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Résumé

Introduction – l’assimilation de données

En météorologie et en océanographie, un des objectifs est de prévoir l’état de l’écoulement
atmosphérique et océanique. L’écoulement suit un certain nombre de lois physiques, par
exemple les lois de conservation pour l’énergie et la masse. On désigne par modèle numérique
l’ensemble des méthodes numériques mises en œuvre pour intégrer en temps une version
discrétisée de ces lois. En météorologie et en océanographie, les modèles sont caractérisés par
un très grand nombre de variables, ainsi que par de nombreuses incertitudes. La qualité des
prédictions dépend principalement de trois éléments : l’adéquation entre les lois physiques et
le modèle numérique, la qualité du modèle numérique (résolution et schémas d’intégration en
particulier) et la précision des conditions initiales et des conditions de bord.

L’assimilation des observations est le procédé qui consiste à utiliser toutes les informations
disponibles afin d’améliorer la précision des conditions initiales. L’assimilation de données
est définie comme la discipline regroupant l’ensemble des méthodes mathématiques pouvant
être utilisées pour assimiler les observations. Les techniques d’assimilation sont implémentées
dans les centres opérationnels depuis plusieurs décennies et elles ont largement contribué à
améliorer la qualité des prédictions.

L’assimilation de données d’ensemble et la localisation

En géosciences, la dimension des problèmes à résoudre est en général très grande. Il est donc
nécessaire de développer des méthodes réduites. En s’inspirant des méthodes de Monte Carlo
développées en statistiques, des méthodes d’ensemble ont été proposées pour l’assimilation
de données. Dans ce contexte, la connaissance de l’état du système est décrite par un
ensemble (en général quelques dizaines) de trajectoires du modèle. Les incertitudes sont alors
naturellement décrites au moyen des propriétés statistiques de l’ensemble. Parmi les méthodes
d’assimilation de données d’ensemble, deux classes se distinguent par leur popularité : le filtre
de Kalman d’ensemble (EnKF) et le filtre particulaire (PF). L’EnKF est construit comme
une variante ensembliste du fameux filtre de Kalman. En particulier, il s’appuie sur les mêmes
hypothèses : linéarité des modèles et variables aléatoires Gaussiennes. Ce n’est pas le cas du
PF qui s’appuie uniquement sur les méthodes de Monte Carlo et qui donc ne nécessite pas
d’hypothèse supplémentaire.

En l’état, aucune de ces classes de méthodes ne fonctionne pour des systèmes de grande
dimension. En effet, il semble impossible de représenter des propriétés statistiques complexes
entre plusieurs milliards de variables en utilisant seulement quelques dizaines de membres.
Cependant, dans la plupart des systèmes géophysiques, les corrélations décroissent très
rapidement en fonction de la distance physique. Cette propriété est exploitée dans l’EnKF
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Résumé

pour rendre le processus d’assimilation local ou bien pour corriger de manière artificielle les
matrices de covariances empiriques.

La première méthode, qu’on appelle localisation par domaines, consiste à réaliser une collec-
tion d’analyses locales et indépendantes. L’analyse globale s’obtient en recollant les analyses
locales. Les algorithmes ainsi construits, comme par exemple le local ensemble transform
Kalman filter, sont très efficaces. Cependant, cette méthode ne permet pas d’assimiler des
observations non-locales, comme les observations satellites, sans recourir à des approximations
drastiques.

La deuxième méthode, qu’on appelle localisation des covariances, consiste à réaliser une
analyse unique avec une matrice de covariance empirique localisée. En pratique, cette méthode
est plus difficile à mettre en place dans un contexte déterministe, mais elle peut être utilisée
telle quelle pour assimiler des observations non-locales. Ces dernières années, le nombre
d’observations satellites devient de plus en plus important, il est donc nécessaire de développer
des méthodes efficaces pour appliquer la localisation des covariances. Ce point est étudié
dans la troisième partie de cette thèse.

En géophysique, les dynamiques sont en général non-linéaires et les distributions non-
Gaussiennes. Il est donc souhaitable de développer l’assimilation de données au delà du
cadre linéaire et Gaussien de l’EnKF, par exemple en utilisant le PF. D’un point de vue
théorique, la localisation par domaines peut être directement appliquée au PF. En pratique,
l’implémentation d’un PF localisé est un défi, puisque dans ce contexte il n’y a pas de méthode
triviale pour recoller les analyses locales. La mise en œuvre de la localisation dans le PF est
l’objet de la deuxième partie de cette thèse.

La localisation dans le filtre particulaire

Le principal atout du PF est qu’il permet de sortir du cadre linéaire et Gaussien. Le PF repose
sur l’application successive de plusieurs étapes d’échantillonnage d’importance. En général,
le coût de calcul de cette méthode crôıt exponentiellement avec la taille du système. C’est
ce qu’on appelle la malédiction de la dimensionalité. En l’état, le PF ne peut donc pas être
appliqué à des problèmes de grande dimension. Les techniques de localisation permettent de
contourner la malédiction de la dimensionalité. Toutefois, l’implémentation de la localisation
dans le PF soulève deux questions majeures : comment recoller des particules qui ont été
mises à jour de façon locale, et comment limiter le déséquilibre dans l’ensemble recollé.

Nous proposons une classification théorique des filtres particulaires locaux (LPF) en deux
catégories. Pour chaque catégorie, nous présentons les défis soulevés par l’implémentation
de la localisation dans le PF et nous présentons l’ensemble des idées qui permettent la mise
en œuvre pratique des algorithmes. Certaines de ces idées, d’ores et déjà dans la littérature,
sont détaillées et parfois généralisées, tandis que d’autres sont nouvelles dans le domaine et
contribuent à l’amélioration de la conception des algorithmes.

Dans la première classe d’algorithmes, on introduit la localisation dans l’analyse en faisant
varier les poids des particules en fonction du point de grille. On obtient ensuite l’ensemble
d’analyse globale en assemblant les ensembles mis à jour localement. La qualité de l’analyse
dépend directement de la régularité de la méthode de mise à jour. Un ensemble de mauvaise
qualité se traduit par des discontinuités, et donc du déséquilibre, dans l’ensemble d’analyse.
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Nous présentons différentes méthodes qui permettent d’améliorer l’analyse en réduisant les
discontinuités non-physiques. Parmi ces méthodes, les plus prometteuses reposent sur la
théorie du transport optimal. Dans la seconde classe d’algorithmes, les observations sont
assimilées une par une. On introduit la localisation de façon plus générale, au moyen d’une
partition des variables. L’objectif de cette partition est de construire un cadre d’application
pour la localisation en s’affranchissant du problème des discontinuités. Nous présentons
ensuite deux méthodes qui permettent d’implémenter ce type de localisation.

Nous avons implémenté et testé de manière systématique les algorithmes LPF en utilisant
des expériences jumelles avec des modèles de petite taille : le modèle de Lorenz 1996 avec
40 variables et un modèle bidimensionnel basé sur l’équation de la vorticité barotropique
avec 1024 variables. Dans ces deux modèles, les algorithmes LPF sont simples à implémenter
et fonctionnent comme prévu. Les scores obtenus sont acceptables, même en utilisant des
ensembles de petite taille, alors que l’on se situe dans des régimes de fonctionnement où le
PF global est dégénéré. Dans tous les cas testés, nous avons constaté que les algorithmes qui
utilisent le transport optimal obtiennent des scores significativement meilleurs que ceux des
autres algorithmes. Nous interprétons ce résultat comme une démonstration de la réduction
des discontinuités non-physiques dans l’ensemble d’analyse. De plus, dans une configuration
faiblement non-linéaire pour le modèle de Lorenz 1996, les meilleurs scores obtenus par
les algorithmes LPF sont meilleurs que ceux de l’EnKF de référence. Nous avons ensuite
implémenté les algorithmes LPF dans une configuration à haute résolution du modèle de
vorticité barotropique avec 65 536 variables. Les résultats obtenus avec ce modèle confirment
ceux obtenus avec les modèles de petite taille et montrent que les algorithmes LPF sont
suffisamment matures pour être appliqués à des systèmes géophysiques de grand dimension.

Enfin, nous nous penchons sur le cas de la prévision des concentrations d’ozone dans la
troposphère en Europe de l’ouest pendant l’été 2009. Nous avons à notre disposition des
mesures horaires de concentration d’ozone en plusieurs centaines de stations. Pour ce jeu
d’expériences, nous utilisons le modèle Polair3DChemistry de la plateforme Polyphemus.
Le modèle est débiaisé en utilisant une paramétrisation simple. La simulation de référence
débiaisée, comparée aux observations, permet d’obtenir des scores du même ordre de grandeur
que la plupart des modèles en chimie atmosphérique. Nous expliquons ensuite comment
mettre en œuvre l’assimilation de données dans ce système, au moyen de différents algorithmes
dont plusieurs algorithmes LPF. Les résultats obtenus soulignent le bon fonctionnement
des algorithmes : les scores de vérification sont significativement meilleurs que ceux de la
simulation de référence. Nous montrons que les algorithmes LPF obtiennent des scores très
similaires à ceux de l’EnKF de référence, ce qui est une première pour un système géophysique
de grande dimension. Dans nos expériences, les algorithmes d’assimilation d’ensemble semblent
avoir le dessus sur l’interpolation optimale (algorithme sans ensemble). Cependant, il n’est
pas évident que le faible gain dans les scores de validation soit suffisant pour justifier l’énorme
augmentation du temps de calcul liée à la prévision d’ensemble.

La localisation des covariances dans le filtre de Kalman d’ensemble

La localisation des covariances est la seule méthode de localisation qui permet d’assimiler des
observations non-locales de façon rigoureuse. Dans cette partie, nous commençons par explorer
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Résumé

différentes techniques qui permettent de mettre en œuvre la localisation des covariances au
moyen d’un ensemble augmenté. Nous discutons des deux principales difficultés liées à cette
approche : comment construire l’ensemble augmenté et comment mettre à jour l’ensemble.

Nous présentons deux méthodes différentes pour construire l’ensemble augmenté. La
première méthode repose sur une propriété de factorisation et est déjà répandue en assimilation
de données pour les géosciences. La deuxième méthode est une approche alternative que nous
proposons. Cette approche repose sur l’utilisation de techniques randomisées pour le calcul
des décompositions en valeurs singulières. Ces techniques sont très efficaces lorsque la matrice
de localisation est simple à appliquer. Dans les deux cas, la mise à jour de l’ensemble se fait
au moyen d’une formule simple d’algèbre linéaire dans l’espace de l’ensemble augmenté. Les
méthodes sont testées et comparées en utilisant des expériences jumelles avec le modèle de
Lorenz 1996 avec 400 variables. Dans ce problème, nous montrons que la seconde méthode,
celle qui utilise les techniques randomisées, permet d’obtenir de meilleurs scores que la
première méthode en utilisant un ensemble augmenté de plus petite taille.

L’EnKF avec ensemble augmenté est ensuite généralisé au cas de l’assimilation d’observa-
tions satellites dans un modèle étendu en espace. Dans ce cas, la localisation des covariances
est utilisée dans la direction verticale et la localisation par domaines est utilisée dans la
direction horizontale. L’algorithme généralisé est mis en œuvre et testé au moyen d’expériences
jumelles avec une extension à plusieurs couches du modèle de Lorenz 1996. Cette extension
possède un total de 1280 variables qui sont observées en utilisant un opérateur d’observation
conçu pour imiter des radiances satellitaires. Comme on pouvait s’y attendre dans ce système
avec des observations non-locales, notre algorithme généralisé obtient de bien meilleurs scores
que l’EnKF de référence, pour lequel seule la localisation par domaines est mise en place.

Dans un deuxième temps, nous étudions la cohérence de la mise à jour des perturbations
dans l’EnKF déterministe qui utilise la localisation des covariances. Nous montrons que dans
ce cas, les perturbations d’analyse ne représentent pas les modes principaux de la matrice
de covariance d’analyse, contrairement à ce qui se passe quand on utilise la localisation par
domaines. Fort de ces considérations, nous proposons une nouvelle méthode de mise à jour
des perturbation. Cette méthode, potentiellement plus cohérente, nécessite la résolution d’un
problème d’optimisation. On s’attend alors à ce que les perturbations d’analyses permettent
de mieux représenter les corrélations à courte portée dans la mesure où on exerce moins de
contraintes sur les corrélations à longue portée. Il se trouve que le gradient de la fonction de
coût se calcule au moyen d’une formule analytique, on peut donc utiliser un algorithme de
minimisation itératif. Cependant, le calcul de la fonction de coût et de son gradient nécessite
une connaissance partielle de la matrice de covariance d’analyse, ce qui peut représenter une
difficulté dans la mise en œuvre de la méthode pour des systèmes de grande dimension.

La nouvelle méthode est testée et comparée à différents algorithmes EnKF de référence
en utilisant des expériences jumelles de deux modèles de petite dimension : le modèle de
Lorenz 1996 avec 40 variables et une version discrétisée dans l’espace spectral du modèle
de Kuramoto–Sivashinsky avec 128 variables. Pour les deux modèles, nous montrons que
le besoin d’inflation multiplicative est fortement réduit avec le nouvel algorithme. De plus,
lorsque la taille de l’ensemble est suffisante, le nouvel algorithme obtient de très bons résultats
sans inflation. Cela montre que la nouvelle méthode permet effectivement d’obtenir une
meilleure cohérence entre la matrice de covariance empirique de l’ensemble d’analyse et la
véritable matrice de covariance d’analyse. Ce résultat pourrait s’interpréter physiquement
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comme la réduction du déséquilibre engendré par la localisation. De plus, nous montrons que
l’utilisation de la nouvelle méthode permet d’obtenir des scores significativement meilleurs.
Ces résultats ont été confirmés et renforcés par des expériences dans des configurations pour
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Sets

R real numbers
R+ nonnegative real numbers
R∗+ positive real numbers
N positive integer numbers
Rn vectors with n elements
Rn×p matrices with n rows and p columns
Fn←p functions Rn → Rp
Gn←p functions Fn←p → Fn←p
Gn←(p←q) functions Fp←q → Rn
CardA cardinal of the finite set A

Stylistic conventions
Object Style Example

Scalar italic x
Vector lower-case bold roman x
Matrix upper-case bold roman M
Function upper-case calligraphic F
Ensemble upper-case sans-serif E
Random vector lower-case bold italic x

Sequences

(j : i) sequence of integers (i, . . . , j), with i ≤ j
(j :) sequence of integers (0, . . . , j)
Xj:i sequence of objects (Xi, . . . , Xj) [scalars, vectors, or matrices]
Xj: sequence of objects (X0, . . . , Xj) [scalars, vectors, or matrices]
O indicates a domination relationship
∼ indicates an equivalence relationship
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Linear algebra

[x]n n-th element of the vector x
[M]n,p n-th row, p-th column element of the matrix M

0 vector filled with zeros
1 vector filled with ones
I identity matrix
det M determinant of the matrix M
tr M trace of the matrix M
rk M rank of the matrix M
◦ element-wise multiplication for vectors or matrices [to be defined ]
‖x‖2 L2-norm of the vector x
‖M‖F Frobenius norm of the matrix M
diag(M) vector containing only the diagonal elements of the matrix M
vec(M) vector containing all the elements of the matrix M
∆ modulation product for matrices [to be defined ]
⊗ Kronecker product
σn(M) n-th singular value of the matrix M

Functions and differential calculus

◦ composition operator for functions
∇F|x gradient of the function F , evaluated at x
HessF|x Hessian matrix of the function F , evaluated at x
div divergence operator
∆ Laplacian operator

Standard sizes and associated iterators
Symbol Description Iterators

Nx dimension of the state space n,m
Ny dimension of the observation space p, q
Ne ensemble size i, j
Nt number of threads for parallel computing
Neff effective ensemble size [to be defined ]

N̂e augmented ensemble size [to be defined ]
Nm number of modes [to be defined ]
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Time evolution

t time
k, l time indices [subscripts], omitted in the text unless necessary
tk k-th observation time
Nc total number of cycles in a simulation
Ns number of spin-up cycles in a simulation

Probabilities

ν[x] distribution of the random vector x
N [x,P] Gaussian (normal) distribution with mean x and covariance matrix P
U [x, y] uniform distribution over the interval [x, y]
LN [x,P] Log-normal distribution with mean x and covariance matrix P
π[x](x) pdf of the random vector x, evaluated at x
N (x|y,P) pdf of the Gaussian distribution N [y,P], evaluated at x
x ∼ ν indicates that the random vector x has distribution ν
x ∼ ν indicates that the scalar x is a random draw from the distribution ν
x ∼ ν indicates that the vector x is a random draw from the distribution ν

E
iid∼ ν indicates that the ensemble E is an iid sample from ν

E[x] expectation of the random vector x
V[x] variance of the random vector x
δ Dirac kernel

Decorations

· , · indicates a definition
·T transposition operator
·+ indicates a matrix pseudo-inverse

·1/2 indicates a matrix square root [to be defined ]
·̄ indicates a sample estimate [to be defined ]
·∗ refers to some notion of optimality [to be defined ]
·` refers to some notion of locality [to be defined ]
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Introduction

Meteorology and oceanography are the scientific disciplines which consist in the study of
atmospheric and oceanic phenomena, with the aim of predicting the state of the atmospheric
and oceanic flows. The prediction starts from the physical laws governing the flow, mainly
the conservation laws for mass, energy and momentum. A model is then defined as the set of
numerical methods used to integrate in time a discrete version of these laws. In meteorology
and oceanography, the models are characterised by a very high number of state variables,
and by many sources of uncertainty. The quality of the predictions mainly depends on
three elements: the match between the physical laws described by the model and the actual
physical laws, the numerical quality of the model (resolution, and integration methods), and
the accuracy of the initial and boundary conditions.

The assimilation of observations can be defined as the method used to exploit all available
information with the aim of providing to the model an initial condition as accurate as possible.
An observation is defined here as the result of the measurement process of a physical quantity.
Measurement processes vary significantly and yield observations of different nature, which in
turn may require different assimilation methods. Data assimilation can be defined as the
discipline gathering all mathematical methods used to assimilate the observations. Since the
early days of numerical weather prediction, in the middle of the twentieth century, continuous
progress in the theory, in the algorithms, and in the available computational resources have
significantly contributed to the increase in quality of the forecasts.

As the dimension of typical problems in geophysical data assimilation is often very large, it
is necessary to develop reduced method. Taking inspiration from the Monte Carlo methods in
the statistical literature, ensemble methods have been proposed for data assimilation. In this
case, the current knowledge on the system is described by an ensemble (typically a few dozen)
of trajectories of the model. The statistical properties of the ensemble are used to quantify
the uncertainties. Currently, the two most widespread classes of ensemble data assimilation
methods are the ensemble Kalman filter (EnKF) and the particle filter (PF). The EnKF has
been designed as an ensemble variant of the famous Kalman filter and hence it relies on the
same set of assumptions about linearity and Gaussianity. By contrast, the PF only relies on
Monte Carlo methods, and therefore it does not require additional assumptions.

As is, both classes of methods cannot be applied to high-dimensional systems. Indeed,
it seems impossible to represent complex statistical properties between several billions of
state variables while using only a few dozen ensemble members. In most geophysical systems
however, the correlation between spatially distant parts of the system decrease at a fast rate
with the physical distance. This property is used in the EnKF to make the assimilation of
observations local or, alternatively, to artificially taper the sample error covariance matrices.
The first method is known as domain localisation, and the second as covariance localisation.

Domain localisation consists of a collection of local and independent ensemble updates.
The whole updated ensemble is obtained by assembling the locally updated ensembles.
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Furthermore, the transition between the updates of adjacent domains can be made smoother
by tapering the precision of the attached observations. This leads to efficient data assimilation
algorithms, for example the local ensemble transform Kalman filter, which has become an
emblem of the success of the EnKF in high-dimensional geophysical systems. When using
domain localisation however, satellite observations cannot be assimilated without ad hoc
approximations. By contrast, covariance localisation consists of a single ensemble update
using a localised forecast sample covariance matrix. This is in practice much less simple to
implement in a deterministic context, but it can be used to assimilate satellite observations
without further approximations. The huge increase of satellite observations in the recent
years justify the need for efficient implementations of covariance localisation in the EnKF.

In geophysics, the dynamics is often nonlinear and the error distributions are in general
non-Gaussian. Therefore, it would be desirable to develop data assimilation algorithms
beyond the Gaussian and linear framework of the EnKF, for example with the PF. From a
theoretical point of view, domain localisation could be used in the PF to make it applicable
to high-dimensional systems. However, the implementation of localisation in the PF is a
challenge, because in this context there is no trivial way of gluing locally updated ensembles
together. Recent developments in particle filtering have been proposed to overcome this
difficulty. The resulting local PF algorithms, very different from one another, have the
potential to be applied to high-dimensional geophysical systems.

In this thesis, we study an improve localisation methods for ensemble data assimilation
algorithms. The first part provides an overview of the filtering methods in data assimilation.
Chapter 1 introduces the mathematical formalism. Chapter 2 describes the EnKF, and
chapter 3 describes the PF. The second part is dedicated to the implementation of localisation
in the PF. Chapter 4 is a review of the recent development in local particle filtering. A generic
and theoretical classification of local PF algorithms is introduced, with an emphasis on the
advantages and drawbacks of each category. Alongside the classification, practical solutions
to the difficulties of local particle filtering are suggested. They lead to new implementations
and improvements in the design of the local PF algorithms. Chapter 5 systematically tests
and compares the local PF algorithms using twin experiments of low- to medium-order
systems. Chapter 6 considers the case study of the prediction of the tropospheric ozone
using concentration measurements. Several data assimilation algorithms, including local PF
algorithms, are implemented and applied to this problem. Finally the third part is dedicated
to the implementation of covariance localisation in the EnKF. Chapter 7 shows how covariance
can be efficiently implemented in the deterministic EnKF using an augmented ensemble.
The proposed algorithm is tested in particular using twin experiments of a medium-order
model with satellite-like observations. Chapter 8 studies the consistency of the deterministic
EnKF with covariance localisation. A new implementation is proposed, and compared to the
original one using twin experiments of low-order models.
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Filtering methods in ensemble data
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1 Introduction to the methods of data
assimilation
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Data assimilation (DA) is the discipline which gathers all methods designed to improve the
knowledge of the state (past, present or future) of a dynamical system using both observations
and modelling results of this system. The most common application of DA in the geoscience
is numerical weather prediction (NWP). In this case, the state variables include, among
others, the pressure and temperature fields. Their evolution is governed by the Navier–Stokes
equation, the first law of thermodynamics, and the ideal gas law. The observations mainly
come from weather stations and from satellite instruments.

Classical methods in DA can be divided into two categories: the statistical approach and
the variational approach. Only recent methods combine both approaches into an hybrid
framework. This chapter gives an introduction to the most common methods in DA, and
is inspired from the following references: Cohn (1997), Bocquet (2014), Law et al. (2015),
Asch et al. (2016) and Carrassi et al. (2018). In section 1.1, we introduce the mathematical
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formalism for DA. In section 1.2, we formulate the estimation problem. The statistical and
variational approaches are then briefly introduced in sections 1.3 and 1.4. Finally section 1.5
presents basic properties of the most simple DA methods.

1.1 Mathematical formalism for data assimilation

We start this chapter with an introduction about the mathematical formalism necessary for
DA problems. For simplicity, it is assumed in this thesis that all random variables and random
vectors have a probability density function (pdf) with respect to the Lebesgue measure.

1.1.1 The hidden Markov model

A generic discrete-time DA system is an hidden Markov model (HMM) which describes a
random process (xk,yk)k∈N, for a strictly growing sequence of time instants (tk)k∈N. The
hidden state vector x, a random vector with Nx elements, is only known through the
observation vector y, a random vector with Ny elements. The Markov property of the
model ensures that the pdf of the joint distribution can be factored as1

π[xk:,yk:] = π[x0]π[y0|x0]
k∏

l=1

π[xl|xl−1]π[yl|xl]. (1.1)

This means that the model is entirely determined by the background density πb , π[x0],
the observation density πok , π

[
yk
∣∣xk
]
, and the transition density πmk , π

[
xk+1

∣∣xk
]
. This is

summarised by the following system.

Generic HMM

x0 ∼ νb, (1.2a)

yk = νok , (1.2b)

xk+1 = νmk . (1.2c)

In this system, νb , ν[x0] is the background distribution, and

νok , ν
[
yk
∣∣xk
]
, (1.3)

νmk , ν
[
xk+1

∣∣xk
]
, (1.4)

are the observation and the transition distributions, most of the time defined using a dynamical
model and an observation operator. These elements are discussed in subsections 1.1.2
and 1.1.3. Figure 1.1 illustrates the generic HMM, system 1.2.

The starting point in DA is a realisation of the HMM, written (xt
k,yk)k∈N. The goal is to

estimate, in a sense that is defined in section 1.2, the truth xt, with the only data being

1Unless specified otherwise, all equations referring to the time index k are valid for all k ∈ N.

6



1.1 Mathematical formalism for data assimilation

Time t0 Time t1 Time tk

x0 x1 xk

y0 y1 yk

Figure 1.1: Schematic representation of the generic HMM, system 1.2. The hidden part is
in red and the observed part in green.

the observation vector y.2 In that sense, DA belongs to the class of the so-called inverse
problems. There are three cases:

1. estimating xt
k+l from yk:, with l > 0, is called prediction;

2. estimating xt
k from yk: is called filtering;

3. estimating xt
k−l from yk:, with l ≥ 0, is called smoothing.

In this thesis, the focus is on filtering. Prediction and smoothing problems are not discussed,
although prediction skills can be evaluated.

1.1.2 The dynamical system

For a complex dynamical system, the state cannot be entirely described by a finite-dimensional
vector. Let us consider the example of meteorology. The state of the system is a three-
dimensional vector field x† which describes the spatial evolution evolution of the N relevant
variables for meteorology: temperature, pressure. . . Assume that the temporal evolution of
x† is given by

x†(tk+1) =M†
(
x†(tk)

)
, (1.5)

where the model M† could be, for example, the resolvent of the equations of meteorology.3

From a numerical point of view, it is necessary to tabulate the values of x†. That is, the
vector space of three-dimensional fields with N variables FN←3, an infinite-dimensional vector
space, is represented by RNx , an Nx-dimensional vector space, through a projection operator
Π. For example, Π could be a set of averaging operators. For this system, the truth xt is
defined as

xt
k , Π

(
x†(tk)

)
. (1.6)

This is obviously an abuse of language, because the true state of the system is indeed x†.
However, since it is impossible to even represent x†,4 we focus on the problem which consists
in estimating xt.

2Sans-serif exponents are used to distinguish between different variants of the state vector x. By contrast,
the observation vector y is given and there is no need to make a distinction. The term observation vector
indiscriminately refers to the vector y or to the random vector y.

3The question of the existence and of the time dependence of such an evolution model for the equations of
meteorology is set apart.

4Unless there are analytic formulae for x†, which highly limits the possibilities.
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In the modelling (state) space RNx , the model M is determined by the numerical scheme
which is used to integrate the equations of meteorology in RNx . The model error em is then
defined as

emk+1 , xt
k+1 −M

(
xt
k

)
. (1.7)

From the relationship between xt and x†, equation (1.6), we deduce that

emk+1 =
(
Π ◦M† −M◦Π

)(
x†
(
tk
))
. (1.8)

This means that the model error em is composed of some representation error, inherent to
the projection Π, and of some potential modelling error, when the model M do not match
the discretisation of the model M†.

Obviously, the exact model error em is unknown. However, it can be seen as the realisation
of a random vector em. Back to the HMM, this means that the random vectors xk+1 and xk
are related by

xk+1 =M
(
xk
)

+ emk , (1.9)

and that the transition density is characterised by the pdf of the random vector em.

Remark 1. In most DA applications, the pdf of the model error π[em] is given. However, the
problem which consists in estimating the distribution of the unknown model error em for a
complex dynamical system is usually non-trivial.

1.1.3 The observation system

For a geophysical system, there are two classes of observations. We speak of conventional
observation when the measurement is performed on a station, either on the surface or on
board a vehicle (aircraft, ship or sounding balloon). The spatial coverage of these observations
is therefore sparse, but the measurement delivers a direct information on the system, for
example, the temperature at a specific spatial location and at a specific time. In that sense,
conventional observations are local.

We speak of remote sensing or satellite observation when the measurement is per-
formed by a distant instrument, often a satellite (radar, lidar, . . . ). Contrary to the con-
ventional observations, the spatial coverage of satellite observations is dense and redundant,
however the measurement delivers an indirect information on the system, for example, the
radiance of a whole column of air. In that sense, satellite observations are non-local and
hence harder to assimilate. In the last decades, the number of satellite observations has
blown-up, in such a way that nowadays, the overwhelming majority of observations comes
from satellite measurements.

From a mathematical point of view, let H† be the map that describes the processes involved
in the measurement: evaluation, average. . . With a perfect instrument, the observation vector
would be given by

yk = H†
(
x†(tk)

)
. (1.10)

The instrumental error ei is defined as

eik , yk −H†
(
x†(tk)

)
. (1.11)
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1.2 The filtering estimation problem

In the modelling space RNx , the observation operator H is determined by the numerical
scheme which is used to represent the measurement of a state vector. The observation error
eo is then defined as

eok , yk −H(xt
k). (1.12)

From the relationship between y and x†, equation (1.11), and the relationship between xt

and x†, equation (1.6), we deduce that

eok =
(
H† −H ◦Π

)(
x†(tk)

)
+ eik. (1.13)

This means that the observation error eo is composed of some representation error, inherent
to the projection Π, of some potential modelling error, when the observation operator H do
not match the discretisation of the map H†, and of the instrumental error ei.

Again, the exact observation error eo is unknown and can be seen as the realisation of a
random vector eo. Back to the HMM, this means that the random vectors yk and xk are
related by

yk = H
(
xk
)

+ eok, (1.14)

and that the observation density is characterised by the pdf of the random vector eo.

Remark 2. In most DA applications, the pdf of the observation error π[eo] is given. However,
the problem which consists in estimating the distribution of the unknown observation error
eo for complex dynamical- and observation systems is usually non-trivial.

1.1.4 The generic DA system

By bringing together all the pieces, we obtain the following formulation for the generic DA
system.

Generic DA system

x0 ∼ νb, (1.15a)

yk = H
(
xk
)

+ eok, eok ∼ ν
[
eok
]
, (1.15b)

xk+1 =M
(
xk
)

+ emk , emk ∼ ν
[
emk
]
. (1.15c)

Equation (1.15b) may be called the observation equation and equation (1.15c) the transition
equation. This generic DA system is illustrated in figure 1.2.

Remark 3. In the generic DA system, the dynamical model M and the observation operator
H do not depend on the time index k. The generalisation to time-dependentMk+1:k and Hk
is straightforward in this thesis.

1.2 The filtering estimation problem

In this section, we formulate the filtering estimation problem.
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1 Introduction to the methods of data assimilation

Time tk Time tk+1

emk

xk M xk+1

eok H eok+1 H

yk yk+1

Figure 1.2: Schematic representation the generic DA system, system (1.15). The hidden
part is in red, the observed part in green, and the maps are in cyan.

1.2.1 The generic filtering estimation problem

Let πa be the filtering density defined as

πak , π
[
xk
∣∣yk:

]
. (1.16)

The filtering density πa gathers all available information at a given time about the unknown
truth xt. This is why the ultimate goal in filtering DA should be to compute πa. This is
formalised in problem 1.1.

Problem 1.1 (Generic filtering estimation problem). Given the sequence of observation
vectors y, compute the filtering density πa of the generic DA system.

Let πf be the prediction density, defined as

πfk+1 , π
[
xk+1

∣∣yk:

]
. (1.17)

The prediction operator P is then defined as

Pk(π)(xk+1) ,
∫
πmk (xk+1|xk)π(xk) dxk, (1.18)

where the integral is taken over the whole state space RNx . And finally the correction operator
C is defined as

C0(π)(x0) ,
πo0(y0|x0)π(x0)

π[y0](y0)
, (1.19a)

Ck+1(π)(xk+1) ,
πok+1(yk+1|xk+1)π(xk+1)

π[yk+1|yk:](yk+1|yk:)
. (1.19b)

With these definitions and using the Markov property of the system, the Chapman–Kolmogorov
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1.2 The filtering estimation problem

equation is
πfk+1 = Pk

(
πak
)
, (1.20)

and Bayes’ theorem is written
πa0 = C0

(
πb
)
, (1.21a)

πak+1 = Ck+1

(
πfk+1

)
. (1.21b)

Combining equations (1.20) and (1.21b) yields the recursion

πak+1 = Ck+1 ◦ Pk
(
πak
)
. (1.22)

Using the initial relationship provided by equation (1.21a) and the recursion provided by
equation (1.22), we conclude that the filtering density πa exists and only depends on the
sequence of observation vectors y (through the correction operator C). Furthermore, the
stability of πa with respect to a variation of y is a consequence of theorem 2.15 of Law et al.
(2015). We conclude theorem 1.1.

Theorem 1.1. The generic filtering estimation problem, problem 1.1, has a unique and
stable solution: it is mathematically well-posed.

Once the filtering density πa is computed, it is possible to choose an estimate of the
unknown truth xt, written xa. Different choices are possible. For example, the mean
estimate is

xa
k =

∫
xk π

a
k(xk|yk:) dxk, (1.23)

where the integral is taken over the whole state space RNx , and the maximum a posteriori
is

xa
k = arg max

xk

πak(xk|yk:), (1.24)

where the optimisation is performed over the whole state space RNx . When πa is Gaussian,
both estimates are equal. However, when πa is non-Gaussian, they provide different pieces of
information. Suppose for example that πa is bimodal. The maximum a posteriori selects one
mode, and discards all information about the other mode. By contrast, the mean estimate
include information about both modes, but if the modes are distant from each other, it
describes a very unlikely estimate of xt.

Providing an optimal filtering estimate xa is the primary goal of DA. However, contrary
to problem 1.1, the problem which consists in computing the filtering estimate xa given the
sequence of observation vectors y is not mathematically well-posed. Indeed, the presence of
noise corrupts the data and therefore the existence of a solution is not guaranteed. If the
solution exists, there is no reason for it to be unique, especially if the observation operator H
is not injective. Finally, even if the solution exists and is unique, there is no reason to think
that it is stable with respect to a variation of y.

1.2.2 Terminology for filtering DA problems

In filtering DA, computing of the prediction density πf is called the forecast step and
computing the filtering density πa is called the analysis step, as illustrated by figure 1.3.
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Time tk Time tk+1

em
k

xt
k M xt

k+1

eo
k H eo

k+1 H

yk yk+1

πf
k

Analysis πa
k Forecast πf

k+1 Analysis πa
k+1

Figure 1.3: Schematic representation of the DA cycles. The hidden part is in red, the
observed part in green, the maps are in cyan, and the DA part is in blue.

Therefore, πf and πa may be called the forecast and analysis density, and the filtering estimate
xa may be called the analysis estimate. The forecast and analysis distributions, whose pdfs
are πf and πa, are written νf and νa.

1.2.3 Simplified DA systems

In many applications, several assumptions are considered in order to simplify the DA system.
In this section, we introduce the most common simplified DA systems.

1.2.3.1 Additive Gaussian and linear system

The DA system is said to be additive Gaussian and linear (GL) if the following conditions
are met:

• the initial state vector x0 follows a Gaussian distribution;

• the observation operator H is a linear application;

• the model M is a linear application;

• the model and observation errors em and eo follow a centred Gaussian distribution.

Using these hypotheses, the GL system can be written as follows.
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1.2 The filtering estimation problem

GL system

x0 ∼ N
[
xb,B

]
, (1.25a)

yk = Hxk + eok, eok ∼ N
[
0,R

]
, (1.25b)

xk+1 = Mxk + emk , emk ∼ N
[
0,Q

]
. (1.25c)

The background density πb is the Gaussian density N (x0|xb,B). The vector xb is the
mean of πb and can be used as background estimate. The matrix B is the background error
covariance matrix.5 The matrices M and H are the matrices of M and H.6 Finally, Q and
R are the covariance matrices of the model and observation errors em and eo.

The observation and transition densities πo and πm, deduced from equations (1.25b) and
(1.25c), are given by

πok(yk|xk) = N (yk|Hxk,R), (1.26)

πmk (xk+1|xk) = N (xk+1|Mxk,Q), (1.27)

Finally, the dedicated estimation problem is formalised in problem 1.2.

Problem 1.2 (GL filtering estimation problem). Given the sequence of observation vectors
y, compute the analysis density πa of the GL system.

Remark 4. In the system (1.25), the model and observation error covariance matrices Q and
R do not depend on the time index k. Again, the generalisation to time-dependent Qk and
Rk is straightforward in this thesis.

1.2.3.2 Single analysis step of the GL system

When the focus is on a single analysis (SA) step, there is no time evolution. As a consequence,
the SA–GL system is simply written as follows.

SA–GL system

x ∼ N
[
xb,B

]
, (1.28a)

y = Hx+ eo, eo ∼ N
[
0,R

]
. (1.28b)

The background density πb , π[x] is the Gaussian density N (x|xb,B). Using Bayes’
theorem, the analysis density πa , π[x|y] is equal to

πa(x|y) =
πo(y|x)πb(x)

π[y](y)
, (1.29)

5For simplicity, it is assumed in this thesis that all covariance matrices are symmetric and positive-definite.
6Unless specified otherwise, the matrix of a linear map F ∈ Fn←p is defined in this thesis as the matrix
F ∈ Rp×n which represents F in the canonical bases of Rn and Rp.
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1 Introduction to the methods of data assimilation

where the observation density πo , π[y|x], deduced from equation (1.28b), is given by

πo(y|x) = N (y|Hx,R). (1.30)

Finally, the dedicated estimation problem is formalised in problem 1.3.

Problem 1.3 (SA–GL filtering estimation problem). Given the observation vector y, compute
the analysis density πa of the SA–GL system.

1.3 Introduction to statistical data assimilation

In this section, we present the principle of statistical DA methods in the context of the
SA–GL system, and we derive the so-called best linear unbiased estimate (BLUE) analysis.

1.3.1 Principle of statistical methods

The background error eb is defined as the random vector

eb , x− xb. (1.31)

Because the state vector x follows the Gaussian distribution N
[
xb,B

]
, the expected value of

eb is
E
[
eb
]

= E
[
x
]
− xb = 0. (1.32)

The background estimate xb is said to be unbiased.

In statistical DA methods, the goal is to provide an optimal unbiased analysis estimate xa

of the truth. Let ea be the associated analysis error, defined as

ea , x− xa, (1.33)

and let Pa be the analysis error covariance matrix, defined as

Pa , V
[
ea
]
. (1.34)

Here, optimality refer to some kind of variance minimisation. For example, the optimal
unbiased analysis estimate xa could be the one which minimises the trace of Pa. This is
formalised in problem 1.4.

Problem 1.4 (Statistical analysis). Given the observation vector y, compute the unbiased
analysis estimate xa of the SA–GL system which minimises the trace of the analysis error
covariance matrix Pa.

1.3.2 The BLUE analysis

Suppose now that the analysis estimate xa is a linear combination of the background estimate
xb and of the observation vector y, given by

xa =
(
I−KH

)
xb + Ky, (1.35)
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1.4 Introduction to variational data assimilation

where K is called the gain matrix. Equation (1.28b) shows that the expected value of eo is
zero. Furthermore, since xb is unbiased, equation (1.35) ensures that xa is unbiased as well.
Simple linear algebra shows that the associated analysis error covariance matrix Pa is

Pa =
(
I−KH

)
B
(
I−KH

)T
+ KRKT. (1.36)

Finally, the optimality condition on the trace of Pa yields the optimal gain matrix, also called
Kalman gain matrix, given by

K = BHT
(
HBHT + R

)−1
. (1.37)

The resulting analysis is called the BLUE analysis and is written, in a more concise but
equivalent form, as

K = BHT
(
HBHT + R

)−1
, (1.38a)

xa = xb + K
(
y −Hxb

)
, (1.38b)

Pa =
(
I−KH

)
B. (1.38c)

Finally, the following alternate expressions for K and Pa are derived using the Sherman–
Morrison–Woodbury matrix identity, also known as the Woodbury formula:

K =
(
B−1 + HTR−1H

)−1
HTR−1, (1.39)

Pa =
(
B−1 + HTR−1H

)−1
. (1.40)

The BLUE analysis is one of the simplest DA method, yet its implementation can be
difficult for several reasons:

• the background and analysis error covariance matrices B and Pa have size Nx ×Nx,
which is hardly storable for high-dimensional systems;

• the computation of the analysis error covariance matrix Pa requires the inversion of a
matrix of size Ny ×Ny or Nx×Nx, depending on whether equation (1.38a) or (1.39) is
used for the Kalman gain matrix K;

• the exact background- and observation error covariance matrices B and R might be
unknown.

Remark 5. The matrices B and R are symmetric and positive-definite. As a consequence, both
HBHT + R and B−1 + HTR−1H are symmetric and positive-definite hence invertible, and
the Kalman gain matrix K, as given by equation (1.38a) or equivalently by equation (1.39),
is correctly defined.

1.4 Introduction to variational data assimilation

In this section, we present the principle of variational DA methods as a counterpart to
statistical DA methods in the same context, i.e., the SA–GL system. The 3D–Var analysis is
then introduced and shown to be equivalent to the BLUE analysis.
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1 Introduction to the methods of data assimilation

1.4.1 Principle of variational methods

In variational DA methods, optimality is measured by the means of a cost function J , such
as

J (x) ,
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2

(
y −Hx

)T
R−1

(
y −Hx

)
. (1.41)

In this definition, the first term measures the departure from the background estimate xb,
while the second term measures the departure from the observation vector y. Both terms are
pondered by their relative confidence. This rationale is formalised in problem 1.5.

Problem 1.5 (Variational analysis). Given the observation vector y, compute the analysis
estimate xa of the SA–GL system which minimises the cost function J .

1.4.2 The 3D–Var analysis and its equivalence with the BLUE analysis

The cost function J is quadratic because the observation operator H is linear. Moreover, J
is strictly convex because the background and observation error covariance matrices B and
R are symmetric and positive-definite. Therefore J has a unique minimiser, which can be
obtained by nullifying its gradient

∇J |x = B−1
(
x− xb

)
−HTR−1

(
y −Hx

)
. (1.42)

The minimiser is given by

xa = xb +
(
B−1 + HTR−1H

)−1
HTR−1

(
y −Hxb

)
, (1.43)

and the Hessian matrix of J at the minimum is given by

HessJ |xa = B−1 + HTR−1H. (1.44)

This analysis is called 3D–Var. Using the alternate expressions of the BLUE analysis,
equations (1.39) and (1.40), we recognise that the minimiser of the cost function J is the
analysis estimate of the BLUE analysis and that the Hessian matrix of J at the minimum
is the inverse of the analysis error covariance matrix Pa of the BLUE analysis. This shows
that the solutions to problem 1.5 and to problem 1.4 are equal, and that the BLUE and the
3D–Var analyses are two facets of a same solution for the SA–GL system. However, the route
to this solution is different. The BLUE analysis requires the inversion of a potentially large
matrix, while the 3D–Var analysis requires the minimisation of a cost function, for which one
benefits from the long experience of numerical optimisation.

1.5 Properties of the BLUE and 3D–Var analyses

To conclude this introduction chapter, we present basic properties of the BLUE and 3D–Var
analyses.
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1.5.1 Connection to the filtering estimation problem

In the SA–GL system, both the background and the observation densities πb and πo are
Gaussian. This means that the analysis density πa, given by equation (1.29), is the Gaussian
density N (x|xa,Pa), where Pa and xa are given by

Pa =
(
B−1 + HTR−1H

)−1
, (1.45)

xa = Pa
(
B−1xb + HTR−1y

)
. (1.46)

Using the alternate equations (1.39) and (1.40), we recognise here the analysis estimate xa

and the analysis error covariance matrix Pa of the BLUE and 3D–Var analyses. This means
that the BLUE and 3D–Var analyses are indeed solution to the SA–GL filtering estimation
problem, problem 1.3. This result is formalised in theorem 1.2.

Theorem 1.2. The analysis density πa of the SA–GL system, solution to problem 1.3,
is the Gaussian density N (x|xa,Pa), where xa and Pa are the analysis estimate and the
analysis error covariance matrix of the BLUE and 3D–Var analyses, as obtained by equa-
tions (1.38a)–(1.38c).

1.5.2 Cycling the BLUE and the 3D–Var analyses

Until now, the BLUE and 3D–Var analyses describe how to perform only one analysis step.
The way to implement them in a cycled DA system such as the GL system, is to construct
four sequences:

(
xf
k

)
k∈N,

(
xa
k

)
k∈N,

(
Pf
k

)
k∈N, and

(
Pa
k

)
k∈N.

The forecast estimate and error covariance matrix xf and Pf are initialised, using the
background estimate and error covariance matrix xb and B, as

xf
0 = xb, (1.47a)

Pf
0 = B. (1.47b)

Then, using equations (1.38a)–(1.38c), the analysis estimate and error covariance matrix, xa

and Pa, are obtained from the forecast estimate and error covariance matrix, xf and Pf , as

Kk = Pf
kH

T
(
HPf

kH
T + R

)−1
, (1.48a)

xa
k = xf

k + Kk

(
yk −Hxf

k

)
, (1.48b)

Pa
k =

(
I−KkH

)
Pf
k. (1.48c)

The only missing is the way to obtain xf
k+1 and Pf

k+1 from xa
k and Pa

k. The most obvious

recursion relationship for xf
k+1 is

xf
k+1 = Mxa

k, (1.49)

where the dynamical model M is simply applied to xa
k. Finally, the simplest recursion

relationship for Pf
k+1 is

Pf
k+1 = B. (1.50)

In other words Pf does not evolve in time. In this case, the recurrence relationship is
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1 Introduction to the methods of data assimilation

Algorithm 1.1: Full assimilation cycle for the cycled BLUE and 3D–Var analyses

in the context of the GL system.

Input: xa [tk], y [tk+1]

Parameters: M, H, B, R

1 K = BHT
(
HBHT + R

)−1
// precomputed

2 Pa =
(
I−KH

)
B // precomputed

3 Forecast

4 xf ←Mxa

5 Analysis

6 xa ← xf + K
(
y −Hxf

)

Output: xa, Pa [tk+1]

simplified because Pf and Pa, as well as K do not evolve in time. Using the DA terminology,
the analysis step is the implementation of equations (1.48a)–(1.48c) and the forecast step is
the implementation of equations (1.49) and (1.50). A full cycle (a forecast followed by an
analysis) for these cycled BLUE and 3D–Var analyses is described in algorithm 1.1.

This kind of analysis has been used for NWP in the twentieth century by operational
centres, first under the form of the BLUE analysis, then, in the 1990s, under the form of the
3D–Var analysis. In the 2000s, the 3D–Var analysis has been replaced in most centres by
the 4D–Var analysis, which is a generalisation of the 3D–Var analysis especially suited for
smoothing, asynchronous problems. More recently, operational centres are moving toward
hybrid approaches which combine the advantage of both the statistical- and the variational
approach.

1.5.3 How to deal with nonlinearity and non-Gaussianity

The question of linearity and Gaussianity is relevant, because both ingredients are crucial in
the derivation of the BLUE and the 3D–Var analyses and of theorem 1.2, whereas realistic
geophysical models are in general nonlinear and error distributions are in general non-Gaussian.
Solutions to handle nonlinearity and non-Gaussianity are presented here. However, one must
keep in mind that in this case, the BLUE and the 3D–Var analyses may result in different
values for the analysis estimate and error covariance matrix xa and Pa, and that none of
them describes the (non-Gaussian) analysis density πa.
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1.5 Properties of the BLUE and 3D–Var analyses

1.5.3.1 Nonlinearity of the observation operator

The generalisation of the 3D–Var analysis to the case of a nonlinear observation operator H
is straightforward. In that case, the cost function to minimise is

J (x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2

(
y −H(x)

)T
R−1

(
y −H(x)

)
, (1.51)

whose gradient and Hessian matrix are given by

∇J |x = B−1
(
x− xb

)
−HT

xR−1
(
y −H(x)

)
, (1.52)

HessJ |x = B−1 + HT
xR−1Hx, (1.53)

where Hx is the matrix of the differential of H, evaluated at x, commonly known in the DA
literature as the tangent linear of H. In this case however, the cost function J may not be
quadratic and convex, which means that the existence and uniqueness of its minimum is not
guaranteed.

By contrast, the BLUE analysis cannot be generalised to the case of a nonlinear observation
operator without an approximation: it requires the explicit linearisation of H about the
background estimate.

1.5.3.2 Nonlinearity of the dynamical model

In the cycled BLUE and 3D–Var analyses, the forecast step consists in equation (1.49), which
describes how to obtain xf

k+1 from xa
k. The generalisation of equation (1.49) to a nonlinear

dynamical model M is straightforward:

xf
k+1 =M(xa

k). (1.54)

1.5.3.3 Non-Gaussianity of the error distributions

In the linear and Gaussian case, the cost function of the 3D–Var analysis, given by equa-
tion (1.41), is equal to

J (x) = − lnπb(x)− lnπo(y|x), (1.55)

= − lnπa(x)− lnπ[y](y), (1.56)

where the additive constant lnπ[y](y) only depends on the observation vector y. The
generalisation of the 3D–Var analysis to the case of non-Gaussian background and observation
densities πb and πo is straightforward. In that case, the cost function to minimise is given
by equation (1.55). The minimisation method to use will of course depend on the specific
expression of J .

By contrast, in order to define the BLUE analysis in the case of non-Gaussian πb and πo,
the vector xb, and the matrices B and R must be defined as follows.

• The vector xb is provided as a background estimate. This can be the mean background
estimate (the mean of πb), the maximum a priori (the mode of πb) or any other vector.
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1 Introduction to the methods of data assimilation

• The background error covariance matrix B is defined as the covariance matrix of the
background error eb = x− xb.

• The observation error covariance matrix R is defined as the covariance matrix of the
observation error eo = y −Hx.

Remark 6. When the observation operator is nonlinear but the background and observation
densities are Gaussian, equations (1.55) and (1.51) are equivalent. This means that the cost
function J defined by equation (1.55) also covers the case of a nonlinear observation operator
H.
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The Kalman filter (KF), as introduced by Kalman (1960) is one of the most famous
filtering DA algorithm, which allows to recursively compute the first two statistical moments
of the forecast and analysis (state) density of the GL system. However, its implementation
is impossible in high-dimensional systems, which is the main motivation for the use of
approximate methods, such as the singular evolutive extended Kalman (SEEK) filter or the
ensemble Kalman filter (EnKF). In the SEEK filter (Pham et al. 1998; Brasseur and Verron
2006), the exact KF algorithm is approximated using explicit low rank factorisation of the
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2 The ensemble Kalman filter

error covariance matrices. By contrast, in the EnKF, the exact KF algorithm is approximated
by means of an ensemble of state vectors. The original EnKF algorithm has been introduced
by Evensen (1994) and amended by Burgers et al. (1998) and Houtekamer and Mitchell
(1998), and since then, it has inspired many variants based on similar principles, but whose
algorithmic implementation differ.

Section 2.1 is dedicated to the description of the KF algorithm. Section 2.2 presents the
EnKF. The consistency and the convergence of the EnKF is studied in section 2.3. Section 2.4
tackles the issue of nonlinearity and non-Gaussianity in the EnKF. Finally, section 2.5
introduces inflation and localisation as means to counteract sampling errors in the EnKF. In
this chapter, unless specified otherwise, the DA system is the GL system.

2.1 The Kalman filter

We start this chapter with a presentation of the KF algorithm and of its connection to the
GL filtering estimation problem.

2.1.1 The Kalman filter algorithm

In the KF algorithm, the goal is, as in subsection 1.5.2, to recursively construct the four
sequences

(
xf
k

)
k∈N,

(
xa
k

)
k∈N,

(
Pf
k

)
k∈N, and

(
Pa
k

)
k∈N. Again, the forecast estimate and

error covariance matrix xf and Pf are initialised, using the background estimate and error
covariance matrix xb and B, as

xf
0 = xb, (2.1a)

Pf
0 = B. (2.1b)

The recursion of the KF algorithm1 is then given by the analysis step:

Kk = Pf
kH

T
(
HPf

kH
T + R

)−1
, (2.2a)

xa
k = xf

k + Kk

(
yk −Hxf

k

)
, (2.2b)

Pa
k =

(
I−KkH

)
Pf
k, (2.2c)

and by the forecast step:
xf
k+1 = Mxa

k, (2.3a)

Pf
k+1 = MPa

kM
T + Q. (2.3b)

The only difference with the cycled BLUE and 3D–Var analyses presented in section 1.5.2
is that in the KF algorithm, the error covariance matrix P is propagated by the dynamical
model M during the forecast step. This is an important feature, because the time evolution of
P is taken into account, which improves the quality of the analyses. However, implementing
the propagation of P, equation (2.3b), can be difficult because it requires Nx propagations by
the dynamical model (whose matrix is M) and Nx propagations by the adjoint dynamical
model (whose matrix is MT). A full cycle for the KF algorithm is described in algorithm 2.1.

1Also known as the dynamical Riccati recursion.
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2.2 The ensemble Kalman filter

Algorithm 2.1: Full assimilation cycle for the KF algorithm in the context of the

GL system.

Input: xa, Pa [tk], y [tk+1]

Parameters: M, H, Q, R

1 Forecast

2 xf ←Mxa

3 Pf ←MPaMT + Q

4 Analysis

5 K ← PfHT
(
HPfHT + R

)−1

6 xa ← xf + K
(
y −Hxf

)

7 Pa ←
(
I−KH

)
Pf

Output: xa, Pa [tk+1]

2.1.2 The filtering density of GL system

As shown in subsection 1.5.1, the analysis density πa0 of the GL system at time t0 is
the Gaussian density N (x0|xa

0,P
a
0), where Pa

0 and xa
0 are obtained by the BLUE analysis.

Equation (1.27) states that the transition density πm0 between times t0 and t1 is the Gaussian
density N (x1|Mx0,Q). From the Chapman–Kolmogorov equation, equation (1.20), we
deduce that the forecast density πf1 at time t1 is the Gaussian density N (x1|xf

1,P
f
1), where

Pf
1 and xf

1 are simply given by
xf

1 = Mxa
0, (2.4)

Pf
1 = MPa

0M
T + Q. (2.5)

Reasoning by recurrence, we conclude theorem 2.1, which a posteriori justifies the forecast
step in the recursion of the KF algorithm, equations (2.3a)–(2.3b).

Theorem 2.1. The analysis density πa of the GL system, solution to problem 1.2, and the as-
sociated forecast density πf are the Gaussian densities N (x|xa,Pa) and N (x|xf ,Pf), where xa,
Pa, xf , and Pf are obtained using the recursion of the KF algorithm, equations (2.2a)–(2.2c)
and (2.3a)–(2.3b).

2.2 The ensemble Kalman filter

This section presents the main algorithmic ingredients of the EnKF, as well as the two
reference variants of the EnKF which are used in this thesis: the stochastic EnKF algorithm
and the ensemble transform Kalman filter (ETKF) algorithm.
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2 The ensemble Kalman filter

2.2.1 Matrix notation for ensemble DA

In DA, an ensemble E is defined as a collection of Ne vectors with N elements, written{
xi ∈ RN , i ∈ (Ne : 1)

}
. The sample mean x̄ and sample covariance matrix P̄ of E are

x̄ ,
1

Ne

Ne∑

i=1

xi, (2.6a)

P̄ ,
1

Ne − 1

Ne∑

i=1

(xi − x̄)(xi − x̄)T. (2.6b)

For convenience, we introduce a matrix notation as follows. The matrix E of the ensemble
E is defined as the N ×Ne matrix whose Ne columns are the ensemble members xNe:1. Then,
we introduce the normalised anomaly or perturbation matrix X of E, defined as

X ,
1√

Ne − 1
E
(
I− 11T/Ne

)
. (2.7)

With this matrix notation, the sample mean and covariance matrix x̄ and P̄ of the ensemble
E can be obtained as

x̄ = E1/Ne, (2.8a)

P̄ = XXT. (2.8b)

In this thesis, the term ensemble refers, without distinction, to an ensemble E or to its matrix
E.

2.2.2 Principle of the EnKF

In the KF algorithm, the knowledge on the system is determined by the current estimate
and by the associated error covariance matrix. In the EnKF, the knowledge on the system
is determined by an ensemble E =

{
xi ∈ RNx , i ∈ (Ne : 1)

}
. Each ensemble member xi

represents a possible realisation of the state vector x, and the current estimate and the
associated error covariance matrix are the sample mean and covariance matrix of E. Therefore,
the goal in the EnKF is to recursively construct two sequences:

(
Ef
k

)
k∈N and (Ea

k)k∈N.

The initial forecast ensemble Ef
0 is an idenpendant and identically distributed (iid) sample

from the background distribution N
[
xb,B

]
. The forecast and analysis steps describe how

to update the forecast and analysis ensembles Ef and Ea, as ensemble counterparts of the
forecast and analysis steps of the KF algorithm.

The EnKF forecast step is said to be consistent if the sample means and covariance
matrices of Ef and Ea are related by

x̄f
k+1 = Mx̄a

k, (2.9a)

P̄f
k+1 = MP̄a

kM
T + Q, (2.9b)

and likewise, the EnKF analysis step is said to be consistent if the sample means and
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2.2 The ensemble Kalman filter

covariance matrices of Ef and Ea are related by

Kk = P̄f
kH

T
(
HP̄f

kH
T + R

)−1
, (2.10a)

x̄a
k = x̄f

k + Kk

(
yk −Hx̄f

k

)
, (2.10b)

P̄a
k =

(
I−KkH

)
P̄f
k. (2.10c)

As a matter of fact, there are many different ways to perform consistent ensemble updates.
This is why in this thesis, the term EnKF does not refer to a specific algorithm, but rather
to a class of algorithms, whose principles are the ones aforementioned. The main distinction
between different EnKF algorithms is probably whether they are stochastic, meaning that
their analysis step relies on perturbed observations, or whether they are deterministic,
meaning that their analysis step relies on square root formulae.2

Remark 7. The sample covariance matrix P̄ of an ensemble E may not be positive-definite, but
only positive semi-definite. However, because R is positive-definite, the matrix HP̄HT + R
remains positive-definite. Therefore, the Kalman gain matrix K, as given by equation (2.10a),
is correctly defined. Obviously, it may differ from the Kalman gain matrix K of the KF
algorithm, as given by equation (2.2a).

2.2.3 The forecast step of stochastic EnKF algorithms

In stochastic EnKF algorithms, the goal of the forecast step if to independently update each
ensemble member using the transition equation of the GL system, equation (1.25c). More
precisely, at time tk, the i-th ensemble member is updated as3

xf
i(k + 1) = Mxa

i (k) + emi (k), (2.11)

where emi is a random draw from the model error distribution N
[
0,Q

]
(in other words, emi is

a realisation of the model error em). Using the matrix notation, the ensemble update reads

Ef
k+1 = MEa

k + Em
k , (2.12)

where Em is the matrix of the ensemble
{
emi , i ∈ (Ne : 1)

}
.

2.2.4 The forecast step of deterministic EnKF algorithms

Without model error, the forecast step of deterministic EnKF algorithms is identical to
that of stochastic EnKF algorithms, and relies on the dynamical model M. However, the
treatment of model error is more complex with deterministic EnKF algorithms. In this
subsection, we present the core method described by Raanes et al. (2015). This method
is largely inspired from the analysis step of deterministic EnKF algorithms, described in
subsection 2.2.6, and hence the forecast step is split into two parts: first the mean update,
and then the perturbation update. The mean update relies on the dynamical model M and

2In principle, the distinction should also inform whether the forecast step is stochastic or deterministic.
However, the EnKF is often used without model error in which case the forecast step is always deterministic.

3In order to avoid double subscripts in this chapter, a functional notation is used instead of a subscript
notation for the time indices if necessary.
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2 The ensemble Kalman filter

is similar to the update of xf in the forecast step of the KF algorithm, using equation (2.3a).
The perturbation update relies on a square root formula to yield the forecast ensemble Ef .

2.2.4.1 The matrix square root

Different choices are possible for the definition of square roots of matrices. In this thesis, we
use the following definition. Let M be a square matrix, diagonalisable with non-negative
eigenvalues. We write

M = GDG−1, (2.13)

where G, whose columns are the eigenvectors of M, is invertible and where D is the diagonal
matrix containing the eigenvalues of M in descending order. We define M1/2, the square
root of M, as the matrix

M1/2 = GD1/2G−1, (2.14)

where D1/2 is the diagonal matrix whose elements are the square roots of the elements of D.
With this definition, the square root of M exists, is unique, and satisfies

M =
(
M1/2

)2
. (2.15)

2.2.4.2 Mean update

The mean update is simply given by equation (2.9a).

2.2.4.3 Perturbation update

Let Xf and Xa be the perturbation matrices of Ef and Ea. In the core method described by
Raanes et al. (2015), the perturbation update is implemented as

Z = (MXa
k)

+, (2.16a)

Te = I + ZQZT, (2.16b)

Xf
k+1 = MXa

k(Te)
1/2, (2.16c)

where the pseudo-inverse4 is used for the non-invertible matrix MXa. The matrix ZQZT is
symmetric and positive semi-definite, hence diagonalisable with non-negative eigenvalues. As
a consequence, the square root of the transformation matrix Te exists and equation (2.16c)
is correctly defined.

2.2.5 The analysis step of stochastic EnKF algorithms

In stochastic EnKF algorithms, the goal of the analysis step is to update each ensemble
member in a similar way as xa is updated in the analysis step of the KF algorithm, using
equation (2.2b). However, as is, the resulting analysis ensemble Ea would be inconsistent. A
solution to recover a consistent analysis step is to use perturbed observations as follows.

4Also known as Moore–Penrose inverse.
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2.2 The ensemble Kalman filter

2.2.5.1 Ensemble update with perturbed observations

At time tk, the i-th ensemble member is updated as

xa
i (k) = xf

i(k) + Kk

(
yk + eoi (k)−Hxf

i(k)
)
, (2.17)

where the Kalman gain matrix K is given by equation (2.10a), and where eoi is a random
draw from the observation error distribution N

[
0,R

]
(in other words, eoi is a realisation of

the observation error eo). Using the matrix notation, the ensemble update is

Ea
k = Ef

k + Kk

(
yk1

T + Eo
k −HEf

k

)
, (2.18)

where Eo is the Ny ×Ne matrix of the ensemble
{
eoi , i ∈ (Ne : 1)

}
.

2.2.5.2 Kalman gain matrix in observation space

Define the perturbation matrix in observation space Y as

Yk , HXf
k. (2.19)

Using this notation, the Kalman gain matrix K, given by equation (2.10a), is equal to

Kk = Xf
kY

T
k

(
YkY

T
k + R

)−1
. (2.20)

2.2.5.3 Kalman gain matrix in ensemble space

Using the Sherman–Morrison–Woodbury matrix identity, it can be shown that the Kalman
gain matrix K is also equal to

Kk = Xf
k

(
I + YT

kR−1Yk

)−1
YT
kR−1. (2.21)

In equation (2.20), the Kalman gain matrix K is formulated in observation space, meaning
that the matrix to invert has size Ny ×Ny. By contrast, in equation (2.21), the Kalman gain
matrix K is formulated in ensemble space, meaning that the matrix to invert now has size
Ne×Ne. When the ensemble size Ne is considerably smaller than the number of observations
Ny, this results in a significant gain in algorithmic complexity.

2.2.6 The analysis step of deterministic EnKF algorithms

In deterministic EnKF algorithms, the analysis step is, as the forecast step, split into two
parts: first the mean update, and then the perturbation update. The mean update relies on
the Kalman gain matrix K and is similar to the update of xa in the analysis step of the KF
algorithm, using equation (2.2b). The perturbation update relies on a square root formula to
yield the analysis ensemble Ea.
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2 The ensemble Kalman filter

2.2.6.1 Mean update

The mean update is equation (2.10b), where the Kalman gain matrix K, given by equa-
tion (2.10a), can be computed either using equation (2.20) or using equation (2.21).

2.2.6.2 Perturbation update in ensemble space

In the ETKF algorithm (Bishop et al. 2001; Hunt et al. 2007), the perturbation update is
implemented as

Te = I + YT
kR−1Yk, (2.22a)

Xa
k = Xf

k(Te)
−1/2. (2.22b)

The matrix YTR−1Y is symmetric and positive semi-definite, hence diagonalisable with
non-negative eigenvalues. As a consequence, the square root of the transformation matrix Te

exists and equation (2.22b) is correctly defined.

2.2.6.3 Perturbation update in state space

Using the matrix shift lemma (stated in section 6.4.4 of Asch et al. 2016), it can be shown
that the perturbation update of the ETKF algorithm, given by equations (2.22a)–(2.22b), is
equivalent to

Tx = I + P̄f
kH

TR−1H, (2.23a)

Xa
k = (Tx)−1/2Xf

k. (2.23b)

In this case, the matrix P̄fHTR−1H may not be symmetric. However, both matrices P̄f

and HTR−1H are symmetric and positive semi-definite. Therefore, corollary 7.6.2 of Horn
and Johnson (2012) ensures that the matrix P̄fHTR−1H is diagonalisable with non-negative
eigenvalues, which means that the square root of the transformation matrix Tx exists and
that equation (2.23b) is correctly defined.

In equation (2.23a), the transformation matrix Tx is formulated in state space, meaning
that the matrix to invert has size Nx×Nx. By contrast, in equation (2.22a), the transformation
matrix Te is formulated in ensemble space, meaning that the matrix to invert has size Ne×Ne.
When the ensemble size Ne is considerably smaller than the number of variables Nx, this
results in a significant gain in algorithmic complexity.

2.2.7 Summary

Algorithms 2.2 and 2.3 describe a full assimilation cycle for the stochastic EnKF and the
ETKF algorithm, which are the reference variants of the stochastic and deterministic EnKF
in this thesis. The algorithmic complexity of both algorithms is reported and compared to
the algorithmic complexity of the KF algorithm in table 2.1. The benefit of using ensembles
is obvious: we do not need to apply the adjoint model MT, and the overall algorithmic
complexity has been reduced. The price to pay for these cheaper algorithms is that the use
of a finite ensemble generates potentially large sampling errors. As a consequence, the EnKF
does not necessarily solve the GL filtering estimation problem, problem 1.2, and several
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Algorithm 2.2: Full assimilation cycle for the stochastic EnKF algorithm in the

context of the GL system.

Input: Ea [tk], y [tk+1]

Parameters: M, H, Q, R

1 Forecast

2 Em iid∼ N
[
0,Q

]

3 Ef ←MEa + Em

4 Analysis

5 Eo iid∼ N
[
0,R

]

6 X ← Ef
(
I− 11T/Ne

)
/
√
Ne − 1

7 Y ← HX

8 K ← X
(
I + YTR−1Y

)−1
YTR−1

9 Ea ← Ef + K
(
y1T + Eo −HEf

)

Output: Ea [tk+1]

approximations are required to counteract sampling errors. This later point is discussed in
section 2.5.

2.3 Consistency and convergence of the EnKF

The consistency of an EnKF algorithm is an important property, because it ensures that the
algorithm is indeed a reduced-rank version of the original KF algorithm. In this section, we
first examine the consistency of the EnKF algorithms, and then we discuss their behaviour
in the limit of an infinite ensemble Ne →∞.

2.3.1 Consistency on average of stochastic EnKF algorithms

2.3.1.1 Consistency of the forecast step

In the forecast step of stochastic EnKF algorithms, described by equation (2.12), the matrix
Em is constructed as an iid sample from the model error distribution N

[
0,Q

]
. By the strong

law of large numbers, on average over independent random draws of Em, the sample mean
and covariance matrix of Em are almost surely equal to 0 and Q. Moreover, the random
vector em does not depend on the analysis ensemble Ea. Again by the strong law of large
numbers, on average over independent random draws of Em, the matrices Em and Ea are
almost surely orthogonal.

In brief, on average over independent random draws of Em, the following three equations
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2 The ensemble Kalman filter

Algorithm 2.3: Full assimilation cycle for the ETKF algorithm in the context of

the GL system. The forecast step is performed with the core method.

Input: Ea [tk], y [tk+1]

Parameters: M, H, Q, R

1 Forecast

2 x̄ ← Ea1/Ne

3 X ← Ea
(
I− 11T/Ne

)
/
√
Ne − 1

4 Z ← (MX)+

5 Te ← I + ZQZ

6 x̄f ←Mx̄

7 Xf ←MXT
1/2
e

8 Analysis

9 Y ← HXf

10 Te ← I + YTR−1Y

11 w ← T−1
e YTR−1

(
y −Hx̄f

)

12 x̄a ← x̄f + Xfw

13 Xa ← XfT
−1/2
e

14 Ea ← x̄a1T +
√
Ne − 1Xa

Output: Ea [tk+1]

Table 2.1: Comparison of the algorithmic complexity of the KF algorithm (column KF)
and of the stochastic EnKF and the ETKF algorithms (column EnKF) In the forecast step,
we count the number of applications of the forward and adjoint models M and MT. In the
analysis step, we report the complexity of the linear algebra operations, which depends in
particular on the algorithmic complexity TH of applying the linear observation operator H
to a vector. For simplicity, it is assumed here that Ne ≤ Ny ≤ Nx.

Assimilation step KF EnKF

Forecast Nx applications of M Ne applications of M
Nx applications of MT —

Analysis O
(
N2

xNy

)
O
(
THNe +N2

yNe +NxN
2
e

)
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almost surely hold:
Em
k 1 = 0, (2.24a)

Xm
k (Xm

k )T = Q, (2.24b)

Xa
k(X

m
k )T = 0, (2.24c)

where Xm is the perturbation matrix of Em.

Using equations (2.9a)–(2.9b), as well as the equation of the EnKF forecast step, equa-
tion (2.12), we directly obtain the consistency relationships equations (2.24a)–(2.24c). There-
fore, we conclude theorem 2.2.

Theorem 2.2. The forecast step of stochastic EnKF algorithms, as described by equa-
tion (2.12), is almost surely consistent on average over independent random draws of Em.

2.3.1.2 Consistency of the analysis step

Using the same reasoning, it is possible to show that using the analysis step of stochastic EnKF
algorithms, described by equation (2.18), the equation of the Kalman gain, equation (2.21),
and average relationships for Eo, similar to equations (2.9a)–(2.9b), we directly obtain the
consistency relationships equations (2.10a)–(2.10c). Therefore, we conclude theorem 2.3.

Theorem 2.3. The analysis step of stochastic EnKF algorithms, as described by equa-
tion (2.18), is almost surely consistent on average over independent random draws of Eo.

2.3.2 Consistency of deterministic EnKF algorithms

The forecast and analysis steps of deterministic EnKF algorithms are split into two parts:
the mean update, and the perturbation update. Such an update is consistent if

• the mean update is consistent, in other words it satisfies equation (2.9a) for the forecast
step or equation (2.10b) for the analysis step (by construction this is always the case);

• the perturbation update is consistent, in other words it satisfies equation (2.9b) for the
forecast step,or equation (2.10c) for the analysis step;

• the perturbation matrix is centred, in other words Xf1 = 0 for the forecast step or
Xa1 = 0 for the analysis step.

The last condition is necessary to ensure that the perturbation update does not mess up with
the mean update.

2.3.2.1 Consistency of the forecast step

Following Raanes et al. (2015), the forecast perturbation matrix Xf , as defined by equa-
tions (2.16a)–(2.16c), satisfies

Xf
k+1

(
Xf
k+1

)T
= MP̄a

kM
T + Πa

kQ
(
Πa
k

)T
, (2.25)
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where Πa is the projector onto the subspace spanned by MXa, obtained as

Πa
k = MXa

k

(
MXa

k

)+
. (2.26)

Furthermore, if the analysis perturbation matrix Xa
k is centred, then the forecast perturbation

matrix Xf
k+1 is by construction centred as well.

The quantity ΠaQΠa is the two-sided projection of the model error covariance matrix Q
on the subspace spanned by MXa. The residual model error is defined as the model error
corresponding to the residual model error covariance matrix Q−ΠaQΠa. By construction,
the core method cannot take into account such error. However, if the residual model error is
null, then equation (2.25) is equivalent to equation (2.9b). We conclude theorem 2.4.

Theorem 2.4. The forecast step of the ETKF algorithm, as described by the mean update,
equation (2.9a), and the perturbation update, equations (2.16a)–(2.16c), is consistent if, and
only if the residual model error covariance matrix Q −ΠaQΠa, with Πa being defined by
equation (2.26), is null.

Remark 8. If the rank of MXa is greater than or equal to Nx, then the residual model error
covariance matrix Q−ΠaQΠa is null. This can only happen if Ne ≥ Nx, which is never the
case in realistic applications.

2.3.2.2 Consistency of the analysis step

Using the Sherman–Morrison–Woodbury matrix identity, it is possible to show that the
analysis perturbation matrix Xa, as defined by equations (2.22a)–(2.22b) or equivalently by
equations (2.23a)–(2.23b), satisfies

Xa
k(X

a
k)

T =
(
I−KkH

)
P̄f
k. (2.27)

Furthermore, the forecast perturbation matrix Xf being assumed centred, the analysis
perturbation matrix Xa is by construction centred. We conclude theorem 2.5.

Theorem 2.5. The analysis step of the ETKF algorithm, as described by the mean update,
equation (2.10b), and the perturbation update, equations (2.22a)–(2.22b) or equivalently
equations (2.23a)–(2.23b), is consistent.

2.3.2.3 Rotation of the ensemble

Let U be an Ne×Ne orthogonal matrix such that U1 = 1. The sample mean and covariance
matrix of an ensemble E are the same as the ones of the rotated ensemble EU. This means
that the consistency of the forecast and analysis steps are not altered if the output ensemble
is rotated. As a consequence, the orthogonal matrix U can be freely chosen to improve the
performances of the algorithm. The orthogonal matrix U which minimises the displacement
between the prior and updated perturbations is U = I (Ott et al. 2004). However, it is
remarkable that adding random rotations after the analysis step can be beneficial for the
performances of deterministic EnKF algorithms, as observed by Sakov and Oke (2008b).
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2.3.3 Convergence of stochastic EnKF algorithms

The initial forecast ensemble Ef
0 is constructed as an iid sample from the background

distribution N
[
xb,B

]
. By the strong law of large numbers, in the limit of an infinite

ensemble, Ne →∞, the sample mean and covariance matrix of Ef
0 almost surely converge

towards xb and B.

Then, for similar reasons as in subsection 2.3.1, in the limit Ne → ∞, the forecast and
analysis steps of stochastic EnKF algorithms, described by equations (2.12) and (2.18),
are almost surely consistent. However, even though the forecast and analysis steps are
individually consistent, we cannot directly conclude the convergence of the sample quantities
using the law of large numbers, because the ensemble members are not independent any
more. Indeed, during the analysis step of stochastic EnKF algorithms, each analysis ensemble
member xa

i depends on the Kalman gain matrix K, which is itself computed using the whole
forecast ensemble Ef . The interaction between ensemble members is here of type mean-field
interaction.5

Nevertheless, as shown by Le Gland et al. (2011) and Mandel et al. (2011), the sample
mean and covariance matrix of the forecast and analysis ensembles obtained using stochastic
EnKF algorithms, described by equations (2.12) and (2.18), almost surely converge towards
the forecast and analysis estimates and error covariance matrices obtained using recursion
of the KF algorithm, equations (2.2a)–(2.2c) and (2.3a)–(2.3b), in the limit of an infinite
ensemble, Ne →∞, in other words

lim
Ne→∞

x̄f
k = xf

k, lim
Ne→∞

x̄a
k = xa

k, (2.28a)

lim
Ne→∞

P̄f
k = Pf

k, lim
Ne→∞

P̄a
k = Pa

k. (2.28b)

This result is formalised in theorem 2.6.

Theorem 2.6. The sample mean and covariance matrix of the forecast and analysis ensembles
obtained using stochastic EnKF algorithms, described by equations (2.12) and (2.18), converge
almost surely towards the forecast and analysis estimates and error covariance matrices
obtained using the recursion of the KF algorithm, equations (2.2a)–(2.2c) and (2.3a)–(2.3b),
in the limit of an infinite ensemble, Ne →∞.

2.3.4 Convergence of deterministic EnKF algorithms

Suppose that the sample mean and covariance matrix of the initial forecast ensemble Ef
0 are

exactly the background estimate and error covariance matrix xb and B, and that the residual
model error covariance matrix Q−ΠaQΠa is always null. In this case, a simple induction
with the results of theorems 2.4 and 2.5 shows that the sample mean and covariance matrix
of the forecast and analysis ensembles Ef and Ea obtained using the ETKF algorithm are
equal to the forecast and analysis estimates and error covariance matrices obtained using the

5Also called inbreeding by the historical EnKF community.
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recursion of the KF algorithm, equations (2.2a)–(2.2c) and (2.3a)–(2.3b), in other words

x̄f
k = xf

k, x̄a
k = xa

k, (2.29a)

P̄f
k = Pf

k, P̄a
k = Pa

k. (2.29b)

This is formalised by theorem 2.7.

Theorem 2.7. If the sample mean and covariance matrix of the initial forecast ensemble
Ef

0 are exactly the background estimate and error covariance matrix xb and B, and if the
residual model error covariance matrix Q−ΠaQΠa, with Πa being defined by equation (2.26),
is always null, then the sample mean and covariance matrix of the forecast and analysis
ensembles Ef and Ea obtained using the ETKF algorithm are equal to the forecast and analysis
estimates and error covariance matrices obtained using the recursion of the KF algorithm,
equations (2.2a)–(2.2c) and (2.3a)–(2.3b).

The first condition of theorem 2.7 is met, for example, if the initial forecast ensemble Ef
0 is

constructed as
Ef

0 = xb1T +
√
Ne − 1X, (2.30)

where XXT = B is a Choleski factorisation of the background error covariance matrix B,
and Ne = Nx. The second condition of theorem 2.7 is met, for example, if there is no model
error.

2.4 Nonlinearity and non-Gaussianity in the EnKF

Linearity and Gaussianity are crucial hypotheses in the derivation of the KF algorithm and
of the different variants of the EnKF, which are rarely satisfied in realistic applications. The
standard way of dealing with nonlinearity in the KF algorithm is to use the extended Kalman
filter (EKF), in which nonlinear functions are linearised about the current estimate. By
contrast, nonlinearity can be treated in the EnKF without the need for explicit linearisation,
as presented in this section. However, as already stated in subsection 1.5.3, in the nonlinear
and non-Gaussian case, the analysis density πa is non-Gaussian and therefore cannot be
described by the analysis estimate xa and error covariance matrix Pa obtained with the KF
algorithm. Moreover, in the nonlinear and non-Gaussian case, the convergence results of
section 2.3 do not necessary hold.

2.4.1 Nonlinearity of the observation operator

2.4.1.1 Generalisation of the EnKF to nonlinear observation operators

A first approach to deal with a nonlinear observation operator H in the EnKF could be, as
for the BLUE analysis, to use the tangent linear of H. However, it is possible to use the
ensemble to avoid the potentially costly computation of the tangent linear of H. For example
consider the analysis step of stochastic EnKF algorithms, as described in section 2.2.5. The
(linear) observation operator H is used in two different places.

First, H is used in equation (2.17), which describes the update of each ensemble member.
The generalisation to a nonlinear observation operator H is straightforward here: the i-th
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2.4 Nonlinearity and non-Gaussianity in the EnKF

ensemble member is updated as

xa
i (k) = xf

i(k) + Kk

[
yk + eoi (k)−H

(
xf
i(k)

)]
. (2.31)

Second, H is used to compute the perturbation matrix in observation space Y with
equation (2.19). Using the definition of the perturbation matrix X of an ensemble E,
equation (2.7), we obtain the following relationship for Y:

Yk = HEf
k

(
I− 11T/Ne

)
/
√
Ne − 1, (2.32)

where the generalisation to a nonlinear observation operator H is more natural. In that case,
Y is defined by

Yk , H
(
Ef
k

)(
I− 11T/Ne

)
/
√
Ne − 1, (2.33)

where H(E) is the Ny ×Ne matrix obtained by applying H column-wise to the ensemble E
(in other words, H is applied to each ensemble member xi of E).

The generalisation of most EnKF algorithms, including the stochastic EnKF algorithm
and the ETKF algorithm, to a nonlinear observation operator H follows these principles.
However, it should be clear that, using this approach, the linearisation is implicit.

Indeed, let H̄ be the sample observation operator, defined as

H̄k , Yk

(
Xf
k

)+
. (2.34)

By construction, H̄ satisfies
P̄f
kH̄

T
k = Xf

kY
T
k , (2.35)

H̄kP̄
f
kH̄

T
k = YkY

T
k . (2.36)

In other words, the generalised EnKF analysis step is similar to a (non-generalised) EnKF
analysis step, in which the observation operator H has been replaced by the sample observation
operator H̄. Furthermore, if the forecast ensemble Ef is indeed an iid sample from the forecast
distribution νf , and if this distribution is Gaussian, then it can be shown (see e.g., Raanes
et al. 2019b) that, in the limit of an infinite ensemble Ne →∞, H̄ almost surely converges,
and its limit is given by

lim
Ne→∞

H̄0 = E[Hx0 ], (2.37a)

lim
Ne→∞

H̄k+1 = E
[
Hxk+1|yk:

]
, (2.37b)

where Hx is the tangent linear of H, evaluated at x. In conclusion, the implicit linearisation
is in theory a bit different from the explicit linearisation, but it has the major advantage
that the computation of the tangent linear of H is unnecessary.

2.4.1.2 Variational analysis in the EnKF

Another approach to deal with a nonlinear observation operator H is to include variational
analysis in the EnKF. Using the formalism of the 3D–Var analysis, the cost function to
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minimise is

Jk(xk) =
1

2

(
xk − x̄f

k

)T(
P̄f
k

)+(
xk − x̄f

k

)
+

1

2

(
yk −H(xk)

)T
R−1

(
yk −H(xk)

)
, (2.38)

where the pseudo-inverse is used for the non-invertible matrix P̄f instead of the inverse. Fol-
lowing Hunt et al. (2007), Bocquet (2011) and Bocquet and Sakov (2013), if the minimisation
is performed in the ensemble space, the vector x can be written

xk = x̄f
k + Xf

kwk, (2.39)

where w is a weight vector. However, the perturbation matrix Xf is centred, which means
that

∀α ∈ R, Xf
kwk = Xf

k(wk + α1). (2.40)

A solution to lift the degeneracy of the variational problem is to constraint the solution to
the null space of Xf . This can be done by adding a term in the cost function in order to fix
the gauge. The regularised cost function, derived in terms of w, reads

Jk(wk) =
1

2
wT
kwk +

1

2

[
yk −H

(
x̄f
k + Xf

kwk

)]T
R−1

[
yk −H

(
x̄f
k + Xf

kwk

)]
. (2.41)

A common approach is to minimise the cost function J using an iterative method, for
which we need to specify the gradient and the Hessian matrix. The gradient of J is

∇Jk|wk
= wk −YT

kR−1
[
yk −H

(
x̄f
k + Xf

kwk

)]
, (2.42)

with Y = HxXf , where Hx is the tangent linear of H computed at x = x̄f + Xfw, and the
Hessian matrix of J can be approximated by

HessJk|wk
≈ I + YT

kR−1Yk. (2.43)

Two methods exist in order to avoid the computation of the tangent linear of H: either
downscale or transform the forecast perturbations (Sakov et al. 2012).

Finally, once the minimisation problem is solved, the analysis mean and perturbation
matrix xa and Xa can be obtained as

x̄a
k = x̄f

k + Xf
kw

a
k, (2.44)

Xa
k = Xf

k

(
HessJk|wa

k

)−1/2
, (2.45)

where wa is the minimiser of the regularised cost function J . The resulting DA algorithm is
called the maximum likelihood ensemble filter (MLEF) algorithm, as originally introduced
by Zupanski (2005). When the observation operator H is linear, the MLEF and the ETKF
algorithms are equivalent. However, when H is nonlinear, the MLEF algorithm performs
significantly better than the ETKF algorithm, because the nonlinearity of H is used in a
more consistent way (Asch et al. 2016).
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2.4.2 Nonlinearity of the dynamical model

During the forecast step of stochastic EnKF algorithms, each ensemble member is independ-
ently updated using the transition equation of the system, yielding equation (2.11). The
generalisation of equation (2.11) to a nonlinear dynamical model M is straightforward. In
that case, the i-th ensemble member is updated as

xf
i(k + 1) =M

(
xa
i (k)

)
+ emi (k). (2.46)

By construction, this corresponds to a Monte Carlo (MC) simulation of the transition equation,
which means that, if Ea

k is distributed according to the (non-Gaussian) analysis distribution
νak, then Ef

k+1 is distributed according to the (non-Gaussian) forecast distribution νfk+1.
Finally, the generalisation of the forecast step of deterministic EnKF algorithms to a

nonlinear dynamical model M follow similar principles as the generalisation of the analysis
step of EnKF algorithms to a nonlinear observation operator H, as described in the previous
subsection.

2.4.3 Non-Gaussianity of the error distributions

When the background, observation, and transition densities πb, πo, and πm are not Gaussian,
then the vector xb and the matrices B, R, and Q are defined as follows.

• The vector xb is provided as a background estimate.

• The background error covariance matrix B is defined as the covariance matrix of the
background error eb = x− xb.

• The observation error covariance matrix R is defined as the covariance matrix of the
observation error eo = y −Hx.

• The model error covariance matrix Qk is defined as the covariance matrix of the model
error emk = xk+1 −Mxk.

2.5 Inflation and localisation

Sampling error is the main difficulty which arises when trying to apply the EnKF to a
high-dimensional system. In this section, we first present several manifestations of sampling
error, and we introduce inflation and localisation, the two most common techniques in the
EnKF designed to counteract sampling errors.

2.5.1 Manifestations of sampling error

In ensemble DA, the term sampling error usually designates all the errors which originate
from the use of a finite ensemble.

Suppose that the forecast ensemble Ef is an iid sample from the forecast distribution
νf = N

[
xf ,Pf

]
, where xf and Pf are the exact forecast estimate and forecast error covari-

ance matrix, obtained using the dynamical Riccati recursion equations (2.2a)–(2.2c) and
(2.3a)–(2.3b). We show two consequences of sampling error in this case.
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2 The ensemble Kalman filter

2.5.1.1 Spurious correlations at long distance

Following Carrassi et al. (2018), and references therein, as long as m and n are two distinct
indices in (Nx : 1), the error in the estimation of the forecast error covariance matrix satisfies

E
[[

P̄f
k −Pf

k

]2
m,n

]
=

1

Ne − 1

[[
Pf
k

]2
m,n

+
[
Pf
k

]
m,m

[
Pf
k

]
n,n

]
, (2.47)

where the expectation operator refers to independent random draws of the forecast ensemble
Ef . In most geophysical systems, each state variable is attached to a specific position, called
the grid point, in an underlying physical space, and the correlations decrease at a fast rate
(e.g. exponentially) with the distance in the physical system. That is to say, if the n-th and
m-th variables correspond to physically distant parts of the system,

[
Pf
k

]
m,n
≈ 0, (2.48)

while equation (2.47) becomes

E
[[

P̄f
k −Pf

k

]2
m,n

]
≈ 1

Ne − 1

[[
Pf
k

]
m,m

[
Pf
k

]
n,n

]
. (2.49)

For a finite ensemble, if the variances of the n-th and m-th variables are non-zero, then P̄f

may exhibit a non-zero correlation between the n-th and m-th variables, a pattern which
does not exist in Pf , as shown by equation (2.48).

This phenomenon is called spurious correlation. Fundamentally, it comes from the fact
that the rank of P̄f is limited by Ne − 1, the rank of the forecast perturbation matrix Xf .
Therefore, P̄f is a bad approximation of the potentially full-rank forecast error covariance
matrix Pf when the ensemble is small (Ne � Nx).

2.5.1.2 Negative bias of the analysis ensemble

By construction, the forecast ensemble Ef has, on average, the correct sample covariance
matrix. In other words,

E
[
P̄f
k

]
= Pf

k, (2.50)

where the expectation operator refers to independent random draws of Ef . As shown by
Snyder (2014) in a simple example, the sample covariance matrix of the analysis ensemble
Ea obtained with the ETKF algorithm is (strictly) negatively biased:

E
[
tr P̄a

k

]
< tr Pa

k. (2.51)

Raanes et al. (2019a) explained that this result is not specific to the ETKF algorithm, but
comes from the nonlinearity (concavity) of the map P̄f 7→ P̄a.

2.5.2 Inflation

In order to counteract the strictly negative bias of the ensemble, as diagnosed by equa-
tion (2.51), a natural approach is to artificially inflate Ef and Ea. This can be performed in
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2.5 Inflation and localisation

two different ways: either with multiplicative inflation as

E← E11T/Ne + λE
(
I− 11T/Ne

)
, (2.52)

or with additive inflation as
E← E + Z, (2.53)

where the ensemble E is either Ef or Ea, where Z is a an ensemble of random draws from a
specified distribution, and where λ is the multiplicative inflation factor, a parameter to
be determined. Raanes et al. (2019a) list the different motivations behind the use of inflation.
Fundamentally, the objective is to compensate for different sources of errors and to improve
the numerical stability of the algorithm.

In most numerical experiments, when the inflation is too weak the algorithm diverges6

and when the inflation is too strong, the algorithm yields sub-optimal performances. The
optimal inflation is very dependent on both the dynamical and observation system, and on
the dedicated variant of the EnKF, and can even be inhomogeneous. In some situations,
it is possible to try different implementations for the inflation and to select the one which
yields the best performances. However, when the cost of performing a full DA experiment is
high, it becomes impossible to tune the inflation. In this case, one can use adaptive inflation
methods (e.g., Raanes et al. 2019a), in which the optimal inflation is estimated on the fly.

2.5.3 Covariance localisation

In the EnKF, one of the key assumptions is that the best estimate of the forecast error
covariance matrix Pf is the forecast sample covariance matrix P̄f . As remarked in section 2.5.1,
this is probably a bad approximation, because Pf can be full-rank while P̄f has rank limited
by Ne − 1, and can include spurious correlations at long distance.

An empirical fix is to artificially mitigate the spurious correlations by regularising P̄f as
follows. The regularised forecast sample covariance matrix ρ◦P̄f is defined as the element-wise
multiplication7 between P̄f and ρ ∈ RNx×Nx . The localisation matrix ρ is a predefined
short-range correlation matrix which is expected to represent the decay of correlations in the
physical space. An important point is that the rank of ρ ◦ P̄f is not any more limited by
Ne − 1. This approach is called covariance localisation (CL, Hamill et al. 2001).

Since P̄f is positive semi-definite, the Schur product theorem (Horn and Johnson 2012)
ensures that, if ρ is symmetric and positive semi-definite, then ρ ◦ P̄f is symmetric and
positive semi-definite as well. Most of the time, ρ is constructed as

∀(m,n) ∈ (Nx : 1)2, [ρ]m,n = G

(
2dm,n
`

)
, (2.54)

where dm,n is the physical distance between the m-th and n-th grid points, ` is the localisation
radius, a parameter to be determined, and G is the fifth-order piecewise rational Gaspari–Cohn

6By divergence, it is meant that the difference between the truth xt and the sample mean x̄ is much larger
than could be expected from the sample covariance matrix P̄.

7Also called Schur or Hadamard product.
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Figure 2.1: Fifth-order piecewise rational GC function, defined by equation (2.55), in blue.
The closest Gaussian density, exp

(
−σx2

)
with σ ≈ 1.57, is plotted in red for comparison.

(GC) function (Gaspari and Cohn 1999), defined by

G :





R+ → R+,

x ∈ [0, 1] 7→ 1− 5
3x

2 + 5
8x

3 + 1
2x

4 − 1
4x

5,

x ∈ [1, 2] 7→ 4− 5x+ 5
3x

2 + 5
8x

3 − 1
2x

4 + 1
12x

5 − 2
3x ,

x ≥ 2 7→ 0,

(2.55)

and illustrated in figure 2.1. Visually, the GC function is similar to a Gaussian density, but
it has a compact support.

When using CL, the EnKF equations derived in ensemble space are not valid any more.
This means that one has to use the EnKF equations derived in state space, which a priori
makes CL inapplicable to high-dimensional systems. This is further discussed in part III,
which is dedicated to the implementation of CL in the EnKF.

Remark 9. The factor 2 in the right-hand side of equation (2.54) ensures that the distance at
which correlations fall to zero is indeed `. It comes from the fact that the support of the GC
function G is [0, 2] instead of [0, 1].

2.5.4 Domain localisation

Suppose that each component y of the observation vector y, simply called observation, is
attached to a specific position in the physical space, called the site of the observation.

2.5.4.1 Principle of domain localisation in EnKFs

Instead of mitigating the spurious correlations, another route to localisation is to limit the
influence of each observation in the analysis step to a local neighbourhood of its site. This
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2.5 Inflation and localisation

strategy implies that the analysis step must be local (i.e. each state variable is independently
updated), and the observation error covariance matrix R must be amended accordingly. This
approach is called domain localisation (DL, Houtekamer and Mitchell 2001; Ott et al. 2004).

A possible implementation of the n-th local analysis is to define the tapered observation
error covariance matrix Rn using an element-wise multiplication between the observation
precision matrix R−1 and ρn ∈ RNy×Ny , a predefined short-range correlation matrix:

R−1
n , ρn ◦R−1. (2.56)

The localisation matrix ρn is expected to represent the decay of correlations relative to the
n-th grid point, and can be constructed as

∀(p, q) ∈ (Ny : 1)2, [ρn]p,q =

√
G

(
2dp,n
`

)√
G

(
2dq,n
`

)
, (2.57)

where dp,n is the physical distance between the p-th site and the n-th grid point, dq,n is the
physical distance between the q-th site and the n-th grid point, and ` is the localisation
radius. As a consequence, the n-th local domain, defined as the set of all observations
which contribute to the n-th local analysis, is only composed of all observations whose site is
located within distance ` to the n-th grid point. Finally, from the resulting analysis ensemble
Ea, only the n-row (which corresponds to the n-th state variable) is kept. The main idea
behind DL is that the forecast sample covariance matrix P̄f is locally full-rank, meaning that
the ensemble can accommodate the information content in each local domain (Carrassi et al.
2018).

The Schur product theorem once again ensures that the tapered observation error covariance
matrices RNx:1 are positive semi-definite, which is sufficient for the equations of the EnKF
derived in ensemble space to remain valid. This is the major advantage of DL over CL: each
local analysis is implemented exactly as the original (global) analysis but using a different
R. For example, algorithm 2.4 describes a full assimilation cycle for the local ensemble
transform Kalman filter (LETKF) algorithm, a variant of the ETKF algorithm in which
DL is implemented (Hunt et al. 2007). The similarities between algorithms 2.3 and 2.4 are
clearly apparent.

The global part of the algorithm is unchanged, and still has algorithmic complexity
O(THNe). On the other hand, the algorithmic complexity of each local analysis has been
reduced from O

(
N2

yNe +NxN
2
e

)
to O

(
N2

yNe

)
. If the ρNx:1 are sparse, as can be expected

from equation (2.57), only a subset of observations contribute to a specific local analysis. This
information can be exploited to further reduce the cost of each local analysis to8 O

(
(N `

y)2Ne

)
,

where N `
y is the maximum number of observations in each local domain, given by

N `
y = max

n∈Nx:1
Card

{
q ∈ (Ny : 1) \ ∃p ∈ (Ny : 1) \

[
ρn
]
p,q
6= 0
}
. (2.58)

8For simplicity, it is assumed here that N `
y ≥ Ne.
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Algorithm 2.4: Full assimilation cycle for the LETKF algorithm in the context

of the GL system. In steps 14 and 15, x̄fn and x̄an designate the n-th element of the

vectors x̄f and x̄a, and Xf
n and Xa

n designate the n-th row of the matrices Xf and

Xa.

Input: Ea [tk], y [tk+1]

Parameters: M, H, Q, R, ρNx:1

1 Forecast

2 x̄ ← Ea1/Ne

3 X ← Ea
(
I− 11T/Ne

)
/
√
Ne − 1

4 Z ← (MX)+

5 Te ← I + ZQZ

6 x̄f ←Mx̄

7 Xf ←MXT
1/2
e

8 Analysis

9 Y ← HXf

10 d ← y −Hx̄f

11 for n = 1 to Nx do

12 R−1
n ← ρn ◦R−1

13 Te ← I + YTR−1
n Y

14 w ← T−1
e YTR−1

n d

15 x̄an ← x̄fn + Xf
nw

16 Xa
n ← Xf

n

(
Te

)−1/2

17 end

18 Ea ← x̄a1T +
√
Ne − 1Xa

Output: Ea [tk+1]
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If the ρNx:1 are constructed with equation (2.57), then N `
y is given by

N `
y = max

n∈(Nx:1)
Card

{
q ∈ (Ny : 1) \ dq,n ≤ `

}
. (2.59)

Taken into account the number of local analyses, the total algorithmic complexity of the
local part of the LETKF algorithm is O

(
Nx(N `

y)2Ne

)
. However, the local analyses are

embarrassingly parallel. Therefore, this algorithmic complexity can be reduced by a factor
Nt, the number of threads running in parallel.

2.5.4.2 Domain localisation and imbalance

The state vector x is a trajectory of the dynamical system. As a consequence it is expected
to be on the attractor of the dynamical system. In complex geophysical models, this is
explained by a certain regularity in the fields and by elaborate balances between variables.
In this thesis, imbalance is defined as a measure of the distance to the attractor of the
dynamical system. Imbalance is a major preoccupation when using DL, because on the one
hand, ensemble members are supposed to represent possible realisations of the (balanced)
state vector x. On the other hand, with DL the (global) analysis ensemble is obtained by
assembling potentially very different local analysis ensembles, which can lead to imbalance
(Kepert 2009; Greybush et al. 2011).

Suppose that the localisation matrices ρNx:1 are controlled by a localisation radius `, as
in equation (2.57). If the localisation radius ` is large, then the tapered observation error
covariance matrices RNx:1 vary smoothly from one grid point to another, thanks to the
continuity of the GC function. As a consequence, the local analysis ensembles Ea

Nx:1 varies
smoothly from one grid point to another, and this should limit imbalance. However if the
localisation radius ` is too large, then the added value of localisation is null. Now if the
localisation radius ` is small, then the information contained in the local domains is small
and can be handled by small ensembles. On the other hand if the localisation radius ` is too
small, then the local analysis ensembles Ea

Nx:1 are very different from one grid point to the
other, and the resulting imbalance can be problematic when applying the dynamical model
M in the next forecast step.

When the dynamical system is chaotic, localisation has been shown to be mandatory to
avoid the divergence when the ensemble size Ne is smaller than or equal to the number
of unstable and neutral modes of the dynamics (Bocquet and Carrassi 2017). Again, the
optimal localisation is very dependent on both the dynamical and observation systems, and
on the dedicated variant of the EnKF, and can even be inhomogeneous. In some situations,
it is possible to try different implementations of the localisation, and to select the one which
yields the best performances. However, when the cost of performing a full DA experiment is
high, it becomes impossible to tune the localisation. In this case, one can use preliminary
statistical studies to determine the optimal localisation for a given DA system in a given
regime (Anderson and Lei 2013). Alternatively, one can use adaptive localisation methods,
in which the optimal localisation is estimated on the fly (Ménétrier et al. 2015a,b).
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2.5.4.3 Connection between covariance and domain localisation

Both CL and DL are based on the same property, the decay of correlations, but their approach
to localisation is different and lead to distinct implementations. On the one hand, DL relies
on a collection of local analyses, which are by construction embarrassingly parallel. On the
the other hand, CL relies on a single global analysis with a localised forecast error covariance
matrix ρ ◦ P̄f , but for which there is no obvious parallelisation of the analysis step. In a
more general perspective, DL is applied in state space, while CL is applied in observation
space. In particular, an important prerequisite of DL is that each observation y must have a
well-defined site. This means that, with DL, non-local observations cannot be assimilated
without ad hoc approximations.

Although the connection between CL and DL is not obvious, they have been shown to
yield equivalent results in the limit of weak data assimilation, when the forecast density πf is
highly informative (Sakov and Bertino 2011).
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In the statistical literature, MC methods are very attractive, because they enable the
computation of very complex integrals using a random draws. The convergence of the method
is ensured by the law of large numbers, and performance bounds can be estimated using the
central limit theorem.

In stochastic EnKF algorithms, MC methods are used in the forecast step to propagate
the ensemble, and in the analysis step to obtain an ensemble of perturbed observations.
Going one step further, one can try solving the filtering estimation problem using only
MC methods. This leads to the famous sequential importance sampling (SIS) algorithm
(see, e.g., Doucet et al. 2001, and references therein). The particle filter (PF) is a class of
filtering DA algorithms based on the SIS algorithm, the most famous example being the
sampling importance resampling (SIR) algorithm (Rubin 1987; Gordon et al. 1993), also
known as Bootstrap filter. Although the PF shares common ideas with the EnKF – both are

45



3 The particle filter

ensemble-based filtering DA methods – three fundamental differences should be reported.
First, the PF does not rely on linear and Gaussian hypotheses, and it solves the generic
filtering estimation problem, problem 1.1, in a sense to be defined in section 3.5. Second,
in general the PF does not involve linear algebra, and therefore it leads to simpler and
faster algorithms than the EnKF. And third, for a successful application, the PF requires
an ensemble size which scales exponentially with the dimension of the DA system. This
phenomenon is known in the literature as the curse of dimensionality (see, e.g., Snyder et al.
2008), and it means that, as is, the PF is inapplicable to high-dimensional DA systems. This
is why, in a sense, the PF can be seen as a brute force approach to DA.

This chapter gives an introduction to the PF, and is inspired from the following references:
Arulampalam et al. (2002), van Leeuwen (2009), Doucet and Johansen (2011) and van
Leeuwen et al. (2019). Section 3.1 describes general aspect of MC methods, and introduces
the SIS algorithm. Section 3.2 presents the core elements of the PF. Sections 3.3 and 3.4
discuss the resampling step and the proposal density of the PF. Section 3.5 concludes this
chapter with an overview of the main convergence results.

3.1 Monte Carlo methods for data assimilation

We start this chapter with a general presentation of MC methods and how they can be used
to solve the generic filtering estimation problem, problem 1.1.

3.1.1 Unbiased Monte Carlo sampling

For simplicity, the time evolution of the generic DA system is temporarily put aside. Let
F : RNx → R be a πa-integrable1 test function and suppose that the goal is to estimate the
expectation F of F over πa, defined as2

F , E
[
F(x|y)

]
=

∫
F(x)πa(x|y) dx. (3.1)

Suppose that it is possible to produce an iid sample E =
{
xi ∈ RNx , i ∈ (Ne : 1)

}
from the

analysis distribution νa. Then, F can be approximated using the unbiased MC estimate F̂ ,
defined as

F̂ ,
1

Ne

Ne∑

i=1

F
(
xi
)
. (3.2)

From the strong law of large numbers we deduce that F̂ almost surely converges towards F
in the limit of an infinite ensemble, Ne →∞. Moreover, if F2 is πa-integrable as well, the
variance of F can be defined as

σ2 , V
[
F(x|y)

]
=

∫
F2(x)πa(x|y) dx− F 2. (3.3)

1In this chapter, integrability conditions are necessary to ensure that all integrals are well-defined.
2In this chapter, unless specified otherwise, integrations are performed over the whole state space RNx .
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3.1 Monte Carlo methods for data assimilation

In the limit of an infinite ensemble, Ne → ∞, the central limit theorem ensures that the
rescaled error

√
Ne

(
F̂ − F

)
, converges in distribution towards N

[
0, σ2

]
.3

By definition, the variance of F̂ is given by

V
[
F̂
]

= V
[
F̂ − F

]
= E

[(
F̂ − F

)2]− E
[
F̂ − F

]2
, (3.4)

where the expectation and variance operators refers to independent random draws of the
ensemble E. This means that the mean-squared error of the unbiased MC estimate F̂ is the
sum of its variance and its squared bias. Using the weak law of large numbers, we deduce
that the bias term is null. Finally using equation (3.2), the variance term is given by

V
[
F̂
]

=
σ2

Ne
. (3.5)

The convergence results for this unbiased MC method are formalised by theorems 3.1 and
3.2. However in practice, the analysis distribution νa is complex, and only known up to a
proportionality constant. Therefore, we cannot use this unbiased MC method.

Theorem 3.1 (Strong law of large numbers). For any πa-integrable test function F : RNx →
R, the unbiased MC estimate F̂ is an unbiased estimate of the expectation F , and almost
surely converges towards the expectation F in the limit of an infinite ensemble, Ne →∞.

Theorem 3.2 (Central limit theorem). Furthermore, if F2 is πa-integrable, then the rescaled
error

√
Ne

(
F̂ − F

)
converges in distribution towards N

[
0, σ2

]
in the limit of an infinite

ensemble, Ne →∞, where the asymptotic variance σ2 is the variance of the test function F ,
given by equation (3.3).

3.1.2 Importance sampling

We introduce the proposal vector v, a random vector with Nx elements whose distribution
νq , ν[v] is easy to sample from, and whose pdf πq , π[v] has a larger support than πa. For
example, the proposal distribution νq can be a multivariate Gaussian distribution. Using the
(perfect) importance weight function w̃, defined as

w̃(x) ,
πa(x|y)

πq(x)
, (3.6)

it is possible to compute F as

F =

∫
F(x) w̃(x)πq(x) dx = E

[
(Fw̃)(v)

]
. (3.7)

3More formally, it is meant here that the rescaled error
√
Ne

(
F̂ − F

)
, seen as a random variable, converges

in distribution towards the random variable distributed according to N
[
0, σ2

]
.
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3 The particle filter

This means that the unbiased MC method described in the previous subsection could be
applied to obtain the unbiased importance sampling (IS) estimate F̃ , defined as

F̃ =
1

Ne

Ne∑

i=1

F(xi) w̃(xi), (3.8)

where the ensemble E =
{
xi ∈ RNx , i ∈ (Ne : 1)

}
is now an iid sample from the proposal

distribution νq.

The unbiased IS estimate F̃ satisfies the exact same properties as the unbiased MC estimate
F̂ . However, using Bayes’ theorem, the analysis density is equal to

πa(x|y) =
πo(y|x)πb(x)

π[y](y)
, (3.9)

in which the normalisation constant π[y](y) is often unknown. Therefore, it seems more
realistic to define the (unnormalised) importance weight function w as

w(x) ,
πo(y|x)πb(x)

πq(x)
. (3.10)

The normalisation constant π[y](y) can then be computed as

π[y](y) =

∫
πo(y|x)πb(x) dx =

∫
w(x)πq(x) dx = E

[
w(v)

]
. (3.11)

This means that equation (3.7) becomes

F =
E
[
(Fw)(v)

]

E
[
w(v)

] . (3.12)

Therefore, F can be approximated using the IS estimate F̄ , defined as

F̄ ,

Ne∑
i=1
F(xi)w(xi)

Ne∑
i=1

w(xi)

, (3.13)

in which the ensemble E = {xi, i ∈ (Ne : 1)} is an iid sample from the proposal distribution νq.
In this context, ensemble members are usually called particles and w(xi) is the (unnormalised)
importance weight of the i-th particle.

Unlike F̂ and F̃ , the IS estimate F̄ is biased. The bias here comes from the fact that the
normalisation constant needs to be estimated. If w̃ and Fw̃ are πa-integrable, then in the
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3.1 Monte Carlo methods for data assimilation

limit of an infinite ensemble, Ne →∞, the asymptotic rescaled bias b∞ is given by

b∞ , lim
Ne→∞

Ne

(
E
[
F̄
]
− F

)
= −E

[
w̃(x|y)

[
F(x|y)− F

]]
(3.14a)

= −
∫
w̃(x)

[
F(x)− F

]
πa(x|y) dx (3.14b)

where E
[
F̄
]

refers to independent random draws of the ensemble E (Doucet and Johansen
2011). Nevertheless, the strong law of large numbers ensures that, in the limit of an infinite
ensemble, Ne → ∞, F̄ almost surely converges towards F . Furthermore, if both w̃ and
F2w̃ are πa-integrable, then theorem 2 of Geweke (1989) ensures that, in the limit of an
infinite ensemble, Ne →∞, the rescaled error

√
Ne

(
F̄ −F

)
converges in distribution towards

N
[
0, σ2

]
, where the asymptotic variance σ2 is given by

σ2 , E
[
w̃(x|y)

[
F(x|y)− F

]2]
=

∫
w̃(x)

[
F(x)− F

]2
πa(x|y) dx. (3.15)

Both the variance and the bias of the IS estimate F̄ are inversely proportional to the ensemble
size Ne. This means that the mean-squared error of F̄ is asymptotically dominated by its
variance.

The major advantage of IS method is that, contrary to the unbiased MC method, it can
be directly applied to a realistic DA system. The convergence results for this IS method are
formalised by theorems 3.3 and 3.4.

Theorem 3.3 (Strong law of large numbers for IS). For any πa-integrable test function
F : RNx → R, the IS estimate F̄ is a biased estimate of the expectation F , and almost surely
converges towards the expectation F in the limit of an infinite ensemble, Ne →∞.

Theorem 3.4. Furthermore, if both w and F2w are πa-integrable, then the rescaled error√
Ne

(
F̄ − F

)
converges in distribution towards N

[
0, σ2

]
in the limit of an infinite ensemble,

Ne →∞, where the asymptotic variance σ2 is given by equation (3.15).

The relative efficiency of the IS method compared to the unbiased MC method can be
measured by the ratio between the variances of F̂ and of F̄ . In general, this ratio depends on
the test function F . However, by keeping only the first two statistical moments, it is possible
to show that

V
[
F̄
]

V
[
F̂
] ≈ 1 + V

[
w(v)

]
, (3.16)

where the variance operators in the left-hand-side refer to independent random draws of the
ensemble E from the proposal distribution νq for F̄ and from the analysis distribution νa for
F̂ (Kong et al. 1994). This means that, in order to obtain accurate estimates with the IS
method, it is a good strategy to use a proposal distribution νq which minimises the variance
of the importance weight function.

Remark 10. In the statistical literature, the IS estimate F̄ is said to be consistent. However, in
order to avoid any confusion with the consistency terminology introduced in subsection 2.2.2,
this terminology is not used here.
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In order to illustrate the statistical properties of IS, consider the following one-dimensional
example, in which the background- and observation densities πb and πo are given by

πb(x) =
1√
2π

exp

[
−
(
x− xb

)2

2

]
, (3.17a)

πo(y|x) =
1√
2π

exp

[
−
(
x− y

)2

2

]
, (3.17b)

with xb = −1 and y = 1. The analysis density πa, obtained using Bayes’ theorem, is given by

πa(x|y) =
1√
π

exp
[
−
(
x− xa

)2]
, (3.17c)

with xa = 0. Suppose that we are using IS with the background as proposal (in other words
πq = πb), and that the test function F is the identity x 7→ x, whose expected value is
F = xa = 0.

In this case, the asymptotic bias b∞ and the asymptotic variance σ2, given by equa-
tions (3.14b) and (3.15), are equal to

−b∞ =
2
√

3

9
exp

2

3
≈ 0.75, (3.18)

σ2 =
8
√

3

27
exp

2

3
≈ 1.00. (3.19)

Figure 3.1 illustrates the pdfs of this problem. Figure 3.2 shows the evolution of the rescaled
bias Ne

(
E
[
F̄
]
− F

)
as a function of the ensemble size Ne. Finally, figure 3.3 shows the

empirical density of the rescaled error
√
Ne

(
F̄ −F

)
for several values of the ensemble size Ne.

3.1.3 Sequential importance sampling

Without loss of generality, it is possible to apply the IS method to the generic DA system
with time evolution. In this case, at time tk, the target distribution is the full conditional
distribution ν[xk:|yk:], and each particle xi represents a possible trajectory of the system
between t0 and tk:

4

xi =
(
xi(l), l ∈ (k :)

)
. (3.20)

Now suppose that, in a similar way as the joint density π[xk:,yk:] with equation (1.1), the
proposal density π[vk:] can be factored as

π[vk:] = π[v0]

k∏

l=1

π[vl|vl−1]. (3.21)

4In order to avoid double subscripts in this chapter, a functional notation is used instead of a subscript
notation for the time indices if necessary.
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Figure 3.1: Illustration of the background density πb (in blue), of the observation density πo

(in green), and of the analysis density πa (in red) for the one-dimensional example considered
in subsection 3.1.2.
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Figure 3.2: Evolution of the rescaled bias −Ne

(
E
[
F̄
]
− F

)
as a function of the ensemble size

Ne (in blue) for the one-dimensional example considered in subsection 3.1.2. The expectation
operator is approximated by 107 independent random draws of the ensemble E according to
the background distribution νb. The asymptotic bias −b∞ is shown with an horizontal red
line.
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Figure 3.3: Empirical density of the rescaled error
√
Ne

(
F̄ − F

)
for Ne = 2 (top-left

panel, in blue), Ne = 10 (top-right panel, in green), Ne = 102 (bottom-left panel, in red),
and Ne = 104 (bottom-right panel, in yellow) in the one-dimensional example considered in
subsection 3.1.2. The histograms are computed using 105 independent random draws of the
ensemble E from the background distribution νb. The asymptotic density in the limit of an
infinite ensemble, Ne →∞, is plotted in black and can hardly be distinguished from the case
Ne = 104.
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Then, the importance weight function w is given by

wk(xk:) =
π[xk:,yk:](xk:,yk:)

π[vk:](xk:)
. (3.22)

For convenience, we introduce the following notation for the proposal distribution:

νqb , ν[v0], (3.23a)

νqk [xk] , ν[vk+1|vk = xk], (3.23b)

for the proposal density:

πqb , π[v0], (3.23c)

πqk , π[vk+1|vk], (3.23d)

and for the incremental importance weight function:

wi
0(x0) ,

πo0(y0|x0)πb(x0)

πqb(x0)
, (3.23e)

wi
k+1(xk+1|xk) ,

πok+1(yk+1|xk+1)πmk (xk+1|xk)
πqk(xk+1|xk)

. (3.23f)

Using this notation, the importance weight function can be computed through the recursion

wk+1(xk+1:) = wk(xk:)w
i
k+1(xk+1|xk). (3.24)

Therefore, in order to compute the particles and their importance weights, one can use a
recursive algorithm, such as algorithm 3.1, known in the statistical literature as the SIS
algorithm (see, e.g., Doucet et al. 2001).

Let E =
{

(wi,xi), i ∈ (Ne : 1)
}

be the weighted ensemble at time tk resulting from the SIS
algorithm, with

∀i ∈ (Ne : 1), wi =
(
wi(l), l ∈ (k :)

)
, (3.25a)

∀i ∈ (Ne : 1), xi =
(
xi(l), l ∈ (k :)

)
. (3.25b)

In this thesis, the focus is on the analysis density πa (filtering density, as opposed to the
smoothing density). This is why for any l ∈ (k :) and any πal -integrable test function
Fl : RNx → R, we define the expectation Fl and the IS estimate F̄l as

Fl , E
[
Fl(xl|yl:)

]
, (3.26)

F̄l ,
Ne∑

i=1

Fl
(
xi(l)

)
w̄i(l), (3.27)

where the normalised importance weights w̄Ne:1 are defined by

∀i ∈ (Ne : 1), w̄i(l) ,
wi(l)

Ne∑
j=1

wj(l)

. (3.28)
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Algorithm 3.1: SIS algorithm for the generic DA system.

Input: y [t0 → tk]

Parameters: wi
k:, ν

qb, νqk−1:

1 for i = 1 to Ne do

2 xi(0) ∼ νqb

3 wi(0)← wi
0

(
xi(0)

)

4 for l = 0 to k − 1 do

5 xi(l + 1) ∼ νql
[
xi(l)

]

6 wi(l + 1)← wi(l)w
i
l+1

(
xi(l + 1)

∣∣xi(l)
)

7 end

8 end

Output: Weighted ensemble
{

(wi,xi), i ∈ (Ne : 1)
}

[t0 → tk]

The theory of IS, and in particular theorems 3.3 and 3.4, apply to this case. This means that,
in the limit of an infinite ensemble, Ne →∞, F̄l almost surely converges towards Fl, with
bias and variance both inversely proportional to the ensemble size Ne.

By construction, the particles are independent, which means that the SIS algorithm is
embarrassingly parallel. Moreover, since the focus is on the analysis density, it is only
necessary to store the particles xNe:1 and their importance weights wNe:1 at the current time.
Therefore, the order of the loops (first over the ensemble, then over time) can be reversed.
Hence the algorithmic complexity of the SIS algorithm, is O(Ne) per time step and it can be
reduced by a factor Nt, the number of threads running in parallel.

A major drawback of the SIS algorithm is that the variance of the importance weight
function w, unconditional upon the observations, increases over time (Kong et al. 1994). In
practice, after only a few time steps, one particle gets all the weight, and hence a lot of
computational effort is devoted to update highly unlikely particles. An empirical fix to this
issue is to reset the algorithm by using resampling. This is the basis for particle filtering, as
presented in section 3.2.

Remark 11. From the expression of the importance weight function w, equation (3.22), we
conclude that in the SIS algorithm, the normalisation constant estimated by the sum of the
importance weights wNe:1 is π[yk:](yk:).

3.2 The particle filter

The PF is a class of DA algorithms based on SIS and suited for the generic filtering estimation
problem, problem 1.1. This section presents the main algorithmic ingredients of the PF.
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3.2.1 Principle of the particle filter

In the PF, the knowledge on the system is determined by a weighted ensemble
{

(wi,xi) ∈
R+ × RNx , i ∈ (Ne : 1)

}
. As in the EnKF, each particle xi represents a possible realisation of

the state vector x. The novelty is that to each particle xi is attached an importance weight
wi, proportional to how probable the particle is.

Therefore, the goal of the PF is to recursively construct the sequences (wk)k∈N and (Ek)k∈N,
where, as in the EnKF, E is the ensemble, and where w ∈ RNe is the importance weight vector,
that is, the vector whose elements are the importance weights wNe:1. The decomposition
of the assimilation cycle is slightly different from the EnKF. The sampling step describes
how to update the ensemble, the importance step describes how to update the importance
weight vector, and the optional resampling step resets the algorithm.

3.2.1.1 Initialisation

Following step 1 of algorithm 3.1, the i-th particle is initialised as

xi(0) ∼ νqb. (3.29)

Then, following step 2 of algorithm 3.1, its importance weight is computed as

wi(0) = wi
0

(
xi(0)

)
, (3.30)

in order to take into account the discrepancy between the background distribution νb and
the initial proposal distribution νqb. Using the matrix notation, the initialisation is written

E0
iid∼ νqb, (3.31a)

w0 = wi
0

(
E0

)
. (3.31b)

3.2.1.2 The sampling step

Following step 5 of algorithm 3.1, the i-th particle is sampled at time tk+1 using the proposal
distribution νq as

xi(k + 1) ∼ νqk
[
xi(k)

]
. (3.32)

Using the matrix notation, the sampling step is written

Ek+1 ∼ ν
q
k

[
Ek

]
. (3.33)

3.2.1.3 The importance step

Following step 6 of algorithm 3.1, the importance weight of the i-th particle is updated at
time tk+1 using the incremental importance weight function wi as

wi(k + 1) = wi(k)wi
k+1

(
xi(k + 1)

)
. (3.34)
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Using the matrix notation, the importance step is written

wk+1 = wk ◦ wi
k+1

(
Ek

)
, (3.35)

where ◦ denotes the element-wise multiplication between vectors.

3.2.1.4 The resampling step

In the PF, the importance step is followed by an optional resampling step. The idea
of resampling is to replace particles with low importance weights by particles with high
importance, and to reset the algorithm. In its most basic form, resampling can be performed
as follows.

1. From the weighted ensemble (w,E), select a surviving particle xr. In this operation,
the probability of selecting the i-th particle is w̄i.

2. Repeat step 1 Ne times to obtain the resampled ensemble Er.

3. Replace E by Er and reset w to 1.

Using this technique, there is a high probability of removing the particles with low importance
weights. More details about the resampling step can be found in section 3.3.

Remark 12. The term resampling comes from the fact that we sample here for the second
time, which results in an additional layer of approximation, as explained in subsection 3.3.1.

3.2.2 The SIR algorithm

The most famous implementation of the PF is the SIR algorithm (Rubin 1987; Gordon et al.
1993), in which

νqb = νb, (3.36a)

νqk = νmk , (3.36b)

and resampling is performed at every assimilation cycle. In this case, the initial importance
weight vector w is 1 and the incremental weight function wi, defined by equations (3.23e)
and (3.23f), simplifies into

wi
k = πok, (3.37)

because there is no discrepancy between the initial proposal distribution νqb and the back-
ground distribution νb nor between the proposal distribution νq and the transition distribution
νm. The SIR algorithm is described by algorithm 3.2, written in matrix notation.

3.2.3 The empirical density

3.2.3.1 An alternative description for the IS estimates

Let F : RNx → R be a πa-integrable test function. The expectation F of F over πa is defined
as

Fk ,
∫
Fk(xk)πak(xk) dxk, (3.38)
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Algorithm 3.2: Full assimilation cycle for the SIR algorithm. The resampling

step is performed using the multinomial resampling algorithm, algorithm 3.3.

Input: E [tk], y [tk+1]

Parameters: νm [tk → tk+1], πo [tk+1]

1 Sampling

2 E ∼ νm[E]

3 Importance

4 w ← πo(E)

5 Resampling

6 Er ← Resampling
(
w,E

)

7 E ← Er

Output: E [tk+1]

In the PF, as in the SIS algorithm, algorithm 3.1, F is approximated by the IS estimate

F̄k =

Ne∑

i=1

w̄i(k)Fk
(
xi(k)

)
. (3.39)

In other words, the analysis density πa is approximated by the empirical analysis density π̄a,
defined as

π̄ak(xk) ,
Ne∑

i=1

w̄i(k) δ
(
xk − xi(k)

)
. (3.40)

Using a weighted sum of Dirac kernels is a convenient way to write π̄a. However, one must
keep in mind that equation (3.40) cannot be used to compute a point-wise approximation of
πa, but indeed only to compute IS estimates, such as equation (3.39). Therefore, convergence
results for the PF, such as the ones presented in section 3.5, should always be understood
using a notion of weak convergence.

3.2.3.2 Effect of the prediction operator

Applying the prediction operator P, defined by equation (1.18) in subsection 1.2.1, to the
empirical analysis density π̄a yields

Pk(π̄ak)(xk+1) =

Ne∑

i=1

w̄i(k)πmk
(
xk+1

∣∣xi(k)
)
. (3.41)

We see immediately that the sampling step of the PF is necessary in order to recover a sum
of Dirac kernels. The effect of the sampling step on π̄a can be described by the approximate
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3 The particle filter

prediction operator P̄, defined as

P̄k(π̄ak)(xk+1) ,
Ne∑

i=1

w̄i(k)
πmk
(
xi(k + 1)

∣∣xi(k)
)

πqk
(
xi(k + 1)

∣∣xi(k)
) δ
(
xk+1 − xi(k + 1)

)
. (3.42)

The approximate prediction operator P̄ takes into account the discrepancy between the
transition distribution νm and the proposal distribution νq. Therefore, in the limit of an
infinite ensemble, Ne →∞, the approximate prediction operator P̄ should be equivalent to
the prediction operator P.5 In particular, this means that the empirical forecast density
π̄f , P̄(π̄a) can serve as approximation of the forecast density πf .

Remark 13. In the absence of model error, πmk
(
xk+1

∣∣xa
i (k)

)
is a Dirac kernel, and the sampling

step is trivial.

3.2.3.3 Effect of the correction operator

Applying the correction operator C, defined by equations (1.19a)–(1.19b) in subsection 1.2.1,
to the empirical forecast density π̄f yields

Ck+1

(
π̄fk+1

)(
xk+1

)
=

Ne∑

i=1

w̄i(k)
wi
k+1

(
xi(k + 1)

∣∣xi(k)
)

π[yk+1|yk:](yk+1|yk:)
δ
(
xk+1 − xi(k + 1)

)
. (3.43)

However, the effect of the importance step on π̄f can be described by the approximate
correction operator C̄, defined as

C̄k+1

(
π̄fk+1

)(
xk+1

)
, π̄ak+1

(
xk+1

)
=

Ne∑

i=1

w̄i(k + 1) δ
(
xk+1 − xi(k + 1)

)
. (3.44)

In the PF, the importance weights are updated using equation (3.34), and the normalisation
constant estimated by the sum of the weights is π[yk:](yk:). Therefore, in the limit of an
infinite ensemble, Ne →∞, the approximate correction operator C̄ should be equivalent to
the correction operator C.

For completeness, the first assimilation step is described in terms of densities by

C̄0

(
πb
)(

x0

)
, π̄a0

(
x0

)
=

Ne∑

i=1

w̄i(0) δ
(
x0 − xi(0)

)
. (3.45)

Remark 14. The only difference between equations (3.43) and (3.44) is that the importance
weights in equation (3.43) are in general not normalised. Hence Ck+1

(
π̄fk+1

)
is not rigorously

speaking an empirical density. However, the difference asymptotically vanishes because, in
the limit of an infinite ensemble, Ne →∞, the sum of the weights almost surely converges
towards the normalisation constant π[yk:](yk:). This demonstrates the limitation of the use
of empirical densities.

5Read section 3.5 for a presentation of rigorous convergence results.
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3.3 The resampling step

3.2.3.4 Effect of the resampling step and full assimilation cycle

Without resampling, the PF is described in terms of densities by the recursion

π̄a0 = C̄0(πb), (3.46a)

π̄ak+1 = C̄k+1 ◦ P̄k(π̄ak). (3.46b)

Without going into details, let R̄ be the resampling operator, which describes the effect of
the resampling step on the empirical densities. In the limit of an infinite ensemble, Ne →∞,
the resampling operator R̄ should be equivalent to the identity operator. The recursion of
the PF then becomes

π̄a0 = R̄0 ◦ C̄0(πb), (3.47a)

π̄ak+1 = R̄k+1 ◦ C̄k+1 ◦ P̄k(π̄ak), (3.47b)

as opposed to the recursion described by equations (1.21a) and (1.22) for the analysis density
πa. An explicit comparison between both recursions is discussed in section 3.5.

3.3 The resampling step

As mentioned in subsection 3.1.3, after only a few assimilation cycles of the PF without
resampling, one particle gets all the weight. This phenomenon is called weight degeneracy.6

The goal of the resampling step is to reinitialise the ensemble: after the resampling step, the
ensemble E is made of Ne equally weighted particles. In this section, practical algorithms to
implement the resampling step are presented and discussed.

3.3.1 The multinomial and the systematic resampling algorithms

3.3.1.1 Multinomial resampling

The resampling technique described in subsection 3.2.1 is often called multinomial resampling,
because the selection of particles is equivalent to associating to the i-th analysis particle a
number of offspring ni, such that nNe:1 is a random draw from the multinomial distribution
with parameters (Ne, w̄). The multinomial resampling algorithm is described by algorithm 3.3.
Smart implementations of this algorithm (e.g., by Ripley 1987) have algorithmic complexity
O(Ne).

By construction, the resampling step consists in drawing an iid sample from the distribution
whose pdf is the empirical analysis density π̄a. Therefore, it is possible to use the resampled
ensemble Er to approximate π̄a by the resampled empirical density

¯̄πak(xk) =

Ne∑

i=1

ni
Ne

δ
(
xk − xa

i (k)
)
. (3.48)

6Some authors use the term particle degeneracy, or filter degeneracy. In this thesis, the term weight degeneracy
is preferred because it is more explicit.
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3 The particle filter

Algorithm 3.3: Multinomial resampling algorithm.

Input: Weighted ensemble (w,E)

1 for i = 1 to Ne do

2 ci ←
i∑

j=1
w̄j // the i-th cum. norm. importance weight

3 end

4 for i = 1 to Ne do

5 ui ∼ U [0, 1] // one random draw per particle

6 ψ(i)← min{j ∈ (Ne : 1) \ ui ≤ cj}
7 xr

i ← xψ(i)

8 end

Output: Resampled ensemble (1,Er)

By construction, we have
E[ni] = New̄i(k), (3.49)

where the expectation operator refers to independent random draws from the multinomial
distribution. This means that ¯̄πa is an unbiased approximation of π̄a. However, it can be
shown that ¯̄πa yields higher variance IS estimates (see, e.g., Künsch 2005) than π̄a. The
extra variance comes here from the random draws from the sampling noise introduced while
sampling from the multinomial distribution. As a consequence, resampling can be seen as a
way to trade future stability for an increase in immediate variance (Doucet and Johansen
2011).

3.3.1.2 Systematic resampling

Several resampling algorithms have been designed with the goal to reduce the sampling noise.
The most popular is probably the systematic resampling algorithm7 introduced by Kitagawa
(1996), and described in algorithm 3.4. Again, smart implementations of this algorithm have
algorithmic complexity O(Ne).

As the multinomial resampling algorithm, the systematic resampling algorithm yields an
unbiased approximation of the empirical analysis density π̄a, and it can be shown that it
yields the lowest sampling noise over unbiased stochastic resampling algorithms (C. P. Robert
and Casella 2004). However, the price to pay for reducing the sampling noise is that we
introduce complex dependence between particles, which may be hard to control. This is
discussed in section 3.5.

7Also known as stochastic universal sampling.
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Algorithm 3.4: Systematic resampling algorithm.

Input: Weighted ensemble (w,E)

1 for i = 1 to Ne do

2 ci ←
i∑

j=1
w̄j // the i-th cum. norm. importance weight

3 end

4 u ∼ U [0, 1] // one random draw for all particles

5 for i = 1 to Ne do

6 ui ← (u+ i− 1)/Ne

7 ψ(i)← min{j ∈ (Ne : 1) \ ui ≤ cj}
8 xr

i ← xψ(i)

9 end

Output: Resampled ensemble (1,Er)

3.3.2 Issues related to resampling

3.3.2.1 Sampling noise and the effective ensemble size

In a PF algorithm, skipping the resampling step means that some computational time is
imparted to particles with potentially very low importance weights, whose contribution to
the the empirical analysis density π̄a is very small. On the other hand, both the multinomial
and the systematic resampling algorithms introduce sampling noise. Therefore, the choice of
the resampling frequency is critical in the design of PF algorithms. Criteria to decide if a
resampling step is needed are usually based on measures of the degeneracy, the most popular
being probably the effective ensemble size Neff (Kong et al. 1994), defined for a normalised
importance weight vector w̄ by

Neff ,
(
w̄Tw̄

)−1
. (3.50)

If the importance weights are equal, then Neff is equal to the ensemble size Ne, and if all
importance weights but one are null, then Neff is equal to 1. Therefore, a common strategy
is to perform a resampling step if Neff fall below a fixed threshold, e.g., Ne/2.

The effective ensemble size Neff can be interpreted as follows. Let (ui)i∈N be a sequence of
iid random vectors. The random vector ū defined as

ū ,
Ne∑

i=1

wiui, (3.51)

has variance given by

V[ū] =
V[u]

Neff
. (3.52)
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3 The particle filter

If the importance weights wNe:1 were equal, the variance of ū would be given by

V[ū] =
V[u]

Ne
. (3.53)

Therefore Neff is the number of equally-weighted iid samples necessary to yield the same
variance reduction as the weighted average ū.

Following the notation of section 3.1.2, the effective ensemble size Neff can also be approx-
imated by

Neff ≈
Ne

1 + V
[
w(v)

] . (3.54)

Therefore, it can also be interpreted as a measure of the relative efficiency of IS compared to
unbiased MC (Kong et al. 1994).

3.3.2.2 Sample impoverishment and regularisation

During the resampling step, unlikely particles are replaced by duplicates of the most probable
particles, which means that there is an unavoidable loss of diversity. In the absence of model
error, the diversity is never recovered and, after a few assimilation cycles, it is possible
(and highly probable) that the ensemble E collapses.8 With model error, some diversity is
recovered during the sampling step, but there is always a risk that the model error em is
not strong enough to counteract the loss of diversity inherent to the resampling step. This
phenomenon is known in the statistical literature as sample impoverishment.

In order to mitigate the influence of sample impoverishment, a possible approach is to
include regularisation in the resampling step as follows. Prior to resampling, the empirical
analysis density π̄a is defined as

π̄ak(xk) ,
Ne∑

i=1

w̄i(k)K
(
xk − xi(k)

)
, (3.55)

instead of using equation (3.40). The sum of Dirac kernels δ has been replaced here by a
sum of kernels K – to be determined, for example using the kernel density estimation (KDE)
theory (Silverman 1986; Musso et al. 2001). Finally, the regularised resampling step consists
in drawing an iid sample from the distribution whose pdf is the regularised empirical analysis
density π̄a.

From a practical point of view, the regularised resampling step is equivalent to adding a
regularisation step after the (non-regularised) resampling step as follows

Ek ← Ek + Zk, (3.56)

where each Z is an ensemble of random draws from the distributions whose pdf is determined
by the kernel K. In some ways this method is similar to additive inflation in EnKF algorithms.
It is called post-regularisation, because the regularisation is added after the correction
(that is, after the importance and the resampling step).

8By collapse, it is meant that the ensemble E is made of Ne copies of the same particle.
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3.3 The resampling step

An alternative to post-regularisation is to use pre-regularisation. In this case, the
regularisation given by equation (3.56) is added before the importance step. From a theoretical
point of view, pre-regularisation is equivalent to use an additional additive model error em,
because it occurs just after the forecast step.

3.3.3 Alternatives to resampling

In the PF, the resampling step is mandatory to reset the algorithm in case of weight degeneracy.
However, resampling introduces additional issues: sampling noise and sample impoverishment.
This is why part of the research dedicated to the PF aims at providing alternatives to the
resampling step.

3.3.3.1 The ensemble transform particle filter

In both the multinomial and the systematic resampling algorithms, the resampled ensemble
Er is obtained from the prior ensemble as9

Er
k = EkTe, (3.57)

where Te is a transformation matrix in ensemble space, whose coefficients are given by

∀(i, j) ∈ (Ne : 1)2, [Te]j,i =

{
1 if xr

i is a copy of xj ,

0 else.
(3.58)

In the more general linear ensemble transform (LET) framework (Bishop et al. 2001; Reich
and Cotter 2015), the transformation matrix Te can have non-negative real coefficients. It is
subject to the normalisation constraint

∀j ∈ (Ne : 1),

Ne∑

i=1

[Te]i,j = 1, (3.59)

such that the resampled particles can be interpreted as weighted averages of the analysis
particles. The LET matrix Te is said to be first-order accurate if it preserves the ensemble
mean (Acevedo et al. 2017), that is if

∀i ∈ (Ne : 1),

Ne∑

j=1

[Te]i,j = New̄i(k). (3.60)

Given the importance weight vector w, let T(w) be the set of LET matrices with non-
negative coefficients satisfying the normalisation constraint, equation (3.59), and the first-
order accuracy condition, equation (3.60).

The ensemble transform particle filter (ETPF) algorithm introduced by Reich (2013) is a
variant of the SIR algorithm, in which the resampling is replaced by equation (3.57) with Te

9In this section, the terms prior and posterior refer to the resampling step. Therefore the prior ensemble is
the ensemble before resampling and the posterior ensemble is the resampled ensemble.
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Algorithm 3.5: Full assimilation cycle for the ETPF algorithm.

Input: E [tk], y [tk+1]

Parameters: νm [tk → tk+1], πo [tk+1]

1 Sampling

2 E ∼ νm[E]

3 Importance

4 w ← πo(E)

5 Resampling

6 T∗e ← arg min
Te∈T(w)

J
[
E
](

Te

)

7 E ← ET∗e

Output: E [tk+1]

being the optimal LET matrix T∗e , defined as the LET matrix minimising the cost function

J [Ek](Te) ,
Ne∑

i=1

Ne∑

j=1

[
Te

]
i,j

∥∥xi(k)− xj(k)
∥∥2

2
(3.61)

over all LET matrices in T(w). This is described by algorithm 3.5.

This minimisation problem is known in the statistical literature as discrete optimal transport
(see Villani 2009, and references therein). In this case, T(w) is interpreted as the set of
coupling between the random vectors xf and xa, defined as the discrete random vectors with
realisations in the prior ensemble xNe:1 and probability vectors 1/Ne for xf and w for xa.
The cost function defined by equation (3.61) is then equal to the expected distance between
xf and xa. Therefore by construction, the optimal coupling T∗e minimises the expected
distance between the prior and posterior ensemble.

Suppose that the prior ensemble E is an iid sample from a distribution ν with pdf π.
Theorem 3.1, ensures that the empirical density π̄ of E weakly converges towards π in the
limit of an infinite ensemble, Ne →∞. Then, using theorem 1 of Reich (2013), we conclude
that, in the limit of an infinite ensemble, Ne → ∞, the sequence of linear maps x 7→ T∗e x
weakly converges towards a continuous (nonlinear) map T : RNx → RNx such that, if the
distribution of a random vector x has pdf π, then the distribution of the random vector T (x)
has pdf C(π). Moreover, the expected distance between the random vectors x and T (x) is
minimised among such maps.

This result essentially states that the ETPF algorithm satisfies Bayes’ theorem in the limit
of an infinite ensemble, Ne →∞. Compared to the multinomial and systematic resampling
algorithms, using discrete optimal transport10 instead of resampling has two major advantages.

10Also known as optimal ensemble coupling.
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3.3 The resampling step

First it does not introduce sampling noise. Second, the posterior particles xr
Ne:1 are weighted

averages of the prior particles xNe:1 instead of full copies, which mitigates the sample
impoverishment inherent to resampling. Furthermore, as a result of the minimisation, it
creates a stronger correlation between the prior and the posterior ensembles E and Er than
the multinomial and systematic resampling algorithms. In ensemble DA, this is often an
advantage, as shown by the numerical illustration from chapter 5. However, one must keep
in mind that this is not always the case. Indeed, as mentioned in paragraph 2.3.2.3, adding
random rotations after the analysis step can be beneficial for the performances if deterministic
EnKF algorithms.

3.3.3.2 Transport particle filters

Let x be a random vector, whose distribution ν[x] has pdf π[x], and let T : RNx → RNx be
an invertible map. The distribution of the random vector T (x) has pdf given by

π[T (x)] = T #π[x], (3.62)

where T # is the pushforward by T , defined for any pdf π over RNx by

T #π , π ◦ T −1 ·
∣∣det T−1

∣∣, (3.63)

in which T is the Jacobian matrix of the map T .

Suppose that the transport map T is constructed in such a way that

πak = T #
k πfk. (3.64)

Then, the resampling step at time tk can be replaced by

∀i ∈ (Ne : 1), xr
i(k) = Tk

(
xi(k)

)
. (3.65)

For smooth forecast and analysis densities πf and πa, there exists at least one transport map
T satisfying equation (3.64). Following the optimal transport approach, as exposed in the
previous paragraph, a possibility is to choose the transport map T which minimises the cost
function

Jk(Tk) =

∫
‖xk − Tk(xk)‖

2
2 π

f
k(xk) dxk, (3.66)

over all maps T : RNx → RNx satisfying equation (3.64). However, when Nx > 1, it is even
challenging to find only one transport map T satisfying equation (3.64). Furthermore, πf and
πa are in general only known through the empirical forecast and analysis densities π̄f and π̄a.

In the applied mathematics community, several approaches emerge to construct an ap-
proximate solution to equation (3.64). The central idea is to minimise the Kullback–Leibler
divergence between πa and T #πf using specific classes of transport maps T .

• In the variational Stein descent method (Liu and Wang 2016), it is assumed that the
transport map T is an element of a reproducing-kernel Hilbert space. The reproducing
property is used to derive a simple expression of the functional gradient of the Kullback–
Leibler divergence. Pulido and van Leeuwen (2019) apply this method to the PF,
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3 The particle filter

the resulting algorithm being called the variational mapping particle filter (VMPF)
algorithm.

• Another possibility, proposed by Spantini et al. (2018), is to define the transport map
T using the Knothe–Rosenblatt rearrangement on the state space RNx . In practice, the
Knothe–Rosenblatt rearrangement is approximated using a sequence of polynomials
with increasing degree. This is easy to parametrise and leads to an optimisation problem
which can be solved using iterative optimisation methods.

Remark 15. When the proposal distribution νq is different from the transition distribution
νm, the prior ensemble E is not distributed according to the empirical forecast density π̄f . In
this case, equation (3.64) must be modified accordingly.

3.3.3.3 Particle flow particle filters

Consider the stochastic differential equation

dxk = A(xk) dλ+ B(xk) dε, (3.67)

where λ is a pseudo-time, where A and B are the drift and diffusion terms (which may
depend on the pseudo-time λ), and where ε is a Brownian motion. For particles moving
according to equation (3.67), the distribution of the associated random variable has density
πλ, determined by the Fokker-Planck equation.

For appropriate values of the drift and diffusion terms A and B (see, e.g., Bunch and
Godsill 2016), the density π can be obtained as

πλk =
πfk
[
πok
]λ

∫
πfk(xk)

[
πok(xk)

]λ
dxk

. (3.68)

which means that π0 = πf and π1 = πa. As a consequence, instead of defining the transport
map in a global sense with equation (3.64), it is possible to use the stochastic differential
equation (3.67) in order to move the particles from the forecast distribution νf to the analysis
distribution νa. These principles are used in a variety of PF algorithms, whose implementation
differ by the approximation made to compute appropriate values for the drift and diffusion
terms A and B (see Bunch and Godsill 2016, and references therein).

3.3.3.4 Terminology

In this subsection, several alternatives to resampling have been introduced. From now on, in
order to avoid confusion, we distinguish the following cases.

1. If the posterior ensemble is computed with equation (3.57), and if the LET matrix Te

has coefficients given by equation (3.58), the update is called, as before, the resampling
step.

2. If the posterior ensemble is computed with equation (3.57), and if the LET matrix Te has
non-negative real coefficients, then the update is called the linear transformation step.
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3.4 The proposal distribution

Optimal ensemble coupling is a possible implementation of the linear transformation
step.

3. If the posterior ensemble is computed with equation (3.65), then the update is called
the transport step.

4. If the posterior ensemble is computed with the stochastic differential equation, equa-
tion (3.67), then the update is called the particle flow step.

3.4 The proposal distribution

In this section, we give a brief overview of the use of proposal densities in the PF.

3.4.1 The standard proposal

In the SIR algorithm, we have chosen to use the standard proposal, for which the initial
proposal distribution νqb is the background distribution νb and the proposal distribution
νq is the transition distribution νm. This corresponds to the proposal vector v = x. This
choice is convenient because the transition distribution νm is usually easy to sample from,
and because the resulting equation for the incremental weight function wi, equation (3.37), is
very simple.

Remark 16. In this case, the importance step is equivalent to a forecast step. Therefore, the
importance and resampling steps can be considered as the (equivalent) analysis step.

3.4.2 The optimal importance proposal

As shown in subsection 3.1.2, in terms of efficiency, a good strategy is to use a proposal
distribution which minimises the variance of the importance weight function w. A theoretical
answer to this problem is to use the optimal importance proposal (Kong et al. 1994;
Doucet et al. 2000), corresponding to the proposal vector v defined as

v0 , x0|y0, (3.69a)

vk+1 , xk+1|xk,yk+1. (3.69b)

Therefore, the optimal importance distribution is defined by

νqb , ν[x0|y0], (3.70a)

νqk , ν
[
xk+1

∣∣xk,yk+1

]
. (3.70b)

With this choice, the incremental importance weight function wi, given by equations (3.23e)
and (3.23f), simplifies into

wi
0(x0) = π[y0](y0), (3.71a)

wi
k+1(xk+1|xk) = π[yk+1|xk](yk+1|xk). (3.71b)

It is remarkable that wi
k, the incremental importance weight function at time tk, does not

depend on xk, the state at time tk, which means that the variance V
[
wi
k(vk)

]
is null. In other
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words, the optimal importance distribution nullifies the variance of the importance weight
function wk conditional upon the sequence of previous states xk−1: (defined as an empty set
if k = 0) and the sequence of observation vectors yk: (Doucet et al. 2000). Furthermore, as
shown by Snyder et al. (2015), the optimal importance distribution minimises the variance
V
[
wk:(vk:)

]
over all proposal distributions whose pdf can be factored as in equation (3.21).

In other words, the optimal importance distribution minimises the variance of the importance
weight function wk conditional only upon the observation vectors yk:.

3.4.3 The optimal importance distribution of the GL system

Temporarily assume that the DA system is the GL system, system (1.25). Following Doucet
et al. (2000), we define the error covariance matrix P as

P−1 = Q−1 + HTR−1H. (3.72)

It can be shown that the distribution of the optimal proposal vector v is

vk+1 ∼ N
[
P
(
Q−1Mxk + HTR−1yk+1

)
,P
]
, (3.73)

and that the incremental weight function is given by

wi
k+1(xk+1|xk) ∝ exp

[
−1

2

(
yk+1 −MHxk

)T(
HQHT + R

)−1(
yk+1 −MHxk

)]
. (3.74)

This is very similar to a KF analysis, with the model error covariance matrix Q playing the
role of the forecast error covariance matrix Pf in the KF.

3.4.4 The proposal distribution in more general DA systems

It turns out that equations (3.72) to (3.74) remain valid if the dynamical model M is
nonlinear. However, in more complex systems there is no analytic formula for the optimal
importance distribution and the associated incremental weight function wi, and we need to
use more elaborate algorithms to work with the optimal importance distribution, for example
the implicit PF algorithm (Chorin and Tu 2009; Chorin et al. 2010; Morzfeld et al. 2012).

To conclude this section, we mention several alternatives to the optimal importance
distribution.

• In the auxiliary particle filter algorithm (Pitt and Shephard 1999), the proposal
distribution νq is implicitly defined through the use of an auxiliary member index.
The resulting algorithm has two sampling steps: a first one to compute the proposal
distribution νq, and a second one to effectively apply the proposal. This means that
the APF algorithm requires 2Ne model integrations per time step.

• In the equivalent-weights particle filter (EWPF) algorithm (van Leeuwen 2010; Ades and
van Leeuwen 2013), and its implicit version (Zhu et al. 2016), the proposal distribution
νq is computed in such a way that the importance weights of the particles are as uniform
as possible after the importance step. The resulting algorithm is quite complex, and
dependent on several tuning parameters.
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• In the weighted ensemble Kalman filter (WEnKF) algorithm (Papadakis et al. 2010;
Morzfeld et al. 2017), the proposal distribution νq is defined as the assimilation cycle
(forecast and analysis step) of the stochastic EnKF algorithm, algorithm 2.2. Obviously,
it means that the WEnKF algorithm requires to run the stochastic EnKF algorithm in
addition to the PF steps (sampling, importance, and resampling).

In all these algorithms, the proposal distribution νqk at time tk explicitly uses the observation
vector yk+1 at time tk+1. This helps the PF sampling particles in regions of the state
space RNx where the observation density πo is high, and indeed contributes to reducing the
variance of the importance weight function w. Nevertheless, as mentioned in subsection 3.5.2,
and explained in details in section 4.1, this is insufficient to make the PF applicable to
high-dimensional DA systems.

3.5 Convergence results for the particle filter

Without resampling, the PF is equivalent to the SIS algorithm, whose convergence results
are formalised by theorems 3.3 and 3.4. However, as mentioned in subsection 3.3.1, the
resampling step introduces dependence between particles, which means that the PF is outside
of the scope of theorems 3.3 and 3.4. Nevertheless, it would be desirable to describe the
behaviour of the PF in the limit of an infinite ensemble, Ne →∞.

For the SIR algorithm with multinomial resampling, the law of large numbers has been
proven by Del Moral (1996) and a central limit theorem has been derived by Del Moral
(1999) and Del Moral and Miclo (2000). The central limit theorem has been extended to
more general PF algorithms by Chopin (2004) and Künsch (2005), and later by Douc and
Moulines (2008). This section presents the most important aspect of the convergence results
for PF algorithms.

3.5.1 The law of large numbers for the particle filter

Following Crisan and Doucet (2002), and references therein, to examine the convergence of
the empirical analysis density π̄a in the limit of an infinite ensemble, Ne →∞, we use the
topology of the weak convergence in the space of pdfs over the state space RNx , defined as
follows. The sequence of pdfs (πNe)Ne∈N is said to converge towards the pdf π in the limit

Ne →∞ if, for any continuous bounded test function F : RNx → R,

lim
Ne→∞

∫
F(x)πNe(x) dx =

∫
F(x)π(x) dx. (3.75)

As deduced from the recursion given by equations (1.21a) and (1.22), the analysis density
πak at time tk, with k > 0, is given by

πak = Ck ◦ Pk−1 ◦ · · · ◦ C0

(
πb
)
. (3.76)

The first condition we want to ensure is that the map πb 7→ πa is continuous. For this, it is
sufficient to check that the observation density πo is continuous bounded and strictly positive,
and that the transition density πm is Feller. In other words, for any continuous bounded test
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function F : RNx → R, the map

xk 7→
∫
F
(
xk+1

)
πmk
(
xk+1|xk

)
dxk+1, (3.77)

is continuous bounded as well.

Now, as deduced from the recursion given by equations (3.47a) and (3.47b), the empirical
analysis density π̄ak at time tk, with k > 0, is obtained in the PF as

π̄ak = R̄k ◦ C̄k ◦ P̄k−1 ◦ · · · ◦ R̄0 ◦ C̄0

(
πb
)
. (3.78)

The resampling operator R̄ describes a random perturbation, but is has been constructed
in such a way that, in the limit of an infinite ensemble, Ne → ∞, R̄ should almost surely
converge point-wise towards the identity operator in the space of the pdfs over the state
space RNx . Similar properties hold for the approximate prediction and correction operators
P̄ and C̄.

In general however, the composition of two converging sequence of functions does not
converge towards the composition of their limit, unless their convergence satisfies some
uniformity condition. Therefore, in order to obtain a law of large numbers for a given PF
algorithm, it is sufficient to prove the uniform convergence of the operators R̄, P̄ and C̄. The
resulting law of large numbers for the SIR algorithm is formalised in theorem 3.5. This result
means that, in a sense, the SIR algorithm provides an asymptotic solution to the generic
filtering estimation problem, problem 1.1.

Theorem 3.5 (Law of large numbers for the SIR algorithm). Under the assumptions that
the transition density πm is Feller and that the observation density πo is continuous bounded
and strictly positive, the empirical analysis density π̄a of the SIR algorithm almost surely
converges towards the analysis density πa of the generic DA system in the limit of an infinite
ensemble Ne →∞.

Remark 17. The restriction to continuous bounded test functions F is necessary to prove the
almost sure uniform convergence of the resampling operator R̄. In particular, it excludes the
test function F : x 7→ x, which is used to define the mean estimate of the unknown truth
xt. However, in many realistic applications, the truth xt always has bounded values, which
means that the mean estimate can be defined with a continuous bounded test-function.

3.5.2 The central limit theorem for the particle filter

3.5.2.1 Convergence of the mean squared error

Suppose that the observation density πo is bounded, and let F : RNx → R be a bounded
πa-integrable test function. The expectation F of F under πa, and the IS estimate F̄ are
defined by equations (3.38) and (3.39).

In this case, using an induction it can be shown (Crisan and Doucet 2002) for the SIR
algorithm that

E
[(
F̄k − Fk

)2] ≤ αk‖F‖22
Ne

, (3.79)
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where the expectation operator refers to independent random draw for the IS estimate F̄ ,
and where the convergence constant α does not depend on the ensemble size Ne. However, α
may depend on the dimension of the state space Nx and, worse, it increases over time. From
a practical point of view, this means that, in order to ensure a given level of precision, Ne

has to increase with time.
Without going into details, we conclude this paragraph by mentioning the fact that, if the

transition distribution satisfies some ergodic properties (not detailed here), then is is possible
to prove that α is bounded in time. This shows why, in specific cases, the SIR algorithm
works.

3.5.2.2 The central limit theorem

The central limit theorem for the SIR algorithm shares many aspects with the convergence of
the mean squared error, as presented in the previous paragraph. It is stated, in a minimalistic
way, in theorem 3.6.

Theorem 3.6 (Central limit theorem for the SIR algorithm). Under minimal assumptions,
the rescaled error

√
Ne

(
F̄−F

)
of the SIR algorithm converges in distribution towards N

[
0, σ2

]

in the limit of an infinite ensemble, Ne →∞, where the asymptotic variance σ2 is computed
by induction over the time index k.

In theory, the central limit theorem can be used to discriminates between different PF
algorithms, the one with the lowest asymptotic variance σ2 being considered as more efficient.
However for complex algorithms, with several layers of approximations, it may be really hard
to derive a central limit theorem.

3.5.2.3 The curse of dimensionality

These convergence results – law of large numbers and central limit theorem – are the main
reasons for the interest of the DA community in the PF. In terms of application, the story is
totally different. Indeed, even in low-order DA systems, any algorithm based on IS requires
an extremely high number of particles Ne to yield estimates with a reasonable variance
(van Leeuwen 2003; Zhou et al. 2006; van Leeuwen 2009; Bocquet et al. 2010). This is
related to the fact that the asymptotic variance σ2 in the central limit theorem, for example
theorem 3.6, may increase exponentially with the dimension of the state space Nx. This point
is explained in details in section 4.1.
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Despite the keen interest of the DA community in the PF, the conclusion of chapter 3 is
firm: even in low-order DA system, a direct application of the PF requires an extremely
high number of particles to yield accurate estimates (van Leeuwen 2003; Zhou et al. 2006;
van Leeuwen 2009; Bocquet et al. 2010). This is a symptom of the curse of dimensionality
and the main obstacle to an application of the PF to most DA systems (Silverman 1986;
Kong et al. 1994; Snyder et al. 2008).

In most DA systems, distant regions have an (almost) independent evolution over short
timescales. This idea is used in the EnKF to implement localisation. In the PF, localisation
could be used to counteract the curse of dimensionality. Yet, if localisation in the EnKF is
simple and leads to efficient algorithms, implementing localisation in the PF is a challenge,
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because there is no trivial way of gluing together locally updated particles across domains
(van Leeuwen 2009).

This chapter focuses on the methodological aspects of the implementation of localisation
in the PF, as developed by Farchi and Bocquet (2018). The objective is here to review and
compare recent propositions of local particle filter (LPF) algorithms and to suggest practical
solutions to the difficulties of local particle filtering which lead to improvements in the design
of the LPF algorithms. Section 4.1 is dedicated to the curse of dimensionality, with some
theoretical elements and illustrations. The challenges of localisation in the PF are then
discussed in sections 4.2 and 4.3 from two different point of view. For both approaches, new
implementations of LPF algorithms are proposed. Conclusions are given in section 4.5.

4.1 The curse of dimensionality

In the statistical literature, it is a well-known fact that the estimation of continuous pdfs
suffers from the curse of dimensionality, meaning that the computational cost increases
exponentially with the dimension (Silverman 1986). In this section, the IS method derived in
subsection 3.1.2 is shown to face similar limitations, which is an obstacle to the application
of the PF to high-dimensional DA systems.

4.1.1 Illustrations of the curse of dimensionality

We start this section by illustrating some pathological behaviour of the IS method when the
dimension of the state space Nx increases.

4.1.1.1 The variance of the IS estimate

Consider an Nx-dimensional diagonal generalisation of the simple example presented in
subsection 3.1.2. The background and observation densities πb and πo are are given by

πb(x) =
1

√
2π

Nx
exp

[
−1

2

∥∥x− xb
∥∥2

2

]
, (4.1a)

πo(y|x) =
1

√
2π

Nx
exp

[
−1

2

∥∥x− y
∥∥2

2

]
, (4.1b)

with xb = −1 and y = 1, and the analysis density πa, is given by

πa(x|y) =
1
√
π
Nx

exp

[
−
∥∥x− xa

∥∥2

2

]
, (4.1c)

with xa = 0. The IS method is used with the standard proposal (that is, with νq = νb)
to estimate the test functions Fn : x 7→ [x]n, n ∈ (Nx : 1), whose expected values are
Fn = [xa]n = 0.

For each Fn, the asymptotic rescaled bias b∞ and the asymptotic rescaled variance σ2,
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given by equations (3.14b) (3.15), are equal to

−b∞ =
1

3
exp

[
Nx

(
2

3
+ ln

2
√

3

3

)]
, (4.2)

σ2 =
4

9
exp

[
Nx

(
2

3
+ ln

2
√

3

3

)]
. (4.3)

In the one-dimensional case, Nx = 1, we recover equations (3.18) and (3.19). Moreover, we
immediately see that both quantities increase exponentially with the dimension of the state
space Nx. As a consequence, in this simple DA system, in order to maintain a unit variance
for F̄1, the IS estimate of only one element of xa, the number of particles Ne must increase
exponentially with Nx.

Furthermore, the dimensions of this DA problem are by construction iid. This means that
the strong law of large numbers ensures the almost sure convergence

lim
Nx→∞

1

Nx

Nx∑

n=1

(
F̄n − Fn

)2
= lim

Nx→∞

1

Nx

Nx∑

n=1

F̄ 2
n = E

[
F̄ 2

1

]
= V

[
F̄1

]
+ E

[
F̄1

]2
, (4.4)

where the expectation and variance operators refer to independent random random draws of
the ensemble E according to the background distribution νb. Using the convergence of the
rescaled bias Ne

(
E
[
F̄1

]
− F1

)
towards b∞ and the convergence in distribution of the rescaled

error
√
Ne

(
F̄1 − F1

)
towards N

[
0, σ2

]
, we conclude that

E
[
F̄ 2

1

]
∼

Ne→∞

σ2

Ne
. (4.5)

In other words, when both the dimension of state space Nx and the ensemble size Ne are
large, the squared error of the IS estimate of xa is

Nx∑

n=1

(
F̄n − Fn

)2 ≈ σ2Nx

Ne
, (4.6)

where σ2 increases exponentially with Nx. For comparison, the squared L2-norm between xb

and xa is equal to Nx, and the squared L2-norm between y and xa is equal to Nx as well.
Therefore, unless Ne is of the same order as expNx, the IS estimate of xa is likely to have
larger errors than both xb and y. This provides a theoretical formalisation of the numerical
results presented in section 3 of Snyder et al. (2008).

4.1.1.2 The weight degeneracy of IS

As explained in subsection 3.1.2, the variance of the importance weights wNe:1 can be
interpreted as a measure of the relative efficiency of the IS method, compared to the MC
method. However, in most applications, when the dimension of the state space Nx increases,
the occurrences of weight degeneracy become dramatically more frequent.

This phenomenon can be illustrated in the simple DA system of the previous paragraph.
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Figure 4.1: Empirical frequencies of the maximum of the normalised importance weights,
max

{
w̄i, i ∈ (Ne : 1)

}
, for Nx = 4 (top-left panel, in blue), 8 (top-right panel, in green), 32

(bottom-left panel, in red), and 128 (bottom-right panel, in yellow). In all cases, the ensemble
size is Ne = 128, and the frequencies are computed using 107 independent random draws of
the ensemble E from the background distribution νb.

For example, figure 4.1 shows the empirical frequencies of the maximum of the normalised
importance weights w̄Ne:1, for a fixed ensemble size Ne = 128 and several values of Nx. When
the number of state variables is small (Nx = 4), the w̄Ne:1 are balanced, and values close
to 1 are infrequent. However, when the number of variables grows (Nx ≥ 32) the w̄Ne:1

rapidly degenerate: values close to 1 become more frequent. Ultimately, the frequency peaks
to 1, meaning that, most of the time, only one particle has a non-zero contribution to the
empirical analysis density π̄a, and the IS estimates cannot be expected to be accurate. Similar
properties have been observed by Snyder et al. (2008), and by Bocquet et al. (2010) in a
more elaborate DA system.
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4.1.2 The equivalent state dimension

In the DA system described in the previous subsection, when the dimension of the state
space Nx increases, the background and analysis distributions νb and νa become increasingly
singular to each other: random particles drawn from νb have an exponentially small likelihood
according to πa. This is the main reason for the drastic increase in the number of particles
required for a non-degenerate scenario in the IS method (Rebeschini and van Handel 2015).

A quantitative description of the behaviour of the importance weights wNe:1 for large values
of the number of observations Ny has been proposed by Snyder et al. (2008). In this study,
the authors take the example of a single IS step with the the standard proposal (νq = νb)
when the observations are iid. Let s be the random variable defined as

s ,
lnπ[y|x]− µ

τ
, (4.7a)

where µ and τ2 are given by

µ , E
[
lnπ[y|x]

]
, (4.7b)

τ2 , V
[
lnπ[y|x]

]
. (4.7c)

The random variable s can also be written

s =
1

τ



Ny∑

q=1

lnπ[yq|x]− µ


. (4.8)

which is a sum of iid random variables because the observations are iid. Therefore, the
central limit theorem ensures that, in the limit of an infinite number of observation, Ny →∞,
s converges in distribution towards N [0, 1]. Moreover, the observation density πo can be
written

πo(y|x) = exp(−µ− τs)(y|x). (4.9)

Using equation (4.9), as well as the convergence in distribution of s towards N [0, 1], Snyder
et al. (2008) have shown, under minimal conditions, that

E

[[
max

i∈(Ne:1)
w̄i

]−1
]
∼

Ne→∞
1 +

√
2 lnNe

τ
, (4.10)

where the expectation operator refers to independent random draws of the ensemble E from
νb.

This result means that, in order to avoid weight degeneracy in an algorithm based on the
IS method, Ne must be of order exp

(
τ2/2

)
. In simple cases, such as the one considered in the

previous subsection, τ2 is proportional to the number of observations Ny. The dependence
of τ2 on the dimension of the state space Nx is indirect in the sense that the derivation of
equation (4.10) requires Nx to be asymptotically large. In a sense, one can think of τ2 as an
equivalent state dimension for the DA system.
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4.1.3 Mitigating the degeneracy using a proposal distribution

One objective of using proposal densities in the PF is to improve the quality of the IS
estimates by reducing the variance of the w function, as discussed in section 3.4. For example,
when using the optimal importance distribution, the resulting w function does not depend
on the current state. For a single IS step, this means that the importance weights wNe:1 are
all equal.

However, using the optimal importance distribution in a cycled DA system still yields
weight degeneracy, as illustrated, e.g., by Bocquet et al. (2010). In this case, the degeneracy
does not primarily come from the IS step, but from the recursion in the PF. In particular, it
stems from the fact that the PF does not correct the particles at earlier times to account
for new observations. This has been a key element in the development of the guided SIR
algorithm of van Leeuwen (2009), whose ideas were included in the practical implementations
of the EWPF algorithm (van Leeuwen 2010; Ades and van Leeuwen 2013) as a relaxation
step.

The theoretical analysis of the previous subsection can be extended to the case of IS with
a non-standard proposal distribution by considering the following DA system:

x0 ∼ ν[x0], (4.11a)

x1 =M(x0) + em0 , em0 ∼ ν
[
x1 −M(x0)

]
. (4.11b)

y1 = H(x1) + eo1, eo1 ∼ ν
[
y1 −H(x1)

]
. (4.11c)

For this system, the proposal vector v of the standard proposal is distributed as

ν[v0] , ν[x0], (4.12a)

ν[v1] , ν[x1|x0], (4.12b)

while the proposal vector v∗ of the optimal importance proposal is distributed as

ν[v∗0] , ν[x0], (4.13a)

ν[v∗1] , ν[x1|x0,y1]. (4.13b)

Therefore, the importance weight function is given by

w(x0,x1) =

{
π[y1|x1](y1|x1) for the standard proposal,

π[y1|x0](y1|x0) for the optimal importance proposal.
(4.14)

As shown by Snyder et al. (2015), the asymptotic relationship given by equation (4.10)
remains valid if the equivalent state dimension τ2 is defined as

τ2 =

{
V
[
π[y1|x1]

]
for the standard proposal,

V
[
π[y1|x0]

]
for the optimal importance proposal.

(4.15)
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Figure 4.2: Evolution of the equivalent state dimension τ2 of the standard proposal (in
blue) and of the optimal importance proposal (in red) as a function of the observation variance
r2. The other parameters are fixed and equal to Nx = 103, a = p = h = q = 1.

In the simple example where the DA system is given by

x0 ∼ N
[
0, p2I

]
, (4.16a)

x1 = ax0 + em0 , em0 ∼ N
[
0, q2I

]
. (4.16b)

y1 = hx1 + eo1, eo1 ∼ N
[
0, r2I

]
, (4.16c)

the equivalent state dimension τ2 is equal to

τ2 =





Nx
h2
(
q2 + a2p2

)

r2

[
1 +

3h2

2r2

(
q2 + a2p2

)]
for the standard proposal,

Nx
a2p2h2

r2 + h2q2

[
1 +

3a2h2p2

2(r2 + h2q2)

]
for the optimal proposal.

(4.17)

Figure 4.2 shows the evolution of the equivalent state dimension τ2 as a function of the
observation variance r2 in this DA system. As expected, τ2 is systematically smaller when
using the optimal importance proposal, and much smaller when r2 is small (typically r2 ≤ 1).
In both cases however, τ2 is proportional to the dimension of the state space Nx, which
means that ultimately the optimal importance proposal cannot counteract the curse of
dimensionality in this simple model, and there is no reason to think that it could in more
elaborate models (see chapter 29 of MacKay 2003).

Furthermore, as shown by Snyder et al. (2015), the optimal importance proposal yields
the lowest equivalent state dimension τ2 over single-step proposals, which includes all the
algorithms mentioned in subsection 3.4.4.
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Remark 18. In the simple DA system described in this subsection, τ2 is directly proportional
to Nx (equal to Ny in this case). For more elaborate models, the relationship between τ2 and
Nx is likely to be more complex and may involve the effective number of degrees of freedom
in the model.

4.1.4 Using localisation to avoid the degeneracy

The simple DA systems introduced in subsections 4.1.1 and 4.1.3 are separable, meaning
that the state variables independent from each other. By contrast, the IS method operate at
a global scale and cannot exploit the separability property. Indeed, the importance weight
vector w is influenced by all elements of the observation vector y, which in turn influences
all elements of the IS estimates (for example xa). This explains why the ensemble size Ne

must increase exponentially with the dimension of the state space Nx to avoid the weight
degeneracy. Furthermore, it is easy to understand that the weight degeneracy can be avoided
by splitting the global DA system into a collection of Nx local DA systems.

Most geophysical systems are not separable. However, the correlations decrease at a fast
rate with the distance in the physical space. This is the basis for the implementation of
localisation in the EnKF, as presented in section 2.5. Similar principles could be applied to
the PF. For example, by considering the counterpart of DL presented in subsection 2.5.4,
the influence of each observation would be restricted to a spatial neighbourhood of its site.
As a consequence, the equivalent state dimension τ2 would be defined using the maximum
number of observations in each local domain N `

y, which could be kept relatively small even
for high-dimensional systems. The application of DL in the PF is discussed by Snyder et al.
(2008), van Leeuwen (2009) and Bocquet et al. (2010), with an emphasis on two major
difficulties.

The first issue is that the variation of the weights across local domains irredeemably breaks
the structure of the global particles. There is no trivial way of recovering this global structure,
i.e., gluing together the locally updated particles. Yet, global particles are required for the
sampling step in the next assimilation cycle of the PF, where the dynamical model M is
applied to each individual particle.

Second, if not carefully constructed, the gluing could yield imbalance, as presented in
paragraph 2.5.4.2. In EnKF algorithms using DL, these issues are mitigated by using smooth
functions to taper the influence of the observations (e.g., the GC function G). By contrast,
in most PF algorithms, this may not be sufficient to avoid some imbalance. This is discussed
in details in subsection 4.2.3.

From now on we suppose, as in subsection 2.5.4, that all observations are local. In the
following sections, we present different methods which address these two issues, and lead to
practical implementations of DL in the PF. The resulting LPF algorithms are divided into
two classes. In the first class, independent updates are performed for each state variable by
using only the observations influencing the considered variable. This leads to algorithms easy
to define, to implement, and to parallelise. However, there is by construction no obvious
relationship between state variables, which could yield imbalance. This approach is used
for example by Rebeschini and van Handel (2015), Cheng and Reich (2015), Penny and
Miyoshi (2016) and Lee and Majda (2016). In the second approach, an update is performed
for each observation, with the constraint that only nearby grid points are updated. Within
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this formalism, the observations must be assimilated sequentially. As a consequence, the
resulting algorithms are slightly harder to define and to parallelise, but they may mitigate
the imbalance. This approach is used for example by Poterjoy (2016).

4.2 The LPF–X algorithms: a block localisation framework

The LPF algorithms described in this section are constructed as a local generalisation of the
SIR algorithm:

1. the sampling step is performed with an equally weighted ensemble E, using the standard
proposal;

2. the importance and resampling steps are performed independently for each state variable
n ∈ (Nx : 1).

Therefore, the sampling step is equivalent to a forecast step,1 and the (local) importance and
sampling steps can be considered as the (equivalent) analysis step. Such LPF algorithms
are called LPF–X algorithms, where the –X extension emphasises the fact that there is one
update per state variable.

In this section, the terms prior and posterior (or updated) refers to quantities before and
after the analysis step of the LPF–X algorithms. For simplicity, the time subscript k is
systematically dropped, and the conditioning with respect to prior quantities is implicit. The
prior and posterior ensembles are written Ef and Ea. In order to avoid confusion between
ensemble and state variable indices, we use a functional notation for the ensemble indices
and a subscript notation for the state variable indices. With this convention, the i-th particle
in an ensemble E is written x(i), the n-th element of a vector x ∈ RNx is written xn, and the
i-th element of a vector w ∈ RNe is written w(i). For example, xfn(i) and xan(i) are the n-th
state variable of the i-th particle in the forecast and analysis ensembles Ef and Ea, and wn(i)
is the local importance weight of the i-th particle for the n-th state variable, as introduced
in the following subsection.

In subsection 4.2.1, we show how localisation is introduced in the PF. The generalisation to
a block localisation framework is presented in subsection 4.2.2, in which the generic LPF–X
algorithm is derived. Finally, the resampling step is explained in details in subsection 4.2.3.

4.2.1 Introducing localisation in the PF

Localisation is generally introduced in the PF by allowing the importance weight vector w,
computed during the importance step, to depend on the spatial position. In the (global) PF,
the n-th marginal π̄an of the empirical analysis density π̄a is

π̄an(xn|y) =

Ne∑

i=1

w̄(i) δ
(
xn − xfn(i)

)
, (4.18)

1In other words, the ensemble E resulting from the sampling step is distributed according to the forecast
distribution νf , which is why it is written Ef .
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whose local variant is

π̄an(xn|y) =

Ne∑

i=1

w̄n(i) δ
(
xn − xfn(i)

)
, (4.19)

where the local importance weight vector wn now depends on the spatial position through the
state variable index n. Using local importance weight vectors results in uncoupled marginals
for π̄a. This is the reason why localisation was introduced in the first place, but as a drawback,
the full empirical analysis density π̄a is not known. The simplest fix is to approximate the
full π̄a as the product of its marginals π̄aNx:1, which is written

π̄a(x|y) =

Nx∏

n=1

Ne∑

i=1

w̄n(i) δ
(
xn − xfn(i)

)
. (4.20)

This is a weighted sum of the NNx
e possible combinations between all particles in the prior

ensemble Ef . Resampling from the distribution whose pdf is given by equation (4.20), is
equivalent to perform Nx independent resampling from the distributions whose pdfs are given
by equation (4.19). In other words, the resampling step has to be performed independently
for each state variable n ∈ (Nx : 1), and then the global posterior particles xa(Ne : 1) are
obtained by assembling the locally resampled particles xrNx:1(Ne : 1).

4.2.2 The block localisation framework

4.2.2.1 Generalisation to the block localisation framework

The localisation described in the previous subsection can be embedded into a more general
block localisation framework as follows. The state space RNx is divided into local (state)
blocks with the additional constraint that the local importance weight vectors wNx:1 should
be constant over the local blocks. As a consequence, the resampling step can be performed
independently for each block. Typically, the local blocks could be defined as the set of state
variables corresponding to a batch of adjacent grid points.

In the block PF algorithm of Rebeschini and van Handel (2015), the local importance
weight vector wb corresponding to the b-th local block is computed using the observations
whose site is located within this block. However, in general, nothing prevents one from using
the observations whose site is located within a local domain potentially different from the
local block. This is the case in the LPF algorithm of Penny and Miyoshi (2016), in which the
local blocks have for size 1 grid point, while the size of the local domains is controlled by a
parameter.

To summarise, the LPF–X algorithms are characterised by

• the geometry of the local blocks over which the local importance weight vectors wNx:1

are constant;

• the local domain of each local block, which gathers all observations used to compute
the wNx:1;

• the resampling algorithm.
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Most LPF algorithms (e.g., those described in Rebeschini and van Handel 2015; Penny
and Miyoshi 2016; Lee and Majda 2016) in the literature can be seen to adopt this block
localisation framework.

Remark 19. The concept of local domain, as defined in this subsection, is totally compatible
with the notion of local domains, as defined in paragraph 2.5.4.1 for the EnKF algorithms
using DL.

4.2.2.2 The local state blocks

Using parallelepipedic local blocks is a standard geometric choice (Rebeschini and van Handel
2015; Penny and Miyoshi 2016). It is easy to conceive and to implement, and it offers a
potentially interesting degree of freedom: the shape of the local blocks. Using larger local
blocks decreases the proportion of block boundaries, and hence it decreases the bias of the
analysis step of the LPF–X algorithms. On the other hand, using large local blocks also
means less freedom to counteract the curse of dimensionality.

In the clustered PF algorithms introduced by Lee and Majda (2016), the local blocks
are centred around the observation sites. The potential gains of this method are unclear.
Moreover, when the observation sites are regularly distributed in space,2 there is no difference
with the standard method.

From now on, the number of local blocks is written Nb. Since the local importance weight
vectors wNx:1 are constant over each local block, we only need to provide one importance
weight per local block and per particle: wb(i), (b, i) ∈ (Nb : 1)× (Ne : 1).

4.2.2.3 The local domains

The general idea of DL in the EnKF, as presented in paragraph 2.5.4.1, is that the analysis
ensemble for the n-th state variable Ea

n is computed using only the observations whose site is
located within the n-th local domain. For instance, in two dimensions, a common choice is
to define the n-th local domain as a disk, centred at the n-th grid point and whose radius
` is a parameter called the localisation radius. The same principle can be applied to the
LPF–X algorithms: the local domain of the b-th local block is defined as the disk whose
centre coincides with that of the b-th block and whose radius ` is the localisation radius, a
parameter to be determined.

Increasing ` means taking more observations into account in the local updates, hence
reducing the bias in the analysis step of the LPF–X algorithms. It can also reduce the spatial
inhomogeneity by making the local importance weight vectors wNb:1 smoother in space.

The smoothness of the wNb:1 is an important property. Indeed, spatial discontinuities
in the wNb:1 can lead to spatial discontinuities in the posterior ensemble Ea and hence to
imbalance. Again lifting ideas from the local EnKF methods, the smoothness of the wNb:1

can be improved by tapering the precision of the observations as follows. For the (global) PF,
assuming that the observations are independent, the importance weight vector w is computed

2Which is the case in the numerical experiments of chapter 5.
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as

w = πo
(
y
∣∣Ef
)

=

Ny∏

q=1

πoq
(
yq
∣∣Ef
)
, (4.21)

where πoq is the q-th marginal of the observation density πo. Following Poterjoy (2016), for an
LPF algorithm, the local importance weight vector wb of the b-th local block can be defined
as

wb ,
Ny∏

q=1

[
αq +G

(
2dq,b
`

)[
πoq
(
yq
∣∣Ef
)
− αq

]]
, (4.22)

where αq is a constant, dq,b is the distance between the q-th site and the centre of the b-th
local block, ` is the localisation radius, and G is the GC function3 defined in subsection 2.5.3.
Using equation (4.22), we immediately see that if dq,b is larger than `, then G(2dq,b/`) = 0
and yq does not contribute to wb, which is exactly the desired property.

The choice of the constants αNy:1 is delicate. Indeed, for any q ∈ (Ny : 1), αq affects the
transition between dq,b → 0 (full contribution of yq to wb) and dq,b →∞ (no contribution of
yq to wb). The choice of Poterjoy (2016) is to use αq = 1. However, the more precise the
q-th observation yq, the higher the maximum of πoq

(
yq|x

)
, which is why αq should have the

same order as the maximum of πoq
(
yq|x

)
as suggested by Farchi and Bocquet (2018). Another

solution, proposed by Poterjoy et al. (2019), is to define αq as the mean of πoq
(
yq|x

)
, which

can be estimated as

αq =
1

Ne

Ne∑

i=1

πoq
(
yq
∣∣xf(i)

)
. (4.23)

If the observation error eo follows a centred Gaussian distribution, with an observation
error covariance matrix R, the i-th element of the local importance weight vector wb of the
b-th local block can alternatively be defined as

lnwb(i) , −
1

2

[
y −H

(
xf(i)

)]T
R−1
b

[
y −H

(
xf(i)

)]
, (4.24)

where the tapered observation observation error covariance matrix Rb is defined in the same
way as for the implementation of DL in the EnKF, as described in paragraph 2.5.4.1. When
the observations are independent, R is diagonal, and equation (4.24) simplifies into

lnwb(i) = −
Ny∑

q=1

G

(
2dq,b
`

)[yq −Hq
(
xf(i)

)]2

2r2
q

, (4.25)

where r2
q and Hq are the variance and the observation operator corresponding to the q-th

observation. This formula is introduced by Shen et al. (2017) as a new formulation of the
wNb:1, however, one should keep in mind that this formula is directly inspired from the
application of DL to the EnKF, for example with the LETKF algorithm.

Both equation (4.22) and equation (4.24) have advantages and drawbacks. The generic

3Here, and everywhere else in this chapter, the GC function G could be replaced by any other smooth taper
function.
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Algorithm 4.1: Analysis step for a generic LPF–X algorithm.

Input: Ef , y

Parameters: πo, `, block shape

1 for b = 1 to Nb do

2 wb ← equation (4.22) or (4.24)

3 Er
|b ← Resampling

(
wb,E

f
|b
)

4 end

5 Ea ← Assembling
(
Er
|Nb:1

)

Output: Ea

formulation, equation (4.22), is defined if the observation error eo is not Gaussian, but only if
the observations are independent. By contrast, in the Gaussian formulation, equation (4.24),
the observations can be correlated, but the eo must be Gaussian. If the observation error eo

is Gaussian and if the observations are independent, both formulations are equivalent in the
following cases:

• in the limit of a zero localisation radius, `→ 0, and an infinite observation variance,
∀q ∈ (Ny : 1), r2

q →∞;

• in the limit of an infinite localisation radius `→∞.

In other cases, they may lead to different performances of the resulting LPF–X algorithms.

Remark 20. The terminology adopted in this paragraph (disk, radius, . . . ) fits two-dimensional
spatial spaces. Yet most geophysical models have a three-dimensional spatial structure, with
typical uneven vertical scales that are usually much shorter than horizontal scales. For these
models, the geometry of the local domains should be adapted accordingly.

4.2.2.4 The generic LPF–X algorithm

Algorithm 4.1 describes the analysis step for a generic LPF–X algorithm, in which the
matrices Ef

|b and Ea
|b designate the restriction of Ef and Ea to the b-th local block.4 The

definition of local blocks and domains is illustrated, in a two-dimensional physical space, in
figure 4.3.

4.2.2.5 Beating the curse of dimensionality

The feasibility of LPF–X algorithms is discussed by Rebeschini and van Handel (2015) through
the example of their block PF algorithm. In this algorithm, the distinction between local

4In other words, the rows of Ef
|b and Ea

|b are the rows of Ef and Ea corresponding to the grid points located
with the b-th local block.
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Figure 4.3: Illustration of the definition of the geometry for LPF–X algorithms in a
two-dimensional physical space. The local blocks are shown with black rectangles. The focus
is on the local block in the middle (blue rectangle), which gathers 12 grid points (blue circles).
The corresponding local domain is circumscribed by a red circle, with potential observation
sites outside the block (red diamonds).
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blocks and domains does not exist. The GC function G is replaced by a top-hat function, and
the resampling step is performed independently for each block, regardless of the boundaries
between blocks.

As presented in section 3.1, the mean squared error on the IS estimates is the sum of
the bias term and the variance term. The main mathematical result is that, under minimal
conditions, the bias term is related to the block boundaries and decreases exponentially with
the diameter of the blocks (measured in number of grid points). It is due to the fact that
the analysis does not exactly follows Bayes’ theorem any more, because only a subset of
observations is used to update each block. The exponential decrease is a demonstration of
the decay of correlations property. The variance term is computed using the central limit
theorem, and scales with expK/Ne. In the global PF, K is related the dimension of state
space Nx, whereas here K is the number of grid points inside each local block. This implies
that LPF–X algorithms can indeed beat the curse of dimensionality with a reasonably large
number of particles Ne.

4.2.3 The local resampling

As mentioned in subsection 4.2.1, resampling from the distribution whose pdf is given by
equation (4.20) does not cause any theoretical or technical issue. Indeed, the resampling
step is performed independently for each local block, and the (global) posterior ensemble
Ea is obtained by assembling the locally resampled ensembles Er

|Nb:1. This is the strategy
described in algorithm 4.1.

By doing so, adjacent local blocks are uncoupled. This is beneficial, because uncoupling is
a way to counteract the curse of dimensionality. On the other hand, regardless of the spatial
smoothness of the local importance weight vectors wNb:1, blind assembling is likely to yield
unphysical discontinuities, and hence imbalance, in Ea. More precisely, while assembling the
Er
|Nb:1, there is a high probability of obtaining composite particles. A posterior particle is

said to be a composite particle if it is composed of the i-th prior particle xf(i) on one local
block, and of the j-th prior particle xf(j) on an other local block, with j 6= i. In that case,
there is no guarantee that xf(i) and xf(j) are close, and that assembling them will represent
a physical state. A pathological example is illustrated, in one dimension, in figure 4.4.

In order to mitigate the unphysical discontinuities – and hence to mitigate the imbalance –
the local importance weight vectors wNb:1 must be spatially smooth, as already mentioned
in subsection 4.2.2. Furthermore, the resampling method must have some regularity, in order
to preserve part of the spatial structure held in the prior ensemble Ef . Potential solutions
are presented hereafter.

4.2.3.1 Applying a smoothing-by-weights step

Following the idea of Penny and Miyoshi (2016), a first solution is to add a smoothing-by-
weights after the resampling step. The goal of this additional step is to smooth out the
potential unphysical discontinuities by averaging in space the locally resampled ensembles
Er
|Nb:1.

Let Er
b be the Nx ×Ne matrix obtained by applying the resampling method to the (global)

prior ensemble Ef , weighted by the local importance weight vector wb of the b-th local block.
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Figure 4.4: Illustration of the formation of a composite particle in one dimension. The
yellow particle is the concatenation of the blue particle (left part) and of the green particle
(right part). In this situation, a large unphysical discontinuity appears at the boundary (red
dashed line).

The matrix Er
b is different from the matrix Er

|b introduced in subsection 4.2.2: indeed, Er
|b is

the restriction of Er
b to the b-th local block. The smoothed ensemble Es is then defined as

the Nx ×Ne matrix whose n-th row, i-th column element is

[Es]n,i ,

Nb∑

b=1

G

(
dn,b
`s

)
[Er

b]n,i

Nb∑

b=1

G

(
dn,b
`s

) , (4.26)

where dn,b is the physical distance between the n-th grid point and the centre of the b-th
local block, and where `s is the smoothing radius, a parameter potentially different from
the localisation radius `. Using this definition, the posterior ensemble Ea is computed as

Ea = αsEs + (1− αs)Er, (4.27)

where αs ∈ [0, 1] is the smoothing strength, a parameter to be determined, and where
the resampled ensemble Er is the ensemble obtained by assembling the locally resampled
ensembles Er

|Nb:1.

When αs = 0, no smoothing is performed and the update described in the generic LPF–X
algorithm is recovered. When αs = 1, Er is totally replaced by Es. Therefore, the smoothing
strength controls the intensity of the smoothing. Algorithm 4.2 describes the analysis step
for a generic LPF–X algorithm with smoothing-by-weights. The original LPF algorithm by
Penny and Miyoshi (2016) can be recovered if the following conditions are satisfied:

• the local blocks have a size of 1 grid point;
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Algorithm 4.2: Analysis step for a generic LPF–X algorithm with smoothing-by-

weights.

Input: Ef , y

Parameters: πo, `, block shape, `s, αs

1 for b = 1 to Nb do

2 wb ← equation (4.22) or (4.24)

3 Er
|b ← Resampling

(
wb,E

f
|b
)

4 Er
b ← Resampling

(
wb,E

f
b

)

5 end

6 Er ← Assembling
(
Er
|Nb:1

)

7 Es ← equation (4.26)

8 Ea ← αsEs + (1− αs)Er

Output: Ea

• the local importance weight vectors wNb:1 are computed using the Gaussian formulation,
equation (4.24);

• the GC function G is replaced by a top-hat function in equation (4.24) and in equa-
tion (4.26);

• the resampling method is the systematic resampling algorithm (algorithm 3.4);

• the smoothing radius `s is set to be equal to the localisation radius `;

• the smoothing strength αs is set to 1/2.

Algorithm 4.2 is a generalisation of their original LPF algorithm. The smoothing-by-weights
step is an ad hoc fix to reduce potential unphysical discontinuities after they have been
introduced in the local resampling step. Its necessity hints that there is room for improvement
in the design of the local resampling methods.

4.2.3.2 Simplification and generalisation of the smoothing-by-weights step

It turns out that the smoothing-by-weights step described in the previous paragraph can
be simplified as follows. Let ψb be the resampling map for the b-th local block, that is the
map (computed with wb) such that ψb(i) is the index of the i-th selected particle in the
resampling of the b-th local block. The construction of the resampling map ψ is explained in
algorithms 3.3 and 3.4 when using the multinomial or the systematic resampling algorithm.
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With this notation, the n-th element of the i-th particle in the smoothed ensemble Es can be
computed as

xsn(i) =

Nb∑

b=1

G

(
dn,b
`s

)
xfn
(
ψb(i)

)

Nb∑

b=1

G

(
dn,b
`s

) , (4.28)

and therefore the n-th element of the i-th particle in the posterior ensemble Ea is given by

xan(i) = (1− αs)xfn
(
ψn(i)

)
+ αs

Nb∑

b=1

G

(
dn,b
`s

)
xfn
(
ψb(i)

)

Nb∑

b=1

G

(
dn,b
`s

) , (4.29)

where ψn is defined as the resampling map corresponding to the local block in which the n-th
variable is located. This expression can be used to efficiently implement algorithm 4.2.

Furthermore, the smoothing-by-weights step is non-invasive, meaning that it is added
after the resampling step. As a consequence, it can be straightforwardly generalised to the
case where the resampling step is replaced by a linear transformation or transport step, as
presented in paragraphs 4.2.3.4 and 4.2.3.5.

4.2.3.3 Refinements of the resampling methods

In this paragraph, we examine several properties of the resampling methods which might
help dealing with the discontinuity issue.

• A resampling algorithm is said to be balanced if, for all i ∈ (Ne : 1), the number
of offspring of the i-th prior particle xf(i) does not differ by more than one unity
from New̄(i). For example, this is the case of the systematic resampling algorithm
(algorithm 3.4), but not of the multinomial resampling algorithm (algorithm 3.3).

• A resampling algorithm is said to be adjustment-minimising if the indices of the
resampled particles xr(Ne : 1) are reordered to maximise the number of indices i ∈ (Ne : 1)
such that the i-th resampled particle xr(i) is a copy of the i-th prior particle xf(i).
Both the multinomial and the systematic resampling algorithm can be simply modified
to yield adjustment-minimising resampling algorithms.

• While performing the resampling step independently for each local block, one can use
the same random number(s) in the local resampling of each local block.

Using the same random number(s) for the local resampling of all local blocks avoids a
stochastic source of unphysical discontinuity. Choosing balanced and adjustment-minimising
resampling algorithms is an attempt to include some kind of continuity in the map

{local weights} 7→ {locally resampled particles}, (4.30)
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by minimising the occurrences of composite particles. However, these properties cannot
eliminate all sources of unphysical discontinuity. Indeed, ultimately, composite particles will
be built (if not, then localisation would not be necessary) and there is no mechanism to
reduce the unphysical discontinuities in them. These properties have been first introduced in
the naive local ensemble Kalman particle filter (EnKPF) by S. Robert and Künsch (2017).

4.2.3.4 Using a linear transformation step instead of the resampling step

In this paragraph, we study the benefits of replacing the local resampling step by a linear
transformation step, using the example of the optimal ensemble coupling, described in
paragraph 3.3.3.1.

Applying the optimal ensemble coupling for the local update of the b-th local block results
in an optimisation problem which consists in finding the LET matrix T∗e ∈ T(wb) minimising
the cost function

Jb
[
Ef
](

Te

)
,

Ne∑

i=1

Ne∑

j=1

[
Te

]
i,j

[
Cb
(
Ef
)]
i,j
. (4.31)

In the (global) ETPF algorithm, the cost coefficients Cb
(
Ef
)

are defined as the squared
L2-distance between the particles in the prior ensemble Ef . Since the update here is local, it
seems more appropriate to use a local cost coefficient, such as

∀(i, j) ∈ (Ne : 1)2,
[
Cb
(
Ef
)]
i,j

,
Nx∑

n=1

G

(
dn,b
`d

)[
xfn(i)− xfn(j)

]2
, (4.32)

where dn,b is the distance between the n-th grid point and the centre of the b-th block, and
`d is the distance radius, a parameter to be determined.

Algorithm 4.3 describes the analysis step for a generic LPF–X algorithms using optimal
ensemble coupling. As a result from the minimisation, on each local block b ∈ (Nb : 1), T∗e
establishes a strong and deterministic connection between Ef

|b and Er
|b, the local prior and

posterior ensembles. Therefore, in this algorithm the spatial coherence is, at least partially,
transferred from the prior ensemble Ef to the posterior ensemble Ea.

Remark 21. Localisation has been first included in the ETPF algorithm by Cheng and Reich
(2015), in a similar way as the block localisation formalism. Hence Algorithm 4.3 can be seen
as a generalisation of the local ETPF of Cheng and Reich (2015) which includes the concept
of local blocks.

4.2.3.5 Using a transport step instead of the resampling step

In this paragraph, we study the benefits of replacing the local resampling step by a transport
step, as described in paragraph 3.3.3.2. In more than one dimension, the transport problem,
formulated by equation (3.64), is highly non-trivial, which is why in this paragraph, we
choose to restrict ourselves to the one-dimensional case. Therefore, local blocks cannot gather
more than one state variable and hence there is no distinction between local bocks and state
variables.
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Algorithm 4.3: Analysis step for a generic LPF–X algorithm using optimal

ensemble coupling.

Input: Ef , y

Parameters: πo, `, block shape, `d

1 for b = 1 to Nb do

2 wb ← equation (4.22) or (4.24)

3 Cb
(
Ef
)
← equation (4.32)

4 T∗e ← arg min
Te∈T(wb)

Jb
[
Ef
](

Te

)

5 Er
|b ← Ef

|bTe

6 end

7 Ea ← Assembling
(
Er
|Nb:1

)

Output: Ea

In this case, the update for the n-th variable is performed with the transport map Tn such
that

π̄an = T #
n π̄fn. (4.33)

In this equation, π̄an is the n-th marginal of the empirical analysis density, as introduced in
subsection 4.2.1, and π̄fn is the n-th marginal of the empirical forecast density, which, by
analogy with π̄an, must be defined as

π̄fn(xn) =

Ne∑

i=1

δ
(
xn − xfn(i)

)
. (4.34)

In order to obtain a non-discrete Tn, continuous representations are needed for π̄fn and π̄an.
An appealing approach is to use the regularisation framework presented in paragraph 3.3.2.2
to define π̄fn and π̄an as

π̄fn(xn) ,
Ne∑

i=1

K
[
xn − xfn(i)

hfσfn

]
, (4.35)

π̄an(xn|y) ,
Ne∑

i=1

w̄n(i)K
[
xn − xfn(i)

haσan

]
. (4.36)

The map K is the regularisation kernel, to be defined, hf and ha are the (normalised)
forecast and analysis regularisation bandwidths, two parameters to be determined, and
σfn and σan are the empirical standard deviations of the ensembles

{
xfn(i), i ∈ (Ne : 1)

}
and
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{(
wn(i), xfn(i)

)
, i ∈ (Ne : 1)

}
, given by

(
σfn
)2

,
1

Ne − 1

Ne∑

i=1


xfn(i)− 1

Ne

Ne∑

j=1

xfn(j)




2

, (4.37)

(
σan
)2

,
1

1− w̄T
nw̄n

Ne∑

i=1

w̄n(i)


xfn(i)−

Ne∑

j=1

w̄n(j)xfn(j)




2

. (4.38)

As mentioned in paragraph 3.3.3.2, the transport condition, equation (4.33) may admit
more than one solution. Therefore, we choose to use, for the update for the n-th variable,
the transport application T ∗n which minimises the cost function

Jn(Tn) =

∫ (
xn − Tn(xn)

)2
π̄fn(xn) dxn, (4.39)

over all transport applications Tn satisfying equation (4.33). In the statistical literature, the
optimal transport application T ∗n is also known as the anamorphosis between π̄fn and π̄an,
and it can be computed as

T ∗n =
(
φan
)−1 ◦ φfn, (4.40)

where φfn and φfn are the cumulative density function (cdf)s of π̄fn and π̄an.

According to the KDE theory (Silverman 1986; Musso et al. 2001), when the underlying
distribution is Gaussian, the optimal shape for the regularisation kernel K is the Epanechnikov
kernel (quadratic functions). Yet there is no reason to think that this will also be the case
for π̄fn and π̄an. Besides, the Epanechnikov kernel, having a finite support, generally leads to
a poor representation of the distribution tails, and it is a potential source of indetermination
in the definition of the cdfs. That is why a more common approach is to use a Gaussian
regularisation kernel K. However, in this case, the cost of computing the cdf of K (namely,
the error function) becomes significant. Hence, as an alternative, we choose to use the
Student’s t-distribution with two degrees of freedom. Its pdf is visually similar to a Gaussian
density with heavy tails, as illustrated in figure 4.5, and its cdf is fast to compute. Moreover,
it was shown to yield a better representation of the forecast density πf than a Gaussian
distribution in an EnKF context (Bocquet et al. 2015). The use of a regularisation kernel
K different from the Dirac kernel δ is necessary to obtain continuous transport maps TNx:1,
although it introduces an additional bias in the analysis. The magnitude of the regularisation
is controlled by the forecast and analysis regularisation bandwidths hf and ha. Dirac kernels
are recover in the limit hf → 0 and ha → 0.

Algorithm 4.4 describes the resulting analysis step for a generic LPF–X algorithm using
anamorphosis. The anamorphosis is, as well as the optimal ensemble coupling presented
in the previous paragraph, a deterministic transformation. This means that unphysical
discontinuities due to different random realisations over the grid points are avoided. As
explained by Poterjoy (2016), for any state variable n ∈ (Nx : 1), the posterior particles
xan(Ne : 1) obtained with the anamorphosis have the same quantiles as the prior particles
xfn(Ne : 1). The quantile property should, to some extent, be regular in space – for example if
the spatial discretisation is fine enough – and this kind of regularity is transferred from the
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Figure 4.5: Illustration of the pdfs of the Student’s t-distribution with two degrees of
freedom (in blue), and of the Gaussian distribution N [0, 1] (in red). Visually, both pdfs are
similar, but the pdf of the Student’s t-distribution with two degrees of freedom has heavier
tails.

prior ensemble Ef to the posterior ensemble Ea.

The refinements of the resampling methods, introduced in paragraph 4.2.3.3, are designed
to minimise the number of unphysical discontinuities in the local resampling step. The goal
of the additional smoothing-by-weights step, introduced in paragraph 4.2.3.1, is to mitigate
potential unphysical discontinuities after they have been introduced. By contrast, the local
transformation methods based on optimal transport – both the optimal ensemble coupling
introduced in the previous paragraph and the anamorphosis introduced in this paragraph –
are designed to mitigate the unphysical discontinuities themselves. This theoretical advantage
is largely validated by the numerical experiments of chapter 5.

Remark 22. The design of the local transformation based on anamorphosis is inspired from
the kernel density distribution mapping (KDDM) step of the LPF algorithm of Poterjoy
(2016), which is introduced in subsection 4.3.2. However, the use of optimal transport has
different purposes. As presented here, the anamorphosis transformation is used to transport
the prior ensemble Ef towards the empirical analysis density π̄a, whereas the KDDM step
described by Poterjoy (2016) is designed to correct the posterior ensemble Ea (which has
already been transformed) with consistent high-order statistical moments.

4.3 The LPF–Y algorithms: a sequential localisation framework

In the block localisation framework introduced in the previous section, the ensemble update is
performed independently for each local block. In this section, we adopt a different approach:
after the sampling step, the observations are assimilated sequentially, with the constraint
that each observation should only influence the neighbourhood grid points. The general idea
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4.3 The LPF–Y algorithms: a sequential localisation framework

Algorithm 4.4: Analysis step for a generic LPF–X algorithm using anamorphosis.

Input: Ef , y

Parameters: πo, `, hf , ha

1 for n = 1 to Nx do

2 wn ← equation (4.22) or (4.24)

3 σfn ← equation (4.37)

4 σan ← equation (4.38)

5 for i = 1 to Ne do

6 xrn(i)←
(
φan
)−1 ◦ φfn

(
xfn(i)

)

7 end

8 end

9 Ea ← Assembling
(
xrNx:1(Ne : 1)

)

Output: Ea

is that this sequential framework can be used to design local updates as smooth as possible
in space, which would mitigate the imbalance.

Following the starting point for LPF–X algorithms, the sampling step is performed with
an equally weighted ensemble E, using the standard proposal. Again, this means that the
sampling step is equivalent to a forecast step, and that the local sequential updates can be
considered as the analysis step. Such LPF algorithms are called LPF–Y algorithms, where
the –Y extension emphasises the fact that there is one update per observation.

In this section, we keep the simplifications in notation introduced in the previous section.
The new localisation framework is introduced in subsection 4.3.1, and two examples of LPF–Y
algorithms are provided in subsections 4.3.2 and 4.3.3.

4.3.1 The sequential localisation framework

4.3.1.1 Partitioning the state space

Following S. Robert and Künsch (2017), for the assimilation of the q-th observation yq, the
state space RNx is divided into three regions.

1. The first region U contains all variables with a direct contribution to yq. If the
observation operator H is linear, with matrix H, this corresponds to the columns of H
with non-zero elements on the q-th row.

2. The second region V gathers all variables which are deemed correlated to those in U.

3. The third region W contains all remaining variables.
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4 Localisation in the particle filter: methodological aspects

Figure 4.6: Illustration of the q-th UVW partition for LPF–Y algorithms in a two-
dimensional physical space. The site of the q-th observation yq is depicted by a green mark.
The local regions U and V are circumscribed by the thick green and blue circles, and contain
1 and 20 grid points (green and blue circles), respectively. The global region W contain the
remaining 43 grid points (red diamonds).

The meaning of correlated is to be understood as a prior hypothesis, where we define a valid
localisation matrix ρ representing the decay of correlations in the physical space. Most of
the time, ρ is constructed exactly as for CL in the EnKF, using equation (2.54), in which
the localisation radius ` is a free parameter.

The UVW partition of the state space RNx is a generalisation of the original LG partition
introduced by Bengtsson et al. (2003), in which the regions U and V are gathered into a single
region L, the local region of yq, and the region W is called G, the global region. Figure 4.6
illustrates this UVW partition in a two-dimensional physical space. We emphasise that both
the LG and the UVW partitions of the state space RNx depend on yq, and therefore they are
fundamentally different from the local state block framework introduced in subsection 4.2.2.

In the sequential framework, the goal of the q-th update is to estimate the q-th conditional
density π[x|yq], in which the conditioning with respect to the previous observations yq−1:1

5

is implicit. Therefore, in the following paragraphs, we study the factorisation of π[x|yq].
For simplicity, the restriction of a vector x ∈ RNx to a region A of the state space, xn∈A, is
written xA.

5Which is an empty set if q = 1.
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4.3 The LPF–Y algorithms: a sequential localisation framework

Algorithm 4.5: Analysis step for a generic LPF–Y algorithm using the LG parti-

tion.

Input: Ef , y

Parameters: πo, ρ

1 E ← Ef // initialise the sequential updates

2 for q = 1 to Ny do

3 From ρ, build the LG partition // as described in paragraph 4.3.1.1

4 for i = 1 to Ne do

5 Do not update xG(i)

6 Update xL(i) conditionally to xG(i) and yq

7 end

8 end

9 Ea ← E

Output: Ea

4.3.1.2 The conditional density with the LG partition

Without loss of generality, the q-th conditional density π[x|yq] is decomposed into

π[x|yq] = π[xL,xG|yq], (4.41)

= π[xL|xG,yq]π[xG|yq]. (4.42)

In a localisation context, it seems reasonable to assume that the U region and yq are
independent, which means that

π[xG|yq] = π[xG]. (4.43)

The resulting factorisation for π[x|yq] is

π[x|yq] = π[xL|xG,yq]π[xG]. (4.44)

From this factorisation, we conclude the generic analysis method described in algorithm 4.5,
in which the ensemble E is gradually updated from Ef to Ea using Ny local sequential
updates.
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4.3.1.3 The conditional density with the UVW partition

With the UVW partition, the q-th conditional density π[x|yq] is factored as

π[x|yq] = π[xU,xV,xW|yq], (4.45)

=
π[xU,xV,xW,yq]

π[yq]
, (4.46)

=
π[yq|x]π[xV|xU,xW]π[xU,xW]

π[yq]
, (4.47)

=
π[yq|xU]π[xV|xU,xW]π[xU,xW]

π[yq]
. (4.48)

If one assumes that the U and W regions are not only uncorrelated but also independent,
then one can make the additional factorisation

π[xU,xW] = π[xU]π[xW]. (4.49)

Finally, π[x|yq] is

π[x|yq] =
π[yq|xU]π[xU]

π[yq]
π[xV|xU,xW]π[xW], (4.50)

= π[xU|yq]π[xV|xU,xW]π[xW]. (4.51)

From this factorisation, we conclude the generic analysis method described in algorithm 4.6,
in which, again, the ensemble E is gradually updated from Ef to Ea using Ny local sequential
updates.

4.3.1.4 The partition and the particle filter

So far, the sequential localisation framework looks elegant. The resulting generic analysis
methods gradually update the ensemble E from Ef to Ea. Furthermore, by using conditional
local sequential updates, they have the potential to avoid the discontinuity issue inherent to
the block localisation framework, and hence to mitigate the imbalance.

However, in a PF context, where the pdfs are approximated by sums of Dirac kernels,
non-zero factors in π[x|yq] can only be avoided if the posterior particles are copies of the
prior particles. This would spoil the entire purpose of localisation, and this is why potential
solutions need to make approximations of π[x|yq].

4.3.1.5 The multivariate rank histogram filter

Similar principles have been used to design the multivariate rank histogram filter (MRHF)
algorithm of Metref et al. (2014), with the main difference being that the state space RNx is
entirely partitioned as follows. Assuming that the q-th observation yq only depends on the
first element of the state vector x1, π[x|yq] can be written

π[x|yq] = π[x1|yq]
Nx−1∏

n=1

π[xn+1|xn:1]. (4.52)
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4.3 The LPF–Y algorithms: a sequential localisation framework

Algorithm 4.6: Analysis step for a generic LPF–Y algorithm using the UVW

partition.

Input: Ef , y

Parameters: πo, ρ

1 E ← Ef // initialise the sequential updates

2 for q = 1 to Ny do

3 From ρ, build the UVW partition // as described in paragraph 4.3.1.1

4 for i = 1 to Ne do

5 Do not update xW(i)

6 Update xU(i) conditionally to yq

7 Update xV(i) conditionally to xW(i) and (the updated) xU(i)

8 end

9 end

10 Ea ← E

Output: Ea
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In the analysis step of the MRHF algorithm, the state variables are updated sequentially
according to the densities π[xn+1|xn:1], n ∈ (Nx − 1 : 1). Zero factors in the n-th conditional
density π[xn+1|xn:1] are avoided by using a kernel representation for the conditioning with
respect to xn:1, in a similar way as in equations (4.35) and (4.36), but using top-hat functions
for the regularisation kernel K. The resulting one-dimensional density along the (n+ 1)-th
variable xn+1 is represented using histograms, and the particles are transformed using the
anamorphosis method, as described in subsection 4.2.3.

The MRHF could be used as a potential implementation of the block localisation frame-
work. However, assimilating only one observation requires the computation of Nx different
anamorphosis transformations.

4.3.1.6 Towards an implementation of the sequential localisation framework

In the following subsections, we introduce two different algorithms which implement the
sequential localisation framework with the UVW partition. Both algorithms are based on
an importance, resampling, propagation scheme as follows. In order to assimilate the q-th
observation yq, we first compute a global importance weight vector w using

w = πoq (yq|E), (4.53)

where E denotes here the current ensemble, that is the ensemble after the assimilation of
the first q − 1 observations. Using w, a resampling map ψ is computed and applied to the U
region (essentially at the q-th observation site). This update is then propagated to the V
region using a dedicated propagation algorithm.

4.3.2 An hybrid method for the propagation

In this subsection, we describe how the LPF algorithm of Poterjoy (2016) implements the
sequential localisation framework. In order to simplify the presentation, we only describe the
assimilation of the q-th observation yq. Furthermore, the ensemble E before the assimilation
of yq (and hence after the assimilation of the first q − 1 observations) is called here the prior
ensemble, and written Ef , and the ensemble E after the assimilation of yq is called here the
posterior ensemble, and written Ea.

4.3.2.1 First step: importance and resampling

First, a global importance weight vector w is computed using

w = πoq
(
yq|Ef

)
. (4.54)

In a second time, w is used to compute a resampling map ψ using, for example, the systematic
resampling algorithm.

4.3.2.2 Second step: propagation

The resampling described by ψ is then propagated using an hybrid method mixing the global
PF update and the prior ensemble Ef . With this method, the n-th variable of the i-th
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posterior particle xa(i) is obtained as

xan(i) = x̄an + ωa
n

[
xfn
(
ψ(i)

)
− x̄an

]
+ ωf

n

[
xfn(i)− x̄an

]
, (4.55)

where x̄an is the posterior mean of the n-th variable, defined using the local importance weight
vector wn as

x̄an ,
Ne∑

i=1

w̄n(i)xfn(i). (4.56)

In equation (4.55), the prior and posterior update weights ωf
n and ωa

n control the magnitude
of the PF update. They are chosen in such a way that Ea yields correct statistics at the first
order:

1

Ne

Ne∑

i=1

xan(i) = x̄an, (4.57)

and at the second order:

1

Ne − 1

Ne∑

i=1

(
xan(i)− x̄an

)2
= (σan)2, (4.58)

where (σan)2 is the posterior variance of the n-th variable, defined by

(σan)2 ,
1

1− w̄T
nw̄n

Ne∑

i=1

w̄n(i)
(
xfn(i)− x̄an

)2
. (4.59)

As shown by Poterjoy (2016), if the wNx:1 are computed using the generic formulation,
equation (4.22), then a solution to this problem is to use

cn =

αqNe

[
1−G

(
2dq,n
`

)]

G

(
2dq,n
`

) Ne∑

i=1

w(i)

, (4.60)

ωa
n =

σan[
1

Ne − 1

Ne∑

i=1

[
xfn
(
ψ(i)

)
− x̄an + cn

{
xfn(i)− x̄an

}]2
]1/2

, (4.61)

ωa
n = cnω

a
n, (4.62)

where w(i) is the i-th element of the global importance weight vector w given by equa-
tion (4.54), and where dq,n is the distance between the q-th site and the n-th grid point.

At the q-th site (i.e., when dq,n → 0) ωf
n = 0 and ωa

n = 1, and equation (4.55) matches the
global PF update. Far from the q-th site (i.e., when dq,n ≥ `) ωf

n = 1 and ωa
n = 0, and there

is no update. Therefore, the i-th updated particle xa(i) is a composite particle between the
i-th prior particle xf(i), in the W region, and the hypothetical i-th updated particle xf

(
ψq(i)

)

which would be obtained with the global PF, in the U region. In-between, in the V region,
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Algorithm 4.7: Single analysis step for a generic LPF–Y algorithm using the

hybrid propagation method.

Input: Ef , yq

Parameters: πoq , `, αq

1 w ← πoq
(
yq|Ef

)

2 ψ ← ResamplingMap
(
w,Ef

)

3 for n = 1 to Nx do

4 ωa ← equation (4.61)

5 ωf ← equation (4.62)

6 for i = 1 to Ne do

7 xan(i)← x̄an + ωa
n

[
xfn
(
ψ(i)

)
− x̄an

]
+ ωf

n

[
xfn(i)− x̄an

]

8 end

9 end

10 Ea ← E

Output: Ea

discontinuities are avoided by using a smooth transition for the prior and posterior update
weights ωf and ωa, as described by equations (4.61) and (4.62). Algorithm 4.7 summarises the
assimilation of yq for a generic LPF–Y algorithm using the propagation method of Poterjoy
(2016), hereafter called the hybrid propagation method.

In his original algorithm, Poterjoy (2016) included a weight inflation parameter which
can be ignored to understand how the algorithm works. Moreover, the Ny local sequential
updates are followed by an optional KDDM step. As explained in paragraph 4.2.3.5, we
found the KDDM step to be better suited for the local update of the LPF–X algorithms.
Therefore, we have not included these elements in our presentation the LPF algorithm of
Poterjoy (2016).

4.3.3 A second-order method for the propagation

In this subsection, we introduce a new method, in which the update is propagated using
second-order statistical moments. This method is inspired from the EnKPF algorithm, a
Gaussian mixture hybrid ensemble filter designed by S. Robert and Künsch (2017). For
simplicity, the notation introduced in the previous subsection is kept.
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4.4 Highlights

4.3.3.1 The prior covariance matrix

Because the update is propagated using second-order statistical moments, we first need to
compute the sample covariance matrix P̄f of the prior ensemble Ef . Moreover, in a localisation
context, it seems reasonable to use a localised representation of the covariance, as introduced
in subsection 2.5.3 for CL in the EnKF. Therefore, P̄f is here computed using

X = Ef
(
I− 11T/Ne

)
/
√
Ne − 1, (4.63)

P̄f = ρ ◦
(
XXT

)
, (4.64)

where ρ is the localisation matrix introduced in paragraph 4.3.1.1 for the definition of the
partition.

4.3.3.2 First step: importance and resampling

As in the first step of the LPF–Y algorithm with the hybrid propagation method, described
in paragraph 4.3.2.1, we first compute a global importance weight vector w and a resampling
map ψ. For each particle i ∈ (Ne : 1), we then compute the update on the U region as

∆xU(i) , xf
U

(
ψ(i)

)
− xf

U(i). (4.65)

4.3.3.3 Second step: propagation

For each particle i ∈ (Ne : 1), the update on the U region, ∆xU(i), is propagated to the V
region through the linear regression

∆xV(i) = P̄f
VU

(
P̄f

U

)−1
∆xU(i), (4.66)

where P̄f
VU and P̄f

U are the sub-matrices of P̄f corresponding to the U and V regions. The
full derivation of equation (4.66) can be found in S. Robert and Künsch (2017).

Finally, the update on the U and V regions is applied to obtain the posterior ensemble.
Algorithm 4.8 summarises the assimilation of the q-th observation yq for a generic LPF–Y
algorithm using this second-order propagation method.

4.3.3.4 Generalisation of the first step

Algorithm 4.8 can be straightforwardly generalised to the case where the resampling step
on the U region, described in paragraph 4.3.3.2, is replaced by a linear transformation or
transport step, following the method described in paragraphs 4.2.3.4 and 4.2.3.5 in the context
of the block localisation framework.

4.4 Highlights

We conclude this chapter by providing, in subsection 4.4.1, a short summary of the LPF
algorithms. Furthermore, in subsections 4.4.2 and 4.4.3, we study the algorithmic complexity
of the LPF algorithms, and in subsections 4.4.4 and 4.4.5, we study the behaviour of the
LPF algorithms in the limit of an infinite localisation radius, `→∞.
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Algorithm 4.8: Single analysis step for a generic LPF–Y algorithm using the

second-order propagation method.

Input: Ef , yq

Parameters: πoq , ρ

1 From ρ, build the UVW partition // as described in paragraph 4.3.1.1

2 X ← Ef
(
I− 11T/Ne

)
/
√
Ne − 1

3 P̄f
U ← ρU ◦

(
XUXT

U

)

4 P̄f
VU ← ρVU ◦

(
XVXT

U

)

5 w ← πoq
(
yq|Ef

)

6 ψ ← ResamplingMap
(
w,Ef

)

7 for i = 1 to Ne do

8 ∆xU(i)← xf
U

(
ψ(i)

)
− xf

U(i)

9 ∆xV(i)← P̄f
VU

(
P̄f

U

)−1
∆xU(i)

10 xa
U(i) ← xf

U(i) + ∆xU(i)

11 xa
V(i) ← xf

V(i) + ∆xV(i)

12 xa
W(i) ← xf

W(i)

13 end

Output: Ea
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4.4 Highlights

4.4.1 Summary: the LPF–X and LPF–Y algorithms

In section 4.2, a generic block localisation framework has been constructed to define the LPF–
X algorithms. The LPF–X algorithms are characterised by the geometry of the local blocks
and domains – in other words, by the definition of the local importance weight vectors wNb:1

– and by the method used to locally update the prior ensemble Ef . As shown by Rebeschini
and van Handel (2015), the LPF–X algorithms can beat the curse of dimensionality. However,
unphysical discontinuities are likely to arise after assembling the locally updated ensembles,
which can yield imbalance (van Leeuwen 2009). Four approaches have been proposed to
mitigate such discontinuities.

1. A smoothing-by-weights step can be applied after the local update in order to reduce
potential unphysical discontinuities. The method presented in the subsection 4.2.3.1
is a generalisation of the original smoothing designed by Penny and Miyoshi (2016)
which is suited to the use of local state blocks, and which includes a spatial tapering
controlled by the smoothing radius `s, and a smoothing strength parameter αs.

2. Simple properties of the local resampling algorithms can be used in order to minimise
the occurrences of unphysical discontinuity as shown by S. Robert and Künsch (2017).

3. Using the principles of optimal ensemble coupling, the local resampling can be replaced
by a linear transformation step. The resulting algorithm is a local variant of the ETPF
algorithm of Reich (2013), which can be seen as a generalisation of the algorithm of
Cheng and Reich (2015) suited to the use of local state blocks. By construction, on
each local block b, the distance between the local prior and posterior ensembles Ef

|b and
Er
|b is minimised.

4. By combining the continuous optimal transport problem with the KDE theory, a new
local update method, based on the anamorphosis, has been derived. Furthermore,
the properties of the anamorphosis have been shown to help mitigate the unphysical
discontinuities.

In section 4.3, a generic sequential localisation framework has been constructed to define
the LPF–Y algorithms. Two LPF–Y algorithms, both based on an importance, resampling,
propagation scheme have been presented.

1. The first algorithm uses the hybrid propagation method derived by Poterjoy (2016),
which mixes the prior ensemble Ef with the global PF update to define the posterior
ensemble Ea.

2. The second algorithm is inspired from the EnKPF algorithm of S. Robert and Künsch
(2017). It uses a propagation method based on localised second-order statistical
moments.

Both algorithms include some spatial smoothness in the construction of the posterior ensemble
Ea. In the first method, the smoothness comes from the definition of ωf

Nx:1 and ωa
Nx:1. In

the second method, the smoothness comes from the localised prior sample covariance matrix
P̄f . Therefore, we expect the unphysical discontinuities, and hence the imbalance, to be less
critical with these algorithms than with the LPF–X algorithms, which is why the partition
was introduced in the first place.
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4.4.2 Algorithmic complexity of the LPF–X algorithms

4.4.2.1 Auxiliary quantities

In order to study the algorithmic complexity of the LPF–X algorithms, we introduce the
auxiliary quantities

N `
y(`) , max

b∈(Nb:1)
Card

{
q ∈ (Ny : 1) \ dq,b ≤ `

}
, (4.67)

N `
x(`d) , max

b∈(Nb:1)
Card

{
n ∈ (Nx : 1) \ dn,b ≤ `d

}
, (4.68)

N `
b(`s) , max

n∈(Nx:1)
Card

{
b ∈ (Nb : 1) \ dn,b ≤ `s

}
. (4.69)

The quantity N `
y(`) is the maximum number of observations in a given local domain. It is a

generalisation of the definition provided in paragraph 2.5.4.1 which includes the concept of
local blocks. The quantity N `

x(`d) is the maximum number of variables whose grid point is
located within distance `d to the centre of a given local block. The quantity N `

b(`s) is the
maximum number of local blocks whose centre is located within distance `s to a given grid
point.

4.4.2.2 Algorithmic complexity of computing the local importance weight vectors

When the observations are independent, the local importance weight vectors wNb:1 are
given by equation (4.22) for the generic formulation, or by equation (4.25) for the Gaussian
formulation. In both cases, the algorithmic complexity is

O
(
NeTH +NbNeN

`
y(`)

)
,

which depends on the localisation radius `, and on the algorithmic complexity TH of applying
the observation operator H to a vector.

When the observations are not independent, the wNb:1 are given by equation (4.24) for
the Gaussian formulation. In this case, the algorithmic complexity is

O
(
NeTH +NbNe[N

`
y(`)]2

)
.

4.4.2.3 Algorithmic complexity of the local updates using resampling

When the local updates are performed with the multinomial or the systematic resampling
algorithm, the algorithmic complexity of each local update is

• O(Ne) to compute the resampling map ψ;

• O(Ne) per state variable to apply the resampling map ψ.

Therefore, the total complexity of the local updates is O(NxNe).
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4.4.2.4 Algorithmic complexity of the local updates using optimal ensemble coupling

When using optimal ensemble coupling for the local updates, the total algorithmic complexity
is higher, because we need to solve one optimisation problem per local block. The algorithmic
complexity of each local update is the sum of three terms.

• The algorithmic complexity of computing the local cost coefficients Cb
(
Ef
)
, given by

equation (4.32), is O
(
N2

eN
`
x(`d)

)
, which depends on the distance radius `d.

• The optimisation problem for the b-th local block consists in minimising the cost function
defined by equation (4.31) under the constraint Te ∈ T(wb). This is a particular case
of the minimum-cost flow problem, and hence it can be solved quite efficiently using
the algorithm of Pele and Werman (2009) with algorithmic complexity O

(
N2

e lnNe

)
.

• Applying the linear transformation to the local block has algorithmic complexity O
(
N2

e

)

per state variable.

Therefore, the total algorithmic complexity of the local updates is

O
(
NbN

2
eN

`
x(`d) +NbN

2
e lnNe +NxN

2
e

)
.

4.4.2.5 Algorithmic complexity of the local updates using anamorphosis

When using anamorphosis for the local updates, as presented in paragraph 4.2.3.5, every
one-dimensional transformation is computed with algorithmic complexity O(Np), where Np

is the one-dimensional resolution for each state variable. Therefore, the total algorithmic
complexity of the local updates is

O(NxNeNp).

4.4.2.6 Algorithmic complexity of the additional smoothing-by-weights step

When using the smoothing-by-weights step with the multinomial or the systematic resampling
algorithm (as presented in paragraph 4.2.3.2), the smoothed ensemble Es is computed with
algorithmic complexity O

(
NxNeN

`
b(`s)

)
, which depends on the smoothing radius `s, and the

posterior ensemble Ea is computed with algorithmic complexity O(NxNe). Therefore, the
total algorithmic complexity of the resampling and the smoothing steps is

O
(
NxNeN

`
b(`s)

)
.

4.4.2.7 Summary table

The algorithmic complexity for each step of the LPF–X algorithms is summarised in table 4.1.
Finally, the local updates are by construction embarrassingly parallel. Therefore, the total
complexity of the analysis step of the LPF–X algorithms can be reduced by a factor Nt, the
number of threads running in parallel.
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Table 4.1: Summary table for the algorithmic complexity of the LPF–X algorithms.

Compute the local importance weight vectors

Diagonal case O
(
NeTH +NbNeN

`
y(`)

)

Non-diagonal case – Gaussian form O
(
NeTH +NbNe[N

`
y(`)]2

)

Perform the local updates – multinomial or systematic resampling

Compute the resampling maps O(NbNe)
Apply the resampling maps O(NxNe)

Perform the local updates – optimal ensemble coupling

Compute the local cost coefficients O
(
NbN

2
eN

`
x(`d)

)

Compute the optimal LET matrices O
(
NbN

2
e lnNe

)

Apply the linear transformations O
(
NxN

2
e

)

Perform the local updates – anamorphosis

Compute and apply the transformation O(NxNeNp)

Additional smoothing-by-weights step

Compute the smoothed ensemble O
(
NxNeN

`
b(`s)

)

Compute the posterior ensemble O(NxNe)

4.4.3 Algorithmic complexity of the LPF–Y algorithms

4.4.3.1 Auxiliary quantities

In order to study the algorithmic complexity of the LPF–Y algorithms, we introduce the
auxiliary quantities NU and NV, defined as the maximum number of state variables in the U
and V regions, and NUV = NU +NV. Furthermore, the quantity N `

x(`d) is now defined as

N `
x(`d) , max

q∈(Ny:1)
Card

{
n ∈ (Nx : 1) \ dn,q ≤ `d

}
. (4.70)

In other words, N `
x(`d) is the maximum number of variables whose grid point is located

within distance `d to the site of a given observation.

4.4.3.2 Algorithmic complexity for the hybrid propagation method

When using the hybrid propagation method, the algorithmic complexity of assimilating the
q-th observation yq is

• O(Ne) to compute the global importance weight vector w and the resampling map ψ;

• O(Ne) per state variable to compute the prior and posterior update weights ωf and ωa,
and to compute the posterior ensemble Ea.

Therefore, the total algorithmic complexity of each local sequential update is O(NeNUV).
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4.4.3.3 Algorithmic complexity for the second-order propagation method

When using the second-order propagation method, the algorithmic complexity of assimilating
the q-th observation yq is

• O(NeNU) to compute the update in the U region with the multinomial or the systematic
resampling algorithm;

• O
(
N2

eN
`
x(`d) + N2

e lnNe + NUN
2
e

)
to compute the update in the U region with the

optimal ensemble coupling;

• O(NeNUNp) to compute the update in the U region with the anamorphosis using a
fixed one-dimensional resolution of Np points;

• O
(
N3

U

)
to compute the inverse of the NU ×NU-matrix P̄f

U;

• O
(
NeN

2
U +NeNVNU

)
to compute the update on the V region using the linear regression

given by equation (4.66).

• O(NeNUV) to apply the update to the NUV variables in the U and V regions.

4.4.3.4 Summary table

The algorithmic complexity for each step of the LPF–Y algorithms is summarised in table 4.2.
By construction, the Ny local sequential updates are not parallel. This issue is discussed
by S. Robert and Künsch (2017): some level of parallelisation could be introduced in the
algorithms, but only between observations for which the U and V regions are disjoint. That
is to say, one can assimilate the observations at several sites in parallel as long as their
domains of influence (in which an update is needed) do not overlap. This would require
a preliminary geometric step to determine the order in which the observations are to be
assimilated. This step would need to be performed again whenever the localisation radius
` is changed. Moreover, when ` is large enough, all U and V regions may overlap, and
parallelisation is not possible.

4.4.4 Asymptotic limit of the LPF–X algorithms

As discussed in section 3.5, under minimal conditions, the empirical analysis density π̄a of
the PF weakly converges towards the analysis density πa in the limit of an infinite ensemble,
Ne →∞. In the limit of an infinite localisation radius, `→∞, the local importance weight
vectors wNb:1, as defined by equation (4.22) or equation (4.24), all converge towards the
global importance weight vector w, as defined by equation (4.21). However, this does not
necessarily imply that the resulting LPF–X assimilation cycle is equivalent to a global PF
assimilation cycle, precisely because the local updates are by construction independent. In
the following paragraphs, we study under which conditions the LPF–X assimilation cycle can
nevertheless be equivalent to a global PF assimilation cycle.
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Table 4.2: Summary table for the algorithmic complexity of the LPF–Y algorithms. For a
full assimilation cycle (Ny local sequential updates), the algorithmic complexity is increased
by a factor Ny.

With the hybrid propagation method

Compute the resampling map O(Ne)
Propagate the update to the U and V regions O(NeNUV)

With the second-order propagation method – resampling

Compute the update in the U region O(NeNU)
Compute the update in the V region O

(
N3

U +NeN
2
U +NeNVNU

)

Apply the update in the U and V regions O(NeNUV)

With the second-order propagation method – optimal ensemble coupling

Compute the update in the U region O
(
N2

eN
`
x(`d) +N2

e lnNe +NUN
2
e

)

Compute the update in the V region O
(
N3

U +NeN
2
U +NeNVNU

)

Apply the update in the U and V regions O(NeNUV)

With the second-order propagation method – anamorphosis

Compute the update in the U region O(NeNUNp)
Compute the update in the V region O

(
N3

U +NeN
2
U +NeNVNU

)

Apply the update in the U and V regions O(NeNUV)
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4.4.4.1 Asymptotic limit for the algorithms using resampling

When the local updates are performed with the multinomial or the systematic resampling
algorithm, the LPF–X assimilation cycle is equivalent to the assimilation cycle of the SIR
algorithm, algorithm 3.2, in the limit of an infinite localisation radius, `→∞, if, and only if
the same random number(s) are used in the local resampling of all local blocks.

In all other cases, the posterior ensemble Ea is by construction distributed according to
the product of the marginals of the empirical analysis density π̄aNx:1, given by equation (4.20),
which is in general different from the empirical analysis density π̄a of the PF, even in the
limit of an infinite localisation radius, `→∞, and of an infinite ensemble, Ne →∞.

4.4.4.2 Asymptotic limit for the algorithms using optimal ensemble coupling

The local cost coefficients Cb
(
Ef
)
, given by equation (4.32), converges towards the global

cost coefficients of the global ETPF algorithm, algorithm 3.5, deduced from equation (3.61),
in the limit of an infinite distance radius, `d → ∞. Moreover, in the limit of an infinite
localisation radius, `→∞, the wNb:1 converge towards w, in which case the constraints of
the local optimisation problems are equivalent to those of the global optimisation problem in
the ETPF algorithm. Therefore, when using optimal ensemble coupling for the local updates,
the LPF–X assimilation cycle is equivalent to the assimilation cycle of the ETPF algorithm
in the limit of an infinite localisation radius, `→∞, and an infinite distance radius, `d →∞.

4.4.4.3 Asymptotic limit for the algorithms using anamorphosis

When using anamorphosis for the local updates the transport condition, equation (4.33), is
defined independently for each state variable. Therefore, there is no proof that the LPF–X
update follows Bayes’ theorem, even in the limit of a zero forecast and analysis regularisation
bandwidths, hf → 0 and ha → 0, of an infinite localisation radius, `→∞, and of an infinite
ensemble, Ne →∞.

4.4.4.4 Asymptotic limit for the algorithms using the smoothing-by-weights step

When using the smoothing-by-weights step with the multinomial or the systematic resampling
algorithm, the smoothed ensemble Es is equal to the locally resampled ensemble Er in the
limit of an infinite localisation radius, `→∞, if, and only if the same random number(s) are
used in the local resampling of all local blocks. In this case, the LPF–X assimilation cycle is
equivalent to the assimilation cycle of the SIR algorithm. In all other cases, we cannot give a
firm answer, for the exact same reasons as in paragraph 4.4.4.1.

4.4.5 Asymptotic limit of the LPF–Y algorithms

By construction of the prior and posterior update weights ωf and ωa, assimilating the q-th
observation yq with the LPF–Y algorithm using the hybrid propagation method is equivalent
to assimilating yq with the SIR algorithm in the limit of an infinite localisation radius, `→∞.
Therefore, a full assimilation cycle of the LPF–Y algorithm based on the hybrid propagation
method is equivalent to a sequential version of the SIR algorithm in the limit of an infinite
localisation radius, `→∞.

113



4 Localisation in the particle filter: methodological aspects

By contrast, this is not the case for the LPF–Y algorithm based on the second-order
propagation method. Indeed, in general, using second-order moments to propagate the
update introduces a bias in the analysis.

4.5 Summary and discussion

The curse of dimensionality is a rather well-understood phenomenon in the statistical literature,
and it is the main reason why the PF fails in high-dimensional DA systems. In this chapter,
we have recalled the main results related to the weight degeneracy in the PF, and why the
use of localisation can be used as a solution. Yet implementing localisation in the PF raises
two major issues: how to glue together locally updated particles and how to avoid imbalance
in the updated ensemble. Adequate solutions to these issues are not obvious, witness the few
but dissimilar LPF algorithms developed in the geophysical literature. We have proposed
a theoretical classification of LPF algorithms into two categories. For each category, we
have presented the challenges of local particle filtering and have reviewed the ideas leading
to practical implementation of LPF algorithms. Some of them, already in the literature,
have been detailed and sometimes generalised, while others are new in this field and yield
improvements in the design of LPF algorithms.

In the LPF–X algorithms, the analysis is localised by allowing the importance weight vector
to vary over the grid points. We have shown that this yields an analysis density from which
only the marginals are known. The (global) analysis ensemble is obtained by assembling
the locally updated particles, and its quality directly depends on the regularity of the local
update method. This is related to potential unphysical discontinuities, and hence imbalance,
in the assembled particles. Therefore we have presented practical methods to improve the
local updates by reducing the unphysical discontinuities.

In the LPF–Y algorithms, localisation is introduced more generally in the analysis density
by the means of a partition. The goal of the partition is to build a framework for local
particle filtering without the discontinuity issue inherent to the LPF–X algorithms. We
have shown how two methods can be used as an implementation of this framework. Besides,
we have emphasised the fact that with these methods, observations are, by construction,
assimilated sequentially, which is a great disadvantage when the number of observations of
the DA system is high.
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This chapter is a direct continuation of chapter 4. Following Farchi and Bocquet (2018),
the LPF algorithms are implemented and tested using twin experiments. Section 5.1 presents
the DA systems which are selected for these illustrations. The numerical experiments are
then described in sections 5.2 and 5.3. Finally, conclusions are given in section 5.4.

5.1 Presentation of the numerical experiments

5.1.1 Twin experiments and performance criteria

In this chapter, the performance of the DA algorithms are illustrated using twin experi-
ments. First, a synthetic trajectory (xt

k)k∈Nc: is simulated for the truth. Then, a synthetic
sequence (yk)k∈Nc: is simulated for the observation vector. Finally, the observation vectors
are used to perform Nc assimilation cycles with a given DA algorithm.
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The main interest of this controlled context lies in the fact that the background, observation,
and transition distributions νb, νo, and νm of the DA system are perfectly known, and these
elements can be used as is in the DA algorithms. Since the truth xt is perfectly known, it can
be used to measure the performance of the DA algorithm. The most widespread approach is
to compute the root-mean-square error (RMSE) between the analysis estimate xa and the
truth xt, defined as

Rk ,

[
1

Nx

∥∥xa
k − xt

k

∥∥2

2

]1/2

. (5.1)

This instantaneous RMSE is usually averaged over the time period t ∈ (Nc :Ns), where
t ∈ (Ns :) is considered as a spin-up period, during which the influence of the initialisation
is progressively eliminated. Under the assumption that the dynamical system is ergodic,
the average over time is equivalent to an average over the probability space. The resulting
performance score is independent of specific realisations of the model and observation errors
em and eo and is representative of the expected distance between xa and xt. In this thesis, it
is called the time-average analysis RMSE, or simply the RMSE score.

By construction, the RMSE score only directly measures the accuracy of the analysis
estimate xa. The primary goal in DA is precisely to estimate the truth xt. However, as
formalised in subsection 1.1.4, the ultimate goal in filtering DA should be to estimate the
analysis density πa. However, even with low-order DA systems, the exact πa is usually
unknown. Moreover, even if πa would be exactly known, the definition and the computation
of a distance in the space of the pdfs over the state space RNx is challenging. By contrast,
the RMSE score provides a clear and unique performance score, which can be used to rank
different DA algorithms.

In ensemble DA methods, the ensemble E provides information beyond the estimate of
the truth xt. This information is a priori not reflected in the RMSE score. For this reason,
complementary tools exist to measure the quality of an ensemble E such as, for example,
the rank histograms or Talagrand diagrams (Anderson 1996; Hamill and Colucci 1997;
Talagrand et al. 1997). The rank histogram can be defined, for a variable n ∈ (Nx : 1), as
the empirical frequencies of the rank of xt in the ensemble E. Ideally, xt and E should be
drawn from the same distribution. This means that xt should be indistinguishable from the
members of E, and the histogram should be flat. Compared to the RMSE score, the rank
histograms provide more information (one histogram per state variable) but they are harder
to interpret, and they do not yield a clear ranking of different DA algorithms. Furthermore,
for a sufficiently high number of assimilation cycles Nc, it seems likely that good RMSE
scores can only be achieved with an ensemble E of good quality in the light of most other
indicators. This is why in most numerical experiments in this thesis, we adopt the RMSE
score as performance criterion.

The following subsections describe the DA systems selected for the experiments in this
chapter.
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5.1.2 The Lorenz 1996 model

5.1.2.1 The dynamical model

The Lorenz 1996 (L96) dynamical model (Lorenz and Emanuel 1998) is a low-order one-
dimensional discrete chaotic model whose evolution is given by the following set of ordinary
differential equations (ODE):

∀n ∈ (Nx : 1),
dxn
dt

= (xn+1 − xn−2)xn−1 − xn + F, (5.2)

where xn is the n-th variable of the vector x, and where the indices are to be understood with
periodic boundary conditions: x−1 = xNx−1, x0 = xNx , and x1 = xNx+1. The dimension of
the state space Nx can take arbitrary values. These ODEs are integrated using a fourth-order
Runge–Kutta method with an integration time step δt of 0.05 unit of time, and without
model error.

5.1.2.2 The mildly nonlinear configuration

For the L96 model, we define a mildly nonlinear DA configuration as follows. The dimension
of the state space is Nx = 40 and the forcing term is F = 8. The resulting dynamics is
chaotic, with a doubling time around 0.42 unit of time. The time interval between consecutive
observations ∆t is set to 0.05 unit of time. This is meant to represent 6 h of real time, and it
corresponds to a model autocorrelation around 0.967. Finally, the observation vector y is
computed from the truth xt using

yk = xt
k + eok, eok ∼ N [0, I], (5.3)

where the individual observation variance (namely 1) is approximately one tenth of the typical
variability of each state variable.

This configuration is widely used in the DA literature to asses the performances of the DA
algorithms. The nonlinearities are weak and representative of the synoptic scale meteorology,
and they only come from the integration of the ODEs defined by equation (5.2). As a
consequence, the error distributions are close to Gaussian. Furthermore, the number of
unstable and neutral modes of the dynamics is 14.

5.1.2.3 The strongly nonlinear configuration

For the L96 model, we also provide a strongly nonlinear DA configuration, in which the only
difference with the mildly nonlinear configuration defined in the previous paragraph is that
the observation vector y is computed from the truth xt using

yk = H
(
xt
k

)
+ eok, eok ∼ N [0, I], (5.4)

where the observation operator H is defined as

H :

{
RNx → RNy = RNx ,

x 7→ ln|x|,
(5.5)
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in which the logarithm and absolute values are applied element-wise.

This configuration is used, for example, by Poterjoy (2016) to asses the performances of
his LPF algorithm. The nonlinearities are strong, and come from both the integration of
the ODEs defined by equation (5.2), and the nonlinear observation operator. Figure 5.1
illustrates the L96 model in both configurations.

5.1.3 The barotropic vorticity model

5.1.3.1 The dynamical model

The barotropic vorticity (BV) model describes the evolution of the vorticity field ζ of a
two-dimensional incompressible homogeneous fluid in the x1 − x2 plane. The time evolution
of ζ is governed by the scalar equation

∂ζ

∂t
+ J(ψ, ζ) = −ξζ + ν∆ζ + F, (5.6)

and ζ is related to the stream function ψ through

∆ψ = ζ. (5.7)

In equation (5.6), J(ψ, ζ) is the advection of ζ by ψ, defined by

J(ψ, ζ) ,
∂ψ

∂x1

∂ζ

∂x2
− ∂ψ

∂x2

∂ζ

∂x1
, (5.8)

ξ ∈ R+ is the friction coefficient, ν ∈ R+ is the diffusion coefficient, and F is the forcing
term, which may depend on x1, x2 and on the time t. The system is characterised by
homogeneous two-dimensional turbulence. The friction extracts energy at large scales, the
diffusion dissipates vorticity at small scales and the forcing injects energy in the system. The
number of degrees of freedom in this model can be roughly considered to be proportional to
the number of vortices (Chris Snyder, personal communication, 2012).

The equations are solved with P × P grid points regularly distributed over the simulation
domain [0, L]× [0, L] with doubly periodic boundary conditions. Our time integration method
is based on a semi-Lagrangian solver with a constant integration time step δt.

1. At time t, solve equation (5.7) for the stream function ψ.

2. At time t, compute the advection velocity ∇ψ using second-order centred finite differ-
ences.

3. The advection of the vorticity field ζ during t and t+ δt is computed by applying a
semi-Lagrangian method to the left-hand side of equation (5.6). The overall solver
cannot be more accurate than first-order in time, since the value of the stream function
ψ is not updated during this step. Therefore, our semi-Lagrangian solver uses the
first-order forward Euler time integration method. The interpolation method used here
is the cubic convolution interpolation algorithm, which is third-order accurate in space.
During this step, the right-hand side of equation (5.6) is ignored.
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Figure 5.1: Illustration of the L96 model in the mildly and strongly nonlinear configurations.
The top panel shows the trajectory of the Nx = 40 variables of the truth xt during a time
period of 25 units of time. The middle and bottom panel show the corresponding trajectory
for the observation vector y in the mildly and strongly nonlinear configurations.
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4. Integrate the vorticity field ζ from t and t+δt by solving equation (5.6) with an implicit
first-order time integration method in which the advection term is the one computed in
the previous step.

For the numerical experiments of this chapter, the spatial discretisation is fine enough for
the spatial interpolation error in the semi-Lagrangian method to be negligible compared to
the time integration error. As a consequence, the overall integration method is first-order
accurate in time. For the numerical experiments in this chapter, the integration time step δt
is set to 0.1 unit of time. It was found to be empirically enough to ensure the stability of the
integration method and it allows a fast computation of the trajectory.

5.1.3.2 The coarse-resolution configuration

For the BV model, we define a coarse-resolution configuration, with P = 32 grid points in each
dimension. Empirically, this spatial discretisation is enough to allow a reasonable description
of a few (typically five to ten) vortices inside the domain. The physical parameters are then
chosen to ensure a proper time evolution of the vorticity field ζ. The simulation domain
has a unit length, L = 1, the friction coefficient is ξ = 1× 10−2, the diffusion coefficient is
ν = 5× 10−5, and the deterministic forcing F is given by

F (x1, x2) = 0.25 sin(4πx1) sin(4πx2). (5.9)

We have checked that the vorticity flow remains stationary over the total simulation time
for all experiments presented in this chapter. Due to the forcing term F , the flow remains
uniformly and stationarily turbulent during the whole simulation.

In the DA experiments, the control vector x is the vector containing the P × P values
of the vorticity field ζ. The initial truth xt is the vorticity field ζ obtained after a run of a
100 time units starting from a random, spatially correlated field. The time interval between
consecutive observations ∆t, chosen to match approximately the model autocorrelation of
0.967 of the L96 model in the mildly nonlinear configuration, is set to 0.5 unit of time. Finally,
the observation vector y is computed from the truth xt using

yk = Hxt
k + eok, eok ∼ N

[
0, r2I

]
, (5.10)

where the linear observation operator H corresponds to an interpolation using a regular,
square mesh, with one observation site for every two grid points in each physical dimension:

∀(q1, q2) ∈ (P/2 : 1)2, [Hx]q1,q2 = [x]2q1−1,2q2−1. (5.11)

The individual observation standard deviation is set to r = 0.3, about one tenth of the typical
vorticity variability.

In this configuration, there are Ny = 256 observations, regularly distributed in space, for a
total of Nx = 1024 state variables. Figure 5.2 illustrates the BV model in this configuration.
Compared to other experiments with the BV model (e.g., van Leeuwen and Ades 2013; Ades
and van Leeuwen 2015; Browne 2016), the time interval between consecutive observations ∆t
is smaller, and the individual observation standard deviation r is larger, but the number of
vortices is approximately the same, with much fewer details.

120



5.1 Presentation of the numerical experiments

Truth xt Obs. vector y
−6

−4

−2

0

2

4

6

Figure 5.2: Illustration of the BV model in the coarse-resolution configuration. The left
panel shows a snapshot of the Nx = 1024 variables of the truth xt (with interpolation). The
right panel shows the corresponding observation vector y with Ny = 256 observations.

5.1.3.3 The high-resolution configuration

For the BV model, we define an high-resolution configuration, with P = 256 grid points
in each dimension. Empirically, this spatial discretisation is enough to allow a reasonable
description of a few dozen vortices inside the domain. Again, the physical parameters are
chosen to ensure a proper time evolution of the vorticity field ζ. The simulation domain
has a unit length, L = 1, the friction coefficient is ξ = 5× 10−5, the diffusion coefficient is
ν = 1× 10−6, and the deterministic forcing F is given by

F (x1, x2) = 0.75 sin(12πx1) sin(12πx2). (5.12)

In the DA experiments, the control vector x is the vector containing the P × P values
of the vorticity field ζ. The initial truth xt is the vorticity field ζ obtained after a run of a
100 time units starting from a random, spatially correlated field. The time interval between
consecutive observations ∆t is the same as in the coarse-resolution configuration, 0.5 unit of
time. Finally, the observation vector y is computed from the truth xt using

yk = Hxt
k + eok, eok ∼ N

[
0, r2I

]
, (5.13)

where the linear observation operator H corresponds to an interpolation using a regular,
square mesh, with one observation site for every four grid points in each physical dimension:

∀(q1, q2) ∈ (P/4 : 1)2, [Hx]q1,q2 = [x]4q1−1,4q2−1. (5.14)

The individual observation standard deviation is the same as in the coarse-resolution configur-
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Figure 5.3: Illustration of the BV model in the high-resolution configuration. The top
panel shows a snapshot of the Nx = 65 536 variables of the truth xt. The bottom panel shows
the corresponding observation vector y with Ny = 4096 observations.

ation, r = 0.3. In this configuration, there are Ny = 4096 observations, regularly distributed
in space, for a total of Nx = 65 536 state variables. Figure 5.3 illustrates the BV model in
this configuration.

5.2 Experiments with the L96 model

In this section, we illustrate the performance of several DA algorithms using twin experiments
of the L96 model described in subsection 5.1.2. The algorithms are compared to the ETKF
and the LETKF algorithms, algorithms 2.3 and 2.4. With the exception of subsection 5.2.8,
we only consider the mildly nonlinear configuration of the L96 model, as described in
paragraph 5.1.2.2.

We insist on the fact that, for this numerical experiments, as well as for all numerical
experiments described in this chapter, the synthetic truth is computed without model error.
This is usually a stringent constraint for the PF, for which accounting for the model error is
a means for regularisation. But on the other hand, it allows for a fair comparison with the
EnKF, and it avoids the issue of defining a realistic model error em.

In order to ensure the convergence of the statistical indicators, we use a spin-up period
of Ns = 103 assimilation cycles and a total simulation period of at least Nc ≥ Ns + 104

assimilation cycles. For the localisation, is assumed that the Nx variables are positioned on
an axis, with periodic boundary conditions consistent with the size of the system. The n-th
grid point, corresponding to the n-th variable, has for coordinate n. Finally, for the LETKF
algorithm, the localisation matrices ρNx:1 are constructed using equation (2.57).
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Figure 5.4: Evolution of the RMSE score as a function of the ensemble size Ne for the
ETKF (in blue) and the LETKF (in red) algorithms. The DA system is the L96 model in
the mildly nonlinear configuration.

5.2.1 Illustration of the EnKF

The mildly nonlinear configuration of the L96 model is widely used to illustrate the perform-
ance of the DA algorithms, and in particular of the EnKF. Figure 5.4 shows the evolution
of the RMSE score as a function of the ensemble size Ne for the ETKF and the LETKF
algorithms. As presented in subsection 2.5.2, in order to mitigate the sampling errors,
multiplicative inflation is used after the analysis step with a fixed multiplicative inflation
factor λ. For each value of the ensemble size Ne, the multiplicative inflation factor λ, as well
as the localisation radius ` (only for the LETKF), are optimally tuned to yield the lowest
RMSE score.

In this chapter, in most of the following figures related to the mildly nonlinear configuration,
we draw a baseline at 0.2, roughly the RMSE score of the LETKF algorithm with Ne = 10
ensemble members (even though slightly lower RMSE scores can be achieved with larger
ensembles).

5.2.2 Illustration of the global PF

The application of the PF to this DA system without model error leads to a fast and irremedi-
able collapse. As described in paragraph 3.3.2.2, the sample impoverishment phenomenon,
which is known to cause the collapse, can be counteracted with regularisation. The regularisa-
tion step can be implemented in two different ways (Musso et al. 2001): as pre-regularisation,
which is equivalent to use an additional model error em, and as post-regularisation, for
example with equation (3.56).
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5 Localisation in the particle filter: numerical illustrations

Algorithm 5.1: Full assimilation cycle for the regularised SIR algorithm in a DA

system with a deterministic model M.

Input: E [tk], y [tk+1]

Parameters: M [tk → tk+1], πo [tk+1], q, s

1 Sampling

2 Em iid∼ N
[
0, q2I

]

3 E ←M(E) + Em // pre-regularisation

4 Importance

5 w ← πo(y|E)

6 Resampling

7 Er ← Resampling(w,E)

8 Em iid∼ N
[
0, s2I

]

9 E ← Er + Em // post-regularisation

Output: E [tk+1]

5.2.2.1 Implementation of pre- and post-regularisation

For the numerical experiments with the L96 model, the regularisation step is implemented as
follows:

• for pre-regularisation, the additional model error em has distribution N
[
0, q2I

]
;

• for post-regularisation, the additional jitter added after the resampling step is drawn
from the distribution N

[
0, s2I

]
;

where the pre- and post-regularisation standard deviations q and s are two parameters to be
determined. Algorithm 5.1 describes a full assimilation cycle for the resulting regularised SIR
algorithm. The regularised SIR algorithm is an approximation of the original (non-regularised)
SIR algorithm, algorithm 3.2. In the limit q → 0 and s→ 0, both algorithms are equivalent.

Figure 5.5 shows the evolution of the RMSE score as a function of the ensemble size
Ne for the regularised SIR algorithm using only pre-regularisation (i.e., with s = 0), only
post-regularisation (i.e., with q = 0), or both pre- and post-regularisation. In either case,
the resampling step is performed using the systematic resampling algorithm (algorithm 3.4)
instead of the multinomial resampling algorithm (algorithm 3.3). For each value of the
ensemble size Ne, the pre- and post-regularisation standard deviations q and s are optimally
tuned to yield the lowest RMSE score.

The SIR algorithm requires more than Ne = 128 particles to give, on average, more
informations than the observations.1 With Ne = 8196 particles, the RMSE score of the SIR

1The RMSE score between the observations y and the truth xt has an expected value around 0.98 in this
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Figure 5.5: Evolution of the RMSE score as a function of the ensemble size Ne for
the regularised SIR algorithm, using only post-regularisation (i.e., with q = 0, in blue),
using only pre-regularisation (i.e., with s = 0, in green), or using both pre- and post-
regularisation (in red). For comparison, the RMSE score of the LETKF algorithm with
Ne = 10 members is shown with an horizontal dashed black line. The DA system is the L96
model in the mildly nonlinear configuration. Visually, the RMSE scores obtained using only
post-regularisation can hardly be distinguished from the RMSE scores obtained using both
pre- and post-regularisation.
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5 Localisation in the particle filter: numerical illustrations

algorithm is not even close to the RMSE score of the ETKF algorithm. In this experiment,
post-regularisation is much more efficient that pre-regularisation. This can be explained as
follows. With post-regularisation, the jitter is added after the importance and resampling
step. As a consequence, the jitter is integrated by the dynamical model M before the
next importance and resampling steps, which smoothes potential unphysical discontinuities.
By contrast, with pre-regularisation, the additional model noise is added just before the
importance and resampling step, which means that potential unphysical discontinuities are
included in the posterior ensemble E.

Furthermore, when post-regularisation is optimally tuned, the additional tuning of pre-
regularisation has almost no effect on the RMSE score. The same tendency is observed in all
numerical experiments tested in this chapter. Therefore, from now on, we only implement
post-regularisation in the PF and LPF algorithms.

5.2.2.2 The regularised SIR and ETPF algorithms

Without model error, all proposal distributions in the PF are equivalent to the standard
proposal distribution νq = νm. As a consequence, the difference between PF algorithms only
come from the resampling step. In this paragraph, we illustrate the benefits of replacing the
resampling step by a linear transformation step, as suggested in paragraph 3.3.3.1.

Figure 5.6 shows the evolution of the RMSE score as a function of the ensemble size Ne for
the regularised SIR and ETPF algorithms. The regularised SIR algorithm is algorithm 5.1,
in which the pre-regularisation standard deviation q is set to zero, and the resampling step is
performed with the systematic resampling algorithm. The regularised ETPF algorithm is
algorithm 3.5, in which a post-regularisation step is included as described in the previous
paragraph. For each value of the ensemble size Ne, the post-regularisation standard deviation
s is optimally tuned to yield the lowest RMSE score. These results confirm the advantages
of the ETPF algorithm over the SIR algorithm listed in paragraph 3.3.3.1.

5.2.2.3 Colourising the regularisation

For simplicity, in this paragraph the time index k is systematically dropped.

With post-regularisation as introduced in paragraph 5.2.2.1, the additional jitter is a white
noise. In realistic models, different state variables may take their values in disjoint intervals,
which makes white jittering methods inadequate. Therefore, it is a common technique in
ensemble DA to scale the jitter with statistical properties of the ensemble E. In the PF,
practitioners often colourise the Gaussian jitter with the empirical covariances of the ensemble
E as described by Musso et al. (2001). Since the jitter is added after the resampling step,
it is scaled with the weighted ensemble (w,E) before resampling in order to mitigate the
effect of the sampling noise. In this case, the covariance matrix of the Gaussian jitter is the
posterior sample covariance matrix P̄, whose n-th row, m-th column element is given by

[
P̄
]
n,m

=
h

1− w̄Tw̄

Ne∑

i=1

w̄(i)
[
xn(i)− x̄n

][
xm(i)− x̄m

]
. (5.15)

configuration with Nx = 40 variables.
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Figure 5.6: Evolution of the RMSE score as a function of the ensemble size Ne for the
regularised SIR (in blue) and ETPF (in red) algorithms. For comparison, the RMSE score of
the LETKF algorithm with Ne = 10 members is shown with an horizontal dashed black line.
The DA system is the L96 model in the mildly nonlinear configuration.

In this equation, the bandwidth h ∈ R+ is a parameter to be determined, xn(i) is the n-th
variable of the i-th particle x(i), and x̄n is the n-th variable of the posterior ensemble mean
x̄ = Ew̄.

In practice, we define the normalised anomaly matrix X as the Nx×Ne matrix whose n-th
row, i-th column element is

[X]n,i =

(
hw̄(i)

1− w̄Tw̄

)1/2[
xn(i)− x̄n

]
, (5.16)

and the regularisation jitter is added to the ensemble E as

E← E + XZ, (5.17)

where Z is an iid sample (of size Ne) from the normal distribution N [0, I] in the ensemble
space RNe , in such a way that XZ is an iid sample from the normal distribution N

[
0, P̄

]
.

Algorithm 5.2 describes a full assimilation cycle for the resulting regularised SIR algorithm,
with colourised post-regularisation. Algorithm 5.2 is another approximation of the original
SIR algorithm, algorithm 3.2. Again, both algorithms are equivalent in the limit h→ 0.

Figure 5.7 shows the evolution of the RMSE score as a function of the ensemble size Ne

for the regularised SIR algorithm with white and with colourised post-regularisation. It
turns out that, in the mildly nonlinear configuration of the L96 model, using colourised
post-regularisation (i.e., with algorithm 5.2) yields much higher RMSE scores than using
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5 Localisation in the particle filter: numerical illustrations

Algorithm 5.2: Full assimilation cycle for the regularised SIR algorithm, with

colourised post-regularisation.

Input: E [tk], y [tk+1]

Parameters: M [tk → tk+1], πo [tk+1]

1 Sampling

2 E ←M(E) // no pre-regularisation

3 Importance

4 w ← πo(y|E)

5 Resampling

6 X ← equation (5.16)

7 Er ← Resampling(w,E)

8 Z
iid∼ N

[
0, I
]

// in RNe

9 E ← Er + XZ // colourised post-regularisation

Output: E [tk+1]

white post-regularisation (i.e., with algorithm 5.1) unless the number of particles Ne is very
high (Ne ≥ 2048). The relative success of the white post-regularisation method, compared to
the colourised post-regularisation method can be explained by two factors. First, in the L96
model, the Nx = 40 variables are statistically homogeneous with short-range correlations.
Second, in this configurations where the error distributions are close to Gaussian, the posterior
sample covariance matrix P̄ is a poor approximation of the (exact) posterior covariance
matrix P, unless the number of particles Ne is very high.

5.2.3 Towards an implementation of LPF algorithms

5.2.3.1 The standard LPF–X algorithm

In this subsection, we explain step-by-step the implementation of an LPF algorithm by taking
the example of the standard LPF–X algorithm, defined in this thesis as the LPF–X algorithm
(algorithm 4.1) with the following characteristics.

• Grid points are gathered into Nb local blocks of Nx/Nb connected grid points.

• The local importance weight vectors wNb:1 are computed using the Gaussian formulation,
with equation (4.25).

• The local resampling is performed independently for each local block using the
adjustment-minimising systematic resampling algorithm (algorithm 3.4 with the modi-
fication described in paragraph 4.2.3.3).
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Figure 5.7: Evolution of the RMSE score as a function of the ensemble size Ne for the
regularised SIR with white (in blue) and with colourised (in red) post-regularisation. For
comparison, the RMSE score of the LETKF algorithm with Ne = 10 members is shown with
an horizontal dashed black line. The DA system is the L96 model in the mildly nonlinear
configuration.
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Algorithm 5.3: Full assimilation cycle for the standard LPF–X algorithm in a

DA system with a deterministic model M.

Input: E [tk], y [tk+1]

Parameters: M [tk → tk+1], πo [tk+1], Nb, `, s

1 Sampling

2 E ←M(E)

3 Importance

4 for b = 1 to Nb do

5 wb ← equation (4.25)

6 end

7 Resampling

8 for b = 1 to Nb do

9 Er
|b ← Resampling

(
wb,E|b

)

10 end

11 Er ← Assembling
(
Er
|Nb:1

)

12 Em iid∼ N
[
0, s2I

]

13 E ← Er + Em

Output: E [tk+1]

• Regularisation jitter is added after each assimilation cycle using a white post-regularisation
step, as described in paragraph 5.2.2.1.

This is summarised by algorithm 5.3. Besides the ensemble size Ne, the standard LPF–X
algorithm has three parameters: the number of local blocks Nb, the localisation radius `, and
the post-regularisation standard deviation s.

5.2.3.2 Tuning the localisation and the post-regularisation

We first check that localisation is working in this configuration, by testing the standard
LPF–X algorithm with Nb = 40 local blocks. We take Ne = 10 particles, and several values
for the post-regularisation standard deviation s are used. The evolution of the RMSE score as
a function of the localisation radius ` is shown in figure 5.8. With localisation, the LPF yields
an RMSE score around 0.45 in a regime where the regularised SIR algorithm is degenerate.
The compromise between bias (small values of `, too much information is ignored, or there
is too much spatial variation in the local importance weight vectors wNb:1) and variance
(large values of `, the wNb:1 are degenerate) reaches an optimum around ` = 3 grid points.
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5.2 Experiments with the L96 model

As expected, the local domains are quite small (5 observation sites) in order to efficiently
counteract the curse of dimensionality.

To evaluate the efficiency of the post-regularisation, we experiment with the standard
LPF–X algorithm using Ne = 10 particles, Nb = 40 local blocks, and several values of the
localisation radius `. The evolution of the RMSE score as a function of s is shown in figure 5.8.
The compromise between perfect model (small values of s, the ensemble E collapses because
of the sample impoverishment phenomenon) and perturbed model (high values of s, too much
noise is added) reaches an optimum around s = 0.26.

Similar behaviours are observed for all LPF algorithms tested in this chapter. From now
on, ` and s are systematically tuned to yield the lowest RMSE score.

5.2.3.3 Choosing the number of local blocks

To illustrate the influence of the size of the local blocks, we compare the RMSE scores
obtained by the standard LPF–X algorithm using various number of local blocks Nb. The
evolution of the RMSE score as a function of the ensemble size Ne is shown in figure 5.9. For
small ensembles, using larger local blocks is inefficient, because of the need for degrees of
freedom to counteract the curse of dimensionality. Only very large ensembles benefit from
using large local blocks as a consequence of the reduction of proportion of block boundaries
(which are potential spots for unphysical discontinuities).

5.2.3.4 Formulation of the local importance weight vectors

To illustrate the influence of the formulation of the local importance weight vector wNb:1,
the standard LPF–X algorithm is compared with a variant thereof, in which the wNb:1

are computed using the generic formulation, with equation (4.22). Figure 5.10 shows the
evolution of the RMSE score as a function of the ensemble size Ne for both algorithms. Using
the Gaussian formulation for the wNb:1 always yields lower RMSE scores. This is probably a
consequence of the fact that, in this configuration, the nonlinearities are weak and the error
distributions are close to Gaussian.

5.2.3.5 Refinements of the resampling methods

In this paragraph, the refinements of the resampling algorithms proposed in paragraph 4.2.3.3
are tested. To do this, the standard LPF–X algorithm is compared with the following two
variants.

• In the first variant, the same random number is used for the resampling of each local
block with the adjustment-minimising systematic resampling algorithm.

• In the second variant, the systematic resampling algorithm (algorithm 3.4) is used as
is, in other words without the adjustment-minimising property.

Figure 5.11 shows the evolution of the RMSE score as a function of the ensemble size Ne

for all three algorithms. The second variant, the only algorithm here which does not use
an adjustment-minimising resampling algorithm for the local updates, yields higher RMSE
scores. This shows that the adjustment-minimising property is indeed an efficient way of
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Figure 5.8: Evolution of the RMSE score of the standard LPF–X algorithm as a function of
the localisation radius ` (in number of grid points) for several values of the post-regularisation
standard deviation s (top panel), and as a function of the post-regularisation standard
deviation s for several values of the localisation radius ` (bottom panel). In both cases, the
algorithm uses Ne = 10 particles and Nb = 40 local blocks. The DA system is the L96 model
in the mildly nonlinear configuration.
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Figure 5.9: Evolution of the RMSE score as a function of the ensemble size Ne for the
standard LPF–X algorithm using Nb = 40 (in blue), 20 (in green), and 10 (in red) local
blocks with a size of 1, 2, and 4 grid points, respectively. For comparison, the RMSE score of
the LETKF algorithm with Ne = 10 members is shown with an horizontal dashed black line.
The DA system is the L96 model in the mildly nonlinear configuration.
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Figure 5.10: Evolution of the RMSE score as a function of the ensemble size Ne for the
standard LPF–X algorithm (in blue) and its variant using the generic formulation of the local
importance weight vectors wNb:1 (in red), with Nb = 40 (continuous lines), and 10 (dashed
lines) local blocks. The DA system is the L96 model in the mildly nonlinear configuration.
In order to emphasise the differences, the RMSE scores are divided by the RMSE score of
the standard LPF–X algorithm using Nb = 40 local blocks (continuous blue line).
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Figure 5.11: Evolution of the RMSE score as a function of the ensemble size Ne for the
standard LPF–X algorithm (in blue), for its variant using the same random numbers for
the resampling of each local block (in red), and for its variant using the non-adjustment-
minimising systematic resampling algorithm (in green). In all three cases, the algorithms
use Nb = 40 (continuous lines) or Nb = 10 (dashed lines) local blocks. The DA system is
the L96 model in the mildly nonlinear configuration. In order to emphasise the differences,
the RMSE scores are divided by the RMSE score of the standard LPF–X algorithm using
Nb = 40 local blocks (continuous blue line).

reducing the number of unphysical discontinuities introduced during the resampling step. By
constrast, using the same random number for the resampling of each local block does not
yield significantly lower RMSE scores: this method is insufficient to reduce the number of
unphysical discontinuities introduced when assembling the locally updated particles. This
is probably a consequence of the fact that the systematic resampling algorithm only uses
one random number to compute the resampling map ψ. It also suggests that the specific
realisation of this random number has a weak influence on the long-term statistical properties.

5.2.3.6 Colourisation of the regularisation

In this paragraph, the potential benefits of using colourisation in the post-regularisation
step, as presented in paragraph 5.2.2.3, are investigated. For simplicity, the time index k is
systematically dropped.

As is, the method presented in paragraph 5.2.2.3 cannot be directly applied. Indeed with
the LPF–X algorithms, there is one importance weight vector w per local block, and therefore
the normalised anomaly matrix X cannot be computed using equation (5.16). Two different
methods can be used to circumvent this obstacle.

A first approach could be to scale the regularisation with the locally resampled ensemble
Er, because after the local resampling, the wNb:1 have been reset. This is the approach
followed, e.g., by Reich (2013) and Chustagulprom et al. (2016) under the name particle
rejuvenation. However, preliminary experiments (not illustrated here) have shown that this

134



5.2 Experiments with the L96 model

approach systematically yields higher RMSE scores than using a white post-regularisation
step. This can be potentially explained by two factors. First, the resampling step introduces
sampling noise, which is included in the resulting anomaly matrix X. Second, the fact that
the resampling step is performed independently for each local block perturbs the propagation
of multivariate properties (such as the covariance) over different local blocks.

In a second approach, the anomaly matrix X is defined as the Nx ×Ne matrix whose n-th
row, i-th column element is

[X]n,i =

(
hw̄n(i)

1− w̄T
nw̄n

)1/2[
xn(i)− x̄n

]
, (5.18)

where wn is the local importance weight vector corresponding to the local block in which the
n-th variable is located. In this case, the covariance matrix P̄ of the Gaussian jitter has n-th
row, m-th column element given by

[
P̄
]
n,m

= h

Ne∑

i=1

[
w̄n(i) w̄m(i)

(1− w̄T
nw̄n)(1− w̄T

mw̄m)

]1/2[
xn(i)− x̄n

][
xm(i)− x̄m

]
, (5.19)

which is a generalisation of equation (5.15). This method can also be seen as a generalisation
of the adaptive inflation used by Penny and Miyoshi (2016), in which only the diagonal
of the anomaly matrix X is computed and in which the post-regularisation bandwidth h
is set to 1. In all tested cases, our method systematically yields lower RMSE scores than
the method of Penny and Miyoshi (2016), which is most probably due to the tuning of the
post-regularisation bandwidth h.

From a practical point of view, preliminary experiments (not illustrated here) have shown
that the evolution of the RMSE score as a function of the post-regularisation bandwidth h,
for LPF algorithms using a colourised post-regularisation step, is similar to the evolution
of the RMSE score as a function of the post-regularisation standard deviation s, for LPF
algorithms using a white post-regularisation step, as described in paragraph 5.2.3.2.

Finally, in order to illustrate the benefits of using a colourised post-regularisation step,
the standard LPF–X algorithm is compared with a variant thereof, in which the post-
regularisation step is colourised. Figure 5.12 shows the evolution of the RMSE score as a
function of the ensemble size Ne for both algorithms, in which the tuning of s is replaced
by the tuning of h for the variant using colourised post-regularisation. For small ensembles,
using a colourised post-regularisation step yields higher RMSE scores, whereas it shows
slightly better RMSE scores for large ensembles. Depending on the number of local blocks
Nb, the transition between both regimes happens when the ensemble size Ne is between 32
to 64 particles.

From now on, when using a colourised post-regularisation step, the tuning of of the post-
regularisation standard deviation s, mentioned in paragraph 5.2.3.2, is systematically replaced
by the tuning of the post-regularisation bandwidth h.
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Figure 5.12: Evolution of the RMSE score as a function of the ensemble size Ne for the
standard LPF–X algorithm (in blue) and its variant using colourised post-regularisation (in
red), with Nb = 40 (continuous lines), and 10 (dashed lines) local blocks. The DA system is
the L96 model in the mildly nonlinear configuration. In order to emphasise the differences,
the RMSE scores are divided by the RMSE score of the standard LPF–X algorithm using
Nb = 40 local blocks (continuous blue line).

5.2.4 Illustration of the LPF–X algorithms

In the following paragraphs, we illustrate the performances of several LPF–X algorithms.
In order to distinguish between the different algorithmic variants, the legends of the figures
follow the same simple convention, explained in table 5.1. Following this convention, the
label of the standard LPF–X algorithm is sys/w.

5.2.4.1 The LPF–X with the smoothing-by-weights step

In this paragraph, we examine the potential benefit of adding a smoothing-by-weights step,
presented in paragraph 4.2.3.1. Alongside the smoothing-by-weights come two additional
parameters: the smoothing strength αs and the smoothing radius `s. We first investigate the
influence of theses parameters. To do this, we compare the standard LPF–X algorithm with
a variant thereof, in which a smoothing-by-weights step is added after the local resampling
step.

Figure 5.13 shows the evolution of the RMSE score of the LPF–X algorithm with smoothing-
by-weights as a function of `s, for several values of αs. In these experiments, the ensemble
size is Ne = 16, and the number of local blocks is Nb = 40. For a fixed smoothing strength
`s > 0, starting from `s = 1 grid point (no smoothing), the RMSE score decreases when `s

increases. It reaches a minimum, and then increases again. In this case, the optimal `s lies
between 5 and 6 grid points when αs = 1, with a corresponding optimal localisation radius `
between 2 and 3 grid points and optimal post-regularisation standard deviation s around
0.45. For comparison, the optimal tuning parameters for the standard LPF–X algorithm
(without smoothing-by-weights) are approximately ` = 4.5 grid points and s = 0.2.
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5.2 Experiments with the L96 model

Table 5.1: Nomenclature convention for the LPF–X algorithms. The local updates are
performed either with the adjustment-minimising systematic resampling algorithm (sys),
with the optimal ensemble coupling (oec), or with the anamorphosis (ana). The smoothing-
by-weights step is either enabled (smo) or disabled, and the post-regularisation step is either
white (w) or colourised (c).

Label Local update method Smoothing-by-weights Post-regularisation

sys/w sys. resampling – white
sys/c sys. resampling – colourised
sys/smo/w sys. resampling X white
sys/smo/c sys. resampling X colourised
oec/w opt. ens. coupling – white
oec/c opt. ens. coupling – colourised
ana/w anamorphosis – white
ana/c anamorphosis – colourised
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Figure 5.13: Evolution of the RMSE score as a function of the smoothing radius `s for the
LPF–X algorithm with systematic resampling and with smoothing-by-weights. The algorithm
uses Ne = 16 particles and Nb = 40 local blocks, and several values of the smoothing strength
αs are tested. The DA system is the L96 model in the mildly nonlinear configuration. In
order to emphasise the differences, the RMSE scores are divided by the RMSE score of the
standard LPF–X algorithm using Ne = 16 particles and Nb = 40 local blocks.
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Figure 5.14: Evolution of the RMSE score as a function of the ensemble size Ne for the
LPF–X algorithm with systematic resampling. The smoothing-by-weights step is enabled (in
red) or not (in blue) and the post-regularisation step is white (continuous lines) or colourised
(dashed lines). The DA system is the L96 model in the mildly nonlinear configuration.

Based on extensive tests of LPF–X algorithms using smoothing-by-weights with an ensemble
size Ne ranging from 8 to 128 particles (not illustrated here), we draw the following conclusions.
In general, using αs = 1 is optimal, or at least only slightly suboptimal. Optimal values `
and s are larger with smoothing-by-weights than without. Finally, optimal values for ` and
`s are not related and must be tuned separately.

In order to further illustrate the influence of the smoothing-by-weights, the standard
LPF–X algorithm is compared with the following three variants:

• in the first variant (sys/c), the post-regularisation is colourised, as described in
paragraph 5.2.3.6;

• in the second variant (sys/smo/w), a smoothing-by-weights step is added after the local
resampling step;

• in the third variant (sys/smo/c), a smoothing-by-weights step is added after the local
resampling step and the post-regularisation is colourised.

Figure 5.14 shows the evolution of the RMSE score as a function of the ensemble size Ne for
all four algorithms. For the second, and third variant, αs is set to 1 and `s is optimally tuned
to yield the lowest RMSE score. For each value of the ensemble size Ne, each experiment is
performed with Nb = 40, 20, and 10 local blocks, and the lowest RMSE score is kept.

The second variant (which uses smoothing-by-weights and white post-regularisation)
systematically yields lower RMSE scores than the standard LPF–X algorithm (without

138



5.2 Experiments with the L96 model

smoothing-by-weights and with white post-regularisation). However, as the ensemble size
Ne grows, the gain in RMSE score becomes very small. With Ne = 512 particles, there
is almost no difference between both scores. In this case, the optimal `s is around 5 grid
points, much smaller than the optimal `, around 15 grid points, in such a way that the
smoothing-by-weights step does not modify much the analysis ensemble Ea. The third variant
(which uses smoothing-by-weights and colourised post-regularisation) yields lower RMSE
scores than the standard LPF–X algorithm as well. Yet, in this case, the gain in RMSE score
is still significant for large ensembles, and with Ne = 512 particles, the RMSE score is even
comparable to that of the EnKF.

From these results, we conclude that the smoothing-by-weights is an efficient way of
mitigating the unphysical discontinuities which are introduced when assembling the locally
updated particles, especially when combined with colourised post-regularisation.

5.2.4.2 The LPF–X with optimal ensemble coupling

In this paragraph, we evaluate the efficiency of replacing the local resampling step by a linear
transformation step based on the optimal ensemble coupling, presented in paragraph 4.2.3.4.
For each local block, the LET matrix Te is computed by solving a minimisation problem
which can be seen as a particular case of the minimum-cost flow problem. We have chosen
to compute its numerical solution using the network simplex algorithm implemented in the
graph library LEMON (Dezső et al. 2011). This method is characterised by an additional
parameter: the distance radius `d, which is used to define the local cost coefficients Cb

(
Ef
)

with equation (4.32).

The influence of the number of local blocks Nb and of the distance radius `d has been first
investigated with extensive tests of LPF–X algorithms using optimal ensemble coupling, for
an ensemble size Ne ranging from 8 to 128 particles (not illustrated here). The following
conclusions are drawn. Optimal values for `d are much smaller than those of `, and are
even smaller than 2 grid points most of the time. Using `d = 1 grid point yields RMSE
scores which are only very slightly suboptimal. Furthermore, all other things being equal,
using Nb = 20 local blocks systematically yields higher RMSE scores than using Nb = 40
local blocks. Finally, the optimal ensemble coupling can be combined with an additional
smoothing-by-weights step. The resulting algorithm is significantly more costly. For small
ensembles (typically Ne ≤ 32 particles), the RMSE scores are barely smaller with smoothing-
by-weights than without. For larger ensembles, we could not find a set of parameters for
which using smoothing-by-weights yields lower RMSE scores.

In order to illustrate the influence of using the optimal ensemble coupling, the standard
LPF–X algorithm is compared with the following three variants.

• In the first variant (sys/c), the post-regularisation step is colourised.

• In the second variant (oec/w), the local resampling step is replaced by a linear trans-
formation step using the optimal ensemble coupling.

• In the third variant (oec/c), the local resampling step is replaced by a linear trans-
formation step using the optimal ensemble coupling and the post-regularisation step is
colourised.
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Figure 5.15: Evolution of the RMSE score as a function of the ensemble size Ne for the
LPF–X algorithm with systematic resampling (in blue) and with optimal ensemble coupling
(in red). The post-regularisation step is white (continuous lines) or colourised (dashed lines).
For comparison, the RMSE score of the LETKF algorithm with Ne = 10 members is shown
with an horizontal dashed black line. The DA system is the L96 model in the mildly nonlinear
configuration.

Figure 5.15 shows the evolution of the RMSE score as a function of the ensemble size Ne for
all four algorithms. For the second, and third variant, the distance radius `d is set to 1. For
each value of the ensemble size Ne, each experiment is performed with Nb = 40, 20, and 10
local blocks, and the lowest RMSE score is kept. For the second and third variant, the lowest
RMSE score is always the one obtained with Nb = 40 local blocks.

Using optimal ensemble coupling for the local updates systematically yields significantly
lower RMSE scores than using systematic resampling. By contrast with the results of the
previous paragraph, using colourised post-regularisation does not improve the RMSE scores
for very large ensembles. From the fact that neither the use of larger local blocks nor the use of
smoothing-by-weights further improves the RMSE scores with optimal ensemble coupling, we
conclude that this local update method is indeed an efficient way of mitigating the unphysical
discontinuities inherent to assembling the locally updated particles.

5.2.4.3 The LPF–X with anamorphosis

In this paragraph, we evaluate the efficiency of replacing the local resampling step by a
transport step based on the anamorphosis, presented in paragraph 4.2.3.5. For each state
variable n ∈ (Nx : 1), the transport map Tn is computed using the cdf of the n-th regularised
marginal empirical forecast and analysis densities π̄fn and π̄an, as defined by equations (4.35)
and (4.36). The regularisation kernel K is chosen as the Student’s t-distribution with two
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5.2 Experiments with the L96 model

degrees of freedom. This method is characterised by two additional parameters: the forecast
and analysis regularisation bandwidths hf and ha, which are used to define π̄fNx:1 and π̄aNx:1

with equations (4.35) and (4.36).
The influence of hf and ha has been first investigated with extensive tests of LPF–X

algorithms using anamorphosis, for an ensemble size Ne ranging from 8 to 128 particles
(not illustrated here). The following conclusions are drawn. For small ensembles (typically
Ne ≤ 16 particles), optimal values for hf and ha are found to lie between 2 and 3, the RMSE
score obtained with hf = ha = 1 being very slightly suboptimal. For larger ensembles, we did
not find any significant difference in RMSE score between hf = ha = 1 and larger values for hf

and ha. Finally, the anamorphosis can be combined with an additional smoothing-by-weights
step, and the conclusion are similar as for the optimal ensemble coupling. The resulting
algorithm is significantly more costly. For small ensembles, the RMSE scores are barely
smaller with smoothing-by-weights than without, and for larger ensembles, we could not find
a set of parameters for which using smoothing-by-weights yields lower RMSE scores.

In order to illustrate the influence of using the anamorphosis, the standard LPF–X algorithm
is compared with the following three variants:

• In the first variant (sys/c), the post-regularisation step is colourised.

• In the second variant (ana/w), the local resampling step is replaced by a transport step
using the anamorphosis.

• In the third variant (ana/c), the local resampling step is replaced by a transport step
using the anamorphosis and the post-regularisation step is colourised.

Figure 5.16 shows the evolution of the RMSE score as a function of the ensemble size Ne for all
four algorithms. For the second, and third variant, hf and ha are set to 1, and Nb = Nx = 40
local blocks are used, because the anamorphosis is only defined in one dimension. For the
standard LPF–X algorithm and its first variant, for each value of the ensemble size Ne, each
experiment is performed with Nb = 40, 20, and 10 local blocks, and the lowest RMSE score
is kept.

Using anamorphosis for the local updates yields RMSE scores even lower than when
using optimal ensemble coupling. However in this case, using colourised post-regularisation
systematically yields significantly higher RMSE scores than using white post-regularisation.
This is probably a consequence of the fact that some colourised regularisation is already
introduced in the local update through the kernel representation of π̄fNx:1 and π̄aNx:1. From
the fact that the use of smoothing-by-weights does not further improve the RMSE scores
with anamorphosis, and from the significantly lower RMSE scores obtained when using
anamorphosis, we conclude that the local update based on anamorphosis is, as well as the
local update based on optimal ensemble coupling, an efficient way of mitigating the unphysical
discontinuities inherent to assembling the locally updated particles.

5.2.5 Illustration of the LPF–Y algorithms

In the following paragraphs, we illustrate the performances of several LPF–Y algorithms.
In order to distinguish between the different algorithmic variants, the legends of the figures
follow the same simple convention, explained in table 5.2.
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Figure 5.16: Evolution of the RMSE score as a function of the ensemble size Ne for the
LPF–X algorithm with systematic resampling (in blue) and with anamorphosis (in red).
The post-regularisation step is white (continuous lines) or colourised (dashed lines). For
comparison, the RMSE score of the LETKF algorithm with Ne = 10 members is shown with
an horizontal dashed black line. The DA system is the L96 model in the mildly nonlinear
configuration.

Table 5.2: Nomenclature convention for the LPF–Y algorithms. The propagation method
is either the hybrid propagation method (hyb) or the second-order propagation method
(so). In the latter case, the local updates on the U regions are performed either using the
adjustment-minimising systematic resampling algorithm (sys), with the optimal ensemble
coupling (oec), or with the anamorphosis (ana). Finally, the post-regularisation step is either
white (w) or colourised (c).

Label Local update method Propagation method Post-regularisation

sys/hyb/w sys. resampling hybrid white
sys/hyb/c sys. resampling hybrid colourised
sys/so/w sys. resampling second-order white
sys/so/c sys. resampling second-order colourised
oec/so/w opt. ens. coupling second-order white
oec/so/c opt. ens. coupling second-order colourised
ana/so/w anamorphosis second-order white
ana/so/c anamorphosis second-order colourised

142



5.2 Experiments with the L96 model

5.2.5.1 The LPF–Y with the hybrid propagation method

In this paragraph, we illustrate the performance of the LPF–Y algorithm using the hybrid
propagation method, described in subsection 4.3.2. In order to avoid a fast collapse of the
algorithm, a post-regularisation step is added after each assimilation cycle (i.e., after the Ny

local sequential updates). As for the LPF–X algorithms, the additional post-regularisation
step can be either white (as presented in paragraph 5.2.2.1) or a colourised (as presented in
paragraph 5.2.3.6). In the latter case, the local importance weight vectors wNx:1 required
for the computation of the anomaly matrix X with equation (5.18) are computed using the
Gaussian formulation, with equation (4.25).

In the original LPF algorithm of Poterjoy (2016), the collapse of the algorithm is mitigated
by using a weight inflation method. Based on extensive tests of LPF–Y algorithms using the
hybrid propagation method, with an ensemble size Ne ranging from 8 to 128 particles (not
illustrated here), we conclude that using the weight inflation method systematically yields
higher RMSE scores than using the additional post-regularisation step. Therefore, the weight
inflation method is not included in our implementation of the LPF–Y algorithms using the
hybrid propagation method.

Figure 5.17 shows the evolution of the RMSE score as a function of the ensemble size
Ne for the LPF–Y algorithm using the hybrid propagation method. For each value of the
ensemble size Ne, the localisation radius `, used to compute the prior and posterior update
weights ωf and ωa with equations (4.60) to (4.62), the post-regularisation standard deviation
s (for white post-regularisation), and the post-regularisation bandwidth h (for colourised
post-regularisation) are optimally tuned to yield the lowest RMSE score. The RMSE scores
obtained with this method are comparable to those obtained with the standard LPF–X
algorithm. Again, using colourised post-regularisation improves the RMSE scores for large
ensembles.

5.2.5.2 The LPF–Y with the second-order propagation method

In this paragraph, we illustrate the performance of the LPF–Y algorithm using the second-
order propagation method, described in subsection 4.3.3. Again, to avoid a fast collapse of
the algorithm, a post-regularisation step is added after each assimilation cycle, exactly like
in the previous paragraph. As suggested in paragraph 4.3.3.4, the resampling step on the U
region can be replaced by a linear transformation step, using the optimal ensemble coupling,
or by a transport step, using the anamorphosis.

Figure 5.17 shows the evolution of the RMSE score as a function of the ensemble size Ne

for the LPF–Y algorithm using the second-order propagation method. For each value of
the ensemble size Ne, the localisation radius `, used to compute the localised prior sample
covariance matrix P̄f with equations (4.63) and (4.64), the post-regularisation standard
deviation s (for white post-regularisation), and the post-regularisation bandwidth h (for
colourised post-regularisation) are optimally tuned to yield the lowest RMSE score. Following
the conclusions from paragraphs 5.2.4.2 and 5.2.4.3, when using the optimal ensemble coupling,
the distance radius `d is set to 1 grid point, and when using the anamorphosis, the forecast
and analysis regularisation bandwidths hf and ha are set to 1.

As expected, when using the second-order propagation method, the resulting LPF–Y
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Figure 5.17: Evolution of the RMSE score as a function of the ensemble size Ne for the
LPF–X algorithm with systematic resampling (top panel, in blue), for the LPF–Y algorithm
using the hybrid propagation method (top panel, in red), for the LPF–Y algorithm using
the second-order propagation method with systematic resampling (bottom panel, in blue),
with optimal ensemble coupling (bottom panel, in red), or with anamorphosis (bottom panel,
in green). The post-regularisation step is white (continuous lines) or colourised (dashed
lines). For comparison, the RMSE score of the LETKF algorithm with Ne = 10 members is
shown with an horizontal dashed black line. The DA system is the L96 model in the mildly
nonlinear configuration.
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algorithms are less sensitive to the curse of dimensionality: compared to all other LPF
algorithms, the RMSE scores are lower, the optimal values for ` are larger, and the optimal
values for s are smaller. Some conclusions are similar as for the LPF–X algorithms. Using
colourised post-regularisation yields lower RMSE scores for large ensembles only when
combined with systematic resampling. Using a local update method based on the optimal
transport theory (either optimal ensemble coupling or anamorphosis) results in important
gain in RMSE scores, as a consequence of the minimisation of the updates in the U regions
which need to be propagated to the V regions. With a reasonable number of particles (e.g.,
Ne = 64 when using the anamorphosis), the RMSE scores are significantly lower than those
obtained with the reference EnKF algorithm.

5.2.6 Summary for the LPF algorithms

To summarise, figure 5.18 shows the evolution of the RMSE score as a function of the ensemble
size Ne for a selection of LPF–X and LPF–Y algorithms, whose implementation is described
in subsections 5.2.4 and 5.2.5.

• With small ensembles (typically Ne ≤ 64 particles), using optimal transport for the
local updates yields the best scores.

• With large ensembles (typically Ne ≥ 128 particles), combining smoothing-by-weights
and colourised post-regularisation in the LPF–X algorithms yields equally good RMSE
scores as using optimal transport for the local updates.

• With very large ensembles (Ne = 512), the best RMSE scores of the LPF–X algorithms
become comparable to those of the EnKF.

• With only Ne ≥ 64 particles, the best RMSE scores for the LPF–Y algorithms are
significantly lower than those of the EnKF.

5.2.7 Rank histograms for the LPF algorithms

As a complement to the RMSE score, rank histograms are computed for the L96 model. For
this experiment, four algorithms are selected:

• the ETKF algorithm;

• the LPF–X algorithm with systematic resampling and with white post-regularisation
(sys/w);

• the LPF–X algorithm with anamorphosis and with white post-regularisation (ana/w);

• the LPF–Y algorithm using the second-order propagation method, in which the local
updates are performed with the anamorphosis, and with white post-regularisation
(ana/so/w);
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Figure 5.18: Evolution of the RMSE score as a function of the ensemble size Ne for the
main LPF–X (top panel) and LPF–Y (bottom panel) algorithms. For comparison, the RMSE
score of the LETKF algorithm with Ne = 10 members is shown with an horizontal dashed
black line. The DA system is the L96 model in the mildly nonlinear configuration.
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Table 5.3: Characteristics of the DA assimilation algorithms whose rank histograms are
shown in figure 5.19. The first column indicates the corresponding label in figure 5.19. The
localisation radius ` is given in number of grid points. An asterisk in the last column indicates
that the algorithm parameters have been tuned to yield the lowest RMSE score.

Label Ne ` s Other param. RMSE

LPF–X: sys/w 128 8 10.0× 10−1 Nb = 10 0.289∗

LPF–X: sys/w/• 128 5 8.0× 10−2 Nb = 40 0.500
LPF–X: ana/w 128 20 4.5× 10−1 hf = ha = 1 0.215∗

LPF–X: ana/w/• 128 10 3.0× 10−1 hf = ha = 1 0.228
LPF–Y: ana/so/w 128 80 1.0× 10−2 hf = ha = 1 0.180∗

ETKF 20 ∞ – λ = 1.02 0.188∗

The algorithmic parameters are reported in table 5.3. The rank histograms are obtained
separately for each state variable n ∈ (Nx : 1) by computing the rank of the n-th variable of
the truth xt in the unperturbed analysis ensemble Ea (i.e., the analysis ensemble Ea before
the post-regularisation step for the LPF algorithms). The mean histograms (averaged over
all state variables) are reported in figure 5.19.

The histogram of the ETKF algorithm (top left, in blue) is quite flat in the middle, and
its edges reflect a small overdispersion. The histogram of the tuned LPF–X algorithm with
systematic resampling (top right, in red) is characterised by a large hump, showing that the
analysis ensemble Ea is overdispersive. At the same time, the high frequencies at the edges
show that the algorithm yields a poor representation of the distribution tails (a very common
trait in most PF algorithms). The overdispersion of the Ea is a consequence of the fact that
the parameters have been tuned to yield the lowest RMSE score, regardless of the flatness of
the rank histogram. With a different set of parameter, the non-tuned LPF–X algorithm with
systematic resampling (bottom right, in cyan) yields a much flatter histogram. In this case,
the post-regularisation standard deviation s is lower, which explains the fact that Ea is less
overdispersive, and the localisation radius ` is smaller, in order to avoid the collapse of the
algorithm. Of course, the RMSE score for the non-tuned LPF–X algorithm with systematic
resampling is higher than for its tuned version. Similar conclusions can be found with the
histograms of the tuned and non-tuned LPF–X algorithm with anamorphosis (central panels,
in green and in yellow). In this case the histograms are significantly flatter than with the
LPF–X algorithm with systematic resampling. Finally, the histogram of the (tuned) LPF–Y
algorithm with anamorphosis (bottom left, in purple) is remarkably flat.

In summary, the rank histograms of the LPF algorithms are in general rather flat. The
ensemble is more or less overdispersive, as a consequence of the use of post-regularisation,
necessary to avoid the collapse of the algorithm. As most PF algorithms, the LPF algorithms
yield a poor representation of the distribution tails.
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5.2.8 Illustration in the strongly nonlinear configuration

To conclude the L96 test series, we illustrate the performance of the LPF algorithms in the
strongly nonlinear configuration of the L96 model, described in paragraph 5.1.2.3. Figure 5.20
shows the evolution of the RMSE score as a function of the ensemble size Ne for a selection
of LPF–X and LPF–Y algorithms, whose implementation is described in subsections 5.2.4
and 5.2.5, as well as for the LETKF algorithm.

As expected in this strongly nonlinear configuration, the EnKF fails at accurately recon-
structing the truth xt. By contrast, all tested LPF algorithms yield, at some point, an
RMSE score under the observation standard deviation r = 1. Regarding the ranking of
the methods, most conclusions from the mildly nonlinear configuration remain true. The
best RMSE scores are obtained when using optimal transport for the local updates. Com-
bining smoothing-by-weights and colourised post-regularisation in the LPF–X algorithms
yields almost equally good RMSE scores as using optimal transport for the local updates.
Finally, using the LPF–Y algorithms with the second-order propagation method yields the
lowest RMSE scores, despite the non-Gaussian error distributions resulting from the strong
nonlinearities in this configuration.

5.3 Experiments with the BV model

In this section, we illustrate the performance of several DA algorithms using twin experiments
of the BV model described in subsection 5.1.3. In subsections 5.3.1 and 5.3.2, we first consider
the coarse-resolution configuration, described in paragraph 5.1.3.2. Finally in subsection 5.3.3,
we consider the high-resolution configuration, described in paragraph 5.1.3.3.

For the coarse resolution configuration, in order to ensure the convergence of the statistical
indicators, we use a spin-up period of Ns = 103 assimilation cycles and a total simulation
period of at least Nc ≥ 104 assimilation cycles. For the localisation in both configurations,
we use the underlying physical space with the Euclidean distance. The geometry of the local
blocks and domain are constructed as described in figure 4.3. Specifically, local blocks are
rectangles and local domains are disks, with the difference that the doubly periodic boundary
conditions are taken into account. Finally, for the LETKF algorithm, the localisation matrices
ρNx:1 are constructed using equation (2.57).

5.3.1 Illustration of the EnKF and of the global PF

Figure 5.21 shows the evolution of the RMSE score as a function of the ensemble size Ne

for the ETKF and the LETKF algorithms. For each value of the ensemble size Ne, the
multiplicative inflation factor λ, as well as the localisation radius ` (only for the LETKF),
are optimally tuned to yield the lowest RMSE score.

The ETKF algorithm requires at least Ne = 12 ensemble members to avoid divergence.
The best RMSE scores are approximately 20 times smaller than the observation standard
deviation r (0.3 in this configuration). Even with only Ne = 8 ensemble members, the LETKF
algorithm yields RMSE scores at least 10 times smaller than r, showing that, in this case,
localisation is working as expected. In this configuration, the observation sites are uniformly
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Figure 5.20: Evolution of the RMSE score as a function of the ensemble size Ne for the
main LPF–X (top panel) and LPF–Y (bottom panel) algorithms. For comparison, the RMSE
score of the LETKF algorithm is shown in black. The DA system is the L96 model in the
strongly nonlinear configuration.

150



5.3 Experiments with the BV model

8 9 10 11 12 13 14 15 16

Ensemble size Ne

10−1

100

R
M

S
E

sc
o
re

[/
r
]

ETKF

LETKF

Figure 5.21: Evolution of the RMSE score as a function of the ensemble size Ne for the
ETKF (in blue) and the LETKF (in red) algorithms. The DA system is the BV model in
the coarse-resolution configuration, and the scores are displayed in units of the observation
standard deviation r.

distributed over the spatial domain. This constrains the analysis density πa to be close to
Gaussian, which explains the success of the EnKF in this DA system.

With an ensemble of Ne ≤ 1024 particles, we could not find a combination of parameters
with which the regularised SIR or ETPF algorithm yields an RMSE score significantly lower
than r.

From now on, in most of the following figures related to this DA configuration, we draw a
baseline at r/20, roughly the RMSE score of the ETKF and LETKF algorithms with Ne = 12
ensemble members (even though slightly lower RMSE scores can be achieved with larger
ensembles).

5.3.2 Illustration of the LPF algorithms

In this subsection, we test the following LPF–X and LPF–Y algorithms with an ensemble
size Ne ranging from 8 to 128 particles.

• The LPF–X algorithm with systematic resampling, with or without a smoothing-by-
weights step. In this case, four values for the number of local blocks Nb are tested:
Nb = 1024 local blocks with a size of 1 × 1 grid points, Nb = 256 local blocks with
a size of 2× 2 grid points, Nb = 64 local blocks with a size of 4× 4 grid points, and
Nb = 16 local blocks with a size of 8× 8 grid points, and the best RMSE score is kept.
When using the smoothing-by-weights step, the smoothing strength αs is set 1, and the
smoothing radius `s is optimally tuned to yield the lowest RMSE score.
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5 Localisation in the particle filter: numerical illustrations

• The LPF–X algorithm with optimal ensemble coupling. In this case, we only test
Nb = Nx = 1024 local blocks, and the distance radius `d is optimally tuned to yield
the lowest RMSE score.

• The LPF–X algorithm with anamorphosis. In this case, the forecast and analysis
regularisation bandwidths hf and ha are set to 1.

• The LPF–Y algorithm using the hybrid propagation method.

• The LPF–Y algorithm using the second-order propagation method. In this case, the
local updates are performed with systematic resampling, with optimal ensemble coupling,
or with anamorphosis. When using optimal ensemble coupling, the distance radius `d

is optimally tuned to yield the lowest RMSE score, and when using anamorphosis, the
forecast and analysis regularisation bandwidths hf and ha are set to 1.

In all cases, a post-regularisation step is added after each assimilation cycle. The localisation
radius ` and the post-regularisation standard deviation s (for white post-regularisation) or
bandwidth h (for colourised post-regularisation) are optimally tuned to yield the lowest
RMSE score.

Figure 5.22 shows the evolution of the RMSE score as a function of the ensemble size Ne for
the LPF–X and LPF–Y algorithms. Most of the conclusions for the L96 model remain true
with the BV model. The best RMSE scores are obtained when using optimal transport for
the local updates. Combining smoothing-by-weights and colourised post-regularisation in the
LPF–X algorithms yields almost equally good RMSE scores as using optimal transport for
the local updates. Finally, the lowest RMSE scores are obtained with the LPF–Y algorithms
using the second-order propagation method.

With such a large model, we expected the colourised post-regularisation method to be much
more effective than the white post-regularisation method, because the colourisation reduces
potential spatial discontinuities in the additional jitter. However, exactly as for the L96 model,
when using optimal transport for the local updates, using colourised post-regularisation does
not further improve the RMSE scores. This suggests that there is room for improvement in
the design of regularisation methods for PF algorithms.

Due to relatively high computational times, we restricted our study to reasonable ensemble
sizes (Ne ≤ 128 particles). In this DA system, this is not enough for the LPF–X algorithms
to yield RMSE scores comparable with those of the EnKF. However, with Ne ≥ 64 particles,
the LPF–Y algorithms using the second-order propagation method with the anamorphosis
yield RMSE scores almost equivalent to those of the EnKF.

5.3.3 Illustration in the high-resolution configuration

To conclude the BV test series, we illustrate the performance of a selection of LPF algorithms
and of the LETKF algorithm in the high-resolution configuration of the BV model, described
in paragraph 5.1.3.3. Using this configuration yields a higher dimensional DA system
(Nx = 65 536 state variables and Ny = 4096 observations) for which an assimilation cycle
is too costly to perform exhaustive tests. Therefore, in this subsection, we take Ne = 32
ensemble members and we monitor the time series of instantaneous RMSE score during 501
assimilation steps, which corresponds to a total simulation time of 250 time units.
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Figure 5.22: Evolution of the RMSE score as a function of the ensemble size Ne for the
LPF–X (top panel) and the LPF–Y (bottom panel) algorithms. For comparison, the RMSE
score of the ETKF algorithm with Ne = 12 members is shown with an horizontal dashed
black line. The DA system is the BV model in the coarse-resolution configuration, and the
scores are displayed in units of the observation standard deviation r.
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Table 5.4: Characteristics of the DA algorithms tested with the BV model in the high
resolution configuration. The first column indicates the corresponding label in figure 5.23
following the conventions of tables 5.1 and 5.2. The localisation radius ` is given in units of
the simulation domain L = 1. Furthermore, all LPF–X algorithms use Nb = Nx local blocks.
The reported RMSE score in the fifth column is averaged over the final 300 assimilation cycles
and is given in units of the observation standard deviation r. The wall-clock simulation time
reported in the sixth column is the average time spent per analysis step. For comparison, the
average time spent per forecast (for a time interval between consecutive observation ∆t of 0.5
unit of time) for the 32-member ensemble is 0.94 s. When possible, parallelisation is enabled
in the Nx local updates using 24 OpenMP threads. The average time spent per analysis step
for the parallelised runs, as well as the acceleration factor, are reported in the last column.

Label `/L s, h Other param. RMSE/r Wall-clock time
1 thread 24 threads

LETKF 0.35 – λ = 1.04 0.10 103.90 5.09 (×20.41)
LPF–X: sys/w 0.02 0.55 – 0.78 7.58 0.54 (×14.04)
LPF–X: sys/smo/c 0.05 1.00 αs = 1, `s = ` 0.38 226.20 12.50 (×18.10)
LPF–X: ana/w 0.08 0.11 hf = ha = 3 0.33 13.94 0.86 (×16.21)
LPF–Y: sys/hyb/w 0.03 0.70 – 0.90 122.18 –
LPF–Y: sys/so/w 0.07 0.25 – 0.46 52.97 –
LPF–Y: ana/so/w 0.20 0.01 hf = ha = 1 0.13 64.79 –

For these experiments, the selection of algorithms is listed in table 5.4. Each algorithm
uses the same initial ensemble E obtained as follows:

∀i ∈ (Ne : 1), xi(0) = xt(0) + 0.5× e + ei, (e, ei) ∼ N [0, I]. (5.20)

Such an ensemble is not very close to the truth xt (as measured by the RMSE), and its
spread is large enough to reflect the lack of initial information. Approximate values for
the localisation radius `, for the post-regularisation standard deviation s (when using white
post-regularisation), for the post-regularisation bandwidth h (when using colourised post-
regularisation), and for the multiplicative inflation (when using the LETKF algorithm) are
found using several twin experiments with a few hundred assimilation cycles (not illustrated
here). When using anamorphosis, we only test a few values for the forecast and analysis
regularisation bandwidths hf and ha, when using the smoothing-by-weights step, the smooth-
ing strength αs is set to 1 and the smoothing radius `s is set to be equal to the localisation
radius `. Finally, all LPF–X algorithms are tested with Nb = Nx = 65 536 local blocks.

Figure 5.23 shows the evolution of the instantaneous RMSE score for the selected algorithms.
All experiments are performed on the same computational platform with 12 cores. The
algorithmic parameters, alongside the average RMSE score, computed over the final 300
assimilation steps and the wall-clock computational times, are reported in table 5.4. In terms
of RMSE score, the ranking of the algorithms is unchanged, and most of the conclusions for
this experiment are the same as with the coarse resolution configuration.
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Figure 5.23: Time series of instantaneous RMSE score for the algorithms described in
table 5.4. The DA system is the BV model in the high-resolution configuration, and the
scores are displayed in units of the observation standard deviation r.

Thanks to the uniformly distributed observation network, the analysis density πa is close to
Gaussian. Therefore the LETKF algorithm can efficiently reconstruct a good approximation
of the truth xt. As expected in this high-dimensional DA configuration, the algorithms
using a second-order truncation (the LETKF algorithm and the LPF–Y algorithms using the
second-order propagation method) are more robust. Optimal values of the localisation radius
` are qualitatively large, which allows for a better reconstruction of the system dynamics.

For the LPF–X algorithm with systematic resampling as well as for the LPF–Y using the
hybrid propagation method, ` needs to be very small to counteract the curse of dimensionality.
With such small values for `, the local domains contains only 4 to 13 observation sites,
which is empirically barely enough to reconstruct xt with an RMSE score lower than the
observation standard deviation r. As in the previous experiments, using optimal transport
for the local updates or combining smoothing-by-weights and colourised post-regularisation
yields significantly lower RMSE scores. The RMSE scores of the LPF–X algorithm with
anamorphosis and of the LPF–X algorithm with systematic resampling, though not as good
as the RMSE score of the LETKF algorithm, show that xt is reconstructed with an acceptable
accuracy. The RMSE scores of the LETKF algorithm and of the LPF–Y algorithm using the
second-order propagation method with anamorphosis are almost comparable. Depending on
the algorithm, the conditioning to the initial ensemble E more or less quickly vanishes.

Without parallelisation, we observe that the Nx local updates of the LPF–X algorithms
are almost always faster than both the Nx local analyses of the LETKF algorithms and the
Ny sequential updates of the LPF–Y algorithms. The second-order propagation method
is slower because of the linear algebra involved in the method and the hybrid propagation
algorithm is slower because computing the prior and posterior update weights ωf and ωa is
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5 Localisation in the particle filter: numerical illustrations

numerically demanding. The LETKF algorithms is slower because of the matrix inversions
in ensemble space. Finally, the LPF–X algorithm with smoothing-by-weights is even slower
because computing the smoothed ensemble in this two-dimensional model is numerically
demanding. The difference between the LPF–X and LPF–Y algorithms is even more visible
in the parallelised runs. The LPF–Y algorithms are not parallel, which is why they are more
than 70 times slower than the fastest LPF–X algorithms.

5.4 Summary and discussion

In this chapter, we have implemented and systematically tested the LPF algorithms using twin
experiments of the L96 and the BV models. With these models, implementing localisation
is simple and works as expected: the LPF algorithms yield acceptable RMSE scores, even
with small ensembles, in regimes where global PF algorithms are degenerate. In terms of
RMSE scores, there is no clear advantage of using the hybrid propagation method (designed
to avoid unphysical discontinuities) over the simpler LPF–X algorithms, which have a lower
computational cost. As expected, algorithms based on the second-order propagation method
are less sensitive to the curse of dimensionality and yield the lowest RMSE scores. We have
shown that using optimal transport for the local updates always yields important gains in
RMSE score. For the LPF–X algorithms, this is a consequence of mitigating the unphysical
discontinuities introduced while assembling the locally updated particles. For the LPF–Y
algorithms, this is a consequence of the minimisation of the local updates to be propagated.

The successful application of the LPF algorithms to DA systems with a perfect model is
largely due to the use of post-regularisation. Using post-regularisation introduces an additional
bias in the analysis alongside an extra parameter to be determined. For our numerical
experiments, we have introduced two post-regularisation methods: white post-regularisation,
in which the Gaussian jitter is a white noise, and colourised post-regularisation, in which the
Gaussian jitter has covariance matrix determined by the ensemble. We have discussed the
relative performance of each method and concluded that there is room for improvement in
the design of regularisation methods for PF algorithms. Ideally, the regularisation methods
should be adaptive and built concurrently with the localisation method.

The local update method is the main ingredient in the success, or failure, of an LPF
algorithm. The approaches based on optimal transport offer an elegant and efficient framework
to deal with the discontinuity issue inherent to the local updates. However, the algorithms
derived in this article could be improved. For example, it would be desirable to avoid the
systematic reduction to one-dimensional problems when using the anamorphosis.

The successful application of the LPF algorithms to the BV model in the high-resolution
configuration shows that the algorithms may be ready to be applied to realistic DA systems.
This is the topic of chapter 6. Finally, the localisation frameworks introduced in chapter 4 can
only work with local observations. The ability to assimilate non-local observations becomes
increasingly important with the prominence of satellite observations. This topic is discussed
in chapter 7 in an EnKF context.
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In chapter 5, the performances of the LPF algorithms have been illustrated using twin
experiments with low- and medium-order DA systems. In this chapter, we consider the
case study of the prediction of the tropospheric ozone (O3) concentration in western Europe
during the summer 2009. Ozone is one of the most regulated pollutants in Europe (and all
over the world as well) because it damages human health. Although it is not directly emitted,
it is found in high concentrations in urban areas, as a secondary product of photochemistry.

The evolution of the ozone concentrations in the atmosphere is determined by the equations
of atmospheric chemistry. Such equations are usually solved using a chemistry and transport
model (CTM), in which the meteorology is not directly computed, but used as input of the
model. The experiments described in this chapter are a continuation of the work of Haussaire
(2017), in which we use the CTM Polair3DChemistry from the Polyphemus framework
(Mallet et al. 2007). By contrast with the work presented in the other chapters, this work is
not yet complete, meaning that several aspects of the study still need to be explored.
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Section 6.1 presents the numerical experiments performed in this chapter. In particular,
we describe the observation database and the dynamical model. Section 6.2 describes the
implementation of the DA algorithms. The experiments and their results are then discussed
in section 6.3. Finally, conclusions are provided in section 6.4.

6.1 Presentation of the numerical experiments

6.1.1 The observation database

Airbase is an air quality database managed by the European Environment Agency. It gathers
the observations of several pollutants, among which ozone but also carbon dioxide (CO2) and
nitrogen dioxide (NO2), at several stations spread all over Europe. Most of the stations are
located in the physical domain D defined by:

D = [9°W, 24°E]× [36°N, 59°N]. (6.1)

Each station has a type, which informs about the nature of the pollutant source. It can be
industrial, traffic, or background. Each station also have an ozone class, which informs about
the population density. It can be urban, suburban, or rural. From all these stations, we only
keep the background rural stations, because the resolution of the simulation considered in
this chapter is not enough to capture phenomenon at a more local scale.

In this chapter, we only consider the measurements of ozone concentration. Figure 6.1
shows the repartition of the stations in the database, which are used in the DA experiments
of section 6.3. At each station, there are 24 measurements per day. They correspond
to the average ozone concentration over time periods of 1 h, starting at 0:00 UTC. For
the DA experiments, we make the approximation that each measurement corresponds to
the instantaneous ozone concentration at the centre of the time period (that is, the first
measurement of each day is assumed to be the instantaneous ozone concentration at 0:30
UTC). In summary, the time interval between consecutive observations ∆t is 1 h, and the
number of observations Ny is equal to the number of stations.

Remark 23. The measurements are not always available. In the DA experiments, when the
measurement at a given time and at a given station is not available, the station is simply
disabled for the assimilation cycle.

6.1.2 Description of the model

The atmosphere is composed of dinitrogen (N2, about 80 %), of dioxygen (O2, about 20 %),
and of many other chemical species, among which ozone. The evolution of the concentration
field cs of each chemical species s in the atmosphere is governed by the following advection-
diffusion-reaction equation:

∂cs
∂t

+ div(vcs) = div(K∇cs) + χs(c, T, J, h) + Ss − Λscs. (6.2)

The goal of a CTM is to solve this equation of all chemical species using input data coming
from several sources:
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Figure 6.1: Simulation domain D. The red, blue, and green dots show the Ny observation
sites, i.e., the background rural stations which are used in the DA experiments of section 6.3.
According to the nomenclature introduced in subsection 6.2.1, the red stations form the
group assim and the green and blue stations form the group valid. The blue station is the
10th station of the group valid.
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Table 6.1: Vertical limits for all Pz = 11 vertical levels.

Level Lower boundary [m] Upper boundary [m]

1 0 40
2 40 90
3 90 180
4 180 320
5 320 600
6 600 1000
7 1000 1400
8 1400 1900
9 1900 2400
10 2400 3000
11 3000 5000

• the meteorological data, that is the fluid velocity vector field v, the effective diffusion
matrix K, the temperature field T , the photolysis rates field J , and the specific humidity
field h;

• the emission data, that is the source term for each species S;

• the physical parametrisation of the chemistry, that is the production rate of each species
χ, which in particular depends on the concentration of all species c, and the deposition
rate of each species Λ.

Computing the production rates χ is the core element of a CTM, and involves the description
of several hundreds of chemical reactions between all species. Different chemical mechanisms
exist, depending on the choice of the species and reactions described.

In the atmosphere, ozone is mainly produced by the photolysis of nitrogen dioxide. Nitrogen
dioxide itself is produced by oxidation of nitrogen oxide by radicals, which are in turn produced
by oxidation and photolysis of volatile organic compounds. Hence, the ozone concentration is
highly related to the concentration of nitrogen oxide and dioxide, and to the concentration
of volatile organic compounds. Therefore, we need to select a chemical mechanism which
describes at least all these elements.

For our experiments, we use the Polair3DChemistry model (Mallet et al. 2007), with
a parametrisation briefly described in the following lines. The simulation domain is a
discretisation of the domain D using a resolution of 0.5° × 0.5° in latitude and longitude
coordinates. There are Pz = 11 vertical levels whose boundaries are reported in table 6.1.
The chemistry is described using the CB05 mechanism without aerosols (Yarwood et al. 2005).
It describes the evolution of Ps = 52 gaseous species, among which ozone.

The numerical integration of equation (6.2) is performed using a first-order splitting, with
an integration time step δt of 600 s. The advection is solved using a third-order direct space
time scheme, and a Koren-Sweby flux limiter. The diffusion and the chemistry are solved
using a second-order Rosenbrock method, with an adaptive time step in the range [10 s, 600 s].
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Table 6.2: Summary of the parametrisations used in the CTM Polair3DChemistry.

Period Summer 2009
Resolution 0.5°× 0.5°
Domain (latitude) 9°W− 24°E (Px = 67)
Domain (longitude) 36°N− 59°N (Py = 47)
Vertical levels table 6.1 (Pz = 11)
Chemical mechanism CB05 (Ps = 52)
Aerosols disabled
Meteorology ECMWF, 3 h forecast
Initial conditions MOZART 2.0

Boundary conditions MOZART 2.0

Anthropogenic emissions EMEP
Biogenic emissions MEGAN
Vertical diffusion Louis (1979)
Horizontal diffusion 105 m2/s
Deposition Zhang et al. (2003)

The meteorological input fields are given by the three-hour forecast fields of the European
Centre for Medium-Range Weather Forecasts (ECMWF). The initial and boundary conditions
are extracted from global simulations using the second version of the Model for OZone And
Related chemical Tracers (MOZART, Horowitz et al. 2003). The anthropogenic emissions
come from the European Monitoring and Evaluation Programme (EMEP, Vestreng et al.
2004), and the biogenic emissions from the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) (MEGAN, Guenther et al. 2006), using the land use data from the Global
Land Cover Facility (GLCF). The horizontal diffusion coefficient is set to 105 m2/s, and
the vertical diffusion coefficients are computed using the parametrisation of Louis (1979).
Finally, we use the deposition model of Zhang et al. (2003). The full list of parametrisations
is summarised in table 6.2.

6.1.3 The reference simulation

A reference simulation is performed using the parametrisations described in the previous
subsection, from the 1st May 2009 to the 31st August 2009. We take a spin-up period of one
entire month to relax the influence of the initial conditions.

The instantaneous ozone concentration predicted by the simulation at the q-th station is
computed as

ysq(t) = Hqx
s(t), (6.3)

where xs(t) is the vector with Pz×Py×Px elements representing the instantaneous ozone field
predicted by the simulation in the full domain, and Hq is the bilinear interpolation matrix
for the q-th station. This instantaneous predicted ozone concentration ys(t) is compared to
the instantaneous measured ozone concentration y(t) during the whole summer period (June,
July, and August). To limit as much as possible the impact of a possible time delay, the
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instantaneous predicted concentration is taken at the center of the corresponding average
measurement period (for example the average measured concentration from 0:00 to 1:00 UTC
is compared to the instantaneous predicted concentration at 0:30 UTC). We have checked
that taking the average predicted concentration, with prediction records every ten minutes,
does not change our conclusions.

This comparison shows that the ozone concentration predicted by the reference simulation
is biased and yields high RMSE scores (see the detailed comparison in paragraph 6.1.4.3).
This can be explained by two factors:

• the selected model is crude, and in particular it does not incorporate the aerosols;

• the input database may be biased.

In order to overcome this limitation, the reference simulation is debiased, as presented in the
following subsection.

For completeness, it should be mentioned that the choice of a bilinear interpolation method
is convenient, because the resulting observation operator H is linear and sparse. Furthermore,
we have checked that using a higher order interpolation method barely changes the time
series of predicted ozone concentration. Therefore, we only consider the bilinear interpolation
method in this chapter.

6.1.4 Debiasing the reference simulation

The idea of debiasing the simulation is to modify the observation operator in such a way that
the instantaneous ozone concentration predicted at the q-th station is now computed as

ysq(t) = Hqx
s(t)− bq(t), (6.4)

where bq(t) is an instantaneous bias parameter for the q-th station. It must be chosen to
match the instantaneous bias Hqx

s(t)− yq(t) while being as simple as possible.

6.1.4.1 A simple parametrisation for the bias

We choose to represent the bias parameter for the q-th station as

∀(d, h) ∈ N× (24 : 1), bq
(
t(d, h)

)
, λqγh + µq, (6.5)

where d is the index of the simulation day, h is the hour of the day, and t(d, h) is the
corresponding time. In other words, the bias parameter for the q-th station is derived from a
common daily cycle γ24:1 using a stretching parameter λq and a level parameter µq, which
are constant in time. This means that we have to determine the value of 2 bias parameters
per station and of 24 common bias parameters.

For simplicity, we define the vectors γ, λ, and µ as the vector whose components are γ24::,
λNy:1, and µNy:1, respectively.
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Figure 6.2: Common daily cycle of bias γ.

6.1.4.2 Calibration of the bias parameters

The values for the bias parameters are computed by minimising the (masked) cost function

J (γ,λ,µ) =
∑

d∈Dc

24∑

h=1

Ny∑

q=1

1o
d,h,q

[
Hqx

s
(
t(d, h)

)
− yq

(
t(d, h)

)
− λqγh − µq

]2
, (6.6)

where Dc is the set of days selected for the calibration, and 1o
d,h,q is a factor equal to 1 if the

measurement at the q-th station, the d-th day and the h-th hour is available, and equal to 0
otherwise.

In our case, there is a total of 92 days for the summer period, which we divide into batches
of 10 days. The first batch, as well as every other batch, are placed into Dc. All remaining
batches, as well as the last remaining two days, are placed into Dv, the set of days selected
for the validation of the bias parameters. Hence, Dc contains 50 days and Dv contains 42
days.

The cost function J is a nonlinear function of 2Ny + 24 variables. However its gradient
is easy to compute and standard minimising algorithms such as the L-BFGS-B algorithm
(Byrd et al. 1995) only require a few dozen iterations to find its minimum.

For any α ∈ R, using the set of bias parameters (γ + α1,λ,µ− αλ) is equivalent to
using the set of bias parameters (γ,λ,µ). Therefore, we force the daily cycle γ to have a
zero average value. The result of the minimisation is depicted in figures 6.2, and 6.3. For
completeness, we have minimised the cost function J in the cases where the calibration
period Dc contains every other day in the summer period, or simply every day in the summer
period. In both cases, the result of the values for the bias parameters γ, λ, and µ (not
illustrated here) are very similar to those depicted in figures 6.2, and 6.3. This shows that
the calibration of the bias parameters is adequate.

163



6 Application to the prediction of ozone at continental scale

−1 0 1 2 3 4

Stretching parameter λ

N
o
rm

.
F
re

q
u
e
n
c
y

−40 −20 0 20 40 60

Level parameter µ
[
µg/m3

]

Figure 6.3: Distribution of the stretching parameter λ (left panel) and of the level parameter
µ (right panel) over the list of stations.

Table 6.3: Average statistical indicators per station for the original (middle column) and
debiased (right column) reference simulations.

Indicator Original simulation Debiased simulation

Mean bias
[
µg/m3

]
16.40 0.52

RMSE
[
µg/m3

]
29.84 20.08

Correlation 0.54 0.63

6.1.4.3 Validation of the bias

Figure 6.4 shows the time series of average ozone concentration, where at each time the
average is taken over all stations for which a measurement is available, and figure 6.5 shows
the average daily cycle of average ozone concentration. In both cases, the debiased predictions
are much closer to the measurements than the original ones.

The effect of the debiasing in the reference simulation is then quantified by computing
the following statistical indicators. For each station, we compute the mean bias, the RMSE,
and the correlation between the time series of predicted and measured ozone concentration
during the validation period Dv only. The average values are reported in table 6.3, where in
each case the average is taken over all stations. Thanks to the debiasing, the mean bias has
been almost entirely removed, and the other statistical indicators (RMSE and correlation)
now have the same order as for typical CTMs (Bessagnet et al. 2016).

6.2 Implementation of data assimilation

For the numerical experiments of this chapter, five different DA algorithms are used:

• the cycled BLUE algorithm, algorithm 1.1, described in subsection 1.5.2, and which is
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Figure 6.5: Average daily cycle of average ozone concentration for the measurements
(in blue), for the original reference simulation (in green), and for the debiased reference
simulation (in red).

also called optimal interpolation (OI) algorithm in this chapter;

• the LETKF algorithm, algorithm 2.4, described in subsection 2.5.4;

• the LPF–X algorithm, algorithm 4.1, in which the local updates are performed using
the adjustment-minimising systematic resampling algorithm (algorithm 3.4 with the
modification described in paragraph 4.2.3.3);

• the LPF–X algorithm, algorithm 4.4, in which the local updates are performed using
the anamorphosis, as described in paragraph 4.2.3.5;

• the LPF–Y algorithm, algorithm 4.8, in which the local updates are performed using
the adjustment-minimising systematic resampling algorithm and propagated using the
second-order propagation method, as described in subsection 4.3.3.

In this section, we describe how these algorithms are implemented for the assimilation of the
observations in the database described in subsection 6.1.1.

6.2.1 General considerations

In the DA experiments, we chose to keep in the control vector x all chemical species at all
vertical levels. In other words, there are Nx = Ps ×Pz ×Py ×Px = 1 801 228 variables in this
configuration. This choice enables the development of interspecies correlations during the DA
experiment, which means that the analysis step will be able to correct the concentrations of
all chemical species, even though only ozone is observed. Other choice are possible (see, e.g.,
Gaubert 2013, and references therein).
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6.2 Implementation of data assimilation

In the observation database, the observations are available every ∆t = 1 h. The observation
operator H is the bilinear interpolation operator introduced in subsection 6.1.3, with the
debiasing method described in subsection 6.1.4. The bias parameters γ, λ, and µ could
have been included in the control vector to be estimated by the DA algorithms. However,
preliminary experiments have shown that this barely improves the scores,1 which is why we
have chosen to keep the values of the bias parameters static. For simplicity, the observation
error covariance matrix R is chosen to be diagonal:

R , r2I, (6.7)

where the observation standard deviation r need to be specified. Typical values of the
observation standard deviation r lie in the interval

[
10 µg/m3, 20 µg/m3

]
(see, e.g., Haussaire

2017, and references therein).

The 1 h forecast between consecutive observations are performed using the Polair3D-

Chemistry model with the parametrisation described in subsection 6.1.2. The resulting
dynamical model M is expected to be stable (non-chaotic), but highly nonlinear as a result
of the chemical processes in the atmosphere. For the ensemble DA algorithms (the LETKF
and the LPF algorithms here), the forecast of each individual ensemble member is performed
independently on a separate OpenMP thread of the computational platform. As a consequence,
the wall-clock time for the ensemble forecast is equivalent to the (non-parallelised) wall-clock
time for a single member forecast. For the OI algorithm, we only need to forecast one state.
Therefore in this case, parallelisation is enabled in the Polair3DChemistry model under the
form of OpenMP threads.

The DA experiments consist of 5 days of assimilation, starting from the 14th August
2009 at 0:30 UTC. This corresponds to a total of 119 forecast steps, and 120 assimilation
steps. Finally, note that these 5 days of assimilation are not included in the 50 days used
to calibrate the bias parameters. This means that the statistical information contained in
the observations is not used twice. From all stations available in Airbase, we only keep we
only keep those for which less than 25 % of measurements are missing during the DA period.
The stations are then randomly divided into two groups. The first group (assim) contains
the observations which are assimilated during the experiments. The second group (valid)
contains the observation which are used for cross-validation. Both groups contains Ny = 202
stations, and are shown in figure 6.1.

Finally, it should be mentioned that concentration values are expected to be non-negative.
The analysis step of the DA algorithms may not respect this condition, which is why, after
each assimilation cycle, negative values for the concentration are cropped to zero.

6.2.2 The optimal interpolation algorithm

In addition to the general considerations, we only need to specify the background error
covariance matrix B to implement the OI algorithm. Following the choice of Haussaire (2017),
the covariances are non-null only for the ozone concentrations, and the background error

1To be more specific, we have observed that, when the bias parameters are included in the control vector,
the DA algorithms systematically tend to correct the bias parameters at the expense of the concentration
variables. This is most probably due to a bad specification of the bias uncertainty.
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Figure 6.6: Balgovind function, defined by equation (6.9), in blue.

covariance matrix BO3 for the ozone has (mz,my,mx)-th row, (nz, ny, nx)-th column element
given by

[BO3 ](mz ,my ,mx),(nz ,ny ,nx) = p2 δmz≤zbl δnz≤zbl B

(
dmz ,nz

`v

)
B

(
d(my ,mx),(ny ,nx)

`h

)
, (6.8)

where B is the Balgovind correlation function (Balgovind et al. 1983), defined by

B :

{
R+ → R+,

x 7→ x exp(−x),
(6.9)

and illustrated in figure 6.6. In equation (6.8), the following quantities are used:

• dmz ,nz is the (vertical) distance between the mz-th and the nz-th levels, and `v is the
vertical correlation radius, set to 3000 m;

• d(my ,mx),(ny ,nx) is the (horizontal) distance between the (my,mx)-th and (ny, nx)-th
grid points, and `h is the horizontal correlation radius, set to 200 km;

• zbl = 5 is the number of levels in the boundary layer, in which most of the chemistry
processes happen;

• the standard deviation p is a parameter controlling the magnitude of the covariances,
whose value must be determined.

When using the OI algorithm, the initial forecast estimate xf
0 is taken as the state of the

atmosphere predicted by the reference simulation of subsection 6.1.3 at the initial time t0
of the DA experiment. In each analysis step, the Ny ×Ny matrix HBHT + R depends on
the current set of available observations. It can be entirely computed because the number
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6.2 Implementation of data assimilation

of observations Ny is moderate (a few hundreds) and because the observation operator H
is sparse. The mean update is then computed using a Cholesky factorisation of the matrix
HBHT + R. By construction of the background error covariance matrix B, each analysis
step only corrects the ozone concentration in the boundary layer. Finally, for simplicity the
analysis error covariance matrix Pa is not computed.

6.2.3 The LETKF algorithm

To implement the LETKF algorithm, we first need to specify the ensemble size Ne. State-
of-the-art studies in atmospheric chemistry (see, e.g., Gaubert 2013; Haussaire 2017, and
references therein) tend to show that it is reasonable to use between 20 and 50 members in
the ensemble. The benefit from using larger ensembles are moderate and do not compensate
for the increase in computational cost, as long as localisation is used. Therefore, in our
experiments we use an ensemble of Ne = 20 members.

The initial forecast ensemble Ef
0 is constructed as a random draw from the distribution

N [x̄f
0,B], where x̄f

0 is the state of the atmosphere predicted by the reference simulation at
the initial time t0, and B is the background error covariance matrix, constructed exactly as
in the previous subsection with a standard deviation p set to 32 µg/m3.

Preliminary experiments with the LETKF algorithm using both vertical and horizonal
localisation (not illustrated here) have shown that the vertical localisation is unnecessary.
Therefore, in our implementation of the LETKF algorithm, vertical localisation is disabled.
As a result, the analysis step is split into Py × Px local analyses. During the (ny, nx)-th local
analysis:

• the anomalies related to the q-th observation are tapered by a factor

√
G

(
d(ny ,nx),q

`

)
,

where G is the GC function introduced in subsection 2.5.3, d(ny ,nx),q is the horizontal
distance between the (ny, nx)-th grid point and the site of the q-th observation, and `
is the localisation radius;

• we update the Ps×Pz variables corresponding to the (ny, nx)-th grid point (one variable
per chemical species and per vertical level).

As presented in subsection 2.5.2, in order to mitigate the sampling errors, additive inflation
is used before the forecast step, which is equivalent to using an additional model error em

before integration. The model error is drawn from the distribution N [0,Q], where the model
error covariance matrix Q is constructed exactly as the background error covariance matrix
B from the previous subsection with a standard deviation p which needs to be specified.
By contrast with the OI algorithm, even though Q only defines covariances between ozone
concentrations, interspecies correlation can develop during the forecast step, which means
that the analysis step can correct the concentration of all species at all vertical levels.
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6.2.4 The LPF–X algorithms

The implementation of the two LPF–X algorithms is very similar to that of the LETKF
algorithm described in the previous subsection: the ensemble size Ne is set to 20, the initial
forecast ensemble Ef

0 is constructed using the same method, vertical localisation is disabled,
and additive inflation is used before the forecast step.

Furthermore, the local importance weight vectors wNb:1 are computed using the Gaussian
formulation, with equation (4.25), and there are Py×Px local blocks, each of them containing
Ps × Pz variables (one variable per chemical species and per vertical level).

When using systematic resampling, the implementation of the local updates is straightfor-
ward. By contrast, when using anamorphosis, the implement of the local updates need to be
described. For each variable n ∈ (Nx : 1), the transport map Tn is computed using the cdf of
the n-th regularised marginal empirical forecast and analysis densities π̄fn and π̄an, as defined
by equations (4.35) and (4.36). As for the experiments of chapter 5, the regularisation kernel
K is chosen to be the Student’s t-distribution with two degrees of freedom. However, we
need to compute a local update for different chemical species, for which the concentration
values may not have the same order of magnitude. Therefore, the resolution used to compute
the transport map Tn is computed independently for each chemical species and each vertical
level, by considering statistical properties (maximum, median) of the reference simulation.
Finally, the forecast and analysis regularisation bandwidths hf and ha are both set to 0.25.
This value has been deduced from preliminary experiments (not illustrated here).

6.2.5 The LPF–Y algorithm

The implementation of the LPF–Y algorithm is very similar to that of the other ensemble DA
algorithms: the ensemble size Ne is set to 20, the initial forecast ensemble Ef

0 is constructed
using the same method, vertical localisation is disabled, and additive inflation is used before
the forecast step.

For this DA system, the second-order propagation method is implemented as follows.
Suppose that we describe the assimilation of the q-th observation, and let ψ be the resampling
map computed using the adjustment-minimising systematic resampling algorithm with the
global importance weight vector w. The update in observation space is computed as

∀i ∈ (Ne : 1), ∆yq(i) , Hqx
(
ψ(i)

)
−Hqx(i). (6.10)

The observation operator Hq being a bilinear observation operator, ∆yq can be interpreted
as an update in state space, at a fictitious additional grid point which would lie at the q-th
observation site. Therefore, it can be propagated to all variables in the V region using the
method described in paragraph 4.3.3.3.

6.2.6 Short summary

The OI algorithm has two parameters: the observation standard deviation r, and the standard
deviation p of the background error covariance matrix B. Besides the ensemble size Ne, the
four ensemble DA algorithms have three parameters: the observation standard deviation r,
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the standard deviation p of the model error covariance matrix Q, and the localisation radius
`.

By contrast with the experiments of chapter 5, no post-regularisation step is used for
the LPF algorithms. Indeed, in this DA system, the additive inflation method is enough
to mitigate the sample impoverishment phenomenon. This is most probably related to the
stability of the dynamical model M.

6.3 Numerical experiments

6.3.1 The performance indicators

For the numerical experiments of this chapter, three different performance indicators are
considered.

1. the average RMSE per station, which is defined as the average over all stations of the
RMSE between the time series of predicted and measured ozone concentration at a
station;

2. the average correlation per station, which is defined in a similar way as the average
RMSE per station;

3. the instantaneous mean absolute error (MAE), which is defined as the average over all
stations of the instantaneous absolute error between the predicted and measured ozone
concentration at a station.

In every case, the indicator is restricted to a given group (assim or valid, as introduced in
subsection 6.2.1) and computed using either the forecast estimate xf or the analysis estimate
xa.2 Of course, these indicators are imperfect, because they consist in a comparison with noisy
observations, but this is the best we can do given the fact that the true ozone concentration
field is unknown. Finally, in order to relax the dependence to the initial ensemble, the first
day of assimilation is removed from the time series.

6.3.2 Choosing the parameters

The OI algorithm has two parameters: the observation standard deviation r, and the standard
deviation p of the background error covariance matrix B. However, the analysis step of the
OI algorithm relies on the computation of the Kalman gain matrix K, defined as

K = BHT
(
HBHT + R

)−1
, (6.11)

which actually only depends on the ratio p/r. Figure 6.7 shows the evolution of the average
RMSE per station as a function of the ratio p/r for the OI algorithm. As expected, the RMSE
score for the group assim (the group containing the observations which are assimilated) is
monotonically decreasing as the ratio p/r increases. Indeed, when the observation standard
deviation r is small (compared to the standard deviation p), the algorithm considers that the

2In particular, this means that the reported forecast indicators correspond to a 1 h forecast.
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Figure 6.7: Evolution of the forecast (in green) and analysis (in red) average RMSE per
station as a function of the ratio p/r for the OI algorithm. The indicators are computed for
the groups assim (left panel) and valid (right panel). For the group valid, the optimal
scores are shown with a black marker. The DA system is the Polair3DChemistry model
with the observations from Airbase.

observations are precise and adjusts the ozone concentrations to fit the observations as best
as possible. However in this case, the statistical content of the observations is overestimated,
as shown by the increase in RMSE score for the goup valid (the group containing the
observations which are non assimilated and kept for cross-validation). This phenomenon is
known as overfitting. Similar behaviour has been observed with all DA algorithms tested in
this chapter. Therefore, from now on we focus on the indicators for the group valid.

Figure 6.8 shows the evolution of the average RMSE per station as a function of the
ratio p/r for the LETKF algorithm. This evolution shows some similarity with that for
the OI algorithm, yet some differences can be noticed. In this case, the scores do not
only depend on the ratio p/r, as shown by the different evolutions when the observation
standard deviation r is different. This was expected, because the standard deviation p of the
model error covariance matrix Q influences the forecast sample covariance matrix P̄f in a
nonlinear fashion. Furthermore, the optimal ratio p/r is much larger when considering the
forecast RMSE score than when considering the analysis RMSE score. In other words, for a
fixed observation standard deviation r, the model perturbation (through the use of additive
inflation) has to be larger when considering the forecast RMSE score than when considering
the analysis RMSE score. This shows that there is room for improvement in the design of
the dynamical model. Similar results have been observed for all ensemble DA algorithms
tested in this chapter.

3In these experiments, it turns out that the value of ` which minimises the forecast RMSE score is
approximately equal to the value of ` which minimises the analysis RMSE score.
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Figure 6.8: Evolution of the forecast (in green) and analysis (in red) average RMSE per
station as a function of the ratio p/r for the LETKF algorithm. The observation standard
deviation r is set either to 10 µg/m3 (continuous lines) or or to 20 µg/m3 (dashed lines), and
for each value of the couple of parameters (r, p) the localisation radius ` is optimally tuned to
yield the lowest RMSE score.3 In each case, the optimal score is shown with a black marker.
The DA system is the Polair3DChemistry model with the observations from Airbase.
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Table 6.4: Parametrisation of the DA algorithms for the experiments shown in subsec-
tion 6.3.3. For the OI, p is the standard deviation of the background error covariance matrix
B. For the ensemble DA algorithms, p is the standard deviation of the model error covariance
matrix Q.

Algorithm Obs. std. dev. r Std. dev. p Loc. rad. `[
µg/m3

] [
µg/m3

] [
km
]

OI 12 6.6 –
LETKF 12 7.2 220
LPF–X (sys.) 12 7.2 220
LPF–X (ana.) 12 7.2 220
LPF–Y 12 10.5 220

6.3.3 Optimal results

6.3.3.1 Approximate optimal parametrisations

In this section, we focus in parametrisations in which the analysis average RMSE per station
is (close to) optimal. For the OI algorithm, the parametrisation is directly deduced from
figure 6.7. For the ensemble DA algorithms, we found a common parametrisation which is
approximately optimal for the LETKF algorithm, as well as for both tested LPF–X algorithms.
Finally, for the LPF–Y algorithm, the standard deviation p of the model error covariance
matrix Q had to be increased a bit to obtain a parametrisation close to optimal. This is
summarised in table 6.4. In all cases, the observation standard deviation r is set to 12 µg/m3,
in agreement with most other studies (see, e.g., Haussaire 2017, and references therein).

6.3.3.2 Single station trajectory

Figure 6.9 shows the time series of ozone concentration at the 10th station (located in
Germany, see figure 6.1). With the reference simulation, the ozone concentration is:

1. highly underestimated in the morning, until 9:00 UTC;

2. a bit overestimated from 10:00 UTC to 18:00 UTC;

3. a bit underestimated in the evening, starting at 19:00 UTC.

In general, with DA the ozone concentration predicted using the analysis estimate xa is
closer to the measurements than the ozone concentration predicted by the debiased reference
simulation. More specifically:

1. the underestimation in the morning, though not entirely absorbed, is mitigated;

2. the ozone concentration predicted in the afternoon has the same order as the measured
ozone concentration;

3. the underestimation in the evening is also mitigated (except when using the OI al-
gorithm).

174



6.3 Numerical experiments

48 54 60 66 72

Time [h]

60

70

80

90

100

110

120
O

z
o
n
e

c
o
n
c
e
n
tr

a
ti

o
n
[ µ

g
/
m

3
]

ref. sim.

OI

LETKF

LPF–X (ana)

LPF–X (sys)

LPF–Y

measur.

Figure 6.9: Time series of ozone concentration at the 10th station during the third day
of assimilation for the measurements (in black), for the debiased reference simulation (in
orange), and for the DA algorithms. For the DA algorithms, the prediction is computed
from the analysis estimate xa. The DA system is the Polair3DChemistry model with the
observations from Airbase.

Furthermore it should be noted that low ozone concentrations at 9:30 UTC and at 14:00
UTC are measured and not predicted at all. In summary, in this case using DA is always
beneficial. Ensemble DA algorithms seem to have the edge over the OI algorithm. No clear
ranking between ensemble DA algorithms emerge from these experiments.

6.3.3.3 Concentration maps

Figure 6.10 shows, at a specific time, the mean and the spread of the ozone concentration
at ground level in the analysis ensemble Ea for the LPF–X algorithm with anamorphosis.
Furthermore, figures 6.11 and 6.12 shows, at the same time, the ozone concentration at
ground level of two ensemble members in Ea for the LPF–X algorithm with systematic
resampling and with anamorphosis.

As expected, figure 6.10 shows that the spread of Ea is large in the regions without
observations (typically in the Mediterranean and North seas) and small in the densely
observed regions (typically in central Europe). Figure 6.11 shows that the LPF–X algorithm
with systematic resampling is characterised by noticeable spatial discontinuities in Ea. At this
point, it is not clear whether these discontinuities impact the efficiency of the assimilation,
but it is satisfactory to see, in figure 6.12, that the discontinuities have been mitigated when
using the LPF–X algorithm with anamorphosis.4 This confirms the general conclusion of

4The effect described here is not intense and may not be obvious in printed versions of the maps.
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Figure 6.10: Mean (top panel) and spread (bottom panel) of the ozone concentration at
ground level in the analysis ensemble Ea for the LPF–X algorithm with anamorphosis at
12:30 the fifth day of assimilation. The values are given in µg/m3. The DA system is the
Polair3DChemistry model with the observations from Airbase.
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Figure 6.11: Ozone concentration at ground level of two ensemble members in the analysis
ensemble Ea for the LPF–X algorithm with systematic resampling at 12:30 the fifth day of
assimilation. The values are given in µg/m3. The DA system is the Polair3DChemistry

model with the observations from Airbase.
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Figure 6.12: Ozone concentration at ground level of two ensemble members in the analysis
ensemble Ea for the LPF–X algorithm with anamorphosis at 12:30 the fifth day of assimilation.
The values are given in µg/m3. The DA system is the Polair3DChemistry model with the
observations from Airbase.
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Table 6.5: Averaged results for the debiased reference simulation and for the DA algorithms.
For the debiased reference simulation, the average correlation per station is 66 %, whereas for
all DA algorithms, the average (forecast and analysis) correlation per station is between 76 %
and 78 %. In all cases, the reported wall-clock time is the total wall-clock time (that is, for 119
forecast steps and for 120 analysis steps). For the debiased reference simulation and for the
OI algorithm, parallelisation is enabled in the Polair3DChemistry model using 20 OpenMP

threads. For the ensemble DA algorithms, parallelisation is enabled in the independent
forecast of the 20 members of the ensemble using 20 OpenMP threads. Finally, for the LETKF
and the LPF–X algorithms, parallelisation is enabled in the Py × Px = 3149 independent
local updates using 20 OpenMP threads.

Algorithm Average RMSE per station
[
µg/m3

]
Wall-clock time

[
s
]

Forecast (1 h) Analysis Forecast (1 h) Analysis

ref. sim. 19.692 19.692 428.0 –
OI 16.587 16.219 453.8 92.0
LETKF 16.389± 0.007 15.967± 0.010 2270.8 41.7
LPF–X (sys.) 16.440± 0.022 16.007± 0.027 2312.3 24.0
LPF–X (ana.) 16.411± 0.017 16.000± 0.017 2295.6 119.2
LPF–Y 16.503± 0.021 16.103± 0.022 2264.5 308.0

chapter 5: using optimal transport for the local updates in LPF–X algorithms is an efficient
way of mitigating the unphysical discontinuities.

Finally, we conclude this preliminary discussion by mentioning the fact that the corres-
ponding maps for the LETKF and LPF–Y algorithms (not illustrated here) are visually very
similar to the maps for the LPF–X algorithm with anamorphosis at one exception: the spread
of Ea is larger for the LPF–Y algorithm than for the other ensemble DA algorithms in the
regions without observations. This can be explained by the fact that the LPF–Y algorithm
uses a larger standard deviation p for the model error covariance matrix Q (10.5 µg/m3 versus
7.2 µg/m3 for the other ensemble DA algorithms).

6.3.3.4 Average results

Using the parametrisations described in paragraph 6.3.3.1, each DA experiment5 is performed
again 10 times, each using a different random seed, on the same computational platform with
16 cores. The results, averaged over the 10 realisations, are reported in table 6.5. Furthermore,
figure 6.13 shows the average daily cycle of instantaneous analysis MAE, once again averaged
over the 10 realisations.

From the statistical indicators, it is clear that using DA in this system is beneficial. For
example, the improvement in average RMSE per station is about 19 % for the analysis and
about 17 % for the 1 h forecast. The performance of all five DA algorithms, as measured by
the average RMSE and correlation per station as well as by the instantaneous MAE, are
almost equivalent. In all cases, the ensemble DA algorithms seems to have the edge over the

5Except when using the fully deterministic OI algorithm.
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Figure 6.13: Average daily cycle of instantaneous analysis MAE for the debiased reference
simulation (in orange), and for the DA algorithms. For each ensemble DA algorithm, the
average daily cycle of average ensemble spread in ozone concentration at ground level is
shown with a thin line of the same color but without markers. The DA system is the
Polair3DChemistry model with the observations from Airbase.
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OI algorithm. However, it is not clear whether the small gain in average RMSE per station
(about 1 %) is sufficient to justify the huge increase in forecast wall-clock time due to the use
of an ensemble of Ne = 20 members.

The scores for the LPF algorithms are very similar to those for the LETKF algorithm, which
is a première in atmospheric chemistry. The LPF–X algorithm with systematic resampling,
in spite of the discontinuity issues illustrated in paragraph 6.3.3.3, yields similar average
(forecast and analysis) RMSE per station and instantaneous (analysis) MAE scores as the
LETKF algorithm, while being about 40 % faster in the analysis step. The LPF–X algorithm
with anamorphosis also yields similar scores as the LETKF algorithm, but it is about 185 %
slower in the analysis step. This is explained by the fact that it is numerically demanding to
compute, for each local analysis, an anamorphosis transformation for every species and every
level (that is, a total of Ps × Pz = 572 transformations to compute), instead of computing
a single transformation matrix Te in ensemble space. Finally, the average (forecast and
analysis) RMSE per station is slightly higher for the LPF–Y algorithm. Furthermore, for this
algorithm, the average ensemble spread in ozone concentration at ground level is much higher
than for all other DA algorithm. This is explained by the fact that the LPF–Y algorithm
uses a large standard deviation p for the model error covariance matrix Q.

Finally, from the time series of instantaneous analysis MAE, we see that all DA algorithms
yield better performances during the day, when the ozone concentrations are, on average, at
their highest levels. This pattern can be seen in the debiased reference simulation as well.
Therefore, we conclude that the performance of the DA algorithms is highly impacted by the
lower accuracy of the dynamical modelM during the night, which is a common characteristic
of all CTMs.

6.3.3.5 Rank histograms

As a complement to the average results presented in the previous paragraph, we compute rank
histograms for the ensemble DA algorithms. At each station, the histogram is obtained by
computing the rank of the measured ozone concentration in the ensemble of predicted ozone
concentrations as determined by the analysis ensemble Ea. The mean histograms, averaged
over all stations and over the 10 realisations, are reported in figure 6.14. All algorithms are
characterised by U-shaped histograms. This shows that, in this case, DA is indeed an efficient
way of filtering the observation noise. Furthermore, the histograms are all characterised by a
slight but noticeable negative bias.

6.3.3.6 Non-Gaussian diagnostic

As explained in subsection 6.2.1, the dynamical modelM is expected to be strongly nonlinear
as a result of the chemical processes, which would result in a non-Gaussian forecast distribution
νf . Yet, there is little difference between the scores of the LETKF algorithms and of the LPF
algorithms. Therefore, in this section we want to measure the deviation from Gaussianity in
the numerical experiments with ensemble DA algorithms. To do this, we use the statistical
properties of the ensemble.

For each algorithm, one out of the 10 realisations is selected, and the first day of assimilation
is removed from the time series. For each each variable in the ozone concentration field at
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Figure 6.14: Rank histograms for the ensemble DA algorithms. A dashed black line
indicates the ideal frequency, (Ne + 1)−1. The DA system is the Polair3DChemistry model
with the observations from Airbase.
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Figure 6.15: Empirical distribution of skewness in the normalised forecast ensemble
Ef for the ensemble DA algorithm. A black line indicates the empirical distribution of
skewness for a random variable drawn from the distribution N [0, 1]. The DA system is the
Polair3DChemistry model with the observations from Airbase.

ground level, at each time step, we compute the skewness and the excess kurtosis6 of the
normalised forecast ensemble Ef (in other words, the rescaled forecast ensemble Ef with zeros
mean and with a unit standard deviation). For comparison, we also computed the skewness
and kurtosis of a normalised ensemble obtained by random draws from the distribution N [0, 1].
Figures 6.15 and 6.16 show the empirical distribution of these 4× 24× Py × Px = 302 304
values of skewness and kurtosis for both the ensemble DA algorithms and the distribution
N [0, 1].

From this global, univariate point of view, using an ensemble of Ne = 20 members is not
enough to distinguish non-Gaussian effect in Ef . This means that, contrary to what we
expected, these DA experiments, with a time interval between consecutive observation ∆t
equal to 1 h and with a significant debiasing, put the system in a quasi linear dynamical regime
for which there might not be any particular advantage of using PF over EnKF algorithms.

6.3.4 Complementary experiments

As a complement to the optimal results presented in subsection 6.3.3, we present here
two series of experiments. In the first set of experiments, the ensemble size is increased
from Ne = 20 members to Ne = 40 members. In the second set of experiments, the input
parameters of the Polair3DChemistry model are perturbed.

6Simply called the kurtosis in the following.
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Figure 6.16: Empirical distribution of kurtosis in the normalised forecast ensemble Ef for
the ensemble DA algorithm. A black line indicates the empirical distribution of kurtosis for
a random variable drawn from the distribution N [0, 1]. The DA system is the Polair3D-

Chemistry model with the observations from Airbase.

6.3.4.1 Increasing the ensemble size

Without modification in the parametrisation described in table 6.4, the DA experiments
are performed again 10 times for the LETKF algorithm and the LPF–X algorithm with
anamorphosis, using an ensemble of Ne = 40 members instead of 20. The computational
platform for these experiments is the same as for the experiments described in subsection 6.3.3.
The results, averaged over the 10 realisations, are reported in table 6.6. Furthermore,
figure 6.17 shows the average daily cycle of instantaneous analysis MAE, once again averaged
over the 10 realisations.

There are only two significant differences between the case Ne = 20 and Ne = 40: the
average ensemble spread in ozone concentration at ground level is slightly higher when using
Ne = 40 members, and the wall-clock time has increased. Of course, the parametrisation of
the DA algorithms has been chosen for the case Ne = 20, but it is still disappointing to note
that average RMSE per station has been barely improved in the case Ne = 40. Furthermore,
we have checked that changing the parametrisation (not illustrated here) leads to the same
conclusion: for the DA algorithms tested here, it is better, in terms of efficiency, to use an
ensemble of Ne = 20 members than Ne = 40 members.

6.3.4.2 Perturbation of the input data

In the experiments presented so far, when using an ensemble DA algorithm, the collapse of the
ensemble E is mitigated through the use of an additional model error em, and the standard
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Table 6.6: Averaged results for the LETKF algorithm and the LPF–X algorithm with
anamorphosis using an ensemble of Ne = 40 members. For comparison, the results using an
ensemble of Ne = 20 members, reported in table 6.5, are reported again. In all cases, the
average (forecast and analysis) correlation per station is between 76 % and 78 %. Furthermore,
the reported wall-clock time is the total wall-clock time (that is, for 119 forecast steps and
for 120 analysis steps). Parallelisation is enabled in the independent forecast of the Ne

members of the ensemble using Ne OpenMP threads. Finally, parallelisation is enabled in the
Py × Px = 3149 independent local updates using 20 OpenMP threads.

Algorithm Average RMSE per station
[
µg/m3

]
Wall-clock time

[
s
]

Forecast (1 h) Analysis Forecast (1 h) Analysis

LETKF, Ne = 20 16.389± 0.007 15.967± 0.010 2270.8 41.7
LETKF, Ne = 40 16.380± 0.009 15.960± 0.010 3268.0 93.9
LPF–X, Ne = 20 16.411± 0.017 16.000± 0.017 2295.6 119.2
LPF–X, Ne = 40 16.394± 0.009 15.981± 0.010 3298.1 405.5
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Figure 6.17: Average daily cycle of instantaneous analysis MAE for the LETKF algorithm
(in red) and the LPF–X algorithm with anamorphosis (in blue). The ensemble size is either
Ne = 20 (continuous lines) or Ne = 40 (dashed lines). In each case, the average daily cycle of
average ensemble spread in ozone concentration at ground level is shown with a thin line
without markers. The DA system is the Polair3DChemistry model with the observations
from Airbase.
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deviation p of the model error covariance matrix Q is adjusted in such a way that the spread
of the forecast ensemble Ef is sufficient. As mentioned in subsection 6.1.3, an important
source of uncertainty in the reference simulation is the potential bias in the input database.
Therefore, an alternative to additional model error is to use input data perturbations, in
other words introducing perturbations in the input database. Such perturbations must be
constructed in line with the uncertainty in the input data, and the imbalance in the forecast
ensemble Ef is expected to be less critical than with additional model error em.

Different methods can be used to design the input data perturbations. Taking inspiration
from the methods described by Wu et al. (2008) and Boynard et al. (2011), we chose to
implement the input data perturbations as follows. For each input field to perturb, at each
integration time step, a set of Ne independent multiplicative perturbation fields is drawn
from the distribution LN [−µI, qI], where the parameter q is to be determined, and where
the parameter µ is chosen in such a way that the expected value of the perturbation field is
null: µ = q2. Horizontal and vertical correlations (when relevant) are then applied to each
perturbation field using the same method as for the additional model error em, described
in subsection 6.2.3, but with potentially different correlation radii. In order to avoid a
compensation of the perturbation fields, a temporal autocorrelation is applied using the
following method. Let vi(t) be the vector containing the perturbation field applied at time t
to a given input field. The perturbation field vi(t+ δt) applied at time t+ δt to the same
input field is given by

vi(t+ δt) = αvi(t) +
√

1− α2 zi, (6.12)

where zi is the correlated random draw obtained as described above, and α = 1− δt/τ with
τ being the autocorrelation time. The parametrisation of the input data perturbations used
in this paragraph is described in table 6.7.

Preliminary experiments using this parametrisation of the input data perturbations (not
illustrated here) have shown that additional model error em is still mandatory to mitigate
the collapse of the ensemble E. Therefore, the DA experiments are performed again 10
times for the LETKF algorithm and the LPF–X algorithm with anamorphosis using the
input data perturbations described in table 6.7, but without further modification to the
parametrisation described in table 6.4. The computational platform for these experiments is
the same as for the experiments described in subsection 6.3.3. The results, averaged over the
10 realisations, are reported in table 6.8. Furthermore, figure 6.18 shows the average daily
cycle of instantaneous analysis MAE, once again averaged over the 10 realisations.

By contrast with the experiments shown in the previous paragraph, the reduction in average
analysis RMSE per station between the original LETKF algorithm and the LETKF algorithm
with input data perturbations is about 20 % of the reduction in average analysis RMSE per
station between the OI algorithm and the original LETKF algorithm. From figure 6.18, we
note a small decrease in instantaneous MAE during the day, but also significant modifications
in the average ensemble spread in ozone concentration at ground level. During the day, the
average spread has increased, but during the night it has unexpectedly decreased. Finally, we
note a significant increase in computational time, which corresponds to the computation of
all perturbation fields. Again, the parametrisation of the DA algorithms has been chosen for
the case without input data perturbation, however the results obtained in these experiments
confirm the potential of the method. Several improvements in the design of the method can
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Table 6.7: Parametrisation for the perturbations of the input data of the Polair3D-

Chemistry model. For the boundary conditions, we only perturb the ozone, the nitrogen
oxide, and the nitrogen dioxide fields, using the same perturbation field for all three species.
For the emissions, the same perturbation field is used to perturb the surface emissions
and the volume emissions at all levels for all emitted species. In all cases, the shape of the
perturbed input field is reported in the second column. The horizontal and vertical correlation
radii `h and `v are reported in the third and fourth columns. The standard deviation q
of the perturbation distribution LN [−µI, qI] is reported in the fifth column. Finally, the
autocorrelation time τ is reported in the last column.

Input field Shape `h `v q τ
[km] [m] [h]

Boundary conditions (z) Py × Px 800 – 0.30 6
Boundary conditions (y) Pz × Px 500 3000 0.30 6
Boundary conditions (x) Pz × Py 500 3000 0.30 6
Deposition velocity Py × Px 4000 – 0.25 6
Attenuation Py × Px 800 – 0.50 6
Emissions Py × Px 800 – 0.50 6
Vertical diffusion velocity Pz – 3000 0.40 6

Table 6.8: Averaged results for the LETKF algorithm and the LPF–X algorithm with
anamorphosis using the input data perturbations described in table 6.7. For comparison, the
results without input data perturbation, reported in table 6.5, are reported again. In all
cases, the average (forecast and analysis) correlation per station is between 76 % and 78 %.
Furthermore, the reported wall-clock time is the total wall-clock time (that is, for 119 forecast
steps and for 120 analysis steps). Parallelisation is enabled in the independent forecast of the
20 members of the ensemble using 20 OpenMP threads. Finally, parallelisation is enabled in
the Py × Px = 3149 independent local updates using 20 OpenMP threads.

Algorithm Average RMSE per station
[
µg/m3

]
Wall-clock time

[
s
]

Forecast (1 h) Analysis Forecast (1 h) Analysis

LETKF, no pert. 16.389± 0.007 15.967± 0.010 2270.8 41.7
LETKF, with pert. 16.331± 0.022 15.923± 0.017 3069.4 41.6
LPF–X, no pert. 16.411± 0.017 16.000± 0.017 2295.6 119.2
LPF–X, with pert. 16.368± 0.024 15.977± 0.020 3079.8 177.3
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Figure 6.18: Average daily cycle of instantaneous analysis MAE for the LETKF algorithm
(in red) and the LPF–X algorithm with anamorphosis (in blue). The ensemble size is either
Ne = 20 (continuous lines) or Ne = 40 (dashed lines). In each case, the average daily cycle of
average ensemble spread in ozone concentration at ground level is shown with a thin line
without markers. The DA system is the Polair3DChemistry model with the observations
from Airbase.
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be conceived.

First, we have chosen, for the perturbations of the boundary conditions and of the emissions,
to use the same perturbation fields for each perturbed chemical species, because it is convenient
from a technical point of view. Yet, in order to avoid compensations in the perturbation
fields, each chemical species should be independently perturbed. However, this would result
in a significant increase in computational time, because the number of perturbation fields to
compute would be increased by a factor Ps = 52. A more affordable approach could be to
separate the chemical species into four categories: (i) the ozone, (ii) the nitrogen oxides, (iii)
the volatile organic compounds, and (iv) the remaining species. A perturbation field could
then be computed for each category. Of course, if the increase in computational time is still
too high, one can consider updating the perturbation fields once every other integration step
instead of once every integration step.

Second, the input data perturbations could be designed to increase the average spread
during the night to reflect the uncertainty in the chemical processes. During the day, the
uncertainty in the chemical processes is reflected in the perturbation of the attenuation
field, which in turn affects the photolysis. During the night, there is no photolysis, which
means that perturbing the attenuation field is ineffective. From a technical point of view it
is difficult to directly modify the rate of the chemical reactions in the Polair3DChemistry

model. Therefore, an alternative, ad hoc approach could be to perturb the temperature field,
which in turn affects the rate of the thermal chemical reactions.

6.4 Summary and discussion

In this chapter, we have described step-by-step the application of several DA algorithms to a
realistic DA system. We have chosen the case study of the prediction of the tropospheric
ozone concentration in western Europe during the summer 2009. Measurements of ozone
concentration are taken from Airbase. They are available at several hundreds of stations,
with a time interval between consecutive observations of 1 h. For our experiments, we have
chosen to use the CTM Polair3DChemistry from the Polyphemus framework.

Using this model, we have constructed a highly biased reference simulation. A simple
debiasing method, with 2 bias parameters per station in addition to 24 common bias
parameters, is proposed and tested. With the debiasing, the reference simulation yields
statistical indicators of the same order as typical CTMs.

We have then explained how to implement five DA algorithms: the OI algorithm, the
LETKF algorithm, the LPF–X algorithm with systematic resampling, the LPF–X algorithm
with anamorphosis, and the LPF–Y algorithm. In particular, for the ensemble DA algorithms,
we have explained the implementation of additional model error. For the DA experiments,
the stations have been divided into two groups. The first group is used during the analysis
step, while the second group is kept for cross validation.

The results show that DA is effective in this system, with an improvement between 15 and
20 % in the average RMSE per station. The scores for the LPF algorithms are very similar
to those for the LETKF algorithm, which is a première in atmospheric chemistry. In all
cases, the ensemble DA algorithms seems to have the edge over the OI algorithm, however it
is not clear whether the small gain in average RMSE per station (about 1 %) is sufficient
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to justify the huge increase in forecast wall-clock time due to the use of an ensemble of 20
members. For these experiments, we have shown that the deviation from Gaussianity in
the forecast ensemble is hardly noticeable. Therefore, contrary to what we expected, these
DA experiments, with a time interval between consecutive observation of 1 h and with a
significant debiasing, put the system in a quasi linear dynamical regime for which there might
not be any particular advantage of using PF over EnKF algorithms.

In complementary experiments, we have shown that a promising approach to further
improve the performance of the ensemble DA algorithms is to use input data perturbations.
However, further work is needed to fix the design of the input data perturbations. Finally,
Airbase also provides measurements of other chemical species, and in particular of nitrogen
dioxide. From a theoretical point of view, it would be desirable to implement multi-species
assimilation. From a technical point of view, this is delicate, because it means that we would
have to precisely control the uncertainty of all assimilated species. Furthermore, in this case,
we would have to provide a composite score mixing all assimilated species, which would be
non-trivial to define.
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Covariance localisation in the
ensemble Kalman filter
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In the EnKF, two localisation methods have emerged: DL (Houtekamer and Mitchell
2001; Ott et al. 2004), and CL (Hamill et al. 2001). DL consists of a collection of local
and independent ensemble updates. This leads to efficient data assimilation algorithms, for
example the LETKF algorithm. When using DL however, satellite observations cannot be
assimilated without ad hoc approximations. By contrast, CL consists of a single ensemble
update using a localised forecast sample covariance matrix. This is in practice much less
simple to implement in a deterministic context, but it can be used to assimilate satellite
observations without further approximations. The huge increase of satellite observations in
the recent years justify the need for efficient implementations of CL in the EnKF.

EnKF algorithms using DL have been adapted to the case of satellite radiances (see, e.g.,
Fertig et al. 2007; Miyoshi and Sato 2007). In these algorithms, the shape of the weighting
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function associated to a specific satellite channel is used to give an approximate location to
this channel (usually the function mode). However, using a realistic one-dimensional model
with satellite radiances, Campbell et al. (2010) have shown that this approach systematically
yields higher errors than using CL.

In this chapter, following the work published in Farchi and Bocquet (2019), we focus on
efficient implementations of CL in the deterministic EnKF. In this context, the literature
shows a growing interest in using an augmented ensemble during the analysis step, that is
when the ensemble size during the analysis step is larger than during the forecast step. In
this case, the augmented ensemble size should be chosen in such a way that the augmented
ensemble is large enough to accurately represent the forecast error covariance matrix. Buehner
(2005) has proposed a method to construct a modulated ensemble which follows the localised
forecast covariance based on a factorisation property shown by Lorenc (2003). This method
has then been leveraged upon by Bishop and Hodyss (2009) and used in the literature to
perform CL (Brankart et al. 2011; Bishop and Hodyss 2011; Leng et al. 2013; Bocquet
2016; Bishop et al. 2017). With an alternative point of view, Kretschmer et al. (2015) have
included localisation in the ETKF algorithm by using a climatologically augmented ensemble.
Finally, Lorenc (2017) has shown that the forecast error covariance matrix can be improved in
hybrid ensemble variational DA systems by using time-lagged and time-shifted perturbations.
Section 7.1 shows how CL can be implemented in the EnKF, in particular when using an
augmented ensemble. In section 7.2, we describe in details how the augmented ensemble
can be constructed. In section 7.3, the algorithms are tested using twin experiments of
low-order one-dimensional models. In section 7.4, we explain how the methods can be used
to assimilate satellite radiances, and we test the resulting algorithm using twin experiments
of a multilayer extension of the L96 model. Finally, conclusions are given in section 7.5. In
this chapter, unless specified otherwise, the DA system is the GL system. For simplicity, the
time subscript k is systematically dropped in the equations.

7.1 Implementing CL in deterministic EnKF algorithms

7.1.1 The local ensemble square root Kalman filter

As presented in subsection 2.2.6, the analysis step of deterministic EnKF algorithms is
split into two parts: first the mean update, and then the perturbation update. The mean
update relies on the Kalman gain matrix K to yield the analysis estimate xa, and it is
implemented with equations (2.10a)–(2.10b). By contrast, the perturbation update relies
on a square root formula to yield the analysis perturbations Xa. Without localisation,
the perturbation update can take two different forms. It can be implemented either with
equations (2.22a)–(2.22b), using a transformation matrix Te formulated in ensemble space,
or with equations (2.23a)–(2.23b), using a transformation matrix Tx formulated in state
space.

As presented in subsection 2.5.3, when using CL, the forecast sample covariance matrix P̄f

is replaced by its localised version ρ◦P̄f . By construction, the localisation matrix ρ ∈ RNx×Nx

is applied in state space, which means that, as is, CL can only be included when the EnKF
equations are formulated in state space. Replacing P̄f by ρ ◦ P̄f in equations (2.10a)–(2.10b)
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7.1 Implementing CL in deterministic EnKF algorithms

Algorithm 7.1: Analysis step for the LEnSRF algorithm in the context of the GL

system.

Input: Ef [tk], y [tk]

Parameters: H, R, ρ

1 x̄ ← Ef1/Ne

2 X ← Ef
(
I− 11T/Ne

)
/
√
Ne − 1

3 P ← ρ ◦
(
XXT

)

4 K ← PHT
(
HPHT + R

)−1

5 x̄a ← x̄ + K
(
y −Hx̄

)
// mean update

6 Tx ← I + PHTR−1H

7 Xa ← (Tx)−1/2X // perturbation update

8 Ea ← x̄a1T +
√
Ne − 1Xa

Output: Ea [tk]

and in equations (2.23a)–(2.23b), yields the following mean update:

K =
(
ρ ◦ P̄f

)
HT
[
H
(
ρ ◦ P̄f

)
HT + R

]−1
, (7.1a)

x̄a = x̄f + K
(
y −Hx̄f

)
. (7.1b)

and the following perturbation update:

Tx = I +
(
ρ ◦ P̄f

)
HTR−1H, (7.2a)

Xa = (Tx)−1/2Xf . (7.2b)

As explained in paragraph 2.2.6.3 for the global case, the matrix
(
ρ ◦ P̄f

)
HTR−1H may

not be symmetric, but it is diagonalisable with non-negative eigenvalues, which means that
the square root of the transformation matrix Tx exists and that equation (7.2b) is correctly
defined. In this thesis, these update equations define the local ensemble square root Kalman
filter (LEnSRF) algorithm. This is summarised in algorithm 7.1.

7.1.2 Approximate implementations

The LEnSRF algorithm is only interesting from a theoretical point of view, since it is
impossible to compute the Nx ×Nx matrix Tx in high dimensional DA systems. However,
there are several deterministic EnKF algorithms in which CL can be readily included.

In the deterministic ensemble Kalman filter (DEnKF) algorithm of Sakov and Oke (2008a),
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7 Implementing covariance localisation using augmented ensembles

the perturbation update is implemented as

K = P̄fHT
(
HP̄fHT + R

)−1
, (7.3a)

Xa =

[
I− 1

2
KH

]
Xf . (7.3b)

With this perturbation update, the analysis sample covariance matrix is related to the forecast
sample covariance matrix by

P̄a = (I−KH) P̄f +
1

4
KHP̄fHTKT. (7.4)

Compared to the consistency relationship, equation (2.10c), there is an additional term. This
additional term is in general non-zero, but it is positive semi-definite. This means that, even
though the analysis step of the DEnKF algorithm is inconsistent, the approximation is safe:
the analysis errors are not underestimated. The major advantage of the DEnKF algorithm
is that we do not need to compute a matrix square root. From a computational point of
view, this makes the algorithm very competitive. Furthermore, CL can straightforwardly be
included by using ρ ◦ P̄f in place of P̄f .

In the serial ensemble square root filter (Whitaker and Hamill 2002), the perturbation
update is based on a modified scalar Kalman gain, for which the localisation matrix ρ can be
applied element-wise. Serial algorithms, however, come with their own issues, and it is also
desirable to have a competitive perturbation update in matrix form.

7.1.3 Using an augmented ensemble to implement the LEnSRF

7.1.3.1 The augmented ensemble

Both the local DEnKF algorithm and the serial LEnSRF algorithm can be seen as approximate
implementations of the LEnSRF algorithm. Another approximate implementation can be
obtained by enlarging the ensemble size Ne during the analysis step. The resulting analysis
step would be divided into three sub-steps.

1. Compute an ensemble Ê, with size N̂e ≥ Ne, whose sample covariance matrix P̂
approximates the localised sample covariance matrix ρ ◦ P̄f .

2. Use the ensemble Ê to compute the analysis estimate x̄a.

3. Use the ensemble Ê to compute the analysis perturbation matrix Xa.

The ensemble Ê is called the augmented ensemble, and its size N̂e is the called the
augmented ensemble size. Augmented ensembles are already used in operational centres to
implement localisation in four-dimensional ensemble variational methods (Desroziers et al.
2014, 2016; Arbogast et al. 2017).
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7.1 Implementing CL in deterministic EnKF algorithms

7.1.3.2 Mean update with an augmented ensemble

Suppose that the augmented ensemble Ê has been computed. In this framework, the mean
update is given by

K = P̂HT
(
HP̂HT + R

)−1
, (7.5a)

x̄a = x̄f + K
(
y −Hx̄f

)
, (7.5b)

where P̂ is the sample covariance matrix of Ê. This can be efficiently implemented, for
example, using the mean update of the ETKF algorithm, algorithm 2.3.

7.1.3.3 Perturbation update with an augmented ensemble

By contrast, the perturbation update is non-trivial, because the augmented ensemble size
N̂e can be larger than the number of columns of the analysis perturbation matrix Xa, Ne.
However, Ê is constructed in such a way that P̂ approximates ρ ◦ P̄f , in other words:

ρ ◦ P̄f ≈ P̂ = X̂X̂T, (7.6)

where X̂ is the perturbation matrix of Ê. This can be used to compute an approximation of
the transformation matrix Tx as

Tx ≈ T̂x , I + X̂ŶTR−1H, (7.7)

where Ŷ = HX̂. Eventually, the analysis perturbation matrix Xa would be obtained as

Xa =
(
T̂x

)−1/2
Xf . (7.8)

This perturbation update still seems intractable for high-dimensional DA systems because
the transformation matrix T̂x has size Nx × Nx. However, it can be simplified using the
following theorem.

Theorem 7.1. Let A ∈ Rm×n and B ∈ Rn×m be two matrices such that the eigenvalues of
AB and BA have a non-negative real part. Then we have the identity

(I + AB)−1/2 = I−A
[
I + BA + [I + BA]1/2

]−1
B. (7.9)

Proof. For any complex number z ∈ C which is an eigenvalue of neither AB nor BA, we
have the identity

(zI−AB)−1 =
1

z

[
I + A(zI−BA)−1B

]
, (7.10)

which can be straightforwardly proven by showing that the product of the right-hand side
with the inverse of the left-hand side is the identity matrix I and the product of the inverse
of the left-hand side with the right-hand side is the identity matrix I.

Let f : C → C be a function such that f(0) = 1, and which is analytic in a connected
domain D ⊂ C of contour C which encloses the eigenvalues of both AB and BA. This is
possible because the eigenvalues of AB and BA have a non-negative real part. We define
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7 Implementing covariance localisation using augmented ensembles

the function g : C→ C as

g :

{
C → C,
x 7→ f(x)−1

x .
(7.11)

Then we have the identity

f(AB) = I + (f − 1)(AB), (7.12)

= I +
1

2iπ

∫

C
(f − 1)(z) (zI−AB)−1 dz, (7.13)

= I +
1

2iπ

∫

C
(f − 1)(z)

1

z

[
I + A(zI−BA)−1B

]
dz, (7.14)

= I + A

[
1

2iπ

∫

C
g(z) (zI−BA)−1 dz

]
B, (7.15)

= I + Ag(BA)B, (7.16)

where i =
√
−1. From the first to the second line, we apply Cauchy’s integral formula of

matrix argument.1 From the second to the third line, equation (7.10) is used. From the third
to the fourth line, we rely on the null contribution of the first term in the integral and the
definition of the function g.

Finally, equation (7.9) can be deduced from equation (7.16) by using f(x) = (1 + x)−1/2.
In this case, g(x) = −(1 + x+

√
1 + x)−1, and both functions are analytic in C except for a

cut and a pole on ]−∞,−1].

Using equation (7.9) with A = X̂ and B = ŶTR−1H2 yields

(
T̂x

)−1/2
= I− X̂

[
I + ŶTR−1Ŷ +

[
I + ŶTR−1Ŷ

]1/2
]−1

ŶTR−1H, (7.17)

in which the computations are mostly done in the augmented ensemble space, meaning that
the matrix to invert has size N̂e×N̂e. This update has been first discovered by Bocquet (2016),
with a heuristic proof of theorem 7.1. It has been later rediscovered by Bishop et al. (2017)
and the principle behind it has been named gain form of the ensemble transform Kalman
filter. It is not difficult to show that their formula, equation (25), is actually mathematically
equivalent to equation (25) of Bocquet (2016). However, their formula is prone to numerical
cancellation errors as opposed to equation (7.17). Finally, the simple proof of theorem 7.1
reproduced here has been derived by Bocquet and Farchi (2019).

Furthermore, as shown by Bocquet and Farchi (2019), using equation (7.9) with A = X̂ŶT

and B = R−1H yields

(
T̂x

)−1/2
= I− X̂ŶT

[
I + R−1ŶŶT +

[
I + R−1ŶŶT

]1/2
]−1

R−1H, (7.18)

1It generalises the classical Cauchy’s integral formula using the Jordan decomposition of matrices (see, e.g.,
equation (2.7) of Kassam and Trefethen 2005).

2It can readily be checked that both AB and BA have a real and non-negative spectrum, using in particular
corollary 7.6.2 of Horn and Johnson (2012), exactly as in paragraph 2.2.6.3.
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7.1 Implementing CL in deterministic EnKF algorithms

Algorithm 7.2: Analysis step for the generic augmented ensemble LEnSRF al-

gorithm in the context of the GL system.

Input: Ef [tk], y [tk]

Parameters: H, R, ρ

1 x̄ ← Ef1/Ne

2 X ← Ef
(
I− 11T/Ne

)
/
√
Ne − 1

3 X̂ ← ensemble augmentation(ρ,X)

4 Ŷ ← HX̂

5 T̂e ← I + ŶTR−1Ŷ

6 w ← T̂−1
e ŶTR−1(y −Hx̄)

7 x̄a ← x̄ + X̂w // mean update

8 Xa ← X− X̂
[
T̂e + (T̂e)

1/2
]−1

ŶTR−1HX // perturbation update

9 Ea ← x̄a1T +
√
Ne − 1Xa

Output: Ea [tk]

in which the computations are mostly done in the observation space, meaning that the matrix
to invert has size Ny ×Ny.

Finally, both equations (7.17) and (7.18) support an approximation similar to that of the
DEnKF algorithm, which yields

Xa = Xf − 1

2
X̂
[
I + ŶTR−1Ŷ

]−1
ŶTR−1HXf , (7.19)

in the first case, and

Xa = Xf − 1

2
X̂ŶT

[
R + ŶŶT

]−1
HXf , (7.20)

in the second case. Again, equation (7.19) has already been proposed by Bocquet (2016),
while equation (7.20) has been proposed by Bocquet and Farchi (2019).

7.1.3.4 The augmented ensemble LEnSRF algorithm

Algorithm 7.2 summarises the analysis step for the generic LEnSRF algorithm with an
augmented ensemble. In this algorithm, the mean update is performed using the mean update
of the ETKF algorithm in the augmented ensemble space, and the perturbation update is
performed using equation (7.17), which could be replaced by equation (7.18) if the number
of observations Ny is small. The only missing piece in this algorithm is the way to perform
the ensemble augmentation (step 3). Several methods are presented in the following section.
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7 Implementing covariance localisation using augmented ensembles

7.2 Construction of the augmented ensemble

7.2.1 The mathematical problem

As stated in paragraph 7.1.3.1, the augmented ensemble Ê must be constructed in such a
way that its sample covariance matrix P̂ is an approximation of ρ ◦ P̄f . From a practical
point of view, in algorithm 7.2 we only use the perturbation matrix X̂ of Ê. Therefore, the
ensemble augmentation problem can be formulated as follows.

Problem 7.1 (Ensemble augmentation problem). Given the localised sample covariance
matrix ρ ◦ P̄f , compute an Nx × N̂e matrix X̂ such that

X̂1 = 0, (7.21a)

X̂X̂T ≈ ρ ◦ P̄f . (7.21b)

In the following subsection, several methods are presented to solve this problem. For
simplicity, the matrix X̂ is called the augmented ensemble even though it represents the
perturbation matrix of the augmented ensemble Ê.

7.2.2 First method: the modulation method

Suppose that there is a matrix W with Nm columns such that the localisation matrix ρ is
approximated by WWT. We then define the modulation product between W and X as the
Nx ×NmNe matrix W ∆ X whose elements are given by

∀(n, i, j) ∈ (Nx : 1)× (Ne : 1)× (Nm : 1), [W ∆ X]n,(j−1)Ne+i = [W]n,j [X]n,i. (7.22)

The modulation product is a mix between a Schur product (for the state variable index n)
and a tensor product (for the ensemble indices i and j). As shown by Lorenc (2003), the
modulation product satisfies the following factorisation property:

(
W ∆ X

)(
W ∆ X

)T
=
(
WWT

)
◦
(
XXT

)
. (7.23)

Moreover, it is easy to verify that X1 = 0 implies (W ∆ X) 1 = 0. Therefore, X̂ = W ∆ X
is a solution to problem 7.1 with an augmented ensemble size N̂e of NmNe members. The
name modulation has been given by Bishop et al. (2017). It stems from the fact that the Nm

columns of W should be the main modes of ρ.
Using equation (7.22), we conclude that the algorithmic complexity of computing X̂ is

O(NxN̂e), where the complexity of computing W has been excluded. Indeed, if ρ is constant
in time, then the same W can be used for all analysis steps and it only needs to be computed
once. A fair comparison with the other methods must take into account this fact.

The only remaining question is how large must be the number of modes Nm. This
question is largely discussed in the literature related to principal component analysis (see,
e.g., Peres-Neto et al. 2005). However, its answer highly depends on the spatial structure
of the localisation matrix ρ itself. In the numerical experiments of sections 7.3 and 7.4, we
illustrate how our performance criterion depends on the number of modes Nm. Yet at this
point, it is not clear which degree of accuracy is needed for the factorisation of ρ ◦ P̄f .
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7.2 Construction of the augmented ensemble

7.2.3 Including balance in the modulation method

In this subsection, we describe a refinement of the modulation method based on a new idea.
When there is variability between the state variables, it could be interesting to remove part
of this variability by transferring it to W as follows. Let Λ be the Nx ×Nx diagonal matrix
containing the standard deviations of the ensemble:

Λ =
[
diag

(
XXT

)]1/2
. (7.24)

The localised sample covariance matrix ρ ◦ P̄f can then be written

ρ ◦ P̄f =
[
ΛρΛ

]
◦
[(

Λ−1X
)(

Λ−1X
)T]

. (7.25)

Suppose now that the Nx × Nm matrix W verifies WWT ≈ ΛρΛ. If we have an Nx ×
(Nm + δNm) matrix V such that VVT ≈ ρ, then the matrix W can be constructed as
the Nm main modes of ΛV. Finally, for the same reasons as in the previous subsection,
X̂ = W ∆

(
Λ−1X

)
is a solution to problem 7.1 with an augmented ensemble size N̂e of NmNe

members.

In the transformed perturbation matrix Λ−1X, all state variables have a unit variability.
The variability transfer from X to W means that W can be deformed and adapted to the
current situation in order to yield a more accurate approximation of ρ ◦ P̄f .

Using this method, the longest algorithmic step consists in obtaining W from the singular
value decomposition (svd) of ΛV. Therefore, the algorithmic complexity of computing X̂ is
O
(
Nx(Nm + δNm)2), where, again, the cost of computing V has been excluded because it

only needs to be computed once.

7.2.4 Second method: the truncated svd method

In this subsection, we propose an alternative to the modulation method. This new method is
based on a truncated svd of ρ ◦ P̄f . We first explain how the truncated svd can be used to
compute the augmented ensemble X̂, and then we explain how to efficiently compute the
truncated svd.

7.2.4.1 Construction of the augmented ensemble

Suppose that we have a truncated svd with Nm modes of ρ ◦ P̄f , which is written

ρ ◦ P̄f ≈ USUT, (7.26)

where U is an Nx×Nm orthogonal matrix and S is an Nm×Nm diagonal matrix. Since ρ◦P̄f

is symmetric and positive semi-definite, equation (7.26) is a truncated eigen-decomposition
as well.

Set ε ∈ {−1, 1} and define λ =
√
Nm + 1

(√
Nm + 1− ε

)−1
and Qε as the (Nm + 1) ×
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7 Implementing covariance localisation using augmented ensembles

(Nm + 1) matrix whose i-th row, j-th column element is given by

[Qε]i,j =





ε/
√
Nm + 1 if i = 1 or j = 1,

1− λ/(Nm + 1) if i = j ≥ 2,

−λ/(Nm + 1) else.

(7.27)

It can be easily checked that Qε is an orthogonal matrix and that Qε1 = e1, the first basis
vector. Let W be the Nx × (Nm + 1) matrix whose first column is null and whose other
columns are the columns of US1/2, i.e., W =

[
0 , US1/2

]
. Finally, let X̂ = WQε. By

construction, we have
X̂1 = 0, (7.28)

X̂X̂T = WWT = USUT ≈ ρ ◦ P̄f , (7.29)

which means that X̂ is a solution to problem 7.1 with an augmented ensemble size N̂e of
Nm + 1 members.

7.2.4.2 Construction of the truncated svd

The algorithmic complexity of computing the svd of the Nx ×Nx matrix ρ ◦ P̄f is O
(
N3

x

)
.

The truncated svd is then obtained by keeping the first Nm modes in the full svd. A more
appropriate solution is probably to use the random svd algorithm derived by Halko et al.
(2011).

The random svd algorithm, designed as parallelisable alternative to Lanczos techniques,
is based on two ideas. In order to compute an approximate truncated svd with p columns
of the matrix M ∈ Rm×n, suppose, first, that the matrix Q with p orthonormal columns
approximates the range of M, i.e., M ≈ QQTM. Then an approximate truncated svd can
be obtained for M by using the svd of the smaller matrix QTM. Second, the matrix Q can
be constructed using random draws. Indeed, if

{
xi, i ∈ (p : 1)

}
is a set of random vectors,

then it is most likely a linearly independent set. Therefore, the set
{
Mxi, i ∈ (p : 1)

}
is most

likely linearly independent, which means that it spans the range of M.

One major contribution of Halko et al. (2011) and the references therein is that they have
provided a mathematical justification of these ideas. In particular, they have given statistical
performance bounds for their random svd algorithm and emphasised the fact that, on average,
the (spectral or Frobenius) error of the resulting truncated svd should be close to the minimal
error for a truncated svd with a given number of columns.

Finally, Halko et al. (2011) have introduced two elements to improve the numerical stability
and efficiency of their random svd algorithm. The first element is a loop over i ∈ (q : 1),
which forces the algorithm to construct singular vectors of

(
MMT

)q
M instead of M. Both

matrices share the same singular vectors, but the singular values of
(
MMT

)q
M decay faster

than those of M, which means that this technique enables a better approximation of the
decomposition, as shown by corollary 10.10 of Halko et al. (2011). The second element
is to include QR factorisations to make the algorithm less vulnerable to round-off errors.
Algorithm 7.3 describes the resulting random svd algorithm, in which both elements have
been taken into account. It is worth noting that algorithm 7.3 can be implemented with only
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7.2 Construction of the augmented ensemble

Algorithm 7.3: Random svd algorithm.

Input: M ∈ Rm×n

Parameters: p, q

1 Z
iid∼ N [0, I] // Z ∈ Rn×p

2 B0 ←MZ // B0 ∈ Rm×p

3 Q0R0 ← qr(B0)

4 for i = 1 to q do

5 B̂i ←MTQi−1 // B̂i ∈ Rn×p

6 Q̂iR̂i ← qr(B̂i)

7 Bi ←MQ̂i // Bi ∈ Rm×p

8 QiRi ← qr(Bi)

9 end

10 B ← QT
q M // B ∈ Rp×n

11 ÛSVT ← svd(B) // Û ∈ Rp×p, S ∈ Rp×n, and V ∈ Rn×n

12 U ← QqÛ // U ∈ Rm×p

Output: U, S, V, with M ≈ USVT

the map {
Rn → Rm,
v 7→Mv,

(7.30)

and that steps 2, 5, 7, and 10 can be parallelised by applying the matrix M independently to
each column.

For our problem, algorithm 7.3 can be applied using the input matrix M = ρ ◦ P̄f . The
matrix-vector product in equation (7.30) can be efficiently computed by using the identity

∀v ∈ RNx ,
(
ρ ◦ P̄f

)
v =

Ne∑

i=1

Xi ◦
[
ρ (Xi ◦ v)

]
, (7.31)

where Xi is the i-th column of the perturbation matrix X.3 Finally, the obtained truncated
svd ρ◦ P̄f ≈ USVT is further approximated by USVT ≈ USUT because ρ◦ P̄f is symmetric
and positive semi-definite. This yields equation (7.26).

3Which is different from the i-th ensemble member xi.
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7 Implementing covariance localisation using augmented ensembles

7.2.4.3 Complexity of the method

In the truncated svd method, the longest algorithmic step are empirically

1. applying the localised forecast sample covariance matrix ρ ◦ P̄f (steps 2, 5, 7, and 10 in
the random svd algorithm);

2. computing the QR factorisations (steps 3, 6, and 8 in the random svd algorithm).

As a consequence, the algorithmic complexity of the truncated svd method is

O
(

2(q + 1)N̂eTP + (2q + 1)NxN̂
2
e

)
,

where TP is the algorithmic complexity of applying ρ ◦ P̄f to any vector, and the parameter
q is the number of iterations performed in the random svd algorithm. Using equation (7.31),
we conclude that

• if ρ is banded with non-zero elements on the main Nb diagonals, then TP = O(NeNxNb);

• if ρ is circulant (this corresponds to an invariance by translation in physical space),
then ρ is diagonal in spectral space and TP = O(NeNx lnNx).

Finally, using the parallelisation potential of the random svd algorithm, we conclude that
the cost of applying ρ ◦ P̄f can be reduced by a factor Nt, the number of threads running in
parallel.

Again, the only remaining question is how large must be the number of modes Nm. For the
same reason as in subsection 7.2.2, we cannot provide a clear answer at this point. However,
in the numerical experiments of sections 7.3 and 7.4 we illustrate how our performance
criterion depends on the number of modes Nm.

Remark 24. It is assumed here that the localisation matrix ρ is either sparse or circulant.
These are sine qua none conditions for the feasibility of CL in high-dimensional DA systems.

7.3 Numerical experiments in one dimension

7.3.1 Accuracy of the augmented ensemble

We first investigate how well the methods introduced in section 7.2 solve problem 7.1, in other
words how accurate is the factorisation X̂X̂T ≈ ρ ◦ P̄f . To do this, a simple one-dimensional
model is introduced for the forecast sample covariance matrix P̄f .

7.3.1.1 A simple one-dimensional model

For any localisation radius ` ∈ R+, we define C(`) as the Nx ×Nx matrix given by

∀(m,n) ∈ (Nx : 1)2,
[
C(`)

]
m,n

= G

(
dm,n
`

)
, (7.32)
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7.3 Numerical experiments in one dimension

Table 7.1: Configuration used to construct the reference covariance matrices P1
ref and P2

ref .
The values for `c and `ref are given in number of grid points.

Parameter Value for P1
ref Value for P2

ref

Nx 400 400
Ne 10 10
αc 0.25 0.25
`c 30 30
`ref 20 100

where G is the GC function introduced in subsection 2.5.3, and dm,n is the Euclidean distance
between m and n in (Nx : 1) with periodic boundary conditions. Moreover, for any vector
v ∈ RNx , we define D(v) as the Nx ×Nx diagonal matrix whose diagonal is precisely v.

The reference covariance matrix Cref is constructed as the matrix whose correlation
structure is C(`ref) and whose standard deviation vector r is a random draw from the
distribution LN

[
0, αc C(`c)

]
, where `ref , αc, and `c are three parameters to be determined.

In other words, we have
Cref , D(r) C(`ref) D(r). (7.33)

We now draw a sample of Ne independent members from the distribution N [0,Cref ], and let
X be the associated perturbation matrix. The reference (localised sample) covariance matrix
is then defined as Pref , ρ ◦

(
XXT

)
, with the localisation matrix ρ = C(`ref).

In these experiments, two different reference covariance matrices P1
ref and P2

ref are used.
They are constructed as two realisations of the model described above using the configuration
described in table 7.1. The only difference between both configurations is that short-range
correlations (`ref = 20) are used to construct P1

ref while mid-range correlations (`ref = 100)
are used to construct P2

ref . Both matrices are displayed in figure 7.1.

The modulation method described in subsections 7.2.2 and 7.2.3 requires an approximate
factorisation of the localisation matrix ρ, which we precompute by keeping the first Nm or
Nm + δNm (when using the balance refinement) modes in its svd. The localisation matrix ρ
being sparse, we use the random svd algorithm to obtain this factorisation.

7.3.1.2 Results and discussion

The methods described in section 7.2 are applied to obtain an approximate factorisation
X̂X̂T for P1

ref and P2
ref . The accuracy of the approximate factorisation is measured with the

normalised Frobenius error defined as

eiF ,

∥∥∥Pi
ref − X̂X̂T

∥∥∥
F∥∥Pi

ref

∥∥
F

, i ∈ {1, 2}. (7.34)
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Figure 7.1: Reference covariance matrices P1
ref (left panel) and P2

ref (right panel).

Using the Eckart–Young theorem (Eckart and Young 1936), we conclude that the lowest
normalised Frobenius error for a factorisation with rank N̂e − 1 is

(
eiF,min

)2
=

Nx∑
k=N̂e

σ2
k

(
Pi

ref

)

∥∥Pi
ref

∥∥2

F

, i ∈ {1, 2}, (7.35)

where σk(M) is the k-th singular value of the matrix M.

Figure 7.2 shows the evolution of the normalised Frobenius error e2:1
F as a function of the

augmented ensemble size N̂e when the factorisation is computed using the truncated svd
method (subsection 7.2.4) or the modulation method with (subsection 7.2.3) or without
(subsection 7.2.2) the balance refinement. The reported value is the average value over
100 independent realisations in the random svd algorithm. For q ≥ 1 in the random svd
algorithm, the Frobenius error for the truncated svd method (not illustrated here) cannot
be distinguished from the minimum possible value. For the modulation method, using the
balance refinement with δNm > 10 (not illustrated here) does not yield a clear improvement
over the case δNm = 10. The singular values of P2

ref (mid-range case) decay much faster than

those of P1
ref (short-range case). This explains why the e2

F are systematically lower than the
e1

F.

The modulation method is very fast but yields a poor approximation of Pref . With the
balance refinement, the approximation is a bit better and the method is still very fast. By
contrast, the truncated svd method is much slower but yields an approximation of Pref close
to optimal. At this point, it is not clear what level of precision is needed for Pref . Yet, we
can already conclude that, in a cycled DA problem, we will have to find a balance between
speed and accuracy in the construction of the augmented ensemble X̂ and in the perturbation
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Figure 7.2: Evolution of the normalised Frobenius error e1
F (top panel) and e2

F (bottom

panel) as a function of the augmented ensemble size N̂e. The approximate factorisation of
the reference forecast sample covariance matrices P1

ref and P2
ref is computed either using

the truncated svd method (in blue) for several values of the parameter q in the random
svd algorithm, or using the modulation method (in red) with (continuous lines) or without
(dashed lines) the balance refinement. For reference, the lowest normalised Frobenius errors
e2:1

F,min are plotted in black for both cases.

207



7 Implementing covariance localisation using augmented ensembles

update.
Finally, different matrix norms could have been used in this test series. Indeed, even if

equivalent, two matrix norms give different informations. This is why we have computed
the normalised spectral error (not illustrated here) and found quite similar results to those
depicted in figure 7.2. This shows that our results are not specific to the Frobenius norm.

7.3.2 Accuracy and efficiency of the augmented ensemble LEnSRF

In this subsection, the performance of the augmented ensemble LEnSRF algorithm, al-
gorithm 7.2, is illustrated using twin experiments of the L96 model described in subsec-
tion 5.1.2. For these experiments, we only consider the mildly nonlinear configuration of the
L96 model presented in paragraph 5.1.2.2.

7.3.2.1 Implementation notes

In this configuration, typical local domains (corresponding to typical localisation radii `
around 20 grid points) include all Nx = 40 state variables. As a consequence, the localisation
matrix ρ is not be sparse, which spoils the entire purpose of using the random svd algorithm.
Therefore, we use Nx = 400 state variables instead 40. The resulting configuration is
essentially a repetition of ten times the original configuration. In this case, the number of
unstable and neutral modes of the model dynamics is around 133.

The performance criterion is the RMSE score described in subsection 5.1.1. In order to
ensure the convergence of the statistical indicators, we use a spin-up period of Ns = 2× 103

assimilation cycles and a total simulation period of at least Nc = Ns + 2× 104 assimilation
cycles.

The augmented ensemble is computed using either the truncated svd method or the
modulation method with or without the balance refinement. In all cases, the ensemble
size Ne is set to 10 members, less than the number of unstable and neutral modes of the
model dynamics, which means that localisation is mandatory to avoid the divergence of the
algorithms. The localisation matrix ρ is constructed as C(`), where ` is the localisation
radius. This is equivalent to using equation (2.54) from subsection 2.5.3.

As presented in subsection 2.5.2, in order to mitigate the sampling errors, multiplicative
inflation is used after the analysis step with a fixed multiplicative inflation factor λ. For each
value of the augmented ensemble size N̂e, the multiplicative inflation factor λ, as well as the
localisation radius `, are optimally tuned to yield the lowest RMSE score.

For the modulation method, the approximate factorisation of ρ is precomputed once for each
twin experiment by keeping the first Nm of Nm + δNm (when using the balance refinement)
modes in the svd of ρ. Finally for the truncated svd method, the matrix multiplication with
ρ ◦ P̄f are computed using equation 7.31, and ρ is applied in spectral space.

7.3.2.2 Accuracy of the algorithm

Figure 7.3 shows the evolution of the RMSE score as a function of the augmented ensemble
size N̂e. Both the truncated svd and the modulation methods are able to produce an estimate
of the truth xt with an accuracy equivalent to that of the LETKF algorithm, algorithm 2.4.
As expected after the experiments of subsection 7.3.1, for a given level of RMSE score we need
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Figure 7.3: Evolution of the RMSE score as a function of the augmented ensemble size N̂e

for the augmented ensemble LEnSRF algorithm. The augmented ensemble X̂ is computed
either using the truncated svd method (in blue) for several values of the parameter q in the
random svd algorithm, or using the modulation method (in red) with (continuous lines) or
without (dashed lines) the balance refinement. For reference, the RMSE score of the LETKF
algorithm with an ensemble of Ne = 10 members is shown with an horizontal dashed black
line. The DA system is the L96 model in the extended mildly nonlinear configuration.

a much smaller N̂e when using the truncated svd method than when using the modulation
method. However, before we conclude that the truncated svd method is more efficient, we
need to take into account the fact that computing the augmented ensemble X̂ is much slower
with this method than with the modulation method.

With the truncated svd method, the augmented ensemble size N̂e needs to be at least of
the same order as the number of unstable and neutral modes of the model dynamics in order
to yield accurate results. This coincides with the results of Bocquet et al. (2017). We have
also tested q > 1 in the truncated svd method and δNm > 20 in the modulation method
(not illustrated here) and found that none of these parameters yields clear improvements in
RMSE scores.

7.3.2.3 Efficiency of the algorithm

In the augmented ensemble LEnSRF algorithm, the longest algorithmic steps are empirically

• the construction of the augmented ensemble X̂;

• the inverse and the inverse square root of the transformation matrix T̂e.

Regarding the second point, we have tested several approaches and concluded that the
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Figure 7.4: Evolution of the wall-clock analysis time for the 22× 103 assimilation cycles
as a function of the RMSE score for the augmented ensemble LEnSRF algorithm. The
augmented ensemble X̂ is computed either using the truncated svd method (in blue and
in green) for several values of the parameter q in the random svd algorithm, or using the
modulation method (in red) with (continuous lines) or without (dashed lines) the balance
refinement. The DA system is the L96 model in the extended mildly nonlinear configuration.

most efficient is to compute the svd of R−1/2Ŷ using a direct svd algorithm, which cannot
be parallelised. Regarding the first point, some level of parallelisation can be included in
the random svd algorithm (i.e., when using the truncated svd method). When using the
modulation method (even with the balance refinement), the construction of X̂ is almost
instantaneous compared to the svd of R−1/2Ŷ. Therefore, we only enable parallelisation in
the random svd algorithm.

Figure 7.4 shows the evolution of the wall-clock time of one analysis step as a function of
the RMSE score. All experiments are performed on the same computational platform with 12
cores. Parallelisation is enabled when possible using a fixed number of OpenMP threads. For
a given level of RMSE score, the truncated svd method is clearly faster than the modulation
method. This shows the advantage of using the truncated svd method over the modulation
method, especially when parallelisation is possible. However, this result is specific to the
problem considered here and may not generalise to all situations.
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7.4 Numerical experiments with satellite radiances

7.4 Numerical experiments with satellite radiances

7.4.1 Is covariance localisation viable in high-dimensional DA systems?

In subsection 7.3.2, we have implemented CL in the EnKF and successfully applied the
resulting algorithm to a one-dimensional DA system with Nx = 400 state variables. With
a high-dimensional system, CL in the EnKF will probably require a very large augmented
ensemble size N̂e, too large to be affordable. In this case, the use of DL will be mandatory.

When observations are local, DL is simple to implement and yield efficient algorithms such
as the LETKF algorithm. However, when observations are non local, one must resort to ad
hoc approximations to implement DL in the EnKF, for example assigning an approximate
location to each observation. In this section, we discuss the case of satellite radiances, which
are non-local observations, and we show how existing variants of the LETKF algorithm deal
with such observations. We then give an generalisation of the augmented ensemble LEnSRF
algorithm designed to assimilate satellite radiances in a spatially extended model. Finally we
introduce a multilayer extension of the L96 model which mimics satellite radiances and we
illustrate the performance of the generalised augmented ensemble LEnSRF algorithm using
twin experiments of this multilayer model.

7.4.2 The case of satellite radiances

Suppose that the physical space consists of a multilayer space with Pz vertical levels of Ph

state variables. For any h ∈ (Ph : 1) and z ∈ (Pz : 1), the state variable located at the h-th
(horizontal) grid point and at the z-th vertical level is written x(z,h). For any vector x, the
sub-vector containing the Pz elements of x which are located at the h-th grid point is written
xh and called the h-th column of x. Suppose furthermore that each column of the state
vector x is independently observed through

yh = Ωxh, (7.36)

where Ω is a Pc × Pz weighting matrix, yh is the vector containing the Pc observations at
the h-th grid point, and Pc is the number of channels. The full observation vector y is
the concatenation of all yPh:1. It has Ny = Pc × Ph elements and for any h ∈ (Ph : 1) and
c ∈ (Pc : 1), the observation located at the h-th grid point and corresponding to the c-th
channel is written y(c,h).

This simple model describes a typical situation for satellite radiances. From these definitions,
it is clear that each observation is attached to an horizontal position, but has no well-defined
vertical position (unless the weighting matrix Ω is diagonal). Several variants of the LETKF
algorithm have been designed to assimilate such observations. When the weighting function
of each channel has a single and well-located maximum, the vertical location of this maximum
can play the role of an approximate height for the channel. This is the approach followed
for example by Fertig et al. (2007). Based on these vertical positions, they use the channels
to update adjacent vertical levels as long as the corresponding weighting function is above
a threshold value. Campbell et al. (2010) has followed the same approach to define the
approximate height of the channels. However their update formula includes a vertical tapering
of the anomalies depending on the vertical distance. When the weighting functions are flat,
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another possibility is to define the approximate height of each channel as the middle of the
support of its weighting function (Anderson and Lei 2013). Miyoshi and Sato (2007) have
proposed an alternative which does not require the definition of an approximate height of the
channels: their update formula includes a vertical tapering of the anomalies which depends
on the shape of the weighting functions only. Finally, in the algorithm of Penny et al. (2015),
vertical localisation has simply been removed.

Using a realistic one-dimensional model with satellite radiances, Campbell et al. (2010)
have shown that ad hoc approaches based on DL only systematically yield higher errors than
CL. In a spatially extended system with satellite radiances, it seems natural to apply DL
in the horizontal direction, in which observations are local, while using CL in the vertical
direction, in which observations are non-local.

7.4.3 Including domain localisation in the LEnSRF

Following the approach of Bishop et al. (2017), we apply four modifications to the augmented
ensemble LEnSRF algorithm (algorithm 7.2) in order to include DL in way similar to the
LETKF algorithm.

1. We perform Ph local analyses instead of one global analysis. The aim of the h-th local
analysis is to give an update for the Pz state variables which form the h-th column.
The linear algebra must be amended accordingly.

2. We taper the anomalies related to each observation with respect to the horizontal
distance to the h-th column. This is usually implemented in R−1/2.

3. Observations whose horizontal position is far from the h-th column (that is, observations
whose site is not located in the h-th local domain) do not contribute to the update.
These observations are therefore omitted in the local analysis in order to save some
computational time.

4. Since observations located outside of the local domain are omitted, we only need to
compute an augmented ensemble X̂ for the state variables inside the local domain.
Since CL is only applied in the vertical direction, the (local) augmented ensemble X̂`

must be constructed in such a way that

X̂`
(
X̂`
)T ≈ ρv ◦

[
X`
(
X`
)T]

, (7.37)

where X` is the restriction of the perturbation matrix X to the local domain, and ρv

is the vertical localisation matrix, whose elements only depend on the vertical layer
indices.

The resulting algorithm, hereafter called the local analysis LEnSRF (L2EnSRF) algorithm,
implements DL in the horizontal direction and CL in the vertical direction. Therefore, it can
be used to assimilate vertically non-local observations such as satellite radiances.
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7.4.4 The multilayer L96 model

We now introduce a multilayer extension of the L96 model, hereafter called multilayer Lorenz
1996 (mL96) model. This multilayer extension is used to illustrate the performance of the
L2EnSRF algorithm.

The mL96 model consists of Pz coupled layers of the one-dimensional L96 model with
Ph variables. Keeping the notations defined in subsection 7.4.2, the evolution of the h-th
variable of the z-th level in the model is given by the following ODE:

dx(z,h)

dt
=
[
x(z,h+1) − x(z,h−2)

]
x(z,h−1) − x(z,h) + Fz

+ δ{z>0} Γ
[
x(z−1,h) − x(z,h)

]

+ δ{z≤Pz} Γ
[
x(z+1,h) − x(z,h)

]
. (7.38)

The first line in equation (7.38) corresponds to the ODE of the original L96 model, equa-
tion (5.2), with a forcing term F which may depend on the vertical layer index z. The second
and third lines correspond to the coupling between adjacent layers, with a constant intensity
Γ. As for the L96 model, the horizontal indices are to be understood with periodic boundary
conditions:

∀z ∈ (Pz : 1), x(z,−1) = x(z,Ph−1), x(z,0) = x(z,Ph), andx(z,1) = x(z,Ph+1). (7.39)

As for the L96 model, the ODEs are integrated using a fourth-order Runge–Kutta method
with an integration time step δt of 0.05 unit of time.

For these experiments, we use Pz = 32 layers and Ph = 40 to mimic the mildly nonlinear
configuration of the L96 model. The forcing term F linearly decreases from F1 = 8 at the
lowest level to FPz = 4 at the highest level. Without the coupling, these values would render
the lower levels dynamics chaotic and the higher levels dynamics laminar, which is a typical
behaviour in the atmosphere. Finally, we set Γ = 1 such that adjacent layers are highly
correlated (correlation around 0.87). To be more specific, the correlation between the z-th
level and the (z + δz)-th level first rapidly decreases with δz. It reaches approximately −0.1
for δz = 6 layers and then it starts increasing. Finally, its absolute value is below 10−2 when
δz > 10 layers. This model is chaotic and the dimension of the unstable or neutral subspace
is around 50.

The observation operator H follows the model described in subsection 7.4.2. We use
Pc = 8 channels and a weighting matrix Ω designed to mimic satellite radiances, as shown in
figure 7.5. The observation vectors are given by

y = Hx + eo, eo ∼ N [0, I], (7.40)

and the time interval between consecutive observations ∆t is the same as the one used with
the L96 model, 0.05 unit of time. Again, the standard deviation of the observation noise is
approximately one tenth of the climatological variability of each observation.

For the horizontal localisation, we use the Euclidean distance dh in (Ph : 1) with periodic
boundary conditions. For the vertical localisation, we use the Euclidean distance dv in (Pz : 1).

213



7 Implementing covariance localisation using augmented ensembles

1 8 16 24 32

Vertical layer index z

0.0

0.1

0.2

0.3

0.4

0.5

W
e
ig

h
t

Figure 7.5: Observation operator H used with the mL96 model. Each line represents the
weighting function of a different channel, corresponding to a row of the weighting matrix Ω.
Every channel has a single maximum and is relatively broad (half-width around 10 vertical
layers). The sum of the weights has been adjusted individually such that every channel yields
an observation with approximately the same climatological variability.
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7.4.5 Implementation notes

In this section, we give some details on how localisation is implemented in the L2EnSRF
algorithm for the mL96 model. We then describe the approximations necessary to implement
an ad hoc LETKF algorithm.

7.4.5.1 Horizontal localisation

Let `h be the horizontal localisation radius. During the h1-th local analysis, the anomalies
related to the c-th channel of the observation vector at the h2-th grid point, y(c,h2) are tapered
by a factor √

G

(
2dh(h1, h2)

`h

)
,

where G is the GC function introduced in subsection 2.5.3. This means that the h-th
local domain consists of the columns {h− b`hc, . . . , h+ b`hc} where the indices are to be
understood with periodic boundary conditions in (Ph : 1), and where b`hc is the integer part
of `h.

7.4.5.2 Vertical localisation

Let `v be the vertical localisation radius. The (z1, h1)-th row, (z2, h2)-th column element of
the vertical localisation matrix ρv is given by

[ρv](z1,h1),(z2,h2) = G

(
2dv(z1, z2)

`v

)
. (7.41)

The local domains gather P `h = 2b`c+ 1 columns, hence ρv is a PzP
`
h × PzP

`
h block-diagonal

matrix. Since its elements only depend on the vertical layer indices, it can also be seen as a
Pz × Pz matrix.

The PzP
`
h × N̂e matrix X̂` of the (local) augmented ensemble is computed using either the

truncated svd method or the modulation method with or without the balance refinement. In
all cases, the ensemble size Ne is set to 8 members.

For the modulation method, the approximate factorisation of ρv is precomputed once for
each experiment by keeping the first Nm or Nm + δNm (when using the balance refinement)
modes in the svd of the Pz ×Pz matrix ρv. Finally for the truncated svd method, the matrix
multiplications with ρ ◦ P̄f are computed using equation (7.31). Since the elements of ρv

only depend on the vertical layer indices, applying the PzP
`
h × PzP

`
h matrix ρv to a vector

with PzP
`
h elements reduces to applying the Pz × Pz matrix ρv to a vector with Pz elements.

It should be relatively quick and therefore we do not perform this product in spectral space.
This means that the implementation can be straightforwardly generalised to the general case
where the vertical layers are not equally distributed in height.

215



7 Implementing covariance localisation using augmented ensembles

7.4.5.3 Approximations for the LETKF

We define the approximate height zc of the c-th channel as

zc ,

Pz∑

z=1

z[Ω]c,z

Pz∑

z=1

[Ω]c,z

∈ [1, Pz]. (7.42)

We did not define the c-th approximate height zc as the vertical position of the maximum of
the c-th weighting function because we wanted to account for the fact that our weighting
functions are skewed in the vertical direction.

In the ad hoc LETKF algorithm, Pz × Ph local analyses are performed, one for each state
variable. Furthermore, in the local analysis for the variable at the h1-th grid point of the
z-th level, x(z,h1), the anomalies related to the c-th channel of the observation vector at the
h2-th grid point, y(c,h2), are tapered by a factor

√
G

[
2
√
δh2/`2h + δz2/`2v

]
,

where
δh = min

{
|h2 − h1|, Ph − |h2 − h1|

}
, (7.43)

δz = |z − zc|. (7.44)

7.4.6 Results

For this experiment, the performance criterion is the RMSE score described in subsection 5.1.1.
In order to ensure the convergence of the statistical indicators, we use a spin-up period
of Ns = 103 assimilation cycles and a total simulation period of at least Nc = Ns + 104

assimilation cycles. As presented in subsection 2.5.2, in order to mitigate the sampling errors,
multiplicative inflation is used after the analysis step with a fixed multiplicative inflation
factor λ.

Figure 7.6 shows the evolution of the RMSE score and of the wall-clock time of one analysis
step as a function of the horizontal localisation radius `h for the L2EnSRF and the LETKF
algorithms. For each value of the horizontal localisation radius `h, the multiplicative inflation
factor λ, as well as the vertical localisation radius `v, are optimally tuned to yield the lowest
RMSE score. All experiments are performed on the same computational platform with 12
cores. Parallelisation is enabled for the Ph independent local analyses using a fixed number
of OpenMP threads Nt = 20. In the L2EnSRF algorithm, the augmented ensemble X̂ is
computed using either the truncated svd method with q = 0 in the random svd algorithm, or
the modulation method without the balance refinement (δNm = 0). Preliminary experiments
with q > 0 or δNm > 0 (not illustrated here) did not display clear improvements in RMSE
score over the cases q = 0 and δNm = 0.

The ad hoc LETKF algorithm yields rather high RMSE scores (compared to the observation
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Figure 7.6: Evolution of the RMSE score (top panel) and of the wall-clock analysis time
for the 103 cycles (bottom panel) as a function of the horizontal localisation radius `h for the
L2EnSRF algorithm (in blue and in red) and for the ad hoc LETKF algorithm (in black).
The augmented ensemble is computed using either the truncated svd method (in blue) with
q = 0 in the random svd algorithm, or the modulation method (in red) without the balance
refinement (δNm = 0). In both cases, several values of the augmented ensemble size N̂e are
tested. The DA system is the mL96 model described in subsection 7.4.4.

217



7 Implementing covariance localisation using augmented ensembles

standard deviation r = 1), while not completely failing to reconstruct the truth xt. Although
DL in the horizontal direction is a powerful tool, vertical localisation is necessary in this
DA system. Because the weighting functions of the channels are quite broad, observations
cannot be considered local and DL in the vertical direction is inefficient. By contrast, with a
reasonable augmented ensemble size N̂e, the L2EnSRF algorithm yields significantly lower
RMSE scores. This shows that combining DL in the horizontal direction and CL in the
vertical direction is an adequate approach to assimilate satellite radiances.

The comparison between the truncated svd and the modulation methods is not as simple as
it was in the experiments with the L96 model. As expected, for a given augmented ensemble
size N̂e, the truncated svd method yields lower RMSE scores. However, for a given level
of RMSE score, using the truncated svd method is not always the fastest approach. For
example, the RMSE score for the truncated svd method with N̂e = 64 is approximately the
same as the RMSE score for the modulation method with N̂e = 128, but in this case the
modulation method is faster by a factor 1.5 on average. This can be explained by two factors.
First, in the truncated svd method ρv is not applied in spectral space. Second, both the
truncated svd and the modulation method benefit from parallelisation, but the parallelisation
potential of the truncated svd method is not fully exploited here because our computational
platform has a limited number of threads. This would change if we could use several threads
per local analysis. Finally, these results confirm that, for high dimensional DA systems where
the memory requirement is an issue, the truncated svd method is the best approach to obtain
accurate results while using only a limited augmented ensemble size N̂e.

7.5 Summary and discussion

In this chapter, we have explored possible implementations for CL in deterministic EnKF
algorithms using an augmented ensemble in the analysis step. We have discussed the two
main difficulties related to the use of augmented ensembles: how to construct the augmented
ensemble and how to update the perturbations.

We have used two different methods to construct the augmented ensemble. The first one
is based on a factorisation property of the forecast sample covariance matrix. It is already
widespread in the geophysical DA literature under the name modulation. For this method, we
have also introduced a balance refinement in order to smooth some variability between the
state variables. As an alternative, we have proposed a second method based on randomised
svd techniques, which are very efficient when the localisation matrix is easy to apply. The
random svd algorithm, is commonly used in the statistical literature but it had never been
applied in this context. We have called this approach the truncated svd method.

We have shown how CL can be included in the perturbation update using the augmented
ensemble framework. The resulting update formula (Bocquet 2016) uses linear algebra in
the augmented ensemble space. It is included in the generic augmented ensemble LEnSRF
algorithm.

Using numerical experiments with a very simple one-dimensional covariance model with 400
state variables, we have shown that the truncated svd method yields a much more accurate
approximation of the (localised) forecast sample covariance matrix than the modulation
method. This result has been confirmed by twin experiments using the one-dimensional L96
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7.5 Summary and discussion

model with 400 variables. In an extended mildly nonlinear configuration of the L96 model,
we have found that the balance between fast computation of the augmented ensemble and
fast perturbation update is in favour of the truncated svd method. In other words, for a given
level of RMSE score, it is worth spending more time to construct a smaller but more reliable
augmented ensemble with the truncated svd method and then use a faster perturbation
update.

We have defined the L2EnSRF algorithm as a generalisation of the LEnSRF algorithm
suited to the assimilation of satellite radiances in spatially extended models. It implements
DL in the horizontal direction in a similar way as the LETKF algorithm, and CL in the
vertical direction. Such an extension had been discussed by Bishop et al. (2017) but without
numerical illustration.

Finally, we have constructed a simple multilayer extension of the L96 model, called the
mL96 model. We have performed twin experiments with this model using a satellite-like
observation operator. As expected, the LETKF algorithm hardly reconstructs the truth. By
contrast, the L2EnSRF algorithm yields an estimate of the truth with an acceptable accuracy.
We have concluded that using DL in the horizontal direction and CL in the vertical direction
is an adequate approach to assimilate satellite radiances in a spatially extended model. For
a given level of RMSE score, the modulation method is the fastest approach in this DA
system. This result is mitigated by the fact that our computational setup does not use the
full parallelisation potential of the truncated svd method. When the augmented ensemble
size is limited, the truncated svd method is the best approach to obtain accurate results.
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Theorem 2.5 ensures that the analysis step of the ETKF algorithm is consistent according
to the notion of consistency introduced in subsection 2.2.2. When using CL in the EnKF,
the notion of consistency has to be redefined to take into account the fact that the forecast
sample covariance matrix is localised.

In this chapter, following the work published in Bocquet and Farchi (2019), we revisit
the perturbation update of deterministic EnKF algorithms using CL, with a focus on the
consistency. In section 8.1, we introduce a notion of consistency coherent with the use of
CL. The consistency of the LEnSRF perturbation update is then discussed in details, and a
new approach is proposed. The algorithmic complexity of this new approach is explicitly
computed. In section 8.2, the new approach is implemented and tested using twin experiments
of low-order one-dimensional models. Finally, conclusions are given in section 8.3. In this
chapter, unless specified otherwise, the DA system is the GL system. For simplicity, the time
subscript k is systematically dropped in the equations.

8.1 A new perturbation update method

In chapter 7, we have defined the LEnSRF algorithm and explained how it could be im-
plemented, for example by using an augmented ensemble. In this section, we focus on the
perturbation update step.
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8 Consistency of the LEnSRF perturbation update

8.1.1 On the consistency of the perturbation update

When using CL, the forecast sample covariance matrix P̄f is replaced by its localised version
ρ ◦ P̄f . The consistency relationships for the EnKF analysis step, defined in subsection 2.2.2
by equations (2.10a)–(2.10c), has to be amended accordingly. Replacing P̄f by ρ ◦ P̄f in
equations (2.10a)–(2.10c) yields

K =
(
ρ ◦ P̄f

)
HT
[
H
(
ρ ◦ P̄f

)
HT + R

]−1
, (8.1a)

x̄a = x̄f + K
(
y −Hx̄f

)
, (8.1b)

P̄a =
(
I−KH

)(
ρ ◦ P̄f

)
. (8.1c)

These equations define the consistency relationships for the EnKF analysis step with CL.
Furthermore, using the Sherman–Morrison–Woodbury matrix identity in equation (8.1c)
yields

P̄a =
[
I +

(
ρ ◦ P̄f

)
HTR−1H

]−1(
ρ ◦ P̄f

)
. (8.2)

In order to avoid any confusion, it is assumed in this chapter that P̄a is the estimated analysis
error covariance matrix defined by equation (8.2). The EnKF perturbation update is said to
be consistent if the analysis perturbation matrix Xa is related to P̄a through

P̄a = Xa(Xa)T. (8.3)

As explained in paragraph 7.1.3.3, in the augmented ensemble framework, ρ ◦ P̄f can be
approximated by P̂ = X̂X̂T, the sample covariance matrix of the augmented ensemble X̂. If
the augmented ensemble size N̂e is (strictly) larger than Nx, it is possible to construct X̂ in
such a way that the approximation is exact, that is ρ ◦ P̄f = P̂. In this case, the estimated
analysis error covariance matrix P̄a can be exactly factorised as

P̄a = X̂a
(
X̂a
)T
, (8.4)

where the Nx × N̂e analysis perturbation matrix X̂a is obtained using

Tx = I + X̂X̂THTR−1H, (8.5a)

X̂a = (Tx)−1/2X̂. (8.5b)

This perturbation update is by construction consistent because it satisfies equation (8.3).

Of course, this is only theoretical since, in practice, we can only afford to generate and
propagate an ensemble of size Ne � Nx. Since we look for Ne members which capture most
of the uncertainty of the analysis, it is tempting to apply the transformation matrix Tx to
X̂f , defined as the Nx × Ne matrix containing the Ne dominant modes of the augmented
ensemble X̂. Hence, we could propose the perturbation update

X̂a = (Tx)−1/2X̂f , (8.6)

where the resulting analysis perturbation matrix X̂a is of size Nx × Ne. It is remarkable

222



8.1 A new perturbation update method

that this perturbation update differs from equation (7.2b), the perturbation update which
defines the LEnSRF algorithm. On the one hand, equation (7.2b) smoothly operates a
transformation on the forecast perturbation matrix Xf to obtain the analysis perturbation
matrix Xa, so that one would think that it could generate fewer imbalance compared to
a transformation on the truncated modes X̂f . On the other hand, the Frobenius norm of
the difference between the estimated analysis error covariance matrix P̄a and Xa(Xa)T is
larger than the norm of the difference between P̄a and X̂a(X̂a)T, a fact which can also be
checked numerically. Unfortunately, preliminary experiments using the L96 model and a
modified LEnSRF algorithm, in which the perturbation update is defined by equation (8.6)
instead of equation (7.2b), show that the update described by equation (8.6) is ineffective
and systematically makes the filter diverge after a few assimilation cycles. This seems
contradictory with the fact that this update captures as much uncertainty as possible, at
least as measured using matrix norms.

The reason behind this apparent paradox is that in a cycled DA context based on equa-
tion (8.6), the localisation is essentially applied twice per cycle. Indeed, X̂f already captures
the dominant contributions from a localised ρ ◦ P̄f , hence a first footprint of localisation. The
resulting X̂a would then form an analysis ensemble Ea to be forecasted. In the next analysis
step, the forecast statistics would be based on this forecast ensemble. The regularisation
of the covariances would then require localisation, once again. Since localisation by Schur
product is not idempotent1 localisation is applied once too many. This is why equation (8.6)
cannot be used to define a perturbation update in a cycled DA context.

This clarifies a posteriori why equation (7.2b) is well suited to define the perturbation
update of the LEnSRF algorithm: localisation is applied only once in each assimilation cycle.
This argument also implies that, when using CL, the analysis perturbation matrix Xa should
not be blindly identified with the modes carrying most of the uncertainty. However, it is
tacitly hoped that the forecast of the analysis ensemble Ea at the next assimilation cycle will
be adequately regularised by the localisation matrix ρ.

By contrast, the local perturbation updates in the LETKF algorithm, algorithm 2.4, are
meant to capture most of the uncertainty within each local domain. Hence, the analysis
perturbation matrix Xa is representative of the main uncertainty modes in this case. However,
even though the analysis ensemble Ea obtained with the LETKF algorithm may better
represent P̄a, this property could eventually fade away in the forecast because of the local
validity of the analysis ensemble Ea. Incidentally, this suggests that the LETKF algorithm
could be better suited for ensemble short-term forecast, which could be investigated in a
future study. Numerical clues supporting this idea are nonetheless provided at the end of
subsection 8.2.3.

8.1.2 Improving the consistency of the perturbation update

We have just seen that the widespread view on the local EnKF perturbation update which
assumes a low-rank extraction Xa from P̄a with the hope that Xa captures the most important
directions of uncertainty, i.e., Pa ≈ Xa(Xa)T, is only accurate for the LETKF algorithm.
When using CL, the perturbations do not have to coincide with the dominant modes.

1Unless one uses a boxcar-like localisation matrix ρ, which would not be a proper correlation matrix.
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8 Consistency of the LEnSRF perturbation update

For the LEnSRF algorithm, we believe that it would be more consistent with how the
perturbations are defined to look for a low-rank analysis perturbation matrix Xa such that

P̄a ≈ ρ ◦
[
Xa(Xa)T

]
, (8.7)

instead of using equation (7.2b). Indeed, within equation (8.7), Xa should not be interpreted
as the dominant modes of P̄a but as intermediate objects, perturbations whose short range
covariances are indeed representative of the short range covariances of P̄a, but whose long
range covariances are not used and possibly irrelevant. In the LEnSRF algorithm, the proper
covariances will anyway be reconstructed with a Schur product after the forecast. A solution
Xa of equation (8.2) trades the accuracy of the representation of the long range covariances
(which may eventually be discarded at the next assimilation cycle) for a potentially better
accuracy of the short range covariances. Indeed, applying the localisation matrix ρ via the
Schur product relaxes the long-range constraints and a better match with P̄a can potentially
be achieved for short range covariances.

Let L be the cost function defined as

L(X) , ln
∥∥∥ρ ◦

(
XXT

)
− P̄a

∥∥∥
F
. (8.8)

Our objective is to minimise L over all perturbation matrices X with Ne columns. As
discussed in the following, this minimisation problem may have several solutions, which
means that we will have to select one perturbation matrix X which minimises L. The
log-transformation applied to the norm is monotonically increasing and hence leaves the
minima unchanged. This choice will be justified later on.

This problem is similar to the weighted low-rank approximation (WLRA) problem, which
consists in minimising, for a given target matrix V and a given weighting matrix ρ, the cost
function J defined as

J (A) , ‖ρ ◦ (A−V)‖F, (8.9)

over all matrices A of rank strictly smaller than Ne (Manton et al. 2003; Srebro and Jaakkola
2003). With the identification P̄a = ρ ◦V and imposing the matrix A to be symmetric and
positive semi-definite, the problem which consists in minimising L defined by equation (8.8)
is seen to belong to the class of WLRA problems. As opposed to the uniform case, in which
all elements of ρ are 1, and for which the minimiser simply coincides with the truncated svd
of P̄a by Eckart–Young theorem, the non-uniform case has no simple solution.2

Hence, we expect that the cost function L has no tractable minimiser. The literature of the
WLRA problem focuses on the non-symmetric case, which would correspond for our problem
to L(X,Y) = ln

∥∥ρ ◦
(
XYT

)
− P̄a

∥∥
F

. By contrast, our focus is on the symmetric case, which
has less degrees of freedom. Still, it is unlikely to be amenable to a convex problem. Let us
see why.

The cost function L is defined on the space of the perturbation matrices X with Ne columns,

which is a convex subspace. Minimising L is equivalent to minimising
∥∥ρ ◦

(
XXT

)
− P̄a

∥∥2

F
which is algebraic but nonetheless quartic in X and hence cannot be guaranteed to be convex.
The problem is also equivalent to finding a matrix P of rank strictly smaller than Ne which

2It is actually known to be NP-hard.
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8.1 A new perturbation update method

Algorithm 8.1: Analysis step for the modified LEnSRF algorithm in the context

of the GL system.

Input: Ef [tk], y [tk]

Parameters: H, R, ρ

1 x̄ ← Ef1/Ne

2 X ← Ef
(
I− 11T/Ne

)
/
√
Ne − 1

3 P ← ρ ◦
(
XXT

)

4 K ← PHT
(
HPHT + R

)−1

5 x̄a ← x̄ + K
(
y −Hx̄

)
// mean update

6 P̄a ← (I−KH) P

7 Xa ← arg min
Z∈RNx×Ne

ln
∥∥∥ρ ◦

(
ZZT

)
− P̄a

∥∥∥
F

// new perturbation update

8 Ea ← x̄a1T +
√
Ne − 1Xa

Output: Ea [tk]

minimises
∥∥ρ ◦P− P̄a

∥∥2

F
. This function is quadratic in P. However, the space of the matrices

P satisfying rk P ≤ Ne − 1 < Nx is not convex. Hence our problem may have several or even
an infinite number of solutions (a variety). For instance, there are many redundant degrees of
freedom such as L(X) = L(XU) with U being any Ne×Ne orthogonal matrix. Therefore, the
optimisation problem which consists in minimising L is degenerate. The modified LEnSRF
algorithm with this new perturbation update is summarised in algorithm 8.1. In this algorithm,
it is assumed that one minimiser of L is selected among all minimisers. Furthermore, the
sample covariance matrix P̄ and the perturbation matrix X are related by

P̄ ≈ ρ ◦
(
XXT

)
, (8.10)

throughout the entire assimilation cycle. In other words, equation (8.10) is valid for both the
forecast and the analysis quantities.

With a view to efficiently minimising the cost function L, let us compute its gradient. The
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8 Consistency of the LEnSRF perturbation update

variation of L(X) with respect to a variation of X is

δL(X) =
δ‖∆‖2F
2‖∆‖2F

, (8.11)

=
δ tr
[
∆∆T

]

2‖∆‖2F
, (8.12)

=
tr
[
ρ ◦
[
(δX)XT

]
∆ + ρ ◦

[
X(δX)T

]
∆
]

‖∆‖2F
, (8.13)

where ∆ , ρ ◦
(
XXT

)
− P̄a. Now, using the identity

tr
[
(A ◦B) C

]
= tr

[
A (BT ◦C)

]
, (8.14)

which is valid for any matrices A, B, and C with compatible size, we obtain

δL(X) =
2 tr
[
(δX)T(ρ ◦∆)X

]

‖∆‖2F
, (8.15)

which yields the matrix gradient

∇L(X) =
2 (ρ ◦∆) X

‖∆‖2F
, (8.16)

in other words, the gradient of L(X) with respect to each component of the perturbation
matrix X. When implementing the new LEnSRF algorithm, we provide the gradient ∇L as
well as the value of the cost function L to an off-the-shelf numerical optimisation algorithm,
such as the L-BFGS-B algorithm (Byrd et al. 1995). The cost function L may not only have
many global minima, but it may also have many local minima. As a consequence it may not
be possible to find a global minimum with the L-BFGS-B algorithm.

8.1.3 Parametrised minimisation

Instead of minimising L over X which has redundant degrees of freedom, we use an RQ
decomposition of the perturbation matrix X, which is obtained from a QR decomposition
(Golub and Van Loan 2013) of XT as

X = ΩU, (8.17)

where U is an Ne ×Ne orthogonal matrix and Ω is an Nx ×Ne lower triangular (actually
trapezoidal) matrix. Hence, XXT = ΩΩT only depends on Ω. The number of degrees of
freedom in this parametrisation is that of Ω, which is

NeNx −Ne
Ne − 1

2
= Ne(Nx −Ne) +Ne

Ne + 1

2
. (8.18)
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A parametrised minimisation can easily be implemented using the cost function

L(Ω) = ln
∥∥∥ρ ◦

(
ΩΩT

)
− P̄a

∥∥∥
F
, (8.19)

and its gradient

∇L(Ω) =
2 ΠΩ(ρ ◦∆) Ω

‖∆‖2F
, (8.20)

where ΠΩ is the projector which sets to zero the upper triangular part of (ρ ◦∆) Ω as it is
in Ω.

In the numerical experiments of section 8.2, we use this parametrised minimisation. However,
the plain method using the non-parametrised minimisation works as well, although there is
no guarantee to find the same local minimum because of the potential non-convexity of L.

In subsection 8.2.4, we address the question of the matrix norm choice in the definition of
the cost function L with equation (8.8). In particular, we test the use of the spectral and
nuclear matrix norms, and, more generally, of the Schatten p-norms. We found that these
choices did not make much of a difference but that the choice of either the spectral or the
nuclear norm, at the ends of the Schatten range, could lead to inaccurate numerical results.

Finally, coming back to the definition of the cost function L, we have chosen to apply a
log-transformation to the norm to level off the ups and downs of the function. Since the
functions are non-convex, a quasi-Newton minimiser such as the L-BFGS-B algorithm may
behave differently in terms of convergence and local minima depending on the nature of the
transformation. Hence, the log-transformation should not be considered totally innocuous.
In practice, we found using the log-transformation systematically beneficial.

8.1.4 The forecast step

Because we have offered a novel view on the analysis perturbation matrix Xa and how it is
computed in the analysis step, we now need to examine how the forecast step is affected by
this change of standpoint. If not, there would be a risk of breaking the consistency during
the forecast step.

As previously explained in subsection 8.1.1, an asset of the LETKF algorithm is that Xa

represent the dominant modes of P̄a. Hence, the forecast uncertainty must be approximated
by the forecast of these modes. Nonetheless, by construction, the statistics of these modes
before or after the forecast are only valid on local domains, i.e., for short spatial separations.
By contrast, with the modified LEnSRF algorithm, recognising that

P̄a ≈ ρ ◦
[
Xa(Xa)T

]
(8.21)

makes forecasting more intricate. Indeed, this representation is meant to model statistics
valid for larger spatial separations. How would one forecast such a representation of P̄a?

A practical answer to this problem has been proposed by Bocquet (2016) in a linear and
deterministic context, i.e., when the dynamical model M is linear (which is the case in the
GL system) and when there is no model error. First, Xa is assumed to represent Ne genuine

227



8 Consistency of the LEnSRF perturbation update

physical perturbations, which are forecasted using the model M from tk to tk+1:

Xf
k+1 = MXa

k. (8.22)

Second, the localisation matrix ρ should be time-dependent and satisfy, in the time continuum
limit, the Liouville equation

∂ vec(ρ)

∂t
=
[
M⊗ I + I⊗M , vec(ρ)

]
. (8.23)

In this equation, vec(ρ) is the vectorised localisation matrix ρ, that is the vector whose N2
x

elements are those of ρ, and ⊗ denotes the Kronecker product between two copies of the
state space RNx .

In the case where the dynamics can be approximated as hyperbolic, and in the limit where
space is continuous, a closed-form equation can be obtained for ρ(x1, x2, t) (see equation (A14)
of Bocquet 2016). If diffusion is present, there is no such closed-form equation. See also
Kalnay et al. (2012) and Desroziers et al. (2016) who have considered this issue in other
contexts.

The key point is that in practice and for moderate forecast lead times, the localisation
matrix ρ can roughly be assumed to be static. This is what will be used in the numerical
experiments of section 8.2. When the time interval between consecutive observation ∆t is
larger, one could assume at the next order approximation that the localisation length used to
obtain the prior at time tk+1 is larger than the one used in the analysis at time tk, because of
an effective diffusion either generated by genuine diffusion or by averaged mixing advection
(as stressed in the appendix A of Bocquet 2016).

In conclusion, if P̄a is approximated by ρ ◦
[
Xa(Xa)T

]
, then ρ ◦

[
MXa(MXa)T

]
is an

acceptable approximation of MP̄aMT, the forecast error covariance matrix at the next cycle.
In other words, the forecast step does not need to be modified.

8.1.5 Algorithmic complexity of computing the cost function and its gradient

In this subsection, we analyse the algorithmic complexity of computing the cost function L
and its gradient. Indeed, both would be required by a quasi-Newton minimiser and both
involve the estimated analysis error covariance matrix P̄a.

8.1.5.1 Bottlenecks in the method

The cost function L requires computing

‖∆‖2F =
∥∥ρ ◦

(
XXT

)
− P̄a

∥∥2

F
, (8.24)

=
∥∥ρ ◦

(
XXT

)∥∥2

F
+
∥∥P̄a

∥∥2

F
− 2 tr

[
ρ ◦
(
XXT

)
P̄a
]
, (8.25)

= tr
[
ρ ◦
(
XXT

)[
ρ ◦
(
XXT

)
− 2P̄a

]]
+
∥∥P̄a

∥∥2

F
, (8.26)

= tr
[
XXTρ ◦

[
ρ ◦
(
XXT

)
− 2P̄a

]]
+
∥∥P̄a

∥∥2

F
, (8.27)

= tr
[
XTρ ◦

[
ρ ◦
(
XXT

)
− 2P̄a

]
X
]

+
∥∥P̄a

∥∥2

F
. (8.28)
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Moreover, the gradient of L, given by equation (8.16), can be written

∇L(X) =
2
[
ρ ◦ ρ ◦

(
XXT

)
X−

(
ρ ◦ P̄a

)
X
]

‖∆‖2F
, (8.29)

in which the normalisation factor is precisely le left-hand side of equation (8.24).

In conclusion, for the computation of both the cost function L and its gradient, we need to
evaluate a first term in the form ρ ◦ ρ ◦

(
XXT

)
X and a second term in the form

(
ρ ◦ P̄a

)
X.

8.1.5.2 Efficient evaluation of the first term

Using the factorisation property stated by equation (7.31), we conclude that the algorithmic
complexity of computing the first term ρ ◦ ρ ◦

(
XXT

)
X is

• O
(
N2

eNxNb

)
if ρ is banded with non-zero elements on the main Nb diagonals;

• O
(
N2

eNx lnNx

)
if ρ is circulant.

8.1.5.3 Efficient evaluation of the second term

Assuming that the estimated analysis error covariance matrix P̄a is entirely known, for all
vector v ∈ RNx , the n-th element of

(
ρ ◦ P̄a

)
v is given by

[(
ρ ◦ P̄a

)
v
]
n

=

Nx∑

m=1

[
ρ
]
n,m

[
P̄a
]
n,m

[
v
]
m
, (8.30)

=

Nx∑

m=1

[
P̄a
]
n,m

[
ρn ◦ v

]
m
, (8.31)

= P̄a
n(ρn ◦ v), (8.32)

where ρn is the n-th column of the localisation matrix ρ and P̄a
n is the n-th row of the

estimated analysis error covariance matrix P̄a.

As a consequence, the algorithmic complexity of computing the second term
(
ρ ◦ P̄a

)
X

is O(NxNbNe) if the localisation matrix ρ is banded with non-zero elements on the main
Nb diagonals. This cost is acceptable, in other words it does not departs much from O(Nx).
However, it does not account for the cost of evaluating P̄a.

Suppose that we have an approximate factorisation of P̄a under the form P̄a ≈ X̂aX̂a,
where X̂ is an augmented ensemble of size N̂e. Such a factorisation can be obtained, for
example, by using the methods presented in section 7.2. With this factorisation, the second
term becomes ρ◦

[
X̂a(X̂a)T

]
X, which is very similar to the first term. Therefore, we conclude

that the algorithmic complexity of computing the second term is

• O
(
NeN̂eNxNb

)
if ρ is banded with non-zero elements on the main Nb diagonals;

• O
(
NeN̂eNx lnNx

)
if ρ is circulant.
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8 Consistency of the LEnSRF perturbation update

In this case, as well as for the evaluation of the first term, the computations can be easily
parallelised, reducing the algorithmic complexity by a factor Nt, the number of threads
running in parallel.

For completeness, it is interesting to remark that, if the observations are assumed to be
local, then the main diagonals of P̄a can be computed using local approximations, in a way
similar to the strategy followed by the LETKF algorithm. Indeed, with the LETKF algorithm
the n-th local analysis implies

Xa
(
Xa
)T

= Xf
(
I + YTR−1

n Y
)−1(

Xf
)T
, (8.33)

where Rn is the tapered observation error covariance matrix. From Xa(Xa)T, one would
typically extract the n-th column to form the n-th column of the (global) P̄a. If the
localisation matrix ρ is banded with non-zero elements on the main Nb diagonals, then
the algorithmic complexity of obtaining the Nb relevant elements of one column of P̄a is
typically3 O

(
(N `

y)2Ne +N2
bNe

)
, where the first term corresponds to the computation of the

local transformation matrix Te and the second term correspond to the application of this Te.
Finally, the algorithmic complexity of evaluating all columns is O

(
Nx(N `

y)2Ne +NxN
2
bNe

)
,

which, again, can be reduced by a factor Nt, the number of threads running in parallel.

Of course, one of the primary reasons for using CL is its ability to assimilate non-local
observations. Hence, the assumption of locality made here defeats one of the key purpose of
using CL. Nonetheless, we shall see that even with local observations, the new perturbation
update method developed in subsection 8.1.2 can be beneficial.

8.2 Numerical experiments

8.2.1 Properties of the new perturbations

At first, we are interested in comparing the shape of the perturbations obtained with the
original method and with the new method. We also wish to explore how much the cost
function L can be rendered small. To that end, we consider a variant of the one-dimensional
model introduced in paragraph 7.3.1.1.

8.2.1.1 A simple one-dimensional model

Using the notation introduced in paragraph 7.3.1.1, the reference covariance matrix Pref is
constructed as the matrix whose correlation structure is C(`ref) and whose standard deviation
vector r is a random draw from the distribution LN

[
0, αc C(`c)

]
, where αc, `ref and `c are

three parameters to be determined. In other words, we have

Pref , D(r) C(`ref) D(r). (8.34)

For this experiment, we use Nx = 400 state variables, and the following values for the
parameters: αc = 0.3, `c = 13 grid points, and `ref = 10 grid points. The resulting reference
covariance matrix Pref is displayed in figure 8.1.

3For simplicity, it is assumed here that N `
y ≥ Ne and Nb ≥ Ne.
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Figure 8.1: Reference covariance matrix Pref .

We now compare different approximations of Pref using an ensemble of Ne = 8 members.

1. Let X̄ be the perturbation matrix of an ensemble of Ne members independently drawn
from the distribution N [0,Pref ].

2. Let X̂ be the perturbation matrix associated to the main Ne modes of Pref .

3. Let X̄∗ be the perturbation matrix obtained using the new method, that is by minimising
the cost function X 7→ ln

∥∥ρ ◦
(
XXT

)
−Pref

∥∥
F
, starting the minimisation from X̄.

4. Finally, let X̂∗ be the perturbation matrix obtained using the new method, where the
starting point of the minimisation is now chosen to be X̂.

In all cases, the sample covariance matrices P̄ , X̄X̄T, P̂ , X̂X̂T, P̄∗ , X̄∗(X̄∗)T, and
P̂∗ , X̂∗(X̂∗)T may be localised using the localisation matrix ρ = C(`ref).

8.2.1.2 Results and discussion

The sample covariance matrices P̄, P̂, and P̂∗ as well as their localised counterparts ρ ◦ P̄,
ρ◦P̂, and ρ◦P̂∗ are displayed in figure 8.2. Furthermore, figure 8.3 displays the perturbations,
i.e., the columns of the perturbation matrices, in all four cases.

It is clear from figure 8.2 that P̂∗ seems unphysical with rather long-range correlations,
but that its localised counterpart ρ ◦ P̂∗ is, as a result of its construction, a remarkably
close match to Pref . The sample covariance matrix P̂ seems a rather good approximation of
Pref . However, it is clear that its localised counterpart ρ ◦ P̂ has a thinner structure along
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Figure 8.2: Sample covariance matrices P̄ (top-left panel), P̂ (central-left panel), and P̂∗

(bottom-left panel), as well as their localised counterparts ρ ◦ P̄ (top-right panel), ρ ◦ P̂
(central-right panel), and ρ ◦ P̂∗ (bottom-right panel). The reference covariance matrix Pref ,
displayed in figure 8.1, is visually very close ρ ◦ P̂∗.
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Figure 8.3: Ensemble of Ne = 8 perturbations as a function of the grid point index for the
perturbation matrices X̄ (top-left panel), X̂ (top-right panel), X̄∗ (bottom-left panel), and
X̂∗ (bottom-right panel).
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8 Consistency of the LEnSRF perturbation update

Table 8.1: Averaged Frobenius norm between the reference covariance matrix Pref and
the sample covariance matrices P̄, P̂, P̂∗, and P̄∗ (first row), as well as their localised
counterparts (second row). For the sake of comparison note that, on average, ‖Pref‖F = 87.

Norm P̄ P̂ P̂∗ P̄∗

‖Pref −P‖F 194 50 331 335
‖Pref − ρ ◦P‖F 49 49 0.05 0.06

the diagonal than Pref , which can be seen as a manifestation of the double application of
localisation. These visual impressions on a single realisation are confirmed by computing the
Frobenius norm of the difference between Pref and either the sample covariance matrix or its
localised counterpart. The norm is averaged over 103 realisations of the whole experiment,
and the results are reported in table 8.1. In particular, ρ ◦ P̂∗ and ρ ◦ P̄∗ are both close
match to Pref , and their residual discrepancy to Pref , as measured by the Frobenius matrix
norm, are very small and similar, though not identical.

As seen in figure 8.3, the perturbations in X̂ are rather local and peaked functions, which
could be expected since they represent the first main modes of Pref . The perturbations in X̂∗,
obtained with the new method starting the minimisation from X̂ are much broader functions
with a larger support. This is due to the weaker constraints imposed on these perturbations.
However, they remain partially localised, meaning that they partly vanish on the domain.
The perturbations in X̄∗, obtained with the new method but starting the minimisation from
X̄ are also broad functions. However, as opposed to the perturbations in X̂∗, they do not
partially vanish, and are barely local. This shows that the cost function L indeed has a set
of potentially distinct minimisers and that the solution to which the minimisation converges
captures traits of the starting perturbation matrix.

8.2.2 Accuracy of the modified LEnSRF algorithm

In this subsection, the performance of the modified LEnSRF algorithm is illustrated using twin
experiments of the L96 model described in subsection 5.1.2, and of the Kuramoto–Sivashinsky
(KS) model, described in the following paragraph.

For these experiments, both the L96 and KS models are used in a mildly nonlinear configur-
ation. For the L96 model, the mildly nonlinear configuration is presented in paragraph 5.1.2.2,
and for the KS model it is presented in the following paragraph.

8.2.2.1 The Kuramoto–Sivashinsky model

The KS model (Kuramoto and Tsuzuki 1975, 1976; Sivashinsky 1977) is a low-order one-
dimensional chaotic model whose evolution is given by the following partial differential
equation (PDE):

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, (8.35)
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over the domain x ∈ [0, 32π]. As opposed to the L96 model, the KS model is continuous
though numerically discretised in Fourier modes. It is characterised by sharp density gradients
so that it may be expected that local EnKF algorithms are prone to imbalance. The model
is integrated using the ETDRK4 method (Kassam and Trefethen 2005) with an integration
time step δt equal to 0.5 unit of time, and without model error.

For the KS model, we define a mildly nonlinear DA configuration as follows. The domain
[0, 32π] is discretised using Nx = 128 Fourier modes, which corresponds to Nx = 128
collocation grid points. The time interval between consecutive observations ∆t is set to 1
unit of time, and the observation vector y is computed from the truth xt using

y = xt + eo, eo ∼ N [0, I]. (8.36)

In this configuration, the number of unstable and neutral modes of the dynamics is 14.

8.2.2.2 Implementation notes

In these experiments, three algorithms are compared:

1. the LETKF algorithm, algorithm 2.4;

2. the LEnSRF algorithm, algorithm 7.1, in which the transformation matrix Tx is
computed exactly in these low-order DA systems;

3. the modified LEnSRF algorithm, algorithm 8.1, in which the estimated analysis error
covariance matrix P̄a is computed exactly in these low-order DA systems, and in which
the starting point for the minimisation is the forecast perturbation matrix Xf , the
natural incremental standpoint.

The performance criterion is the RMSE score described in subsection 5.1.1. In order to
ensure the convergence of the statistical indicators, we use a spin-up period of Ns = 2× 103

assimilation cycles and a total simulation period of at least Nc = Ns + 2× 104 assimilation
cycles. Furthermore, each experiment is performed 10 times and the scores are averaged over
the 10 realisations.

When the ensemble size Ne is smaller than the number of unstable and neutral modes of
the dynamics (which is 14 for both models), localisation is mandatory to avoid the divergence
of the algorithms. As in the experiments of subsection 7.3.2, the localisation matrix ρ is
constructed as C(`), where ` is the localisation radius.

As presented in subsection 2.5.2, in order to mitigate the sampling errors, multiplicative
inflation is used after the analysis step with a fixed multiplicative inflation factor λ. When
showing the evolution of the RMSE score as a function of the multiplicative inflation factor λ,
the localisation radius ` is optimally tuned to yield the lowest RMSE score. When showing
the evolution of the RMSE score as a function of the ensemble size Ne, both the multiplicative
inflation factor λ and the localisation radius ` are optimally tuned to yield the lowest RMSE
score.

Finally, as presented in paragraph 2.3.2.3, random rotations are applied after each analysis
step. It does marginally improve the RMSE scores for large values of the ensemble size Ne.
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8 Consistency of the LEnSRF perturbation update

8.2.2.3 Results

Figure 8.4 shows the evolution of the RMSE score, of the optimal multiplicative inflation factor
λ, and of the optimal localisation radius ` as a function of the ensemble size Ne. Furthermore,
figure 8.5 shows the evolution of the RMSE score as a function of the multiplicative inflation
factor λ. Let us first consider the results for the L96 model.

First, the LETKF and the LEnSRF algorithms yield similar RMSE scores and optimal λ
for all values of the ensemble size Ne, but the LETKF algorithm has the edge for both the
RMSE score and the multiplicative inflation factor. The optimal ` for all three algorithms
are similar, in particular thanks to the approximate correspondence between the way R−1

is tapered in the LETKF algorithm (as presented in paragraph 2.5.4.1) and the way P̄f is
localised in the LEnSRF algorithm (with ρ ◦ P̄f). Nonetheless the optimal ` of the LEnSRF
algorithm is smaller than that of the other two algorithms, especially for larger ensembles.

Second, the modified LEnSRF algorithm yield lower RMSE scores and significantly lower
optimal λ than the other two algorithms. The improvement in RMSE score is in the range
3%− 6%, which is significant in these very well-tuned and documented DA configurations,
where such gain is very difficult to obtain.

The evolution of the RMSE score as a function of λ shows that the requirement for inflation
of the modified LEnSRF algorithm is actually very small. For an ensemble of Ne = 8 and 16
members, inflation is barely needed. In the extreme case of an ensemble of Ne = 4 members,
the modified LEnSRF algorithm does show a need for inflation, but much smaller than that of
the other two algorithms. This points to the robustness of the modified LEnSRF algorithm.

By construction, the localised analysis sample covariance matrix ρ ◦
[
Xa(Xa)T

]
, is a better

match to P̄a when the analysis perturbation matrix Xa is obtained with the new method (as
in the modified LEnSRF algorithm) than when it is obtained using equation (7.2b) (as in
the original LEnSRF algorithm). This might explain the lesser requirement for inflation.

We speculate that this lesser need for inflation in the modified LEnSRF algorithm may also
be interpreted as a reduced imbalance in the analysis perturbation matrix Xa. If true, this
implies that for the L96 model in this mildly nonlinear configuration, the residual inflation
required in the LETKF and LEnSRF algorithms does not so much originate from the sampling
errors but from the imbalance generated by localisation. This, however, can only be validated
on physically more complex, two- or three-dimensional models.

The results for the KS model are very similar to those for the L96 model. The modified
LEnSRF algorithm outperforms the other two algorithms, with a much lower optimal λ, and
an optimal ` similar to that of the original LEnSRF algorithm. For this model, the optimal
` for the LETKF algorithm is however larger than for both the original and the modified
LEnSRF algorithms.

Again, the evolution of the RMSE score as a function of λ shows that the need for inflation
is substantially reduced and not really needed for an ensemble of Ne = 8 and 16 members,
and even for the extreme case of an ensemble of Ne = 4 members, which demonstrates the
robustness of the modified LEnSRF algorithm.
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8.2 Numerical experiments

8.2.3 Robustness of the modified LEnSRF algorithm

Localisation methods can behave differently in presence of sparse and inhomogeneous ob-
servations. Moreover, we have conjectured that the new perturbation update method could
generate less imbalance in the analysis perturbation matrix Xa. This could be evidenced with
longer forecasts than those considered so far. Therefore, in this subsection, the performance
of the modified LEnSRF algorithm is illustrated using twin experiments of the L96 model in
two alternate configurations described in the following paragraph.

8.2.3.1 Alternate configurations for the L96 model

For the L96 model, we introduce two alternate DA configuration: the sparse observations
and the infrequent observations configurations.

The sparse observations configuration is very similar to the mildly nonlinear configuration.
The only difference is that the number of observations per cycle is Ny = d ×Nx, where d
is the observation density, fixed in each experiment. At each assimilation cycle, the d×Nx

enabled observation sites are randomly selected (without replacement) over the total Nx sites.
The disabled sites do not produce an observation.

The infrequent observations configuration is also very similar to the mildly nonlinear
configuration. The only difference is that the time interval between consecutive observations
∆t, fixed in each experiment, is longer than 0.05 unit of time. In this case, the more accurate
local iterative ensemble Kalman filter would yield better RMSE scores (Bocquet 2016), but
applying the new perturbation update method to this algorithm is outside the scope of this
chapter.

8.2.3.2 Results

The numerical implementation for these experiments is the same as for the experiments of
subsection 8.2.2. In particular, the exact same three algorithms are compared: the LETKF
algorithm, the LEnSRF algorithm, and the modified LEnSRF algorithm. Figure 8.6 shows
the evolution of the RMSE score and of the optimal multiplicative inflation factor λ as a
function of the observation density d for the sparse observations configuration, and figure 8.7
shows the evolution of the RMSE score and of the optimal multiplicative inflation factor λ
as a function of the time interval between consecutive observations ∆t for the infrequent
observations configuration. Furthermore, figure 8.8 shows the evolution of the RMSE score
as a function of the optimal multiplicative inflation factor λ in both configurations.

For the sparse observations configuration, the results are very similar to those obtained
in the experiments of subsection 8.2.2: the modified LEnSRF algorithm yields a typical 5%
improvement in RMSE score, while using a significantly lower optimal λ.

For the infrequent observations configuration, again, the modified LEnSRF algorithm yields
smaller RMSE score than the other two algorithms. As ∆t increases, the optimal λ required
to compensate for the error generated by sampling errors increases too. This is known to
be due to the increased nonlinearity in the forecast step (Bocquet et al. 2015; Raanes et al.
2019a). The optimal λ required by the modified LEnSRF algorithm does increase with ∆t but
remains significantly smaller than the one required by the other two algorithms. By contrast
with the results for the sparse observations configuration, the LETKF algorithm outperforms

239



8 Consistency of the LEnSRF perturbation update

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R
M

S
E

sc
o
re

LETKF

LEnSRF

mod. LEnSRF

0.25 0.5 0.75 1

Observation density d

1.00

1.01

1.02

1.03

1.04

1.05

O
p
t.

m
u
lt

.
in

fl
a
ti

o
n

fa
c
to

r
λ

LETKF

LEnSRF

mod. LEnSRF

Figure 8.6: Evolution of the RMSE score (top panel) and of the optimal multiplicative
inflation factor λ (bottom panel) as a function of the observation density d for the LETKF
algorithm (in blue), for the LEnSRF algorithm (in red), and for the modified LEnSRF
algorithm (in green). In all cases, the ensemble size Ne is set to 8 members. The DA system
is the L96 model in the sparse observations configuration.
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Figure 8.7: Evolution of the RMSE score (top panel) and of the optimal multiplicative
inflation factor λ (bottom panel) as a function of the time interval between consecutive
observations ∆t for the LETKF algorithm (in blue), for the LEnSRF algorithm (in red), and
for the modified LEnSRF algorithm (in green). In all cases, the ensemble size Ne is set to 8
members. The DA system is the L96 model in the infrequent observations configuration.
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Figure 8.8: Evolution of the RMSE score as a function of the optimal multiplicative
inflation factor λ for the LETKF algorithm (in blue), for the LEnSRF algorithm (in red), and
for the modified LEnSRF algorithm (in green). In all cases, the ensemble size Ne is set to 8
members. The DA system is either the L96 model in the sparse observations configuration,
with an observation density d set to 0.5 (top panel), or the L96 model in the infrequent
observations configuration, with a time interval between consecutive observations ∆t set to
0.2 unit of time (bottom panel).
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the original LEnSRF algorithm and its RMSE score gets closer to that of the modified
LEnSRF algorithm for large values of ∆t. This supports our claim made in subsection 8.1.1
that the LETKF algorithm might generate a better forecast ensemble Ef .

Finally, the evolution of the RMSE score as a function of λ shows that the modified
LEnSRF algorithm can yield good RMSE scores with a small λ, even in the case of sparse of
infrequent observations.

In the infrequent observations configuration, we have also computed the ratio of the analysis
RMSE score over the spread of the analysis ensemble Ea, when both the multiplicative inflation
factor λ and the localisation radius ` are optimally tuned to yield the lowest RMSE score (not
illustrated here). The modified LEnSRF and the LETKF algorithms behave quite similarly
with a ratio progressively increasing from 1 to 1.10 when ∆t grows from 0.05 to 0.40. By
contrast, the original LEnSRF algorithm shows a ratio which increases from 1 to 1.30 in the
same conditions. Again, this supports the idea that the forecast ensemble Ef of the modified
LEnSRF and LETKF algorithms are of better quality than that of the original LEnSRF
algorithm. The same trend but progressively amplified for increasing ∆t is observed for the
ratio of the forecast RMSE score4 over the spread of the forecast ensemble Ef .

Remark 25. These experiments have been conducted with the KS model as well (not illustrated
here). The results are qualitatively very similar and yield the same conclusions for both the
sparse and infrequent observations configurations.

8.2.4 Use and test of the Schatten p-norms

In this subsection, we illustrate the influence of the choice of the matrix norm in the
modified LEnSRF algorithm using twin experiments of the L96 model in the mildly nonlinear
configuration.

8.2.4.1 The Schatten p-norms

Let M ∈ Rn×n be a square matrix. The Schatten p-norm of the matrix M is defined as

‖M‖p ,

[
n∑

k=1

σpk(M)

]1/p

. (8.37)

The case p = 2 corresponds to the Frobenius norm, the case p = 1 to the nuclear norm (the
sum of the singular values), and the case p =∞ to the spectral norm (the maximum of the
singular values). This broad range is one strong reason why this continuum of norms is of
special interest.

We now generalise the new perturbation update method to the case where the cost function
Lp is defined by

Lp(X) , ln
∥∥∥ρ ◦

(
XXT

)
− P̄a

∥∥∥
p
. (8.38)

instead of using equation (8.8). Once again, we have chosen to apply a log-transformation
to level off the ups and downs of the function. In particular, we have observed that, using

4The forecast RMSE score is defined, by similarity with the (analysis) RMSE score, as the RMSE between
the forecast estimate xf and the truth xt.
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L-BFGS-B algorithm, the proposed log-transformation enables a satisfactory minimisation in
the case p = 1 which would fail in its absence.

It is remarkable that the gradient of the cost function Lp can be analytically computed.
Indeed, the variation of the k-th singular value of the matrix M is simply given by

δσk(M) = vT
k δMuk, (8.39)

where uk and vk are the normalised left and right singular vectors of M corresponding to
the k-th singular value σk(M). Using this relationship, we obtain the matrix gradient

∇Lp(X) =
∇‖∆‖p
‖∆‖p

=

2ρ ◦

[
Nx∑

n=1

unσ
p−1
n (∆)vT

n

]
X

Nx∑

n=1

σp−1
n (∆)

, (8.40)

which is valid for any non-negative integer p.

Assuming that the singular values are indexed in decreasing order, in the case p =∞, we
have

L∞(X) = lnσ1(∆), (8.41)

∇L∞(X) =
2ρ ◦

(
u1v

T
1

)
X

σ1(∆)
. (8.42)

8.2.4.2 Accuracy of the modified LEnSRF algorithm

In this subsection, we illustrate the performance of the modified LEnSRF algorithm in which
the cost function Lp is used in place of the cost function L. Apart from that, the numerical
implementation for these experiments is the same as for the experiments of subsection 8.2.2.

Figure 8.9 shows the evolution of the RMSE score as a function of the parameter p in the
definition of the cost function Lp. These scores are remarkably insensitive to the choice of
p. However, when very close to the spectral norm limit (p = 1) the function minimisations
seem to fail to converge (not illustrated here). We also found that the optimal multiplicative
inflation factor λ and localisation radius ` are very similar in the whole range of p (not
illustrated here). Note that, with larger values of p, the singular spectrum elevated to the
p-th power is steeper and could lead to faster convergence of the minimisation.

8.3 Summary and discussion

In this chapter, we have looked back at the perturbation update in the deterministic EnKF
algorithms based on CL. We have argued that the analysis perturbation matrix in the
local EnKF algorithms based on CL do not represent the main modes of the analysis error
covariance matrix, in contrast to the analysis perturbation matrix of the LETKF algorithm. In
particular, we have focused on the LEnSRF algorithm. We have explained why equation (7.2b)
still is, on theoretical grounds, a good substitute for generating the analysis perturbation
matrix.
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Figure 8.9: Evolution of the RMSE score as a function of the parameter p in the definition
of the cost function Lp for the modified LEnSRF algorithm, algorithm 8.1. The ensemble
size Ne is set either to 4 (in blue), to 8 (in red), or to 16 (in green). The DA system is the
L96 model in the mildly nonlinear configuration.

Using these considerations, we have proposed a new perturbation update method potentially
more consistent in the sense that the perturbation matrix is related to the error covariance
matrix by equation (8.10) throughout the entire assimilation cycle. It consists in getting
one minimiser of the cost function defined by equation (8.24). The analysis perturbation
matrix is expected to be more accurate in forming short spatial separation sample covariances
because less constraints are exerted on large separation sample covariances. Since we can
compute the gradient of the cost function, the solution can be obtained using an off-the-shelf
quasi-Newton algorithm. The evaluation of the cost function and its gradient requires a
partial knowledge of the estimated analysis error covariance matrix, which is one difficulty of
the method. Depending on the problem, its geometry and dimension, such knowledge could
be obtained through mode expansion or through local estimations of the estimated analysis
error covariance matrix.

We have tested this idea and defined a modified LEnSRF algorithm, algorithm 8.1. We
have compared it numerically to the LETKF algorithm and to the original LEnSRF algorithm
using two low-order one-dimensional models: the discrete 40-variable L96 model and a
128-variable spectral discretisation of the continuous Kuramoto–Sivashinsky model. We have
shown that for both models, the requirement for residual multiplicative inflation still needed
in spite of localisation is much weaker with the modified LEnSRF algorithm than with both
the LETKF and LEnSRF algorithms. For large enough ensemble sizes, the modified LEnSRF
algorithm actually performs very well without any inflation. This weaker requirement for
inflation stems from a better consistency between the estimated analysis error covariance

245



8 Consistency of the LEnSRF perturbation update

matrix and the sample covariance matrix of the analysis ensemble. We conjecture that it could
be physically interpreted as a much weaker imbalance generated by the new perturbation
update method. Moreover, there is an accuracy improvement of up to 6% in the RMSE score
in mildly nonlinear DA configurations, which is significant in these very well tuned cases.
Finally, these results have been confirmed and further strengthened in DA configurations in
which the observation network is sparse or infrequent.
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Data assimilation is the mathematical discipline which gathers all methods designed to
improve the knowledge of the state of a dynamical system using both observations and
modelling results of this system. In the geosciences, data assimilation it mainly applied to
numerical weather prediction. It has been used in operational centres for several decades,
and it has significantly contributed to the increase in quality of the forecasts.

Using ensemble methods is a powerful tool to reduce the dimension of the data assimilation
systems. Currently, the two most widespread classes of ensemble data assimilation methods
are the ensemble Kalman filter (EnKF) and the particle filter (PF). The success of the EnKF
in high-dimensional geophysical systems is largely due to the use of localisation. Localisation
is based on the assumption that correlations between state variables in a dynamical system
decrease at a fast rate with the distance. In the EnKF, two localisation methods have
emerged: domain localisation, and covariance localisation. Domain localisation consists of a
collection of local and independent ensemble updates. This leads to efficient data assimilation
algorithms, for example the local ensemble transform Kalman filter. By contrast, covariance
localisation consists of a single ensemble update using a localised forecast sample covariance
matrix, which is in practice much less simple to implement in a deterministic context. In
the PF, the implementation of localisation is a challenge, because in this context there is
no trivial way of gluing locally updated ensembles together. In this thesis, we have studied
recent advances in localisation methods for ensemble data assimilation algorithms. In the
first part, we have have provided an overview of the filtering methods in data assimilation.
The second part has been dedicated to the implementation of localisation in the PF, and the
third part to the implementation of covariance localisation in the EnKF.

In part II, we have first recalled the main results related to the weight degeneracy in the
PF. In particular, we have seen that the importance sampling method suffers from the curse
of dimensionality, meaning that the computational cost increases exponentially with the size
of the system. Localisation can be used to counteract the curse of dimensionality. However,
implementing localisation in the PF raises two major difficulties: how to glue together locally
updated particles, and how to avoid imbalance in the updated ensemble. We have proposed
a theoretical classification of local PF algorithms into two categories. For each category, we
have presented the challenges of local particle filtering and have reviewed the ideas leading
to practical implementation of the algorithms. Some of them, already in the literature,
have been detailed and sometimes generalised, while others are new in this field and yield
improvements in the design of the algorithms.

In the first class of algorithms, the analysis is localised by allowing the importance weight
vector to vary over the grid points. The global analysis ensemble is obtained by assembling
the locally updated particles, and its quality directly depends on the regularity of the local
update method. This latter point is related to potential unphysical discontinuities, and hence
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imbalance in the assembled particles. We have presented practical methods to improve the
local updates by reducing the unphysical discontinuities, the most promising being built upon
the optimal transport theory. In the second class of algorithms, observations are assimilated
sequentially, and localisation is introduced more generally in the analysis density by the
means of a partition. The goal of the partition is to build a framework for local particle
filtering without the discontinuity issue inherent to the first class of algorithms. We have
shown how two methods can be used as an implementation of this framework.

The local PF algorithms have been implemented and systematically tested using twin
experiments of low-order models: the Lorenz 1996 model with 40 variables and a two-
dimensional model based on the barotropic vorticity equation with 1024 variables. In both
models, the implementation of localisation is simple and works as expected. The local PF
algorithms yield acceptable performance scores, even with small ensembles, in regimes where
global the PF is degenerate. In all tested cases, using optimal transport for the local updates
yields significantly better performance scores, which we have interpreted as a manifestation
of mitigated unphysical discontinuities in the updated ensemble. Furthermore, the best
local PF algorithms show better performance scores than the reference EnKF algorithm in a
mildly nonlinear configuration of the Lorenz 1996 model. The algorithms have then been
implemented in a high-resolution configuration of the barotropic vorticity model with 65 536
variables. The results confirm the conclusions of the low-order model test series, and show
that the local PF algorithms may be ready to be applied to realistic geophysical systems.

Finally, we have considered the case of the prediction of tropospheric ozone concentration in
western Europe during the summer 2009. Measurements of ozone concentration are available
every hour at several hundreds of stations. For theses experiment, we have chosen to use the
Polair3DChemistry model from the Polyphemus framework. The model has been debiased
using a simple parametrisation for the bias, and the resulting debiased reference simulation
yield verification scores of the same order as typical models in atmospheric chemistry. We
have explained how to implement data assimilation in this system. The results show that
data assimilation is effective in this system, with an effective improvement in the validation
scores. Our implementation of the local PF algorithms show verification scores very similar
to those of the reference EnKF algorithm. Furthermore, all ensemble data assimilation
algorithms seems to have the edge over an algorithm based on pure optimal interpolation
(without ensemble). Yet, it is not clear whether the small gain in validation score is sufficient
to justify the huge increase in forecast wall-clock time due to the use of an ensemble.

In part III, we have first explored possible implementations for covariance localisation
in deterministic EnKF algorithms using an augmented ensemble in the analysis step. We
have discussed the two main difficulties with this approach: how to construct the augmented
ensemble and how to update the perturbations. Two different methods have been presented
to construct the augmented ensemble. The first one is based on a factorisation property
and is already widespread in the geophysical data assimilation literature. As an alternative,
we have proposed a second method based on randomised singular value decompositions
techniques, which are very efficient when the localisation matrix is easy to apply. In both
cases, the perturbation update is performed using a simple formula using linear algebra in
the augmented ensemble space. The methods have been tested and compared using twin
experiments of the low-order Lorenz 1996 model with 400 variables. In this case, we have
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found that for a given level of performance score, the second method, based on randomised
techniques, requires a smaller augmented ensemble size and is hence faster than the first
method.

The local EnKF algorithm with augmented ensemble has then been generalised to assimilate
satellite observations in spatially extended models. In this case, covariance localisation is
used in the vertical direction, while domain localisation is used in the horizontal direction.
This generalised algorithm has been implemented and tested using twin experiments of a
multilayer extension of the Lorenz-1996 model with a total of 1280 state variables and using
a satellite-like observation operator. As expected in this system with non-local observations,
the generalised algorithm yields much better performance scores than the reference EnKF
algorithm, in which only domain localisation is used.

Then, we have studied the consistency of the perturbation update in deterministic EnKF
algorithms using covariance localisation. We have argued that in this case, the analysis
perturbations do not represent the main modes of the analysis error covariance matrix,
in contrast to the analysis perturbations of EnKF algorithms using domain localisation.
From these considerations, we have proposed a new perturbation update method potentially
more consistent, which consists in solving an optimisation problem. The resulting analysis
perturbations are expected to be more accurate in forming short spatial separation sample
covariances because less constraints are exerted on large separation sample covariances. Since
we can compute the gradient of the cost function, the minimisation problem can be solved
using iterative minimisation algorithms. The evaluation of the cost function and its gradient
requires a partial knowledge of the analysis error covariance matrix, which is one difficulty of
the method.

The new perturbation update method has been tested and compared to reference local
EnKF algorithms using twin experiments of two low-order models: the Lorenz-1996 model
with 40 variables and a spectral discretisation of the continuous Kuramoto–Sivashinsky
model with 128 variables. For both models, we have shown that the requirement for residual
multiplicative inflation is much weaker with the new algorithm. Moreover, when the ensemble
size is large enough, the new algorithm actually performs very well without any inflation.
This weaker requirement for inflation stems from a better consistency between the analysis
error covariance matrix and the sample covariance matrix of the analysis ensemble. We
conjecture that it could be physically interpreted as a much weaker imbalance generated
by the new algorithm. Furthermore, using the new perturbation method yield a significant
improvement in the performance scores. These results have been confirmed and further
strengthened in configurations in which the observation network is sparse or infrequent.

Introducing localisation in the PF is a relatively young topic and it could benefit from more
theoretical and practical developments. The local update method is the main ingredient in the
success, or failure, of any local PF algorithm. The approaches based on the optimal transport
theory offer an elegant and efficient tool to perform the local updates while minimising
the imbalance. Other approaches could be used while keeping in mind the same goals,
for example the (non-optimal) transport step computed with the variational Stein descent
method. In this case, the localisation could be introduced in the kernel used to compute the
functional gradient of the Kullback–Leibler divergence. From a theoretical point of view,
another promising approach could be to implement localisation in PF algorithms using a
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non-standard proposal density. In this case, it is unclear whether (and how) the proposal
importance weight vector should be localised.

From a practical point of view, we have seen that the successful application of local particle
filtering is largely due to the use of some kind of regularisation. In the twin experiments,
the regularisation has been added under the form of a post-regularisation step, while in the
atmospheric chemistry experiments, the regularisation has been added under the form of an
additional model error. At this point it is clear that the design of the regularisation methods
could be improved. Ideally, the regularisation should be adaptive and built concurrently with
the localisation method.

The localisation frameworks introduced in this theses for the PF can only work with
local observations. In the EnKF, several approximations have been introduced to combine
domain localisation and non-local observations. However, non-local observations can only be
rigorously assimilated when using covariance localisation instead of domain localisation. In
the PF, further theoretical studies are needed to find a rigorous local assimilation method for
non-local observations.

Our experiments in atmospheric chemistry demonstrate that local PF algorithms can be
used with a realistic geophysical models. in this case however, using ensemble data assim-
ilation methods did not yield significant improvement in the verification scores compared
to the simpler and faster algorithm based on optimal interpolation (without an ensemble).
Complementary experiments have shown that the performance of the ensemble data assimila-
tion algorithms can be further improved by using input data perturbations. Further work is
need to fix the design of the input data perturbations. Moreover, when using ensemble data
assimilation, interspecies covariances are constructed during the forecast step. Therefore,
another approach to improve the performance of the ensemble data assimilation could be
to implement multi-species assimilation. In this case, two difficulties immediately emerge.
First, we would have to precisely control the uncertainty of all assimilated species, which
is delicate from a practical point of view. Second, the validation score would have to mix
information between all assimilated species, and hence it would be non-trivial to define.
Finally, the (moderate) success of our experiments is largely due to the use of a significant
debiasing method. The debiasing is necessary here to counteract the bias in the input data,
but also missing parts in the physics of the dynamical model (e.g., the aerosols). Data
assimilation experiments with a full model (including aerosols) would probably require a
much less important debiasing while yielding better verification scores.

The use of covariance localisation in the EnKF becomes increasingly important with the
prominence of satellite observations. The new perturbation update method offer an elegant
implementation of covariance localisation in the EnKF, but it could still benefit from more
theoretical and practical development. This method has been tested in numerical experiments
with low-order models, in which computing the exact analysis error covariance matrix is
possible. In realistic applications, the augmented ensemble approach could be used to obtain
an approximation of the analysis error covariance matrix. In this case, it would be desirable
to check that the advantages of the new method – reduced need for multiplicative inflation
and increased accuracy – remain valid. This reduced need for inflation stems from a better
consistency between the estimated analysis error covariance matrix and the sample covariance
matrix of the analysis ensemble. We conjecture that it could be physically interpreted as a
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much weaker imbalance generated by the new perturbation update method. This hypothesis
could be validated using numerical experiments of complex two- or three-dimensional models,
in which balance between different physical variables are important. Finally, following the
augmented ensemble approach, the new method could also be generalised to assimilate
satellite radiances in a spatially extended models. In this case, the generalised algorithm
could be tested, for example, using twin simulations of the multilayer Lorenz-1996 model.
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Abstract

Data assimilation is the mathematical discipline which gathers all the methods designed to improve the knowledge
of the state of a dynamical system using both observations and modelling results of this system. In the geosciences,
data assimilation it mainly applied to numerical weather prediction. It has been used in operational centres for
several decades, and it has significantly contributed to the increase in quality of the forecasts.

Ensemble methods are powerful tools to reduce the dimension of the data assimilation systems. Currently, the
two most widespread classes of ensemble data assimilation methods are the ensemble Kalman filter (EnKF) and
the particle filter (PF). The success of the EnKF in high-dimensional geophysical systems is largely due to the use
of localisation. Localisation is based on the assumption that correlations between state variables in a dynamical
system decrease at a fast rate with the distance. In this thesis, we have studied and improved localisation methods
for ensemble data assimilation.

The first part is dedicated to the implementation of localisation in the PF. The recent developments in local
particle filtering are reviewed, and a generic and theoretical classification of local PF algorithms is introduced, with
an emphasis on the advantages and drawbacks of each category. Alongside the classification, practical solutions
to the difficulties of local particle filtering are suggested. The local PF algorithms are tested and compared using
twin experiments with low- to medium-order systems. Finally, we consider the case study of the prediction of the
tropospheric ozone using concentration measurements. Several data assimilation algorithms, including local PF
algorithms, are applied to this problem and their performances are compared.

The second part is dedicated to the implementation of covariance localisation in the EnKF. We show how
covariance localisation can be efficiently implemented in the deterministic EnKF using an augmented ensemble.
The proposed algorithm is tested using twin experiments with a medium-order model and satellite-like observations.
Finally, the consistency of the deterministic EnKF with covariance localisation is studied in details. A new
implementation is proposed and compared to the original one using twin experiments with low-order models.

Keywords: data assimilation, particle filter, ensemble Kalman filter,
localisation, geosciences, atmospheric chemistry

Résumé

L’assimilation de données est la discipline permettant de combiner des observations d’un système dynamique
avec un modèle numérique simulant ce système, l’objectif étant d’améliorer la connaissance de l’état du système. Le
principal domaine d’application de l’assimilation de données est la prévision numérique du temps. Les techniques
d’assimilation sont implémentées dans les centres opérationnels depuis plusieurs décennies et elles ont largement
contribué à améliorer la qualité des prédictions.

Une manière efficace de réduire la dimension des systèmes d’assimilation de données est d’utiliser des méthodes
ensemblistes. La plupart de ces méthodes peuvent être regroupées en deux classes : le filtre de Kalman d’ensemble
(EnKF) et le filtre particulaire (PF). Le succès de l’EnKF pour des problèmes géophysiques de grande dimension
est largement dû à la localisation. La localisation repose sur l’hypothèse que les corrélations entre variables d’un
système dynamique décroissent très rapidement avec la distance. Dans cette thèse, nous avons étudié et amélioré les
méthodes de localisation pour l’assimilation de données ensembliste.

La première partie est dédiée à l’implémentation de la localisation dans le PF. Nous passons en revue les récents
développements concernant la localisation dans le PF et nous proposons une classification théorique des algorithmes
de type PF local. Nous insistons sur les avantages et les inconvénients de chaque catégorie puis nous proposons des
solutions pratiques aux problèmes que posent les PF localisés. Les PF locaux sont testés et comparés en utilisant
des expériences jumelles avec des modèles de petite et moyenne dimension. Finalement, nous considérons le cas de
la prédiction de l’ozone troposphérique en utilisant des mesures de concentration. Plusieurs algorithmes, dont des
PF locaux, sont implémentés et appliqués à ce problème et leurs performances sont comparées.

La deuxième partie est dédiée à l’implémentation de la localisation des covariances dans l’EnKF. Nous montrons
comment la localisation des covariances peut être efficacement implémentée dans l’EnKF déterministe en utilisant
un ensemble augmenté. L’algorithme obtenu est testé au moyen d’expériences jumelles avec un modèle de moyenne
dimension et des observations satellitaires. Finalement, nous étudions en détail la cohérence de l’EnKF déterministe
avec localisation des covariances. Une nouvelle méthode est proposée puis comparée à la méthode traditionnelle en
utilisant des simulation jumelles avec des modèles de petite dimension.

Mots-clés : assimilation de données, filtre particulaire, filtre de Kalman d’ensemble,
localisation, geosciences, chimie atmosphérique
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