d’énumération à tout instant de solutions partielles) et une feuille est une structure
stable du jeu. L’ensemble des feuilles constitue les sorties de l’algorithme. On montre que cet
algorithme converge en un nombre fini d’itérations et énumère l’ensemble des structures stables.
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C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

Table 1: L’algorithme de cliques maximales. L’ensemble des coalitions ⌃ est représenté par les noeuds du
graphe. Le placement vertical d’une coalition associée au noeud dans le graphe est en accord avec le poids
! de ce noeud i.e. [!C1 ,!C2 ] > [!C3 ,!C4 ,!C5 ,!C6 ] > [!C7 ,!C8 ,!C9 ]. L’algorithme construit itérativement
les cliques maximales depuis les poids élevés jusqu’aux plus faibles.

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

Table 2: Les cliques maximales (en rouge) construites par l’algorithme, i.e. les structures stables de coali-
tions.

0.8 Peur de la ruine et conditions de concavité dans les jeux de coali-
tions avec allocation de ressources Æ-equitable généralisée

Dans ce chapitre, on étudie un système multi-agents générique où les joueurs peuvent former des
coalitions. La règle de partage de la valeur ou des ressources au sein d’un groupe est fixée de façon
exogène. On se concentre sur l’allocation alpha-équitable généralisée définie comme la solution
du problème d’optimisation suivant

max
x2X

∫(x) =

8
>><

>>:

1
1°Æ

nP
i =1

ºi ( fi (xi ))1°Æ, Æ 6= 1
nP

i =1
ºi log( fi (xi )) , Æ = 1

où Æ 2 [0,+1], fi sont des fonctions croissantes, concaves à valeur dans [0,+1) et 0 ∑ ºi ∑ 1.
On analyse les conditions de concavité requises sur les fonctions d’utilité des agents pour que
la règle d’allocation d’alpha-équité généralisée induise l’existence de structures ou appariements
core stables. En particulier, on donne une interprétation de ces conditions en utilisant certaines
mesures d’aversion au risque telles que la peur de la ruine déjà utilisée en chapitre 5 et 6. Ce
chapitre a pour objectif de renforcer (en complément des chapitres 5 et 6) les liens existant entre
des schémas d’équité connus dans les réseaux et l’analyse de l’allocation de ressources menée en
théorie des jeux.

Dans les jeux, il est connu que l’existence d’équilibres et leurs propriétés dépendent des préfé-
rences des agents ou de leurs fonctions d’utilité. Certaines de ces propriétés ont des interpré-
tations comportementales. Par exemples, une fonction d’utilité croissante concave modélise un
joueur attiré par les gains mais averse au risque. En ce sens, plusieurs mesures d’aversion au
risque ont été définies pour quantifier les comportements dans des processus de prise de décision
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en présence d’incertitude. On se concentre sur l’aversion au risque, l’audace, la peur de la ruine
et la pure peur de la ruine. On montre que ces indicateurs peuvent être utilisés dans l’analyse de
schémas d’équité connus. En effet, de tels indicateurs apparaissent naturellement dans l’analyse
des conditions de concavité de l’alpha-équité généralisée pour l’existence d’appariements core
stables. Cette étude établit le premier lien entre l’allocation alpha-équitable généralisée, les ap-
pariements stables et les mesures d’aversion au risque. On montre également une nouvelle in-
terprétation de la peur de la ruine d’un joueur en tant que limite d’une séquence de ratios de
probabilités de paris à gains décroissants.

La peur de la ruine est définie comme l’inverse de l’audace qui est la limite pour un gain allant
vers zéro de la probabilité de ruine par unité de gain qui laisse indifférente le joueur entre entrer
dans un pari asymétrique avec risque de tout perdre ou gagner ce gain. Plus cette probabilité est
grande, plus le joueur est prêt à tout perdre, d’où la notion d’audace. Plus formellement, on a les
définitions suivantes de la peur de la ruine et de la pure peur de la ruine.

Definition. La peur de la ruine du joueur i de fonction d’utilité fi au point d’allocation x est définie
telle que:

FoR fi (x) =
fi (x)
f 0

i (x)
(20)

Definition. La pure peur de la ruine du joueur i de fonction d’utilité fi au point d’allocation x est
définie telle que :

PFoR fi (x) = ° fi "(x) fi (x)
( f 0

i (x))2 (21)

On observe la relation suivante FoR0
fi

(x) = 1+PFoR fi (x), d’où

FoR fi (x) =
Zx

0
PFoR fi (s)d s +FoR fi (0) (22)

Les conditions de concavité pour l’existence de structures core stables appliquées à l’alpha-
équité généralisée donnent les résultats suivants.

Proposition. La fonction d’utilité ui de tout joueur i 2N est strictement log-concave dans la forme
produit équivalente du problème d’optimisation de l’alpha-équité généralisée si:

PFoR fi >°Æ (23)

Proposition. La fonction d’utilité ui de tout joueur i 2 N est croissante dans la forme produit
équivalente du problème d’optimisation de l’alpha-équité généralisée pour tout Æ.

Proposition. La fonction d’utilité ui de tout joueur i 2N est concave dans la forme produit équiv-
alente du problème d’optimisation de l’alpha-équité généralisée si:

PFoR fi (xi ) ∏ºi fi (xi )1°Æ°Æ (24)

Ainsi, ces conditions appliquées au cas considéré s’expriment simplement en terme d’une
mesure d’aversion au risque. Ces mesures quantifient l’aversion pour un joueur à entrer dans une
situation où il y a une probabilité de perte de ressources. En particulier, on donne une nouvelle
interprétation de la peur de la ruine selon le résultat suivant.

Proposition. Supposons un joueur i de fonction d’utilité ui et de ressource x.

FoRi (x) = lim
n!+1

x

√

1+2
nX

k=1

1
n

pk,n

qk,n

!

+FoRi (0) (25)

où pk,n is la prime en probabilité dans un pari symétrique {°g (x,k,n),+g (x,k,n)} à k x
n , qk,nest la

probabilité de ruine qui rend le joueur indifférent entre un pari où il risque la ruine et peut gagner
+g (x,k,n) à k x

n et g :R+£N£N!R+ une fonction telle que, 8n 2N§,8k 2 {1, . . . ,n}:

g (x,n,k) ∑ (k °1)
x
n

et lim
n!+1

g (x,n,k) = 0 (26)

Une interprétation de ce résultat peut être donnée en terme d’investissement ou coût cumulé
sur le chemin de la ruine.
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Figure 6: Un marché biface de production participative avec contrats et contraintes d’ordonnancement
internes. Les lignes pointillées entre deux agents montrent qu’il existe un contrat entre eux dans l’ensemble
des contrats.

0.9 Jeux d’appariement et crowdsourcing

Dans ce chapitre, on analyse par les jeux d’appariement stables (plusieurs-à-plusieurs avec con-
trats et externalités) une place de marché de production participative (crowdsourcing) avec exter-
nalités et contraintes de planification ou ordonnancement (interne et externe) de tâches pour les
entreprises. On introduit la propriété de stabilité dans cette place de marché comme concept de
solution pour l’allocation des tâches. La stabilité est une propriété essentielle au maintien de la
participation à long terme des agents dans les mécanismes de marchés bifaces tel quel l’admission
des internes dans les hôpitaux. La résolution de ce problème permet la conception de plate-
formes de production participative plus riches, et complètes en termes d’opportunités pour les
agents (planification pour les entreprises) et d’incitation des agents à la participation par respect
de leurs préférences. On montre que le problème considéré ne peut être traité par les résultats de
la théorie des jeux d’appariements stables. On propose donc de nouveaux résultats complétant la
théorie pour le cadre des appariements contraints. En particulier, on introduit la notion de sub-
stituabilité contrainte pour traiter le problème de la non-substituabilité des préférences au sens
classique. On montre également les conditions d’existence d’un appariement stable pair-à-pair
obtenu comme le point fixe d’un algorithme récemment donné dans la littérature, le Modified
Deferred Acceptance Algorithm. On définit également d’autres stabilités adaptées à ce problème
et on propose une approche visant à unifier les jeux coopératifs d’appariements stables et les jeux
non-coopératifs. Ces derniers résultats reposent sur une transformation du problème initial en un
jeu non-coopératif en forme normale ou extensive.

On considère les ensembles finis des entreprises F , travailleurs W , tâches T et les contraintes
de planification ou ordonnancement pour les firmes données par un graphe dirigé G = (T ,A) où
A est la matrice d’adjacence. L’ensemble des contrats est X et on note Xi l’ensemble des contrats
de X µX impliquant le joueur i .

w1

w2

f1

f2

f20

ø1

ø2

ø3

Figure 7: Un marché biface de production participative avec contrats et contraintes d’ordonnancement
externes. Les lignes pointillées entre deux agents montrent qu’il existe un contrat entre eux dans l’ensemble
des contrats.

On définit les notions de faisabilité d’un ensemble de contrats et d’ensemble maximal de con-
trats faisables qui sont utilisées pour définir les fonctions de choix des entreprises.

Definition. Soit une entreprise f 2 F , un ensemble de contrats X µ X f et un appariement µ,
l’ensemble de contrats X est dit faisable pour f à µ si pour tout contrat x 2 X, il existe un sous-
ensemble de contrats X0 µ X avec x 2 X0 et un contrat par tâche dans T (X0) tel que les prédécesseurs
de toute tâche dans X0 sont dans T (X0 [µ° f ).

Definition. Soit une firme f 2F , un ensemble de contrats X µX f et un appariement µ, l’ensemble
de contrats X est appelé ensemble maximal de contrats faisables pour f at µ si X est faisable et de
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cardinalité maximale. L’ensemble maximal de contrats faisables pour f dans X µX f à µ est dénoté
X(µ).

Une tâche ø 2 T est dite faisable dans X à µ si il existe un contrat faisable x 2 X à µ tel que
T (x) = ø.

Definition. On définit X f (µ), l’ensemble des contrats de salaires minimaux dans X f (µ) pour chaque
tâche faisable de T (X f (µ)).

Dans ce chapitre, on suppose des entreprises à la recherche d’une maximization des profits par
minimisation des coûts d’execution et donc des rémunérations. Il s’agit d’une hypothèse classique
de la littérature. Etant donné un ensemble de contrats, l’entreprise choisit pour chaque tâche
faisable le contrat de salaire minimum. On a la définition suivante.

Definition 1. La fonction de choix de toute entreprise f 2F est définie de la façon suivante,

c f (X|µ) = [
ø2T (X f (µ))

argmin
x2X f (µ)

t .q.ø(x)=ø

s(x) (27)

= X f (µ) (28)

On a donc la fonction de choix des entreprises CF telle que,

CF(X|µ) = [
f 2F

X f (µ) (29)

0.9.1 Substituabilité contrainte et existence d’appariements stables

Dans cette section on montre qu’il existe un appariement stable pair-à-pair dans le problème
d’appariement pour production participative avec contrats, externalités et contraintes de plani-
fiication si les fonctions de choix des agents satisfont certaines conditions. Plus particulièrement,
on se concentre sur la propriété de substituabilité et on définit la substituabilité contrainte qui, en
plus d’une amélioration des conditions de marché, requiert une structure spécifique des ensem-
bles de contrats faisables. L’intuition est la suivante: un contrat rejeté par une entreprise f dans
un ensemble X à µ doit continuer à être rejeté dans un ensemble X0 contenant X à µ0 (avec plus
de faisabilité pour l’entreprise f ) si (i) la tâche n’est pas faisable dans X à µ et dans X0 à µ0 où est
faisable dans X à µmais n’est pas de salaire minimum pour la tâche correspondante (et n’est donc
pas choisie par définition des fonction de choix des entreprises).

Definition. La fonction de choix CF satisfait la propriété de substituabilité contrainte si pour tout
X,X0,µ,µ0 µX , tels que
C1. X µ X0

C2. µ0 ∫F µ

C3. 8 f 2F , T
f

X!X0

µ!µ0
= ; ou X f (T f

X!X0

µ!µ0
) 6µ X0

f (µ0)

alors,
RF(X0|µ0) ∂ RF(X|µ) (30)

où, T
f

X!X0

µ!µ0
=

£
T (X f )\T (X f (µ))

§
\T (X0

f (µ0)).

On peut montrer que la fonction de choix CF définie précédemment satisfait la substituabilité
contrainte et la propriété de non-pertinence des contrats rejetés.

Pour montrer l’existence d’appariements stables dans ce problème, on utilise un algorithme
connu appelé Modified Deferred Acceptance Algorithme. Cet algorithme est partiellement défini
par l’application itérée d’une fonction f : 2X £2X £2X £2X ! 2X £2X £2X £2X telle que pour
tout quadruplet AF, AW,µF,µW µX

f (AF, AW,µF,µW) = (X \RW(AW |µW),X \RF(AF|µF),CF(AF|µF),CW(AW |µW)) (31)
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où Rµ(.|.) dénote la fonction de rejet des joueurs de la face µ 2 {F ,W } du marché. Afin de garantir
que la condition C3 de la substituabilité contrainte est satisfaite à toute itération de f au cours de
l’algorithme on définit la condition C4 suivante,

C4. Pout tous les ensembles AF, AW,µF,µW µ X , l’image f (AF, AW,µF,µW) = (ÃF, ÃW, µ̃F, µ̃W)
est telle que AF, ÃF,µF, µ̃F satisfait

T
f

ÃF!AF

µ̃F!µF

= ; ou ÃF
f (T f

ÃF!AF

µ̃F!µF

) 6µ AF
f (µF) (32)

Par définition de f , cette condition implique que les fonctions de choix des agents doivent être
telles que les ensembles générés par f satisfont C3. On montre le résultat d’existence d’appariements
stables suivant,

Theorem 2. Supposons que la fonction de choix CW satisfasse les conditions de substitutabilité et de
non-pertinence des contrats rejetés. Supposons que les fonctions de choix des firmes {c f } f 2F soient
définies telles qu’en Definition 27. Finalement, supposons que f satisfasse la condition C4 à toute
itération de l’algorithme. Alors l’algorithme converge, sa sortie est stable et

µF(T) =µW(T) = AF(T)\AW(T) (33)

0.9.2 Le Problème de crowdsourcing en formes non-coopératives

On considère deux formulations alternatives du problème. Une première en forme normale et
une seconde en forme extensive. L’objectif de ces travaux est d’explorer le lien entre le théorie des
jeux non-coopérative et les appariements stables pour l’étude des marchés bifaces. Cette ques-
tion a déjà été abordée dans la littérature et il existe des jeux de congestions spécifiques dont les
équilibres non-coopératifs sont des mariages stables.

Le premier axe d’analyse que nous proposons transforme le problème d’allocation du marché
biface en un jeu à un coup en forme normale de proposition de contrats avec les entreprises en
tant que joueurs et les travailleurs comme receveurs des propositions. Les travailleurs sont im-
plicitement modélisés par une fonction de réponse  du marché.

Definition. La fonction de réponse des travailleurs est la fonction  : £
i2N

Si ! 2X de l’ensemble

des profils de stratégies des firmes (propositions de contrats) dans l’ensemble des sous-ensembles de
contrats (ensemble des appariements) induits par la fonction de choix CW des travailleurs telle que,
pour tout profil de stratégies s 2S , √(s 2S ) est la limite de la séquence,

µ(0) = ; (34)

µ(1) = CW(s|µ(0)) = [
w2W

cw (s|µ(0)) (35)

µ(2) = CW(s|µ(1)) [
w2W

cw (s|µ(1)) (36)

... (37)

 (s) =µ(k) = CW(s|µ(k°1)) = [
w2W

cw (s|µ(k°1)) (38)

On montre en particulier qu’il peut ne pas exister d’équilibre de Nash en stratégies pures
dans ce jeu mais qu’il en existe toujours en stratégie mixte par application directe du théorème
d’existence de Nash. L’interprétation peut être faite en termes d’appariements fractionnels en
temps ou probabilités, concept connu et étudié en théorie des appariements stables. À l’équilibre
(de Nash) de ce jeu, il n’y a pas d’entreprise qui puisse générer une séquence de choix des tra-
vailleurs convergeant vers une réponse (et donc un matching fractionnaire) qui améliorerait stricte-
ment l’utilité espérée. Intuitivement, on comprend que cette formulation par fonction de réponse
résultant d’une séquence de choix des travailleurs introduit une forme d’anticipation par les en-
treprises.
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Le deuxième axe d’analyse définit le problème de production participative avec contrats et
externalités comme un jeu non-coopératif en forme extensive. L’idée est d’introduire une prise
de décision séquentielle dans la forme normale précédente. L’intérêt du jeu séquentiel réside en-
tre autres dans le concept d’équilibre parfait en sous-jeux qui rend non-pertinentes les straté-
gies auto-pénalisantes. On peut trouver des exemples d’appariements stables pour lesquelles de
tels choix sont l’origine de déviations et d’instabilités. Dans la transformation en forme exten-
sive que nous proposons, les joueurs sont les entreprises et les travailleurs sont modélisés par une
fonction de réponse  (comme dans la formulation en forme normale précédente), l’information
est parfaite et l’ordre de jeu est défini par des priorités induites par les contraintes de planifica-
tion G = (T ,A). La transformation en forme extensive n’est a priori pas équivalente au problème
d’appariement stable original mais possède des propriétés intéressantes en terme d’existence et
caractéristiques des équilibres. En effet, un résultat connu montre l’existence systématique d’équi-
libres parfaits en sous-jeux dans notre problème. Il est ainsi possible de garantir l’existence de
certains appariements d’équilibres pour une prise de décision séquentielle à information parfaite.
Ces équilibres ne permettant pas l’utilisation de stratégies auto-pénalisantes et de déviations non-
crédibles.
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Chapter 1

Introduction

In recent years, the development of networks and innovations in connected services have given
companies and users the opportunity to create value, consume and communicate in new ways. As
examples, online search engines (e.g. Google, Qwant) allow users to efficiently find what they were
looking for in an permanently growing number of webpages or online resources and social net-
works (e.g. Facebook, LinkedIn) allow users to communicate in a rich environment through global
and numerous interactions such as basic text communications, content sharing (photos, videos)
as well as online gaming. Such systems have become ubiquitous and their impact is so impor-
tant that firms or politics have introduced them in their communication and marketing strategies.
One of the main consequences is the emergence of an online advertising activity creating worth
from the sell of empty spaces and the users’ clicks or views in the browsed webpages. As another
example, online platforms have emerged as a new form of virtual marketplaces where millions of
users can trade goods or services. More generally, business opportunities have appeared, allowing
the economic agents to enter new Business-to-Business (B2B, e.g. online advertising), Business-
to-Consumer (B2C, e.g. Amazon) or Consumer-to-Consumer (C2C, e.g. Airbnb) interactions and
commercial transactions.

In these systems, demand and supply create two-sided markets allowing for an online com-
petition among the agents over the resources. Many of these markets are regulated by rules and
mechanisms defining the way the agents compete. As an example of a well-known marketplace
consider eBay where buyers and sellers meet and compete through a time-limited auction mech-
anism. At the deadline, the agent with highest bid wins the auction and pays the bid. Such market-
places have become not only ubiquitous but also preferred to traditional ones by many economic
agents because of their simplicity (any user can buy a proposed good or service from any place in
the world at any time). In fact, online systems benefit from the worldwide connectivity of the inter-
net and high performance communication networks (fixed or wireless) since these allow the use of
the services by many agents and a fast diffusion of a massively demanded information. Economic
models, consumers habits and technology have jointly changed and combined in new solutions
and systems placing networks at the heart of a revolution. As a consequence, new problems have
emerged such as the management of huge volumes of datas, the relevance of the transmitted in-
formation or the automation of decision-taking by machine learning.

However, even though there is an increasing amount of marketplaces, these and some of their
mechanisms are not new and have been extensively studied in the economic, game-theoretic and
networking literature. A successful cooperative game theoretic approach, called theory of stable
matchings, was originated by Gale and Shapley and further extended by A.E. Roth and other con-
tributors. The results revealed unknown properties of existing allocation mechanisms and led to
a powerful methodology to study and develop new ones. Thus, the impact is important both from
a theoretical point of view and from a practical one because they have been used to design exist-
ing mechanisms. As examples, consider matching mechanisms assigning students to colleges in
Boston and New-York, interns to hospitals (National Resident Matching Program) or the national
kidney exchange program in the US providing hospitals the incentive to pool the organs to create
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CHAPTER 1. INTRODUCTION

exchange cycles increasing the number of transplants.
In this thesis, we study the link between some network problems and the game-theoretic anal-

ysis of two-sided markets. Particularly, we tackle four network problems using the theory of stable
matchings. In chapter 2, we give a brief introduction to cooperation in game theory with a partic-
ular focus on the bargaining problem and Nash’s solution. In chapter 3, we introduce the theory of
stable matchings, or matching games, used throughout this thesis to tackle the network problems.
In chapter 4, we show that under some conditions, the WiFi protocol can be modeled as a Nash
bargaining. In chapter 5, we study the WiFi connectivity management problem. We show that this
system can actually be formulated as a two-sided marketplace with a cooperative resource allo-
cation scheme and naturally falls in the scope of the game-theoretic analysis. Using the results of
stable matchings, we propose a new stable matching mechanism reducing the impact of conges-
tion and the anomaly in the protocol, well-known issues in performances due to a mutual impact
of the communicating agents over each others. A control step is introduced in the mechanism to
provide the agents the incentives for coalitions of well-defined cardinalities, thus manipulating
the preferences over one-to-one and many-to-one matchings. In chapter 6, we apply the previ-
ous framework to caching. We propose a new stable caching mechanism in networks between
a content provider’s videos and an operator’s servers. The mechanism takes into account both
the mutual impact of the videos over each others and the gain in quality induced by differenti-
ated servers. In the proposed model, we assume a Nash bargaining over the generated revenues
and consider general coalition potential games. We define a new core stable anytime enumerative
algorithm giving the set of core stable structures. To go further in the understanding of the link
between resource allocation and stability, in chapter 7, we study the generalized alpha-fair alloca-
tion scheme. We use recent game-theoretic results to show that the concavity conditions on the
players’ utility functions for the existence of core stable matchings can be simply formulated in
terms of risk aversion indicators. Among other results, this study has led to new interpretations
of the fear-of-ruin. In chapter 8, we study a two-sided crowdsourcing market with contracts and
scheduling constraints over the tasks. As in the analysis of the firms and workers stable hiring
problem in classical stable matchings, we assume a pairwise stability in the problem as solution
concept. We show sufficient conditions for the existence of stable matchings and analyze the prob-
lem using a non-cooperative reformulation of the matching game. This problem is of fundamental
importance in the design of more complex and complete crowdsourcing platforms allowing coor-
dination in and among firms in the distribution of the tasks. Finally, in chapter 9, we show some
open questions and problems.
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Chapter 2

Cooperation and Bargainings

In this chapter, we introduce cooperative game theory. We focus on bargaining problems and
Nash’s solution that will be used in conjunction with matching games in chapters 4 and 5 to study
the WiFi resource allocation and user association problem as well as in chapter 6 to develop a
video caching mechanism.
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CHAPTER 2. COOPERATION AND BARGAININGS

2.1 Cooperation, Negotiation and Arbitration

The bargaining problem is a long-date topic that has attracted much attention since its game-
theoretic formalization by Nash in [1] and [2]. Basically, a bargaining can be considered as a pro-
cess solving a cooperative competition between the rational players (utility maximizers): even
though each seeks for maximizing his payoff, they all consider joint opportunities. Compared
to the non-cooperative competition between rational decision-makers, the notion of cooperative
competition induces the ideas of the mutual profits, fairness, communication and agreement.

More generally, when taking part in a cooperative game, the players keep on considering the
strategic non-cooperative options but are also provided a set of new strategic opportunities that
allow for mutual agreements. This transformation is called a cooperative transformation of the
game. Based on this interpretation of cooperation, one may expect alternative or new solution
concepts to be defined. This is not mandatory because the cooperative transformation only con-
sists in the introduction of additional strategic options. The fact that these new opportunities
induce a kind of synchronization or agreement among some agents does not change the agents’
decision-taking problem : given the game, which strategy to play?

Such transformation from isolated decision-takers to a richer framework with cooperative
strategies does not necessarily go along with the development of new solution concepts. The Nash
equilibrium can still be considered as the adapted solution concept in the cooperatively trans-
formed game (see [3], pp.371 and references therein). Nevertheless, because of the introduction
of these new strategic options the set of Nash equilibria may change. Particularly, as shown by
Myerson in [3] (pp.371), in a game with contract-signing any individually rational correlated equi-
librium is a Nash equilibrium. There appears the fact that cooperation, because of its additional
set of strategic opportunities, induces an equilibrium selection problem. This problem underlies
the negotiation (arbitration, bargaining) theory which actually is the theory of cooperative equi-
librium selection.

When a single equilibrium exists, it is clear that the players expect each others to implement
the corresponding strategies because there is no alternative choice satisfying the constraints. In
other situations, the players may face the existence of many equilibria and the following ques-
tions may be raised: among these, which equilibrium do the players expects the others to play?
More precisely, is there a particular equilibrium that any player expect the others to play? This
attractiveness property for some equilibrium point has been studied by Schelling who defined the
notion of focal-point effect and focal equilibrium.

Definition 3 (Focal-point effect, [3], pp.108). In a game with multiple equilibria, the focal-point
effect is the property that anything that tends to focus the players’ attention on one equilibrium may
make them all expect it and hence fulfill it (like a self-fulfilling prophecy).

Definition 4 (Focal-point equilibrium, [3], pp.108). A focal-equilibrium is an equilibrium that has
some property that conspicuously distinguishes it from all the other equilibria. According to the
focal-point effect, if there is one focal equilibrium in a game, then we should expect to observe that
equilibrium.

This focality property may be contained in the game itself (e.g. in the utilities by some specific
fairness, welfare, equity), in its environment (e.g. cultural traditions) or it may be controlled by an
entity or an individual called focal arbitrator.

Definition 5 (Focal arbitrator, [3], pp.111). An individual is a focal arbitrator if he can determine
the focal equilibrium in a game by publicly suggesting to the players that they should all implement
this equilibrium.

By definition, there is no bidding force in the recommendation of the focal arbitrator. His
power lies in the ability to make each player expect that the others would follow his suggestion.
In such case, because the recommendation is an equilibrium, then the players would play the
advised strategy. As an example of focal-point effect induced by fairness, we consider the following
game called Divide the Dollars.
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CHAPTER 2. COOPERATION AND BARGAININGS

Example 6 (Divide the Dollars). Player 1 and player 2 demand for an amount of money between 0$
and 100$. If the sum is inferior or equal to 100 each gets his demand. If not, both get 0$. The pure
strategy sets are,

C1 = C2 = [0,100] (2.1)

Any pure strategy of the form (x,100°x) is a Nash equilibrium. In fact, if 1 plays x 0 > x (and 2 keeps
on playing 100° x) then the payoff is null and if 1 plays x 0 < x then 1 receives x 0, less than x. One
can show the same for 2 with the symmetric strategies x 0 < x and x 0 > x. Thus, at the decision point
(x,100° x), none of the player has the incentive to change. Among these, the equilibrium (50,50) is
fair and equitable (100$ equally divided among the two identical players). If there were an impartial
arbitrator in the game he would surely suggest this equilibrium as a solution. This makes (50,50)
very specific with respect to (w.r.t.) the other equilibriums and the fairness property.

Communication is of fundamental importance in cooperation, particularly in the equilibrium
selection process. In case of existence of an arbitrator (whatever out of the game or a player)
the focal equilibrium is obtained by a communication from this arbitrator to the players. If such
entity does not exist, then either the incentive for the focal equilibrium is individually experienced
by the players or results from a communication among them. Such communication is intended to
happen before the players play the game because the focality must be intrinsically contained in the
corresponding equilibrium at the decision-taking epoch. This preplay communication process is
called focal negotiation. Finally, game theorists have defined an equity hypothesis asking for an
equivalence between focal negotiation and impartial arbitration.

An example of such equilibrium selection process has been developed by Nash who defined
the set of axioms an impartial arbitration function (mapping each cooperative transformation to a
solution) should satisfy. Nash’s arbitration is defined by specific fairness criteria, that surprisingly
correspond to the proportional fair allocation later on developed in networks by Kelly in [4]. Since
then, many works have been devoted to the generalization to n-players of Nash’s result and to the
derivation of alternative solutions. Other works study the bargaining problem with incomplete
information and in repeated settings. Finally, learning algorithms such as fictitious play have been
proposed as dynamic bargaining schemes, see [3] and [5].

2.2 The Nash Bargaining Solution

2.2.1 Model

Nash’s model of bargaining has been built on the assumption that the result of the negotiation
among players should be a function of the set of jointly achievable opportunities measured in
utility and some threats that would block the bargaining process in case of disagreement and guar-
antee each player a given known amount of utility.

Let 1 and 2 be two players and B Ω R2 be a compact1 convex2 set of jointly achievable utility
points, called feasible set or prospect space in [6]. Let t = (t1, t2) be a vector in R2 called the threat
vector or disagreement point. The set B and the vector t are such that,

B\ {x 2R2|x1 ∏ t1, x2 ∏ t2} 6= ; (2.2)

The pair (B,t) defined the two-person bargaining problem.

2.2.2 Solution Concept

In [1] and [2], Nash developed an axiomatic formulation of the solution to the two-players bargain-
ing problem. The intuition is that a focal negotiation (impartial arbitration) among players should
satisfy a set of rules that would in some sense correspond to a fair share of the utility among the

1Closed and bounded
28x,y 2 B,8∏ 2 [0,1],∏x + (1°∏)y 2 B
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players. Let define the solution function � mapping any game (B,t) to a utility vector in B[ t. The
proposed axioms are the following,

• Axiom 1: (Strong Efficiency)
�(B,t) is an allocation in B, and, for any u in B, if u ∏�(B, t ), then u =�(B,t).

• Axiom 2: (Individual Rationality)
�(B,t) ∏ t.

• Axiom 3: (Scale Invariance)
For any numbers ∏1, ∏2, ∞1, and ∞2 such that ∏1 > 0 and ∏2 > 0, if G = {(∏1u1 +∞1,∏2u2 +
∞2)|(u1,u2) 2 B} and ! = (∏1t1 +∞1,∏2t2 +∞2), then

�(G,!) = (∏1�1(B,t)+∞1,∏2�2(B,t)+∞2). (2.3)

• Axiom 4: (Independence of Irrelevant Alternatives)
For any closed convex set G, if G µ B and �(B, t ) 2 G, then �(G, t ) =�(B, t ).

• Axiom 5: (Symmetry)
If v1 = v2 and {(u2,u1)|(u1,u2) 2 B} = B, then �1(B,t) =�2(B,t).

Axiom 1 asks for feasibility and Pareto efficiency. Axiom 2 asks for individual rationality, no player
should be recommended to play in a way that gives him less that what he is able to guarantee
for himself (his threat). The following axioms 3, 4 and 5 are called axioms of fairness. Axiom 3
asks for the invariance of the solution under an affine (positive) transformation of the utility. In
other words, the solution function is left unchanged if the performance objectives are scaled lin-
early. This requirement is built on the decision-theoretic equivalence between a utility scale and
an affine transformation of this. Axiom 4 asks for an invariance of the solution point to the elimina-
tion of non-equilibrium allocation points. This property has attracted a lot of attention and alter-
native axioms to Axiom 4 have been proposed. A well-known alternative is the Kalai-Smorodinsky
solution, which considers the individual monotonicity property instead of the independence of
irrelevant alternatives. Axiom 5 asks for a symmetric allocation point if the game is symmetric. In
fact, in an symmetric setting, it seems reasonable that an impartial arbitrator chooses a symmet-
ric equilibrium. In other words, no player should dominate another (in payoffs) if the coopera-
tive strategies do not exhibit any form of dominance. Nash has shown that there exists a unique
solution satisfying Axioms 1 to Axiom 5. Furthermore, he has shown that this solution solves a
max-product optimization program, called Nash product.

Theorem 7 ([3]). There is a unique solution function �(., .) that satisfies Axioms 1 through 5 above.
This solution satisfies, for every two-person bargaining problem (B,t),

�(B,t) 2 argmaxu2B,u∏t(u1 ° t1)(u2 ° t2) (2.4)

This result has been generalized to n-dimensions (players) where only the grand coalition can
benefit from cooperation (see [7], pp.34).

Theorem 8. There is a unique solution function �(., .) that satisfies Axioms 1 through 5 above. This
solution satisfies, for every n-players bargaining problem (B,t),

�(B,t) 2 argmaxu2B,u∏t

NY

i =1
(ui ° ti ) (2.5)

A mathematically not surprising but historically and technologically interesting result is that
Nash’s solution is proportional fair. In fact,

log max
u2B,u∏t

NY

i =1
(ui ° ti ) = max

u2B,u∏t
log

√
NY

i =1
(ui ° ti )

!

= max
u2B,u∏t

NX

i =1
log(ui ° ti )) (2.6)
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The interpretation of this equivalence is that this so-called equilibrium selection process allocates
the utility among the players in a proportional fair way. A detailed analysis of this unified approach
between this game-theoretic allocation scheme and fairness schemes used in networks can be
found in [8],[9] and references therein. In Chapter 7, we will use this result to analyze the link
between the Nash bargaining, stable matchings and the generalized Æ-fair allocation.

Even though involving a basic log-transformation, this result establishes that Kelly’s well-known,
celebrated and implemented proportional fair allocation can be interpreted as an emulated Nash
equilibrium selection in an underlying cooperative game. Such connection between the game the-
oretic bargaining problem, related solution concepts and developed fairness schemes in networks
appear is very interesting. Even though known and studied both on the game-theoretic and net-
working communities, the two approaches can probably still mutually benefit from each others
in many other directions that the existing approaches. How could repeated bargaining be used in
networks? Why not using the existing learning schemes as basis of the protocols for resource allo-
cation? Could allocation schemes developed for stochastic networks be formalized in the game-
theoretic framework as equilibrium selection process with cooperative stochastic games?

The previous results have considered the transformation of a non-cooperative game where the
players receive a utility from playing a strategy profile to an extended structure with new strategic
opportunities. In such cooperative game, Nash’s formalization considers a set of jointly achievable
utility points. We now focus on a particular subset of these games where this joint set is induced
by the mapping of the players’ utility functions (ui )i2N from a set of jointly achievable payoff
allocation (e.g. money) S in RN. Such mapping defines the set of joint achievable utility points.
Because the utility functions are assumed concave and increasing, there is a one-to-one mapping
between Nash’s solution in the utility space and the payoff allocation.

Consider a compact and convex payoff space S and the set of concave and upper-bounded
utility functions {ui }. Let define the function f :Rn !Rn as,

f (s) = (ui (si ))i2{1,...,n} = (u1(s1), . . . ,un(sn)) , 8s 2S (2.7)

The image U of S by f is called the set of jointly achievable utilities,

U =
©
u 2Rn |s 2S ,u = f (s) = (u1(s1), . . . ,un(sn))

™
(2.8)

The point u§ in U satisfying Nash’s axioms is called the Nash Bargaining Point and the image
of u§ by the inverse of f , formally f °1(u§), is the set of Nash Bargaining Solutions.

Example 9. A basic example of such setting is the n-players Dividing the Dollars game where n
players share a unit of money with a null disagreement (no player can guarantee itself a strictly
positive amount). The feasible domain is,

S =

(

s = (s1, . . . , sn)|si ∏ 0 8i 2 {1, . . . ,n},
nX

i =1
xi = 1

)

(2.9)

with t = 0. The utility domain U is,

U = {u = (u1, . . . ,un)|u = (u1(s1), . . . ,un(sn)) , s 2S } (2.10)

From [10], we have,

Theorem 10 ([10]). Let ui (.) : S !R, i = 1, . . . ,n be concave upper-bounded functions defined on S

which is a convex and compact subset of Rn. Let f (s) = (u1(s1), . . . ,un(sn)).
Let U = {u 2Rn : 9s 2S s.t. f (s) ∏ u}. Denote by S (u) = {s 2S : f (s) ∏ u} and St = S (t) the subset
of strategies that enable the users to achieve at least their disagreement point (threat).
Then there exists a bargaining solution and a unique bargaining point u§. Moreover the set of bar-
gaining solutions ( f °1(u§)) is determined as follows,
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Let J be the set of users able to achieve a utility strictly superior to their threat,

J =
©

j 2 {1, . . . ,N} : 9s 2St,u j (s) > t j
™

(2.11)

Each vector s in the bargaining solution set verifies f j (s) > t j and solve the following maximization
problem:

max
Y

j2J

°
u j (s)° t j

¢
, s 2St (2.12)

As shown in the following theorem, if each function u j , j 2 J, is injective on St, then the bar-
gaining solution set is reduced to a singleton and there exists a unique Nash Bargaining Solution
in S . We have the following theorem,

Theorem 11 ([10]). In addition to the assumption of the previous theorem, let {u j } j2J be injective
on St.
Consider the two maximization problems (PJ) and (PJ0):

(PJ) max
Y

j2J

°
u j (s)° t j

¢
, s 2St (2.13)

and,
(PJ0) max

X

j2J
ln

°
u j (s)° t j

¢
, s 2St (2.14)

Then:

1. (PJ) has a unique solution; the bargaining solution set is a singleton.

2. (PJ0) is a convex program and has a unique solution.

3. (PJ) and (PJ0) are equivalent. Hence, the unique solution of (PJ0) is the bargaining solution.

Thus, the bargaining point u§ solving program (2.14) is the Nash Bargaining Solution in the
utility space. If the threat vector is null, the allocation vector u§ is proportionally fair. Nevertheless,
It may not be the case for the Nash Bargaining Solution s§ in St which can thus be interpreted as
the resource or monetary allocation that corresponds to the utility allocation resulting from the
impartial arbitration.

We now show and solve an example of such game.

Example 12 (Dividing the Dollars). Consider a generalization of the Divide the Dollar bargaining
problem such that the players of the set C compete over the resource v(C). The payoff space S is
defined as,

S =

(

s 2R|C||
X

i2C
si = v(C) & xi ∏ 0 8i 2 C

)

(2.15)

The utility function ui of any player i in {1, . . . ,d},

ui (xi ) = xÆi
i (2.16)

where Æi 2 [0;1]. These utilities are concave, upper-bounded on S and bijective. Assume a null
threat vector t, where ti is the threat of player i .
As stated in Theorem 10, in such case, there exists a Nash Bargaining Point u§ in the utility domain
induced by the set of these utilities {ui } and a Nash Bargaining Solution s§ 2 S obtained as the
solution of the following optimization problem,

maximize
x

Y
xÆi

i

subject to
dX

i =1
xi = v(C)

0 ∑ xi , i = 1, . . . ,d .

(2.17)
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By bijectivity (thus injectivity) of the utilities, the Nash bargaining solution also solves the following
equivalent problem,

minimize
x

°
X

i
Æi log(xi )

subject to
dX

i =1
xi = v(C)

0 ∑ xi , i = 1, . . . ,d .

(2.18)

This is a convex optimization problem (objective and inequality constraint functions are convex
and the equality constraint is affine). To solve the problem we use the following well-known convex
optimization results: if Slater’s condition3 is satisfied, a point is optimal if and only if there exist
Lagrange multipliers that satisfy the K.K.T. conditions.

We obtain,
xi =

ÆiP
j Æ j

v(C) (2.19)

Up to this point, we have considered threats as exogenous parameters, nevertheless it is clear
from the axiomatic definition and the corresponding Nash’s program that the Nash bargaining
solution is a function of the emitted threats. If a single player i increases his threat from ti to
t 0i > ti then his payoff will be weakly increased (assuming that the set of rational payoffs is not
reduced to t). Any player has the incentive to control his threat or influence others’ threats so as
to maximize his payoff at �(B,t). Based on this consideration, one can conclude that the choice
of a disagreement point must result from a rational decision taking. Even though there could
be many ways to define the players’ threats, there are three common solutions to this problem.
The first solution is to define the threats from a minimax strategy. The second alternative is to
develop a theory of rational threats where the threats are defined as the Nash equilibrium of a
threat game �§. The third solution is to define the threats as the Nash equilibrium of the original
non-cooperative game.

We now enter the last part of this brief introduction to the Nash bargaining and show other
interesting properties of the Nash’s solution. These are related to the interpersonal comparisons
of weighted utilities. As will be shown later on in the document these results will allow us to de-
velop and interpret some elements on the control of incentives of players when they belong to
bargaining subsets of players. As already discussed, alternatives to the covariance axiom have
been proposed in the literature by game theorists. Some alternatives propose to constrain the so-
lution in terms of relative or global performance of the allocation while relaxing the covariance
requirement, hence the idea of interpersonal comparisons. As example, the ∏-egalitarian solution
of a bargaining problem ask for efficiency and a ∏-weighted symmetric share of the gains w.r.t. the
disagreement point,

Definition 13. Given any ∏1,∏2 > 0, the ∏-egalitarian solution of (B,t) is the unique efficient point
in B such that,

∏1(x1 ° t1) = ∏2(x2 ° t2) (2.20)

As another example, the ∏-utilitarian solution should maximize the ∏-weighted social welfare
of the players:

Definition 14. Given any ∏1,∏2 > 0, the ∏-utilitarian solution of (B,t) is the unique efficient point
in B such that,

∏1x1 +∏2x2 = max
y2B

∏1 y1 +∏2 y2 (2.21)

As observed by Myerson in [3], the ∏-egalitarian and utilitarian correspond to an application
of the equal-gains principle or greatest good principle when the players’ payoff are compared with
∏-scaled (thus decision-theoretic equivalent) utilities. We have the following theorem,

3Strong duality holds for a convex problem if it is strictly feasible, i.e., it exists a feasible point s.t. the inequality
constraints are strictly satisfied. For a complete introduction to convex optimization, see [11].
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Theorem 15 (Natural scale factors and Nash bargaining, [3], pp.383). Let (B,t) be an essential two-
person bargaining problem, and let x be an allocation vector such that x 2 B and x ∏ t. Then x is the
Nash bargaining solution for (B,t), iff there exist strictly positive numbers ∏1 and ∏2, called natural
scale factors, such that

∏1x1 °∏1t1 = ∏1x1 °∏2t2 (2.22)

∏1x1 +∏2x2 = max
y2F

∏1 y1 °∏2 y2 (2.23)

We now show an example of the Divide the Dollars game that naturally shows the scaling factor
∏ that makes the solution ∏-egalitarian. This example will be used in chapter 5 to show some
results on the controllability of stable matchings with Nash bargaining.

Example 16 (Asymmetric Dividing the Dollar). Consider a d-players bargaining problem over the
simplex B =�d°1 = {x 2 [0,1]d :

Pd
i =1 xi = 1} with null disagreement, t = 0. Assume each player i has

a concave increasing utility function ui :R!R. Nash’s solution solves,

maximize
x

Y
ui (xi )

subject to
dX

i =1
xi = 1

0 ∑ xi , i = 1, . . . ,d .

(2.24)

Deriving the K.K.T. conditions, one immediately obtains

u0
i (xi )

ui (xi )
= ∏, 8i (2.25)

Thus, for any pair i , j of different bargainers, we have

u0
i (xi )

ui (xi )
=

u0
j (x j )

u j (x j )
(2.26)

equivalently,
ui (xi )
u0

i (xi )
=

u j (x j )

u0
j (x j )

(2.27)

We thus have that Nash’s solution is ∏-egalitarian in the utility space with ∏i = 1
u0

i (xi ) where xi is

the money allocation at Nash’s solution. For the bargaining solution to be egalitarian (equal gains),
player i’s utility needs to be scaled by the inverse of the derivative of its utility function at the solution
point in the original bargaining. In view of the results of chapter 5 and 7, observe that the product
ui (xi )
u0

i (xi ) is a known measure of risk aversion called fear-of-ruin of player i at xi . For now, we do not

enter the fear-of-ruin into more details and defer the description and analysis of risk aversion in-
dicators to chapter 7 where we will consider composite games composed of a bargaining and stable
matching game.

2.3 The Generalized Nash Bargaining

In [12], Roth extensively studies the bargaining problem. Among other contributions, he shows
that the relaxation of the symmetry axiom (axiom 5) allows to introduce an asymmetry in the bar-
gaining solution and abilities of the players. The abilities are taken into account by defining for
any player in the game, an extended utility function obtained by the composition of the player’s
original utility with a player-specific power function. Any player’s power exponent is called bar-
gaining power. Let denote Æi > 0 the bargaining power of player i and Æ the vector of bargaining
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powers. A bargaining solution� is a nonsymmetric Nash bargaining solution iff there exists a vec-
tor Æ of strictly positive bargaining powers such that for any n-players bargaining problem (B,t),
�(B,t), the solution solves equation(2.28),

�(B,t) 2 argmaxu2B,u∏t

NY

i =1
(ui ° ti )Æi (2.28)

For more details, see [3] (pp.390), [7] (pp.35) and [12].

Example 17 (Asymmetric Dividing the Dollar). Consider a d-players bargaining problem over the
simplex �d°1 = {x 2 [0,1]d :

Pd
i =1 xi = 1}. The utility function any player i in {1, . . . ,d} is,

ui (xi ) = xi (2.29)

Assume a null threat vector t, where ti is the threat of player i .
Roth’s solution to the Generalized Nash Bargaining with individual bargaining powers solves,

maximize
x

Y
ui (xi )Æi

subject to
dX

i =1
xi = 1

0 ∑ xi , i = 1, . . . ,d .

(2.30)

where Æi is called the bargaining power of player i .
From the previous example, the resulting allocation asymmetrically allocates the money such

that, for any player i (taking v(C) = 1),

xi =
ÆiP
j Æ j

(2.31)
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Chapter 3

Stable Matchings

In this chapter we introduce the theory of stable matchings, a well-developed and successful
branch of game theory commonly used to analyze two-sided matching markets and their mech-
anisms. This is the main game-theoretic tool of this thesis. The results shown in this chapter will
be used in chapter 5 to design a controlled stable matching mechanism for the WiFi association
problem, in chapter 6 to design a stable matching mechanism for video caching , in chapter 7 to
analyze the concavity conditions required for the generalized Æ-fair resource allocation scheme to
induce the existence of stable matchings and in chapter 8 to design a stable matching mechanism
for a crowdsourcing platform with scheduling constraints.
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3.1 Stable Matchings

Since Gale and Shapley’s seminal work [1] on the stable marriage and college admission problems,
matching games have been widely studied. As will be shown throughout this chapter, the original
stable marriage problem has been successively extended and generalized so as to cover numerous
applications. This tool is of particular importance in some marketplaces where the participation
and incentives of the agents depends on the implemented matching mechanism. As an example,
it was shown by A.E. Roth (see [2] and references therein) that the so-called stability is necessary
to maintain the participation of the agents in the matching market assigning medical interns to
hospitals. If the matching mechanism is not stable the agents may turn to alternative solutions
to associate with each others. This phenomenon is known in the name of unraveling. As an in-
troduction, we will show Gale and Shapley’s well-known result on the marriage problem and its
straightforward generalization the college admission problem. We will then turn to a more com-
plex setting where the agents not only care about their mate but also on the matching of others.
Such settings are called matching with externalities. These have been assessed by introducing
fundamental assumptions on the agents preferences : responsiveness and substitutability. We
will then turn to the generalization to the many-to-many setting (each player can be matched to
many others) with contracts and externalities generalizing previous works and partially covering
a subset of other well-known problems such as auctions.

3.2 The Stable Marriage Problem

In their seminal paper [1], Gale and Shapley study the so-called stable marriage problem. They
show the existence of stable matchings by using a (regret-free) stable matching mechanism known
in the name of Deferred Acceptance Algorithm (DAA). Furthermore, they show that there exists a
structure in the interests of the agents over the set of such equilibriums and extend the result to a
the more general college-admission problem.

Consider a set of men M of cardinality M and a set of women W of cardinality W. Assume M

and W are disjoint. Each man m 2 M has preferences Pm given by the order relation ∫
m

over the

women in W and each woman w 2 W has preferences Pw given by the order relation ∫
w

over the

men in M . Let denote P the list of preferences,

P = {Pm1 , . . . ,PmM ,Pw1 , . . . ,PwW }

Example 18. As an example take M = {m1,m2}, W = {w1, w2} and the preferences list P as,

Pm1 : w1 ∫
m1

w2 ∫
m1

m1 (3.1)

Pm2 : w1 ∫
m2

w2 ∫
m2

m2 (3.2)

Pw1 : m1 ∫
w1

w1 ∫
w1

m2 (3.3)

Pw2 : m2 ∫
w2

m1 ∫
w2

m1 (3.4)

(3.5)

Literally, it is said that man m1 either strictly prefers woman w1 to woman w2 or is indifferent
between the two and either strictly prefers woman w2 to being alone or is indifferent between the
two. The preferences of w1, m2 and w2 can be written the same way.

If the preferences are strict, we denote ¬
i

the preferences of player i 2 M [W . In such case,

there are no indifferences. Strict preferences can be obtained from non-strict ones by the use of
tie-breaking rules that explicitly describe how to break the indifference between alternatives. As
an example of such rule, a man may break an indifference using the alphabetical order, the age,
the size, etc.
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The marriage problem is defined as the game � = (M ,W ,P). To solve this game it is not suffi-
cient to define a set of players and their individual preferences over (or, utility of) alternatives. One
needs to define an appropriate equilibrium concept that is intended to show attractive properties
in terms of agents’ decision-taking w.r.t. the conflict situation being studied. In the particular
case of the marriage game where the players want to marry with each others according to their
individual preferences, an appropriate question may be the following: Given a set of men, women
and their preferences, does there exist a set of marriages such that a man (women) has the incentive
to divorce from his (her) mate to stay alone or re-marry with a woman (man) that would have the
same incentive?

The equilibrium concept of pairwise stability formalizes such stability of marriages. First let
define a matching µ : M [W ! M [W as a one-to-one mapping function that associates any
player i in the game to its mate (including himself if the player stays alone).

• µ(m) 2W [ {m} for all m 2M

• µ(w) 2M [ {w} for all w 2W

• µ(m) = w iff µ(w) = m

Thus, given any man m 2 M , either he is matched to a woman w and w is also matched to m, or
m remains single. Observe that each matching function µ defines a unique matching (denoted µ).

A matching µ is said to be pairwise stable if at µ no player prefers being single and there does
not exist a man and a woman not matched with each other at µ who would prefer leaving their
mates to match with each other. Formally, µ is pairwise stable if,

• It is individual rationality: µ(i )¬
i

i for all i 2M [W

• There are no blocking pairs: 6 9(m, w) 2M £W s.t. µ(m) 6= w , w ¬
m
µ(m) and m¬

w
µ(w)

The individual rationality asks for the ability of any player to reject a mate if it prefers to stay alone
rather than being matched to this mate. The third condition asks for a robustness to cooperative
deviations of pairs (coalitions of a man and a woman). This cooperative interpretation in terms of
coalitions may appear artificial at this point but we use it in view of other stabilities (given in the
next section) that generalize the pairwise stability.

In [3], Vande Vate has shown that the set of stable matchings is actually the set of integer points
of a convex polytope. Let define x 2 {0,1}M£W be the configuration matrix of a matching µ such
that, for any pair (m, w) 2 M £W , xmw = 1 if µ(m) = w and xmw = 0 otherwise. Relaxing the defi-
nition of the configuration matrix so that x 2 [0,1]M£W allows to interpret the coefficients xmw as
the probability for the pair (m, w) to be matched or the fraction of time they spend matched with
each others. We have,

Theorem 19 ([3]). A matching is stable if and only if its configuration x is an integer matrix of
dimension M£W satisfying the following set of constraints:

1.
P
j

xm j ∑ 1 8m 2M ,

2.
P
i

xi w ∑ 1 8w 2W ,

3.
P
j

xm j +
P
i

xi w +xmw ∏ 1 8(m, w) 2M £W ,

4. xmw ∑ 0 8(m, w) 2M £W .

The first and second set of constraints (1) ask for each man and woman to be matched with
probability at most one, or at most one hundred percent of his time. The third constraint asks for
the non-existence of blocking pairs. In fact, given a pair (m, w), assuming that (4) is not satisfied for
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the pair (i.e.
P
j

xm j +
P
i

xi w +xmw ∑ 1) then both spend less than 100% of their cumulated time with

each others or partners they prefer to each others. Both of them could at least increase the share
of time they spend with each others by reducing the amount they spend with less preferred mates.
In such case, (m, w) is blocking. One can show that an integer feasible solution is equivalent to an
integer configuration matrix (non-relaxed definition).

Example 20.

Pm1 : w1 ∫
m1

w2 ∫
m1

m1 (3.6)

Pm2 : w1 ∫
m2

w2 ∫
m2

m2 (3.7)

Pw1 : m1 ∫
w1

w1 ∫
w1

m2 (3.8)

Pw2 : m2 ∫
w2

m1 ∫
w2

m1 (3.9)

(3.10)

Consider example (18) and the configuration matrix,

x =
µ

x11 x12

x21 x22

∂

The corresponding stable matching polytope is defined by the following set of equations,

x11 +x12 ∑ 1 (3.11)

x21 +x22 ∑ 1 (3.12)

x11 +x21 ∑ 1 (3.13)

x12 +x22 ∑ 1 (3.14)

x11 ∏ 1 (3.15)

x11 +x22 +x12 ∏ 1 (3.16)

x11 +x21 ∏ 1 (3.17)

x21 +x22 ∏ 1 (3.18)

x11 ∏ 0, x12 ∏ 0, x21 ∏ 0, x22 ∏ 0 (3.19)

The unique integer feasible solution is x11 = 1, x12 = 0, x21 = 0 and x22 = 1. Thus, the unique stable
matching is,

µ =
µ
m1 m2

w1 w2

∂

The existence of pairwise stable matchings (equivalently, non-emptiness of the set of integer
points in the stable matching polytope) in the game � = (M ,W ,P) is not straightforward. Based on
the intuition, one may say that the existence of such result may depend on the preferences emitted
by the players. In fact, it seems reasonable to think that if the preferences are very different from one
player to another, then given any matching there may always exists a individual or a pair with the
incentive to deviate. Furthermore, by definition of the polytope of stable matchings, one may think
that by appropriately changing the number of participants and preferences (i.e. choosing the right
matching game) one may change the set of hyperplanes so as to make the set of integer feasible
points empty or non-empty.

As shown by Gale and Shapley in [1], such intuition does not hold true and there actually exists
a stable matching in any marriage problem � = (M ,W ,P), i.e. for any sets M and W and any list of
preferences P. We give this theorem and the original proof that was of quite a singular form at the
time it was published. In Gale and Shapley’s setting there are n men, n women and all the players
are mutually acceptable (any player prefers being matched than being single). Nevertheless the
results hold in non-squared markets with non-acceptable players (as assumed in the following
formalized algorithm).
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Theorem 21 ([1]). There always exists a stable set of marriage.

[1]. " We shall prove the existence by giving an iterative procedure for actually finding a stable set
of marriages.

To start, let each boy propose to his favorite girl. Each girl who receives more than one proposal
rejects all but her favorite from among those who have proposed to her. However, she dos not
accept him yet, but keeps him on a string to allow for the possibility that someone better may
come along later.

We are now ready for the second stage. Those boys who were rejected now propose to their
second choices. Each girl receiving proposals chooses her favorite from the group consisting of
new proposers and the boy on her string, if any. She rejects all the rest and again keeps the favorite
in suspense.

We proceed in the same manner. Those who are rejected at the second stage propose to their
next choices, and the girls again reject all but the best proposal they have had so far.

Eventually (in fact, in at most n2°2n+2 stages1) every girl will have received a proposal, for as
long as any girl has not been proposed to there will be rejections and new proposals, but since no
boy can propose to the same girl more than once, every girl is sure to get a proposal in due time. As
soon as the last girl gets her proposal the courtship is declared over, and each girl is now required
to accept the boy on her string. We assert that this set of marriages is stable. Namely, suppose
John and Mary are not married to each other but John prefers Mary to his own wife. Then John
must have proposed to Mary at some stage and subsequently been rejected in favor of someone
that May liked better. It is now clear that Mary must prefer her husband to John and there is no
instability. "

The process of proposal and acceptances or rejections described in the proof is known in the
name of the Deferred Acceptance Algorithm (DAA) with men-proposing. In a more conventional
algorithmic form and assuming that some players may not be acceptable to others, we have the
DAA as,

Algorithm 4: The deferred acceptance algorithm with men proposing.
Data: � = (M ,W ,P)
Result: µM

1 -Each man proposes to his favorite woman;
2 -Each woman selects her most preferred man among those having proposed to her;
3 -The chosen men are tagged engaged by the corresponding women;
4 while some men are rejected do
5 -Each man rejected at the previous step proposes to his favorite (and acceptable)

woman among those not having rejected him yet;
6 -Each woman receiving new proposals chooses her preferred man among the

acceptable new proposers and the man she has kept engaged;

7 -Each man is matched to the woman he is engaged to, other players stay single;

Before going further, we show to apply the DAA in the previous simple example.

Example 22.

Pm1 : w1 ∫
m1

w2 ∫
m1

m1 (3.20)

Pm2 : w1 ∫
m2

w2 ∫
m2

m2 (3.21)

Pw1 : m1 ∫
w1

w1 ∫
w1

m2 (3.22)

Pw2 : m2 ∫
w2

m1 ∫
w2

m1 (3.23)

(3.24)

1where n = M = W in Gale and Shapley’s setting
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• Step 1: m1 and m2 propose to w1

• Step 1’: w1 selects m1 and rejects m2

• Step 2: m2 proposes to w2

• Step 2’: w2 selects m2

• Since no man is rejected, the algorithm ends

The stable matching obtained by DAA with men proposing is,

µ =
µ
m1 m2

w1 w2

∂

Another interesting algorithmic result was shown by Roth and Vande Vate: given any matching
µ of a marriage game �, there exists a path of blocking pairs to stability. Formally,

Theorem 23 ([2]). Let µ be an arbitrary matching for (M ,W ,P). Then, there exists a finite sequence
of matchings µ1, . . . ,µk such that µ = µ1, µk is stable, and for each i = 1, . . . ,k °1, there is a blocking
pair (mi , wi ) for µi such that µi+1 is obtained from µi by satisfying the blocking pair (mi , wi ).

A corollary of this theorem is that given an arbitrary matching µ, a random process selecting
blocking pairs must eventually converge with probability one to a stable matching provided each
blocking pair has a probability to be selected bounded away from zero. This result also shows the
non-emptiness of the set of stable matchings.

The convergence to stable matchings for any preference profile is not the only interesting
property of the algorithm. Whether men or women propose is of particular importance (when
the set of stable matchings is not reduced to a singleton) because proposers reach optimality.

Theorem 24 ([1]). Every applicant is at least as well off undertake assignment given by the deferred
acceptance procedure as he would be under any other stable assignment.

In other words, every man (woman) likes the matching from DAA with men proposing at least
as well as any other stable matching. In case of strict preferences, one can show that such side-
optimal stable matching is unique (see [2], pp.32). Let denote µM the men-optimal (M-optimal)
stable matching and µW the women-optimal (W-optimal) stable matching. This is a surprising
result. In fact, despite of eventual divergences in the men (women) preferences over the set of
assignments, all men (women) agree on their preferred one µM (µW) in the subset of stable ones.
So, there is a common interest over the set of stable matchings among the players of a side. Even
more surprisingly, as shown by the two following theorems, the two sided have opposite common
interests (the commonly agreed men-optimal stable matching µM is the commonly agreed worst
stable matching for women, and vice versa) and the stable matchings form a lattice. Let us begin
with Knuth’s result on opposite interests and then turn to Conway’s result on the lattice structure
of the set of stable matchings,

Theorem 25 ([2], pp.33). When all agents have strict preferences, the common preferences of the two
sides of the market are opposed on the set of stable matchings; if µ and µ0 are stable matchings, then
all men like µ at least as well as µ0 if and only if all women like µ0 t least as well as µ.

In order to state the following result on the lattice structure of stable matchings, it is required
to define the so-called pointing functions _

M
and

M̂
such that,

• ∏(m) =µ(m)_
M
µ0(m)

(
µ(m) if µ(m)¬

m
µ0(m)

µ0(m) otherwise
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• ∏(w) =µ(w)_
M
µ0(w)

(
µ(w) if µ(m)¡

w
µ0(w)

µ0(w) otherwise

similarly,

• ∫(m) =µ(m)
M̂
µ0(m)

(
µ(m) if µ(m)¡

m
µ0(m)

µ0(m) otherwise

• ∏(w) =µ(w)
M̂
µ0(w)

(
µ(w) if µ(m)¬

w
µ0(w)

µ0(w) otherwise

Thus, _
M

assigns each man m 2 M its most preferred woman in {µ(m),µ0(m)} and each woman

w 2W its least preferred man in {µ(m),µ0(m)}. The pointing function
M̂

works the opposite map-

ping each man to his less preferred woman and each woman to her preferred man. We have the
following theorem,

Theorem 26 ([2], pp.36). When all preferences are strict, if µ and µ0 are stable matchings, then the
function ∏ =µ_

M
µ0 and ¥ =µ

M̂
µ0 are both matchings. Furthermore, they are both stable.

The pairwise stability is based on the non-existence of individuals or pairs having the incen-
tive and the power to enforce respectively unilateral (individual rationality) or bilateral deviations
(blocking pair). Is it possible to extend to more general subsets than singletons and pairs? Is there
a way to consider re-matchings that would involve more than two (an agent leaves its mate to stay
single) to four players (two unmarried agents leave their mates to match with each others)? In
other words, can we consider blocking subsets bigger than just pairs? Actually, this generalization
already exists in cooperative game theory and is known in the name of core. Consider a coopera-
tive game with a set of feasible outcomes, individual preferences defined over the set of outcomes
and a set of rules defining the set of feasible cooperative behaviors such as the set of feasible so-
lutions (this is of particular importance in section 3.5 where there exists constraints on the set of
feasible coalitions for stable matchings to exist). A general definition of the core is proposed by
Roth,

Definition 27 ([2], pp. 54). For any two feasible outcomes x and y, x dominates y if and only if there
exists a coalition of players C such that,

• every member of the coalition C prefers x to y; and

• the rules of the game give the coalition S the power to enforce x over y.

Definition 28 ([2], pp.). The core of a game is the set of undominated outcomes.

In case of the marriage market, we have thus have the following definition of domination,

Definition 29 ([2], pp. 54). A matching µ0 dominates another matching µ if and only if there exists
a coalition C contained in M [W , such that, for all men m and women w 2 C,

• µ0(m) 2 C

• µ0(w) 2 C

• µ0(m)¬
m
µ(m)

• µ0(w)¬
w
µ(w)

A matching is dominated by another one if there is a subset of men and women with the in-
centive to deviate to either stay alone or match with each others and the power to enforce it. The
ability to enforce a new outcome comes from the fact that such deviation involves only decision-
taking by the agents in the subset and that any of these is in favor of the deviation. One may see
that the agents in the blocking subset have aligned preferences over the two matchings. All the
agents prefer the same matching.
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Example 30. Consider the matching

µ =
µ
m1 m2 m3 m4

w1 w2 w3 w4

∂

As an example, this matching is not core stable if {m2,m3, w2, w3} strictly prefer

µ0 =
µ
m1 m2 m3 m4

w1 w3 w2 w4

∂

Observe that the coalition {m2,m3, w2, w3} can be decomposed in two disjoint sub-coalitions {m2, w3},
{m3, w2}, each blocking µ. This decomposition principle is used to show Theorem 31.

In the stable marriage problem, another nice result is that the set of pairwise and core stable
matchings are the same.

Theorem 31 ([2], pp.55). The core of the marriage market equals the set of stable matchings.

Qualitatively, the proof shows the following: (i)if a matching is core stable then it is pairwise
stable because a pair is a coalition, (ii) if a matching is not in the core then there exists a blocking
pair (intuition provided by the previous example). The contraposition of (ii) is, if there exists no
blocking pair (the matching is pairwise stable) then a matching is in the core. This shows the
equivalence.

3.3 The College Admission Problem

The college admission problem is the natural extension of the one-to-one stable marriage problem
to the many-to-one setting where the players of a given side can be matched to a finite number of
the opposite one. In the basic college admission problem, all the players have preferences (taken
as primitives) over individuals of the opposite side as in the marriage problem and the colleges’
preferences over groups of students are naturally induced by the preferences over individuals. In
more complex problems, both colleges and students have preferences over groups of students
(students care about who else is admitted in the college), or there may exist payments and salaries
inducing the preferences. Let us start by showing the results on the basic problem that can be
quite straightforwardly solved using the previous results, and then turn to the more complex ones.

3.3.1 Basic Setting

Consider a set of colleges C of cardinality C and a set of students S of cardinality S. Assume C and
S are disjoint. Each college c 2C has a quota qc , i.e. it can admit a finite number qc of students.
As in the marriage problem, each college c 2 C has preferences Pc given by the order relation ∫

c
over the students in S and each student s 2 S has preferences Ps given by the order relation ∫

s
over the colleges in C . Let denote P the list of preferences,

P = {Ps1 , . . . ,PsS ,Pc1 , . . . ,PcC }

In such a setting where the colleges can admit groups, it is natural to embed in the model prefer-
ences over groups of students. Let define P#

c the preferences of college c over groups of students.
One may also interpret P#

c as c’s preferences over matchings but with limited care to its own set of
matched students.

Example 32. As an example, take C = {c1,c2,c3} and S = {s1, s2, s3}. Assume the following prefer-
ences for student s1 and college c1 with quota q1 = 2:

Ps1 : c1∫
s1

c2¬s1
c3∫

s2
s1 (3.25)

Pc1 : s1¬c1
s2ªc1

c1∫
s

s3 (3.26)

P#
c1

: {s1, s2}¬
c1

s1¬c1
s2ªc1

c1∫
s

s3 (3.27)
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Student s1 likes at least as well (strictly prefers or is indifferent) being admitted in college c1 than
in c2 and strictly prefers being admitted in c2 rather than in c3. Similarly, college c1 strictly prefers
student s1 to s2, is indifferent between admitting s2 or not and considers s3 as not acceptable. Finally,
the preferences over groups P#

c1
show that c1 prefers admitting both s1 and s2 than only one of them

as previously given in the preferences Pc1 .

In the many-to-one matching problems, the players on the colleges’ side can be associated to
many students. It is often admitted that each college has a finite quota, i.e. admits a finite number
of students. A feasible many-to-one matching µ is a function from the set C [S into the set of
unordered families of elements of C [S such that:

• |µ(s)| = 1 for every student s and µ(s) = 1 if µ(s) 62C ;

• |µ(c)| = qc for every college c, and if the number of students in µ(c), say r , is less than qc ,
then µ(c) contains qc ° r copies of c;

• µ(s) = c if and only if s 2µ(c)

In [1], Gale and Shapley have shown that the set of pairwise stable matchings is always non-
empty in the college admission problem with preferences over individual:

P = {Ps1 , . . . ,PsS ,Pc1 , . . . ,PcC } (3.28)

To show this, one just need to slightly modify the DAA (used to show the existence of stable mar-
riages) so that at any round (with students proposing) every college c 2 C accepts its qc most
preferred agents among those already admitted, those currently proposing and itself (i.e. in case
of unacceptable students, the college prefers not admitting the rather than admitting). In this
setting, each college opportunistically admits its most preferred students according the its prefer-
ences over individuals. Thus, each student is assumed independent from the others and is admit-
ted or rejected following one-to-one comparisons w.r.t. other students. When rejected, a student
is replaced by a more preferred one without any regret in subsequent rounds, as in the marriage
setting.

3.3.2 Responsive Preferences over Groups of Students and Group Stability

The previous results have shown that there exists stable matchings in college admission problems
with preferences over individuals on both students’ and firms’ sides. We now consider the more
complex problem where every college c 2C has preferences P#

c as already defined. In order to ex-
hibit the difficulty raised by the introduction of groups, consider the previous DAA with students
proposing. Assume that a college c chooses according to P#

c its most preferred subset of students
among those admitted and those proposing according to P#

c . Following this choice, a student (po-
tentially, many students) may be rejected because of low complementarities but may be regretted
in a subsequent round because of new proposals that make the rejected student now belong to c’s
most preferred subset. In such case, both c and the rejected students would be matched with each
others.

This opens the way toward the introduction of new stability concepts where groups matter
and the introduction of assumptions on the structure of the preferences that may induce regret-
free deferred acceptance-like processes and guarantee the existence of stable matchings.

A natural way of constructing any college’s preferences over groups of students is to compare
the groups differing by one student based on the preferences over the individuals. Such prefer-
ences over groups are called responsive preferences. We have the following formal definition,

Definition 33 ([2], pp.128). The preference relation P#
c over sets of students is responsive to the pref-

erences Pc over individual students if, whenever µ0(c) = µ(c)[ {s}\{æ} for æ in µ(c), then c prefers
µ0(c) to µ(c) under P#

c if and only if c prefers s to æ under Pc .
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We now define two stability solution concepts, that involve subsets of players bigger than just
pairs. These stabilities allow not only individuals or pairs (of the form (man,woman) or (stu-
dent,college)) to block a matching but subsets possibly composed of several men and women or
students and colleges that can re-organize the associations so as to benefit from the deviation.
Each of these stability concept is differentiated from the other through the beneficiaries of the
deviation and their enforcement power. The first solution concept has actually already been de-
fined, it is the core. In the framework of many-to-one markets, we have the following definition of
domination:

Definition 34 ([2], pp.166). A matching µ0 dominates another matching µ via a coalition C con-
tained in C [S if for all students s and colleges c in C,

• If c 0 =µ0(s) then c 0 2 C

• If s0 2µ0(c) then s0 2 C

• µ0(s)¬
s
µ(s)

• µ0(s)¬
s
µ(s)

Remember that the core is the set of undominated matching.

Definition 35 ([2], pp.130). The core, C(P), of a game is the set of matchings that are not dominated
by an other matching.

A many-to-one-matching is core stable if there is no subset of players that would all prefer be
matched with each others exclusively2.

Example 36. Consider the matching

µ =
µ

c1 c2

s1s2 s3s4

∂

This matching is not core stable and dominated by

µ0 =
µ

c1 c2

s1s2s3 s4

∂

if any agent in {c1, s1, s2, s3} strictly prefers µ0 to µ.

A weakened version of the core, called weak core is defined by relaxing strictness in the domi-
nation:

Definition 37 ([2], pp.166). A matching µ0 weakly dominates another matching µ via a coalition C
contained in C [S if for all students s and colleges c in C,

• If c 0 =µ0(s) then c 0 2 C

• If s0 2µ0(c) then s0 2 C

• µ0(s)∫
s
µ(s)

• µ0(s)∫
s
µ(s)

• µ0(s)¬
s
µ(s) for some s 2 C, or

• µ0(s)¬
s
µ(s) for some c 2 C

The corresponding core is called core defined by weak domination:

2No other player can be matched to them.
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Definition 38 ([2], pp.130). The core defined by weak domination, CW(P), of a game is the set of
matchings that are not weakly dominated by any other matching.

Because domination implies weak domination we have:

CW(P) µ C(P)

Furthermore, we have equivalence between the weak core and the set of pairwise stable matchings
in many-to-one matching markets with responsive strict preferences.

Theorem 39 ([2], pp. 167). When preferences are responsive and strict in a many-to-one matching
market, S(P) = CW(P).

The other solution concept that we consider in matching markets with group deviations is the
group stability. It is based on the notion of blocking coalition that weakens domination by allowing
the new matching to be preferred to the original one only by the players with the incentive to
deviate. Formally:

Definition 40 ([2], pp.130). A matching µ is blocked by a coalition C, if there exists another match-
ing µ0 and a coalition C, which might consist of multiple students and/or colleges, such that for all
students s 2 C and for all colleges c 2 C,

• µ0(s) 2 C

• µ0(s)¬
s
µ(s)

• æ 2µ0(c) implies æ 2 C[µ(c)

• µ0(c)¬
c
µ(c)

Definition 41 ([2], pp.130). A group stable matching is one that is not blocked by any coalition.

In the core stability, it is required that any student (college) matched to a deviating college
(student) atµ0 must be involved in the deviating coalition and thus prefersµ0 toµ. The domination
results from a joint agreement among all the players involved except those left aside. In the group
stability, it is only required that those who actually deviate prefer µ0 to µ. This is shown in the
following example (compare to example 36 for the difference w.r.t. the core).

Example 42. Consider the matching

µ =
µ

c1 c2

s1s2 s3s4

∂

This matching is not group stable and blocked by {c1, s3} if

µ0 =
µ

c1 c2

s1s2s3 s4

∂

is preferred to µ by c1 and s3.

In addition to the previous equivalence result between the weak core and the set of pairwise
stable matchings, we have the following one between the set of group stable matchings and the
set of pairwise stable ones,

Theorem 43 ([2], pp. 130). When preferences are responsive, a many-to-one matching is group
stable if and only if it is pairwise stable.
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3.4 The Firms and Workers Model: Choice Functions, Subtitutability
and Salaries

In this section, we introduce the substitutability property, another sufficient condition for the ex-
istence of stable matchings (but weaker that the responsive property). Furthermore, we introduce
the choice functions formalism that will be used in the general models of matching with contracts.

Consider the previous college-admission problem, turn the students into workers from a set of
workers W = {w1, . . . , wm}, the colleges into firms from a set F = { f1, . . . , fn} and assume that each
pair (firm,worker) is characterized by a salary to be paid by the firm to the worker. This setting is
known in the name of the firms and workers problem. For the sake of homogeneity w.r.t. [2] and
simplicity, assume that any firm has quota m. As in the college admission problem, a matching µ
is a function from the set F [W into the set of all subsets of F [W such that

1. |µ(w)| = 1 for every worker w and µ(w) = w if µ(w) 62F ;

2. |µ( f )|∑ m for every firm f and µ( f ) = ; if f isn’t matched to any workers;

3. µ(w) = f if and only if w is in µ( f ).

The analytical formalism developed for the marriage and college-admission problems is based
on order relations called preferences that are used to define the models and concepts or show the
results. The notations were defined in terms of classical order-relations such as ¬

i
or ∫

i
. In the

1980’s, this formalism has been slightly changed for an alternative one based on choice functions
that allow to define a new condition, called substitutability, in a convenient way. This notation is
used in the most general matching models such as matching with contracts [4] and matching with
contracts and externalities [5]. Nevertheless, the classical notation is not left aside and keep on
being used when adapted to the problem (as an example of a recent paper using the order-based
notation see [6]).

Definition 44 ([2], pp.172). For any subset S µ W , f ’s choice set is S0 = Ch f (S) such that S0 µ S and
S0 ∫ f S00 for all S00 µ S.

In the literature, one can also find the equivalent notation c f (S) to denote the choice set of f in
S. If the preferences are strict, then the choice set in any subset S is unique. As stated, choice func-
tions are used in the definition of the substitutability property that is another sufficient condition
for the existence of stable matching. This condition asks for the workers not to be complements for
firms. Thus, if a worker w is chosen from a set, removing another worker from this set should not
make w less worthable. In other words, if a worker w is rejected (not chosen) from a set of workers
by a firm f , then it should be rejected by f from any superset. In fact, the non-complementarity
should not make the rejected w worthable when being jointly considered with new workers. For-
mally, we have the following definition

Definition 45 ([2], pp.173). A firm f ’s preferences over sets of workers has the property of substi-
tutability if, for any set S that contains workers w and w 0, if w is in Ch f (S) then w is in Ch f (S\w 0).

Defining the reject of f in S as R f (S) = S\Ch f (S) (equivalent notation r f (S)) and using the
contraposal: if w is not in Ch f (S\w 0) (thus w is rejected from S\w 0) then w is not in Ch f (S) (thus
w is rejected from S), we have the following equivalent definition

Definition 46 ([2], pp.173). A firm f ’s preferences over sets of workers has the property of substi-
tutability if, for any set S that contains workers w and w 0, if w is in r f (S\w 0) then w is in r f (S).

The substitutability property is weaker than the responsive one and if preferences are respon-
sive then they satisfy the substitutability property. We now show a simple example of a firms and
workers matching problem with firms’ choice functions not satisfying the substitutability property
(a generalized version of this problem is assessed in chapter 8).
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Example 47. Assume that each firm f has a set of tasks T f to be performed by a worker and the
execution of the tasks in T f is constrained by a scheduling. Practically, a task can be executed only if
the set of its predecessors is executed. In such case, a firm chooses a worker w to execute a task ø only
if it has other workers to execute the predecessors of ø. Assume that S contains w and all the workers
for the predecessors of ø except one, then w is rejected by the firm (since it is hiring w for a task
that cannot be executed) while w is not rejected if the worker for the only one missing predecessor is
added to S. In such case, f ’s choice function does not satisfy the substitutability condition.

As in the marriage and college-admission problems, we define blocking individuals, pairs and
the stability. A matching µ is blocked by an individual worker if w ¬

w
µ(w) and by an individual

firm f if µ( f ) 6= Ch f (µ( f )). Furthermore, µ is blocked by a worker-firm pair (w, f ) if µ(w) 6= f and
if f ¬

w
µ(w) and w 2 Ch f (µ( f )[w).

A matching is stable if

• it is not blocked by any individual agent

• it is not blocked by any worker-firm pair

We have the following existence theorem,

Theorem 48 ([2], pp.175). When firms have substitutable preferences, the set of stable matchings is
always non-empty.

This theorem can be shown using a modified deferred acceptance algorithm with firms propos-
ing such that at each round, each firm proposes to its most preferred set of workers that includes
all of those workers whom it previously proposed to and who have not yet rejected it, but does not
include any worker who have previously rejected it. The convergence of the algorithm to a stable
matching relies on the fact that it is a no-regret procedure for firms to keep on proposing to work-
ers not having rejected (since any worker chosen from a set keep on being chosen in a subset by
repeated application of the definition of substitutability).

One could also show that the firms proposing version converges to a firm-optimal matching
and that the workers-proposing version converges to a worker-optimal matching (as in the mar-
riage and college admission problem).

Finally, we give the last important result of the section: the weak core equals the set of pairwise
stable matchings in case of substitutability on the firms’ side.

Theorem 49 ([2], pp.175). When firms have substitutable preferences (and all preferences are strict),
S(P) = CW(P).

3.5 Complementarities and Peer Effects

As explained in the previous section, the substitutability property of the firms’ choice functions is
a sufficient condition for the existence of stable matchings in matching games with preferences
over groups on the firms’ side. The substitutability property induces that the workers are con-
sidered as substitutes rather that complements by the firms. In other words, either there are no
complementarities or they are so weak that they cannot turn rejections into choices.

There are many settings and two-sided markets where such assumptions cannot hold and the
workers can be considered by the firms as complements.

Example 50. As an example, assume that a firm (company) wants to hire a team of three experts to
create a new product: one from mechanical engineering, one from electronics and one from com-
puter science. If one is missing, then the product cannot be created because some skill are missing
and none of the other two can be chosen by the firm.

c f ({mechanics, electronics, computer science}) = {mechanics, electronics, computer science} (3.29)

c f ({mechanics, computer science}) = ; (3.30)
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Chosen workers are not maintained in the subset, the choice function does not satisfy the substi-
tutability condition).

As another example, consider the firms as buyers and the workers as sellers.

Example 51. Assume one buyer and two sellers, one selling home video games console and the other
selling a video game. If the buyer can buy both the console and the game, then the buyer buys both.
Else the buyer doesn’t buy any good,

c f ({console, g ame}) = {console, g ame} (3.31)

c f ({console}) = ; (3.32)

Chosen goods are not maintained in the subset, the choice function does not satisfy the substitutabil-
ity condition).

A more complex model considers not only complementarities on the firms’ side but also peer
effects on the workers’ side. In such setting, workers may care not only about the firms they work
for but also about their colleagues. Such peer effects are a particular case of externalities that
consider the impact of the state of the market over the individuals and their preferences. The
related branch of matching games is called matching with externalities. The profile of preferences
is P = (P#

w1
, . . . ,P#

wm
,P#

f1
, . . . ,P#

fn
). This is quite a common problem in college admission where the

parents care not only about the college (or the class) there child will be admitted in but also who
else is admitted (e.g. some want friends to be in their class). As another example consider a firm
with a production line producing good sold on a market.

Example 52. For simplicity assume that the production is a function of the hired workers and that
any produced good is sold on the market. The revenues (produced worth) is then shared among the
firm and the workers proportionally to the revenues. First, if there are too few workers, then the
production level is low and the revenues are low. Both the firm and the workers want to increase
the capacity of the line by increasing the numbers of workers. On the opposite, if there are too many
workers there may be congestion effects both on the line because the individual tasks cannot be
executed properly (or the production activity must be decided into too many sub-tasks that induce
a global reduced productivity) and on the sharing scheme since one may improve the individual
salaries by rejecting some workers. Second, if there are slow or non-qualified workers reducing the
capacity of the production line, then the production is limited to the slowest one (this worker is the
bottleneck of the chain) and the revenue is low. In such case, fast workers would prefer another fast
worker in the line rather than a slow one while the slow one would only ask for workers not slower
than himself. In this production line example there are strong complementarities across workers on
the firms’ side and peer effects on the workers’ side because of both congestion and capacity effects.
For an interesting (and successful) novel on operations management, bottlenecks and the theory of
constraints, see [7].

In chapter 5, we will analyze a similar problem in the framework of the WiFi system and its
association problem. Below we show small example of such wireless communications system be-
tween users’ devices and Access Points (APs, nodes that allow the mobile devices to communicate
with each others, access to the internet, etc.).

Example 53. Assume two APs f1 and f2 and three mobile users w1, w2, w3 such that µ11 = 300 Mbps,
µ12 = µ22 = 54 Mbps, µ21 = µ32 = 1 Mbps. Assuming saturated regime and equal packet size, we can
show that P#(w1) = f1 ¬ f2 ¬ {w3; f1} ¬ {w2; f2} ¬ {w2; f1} ¬ {w3; f2}, which is not responsive. One
may also have the following preferences for mobile device w1, P#(w1) = {w3; f1} ¬ {w2; f2} ¬ {w2; f1} ¬
{w3; f2} ¬ f1 ¬ f2. Considering S = {w2, w3; f1, f2}, we have Chw1 (S) = {w3; f1}, while Chw1 (S\w3) =
{w2; f2}. Preferences are thus not substitutable.

On the workers’ side, complementarities also arise in the many-to-many setting where a worker
can work for different firms and thus jointly consider his set of jobs. As an example, a professional
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car driver may consider working as a UBER driver as a complement to his main driving job hours
but, if the professional driver activity stopped, he would rather prefer working as a taxi driver and
stop working for UBER.

Complementarities and peer effect in matchings have attracted a lot of attention. Even though
it is a difficult problem, game theorists have proposed solutions. The many-to-one matching prob-
lem has algorithmically been assed by Echenique and Yenmen in [8] who propose a fixed-point
formulation and an algorithm to enumerate the set of stable matchings. It is known, that there
is no guarantee that this set is non empty if the individual preferences over groups are not of a
particular form. The problem of complementarities and peer effects in matchings has also been
analytically tackled by Pycia in [6]. In this section, we show Pycia’s result in view of the results of
Section 5 that make use of these. Pycia’s work is not restricted to the two-sided structure and holds
for the general coalition formation problem where individually rational agents seek for forming
coalitions based on their preferences over groups.

The general problem of analysis of the formation of coalitions or groups of players is a long
date topic. Even though the first formalization in the game-theoretic framework is due to von
Neuman and Morgenstern in their well-known Theory of Games and Economic Behaviors [9], the
underlying concepts have been naturally used in the framework of the human activities or in the
nature developments (whatever environmental or animal). The reason for this group activities to
happen may be various and may be observed at many scales such as the microscopic one with the
particle mutual attractions or repulsions for increased entropy or energy minimization in physics
and chemistry. It may also be observed at the macroscopic one with animals or humans merging in
herds, societies or binding country agreements for individual security improvement, increased in-
dividual food intake or more generally increased revenues. Closing the loop of scales, this coalition
formation phenomenon may be observed at much larger scales in the universe with the formation
of planets.

A partitioning of the players in groups from the set of coalitions C is called a structure [10], see
Figure 3.1 for a structure in the coalition formation problem and Figure 3.2 for a structure in the
matching problem.

(a)

(b)

Figure 3.1: Examples of structures in the coalition formation problem. In (a), the structure is a single coali-
tion made of all the players and called the grand coalition. In (b), the structure is composed of three coali-
tions.

Figure 3.2: Example of a matching with players belonging to two disjoint sets: the set of circles and the set
of triangles.

A structure is core stable if no subset of agents has the incentive to leave and form a new coali-
tion. In other words, a structure S is core stable if no unformed group (i.e. no coalition C0 2 C \S)
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is such that all the players would strictly prefer forming C0 rather than being in their respective
groups in S.

In [6], Pycia studies the coalition formation problem (including two-sided markets with com-
plementarities and peer effects as a special case) and shows the existence of core stable structures
if the set of coalitions is regular and the preferences of the agents satisfy a new condition called
pairwise-alignment of the preferences over rich preference profiles. Other results show the set of
sharing rules inducing such preferences in a model of coalition game in characteristic form with
individual utility functions. Surprisingly, the Nash bargaining falls in the scope of such sharing
rules. This shows another hidden property of this cooperative equilibrium. Finally, similar results
have been shown in supply chain networks in [11].

We now show Pycia’s model and results. Consider a set of agents N . By definition of the coop-
erative setting, agents can form coalitions. Nevertheless, as already observed, the set of coalitions
C may be unconstrained (thus C = 2N ) or there may exist constraints that allow the agents to
form groups of particular form. Other groups are assumed infeasible by definition of the rules of
the game. Let define a particular set of coalitions, called regular set of coalitions, such that,

Definition 54 ([6]). A set of coalitions is regular if there is a partition of the set of agents N into two
disjoint, possibly empty, subsets F and W that satisfy the following three assumptions:
C1. For any two different players, there exists a coalition containing them if and only if at least one
of the players is a player of W .
C2. For any players a1, a2 2W and player a3, there exist proper ( 6= N ) coalitions C1,2,C2,3,C3,1 such
that ak , ak+1 2 Ck,k+1 and C1,2 \C2,3 \C3,1 6= ;.
C3. (i) For any player w 2 W and player a, if {a, w} is not a coalition then there are two different
players f1, f2 2F such that { f1, a, w} and { f2, a, w} are coalitions. (ii) No coalition, which is different
from N contains W .

The interpretation of these assumptions is the following. Condition C1 requires that any coali-
tion does not contain more than one firm. Condition C2 requires that for any triplet of the form
(w1, w2, a3) where a3 2 F [W , if a3 2 W , either it exists coalitions with these three workers or it
exists coalitions with firms and at least two workers from the set. Else, if a3 2F then it exists coali-
tions containing both this firm and the two workers. Note that this condition does not require any
coalition to contain at most one firm. This is obtained when jointly considering C1 and C2 which
also requires that the quota of any firm is at least two. The condition C3(i) requires that if a subset
of player of the form (w1, a2) where a2 2F [W is not a coalition then, the pair can be embedded
in two different coalitions of cardinality three where the additional players are firms. Thus, if it
exists one subset of two players that is not a coalition, then the set of firms F must be at least of
size two. The assumptions C1 and C3(i) complete each others in the sense that C1 allows for any
pair of agents containing a worker to be contained in a coalition and C3(i) allows for any pair of
agents containing a worker and not forming a coalition in itself to be embedded in two coalitions
containing two different firms. If the agent a2 is a worker, then C3(i) imposes that it exists two
firms with quotas at least two. If the agent a2 is a firm then C1 and C3(i) imposes that (w1, a2)
must be a coalition otherwise the is a contradiction between the two. One may also observe that
C3(i) is weaker than C2 for quotas in the sense that it only imposes that at least two firms must
have a quota superior of equal to two whereas C2 imposes that all firms have a quota superior
or equal to two. The condition C3(ii) requires that it does not exist a coalition different from the
grand coalition that contains the set of workers W . Thus, no coalition with any subset of firms and
workers can contain the set of workers except if the subset of firms is F . The joint consideration
of C1 and C3(ii) requires that it cannot exist coalitions with a single firm and W . Thus, the quota
of any firm is at most W ° 1. Finally, the joint consideration of C1, C3(i) and C3(ii) requires the
quota of at least two firms must be superior or equal to two and the the quotas of all firms must be
inferior or equal to W °1.

As a conclusion to the interpretation of these conditions over the set of coalitions, consider
the following two examples. The set of coalitions C = {{ f }[ J, f 2F , J µW , |J|∑ q f }[ {{w}, w 2W }
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defined in the many-to-one case is regular if q f 2 {2, . . . ,W ° 1} and F ∏ 2. The set of subset of
players (set of coalitions) C = 2N \{;} is regular.

Example 55. As a practical example in wireless networks, consider Device-to-Device (D2D) com-
munication systems where qualitatively, any device (users’ devices, network operators’ devices) can
connect to any other to communicate. The set of coalitions is the set of subsets of devices since any
subset of node may form a connectivity group. This last point may be interpreted as arising from
either the loss of the bipartite structure of the set of players or the additional ability of agents of the
workers’ side W to form coalitions with each others without players from F only.

The responsive and substitutability property of preferences or choice functions focus on the
individuals choice functions. Each agent in the game with preferences over groups must have pref-
erences satisfying these conditions. It is only required that the preferences satisfy these conditions.
In Pycia’s analysis, the condition is no more on the individual preferences but on the polarization
of the interest among pairs of agents (namely, pairwise alignment of the preferences) and across a
specific domain of preference profiles, called rich domain of preference profiles. Such condition
induces a structure in the agents’ individual preferences such that core stable structures exist.

Definition 56 ([6]). Preferences are pairwise aligned if for all agents a,b 2N and proper coalitions
C,C0 that contain a,b, we have: C∫

a
C0 , C∫

b
C0.

Definition 57 ([6]). A domain of preference profiles R is called rich if it satisfies the following as-
sumptions:

• (R1) For any profile π
N

= (π
i

)i2N 2 R, any agent i , and any three different coalitions C0,C,C1,

if C0π
i

C1 and i 2 C, then there is a profile
0
π
N

2 R such that C0
0
π
i

C
0
π
i

C1 and all agents
0
π
N

-

preferences between pairs of coalitions not including C are the same as their π
N

-preferences.

• (R2) (i) For any π
N

2 R and two different coalitions C,C1, there is a profile
0
π
N

2 R such that

C
0
¡
i

C1 for all i 2 C\C1 and all agents
0
π
N

-preferences between pairs of coalitions not including

C are the same as their π
N

-preferences.

(ii) For any π
N

2 R, any agents i , j , and any three different coalitions C0,C,C1, if C0¡
i

Cª
j

C1,

then there is a profile
0
π
i
2 R such that C0

0
¡
i

C
0
¡
j

C1 and all agents
0
π
N

-preferences between pairs

of coalitions not including C are the same as their π
N

-preferences.

We have the following theorem,

Theorem 58 ([6]). Suppose that the family of coalitions C satisfies C1 and C2, and that the pref-
erence domain R satisfies R1. If all preference profiles in R are pairwise aligned, then (i) all π

N
2 R

admit a stable coalition structure and (ii) the stable coalition structure is unique for any profile of
strict preferences π

N
2 R that is pairwise aligned over the grand coalition.

3.5.1 Coalition Games in Characteristic Form and Stability Inducing Sharing Rules

Assume that there exists a function v : C !R, called characteristic function of the game, mapping
any coalition C 2 C to a real value v(C), called worth of C. Originally, v(C) is C’s minimax worth
when the players in C strategically play against those in N \C to maximize the worth v(C) (see [12]
for more details and [9] for the original definition). By definition, the worth v(C) of any coalition
C 2C depends on the structure only through coalition C and is independent of the partitioning of
the players in N \C. The impact of the rest of the agents over the group is obtained as the result of
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the conflict between C and N \C. Nevertheless, the definition of the characteristic function can be
generalized to any mapping from the set of coalitions in R. In Example 52, the characteristic func-
tion of a matching game with firms hiring workers may map any production line to its revenues.
In Example 53, the characteristic function of a matching game with APs connecting to users’ de-
vices may map any connectivity group to its the total throughput assuming no interferences (no
externalities) or a maximum level of interferences from the rest of the network.

Given a coalition C and its worth v(C), any player i in C obtains a payoff si ,C. Agent i has utility
ui (si ,C) of si ,C where ui is i ’s ui : R ! R. The preferences ∫i of any agent i over the coalitions
are induced by i’s utility of the corresponding payoffs: C ∫i C0 iff ui (si ,C) ∏ ui (si ,C0). The set of
functions D = (Di ,C : R ! R)C2C ,i2C mapping the coalitions’ worths to the individual payoffs is
called sharing rule.

Definition 59 ([6]). A sharing rule is a collection of functions Di ,C :R+ !R+, one for each coalition
C and each of its members i 2 C, that maps the worth v(C) of C into the share of output obtained by
player i . We denote the sharing rule given by functions Di ,C as D = (Di ,C)C2C ,i2C.

By definition, i ’s payoff in C is si ,C = Di ,C(v(C)).
As an example, equal sharing is a sharing rule: the worth of a coalition is equally shared among

the players of the coalition. As another example, Nash’s solution to the bargaining problem is
another sharing rule. We now define the class of regular charing rules.

Definition 60 ([6]). A sharing rule D is regular if:

• (i) It is pairwise aligned over the grand coalition: either N 62 C , or N 2 C and the pairwise
alignment equivalence is true whenever C or C0 equals N

• (ii) All functions Di ,C are strictly increasing, continuous and limy!+1 Di ,C(y) = +1
The following results show that under regularity conditions over the set of coalitions and mono-

tonicity of the sharing rules there is an equivalence between the existence of a core stable structure
(matching in particular cases) and the pairwise alignment of the sharing rule. This first corollary
(from [6]) results from the application of the two main theorems of [6] to the particular case of
strictly increasing, continuous and unbounded sharing rules. These theorems generalize the re-
sults we exhibit here in the sense that they hold for the very general case of preferences as a self-
sufficient ordinal approach. Particularly, the following corollary shows that under the assumption
that the set of coalitions is regular and the individual payoffs are strictly increasing and continuous
in the coalition worth and that the payoff goes to infinity if the worth does, then there is equivalent
between the existence of a stable coalition structure for any vector of coalitions worths v and the
pairwise alignment of the sharing rule.

Corollary 61. Suppose that the family of coalition C satisfies C1-C3 and the functions Di ,C are
strictly increasing and continuous, and lim

y!+1
Di ,C(y) = +1 for all C 2 C , i 2 C. Then there is a

stable coalition structure for each profile of outputs iff the sharing rule D is pairwise aligned.

This results shows that under some assumptions on the way of sharing the resource, it is nec-
essary and sufficient that this allocation induces pairwise aligned preferences (for all outputs) for a
stable structure to exist. The next result shows that under the assumption that the set of coalitions
is regular and the the individual payoffs are strictly increasing and continuous in the coalition
worth and that the payoff goes to infinity if the worth does, there is an equivalence between the
set of pairwise aligned sharing rule and some max-product allocation schemes.

Proposition 62. Suppose that the family of coalitions C satisfies C1 and C2, and the functions Di ,C

are strictly increasing and continuous, and lim
y!+1

Di ,C(y) = +1 for all C 2C , i 2 C. The sharing rule

D is pairwise aligned and efficient iff there exist increasing, differentiable, and strictly log-concave
functions ui :R+ !R+, a 2N , such that ui

u0
i

= 0 and

(Di ,C(y))i2C = argmaxP
i2C

si ,C∑v(C)

Y

i2C
ui (si ), y 2R+,C 2C \N (3.33)
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In this thesis, we will particularly make use of the following corollary (see chapter 5 for the
application of this result) showing the equivalence between Nash-bargaining like sharing rules
and the existence of core stable structures.

Corollary 63. Suppose that the family of coalition C satisfies C1-C3 and the sharing rule D is reg-
ular. There is a stable coalition structure for each preference profile induced by the sharing rule iff
there exist increasing, differentiable, and strictly log-concave functions ui : R+ ! R+, i 2 N , such
that ui

u0
i

= 0 and

(Di ,C(y))i2C = argmaxP
i2C

si ,C∑v(C)

Y

i2C
ui (si ), y 2R+,C 2C \{N } (3.34)

A surprising and very interesting observation is that assuming increasing concave utilities one
has the equivalence between the Nash bargaining over a simplex and the core stability inducing
sharing rules. Furthermore, knowing that the Nash bargaining achieves a generalized proportional
fairness3, one can see that there actually exists a strong natural link between some known resource
allocation schemes in networks, the game theoretical negotiation-arbitration processes and the
coalition formation problem or matching games. In chapter 4 and chapter 5, we go further in the
analysis of this link and exploit it to derive a new association mechanism for WiFi.

3.6 Matching with Contracts and Externalities

Simultaneously to the introduction of the choice functions, game theorists and economists have
introduced contracts in the theory to allow for the binary association (matched or not matched)
to be completed by additional terms. Matching with contracts generalize the classical formulation
[1][2] of the stable matching theory and incorporates the well-known college admission problem,
the Kelso-Crawford labor market matching model and some ascending packet auctions [4]. A re-
cent paper [5] extends matching with contracts to allow for externalities in the many-to-many
settings. In this section, we show the model and some of the results of this work in view of the
matching problem with contracts, externalities and scheduling constraints assessed in chapter 8.
Most of the definitions are given in terms of the recent general model of matching with contracts
and externalities defined by Pycia and Yenmez in [5] but for the sake of completeness and to show
how the generalization is obtained we also give some definitions in terms of the models of match-
ing with contracts without externalities as defined by Hatfield and Milgrom in [4] and for the sake
of homogeneity w.r.t. chapter 8 we define the model in terms of firms and workers despite the orig-
inal formulation is in terms of buyers and sellers. To the best of out knowledge, this work along
with those on trading networks constitute the more advanced analysis in static matching games
with complete informations (observe that some results are related to the dynamic setting such as
the vacancy chain dynamic, see [5]).

3.6.1 Model and Results

In this model, the agents interact with each others through bilateral contracts.
Consider a finite sets of firms F and workers W . Let define the finite set of contracts X be-

tween workers in W and firms in F as the set of bilateral pairwise agreements that the workers
and the firms can sign with each others. A contract x 2X specifies a worker, a firm and additional
terms such as a task to be executed, a wage, the execution constraints or the penalties for non-
execution. For simplicity, one may assume the set of contracts X as a subset of F £W £T £S ,
where T is a finite set of tasks and S is a finite set of salaries S = {s, . . . , s} (see [13] and [4]) paid
to the worker for the execution of the task. This reduces the set of contracts to a subset of the set
of four-tuple of the form ( f , w,ø, s) where is a firm, w is a worker, ø is a task in T and s is a salary.

3Including as a special case the well-known and commonly-used proportional fairness
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In the general case, when considering additional endogenously fixed terms such as the slack-
ness in delays, the adjustable terms of the contracts form a n-uplet that is called generalized salary
(see [13]).

For any subset of contracts X µX , Xi denotes the maximal set of contracts in X involving i ,

Xi = {x 2 X|i 2 { f (x), w(x)}} (3.35)

A matching µ between workers and tasks is defined as a set of contracts µµX . This definition
used in matching with contracts generalizes the one used in the stable matching theory without
contracts in the sense that the association binary relation between the players of a pair (matched
or unmatched) is completed by the terms of the signed contract (among those that can be signed
between the two) and that more than one contract can be signed simultaneously between any
two players. If the set of contracts that can be signed between the players of a pair is reduced to
a singleton, then two matched players are engaged through the single existing contract between
them. Observe that if the set of contracts that can be signed between the players of any pair is
reduced to a singleton then the problem falls in the class of the college admission problem.
We define player i ’s choice function,

ci : 2X £2X ! 2X (3.36)

such that ci (X|µ) = ci (Xi |µ) is the choice set of i in Xi knowing µ = (µi ,µ°i ). It is the set of contracts
that i chooses from Xi given the set µ of contracts signed. As an example, consider the choice
functions without prediction as in the following definition.

Definition 64 ([5]). We construct the choice of agent i given µ from any set X, ci (X|µ), as follows:

ci (X|µ)[µ°i ∫i X0
i [µ°i for every X0

i µ Xi (3.37)

This definition takes the agents’ choice functions and preferences of the players as primitives
of the model and does not explicitly assumes utility functions for the players.

Nevertheless, it is interesting to see how choice and utility functions depend on each others.
The following definition from [14] defines the choice set of i in Y µ X as the collection of sets of
contracts in Y maximizing the utility ui : 2X £ 2X ! R[ {°1} of i where °1 is used for sets of
contracts that are not feasible, i.e. violating some constraints (given by definition of the game).

ci (Y|µ) = {Z µ Y : Z is feasible ;8 feasible Z0 µ Y,ui (Z|µ) ∏ ui (Z0|µ)} (3.38)

Given any subset of players N µW [F , the set of the players’ choice functions {ci }i2N is called
a choice function profile. The set of contracts that i rejects from Xi given the set µ of contracts
signed is,

ri (Xi |µ) = Xi \ci (Xi |µ) (3.39)

The set of contracts that players of type µ 2 {W,F } choose in X knowing µ is defined as,

Cµ(X|µ) = [
i2µ

ci (Xi |µ°i ) (3.40)

and the set of contracts that they reject from X knowing µ as,

Rµ(X|µ) = [
i2µ

ri (Xi |µ°i ) (3.41)

Let define the matching problem with contracts as (F ,W ,X , {ci }i2W [F ). We have the following
definitions of individual rationality and pairwise stability of a matching µ.

Definition 65 ([5]). A matching µ is individually rational for agent i if ci (µ|µ) =µi .

Definition 66 ([5]). A worker i and a firm j form a blocking pair for matching µ if there exists a
contract x 2 Xi \X j such that x 62 µ and x 2 ci

°
µ[x|µ

¢
\ c j

°
µ[x|µ

¢
. A matching µ is pairwise

stable if,
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• it is individually rational for all agents,

• there are no blocking pairs.

We now turn two the characterization of choice functions in terms of variations in chosen sets
and rejects when considering changes in the current market (matching) µ or in the sets. We par-
ticularly consider the irrelevance of rejected contracts and substitutability conditions that have
recurrently been shown in the literature to be of fundamental importance (in the successive gen-
eralizations of the analysis of matching markets) as sufficient conditions for the existence of stable
matchings (as examples, see [4] for matching with contracts and no externalities and [5] for match-
ing with contracts and externalities).

3.6.2 Irrelevance of Rejected Contracts

The first condition that we define on choice functions is the Irrelevance of Rejected Contracts (IRC).
A choice function satisfies IRC if some contracts are not chosen by a player, then the player’s choice
in a subset containing the choice is the same whatever the rejected contracts are in the set or not .
The definition below is used in models without externalities,

Definition 67 ([4]). A choice function ci is said to satisfy the irrelevance of rejected contracts if for
all X,X0 µX , we have

ci (X0) µ X µ X0 ) ci (X0) = ci (X) (3.42)

While the following one is used in matching with contracts and externalities

Definition 68 ([5]). A choice function Cµ is said to satisfy the irrelevance of rejected contracts if for
all X,X0,µµX , we have

Cµ(X0|µ) µ X µ X0 ) Cµ(X0|µ) = Cµ(X|µ) (3.43)

3.6.3 Subtitutabilities

Now, we consider the substitutability property that asks for the complementarities among con-
tracts to be weak enough not to turn a rejected contract into a selected one by introducing new
opportunities. In matching games without externalities, we have the following definition,

Definition 69 ([4]). Elements of X are substitute for firm f if for all subsets X Ω X0 Ω X we have
r f (X) Ω r f (X0).

In terms of the lattice theory, the elements of X are substitutes for firm f if the reject function
r f is isotone (see [4]). In the presence of externalities, the substitute condition has been general-
ized in [5] but requires the introduction of a preorder over matchings and a consistency property
w.r.t. the choice functions of the players (see [5]).

Definition 70 ([5]). A binary relation ∫̃µ on a domain A µ is a set of ordered pairs. If it is reflexive
and transitive it is a preorder.

Definition 71 ([5]). A preorder ∫̃µ is consistent with the choice function Cµ if for any X, X0,µ,µ0 µX ,

X0 ∂ X & µ0∫̃µµ) Cµ(X0|µ0)∫̃µCµ(X|µ) (3.44)

We now give the recent more general definition of substitutability,

Definition 72 ([5]). Choice function Cµ satisfies substitutability’s if for any X, X0, µ, µ0 µX ,

X0 ∂ X & µ0∫̃µµ) Rµ(X0|µ0) ∂ Rµ(X|µ) (3.45)
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Let us insist on the difference in the definitions between the model without and with external-
ities. Matching with contracts and externalities subsume previous models developed in matching
games with contracts and without externalities. The difference lies in the introduction of the con-
ditioning in the definition of the choice functions. Furthermore, preorders are introduced as a
form of common ranking that is interpreted and reflecting market conditions. If µ∫̃µµ0, then it is
said that µ reflects better market conditions than µ0. Without externalities, the appropriate sim-
plified framework is the one defined by Hatfield and Milgrom in [4].

3.6.4 Modified Deferred Acceptance and Existence of Stable Matchings

Finally, to conclude this introduction chapter to stable matchings and the game-theoretic analysis
of two-sided markets, we give an existence result for the general setting of matching with contracts
and externalities.

Consider the following modified deferred acceptance algorithm,

Algorithm 5: The modified deferred acceptance algorithm
Data: � = (F ,W , {ci },X )
Result: µ

1 Phase 1: Construction of an auxiliary matching µ§ such that µ§ ∫F CF(X |µ)
2 -Set µ0 = ;;
3 while 6 9l < k such that µl =µk do
4 -k = k+1;
5 -µk = CF(X |µk°1)

6 -Set µ§ =µk ;
7 Phase 2: Construction of a stable matching
8 -Set AF(1) = X , AW(1) = ;, µF(1) =µ§ and µW(1) = ;;
9 while AF(k) 6= AF(k °1), AW(k) 6= AW(k °1),µF(k) =µF(k °1),µW(k) =µW(k °1) do

10 - k = k+1;
11

AF(k) = X \RW(AW(k °1)|µW(k °1)) (3.46)

AW(k) = X \RF(AF(k °1)|µF(k °1)) (3.47)

µF(k) = CF(AF(k °1)|µF(k °1)) (3.48)

µW(k) = CW(AW(k °1)|µW(k °1)) (3.49)

We have the following theorem,

Theorem 73 ([5]). Suppose that the choice functions satisfy substitutability and the irrelevance of
rejected contracts. Then, the algorithm terminates, its outcome is stable and

µF(T) =µW(T) = AF(T)\AW(T) (3.50)

This result will be extensively studied in Chapter 8, where we study a crowdsourcing market-
place with scheduling contracts using matching games with contracts and externalities. We partic-
ularly propose a weaker definition of substitutability, called constrained substitutability, and show
a similar theorem proving the existence of stable matchings under new particular conditions (in-
ducing substitutability on the firms’ side).

An interesting observation is that to show Theorem 73, one cannot apply the commonly used
Tarsi’s fixed point theorem (see [5], pp.22 for more details).
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Chapter 4

Nash Bargaining for Resource Allocation
in WiFi

In this chapter, we show that the expected performance of the well-known IEEE 802.11 WiFi re-
source allocation scheme can be modeled as a Nash bargaining. Particularly, the individual through-
puts are obtained as Nash bargaining solutions corresponding to Nash bargaining points in a well-
defined utility space. This result will be used in Chapter 5 to define a controlled stable matching
mechanism for the association problem in WiFi.
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4.1 Competition for Resource Allocation in Networks

Most of the resource allocation problems in networks belong to the class bargaining problems.
Typically, many players (agents, devices, servers) compete over a resource to be shared. The set of
jointly achievable utilities may have various interpretations. Depending on the problem, it may be
a set of rate vectors called the rate region of the system, the resource itself (space, time, bandwidth,
money) or any other.

4.2 WiFi

Any communication among two or more participants is fundamentally based on a medium access
protocol which regulates the access to the medium and thus the transmission of the signals. Such
protocol defines the rules regulating the transmission events. It does not concern the definition
of the transmitted signal such as its content or conveyed message, its amplitude, sampling, power
or modulation. The prescribed rules should answer at least the following questions: Is there a
centralized controller or arbitrator in the transmission decision-taking process? If yes, what is the
arbitration rule? If not, when should an agent decide to talk? What about if two or more agents
transmit their signals simultaneously? How long should a transmission last? What about an in-
complete message? Observe that these concepts and questions are not restricted to telecommu-
nication networks and extend to any other setting where information has to be transmitted among
agents, whatever hardware humans, animals or devices.

More formally, we have the following definition,

Definition 74 ([1]). A Medium Access Control (MAC) protocol regulates the use of the medium by
prescribing the rules to initiate a transmission and continue with it. In random access networks,
collisions may occur and the MAC protocol has to resolve collisions; i.e. arbitrate among the nodes
contending the use of the medium.

In this thesis, we focus on a specific form of wireless telecommunication networks called Wire-
less Local Area Networks (WLANs). Particularly, on the WiFi (or, Wi-Fi) technology based on the
IEEE 802.11 standards. Several MAC protocols have been defined in the framework of the 802.11
standards. We specifically consider the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) random access based MAC protocol. Basically, it is a distributed resource sharing
mechanism without central coordination based on random access techniques.

4.2.1 Channel Usage Model

Before entering the description of the IEEE 802.11 CSMA/CA DCF MAC protocol, we describe the
channel usage model. This is the model abstracting the interactions between the transmitted sig-
nals at the physical layer. The model we consider hereinafter is the one shown by Kumar et al. in
[1] (pp.188).

By definition of random access protocols, there is a strictly positive probability that two or
more transmitters emit simultaneously (for more details see Section 4.2.2). In WLANs, the emit-
ting nodes transmit over the whole dedicated bandwidth, the consequence is an unavoidable su-
perposition of the signals over the medium, called interference. If the interference level is too high
at every receiver, then none of the receivers can successfully decode any message. This is called a
collision. If the interference level is not too high then at least one receiver may be able to decode a
message. This is called a capture.

The main difference between the capture and the collision is that, in the first case at least one
receiver has decoded a signal while in the second none of the transmitted units of information
can be taken as a useful unit. If the capture is done by the right receiver (the node the emitter was
transmitting to) the corresponding units of information can be taken into account in the computa-
tion of the throughput. Observed that assuming no capture gives a lower bound on the achievable
throughputs.
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Is is clear from the description of the collision and capture events that the issue of a simultane-
ous transmission strongly depends on the level of the interference signals at the receiver. To take
this into account, this channel usage model assumes a spatial discretization around each node in
three regions (two boundaries). The discretization is different depending on the role of the node,
emitter or receiver. The inner region is called the decode region. For a receiver (transmitter), it
is the set of locations in space where the Signal-to-Noise Ratio (SNR) is such that the received
(transmitted) signal can be decoded and thus interpreted if not collided. The intermediate region
is called interference region (or carrier sense region). For a receiver, it is the set of locations in space
such that an interfering signal from these locations induces a collision. For a transmitter, it is the
set of locations in space such that if transmitting, the induced interference at any of these loca-
tions creates a collision. It is also the set of points in space where any node can sense the channel
and detect a channel activity due to the transmitter. In general, the boundaries of the interference
and decode regions depend on the interfering nodes. As in [1], this is not taken into account in
this description.

We assume the set of nodes of a cell C are within such a distance from each other that only one
transmission can occur at any point in time. This assumption is known in the name of single-cell
networks, see [2] for more details.

We now enter the details of the CSMA/CA protocol, its implementation in the IEEE 802.11 (Wi-
Fi standard) Distributed Coordination Function (DCF) protocol and the performance analysis of a
cell implementing this random access technique.

4.2.2 CSMA and CA

The Carrier Sensing Multiple Access (CSMA) protocol belongs to the class of random access sensing
protocols that combine a random access decentralized resource sharing mechanism and sensing
techniques. The first has been shown to reduce both the transmission times and the access delay
w.r.t Time Division Multiplexing (TDM) schemes. The second avoids myopic transmission over
the shared medium and thus reduce collisions w.r.t. pure random access schemes such as Aloha.
In CSMA, once a node has started transmitting a packet, the rule is to complete the transmission
of this packet. Even though completed by additional sensing and avoidance mechanisms, by def-
inition of random access protocols there is a positive probability for two or more transmissions to
collide. A collision may be characterized by a time interval called collision window. We give below
the formal definition,

Definition 75 ([1]). The collision windows for CSMA is the time interval since the beginning of a
transmission during which another node (not having heard the ongoing transmission) can begin its
own transmission, and hence collide with the first transmission.

Another characteristic time is the duration of a collision in a network,

Definition 76 ([1]). The duration of a collision in a network is the time from the beginning of the
first transmission in the collision until the earliest time at which a fresh transmission can begin.

We now turn to the Collision Avoidance (CA) mechanism introduced as a complement to the
CSMA protocol in WLANs to avoid collision due to hidden nodes. As already observed, one of the
main problem of random access with channel sensing is the collision. It may happen that a node
may starts emitting while another transmission is already going on. There are two reasons for such
event to happen. The first is that every signal has a strictly positive propagation delay. Due to such
delays, the transmitted signal does instantaneously reach the nodes in the interference region. In
the intermediate time, some nodes in the network may have sensed the busy channel as free. The
second reason is due to the finiteness of the sensing regions. Some nodes, called hidden nodes,
may not detect the channel as busy and transmit, thus inducing a collision if the receiver is in
their interference region.

The collision avoidance mechanism of the CSMA/CA protocol is based on the principle of pub-
lic handshake which consists in a bilateral agreement on the channel acquisition (reservation) for
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the transmission of a packet between the source and the receiver. The acceptance of the agree-
ment by the nodes is conditioned on the reception of notification packets called Request To Send
(RTS) and Clear To Send (CTS). The process is the following: the emitter sends an RTS to the re-
ceiver who acknowledges a good reception (decoding of the RTS) by sending a CTS packet to the
receiver. If the CTS is not received by the source in a certain amount of time, then it is assumed
that the RTS has been collided. This RTS and CTS packets can be decoded by any node in the de-
code region of the packets’ transmitters. Thus, any node in the decode region of the transmitter
of the RTS is informed of a oncoming transmission of a packet and any node in the decode region
of the transmitter of the CTS is informed of the oncoming reception of a packet. This allows for
hidden nodes to be aware of the oncoming channel activity and thus defers eventual transmission
to a subsequent time-slot. An additional development of the CSMA/CA protocol has introduced
an acknowledgement packet from the receiver after the successful transmission of a packet.

4.2.3 IEEE 802.11 standards

The CSMA/CA protocol has been normalized by the IEEE in the IEEE 802.11 (b,a,g,n,e) WLAN stan-
dards. We focus on the one called IEEE 802.11 Distributed Coordination Function (DCF) protocol
which relies on individual timers called backoffs. Each node has a backoff that is synchronously
decreased among the nodes. The value of the backoff results, at each node, from a sampling over
sets of indivisible and standardized time intervals called slots. As an example, in the IEEE 802.11b
version of the protocol, each (time-)slot is of length 20µs. The backoff of a node is the number
of slots the node has to wait in unfrozen backoff intervals before attempting to access the chan-
nel. When the backoff of a player is elapsed, the player attempts a reservation of the medium by
sending an RTS packet.

In the general case, called non-homogeneous, the backoff parameters may vary over the nodes.
If these are the same for all nodes, then this is the homogeneous case.

If no other player emits an RTS in the same time interval separating its backoff end event and
reception of the emitted RTS event, then all backoff timers are frozen. The first emitter exclusively
accesses the channel, waits for a CTS from recipient of RTS. The recipient is ready for reception.
Packets are transmitted and the reservation ends with an ACK. It is clear from this description that
the time taken for a transmission depends on the physical transmission rate of the transmitting
node. Thus, a node with a low physical transmission rate will hold the channel for a longer time
(per bit) than a node with a high physical transmission rate.

If one or many other players emit an RTS packet in the time interval separating their backoff
end and their reception of the emitted RTS event, then each reservation attempting player waits for
a time interval SIFS+TCTS +DIFS. Other players have to wait for SIFS+TACK +DIFS. Sub-waiting
times TCTS, TACK are equal1. Let To denote the fixed overhead with a packet transmission in slots
(52 slots in IEEE 802.11b) and Tc denote the fixed overhead with an RTS transmission (20 slots
in IEEE 802.11b). Is is clear from the description of this mechanism that if two or more backoffs
end simultaneously, then RTS collide. If only a single backoff ends, then the corresponding node
successfully access the channel for transmission. As observed by Kumar et a.l. in [2], it is sufficient
to analyze the backoff process to analyze the channel allocation process.

Example 77. In Figure 4.1, Figure 4.2 and Figure 4.3, we show an example of application of the
CSMA/CA mechanism among five nodes. This example shows how each node’s data rate has an
impact on the others’ throughputs. Consider Figure 4.2 (left) where node 1 emits a packet and Figure
4.3 (right) where node 3 emits a packet. The data rate of node 1 is higher than the data rate of
node 3. The emission of a packet by node 3 is longer than the emission by node 1. During this
additional amount of time, no backoff can be decreased and other nodes have to wait for the end
of the transmission and the acknowledgement of the recipient (observe that acknowledgements are
not shown in the figures). Thus, low data rate nodes have an impact on high data rate ones: the

1due to an equal number of bits of ACK an CTS and fixed control rate of 2 Mb/s
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Figure 4.1: Left: A set of nodes (black) and their flows (arrows). As an example, node 1 has a flow for node 2.
Middle: The backoff of node 1 has elapsed. The node sends an RTS to node 2. Right: Node 2 receives and
decodes the RTS. It sends a CTS.

reduce the expected amount of time they can transmit, thus reducing their expected throughputs.
This effect is called WiFi anomaly.

In this chapter, as in [2], we assume that all nodes use the RTS/CTS mechanism for distributed
coordination. We furthermore assume that each node always has packets to send. This is known
in the name of saturation assumption.

4.2.4 Single-Cell Performances

Even though there exists an exact Markov chain based model for the joint backoff process, Kumar
et al. in [2] show its intractability and derive a fixed-point formulation of the long run average
backoff rate Ø using the decoupling approximation. The attempts rate is then defined by the fol-
lowing fixed point equation,

Ø = G(�(Ø)) (4.1)

where,
�(x) = 1°e°(|C|°1)x (4.2)

where C is the set of nodes in the cell and,

G(x) =
1+x + . . .+xK

b0 +xb1 + . . .+xKbK
(4.3)

Figure 4.2: Left: Node 1 sends a packet at its data rate. Middle: Node 1’s packet has been transmitted.
Backoff timers are decreasing in time. Right: Both node 1’s backoff and node 2’s backoff have elapsed. The
two nodes send an RTS and there is a collision. No node can decode the emitted RTS. No CTS packets are
emitted.
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Figure 4.3: Left: Nodes 3’s backoff has elapsed. The node sends an RTS. Middle: Node 5 decodes and
answers with a CTS. Right: Node 3 transmits a packet at its data rate. This data rate is lower than node 1
data rate. The emission of node 3’s packet takes a longer time than node 1’s emission. In this additional
amount of time, no node can emit.

where K is the limit in the number of attempts before discarding the packet to be transmitted and
bk is the mean backoff duration at the kth attempt for a packet to be transmitted. Define for each
player i 2N , the set Bi of flows Li j 2Bi generated by i and to be transmitted to a recipient j 2N .
If the player i is a user from W , then the only recipient is the access point µ(i ) 2F it is associated
to at association (or matching) µ. We will formally define a model linking the WiFi association and
matching games in chapter 5. If the player i is an access point from F , then the only recipients
of its flows are the users in its cell µ(i ) = J Ω W . Packet length of a flow is Li j . The fraction pi , j of
packets of player i belongs to stream j 2Bi . This fraction can be interpreted as the probability of
a packet of player i being from flow j . Each pair (i , j ) of players has a data rate µi j (bits/slot) from
the physical transmission rates space ⇥ = {µ1, . . . ,µm}. The 802.11b standard defines four rates,
1, 2, 5.5 and 11 Mbps. The physical transmission rate of a pair depends on the control scheme
implemented in the sending node and are obtained as functions of the Modulation and Coding
Schemes (MCS), the number of spatial streams, the bandwidth, and the Guard Interval (GI).

The saturation throughput of node i for its flow j when in cell C is denoted ri j ,C (bits per slot).
We have:

ri j ,C =
pi j Li jØ(1°Ø)|C|

1+
|C|P
i =1

(Ø(1°Ø)|C|°1((
miP
k=1

pi k
Li k
µi k

)+T0))+ ((1° (1°Ø)|C|° |C|Ø(1°Ø)|C|°1)TC)

(4.4)

Thus, we have the saturation throughput of node i in cell C, denoted ri ,C, as the sum over its flow’s
saturation throughput,

ri ,C =
Ø(1°Ø)|C|

1+
|C|P
i =1

(Ø(1°Ø)|C|°1((
miP
k=1

pi k
Li k
µi k

)+T0))+ ((1° (1°Ø)|C|° |C|Ø(1°Ø)|C|°1)TC)

£
|Bi |X

j =1
pi j Li j (4.5)

where To is the fixed overhead with a packet transmission in slots, Tc is the fixed overhead for an
RTS collision in slots and Ø is the attempt rate of any player. The total cell throughput RC, where C
denotes the cell or coalition and |C| the number of players it contains,

RC =
|C|X

i =1

|Bi |X

j =1
ri j ,C (4.6)

We define the function ∑ : C !R from the set of cells on R as,

∑(C) =
Ø(1°Ø)|C|

1+
|C|P
i =1

(Ø(1°Ø)|C|°1((
miP
k=1

pi k
Li k
µi k

)+T0))+ ((1° (1°Ø)|C|° |C|Ø(1°Ø)|C|°1)TC)

(4.7)
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4.3 WiFi as a Nash Bargaining

We show that the IEEE 802.11 protocol induces an allocation of the resource (and thus saturation
throughputs) that can be modeled as a Nash bargaining.

For any node i in a cell C, node i ’s saturation throughput given by equation (4.5) can be re-
written as functions of ∑(C),

ri ,C =
|Bi |X

j =1
pi j Li j∑(C) (4.8)

Equivalently,

ri ,C =

|Bi |P
j =1

pi j Li j

P
i2C

|Bi |P
j =1

pi j Li j

£
"

X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C) (4.9)

Which can be written as,

ri ,C =

0

B@

|Bi |P
j =1

pi j Li j

P
i2N

|Bi |P
j =1

pi j Li j

1

CA

0

B@

P
i2C

|Bi |P
j =1

pi j Li j

P
i2N

|Bi |P
j =1

pi j Li j

1

CA

£
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X

i2C
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j =1
pi j Li j
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∑(C) (4.10)

or,

ri ,C =

0

B@

|Bi |P
j =1

pi j Li j

P
i2N
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j =1

pi j Li j
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∑(C) (4.11)

Using the results of the Dividing the Dollars game (see Chapter 2), we obtain that the nodes’
saturation throughputs (4.17) solve the following optimization program,

maximize
x

Y
s

|Bi |P
j =1

pi j Li j /
P

i2N

|Bi |P
j =1

pi j Li j

i ,C

subject to
dX

i =1
si ,C =

"
X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C)

0 ∑ si ,C, i = 1, . . . ,d .

(4.12)

The solution to this problem is the Nash bargaining solution to the bargaining problem mod-
eling the competition between the players of a set C with utility functions such that any node i in
C,

ui (si ,C) = sÆi
i ,C (4.13)

with Æi 2 [0;1] defined by,

Æi =

|Bi |P
j =1

pi j Li j

P
i2N

|Bi |P
j =1

pi j Li j

(4.14)
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and over the worth v(C) such that,

v(C) =

"
X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C) (4.15)

The set of feasible allocations S is thus defined as the following,

S =

(

s 2R|C||
X

i2C
si ,C =

"
X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C) & si ,C ∏ 0 8i 2 C

)

(4.16)

Finally, observe that one may also have written mobile device i ’s throughput as,

ri ,C =

0

B@

|Bi |P
j =1

pi j Li j

Lmax

1

CA

0

B@
P

i2C

|Bi |P
j =1

pi j Li j

Lmax

1

CA

£
"

X

i2C

|Bi |X

j =1
pi j Li j

#

∑(C) (4.17)

where Lmax is the maximum packet length over all flows in the game. In such case, we define the
bargaining power Æi of mobile device i ’s throughput as,

Æi =

|Bi |P
j =1

pi j Li j

Lmax
(4.18)

Observe that Æi equals one if all packet sizes are equal to Lmax . This leads to a symmetric set of
jointly achievable utility points B and an equal sharing of the total throughput.

4.4 Conclusion

In this chapter, we have shown that under classical assumptions, the IEEE 802.11 protocol (which
basically consists in a competition between heterogeneous nodes for an access to the medium)
can be modeled as a Nash bargaining among the nodes (or players from a game-theoretic formal-
ism). This is a surprisingly interesting result that will allows us to use recent results from the theory
of stable matchings. Particularly, in this system there exists a core stable partitioning of the nodes
in cells. We will particularly focus on the case of a bipartite structure where the players can be
partitioned into two disjoint sets, namely the set of mobile users and the set of access points. We
will also be able to derive some results on the controllability of such game. Particularly, we will
show that one can modify the characteristic function v , defining the total saturation throughput
of a cell, to provide the players the incentives for some subset of coalitions and transfer the core
from some subset of matchings to another. This will allow to provide priorities in the connectivity
management, even though decentralized with selfish players aiming to maximize their individual
payoff.
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Chapter 5

A Cooperative Game Theoretic Analysis
of WiFi

In multi-rate IEEE 802.11 WLANs, the traditional user association based on the strongest received
signal and the well known anomaly of the MAC protocol can lead to overloaded Access Points
(APs), and poor or heterogeneous performance. Our goal is to propose an alternative game-theoretic
approach for association. We model the joint resource allocation and user association as a two-
sided matching game with rational players maximizing their individual throughputs. Using the
results of chapter 3 and chapter 4, we first show that the IEEE 802.11 WiFi protocol in its Dis-
tributed Coordination Function (DCF) implementation and other resource sharing protocols fall
in the scope of the set of core stability-inducing resource allocation schemes. The game makes
an extensive use of the Nash bargaining and some of its related properties that allow to control
the incentives of the players. We show that the proposed mechanism can greatly improve the ef-
ficiency of 802.11 with heterogeneous nodes and reduce the negative impact of peer effects such
as its MAC anomaly. The mechanism can be implemented as a virtual connectivity management
layer to achieve efficient APs-user associations without modification of the MAC layer.
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5.1 Introduction

The IEEE 802.11 based wireless local area networks (WLANs) have attained a huge popularity in
dense areas as public places, universities and city centers. In such environments, devices have
the possibility to use many Access Points (APs) and usually a device selects an AP with the highest
received Radio Signal Strength Indicator (best-RSSI association scheme). In this context, the per-
formance of IEEE 802.11 may be penalized by the so called 802.11 anomaly and by an imbalance
in AP loads (congestion). Moreover, some APs may be overloaded while others are underutilized
because of the association rule.

In this chapter, we consider a fully distributed IEEE 802.11 network, in which selfish mobile
users and APs look for the associations maximizing their individual throughputs. We analyze this
scenario using matching game theory and develop a unified analysis of the joint mobile user asso-
ciation and resource allocation problem for the reduction of the anomaly and for load balancing
in IEEE 802.11 WLANs. In a network characterized by a state of nature (user locations, channel
conditions, physical data rates), composed of a set W of mobile users and a set F of APs, the user
association problem consists in finding a mapping µ that associates every mobile user to an AP.
We call the set formed by an AP and its associated mobile users a cell, or a coalition in the game
framework. The set of coalitions induced by µ is called a matching or a structure (partition of the
players in coalitions). Once mobile user association has been performed, a resource allocation
scheme (also called a sharing rule in chapter 3) allocates radio resources of a cell to the associated
mobile users.

This matching game is characterized by complementarities in the sense that APs have prefer-
ences over groups of mobile users and peer effects in the sense that mobile users care who their
peers are in a cell and thus emit preferences also over groups of mobiles users. Indeed, by def-
inition of DCF implementation of the IEEE 802.11 protocol, a users’ throughput does not only
depend on its physical data rate but also on the coalition size and composition. We are thus facing
the classical association problem with the additional property that the players (mobile users and
APs) are selfish and solely interested in the association maximizing their own throughput. The
following questions are raised: does there exist associations (or matchings) in which no subset
of players prefer deviating and associate with each others, i.e., are there stable associations? Do
these associations always exist? Is there unicity? How to reach these equilibria in a decentralized
way? Finally, how to provide the players the incentive to make the system converge to another
association point with interesting properties in terms of load balancing?

Assuming that players associate solely w.r.t their individual throughput many mobile users
may remain unassociated since every AP has the incentive to associate with a single mobile user
having the best data rate. We call this problem the unemployment problem. To counter this side
effect and provide the nodes the incentives to associate with each others, we design a decentral-
ized three steps mechanism to control the set of the stable matchings. In other words, we will
manipulate the set of core stable matching so as to make the core (see chapter 3) fall in a set of
matchings with interesting properties in terms of load balancing and number of matched users.
In the first step, the APs share the load. In the second step, the coalition game is controlled to
provide the incentives to enforce the load balancing. In the third step, players play the controlled
coalition game with individual payoffs obtained from a Nash Bargaining (NB)-based sharing rule.
This sharing rule is interesting because it generalizes equal sharing, but also other proposals in
the literature such as proportional fairness. Under some assumptions, the NB-based sharing rule
guarantees that the set of stable structures is non empty in all states of nature. The control of the
game is designed so as to provide the players the incentives to respect the objective of the load
balancing (during the first step). The control is based on the notion of Fear of Ruin (FoR) intro-
duced in [1]. The equilibrium point of the third step is obtained by a decentralized algorithm that
results in a core stable matching (or structure). We propose here a modified version of the De-
ferred Acceptance Algorithm (DAA), called Backward Deferred Acceptance Algorithm (BDAA), for
matching games with complementarities and peer effects. Similarly to the DAA, the complexity of
the BDAA is polynomial. We show through numerical simulations that our mechanism not only
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ensures that a stable matching will form but is also a way to reduce the impact of the WiFi anomaly.
In fact, the equilibrium association relies relies on the agents’ incentives to counter the side effects
induced by the protocol. Moreover, this mechanism allows us to exploit the overlapping of APs as
an opportunity to reduce the anomaly of 802.11 rather than an obstacle.

5.1.1 Related Work

IEEE 802.11 (WiFi) anomaly is a well documented issue in the literature, see e.g. [3; 4; 7]. The
first idea to improve the overall performance of a single cell system is to modify the MAC so as to
achieve a time-based fairness [3; 4]. Authors of [3] propose a leaky-bucket like approach. Banchs et
al. [7] achieve proportional fairness by adjusting the transmission length or the contention window
parameters of the stations depending on their physical data rate. Throughput based fairness, time
based fairness and proportional fairness resource allocation schemes are sharing rules that can be
obtained a Nash bargaining points of solutions (see chapter 2).

In a multiple cell WLAN network, mobile user-AP association plays a crucial role for improving
the network performance and can be seen as a mean to mitigate the WiFi anomaly without mod-
ifying the MAC layer. The maximum RSSI association approach, though very simple, may cause
an imbalanced traffic load among APs, so that many devices can connect to few APs and obtain
low throughput, while few of them benefit from the remaining radio resource. Kumar et al. [6]
investigate the problem of maximizing the sum of logarithms of the throughputs. Bejerano et al.
[10] formulate a mobile user-AP association problem guaranteeing a max-min fair bandwidth al-
location for mobile user. This problem is shown to be NP-hard and constant-factor approximation
algorithms are proposed. Li et al. [17].

Arguing for ease of implementation, scalability and robustness, several papers have proposed
decentralized heuristics to solve this issue, see e.g. [5; 12; 14]. Reference [5] proposes to enhance
the basic RSSI scheme by an estimation of the Signal to Interference plus Noise Ratio (SINR) on
both the uplink and the downlink. Bonald et al. in [14] show how performance strongly depends
on the frequency assignment to APs and propose to use both data rate and MAC throughput in a
combined metric to select the AP. Several papers have approached the problem using game theory
based on individual MAC throughput. Due to the WiFi anomaly, this is not a classical crowding
game in the sense that the mobile user achieved throughput is not necessary a monotonically de-
creasing function of the number of attached devices, as it can be the case in cellular networks
[11; 15]. Compared to proposed decentralized approaches, we do not intend to optimize some
network wide objective function, but rather to study the equilibria resulting from selfish behav-
iors. Compared to other game-theoretic approaches, we consider a fully distributed scenario, in
which APs are also players able to accept or reject mobile users. This requires the study of the core
stability, a notion stronger than the classical Nash Equilibrium. Moreover, there is a need in under-
standing the fundamental interactions between mobile user association and resource allocation
in the presence of complementarities and peer effects. More generally, the association problem
has been studied using congestion and static non-cooperative games in [26–28]. In this chapter,
we tackle the mobile user-AP association problem as a two-sided market using matching games.

Some very recent papers in the field of wireless networks have exploited the theoretical re-
sults and practical methods of matching games [19–21; 29–32], although none has considered the
WLAN association problem and its related WiFi anomaly. Authors of [19] address the problem of
downlink association in wireless small-cell networks with device context awareness. The relation-
ship between resource allocation and stability is not investigated and APs are not allowed to reject
users. Hamidouche et al. in [20] tackle the problem of video caching in small-cell networks. They
propose an algorithm that results in a many-to-many pairwise stable matching. Preferences emit-
ted by servers exhibit complementarities between videos and vice versa. Nevertheless, the model
doesn’t take into account peer effects within each group. Reference [21] addresses the problem of
uplink user association in heterogeneous wireless networks. Invoking a high complexity, comple-
mentarities are taken into account by a transfer mechanism that results in a Nash-stable matching,
a concept weaker than pairwise stability or core stability. Authors of [31], consider a many-to-one
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matching between Secondary Users (SU) and Primary Users (PU) of a cognitive radio network.
The utility of a SU k on channel l (see equation (4) in the reference) does not depend on the other
PU it is connected to. The sum utility does not exhibit complementarities or group effects: each
term in the sum is independent of the others because of the orthogonal channels assigned to PUs.
The utility of every PU (in equation (5) of the reference) only depends on the interference of the
SU on the same channel (there is at most one SU per PU) and not on the other PUs this SU is con-
nected to. There are no complementarities or peer effects. In [32], Mochaourab et a.l. consider
the problem of joint user association and beamforming in multi-cell multiple-input single-output
systems. The preferences of the users do not exhibit complementarities or peer effects as encoun-
tered in WiFi and they propose a proposal budget based control of the users utility to guarantee
the convergence of a DAA-like algorithm. The pairwise stability is considered, a solution concept
weaker than the core stability considered in this chapter.

5.1.2 Contributions

The contributions of the chapter can be summarized as follows:
• We provide a matching game-theoretic unified approach of mobile user association and re-

source allocation in IEEE 802.11 WLANs in the presence of complementarities and peer effects.
The results of the chapter highlight the importance of the Nash bargaining in wireless networks
as a stability inducer but also as a convenient and easy-to-use tool at several levels of network re-
source management. To the best of our knowledge, this is the first game-theoretic modeling of the
IEEE 802.11 protocol covering such a number of resource allocation mechanisms proposed in the
literature.
• We use existing theoretical results to show that if the scheduling and/or the MAC protocol result
from a Nash bargaining then there exist stable mobile user associations, whatever the user data
rates or locations.
• In order to control the core (equilibrium solution concept) of matching game, we design a three
steps mechanism, which includes 1) a generic load balancing, 2) a control step i.e. the modifica-
tions to be applied to the characteristic function of the game (worths of the coalitions) in order to
provide the agents the incentives to enforce the result of the load balancing, 3) a coalition game
with resource allocation defined as a Nash bargaining over the resource to be allocated and a sta-
ble matching algorithm with players’ preferences induced by the resource allocation. This three
steps mechanism tackles the so called unemployment problem, that would have left mobile users
aside from the association otherwise. We show through numerical examples that our mechanism
achieves good performance compared to the global optimum solution. We also show how the
mechanism can be used to efficiently share the load between APs.
To the best of our knowledge, such a mechanism is absent from both the game theoretic and wire-
less networks based on matching games literature.

• We show that our BDAA can be efficiently used to find a stable many-to-one matching in a
coalition game with complementarities and peer-effects. The algorithm has a polynomial com-
plexity in number of rounds, as the original DAA.

The mechanism has been originally proposed in an extended abstract [24]. The particular
case of equal sharing has already been assessed in [23]. BDAA has been originally proposed in a
short paper [22] and we provide proofs of convergence to a core stable structure and of polynomial
complexity in [25] . In this chapter, we provide a complete description and show the mathematical
results. We furthermore generalize the mechanism to a generic load balancing scheme and to the
Nash bargaining-based sharing rules (resource allocation schemes). Finally, we show new numer-
ical results.

The rest of the chapter is organized as follows. In Section 5.2, we define the system model. In
Section 5.3, we formulate the IEEE 802.11 WLANs resource allocation and decentralized associa-
tion problem. In Section 5.4, we show that there exist stable coalition structures under certain
conditions whatever the individual data rates. Section 5.5 presents our three steps mechanism.
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Section 5.6 shows numerical results. Section 5.7 concludes the chapter and provides perspectives.

5.2 System model

We summarize in Table 5.1 the notations used in this chapter. We use both game-theoretic defini-
tions and their networking interpretation. Throughout the chapter, they are used indifferently. Let
define the set of players (nodes) N of cardinality N as the union of the disjoint sets of mobile users
W of cardinality W and APs F of cardinality F. As in [6], we assume an interference-free model. It
is assumed that the AP placement and channel allocation are such that the interference between
co-channel APs can be ignored. In game-theoretic terms, there are no externalities on the firms’
side. The mobile user association is a mapping µ that associates every mobile user to an AP and
every AP to a subset of mobile users.

The IEEE 802.11 standard MAC protocol has been set up to enable any node in N to access a
common medium in order to transmit its packets. The physical data rate between a transmitter
and a receiver depends on their respective locations and on the channel conditions. For each
mobile user i 2 W , let µi f be the (physical) data rate with an AP f where µi f 2 ⇥ = {µ1, . . . ,µm},
a finite set of finite rates resulting from the finite set of Modulation and Coding Schemes. If i is
not within the coverage of f then µi f = 0. Given an association µ, let µC = (µw f )( f ,w)2(C\F )£(C\W )

denote the data rate vector of mobiles users in cell C served by AP f . Let nC be the normalized
composition vector of C, whose k-th component is the proportion of users in C with data rate
µk 2⇥. Observe that in this model, the APs are players and assume that the APs have maximum
data rate on the downlink. Within each cell, a resource allocation scheme (e.g. induced by the
CSMA/CA MAC protocol) may be formalized as a sharing rule over the resource to be shared in the
cell. This resource may be the total cell throughput (as considered in the saturated regime) or the
amount of radio resources in time or frequency in the general case. More precisely, a sharing rule
is a set of functions D = (Di ,C)C2C ,i2C, where Di ,C allocates a part of the resource of C to user i 2 C.
Equal sharing, proportional fairness, Æ-fairness are examples of sharing rules.

Assuming the IEEE 802.11 MAC protocol and the saturated regime, the overall cell resource of
cell C is defined as the total throughput. It is a function of the composition vector nC and of the
cardinality |C|. We denote ri ,C the throughput obtained by user i in cell C. From the game theoretic
point of view, ri ,C is understood as i ’s share of the worth of coalition C denoted v(C). The function
v : C !R is called the characteristic function of the coalition game and maps any coalition C 2C

to its worth v(C). Other MAC protocols and regime can however be modeled by this approach.
For example time-based fairness proposed in the literature to solve the WiFi anomaly results from
the sharing of the time resource. In this case, a user i gets a proportion Æi ,C of the time resource,
which induces a throughout of Æi ,Cµi f , where f is the AP of C. It can be shown that time-based
fairness results in a proportional fairness in throughputs.
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|set | cardinality of the set set N set of players (mobile users and APs)
W set of mobile users F set of Access Points (APs)
C set of coalitions (cells) C f set of coalitions containing AP f 2F

C coalition (cell) µ matching (AP-mobile user association)
⇥ set of feasible data rates µw f data rate between w and f
ri ,C throughput of node (user or AP) i in cell C Æi ,C fraction of resources of i in cell C
D sharing rule (resource allocation scheme) v(C) worth of coalition C
si ,C payoff of player i in coalition C ui (.) utility function of player i
qi quota of player i ¬C fear-of-ruin of coalition C
P(i ) preferences list of player i over individuals P#(i ) preferences list of player i over groups

Table 5.1: Notations

5.3 Matching Games Formulation

5.3.1 Matching Games for Mobile User Association

In this chapter, the mobile user association is modeled as a matching game (in the class of co-
operative games as already shown in Chapter 3). The matching theory relies on the existence of
individual order relations {∫i }i2N , called preferences, giving the player’s ordinal ranking 1 of al-
ternative choices. Here, w1 π f1 [w2, w3] π f1 w4 indicates that the AP f1 prefers to be associated
to mobile user w4 to any other mobile user, is indifferent between w2 and w3, and prefers to be
associated to mobile user w2 or w3 rather than to be associated to w1. Following the classical
notations, let us denote P the set of preference lists P = (Pw1 , . . . ,PwW ,P f1 , . . . ,P fF ).

Definition 78 (Many-to-one bi-partite matching [2]). A matchingµ is a function from the set W [F

into the set of all subsets of W [F such that:
(i) |µ(w)| = 1 for every mobile user w 2W and µ(w) = w if µ(w) 62F ;
(ii) |µ( f )|∑ q f for every AP f 2F (µ( f ) = ; if f isn’t matched to any mobile user in W );
(iii) µ(w) = f if and only if w is in µ( f ).

Condition (i) of the above definition means that a mobile user can be associated to at most
one AP and that it is by convention associated to itself if it is not associated to any AP. Condition
(ii) states that an AP f cannot be associated to more than q f mobile users. Condition (iii) means
that if a mobile user w is associated to an AP f then the reverse is also true. In this definition,
q f 2N§ is called the quota of AP f and it gives the maximum number of mobile users the AP f can
be associated to.

From now on, we focus on many-to-one matchings. In this setting, stability plays the role of
equilibrium solution. In this chapter, we particularly have an interest in the pairwise and core sta-
bilities. When the game does not exhibit complementarities or peer effects, it is sufficient for its
description that the preferences are emitted over individuals only. In the presence of complemen-
tarities or peer effects (particular cases of externalities), players in the same coalition (i.e. the set
of mobile users matched to the same AP) have an influence on each others. In such a case, the
preferences need to be emitted over subsets of players and are denoted P#.

In the classical case of matchings with complementarities, the preference lists are of the form
P = (Pw1 , . . . ,PwW ,P#

f1
, . . . ,P#

fF
), i.e., preferences over groups are emitted only by the APs (see the

firms and workers problem in [2]). Moreover, it may happen that the preferences over groups may
be responsive to the individual preferences in the sense that they are aligned with the individual
preferences in the preferences over groups differing from at most one player. The preferences over
groups may also satisfy the substitutability property. The substitutability of the preferences of a
player rules out the possibility that this player considers others as complements.

1In this chapter, we use the Individually Rational Coalition Lists (IRCLs) to represent preferences. It can indeed easily
be shown that other representations (additively separable preferences, B-preferences, W-preferences) are not adapted
to our problem, see [16] for more details.
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If the preferences are neither responsive nor substitutable, the equality S(P) = CW(P) does not
hold in general and the sets of pairwise, weak core and core stable matchings may be empty. An
additional difficulty appears if the preferences over groups have to be considered on the mobile
users side, i.e., if we have preference lists of the form P = (P#

w1
, . . . ,P#

wW
,P#

f1
, . . . ,P#

fF
). Complemen-

tarities and peer effect may arise in both sides of the matching. The user association problem in
IEEE 802.11 WLANs falls in this category because the performance of any mobile user in a coalition
may depend on the other mobiles in the coalition. To break the indifference, we use the following
rule: a mobile user prefers a coalition with AP with the lowest index and an AP prefers coalitions
in lexicographic order of users indices.

To see that preferences may not be responsive, consider an example with only uplink com-
munications, two APs f1 and f2 and three mobile users w1, w2, w3 such that µ11 = 300 Mbps,
µ12 = µ22 = 54 Mbps, µ21 = µ32 = 1 Mbps. Assuming saturated regime and equal packet size, we can
show that P#(w1) = f1 ¬ f2 ¬ {w3; f1} ¬ {w2; f2} ¬ {w2; f1} ¬ {w3; f2}, which is not responsive. In this
example, we also see that substitutability is not even defined since every choice set is reduced to
a singleton. After the game has been controlled according the proposed mechanism, preferences
of w1 can be modified as follows: P#(w1) = {w3; f1} ¬ {w2; f2} ¬ {w2; f1} ¬ {w3; f2} ¬ f1 ¬ f2. Consid-
ering S = {w2, w3; f1, f2}, we have Chw1 (S) = {w3; f1}, while Chw1 (S\w3) = {w2; f2}. Preferences are
thus not substitutable.

This general many-to-one matching problem has algorithmically been assed by Echenique
and Yenmez in [8] who propose a fixed-point formulation and an algorithm to enumerate the set of
stable matchings. It is known, that there is no guarantee that this set is non empty if the individual
preferences over groups are not of a particular form. The problem of complementarities and peer
effects in matchings has been analytically tackled by Pycia in [18]. Nevertheless, no result have
been derived concerning the decentralized control of core stable structures and no decentralized
algorithm with a limited amount of information and reduced lists of preferences for the mobiles
have been derived.

5.3.2 Formulation as a Matching Game

We now assume that a player i in a given coalition C obtains a payoff si ,C, which is evaluated (or
perceived) by it through a utility function ui : R! R. In this chapter, we assume that functions
ui are positive, concave (thus log-concave), increasing and differentiable. In such a case, the in-
dividual preferences are induced by the player’s utilities of these payoffs. We extend our model
to the framework of finite coalition games in characteristic form � = (N ; v), where v is a function
mapping any coalition to its worth in R+. By definition of the characteristic function v(;) = 0.
In this chapter we do not assume a particular form of the characteristic function v (e.g. super-
additivity2). An even particular case of coalition games in characteristic form concerns games
with an exogenous sharing rule � = (N ; v ;EN;D), where EN is the set of all payoff vectors and D is
a sharing rule.

From this definition, the payoff of user i in coalition C is given by si ,C = Di ,C±v(C) and his utility
of this payoff is given by ui (si ,C). We can now formulate the IEEE 802.11 joint user association and
resource allocation problem as a matching game.

Definition 79 (Resource Allocation and User Association Game). Using the above notations, the re-
source allocation and users association game is defined as a N-player many-to-one matching game
in characteristic form with sharing rule D and rates µ = {µw f }(w, f )2W £F : � = (W [F , v,R+N,D,µ).
Each pair of players of the form (w, f ) 2 W [F is endowed with a rate µw f from the rates space
⇥ = {µ1, . . . ,µm}. For this game, we define the set of possible coalitions C :

C = {{ f }[ J, f 2F , J µW , |J|∑ q f }[ {{w}, w 2W }. (5.1)

Note that for IEEE 802.11 MAC protocol and for the saturated regime, si ,C , ri ,C. For other time
sharing MAC approaches, si ,C , Æi ,C.

28C,C, v(C[C0) ∏ v(C)+ v(C0) if C\C0 = ;
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5.4 Existence of Core Stable Matchings in the Game and Unemployment

In this section, we show the the existence of core stable users-AP associations.

Using Pycia’s results on matching with complementarities and peer effects with pairwise align-
ment of the preferences ([18], see chapter 3 for an introduction), we have the existence of stable
structure of coalitions whatever the state of nature µ if and only if in the resource allocation and
user association game F ∏ 2, the firms’ quotas are such that q f 2 {2, . . . ,W°1} and the sharing rules
may be formulated as arising from the maximization of the product of increasing, differentiable
and strictly log-concave individual utility functions in all coalitions.

To apply this results, we consider scenarios with at least two APs (which is reasonable when
talking about load balancing) and (ii) every AP is supposed to be able to serve at least two users
and should not be able to serve the whole set of users. Furthermore, in Chapter 4, we have shown
that the expected throughput of a node in a cell C can be modeled as a Nash bargaining solution
over a simplex. Thus, there exists a core stable matching in the defined resource allocation and
user association problem. The equal sharing resulting from CSMA/CA MAC protocol in saturated
regime, single-flow per device and equal packet length is obtained by considering si ,C = ri ,C and
the identity function for ui . The players’ throughputs in the general saturated regime with multi-
ple flows and heterogenous packet length is obtained by taking si ,C = ri ,C and utility functions as
shown in chapter 4. Time-based fairness is obtained by setting si ,C = Æi ,C and the identity function
for ui . It results in turn in proportional fairness in terms of individual throughputs.

Without controlling the coalition game, the core stable matching may not have good proper-
ties in terms of load balancing and number of connected users. For example, in CSMA/CA under
saturated regime, the cell throughput is increasing with the individual physical data rates and in-
dividual throughputs ri ,C are sub-additive, i.e., decreasing with the addition of users. Assuming
that the payoff is the individual throughput, i.e., si ,C = ri ,C, then each player has the incentive to
form the lowest cardinality coalition with highest composition vector. In this case, the unique sta-
ble structure is a one-to-one matching, in which APs are associated to their best mobile user. This
will further be mentioned in the name of the unemployment problem since it leaves some mobiles
users unassociated (unmatched). There is the need for a control of the players incentives for some
equilibrium points with satisfying properties, in terms of unemployment in the present case. In
other words, since the players have the incentive to match in a one-to-one form, one needs to con-
trol the underlying cooperative game so as to provide new incentives for a suitable many-to-one
form as an equilibrium.

5.5 Mechanism for controlled matching game

In order to tackle the unemployment problem, we propose in this section a mechanism to control
the players incentives for coalitions (see Figure 5.1). This mechanism is made of three steps. We
start by considering for every AP the set of acceptable mobile users, i.e., the mobile users with non
zero data rate with this AP. In the first step (block LB), APs share the load defined in number of
users. This results in objective quotas that should be enforced by the mechanism. The second
step (blocks ⌦ and �) is a controlled coalition game designed so as to provide the players the
incentives to form coalitions with cardinalities given by the quotas and reducing heterogeneity
(and thus reducing the anomaly in the IEEE 802.11). The third step (block µ) is a decentralized
coalition formation (or matching) algorithm which results in a stable structure induced by the
individual preferences induced by the controlled coalition game.

Our mechanism can be implemented as a virtual connectivity management layer on top of
the IEEE 802.11 MAC protocol. Mobile users and APs form coalitions based on the "virtual rates"
provided by this virtual layer. Once associated, users access the channel using the unmodified
802.11 MAC protocol.
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(s§i ,C)i2C,C2C

µ MAC
W q̂ ṽ

(u§
i ,C) i2C

C2C µ (ri ,C)i2C,C2µ

MECHANISM 802.11 MAC

Figure 5.1: Block diagram of the mechanism in the most general form. The APs share the load in the block LB
which gives the APs’ objectives q̂. The characteristic function v of the original coalition game is controlled
in⌦ and gives the modified characteristic function ṽ . The Nash bargaining� is played in each coalition for
the allocation of the worth of the coalition among its members. The players then emit their preferences over
the coalitions on the basis of their shares and enter a stable matching mechanism in block µ. This block
outputs an AP-user association µ. Finally, in the block MAC the nodes transmit their packets according to
the unmodified IEEE 802.11 MAC protocol.

5.5.1 Load Balancing

The first step of the mechanism is a load balancing. This step outputs a quota vector of the form
q̂ = (q̂1, . . . , q̂F) that defines the size of the coalitions the players should be incentivized to form with
each AP. In other words, q̂ gives the number of connections the players should be incentivized to
create with each AP. As in [23], in numerical implementation (see Section 5.6), we take a Nash bar-
gaining based decentralized load balancing scheme between the APs to share the users covered by
several APs. This scheme achieves the proportional fair allocation in the utility space. Neverthe-
less, any load balancing scheme can be used in this mechanism.

5.5.2 Controlling the Coalition Game

The second step of the mechanism is the control of the coalition game. The control step of the
mechanism tackles the problem of the control of the set of stable matchings. We observed that
when a coalition game is defined by a characteristic function and a sharing rule inducing sub-
additive strictly positive individual payoffs (except for coalitions of size one or those containing
players with zero data rates), the stable structures to be formed are made of coalitions of size two.
This step of the mechanism develops an analytical framework and methodology for the control of
the equilibria by the way of a control over the players’ incitations for individual strategies.

Definition 80 (Controller). The controller is any entity (player or other) having the legitimacy and
ability to change the definition of the game (players, payoffs, worths, information, coalitions).

The controller may not be taking part in the game (e.g. the network operator in a wireless
network, the government for a firms and workers association problem) or any player of the game
with some kind of additional decisional abilities. In other words, it may be any entity having the
ability to create or modify the individual incitations of the players for some strategy and thus the
ability to change the definition of the game. These changes in the definition of the game in view
of manipulating the players’ equilibria strategies are called control transformation,

Definition 81 (Control transformation). A control transformation ⌦ is a mapping from the set of
coalition games in characteristic form in itself.

In the purpose of this chapter it is sufficient to restrict the definition of the control transfor-
mations to the domain of coalition games in characteristic form. In fact, we further assume that
the controller cannot arbitrarily move from one game to another without constraints. We assume
that he or she can influence the equilibria by partial changes in the definition of the game (char-
acteristic function, individual payoffs, ...) but can neither change the fundamental rules of the
game (e.g. the rules of matching games) nor some essential elements such as the players taking
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part in the game or their strategy spaces. If � is a coalition game in characteristic form, then ⌦(�)
is a coalition game in characteristic form modified by the controller according to its (constrained)
abilities. The limits of the abilities of such a controller are to be chosen by the game theorist or
the designer of the mechanism so as to satisfy the fundamental hypothesis and description of the
system he is looking at. The controller and the control transformation may be defined as the re-
sult of another game at a higher level (see the application with bargaining APs for quotas). As an
example of work on the design of an incitations operator, Auman and Kurz [1] assess the problem
of designing the joint taxation and redistribution scheme in the framework of a political majority-
minority game. The majority is the controller and the incitations are induced by a multiplicative
tax over the worths of the coalitions.

In Appendix C in [25] , we give two simple example of the mechanism we propose to control
the player’s individual incentives.

We now search for operators modifying the characteristic function v so as to provide players
the incentives to form stable structures with coalitions of sizes q̂.

An important lever for controlling our matching game and designing operator⌦ is the fear-of-
ruin (FoR). Formally, the FoR of user i in coalition C is defined as:

¬i (si ,C), ui (si ,C)

u
0
i (si ,C)

. (5.2)

The FoR of coalition C is obtained as the inverse of the Lagrange multiplier associated to the con-
straint

P
i2C si ,C ∑ v(C) at the optimum of the Nash bargaining optimization problem. Two inter-

esting characteristics of the FoR are that (i) in a coalitional game with Nash bargaining as sharing
rule, the FoR is constant over the players in a coalition, i.e., ¬i (si ,C) = ¬C 8i 2 C at the bargaining so-
lution point si ,C and (ii) with concave increasing utility functions, the individual payoffs increase
in the common FoR [18]. Thus, the players have the incentives to form coalitions maximizing their
FoR. In terms of control opportunities, this introduces the FoR as a lever to control the set of indi-
vidual payoff-based incentives for coalitions. As an example, assume two coalitions C and C0 and
their FoRs: ¬C < ¬C0 . Players in C \C0 prefer C0 to C. Changing the values of the FoRs to obtain
¬C > ¬C0 changes the individual incentives of these players so that they now prefer C to C0.

Proposition 82. Assume a coalition game � = (F [W , v, {ui }i2N) in characteristic form with the
Nash bargaining sharing rule over v(C) for every coalition C in C . Furthermore assume strictly
increasing and concave utility functions3 ui : R.+ ! R+, i 2 N . The set of transformations ⌦ from
the set of characteristic functions in itself that provide the players the incentive for some subset C 0

of coalitions in C must satisfy:

FC0 ±⌦(v)(C0) < FC ±⌦(v)(C) 8C0 2C 0,8C 2C \C 0 (5.3)

s.t. C0 \C 6= ; and where FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

and ± is the composition function.

Proof. See Appendix D in [25] .

In order to derive our last result, we need to define the concept of single-peaked preferences.
Let X = {x1, . . . , xn} denote a finite set of alternatives, with n ∏ 3.

Definition 83 (Peak of preferences, [13]). A preference relation ¬ on X is a linear order on X. The
peak of a preference relation ¬ is the alternative x§ = peak(¬) such that x§ ¬ x for all x 2 X\{x§}.

Definition 84 (Single-Peaked preferences, [13]). An axis O (noted by >) is a linear order on X. Given
two alternatives xi , x j 2 X, a preference relation ¬ on X whose peak is x§, and an axis O, we say that
xi and x j are on the same side of the peak of ¬ iff one of the following two condition is satisfied: (i)
xi > x§ and x j > x§; (ii) x§ > xi and x§ > x j .

3Such utility functions are bijective and thus injective. Theorem 10 applies.
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P# P
0 Proposals Counter-proposals

µ

counter-proposing loop

proposing loop

Figure 5.2: Block diagram of the BDAA.

A preference relation ¬ is single-peaked with respect to an axis O if and only if for all xi , x j 2 X such
that xi and x j are on the same side of the peak x§ of ¬, one has xi ¬ x j if and only if xi is closer to
the peak than x j , that is, if x§ > xi > x j or x j > xi > x§.

We use the discrete version of this definition over N+. We immediately obtain the following
corollary,

Corollary 85. Assume a coalition game � = (F [W , v, {ui }i2N) in characteristic form with the Nash
bargaining sharing rule over the v(C) in every coalition C 2C . Furthermore assume strictly increas-
ing and concave utility functions ui : R+ ! R+, i 2 N . The set of transformations ⌦ from the set of
characteristic functions in itself that induce single-peaked preferences (peak at q̂ f ) in cardinalities
over the coalitions with an AP f 2F must satisfy:

max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q+1

FC ±⌦(v)(C), 8q ∏ q̂ f (5.4)

and
max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q°1

FC ±⌦(v)(C), 8q ∑ q̂ f (5.5)

where FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

.

Proof. See Appendix D in [25] .

5.5.3 Access Point Association

The third step of the mechanism is the joint resource allocation and users association (matching)
game where the players (APs and mobile users) share the resource in the coalitions according to a
Nash bargaining and then match with each others. The coalition game played has been described
in Section 5.3 and Section 5.4. This step corresponds to the blocks� and µ of the block diagram in
Figure 5.1.

Stable Matching Mechanism

We now show that a modified version of the Gale and Shapley’s deferred acceptance algorithm
in its college-admission form with APs preferences over groups of users and users preferences
over individual APs is a stable matching mechanism for the many-to-one matching games with
complementarities, peer effects considered in this chapter (see Algorithm 1: Backward Deferred
Acceptance).

BDAA is similar to the DAA in many aspects. It involves two sets of players that have to be
matched. Every player from one side has a set of unacceptable players from the other side. In our
case, an AP and a mobile user are acceptable to each others if the user is under the AP coverage. As
in DAA, the algorithm proceeds by proposals and corresponding acceptances or rejections. The
main difference resides in the notion of counter-proposals, introduced to tackle the problem of
complementarities.

77



CHAPTER 5. A COOPERATIVE GAME THEORETIC ANALYSIS OF WIFI

Algorithm 6: Backward Deferred Acceptance
Data: For each AP: The set of acceptable (covered) users and AP-user data rates.
For each user: The set of acceptable (covering) APs.
Result: A core stable structure S

1 begin
2 Step 1: Initialization;
3 Step 1.a: All APs and users are marked unengaged. L( f ) = L§( f ) = ;, 8 f ;
4 Step 1.b: Every AP f computes possible coalitions with its acceptable users, the respective users

payoffs and emits its preference list P#( f );
5 Step 1.c: Every AP f transmits to its acceptable users the highest payoff they can achieve in coalitions

involving f ;
6 Step 1.d: Every user w emits its reduced list of preference P0(w);
7 Step 2 (BDAA);
8 Step 2.a, Mobiles proposals: According to P0(w), every unengaged user w proposes to its most

preferred acceptable AP for which it has not yet proposed. If this AP was engaged in a coalition, all
players of this coalition are marked unengaged ;

9 Step 2.b, Lists update: Every AP f updates its list with the set of its proposers:
L( f ) √° L( f )[ {proposers} and L§( f ) √° L( f );

10 Step 2.c, Counter-proposals: Every AP f computes the set of coalitions with users in the dynamic list
L§( f ) and counter-proposes to the users of their most preferred coalition according to P#( f );

11 Step 2.d, Acceptance/Rejections: Based on these counter-proposals and the best achievable payoffs
offered by APs in Step 1.c to which they have not yet proposed, users accept or reject the
counter-proposals;

12 Step 2.e: If all users of the most preferred coalition accept the counter-proposal of an AP f , all
these users and f defect from their previous coalitions;

13 all players of these coalitions are marked unengaged;
14 users that have accepted the counter-proposal and f are marked engaged in this new coalition;
15 Step 2.f: Every unengaged AP f updates its dynamic list by removing users both having rejected

the counter-proposal and being engaged to another AP:
16 L§( f ) √° L§( f )\{engaged rejecters};
17 Step 2.g: Go to Step 2.c while the dynamic list L§ of at least one AP has been strictly decreased (in the

sense of inclusion) in Step 2.f;
18 Step 2.h: Go to Step 2.a while there are unengaged users that can propose;
19 Step 2.i: All players engaged in some coalition are matched.

The block diagram representation of the algorithm is shown in Figure (5.2). In block P# the
APs emit their preferences over the coalitions. In block P

0
the mobiles emit their preferences over

the APs. In block Proposals the mobiles propose to the APs. In block counter-proposals the APs
counter-propose. The counter-proposing round continues up to convergence. The next propos-
ing round starts.
We enter the details of the algorithm. Having the information of the data rates with users under
their coverage, APs are able to compute all the possible coalitions they can form and the corre-
sponding allocation vectors (throughputs). They can thus build their preference lists (Steps 1b).
Then, every AP f transmits to each of its acceptable users the maximum achievable throughput
(based on MAC layer and virtual mechanism) it can achieve in the coalitions it can form with
f (Step 1.c). Every user w can thus build its reduced list of preferences over individual APs: w
prefers fi to f j if the maximum achievable throughput with fi is strictly greater than its max-
imum achievable throughput with f j (Step 1.d). BDAA then proceeds by rounds during which
users make proposals, AP make counter-proposals and users accept or reject (from Step 2.a to
Step 2.h). Every AP that receives a new proposal shall reconsider the set of its opportunities and
is thus marked unengaged (Step 2.a). L( f ) is the list of all users that have proposed at least once
to AP f . L§( f ) is a dynamic list that is reinitialized to L( f ) before every AP counter-proposal (Step
2.b). In each round of the algorithm, every unengaged user proposes to its most preferred AP for
which it has not yet proposed (Step 2.a). Every AP receiving proposals adds the proposing players
to its cumulated list of proposers and reinitializes its dynamic list (Step 2.b). Using P#( f ) it then
searches for its most preferred coalition involving only users from the dynamic list and emits a
counter-proposal to these users. This counter-proposal contains the throughput every user can
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achieve in this coalition (Step 2.c). Each user compares the counter-proposals it just received with
the best achievable payoffs obtained with the APs it has not proposed to yet (Step 2.d). If one of
these best achievable payoffs is strictly greater than the best counter-proposal, the users rejects
the counter-proposals and continues proposing (Step 2.d, Step 2.h). Otherwise, the user accepts
its most preferred counter-proposal (Step 2.d). Given a counter-proposal, if all users accept it,
then they are engaged to the AP. All coalitions in which these users and the AP were engaged are
broken and their players are marked unengaged (Step 2.e). If at least one user does not agree, then
the AP is unengaged (Step 2.e), it updates its dynamic list by removing the mobiles having rejected
its counter-proposal and being engaged to another AP (Step 2.f). The counter-proposals contin-
ues up to the point when no AP can emit any new counter-proposal (Step 2.g). The current round
ends and the algorithm enters a new round (Step 2.h). The algorithm stops when no more users
are rejected (Step 2.h). A stable matching is obtained (Step 2.i).

Proposition 86. Given a many-to-one matching game, BDAA converges, i.e., outputs a matching in
a finite number of steps.

Proof. See Appendix D in [25].

Proposition 87. Suppose the family of coalitions C as defined in (5.1), and a sharing rule as defined
in proposition 63 (see Chapter 3, Section 3.5.1). Furthermore assume a tie-breaking rule such that
there is no indifference (strict preferences). BDAA converges to the unique core stable matching.

Proof. See Appendix D in [25].

Proposition 88. The complexity of BDAA is O(n5) in the number of proposals of the players, where
n = max(F,W).

Proof. See Appendix D in [25].

In Appendix E in [25], we provide an interpretation of BDAA in the economic framework. In
Appendix [25], we give an example of application of the BDAA.

5.6 Numerical Results

5.6.1 Simulations Parameters and Scenarios

The numerical computations are performed under the assumption of equal packet sizes and sat-
urated queues (each node has always packets to transmit). Under this assumption the sharing
rule is equal sharing. Analytical expressions of the throughputs (individual and total throughputs)
are taken from [9] with the parameters of Table 5.2. We further assume that a node compliant
with a IEEE 802.11 standard (in chronological order: b, g, n) is compliant with earliest ones. By
convention, if all nodes of a cell have the same data rate, we use the MAC parameters of the stan-
dard whose maximum physical data rate is the common data rate. Otherwise, we use the MAC
parameters of the standard whose maximum physical data rate is the lowest data rate in the cell.

Assume the spatial distributions of nodes of Figure 5.3. The first scenario (a) shows the case of
5 APs with a uniform spatial distribution of 20 mobile users. The second scenario (right) has non-
uniform distribution of 10 mobile users in the plane. The green (inner), red (intermediate) and
black (outer) circles show the spatial region where the mobiles achieve a data rate of 300 Mbits/s,
54 Mbits/s and 11 Mbits/s respectively. Scenario 2 exhibits a high overlap between AP coverages.
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5.6.2 Numerical Work

No mechanism

We show in Figure 5.4 a stable matching. No associated player has an incentive to deviate and form
a coalition of size superior to two. The figure shows the natural incentives of the system in form-
ing low cardinalities coalitions with good compositions. This can also be observed on Figure 5.5
which shows the individual throughputs obtained in the coalitions. The coalitions are sorted by
cardinalities from low to high. In plot (a) no mechanism is used. In plot (b) a gaussian tax rate is
applied. See Section 5.6.2.

Figure 5.4 and Figure 5.5 (a) show the natural incentives of the system in forming low cardi-
nalities coalitions with good compositions. As a result, a one-to-one matching is obtained. Using
our mechanism, this structure of throughputs will be changed (as in Figure 5.5 (b)) to move the
incentives according to q̂ and thus provide the players the incentives to associate according to a
many-to-one matching rather than a one-to-one.

Gaussian Tax Rate in Cardinalities

As an example of family of cost functions, we can use multiplicative symmetric unimodal cost
functions. The multiplicative cost functions are commonly called tax rates and are defined such
that for any AP f 2F and any coalition C containing f , we must have:

ṽ(C) =⌦(v(C)), c f (|C|)v(C) (5.6)

We particularly consider Gaussian tax rates such that:

ṽ(C) = e
°

(|C|°q̂ f )2

2æ2
f v(C) (5.7)

where æ f is the variance of the function c f . The Gaussian cost function is convenient in the sense
that it does not penalize the mean-sized coalitions and it provides a great amount of flexibility
by the way of its variance. Decreasing or increasing the variance æ f indeed allows for a strict or
relaxed control of the incentives for the objective quotas.

Focusing on the first scenario (Figure 5.3 (a)), we consider the three matchings shown in Fig-
ure 5.6. The first one (a) is the stable matching resulting from the mechanism (including BDAA
and Gaussian costs); The second matching (b) maximizes the sum of modified throughputs (i.e.
including Gaussian costs); The third matching (c) maximizes the sum of unmodified throughputs
(i.e. without costs).

We first observe that the proposed mechanism induces a stable matching with a drastic re-
duction of the unemployment problem w.r.t. the result of Figure 5.4. The natural incentives of
the system resulting in a one-to-one matching have been countered and a many-to-one match-
ing is obtained. The unemployment has been reduced from 73% to 5% in this particular scenario.

802.11n 802.11g 802.11b
Parameter value unit

⇥ {300, 54, 11} {54, 11} {11} Mbits/s
slot duration 9 9 20 µs

T0 3 5 50 slots
TC 2 10 20 slots
L 8192 8192 8192 bits
K 2 2 2
b0 16 16 16
p 2 2 2

Table 5.2: Simulation Parameters.
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The second point to be raised is that the proposed mechanism allows to obtain (with a polyno-
mial complexity) a stable matching with a high modified total throughput, close to the optimal
modified total throughput that is however not stable. For this scenario, we achieve through our
mechanism 99% of the total modified maximum throughput (see Figure 5.6 (b)). This means that
the cost for stability is very small in this particular scenario. Furthermore, the total throughput
performance of the system at the MAC layer (i.e. unmodified throughputs obtained in block MAC
of the block diagram representation of the mechanism, see Figure 5.1) is 97% the total unmodified
maximum throughput (see Figure 5.6 (b)) and 47% of the total maximum throughput of the uncon-
trolled system (see Figure 5.6 (c)). This quantifies the cost for control, stability and low unemploy-
ment in this scenario. The third point is that the quotas have been enforced by the mechanism (via
the cost function) since the quotas vector from the load balancing is q̂ = (8.0,4.5,3.33,3.83,4.33)
(obtained by Nash bargaining4 over the share [0,1] of the players at the intersection of the cover-
ages of the APs) and the formed coalitions are of sizes 8, 4, 3, 4 and 4.

We go into more details on the difference between the quotas vector and the integer-sized
coalitions in the stable matching. Focusing on AP3 with the quota q3 = 3.33, one may observe
that in case of a Gaussian cost function with unit variance, the condition for an integer quotas 3
is only satisfied for sizes of coalitions superior or equal to 4. This meaning that the use of a gaus-
sian cost function centered on 3.33 and unit variance even though increasing the penalty with the
distance in sizes to q̂ f cannot guarantee the systematic incentive to form coalitions of size 3 with
AP3. There exists some coalitions of size 2 giving the players more individual throughputs than
the worst coalition of size 3. In such case, the players will have the incentive to form the coalition
with the highest individual value among those of cardinalities 2 and 3. In Figure 5.7, we show the
performance of the mechanism over a set of 50 scenarios generated by spatial random uniform
distribution of the mobile devices. The APs are spatially distributed as in Scenario 1 (see Figure 5.8
for a random distribution of both the mobile devices and APs). The red line shows the empirical
mean of the sample and the green dotted lines show the interval [m̂°æ,m̂+æ] where m̂ is the em-
pirical mean of sample andæ is the standard deviation. The empirical mean of the unemployment
rate is 6%, the mean modified social welfare is 61Mbits/s and the mean computation time of BDAA
is 0.45s. Observe that in 22% of the realizations the unemployment is null and that in 70% of the
realizations it is below the mean. In terms of computation times of BDAA, the mean performance
is reasonably low (0.45s to match 20 mobiles to 5 APs) and the algorithm performs even better in
62% of the scenarios.

In Figure 5.8, we show the performance of the mechanism over a set of 50 scenarios generated
by spatial random uniform distribution of the mobile devices and APs. The red lines show the em-
pirical mean of the sample and the green dotted lines show the interval [m̂ °æ,m̂ +æ] where m̂
is the empirical mean of sample and æ is the standard deviation. The empirical mean of the un-
employment rate is 8%, the mean modified social welfare is 60Mbits/s and the mean computation
time of BDAA is 0.51s. Observe that in 22% of the realizations the unemployment is null and that
in 56% of the realizations it is below the mean. In terms of computation times of BDAA, the mean
is higher than in the previous case but the algorithm performs better than the mean in 68% of the
scenarios.

In Figure 5.9, Plot (a), we show the ratios of the modified (mechanism level) social welfare (by
definition, the total throughput resulting from BDAA) to the maximum total modified throughput.
The mean performance of BDAA achieves 96% of this maximum. Furthermore, observe that the
global maximum is achieved by BDAA in 46% of the random networks. The ratio is below m̂ °æ
in only 10% of the cases. In Figure 5.9, Plot (b), we show the ratios of the unmodified (MAC level)
social welfare to the unmodified total throughput induced at the matching maximizing the to-
tal modified throughput. The mean performance of BDAA achieves 97% of this unmodified total
throughput. Finally, observe that in some cases, the ratio is even higher than one. This means that
BDAA gives a total throughput at the MAC level that is superior to the (unmodified) total through-

4Achieves a proportional fair allocation in the utility space of the APs. Induces the number of players to be connected
to each AP.
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put resulting from the maximization at the mechanism level (modified values) while the ratio was
inferior to one in the modified case. This may come from the fact that in some cases, the equi-
librium point (stable matching resulting from BDAA) may contain coalitions with lower modified
worths (because of the penalization) w.r.t. those in the global maximum but higher worths at MAC
level (real unpenalized setting).

To conclude, we compare our approach to the best-RSSI scheme in Scenario 2. The two match-
ings are compared Figure 5.10. We observe that the load is effectively shared among the APs and
that the individual throughputs are greatly increased from 527 kbits/s when using best-RSSI to
1.64 Mbits/s for the coalition with AP1, 1.93 Mbits/s for the coalition with AP2, 2.59 Mbits/s for
the coalition with AP3, 1.64 Mbits/s for the coalition with AP4 and 2.59 Mbits/s for the coalition
with AP5. The individual performances are multiplied by a factor 3 to 5.
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(a) Scenario 1
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(b) Scenario 2

Figure 5.3: Scenario 1 (left): A spatial distribution of APs (smallest red circles) F = { f1, . . . , f5} and devices
(black points) W = {w1, . . . , w20}. Scenario 2 (right): A spatial distribution of APs (smallest red circles) F =
{ f1, . . . , f5} and devices (black points) W = {w1, . . . , w10}. Circles show the coverage areas corresponding to
different data rates.
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Figure 5.4: A stable matching in the uncontrolled case.
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(a) Individual throuputs vs. coalition index.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3
x 10

6 Modified Individual Values

M
o
d
if
ie

d
 I
n
d
iv

id
u
a
l 
V

a
lu

e
s

Coalitions

(b) Modified Individual throuputs vs. coalition index.

Figure 5.5: (a)Scenario 1. Structure of the payoffs in the uncontrolled matching game. (b)Scenario 1. Struc-
ture of the payoffs in the controlled matching game with a multiplicative tax rate of variance æ f = 0.3,8 f 2
F .
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(a) Stable matching resulting from
Gaussian costs and BDAA.
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(b) A global optimum association with
Gaussian costs.
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(c) A global optimum association
without costs.

Figure 5.6: Controlled matching game in scenario 1. Comparison of the association obtained from (a) BDAA,
(b) a global optimum for Gaussian costs with variance æ = 0.2, (c) a global optimum without costs.
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Figure 5.7: (a)Unemployment rates, (b)social welfares (the social welfare of a matching is measured as the
total throughput of the system at equilibrium) and (c)computation times of BDAA over a sample of 50 sce-
narios obtained by spatial random uniform distribution of the mobile devices. APs are spatially distributed
as in Scenario 1. For each plot, the red line gives the empirical mean m̂ of the sample and the green dotted
lines the interval [m̂ °æ,m̂ +æ] where m̂ is the empirical mean of sample and æ is the standard deviation.
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(b) Modified social welfares
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Figure 5.8: (a)Unemployment rates, (b)social welfares and (c)computation times of BDAA over a sample of
50 random networks obtained by spatial random uniform distribution of the mobile devices and APs. For
each plot, the red line gives the empirical mean m̂ of the sample and the green dotted lines the interval
[m̂ °æ,m̂ +æ] where m̂ is the empirical mean of sample and æ is the standard deviation.
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Figure 5.9: (a)Ratios of the modified social welfares to the maximum modified (mechanism level) total
throughput, (b)Ratios of the unmodified (MAC level) social welfares to the unmodified total throughputs
corresponding to the matching with maximum modified total throughput. Sample of 50 random networks
obtained by spatial random uniform distribution of the mobile devices and APs. For each plot, the red line
gives the empirical mean m̂ of the sample and the green dotted lines the interval [m̂ °æ,m̂ +æ] where m̂ is
the empirical mean of sample and æ is the standard deviation.

0.3 0.4 0.5 0.6 0.7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

1

2

5

 

 

mobiles

AP

(a) Stable matching resulting from Gaussian
cost and BDAA.
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(b) Matching resulting from the best-RSSI
scheme.

Figure 5.10: Comparison of the association obtained from (a) BDAA and (b) the best-RSSI scheme in sce-
nario 2. These two figures show the AP at center (zoom).
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5.7 Conclusion

In this chapter, we have presented a novel AP association mechanism in multi-rate IEEE 802.11
WLANs. We have formulated the problem as a coalition matching game with complementarities
and peer effects and we have provided a new practical control mechanism that provides nodes
the incentive to form coalitions both solving the unemployment problem and reducing the im-
pact of the anomaly in IEEE 802.11. Simulation results have shown that the proposed mechanism
can provide significant gains in terms of increased throughput by minimizing the impact of the
anomaly through the overlapping between APs. We have also proposed a polynomial complexity
algorithm for computing a stable structure in many-to-one matching games with complementari-
ties and peer effects. This work is a first step in the field of controlled coalition games for achieving
core stable associations in distributed wireless networks. Further works includes for example the
study of a dynamic number of users or the impact of interference.
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5.9 Appendix: Two examples of control of incentives in games

We give two simple examples of the mechanism we propose to control the players’ individual in-
centives. These examples do not give technical details but illustrate the underlying motivations of
the work developed in the framework of the wireless technologies.

Example 89. Consider the case of a many-to-one matching game with ordinal preferences � =
(W ,F ,P), where P is the list of stated preferences. This description of matching games does not allow
for the game theorists to catch the strategic incentives the player is facing when emitting preferences
since it only shows the emitted preferences. It does not even allow to exhibit the set of players’ feasible
strategies. As a consequence of this incompleteness and in addition to the standard form, matching
games have been defined in a strategic form � = (W ,F , {Qi },h,P), where {Qi } is the set of players’
individual feasible strategies, h is the matching mechanism and P is the set of true preferences. For
the ease of understanding, Roth et a.l. assume in [2] that the set of feasible individual strategies is
reduced to the set of preferences lists the players’ may state. This description allows for each player to
state a list of preferences different from his true preferences in view of manipulating the association
mechanism (or matching mechanism). In the framework of matching games in wireless networks,
we do not allow for the players (devices) to manipulate their preferences or behave strategically by
misstating since, we assume that they would intrinsically be built and programmed so as to respect
a given protocol asking them for truthfulness. Nevertheless, this framework can be used to allow the
controller to modify the game so as to change the true (stated preferences by the previous assump-
tions) preferences. Thus, the incitation operator ⌦ operates on the matching game in strategic form
� = (W ,F , {Qi },h,P), in a way that changes the true and stated preferences such that,

�0 = (W ,F , {Qi },h,P0) =⌦(�) (5.8)

The second example is given in terms of the firms and workers model commonly used in stable
matchings [2].

Example 90. Assume a set of firms and a set of workers. Each firm can hire workers. We call a
coalition a subset of players containing a single firm and one or more workers. The characteristic
function assigns each coalition the worth it produces and this worth is shared via a Nash bargaining
among the players in each coalition. The players have the incentive to form coalitions maximizing
their own payoffs. In an employment market with performances similar to the IEEE 802.11 stan-
dard, the characteristic function would be increasing in the productivity types and the individual
payoffs would be sub-additive. In this case, firms and workers would have the incentive to group
by pairs of highest productivity types. Nevertheless, these stable structures of coalitions leave some
workers unemployed which is not satisfying from the point of view of the unemployment market.
Facing the problem, a government solely interested in reducing the number of unemployed work-
ers would thus seek for (well-designed) tax rates as levers to provide the players the incentives to
form coalitions reducing the employment. Assuming Nash bargaining for the resource allocation,
we propose to manipulate the payoffs (incentives for players via their individual increasing concave
utilities) by the way of such tax rates applied to the gross income(s). In other words, we manipulate
the individual payoffs so as to change the equilibrium point of the coalition formation process.
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5.10 Appendix: Proofs

5.10.1 Proof of Proposition 82

Proof. Assume a coalition game � = (F [W , v, {ui }i2N) in characteristic form with the Nash bar-
gaining sharing rule over the v(C)-simplex in each coalition C . Furthermore assume increasing,
three-times differentiable, and concave utility functions ui :R+ !R+, i 2N .
As shown in Chapter 2, Nash solution to the bargaining problem in any coalition C 2C solves,

maximize
x

Y

i2C
ui (xi )

subject to
X

i2C
xi ,C ∑ v(C)

xi ∏ 0 8i 2 C

Which can be equivalently written in the following form,

minimize
x

°
X

i2C
log(ui (xi ))

subject to
X

i2C
xi ,C ° v(C) ∑ 0

°xi ∑ 0 8i 2 C

This optimization problem is convex by convexity of the v(C)-simplex and of the objective func-
tion.
For any coalition C 2C such that v(C) = 0, solving the allocation problem is irrelevant. The player
receives a null payoff. For any other coalition (with strictly positive worth v(C)), the interior of the
v(C)-simplex (BC = {sC = (si ,C)i2C|

P
i2C si ,C ∑ v(C)}) is non-empty. Using Slater’s constraint quali-

fication5, strong duality holds for this convex optimization problem. There is an optimal solution
to the optimization problem iff the Karush-Kuhn-Tucker conditions can be satisfied.
We have the Lagrangian L (x,∏0, {∏i }i2C) such that,

L (x,∏0, {∏i }i2C) = °
X

i2C
log(ui (xi )) + ∏0

√
X

i2C
xi ° v(C)

!

°
X

i2C
∏i xi (5.9)

We have the K.K.T. conditions such that:

• Primal constraints: (i)
P

i2C
xi ° v(C) ∑ 0, (ii) °xi ∑ 08i 2 C

• Dual constraints: ∏0 ∏ 0, ∏i ∏ 08i 2 C

• Complementary slackness: (i) ∏0

µ
P

i2C
xi ° v(C)

∂
= 0, (ii)∏i xi = 08i 2 C

• Vanishing gradient of the Lagrangian at the solution point:
u
0
i (xi )

ui (xi ) = ∏0 °∏i = 1
¬i (xi ) 8i 2 C

Case : ∏0 > 0 and ∏i = 08i 2 C
Due to the complementary slackness conditions, we must have

P
i2C

xi = v(C) and xi ∏ 08i 2 C.

The vanishing gradient of the Lagrangian condition gives, 8i 2 C:

u
0

i (xi )

ui (xi )
= ∏0 =

1
¬i (xi )

=
1
¬C

(5.10)

5Strong duality holds for a convex optimization problem if it is strictly feasible.
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Knowing that ui is concave and strictly increasing, we have
µ

u
0
i (xi )
ui

∂0
=

u00
i ui°(u0

i )2

u2
i

< 0. Thus, it is a

strictly monotonic function and it admits an inverse. We denote
µ

u
0
i

ui

∂°1

this inverse.

We have:

xi =

√
u

0

i

ui

!°1

(∏0) 8i 2 C (5.11)

Due to the complementary slackness conditions, we must have:

X

i2C

√
u

0

i

ui

!°1

(∏0) = v(C) (5.12)

The function
P

i2C

µ
u
0
i

ui

∂°1

is also strictly monotonic and has an inverse onR+§. We denote it
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

.

The optimal Lagrange multiplier is obtained as:

∏0 =

0

@X

i2C

√
u

0

i

ui

!°1
1

A
°1

(v(C)) (5.13)

We thus have the optimal solution of the Nash bargaining problem by solving (5.11) and (5.13). In
terms of the fear-of-ruin ¬C:

xi =

√
u

0

i

ui

!°1

(
1
¬C

) (5.14)

¬C =
1

µ
P

i2C

µ
u
0
i

ui

∂°1∂°1

(v(C))

(5.15)

We now turn to the analysis of the function bi , u
0
i

ui
called boldness of player i . We have:

b
0

i (xi ) =
u

00

i (xi )ui (xi )°
≥
u

0

i (xi )
¥2

(ui (xi ))2 (5.16)

By assumption, ui is strictly increasing and concave for any player i . For any player i , we obtain
that b

0

i (xi ) is strictly negative for any xi and thus that the boldness bi is a decreasing function of
xi .

Thus, its inverse
µ

u
0
i

ui

∂°1

is also a decreasing function and the fear-of-ruin of player i , ui
u0

i
is an in-

creasing function of xi .

The sum of decreasing functions,
P

i2C

µ
u
0
i

ui

∂°1

is a decreasing function. So is its inverse
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

.

As a consequence, we obtain that the common boldness∏0 (solving the Nash bargaining optimiza-
tion problem) is a decreasing function of the common wealth v(C) and thus (using ¬C = 1

∏0
) that

the common fear-of-ruin is an increasing function of the common wealth v(C).
Finally, using (5.11), we obtain that xi is decreasing in ∏0 but increasing in v(C) for each player i
in C. It is an increasing function of the fear-of-ruin ¬C (by (5.14)).
Now, assume two coalitions C and C0 and their respective Nash solutions to the bargaining prob-
lem xC (where the bold notation xC denotes the vector of individual allocations solving the Nash
bargaining optimization program in coalition C) and xC0 .
If we want all the players in C and C0 (i.e. in C\C0) to prefer C to C0, then we must have:

xi ,C > xi ,C0 8i 2 C\C0 (5.17)
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which can equivalently be written:

(xi ,C)i2C\C0 ¬ (xi ,C0)i2C\C0 (5.18)

where ¬ denotes the component wise strict inequality in R|C\C0|.
The number of players in C\C0 can be arbitrary large (depending on C and C0). So is the number
of inequalities of the form of (5.17) that must be satisfied. This number is of order O(N). In order to
reduce the complexity of the control of the incentives of an order N, we use the fact that the Nash
solution to the bargaining problem is component-wisely increasing in a quantity that is constant
over the players in the coalition, namely the fear-of-ruin.
As a consequence, the set of inequalities (5.17) is induced by the following scalar inequality:

¬C > ¬C0 (5.19)

which can be written as:

1
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

(ṽ(C))

> 1
µ

P
i2C0

µ
u
0
i

ui

∂°1∂°1

(ṽ(C0))

(5.20)

where ṽ is a characteristic function.
Taking the inverse, we obtain:

0

@X

i2C

√
u

0

i

ui

!°1
1

A
°1

(ṽ(C)) <

0

@ X

i2C0

√
u

0

i

ui

!°1
1

A
°1

(ṽ(C0)) (5.21)

Denoting FC =
µ

P
i2C0

µ
u
0
i

ui

∂°1∂°1

, we can write:

FC ± ṽ(C) < FC0 ± ṽ(C0) (5.22)

We thus obtain the set of transformations ⌦ from the set of characteristic functions in itself that
provide the players the incentive for some subset of coalition C 0 Ω C must satisfy the following
scalar inequalities, 8C0 2C 0,8C 2C \C 0 s.t. C0 \C 6= ;:

FC0 ±⌦(v)(C0) < FC ±⌦(v)(C) (5.23)

where FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

and v is the characteristic function of the original coalition game.

This concludes the proof.

5.10.2 Proof of Corollary 85

Proof. Let C f denote the set of coalitions containing the AP f 2 F . For every AP f 2 F , we want
the vector of individual payoffs to be decreasing with the distance to the objective q̂ f where the
distance function d : C £C !N is defined such that d(C,C0) = ||C|° |C0||.
In other words, we want any coalition of size q to be strictly preferred to any coalition of size q +1
for any size q superior or equal to the objective q̂ f . We furthermore want any coalition of size q to
be strictly preferred to any coalition of size q°1 for any size q inferior or equal to the objective q̂ f .
Denoting u(xC) the vector of utilities of the allocation xC solving the Nash bargaining optimization
program in coalition C), we want:

8
>>><

>>>:

min
C2C f

s.t .|C|=q

u(xC) ¬ max
C2C f

s.t .|C|=q+1

u(xC), 8q ∏ q̂ f

min
C2C f

s.t .|C|=q

u(xC) ¬ max
C2C f

s.t .|C|=q°1

u(xC), 8q ∑ q̂ f
(5.24)
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Using the fact that the utilities are increasing functions of the payoffs, we obtain the following
equivalent condition, 8

>>><

>>>:

min
C2C f

s.t .|C|=q

xC ¬ max
C2C f

s.t .|C|=q+1

xC, 8q ∏ q̂ f

min
C2C f

s.t .|C|=q

xC ¬ max
C2C f

s.t .|C|=q°1

xC, 8q ∑ q̂ f
(5.25)

Using the results if Proposition 82, we immediately obtain the transformation to be applied to
the characteristic function to provide the required incentives,

max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q+1

FC ±⌦(v)(C), 8q ∏ q̂ f (5.26)

and
max
C2C f

s.t .|C|=q

FC ±⌦(v)(C) < min
C2C f

s.t .|C|=q°1

FC ±⌦(v)(C), 8q ∑ q̂ f (5.27)

where FC =
µ

P
i2C

µ
u
0
i

ui

∂°1∂°1

.

This concludes the proof.

5.10.3 Proof of Proposition 86

Proof. After initialization, BDAA is made of two loops. The first one is a loop of proposals from
users. At each iteration of this outer loop, there is an inner loop of counter-proposals from the
APs to the users. We show that these two loops stop after a finite number of iterations. Let’s first
consider the inner loop. At each iteration of the inner loop, the following events can occur:

• An engaged AP remains engaged. Its dynamic list is left unchanged (in Step 2.f, only the
dynamic lists of unengaged APs are updated).

• An unengaged AP is now engaged. Its dynamic list is left unchanged (in Step 2.f, only the
dynamic lists of unengaged APs are updated).

• An unengaged AP remains unengaged. This is the case when some of the users it counter-
proposed in Step 2.d have rejected its counter-proposal and either (a) none of them is en-
gaged with another AP, or (b) some of them are engaged. In (a) the dynamic list remains
unchanged. In (b) it is strictly decreasing.

• An engaged AP becomes unengaged. This means that some users in the coalition it was
engaged to defected. This is only possible if they are engaged in a new coalition with another
AP (Step 2.e). These defecting users are thus removed from the AP dynamic list, which is
strictly decreasing.

In all cases, all the dynamic lists are weakly decreasing in the sense of inclusion. The inner loop
thus converges in a finite number of steps.

We now consider the outer loop. We immediately have the convergence by finiteness of the
number of APs each mobile can propose to and the fact that no mobile can propose more than
once to any AP. The algorithm converges in a finite number of steps.

5.10.4 Proof of Proposition 87

Proof. In [18], it is shown that the stability inducing sharing rules as given in Proposition 63 (see
Chapter 3, Section 3.5.1) induce pairwise aligned preferences profiles satisfying the richness con-
dition R1 ([18], pp. 334) of the domain of preferences R. It is shown ([18], Lemma 3, pp. 349) that
if the family of coalitions C , the preferences domain R satisfies R1 and all preference profiles are
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pairwise aligned, then no profile R admits an n-cycle, n 2 {3,4, . . .}. As a consequence, there exists a
core stable structure. It is unique if the preferences are strict. Furthermore, in the proof of Propo-
sition 5 ([18], Proposition 5, pp. 359) it is shown that without n-cycles, the coalitions {C1, . . . ,Ck } in
the stable structure can be re-indexed as {Ci1 , . . . ,Cik } so that Ci j is weakly preferred by its members
to any coalition of agents in N \{Ci1 , . . . ,Ci j°1 }. If the preferences are strict (using a tie-breaking rule
in case of indifference), then the members of Ci j strictly prefer it.

We show by induction that these coalitions are formed in BDAA and never blocked by any other
coalition once formed.
• The mobiles in Ci1 propose to the AP in Ci1 in the first proposal round since it is the most pre-
ferred coalition of any agent forming it. The AP in Ci1 counter-proposes to these mobiles who all
accept. The coalition Ci1 is formed. No player of this coalition has any incentive to leave this coali-
tion in a subsequent round. It cannot be blocked.

• Assume that the coalitions {Ci1 , . . . ,Cil }, l < k are formed and are not blocked. We show that
Cil+1 will be formed and cannot be blocked. Using the previous results, we have that the players in
Cil+1 prefer it to any other coalition that can be formed with agents in N \{Ci1 , . . . ,Cil }. The payoff
they receive from any of these coalitions is lower that their payoff in Cil+1 , thus inferior to the max-
imum achievable payoff with the AP in Cil+1 . As a consequence, all the players in Cil+1 must have
ultimately proposed to the AP in this coalition.
At this point, the cumulated and dynamic lists of this AP contain the players in Cil+1 . It counter-
proposes to the coalitions it prefers to Cil+1 which contain players in the coalitions {Ci1 , . . . ,Cil }.
These players reject the counter-proposals and are removed from the AP’s dynamic list which ul-
timately counter-proposes to Cil+1 . Any mobile in Cil+1 rejects this counter-proposal to propose to
the other APs with maximum achievable payoff higher than its payoff in Cil+1 . This continues up
to the point where no maximum achievable payoff is higher than the payoff in Cil+1 . At this point,
all the players in this coalition accept forming Cil+1 . The coalition Cil+1 is formed.
No player of this coalition has any incentive to leave this coalition in a subsequent round. This
concludes the induction proof.
The unique stable structure {Ci1 , . . . ,Cik } is the output of BDAA.

5.10.5 Proof of Proposition 88

Proof. First we give an upper bound on the number of proposals emitted by the mobile users, then
we give an upper bound on the number of proposals emitted by the APs. Finally, we conclude.
In at most F proposals, every mobile user has proposed to all the APs. Thus, in at most F£W
proposals, the mobile users have proposed to all the APs.
In at most W counter-proposals, every AP has proposed to all the mobiles. Furthermore, every
AP counter-proposes at each counter-proposing round. Thus, in at most F£W £F the APs have
emitted all their counter-proposals. We obtain that the total number of proposals (both mobile
users proposals and APs counter-proposals) cannot exceed F3 £W2. The complexity of BDAA is
O(n5) where n = max(F,W).
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5.11 Appendix: Interpretation of BDAA in the economic framework

We show that the proposed matching mechanism (backward deferred acceptance) is particularly
instinctive and natural in representing a competitive labor market process. We particularly focus
on a competitive labor market interpretation.

Consider a competitive labor market made of a set W of workers and a set F of firms. Firms
and workers can form coalitions as in the considered association and resource allocation game
studied in the paper. The workers are looking for some jobs and the firms are looking for hiring
some job seekers. We assume backward deferred acceptance mechanism as hiring process.

In Step 1.c, the firms communicate their top perspectives (assumed measured in payoffs) to
the job seekers. Such communication can be understood as taking part in some recruiting cam-
paign. In Step 2.a, the workers apply to the firms on the basis of the top perspectives and the
promises of the recruiting campaigns. In Step 2.c, the firms consider the set of received applica-
tions and propose jobs.The emitted job offers may not necessarily correspond to the top perspec-
tives of the recruiting campaign. In fact some conditions may not have been fulfilled (e.g. the set
of workers for optimal production). Each job seeker receives the job proposals and accepts or re-
jects. In Step 2.d a job seeker may either accept or reject a counter-proposal. The acceptance and
rejections are received by the firms. If all the proposals of a firm have been accepted, the workers
are engaged (Step 2.e). Hired workers are declared as is. The counter-proposals go on up to the
last firm.Each firm in the market having proposed jobs removes from its list of candidates those
workers having rejected its counter-proposal and been engaged (Step 2.f). The candidature of the
other job seekers are kept into consideration (Step 2.f). The firms may tell the job-seekers still in
their lists that they are under consideration and that they may receive new offers. The firms not
having recruited yet go on emitting job offers (Step 2.g). This process goes on up to the point where
no job seeker receives new proposals (Step 2.g). At this point, the firms may notify the workers that
they have received all the proposals. It is now upon the job seekers to create new opportunities.
The job seekers attempt to send new applications (to their next most preferred firm in terms of top
perspectives). The mechanism goes on up to the point where no job seeker can propose.
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5.12 Appendix: Example
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Figure 5.11: The APs
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Figure 5.13: On the
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Figure 5.15: Mobile w1
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Figure 5.18: The stable
matching.

In Figure (5.11) we show of a first example of application of the BDAA. The solid arrows show
the best achievable payoffs that the mobiles can obtain with each AP. In dash-dotted we show the
proposals of the mobiles to the APs, in dotted the counter-proposals of the APs to the mobiles and
in plain the engagement. The cross show a reject and the circles an acceptance.

The APs send the maximum achievable payoff to the players (see Figure 5.11). AP f1 sends 10
to w1 and w2 for the coalition { f1; w1, w2}. For { f1; w1} or { f1; w2} the payoff is 0.5 due to the control
of the incentives6. AP f2 sends 1 for { f2; w1}. AP f3 sends 100 for { f3; w2}.

The induced mobiles’ preferences are thus, f1 ¬w1 f2 and f3 ¬w2 f1. In the first proposing
round, mobile w1 propose to the AP f1 and mobile w2 propose to the AP f3 (see Figure 5.12).
The APs update their cumulated list L( f1) = {w1}, L( f2) = ;, L( f3) = {w3} and their dynamic list
L§( f1) = {w1}, L§( f2) = ;, L§( f3) = {w3}. The APs emit the following counter proposals: ( f1, w1,0.5),
( f3, w2,100) (see Figure 5.13). The mobiles receive the counter-proposals. Mobile w2 accepts the
counter-proposal of f3 since none of its maximum achievable payoff gives more than the counter-
proposal (shown in solid line in Figure 5.14). Mobile w1 does not accept the counter-proposal
of f2 since the maximum achievable payoff received from f2 is higher than the current counter-
proposal from f1 (shown by the cross in Figure 5.14).

The dynamic list of the APs are updated, L§( f1) = {w1} and L§( f2) = ;. The algorithm enters
the second counter-proposing round. AP f1 emit the counter-proposal ( f1, w1,0.5) which is the
same as in the previous counter-proposing round. Mobile w1 still rejects. The dynamic list of the
unengaged APs are updated, L§( f1) = {w1} and L§( f2) = ;.

The dynamic lists of the unengaged APs have not changed. The counter-proposing loop stops
and the algorithm enters the outer loop for proposals. The second proposing round starts. The

6In this example the control provides the mobiles w1 and w2 the incentives for the set of coalitions of size 3 w.r.t.
those of size 2 in the set of coalitions that the players can form with AP f1
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mobile w1 is the only unengaged mobile. Its next most preferred AP is f2 (with best achievable
payoff 1). The mobile w1 propose to f2 (see Figure 5.15). The APs’ lists are updated, L( f1) = L§( f1) =
{w1}, L( f2) = L§( f2) = {w1} and L( f3) = L§( f3) = {w2}. The two unengaged APs f1 and f2 counter-
propose (see Figure 5.16). They emit the following counter proposals: ( f1, w1,0.5), ( f2, w1,1). Mo-
bile m1 receives the two counter-proposals, accepts the one of f2 and rejects the one of f1. It is
engaged to f2 (see Figure 5.17). The dynamic list of the unengaged AP f1 is updated, L§( f1) = ;.
The only unengaged AP cannot propose. There are no more unengaged mobiles.
The algorithm stops. The final stable matching is shown in Figure 5.18.
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Chapter 6

Video Caching and an Enumerative
Cliques-Based Algorithm

In this chapter, we analyze a video caching problem from a content creator’s servers to a service
provider’s servers using matching games. We show a new algorithm enumerating the set of core
stable structures in ordinal coalition potential games. This algorithm is anytime, enumerative and
performs on the intersection graphs of coalitions.
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6.1 Introduction

Game theorists have been interested in looking at the stability of the structures resulting from
the coalition formation process and have shown the importance of the concept in real-life appli-
cations. The stability is important since it exhibits the respect of the individual preferences and
incentives. An unstable structure would result in deviations [3]. Coalition and matching games
open the way through an important number of interesting applications, notably in wireless net-
works where much work remain to be done in the decentralized decision taking paradigm. Nev-
ertheless, some of the commonly used assumptions (substitutability, responsive preferences, see
[3]) limit the modeling to the cases without complementarities or peer effects. Recent theoretical
works [9] (and references therein) overcame these difficulties and have paved the way through a
suitable modeling of systems with complementarities and peer effects. As examples of such sys-
tems in wireless networks we have WiFi and its related anomaly, Device-2-Device with multi-hop
relaying, virtual MIMO exploiting multi-users diversity, etc.

6.2 Related Works

Much work has been devoted to super-additive coalition games (where the grand-coalition forms
[2]) and to the stabilization of structures by payoff distribution. Nevertheless, real-word prob-
lems may not verify the super-additivity assumption. More recently, researchers have been inter-
ested in the set of structures maximizing the social welfare in case of non-super-additive coalition
games. This problem is called optimal coalition structure generation and is known to be an NP-
hard problem with exponential complexity even for sub-optimal solution. Three classes are to be
distinguished: dynamic programming, anytime property and heuristics. We have an interest in
the first two classes. Dynamic programming has been used in [4; 7]. The worst case complexity is
O(3n). On the opposite, any-time algorithms can be stopped at any-time to provide a sub-optimal
result. The coalition structure graph representation1 is used in [4] for coalition formation. The
results are guaranteed to be within a bound from the optimum. Despite of improvements (see [8]
and references therein), the complexity remains O(nn). Our compatibility graph is an alternative
graph representation with coalitions as vertices and structures as maximal cliques.

In [1], Gale and Shapley show the non-emptiness of the core of the stable marriage and the
college admission problems with preferences over individuals. The Deferred Acceptance Algo-
rithm (DAA) is introduced. In [3], Roth et a.l. survey the existing results related to matching games
and develop the theoretical results to provide insights in the understanding of the matching mar-
kets. The core stable structures is shown to be non-empty under some simplifying assumptions
(e.g. responsive preferences). In [5], Cechlarova et a.l. propose two extensions of the preferences
over individuals to sets and propose an algorithm close to Gale’s top-trading cycles to find a strict
core partition. In [6], Echenique et a.l. show a centralized fixed-point-based algorithm to com-
pute the set of core stable (if non-empty) many-to-one matchings in the case of preferences over
colleagues.

6.3 Contributions

In this chapter, we show a new centralized algorithm to enumerate core stable matchings when
the players’ preferences are emitted over the payoffs they obtain when playing a coalition potential
game.

1The coalition structure graph is defined as the graph G = (S ,E ), where the set of vertices is the set of coalition
structures and the set of edges is defined such that it exists an edge e = (S,S0) between vertices S and S0 if S0 can be
obtained from S by merging two coalitions of S or by splitting a coalition of S into two disjoint ones. By definition, the
graph is of size B(N) (Bell number).
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6.4 Potential Coalition Games and Video Caching

6.4.1 Potentials Coalition Games

Let � = (N , v, {ui }i2N } define a coalition game in characteristic form. The set N denotes the set
of players of cardinality N, {ui }i2N denotes the set of their individual utilities and v : N !R is the
characteristic function of the game. We define the set of coalitions C . The potential function � is
an ordinal coalition potential for the game � if for every player i 2N ,

ui (C) > ui (C0) iff �(C) >�(C0), for every C,C0 2C (6.1)

where ui (C) is player i ’s utility of the payoff it receives when taking part in the coalition C.
A coalition game in characteristic form with set of players N admitting an ordinal potential � is
called an ordinal coalition potential game in characteristic form and denoted,

� = (N , v, {ui }i2N ,�) (6.2)

6.4.2 The Video Caching problem

As an example consider a video caching system between a content creator P and a service provider
S . The content creator P has a set L of L videos. The service provider S has a set R of R caching
servers. The caching servers may differ in the Quality of Service (QoS) for the cached content. This
differentiation is taken to be due to the hierarchical location of the servers in the caching tree. We
define T the set of T QoS of the servers. The content creator’s videos are stored in its own servers.
They can also be duplicated in a subset of the service provider’s servers.
We define the set of coalitions as,

C = {{r }[ J, r 2R, J µL , |J|∑ qr }[ {l 2L }

i.e. the set of subsets of videos and a single server. We furthermore require the quotas qr of any
server r 2R to be valued in {2, . . . ,L°1}2. These quotas give for each server the maximum number
of videos that can be cached.

Given a coalition C and the set of videos L \C, the content creator knows about some of the
complementarities of the videos (complementarities induced by recommendation lists, manage-
ment of the content, etc.). We assume that this partial information over the complementarities
can be computed in the form of the following matrix of mutual impact factors A = (al l 0)l ,l 02V where
each component all 0 is the impact factor of a video v over another video v 0. The content creator
does not know more than these informations and cannot estimate the impact of caching in the
service provider’s servers. Nevertheless, given a coalition C and knowing the natural views and the
impact factors of the videos in the coalition, we assume that the service provider can compute the
impact of caching over the number of views of the videos in the coalition as the following fixed
point equations,

nl (C) = nl (1)∞r +
X

l 02V \C
all 0nl (C) (6.3)

where all 0 is an impact factor of l over l 0 and ∞r 2T is QoS gain obtained by caching in the server
r . Thus, the number of views of a video in a coalition C depends on the players in the coalition in
three ways,

• (i) the video itself via nl (1),

• (ii) the other videos in the coalition (cached in the same server) via A,

• (iii) the factor of quality of the caching server via ∞r .

2See the regularity conditions over the set of coalitions for the non-emptiness of the set of core stable structures in
all states of nature in Chapter 3.
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As an example of interpretation, the impact factor ai j may be interpreted as the probability that a
user having viewed the video vi watch video v j . This shows the importance of the complementar-
ities and peer effects in the modeling. We define the characteristic function v : C !R of a coalition
as,

v(C) =
X

l2C\V

nl (C)Æ

where Æ is the constant monetary income generated by a view of a video. We now assume v(C)
is shared among the players in C via a Nash bargaining with null threats with concave individual
utilities ul (xl ) = xÆP

l for the content creator’s videos and ur (xr ) = xÆr
r for the service provider’s

server r . The servers’ bargaining powers increase in their factor of quality. Both bargaining powers
ÆP and ÆS are assumed to be valued in ]0;1[ so as to make the utilities strictly concave. The
servers’ bargaining powers increase in their factor of quality. We obtain that the individual payoffs
increase in ¬C = v(C)

|C|ÆP +Ær
which is called the fear-of-ruin. If the fear of ruin increases then all the

payoffs increase. Thus, the players (the content creator via its videos and the service provider via
its server) have the incentive to form groups maximizing the fear-of-ruin. In this case the fear-
of-ruin is the potential � of the matching game between P ’s videos and S ’s servers. The game
� = (N = L [R, v, {ui }) is an ordinal coalition potential game with potential function ¬.

6.5 An Anytime Centralized Enumerative Algorithm

In the this section we show a new anytime cliques-based algorithm for enumerating the core sta-
ble coalition structures in the case of an ordinal coalition potential game � with a set of coalitions
C .The algorithm has been constructed over the game-theoritic sequential description of conver-
gence to a stable structure provided in [9].

Define the coalitions weighted-vertices undirected graph (G ,�) such that the graph G = (V ,E )
is the complement of the intersection graph of the coalitions in C . The set of vertices V is in
bijection Æ with the set of coalitions C but for the sake of simplicity and clarity we will further
identify a coalition Ci 2C with the vertex vi 2 V of the graph. Let V 0 Ω V be a subset of the nodes,
we denote G 0 = (V 0,E (V 0)) the subgraph induced by V 0. Each vertex vi 2 V is weighted by the value
�(Ci ) and the set of edges E is defined by the adjacency matrix A = (ai j )(i , j )2C 2 such that:

ai j =

(
1 if Ci 6= C j and Ci \C j = {;}

0 if Ci = C j or Ci \C j 6= {;}

A clique æ of the graph G = (V ,E ) is a complete subgraph of G . In case the clique æ may not be
included in a superior sized clique æ0 without loosing the completeness property, æ is said to be
maximal. If æ is the clique with the highest cardinality (in terms of number of vertices |æ|) the
clique is maximum. For the sake of clarity and simplicity, we will further identify a clique æ with
the set of its coalitions given by V (æ). Any two coalitions C1 and C2 will be called compatible if
they have no common players, i.e. C1\C2 = ;. In other words, if the nodes v1 and v2 are adjacent.
More generally, the coalitions of C 0 Ω C are compatible if the set of their nodes form a clique in
the graph G . Denote Gk the subgraph induced by the set of nodes of kth highest weight. As an
example, G1 is the subgraph induced by the nodes with maximum weights, i.e. the subgraph such
that any node in G1 is a coalition giving each player its most preferred achievable share in the
game.

The algorithm iteratively builds a forest (i.e. a set of disconnected trees) such that each tree
is rooted by one of the maximal clique obtained at initialization and each vertex in each tree is
a stable structure. A vertex that is not a leaf is a subgame stable structure (this is the anytime
property of the algorithm) and a leaf is a stable structure for the game. The set of leaves is the
output of the algorithm. To go into further details, the algorithm starts by defining an initial set of
structures, obtained by looking for the set⌃1 of maximal cliques in the subgraph G1 (line 3). Each
clique S 2⌃1 is the root of a tree of stable structures (line 3). Starting from S, we look in G\G1 for
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Algorithm 7: Cliques-based algorithm for finding the set of stable structures
Data: Coalitions compatibility weighted graph (G ,�)
Result: The set of stable structures S

1 begin
2 Step 1 (Initialize);
3 S :=⌃1 (⌃1 set of maximal cliques in G1);
4 p(S ) = 0 (vector of size |S |, the structures in S have not been visited yet);
5 Step 2 (Form the forest);
6 while 9S 2S s.t. p(S) = 0 do
7 take S s.t. p(S) = 0;
8 p(S) = 1;
9 if W Ω S or F Ω S (if the structure includes one or both of the set of players, no

coalition can be added) then
10 break;

11 if C max
S = ; (C max

S set of maximum valued coalitions compatible with S) then
12 break;

13 S := S \S;
14 for S0 2⌃0

S (⌃0
S set of maximal cliques in C max

S ) do
15 S := S [ {S0 [S} (complete the structures by the child S0 [S);
16 p(S0 [S) = 0;

the set C max
S of highest valued coalitions that are compatible with S (line 12). If C max

S is empty,
the remaining players are left unmatched. Otherwise let ⌃0

S be the set of maximal cliques in C max
S

(line 14). A child of S in the structure tree is a structure S [S0 where S0 2⌃0
S (line 15). Every time

a structure is visited, it is tagged by a binary variable such that it will not be visited again (line 8).
Furthermore, in case this structure becomes a parent, then the algorithm gets rid of it (line 13) to
only hold the children (tagged as non-visited, line 16). The algorithm goes on iterating as long as
it exists non-visited structures (line 6).

Proposition 91. The algorithm converges in a finite number of iterations.

The proof uses the finiteness of the set of structures and the non-recurrence of the walk of the
algorithm in the space of structures of coalitions. It shows that it exists a finite upper bound in the
number of iterations of the algorithm. The existence and finiteness of this bound being sufficient
to show the convergence of the algorithm in a finite number of iterations.

Proof. By construction, the algorithm stops if there are no more non-visited structures in the set
of built ones, i.e. p(S) = 0 for all S 2 S . At every iteration, the considered S is tagged as visited,
i.e. p(S) = 1. Since there is a finite number of players, the set of subsets of coalitions (union of
complete and incomplete structures) is also finite. As a consequence, the algorithm will iterate at
most as many times as the number of these subsets, thus for a finite number of iterations.

Proposition 92. The algorithm outputs stable structures.

The proof is by contradiction and induction. It assumes that it exists an unstable structure
which is an output of the algorithm and shows by recurrence that no subset of players of the struc-
ture can deviate.

Proof. Assume it exists an unstable structure Su which is an output of the algorithm. Then, by
definition of stability, it must exist a subset B of player having the incentive to deviate from the
current structure and the power to enforce the deviation.
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Initial step:
No subset of player in coalitions from the subgraph G1 has the incentive to deviate since it achieves
the maximum payoff, i.e. B\V (G1) = ;. Assume the blocking coalition B contains a subset B0 of
players from coalitions in Su \V (G2). As players of B0 are in V (G2), they obtain a payoff of w2. As
they are also in B, they have the incentive to obtain a payoff strictly greater than w2. By defintion of
G1 and G2, they have thus the incentive to deviate to G1 and obtain w1 > w2. As players of G1 have
no incentive to deviate, players of B0 must extend the clique formed in G1. This is in contradiction
with the fact the algorithm has formed a maximal clique in G1. Thus, no subset of players in G2

can deviate.
Induction step:

Assume that no subset of players in G1, . . . ,Gn can deviate and that the blocking coalition B con-
tains a subset B0 of players from coalitions in Su \ V (Gn+1). The players in B0 have the incentive
to form a coalition in at least one subgraph in G1, . . . ,Gn . By construction, the set of coalitions in
Su \ {G1, . . . ,Gn} forms maximal cliques in the subgraphs G1, . . . ,Gn . Thus, in order that players of
B0 form a coalition in any subgraph Gl 2 {G1, . . . ,Gn}, some players in Su \Gl would have to deviate
from their coalitions to form another maximal clique in Gl with players in B0. But neither a player
in Su \Gl has the incentive to deviate from a clique in Gl nor can deviate to a clique in Gk , k < l .
So, by the induction assumption players in B0 cannot deviate.

As a conclusion, Su cannot contain a blocking coalition, Su is stable.

Proposition 93. The algorithm outputs the set of stable structures.

The proof is by contradiction. It assumes that it exists a stable structure which is not an output
of the algorithm and shows that it is not possible that it differs from those built by the algorithm.

Proof. Assume it exits a stable structure Su which is not an output of the algorithm.
Let æ1 = Su \G1 be the set of coalitions both in the structure Su and in the subgraph G1. The

set æ1 is non empty because otherwise, there would be a blocking subset of coalition in Gk , k > 1
having the incentive to deviate to G1 and Su wouldn’t be stable. Assume now that æ1 does not
form a maximal clique in G1. Then the clique æ1 can be augmented by at least one coalition. This
latter coalition is necessarily formed by players from Su \Gk , k > 1 (since Su is a partition of the
set of players) and is thus blocking for Su . This is in contradiction with the fact that Su is stable.
Thus, Su is rooted by a maximal clique in G1. As the algorithm (line 3) roots the forest with the set
of all maximal cliques ⌃1 in G1, Su \G1 2⌃1 must root a tree of the algorithm.
Let us now proceed by induction.
Initial step: Letæ2 be the set of maximum valued coalitions in Su\æ1. Let show thatæ2 is a maximal
clique in C max

æ1
. Assume that æ2 does not form a maximal clique in C max

æ1
. Then the clique æ2 can

be augmented by at least one coalition. This latter coalition is necessarily formed by players from
Su \Gk , k > l where C max

æ1
ΩGl . This coalition blocks Su . This is in contradiction with the fact that

Su is stable.
Induction step: The induction step is straightforward and similar to the initial step.

6.6 Some elements about the complexity

Finding stable structures of coalitions and enumerating the set of theses structures are challeng-
ing combinatorial tasks. This is mainly due to the exponential grows of the set of coalitions and
structures in the number of players in the game. The induced computational difficulty is thus to
design practically efficient algorithms with low complexity and bounded execution times.

The number of coalitions in a game with N players is 2N °1 (the empty coalition being irrel-
evant since it contains no players) and the total number of structures that can be obtained by
partitioning the set of players N into k non-empty subsets (where k ∑ N) is given by the Stirling
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number of the second kind S(N,k)

S(N,k) =
1
k !

kX

l=0
(°1)k°l

√
k
l

!

l N (6.4)

This number may also be recursively defined such as

S(N,k) = kS(N°1,k)+Z(N°1,k °1) (6.5)

As examples of Stirling numbers of the second kind, we have S(20,3) = 5.8060e +8 and S(20,7) =
1.1143e + 12 and S(90,10) = 2.7536e + 83 which is more than the upper bound of the estimated
number of atoms in the known universe (1082).
Finally, the total number of coalition structures that can be obtained by partitioning the set of N
players into non-empty subsets if given by the Bell number B(N)

B(N) =
NX

k=1
S(N,k) (6.6)

As examples of Bell numbers and thus number of structures of coalitions (candidate solutions in
the coalition formation game), we have B(10) = 1.1597e +5, B(20) = 5.1724e +13, B(50) = 1.8572e +
47 and B(90) = 1.4158e + 101. Sandholm et a.l. have shown in [4] that the number of coalition
structures is O(NN) and!(N

N
2 ). In the particular case of many-to-one matchings, Echenique et a.l.

give in [6] the total number of many-to-one matching in a problem with n colleges and m students
,

nX

k=1

√
n
k

!

S(m,k)k ! (6.7)

By definition, the set of coalitions is exponential in the number of agents involved in the game.
Even though, we consider a restricted set of coalitions, there still is an exponential number of
subset of videos. Thus, the input of the algorithm (number of nodes in the intersection graph) is
exponential in the number of videos to be cached. Particularly, with L videos and R servers, this
graph has a maximum of (2L ° 1)F nodes since, in the worst case, any server r 2 R can form a
coalition with any non-empty subset of videos from L but no subset of player from R can form a
coalition without a player from F . For the rest of this section we assume this worst case scenario.
The size of the graph is thus linear in the cardinality of the set of players F and exponential in
the cardinality of the set of players W . Yet, we have not succeeded in obtaining more result on
the complexity of the proposed cliques-based algorithm and leave this as an open-question. With
respect to the coalitions structure graph defined in [4], our compatibility graph is an alternative
graph representation with coalitions as vertices and structures as maximal cliques.

An example of compatibility graph is shown in Figure 6.1.

(F,W) |V | Time (s)
(2,4) 2§24 0.280791
(2,5) 2§25 0.336115
(2,6) 2§26 0.358524
(2,7) 2§27 0.524736
(2,8) 2§28 0.890548
(2,9) 2§29 2.941256

(2,10) 2§210 13.896822
(2,11) 2§211 228.499408

Table 6.1: Some running times of the cliques-based algorithm. Intel Core i5vPro @ 1.90GHz, 4Go ram
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  1  3.35519e+06  31

  8  3.35519e+06  31

  9  3.35519e+06  31

 10  3.35519e+06  31

 11  3.35519e+06  31

 12  3.35519e+06  31

 29  2.30236e+06  15

 30  2.30236e+06  15

 32  2.30236e+06  15

 33  2.30236e+06  15

 34  2.30236e+06  15

 35  2.30236e+06  15

 36  2.30236e+06  15

 37  2.30236e+06  15

 40  2.30236e+06  15

 42  2.30236e+06  15

 63  1.74517e+06   7

 64  1.74517e+06   7

 69  1.74517e+06   7

 72  1.74517e+06   7

 75  1.74517e+06   7

 76  1.74517e+06   7

 78  1.74517e+06   7

 79  1.74517e+06   7

 81  1.74517e+06   7

 82  1.74517e+06   7

102  1.40075e+06   3

105  1.40075e+06   3

107  1.40075e+06   3

109  1.40075e+06   3

110  1.40075e+06   3

120  1.16695e+06   1

  2  3.35519e+06  31

  7  3.35519e+06  31

 28  2.30236e+06  15

 31  2.30236e+06  15

 39  2.30236e+06  15

 41  2.30236e+06  15

 67  1.74517e+06   7

 70  1.74517e+06   7

 73  1.74517e+06   7

 74  1.74517e+06   7

 77  1.74517e+06   7

 80  1.74517e+06   7

100  1.40075e+06   3

103  1.40075e+06   3

106  1.40075e+06   3

108  1.40075e+06   3

119  1.16695e+06   1

  3  3.35519e+06  31

 38  2.30236e+06  15

 66  1.74517e+06   7

 68  1.74517e+06   7

 71  1.74517e+06   7

 98  1.40075e+06   3

101  1.40075e+06   3

104  1.40075e+06   3

124  1.16695e+06   1

  4  3.35519e+06  31

 65  1.74517e+06   7

 99  1.40075e+06   3

112  1.40075e+06   3

123  1.16695e+06   1

  5  3.35519e+06  31

111  1.40075e+06   3

122  1.16695e+06   1

  6  3.35519e+06  31 121  1.16695e+06   1

 13  2.30236e+06  15

 15  2.30236e+06  15

 17  2.30236e+06  15

 18  2.30236e+06  15

 20  2.30236e+06  15

 21  2.30236e+06  15

 22  2.30236e+06  15

 23  2.30236e+06  15

 24  2.30236e+06  15

 25  2.30236e+06  15

 44  1.74517e+06   7

 45  1.74517e+06   7

 46  1.74517e+06   7

 47  1.74517e+06   7

 52  1.74517e+06   7

 55  1.74517e+06   7

 58  1.74517e+06   7

 59  1.74517e+06   7

 61  1.74517e+06   7

 62  1.74517e+06   7

 88  1.40075e+06   3

 91  1.40075e+06   3

 93  1.40075e+06   3

 95  1.40075e+06   3

 96  1.40075e+06   3

115  1.16695e+06   1

 14  2.30236e+06  15

 16  2.30236e+06  15

 19  2.30236e+06  15

 27  2.30236e+06  15

 43  1.74517e+06   7

 50  1.74517e+06   7

 53  1.74517e+06   7

 56  1.74517e+06   7

 57  1.74517e+06   7

 60  1.74517e+06   7

 86  1.40075e+06   3

 89  1.40075e+06   3

 92  1.40075e+06   3

 94  1.40075e+06   3

114  1.16695e+06   1

 26  2.30236e+06  15

 49  1.74517e+06   7

 51  1.74517e+06   7

 54  1.74517e+06   7

 84  1.40075e+06   3

 87  1.40075e+06   3

 90  1.40075e+06   3

113  1.16695e+06   1

 48  1.74517e+06   7

 83  1.40075e+06   3

 85  1.40075e+06   3

118  1.16695e+06   1

 97  1.40075e+06   3

117  1.16695e+06   1

116  1.16695e+06   1

125       997940   0

126       997940   0

Figure 6.1: Compatibility graph of the coalitions generated by six videos and two servers.

6.7 Example

As an example of application of the algorithm and interpretation of the intermediate and final
results, consider the compatibility graph given in the first plot Table 6.2. The other plots of Table
6.2 show the iterative construction of stable structures induced by the algorithm. The plots of
Table 6.3 show the resulting stable structures and the plots in Table 6.4 provide the tree-building
interpretation of the iterative search.

Let us get into more details about this example. Consider the first graph of Table 6.2 as the
weighted compatibility graph such that the nodes are vertically arranged according to their weights
in the sense that higher weights give upper nodes. This graph shows that the coalitions are such
that they may be grouped in three levels of weights (ie individual value of users in the coalition),
i.e. G1, G2 and G3 where G1 is the subgraph induced by the coalitions C1 and C2, G2 is the subgraph
induced by the coalitions C3, C4, C5, C6 and G3 is the subgraph induced by the coalitions C7, C8

and C9. In its first step, the algorithm works in the subgraph G1, looking for the set ⌃1 of maximal
cliques (line 3). In this example, there is a single clique in G1, which is G1 itself. The algorithm
returns ⌃1 = {G1}. This is shown in the second plot of Table 6.2 where the single maximal clique is
highlightenned in green. Thus, S = {S0} where S0 = {C1,C2} (line 3). In terms of trees, there will be
a unique tree of stable structures with S0 as the root. In this particular case, the forest is reduced
to a single tree.

Then, the algorithm enters the second step dedicated to iteratively (line 6) completing the
previously initialized stable structures. This step of the algorithm results in the set of stable struc-
ture shown in red in the Table 6.3. In the first iteration, the algorithm creates three structures
S1 = S0 [S0

1, S2 = S0 [S0
2 and S3 = S0 [S0

3 where S0
1, S0

2 and S0
3 are the sets of coalitions from the
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C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

Table 6.2: The maximal cliques algorithm. The set of coalitions ⌃ is represented by the nodes of the graph.
The vertical placement of a coalition associated node in the graph is in agreement with their weight! of this
node i.e. [!C1 ,!C2 ] > [!C3 ,!C4 ,!C5 ,!C6 ] > [!C7 ,!C8 ,!C9 ]. The algorithm iteratively builds the maximal
cliques from higher weighs to lower ones.

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

C1 C2

C3 C4 C5 C6

C7 C8 C9

Table 6.3: The maximal cliques algorithm outputs, i.e. the stable structures of coalition. Each graph exhibits
a structures as a red maximal clique.

three maximal cliques in C max
S0

. The third plot of Table 6.2 shows these as the union of the green
subgraph and each of the colored one. The completion phase and associated trees may be ob-
served on the second plot of Table 6.4.

From now on, the algorithm performs identically by iterating over the built structures as if they
were from the initialization step (line 6). For the second and third iterations, C max

S1
and C max

S3
are

empty. No more coalitions are compatible either with S1 or S3 (line 12). The structures are tagged
as visited p(S1) = p(S3) = 1 and S1 and S3 are leaves of the tree. The fourth iteration visits S2,
and we have C max

S2
= {C8}. The search for maximal cliques in it trivially gives S"2 = {C8} and we

have the ultimate leaf of the tree S4 = S"2 [S2. The third plot of Table 6.2 shows this as the union
of the green subgraph and the blue one and the completion is also shown by the blue branch
in the fifth plot of Table 6.4. This ends the algorithm which results in the following three stable
structures: S1 = {C1,C2,C3}, S2 = {C1,C2,C4,C5,C8} and S3 = {C1,C2,C6}. As already pointed out at
the beginning of this paragraph, these three stable structures are shown in Table 6.3. Note that C7

and C9 are not compatible with others.
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S0
S0

S1

S2

S3

S0

S1

S2

S3

S4

Table 6.4: The iterative construction of the tree of stable structure. Each node is a subgame perfect equi-
librium, i.e. no player in each node has the incentive to deviate from the coalition he belongs to on the
structure associated to the node.

6.8 Conclusion

We have shown a new algorithm to enumerate the set of core stable structure in coalition poten-
tial games. The algorithm is centralized, anytime and enumerative. We need to go further in the
analysis of the complexity of the enumerative algorithm and search for the requirements over the
coalitions compatibility graph to make it fall in classes of graphs with low complexity in the maxi-
mal cliques enumeration. Another decentralized algorithm, called BDAA, was shown in chapter 5
in the framework of the analysis of the WiFi association problem.
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Chapter 7

Fear of Ruin and Concavity Conditions in
Coalition Games with Generalized Æ-Fair
Resource Allocation

In this chapter, we study a general multiagent system where agents can form groups, or coali-
tions, and share a resource. In particular, we derive some of the conditions for the generalized
Æ-fair scheme to guarantee the existence of a stable partitioning of the players in groups. We give a
game-theoretic interpretation of these conditions using measures of risk aversion and fear of ruin.
The results are both theoretically and practically useful in networks with applications to the de-
centralized assignment and migration of tasks in cloud computing or computer architecture, the
user association problem in wireless networks (including Device-to-Device) and the post of mes-
sages on the timelines of social networks. This chapter aims at strengthening the links existing
between some well-known and used fairness schemes in networks, particularly the generalized
Æ-fair allocation, and the game-theoretic analysis.
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7.1 Introduction

Multiagent systems are based on a decentralized interaction of the decision takers. Multiple rea-
sons have led to the design of such systems. Decentralization may be an exogenous constraint. As
an example, consider a social network, where distributed decision takers create flows and links and
influence the structure of the graph underlying the system operations. In this case, the customers,
users or devices are distributed by nature. Another reason may be, broadly speaking, related to the
cost. Whereas in some systems decision can be taken by a central entity, distributed implemen-
tations may be preferred for cost, simplicity, or robustness reasons. As an example, we can think
about the optimal user association to access points in a wireless network. In this chapter, we focus
on a generic model coalition formation problem with exogenous sharing rule where the decision
makers can form groups, each producing a worth shared among the players of the group according
to the sharing rule. This model covers a wide range of resource allocation situations, where mul-
tiple agents can distributedly take decisions and form coalitions to share a given resource. Given
any agent, her incentive for the groups he can participate to are defined by the shares he would
receive if the group were formed. In team problems [7], the fundamental assumption is that the
decision taking process must maximize a common objective function. The underlying behavioral
interpretation is that the agents’ preferences are all aligned toward the optimum of the objective.
The decision taking process is not centralized and the agents follow a behavior that is altruistically
guided toward optimality of the global objective function.

In many games, players are assumed to be selfish rational payoff maximizers. In this case,
the interests may not be aligned by mean of a common objective function. This differs from the
team problem in the sense that a player takes the decisions with the aim of improving its own wel-
fare despite the fact that some other players may be negatively affected. The cooperative game
theory studies the games where the players can cooperate. The cooperative transformation of a
game proposed by Myerson [5] as a mapping from a non-cooperative game to another one with
additional cooperative strategies highlights the reasons for cooperative behaviors to emerge: new
opportunities. The equilibrium of this transformed game results from a process of bargaining
among the players. Solution concepts to the bargaining problem consist in deriving equilibrium
cooperative strategies and resource allocations in such a way that individual incentives and some
fairness properties are respected. As examples, consider the Nash’s solution to the two-person
bargaining problem [1][2] or the core allocation [5][6] defined as the set of allocations of the worth
v(N ) providing the players the incentive to form the grand coalitions. As other examples consider
the matching [4] and coalition formation problems [17]. The solution concepts of these coopera-
tive association games may be defined in terms of stability such as the pairwise stability, the core
stability, or the group stability.

It is well-known that the existence of equilibria (in non-cooperative and cooperative games)
and their characteristics strongly depend on the properties of the players’ utilities or preferences.
Some of these properties have interpretations in terms of behaviors. As an example, a concave
increasing utility function induces a risk averse behavior. Several measures of aversion have been
defined to quantify the players behavior in their decision making process in presence of uncer-
tainty. As examples where the risk averse behavior of the player has been shown to have an impact
on the solution of the game, consider the bargaining problem [1][2], the taxation mechanisms
[10], or more recently routing games in networks [20]. In these papers, some measures such as risk
aversion, boldness, fear of ruin, and pure fear of ruin are used. We will particularly show that such
indicators may be useful in the understanding of well-known fairness schemes (we focus on the
generalized Æ-fair allocation) in game-theoretic applications to networks. We will see that these
indicators appear naturally when attempting to derive some of the conditions for the generalized
Æ-fair allocation to belong to the class of resource allocation schemes that guarantee the existence
of a stable partitioning of the players in a coalition game.

Game-theory and networks have somewhat progressed in parallel on the definition of fairness
schemes. They have converged to common solutions. As an example, the proportional fairness
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introduced by Kelly in [12] is a particular case of the generalized proportional fairness achieved
by the Nash bargaining. The proportional fair allocation is now one of most popular and used
resource allocation scheme in networks. The interesting properties of this scheme has led re-
searchers to generalizations and unifications such as the Æ-fairness defined by Mo and Walrand
in [16]. The sum throughput optimization can be obtained with Æ = 0, the proportional fairness
with Æ! 1, the average delay minimization with Æ = 2 and the max-min fairness with Æ!1. Fi-
nally, in [15], Altman et a.l. defined the generalized Æ-fair allocation which is, to the best of our
knowledge, the most general version of Æ-fair allocation to date.

In this chapter, we go further in the understanding of some game-theoretic properties of the
well-known generalizedÆ-fair allocation. Assuming decentralized decision-taking systems, we de-
rive some of the conditions for the generalized Æ-fair scheme to guarantee the existence of a sta-
ble partitioning of the players in groups. Particularly, we focus on the concavity constraints over
the utilities. We give the non-trivial game-theoretic interpretation of these conditions in terms
of measures of risks. The results are both theoretically and practically useful in networks in their
decentralized decision-taking paradigm (particularly coalitions formation problem and the stable
matching problem) with applications to the problems of decentralized tasks assignment (e.g. in
cloud computing or computer multi-core architectures) or connectivity management (D2D, clas-
sical mobile users association). This chapter aims at strengthening the links existing between
some well-known and used resource allocation schemes in networks, particularly the generalized
Æ-fair allocation, and the game-theoretic analysis to provide new insights for applications in mul-
tiagent systems.

7.2 Contributions

Our contributions can be summarized as follows:

• We show the importance of the game-theoretic analysis of risks and behaviors of agents un-
der uncertainty in networks. To the best of our knowledge, this is the first joint analysis of multia-
gents system in networks, coalition games, resource allocation and risks.

• We derive some of the conditions on the utility functions used in the generalized Æ-fair allo-
cation required for the existence of a core stable partitioning of the players in a multiagents system.
We particularly focus on the concavity constraints over the utilities. We give these conditions in
terms of pure fear of ruin. To the best of our knowledge, this is the first link between the general-
ized Æ-fair scheme, the existence of game-theoretic stable matchings or structures of players and
the measures of risk aversion.

• We show that the fear of ruin of a decision maker can be obtained as the limit of a sequence
of expected ratios of probabilities in even money gambles with decreasing gains. To the best of our
knowledge, this is a new interpretation of the fear of ruin.

In Section 7.5, we derive our main results in term of measures of risks aversion: the fear of
ruin and the pure fear of ruin. In Section 7.4, we give three examples of multiagent systems that
fall in the scope of the proposed modeling and analysis. In Section 7.6, we introduce the risk
and measures of aversion of a player. We show that the results of the previous sections can be
interpreted in terms gambles. Finally, we conclude.

7.3 Model

Let N be a set of players. The players can form groups, called coalitions. We denote C the set
of coalitions. Define a function v : C ! R+, called the characteristic function. The worth of a
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coalition may be produced by the coalition (e.g. C contains some workers and a firm producing
goods having a total worth) or may be exogenously fixed (e.g. a fixed amount of resource allocated
to any group such as a time-interval or a bandwidth). The worth v(C) of C 2C is shared among the
players in the group using a resource allocation scheme or fairness scheme. The game-theoretical
term is sharing rule. We denote (N ,C , v,D) this coalition game.

As a payoff maximizer1, any player is thus seeking for forming the group maximizing its own
payoff. Figure 7.1 shows a structure in the coalition formation problem and Figure 7.2 a structure
in the matching problem, or simply a matching.

(a)

(b)

Figure 7.1: Examples of structures in the coalition formation problem. In (a), the structure is a single coali-
tion made of all the players and called the grand coalition. In (b), the structure is composed of three coali-
tions.

The core stability is a cooperative solution concept that is robust to strong group deviations
(all the players in the group strictly prefer deviating). As already defined in chapter 3, no player
wants to leave her coalition except if there is a strictly positive gain for this player. The existence
of core stable structures is not guaranteed for all coalition games (multiagent systems) of the form
(N ,C , v,D) and may exist in some states of the system but not others.

Figure 7.2: Example of a matching with players belonging to two disjoint sets: the set of circles and the set
of triangles.

Observe that the cardinal nature of the coalition game (characteristic function, sharing rules
and players’ utilities) is not mandatory. The ordinal-based theory has preferences as primitives
(see chapter 3). In this chapter, we focus on the cardinal theory where the players have utility
functions defined over the agents’ a set of payoffs.

In Figure 7.3 we show an example of a structure resulting from a coalition formation game with
equal sharing as resource allocation scheme. In a coalition all the players receive the same payoff.
The players have partitioned in three coalitions. Each player receives a slice of the worth of the
coalition displayed as a circle. The size of the circle shows the worth of the coalition.

1By assumption, all the players are rational, thus utility and payoff maximizers (increasing utilities).
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Figure 7.3: Example of a structure and corresponding shares to the players. The worth of the coalition is
shown as a circle and each payoff by a slice.

7.4 Motivating Examples

We give three examples of game-theoretic multiagent systems where a resource is to be shared
among the players forming groups.

7.4.1 Competition Over Visibility on Social Networks

Assume a set of content creators and social networks such that the expected payoff results from
the individual posting strategies of the content creators over the social networks. It is surprisingly
interesting to observe how such a scheme can result from a mechanism not originally designed for
stability.

Figure 7.4 shows an example of matching between content creators and social networks. Content

Figure 7.4: An example of a matching with peer effects between content creators and social networks.

creator i sends messages to only one social network according to a Poisson process of intensity ∏i .
It is shown in [19] that the expected number of views of a content provider with respect to the
social network k is a Tullock rent seeking allocation of the form:

∏iP
j2µ(k)∏k

nk , (7.1)

where µ(k) is the set of content creators posting on the social network k and nk is the number of
viewers of the social network k. In some cases, the number of users of a social network may not
be constant and may depend on the content creators sending messages to it. In this case, nk is a
function of the coalition made of the content creators and the social network k and we can define
v(C) = nk (C) where k is the social network in C. Using the previous result, one can show that this
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is a stability inducing sharing rule and that it always exists a core stable matching of the content
creators to the social networks.

7.4.2 Example: D2D Connectivity Management

Consider a set of devices and a set of access points (APs). These two sets are disjoints. The devices
and APs are players. Devices can connect to APs or connect with each others (for a D2D commu-
nication) to form connectivity groups. The set of players is naturally partitioned in two as the set
of APs F and the set of devices W . The family of coalitions (see chapter 3) C considered here is,

C =
©
{ f }[S : f 2F ,S µW , |S|∑ M f

™
[ {Q ΩW }} (7.2)

By definition of C , a coalition is either an AP and a set of devices (at most that total number of
devices minus one) connected to it or a subset of devices forming a connectivity group (at most
the total number of devices minus one). The characteristic function v of the coalition game may
both take into account the productivity types2 of the devices (i.e. their limitations in transmission,
e.g. physical data rates) and the connectivity graph (a node is a device and an edge is a flow to be
transmitted between the nodes). In this case, we have v(C,GC) the worth of the coalition C with
connectivity graph GC.

Figure 7.5: An example of a mixed decentralized connectivity setting. The devices (squared) can either
connect to the access points (triangles) or connect with each others. All the nodes are players (devices or
access points).

7.4.3 Example: Assignment of Tasks to Machines

Assume a set of finite-size queues Q = {q1, . . . , qQ}. The size of the buffer of qi is lqi . Each queue has
a server and these servers may differ in their processing properties. Furthermore assume that each
server can be controlled. We denote ei the control parameter of the server of queue qi . As exam-
ples, consider a processing power or an amount of energy. Such controls can be found in computer
architecture (e.g. the Dynamic Voltage Scaling3 (DVS) and the Dynamic Frequency Scaling4 (DFS,
or CPU throttling)) or cloud computing.
We assume an ideal fluid model such that the service rate is shared among the tasks according to
a generalized Æ-fair allocation. We furthermore assume that the allocation satisfies the conditions
(98) and (99) so that it exists a core stable matching of tasks to queues. We furthermore assume

2Observe that the productivity types may be encoded in the form of a weighted graph such that the players are the
nodes and weighted edges between them give the productivity of the link.

3The DVS technique is a power management technique which consist in a dynamically changing the voltage of some
components such as the CPU or others.

4The DFS technique is another technique which consists in dynamically changing the frequency of a CPU.
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that the machines and the tasks are selfish players5. The tasks and the servers can match (group
in coalitions) to maximize their individual payoffs. The set of coalitions they can form is,

C =
©
{q}[S : q 2Q,S µW , |S|∑ lq

™
[ {{w} : w 2W } (7.3)

Each coalition has a worth v(C) that depends on the tasks, the server in the coalition and the
control parameter. As examples, the worth may be the service rate of the server or a unit time
interval. The dependance of the worth v(C) on the players can be illustrated by assuming a server
optimized for processing some kind of tasks (e.g. video) but being able to process any other tasks
at a cost in the resource to be shared. In Figure 7.6, we show example of a structure of coalitions.
The tasks and the servers are players. The servers have quotas and cannot accept more tasks than
their quotas. The top server can only perform green tasks, the middle one green and yellow asks
and the bottom one yellow and red tasks. By definition of the coalitions and sharing rules, in any

Figure 7.6: An example of a matching between machines (and their queues) and tasks. The top machine
can only process green tasks, the middle one can process both green and yellow tasks, the bottom one can
process red and yellow ones.

coalition the worth is shared among the set of players, including the machine. This means that
each machine is assigned a positive payoff, as any task in its queue. This payoff can be interpreted
in at least two ways. On the first hand, it may be the amount of worth the machine will spend
in processing its own tasks. As a simple example, take the machine to be an operating system
with maintenance routines such as memory cleaning (or any other). On the other hand, it may be
the worth or power the machine saves up in an idle mode. Consider an example from computer
architecture. If the payoffs are measured in time, then it is the amount of time the machine spends
in an idle mode, thus saving the energy required for processing. If the payoffs are measured in
clock rate (or equivalently, percentage of the CPU’s clock rate), then the CPU’s payoff is the amount
of clock rate it does not use to process instructions. Whatever the one or the other metric, this
clock cycles saving can be turned into a reduction of the dynamic consumption of the circuit by
switching off the clock signal of some part of the circuit (unused active devices such as flip-flops
switching states at clock signal) when needed. This technique is known in the name of clock gating.
Some famous example of application of the clock gating is the IBM PowerPC-based Xenon used in
the Microsoft Xbox 360 or the more recent Xbox One. Because it is not the purpose of the chapter,
we do not enter into more details the implementation of the clock gating in a system or the clock
gating policies. It is sufficient here to observe that the share of a machine may be interpreted as the
target of the clock gating system control policy when the machine is a CPU. Furthermore observe
that such a service discipline is not work conserving6 if we assume that the machine uses its payoff
in an idle form.

7.5 The Generalized Æ-fair Allocation: Stability, Risks and Behaviors

Consider a coalition game (N ,C , v,D) such that the allocation scheme D is the generalized Æ-
fair scheme in every coalition. In this section, we focus on the strict log-concavity condition of

5Equivalently, we assume that players control machines and tasks. Each player controlling a single-task or a single-
machine.

6The work conservation is the fact that a machine must be busy as long as there are packets in the system.
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Corollary 63 (see Chapter 3, Section 3.5) and on the utility functions used in the generalized Æ-
fair to guarantee the existence of core stable structures. The conditions are given in terms of an
indicator of behavior under uncertainty, the Pure Fear of Ruin (PFoR) (defined by Aumann and
Kurz in [10]). To the best of our knowledge this is the first connection between the generalized
Æ-fair allocation, the stability inducing sharing rules and the game theoretic notions of fear of ruin
and pure fear-of-ruin. In [15], Altman et a.l. defined the generalized Æ-fairness as resulting from
the following optimization problem:

max
x2X

∫(x) =

8
>><

>>:

1
1°Æ

nP
i =1

ºi ( fi (xi ))1°Æ, Æ 6= 1
nP

i =1
ºi log( fi (xi )) , Æ = 1

where Æ 2 [0,+1], fi are increasing and concave functions valued in [0,+1) and 0 ∑ ºi ∑ 1. This
maximization problem can equivalently by formulated in the following product form:

max
x2X

∫̃(x) =

8
>><

>>:

nQ
i =1

ui (xi ) =
nQ

i =1
e

ºi
1°Æ fi (xi )1°Æ

, Æ 6= 1
nQ

i =1
ui (xi ) =

nQ
i =1

fi (xi )ºi , Æ = 1

We call this problem the equivalent product form (or bargaining form) of the generalized Æ-fair
optimization problem. For the rest of this chapter, we relax the concavity assumption on the utility
functions fi , i 2 {1, . . . ,n} and seek for the constraints on these functions induced by the concavity
conditions for the existence of core stable structures. Before showing the results, we need to define
the fear of ruin and the pure fear of ruin of a player i with utility function fi .

Definition 94 (Fear of Ruin, [10]). The fear of ruin of player i with utility function fi at allocation
x is defined as:

FoR fi (x) =
fi (x)
f 0

i (x)
(7.4)

Remark 95. The risk aversion, boldness, fear of ruin and pure fear of ruin are functions of the utility
function of the player. It is important to be precise on the considered utility function, particularly
in this chapter where any player has two utility functions: the utility fi in the generalized Æ-fair
program or the utility ui in the equivalent product form.

Definition 96 (Pure Fear of Ruin, [10]). The pure fear of ruin of player i with utility function fi at
allocation x is defined as:

PFoR fi (x) = ° fi "(x) fi (x)
( f 0

i (x))2 (7.5)

Particularly, observe that FoR0
fi

(x) = 1+PFoR fi (x) and thus:

FoR fi (x) =
Zx

0
PFoR fi (s)d s +FoR fi (0)+x (7.6)

In Section 7.6, we give more results, details and interpretations of these quantities. In Section 7.6.4,
we give a new interpretation on the fear of ruin that can be used to interpret the following results.
When it is clear from the context which utility function is used, we denote PFoRi the pure fear of
ruin function of player i . Otherwise we use the notation in Definition 96.

We have the following results.

Proposition 97. The utility function ui of any player i 2N is strictly log-concave in the equivalent
product form of the generalized Æ-fair optimization problem if:

PFoR fi >°Æ (7.7)
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Proof. For Æ 6= 1. We have the second order derivative of ºi
1°Æ fi (xi )1°Æ such that:

@2

@x2
i

(
ºi

1°Æ fi (xi )1°Æ) =ºi [
@2 fi

@x2
i

fi (xi )°Æ°Æ(
@ fi

@xi
)2 fi (xi )°Æ°1] (7.8)

For ºi
1°Æ fi (xi )1°Æ to be strictly concave, the second-order derivative must be strictly negative. This

gives:
@2 fi

@x2
i

fi (xi )°Æ < Æ(
@ fi

@xi
)2 fi (xi )°Æ°1 (7.9)

multiplying both sides by fi (xi )Æ+1 gives the following second-order nonlinear ordinary differen-
tial inequation:

@2 fi

@x2
i

fi (xi ) < Æ(
@ fi

@xi
)2 (7.10)

which gives:
@2

fi

@x2
i

fi (xi )

(@ fi

@xi
)2

< Æ (7.11)

By definition of the pure fear-or-ruin, multiplying both sides by minus one gives the result:

°

@2
fi

@x2
i

fi (xi )

(@ fi

@xi
)2

>°Æ (7.12)

The case Æ = 1 is obtained the same way.

Proposition 98. The individual utility function ui of any player i 2N is increasing in the equiva-
lent product form of the generalized Æ-fair optimization problem for any Æ.

Proof. We have,
@ui

@xi
=

@

@xi
(e

ºi
1°Æ fi (xi )1°Æ

) =ºi
@ fi

@xi
fi (xi )°Æe

ºi
1°Æ f (xi )1°Æ

(7.13)

By positivity of the exponential, of fi and the fact that fi is increasing, we have that the first order
derivative of ui is always positive.

Proposition 99. The individual utility function ui of any player i 2N is concave in the bargaining
problem equivalent to the generalized Æ-fair optimization problem if:

PFoR fi (xi ) ∏ºi fi (xi )1°Æ°Æ (7.14)

Proof. For Æ 6= 1. In the equivalent product form of the generalized Æ-fair allocation, we have

shown that the individual utilities must be of the form ui (xi ) = e
ºi

1°Æ fi (xi )1°Æ
. We have:

@2ui

@x2
i

=ºi [
@2 fi

@x2
i

fi (xi )°Æ°Æ(
@ fi

@xi
)2 fi (xi )°Æ°1 +ºi

@2 fi

@x2
i

fi (xi )°2Æ]ui (xi ) (7.15)

For ui to be concave, we must have @
2
ui

@x2
i

∑ 0. We thus have:

@2 fi

@x2
i

fi (xi )°Æ°Æ(
@ fi

@xi
)2 fi (xi )°Æ°1 +ºi

@2 fi

@x2
i

fi (xi )°2Æ ∑ 0 (7.16)

Multiplying on both sides by fi (xi )1+Æ, we obtain:

@2 fi

@x2
i

fi (xi )+ (
@ fi

@xi
)2(ºi fi (xi )1°Æ°Æ) ∑ 0 (7.17)
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which can be written on the following form:

@2
fi

@x2
i

fi (xi )

(@ fi

@xi
)2

∑ Æ°ºi fi (xi )1°Æ (7.18)

we thus obtain the result:

°

@2
fi

@x2
i

fi (xi )

(@ fi

@xi
)2

∏ºi fi (xi )1°Æ°Æ (7.19)

The case Æ = 1 is obtained the same way.

We now give two examples of the constraint induced by Proposition 97 on the design of a mul-
tiagents system with generalized Æ-fair allocation scheme.

Example 100. For any player i in the set of players N , take fi (x) = ln(1+ki x), ki 2R+§. We have:

PFoRi = ln(1+ki x) (7.20)

Proposition 97 requires PFoRi >°Æ. We conclude that in a system with logarithmic utility functions
of the form fi (x) = ln(1+ki x), ki 2R+§, for any player i in N , condition 97 is satisfied if Æ is strictly
positive.

Example 101. For any player i in the set of players N , take fi (x) = ki x, ki 2R+§. We have:

PFoRi = 0 (7.21)

Condition 97 is satisfied if Æ is strictly positive.

7.6 Risks and Measures of Aversion

The aim of this section is to give an interpretation of the results of Section 7.5. These results have
shown that some conditions for existence of core stable structures in multiagent systems with
generalized Æ-fair allocation of the resource can be formulated as constraint on the pure fear of
ruin. In the game-theoretic literature, the pure fear of ruin is defined as one of the measure of
risk aversion of a player when facing uncertainty. These measures quantify the (un)willingness of
the player in entering a situation where there is a positive probability to loose some resource. In
this section, we define the risk, its related concepts and the measures of risk aversion, boldness,
fear-of-ruin and pure fear-of-ruin. We provide a new interpretation of the fear of ruin.

7.6.1 Risks and Gambles

Assume a player i with resource x (also called risk-free resource, measured in units of incomes7)
and its increasing utility function ui .

Definition 102. The risk is a real-value random variable z̃ with probability distribution P. The ex-
pected value of the risk E[z̃] is called the actuarial value. If it is is null the risk is said to be actuarially
neutral (or fair). When receiving a risk z̃ in resource, the original resource x of the player is turned
into random variable, x + z̃. If the support of the risk is a closed interval of the form [zmin, zmax], the
minimum realization gives resource x + zmin and the maximum realization gives resource x + zmax.

Two risky situations are of particular importance: the even money gamble and the asymmetric
ruin gamble.

7e.g. dollars, bandwidth, throughput, number of views.
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Figure 7.7: An example of risk aversion in an actuarially neutral (E(z̃) = 0) even-money gamble where the
(random) risk z̃ is valued in {+70,°70}. The fortune x is 80 units of resource.

Definition 103. A player entering an even money gamble with amount x has a probability P(z̃ =
+h) = 1°p to win an amount +h and a probability P(z̃ = °h) = p to loose an amount °h.

Definition 104. A player entering an asymmetric gamble with amount x has a probability P(z̃ =
+h) = 1°q to win an amount +h and a probability P(z̃ = °x) = q to loose x.

In figure 7.7, we show an example of an actuarially neutral even-money bet. There is probabil-
ity p for the player to win z and 1°p for her to win z 0. Here x = 80, z = +70, z 0 = °70 and p = 0.5.

The expected resource is E[x + z̃] = x +E[z̃] (since x is the original deterministic resource). By
definition of the utility function which maps an absolute worth in an subjective one, the player
perceives any resource x as ui (x). Thus, the actuarial value E[z̃] gives the player a utility u(E[x +
z̃]) = u(x + E[z̃]) of the expected resource. The expected utility of the risky resource is given by
E[u(x + z̃)]. The expected utility is the one to be considered by the player when receiving the risk.
Observe that if ui is convex E[u(x + z̃)] ∏ u(E[x + z̃]) and if it is concave E[u(x + z̃)] ∑ u(E[x + z̃]).

Definition 105 ([8]). The cash equivalent (also called certainty equivalent or value of the risk), de-
noted ºa(x, z̃) is defined as the amount of resource to be given to the player to make her indifferent
between receiving the risk z̃ or receiving x +ºa(x, z̃) without risk (i.e. with certainty), i.e.,

ui (x +ºa(x, z̃)) = E[ui (x + z̃)] (7.22)

Definition 106 ([8]). The insurance premium ºI(x, z̃) is defined as the opposite of the cash equiva-
lent.

As explained in [8], ºa(x, z̃) can be interpreted as the smallest amount (in units of resource) for
which the decision maker would willingly sell the expected allocation if he had it. The most natural
interpretation of the insurance premium can be given when considering unfavorable risks. In this
context, the insurance premium is the maximum amount of resource that the player is willing to
pay for a third party (called insurance) to lever the risk and guarantee her x°ºI(x, z̃) with certainty.

In real-life applications, this does not necessarily mean that the risk is actually transferred to
a third party and that the player is free of risk. Usually, the third party restores the resource to
the amount x (for an example, see Example 107). The insurance premium is equal to the cash
equivalent in absolute value. Remark that if the cash equivalent is negative and thus is a loss, then
the insurance premium is a positive amount to pay.

Example 107. Assume that player i owns a housed valued x = 10 units and assume that there is a
material risk of damage (fire, flood, etc.) measured in units of resource (e.g. a fire can decrease the
worth by 8 units). One can consider that the material risk is mapped to a risk in resource. Assume
that the player pays an insurance premium ºI = 2 to the insurance (third party). Naturally, the
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damage can still occur: the material risk still exists. In case it occurs, the insurance restores the
house (or pays back the player for her to restore it) at the original worth 10. In the end, from the
point of view of the player, there is no risk in resource. This is the reason why it is said that the risk is
transferred to the insurance and that the player receives x °ºI = 8 with certainty.

Definition 108 ([8]). The risk premium is defined as the difference between the actuarial value and
the value of the risk:

º(x, z̃) = E[z̃]°ºa(x, z̃) (7.23)

It gives the amount of resource to be added to (or picked from, depending on the sign of the differ-
ence) the actuarial value E[z̃] to obtain the cash equivalent ºa(x, z̃).

In other words, it is the gain (or loss) in units of resource from accepting the cash equivalent
and not receiving the risks (hence the name risk premium). The value of the risk can be written:

ºa(x, z̃) = E[z̃]°º(x, z̃) (7.24)

Example 109. Assume that a decision maker i owns a house that is assessed x = 10 units of resource.
The utility function ui of the decision maker is given by ui (x) = x

1
2 . Assume the risk z̃ valued in

{°5,0} such that P(z̃ = °5) = 0.01 and P(z̃ = 0) = 0.99 . The expected utility of receiving the risk is
E(u(x + z̃)) = 0.01§51/2 +0.99§101/2 = 3.15. The cash equivalent of the risk is obtained by looking
for the amount of resource y such that,

u(x + y) = E(u(x + z̃)) = 3.15 (7.25)

We obtain,
(10+ y)1/2 = 3.15 (7.26)

which gives y = °0.0775. The player negatively values the risk. By definition, he is willing to pay a
maximum of 0.0775 units of resource to the insurance to not take the risk.

7.6.2 Risk Aversion

One of the most important measure of the decision-taking analysis in a risky settings is called the
Absolute Risk Aversion (ARA) or absolute measure of risk aversion. It is used in game theory and
economy (e.g. finance, insurance).

Definition 110 ([8]). The absolute risk aversion r is a local measure that quantifies the attitude of
this player toward risk and can be interpreted as a measure of the curvature of the utility function
of the player.

r (x) = °
u

00

i

u
0
i

(x) (7.27)

Assume a risk z̃ of mean E[z̃] and small variance 8, æ2
z̃ ! 0. We have (see [8] for the details) the

second order approximation of the risk premium º(x, z̃):

º(x, z̃) =
1
2
æ2

z r (x +E[z̃])+o(æ2
z ) (7.28)

If the risk aversion increases then the risk premium º(x, z̃) and the insurance premium ºI(x, z̃) in-
crease. The player wants to pay more to secure her resource and is said to be more risk averse.

If u00(x) is negative then r (x), the risk premium º(x, z̃) and the insurance premium ºI(x, z̃) are
positive and the player is willing to pay ºI(x, z̃) not to receive the risk but x°ºI(x, z̃) with certainty.
The player is risk averse. The higher the absolute risk aversion, the higher he is willing to pay. If the
risk aversion increases the player is more risk averse, if it decreases the player is less risk averse. In

8The risk is a random variable.
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other words, a player is risk averse when her marginal utility of the resource is decreasing. If the
utility is linear the player is said to be risk neutral and if it is strictly convex he is said to be risk lover.

The risk aversion can also be shown to be an approximation in the small loss regime of the
bias to be introduced in the probability distribution of an even money gamble for the player to be
indifferent between entering the gamble or not. This interpretation has initially been proposed
by Pratt in [8] and is the starting point of Aumann and Kurz in [10] who consider an asymmetric
gamble with risk of ruin to define the fear of ruin. We will use it later in the chapter to interpret
some of our results.

Definition 111 ([8]). The probability premium is defined as the difference p(x, z̃) =P(z̃ = +h)°P(z̃ =
°h) between the probability of the events of the gamble that makes the player indifferent between
the initial resource x and receiving the risk z̃:

ui (x) =
1
2

£
1+p(x, z̃)

§
ui (x +h)+ 1

2
[1°p(x, z̃)]ui (x °h) (7.29)

The probability premium can be understood as the bias to be added in the probability distri-
bution in favor of the winning event for the player to be indifferent between entering the gamble
or not. In the limit case of infinitely small risks (h ! 0), we obtain the following second-order
development:

p(x, z̃) =
h
2

r (x)+O(h2) (7.30)

The risk aversion is thus defined as twice the difference per unit risked between the probability
distribution of the actuarially neutral risk (P(z̃ = +h) =P(z̃ = h) = 1

2 ) and the probability distribution
(of the risk) that makes the player indifferent in expectation between receiving x resource and the
risk z̃. In the small loss regime, if r (x) increases, then the player requires a higher probability to
win to be indifferent.

Remark 112. The absolute risk aversion is invariant under positive and linear affine transforma-
tions of the utility. As a consequence, it is constant over any set of fully equivalent utility functions 9.

7.6.3 Boldness, Fear of Ruin and Pure Fear of Ruin

Consider the asymmetric ruin gamble. For the player to be indifferent between not entering the
bet and risking her allocation x, the following must be satisfied:

ui (x) = (1°q)ui (x +h)+qui (0) = (1°q)ui (x +h) (7.31)

where ui (0) = 0. If equality (7.31) holds at higher q then the player accepts a higher risk of ruin.
If it holds at lower q then he accepts a lower risk of ruin. The probability q is thus a measure of
boldness.

Definition 113 ([10]). The boldness bi of player i is the limit for small bets regime (h ! 0) of the
probability of ruin per unit of bets:

bi (x) =
u0

i

ui
(x) = lim

h!0

q
h

=
(ui (x +h)°ui (x))/h

ui (x +h)
(7.32)

The fear of ruin is the inverse of the boldness:

FoRi (x) =
ui (x)
u0

i (x)
(7.33)

9 Equivalent utility functions induce the same preferences over strategy profiles or outcomes of a game. See [5] and
the utility theory.
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In [14], Foncel and Treich have shown that when the probability of ruin q is small, the insur-
ance premium ºI(x, z̃) can be approximated by:

ºI(x, z̃) ª q
ui (x)°ui (0)

u 0(x)
(7.34)

which shows that if ui is an increasing function and has a negative second-order derivative (risk-
averse player) then the more resource x the player has, the higher is the amount he is willing to
pay to secure her resource. In fact, as observed in [14], there are two reasons. First, there is more
to loose (ui (x 0) > ui (x) for x 0 > x). Second her marginal utility for the resource is lower (decreasing
first-order derivative, i.e. the richer the player the lower the utility of a unit of resource), i.e. he
perceives the resource as having less worth in utility as before so he can spend more in insurance.
The fear of ruin captures the risk aversion towards large risks. It has received a particular interest
in the value of life literature in the purpose of the study of willingness to pay for small reductions
in mortality risks (the ruin of the player is her death of utility ui (0)), see [14] and references therein
for more details.

The definition of the pure fear of ruin of a player was given in Definition 96. It is the product
of the fear or ruin and the risk aversion (the utility function of the player is ui ):

PFoRi (x) = FoRi (x)£ ri (x) = °ui "(x)ui (x)
(u0

i (x))2 (7.35)

7.6.4 Result

We now show the main result of this section.

Proposition 114. Assume a player i with utility function ui and resource x.

FoRi (x) = lim
n!+1

x

√

1+2
nX

k=1

1
n

pk,n

qk,n

!

+FoRi (0) (7.36)

where pk,n is the probability premium in the even money gamble {°g (x,k,n),+g (x,k,n)} at k x
n ,

qk,n is the probability of ruin that makes the player indifferent in the ruin gamble with winning
amount +g (x,k,n) at k x

n and g :R+£N£N!R+ is any function such that, 8n 2N§,8k 2 {1, . . . ,n}:

g (x,n,k) ∑ (k °1)
x
n

and lim
n!+1

g (x,n,k) = 0 (7.37)

The proof of this proposition is given in Appendix 7.9.
This result can be interpreted by considering a sequence of even money gamble on the path of

ruin from x to 0.
Assume an amount x of resource and a sequence of n even money gambles at fixed resource

level xk . Gamble k, k 2 {1, . . . ,n} is at resource allocation xk = (k °1) x
n with z̃ = °g (x,n,k) and z̃ =

+g (x,n,k). Furthermore assume the function g such that g (x,n,k) = + x
n . When winning gamble

k, the player’s enters the next gamble k+1. Starting at x, loosing all the gambles from k = n to k = 1
leads the player to the gamble at 0. Consider gamble k. The probability premium (that makes the
decision maker indifferent) is denoted pk,n (see equation (7.29) for the definition of this premium).

The expected resource in the actuarially fair even money gamble at xk is E[xk + z̃] = xk . In
the biased one that makes the player indifferent, we have E[xk + z̃] = xk + pk,n g (x,n,k). The dif-
ference between these two expected amounts is �Ek,n = pk,n g (x,n,k). We call this amount the
money equivalent of the probability premium. It is an equivalent expected amount of resources
to be introduced in the gamble to make the player indifferent between staying out or taking on
the gamble. This amount is not given to the player but is introduced in the form of a probability
premium or bias in probability. It is a constraint imposed by the player on the probability distri-
bution of the events of the gamble for her to be indifferent in entering the gamble and not. This
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may be understood as a requirement or a cost emitted by the player to a third party controlling the

probability distribution. We obtain that pk,n = �Ek,n
g (x,n,k) is the expected amount to be invested in the

gamble per unit risked (by the player) to make her indifferent between staying out or taking on the
gamble.

The fear of ruin can be written as:

FoRi (x) = lim
n!+1

x

√

1+2
nX

k=1

1
n

1
qk,n

�Ek,n

g (x,n,k)

!

+FoRi (0) (7.38)

By assumption, g (x,n,k) = x
n which gives:

FoRi (x) = lim
n!+1

x +2
nX

k=1

1
qk,n

�Ek,n +FoRi (0) (7.39)

By definition of qk,n , we have:

FoRi (x) = lim
n!+1

x +2
nX

k=1

ui ((k °1) x
n + g (x,n,k))

ui ((k °1) x
n + g (x,n,k))°ui ((k °1) x

n )
£�Ek,n +FoRi (0) (7.40)

Observe that the terms in the sum in (7.40) can be written in the following form:

100£ expected investment in resources
loss in utility
total utility £100

(7.41)

where the expected investment is �Ek,n , the total utility is ui ((k °1) x
n + g (x,n,k)) and the loss is

ui ((k °1) x
n + g (x,n,k))°ui ((k °1) x

n ).

The denominator ( loss in utility
total utility £100) in (7.41) is the rate of loss in total utility (or owned resources).

It gives the fraction (in percentage) of the total utility (in utility) ui ((k ° 1) x
n + g (x,n,k) that the

loss g (x,n,k) = x
n represents. The numerator in (7.41) is the equivalent expected amount of money

to be introduced in the gamble to make the player indifferent at (k ° 1) x
n . We interpret it as the

minimum cost for the player to enter the gamble and take the risk to loose again the loss or get it
back.
Thus, the ratio,

øk,n =
expected investment in resources

loss in utility
total utility £100

(7.42)

is the equivalent expected amount of resource per percentage of loss in total utility to be intro-
duced in the gamble for the player to be indifferent between staying out of the gamble and enter-
ing in the gamble and take the risk to take back her loss or loose it again.

We conclude that the fear of ruin of player i at x,

FoRi (x) = lim
n!+1

x +200
nX

k=1

�Ek,n

øk,n
+FoRi (0) (7.43)

measures the cumulated equivalent expected investment per percentage of loss in total utility
along the pass from x to the ruin. According to this interpretation, at resource allocation x, the
player knows the cumulated cost to give her the opportunity to get back the lost resource x. The
limit of this cost is the fear of ruin. The higher this cumulated cost, the higher the fear of ruin.

7.7 Conclusion

In this chapter we have analyzed some of the conditions required for the generalized Æ-fair alloca-
tion of a resource to fall in the class of game-theoretic (core) stability inducing sharing rules under
certain conditions on the utility functions of the players. Particularly, we have focused on the strict
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log-concavity of the utility function of any player in the equivalent product form of the general-
ized Æ-fair program. We have given these conditions in terms of pure fear of ruin, a game-theoretic
measure of the non-willingness of a player in entering a risky situation where there is a non-zero
probability for ruin. To the best of our knowledge, this is the first use of this measure since Au-
mann and Kurz’s [10]. This chapter shows some new constraints on the use of fairness schemes
in the design of multiagents system in networks. Possible future works include the analysis of the
other conditions required for the guaranteed existence of core stables structures.One may also go
further in the understanding of applications of the pure fear of ruin in networks and in the analysis
of the risk in matching games and the coalition formation problem.
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S̃n = °2
x
n

nX

k=1

ui ((k °1) x
n + g (x,n,k))

ui ((k °1) x
n + g (x,n,k))°ui ((k °1) x

n )

£
ui ((k °1) x

n + g (x,n,k))°2u((k °1) x
n )+u((k °1) x

n ° g (x,n,k))

ui ((k °1) x
n + g (x,n,k))°ui ((k °1) x

n ° g (x,n,k))
(7.54)

7.9 Appendix: Proof of Proposition 114

Proof. Taking the first derivative of the fear of ruin, we have:
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where:
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is called the pure fear of ruin of player i . We thus have the following:

FoRi (x)°FoRi (0) =
Zx

0
1+FoRi (s)£ ri (s)d s (7.48)

= x +
Zx

0
FoRi (s)£ ri (s)d s (7.49)

= x +
Zx

0
PFoRi (s)d s (7.50)

which gives:

FoRi (x) = x +
Zx

0
PFoRi (s)d s +FoRi (0) (7.51)

We show that the fear of ruin FoRi at x can be approximated as x plus the product of x and the
limit of a sequence of expected pure fear of ruins.

By Riemann integrability of function PFoRi , we can construct a Riemann sum Sn that con-
verges to

Rx
0 PFoRi (s)d s. As an example, we have the left Riemann sum10:

Sn =
x
n

nX

k=1
PFoRi ((k °1)

x
n

) (7.52)

such that:

lim
n!+1

Sn =
Zx

0
PFoRi (s)d s (7.53)

For the rest of this section, we denote I(x) the integral
Rx

0 PFoRi (s)d s. Consider the sum S̃n given
in equation (7.54) where g :R+£N£N!R+ is any function such that, 8n 2N§,8k 2 {1, . . . ,n},

g (x,n,k) ∑ (k °1)
x
n

and lim
n!+1

g (x,n,k) = 0 (7.55)

We show that one can use S̃n as an approximation of Sn in (7.53), i.e.,
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n!+1
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Zx

0
PFoRi (s)d s|! 0 (7.56)

10Using limn!+1 Sn = limn!+1
Ø°Æ

n
Pn

k=1 f (Æ+ (k °1)Ø°Æn ) =
RØ
Æ f (s)d s
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Using Taylor’s formula,

f (x +h) =
nX

k=0

f (k)(x)
k !

hk +Rn(x) (7.57)

where f (k)(x) is the k-th derivative of f at x and Rn(x) is the o(hn) remainder term.
One can write,
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and,
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Introducing this in S̃n , we obtain:
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Since Sn converges to I(x) as n goes to infinity, by definition we have:

8≤ 2R+§,9Ns.t.8n > N, |Sn ° I(x)| < ≤ (7.61)

and, since the remainders Rn and Qn are o(hn) for all n, we have:

8≤0 2R+§,9N0s.t.8n > N0, |S̃n °Sn)| < ≤ (7.62)

Using S̃n ° I(x) = S̃n °Sn +Sn ° I(x) and the triangular inequality we have,

|S̃n ° I(x)|∑ |S̃n °Sn |+ |Sn ° I(x)| (7.63)

We conclude,
8≤ 2R+§,9M = max(N,N

0
) s.t. 8n > M, |S̃n ° I(x))| < 2≤ (7.64)

The difference can be made arbitrary small. The sum S̃n converges to I(x) as n goes to infinity.
Using the previous definitions, S̃n can be written as:

S̃n = 2
x
n

nX

k=1

pk,n

qk,n
(7.65)

where qk,n is the probability making the player indifferent in the gamble z̃ 2 {°(k °1) x
n , g (x,n,k)}

and pk,n is the probability premium making the player indifferent in the even money gamble z̃ 2
{°g (x,n,k), g (x,n,k)}.
Introducing the term 1

n in the sum, we obtain the following:
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n
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(7.66)

We finally obtain:
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Chapter 8

Matching Games and Crowdsourcing

In this chapter, we analyze a two-sided crowdsourcing marketplace with externalities and schedul-
ing constraints on the firms’ side using game theory, particularly matching games. We consider the
introduction of the stability property in such markets, a property that has been shown by A.E. Roth
and others as essential for the long-term participation of the agents in the market. This problem
we consider allows for crowdsourcing platforms with more rich and complete opportunities both
for workers and firms because we allow for intra and inter-firms scheduling constraints. As exam-
ples of such settings, consider supply chains or subcontracting with outsourcing. We show that the
problem does not fall in the scope of existing work in the stable matching theory and extends the
theory of stable matching with contracts and externalities. We particularly introduce constrained
substitutability condition to deal with constraints inducing the non-substitutability. We show the
conditions for the existence of pairwise stable matching, obtained as the fixed point of a modified
deferred acceptance algorithm proposed by Pycia and Yenmez in [1]. Furthermore, we define new
stabilities adapted to the problem and propose an approach to bridge the gap between the game-
theoretic analysis of the considered two-sided markets and non-cooperative game, as proposed
in [2]. These results rely on a transformation of the crowdsourcing problem in a non-cooperative
problem in normal and extensive form.
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8.1 Introduction

Crowdsourcing is an effective paradigm for human-powered problem in which many companies
propose to a group of individual users varying knowledge, heterogeneity, via a flexible open call,
the voluntary undertaking of tasks.

There exist several commercial systems used in crowdsourcing [3–7]. The most popular is
Amazon Mechanical Turk (MT) [3] so that there exists a wide body of works reporting on usage of
MT to complete tasks ranging from natural language annotation to opinion evaluation and even
spam identification. As another example, TaskCN is the largest platform covering the Chinese
market [8]. Furthermore, specialized platforms also exist, such as [5] or [6] for software devel-
opment and [4] providing the support of small labour service in neighborhoods and [7] provides
crowdsourced services for data labeling and semantic data analysis.

Crowdsourcing systems fall in the scope of two-sided labor markets with a tripartite structure
composed of workers, firms and a platform (in our framework: the matching mechanism or en-
gine), as identified in [9]. As known in the game-theoretic analysis of two-sided markets, in such
markets there are some fundamental properties (such as stability or truthfulness) to be verified by
the matching mechanism for the agents to sustainably take part in the market and avoid its unrav-
elling (agents turn to alternative matching solutions that benefit them). In this chapter, we focus
on the stability property, as defined in matching games, that has experimentally been shown to be
necessary for the participation of agents in markets such as college admission or hiring markets
such as interns to hospitals. The theoretical tools develop by game theorists and economists to
study such markets and design their matching mechanism have evolved along with the markets
and their increasing complexity in terms of number of participants and specificities (contracts,
externalities, etc.). In this chapter, we study a two-sided crowdsourcing problem with contracts,
externalities and scheduling constraints from the game-theoretic point of view, particularly focus-
ing on the stability property.

Based on recent work from the matching theory [1], we show the conditions for the existence
of a pairwise stable matching and give an algorithm converging to such equilibrium. This requires
the definition of a new substitutability, called constrained substitutability and related conditions
exhibiting new specific constraints on choice functions. Furthermore, following [2] in the game-
theoretic unification of two-sided markets with non-cooperative game theory, we transform our
original constrained crowdsourcing problem in a non-cooperative game in normal form and give
the first analysis of the matching obtained as a mixed Nash equilibrium. We show that, in the
general case of our problem, there may not exist Nash equilibrium in pure strategies. Furthermore,
we also transform the problem in a non-cooperative game in extensive form and give the first
analysis of the matching obtained as a Subgame Pure Nash Equilibrium (SPNE).

A survey covering a classification and several technical aspects of crowdsourcing is found
in [10]. Issues requiring theoretical modeling are identified in [9]: in our chapter we address specif-
ically the strategic interactions which lead to match workers and tasks.

Several works have proposed mechanism design for crowdsourcing. E.g., reverse auction al-
gorithms have been recently proposed in [11]: the aim is to implement a truthful mechanism
able to maximize correct binary labeling under budget constraints. The authors of [12] address
the problem of heterogeneity in crowdsourcing markets on the Internet. They propose a truthful
budget-feasible mechanism which is incentive compatible and applies to the one-to-one match-
ing scenario for splittable tasks. Budget feasible mechanisms have been proposed first by Singer
and specialized for one-to-one matching crowdsourcing [13].

Mobile crowdsensing is a recent paradigm studied in a number of works, e.g., [14; 15]. In [14]
a mechanism with budget constraint is applied. The authors of [15] provide a game theoretical
framework for users’ path selection when they perform geographically referenced mobile crowd-
sourcing tasks; a distributed asyncronous solution based on potential games is devised. This work
does not look at the stability of the marketplace as studied in this paper.

In the crowdsourcing problem, we consider a constrained two-sided market with contracts
and externalities in the classical framework of firms and workers where the firms want their tasks
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to be performed by workers who get paid for the execution. Nevertheless, there are other applica-
tions to the considered setting.

As a first alternative application, consider a reversed market obtained by permuting firms and
workers. The worker have tasks to be performed according to scheduling constraints. Then, turn
the tasks into places and interpret the directed scheduling graph as a set of physical paths between
locations. This is a problem where mobile users move in space from place to place and can execute
tasks along their path.

As a second application, consider a matching mechanism for cloud services. Define the work-
ers as cloud servers of companies, the firms as software applications seeking for a decentralized
computing of their tasks. The scheduling constraints defines the constraints among the tasks to
be executed for the applications. The contracts define the terms of execution of the tasks in the
companies’ servers. As basic examples of such terms one can consider the amount of storage or
the processing power dedicated by the server to the task involved in the contract. One can also
consider the definition of payments from the application (thus its owner) to the companies for the
execution of the tasks by the servers. A stable matching in this case would be a set of triplets (ap-
plication, task, execution terms) defining not only which servers perform the tasks of the clients’
applications (given the constraints) but also the terms of the execution and such that no single
server, application or pair (server,application) would prefer deviating for a contract (not in the
matching) defining the execution of a task.

In [16], Crawford and Knoer analyze a competitive labor market with heterogeneous firms and
workers and perfect information (i.e. the agents know the market). They study the core stable al-
locations of the market which is shown to be an appropriate equilibrium concept for such market.
An allocation is an assignment between firms and workers and the salaries for the corresponding
jobs. In the paper, their focus on one-to-one matchings but the results extends up to the many-
to-many case. The characteristics of any pair such as the satisfaction, the productivity and the
salaries for the jobs are assumed to be integers. As a consequence, the model falls in the class
of discrete ones. The satisfactions and productivities are assumed separable across firm-worker
pairs, i.e. are independent from the assignment in the market. They furthermore assume continu-
ous downward-sloping utility frontier for each pair (worker,firm) and transferable utility (salaries
paid in a good that can be transferred between the players of a pair). A dynamic salary adjustment
process (also called competitive adjustment process) is proposed and shown to converge to an al-
location in the core. This guarantees its existence (non-emptiness) and the strict Pareto-efficiency
of the assignment. The authors show that this process can be viewed as a computational alterna-
tive to solve the optimal assignment and transportation problem. The process allows for the agents
in the market to fix the salary characteristic endogenously. They particularly show that the strict
core of the continuous market is non-empty (emptiness of it would contradict the non-emptiness
of the core of the discrete market) and that the assignment at the convergence point of the process
is associated to an allocation of the strict core of this market. Observe that a discrete core alloca-
tion may not be in the continuous cores. They also show that, as in [17], that there exists a polariza-
tion of the interests of the agents over the core and that the salary adjustment process converges
to the proposers optimal allocation under the assumption of strict preferences. This work general-
izes Gale and Shapley’s work in [17] the preference vary in time due to the dynamic adjustment of
the salaries. It also generalizes Shapley and Shubik’s one in [18] since the results are still valid for
arbitrary utility functions as long as the separability and continuous downward-sloping frontier
assumptions hold and with an arbitrary number of endogenous jobs characteristics (salaries and
more).

In [19], Roth studies a many-to-many model of job-matching between firms and workers with
contracts. A contract is defined by a set of elements such as the salary, the working conditions or
others. Firms and workers have preferences over sets of contracts. The preferences of a worker
over sets of jobs do not depend on the co-workers and the preferences of a firm over sets of jobs
do not depend on the other firms the workers are working for. Each worker can be hired by a
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firm for at most one job. The preferences of the agents are strict (no indifference) and the for-
malism of choice functions is used. A matching, also called outcome, is a set of contracts. It is
more complete than an association since it gives the working conditions. Coalitions are made of
firms and workers. A matching is stable if there does not exist a coalition of players that would
all prefer re-contracting while potentially maintaining other contracts. The set of stable outcomes
is a subset of the core defined by strict domination. Roth assumes the Pareto separability which
mainly requires that, given any pair (firm,worker), the set of Pareto optimal contracts between the
two is independent of the matching. He furthermore assumes the substitutability of the contracts,
which says that any contract chosen among a group will be chosen in a less preferred group. Roth
shows that the blocking coalitions can be reduced to pairs, that the set of stable outcomes is al-
ways nonempty and that there exists firm-optimal and worker-optimal outcomes. He furthermore
gives a finite stable algorithm and shows at the side-optimal outcomes no player on the optimal
side would choose contracts from any other stable matching.

In [20], Sasaki and Toda study the two-sided matching with externalities. They show that one-
to-one matchings may not exist. As a solution to the problem they proposed a new (weaker) sta-
bility: a pair of agent can block a matching if they prefer forming the pair under all possible re-
matching of the other players. The set of possible rematchings being predicted by the players of
the pair by an estimation function. Such a solution is shown to always exist. They showed that
the set of weakly stable matchings is always non-empty if and only if each agent has a universal
estimation function which considers all matchings possible. Their idea to define a new stability in
settings where classical conditions cannot be satisfied departed from the usual approach assum-
ing pairwise stability as a solution concept (see [1] for more details).

In [21], Echenique and Yenmez study the many-to-one matchings with preferences over col-
leagues (or co-matched agents). The paper is formulated in terms of the academic labor market
where workers are students and firms are colleges. They analyze a fixed point formulation of the
problem and show an algorithm converging to the core stable matching if the core is not empty.

In [22], Ostrovsky studies the stability in supply chains. In a supply chain, the agents can be
distinguished in three classes: (i) the suppliers, (ii) the buyers and sellers or intermediaries, and
(iii) the consumers. These agents are partially ordered along the supply chain and the correspond-
ing contract network is acyclic. In this paper, Ostrovsky focuses on another stability concept called
chain-stability. A set of contracts or matching in a supply chain is called chain-stable if there are no
blocking downstream chains of contracts. Assuming full substitutability1, he has shown that there
exists a chain stable matching for any supply chain satisfying full-substitutability. It was further
shown by Hatfield and Kominers in [23] that if the contract network is acyclic, then chain-stable
outcomes are equivalent to set-stable outcomes2.

In [24], Fleiner et a.l. study a general networks of bilateral contracts which generalizes the
previous works on matching with contracts, particularly Ostrovsky’s work on supply chains [22].
By definition, a contract network is a multi-sided matching market in which firms form down-
stream contracts to sell outputs and upstream contracts to buy inputs. Fleiner et a.l. define the
trail stability as a new stability subsuming chain stability but weaker than set stability. They also
define the weaker notion of full trail-stability. They show that the trail-stability is equivalent to the
chain stability in acyclic contract networks and to pairwise stability in two-sided many-to-many
matching markets with contracts. Trail-stable and full trail-stable outcomes are shown to exist in
network contracts under full substitutability and irrelevance of rejected contracts. Furthermore,
if the preferences also satisfy the separability condition, the set of trail-stable outcomes contains
buyer-optimal and seller-optimal outcomes. Finally, in the setting where contract specify prices,
if in addition the complete prices and price separability assumptions are satisfied then compet-
itive equilibrium exists and it is trail stable. A generalized salary dynamic adjustment process is
proposed, as in [19][16].

As observed in [1], only few papers look at standard stability in the general matching problem

1Same-side substitutability and cross-side complementarity.
2Robust to deviations by sets of firms.
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with externalities. This work developed in this chapter falls in this class. In [25], Bando studies a
many-to-one matching market (without contracts) with externalities only on the firm’s side and
due to hired workers only. The model is formulated in terms of choice functions. As in [20], a new
stability concept called weak stability is defined. They define the notion of incredible deviation
and strongly blocking pair such that weakly stable matching that cannot be strongly blocked by
any pair. Such weak stable matching is show to exist under the assumptions of extended substi-
tutability, increasing choice 3 and no external effect by unchosen worker. If such conditions are not
satisfied, then a weak stable matching may not exist. These are thus necessary conditions for the
existence of weak stable matchings in this setting. In [26], a modified deferred acceptance algo-
rithm is proposed and analyzed. This algorithm works the following: the workers (simultaneously)
propose to their most preferred firm (not having rejected them yet) and the firm (after receiving
the proposals) chose some workers in the cumulative set (set of workers having proposed to it) as-
suming that the workers proposing to other firms are hired. The author shows that this algorithm
converges (when there are no more rejections) to a worker-optimal quasi stable matching. He also
shows that this algorithm can be generalized into a fixed point algorithm.

8.2 Crowdsourcing System with Scheduling Constraints

8.2.1 System

Symbol Meaning
F Set of firms fk , k = 1, . . . , l
W Set of workers wi , i = 1, . . . ,m
T Set of tasks ø j , j = 1, . . . ,n
T f Set of tasks of the firm f
X Set of contracts
µ Matching (subset of contracts)
X Subset of contracts
T (X) Tasks of contracts in X
F (X) Firm of contracts in X
W (X) Workers of contracts in X
X(µ) Subset of feasible contracts in X at µ
A Adjacency matrix of the (directed) scheduling graph G

N °(ø) Set of predecessors of task ø in the scheduling graph G = (T ,A)
N °(T f ) Set of predecessors of f ’s tasks (not including those in T f ) in the scheduling

graph G = (T ,A)
∫i Order relation of i
ci (.|.) Choice function of i
CF(.|.) Choice function of the firms
CW(.|.) Choice function of the workers

Table 8.1: Main notations

In Figure 8.1 we show a crowdsourcing system (top) and its related matching market (bottom).
In this chapter, the system operates in the following way. Each firms in F (splitted squares, right)
submit the tasks in T f and their corresponding rewards to the platform (center) and workers in W

(left) connect to it so as to choose (or apply for) the tasks they can perform. In this chapter we do
not investigate or discuss the motivations of the firms or the workers in using the crowdsourcing
system. We assume the business model well-defined and do not take into account an eventual
unraveling of the market in favor of an alternative solution. We also assume that each firm has a

3 By definition: (i) the choice set of a firm depends only on the set of workers hired by its rival firms, and (ii) the
choice set of a firm expands when the set of workers hired by the rival firms expands.
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private scheduling (interdependence constraints between the tasks) over the tasks in the purpose
of its activity. For more information about the scheduling and its modeling in this chapter, see
Section 8.2.2. The workers are not required to provide an exhaustive list of their abilities w.r.t. all
the proposed tasks. We assume that the given informations are sufficient to deduce these abilities.
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Figure 8.1: The crowsourcing platform and its associated crowdsourcing matching matching market. The
productivity of worker i w.r.t. task ø j is denoted µiø j . Such productivity is an example of measure of effi-
ciency of the execution of a task by a worker.

8.2.2 Representation

We give two examples of practically well-known modeling of scheduling constraints in project
management. These techniques have been used in the industry for a long time. In this chapter,
we use a graph-theoretic representation of the precedence constraints that is an abstract version
of the practical methods. It allows for a wide range of externalities (not necessarily temporal).

The Project Evaluation and Review Technique (PERT)

The Project Evaluation and Review Technique (PERT) chart is a commonly used graph-theoretic
representation in operation research and scheduling or project management. This method has
been developed by the U.S. Navy in the 1950s and first used in the development of their Polaris
missile program. This program had to be achieved in fixed delays with 250 suppliers and 9000
subcontractors. The PERT is used to show the logic (in terms or precedence) and temporal depen-
dencies between the tasks that have to be performed. It is a systematic method for scheduling,
control and correction. The PERT chart is a graph representation where vertices are milestones
and directed edges are objects called activities or tasks which show the execution of the related
task. In the representation, the length of the arcs are not necessarily proportional to the execu-
tion time The arcs are weighted by the execution time before completion of their generating task
(vertex). It exists various execution times, namely the optimistic time, the pessimistic time, the
normal time and the expected time. An example of a PERT chart is given in Figure 8.2. The tasks
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with direct edges to a given task are called the predecessors of this task. Reciprocally, this task is a
successor of its predecessors. In Figure 8.2, ø1 and ø2 are the predecessors of ø3. Reciprocally, the
task ø3 is a successor of ø1 and ø2. Using graph theory and dedicated algorithms, the task manager
can compute some characteristic quantities that allow a better planning and scheduling of the
project. As examples of such quantities, we have the expected start time of a task (expected com-
pletion time of all prerequisites), the slackness of the start time (distance to expected start time
the earliest start time of any successor of a task), the maximum delay over a start before delaying
the successors and the critical path (longest path from start to stop of the PERT). By definition, the
graph must contain two extreme vertices, start and stop.

A
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A

B

t e
B t l

B

start

0 0

C

t e
C t l

C

stop

0 0

øs ø1

øs ø2
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Figure 8.2: Pert chart of a set of tasks T = {ø1,ø2,ø3}.

The Metra Potential Method (MPM)

The Metra Potential Method has been proposed by Bernard Roy in 1958 in the purpose of the
construction of the paquebot France and the first French EDF’s nuclear power plant. The MPM
representation is equivalent to the PERT one, there are no extra information provided neither by
the one nor the other. The MPM only differs from the PERT in the definition of the nodes. A vertex
of the MPM graph is no more a step or a fictive task but the task itself. Except for this difference,
the two representations are the same. Thus, there is need to go further in the description of the
MPM method. Similarly to the PERT, the graph must contain only two extreme vertices, start and
stop.
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Figure 8.3: MPM chart of a set of tasks T = {ø1,ø2,ø3}.

Simplified Representation

In this chapter, we use a simplified representation of the scheduling constraints. Consider a di-
rected graph G = (T ,A) where T denotes the set of nodes in the graphs and A the set of edges
(or arcs), or equivalently, the adjacency matrix with coefficients in {0,+1}. In fact, we assume a
one-to-one mapping between the tasks and the nodes of the graph. Given any pair (ø,ø0) of nodes
of G , if ø dominates4 ø0 then it is required that a worker performs (is assigned) the task ø for the
task ø0 to be performed (assigned).

In this chapter we allow the graph to span over the set the tasks in the game, whatever the
firm they correspond to. This allows, not only for an intra-firms scheduling but also for inter-firms
scheduling in the sense that the tasks of a firm may be constrained by the tasks of another firm.
As an example, there is subcontracting. Such constraints are sufficient to make the problem fall

4A node ø dominates another node ø0 is there is an edge from ø to ø0.
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in the scope of matching with complementarities (intra-firms scheduling) and externalities (inter-
firms scheduling). Because the set of nodes T of scheduling graph contains all the tasks we will
use a global index for the tasks. Given the graph G = (T ,A) , we denote Gi = (Ti ,Ai ), the subgraph
induced by the set of nodes corresponding to the tasks in Ti and their dominating nodes (i.e. the
set of nodes in T °Ti that are dominating nodes in Ti ) also called set of direct predecessors. We
denote N °(ø) the set of predecessors5 of ø.

In Figure 8.4, we show an example of a simplified representation. Tasks ø1 and ø2 have no
predecessors. Task ø3 has ø1 and ø2 as predecessors (N °(ø3) = {ø1,ø2}).

ø1

ø2

ø3

Figure 8.4: Graph of scheduling constraints T = {ø1,ø2,ø3}.

8.2.3 Motivating Examples

In this section we give small examples showing that the existing results are not sufficient to solve
the many-to-many matching problems with scheduling constraints. The first example is a many-
to-many matching problem with contracts and individual scheduling constraints (intra-firms schedul-
ing). We turn this problem into a many-to-many matching with inter-firms scheduling by using
a task-agent representation (transforming the original matching problem in a new one by turning
the tasks into players) and show that in this case it does not satisfy the generalized substitutability
proposed by Pycia in [1] and there are no stable matchings.

Matching with Contracts and Intra-firms Scheduling

In this example, consider a many-to-many crowdsourcing marketplace with contracts and indi-
vidual scheduling with individual scheduling on the firms’ side. The example is shown in Figure
8.5.

There are two firms F = { f1, f2}, two workers W = {w1, w2} and three tasks T = {ø1,ø2,ø3}. Each
firm can sign contracts with many workers and each worker can sign many contracts with any
given firm, and sign contracts with many different firms. We assume that only one contract can be
signed for any given task. In other words, no firm can sign two contracts for any given task. This
assumption will be used throughout the chapter. We assume the set of contracts X = {x1

11, x2
22, x3

22},
where xm

kl the contract (wk , fl ,øm).
Assume the preferences of the firm f2 given by the choice function in Table 8.2. Firm f2 is the

only player exhibiting complementarities in its choice function (or preferences, see [1] and refer-
ences therein for a discussion on the link between choice functions and preferences). Particularly,
it prefers x3

22 to the null contract if x2
22 can be signed and prefers the null contract to x3

22 if x2
22

cannot not signed: {x2
22, x3

22} ¬ f2 {x2
22} ¬ f2 ; ¬ f2 {x3

22} Thus, the firm prefers having its two tasks
performed rather a single one but in this latter case the only acceptable contract is x2

22 due to the
scheduling constraints. Firm f1 prefers x1

11 to the null contract: x1
11 ¬ f1 ;. On the workers’ side,

worker w1 prefers working at x1
11 rather than being unemployed: x1

11 ¬w1 ;. Worker w2 wants to
perform only one task and prefers working at x3

22 rather than x2
22 but prefers any contract to being

unemployed: x3
22 ¬w2 x2

22 ¬w2 ;¬w2 {x2
22, x3

22}. The preferences of worker w2 imply that any stable
matching (if there exists any) would be of the one-to-one form since any worker in the example
would be matched to only one firm to perform a single task.

5A node ø is a predecessor of another node ø0 if ø0 is reachable from ø, i.e. if there is a directed path in the graph from
ø to ø0
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w1

w2

f1

f2

ø1

ø2 ø3

Figure 8.5: A matching market with contracts and intra-firms scheduling. Dotted lines between two agents
show that there exists a contract among them in the set of contracts.

{x2
22} {x3

22} {x2
22, x3

22} ;

c f2 (.|;) {x2
22} ; {x2

22, x3
22} ;

c f2 (.|{x1
11}) {x2

22} ; {x2
22, x3

22} ;

c f2 (.|{x2
22}) {x2

22} ; {x2
22, x3

22} ;

c f2 (.|{x3
22}) {x2

22} ; {x2
22, x3

22} ;

c f2 (.|{x1
11, x2

22}) {x2
22} ; {x2

22, x3
22} ;

c f2 (.|{x1
11, x3

22}) {x2
22} ; {x2

22, x3
22} ;

c f2 (.|{x2
22, x3

22}) {x2
22} ; {x2

22, x3
22} ;

c f2 (.|{x1
11, x2

22, x3
22}) {x2

22} ; {x2
22, x3

22} ;

Table 8.2: Choice function c f2 of firm f2.

There is no stable matching in this case. In fact, assume the matching µ = {x1
11}. This matching

is blocked by w2 and f2 who both prefer x2
22 to the unemployment. Alternatively, consider the

matching µ = {x1
11, x2

22}. This matching is blocked by w2 and f2 who both prefer x3
22 (knowing that

x2
22 is signed). Finally, consider the matching µ = {x1

11, x3
22}. This matching is blocked by f2 which

prefers the null contract knowing that x3
22 only is signed. Any other matching such that x1

11 is not
signed is blocked by the pair w1 and f1 for the contract x1

11 or such that both x2
22 and x3

22 are signed
is blocked by w2 who rejects x2

22.
Nevertheless, one may expect that the equilibrium of this small market would be {x1

11, x2
22}

because of the scheduling constraints that give ø2 a priority over ø3 in the execution and the fact
that deviating for x3

22 induces a self-penalization for f2. There lies the problem we want to assess
in this chapter.

For now, we conclude that in this case either there is no stable matching and we have to weaken
our objectives and make further assumptions on the choice functions or preferences of the agents
(such as the well-known substitutability, Irrelevance of Rejected Contracts (IRC, see Chapter 3,
Section 3.6), separability, quasi-linearity of the firm’s profit functions or other). Observe that no
assumption on the preferences of the agents could remove the scheduling constraints and thus the
complementarities of contracts. An alternative solution would be to define a new adapted stability
that would take into account the scheduling constraints.

Remark 115. If the preferences of worker w2 were {x2
22, x3

22} ¬w2 x3
22 ¬w2 x2

22 ¬w2 ;. The only stable
matching would be {x1

11, x2
22, x3

22}.

To provide more intuition on this problem we show that the choice functions defined in this ex-
ample do not satisfy one of the fundamental sufficient condition for the existence of stable match-
ing (in many-to-many matching problems with contracts), namely substitutability. Particularly,
we show that the choice function c f2 of firm f2 does not satisfy substitutability. Qualitatively, a
firm’s choice function satisfies substitutability if the firms rejects in a set of contracts at a given
matching are included in its rejects in a superset at a matching with better market conditions (see
definition 69 for the formal definition). By definition, given a matching, a choice function satisfies
substitutability if the rejects from a set of contracts are included from those in a superset.

Take X = {x3
22} µ X0 = {x3

22, x2
22}. We have, {x3

22} = r f2 ({x3
22}) 6Ω ; = r f2 ({x3

22, x2
22}).
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The non-substitutability in this example comes from the complementarities between the con-
tracts x2

22 and x3
22. Firm f2 signs x3

22 only if x2
22 is also signed. Intuitively, on can conclude that

the non-substitutability can be solved by either changing the preferences of the firm to make {x3
22}

acceptable or remove the complementarities between x3
22 and x2

22.
This basic example shows that matching with contracts and scheduling constraints may not

have pairwise stable matchings and that the choice functions of players submitted to scheduling
constraints (namely, the firms in this problem) may not satisfy substitutability.

Matching with Contracts and Inter-firms Scheduling

Consider a second example, as shown in Figure 8.6. This example can be considered as a self-
sufficient matching problem with externalities with choice functions as defined in Table 8.3, Table
8.4 and Table 8.5. It can also be considered as the result of a transformation of the example of
Section 8.2.3 (see Figure 8.5), called task-agent representation. In the task-agent representation,
the firms’ side is turned into a tasks’ side with tasks as players. This transformation is called task-
agent representation of the original problem because it consists in replacing any firm by the set of
task-agents playing in the name of the tasks they represent. The motivation for this interpretation
is to asses wether a solution to the previous example could be obtained using such simple trans-
formation of the problem. We show that no stable matching exists in this case. The conclusion is
that this simple example with inter-firms scheduling has no stable matching and the considered
transformation can not successfully solve the instability of Example 8.2.3.

w1

w2

f1

f2

f20

ø1

ø2

ø3

Figure 8.6: Example: A many-to-one matching game with contracts and scheduling constraints in the task-
agent representation. Dotted lines between two agents show that there exists a contract among them in the
set of contracts.

Remark 116. In the task-agent representation, the players are the nodes T of the graph G . The
scheduling constraints of the example shown in Section 8.2.3 now consist in externalities. The set of
firms is increased to a superset in bijection with the set of tasks. Firm f1 is left as is since it has only
ø1 to be performed. Firm f2 is transformed in f2 with task ø2 and f20 with task ø3. The first difficulty
encountered when using the task-agent representation is the definition of the choice functions. A
naive approach consists in assigning each sub-firm the choice function of the corresponding original
firm restricted to the contracts of the corresponding task.

8i 2F , ci : 2Xi £2X ! 2Xi ) {c j : X ( j )£2X !X ( j )} j2Ti (8.1)

where X ( j ) denotes the set of contracts with task j in Ti .

We show the choice functions in Table 8.3, Table 8.4 and Table 8.5. Table 8.6 shows the cor-
responding rejects of f20 . In Table 8.7, we show the firms’ choices as union of individual choices.
The corresponding firms’ choice function CF will be used throughout the chapter (see Chapter 3,
Section 3.6), as in [27] in the analysis of matching with contracts and no externalities and [1] in the
analysis of matching with contracts and externalities.

In this example, there are three firms F = { f1, f2, f20}, two workers W = {w1, w2} and three con-
tracts X = {x1

11, x2
22, x3

220} such that x1
11 = ( f1, w1,ø1), x2

22 = ( f2, w2,ø2) and x3
220 = ( f20 , w2,ø3). On

the firms’ side, firm f1 prefers x1
11 to the null contract: x1

11 ¬ f1 ;. Firm f2 prefers x2
22 to the null

contract: x2
22 ¬ f2 ;. Firm f20 is the only player exhibiting externalities in its preference relation:

it prefers x3
220 to the null contract if x2

22 is signed and prefers the null contract to x3
220 if x2

22 is not
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{x1
11} ;

c f1 (.|{x2
22, x3

220}) {x1
11} ;

c f1 (.|{x2
22}) {x1

11} ;

c f1 (.|{x3
220}) {x1

11} ;

c f1 (.|;) {x1
11} ;

Table 8.3: Choice function c f1 .

{x2
22} ;

c f2 (.|{x1
11, x3

220}) {x2
22} ;

c f2 (.|{x1
11}) {x2

22} ;

c f2 (.|{x3
220}) {x2

22} ;

c f2 (.|;) {x2
22} ;

Table 8.4: Choice function c f2 .

{x3
220} ;

c f 0
2
(.|{x1

11, x2
22}) {x3

220} ;

c f 0
2
(.|{x1

11}) ; ;

c f 0
2
(.|{x2

22}) {x3
220} ;

c f 0
2
(.|;) ; ;

Table 8.5: Choice function c f 0
2
.

{x3
220} ;

r f 0
2
(.|{x1

11, x2
22}) ; ;

r f 0
2
(.|{x1

11}) {x3
220} ;

r f 0
2
(.|{x2

22}) ; ;

r f 0
2
(.|;) {x3

220} ;

Table 8.6: Reject function r f 0
2
.

{x1
11, x2

22, x3
220} {x1

11, x2
22} {x1

11, x3
220} {x2

22, x3
220} {x1

11} {x2
22} {x3

220} ;

CF(.|{x1
11, x2

22, x3
220}) {x1

11, x2
22, x3

220} {x1
11, x2

22} {x1
11, x3

220} {x2
22, x3

220} {x1
11} {x2

22} {x3
220} ;

CF(.|{x1
11, x2

22}) {x1
11, x2

22, x3
220} {x1

11, x2
22} {x2

22, x3
220} {x2

22, x3
220} {x1

11} {x2
22} {x3

220} ;

CF(.|{x1
11, x3

220}) {x1
11, x2

22} {x1
11, x2

22} {x1
11} {x2

22} {x1
11} {x2

22} ; ;

CF(.|{x2
22, x3

220}) {x1
11, x2

22, x3
220} {x1

11, x2
22} {x2

22, x3
220} {x2

22, x3
220} x1

11} {x2
22} {x3

220} ;

CF(.|{x1
11}) {x1

11, x2
22} {x1

11, x2
22} {x1

11} {x2
22} {x1

11} {x2
22} ; ;

CF(.|{x2
22}) {x1

11, x2
22, x3

220} {x1
11, x2

22} {x2
22, x3

220} {x2
22, x3

220} {x1
11} {x2

22} {x3
220} ;

CF(.|{x3
220}) {x1

11, x2
22} {x1

11, x2
22} {x1

11} x2
22 x1

11 {x2
22} ; ;

CF(.|;) {x1
11, x2

22} {x1
11, x2

22} {x1
11} {x2

22} {x1
11} x2

22} ; ;

Table 8.7: Firms’ choice function CF.

signed: x3
220 ¬ f 0

2
; if x2

22 is signed and ;¬ f 0
2

x3
220 if x2

22 is not signed. On the workers’ side, worker w1

prefers working at x1
11 to the unemployement: x1

11 ¬w1 ;. Worker w2 prefers working at x3
220 rather

than x2
22 but prefers any contract to being unemployed: x2

220 ¬w2 x2
22 ¬w2 ;.

There is no stable matching in this case, as in the previous one. In fact, assume matching µ =
{x1

11}. This matching is blocked by w2 and f2 who both prefer x2
22 to the null contract. Alternatively,

consider the matching µ = {x1
11, x2

22}. This matching is blocked by w2 and f20 who both prefer x3
220

(knowing that x2
22 is signed). Finally, consider the matchingµ = {x1

11, x3
220}. This matching is blocked

by f20 which prefers the null contract knowing that x3
22 only is signed. Any other matching such

that x1
11 is not signed is blocked by the pair w1 and f1 for the contract x1

11 or such that both x2
22

and x3
220 are signed is blocked by w2 who rejects x2

22. As in the previous example, there is no stable
matching in this case. This conclusion also shows that the task-agent representation does lead to
a solution to the problem shown in Section 8.2.3 as a fairly simple transformation.

At this point, we consider three ways to solve the problem: (i) make some assumptions on
the agents’ choice functions6, (ii) consider alternative stabilities as solution concepts or (iii) solve
the problem using another formulation (such as non-cooperative strategic or extensive forms).

6Or preferences, see Chapter 3, Section 3.6 for more details.
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These ways are well-known in matching games. Using the classical stabilities and assuming that
the agents’ preferences satisfy some conditions or considering new stabilities are two well-known
and studied options to solve matching problems (see [28] for a recent survey on matching with
externalities and existing methods).

The third approach is less common. An interesting work in this direction was proposed in [2].
The authors consider a specific congestion game and show that the solutions are stable marriages.
Generalizations to many-to-one settings are proposed. The interesting point is that this bridges
the gap between some non-cooperative games (such as congestion ones) and cooperative prob-
lems (such as stable matchings) and their solution concepts (such as the Nash equilibrium and
stability). As other examples, consider [29] where core stable matchings can be obtained from
some non-cooperative games or the bargaining problem (see [30] and references therein) where
cooperative solutions to the bargaining problem can be obtained as non-cooperative equilibria.

In this chapter, we consider these three ways to solve the problem. We particularly focus on
the first (see Section 8.3) and third ones (see Section 8.4 and Section 8.5). Furthermore, we provide
new appropriate definitions of stability in Appendix 8.10. In the next section and in Appendix 8.8,
we give further details on the insufficiency of these solutions.

8.2.4 Insufficiency of Existing Models and Solutions

In this section, we compare the problem of many-to-many matching game with contracts and
scheduling constraints to those assessed in existing works and give the reasons for their insuffi-
ciency. A more detailed analysis (with applications of the modified deferred acceptance from [1]
or transformation of the problem as a contract network) is given in Appendix 8.8.

• Sasaki and Toda’s [20], Matching with Externalities:

The results are limited to one-to-one matchings whereas the problem we consider is a many-
to-many matching problem.

• Hatfield and Milgrom’s [27], Matching with Contracts:

This model does not take into account externalities and many-to-one matching with con-
tracts. This is insufficient.

• Bando’s [25][26], Matching with Externalities:

This work studies a many-to-one matching market with externalities only on the firm’s side
and due to hired workers only. The model is formalized in terms of choice functions on sets
of players and not contracts. This model cannot be used despite of interesting elements
such as the weak stability and an adaptation of the assumption on externalities only due to
hired workers.

• Fleiner et a.l. [24], Trading Networks with Bilateral Contracts:

The model proposed by Fleiner et a.l. in [24] considers a contract network modeled by a
directed graph such that the nodes are firms and the directed edges are the contracts. In
this setting, the firms trade with each others over the contract network. In our setting, firms
do not trade with each others but with workers. Nevertheless, it is shown that many-to-
many markets are special cases of such trading networks. Both our model and their model
consider a directed graph but the motivations differ since in our case, the graph describes
scheduling constraints and not trading opportunities between adjacent nodes.

• Pycia and Yenmez’s [1], Matching with Externalities:

The studied model is compatible with the particular many-to-many structure of our prob-
lem. The authors use the substitutability and irrelevance of rejected contracts as sufficient
conditions for the convergence of their modified deferred acceptance algorithm to a sta-
ble matching and thus to show the existence of stable matchings. As already observed, one
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can find counter-examples of matching problems with scheduling constraints that have no
pairwise stable matchings and thus do not satisfy their sufficient conditions.

8.3 Matching with Contracts, Externalities and Scheduling Constraints

8.3.1 Model

We model the crowdsourcing market as a many-to-many matching game with contracts and exter-
nalities. The model of matching with contracts generalizes the classical formulation [17][31] of the
stable matching theory and incorporates the well-known college admission problem, the Kelso-
Crawford labor market matching model and some ascending packet auctions7. Futhermore, it has
been extended to allow for externalities in many-to-many settings. In this model, the agents inter-
act with each others through bilateral contracts. For the rest of this section we define the model
and give some of the definitions, properties and results that have been used in the literature. More
particularly, most of the definitions are given in terms of the recent general model of matching
with contracts and externalities defined by Pycia and Yenmez in [1]. For the sake of clarity and
completeness we also give some definitions in terms of the models of matching with contracts
without externalities as defined by Hatfield and Milgrom in [27]. These last notations are naturally
embedded in those used in matching games with externalities and can immediately be derived by
removing the conditioning from the expression.

Consider a finite sets of firms F , workers W , tasks T and scheduling constraints G = (T ,A)
as defined in Section 8.2.2. Let define the finite set of contracts X between workers in W and
firms in F as the set of bilateral pairwise agreements that the workers and the firms can sign with
each others. A contract x 2 X specifies a worker, a firm and additional terms such as the wage,
the execution constraints or the penalties to the signatories in case of improper execution. For the
sake of simplicity, we assume that any contract is defined as four-tuple of the form ( f , w,ø, s) where
f is a firm, w is a worker, ø is a task in T and s is the salary (wage) in the finite set S = {s, . . . , s}
(see [19] and [27]) paid to the worker for the execution of the task.

Given any subset of contracts X, T (X) is the set of tasks corresponding to the contracts in X.
For any subset of contracts X µX , Xi denotes the maximal set of contracts in X involving i ,

Xi = {x 2 X|i 2 { f (x), w(x)}} (8.2)

A matching µ between workers and tasks is defined as a set of contracts µµX . This definition
used in matching with contracts generalizes the one used in the stable matching theory without
contracts in the sense that the association binary relation between the players of a pair (matched
or unmatched) is completed by the terms of the signed contract (among those that can be signed
between the two) and that more than one contract can be signed simultaneously between any two
players. We define player i ’s choice function,

ci : 2X £2X ! 2X (8.3)

such that ci (X|µ) = ci (Xi |µ) is the choice set of i in Xi knowing µ = (µi ,µ°i ). It is the set of contracts
that i chooses from Xi given the set µ of contracts signed. In this chapter, we consider choice
functions without prediction as in definition 64, chapter 3. Similarly, the workers’ choice function
CW and the firms’ one CF are defined as in equation 3.40, chapter 3. We now give the definition of
a set of feasible contracts.

Definition 117. Given a firm f 2F , a set of contracts X µX f and a matching µ, the set X is called
feasible for f at µ if for any contract x 2 X, there exists a subset X0 µ X with x 2 X0 and one contract
per task in T (X0) such that the predecessors of any task in X0 are in T (X0 [µ° f ).

Furthermore, let us define the maximal subset of feasible contracts in X at µ.

7For more information on the link between stable matchings and auctions, see [27].
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ø1 ø2 ø3

ø1 ø2 ø3

ø1 ø2 ø3

Figure 8.7: Three sets of contracts. Each set contains contracts for the tasks in green. The two first sets are
feasible, the third one is not feasible.

Definition 118. Given a firm f 2F , a set of contracts X µX f and a matching µ, the set X is called
maximal set of feasible contracts for f at µ if it is feasible and of maximal cardinality. The maximal
set of feasible contracts for f in X µX f at µ is denoted X(µ).

A task ø 2T is called feasible in X atµ if there is a feasible contract x 2 X atµ such that T (x) = ø.

Example 119. In Figure 8.7, we show two sets of feasible contracts and an unfeasible one for a simple
scheduling. The contracts in the set are shown in green. In the third case, the set of contracts is not
feasible since task ø3 cannot be executed because there is no contract with ø2 in the set.

Example 120. Consider the example shown Figure 8.5. The sets {x2
22} and {x2

22, x3
22} are feasible for

f2 in {x2
22, x3

22} at µ = ;. Furthermore, the set {x2
22, x3

22} is the maximal set of feasible contracts for f2

at µ = ; and {x3
22} is not feasible because f2 needs a contract to be assigned to task ø2 to execute ø3.

The set of feasible tasks is T (X(µ)). It is the set of tasks corresponding to contracts in the
maximal set of feasible ones X(µ).

Definition 121. We define X f (µ), the set of min-salary contracts in X f (µ) for each feasible task in
T (X f (µ)).

We assume profit-maximizing firms (see [27], pp.918 and references therein for more elements
on profit maximization).

Definition 122. The choice function of any firm f 2F is defined by,

c f (X|µ) = [
ø2T (X f (µ))

argmin
x2X f (µ)

s.t .ø(x)=ø

s(x) (8.4)

= X f (µ) (8.5)

As defined in Chapter 3 (Section 3.6), we have the firms’ choice function CF such that,

CF(X|µ) = [
f 2F

X f (µ) (8.6)

In this chapter, we consider for simplicity that firms prefer contracts with min-salary for a given
task. The interpretation is that in the set of contracts X f , firm f chooses a min-salary contract
for each feasible task (i.e. each task in T (X f (µ))) at µ. However any strict preference order over
contracts for a task can be used. Observe that we have,

c f (X|µ) = c f (X(µ)|µ) = c f (X(µ° f )|µ° f ) = c f (X(µ° f )) (8.7)

The first equality comes from the fact that the firms only considers the maximal subset of feasible
contracts in any set X at µ. The second equality comes from the fact that for each firm the feasible
sets are defined as functions of the contracts signed by the other firms. The third equality comes
from the fact that by definition of the choice functions, externalities in this problem are limited to
their impact on the maximal set of feasible contracts X(µ° f ). Given the firms’ choice functions, we
define the firms’ preorder ∫F (see Chapter 3, Section 3.6) as,

Definition 123. The preorder ∫F is defined such that, for any µ,µ0 µX , µ0 ∫F µ iff for any f 2F ,

T (µ0
° f )\N °(T f ) ∂T (µ° f )\N °(T f ) (8.8)

144



CHAPTER 8. MATCHING GAMES AND CROWDSOURCING

In words, µ0 ∫F µ if for any firm f 2F , the set of predecessors of f ’s tasks in T° f at µ, denoted
T (µ° f )\N °(T f ), is included in the set of predecessors of f ’s tasks in T° f atµ0, denoted T (µ0

° f )\
N °(T f ). In other words, µ0 ∫F µ if for any firm f 2F there are weakly more feasible tasks in T f at
µ0 than at µ. Another interpretation is that for any firm the feasibility of its tasks is improved w.r.t.
the firms’ external constraints. We have the following result giving the consistency (see Chapter 3,
Section 3.6) of ∫F with CF.

Proposition 124. The preorder ∫F is consistent with the choice function CF.

The proof is given in Appendix 8.9.1.
On the workers’ side, we keep on assuming generic choice functions {cw }w2W without partic-

ular form. Further properties such as substitutability and irrelevance of rejected contracts (see
Chapter 3, Section 3.6 for the definitions) will be assumed later on. Let ∫W denote the workers’
preorder consistent with CW.

8.3.2 Constrained Substitutability

In this section, we show that there exist pairwise stable matchings in the matching problem with
contracts, externalities and scheduling constraints if the choice functions of the agents satisfy
some conditions.

We now turn to substitutability and define the constrained substitutability property that, in
addition to better market conditions, asks for a specific structure in the feasible sets w.r.t. feasible
tasks and feasible min-salary contracts. The intuition is that a contract rejected by a firm in a set
X at µ keep on being rejected in a superset X0 at matching µ0 (with more feasibility for f ) if either
the corresponding task is still not feasible or becomes feasible but the contract is not of min-salary
w.r.t. this task (thus is not chosen).

Definition 125. Choice function CF satisfies constrained substitutability if for any X,X0,µ,µ0 µ X ,
such that
C1. X µ X0

C2. µ0 ∫F µ

C3. 8 f 2F , T
f

X!X0

µ!µ0
= ; or X f (T f

X!X0

µ!µ0
) 6µ X0

f (µ0)

then,

RF(X0|µ0) ∂ RF(X|µ) (8.9)

where, T
f

X!X0

µ!µ0
=

£
T (X f )\T (X f (µ))

§
\T (X0

f (µ0)).

The first condition is the well-known condition of inclusion of sets used to define classical
substitutability (see [27]). The second condition asks for better market conditions as defined by
Pycia and Yenmez in [1]. Condition C3 is an additional constraint introduced so as to guarantee
that the sets X and X0 and matchings µ and µ0 do not exhibit complementarities from the set of
feasible contracts X f (µ) to X0

f (µ0) that would make some contracts rejected in X at µ and chosen

in X0 at µ. The first part of condition C3, T
f

X!X0

µ!µ0
= ;, requires that no non-feasible tasks become

feasible. Thus, no unfeasible contract (in X at µ) can be chosen in X0 at µ0 because it is maintained
non-feasible in X0 atµ0. The second part of condition C3, X f (T f

X!X0

µ!µ0
) 6µ X0

f (µ0), requires that if a task

becomes feasible, any of the corresponding contract rejected in X at µ is not of min-salary in X0 at
µ0. This prevent from the rejected contracts to be chosen if they become feasible.

Given firms’ choice functions as defined in (8.4), we have the following result,

Proposition 126. The choice function CF defined in 8.4 satisfies the constrained substitutability.
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The proof of the proposition in given in Appendix 8.9.2.
We now show that the firms’ choice function CF satisfies the Irrelevance of Rejected Contracts

(IRC).

Proposition 127. The firms’ choice function CF defined in 8.6 satisfies the irrelevance of rejected
contracts.

The proof of the proposition is given in Appendix 8.9.3.
Finally, we define function f , that abstracts the set-wise operations of an iteration of the mod-

ified deferred acceptance algorithm defined in [1] (see Chapter 3, Section 3.6). This function (and
related properties) is the main component of the proof of existence of a pairwise stable matching
in [1] and in this chapter. As in [1], consider function f : 2X £2X £2X £2X ! 2X £2X £2X £2X

such that for any AF, AW,µF,µW µX

f (AF, AW,µF,µW) = (X \RW(AW |µW),X \RF(AF|µF),CF(AF|µF),CW(AW |µW)) (8.10)

Let us define a constraint on function f requiring that the inputs and outputs of function f are
constrained such that condition C3 of definition 125 is satisfied with X0 andµ0 as inputs of f on the
firms side and X and µ as outputs of f on the firms’ side. In other words, this condition requires
that the inputs and outputs of function have a structure.

C4. Given any sets AF, AW,µF,µW µ X , the image f (AF, AW,µF,µW) = (ÃF, ÃW, µ̃F, µ̃W) is such
that AF, ÃF,µF, µ̃F satisfies

T
f

ÃF!AF

µ̃F!µF

= ; or ÃF
f (T f

ÃF!AF

µ̃F!µF

) 6µ AF
f (µF) (8.11)

By definition of f , this condition implies that the choice agents’ choice function must be such that
the generated sets satisfy the condition.

8.3.3 Existence of Stable Matchings

Now we turn to the main results of this section and follow the same approach as Pycia and Yenmez
in [1]. We show that their results hold in our problem as long as conditions C3 (see Definition 125)
and C4 hold. First, let us define the preorder v.

Definition 128. The preorder v is defined as follows,

(AF, AW,µF,µW) v (ÃF, ÃW, µ̃F, µ̃W) , AF µ ÃF, AW ∂ ÃW,µF πF µ̃F,µW ∫W µ̃W (8.12)

We have the following lemma,

Lemma 129. Suppose that CW satisfies substitutability. The function f is monotone increasing w.r.t.
the preorder v if AF,µF, ÃF, µ̃F satisfy condition C3 of Definition 125 with X = AF, X0 = ÃF, µ =µF and
µ0 = µ̃F.

The proof is given in Appendix 8.9.4.
The following lemma (see [1]) shows that the reference matchings at fixed point of function f

are the same for both sides and can be obtained as the intersection of proposals.

Lemma 130. Let (AF, AW,µF,µW) be a fixed point of function f . Then AF [AW = X and

µF =µW = AF \AW = CF(AF|µF) = CW(AW |µW) (8.13)

Proof. The proof is the same as in [1], Lemma 3, pp.20.

We now state one of the two main theorems of this section. Our proof is closed to the one given
in [1] except that, because of the constrained substitutability, we need to take care about the fact
that at any point the conditions for substitutability are satisfied, including C3 of Definition 125.
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Theorem 131. Suppose that the choice function CW satisfies substitutability and the irrelevance of
rejected contracts. Suppose that the firms choice functions {c f } f 2F are defined as in Definition 122.

Then a matchingµ is stable if and only if there exists sets of contracts AF, AW µX s.t. (AF, AW,µ,µ)
is a fixed point of function f .

The proof is given in Appendix 8.9.5.
We now show the existence theorem stating that if CW satisfies substitutability, irrelevance of

rejected contracts and f satisfies the conditions for constrained substitutability at any point, then
the algorithm (see Chapter 3, Section 3.6) defined by f converges to a stable matching.

Theorem 132. Suppose that the choice function CW satisfies substitutability and the irrelevance of
rejected contracts. Suppose that the firms choice functions {c f } f 2F are defined as in Definition 122.
Finally, suppose that f satisfies condition C4 at every iteration of the algorithm. Then, the algorithm
terminates, its outcome is stable and

µF(T) =µW(T) = AF(T)\AW(T) (8.14)

The proof is given in Appendix 8.9.6
This result concludes this section. We have shown that by defining a new substitutability that

asks for the choice functions of the agents to be such that at any point in the algorithm the con-
ditions for substitutability on the firms’ side to be satisfied, the algorithm converges to a pairwise
stable matching. This solution induces conditions on the agent’s choice functions indirectly given
by requiring for condition C4 on the function f . In Appendix 8.10, we consider alternative sta-
bilities that extend some of the existing ones. Nevertheless, this solution leads to a setting that
looks hardly tractable from an analytic point of view. The analysis of the proposed stabilities in
this problem is left as an open question.

In the next sections, we focus on alternative formulations of the crowdsourcing problem. Par-
ticularly, we use games in normal and extensive forms. Even though there is in this case, a priori,
no equivalence of the stability and the equilibria of this non-cooperative games, these formula-
tions show interesting properties both in interpretations and in connecting cooperative solutions
used for two-sided markets to non-cooperative ones.

8.4 The Crowdsourcing Problem in Normal form

In this section, we consider an alternative formulation of the problem in the non-cooperative nor-
mal form. The aim is to explore the link between the classical non-cooperative game theory and
the game-theoretic analysis of two-sided markets and see how the stabilities and conditions trans-
form from one branch to the other. This unification was already engaged by Ackermann et a.l. in
[2] in a similar way and by Roth in [31] in a somewhat different one where the non-cooperative
strategic aspect are formalized in a game of stated preferences in order to manipulate the match-
ing mechanism. In this case, the non-cooperative game combines with the matching mechanism,
while in our case we model the matching mechanism as the result of the non-cooperative game
and thus define a stability of the matching game as a non-cooperative equilibrium solution con-
cept. Particularly, our transformation turns the two-sided market problem in a one-shot contract
proposing game with firms as players and workers as receivers of these proposals, implicitly mod-
eled as a response function  of the market.

Let define a crowdsourcing problem in normal (or strategic form) � = (N , (Si )i2N , (ui )i2N ),
where N = F is the set of players, ui : X ! R is the utility function of i from the set of matchings
in R and Si µ 2Xi is i ’s set of pure strategies defined as the set of subsets of contracts with exactly
one contract (including the null contract) per task in Ti ,

Si = {X µXi |8ø 2Ti ,9!x 2 X s.t. T (x) = ø} (8.15)

equivalently,
Si = {X µXi |8ø 2Ti , |X(ø)| = 1} (8.16)
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We now define the worker’ response function  as the output of the market when being pro-
posed a set of contracts by the firms.

Definition 133. The workers’ response function (or, mechanism), is the function  : £
i2N

Si ! 2X

from the set of firms’ strategy profiles (contract proposals) to the set of subset of contracts (set of
matchings) induced by the choice function of the workers such that, given strategy profile s 2 S ,
√(s 2S ) is the limit of the sequence,

µ(0) = ; (8.17)

µ(1) = CW(s|µ(0)) = [
w2W

cw (s|µ(0)) (8.18)

µ(2) = CW(s|µ(1)) [
w2W

cw (s|µ(1)) (8.19)

... (8.20)

 (s) =µ(k) = CW(s|µ(k°1)) = [
w2W

cw (s|µ(k°1)) (8.21)

For the rest of this section, we assume that the sequence converges in a finite number of steps.
Thus, there exists a well-defined response of the workers to the emitted proposals. If not, then an
appropriate solution may be to assume convergence to a subset of subsets of contracts or to the
maximum w.r.t. an order relation such as the preorder ∫W considered in Section 8.3. As shown
in [1], if the choice function CW satisfies substitutability, then the sequence converges to a most
preferred matching w.r.t. ∫W.

Remark 134. If the workers where the players of the game (i.e. N = W ), we would similarly define
the firms’ response function  : £

i2N
Si ! 2X taking as input the set of contracts proposed by the

workers and giving as output the firms’ choices in this set.

In this non-cooperative setting, we consider the well-known Nash equilibrium as solution con-
cept

Definition 135. Given a strategy profile s 2S , the utility profile is (ui ( (s))i2F . The strategy profile
s§ is a Nash equilibrium if and only if,

ui (s§i , s§°i ) ∏ ui (si , s§°i ), 8si 2Si (8.22)

In terms of the response function , the strategy profile s§ is a Nash equilibrium if and only if for any
firm i 2F ,

ui ( (s§i , s§°i )) ∏ ui ( (si , s§°i )), 8si 2Si (8.23)

Thus, at a Nash equilibrium, no firm prefers unilaterally deviating by proposing an alternative set
of contracts, given the (converging) response mechanism  of the workers.

Remark 136. Alternatively, if there are no utility functions in the model but only preferences (∫ f ) f 2F ,
we have the following definition.

Definition 137. The strategy profile s§ is a Nash equilibrium if and only if for any firm i 2F ,

 (s§i , s§°i ) ∫i  (si , s§°i ), 8si 2Si (8.24)

8.4.1 The Marriage Problem and Player-specific Singleton Congestion Game with Pri-
orities

We now show that the non-cooperative transformation of the crowdsourcing problem general-
izes some interesting congestion games defined by Ackermann et a.l. in [2] to unify the non-
cooperative theory and the two-sided market problems.
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Consider the particular case of the marriage problem obtained from the crowdsourcing prob-
lem by removing scheduling constraints, constraining to one-to-one matchings (equivalently, re-
stricting each firm to have a single task and a single contract with each worker) and removing
externalities on both sides. Taking M = F and Sm = W [ {m} for any m 2 M , a strategy profile s§

(consisting of a set of proposals to the women, one proposal per man) is a Nash equilibrium if and
only if for any firm m 2M ,

 (s§m , s§°m) ∫ f  (sm , s§°m), 8sm 2Sm (8.25)

where (s) is defined such that (s) = [
w2W

cw (s) and cw (s) is defined such that, for any man m such

that s(m) = w , cw (s) ¬w m. As shown in [2], this game falls in the class of player-specific singleton
congestion games with priorities (by taking strict priorities). In such game, as in any congestion
game, we define a set of players M and a set of resources W . Each player has a specific cost func-
tion such that when m is matched to w , he incurs a cost cm(w). Furthermore, resources emit
priorities over the players. These are given by the strict preferences (¬w )w2W or weak preferences
with eventual ties (∫w )w2W .

Definition 138. [2] A player-specific singleton congestion game with priorities is a congestion game
(with m players and n resources) where the players’ strategies are reduced to singletons (they can
choose a single resource), have individual resource-specific cost function (e.g. ci ,r for player i with
resource r ) depending only in the number of other players associated to the resource and resources
rank the players, so that given a strategy, a player choosing a resource is associated to i if it has
maximal rank among those having chosen this resource.

In [2], if the preferences are strict, we have the following definition of stability,

Definition 139. [2] A strategy profile s§ is a stable matching if none of the players can unilaterally
increase her payoff by changing her proposal given the proposals of the other players.
That is, for each player i who is assigned to a resource ri , each resource r from which she receives a
higher payoff than from ri is matched to a player whom r prefers over i .

Observe that, even though s§ in the previous definition is called matching, the effective match-
ing is obtained by acceptance or rejection of the proposals s by the resources.

In such game, we have the following existence theorem,

Theorem 140 ([2]). Every player-specific singleton congestion game with priorities possesses a pure
Nash equilibrium that can be computed in polynomial time by O(m2.n3) strategy changes.

The result is valid for both strict preferences for the resources (which leads to the previously de-
scribed marriage problem) or non-strict allowing for ties (which leads to many-to-one matchings
because any man with maximum rank in the set of men proposing to a given woman is accepted).

In the player-specific singleton congestion game with priorities as proposed in [2], particularly
in, a resource (here, a woman) accepts all the most-preferred men among proposers (the resource
must be indifferent among them, i.e. they all have the same priority).

Our crowdsourcing setting is more general, in fact the firms can be matched to many workers
for many tasks, the workers can have preferences over groups more complex than those induced
by the preferences individuals. Particularly, we allow for complementarities and externalities. The
firms’ utilities (if not implicitly given by preferences and choice functions) may not be the sum
of specific congestion costs (functions of the numbers of players associated to the resource) over
the matched resources. Finally, we allow for scheduling constraints and externalities on the firms’
side.

In Appendix 8.11, we consider a more general class of congestion game with priorities called
player-specific matroid congestion games with priorities. These games are interesting because
they generalize the previous player-specific congestion game with priorities that have been shown
to be linked to the marriage problem and allow to asses some of the many-to-one problems. Fur-
thermore, by definition of our non-cooperative transformation and the firms’ strategy spaces, our
non-cooperative game is linked to such congestion games by some matroidal properties (that are
not studied in this document, but are left as open questions).
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8.4.2 Results

As a first solution, we use Nash’s well-known theorem on the existence of mixed Nash equilibriums
in finite games.

Theorem 141 (Nash, [30]). Every finite game (finitely many players, each with a finite set of strate-
gies) has a mixed strategy Nash equilibrium.

Thus there exists a mixed Nash equilibrium in the crowdsourcing problem in normal form. We
have defined Si as i’s set of pure strategies and each strategy si 2Si is a set of contracts in Xi , one
for each task. A randomized strategy ±i 2 �(Si ) assigns a probability distribution to each pure
strategy. We consider two interpretations of randomized strategies:

• Probabilistic interpretation: each subset of contracts in si 2 Si has a probability ±i (si ) to
be played and each contract x 2Xi is executed with probability

P
si2Si |x2si

±i (si ).

• Deterministic interpretation: each subset of contracts in Si is played for a fraction ±i (si ) of
time and each contract x 2Xi is executed for a fraction

P
si2Si |x2si

±i (si ) of time.

By definition, at mixed Nash equilibrium ±§, we have,

ui ( (±§i ,±§°i )) ∏ ui ( (±i ,±§°i )), 8±i 2�(Si ) (8.26)

where,
ui ( (±i ,±°i )) =

X

s2S

±(s)ui ( (s)) =
X

s2S

Y

i2N

±i (si )ui ( (s)) (8.27)

According to the deterministic interpretation, for any task øwith a contract in the support of (±§)
(response of the workers to the mixed strategy obtained as the convex combination of the response
to the pure strategies) each contract x such that T (x) = ø is executed for a fraction of time by W (x)
according to the terms specified in x. We call fractional matching such distribution over contracts.
The notion of fractional matching is already known in matching games and has been particularly
studied in the framework of the analysis of the stable matching polytope (see [31] and references
therein). A fractionally stable matching is obtained as a convex combination of stable matchings
(whatever probablilistic or deterministic). In our setting, the distribution over strategy profiles
induces a distribution over workers’ response and thus over matchings as sets of contracts chosen
by the workers in the set of those proposed by the firms. To the best of our knowledge, this is
the first joint consideration of the notion of fractional matching and matching with contracts (a
fortiori with externalities).

If the contracts are uniquely identified by a firm, a worker, a task and a salary, then the mixed
distribution gives for ø the profile of payments to be distributed among the workers with contracts
and obtained by giving, for each contract x w.r.t. ø, the worker W (x) a salary s(x)£ P

si2Si |x2si

±i (si ).

If the contracts contain more than a salary, then there is an equivalent time-sharing over the con-
ditions of the contracts and the mixed distribution gives the profile of conditions for the execution
of ø.

At equilibrium, no firm has the incentive to chose an alternative mixed distribution to change
the workers’ response (expected terms of the executed contracts, or profile of executions of con-
tracts) given other firms’ profiles and workers response function  . In other words, by choosing
another mixed profile, no firm f 2F can generate sequences of choices on workers’ side converg-
ing to a response  (±) that would strictly improve the expected utility of the resulting fractional
matching for f .

Furthermore, observe that the existence of mixed equilibrium in the non-cooperative transfor-
mation of the two-sided crowdsourcing problem does not rely on a particular assumption on the
firms’ utilities (or preferences in case they are the primitives of the model). We have only assumed
convergence of the workers’ choice function CW.
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w1

w2

f1

f2

ø1

ø2 ø3

Figure 8.8: A matching market with contracts and non-cross-constrained scheduling.

We now turn to pure strategies and show that there may not exists a Nash equilibrium in pure
strategies S =

Q
i2N

Si . To show this, simply consider the example shown in Figure 8.8.

Example 142. In this example, consider that the set of contracts X = {x1,2$
11 , x1,4$

11 , x3,1$
21 , x3,3$

21 , x2,1$
22 , x2,2$

22 }

where any contract is of the form (wk , fl ,øm , s): xm,s$
kl and s is the salary. Furthermore, assume the

following preferences

• Pw1 : x1,4$
11 ¬w1 x3,3$

21 ¬w1 x3,1$
21 ¬w1 ;

• Pw2 : x2,2$
22 ¬w2 x2,1$

22 ¬w2 ;

• P f1 : x1,2$
11 ¬ f1 x1,4$

11 ¬ f2 ;

• P f2 : {x1,1$
21 , x2,2$

22 } ¬ f2 {x1,3$
21 , x2,1$

22 } ¬ f2 x2,2$
22 ¬ f2 x2,1$

22 ¬ f2 ;

To justify {x2,2$
22 } ¬ f2 {x2,1$

22 }, assume that the productivity of w2 when being paid 2$ is higher than at
1$. The firm prefers, because the tradeoff salary-productivity is good. As another example, at 4$, the
tradeoff is bad for f1, thus x1,2$

11 ¬ f1 x1,4$
11

In the Table 8.8, we give the matching resulting from the workers’ choice at any pure strategy
profile (firm f1 in columns and f2 in rows). In Table 8.9, we show the corresponding utilities. Observe
that given any pure strategy (i.e. pair row-column), a player has an incentive to deviate to strictly
increase her payoff, thus there is no Nash equilibrium.

x1,2$
11 x1,4$

11
x3,1$

21 , x2,2$
22 µ = {x2,2$

22 , x1,2$
11 }, (A) µ = {x2,2$

22 , x1,4$
11 }, (B)

x3,3$
21 , x2,1$

22 µ = {x3,3$
21 , x2,2$

22 }, (C) µ = {x2,1$
22 , x1,4$

11 }, (D)

x3,1$
21 ,null µ = {x1,2$

11 }, (E) µ = {x1,4$
11 }, (F)

x3,3$
21 ,null µ = {x3,3$

21 }, (G) µ = {x1,4$
11 }, (H)

null, x2,1$
22 µ = {x2,1$

22 , x1,2$
11 }, (I) µ = {x2,1$

22 , x1,4$
11 }, (J)

null, x2,2$
22 µ = {x2,2$

22 , x1,2$
11 }, (K) µ = {x2,2$

22 , x1,4$
11 }, (L)

Table 8.8: Matchings in the normal form representation with workers’ response function  .

x1,2$
11 x1,4$

11
x3,1$

21 , x2,2$
22 (2,2), (A) (2,1), (B)

x3,3$
21 , x2,1$

22 (3,0), (C) (1,1), (D)

x3,1$
21 ,null (0,2), (E) (0,1), (F)

x3,3$
21 ,null (°1,0), (G) (0,1), (H)

null, x2,1$
22 (1,2), (I) (1,1), (J)

null, x2,2$
22 (2,2), (K) (2,1), (L)

Table 8.9: Utilities of the matchings (see Table 8.8) in the normal form representation.

In the next section, we consider non-cooperative games in extensive form. First we introduce
the formalism and give a well-known existence result in perfect information. Then we study the
transformation of the original crowdsourcing problem (and the non-cooperative transformation
studied in this section) in a game in extensive form with perfect information.
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8.5 The Crowdsourcing Problem in Extensive Form

In this section, we define the crowdsourcing problem with contracts and externalities as a non-
cooperative game in extensive form. Basically, the idea is to introduce a sequential decision taking
in the previous normal form. The motivation for such transformation is that the unstability in the
motivating examples (see Section 8.2.3 and Section 8.2.3) arise from self-penalizing actions for the
decision-takers. Particularly, consider matching {x1

11, x2
22}. In such case, f2 proposes the contract

x3
22 to w2. Such proposal leads to a self-penalization of f2 because w2 accepts x3

22 but rejects x2
22

giving a non-feasible (unrational) matching {x1
11, x3

22}. Avoiding such self-penalizations have mo-
tivated the definition of alternative stabilities such as considered in [28] and in Appendix 8.10. On
the non-cooperative side, the concept of Subgame Perfect Nash Equilibrium has been considered
to get rid off non-credible threats and actions on the path of play. We aim at exploiting this in the
crowdsourcing problem. The order of play depends on priorities based on the scheduling graph.
First, we give a few basic notions of games in extensive form. Then, we define the crowdsourcing
matching problem with externalities and scheduling constraints in extensive form and with per-
fect information. This game is not equivalent to the original one but exhibit interesting properties
in terms of existence of equilibrium.

8.5.1 Games in Extensive Form

Defining a game in extensive form requires a more complete description than in normal or strate-
gic form. In fact, the extensive form introduces the notion of sequential decision taking, the agents
play in a given order. Depending on their level of information, they may or not be aware of the pre-
vious choices (or path of play). Formally, a game in extensive form is defined as follows

Definition 143 (Game in Extensive Form). �e = (N ,V ,∫root,Æ, {Ii }i2N , {ui }i2N ), where:

• N : set of players

• (V ,∫root,Æ) is a tree

– V : the set of nodes

– ∫root 2 V : the root

– Æ: the predecessor function mapping each node to its predecessor from V \{∫root}

• {Ii }i2N is a partitioning of the nodes of the tree into subsets called information sets. We
denote Ii the set of information sets of player i . Given an information set v 2 Ii , if the path
of play reaches this set then player i is unable to distinguish which of the nodes in v has been
reached

• Ys : set of nodes belonging to player i with information state s

In Figure 8.9, we show the basic setting of a game in extensive form. The players play in a
given order and choose an action per decision node. Depending on the game, they may or not
observe past moves. When a player does not observe some past moves, then he cannot uniquely
identify the decision node. A set of nodes that cannot be distinguished from each others is called
information sets. In Figure 8.9, each information set is shown as a yellow square, the predecessor
function is shown by the red arrow (maps any node to its predecessor) and the terminal nodes are
the leaves of the tree. They map each path of play to an outcome (whatever a matching or a utility
profile).

When using the extensive form, one must also appropriately re-define the strategy that must
now embed the fact that the path of play may lead to distinct nodes and that the players may
behave differently depending on the node reached by the sequential decision-taking process. A
strategy must explicitly give the set of decisions that would be taken by any player in the game.

Definition 144. Denote Ii the set of information sets of i .
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Figure 8.9: Game in extensive form. The green circle shows the root node, the red ones other decision-
nodes in the tree. The red arrow shows the application of the predecessor function on one of player 3’s
node. Finally, yellow rectangles show information sets.

• For each v 2Ii , we define Dv the set of moves that i could play if the game entered v.

• A strategy for a player is a mapping from the information sets into moves. A pure strategy
maps every information state to a move.

• Set of pure strategies of player i : Si = £
v2Ii

Dv .

• Set of mixed strategies of player i : �(Si ).

• Set of mixed strategy profile: £
i2N

�(Si ).

• Set of behavioral strategies of player i : £
v2Ii

.�(Dv )

– A behavioral strategy: æi 2 £
v2Ii

.�(Dv ).

• Set of behavioral strategy profiles: £
i2N

£
v2Ii

�(Dv ).

In Figure 8.10, we show the set of moves of player 2. The set Dv1 (respectively Dv2) is the set
of moves of player 2 at node v1 (respectively v2). In Figure 8.11, we show a pure strategy profile
among any node to an action. In Figure 8.12, we show a mixed strategy profile for player 2. Each
pure strategy (blue or red) is defined by a action at any decision node of player 2. The mixed strat-
egy is defined by the probability distribution (p,1°p) over the pure strategies. The blue strategies
played with probability p, the red one with probability 1°p. In Figure 8.13, we show an example
of a mixed behavioral strategy for player 2. At any decision node, there is a probability distribution
over actions. At node v1, the blue action is played with probability p, the red one with probability
1° p. At node v2, the black action is played with probability p 0, the green one with probability
1°p 0.

As already stated, the amount of information about past moves in a game in extensive form
may vary from one game to another. As an example, in chess as in tic-tac-toe the players play
sequentially and observe all past moves (history) so that they know the history of the game at any
time. In such a case, the game is said to be in perfect information and the information sets are
reduced to singletons. No player can be misleading about past moves and a strategy æi of player
i is defined over the set of i ’s nodes and maps any of these node to a successor. A strategy profile
æ = (æ1, . . . ,æN) inductively induces a path of play, thus an outcome (final node). For the rest of
this section, we focus on perfect information (see [30] or [32] for further details on perfect and
imperfect information).
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Figure 8.10: Game in extensive form. Blue circles show the set of moves at player 2’s decision nodes.

Figure 8.11: Game in extensive form, a pure strategy profile. Each node is mapped to an action.

The link between the extensive form and the normal form is defined by an application map-
ping the complete strategy profile of the tree to the path-of-play, thus to the termination node and
thus the outcome of the game. Formally,

Definition 145 ([32], pp.67). The application F mapping any strategy profileæ to an outcome in the
set of final nodes is called reduction in normal form or strategic form.

Definition 146 ([33]). Given a node v in the game tree and fixing s(v 0) for all v 0 below8 v, we can
define an induced normal-form game in node v by s as the game with strategy space £Si (v) such
that the utility for player i by playing s̃(v), s̃i (v) 2 Si (v) is uv

i (si , s°i ) where player i plays s̃i (v) in
node v and according to si (v 0) in all nodes v 0 below v.

Assuming that the sequential decision-taking has reached a node in the tree, the subtree in-
duced by this node defines a smaller game in extensive form, called subgame. Formally,

Definition 147 ([33]). A subgame of sequential game is the game resulting after fixing some initial
history of play, (i.e., starting the game from a node v of the game tree). Let uv

i (s) denote the utility
that i gets from playing s starting from node v in the tree.

Based on this notion of subgames, game-theorists have refined the Nash equilibrium to an-
other solution concept, called Subgame Perfect Nash Equilibrium, asking for the strategies to form
an equilibrium in any subgame, thus guaranteeing the credibility of any threat in the strategy pro-
file.

8v 0 is a successor of v in the extensive form tree.
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Figure 8.12: Game in extensive form, a mixed strategy for player 2. Each pure strategy is assigned a proba-
bility.

Figure 8.13: Game in extensive form, a mixed behavioral strategy for player 2. Each node is assigned a
probability distribution over its set of moves.

Definition 148 ([32], pp.71). A strategy profile æ is an S-perfect equilibrium, or Subgame Perfect
Nash Equilibrium (SPNE), if for any non-terminal node v, æ(p) induced by æ in the subgame G(p)
is a Nash equilibrium in this subgame

In other words ([33]), we say that a profile s is a SPNE if it is a Nash equilibrium for each sub-
game of the game, that is, for all nodes v

8s0i : uv
i (si , s°i ) ∏ uv

i (s0i , s°i ) (8.28)

It is known that set of subgame perfect Nash equilibriums is subset of the set of Nash equilibriums.
We have the following important existence theorem guaranteeing the non emptiness of the set of
SPNEs in any finite game in extensive form with perfect information.

Theorem 149 ([32]). Any finite game in extensive form admits an S-perfect equilibrium in pure
strategies.

Furthermore, such equilibriums can be obtained by backward induction in finite games and
Kuhn’s Theorem states that s is a subgame perfect equilibrium iff s(v) is a Nash equilibrium on the
induced normal-form game in node v for all v .

8.5.2 Formulation as a Game Extensive Form

We now show that a solution to the crowdsourcing problem with contracts and scheduling can be
found by using an extensive form with perfect information and the subgame perfect Nash equilib-
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ø2 ø3 ø4

Figure 8.14: Non-feasible matching.

ø2 ø3 ø4

Figure 8.15: Feasible matching.

rium solution concept (see the previous section).
Consider the original crowdsourcing matching problem. If a matching µ is not feasible (i.e.

violates the scheduling constraints of at least one firm), then the firm with violated constraints
strictly prefers rejecting the contracts in µwith non-feasible tasks. These tasks may be considered
as individually discarded from the left to the right of the scheduling graph of the firm.

We define the task-agent representation as a simple transformation of the matching game such
that each task is a player N = T and the action space of task i is Ai = Xøi [;, where ; is the null
contract. In the task-agent representation, the chosen contracts are proposed by the tasks to the
workers. This is similar to the the previously studied normal form where each firm proposed a set
of contracts to the workers.

We define the crowdsourcing problem in extensive form with perfect information as,

• � = (N ,V ,∫root,Æ, {Ii }i2N , {ui }i2N )

• N = T

• Tree (V ,∫root,Æ)

• Information sets are reduced to the singletons V

• Outcomes: at a termination node, each task has the utility of its firm at the resulting match-
ing

Observe that all the tasks T (X f ) of any firm f 2 F have identical utilities and will play to
maximize the utility of the firm.

To make the definition complete, we define the predecessor function of the game. Consider
the graph of scheduling constraints G = (T ,A). Let ⇧ = {º(1), . . . ,º(m)} denote a partition of the
players (tasks or nodes in G ) into subsets. The subset º( j ) contains the set of nodes of G that are
at distance j from the root. The distance of a node to the virtual root is defined as the length of the
longest path from the virtual root to the node. Let Ø(º(i )) be a permutation of the nodes in º(i ).
The players play in the following order:

• From º(1) to º(m)

• In any º( j ) 2⇧, according to the order defined by Ø(º( j ))

Observe that the game is such that each player plays only once.
By Theorem 149, there exists a SPNE (thus a NE) in the defined extensive form game (that is

also a NE of its normal form representation). At equilibrium, no task has the incentive to propose
another contract at any node given the strategy profile and the workers response function. By
definition, given the strategy profile and on the path of play, the deviation of a task to another
contract would generate a sequence of acceptance and rejections (by the workers) of the contracts
defined by the new path of play that would converge to the workers’ response defined by  . In
this setting, each node (actually the corresponding task) anticipates the deviations of the other
nodes prescribed by the strategy (at any node the playing task anticipates the deviations of its
successors). At SPNE, no decision-node in the tree (i.e. task ø 2 T ) can strictly increase its utility
(thus firm F (ø)’s utility) by proposing the workers another contract than the one prescribed by
the strategy, given the strategy at other nodes. In other words, at any node v there is no deviation
(i.e. alternative contract proposed by the task at v , particularly on the path of play) that would
benefit the node given the strategy of the successors. This anticipation looks similar to the far-
sighted behaviors considered in classical matching games (see [1] and references therein). The
particularity is that when proposing a contract at a node, a task anticipates only the impact on the
decisions in the induced subgame, i.e. of its successors in the induced subtree.
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Example 150. We now consider the example of Section 8.2.3. In Figure 8.16, we show a transforma-
tion of the original problem as a non-cooperative game in extensive form. To obtain this transforma-
tion, we use the task-agent representation introduced in Section 8.2.3. By definition, the transforma-
tion is such that each task is a player. At any node, the task proposes a contract in the set of contracts
related to it. Given a path, the outcome of the game is obtained as the result of the contracts along
the path to the workers. The corresponding matching is given by the workers’ the response function
 with input the set of contracts defined by the path. The utility of each task at any outcome (leaf of
the tree) is the utility of its firm of the matching resulting from the proposal of the contracts on the
path from the root to the leaf. In Figure 8.17, we show an example of a pure strategy. Each branch of
the tree is defined by a contract. In Figure 8.19, we show (in red) the SPNE of the game. This SPNE
corresponds to the expected outcome {x1

11, x2
22} because the non-credible action x3

22 cannot be played
by rationality and polarization of the interests of ø2 and ø3. If player ø3 had play x3

22 instead of the
null contract on the path of play, the result would have been a matching µ = {x1

11, x3
22} which is not

feasible (°1 to both ø2 and ø3). This is a self-penalization, similar to non-credible threat because
at this point the agent’s best response to the others’ strategy is not this action. In this case

Figure 8.16: Crowdsourcing market in extensive form.

Figure 8.17: Extensive Crowdsourcing: contracts. Each branch of the tree is assigned a contract. At every
node, the set of branches corresponds to the set of contracts for the task corresponding to the node.

As shown in Example 150, the proposed formulation of the crowdsourcing problem as a non-
cooperative game in extensive form leads to interesting equilibria, both in terms of existence and
decision-taking properties. In fact, SPNEs are guaranteed to exist in our setting and naturally
avoid non-rational decisions (or non-credible choices) that would lead the decision-taker to a self-
penalization in the outcome of the game. This is aligned with the stabilities proposed in Appendix
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Figure 8.18: Extensive Crowdsourcing: utilities. Every outcome is defined by matching (thus utilities) re-
sulting from the proposals of contracts defined by the path from the root to the leaf and from the workers’
response function  .

Figure 8.19: Extensive Crowdsourcing: SPNE. In red, we show the SPNE strategy. The path of play gives the
set of proposed contracts and the outcome the matching.

8.10 that have been designed so as to avoid self-penalizing choices and incredible deviations that
would lead to non-persistent matchings (see [28] for more details on the account of non-credible
deviations in stability solution concepts). Nevertheless, by definition an SPNE is defined as a strat-
egy profile mapping the nodes of the tree to actions. When deviating, the players anticipate the
reaction of others. Such anticipation gets rid of the myopic nature of the agents as assumed by
short-sighted choice functions as considered in Section 8.3 and defined in Chapter 3, Section 3.6
(see [1], [28] and references therein). As already observed, in the definitions of alternative sta-
bilities (see 8.10) we have taken this into account. There is a priori no equivalence between the
stabilities considered in this chapter and SPNEs of the crowdsourcing problem in extensive form.
Nevertheless, it would be interesting to see in further details how such solution concepts intercon-
nect with each others and wether they should be considered more as complements or substitutes.

8.6 Conclusion

In this chapter, we have analyzed a crowdsourcing system allowing for firms’ intra and inter-
scheduling constraints using the theory of stable matchings, particularly matching with contracts
and externalities. Nevertheless, as shown there is no guarantee of existence of a stable matching
defined as a set of contracts between the firms and the workers. In fact, the scheduling constraints
induce that the firms choice functions do not satisfy the substitutability condition. We have de-
fined a constrained substitutability, generalizing the well-known substitutability condition to con-
strained settings, and shown sufficient conditions for the existence of stable matchings. Finally, we
have considered two transformations of the original problem (without equivalence) to the non-
cooperative formulation: the normal and extensive forms. This allows to benefit from some fun-
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damental and well-known existence theorems in non-cooperative games and not consider the
substitutability condition. The link between cooperative stable matchings and non-cooperative
formulations and solution concepts is to be explored in further details and remains as an open
question.
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8.8 Appendix: Insufficiency of Existing Solutions

In this appendix, we compare the problem of many-to-many matching game with contracts and
scheduling constraints to those assessed in existing works and give the reasons for their insuffi-
ciency.

• Sasaki and Toda’s [20], Matching with Externalities:

This work solves the problem of stability in the marriage problem with externalities. The
general existence of stable matchings is guaranteed only for a new stability. The results are
limited to the one-to-one matchings whereas the problem we consider is a many-to-many
matching problem.

• Hatfield and Milgrom’s [27], Matching with Contracts:

This model does not take into account externalities, i.e. the current matching does not affect
the choice of the players. Furthermore, they consider many-to-one matching with contracts.
A doctor can be hired by a single firm. By definition, the problem we want to assess deals
with many-to-many matchings (particularly: any worker can both work for a firm on many
tasks and for many firms) with contracts and externalities. This model of matching with
contracts cannot be used.

• Bando’s [25][26], Matching with Externalities:

This work studies a many-to-one matching market with externalities only on the firm’s side
and due to hired workers only. The model is formalized in terms of choice functions on sets
of players and not contracts. A new stability concept called weak stability is defined and the
set of weak stable matchings is shown to be non-empty under the assumptions of extended
substitutability, increasing choice and no external effect by unchosen worker. By definition,
the problem we want to assess is of the many-to-many form (particularly: any worker can
both work for a firm on many tasks and for many firms) with contracts and externalities due
to an exogenous scheduling graph. This model of matching cannot be used directly despite
of the fact that it may be interesting to consider the weak stability and an adaptation of the
assumption on externalities only due to hired workers.

• Fleiner et a.l. [24], Trading Networks with Bilateral Contracts:

The model proposed by Fleiner et a.l. in [24] considers a contract network modeled by a
directed graph such that the nodes are firms and the directed edges are the contracts. In
this setting, the firms trade with each others over the contract network. Contract networks
subsume the bi-partite structure of the graph in matching games. For any firm (node in the
graph) and set of contracts, the externalities in the choice of upstream contracts are due
to the set of available downstream contracts and reciprocally 9. The authors consider the
trail and full trail stabilities, new solution concepts for settings contract networks allowing
cycles. In our setting, firms do not trade with each others but with workers. Nevertheless,
it is shown that many-to-many markets are special cases of such trading networks. Both
our model and their model consider a directed graph but the motivations differ since in our
case, the graph describes scheduling constraints and not trading opportunities between ad-
jacent nodes. Nevertheless, it may be interesting to see how the trail and full trail stabilities
could be adapted to our setting. See 8.8.3 for further details on the transformation of the
crowdsourcing problem in the framework of trading networks.

• Pycia and Yenmez’s [1], Matching with Externalities:

The studied model is compatible with the particular many-to-many structure of our prob-
lem: any worker can both work for a firm on many tasks and for many firms. The authors use

9The externalities in the choice of downstream contracts are due to the set of available upstream contracts
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A f (t ) Aw (t ) µ f (t ) µw (t ) C f (A f (t )|µ f (t )) Cw (Aw (t )|µw (t ))

t = 1 {x1
11, x2

22, x3
22} ; {x1

11, x2
22, x3

22} ; {x1
11, x2

22, x3
22} ;

t = 2 {x1
11, x2

22, x3
22} {x1

11, x2
22, x3

22} {x1
11, x2

22, x3
22} ; {x1

11, x2
22, x3

22} {x1
11, x3

22}

t = 3 {x1
11, x3

22} {x1
11, x2

22, x3
22} {x1

11, x2
22, x3

22} {x1
11, x3

22} {x1
11} {x1

11, x3
22}

t = 4 {x1
11, x3

22} {x1
11, x2

22} {x1
11} {x1

11, x3
22} {x1

11} {x1
11, x2

22}

t = 5 {x1
11, x2

22, x3
22} {x1

11, x2
22} {x1

11} {x1
11, x2

22} {x1
11, x2

22, x3
22} {x1

11, x2
22}

t = 6 {x1
11, x2

22, x3
22} {x1

11, x2
22, x3

22} {x1
11} {x1

11, x2
22, x3

22} {x1
11, x2

22, x3
22} {x1

11, x3
22}

t = 7 {x1
11, x3

22} {x1
11, x2

22, x3
22} {x1

11, x2
22, x3

22} {x1
11, x3

22} {x1
11} {x1

11, x3
22}

Table 8.10: Modified Deferred Acceptance with firms proposing and non-substitutability of the choice func-
tion CF.

the substitutability and irrelevance of rejected contracts as sufficient conditions for the con-
vergence of their modified deferred acceptance algorithm to a stable matching and thus to
show the existence of stable matchings. As already observed, one can find counter-examples
of matching problems with scheduling constraints that have no pairwise stable matchings
and thus do not satisfy Pycia and Yenmez’s sufficient conditions. See 8.8.1 for further details
on the insufficiency of the model and solution proposed in [1] to solve the crowdsourcing
problem.

8.8.1 Non-Substitutability and the Modified Deferred Acceptance with Intra-firms Schedul-
ing

Consider the first motivating example shown in Section 8.2.3. We show that the firms’ choice func-
tion CF do not satisfy the substitutability condition because c f2 does not. Thus, one cannot use
the results in [1] to show the existence of pairwise stable matchings (that actually does not exist as
shown in Section 8.2.3).

Consider X = {x3
22} µ X0 = {x2

22, x3
22} and µ = ;. We have,

r f2 (X|µ) = x3
22 6µ r f2 (X0|µ) = ; (8.29)

The choice function c f2 does not satisfy the substitutability condition. Thus CF does not and the
existence of stable matchings is not guaranteed. Nevertheless, let us apply the modified deferred
acceptance algorithm defined in [1] (see Chapter 3, Section 3.6) and show the cyclic behavior.

The first phase of the algorithm converges to the matching µ§ = {x1
11, x2

22, x3
22}. We show in

Table 8.10 how the second phase of the algorithm performs in it firms proposing version with
non-substitutability of the choice function CF. Observe that the algorithm cycles.. The condition
for convergence 10 is not satisfied in any intermediate round.

The first time the algorithm goes through a choice that does not satisfies the substitutabil-
ity condition and thus induces non-monotonicity of the function f is at round four (t = 3). In
fact, at t = 3 we have RF({x1

11, x3
22}|{x1

11, x2
22, x3

22}) = {x3
22} which is not included in the set contracts

R f ({x1
11, x2

22, x3
22}|{x1

11, x2
22, x3

22}) = ; rejected by the firms at t = 2. This induces that the set of offers
Aw (4) at t = 4 is strictly included in the set of offers Aw (3) at t = 3 and that the set of contracts A f (5)
at t = 5 is a superset A f (4) at t = 4. As a consequence of the non-substitutability, f is no more a
monotone function. Furthermore, A f (t ) and Aw (t ) does not define anymore respectively the set
of not yet rejected contracts and the cumulated set of offered contracts.

10A f (t ) = A f (t +1), Aw (t ) = Aw (t +1), µ f (t ) =µ f (t +1), µw (t ) =µw (t +1)
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8.8.2 Non-Substitutability and the Modified Deferred Acceptance with Inter-firms Schedul-
ing

Consider the second motivating example 8.2.3 with firms’ choice functions CF as given in Table

8.7. Consider the preorder
f
∫ defined as,

8µ,µ0 µX , µ0 ∫F µ,µ0(i )∫
i
µ(i ) 8i 2F (8.30)

We show that this preorder is consistent with C F. Since the choice function of firms f1 and f2 do
not exhibit externalities, as there are more contracts available, the two firms are better off (each
chooses a preferred subset of contract). In fact, for any i 2 { f1, f2} and any X µ X0 µ X , Ci (X0) µi

Ci (X). By definition of c f20 (see Table 8.5), we can easily show that
f
∫ is consistent with c f20 . In fact,

we have,
c f20 ({x3

220}|{x1
11, x2

22}) ∫ f20 c f20 ({x3
220}|{x1

11}),c f20 ({x3
220}|{x2

22}) ∫ f20 ; (8.31)

The preorder ∫F is consistent with CF.

We show that the contracts are not substitutes for the firms (see (see Chapter 3, Section 3.6 for
the definition of the substitutes condition in matchings). For any X,X0,µ,µ0 µ X such that X µ X0

and µ0 ∫F µ, we have r f1 (X|µ) µ r f1 (X0|µ0) and r f2 (X|µ) µ r f2 (X0|µ0). Considering the reject function
of f20 (see Table 8.6), we have,

r f20 (.|{x1
11}) = r f20 (.|;) = {x3

220} ∂ r f20 ({x3
220}|{x1

11, x2
22}) = ; (8.32)

Using this result, for all X,X0,µ,µ0 µX such that x3
220 2 X, x2

22 62µ, x2
22 2µ0,µ0 f

∫µ, we have,

RF(X0|µ0) µ RF(X|µ) (8.33)

where RF is the firms’ reject function. Thus, the firms’ choice function CF does not satisfy the
substitutes condition. There is no guarantee of convergence to a solution (whatever stable or not)
of the transformation function f (i.e. of the algorithm).

The first phase of the algorithm converges to the matching µ§ = {x1
11, x2

22, x3
220}. We show in Ta-

ble 8.11 how the algorithm performs in it firms proposing version with non-substitutability of the

choice function CF (see Table 8.7) and the consistent preorder
F
∫ defined in (8.30). Observe that the

algorithm cycles except forµW. In fact, the sets obtained at round eight (t = 8) are the same as those
obtained at round three (t = 2) except for µW. The first time the algorithm goes through a choice
that does not satisfies the substitutability condition and thus induces non-monotonicity of func-
tion f w.r.t. the order w is at round four (t = 4). In fact, at t = 4 we have RF({x1

11, x3
220}|{x1

11, x3
220}) =

{x3
220} which is not included in the set contracts RF({x1

11, x3
220}|{x1

11, x2
22, x3

220}) = {x1
11, x3

220} rejected by
the firms at t = 3. This induces that the set of offers AW(4) at t = 4 is not included in the set of offers
Aw (5) at t = 5 and that the set of not rejected contracts at t = 6, AF(6) is not included in the set of
not rejected contracts at t = 5 AF(5). As a consequence of the non-substitutability, AF(t ) and AW(t )
does not define anymore, respectively the set of not yet rejected contracts and the cumulated set
of offered contracts.

8.8.3 Matching with Contracts and Inter-firms Scheduling via Contract Networks

To show that graph-based existing solutions in matching games do not solve the problem, we for-
mulate the previous example using trading networks as developed by Fleinet et al. in [24]. Fig-
ure 8.20 shows the corresponding setting. In the model, each contract is mapped to a directed
edge of a graph with nodes as players of the game. Given a node and the set of contracts pointing
from this node to others, it is said that the node is the seller of this output stream. Similarly, given
a node and the set of contracts pointing to this node from others, it is said that the node is the
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AF(t ) AW (t ) µF(t ) µW (t ) CF(AF(t )|µ f (t )) RF(AF(t )|µ f (t )) CW (AW (t )|µw (t )) RW (AW (t )|µw (t ))

t = 1 {x1
11, x2

22, x3
220 } ; {x1

11, x2
22, x3

220 } ; {x1
11, x2

22, x3
220 } ; ; ;

t = 2 {x1
11, x2

22, x3
220 } {x1

11, x2
22, x3

220 } {x1
11, x2

22, x3
220 } ; {x1

11, x2
22, x3

220 } ; {x1
11, x3

220 } {x2
22}

t = 3 {x1
11, x3

220 } {x1
11, x2

22, x3
220 } {x1

11, x2
22, x3

220 } {x1
11, x3

220 } {x1
11, x3

220 } ; {x1
11, x3

220 } {x2
22}

t = 4 {x1
11, x3

220 } {x1
11, x2

22, x3
220 } {x1

11, x3
220 } {x1

11, x3
220 } {x1

11} {x3
220 } {x1

11, x3
220 } {x2

22}

t = 5 {x1
11, x3

220 } {x1
11, x2

22} {x1
11} {x1

11, x3
220 } {x1

11} {x3
220 } {x1

11, x2
22} ;

t = 6 {x1
11, x2

22, x3
220 } {x1

11, x2
22} {x1

11} {x1
11, x2

22} {x1
11, x2

22} {x3
220 } {x1

11, x2
22} ;

t = 7 {x1
11, x2

22, x3
220 } {x1

11, x2
22} {x1

11, x2
22} {x1

11, x2
22} {x1

11, x2
22, x3

220 } ; {x1
11, x2

22} ;

t = 8 {x1
11, x2

22, x3
220 } {x1

11, x2
22, x3

220 } {x1
11, x2

22, x3
220 } {x1

11, x2
22} {x1

11, x2
22, x3

220 } ; {x1
11, x3

220 } {x2
22}

Table 8.11: Modified Deferred Acceptance with firms proposing and non-substitutability of the choice func-
tion CF (see Table 8.7) when using the preorder ∫F defined in (8.30).

w1

w2

f1

f2

f20

ø1

ø2

ø3

x1
11

x2
22

x3
22

xs

Figure 8.20: Example: A many-to-one matching game with contracts and scheduling constraints as a con-
tract network.

buyer of this input stream. In this model, the scheduling constraint is introduced as an additional
contract xs from ø2 to ø3 and selected in the output stream of ø2 when x2

22 is signed. We have the
following choice functions:

• ø2 as a buyer (input stream):

cB
ø2

(x2
22|;) = x2

22 and cB
ø2

(x2
22|xs) = x2 (8.34)

• ø2 as a seller (output stream):

cS
ø2

(xs |;) = ; and cS
ø2

(xs |x2
22) = xs (8.35)

• w2 as a seller (output stream):

cS
w2

(x2
22|;) = x2

22 and cS
w2

(x3
22|;) = x3

22 and cS
w2

({x2
22, x3

22}|;) = x3
22 (8.36)

• ø3 as a buyer (input stream)

cB
ø3

(x3
22|;) = ; and cB

ø3
(xs |;) = xs and cB

ø3
({x3

22, xs}|;) = x3
22, xs (8.37)

Since, RB
ø3

(x3
22|;) æ RB

ø3
({x3

22, xs}|;), the same-side substitutability (SSS) condition for input streams
(ø3 as a buyer) from the full substitutability condition is not satisfied (see [24] for a complete anal-
ysis).

Observe that by reversing the directed edges between the firms and the workers (but not of xs

to maintain the scheduling constraint, see Figure 8.21) one would have obtained complementary
input and output streams for f20 (xs and x3

22) and complementary output streams since

r f2 ({xs}|;) = {xs} 6µ r f2 ({xs , x2
22}|;) = ; (8.38)

Based on this transformation, on can see that there are complementarities in the output streams
of the firms so the conditions (full substitutability) for the results to hold are not satisfied but we
leave as an open question the analysis of the crowdsourcing problem by trading networks with bi-
lateral contracts either in the original formulation with the following configuration of the trading
network:
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w1

w2

f1

f2

f20

ø1

ø2

ø3

x1
11

x2
22

x3
22

xs

Figure 8.21: Example: A many-to-one matching game with contracts and scheduling constraints as a con-
tract network.

• The nodes of the network are the firms and the workers.

• The contracts of the original problem are directed edges from the firms to the workers.

• Any oriented edge from ø to ø0 not belonging to the same firm in the scheduling graph is
transformed into a contract from F (ø) to F (ø0) (i.e. on the output stream of F (ø) and in the
input stream of F (ø0)). This contract would be chosen by F (ø) as soon as the the scheduling
constraints for the execution of ø are satisfied.

or in the task-agent representation of the original problem with the following configuration of the
trading network:

• The nodes of the network are the tasks and workers.

• The contracts of the original problem are directed edges from the firms to the workers.

• Any oriented edge from ø to ø0 in the scheduling graph is transformed into a contract from
ø to ø0 (i.e. in the output stream of ø and in the input stream of ø0). This contract would be
chosen by ø as soon as a contract from ø to the workers is signed.
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8.9 Appendix: Proofs

8.9.1 Appendix: Proof of Proposition 124

Proof. Consider any X,X0,µ,µ0 µ X such that X0 ∂ X and µ0 ∫F µ. Using the fact that any feasible
contract in X at µ is also feasible at µ0 because weakly more feasibility conditions are satisfied, for
any f 2F , we have

X f (µ0) ∂ X f (µ) (8.39)

Furthermore, since any feasible contract in X at µ0 is feasible in any superset and X0
f ∂ X f , then

X0
f (µ0) ∂ X f (µ0) ∂ X f (µ) (8.40)

By definition of c f , we have,

c f (X|µ) = [
ø2T (X f (µ))

argmin x2X f (µ)
s.t .ø(x)=ø

s(x) (8.41)

Each firm, chooses weakly more contracts in X0 at µ0 than in X at µ. Thus, the set of tasks assigned
in [

f 02F\ f
c f 0(X0

f 0(µ0)) contains [
f 02F\ f

c f 0(X f 0(µ)),

T

µ
[

f 02F\ f
c f 0(X0

f 0(µ0))
∂
∂T

µ
[

f 02F\ f
c f 0(X f 0(µ))

∂
(8.42)

Then,

T

µ
[

f 02F\ f
c f 0(X0

f 0(µ0))
∂
\N °(T f ) ∂T

µ
[

f 02F\ f
c f 0(X f 0(µ))

∂
\N °(T f ) (8.43)

which implies consistency,
CF(X0|µ0) ∫F CF(X|µ) (8.44)

167



CHAPTER 8. MATCHING GAMES AND CROWDSOURCING

8.9.2 Appendix: Proof of Proposition 126

Proof. Assume X,X0,µ,µ0 µX , such that X µ X0, µ0 ∫F µ and for any f 2F ,

T
f

X!X0

µ!µ0
= ; or X f (T f

X!X0

µ!µ0
) 6µ X0

f (µ0) (8.45)

By definition, the firms’ choice function CF satisfies constrained substitutability iff for any firm
f 2 F , the firm’s choice function c f satisfy constrained substitutability. Consider any firm f 2 F

with choice function c f . By definition of c f , a contract x 2 X f is rejected by f in X f at µ (i.e.
x 62 c f (X f |µ)), if,

• x 2 X f \X f (µ) or,

• x 2 X f (µ) and 9x 0 2 X f (µ) such that s(x) > s(x 0) and ø(x) > ø(x 0)

First, if the condition T
f

X!X0

µ!µ0
= ; is satisfied, then no non-feasible task ø in X f at µ is feasible in

X0
f at µ0. In such a case, if a contract x 2 X f is rejected at µ because of non-feasibility then it is also

rejected in X0 at µ0.

Else if the feasible contract x is rejected because it is not of min-salary, i.e. x 62 X f (µ), by inclu-
sion X0 ∂ X, x is still rejected from X0

f at µ0 because it is still not of min-salary w.r.t. ø(x).

Second, if T
f

X!X0

µ!µ0
6= ; and X f (T f

X!X0

µ!µ0
) 6µ X0

f (µ0), then there exists a non-feasible task ø in X at

µ that is feasible in X0 at µ0 with min-salary contract x 0 for ø in X0
f not in X f . As previously, in

such a case, if a contract x 2 X f is non-feasible in X f at µ and in X0
f at µ0, i.e. x 62 X0

f \X f (µ) and

x 62 X0
f \X0

f (µ), then it is rejected.

Else the non-feasible contract x in X f at µ, even though feasible in X0
f at µ0 keep on being rejected

by f because x 0 has lower salary.

Finally, we need to check that any contract x 2 X f (µ)\X f (µ) (i.e. feasible but not of min-salary

in X at µ) is rejected by f in X0
f at µ0. Since X f (µ) µ X0

f (µ0) (using X µ X0 and µ0 ∫F µ) then we

obtain that x is still not of min-salary in X0 at µ0 and is thus rejected.
Thus, the choice function of any firm f 2F satisfies constrained substitutability and the firms’

choice functions satisfy constrained substitutability by equivalence.
This concludes the proof.
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8.9.3 Appendix: Proof of Proposition 127

Proof. Assume X0,X,µµX and the firms’ choice function CF such that CF(X0|µ) µ X µ X0.
By definition of CF (as the union of individual choices), for any firm f 0 2 F we have c f 0(X0

f 0 |µ) =

X0
f 0(µ) µ X f 0 µ X0

f 0 . The set of min-salary feasible contracts in X0
f 0 is in X f 0 .

Furthermore, assume CF(X0|µ) 6= CF(X|µ).
Then, there exists a firm f 2F such that c f (X0

f |µ) = X0
f (µ) 6= c f (X f |µ) = X f (µ).

By definition of feasibility and inclusion X f µ X0
f , we have X f (µ) µ X0

f (µ) (since any feasible

contract in a set is feasible in a superset). Thus, X f (µ) µ X f (µ) µ X0
f (µ) µ X0

f and there must exists

a contract x 2 X f such that x 2 X0
f (µ) µ X f but x 62 X f (µ). Either x 62 X f (µ), or there exists another

contract x 0 2 X f (µ) such that ø(x) = ø(x 0) and s(x 0) < s(x).

In the first case, x 62 X f (µ). But, since X0
f (µ) µ X f , X0

f (µ) is feasible in X f at µ there is a contra-
diction with x 62 X f (µ).
The second case is in contradiction with x 2 X0

f (µ) since X f (µ) µ X0
f (µ) implies x 0 2 X0

f (µ) and

x 62 X0
f (µ).

This shows by contradiction that c f (X0
f |µ) = c f (X f |µ), for any firm f 2F . Thus, CF(X0|µ) = CF(X|µ).

This concludes the proof.
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8.9.4 Appendix: Proof of Lemma 129

Proof. The proof is based on the same arguments than the one provided in [1] (Lemma 2, pp. 20),
except that we require for condition C3 of Definition 125 to be satisfied for the substitutability to
be used on the firms’ side. Function f is monotonic in v because for any AF µ ÃF, AW ∂ ÃW,µF π
µ̃F,µW ∫ µ̃W, such that condition C3 is satisfied, substitutability implies that

RW(ÃW |µ̃W) µ RW(AW |µW) (8.46)

thus,
X \RW(AW |µW) µX \RW(ÃW |µ̃W) (8.47)

and constrained substitutability implies that

RF(AF|µF) µ RF(ÃF|µ̃F) (8.48)

thus,
X \RF(AF|µF) ∂X \RF(ÃF|µ̃F) (8.49)

Furthermore, consistency implies that

CF(AF|µF) πF CF(ÃF|µ̃F) (8.50)

CW(AW |µW) πW CW(ÃW |µ̃W) (8.51)

Therefore, if (AF, AW,µF,µW) v (ÃF, ÃW, µ̃F, µ̃W) and condition C3 is satisfied, then we have,

f (AF, AW,µF,µW) v f (ÃF, ÃW, µ̃F, µ̃W) (8.52)

This concludes the proof.
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8.9.5 Appendix: Proof of Theorem 131

Proof. The proof is in four claims and is quite similar original to the one in [1]. Suppose that
(AF, AW,µ,µ) is a fixed point of f .

Claim 151. Suppose that the choice function CW satisfies substitutability and the irrelevance of
rejected contracts. Then matching µ is stable.

Proof. As a preliminary result, we show that if (AF, AW,µ,µ) is a fixed point of f , then condition C3
of definition 125 is satisfied such that for any f 2F ,

T
f
µ!AF

µ!µ

= ; or µ

√

T
f
µ!AF

µ!µ

!

6µ AF
f (µ) (8.53)

By assumption (fixed point), µ = CF(AF|µ) and by definition of c f , we have µ f = c f (AF
f |µ) and

µ f (µ) =µ f . Thus, T (µ f (µ)) = T (µ f ) and T (µ f )\T (µ f (µ)) = T (µ f )\T (µ f ) = ;. This implies

T
f
µ!AF

µ!µ

= ; (8.54)

which shows the preliminary result.
Now, suppose for contradiction that µ is not stable. Then, there are three possibilities, all of

which we proceed to rule out.

• First, matching µ is not individually rational for some firm j , that is c j (µ|µ) ( µ j . Since
(AF, AW,µ,µ) is a fixed point of f , CF(AW |µ) = µ and AF ∂ µ. But constrained substitutability
(condition C3 of Definition 125 verified by the preliminary result) and c j (µ|µ) ( µ j imply
that there is a contract x 2µ j rejected out of AF by agent j , that is x 62 CF.

• Second, matching µ is not individually rational for some worker i , that is ci (µ|µ)(µi .
The proof is the same as the original one provided in [1]. We provide it here for the sake of
completeness and to show the asymmetry w.r.t. substitutability between firms and workers.
Since (AF, AW,µ,µ) is a fixed point of f , CW(AW |µ) = µ and AW ∂ µ. But substitutability and
ci (µ|µ)(µi imply that there is a contract x 2µi rejected out of AW by agent i , that is x 62 CW.

• Then, there exists a blocking pair with contract x 2X \µ.
Since (AF, AW,µ,µ) is a fixed point of f , by Lemma 130 AF [AW = X .
Assume x 2 AW. Since {x} is a blocking set, there exists worker i s.t. x 2 ci (µ[{x}|µ)\µ. Again,
since (AF, AW,µ,µ) is a fixed point of f , by Lemma 130

CW(AW |µ) =µ (8.55)

which implies ci (AW |µ) =µi .

By irrelevance of rejected contracts, for any set Y s.t. AW ∂ Y ∂ µ, ci (Y|µ) = µi . In particular
for Y =µ[ {x}, ci (µ[ {x}) =µi , which is a contradiction because x 2 ci (µ[ {x}|µ)\µ.

It remains to show that there is a contradiction if x 2 AF. The proof is the same as in the
previous case since IRC also holds for the firms.

This concludes the proof of the claim.

Claim 152. Suppose that the choice function CW satisfies substitutability and the irrelevance of
rejected contracts. Then the function MW(µ) = max{X µ X |CW(X|µ) = µ}, where the maximum is
w.r.t. set inclusion, is well-defined. Moreover, for any contract z 62 MW(µ), z 2 CW(MW(µ)[ z|µ).

Proof. The proof is the same as the one given for Claim 2 for µ = W, in [1], pp.40.
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Claim 153. The function MF(µ) = max{X µX |CF(X|µ) = µ}, where the maximum is w.r.t. set inclu-
sion, is well-defined. Moreover, for any contract z 62 MF(µ), z 2 CF(MF(µ)[ z|µ).

Proof. By definition of CF, we have

MF(µ) = [
f 2F

££
X f \X f (µ)

§
[Y f [µ

§
(8.56)

where Y f =
©

x 2X f |8ø 2T (µ f ), s(x) > s(µ(ø))
™
, i.e. MF(µ) contains for any firm f 2 F , all con-

tracts in X f with non-feasible tasks and for every feasible tasks in X f at µ (i.e. X f (µ)) all contracts
with salary superior or equal to those in µ (knowing that by definition, only the contracts in µ have
the corresponding salaries). By definition, if a contract z 62 MF(µ) and x 2 µ s.t. ø(z) = ø(x) and
s(z) < s(x), then z 2 CF(M[ z|µ).

Claim 154. Suppose that the matching µ is stable, the choice function CW satisfies substitutability.
Then, there exist sets of contracts AF and AW s.t. (AF, AW,µ,µ) is a fixed point of f .

Proof. By claim 152 and claim 153, there exists the largest set

Mµ(µ) = max{X µX |Cµ(X|µ) =µ} (8.57)

for µ = W and µ = F. Let AF = MF(µ) and AW = X \RF(AF|µ). By definition of AF and µ = CF(AF|µ).
Thus, we get AF \AW = AF \

°
X \RF(AF|µ)

¢
= CF(AF|µ) =µ. To finish the proof, we need to show

µ = CW(AW |µ) and AF = X \RW(AW |µ). Note that

AW = X \RF(AF|µ) (8.58)

=
£
X \AF§

[CF(AF|µ) (8.59)

= [X \] AF [µ (8.60)

In particular, AW ∂ µ. If CW(AW |µ) = Y 6= µ, there are two cases, both of which contradict stability
of µ.

• First, if Y ( µ, then the irrelevance of rejected contracts implies CW(µ|µ) = Y, implying that
µ is not individually rational for some workers, contradicting stability.

• Second, if Y 6µ µ, then there exists a y 2 Y\µ and y 2 CW(µ[ {y}|µ) by substitutability since
y 2 CW(AW |µ) and AW ∂ µ[ {y}. But, we also have that y 2 CF(AF [ {y}|µ) by claim 153.
The set {y} blocks µ, contradicting stability. Thus, the only case consistent with stability is
CW(AW |µ) =µ.

• Finally we show that

AF = X \RW(AW |µ) = X \RW °
X \RF(AF|µ)|µ

¢
(8.61)

Since CW(AW |µ) =µ, then

X \RW(AW |µ) = X \
°
AW\µ

¢
(8.62)

= X \
°°°

X \AF¢
[µ

¢
\µ

¢
(8.63)

= X \
°
X \AF¢

(8.64)

= AF (8.65)

This concludes the proof of the claim.

The theorem is proved.
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8.9.6 Appendix: Proof of Theorem 132

Proof. First, let us consider the first phase of the algorithm and check out that µ§ ∫F CF(X |µ§).
By the irrelevance of rejected contracts, we get CF(µk |µk°1) = µk for every k ∏ 1. We show that
µk ∫F µk°1 for every k ∏ 1. The proof is by mathematical induction on k. For the base case when
k = 1, note that X ∂; and consistency imply that

µ1 = CF(X |;) ∫F CF(;|;) = ; =µ0 (8.66)

For the general case, µk ∫F µk°1 and X ∂µk imply that (by consistency)

µk+1 = CF(X |µk ) ∫F CF(µk |µk°1) =µk (8.67)

Then, for {µk }k∏1 is a monotone sequence w.r.t. the preorder ∫F.
By definition of CF and {c f } f 2F , one can show that the sequence converges to the matching µ§

such that for any task ø 2T ,
µ§(ø) = argmin x2X

ø(x)=ø
s(x) (8.68)

Thus, we have µ§ ∫F CF(X |µ§) and µ§ = CF(X |µ§).
It remains to show that the second phase converges and that the resulting matching is stable.

It is easy to see that
f (X ,;,µ§,;) v (X ,;,µ§,;) (8.69)

Since CF(X |µ§) = µ§ πF µ§ and CW(;|;) = ; ∫W ;. By reflexivity of ∫F and ∫W respectively, we
have

f (X ,;,µ§,;) = (X ,X \(X \µ§),µ§,;) (8.70)

= (X ,µ§,µ§,;) (8.71)

Thus, for any f 2F

TX!X
µ§!µ§

=
£
T (X f )\T (X f (µ§))

§
\T (X f (µ§)) = ; (8.72)

The conditions for constrained substitutability are satisfied for k = 1.
By assumption, f satisfies C3 (i.e. (AF, AW,µF,µW) and (AF, AW,µF,µW) satisfy C3), thus by

Lemma 129, f is monotone increasing, so we can repeatedly apply it to the last inequality to get

f k (X ,;,µ§,;) v f k°1(X ,;,µ§,;) (8.73)

for every k.
We consider two separate cases.

Suppose first that this sequence converges. Therefore there exists k such that

f k°1(X ,;,µ§,;) = f k (X ,;,µ§,;) (8.74)

As a result, f k°1(X ,;,µ§,;) is a fixed point of f . Let (A§F, A§W,µ§F,µ§W) = f k°1(X ,;,µ§,;). By
Lemma 130, µ§F =µ§W = A§F \A§W and µ§F is a sable matching by Theorem 131.

Otherwise, if sequence does not converge, there exists a subsequence

f n(X ,;,µ§,;) w f n+1(X ,;,µ§,;) w . . . w f m(X ,;,µ§,;) w f m+1(X ,;,µ§,;) = f n(X ,;,µ§,;)
(8.75)

because the number of contracts is finite.
By transitivity of the preorder w and the previous inequality, we get

f n(X ,;,µ§,;) = f m+1(X ,;,µ§,;) w f m(X ,;,µ§,;) w f n(X ,;,µ§,;) (8.76)

173



CHAPTER 8. MATCHING GAMES AND CROWDSOURCING

Let f n(X ,;,µ§,;) = (AF
1, AW

1 ,µF
1,µW

1 ) and f m(X ,;,µ§,;) = (AF
2, AW

2 ,µF
2,µW

2 ). By definition of w, we
get that

AF
1 = AF

2 (8.77)

AW
1 = AW

2 (8.78)

µF
1 ªF µF

2 (8.79)

µW
1 ªW µW

2 (8.80)

(8.81)

Now, by construction CF(AF
2|µF

2) = µF
1 (because f n(X ,;,µ§,;) = f m+1(X ,;,µ§,;)) and by

definition of CF, CF(AF
2|µF

2) = CF(AF
1|µF

1), which imply that CF(AF
1|µF

1) = µF
1. Similarly, by con-

struction CW(AW
2 |µW

2 ) = µW
1 (because f n(X ,;,µ§,;) = f m+1(X ,;,µ§,;)) and by substitutability

of CW, CW(AW
2 |µW

2 ) = CW(AW
1 |µW

1 ), which imply that CW(AW
1 |µW

1 ) = µW
1 . Furthermore, by substi-

tutability, X \RW(AW
2 |µW

2 ) = X \RW(AW
1 |µW

1 ), and by construction X \RW(AW
2 |µW

2 ) = AF
1, which im-

ply X \RW(AW
1 |µW

1 ) = AF
1. Similarly, we get X \RF(AF

2|µF
2) = AW

1 . Therefore, (AF
1, AW

1 ,µF
1,µW

1 ) is a fixed
point of f . This shows, that the sequence converges as in the previous paragraph, so there exists a
stable matching.
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8.10 Appendix: Alternative Stabilities

In this appendix, we define new stabilities that, to our point of view, would correspond to appro-
priate equilibrium concepts for the matching problem with contracts, externalities and scheduling
constraints. To develop these new stabilities, we have used existing (see [28] for a recent survey on
matching with externalities and alternative stabilities). In developing these definition, we have
particularly taken into account non-credible deviations as already done for the weak-stability, see
[28]. The proposed stabilities exhibit similarities w.r.t. existing ones such as the optimistic stability
for the marriage problem where a man and a woman deviate to engage with each others if there is
a matching marrying each others and they prefer to the current one. In this appendix, we do not
compare our stabilities to those already proposed in the literature even though these have been
used to develop ours.

By definition of the problem, a matching not satisfying the scheduling constraints (i.e. with
contracts corresponding to tasks without assigned predecessors) is not feasible. In Section 8.3,
this notion was naturally embedded in the firms’ choice functions by considering feasible sets. In
this appendix, this also holds true and requiring individually rationality implies feasibility for any
firm.

As in the well-known definitions of substitutability’s given by Sasaki and Toda in [20], we define
the matching µx induced by the deviation of a pair (F (x),W 0x)) for contract x as,

Definition 155. The matching µx induced by the deviation of the pair (w, f ) with contract x 62 µ is
such that:

• µx ( f ) = c f (µ[ {x}|µ)\rw (µ[ {x}|µ)

• µx (w) = cw (µ[ {x}|µ)\r f (µ[ {x}|µ)

• µx (i ) =µ(i )\r f (µ[ {x}|µ)\rw (µ[ {x}|µ) 8i 62 {w, f }.

8.10.1 Optimistic Pairwise Stability with Scheduling Externalities

Let us define the notion of optimistic schedule compatible blocking pair that embeds the fact that
the deviation of a pair (w, f ) with contract x cannot induce a matching µx that is not feasible and
no feasible matching containing x can be enforced by a subsequent multi-contract deviation with
set of contracts Y (x 2 Y). Such deviation would be inconsistent and would lead to a non-persistent
matching because it is actually not a "good choice" for the firm to deviate.

Definition 156 (Optimistic Schedule Compatible Blocking Pair). Given a matching µ, a pair (i , j )
with contract x optimistically schedule-compatibly blocks µ if it blocks µ and there exists a subset of
contracts Y µX such that,

• x 2 Y

• Yi µ ci (µx [Y|µx ) for every agent i in F (Y)[W (Y)

• T (Y) ∂N °(T (x)).

An interpretation is that if the path of play leads to the matching µ and the pair ( f , w) deviates
for x at µ there is no "best-response" (even though considering simultaneous group deviations for
set of contracts Y) to the resulting matching that would make the realization of x feasible.

The corresponding optimistic pairwise stability with scheduling externalities is defined as,

Definition 157 (Optimistic Pairwise Stability with Scheduling Externalities). A matching µ is opti-
mistically pairwise stable with scheduling externalities if,

• It is individually rational for all agents,

• There are no optimistic schedule compatible blocking pair.
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Thus, the only admitted blocking pairs must be schedule incompatible. An interpretation is
that when deviating from µ to µx by choosing cw (µ[ {x}|µ) and c f (µ[ {x}|µ), the agents in F (Y)[
W (Y) must have the incentive to cooperatively maintain at least the feasibility of T (x) w.r.t. f ’s
constraints. Furthermore, observe that no scheduling constraints implies that any blocking pair
(w, f ) with x is schedule-compatible. Thus, in this setting the optimistic pairwise stability with
scheduling externalities is pairwise stable (there is no blocking pair). In such case, simply take
Y = {x}.

Example 158. Consider the motivating example shown in Figure 8.5 (see section 8.2.3).
As already shown, there is no pairwise stable matching. Nevertheless, there exists an optimistic

pairwise stable matching: µ = {x1
11, x2

22}. Matching µ = {x1
11} is blocked by x2

22 and ( f2, w2) deviates
for µ0 = {x1

11, x2
22}. Matching µ = {x1

11, x2
22} is blocked by x3

22 and ( f2, w2) have the incentive to deviate
forµ0 = {x1

11, x3
22}, but by taking Y = {x2

22, x3
22} (since it is the only subset of contracts that can make x3

22
feasible) we obtain x2

22 62 cw2 (Y). Thus (w2, f2) with x3
22 is schedule incompatible and µ = {x1

11, x2
22} is

optimistically pairwise stable with scheduling externalities.

8.10.2 Weak Pairwise Stability with Scheduling Externalities

We now consider a weaker stability that allows only for a single pairwise deviation to make the
matching induced by the deviation of the blocking pair feasible. The idea is that if a blocking pair
leads to a matching µx that is not feasible (otherwise, taking x 0 = x is sufficient) and there exists
another other contract that both w 0 and f want to enforce at µx that gives a feasible matching
w.r.t. T (x), then the pair (F (x),W (x)) blocks µ.

Definition 159 (Pairwise Schedule Compatible Blocking). Given a matching µ, a pair (m, w) with
contract x weakly pairwise schedule-compatibly blocks µ if it blocks µ and there exists a contract
x 0 2X ( f ) between a worker w 0 and f such that,

• x 0 62µx

• x 0 2 cw 0(µx [ {x 0}|µx )

• x 0 2 c f (µx [ {x 0}|µx )

• N °(T (x)) µT (µx ).

The path of play leads to the matching µ and the pair (i , j ) deviates for x at µ there is no "best-
response" to the resulting matching that would make the realization of x feasible As previously,
the deviation (w, f ) with x is inconsistent because it is actually not a "good choice" for the firm.
An interpretation is that when deviating from µ to µx by choosing cw (µ[ {x}|µ) and c f (µ[ {x}|µ),
w 0 and f must have the incentive to cooperatively maintain at least the feasibility of T (x) w.r.t.
f ’s constraints.

Definition 160 (Weak Pairwise Stability with Scheduling Externalities). A matching µ is weakly
optimistically pairwise stable with scheduling externalities if,

• It is individually rational for all agents,

• There are no pairwise schedule-compatible blocking pair.

Example 161. As previously, consider the first example from Section 8.2.3. There exists a weakly
pairwise stable matching µ = {x1

11, x2
22}. Assume the matching µ = {x1

11, x2
22} that blocked by x3

22 and
the pair ( f2, w2) have the incentive to deviate for µ0 = {x1

11, x3
22}, but by taking x 0 = x2

22 (since it is the
only contract that can make x3

22 feasible), we have, x2
22 62 cw2 ({x2

22, x3
22}). Thus (w2, f2) with x3

22 is not
pairwise schedule compatible blocking µ = {x1

11, x2
22}. The matching µ = {x1

11, x2
22} is weakly pairwise

stable with scheduling externalities.
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8.10.3 Pairwise stability with scheduling externalities

Finally, we define the pairwise stability with scheduling externalities, that simply asks for no block-
ing pair such that the resulting matching is feasible. This stability does not allow for two-steps
sighted agents that would deviate and expect a further deviation leading to feasibility of the first
one.

Definition 162 (Pairwise Stability with Scheduling Externalities). A matching µ is pairwise stable
with scheduling externalities if,

• It is individually rational for all agents,

• There is no blocking pair (w, f ) with contract x such that µx is feasible.

Example 163. As in the previous two examples, consider the first example from Section 8.2.3. We
show that the matching µ = {x1

11, x2
22} is a pairwise stability matching with scheduling externalities.

Assume µ = {x1
11, x2

22}. This matching is blocked by x3
22 and the pair ( f2, w2) have the incentive to

deviate for µ0 = {x1
11, x3

22} that is not feasible. Thus, the matching µ = {x1
11, x2

22} is pairwise stable with
scheduling externalities.

In this section we have considered the introduction of three new stabilities in the crowdsourc-
ing problem. Nevertheless, even though such concepts look relevant and appropriate (as observed
in our basic example where (w2, f2, x3

22) would no more be a blocking pair), they have not been
proved (compared to pairwise stability) to be those required to avoid an unravelling of the mar-
ketplace. Furthermore, these concept (at least the first two ones) look hardly tractable from an
analytical standpoint. Thus, we leave as open further analysis and questions about the relevance
and existence of such equilibriums.
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8.11 Appendix: Player-Specific Matroid Congestion Games with Priori-
ties

A player-specific matroid congestion games with priorities is defined as,

Definition 164. Player-Specific Matroid Congestion Games with Priorities, [2] In a player-specific
matroid congestion game with priorities, each strategy space Si must be the set of bases of a matroid
over the set of resources.

As examples of such games, consider

• Singleton games and games in which the resources are the edges of a graph and every player
has to allocate a spanning tree.

• Extension of two-sided markets in which each player can propose to a subset of resources
instead of only one, so-called many-to-one markets, and in which the preference lists of the
resources can have ties.

For the sake of completeness an in view of the next result (the firms’ strategy spaces of our
non-cooperative game are basis of firms-specific matroids), we give the definition of a matroid

Definition 165 (Matroid, [2]). 1. A set system (R,I ) with I µ 2R 11 is said to be a matroid if
X 2 I implies Y 2 I for all Y µ X and if for every X,Y 2 I with |Y| < |X| there exists an x 2 X
with Y[ {x} 2I .

2. A basis of a matroid (R,I ) is a set X 2I with maximum cardinality.

3. Every basis of a matroid has the same cardinality which is called the rank of the matroid.

4. For a matroid congestion game � , we denote by r k(�) the maximal rank of one of the strategy
spaces of the players.

We have the following results,

Theorem 166 ([2]). In matroid congestion games with consistent priorities12, the best response dy-
namics reaches a Nash equilibrium after a polynomial number of rounds.

Theorem 167 ([2]). Matroid congestion games with priorities are potential games with respect to
lazy better responses.

Theorem 168 ([2]). Every player-specific matroid congestion game�with priorities possesses a pure
Nash equilibrium that can be computed in polynomial time by O(m2.n3.r k(�)) strategy changes.

As an example of matroid, consider (Xi ,Ii ), where Ii is the set of contracts of firm i such that,

Ii = {X µXi |8ø 2Ti , |X(ø)|∑ 1} (8.82)

where X(ø) is the set of contracts in X involving task ø, Ii is the set of subsets of contracts in Xi

such that in each set, each task of i is assigned at most one contract and the strategy space Si is
the set of basis of the matroid (Xi ,Ii ), where (recall),

Si = {X µXi |8ø 2Ti ,9!x 2 X s.t. T (X) = ø} (8.83)

equivalently,
Si = {X µXi |8ø 2Ti , |X(ø)| = 1} (8.84)

The matroid (Xi ,Ii ) has rank Ti .

11I is thus a set of subsets of elements in the set R.
12The priorities assigned to the players by different resources coincide.
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Proposition 169.

For any firm i 2F , (Xi ,Ii ) is a matroid of rank Ti with set of basis Si .

The proof is in four steps,

1. First, show that Ii µ 2R .

2. Second, show that if X 2I implies Y 2I for all Y µ X.

3. Third, show that for every X,Y 2I with |Y| < |X| there exists an x 2 X with Y[ {x} 2I .

4. Fourth, show that Si is the set of basis of the matroid of rank Ti .

Proof. First, we show that Ii µ 2R . By definition Ii µXi . Let denote, Ii = {Xk }k2K.
Second, we show that if X 2 I then Y 2 I for all Y µ X. Take any X 2 I . By definition X is a

subset of contracts with at most one contract per task. Take any Y µ X, i.e. any subset of the subset
of contracts X. Y is also a subset of contracts with at most one contract per task. Thus, Y 2Ii .

Third, we show that for every X,Y 2I with |Y| < |X| there exists an x 2 X with Y[ {x} 2I . Take
any pair X and Y in Ii (i.e. any pair of subsets of contracts with at most one contracts per task),
such that |Y| < |X|. By definition, there are strictly more contracts in X than in Y. Because there
is at most one contract per task, |Y| < |X| means that strictly more tasks are assigned a contract
in X than in Y. In other words, there exists a task ø 2 Ti and a contract x 2 X such that ø = Ti (x)
but, there exists no contract y 2 Y such that ø = Ti (y). We obtain that the set Y[ {x} is a subset of
contracts with at most one contract by task. Thus, there exists x 2 X with Y[ {x} 2Ii .

This concludes the proof that (Xi ,Ii ) is a matroid.
Fourth, we show that Si is the set of basis of the matroid of rank Ti . By definition, we have

Ii = {X µXi |8ø 2Ti , |X(ø)|∑ 1} (8.85)

and,
Si = {X µXi |8ø 2Ti , |X(ø)| = 1} (8.86)

For any set X in Si , every task in Ti has a contract in X. By definition of Ii , no contract in x 2Xi \X
can be added to X such that X[ {x} 2 Ii . In fact, in X[ {x} there is a task with two contracts. The
set X has maximum cardinality. Thus, X is a basis of the matroid (Xi ,Ii ).

By definition, Si contains the set of such basis and the matroid has rank Ti .

There are interesting similarities between matroid congestion games with priorities and the
crowdsourcing problem in normal form, particularly,

• In player-specific matroid congestion games with priorities: each strategy space consists of
the bases of a matroid over the resources.

• In the crowdsourcing problem in normal form: each strategy space consists of the basis of a
player-specific matroid (based on the player’s set of contracts).

Nevertheless, our crowdsourcing setting is more general than the player-specific matroid conges-
tion games with priorities, in fact:

• Workers can have preferences over groups more complex than those induced by the pref-
erences individuals (priorities of resources over players). Particularly, we allow for comple-
mentarities and externalities.

• Firms’ utilities (if not implicitly given by preferences and choice functions) may be more
general than the sum of specific congestion costs (functions of the numbers of players asso-
ciated to the resource) over the chosen resources

• We allow for scheduling constraints and externalities on the firms’ side that are more general
than the congestion-like externalities.

179



CHAPTER 8. MATCHING GAMES AND CROWDSOURCING

180



Chapter 9

Open Questions

9.1 Nash Bargaining, Markov Chains and Relative Entropy

In this section, we show that there exists a link between Nash’s solution to the bargaining prob-
lem, the second law of thermodynamics, information theory and stationary distributions of some
Markov chains. Particularly, we show that the minimization of the relative entropy, a well-known
measure of divergence between probability distributions, may be the fundamental reason for the
existence of such connection. First, we give a brief background of Markov chains, then we give
some motivating examples where the generalized Nash’s solution is the stationary distribution of
the chains, finally we give our result. Further developments and analysis are left as open question.

9.1.1 Background on Markov Chains

Let (⌦,F ,µ) be a probability space and let {Xt }t∏0 be a sequence of random variables. The se-
quence {Xt }t∏0 is a Markov chain with state space D if, for all t ∏ 1 and allx0, . . . , xt 2 D,

P(Xt+1 = xn+1|X1 = x1, . . . ,Xt = xt ) =P(Xt+1 = xt+1|Xt = xt ) (9.1)

If the probability transitions do not depend on t , the chain is called time-homogeneous and can be
described by a |D|£ |D| stochastic matrix1 P.

A Markov chain is thus a stochastic process such that, at any time t ∏ 1, the probability that the
process enters a given state (in the state space) does only depend on the time and the state visited
by the process at the previous instant. If the chain is homogeneous, the transition probabilities do
not depend on time. For the rest of this chapter, we assume the time-homogeneity property.

We give some of the important properties characterizing the states and the chain itself (see [5]
for more details). A state i in D is recurrent if the chain returns to the state with probability one,
and is transient if not recurrent. A state j in D is accessible from another state i in D, if Pn

i j > 0 for
some n ∏ 1. A state i in D is called essential, for any state j accessible from i , i is also accessible
from j . A state is called inessential is it is not essential. States i and j communicate with each other
if j is accessible from i and reciprocally. A set of states C in D is closed if no state outside of C is
accessible from any state in C (Pn

i j = 0,8i 2 C, j 2 D°C). If a closed set is reduced to a singleton,
the state is called absorbing. The set C is irreducible if the states of any pair in C communicate.
A Markov chain is irreducible if its state space is an irreducible set. The period ri of a state is the
GCD2 of all n that satisfy Pn

i i > 0. If the period ri of i is equal to one, the state is called aperiodic.

1A stochastic matrix has positive components with each row summing to one.
2Greatest Common Divisor.
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We now turn to the characterization of the occupation of the states. A probability measure º
on the state space D is called stationary distribution for the chains if,

º =ºP (9.2)

which can equivalently be written,

º( j ) =
X

i2D
º(i )Pi j , 8 j 2 D (9.3)

Such distribution is not guaranteed to exist for all Markov chains, and in case it exists, it is not
guaranteed to be unique. The following result shows the equivalence between the unicity of the
stationary distribution and the existence of a unique essential communicating class.

Proposition 170 ([5], pp.17). The stationary distribution º for a transition matrix P is unique iff
there is a unique essential communicating class.

We have the following sufficiency result,

Proposition 171 ([5], pp.14). Let P be the transition matrix of a Markov chain with state space D.
Any distribution º satisfying the detail balance equations,

º(i )Pi , j =º( j )P( j , i ), 8i , j 2 D (9.4)

is stationary for P.

A chain satisfying the detail balance equations is called reversible. For irreducible Markov
chains, we have the following existence and unicity results,

Proposition 172 ([5], pp.14). Let P be the transition matrix of an irreducible Markov chain. There
exists a unique probability distribution º on D satisfying º =ºP.

9.1.2 The Kullback-Leibler Divergence

The Kullback-Leibler divergence (also known in the name of Kullback-Leibler information or rela-
tive entropy) between two probability distributions p and q , is defined as,

DKL(p||q) =
X

x
p(x) log

µ
p(x)
q(x)

∂
(9.5)

We also have the following well-known theorem,

Theorem 173. DKL(p||q) ∏ 0 with equality if and only if p(x) = q(x) for all x.

Consider two joint probability mass functions p(x, y) and q(x, y). The conditional relative en-
tropy DKL(p(y |x)||q(y |x)) between p(y |x) and q(y |x) is defined as,

D
°
p(y |x)||q(y |x)

¢
=

X

x
p(x)

X

y
p(y |x) log

µ
p(y |x)
q(y |x)

∂
(9.6)

We have the chain rule for the relative entropy,

Theorem 174 ([4], pp.24). DKL(p(x, y)||q(x, y)) = D(p(x)||q(x))+D(p(y |x)||q(y |x))

As shown in [2] the Kullback-Leibler divergence can be interpreted in many ways. We give
two of these interpretations, (i) the relative entropy is the expected log likelihood ratio between
distributions p and q , (ii) the relative entropy is the degree of difficulty in distinguishing two dis-
tributions. One of the main result shown in [2] is the following,

Theorem 175 ([2]). Let ºn and º0
n be two probability distributions on the state space of a finite

state Markov chain at time n. Then D(ºn ||º
0
n) is monotonically decreasing. In particular, if º is the

unique stationary distribution,
DKL(ºn ||º) & 0 (9.7)
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9.1.3 Motivating Examples

The examples used in this section come from [5].

Example 176. Consider a 2-state Markov chain with transition matrix P such that,

P =
µ
1°p p

q 1°q

∂
(9.8)

for some p, q 2 (0,1). The stationary distribution º of this chains is,

º1 =
q

p +q
º2 =

p
p +q

(9.9)

Now, consider a 2-players bargaining problem over the probability simplex�1 = {x 2 [0,1]d : x1+x2 =
1}. The utility function player 1 is u1(x1) = x1/p

1 and the utility function of player 2 is u2(x2) = x1/q
2 .

Assume a null threat vector t, where ti is the threat of player i .
The generalized (asymmetric) Nash solution to this bargaining problem solves,

maximize
x

x1/p
1 x1/q

2

subject to x1 +x2 = 1

0 ∑ xi ∑ 1, i = 1,2.

(9.10)

We have the solution such that,

x1 =
1/p

1/p +1/q
=

q
p +q

(9.11)

and

x2 =
1/q

1/p +1/q
=

p
p +q

(9.12)

Example 177. Consider a generalization of the previous example to d-state Markov chains of the
following form:

Pi , j =
Ω

1°≤i if i = j ;
≤i

d°1 if i 6= j ;
(9.13)

for some ≤1,≤2, . . . ,≤d 2 (0,1). This chain is ergodic and reversible and has a unique stationary distri-
bution º such that,

ºi =
1/≤i

Pd
j =1 1/≤ j

, 8i 2 {1, . . . ,d} (9.14)

Now, consider a d-players bargaining problem over the probability simplex �d°1 = {x 2 [0,1]d :Pd
i =1 xi = 1}. The utility function any player i in {1, . . . ,d} is,

ui (xi ) = xi (9.15)

Assume a null threat vector t, where ti is the threat of player i .
The generalized Nash solution with individual bargaining powers solves,

maximize
p

Y
ui (xi )Æi

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.16)

where Æi is called the bargaining power of player i .
Taking Æi = 1

≤i
, we obtain,

minimize
p

°
Y

x1/≤i
i

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.17)
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The unique solution to this problem is the allocation vector p such that,

xi =
1/≤i

Pd
j =1 1/≤ j

(9.18)

Thus, the generalized solution to the d-players bargaining is the unique stationary distribution of
the Markov chain.

Example 178. Consider a simple random walk on a graph G = (V,E),

P(x, y) =

(
1

deg(x) if y ª x,
0 otherwise.

(9.19)

where x ª y denotes that y is a neighbor of x (and reciprocally).
For any vertex y 2 V,

X

x2V
deg(x)P(x, y) =

X

xªy

deg(x)
deg(x)

= deg (y) (9.20)

Normalize by
P

y2V deg (y) to obtain a probability. It is shown that a stationary distribution for the
walk is always given by the probability measure,

º(y) =
deg(y)

P
v2V deg (v)

, 8y 2⌦ (9.21)

As in the previous example, consider a |V|-players bargaining problem over the probability sim-
plex �d°1 = {x 2 [0,1]d :

Pd
i =1 xi = 1}. Any player i is mapped to a node vi in V and no two players

can be mapped to the same node. The utility function of any player i in {1, . . . ,d} is,

ui (xi ) = xdeg (vi )
i (9.22)

where vi is the degree of the node vi 2 V corresponding to player i . Assume a null threat vector t,
where ti is the threat of player i .

Using the results of the previous example, we have the solution to the allocation problem as,

xi =
deg(vi )

P
j deg(v j )

, 8i 2 {1, . . . ,d} (9.23)

Example 179. A spin system is a probability distribution on D = {°1,1}V , where V is the vertex set of
a graph G = (V,E). Each state æ in D characterizes the configuration of the set of vertices by mapping
each vertex v to its corresponding state æ(v) in {°1,+1}. The state æ(v) of a vertex v is called the spin
at v. Consider the nearest-neighbor Ising model. The energy H of a configuration æ is,

H(æ) = °
X

v,w2Vvªw
æ(v)æ(w) (9.24)

The Gibbs distribution corresponding to H is the probability distribution µ on D such that,

µ(æ) =
exp°ØH(æ)

Z(Ø)
(9.25)

where Ø∏ 0 and Z(Ø) (called the partition function) is defined by,

Z(Ø) =
X

æ2D
e°ØH(æ) (9.26)

Assuming the Glauber dynamic, it is known that the stationary distribution of the system is given
by the Gibbs distribution µ. Observe, the Glauber dynamics for º is a reversible Markov chain with
stationary distribution º.

According to the previous results, it is clear that the D-players generalized Nash bargaining over
�D°1 with bargaining powers {Ææ = exp°ØH(æ)}æ2D gives the stationary distribution µ.
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9.1.4 Result

As a first result toward the understanding of the link between Nash solution to the bargaining
problem and information theory, we have shown the following result.

Proposition 180. Consider a d-person Nash bargaining (�d°1, {xi },t = 0). Furthermore, consider
the probability distribution P over {1, . . . ,d} such that,

p(i ) =P(X = i ) =
ÆiP
j Æ j

, 8i 2 {1, . . . ,d} (9.27)

The generalized solution to the bargaining problem with utility functions ui (xi ) = xi and bargaining
powers Æi > 0, for any i , minimizes the Kullback-Leibler divergence DKL(p||x) to the probability
distribution p.

Proof. Consider the bargaining problem � = (�d°1, {xÆi
i },t = 0) with positive bargaining powers Æi .

The generalized Nash solution to this problem solves the following optimization problem,

maximize
x

Y
xÆi

i

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.28)

which can equivalently be written,

minimize
x

°
X

i
Æi log(xi )

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.29)

or,

minimize
x

X

i
Æi log(

1
xi

)

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.30)

Any linear transformation a f0 +b with a > 0 of the objective function fo(x) =
P

i Æi log( 1
xi

) gives an
equivalent problem. Taking,

a =
1

P
j Æ j

, b =
X

i

ÆiP
j Æ j

log

√
ÆiP
j Æ j

!

(9.31)

where a is introduced as a normalization factor so that ÆiP
j Æ j

is a probability for any i in {1, . . . ,d}.

We obtain the following equivalent problem,

minimize
x

X

i

ÆiP
j Æ j

log(
Æi /

P
j Æ j

xi
)

subject to
dX

i =1
xi = 1

0 ∑ xi ∑ 1, i = 1, . . . ,d .

(9.32)
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which, by definition of the KL-divergence, can be written in the following form,

minimize
q

DKL(p||q)

subject to
dX

i =1
qi = 1

0 ∑ qi ∑ 1, i = 1, . . . ,d .

(9.33)

where p is the probability distribution over {1, . . . ,d} such that,

p(i ) =P(X = i ) =
ÆiP
j Æ j

(9.34)

We conclude that the generalized Nash solution to the bargaining problem minimizes the Kullback-
Leibler divergence to the probability distribution p.

It is interesting to observe that Nash’s solution to some bargaining problem minimizes an en-
tropy. This shows the eventual link between Nash’s solution and information theoretic proper-
ties. Did Nash embedded in his solution an uncertainty principle? What about the others (Kalai,
Smorodinsky, Tijs, etc.)?

More generally, this shows that there may be a link between game-theoretic solutions to the
bargaining problem as cooperative resource allocation problems and well-known information
theoretic results. This may lead to both new interpretations and stochastic processes (leading to
protocols) seen as bargaining mechanisms for resource allocation as done in statistics with prob-
ability distributions sampling based Markov Chain Monte Carlo (MCMC) algorithms.

9.2 Strategic Information Transmission and Recommendations Systems

As shown in this thesis, the theory of stable matchings is one of the most successful branch of
game-theory. The set of applications to the sector of Information Technology (IT) is important and
remains unexploited. Here, we focus a problem related to the control of information in matching
problems. Consider a repeated association or matching game with incomplete information where
buyers and sellers repeatedly use an online platforms and match with each others using the mar-
ketplace’s matching mechanism. By buying and selling players acquire information on their own
as a result of their decisions. Nevertheless, in the internet, the platform also provides recommen-
dations to the players (basically recommending goods or sellers to the buyers and recommending
buyers to the sellers). In the most basic example of the marriage problem (see chapter 3), buyers
are men and sellers are women. In such case, the platform would recommend women to the men
and men to the women, as commonly done in online dating services. Furthermore, assume that
the players receive a feedback from others on the quality of the advices provided by the recommen-
dation system. In such case, how should this recommendation system control the information to
be sent to the players to turn some points into equilibrium or to speed up the convergence to some
equilibrium?

Intuitively, because of the incomplete information setting, the players acquire information and
transform it into decisions through their belief and learning process. Using its ability to control
some information the players do not have, the recommendation system may have the incentive to
manipulate this to change the decision-taking process and make it converge to a preferred match-
ing compared to the one obtained without control. Nevertheless, because the player acquire in-
formation on their own there must be a tradeoff between non-truthful recommendations w.r.t.
the players’ preferences (namely, lying to the agents on what they should do) and truthful ones.
Furthermore, assuming that there is a feedback from the players to the players introduces an ad-
ditional correlation across them, namely the reputation of the platform. Recommending wrong
items to an agent may have an impact on the decision-taking of another agent w.r.t. its recom-
mendations, even though truthful.
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Let formalize the concepts of recommendations system in an entity called the sender. At this
point, using the term sender is abusive because this term is usually devoted to a specific player in
the sender-receiver game (see [3]). A rigorous analysis should clearly determine wether or not our
sender is actually one as defined sender-receiver games and why it is not if so. In our setting, the
sender of the game abstractly models the information conveying property of the environment of
the game. In other words, the sender models the fact that the game happens in a wider system that
measures (observes) and, naturally or in a controlled way, disseminates information to the players
of the game.

From the point of view of the ordinal theory, one may reformulate the previous model and con-
sider that the players repeatedly emit preferences as a function of the acquired information (on
their own, with feedbacks and through recommendations). In such case, the sender or informa-
tion sender may want to manipulate the information so as to induce a appropriate permutations
in the players preferences. Formally, the permutations in the players preferences may be defined
by a transition kernel of the form

P(preferences of i at epoch t |history at t °1, recommendations at t°) (9.35)

where the history may be composed of the set of past matchings, feedbacks, recommendations
and preferences to the user i , recommendations at t° is the information transmitted by the system
to i . The adapted approach to tackle this problem may be a combination of the analysis developed
in [6] and [7].

9.2.1 Motivating Example

Example 181. Consider a dynamic house allocation problem where a set of buyers have preferences
over (sellers’) goods to be allocated. There is one good per seller and as many sellers as buyers. We
show an example of the setting in Figure 9.1. We assume that the sellers delegate the sale to a rep-

Figure 9.1: The house allocation problem.

resentative called real estate agent (the sender) and that there is a unique real estate agent on the
market. The buyers can visit the houses for a finite number of rounds according to a visit mecha-
nism and then emit their final preferences over the goods that will be allocated to them according
to a matching mechanism. In Figure 9.2 we show the visit mechanism and the discovery of the first
player of the state of the houses.

The preferences of the buyers evolve over time as functions of their visits and their knowledge
about the goods. The real estate agent can send informations to the players (mails, phone, etc.) in
order to influence the players’ true preferences and make the decision process converge faster or to
manipulate the equilibria. The set of information provided to the buyers by the real estate agent
may contain information about a product that is assumed known to the buyer (e.g. already visited)
or about an assumed unknown product. It may also be that the buyers having already visited the
house can give a feedback on it and on the recommendations given by the real estate agent.

Example 182. Consider a bipartite social network or online dating services. This setting is close to
the the historical Gale and Shapley’s marriage problem [1]. We assume that the players cannot see
each others perfectly. Each player has an individual private state that the other players do not know.
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Figure 9.2: Example: Visiting houses. On the left, the green agent knows that there exists two houses on the
market but has no information about these. These houses are shown in white. Uncolored ones are unknown
to the green agent (who does not know that they exist). On the right, the green agent has visited the houses
and know their true state as shown in Figure 9.1.

In terms of preferences, the preferences emitted by a player are based on a partial or incomplete in-
formation. Furthermore, let define the sender as the online dating service’s recommendation engine.
The engine can selectively send information to the players. As an example, the sender provides the
players recommendations over strangers (either show their existence or give more information about
them). For a player to know the state of another player, a date must be organized. The dates allow
for the players to partially observe their respective states. As long as a date has not occurred between
the players of a pair the two players are strangers and use the prior information they have over each
others. If the states of the players change 3 then a single date between any pair of players is only

Figure 9.3: Example: Dating with strangers.

sufficient for them to mutually observe their instantaneous states. Due to the limited validity of the
acquired information, subsequent attempts are necessary for them to learn from each others about
their dynamics or expected properties.

In Figure (9.4), the sender recommends the top-left player called Bob (green state) two unknown
women. Before the recommendation, Bob did not know about the existence of these two players
exist.

In Figure (9.5), the sender recommends the second top-right player called Alice (green state) to
Bob and provides some information about Alice’s state. It may be that the sender does not know,
partially knows or fully knows the state of a player. The state of knowledge of the sender may even
vary among the players. Before the recommendation, Bob knew that Alice existed but did not know
about her.

The information given by the sender may or not be true w.r.t. the agents’ preferences. We
mainly identify three reasons for the sender to provide false informations. The first reason is the
imperfect observation or estimation of the game (e.g. of the agents’ preferences). The second
reason is that it is imperfect in itself. We assume that the sender may be misleading (due to an
incorrect analysis of the environment or estimation process) even though receiving right signals
from the game. The third reason is that it is a strategic entity that may attempt manipulating the
matching mechanism to achieve his or her own objectives.

3Either deterministically of stochastically.
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Figure 9.4: Example: Recommending outsiders. The arrows shows the recommendation (by the sender) of
outsiders to Bob. The first figure shows the true state of the market (the agents properties). The second one
shows that Bob originally knows that he can have a date with two women, but doesn’t know them. The third
figure shows a recommendation to Bob: there are two women involved that Bob doesn’t know. The fourth
figure shows that Bob has received the information and now considers the four women (he doesn’t know)
instead of the two original ones.

Figure 9.5: Example: Recommending strangers. The first figure show the true state of the market (interns
of the agents properties). The second one shows that Bob originally knows that he can have a date with
two women, but doesn’t know them. The third figure shows a recommendation to Bob: some (but not all)
information about a woman (let us call her Alice) are given to Bob. The fourth figure shows that Bob has
received the information and integrates it to his knowledge. Bob partially knows Alice’s properties. The
sender has given Bob some true but partial information on the state of Alice.

One can intuitively conclude that there should be a tradeoff somewhere between truthful and
non-truthful recommendations in the repeated framework for the sender to be able to control
the state of the market and maintain its impact on the agents’ preferences (they should keep on
believing that the recommendations are valuable to them).

Such tradeoff shows the problem of control of information in marketplaces. There is a non-
negligible potential impact on the design of matching and recommendation mechanisms, adver-
tising mechanisms and on the design of social networks. Among many others, we raise the follow-
ing questions: Which and how information should be sent to the players so as to make the agents’
learning process and the repeated matching mechanism converge to a specific point? Can the
sender strategically manipulate the information to control the equilibrium of such game knowing
that the agents rate the recommendations?
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Chapter 10

Conclusion

In this thesis, we have used cooperative game theory to solve network problems. We have modeled
the systems as two-sided markets and analyzed them using the theory of stable matchings. This
branch of game theory in the class of cooperative games has been successfully used by theorists
and economists to design matching mechanisms for two-sided marketplaces such as college ad-
missions, the association of interns to hospitals or kidney exchange. As a proof of the impact of
matching games, A.E. Roth and L. Shapley received the Nobel prize in 2012 for both the develop-
ment of a theory of stable allocations and their impact on real-life applications through the prac-
tice of market design. The theory of stable matchings has historically been build for the analysis
of economic two-sided marketplaces but is also adapted to network problems. In fact, the funda-
mental motivation of the theory is to assess stability problems in allocation systems and provide
tools to design matching mechanisms. These topics are also at the basis of network problems that
have been assessed using other efficient tools. Recent generalizations to matching with contracts
and externalities or to trading networks strengthen this proximity. As an example, externalities
may be interpreted as the influence in social networks, interferences in cellular networks, or as a
peer effect such as those observed in WiFi. As another example, trading networks embed supply
chain problems that may also be interpreted as scheduling constraints. The literature shows us
that there has always been strong links between some network analysis and game-theoretic ones,
historically paired to economy. As an example among many others, consider the well-known and
celebrated proportional fair allocation that actually is a particular case of Nash’s solution to the
bargaining problems or routing and congestion management problems that have attracted in-
terests from both sides. Nevertheless, even though there is a densification of the game theoretic
analysis in networks, this does not mean that there is convergence between economic and network
problems.

At application levels, we observe an increasing concentration of online marketplaces in the in-
ternet for business-to-business (B2B, e.g. online advertising market), business-to-consumer (B2C,
e.g. ) and customer-to-customer (C2C, e.g. airbnb, eBay, Le Bon Coin) applications. Such mar-
ketplaces have emerged as new business opportunities. In some cases, the demand and supply
of the market is parametrized by a networking activity such as the clicks and views of some users
in webpages, videos, etc. As an example, the online advertising business is based on the sell of
advertising slots on an online platform (using auctions as a matching mechanism between buyers
and the goods sold by the sellers). Sold slots are then used buy the buyers to display their adver-
tisements on the webpages, or contents viewed by users. Furthermore, oncoming technological
developments such as online systems for spectrum renting among operators are considered as
promising improvements with a strong potential impacts on the existing economics models. Thus,
networks and economy have already started to merge in new (potentially complex) business mod-
els, systems and applications requiring in their design and conception a unified approach often
including game theory (as an example, consider the success of auctions in online applications or
the natural propensity of matching with contracts among firms and workers to develop matching
mechanisms for crowdsourcing systems). Based on this trend, it looks rather logical to predict that
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the oncoming and future systems will also heavily rely on such unified approach.
Our analysis falls in the scope of this observation. In this thesis, we have studied problems at

the frontier of networks, game theory and economy, either because we have pushed them from
pure allocation problems in networks toward game theory and made them fall in the scope of
some economic works or because they naturally fall in the scope of both worlds. As an example
consider the WiFi association problem. We have shown that the WiFi protocol induces a medium
allocation and individual throughputs that can be modeled as resulting from a Nash bargaining,
a solution proposed by Nash to the cooperative bargaining problem and shown to belong to the
set of core stability inducing sharing rules in coalition formation problems and matching games.
We have formulated the WiFi association problem as a two-sided matching game and proposed a
controlled matching mechanism, using in the numerical implementations a tax rate over the gross
incomes of the coalitions, namely their total throughputs. Then, we have shown that when con-
sidering the generalized Æ-fair allocation, the stability inducing concavity conditions can be easily
formulated in terms of risk aversion indicators, usually used in economy or finance to study the
behaviors of agents w.r.t. risks. As another example, we have considered an online crowdsourcing
platform with scheduling constraints on the firms’ side and shown that this unsolved problem falls
in the scope of analysis of the theory of stable matchings. Using some of the most recent works
in the domain, we analyzed this two-sided marketplace and derived new conditions for the exist-
ing mechanisms to converge to stable matchings. Furthermore, based on previous works partially
unifying two-sided markets and congestion games, we have proposed an approach to solve the
original problem using a non-cooperative formulation (in normal and extensive form).

New applications at the intersection of networks and economy on one hand and game theory
and artificial intelligence or machine learning on the other hand give rise to fascinating and chal-
lenging problems. As an example, consider social networks, recommendations systems or mar-
ketplaces where the existence, structure, volume and propagation of data and information may
have a huge impact on the individual and overall performances. This is not only about signal pro-
cessing but also on the modeling of the information itself and the identification of its role in the
system to control it in an efficient way. How to influence the graph properties of a social network
by controlling the information? How to influence the amount of goods sold to customers on a mar-
ketplace by recommendations and the introduction of feedbacks and rates from the customers to
the customers? How much should customers know about the others’ experience?
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Jeux Coopératifs et d’Appariements Stables dans les Réseaux
Mikaël TOUATI

RESUME : Dans cette thèse, nous proposons des solutions à plusieurs problèmes d’ allocation de res-

sources et d’associations dans les réseaux. Pour cela, nous employons les jeux coopératifs, particulièrement

les jeux d’appariements stables, classiquement utilisés en économie pour l’analyse de marchés bifaces et

la conception de leurs mécanismes d’allocations. Dans une première partie, nous introduisons les jeux de

négociation et d’appariements stables. Dans une seconde partie, nous proposons un nouveau mécanisme

stable d’association des utilisateurs en WiFi réduisant l’impact de l’anomalie du protocole. Nous présentons

également une analyse d’un problème de stockage de videos et un nouvel algorithme d’énumération de struc-

tures stables. Dans une troisième partie, nous analysons des conditions pour la stabilité de certains schémas

d’équité connus en termes de mesures d’aversion au risque. Dans une quatrième partie, nous analysons la

stabilité d’une place de marché biface de crowdsourcing avec contraintes d’ordonnancement de tâches. La

classique propriété de substitution des biens n’étant pas satisfaite, nous introduisons des nouvelles condi-

tions et montrons l’existence d’appariements stables. Nous proposons également une résolution du problème

par une formulation non-coopérative en forme extensive.

ABSTRACT : In this thesis, we propose new solutions to matching problems in networks. We use co-

operative games, particularly stable matchings, classically used in economy to analyze two-sided markets

and design matching mechanisms. In the first part, we introduce bargaining and stable matching games. In

the second part, we propose a new stable matching mechanism for user association in WiFi reducing the

impact of the anomaly in the protocol. Furthermore, we analyze a video caching problem and show a new

algorithm enumerating stable structures. In the third part, we analyze conditions for the stability of some fair-

ness schemes in terms of risk aversion indicators. In the fourth part, we analyze the stability of a two-sided

crowdsourcing marketplace with scheduling constraints on the tasks. The classical substitutability condition

does not hold in this case. We introduce new conditions and show the existence of stable matchings. We also

solve the crowdsourcing problem as a non-cooperative game in extensive form.
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