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Preface

In the 20th century, a lot of progress was made in understanding the physics of solids. The greatest
advance was achieved for materials characterized by long range atomistic order. However, only a
portion of condensed matter shows a long range atomistic order. In the solid phase, many materials
are characterized by a lack thereof. These materials are called amorphous. This class of matter does
not crystallize at the melting temperature. Instead, it keeps its liquid nature and enters the supercooled
regime. In this regime, upon further cooling, the kinetics of the system drastically slow down. At one
point, the dynamics have slowed down so much, that the cooling rate is too fast for the kinetics of the
system. As a consequence, the system cannot remain in the equilibrium phase and as a result, falls
out of it and forms a glass. This describes, in short, the glass transition. In addition to the dynamic
slowdown, a series of other phenomena start to appear in the supercooled regime, for instance, dynamical
heterogeneities and non-exponential relaxation.

Despite decades of research efforts, to date there exists no theory that describes the glass transition
and its attendant phenomena in its entirety. Moreover, in 1995, Nobel prize laureate P. W. Anderson
called the glass transition “the deepest and most interesting unsolved problem in solid state theory” [5].
Still, progress has been made: first, there exist now well-established theories that capture the glass
transition partially. Most of them focus either on the thermodynamic or dynamic nature of the transition;
yet, there are also other concepts trying to explain the kinetic behavior using the mechanical properties
of the system. Second, it was possible to identify similar phenomena accompanying the glass transition
in other kinds of systems, for example the jamming transition in granular material. This hints at a more
universal nature of the underlying transition. Third, it was shown, that dynamical heterogeneities, a key
feature of glassy dynamics, can be directly related to the underlying structure. This discovery opened
up the search for structural indicators which explain the kinetic behavior of glasses. In the last 10-15
years, a flurry of structural indicators has been proposed, ranging from a coarse grained description of
the structure to complex pair correlation functions. Some of them achieve a high degree of correlation
between dynamics and structure. However, the vast majority of them does not allow any conclusion on
the nature of the fundamental process of structural relaxation. Yet, an answer to this question may lead
the way to new theoretical ideas to elucidate the glass transition.

To answer this question, a different point of view is adopted in this thesis: a highly viscous liquid
is regarded as a flowing solid. This perspective roots in the potential energy description of liquids.
To support this interpretation of liquids, extensive numerical simulation of glass forming liquids are
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performed. The structure of the glassy systems is characterized through the local yield stress method. In
the first part, the real space measurement of local yield stresses demonstrates the encoding of a discrete
and finite number of shear transformations into the structure of a glass. In the second part, local slip
thresholds are linked to structural relaxation in the supercooled regime.

This manuscript is organized as follows: in chapter 1, the glass transition and its accompanying
phenomena are introduced. Additionally, some theoretical concepts that were proposed over the last
decades to explain the glass transition are shortly described. Furthermore, a few structural indicators,
which were previously used to relate glassy dynamics to the amorphous atomistic structure are reviewed.
Chapter 2 gives an overview of the details for the two dimensional model system as well as the principal
computational methods which have been used throughout this work. The scientific results of this thesis
are presented in the chapters 3 and 4. In the former, the focus is on the micromechanical response of
a small piece of glass in the athermal, quasistatic limit. In the latter, a strong connection between the
structure, characterized through local mechanical properties, and equilibrium dynamics of a supercooled
liquid is established. The article in appendix A is on a related subject: the evolution of local yield
stresses during shear banding is examined.
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Résumé

Sous l’effet d’un refroidissement lent, un liquide subit à sa température de fusion une transition de phase
pour former un cristal. Cette cristallisation peut être évitée si le refroidissement se fait suffisamment
rapide. Dans ce cas, le liquide entre dans le régime surfondu. Dans ce régime, lors d’une nouvelle
diminution de la température, la viscosité augmente de plusieurs ordres de grandeur sur une petite plage
de températures. Les réarrangements atomiques ou moléculaires finissent par prendre de plus en plus
de temps et le retour à l’équilibre n’est plus permis par la vitesse de refroidissement; le système finit
donc par tomber hors équilibre et forme un solide amorphe : un verre. Par convention, ce changement
d’état définit la transition vitreuse. Par conséquent, la question se pose de savoir ce qui provoque un
ralentissement aussi drastique de la dynamique ? En physique, les divergences de longueur et d’échelle
de temps sont en général des indicateurs d’une transition de phase. La transition vitreuse est-elle une
transition purement dynamique d’une "dynamique liquide" à une "dynamique vitreuse" ou le changement
drastique dans les observables dynamiques décrits ci-dessus est-il une conséquence d’un changement
fondamental de l’état fluide à un état vitreux idéal ? En d’autres termes, la transition vitreuse est-elle une
transition de phase cinétique ou thermodynamique ? La transition vitreuse s’accompagne d’un certain
nombre de phénomènes complexes, notamment l’apparition d’hétérogénéités dynamiques, la relaxation
non exponentielle et la croissance super-Arrhénienne des quantités de transport.

Le premier chapitre commence par un panorama des études sur la transition vitreuse et des dis-
cussions sur la nature de la transition elle-même. Ensuite, les phénomènes mentionnés ci-dessus sont
exposés et discutés. Au cours des dernières décennies, des idées théoriques variées ont été proposées
pour décrire la transition vitreuse. Les concepts théoriques les plus pertinents pour les chapitres suivants
sont exposés dans ce chapitre introductif. Dès les années 1960, Goldstein a proposé un modèle utilisant
le paysage d’énergie potentielle pour expliquer le ralentissement cinétique drastique qui accompagne
la transition vitreuse. Dans cette description, le système “vit” sur une surface énergétique de grande
dimension, le paysage d’énergie potentielle. Au fil du temps, le système se déplace le long du paysage.
Un minimum dans l’énergie potentielle est associé à une configuration localement stable. Les minima
locaux du paysage sont séparés par des barrières d’énergie. Goldstein propose que le système peut
franchir les barrières grâce à des sauts activés. Un tel saut dans l’espace de phase correspond à un
réarrangement localisé, n’impliquant qu’une poignée d’atomes dans l’espace réel. Dans l’hypothèse
d’une dynamique activée, le temps de saut augmente de façon exponentielle à mesure que la hauteur de
la barrière augmente, ce qui explique le ralentissement dynamique. Pourtant, cette théorie échoue à des
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températures plus élevées, où la hauteur des barrières est comparable à l’énergie thermique. Dans ce
régime, la dynamique n’est plus régie par les sauts activés. De plus, le système est en régime fluide.

La théorie du couplage de modes adopte une approche complètement différente : il s’agit d’une
théorie ab initio qui ne prend en compte que les propriétés statiques et indépendantes du temps. Bien que
les données d’entrée soient peu nombreuses, elle décrit correctement le processus de relaxation en deux
étapes et trouve un bon accord concernant la forme de la fonction de relaxation des liquides réels. Cette
théorie prévoit également une divergence en loi de puissance du temps de relaxation à une température
critique. La transition vitreuse réelle est en fait observée à une température beaucoup plus basse. La
transition, prédite par la théorie du couplage de modes, n’a jamais été observée ni dans les expériences
ni dans les simulations numériques. Cela soulève la question immédiate de savoir pourquoi la théorie
prédit une telle transition. La réponse est que la dynamique activée n’est pas prise en compte. Comme la
température est abaissée, les dynamiques activées jouent un rôle de plus en plus important, la théorie du
couplage de modes ne parvient pas à prédire avec précision le comportement cinétique dans le régime
surfondu. Cette divergence entre la théorie et la réalité s’accroît à mesure que l’on se rapproche de la
température de transition vitreuse. Adam et Gibbs ont fait valoir que les réarrangements moléculaires
sont de nature coopérative. Ainsi, le liquide peut être divisé en régions de réarrangement coopératif. Si la
température est abaissée, la taille de ces régions augmente. Chacune de ces régions a accès à un nombre
fini de configurations par le biais de réarrangements. En supposant que la barrière énergétique séparant
deux configurations est proportionnelle au nombre de particules contenues dans une région, le modèle
prédit une transition de phase vers un état vitreux idéal à une température beaucoup plus petite que la
transition vitreuse dynamique. Un avantage de cette approche théorique est son élégance et sa simplicité.
En outre, elle fournit une explication claire à l’augmentation super-Arrhénienne des temps de relaxation
des liquides fragiles. Cependant, cette approche ne permet pas de saisir tous les phénomènes des systèmes
vitreux : tout d’abord, aucun concept clair de l’état idéal du verre n’a été proposé. Deuxièmement, elle
ne peut pas décrire ce qui se passe à des températures plus élevées - ni le passage d’une dynamique non
activée à une dynamique activée, ni la chute hors d ’équilibre à la température de la transition dynamique
vitreuse. Les théories mentionnées ci-dessus considèrent la transition vitreuse comme une transition
purement dynamique ou thermodynamique. Une approche alternative ou complémentaire consiste à
adopter un point de vue mécanique pour étudier le ralentissement dynamique. Comme l’accent est
mis sur les propriétés mécaniques, le liquide est considéré comme un solide qui s’écoule. Ce point de
vue original permet d’utiliser des modèles et des outils qui ont été précédemment développés pour les
solides amorphes afin de comprendre le comportement des liquides. Dans cet esprit, un modèle dit de
shoving (bousculade) a été développé. L’idée principale du modèle est la suivante : l’écoulement dans
les liquides visqueux est composé d’une série de réarrangements locaux. Chacun de ces événements se
produit sur une courte échelle de temps et n’implique qu’une poignée de particules. Afin de se réarranger,
les molécules doivent créer un espace supplémentaire en écartant leurs voisines. On peut montrer que le
travail réversible effectué, pour pousser les particules voisines de côté, est proportionnel au module de
cisaillement dépendant de la température. Ainsi, le shoving model peut expliquer le ralentissement de la
dynamique. Cependant, dans l’hypothèse raisonnable où le module de cisaillement reste fini lorsque la
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température diminue, le modèle de bousculade ne prévoit pas de divergence et de transition de phase
correspondante. Une idée commune est qu’en raison de la nature amorphe des verres, seule une mesure
locale peut élucider leur comportement mécanique et dynamique. C’est dans cet esprit que l’approche
de la matrice gelée a été développée. L’objectif est d’étudier les propriétés mécaniques locales d’un
système. Pour ce faire, l’ensemble du système est gelé, à l’exception d’une petite région cible. Sous
l’effet d’une contrainte externe, la partie gelée du système, qui ne peut relaxer, subit une déformation
affine homogène. À partir de la réponse à la contrainte de la région cible, des observations mécaniques
locales sont accessibles, par exemple le module d’élasticité local. La méthode de la limite d’élasticité
locale étend les concepts de la matrice gelée. Une nouvelle caractéristique de la méthode de la limite
d’élasticité est l’ajout d’une composante tensorielle. La réponse mécanique locale est sondée pour
différentes directions de chargement. Cette définition des contraintes locales d’élasticité en fonction
de la direction de chargement rend hommage à la structure amorphe des systèmes vitreux. Dans les
systèmes désordonnés, les propriétés mécaniques dépendent fortement de la direction de chargement.
La relation entre les limites d’élasticité locales et la réponse d’un système soumis à une déformation
globale a été examinée. Il a été démontré qu’il existe une excellente corrélation entre les contraintes
d’élasticité locales et l’emplacement des réarrangements plastiques forcés par le chargement à distance.
Les contraintes d’élasticité locales ont une plus grande capacité à prédire la position des réarrangements
que d’autres indicateurs structurels locaux, par exemple la densité locale, l’énergie potentielle locale
ou l’ordre local à courte portée. Les contraintes locales d’élasticité sont également plus performantes
que les mesures de la réponse linéaire (module de cisaillement et fraction de participation les plus
faibles). En outre, la corrélation entre les contraintes de seuils locales et la position des réarrangements
dépend de la préparation du système. Plus le système est relaxé, plus la corrélation est élevée et plus
elle persiste longtemps. La méthode de la limite d’élasticité locale présente une série d’avantages par
rapport à d’autres indicateurs locaux : tout d’abord, il s’agit d’une mesure spatiale réelle. Par conséquent,
toutes les observables ont une signification physique directe et n’ont pas besoin d’une interprétation
supplémentaire. Un deuxième avantage est donné par son approche non perturbative. Contrairement, par
exemple, au calcul des soft modes, il n’y a pas de développement d’ordre supérieur du paysage d’énergie
potentiel concerné. Enfin, en raison de la nature locale de la mesure, le système peut être divisé en
parties et le calcul des contraintes locales peut être parallélisé pour réduire le temps de calcul nécessaire.

Dans le 2e chapitre, le système modèle 2D ainsi que les principales méthodes de calcul sont présentés.
Tout d’abord, les paramètres du potentiel d’interaction pour le liquide formateur de verre, un mélange
binaire Lennard-Jones qui a été utilisé tout au long de cette thèse, sont donnés. Ensuite, les détails des
protocoles de préparation sont exposés pour obtenir les configurations vitreuses initiales. La première
partie du 2e chapitre se termine par une description de méthodes de simulation - soit en appliquant
une déformation globale, soit en appliquant une dynamique à l’équilibre thermique. Enfin, l’ensemble
iso-configurationnel est présenté. Ensuite, le temps de relaxation du liquide de formateur de verre
est estimé pour différentes températures à l’aide de la fonction de diffusion auto-intermédiaire. Une
attention particulière est accordée à la dépendance de la taille du système de la fonction de diffusion
auto-intermédiaire. Troisièmement, le temps de relaxation est utilisé pour déterminer deux points

vii



de référence fondamentaux pour le matériau étudié : la première température de référence est la
température de départ (ou “onset temperature” en anglais). Elle marque le point auquel la relaxation
non exponentielle commence à s’installer pour un verre de type fragile. Lorsqu’il est refroidi en
dessous de la température de départ, le liquide surfondu commence également à ressentir l’influence
du paysage d’énergie potentielle sous-jacente et la dynamique activée commence à s’installer. La
deuxième température de référence est la température critique de la théorie de couplage de modes.
Ce point indique à quel moment la dynamique activée devient le principal mécanisme de diffusion.
Dans la quatrième section du 2e chapitre, les états inhérents et la dynamique inhérente sont introduits
: la plupart des configurations étudiées sont préparées dans le régime surfondu. Dans ce régime, le
système passe la plupart de son temps à vibrer autour d’un minimum local de l’énergie potentielle. Ce
n’est que de temps en temps qu’il saute d’un minimum local à un autre. Ces temps de transition sont
négligeables par rapport au temps passé à vibrer et doivent être considérés comme instantanés. On
attribue à chaque configuration sa structure inhérente correspondante en minimisant l’énergie de la
configuration thermalisée. En minimisant toutes les configurations thermalisées, on obtient un deuxième
ensemble de configurations définissant la dynamique des états inhérents. En étudiant la dynamique
des états inhérents, il est possible de suivre le système d’un minimum local à un autre. Un avantage
de cette description est que la dynamique des états inhérents permet de se concentrer sur l’image des
liquides sous forme solide. Cinquièmement, la détection des réarrangements atomiques est abordée. Au
fil du temps, plusieurs méthodes ont été proposées pour détecter les réarrangements d’atomes dans les
matériaux amorphes. L’utilisation de la réponse harmonique s’est avérée être un indicateur fiable pour
repérer les événements locaux. La réponse harmonique, également appelée force résiduelle, est calculée
à partir du développement de second ordre du paysage d’énergie et du champ de déplacement entre des
états inhérents voisins. Il est démontré que la réponse harmonique est fortement localisée sur les centres
de relaxation. Les atomes dont les forces résiduelles disparaissent ont connu un déplacement associé à
une élasticité linéaire. Le chapitre se termine par une description détaillée de la méthode de la limite
d’élasticité locale. Cette méthode permet d’accéder à la réponse mécanique locale d’une configuration
inhérente de manière directe et non perturbatrice, tout en contrôlant les échelles de longueur et les
directions de chargement sur lesquelles elle est échantillonnée

Dans le 3ème chapitre, la limite inférieure de cette description continue est sondée. La première
partie du chapitre 3 est consacrée à l’optimisation des paramètres de la méthode de la limite d’élasticité
locale. Une échelle de longueur très importante est la taille à laquelle la réponse mécanique locale
est sondée. Son influence sur la mesure est étudiée en discutant de la relation entre les seuils de
limite d’élasticité locale et l’activité plastique due à la charge à distance. D’une part, on recherche
une longueur de sondage optimale qui maximise la corrélation entre l’activité plastique et les seuils
de contrainte locaux. D’autre part, il est intéressant de voir comment la taille de la zone de sondage
affecte la distribution globale des barrières de contrainte locales. Dans la deuxième partie du chapitre 3,
la dépendance des contraintes locales d’élasticité par rapport à la direction de la charge est examinée. Il
est montré que sur une gamme de directions de chargement, la même transformation de cisaillement
est activée. Dans une telle plage angulaire, la limite d’élasticité locale critique est caractérisée par
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un puits. Il est intéressant de noter qu’un tel puits persiste si le centre de l’inclusion est légèrement
déplacé. En outre, il est démontré que ces minima de contrainte dépendent fortement de la pression :
une pression plus élevée s’accompagne d’une limite d’élasticité critique plus importante ; en revanche,
une pression plus faible entraîne une réduction de la limite d’élasticité locale critique. Enfin, on constate
qu’un minimum de contrainte, c’est-à-dire la limite d’élasticité locale critique d’une transformation par
cisaillement, est décrit avec précision par un critère d’élasticité de Mohr-Coulomb.

Au cours des dernières années, de nombreux indicateurs structurels, également appelés paramètres
d’ordre, ont été proposés pour saisir le changement structurel subtil qu’un liquide subit lors de son
refroidissement. L’argument avancé repose généralement sur la capacité de l’indicateur spécifique à
prédire la dynamique du liquide surfondu, lorsque seule la configuration initiale du matériau est connue.
Pourtant, la plupart des paramètres d’ordre proposés ont un dénominateur commun : ils ne permettent
aucune conclusion sur la nature du mécanisme de relaxation réel. Cela est cependant nécessaire pour
mieux comprendre la relaxation structurelle elle-même. Dans le 4e chapitre, un lien étroit est établi entre
les contraintes d’élasticité locales et la dynamique des liquides surfondus à la température d’équilibre.
Pour évaluer cette relation sur une large gamme du régime de surfusion, des configurations initiales sont
préparées à trois températures différentes. De la température la plus élevée à la plus basse, le temps de
relaxation augmente de plusieurs ordres de grandeur. Trois observables cinétiques sont choisies pour
saisir la dynamique des liquides surfondues : la propension dynamique, le temps de relaxation locale et
le premier temps de passage. La structure de la configuration initiale est caractérisée par des seuils de
contrainte locaux. Le calcul des coefficients de corrélation entre les barrières de contrainte locale et les
trois observables cinétiques donne des résultats similaires : l’amplitude du coefficient de corrélation
dépend fortement de la température : plus la température est basse, meilleure est la corrélation. Dans
le régime de surfusion profond, les valeurs obtenues pour la corrélation entre les seuils de contrainte
locale et les quantités cinétiques sont comparables aux meilleurs résultats obtenus par les techniques
d’apprentissage machine et avec les autres paramètres d’ordre structurel. Cependant, la limite d’élasticité
locale a une avantage sur les autres paramètres d’ordre : il est possible de tirer une conclusion sur le
processus fondamental de relaxation structurelle. Ce processus élémentaire peut être considéré comme
un événement de cisaillement fortement localisé le long d’un plan faible caractéristique. Ensuite, deux
autres résultats sont présentés : tout d’abord, la distribution non Poissonnienne des premiers temps
de passage est discutée. Ensuite, un modèle est proposé qui relie le premier temps de passage d’une
inclusion à la plus petite barrière de contrainte de mesure d’un patch.

L’annexe A reproduit enfin un article paru dans Physical Review E, intitulé "Rejuvenation and Shear
Banding in Model Amorphous Solids". M.L. a contribué à la publication en préparant les configurations
initiales, en estimant la température de couplage des modes et en participant activement aux discussions
lors des réunions de groupe.

ix





Table of contents

1 Introduction 1
1.1 The glass transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Phenomenology of supercooled liquids . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Common theories of the glass transition . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Temperature scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 The search for an order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Plasticity in amorphous solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 An elastic model of the glass transition: the shoving model . . . . . . . . . . . . . . . 12
1.8 Local yield stress method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Thesis chapters in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Materials and methods 17
2.1 Binary Lennard-Jones mixture and molecular dynamic simulation . . . . . . . . . . . 17
2.2 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Static structure factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Self-intermediate scattering function . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Characterization of the binary mixture: Tonset and TMCT . . . . . . . . . . . . . . . . . 24
2.4 Inherent structures and inherent state dynamics . . . . . . . . . . . . . . . . . . . . . 30
2.5 Detection of rearrangements using the harmonic response . . . . . . . . . . . . . . . . 31
2.6 Implementation of the local yield stress method . . . . . . . . . . . . . . . . . . . . . 33

3 Micromechanics 37
3.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Length scale of the probing zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Optimal length scale of the probing zone . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Statistical size effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Characterization of local rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Angular dependence of local yield stress thresholds . . . . . . . . . . . . . . . 44
3.3.2 Spatial resolution of local yield stress thresholds . . . . . . . . . . . . . . . . 46
3.3.3 Pressure dependency of local yield stress thresholds . . . . . . . . . . . . . . 47



Table of contents

3.3.4 Yield criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.5 Problems to detect wells in the shear stress landscape . . . . . . . . . . . . . . 51
3.3.6 Suggested solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Relation between local yield stresses and the dynamics of supercooled liquids 55
4.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Correlation between local yield stresses and the dynamics of supercooled liquids . . . 60

4.3.1 Local yield stresses and the location of local rearrangements . . . . . . . . . . 60
4.3.2 Correlation between local yield stresses and dynamic observables . . . . . . . 62
4.3.3 On the influence of the coarse graining procedure . . . . . . . . . . . . . . . . 70
4.3.4 Comparison with other structural indicators or computational methods . . . . . 72

4.4 First passage time as a random variable . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Escape time τesc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusions 83

References 85

Appendix A Rejuvenation and shear banding in model amorphous solids 93

xii



Chapter 1

Introduction

1.1 The glass transition

A liquid that is given enough time upon cooling will undergo at its melting temperature TM a phase
transition and form a crystal. Crystallization can be avoided by a sufficiently fast cooling rate [18, 33].
In this case, the liquid will enter the supercooled regime. In this regime, upon a further decrease of the
temperature, the viscosity will increase several orders of magnitude over a small temperature range.
Eventually, rearrangements of atoms and molecules take more time than allowed by the cooling rate;
the system will consequently fall out of equilibrium and form a glass [30, 111]. Conventionally, this
point defines the glass transition and its corresponding temperature Tg. However, this is not a precisely
defined temperature, as Tg depends on the protocol, but the temperature of the glass transition varies only
by a few degrees (3−5K) when the cooling rate changes by an order of magnitude [33]. To add some
orders of magnitude to the drastic kinetic slowdown: around the melting temperature TM , the relaxation
time is in the order of a few picoseconds [18]. Close to Tg, the relaxation time is τα ≈ 100s, 14 orders
of magnitude larger. At the same time, the temperature has only decreased by one third Tg ≈ 2/3TM

[18, 33].
Consequently, the question arises as to what causes such a drastic dynamic slow down? In physics,

diverging length and time scales are usually indicators of a phase transition. Is the glass transition a
purely dynamical transition from “liquid dynamics” to “glassy dynamics” or is the drastic change in
dynamical observables described above a consequence of a fundamental change from a fluid state to an
ideal glassy state? In other words, is the glass transition a kinetic or a thermodynamic phase transition?
Even the kind of phase transition is a subject of debate. Stillinger et al. argue in ref. [33] that the glass
transition is not a real phase transition in the sense that it is not accompanied by a discontinuous change
of any physical variable (e.g. volume or enthalpy). Although, there is a sudden and abrupt change in
the slope of the observables, a discontinuity is detected neither in the observables nor their respective
derivatives. This is schematically shown in figure 1.1. Contrary, Dyre claims that the glass transition is a
second order phase transition in the Ehrenfest sense with a continuity of volume and entropy. But their
respective derivatives are discontinuous [38, 45].
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Fig. 1.1 Schematic representation of the volume V or enthalpy H as a function of temperature T . To
obtain a glass, one starts with an equilibrated liquid at high temperature (top right corner). Cooling down
the liquid fast enough across the melting temperature Tm to avoid crystallization (dark blue line), the
system will stay equilibrated and enter the supercooled regime. Depending on the cooling rate, sooner
or later the system will fall out of equilibrium and form a glass (Tga,Tgb). The slower the cooling, the
lower the glass transition temperature. Although, there is a sudden and abrupt change in the slope of
V (T ) and H(T ) at the glass transition temperature, Stillinger at al. argue that there is no discontinuity of
any physical observable [33]. Figure taken from ref. [33].

Glasses and crystalline solids have mechanical rigidity in common [30, 40]. Yet, on a molecular
level, glasses are much more comparable to liquids. Both share a disordered molecular structure and a
lack of long-range order [18]. Conventional correlation functions, such as the static structure factor or
the radial distribution function, fail to differentiate a liquid at high temperature from its supercooled
counterpart and a glass. One might be even tempted to say, that supercooled liquids and glasses are
structurally “unexciting” [30]. From a structural point of view, a glass is a liquid that stopped flowing,
i.e. a frozen liquid. [22].

Not only do supercooled liquids feature a drastic dynamical slowdown and subsequently fall out off
equilibrium, moreover, they also exhibit several unusual properties. Some of them will be presented and
discussed in the ensuing paragraphs.
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Fig. 1.2 The dynamics of glassy systems are spatially heterogeneous. Atoms colored dark red have
moved more than one particle diameter, dark blue atoms did not move at all. Figure taken from ref. [61].

1.2 Phenomenology of supercooled liquids

Dynamical heterogeneities and decoupling of transport constants

A signature of glassy dynamics is the appearance of dynamical heterogeneities [41]. In the supercooled
regime, well below the melting temperature, the dynamics in some regions of the material can be orders
of magnitudes faster than the dynamical behavior of neighboring regions [42]. Figuratively speaking,
dynamical heterogeneities correspond to clusters of highly mobile particles and regions where the
particles do not move at all [31]. An example of dynamic heterogeneity is shown in figure 1.2. Each
particle’s color corresponds to the overlap with its initial position. Dark blue atoms did not move at
all, whereas dark red particles have been displaced more than one particle diameter. As one can see,
highly mobile (red) particles as well as immobile particles are clustered together. Structural relaxation is
therefore not uniformly distributed as it is in a normal liquid [86]. Dynamical heterogeneities become
more and more pronounced as the temperature is lowered [22]. Furthermore, it is widely believed that
the emergence of dynamical heterogeneities leads to the breakdown of the Stokes-Einstein relation [58].
For a liquid at high temperature T , the Stokes-Einstein relation [48] links the diffusion coefficient D and
viscosity µ

D
µ

T
= const. (1.1)

In a supercooled liquid, this relation breaks down as 1/D does not increase as fast as µ/T [18]. As
a result, the product D µ

T increases by 2-3 orders of magnitude at the glass transition temperature Tg

compared to the constant (high temperature) value [18].
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Non-exponential relaxation

The relaxation process of a liquid is characterized by an exponential decay. As the temperature is
lowered, a two step relaxation emerges. This can be illustrated using a correlation function, such as the
self-intermediate scattering function F . In the supercooled regime, a plateau develops after a first decay,
the so-called β -relaxation. At these intermediate times, F remains constant. The length of the plateau
strongly depends on the temperature. For sufficiently long times, the decorrelation process continues
and F decays to zero. This second decorrelation is called α-relaxation. Physically, the β -relaxation
corresponds to thermal vibrations of the atoms, whereas the α-relaxation is a measure of how long it
takes an atom to break out of the cage formed by the surrounding particles.

The α-relaxation is not a simple exponential decay, but can more accurately be described by a
Kohlrausch-Williams-Watts stretched exponential

F ∝ exp
[(

− t
τ

)β
]
, (1.2)

with the characteristic decay time τ . The parameter β depends on the temperature and can take values
between 0 < β < 1. It characterizes the discrepancy from strict exponential behavior [97].

The temperature, below which non-exponential relaxation starts to set in, is called the onset tempera-
ture Tonset . It is a reference point for any glass forming liquid [4].

According to refs. [41, 91], two images can be used to explain the non-exponential nature of the
relaxation process in supercooled liquids. In the first image, the supercooled liquid is made up of a
set of environments. Each environment relaxes almost exponentially but the relaxation time differs
from environment to environment. Hence, the distribution of exponential relaxation processes on the
microscopic level yields a non-exponential relaxation process on the macroscopic level. In the second
image, each molecule of a supercooled liquid itself relaxes intrinsically in a non-exponential way.
However, the existence of dynamical heterogeneities strongly supports the first image.

Super-Arrhenius growth of transport quantities

As the temperature is lowered, a non-exponential growth of transport quantities (e.g. viscosity) is
observed for some materials. Below a crossover temperature Tonset , the viscosity diverges faster than an
exponential function (non-Arrhenius or super-Arrhenius behavior). Yet, this behavior is not universal to
all glass forming liquids. For instance, for SiO2 and GeO2 the viscosity increases exponentially (Arrhe-
nius behavior) [40]. Depending on their behavior, materials can be classified as “strong” (Arrhenius)
and “fragile” (super-Arrhenius) [7]. A schematic representation of the two behaviors is shown in figure
1.3, the well known Angell plot. Empirically, it has been shown that the relaxation time of fragile liquids
can be reasonably described over several orders of magnitude via the Vogel-Fulcher-Tamman (VFT)
equation [44, 113, 121]

τ = τ0 exp
(

A
T −T0

)
, (1.3)
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Fig. 1.3 Schematic representation of the Angell plot [7]. Supercooled liquids can be classified according
to their growth of viscosity. Strong liquids show an exponential increase, whereas for fragile liquids the
viscosity increases faster than an exponential function.

with the constants τ0 and A, and T0 the temperature of the glass transition. The VFT-law predicts a
phase transition into an ideal glass state at a finite temperature T0. Aside from the equation (1.3), several
alternative fits are possible for fragile glass formers, for instance, the Bässler law [15]

τ ∝ exp

((
T0

T

)2
)
. (1.4)

1.3 Common theories of the glass transition

Generally, most theoretical approaches that try to explain the glass transition, can be divided into two
categories: the first point of view concentrates exclusively on time-dependent phenomena (dynamics);
for the second approach, the drastic kinetic slowdown results from an underlying thermodynamic ideal
phase transition [111]. In the following, theoretical ideas most relevant to the work presented in the
ensuing chapters will be shortly introduced.

Potential energy landscape

Efforts have been made to understand the phenomena of glassy dynamics using the concept of the
potential energy landscape. A particularly popular image was outlined by Goldstein [46]. In this
description, the system “lives” on a high dimensional surface, the potential energy landscape. Over
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time, the system moves along the energy landscape. A minimum in the potential energy landscape is
associated with a locally stable configuration. Local minima of the landscape are separated by energy
barriers. Goldstein assumes that the system can overcome the energy barriers through activated jumps,
as the height of the energy barriers is much larger than the thermal energy ∆E ≫ kBT . Such a jump
in phase space corresponds to a localized rearrangement, involving only a handful of particles in real
space [30]. A welcome feature of Goldstein’s scenario is that it allows a natural explanation of the two
step relaxation process: small vibrations around minima in phase space can be linked to vibrations of
atoms in real space; they are responsible for the relaxation on short timescales (β -relaxation) whereas
the hopping from one minima to another can be related to a small number of atoms changing their
neighbors (localized rearrangements). Under the assumption of activated dynamics, the hopping time
increases exponentially with increasing energy barrier height. Thus, the time atoms need to break out of
the cages formed by their neighbors can be associated with the α-relaxation time. This theory fails at
higher temperatures, where the thermal energy is comparable to the height of energy barriers ∆E ∼ kBT .
In this temperature regime, the dynamics are no longer governed by activated jumps but the system is
now in the fluid regime. Nonetheless, it is possible to identify a crossover temperature TX : below TX , the
dynamics are predominately activated, while above they are not.

Bouchaud’s trap model is reminiscent of Goldstein’s description: the system’s dynamics are seen as
the motion of a single phase point wandering through the energy landscape [34, 82]. Barriers separate
the valleys (traps) from each other. They can only be overcome by activated processes. In its most
simplified version, the model does not consider interactions between traps. A single master equation,
written in terms of the probability P(E, t), that the system is in a trap of depth E at time t suffices to
describe the dynamics of the system.

∂P(E, t)
∂ t

=−Γ0e−βEP(E, t)+Γ(t)ρ(E), (1.5)

with Γ(t) = Γ0
∫

dEe−βEP(E, t) the average hopping rate at time t and the attempt frequency Γ0.
The beauty of the trap model is given by the fact that all the complexity of the glassy material

is contained in the probability distribution of trap depths ρ(E) [18]. Various distributions can be
considered for the trap depth E, e.g., a Maxwell-Boltzmann or Gaussian distribution can be used to
study equilibrium dynamics of supercooled liquids [37, 50, 82]. A weakness of the trap model lies in its
exemplary mean field approach: it remains a point of debate, how the notion of traps and rugged energy
landscapes can be interpreted in real space [18].

Mode coupling theory

Another theory that tries to explain glassy dynamics is the mode coupling theory. This theory was
originally introduced in the 1980s [16, 73]. Without going into the mathematical details of the theory (an
introduction can be found in [58] and the references therein), the mode coupling theory is an ab initio
theory that makes no phenomenological assumptions and takes as input only static, time independent
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properties such as the static structure factor [58]. Albeit the little input, it correctly describes the two
step relaxation process [115]. Furthermore, the theory finds a good agreement regarding the shape of the
relaxation function of real liquids. Lastly, the mode coupling theory predicts a power-law divergence of
the relaxation time at a critical temperature TMCT

τα ∝ (T −TMCT )
−γ , (1.6)

with γ > 0. However, the critical temperature is much higher than the glass transition temperature
TMCT ≫ Tg [30, 58, 115]. This divergence can be seen as a success and failure at the same time.
Success, as the mode coupling theory, despite only static input, predicts a transition, but failure as this
transition has never been observed in neither experiments nor numerical simulations [19]. This raises
the immediate question, as to why the theory predicts such a transition. The answer is that activated
dynamics are not taken into account. As the temperature is lowered and activated dynamics play an
increasingly important role, the mode coupling theory fails to accurately describe the kinetic behavior
in the supercooled regime. The discrepancy between theory and reality becomes worse closer to the
glass transition temperature Tg. A solution is to interpret the critical temperature TMCT differently, not as
the temperature of the phase transition but as a crossover temperature [115]. Similar to the situation in
Goldstein’s picture, TMCT marks the passing from non-activated to activated dynamics. One can even
take the analogy one step further and identify TMCT with the temperature at which Goldstein’s approach
fails [30]

TX ≈ TMCT . (1.7)

Another caveat of the approach is that due to the mean field nature of the theory, it cannot detect
dynamical heterogeneities and consequently fails to predict a violation of the Stokes-Einstein relation
[58, 115]. Lastly, since it is a purely dynamical theory, it cannot be used to describe thermodynamical
properties of the system such as entropy. To conclude, despite its numerous shortcomings, the mode
coupling theory remains an important pillar for the understanding of glassy dynamics, as all predictions
of the theory have been vigorously tested against numerical simulations and experiments [18]. Moreover,
in its well-known limits, the mode coupling theory delivers its results in an efficient and flexible way.
Additionally, the original theory was modified, in order to address certain shortcomings, but it has to be
stated that the overall universality of the theory is established [6].

Cooperatively rearranging regions

Adam and Gibbs [2] made the argument, that molecular rearrangements only take place cooperatively.
Thus, the liquid can be divided into cooperatively rearranging regions. As the temperature is lowered,
the size of these regions increases. Each of these regions has access to a finite number of configurations
through rearrangements. By counting all accessible configurations, the configurational entropy Scon f

of the system can be estimated. Assuming, that the energy barrier separating two configurations is
proportional to the number of particles contained in a region, the model predicts a phase transition into
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an ideal glass state at TK . This temperature is much lower than the (dynamic) glass transition temperature
Tg. The first and foremost advantage of this theoretical approach is its elegance and simplicity. It delivers
a clean explanation of the stronger than Arrhenius increase of relaxation times of fragile liquids [38]
and, furthermore, the VFT-law emerges naturally [30]. However, this approach does not capture all
phenomena of the glassy systems: first, no clear concept of the ideal glass state has been proposed
[38]. Second, it cannot describe what happens at higher temperatures - neither the crossover from
non-activated to activated dynamics at TMCT , nor the falling out off equilibrium at Tg [30].

In the last decades, Kirkpatrick, Thirumalai and Wolynes played an important role to merge three
independent lines of research (cooperatively rearranging regions, mode coupling theory and spin glasses)
into what is now known as the Random First Order Transition Theory [63, 64]. Main pillar of this
theory is the evolution of the free energy landscape with temperature or density [8]. However, is is
not feasible to examine the high dimensional free energy landscape of a real system, characterized by
particle interactions. As a consequence, it is limited to simplified models and mean field approximations.

Over the past decades, numerous other theories on the glass transition have been proposed. Some
of them are based on the theoretical concepts described above and extend them, others explore new
pathways. But to describe all of them, is out of the scope of this introduction.

1.4 Temperature scales

In the previous paragraphs, a series of temperatures has been introduced. In the following, they are going
to be revisited and put into perspective (see figure 1.4): at the melting temperature TM , the liquid-crystal
first order phase transition is located. A sufficiently fast cooling rate avoids crystallization to enter
the supercooled regime. For fragile liquids, the onset temperature Tonset marks the beginning of non-
exponential relaxation and the underlying potential energy landscape starts to influence the dynamics. At
the crossover temperature TMCT , the mode coupling theory falsely predicts a divergence of the relaxation
time, because activated dynamics are not accounted for. Below TMCT , the underlying potential energy
landscape starts to heavily influence the dynamics of the supercooled liquid and activated dynamics
become the principal mechanism of diffusion. Upon further cooling, the relaxation time continues to
increase rapidly. Depending on the cooling protocol, the system falls out of equilibrium and forms a
glass at Tg. There is one more temperature of note that has not been mentioned so far, the Kauzmann
temperature TK . Kauzmann stated, that upon cooling, the entropy of a supercooled liquid decreases at a
higher rate than that of a glass or the ground state crystal [60]. Extrapolating this observation leads to
TK , where the entropy of the supercooled liquid is equal to the one of the crystal [30]. This is the famous
Kauzmann paradox. Kauzmann himself points out that “certainly the entropy of the liquid can never be
very much less than that of the solid” [60]. To prepare a system at TK is out of reach for experimental
and numerical studies.
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Fig. 1.4 Schematic representation of the entropy as a function of temperature. Important temperatures
for supercooled liquids and glasses as indicated as well.

1.5 The search for an order parameter

None of the theories previously introduced can describe the glass transition with all of its rich phe-
nomenology to its full extent. Alternatively, one can focus on the construction of an order parameter that
is able to detect the subtle structural changes the system undergoes as it is cooled down. Any structural
indicator has to prove itself by its potential to predict the kinetic behavior of the system. In other words,
how does the order parameter correlate with the system’s dynamics? In the last 10-15 years, many
different structural indicators were proposed. In the following paragraphs, a selection of them will be
presented and discussed.

In a series of works, Widmer-Cooper, Harrowell et al. [123–125, 127, 128] performed a thorough
analysis on how different measures, local or global, correlate with the kinetic behavior observed
in molecular dynamic simulations of glassy systems. To emphasize the influence of structure and
minimize the effect of thermal fluctuations, they performed molecular dynamic simulations in the
isoconfigurational ensemble. In this ensemble, multiple independent runs are started from the same
configuration but the particles’ momenta are drawn from the appropriate Maxwell-Boltzmann distribution
for each run. They introduce the dynamic propensity Di(t) as the mean squared displacement of a
particle i, when averaged over the isoconfigurational ensemble at a given time scale t

Di(t) = ⟨(rrri(t + t0)− rrri(t0))
2⟩iso. (1.8)
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The system under investigation is a binary mixture composed of large and small particles. A first
natural approach is to study a particle’s local environment [123]. The local structure is characterized by
the number of small and large neighbors respectively. Already for a binary mixture, one observes a large
variety of local configurations. Still, it is possible to identify a correlation for particles with very small
values of dynamic propensity. Most of these atoms are of the large type and they favor a hexagonal
packing, a very stable configuration known from crystals. At the same time, no correlation is found for
particles with a large dynamic propensity. On average, small particles seem to move a greater distance,
but it is impossible to identify a local environment from which a high mobility emerges. Hence, the
local environment described using the atom’s neighbors is unsuitable to explain the observed kinetic
phenomena.

Surprisingly, the local potential energy shows a poor predictability of the dynamics. Widmer-Cooper
et al. report in ref. [125] the correlation between the potential energy per atom of the inherent structure
of the initial configuration and the dynamical propensity, calculated after a simulated timespan of 1.5
times the structural relaxation time. The correlation between the two measures is weak, as the length
scales of spatial heterogeneity for the local potential energy and the dynamic propensity are not the
same. The local potential energy shows similar to the local free volume more spatial fluctuations - the
corresponding typical length scale is considerably shorter than the one of the dynamic propensity.

From the results described above, the authors concluded that a purely local measure cannot display
the complex dynamical behavior of glassy systems. Hence, in a further study, [127, 128] they examined
how low frequency normal modes can indicate irreversible rearrangements, which are responsible for
structural relaxation. Low frequency modes, also called soft modes, are calculated from the dynamical
matrix of the initial inherent structure. The dynamical matrix is a second order development around a
local energy minimum. The eigenmodes of the smallest eigenvalues of the dynamical matrix indicate
the shallowest paths out of the local energy minimum. The eigenvectors can be used to define the
participation ratio - a scalar measure that quantifies the contribution of each atom to the corresponding
eigenmode. By summing over the lowest modes, one considers the shallowest possible paths the system
can take to escape the local minimum. The resulting participation ratio field, a purely static quantity,
not only shows an excellent spatial correlation with the location of irreversible relaxation events but the
correlation also persists over a long period of time. This indicates that the underlying soft modes structure
survives many rearrangements and changes in the inherent structure. Nevertheless, three observations
need to be pointed out: first, the participation ratio does not allow any statement about timescales. It is
not possible to say when a soft mode contributed to a relaxation event. Low frequency modes describe
the curvature of a local minimum in the potential energy landscape but allow no assessment of the
corresponding barrier heights. These, however, would be needed to predict timescales of rearrangements.
Second, by design, the soft modes method is a perturbative approach. The dynamical matrix does not
take the potential energy in its entirety into account, but rather uses a development up to second order.
Lastly, this approach is computationally costly, since it involves the diagonalization of a matrix of size
dN ×dN, where N is the number of particles and d the spatial dimension.
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In recent years, a supervised machine learning method developed by Schoenholz et al. has produced
remarkable results [32, 99–101]. This method uses several hundreds of so-called structure functions
to describe the local structure of the glass. These can be divided into two families of functions, with
many different sets of parameters, that are used to describe the radial density as well as the bond
orientation properties of particles [32]. These functions span an RM dimensional space, with each of
them corresponding to one orthogonal axis. Thus, every particle in real space can be mapped to a point
in the M-dimensional space. The idea is to determine a hyperplane that separates soft particles, particles
that are about to rearrange, from hard particles that do not rearrange, using a support vector machine
method. To determine this hyperplane, data from molecular dynamic simulations is needed to train
the system to distinguish soft from hard particles; however, the hyperplane itself is a purely structural
quantity. The shortest distance between an atom and the hyperplane defines the order parameter, the
so-called softness.

As aforementioned, this method is producing very impressive results, among them: first, in the
supercooled regime, 90% of particles that undergo a rearrangement are classified as soft. This excellent
classification allows to express a probability of rearrangement for every particle as a function of its
softness. Using this probability it is furthermore possible to describe the non-exponential relaxation
process in glassy systems. Lastly, one can also make statements about the structure in real space: one
of the most important features seems to be the number of nearest neighbors. The more neighbors, the
smaller the softness and the less likely a particle is to rearrange. This message is coherent with the
cage and free volume picture, where a higher local density, on the scale of first neighbors, suppresses
rearrangements. The measure of softness can be used not only to predict the dynamics at equilibrium
but also to describe out of equilibrium processes, such as aging in glassy systems [100].

Another promising approach is to examine the transition paths of local relaxation events. For
instance, the minimum energy path connecting the initial and final state can be determined using
the nudged elastic band method [49]. By default, the transition with the smallest energy barrier has
statistically the greatest weight. Alternatively, one can focus on the search of saddle points of the
potential energy in order to identify activated states [92, 93]. In both cases, the idea is that an insight
into the complex energy landscape will lead the way to a better understanding of the basic mechanism
of structural relaxation.

All structural indicators, introduced above, that show a strong correlation between structure and
dynamics, have a common denominator: they do not allow any conclusion on the fundamental process
that governs structural relaxation in amorphous solids. Yet, identifying and understanding the elementary
relaxation unit can be the critical point in understanding the origin of glassy dynamics and ultimately
the glass transition.

Commonly, the structure of glasses is often described as a frozen liquid. But what if one reverts this
picture and treats a liquid as a solid that flows? Adopting this minority point of view, allows the use of
models and tools, which were previously developed for amorphous solids to examine the behavior of
liquids. In this spirit, theoretical concepts that take the mechanical properties of a system into account
have been proposed in the 40s and 50s of the previous century [83, 116]. More recently, Bulatov and
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Argon point out that, among others, plasticity as well as structural relaxation in amorphous matter have
the localized inelastic rearrangements in common [27]. In fact, they use the same 2D mesoscale model
to examine both plastic flow in disordered solids and the glass transition [26–28].

Since the mechanical behavior of amorphous solids differs considerably from their crystalline
counterparts, a brief summery of plasticity in disordered media is given, before an elastic model of the
glass transition is discussed.

1.6 Plasticity in amorphous solids

Although glasses and other amorphous materials have been used by mankind for thousands of years,
their mechanical behavior is still not entirely understood and remains an active field of research. In
physics and material science, plasticity is the irreversible deformation of a solid due to external forces.
For crystalline solids, the elementary building block of plasticity on an atomistic scale is the motion of
dislocations. This mechanism is fairly well understood and part of most solid state physics textbooks
[11, 54]. Due to the lack of long-range order, plastic activity cannot be governed by the same mechanism
in amorphous solids. Instead, there is now a general consensus that local inelastic transformations are the
fundamental mechanism of plasticity in amorphous solids [26]. Such a transformation, also known as
shear transformation (ST), is the cooperative rearrangement of a handful of particles within a very short
time due to external forcing (a schematic ST is depicted in figure 1.5) [52, 53, 76]. In this schema, the
upper, darker colored atoms slip with respect to the lower atoms due to external forcing. The occurrence
of a ST can also be visualized qualitatively using the potential energy landscape: At zero deformation,
the system is in a local energy minimum. Due to the external loading, the potential energy landscape is
tilted until the barrier vanishes [23, 94]. As a result, the systems rearranges, reduces the accumulated
stress and finds itself in a new local energy minimum. First ideas of the ST concept date back to the late
70s [9, 10, 108] and have been continuously refined and further developed since then [43, 78–80, 114].
Although STs are a purely local phenomenon in the sense that the relative positions of the immediate
neighbors do not seem to be affected [43], simulations have revealed strong spatio-temporal correlations
between them [53, 78–80].

The phenomenon of STs in not unique to the atomistic length scale. Similar types of rearrangements
have been observed on much larger length scales in colloidal glasses (particle size ∼ µm) and also
in systems made out of bubbles (particle size ∼ mm) [3, 10, 59, 67, 68, 98]. This indicates that the
underlying mechanism resembles a generic feature of amorphous materials [84].

1.7 An elastic model of the glass transition: the shoving model

In a series of papers, Dyre developed the shoving model [38–40]. A unique characteristic of this model
is its dependence on the mechanical properties of the system in order to explain the drastic kinetic
slowdown. Similar to plasticity in amorphous solids, flow of viscous liquids is composed of a series of
flow events. Each of these events happens on short time scales and involves only a handful of particles
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Fig. 1.5 Two dimensional schema of the elementary process of plasticity in amorphous solids: a shear
transformation involves the cooperative rearrangement of few particles. Due to external forcing, the
darker upper atoms move with respect to the lower atoms. Figure taken from ref. [76].

[36, 40, 110]. One can distinguish two regimes in the molecular interaction of liquids: on a short length
scale, harsh repulsion dominates, whereas a much weaker attraction influences the interaction on long
length scales. To rearrange, particles must come in close contact. The harsh repulsion results in high
energy barriers that hinder particles from easily swapping places. Alternatively, rearranging molecules
can create additional volume by shoving their neighbors aside, leading to a local decrease of density.
The probability of such a density drop is given by

p ∝ exp
(
− W

kBT

)
, (1.9)

where W is the reversible work done on the system required to create the additional volume. As the
events take place on very short time scales, the mechanical response of the surrounding medium is solid
like. Thus, W can be modeled through the volume increase of a sphere in an isotropic medium and
calculated using standard linear elasticity theory [66]. The local volume increase leaves the density
in the surrounding matrix untouched; therefore W is proportional to the temperature-dependent shear
modulus G

p ∝ exp
(
− W

kBT

)
∝ exp

(
−G(T )

kBT

)
. (1.10)

As G increases upon cooling, the shoving model can explain the super-Arrhenius behavior of fragile
liquids. Yet, under the reasonable assumption that G stays finite as the temperature is lowered, this
model does not predict any divergence and accompanying phase transition. This model agrees very well
with experimental data, as shown in figure 1.6. The viscosity of five different molecular liquids follows
accurately the prediction of the model.
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Fig. 1.6 The viscosity is shown as a function of the inverse temperature (full symbols) and as af function
of X ∝ G/T (open symbols) for five different molecular liquids. The full symbols demonstrate fragility.
As one can clearly see, the open symbols follow the diagonal line predicted by the shoving model.
Figure taken from ref. [40].

1.8 Local yield stress method

A common idea is that due to the amorphous nature of glasses, only a local measure can elucidate their
mechanical and dynamical behavior. With this in mind, Tsamados et. al studied the spatio-temporal
evolution of a local elasticity map and its relationship with dynamical heterogeneities and plastic activity
[120]. A different approach, called frozen matrix, was proposed by Sollich [107]. The aim is to
investigate the local mechanical properties of a system. To do so, the entire system is frozen except for a
small target region. Under an imposed external strain, the frozen part of the system, which is unable to
relax, will undergo an homogeneous affine deformation. From the stress response of the target region,
local mechanical observables are accessible, for instance the local elastic modulus [81]. Using the frozen
matrix approach, Puosi et al. were the first to identify the local yield stress along a single direction of
deformation [90]. Additionally, the frozen matrix has been used to connect cavitation to weak spots in
the local bulk modulus in uniaxially strained polymers [77].

The local yield stress method extends the concepts of the frozen matrix. A new feature in ref.
[88] was to add a tensorial component. The local mechanical response is probed for various loading
directions. This definition of local yield stresses as a function of the loading direction pays tribute to
the amorphous structure of glassy systems. In disordered systems, the mechanical properties strongly
depend on the loading direction. The relation between local yield stresses and the response of a system
subject to global deformation has been examined [13, 14, 87, 88]. It has been shown, that there is an
excellent correlation between local yield stresses and the location of plastic rearrangements forced by
remote loading. Local yield stresses have a higher capability to predict the position of rearrangements
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than other local structural indicators for example, the local density, local potential energy or local short
range order. Local yield stresses also outperform measures of linear response (lowest shear modulus and
participation fraction). Moreover, the correlation between the local yield stresses and the location of
rearrangements depends on the preparation of the system. The more relaxed the system, the higher and
longer persisting the correlation.

The local yield stress method has a series of advantages compared to other local indicators: first, it is
a real space measurement. Consequently, all observables have a direct physical meaning and do not need
an additional interpretation. A second advantage is given by its non-perturbative approach. Contrary to,
for example, the calculation of soft modes, there is no higher order development of the potential energy
landscape involved. Lastly, due to the local nature of the measurement, the system can be divided into
parts and the calculation of local yield stresses can parallelized to reduce the necessary computational
time.

1.9 Thesis chapters in context

In this first chapter, a general introduction of the glass transition and its accompanying phenomena
was given. Then, multiple theories and their respective short comings were exposed and discussed.
Additionally, some order parameters that show a strong correlation between glassy dynamics (e.g.
dynamical heterogeneities) and the amorphous structure were introduced.

In the following chapter 2, the 2D model system as well as the main computational methods are
presented. Then, in chapter 3, the local yield stress method is applied to a small piece of glass. It
is demonstrated that in the athermal quasistatic limit, there are only a finite and discrete number of
shear transformations reachable through deformation. They are encoded into the amorphous atomistic
structure of the material. In chapter 4, the relationship between local slip thresholds and the dynamics of
supercooled liquids at equilibrium temperature is examined. In appendix A, the article “Rejuvenation
and Shear-Banding in model amorphous solids” (c.f. also ref [14]), can be found. M.L. contributed to
the publication by preparing initial configurations, estimating the mode coupling temperature and by
actively participating in the discussions during group meetings.
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Chapter 2

Materials and methods

It is difficult to validate all the consequences of the previously described theories using experimental
probes only. Numerical simulation have proven to be very handy. To study and understand general
phenomena, model systems are required that capture the basic physical characteristics. At the same time,
the model should minimize the complexity and computational effort. Instead of simulating a specific
molecular glass with characteristic bonds and charged species, a two dimensional binary mixture with
a pairwise spherical symmetric interaction is used. Despite these drastic simplifications, this model
system exhibits all the aforementioned phenomena of glassiness, e.g. non-exponential relaxation and
dynamical heterogeneities.

In the following, the object of study and the principal numerical methods are outlined. It begins with
a description and characterization of the glass forming liquid, a binary Lennard-Jones mixture, that was
used throughout this thesis. Furthermore, the protocol to prepare the model systems as well as details of
the molecular dynamic simulation that were used to accumulate data are given. Next, a computational
advantageous tool is presented to detect local rearrangements in the trajectory. This chapter concludes
with an elaborate description of the local yield stress method.

2.1 Binary Lennard-Jones mixture and molecular dynamic simulation

Interaction potential and system properties

The model system under study is a two dimensional binary mixture of large L and small S particles
that interact via a slightly modified 6-12 Lennard-Jones potential in order to have a twice continuous
differentiable function

U(ri j) =





4εi j

[(
σi j
ri j

)12
−
(

σi j
ri j

)6
]
+A for ri j < Rin

∑
4
k=0(Ck(ri j −Rin)

k for Rin < ri j < Rcut

0 for ri j > Rcut

(2.1)

17



Materials and methods

Table 2.1 Interaction coefficients for the slightly modified binary Lennard-Jones potential.

LS SS LL

σi j 1 2sin( π

10) 2sin(π

5 )
εi j 1 0.5 0.5

with the coefficients

A =C0 −4εi j

[(
σi j

Rin

)12

−
(

σi j

Rin

)6
]

(2.2)

C0 =−(Rcut −Rin)[3C1 +C2(Rcut −Rin)/6] (2.3)

C1 = 24εi jσ
6
i j(R

6
in −2σ

6
i j)/R13

in (2.4)

C2 = 12εi jσ
6
i j(26σ

6
i j −7R6

in)/R14
in (2.5)

C3 =− [3C1 +4C2(Rcut −Rin)]/
[
3(Rcut −Rin)

2] (2.6)

C4 = [C1 +C2(Rcut −Rin)]/
[
2(Rcut −Rin)

3] , (2.7)

where i, j ∈ {L,S}. The Lennard-Jones expression for interatomic distances greater than Rin = 2σLS is
replaced by a smooth quartic function vanishing at a cutoff distance Rcut = 2.5σLS . The values of the
interaction coefficients are listed in table 2.1. The quadratic simulation box of size L×L (L = 98.8045)
contains - if not otherwise mentioned - 104 atoms and is equipped with periodic boundary conditions.
The ratio of large to small particles is NL : NS = (1+

√
5) : 4. The two types of particles are of equal

mass m = mL = mS = 1 and the density of the system is ρ = 1.02. From here onwards, all physical
measurements will be expressed in terms of dimensionless units. Energies and length scales will be
given in units of εLS and σLS respectively. Subsequently, time is measured in units of t0 = σLS

√
m/εLS.

This system is known for its good glass formability [65, 129] and has been previously used to study
plasticity in amorphous solids [13, 14, 43, 87].

Preparation protocols

All molecular dynamic simulation were performed using LAMMPS Molecular Dynamics Simulator
[89]. To cover a wide rage of the supercooled and glassy regime, initial configurations were prepared
using the following two protocols.

Equilibrated supercooled liquid. The simulations are performed in the NV T -ensemble. The systems
are equilibrated at the desired temperature for a sufficiently long period of time. The temperature is
controlled using the Nose-Hoover thermostat. The duration of the equilibration is at least 100 times the
relaxation time. Furthermore, it is verified that physical observables, such as the potential energy or the
components of the stress tensor have stabilized.
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2.1 Binary Lennard-Jones mixture and molecular dynamic simulation

Gradual quench. First, the systems are equilibrated at T = 0.93TMCT . (The value of the critical
temperature of the mode coupling theory is TMCT = 0.378. For details on the method which is used to
estimate TMCT , see section 2.3). Next, the temperature is continuously decreased to T = 0.079TMCT

into the glassy state over a simulated timespan of 106. In both stages of the preparation protocol
a Nose-Hoover thermostat controls the temperature. Finally, the configurations are instantaneously
quenched and relaxed using the conjugate gradient algorithm.

Production run

Remote loading. In section 3.2 the connection between local yield stresses and plastic activity due to
remote loading is discussed. Plastic rearrangements are activated by imposing a simple sher deformation
on the initial, unstrained system, using the athermal, quasistatic shear protocol [80]. First, an affine
displacement (

x′

y′

)
=

(
1 ∆γxy

0 1

)(
x
y

)
(2.8)

is applied on every atom of the system. Next, the configuration is relaxed to mechanical equilibrium. A
drop of the macroscopic shear stress indicates the occurrence of a plastic rearrangement. A small strain
increment ∆γxy = 10−5 is chosen in order to make sure that all plastic events are detected. After the
occurrence of a rearrangement, a reverse loading step −∆γxy is systematically applied to ensure that the
generated strains are indeed irreversible. Throughout the simulation, Lees-Edwards boundary conditions
are imposed.

Dynamics at thermal equilibrium. In chapter 4, the relation between structure and kinetics of
supercooled liquids is examined. For the dynamical aspect, molecular dynamic simulation are performed
at equilibrium temperature. As for the equilibration, the production run is performed in the NV T -
ensemble and a Nose-Hoover thermostat controls the temperature. Due to the fact that glassy dynamics
can be very slow, a logarithmic sampling is applied. In this setup, nine snapshots of the system are saved
per decade. For a linear sampling, the storage and analysis of the trajectory are not feasible.

Isoconfigurational ensemble. A common simulation technique to emphasize the influence of structure
on the ensuing glassy dynamics, especially dynamical heterogeneities, is the isoconfigurational ensemble.
It was first introduced by Widmer-Cooper et al in ref. [126] and has since been employed on a variety of
systems [12, 21, 57, 62, 117]. Multiple simulation runs are started from the same initial configuration,
with the initial particle velocities being drawn at random from the corresponding Maxwell-Boltzmann
distribution for each run. When calculating physical quantities over the ensemble average, fluctuations
due to the different initial velocities are averaged out [62]. The isoconfigurational ensemble reveals the
contribution of the initial particle configuration to the subsequent dynamics.
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2.2 Relaxation time

The strongly temperature dependent relaxation time is a measure of how supercooled a system is.
Furthermore, this characteristic decay time allows to estimate critical, system dependent temperatures,
for instance TMCT , at which the mode coupling theory starts to fail.

In this section, the numerical tools, which are needed to calculate the relaxation time are presented:
first, the static structure factor, and then the self-intermediate scattering function. Special attention is
paid, how the latter varies with the system size.

2.2.1 Static structure factor

A common tool in solid state physics to describe the underlying atomistic structure of a material is the
static structure factor S. Experimentally, S can be obtained from interference patterns of diffraction
experiments. In a computer simulation, the exact positions of the atoms is known; consequently S can
be directly calculated from any configuration. The static structure factor is defined as follows [48]

S(kkk) =
1
N
⟨ρ̂kkkρ̂−kkk⟩ , (2.9)

where N is the number of particles in the system and ρ̂kkk is the Fourier transform of the microscopic
density

ρ̂kkk =
∫

ρ(rrr)e−ikkk·rrrdrrr =
N

∑
i=1

e−ikkk·rrri . (2.10)

To convert the integral to a sum, the point mass nature of the system is used here. In computer simulation,
the following expression is used to calculate S(kkk) [131]

S(kkk) =
1
N

〈∣∣∣∣∣
N

∑
i=1

cos(kkk · rrri)

∣∣∣∣∣

2

+

∣∣∣∣∣
N

∑
i=1

sin(kkk · rrri)

∣∣∣∣∣

2〉
. (2.11)

The periodic boundary conditions impose a constraint on the largest period possible and thus provide a
limit for the smallest value for the wave vector [131]

kmin =
2π

L
, (2.12)

with L the linear system size.
Due to the isotropic nature of liquids, the structure factor depends only on the absolute magnitude

of kkk. For this purpose, kkk’s of similar magnitude are binned together and the averaged value for S(|kkk|)
is calculated. Unlike crystals, liquids are lacking a long-range order. Thus, S(|kkk|) does not exhibit
sharp peaks. As S(|kkk|) is calculated from the Fourier transform of the density, it contains the averaged
information of the microscopic structure of the material. The first peak of S(|kkk|) corresponds to the
average inverse length scale of the first neighbors in the system.
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Fig. 2.1 Equation (2.11) is used to calculate S(|kkk|). The structural change between T = 0.5 and
T = 0.32 is only minor and the relaxation time increases by several orders of magnitude between the
two temperatures. The peak of S(|kkk|) is at |kkkmax| = 6.01 for the two lower temperatures (T = 0.32
and T = 0.351) and at |kkkmax|= 5.95 for T = 0.5. The length 2π/|kkkmax| corresponds to the interatomic
distance between nearest neighbors.

Figure 2.1 shows S(|kkk|) for three different temperatures. Over this temperature range, the relaxation
time increases several orders of magnitude (cf. section 2.2.2). Still, there are only minor differences
between the three curves, which confirms that supercooled liquids structurally do not differ from their
high temperature counterparts.
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2.2.2 Self-intermediate scattering function

One way, to measure the relaxation process of supercooled liquids in experiments and computer
simulations is the widely-used self-intermediate scattering function F (kkk, t) [48, 96, 102]

F (kkk, t) =

〈
1
N

N

∑
j=1

exp(−i kkk ·∆rrr j(t))

〉
(2.13)

∆rrr j(t) = rrr j(t0 + t)− rrr(t0), (2.14)

where N is the total number of particles, kkk is the wavevector and rrr j(t) denotes the position of atom j at
time t. To circumvent sample to sample fluctuations, F is ensemble averaged, indicated by ⟨. . .⟩.

As pointed out by several publications [104–106, 130], the resulting self-intermediate scattering
function as defined in equation (2.13) depends in two dimensions on the system size: persisting
long-wavelength elastic vibrations will enhance the mean squared thermal displacement, leading to a
faster decay of the self-intermediate scattering function at intermediate time scales. The strength of
these fluctuations increases logarithmically with system size. The larger the system, the stronger the
damping. The existence of long-wavelength fluctuations has also been observed experimentally in quasi
2D spherical and ellipsoidal particle suspensions [130]. Although these fluctuations are only in two
dimensions present, the structural relaxation process itself is not affected. Structural relaxation does not
fundamentally differ in two and three dimensions [106].

To avoid these system size dependent effects, Illing et al. propose in ref. [55] the cage relative
self-intermediate scattering function

F (kkk, t) =

〈
1
N

N

∑
j=1

exp
(
−i kkk · (∆rrr j(t)−∆rrrcage

j (t))
)〉

(2.15)

∆rrr j(t) = rrr j(t0 + t)− rrr j(t0) (2.16)

∆rrrcage
j =

1
N j

N j

∑
i=1

rrri(t0 + t)− rrri(t0). (2.17)

As before, N is the number of particles in the system, rrr j(t) is the position of particle j, the wavevector kkk
and ⟨. . .⟩ denotes ensemble average. However, the displacement of atom j is reduced by the center of
mass motion of its neighbors. Considering the neighbor relative displacement field ∆rcage

j eliminates
any movement caused by a translational displacement of the simulation box. Two approaches can be
used to define neighboring atoms: a Voronoi-Tessellation yields the exact number of each particle’s
neighbors; however, it is computationally much more advantageous to define all atoms within a cutoff
distance RShell as cage forming neighbors. The system size dependence of F (kkk, t) and the effect of the
cage relative displacement field are shown in figure 2.2.

Using the cage relative displacement field does not change the physical interpretation of F (kkk, t):
the self-intermediate scattering function is a measure of local density fluctuations. The length scale
at which these fluctuations are probed is given by kkk. More figuratively speaking, F (kkk, t) measures
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Fig. 2.2 The self-intermediate scattering function depends on the system size and is subject to damping
effects if the cage relative displacement field is not used (RShell = 0). The dotted lines decay significantly
faster, as no neighbor relative movement is taken into account. For RShell = 1.34, there is an almost
perfect superposition of F (kkk, t) (red and solid blue lines). Additionally, for the system containing
N = 10,000 atoms, the exact number of nearest neighbors was determined by Voronoi tessellation (green
points), yielding the same result as RShell = 1.34, while being computationally more expensive. All
curves were calculated from a supercooled liquid equilibrated at T = 0.351.
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the resemblance of two molecular configurations over the inverse length scale kkk separated by a time t.
Different choices of kkk unravel a different set of dynamics. Choosing a kkk which corresponds approximately
to one inverse particle diameter will reveal relaxation dynamics at molecular level. Reducing kkk and
thereby increasing the probing length scale leads to a longer persisting correlation, as locals density
fluctuations are averaged out. In the extreme case of kkk ≃ 2π/L, where L is the linear system size, the
correlation function will be 1 at all times, as the density is constant in the NV T -ensemble over the course
of a simulation run.

As already mentioned in chapter 1, the self-intermediate scattering function has the ability to demon-
strate the change of microscopic dynamics upon cooling (c.f. figure 2.3). At high temperatures, F (kkk, t)
decreases exponentially; below the onset temperature Tonset , F (kkk, t) shows the two-step relaxation phe-
nomenon which is typical for glassy dynamics. The β -relaxation corresponds to the atoms rattling due to
temperature. The α-relaxation gives a time scale needed for the atoms to escape the cage formed by their
neighbors. The Kohlrausch-Williams-Watts stretched exponential function describes the α-relaxation

F (kkk, t) ∝ exp
[(

− t
τ

)β
]
, (2.18)

with the characteristic decay time τ . As can be seen in figure 2.4, the parameter β depends on the
temperature and takes values between 0 < β < 1.

The self-intermediate scattering function can be used to define the temperature dependent relaxation
time τα of the system. With kkk set to the value of the peak of the static structure factor, the relaxation
time is defined as

F (kkk, t = τα) =
1
e
. (2.19)

2.3 Characterization of the binary mixture: Tonset and TMCT

After properly defining the relaxation time, τα can be used to calculate the onset temperature Tonset as
well as the mode coupling temperature TMCT , fundamental points of reference for glass forming liquids
[4]. To estimate these two temperatures for the binary mixture used in the present study, configurations
containing N = 1,024 atoms were prepared over a wide range of temperatures (see tab. 2.2). The
self-intermediate scattering function was averaged over 250 samples per temperature.

Onset temperature Tonset

In the Angell plot (fig. 2.5), the relaxation time τα is reported as a function of the inverse temperature 1
T .

By fitting high temperature relaxation times to an Arrhenius form, the infinite temperature relaxation time
τ0 as well as the constant activation energy E can be obtained. As one can see, at lower temperatures
the relaxation times τα are progressively higher than the high temperature extrapolation. This is
the behavior of a fragile liquid in the strong-fragile classification [97]. The point, where the high
temperature extrapolation breaks down, marks the beginning of non-exponential relaxation and the onset
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Fig. 2.3 The self-intermediate scattering function F (kkk, t) for various temperatures. At high temperatures,
the decay of F (kkk, t) is exponential. At lower temperatures, F (kkk, t) shows the characteristic two step
relaxation process of glassy dynamics. The size of the plateau increases as the temperature is lowered.
The curves in this figure were averaged over 250 samples per temperature. Every initial configuration
contains N = 1,024 atoms.

Table 2.2 Initial configurations containing N = 1,024 particles were prepared over a wide range of
temperatures. The relaxation time was averaged over 250 samples for every temperature.

T τα T τα

0.325 4180±240 0.500 8.97±0.18
0.351 311±16 0.600 4.44±0.06
0.360 211±11 0.700 2.86±0.05
0.380 88.2±3.6 0.800 1.97±0.02
0.390 63.0±2.4 0.900 1.51±0.02
0.400 44.1±1.2 1.000 1.25±0.01
0.410 35.8±1.1 1.200 0.897±0.008
0.420 28.6±1.1 1.600 0.594±0.005
0.440 18.8±0.5 2.000 0.456±0.002
0.480 11.5±0.3 2.500 0.370±0.002
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Fig. 2.4 In the deeply supercooled regime, the Kohlrausch-Williams-Watts stretched exponential (equa-
tion (2.18)) accurately describes the α-relaxation. At the lower temperature (T = 0.32), the characteristic
decay time is τ = 7,644±33. For the higher temperature (T = 0.351), the characteristic decay time is
τ = 362±1. The parameter β is equal to β = 0.433±0.001 and β = 0.547±0.001 for the lower and
higher temperature respectively.
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Table 2.3 Measured relaxation time F (kkk, t = τα) = 1/e and the extrapolated relaxation time τα =
τ0 exp(E/T ). The former starts to strongly deviate from the latter at T = 0.48 as non-exponential
relaxation starts to set in.

F (kkk, t = τα) = 1/e τα = τ0 exp(E/T )

T = 0.440 18.8±0.5 15.4±0.9
T = 0.480 11.5±0.3 10.6±0.6
T = 0.500 8.97±0.18 9.0±0.5
T = 0.600 4.44±0.06 4.6±0.3

of landscape influenced dynamics. The breakdown of the extrapolation is reached, when there is no
longer an overlap between the measured relaxation time (using the self-intermediate scattering function)
and the extrapolated relaxation time and their respective errors (c.f. table 2.3).

The inset of figure 2.5 tells a similar story. As long as the relaxation time is described by an
Arrhenius form, the quantity T ln(τ/τ0) is constant.With the increasing influence of the landscape, the
energy barriers sharply heighten, indicating the beginning of the landscape influenced regime. In both
figures the onset temperature can be identified as

Tonset = 0.48±0.02. (2.20)

Mode coupling temperature TMCT

As second reference point, the critical temperature TMCT of the mode coupling theory is estimated. As
aforementioned, TMCT is usually interpreted as a crossover temperature, where the kinetics change into
an activated form. It is not within the scope of this thesis to examine precisely when the theory fails.
Instead, the goal is to fix a temperature (range), at which activated dynamics take over the diffusive
behavior. Following the protocol described in refs. [20, 30, 58, 72], the relaxation times τα are fitted via
the power law

τα = A(T −TMCT )
γ . (2.21)

Although the relaxation times stay finite and do not diverge as predicted by the mode coupling theory, the
initial slow down is well described by equation (2.21) [72]. This is depicted in figure 2.6. From the fit for
temperatures T ≥ 0.400, one obtains the following values for the fit parameters: TMCT = 0.378±0.001,
γ =−1.086±0.001, and A = 0.781±0.001.

One has to keep in mind that this procedure to estimate TMCT is very sensitive to the temperatures
and the corresponding relaxation times that are used for the power law fit. In particular, the resulting
errors of the fit parameters listed above, do not reflect the actual uncertainties of the measurement.
For instance, by leaving T = 0.400 out and including all temperatures T ≥ 0.410, the relaxation
times τα are best described by the set of parameters TMCT = 0.386±0.001, γ = −1.068±0.001 and
A = 0.771±0.001. In a similar fashion, when adding an additional data point (T = 0.390), one obtains
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Fig. 2.5 The Angell plot shows the relaxation time τα as a function of the inverse temperature 1/T .
High temperatures (T ≥ 0.7, full squares) are used to fit τα to an Arrhenius form τ(T ) = τ0 exp(E/T ).
For the infinite relaxation time τ0 and the temperature independent activation energy E, one obtains
τ0 = 0.169±0.001 and E = 1.985±0.005. At lower temperatures, the material shows fragile behavior,
as the measured τα are progressively higher than the fit. The beginning of the deviation from the fit
marks the onset temperature Tonset = 0.48. Using τ0 and the constant activation energy E from the high
temperature fit, T ln(τ/τ0) is constant as long as the relaxation process shows a simple exponential
decay, as shown in the inset. At the onset temperature, one observes a sharp increase, as non-exponential
relaxation starts to set in.
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Fig. 2.6 Relaxation time τα as a function of temperature T . The initial kinetic slow down is well
captured by the power law τα = A(T −TMCT )

γ . Considering only the temperatures T ≥ 0.4 (squares),
allows an estimation for the parameters TMCT , γ and A. One obtains for the parameters TMCT = 0.378,
γ = −1.086, and A = 0.781. The dashed vertical line represents the location of the estimated mode
coupling temperature TMCT . The inset shows the same data as the main figure but on log-log scale.
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TMCT = 0.374±0.001, γ =−1.101±0.001 and A= 0.787±0.001. This underlines the crossover nature
of the critical temperature TMCT . In this temperature range, activated processes start to dominate the
diffusion and thus, the mode coupling theory fails. But as aforementioned, there is no sharp transition
with a diverging time scale. Still, by comparing the three sets of parameters one can estimate more
realistic uncertainties for every single one

TMCT = 0.378±0.008, (2.22)

γ =−1.086±0.018, (2.23)

A = 0.781±0.010. (2.24)

2.4 Inherent structures and inherent state dynamics

Most of the systems under study are prepared in the supercooled regime, between the glass transition
temperature Tg and the onset temperature Tonset . In this temperature range, the dynamics are influenced
by the underlying potential energy landscape. Most of the time, the system vibrates around a local energy
minimum and jumps only from time to time from one local minimum to another. These transition times
are negligible compared to the time spent vibrating and, hence, the jumps between local minima can be
regarded as instantaneous. This means that the diffusive behavior can be described through activated
processes. The true, Newtonian dynamics are approximated by inherent state dynamics [102]. The
inherent state dynamics are created in the following way (c.f. schema 2.7): standard molecular dynamic
simulation are used to obtain a time series of configurations at a given temperature. Each configuration is
attributed its corresponding inherent structure by minimizing the energy of the thermalized configuration
[112]. This energy minimization is also referred to as instant quench. By minimizing all the thermalized
configurations of a trajectory, one obtains another set of configurations defining the inherent state
dynamics. By studying the inherent state dynamics, it is possible to follow the system from one local
energy minimum to another.

One might rightly ask whether such an approximation is justified: in the deeply supercooled
regime, the dynamics are heavily influenced by the underlying potential energy landscape. Hence,
the approximation becomes better. At higher temperatures, close to the onset temperature Tonset , this
description of the dynamics certainly has its weaknesses. However, below the mode coupling temperature
TMCT , where activated jumps become the principle diffusional process, the approximation becomes more
accurate.

There is one more advantage to this description of the dynamics: inherent dynamics allow to focus
on the solid-like picture of liquids. This enables to study the glassy dynamics of supercooled liquids
from a mechanical point of view.

Throughout this thesis, all energy minimizations were performed using the conjugate gradient
algorithm implementation of LAMMPS and are run up to machine precision.
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Fig. 2.7 Schema to obtain the inherent state dynamics: Standard molecular dynamic simulation are
performed at a given temperature (gray arrow on the left). Periodically, snapshots are instantaneously
quenched to zero temperature (red arrows) to obtain inherent states. In phase space, inherent states
correspond to local minima of the potential energy landscape (blue line in the schema on the right hand
side).

2.5 Detection of rearrangements using the harmonic response

In the literature, several methods have been proposed and discussed to detect atomistic rearrangements
in amorphous materials [29, 32]. Though, the results are very similar [85]. First applied by Lemaître in
a slightly different context [69], using the harmonic response of atoms has proven to be a good indicator
to detect local events. In the landscape dominated regime, one studies the inherent dynamics and thus
follows the system from one local energy minimum to another. The high dimensional potential energy
landscape is approximated by a second order development around the minimum

E = E0 +
1
2 ∑
⟨α,β ⟩

∑
⟨i, j⟩

Hαiβ juαiuβ j +o(||⃗u||2), (2.25)

with the constant E0 and the displacement field u⃗. The first sum runs over all pairs of atoms α,β and the
indices i, j correspond to cartesian coordinate components. Hαiβ j stands for the corresponding element
of the Hessian H , whereby

Hαiβ j =
∂ 2E

∂uαi∂uβ j
. (2.26)

In analogy with a particle trapped in a harmonic potential V = k
2(x− x0)

2, where the force is given
by F =−k(x− x0), the Hessian H can be mapped to the spring constant. Therefore, the component of
the residual force Fαi acting on an atom α is given by

Fαi = ∑
β

Hαiβ iuβ i +Hα jβ juβ j. (2.27)
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Fig. 2.8 On the left hand side, the displacement field (magnified 500 times) between two neighboring
inherent states is shown. Remarkable is the long-range quadrupolar symmetry. It is a characteristic
feature of Eshelby inclusions (shear rearrangements) more commonly discussed in the framework of
amorphous plasticity. On the right hand side, the resulting residual forces are shown. As one can see, the
harmonic response is strongly localized on the relaxation center. Atoms with vanishing residual forces
have experienced a displacement associated with linear elasticity.

The image to bear in mind in this context is an atom connected to its neighbors through springs. Using
this method, any atomistic displacements associated with linear elasticity are filtered. The harmonic
response of these atoms is negligible. Contrary, an atom that has undergone a non-affine displacement
will experience considerable residual forces F⃗ . Thus, residual forces are strongly localized on the centers
of relaxation and they vanish in the surrounding matrix [69]. An example of the harmonic response
resulting from a thermally activated rearrangement is shown in figure 2.8.

The residual forces calculated via equation (2.27) are an atomistic observable. Often, it is of interest
not only to identify single rearranging atoms but moreover a region in space that has rearranged. For this
purpose, the residual forces (equation (2.27)) are coarse grained. The following procedure is applied:
first, a regular grid of width Rsampling is spanned over the full system; then, on every grid node a circular
inclusion (also called patch) of radius R f ree is defined. All atoms within a patch contribute with equal
weights to the coarse grained field. Finally, the average over the residual forces belonging to the same
inclusion is attributed to the respective grid node

(H · u⃗)cg(p) =
1

Np
∑

n∈patch

√
F2

nx +F2
ny, (2.28)

where p indicates the grid node and Np is the number of atoms belonging to the former. A maximum
in the (H · u⃗)cg field reveals the location of a rearrangement. Clearly, a conscious choice has to be
made for the two parameters Rsampling and R f ree. In order to be in accordance with other measurements,
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especially the local yield stress calculations (c.f. section 2.6), Rsampling = 2.5 and R f ree = 5 are used
throughout this thesis.

As aforementioned, snapshots of the system are saved at logarithmically increasing points in time.
Especially at higher temperatures, several rearrangements can occur between two snapshots. Generally
speaking, local maxima in the (H · u⃗)cg field correspond to rearrangements, but a threshold still helps to
distinguish a local maximum belonging to a rearrangement from noise in the data. The threshold needs
to be chosen carefully. If its value is too small, one might falsely detect a rearrangement, whereas for a
value too large some events will be missed. Here, the following choice is made: for each sample, the
coarse grained field of residual forces is calculated between all time wise neighboring snapshots and the
global maximum for each pair is identified. The result is a time series of global maxima of (H · u⃗)cg(t).
The threshold κ is chosen to be the minimum among all the maxima

κ = mintime(maxspace(H · u⃗)cg(t)). (2.29)

It is important to note that the minimum is with respect to time, while the maximum is with respect
to space. One advantage of this choice is that sample to sample fluctuations are considered. With the
help of the threshold κ , it is possible to assign one of the two states to all sites at any time during the
simulation: between two inherent states separated by a time interval ∆t, a site is either said to be “active”
if (H · u⃗)cg(∆t)≥ κ , or “passive” if the site does not meet the threshold value.

First passage time τFP. The previously introduced classification gives access to several observables.
Of special interest is the first passage time τFP. It is the point in time, when a site has reached the
threshold κ for the first time during a simulation run. More detailed, if (H · u⃗)cg is calculated between
two configurations at time tn and tn+1 and the value of a site is larger than the threshold κ ,

τFP =
tn + tn+1

2
(2.30)

is attributed to that site.

2.6 Implementation of the local yield stress method

As aforementioned, the local yield stress method probes the mechanical response on a local scale. In this
section, details of the implementation are outlined, which also have been also described in refs. [13, 88].
Furthermore, the physical observables accessible with this tool are introduced.

To begin, the inherent state of a system is prepared. Next, a circular inclusion with radius R f ree

(Region I in schema 2.9) is defined. Within the inclusion, atoms are fully relaxed. On the outside of
it, particles are constrained. Next, an athermal quasistatic pure shear deformation is applied. In this
formalism, two steps are alternated [80]: first, a homogeneous strain is applied to the simulation box.
In a second stage, the potential energy of the particles is minimized. Due to the applied constraints in
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Region II, atoms on the outside of the inclusion will deform in an affine manner, whereas inside the
Region I atoms can also move in a non-affine way. Upon deformation, an irreversible rearrangement of
atoms (also called local event) is forced to occur in Region I.

As a result of the randomness of the atomistic structure of amorphous solids, the mechanical response
depends on the direction of the applied shear α . A unique feature of the local yield stress method is the
access to a number of physical measurements (see schema 2.10) as a function of the loading direction.
During the deformation, the stress tensor σ (calculated using the Irving and Kirkwood formula [56]) can
be measured as a function of the applied strain γ . The shear stress τ i in the undeformed state (γ = 0), as
well as the shear stress τc at the critical strain γc, when the local event is set off is of special interest.
Between these two stress states, it is possible to define the local residual plastic strength

∆τ
c = τ

c − τ
i. (2.31)

This distance to threshold describes the amount of stress needed to locally trigger the rearrangement.
Furthermore, neglecting nonlinear elasticity, the local elastic modulus µ can be estimated via

µ =
∆τc

γc
. (2.32)

During the local event, part of the accumulated stress is dissipated into the surrounding medium. The
amount of dissipated stress is given by

∆τ
rel = τ

f − τ
c. (2.33)

After the stress drop, the deformation is continued until the shear stress starts to increase again. This
marks the final point of a local rearrangement, where the final shear stress τ f is calculated.

In section 3.2 the relation between local yield stresses and plastic rearrangements due to remote load-
ing is discussed. In this discussion, the simplifying assumption is made that elasticity is homogeneous
within the system. Using this approximation, the stress felt by a local region due to remote loading can
be estimated. Yet, one has to be conscious, that at such length scales elasticity is heterogeneous and can
lead to non-affine displacements [120]. Under the assumption of homogeneous elasticity, for a given
site a rearrangement will be activated, where ∆τc(α), projected along the direction of remote loading αl

is minimal. This may be mathematically expressed as

∆τy = minα

(
∆τc(α)

cos(2(α −αl))

)
, (2.34)

with |α −αl|< 45◦.
To balance the computational cost, two more measures are taken: first, atoms at a distance greater

than R f ree + 2Rcut from the center of the patch are deleted. This corresponds to all particles on the
outside of Region II in schema 2.9. Due to the potential cutoff at Rcut = 2.5, these particles do not affect
the atoms in Region I. Second, local yield stresses are calculated on a regular grid of size Rsampling.
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Fig. 2.9 Schematic representation of the local yield stress computation. Atoms within the Region I (radius
R f ree) are fully relaxed, whereas atoms in Region II are constrained and deform in an homogeneous
affine way due to pure shear in the loading direction α . Figure adapted from ref. [13].

If not explicitly mentioned otherwise, local yield stress calculations have been performed with
the following set of parameters: the size of the inclusion is set to R f ree = 5, and Rsampling = 2.5. This
sampling is in agreement with the harmonic response computation. For a configuration containing
10,000 atoms, this leads to a grid of size 39× 39. The local mechanical response is probed in 18
uniformly distributed directions between 0◦ and 170◦ (∆α = 10). The strain increment during the
loading procedure is ∆γ = 10−3. All minimizations are executed up to machine precision.
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Fig. 2.10 Schematic shear stress as a function of the applied strain and the physical observables which
can be measured using the local yield stress method. The nonzero prestress τ i, the critical yield stress τc

and the shear stress at the end of an event τ f are of special interest. With these three values, it is possible
to calculate the local residual plastic strength ∆τc and the relaxation amplitude ∆τrel . The ratio of ∆τc

and the critical strain γc gives an estimate for the local elastic modulus µ .
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Chapter 3

Micromechanics

3.1 Preliminary remarks

When applying a shear deformation to a material, the system’s response passes through a series of
regimes. This can be best illustrated by studying its stress response. For small strains, the stress will
increase linearly. In this elastic regime, any deformation is reversible, i.e. upon unloading, the system
returns to the same initial, undeformed configuration. For a larger deformation, the sample undergoes
the yielding transition, resulting in an irreversible deformation of the material. The nature and precise
location of the yielding transition in amorphous matter is an active field of research [84, 94, 103]. Yet,
there is a consensus in the research community that amorphous plasticity on a macroscopic level results
from the succession of atomistic rearrangements (shear transformations). Hence, it can be interpreted as
collective effect and phenomenologically described.

In this chapter, the lower limit of the continuum description is explored. The mechanical properties
of the 2D mixture are examined at length scales of approximately ten interatomic distances. The object
of study are shear transformations activated through the local yield stress method and analyzed with
tools more commonly used on the macroscopic scale. To prevent any possible confusion at a later point,
some vocabulary used throughout this part should be defined: the main feature of the local yield stress
method is to apply a pure shear deformation to an inclusion (also called small region, patch or site)
until a drop of the shear stress in the loading direction occurs. This marks the appearance of a plastic
event (rearrangement, shear transformation). During the loading, any deformation is reversible and the
system is in the elastic regime. In the present context, a site has yielded once a rearrangement occurs.
Here, it is worthwhile to mention that the inclusion is not stress free in its initial, undeformed state. It is
characterized by an internal stress, inherited from the glass preparation procedure. In the following, a
distinction is made between two quantities: the local residual plastic strength (or distance to threshold)
∆τc is the additional amount of stress needed to trigger a shear transformation. The critical local shear
stress τc corresponds to the value of the xy-component of the stress tensor along the loading direction at
the onset of the instability. In analogy to the potential energy landscape, ∆τc corresponds to the barrier
height, while τc characterizes the stress state at the saddle point.
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An important length scale of the local yield stress method is the size at which the local mechanical
response of the system is probed. Hence, its influence on the measurement is discussed first.

3.2 Length scale of the probing zone

This aspect of the discussion has been adapted from the work published in ref. [13]. The aim of this
article was to investigate the relation between local yield stress thresholds and plastic activity due to
remote loading. Among others, the effect of the size of the probing zone has been examined. Two
aspects need to be considered, when studying the size of the inclusion. On the one hand, the search
focuses on the optimal length that maximizes the correlation between plastic activity and local residual
plastic strength; i.e. to what extent the knowledge of local stress barriers, computed in the undeformed
state, gives access to the sequence of first plastic rearrangements activated upon remote loading. On the
other hand, it is of interest to understand how the size of the probing zone affects the distribution of the
local residual plastic strength.

To investigate these two aspects, three kinds of systems are prepared: a high temperature liquid
(HTL), an equilibrated supercooled liquid (ESL) and a gradual quench (GQ). The preparation of the
HTL and ESL follows the equilibrated supercooled liquid protocol. In this study, the temperature of
the HTL is T = 7.89TMCT and that of the ESL is T = 0.93TMCT . The GQ configurations were prepared
following the gradual quench protocol, previously described in chapter 2. HTL, ESL and GQ are three
highly distinct types of amorphous solids. Due to the different temperatures, at which the systems were
prepared, their level of relaxation differs. Generally speaking, the lower the temperature at which the
liquid falls out of equilibrium, the more relaxed the system. This is also reflected in the potential energy
per atom in the final inherent states

Epot =−2.3977±0.0019 for GQ, (3.1)

Epot =−2.3248±0.0015 for ESL, (3.2)

Epot =−2.1015±0.0011 for HTL. (3.3)

Plastic rearrangements are generated through remote loading. A simple shear deformation along
the loading direction αl = 0◦ is applied, following the procedure described in section 2.1. Local yield
stresses are computed in the undeformed state for five different length scales R f ree = 2.5,5,7.5,10 and
15. At the same time, the spatial resolution of the sampling grid is kept constant at Rsampling = 2.5. The
local mechanical response is probed for 18 angles, equally distributed between α = 0◦ and α = 170◦.
As aforementioned (c.f. section 2.6), the smallest positive stress barrier projected in the direction of
remote loading αl is of special interest:

∆τy = minα

(
∆τc(α)

cos(2(α −αl))

)
, (3.4)
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with |α −αl|< 45◦. To perform a robust statistical analysis, 100 initial configurations are prepared for
every quench protocol.

3.2.1 Optimal length scale of the probing zone

The size of the inclusion, Region I in figure 2.9, has a significant influence on the measurement of local
stress thresholds. This part seek to determine an optimal length scale for R f ree, by calculating several
measures of correlation between plastic activity and local yield stress thresholds, as a function of R f ree.
However, before presenting and discussing the results of this quantitative approach, one can perform
a gedankenexperiment on how the size of the inclusion affects the measurement: for small values of
R f ree → 0, no local event is possible, as the frozen boundary conditions will over-constrain the system.
In contrast, for R f ree → L/2, where L is the linear system size, no longer the local mechanical response
will be probed but moreover the macroscopic one. The optimal length scale for the size of the inclusion
will be somewhere in between: it is a compromise between a size large enough to activate a shear
transformation without over-constraining the atoms, and small enough to preserve spatial heterogeneity
of the sample.

The configurations prepared following the previously described protocols are subject to remote
loading. The material’s response is typical for amorphous solids: one observes a reversible elastic branch,
interspersed by plastic events. Previously, it has been shown that these first plastic rearrangements tend
to occur in regions of small ∆τy [88]. The relation between the location of the plastic events and the
structure of the undeformed configuration can be quantified using the following equation

C∆τy = ⟨1−2CDF(∆τy;γxy)⟩ . (3.5)

CDF(∆τy) is the cumulative distribution function of projected stress thresholds ∆τy computed in the as
quenched state and ⟨. . .⟩ denotes the ensemble average. If for a given strain γxy, a plastic rearrangement
is detected, the corresponding site contributes to the calculation of C∆τy . By design, C∆τy is close to 1 if
the event occurs in one of the weakest sites, where the stress threshold is small. A value of C∆τy = 0
indicates that there is no significant relation between the location of plastic rearrangements and ∆τy.
Equation (3.5) considers neither the renewal of thresholds after an event nor the elastic noise due to
previous plastic rearrangements. Figure 3.1 shows C∆τy as a function of the applied strain γxy for the
three systems under investigation. The data presented is calculated with the radius of the inclusion set
to R f ree = 5. As one can see, the amplitude of the correlation coefficient depends on the preparation
protocol. The more relaxed the system, the higher the correlation. In the small strain limit (γxy → 0) a
value of C = 0.67, 0.79 and 0.89 is measured for the HTL, ESL and GQ system, respectively. With an
increase of the applied strain, the system loses the memory of the initial configuration. As a result, the
correlation decreases. The protocol dependence of the correlation amplitude can also be alternatively
quantified by looking at the location of the first ten plastic rearrangements. These local events occur in
zones, belonging to the softest 23, 13 and 8.5% of sites for the HTL, ESL and GQ systems, respectively.
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Fig. 3.1 Correlation between the location of the first plastic events and their corresponding value of ∆τy

using eq. (3.5). The size of the inclusion is set to R f ree = 5. The arrows indicate the average strain of the

tenth plastic rearrangement. The solid lines result from an empirical fit f (γxy) = A+Bexp
[
−(γxy/γd)

2
]
.

Using the fit, the decorrelation strain γd can be estimated.

Interestingly, one observes a drop in the correlation coefficient for GQ at approximately γxy = 0.04. At
this amount of strain, one observes a softening of the material due to the localization of deformation.

Three correlation indicators are calculated and their dependence on the size of the inclusion R f ree is
examined, to determine the optimal size of the inclusion. The three measures are: first, the location of
the first plastic rearrangement and its corresponding value of ∆τy. Second, a characteristic deformation
strain γd , where the material has forgotten its undeformed configuration and third, the average correlation
over a strain window. All of these measures are based on equation (3.5).

The first correlation indicator studied as a function of R f ree, is the value of C∆τy for the first plastic
event that occurs due to the remote loading C∆τy(γ → 0+). As expected, the correlation strengthens con-
siderably as R f ree is increased. With the enlargement of the radius, more elastic loading heterogeneities
are integrated into the patch. As a result, the loading applied to the inclusion will converge towards the
remote loading procedure. Hence, with increasing R f ree, it becomes easier to identify the weakest site
that will rearrange first. Furthermore, regardless of the the system preparation, a significant decrease in
the correlation C∆τy(γ → 0+) is observed for the smallest calculated inclusion size (R f ree = 2.5). This
can be explained by the frozen boundary conditions that over constrain the patch and, thus, influence the
measurement significantly. The behavior of this first correlation indicator is reported in the top part of
figure 3.2.

The second correlation indicator that is estimated is the amount of strain needed, until the glass has
forgotten its initial, undeformed configuration. As shown in figure 3.1, the data points obtained from
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Fig. 3.2 Three correlation indicators computed as a function of the size of the probing zone R f ree. Top:
correlation between ∆τy and the location of the first plastic rearrangement. Middle: decorrelation strain.
Bottom: averaged correlation over a strain window.

equation (3.5) are well described by the empirical law

f (γxy) = A+Bexp

[
−
(

γxy

γd

)2
]
, (3.6)

where γd is interpreted as a decorrelation strain. At this degree of deformation, the system has lost its
memory of the as quenched state. As illustrated in the middle part of figure 3.2, the decorrelation strain
decreases for larger radii. This can be explained as follows: smaller probing zones allow a higher spatial
resolution and can, for instance, take into account harder zones that get advected due to the remote
loading.

The third and last indicator considered is the average correlation between the location of the plastic
rearrangements and the initial structure over a strain window. Mathematically speaking, equation (3.5)
is integrated over a certain amount of deformation γ⋆

⟨C⟩= 1
γ⋆

∫
γ⋆

0
C dγxy. (3.7)

In the present study, γ⋆ is chosen to be the largest aforementioned decorrelation strain

γ⋆ = γd(R f ree = 2.5). (3.8)
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As shown in the bottom part of figure 3.2, overall, the average correlation decreases, the larger the
inclusion is. Yet, both HTL and GQ have their maximum for R f ree = 5.

From the three correlation measures discussed above, one can conclude that a size of the inclusion
with R f ree = 5 is a good compromise in terms of the correlation between the plastic activity and the
projected stress threshold field ∆τy. This length scale allows a precise prediction of the first plastic
events, while the overall heterogeneous structure of the amorphous material is still preserved.

3.2.2 Statistical size effects

As an example, maps of ∆τy for different values of R f ree, computed for the same GQ initial configuration,
are shown in the top row of figure 3.3. One observes that the amplitude of local yield stress is controlled
by the weakest zone in a patch. With an increase of R f ree, these zones enlarge their area of influence as
they become more dominant. This effect leads to an overall modification of the statistics of the stress
thresholds. As R f ree is increased, the distributions are shifted considerably to smaller values of ∆τy

(see. figure 3.4). One can try to reproduce the maps calculated with R f ree = 7.5,10 and 15 from the one
computed with R f ree = 5, by making a simple geometrical argument: all grid nodes take the value of
the smallest local minimum located inside a disk of radius R f ree. This approach shows a remarkable
agreement with the actual local yield stress maps calculated, as can be seen by comparing the top and
bottom row of figure 3.3. This promising results allows to go a step further and use the same procedure
to deduce the distributions of R f ree = 7.5,10 and 15 from the one computed for R f ree = 5. As reported
in figure 3.4, the actual calculated distributions and those estimated show a satisfactory superposition.
However, the agreement is less good for the HTL, which has been prepared at a higher temperature, and
larger radii. This can be explained on the one hand by the larger elastic disorder, and on the other hand
each single local minimum becomes less dominant due to the initially overall narrower distribution.

It can thus be concluded that the variation of ∆τy is dominated by statistical effects. The increase of
R f ree acts as a low-pass filter for the stress thresholds, shifting their distributions towards smaller values.

3.3 Characterization of local rearrangements

In the previous section, the optimal size of the probing zone was determined. Furthermore, the effect of
this length scale on the ensemble of local yield stress thresholds was investigated. This section focuses
on plastic rearrangements that occur when applying the local yield stress method and their comportment
upon a variation of the loading conditions.

To properly characterize local events, first, the behavior of τc as a function of the loading direction
α is studied. Next, the variation of the critical shear stress in space is examined. Lastly, the pressure
dependence of τc is investigated. For this purpose, a single configuration containing 10,000 atoms is
prepared following the previously described GQ protocol. With this preparation protocol, a stable glass
is obtained. Throughout this part, local stress calculations are performed with a set of precise parameters:
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Fig. 3.3 In the top row local yield stress maps of the same GQ configuration are shown for values of
R f ree = (a) 5, (b) 7.5 (c) 10 and (d) 15. Bottom row: from panel (a) deduced local yield stress maps
making a geometrical argument.

Fig. 3.4 Probability distribution function of ∆τy for the three preparation protocols and three patch sizes.
The lines are obtained from the distribution calculated with R f ree = 5 as well as a geometrical argument
outlined in the text and exemplified in the bottom row of figure 3.3.
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Fig. 3.5 Critical local yield stress for a particular inclusion of a GQ configuration as a function of the
loading direction α . Eye catching is the juxtaposition of (partial) wells. Every one of them belongs to
the same local rearrangement. Due to the amorphous nature of the object of study, τc does not show any
elastic symmetry. Lastly, the loading protocol yields periodic boundary conditions. The well that begins
on the far right hand side continues on the left hand side at α = 0.

the local response is probed along 180 direction between α = 0◦ and α = 179◦ with ∆α = 1◦. The shear
increment is set to ∆γ = 10−4. The size of each patch is set to R f ree = 5.

3.3.1 Angular dependence of local yield stress thresholds

Figure 3.5 shows the critical yield stress τc of a single inclusion as a function of the loading direction α .
A first noticeable feature is the juxtaposition of stress wells as a function of α . The transition between
two wells is either smooth or marked by a sharp discontinuity. Second, the critical yield stress τc(α)

does not show any symmetry, as a consequence of the underlying amorphous atomistic structure. Its
value depends only on the orientation of the loading direction α considered. The final remark concerns
the periodic boundary conditions along the loading direction. Due to the π-symmetry of the applied
deformation, a loading along α and α +π yields the same result. Hence, in the representation of figure
3.5, the well that starts on the far right hand side continues on the left hand side at α = 0◦.

Each well belongs to the same shear transformation. This becomes even clearer when looking at
the non-affine displacement field of the instability, i.e. the loading step at which the stress drop occurs.
Non-affine implicates that the applied deformation is already subtracted. From a technical stand point,
one obtains this displacement field by storing the atom positions before and after the minimization step
of the athermal quasistatic shear protocol. The normalized dot product C measures the similarity between
two displacements fields u⃗(α1) and u⃗(α2) resulting from loading the inclusion into two directions α1
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Fig. 3.6 The colormap represents the normalized dot product of the non-affine displacement field at
the onset of the instability between two loading direction α1 and α2. Red triangles indicate a high
correlation coefficient. The system has been loaded towards the same instability. The superposed blue
data points correspond to the critical local yield stress of the inclusion, also shown in fig. 3.5. The wells
of τc coincide with the red triangles.

and α2:

C(α1,α2) =
1
N

N

∑
i=1

u⃗i(α1) · u⃗i(α2)

|⃗ui(α1)||⃗ui(α2)|
, (3.9)

where N is the number of atoms in the patch. A value of C close to 1 indicates the inclusion is loaded
towards the same instability for both directions α1 and α2. Figure 3.6 shows C for the previously
discussed inclusion. The red triangles correspond to a high correlation coefficient. As one can see, their
angular range coincides with the critical shear stress wells. A discontinuity of the critical shear stress is
accompanied by a sharp drop in the dot product.

As there is only a finite number of stress wells, only a limited number of shear transformations
over the full loading range is accessible. Two things can be pointed out about the discrete number of
rearrangements: first, this observation is a manifestation of discrete effects. The size of the inclusion
under study (approximately ten interatomic distances) is clearly at the lower limit of the continuum
description. Second, this juxtaposition of stress wells is very reminiscent of slip planes of dislocations
in crystals, where due to the long range order, a dislocation can only slip along specific directions.

To summarize, by loading an inclusion in 180 directions, one can see that the local critical shear
stress depends on the loading direction and shows no symmetry. Yet, over a range of loading angles,
the patch is loaded towards the same instability. This can be verified by looking at the non-affine
displacement of the instability. From this observation, one can conclude that there are only a discrete
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Fig. 3.7 Critical shear stress τc as a function of the loading directions α , for five patches, where the
center has been slightly displaced (x±1 and y±1). The radius of a inclusion is R f ree = 5, so there is a
significant overlap between the patches.

number of rearrangements accessible. For each one of these rearrangements, the local critical shear
stress shows a characteristic stress well.

3.3.2 Spatial resolution of local yield stress thresholds

In the previous section, the angular dependence of local stress thresholds was investigated. In this part,
the aim is to examine the variation of the critical yield stress in space. The center of the inclusion is
slightly displaced and then loaded again in 180 directions. For this purpose, the center point of the
patch is moved x±1 and y±1 with respect to the initial position of the inclusion. As the radius of the
inclusion is R f ree = 5, there is a significant overlap between the patches. In figure 3.7, the critical shear
stress is shown for the five overlapping inclusions. It becomes immediately evident, that the same wells
appear multiple times, sometimes slightly shifted. This suggests that the same local event is activated
multiple times.

As before, the dot product (equation (3.9)) is used to measure the similarity between the displacement
fields of two patches. Only the common atoms between two inclusions contribute to C. For instance, for
(x,y)α1 = 47◦ and (x−1,y)α1 = 49◦ a correlation coefficient of C = 0.86 is found. At the same time,
the critical shear stress threshold is ∆τc(α1) = 1.51 and ∆τc(α2) = 1.39, thus lower in the second case.
Looking at the displacement fields (c.f. figure 3.8), one can see that in the second case (x−1,y) the
rearrangement is located closer to the center of the inclusion. As a result, the rigid boundary conditions
surrounding the patch have less influence on the local shear transformation, resulting consequently in a
lower stress barrier.
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(x− 1, y), α = 49◦, ∆τc = 1.39 (x, y), α = 47◦, ∆τc = 1.51

Fig. 3.8 Although the center of the inclusion is slightly displaced between the two inclusions, the same
shear transformation is activated. For this example a correlation coefficient of C = 0.86 is found. The
measured stress barrier is lower on the left hand side. This is attributed to the fact that the rearrangement
is closer the center of the patch (red dot).

From this observation it can be concluded that the same shear transformation is in fact activated
multiple times for overlapping patches. Moreover, these results suggest that the glassy structure is made
up of a collection of soft spots. Each one of them is characterized by a weak plane and a critical shear
stress. The local yield stress method allows to scan the glassy structure and reveals the presence of
these soft spots. Consequently, the question arises, if the density of these shear transformations can be
estimated.

3.3.3 Pressure dependency of local yield stress thresholds

Dislocations in a crystal interact only weakly with a pressure field [103]. In contrast, experimental studies
have revealed that the yield stress of metallic glasses differs under tensile loading and compression
[75, 76]. Hence, the question arises how the local critical shear stress depends on the pressure.

The surface of the simulation box can be rescaled in two dimensions to induce a pressure variation.
This makes it possible to study the pressure dependency of the shear events. In the following, a label of
+δ% implies that the surface has been increased by δ%. Likewise, −δ% indicates a surface reduction
by δ% with respect to the undeformed simulation box.

Figure 3.9 shows the critical shear stress of the same patch as previously but for three different
deformations δ%. As expected, a tighter packing (δ < 0) is accompanied by larger values of τc. At
the same time, a pressure reduction (δ > 0) leads to lower critical stress values. Additionally, with the
looser packing, the stress landscape becomes smoother: the local minima are less pronounced and the
amplitude of the jumps at a discontinuity is smaller compared to the undeformed simulation box. Yet, it
is possible to identify the same well for different pressure values. Hence, the same rearrangement is
activated for different pressures. However, the angular range over which the same event is triggered,
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Fig. 3.9 The critical shear stress τc shows a high pressure sensitivity. An increase of the surface of
the simulation box δ =+5% lowers the yield stress considerably. On the contrary, a tighter packing
increases the critical shear stress (here as an example δ =−5%). A change of pressure can make new
rearrangements accessible as wells appear and disappear as a function of δ .

is not fixed. The angular range of a weak plane can either increase or decrease as well as drift slightly
as the pressure changes. Furthermore, it is possible that between two existing wells a new (partial)
well appears as the pressure is increased or decreased. In other words, a new rearrangement becomes
accessible as pressure is applied or released on the system. Overall, the response of τc to a change of the
simulation box indicates a coupling between the critical shear stress and hydrostatic pressure p.

3.3.4 Yield criterion

In the previous parts, it was shown that only a limited number of shear transformations is accessible.
Hereinafter, the comportment of the critical shear stress τc for a single rearrangement will be elucidated
and explained using a yield criterion. More commonly, yield criteria are applied on macroscopic length
scales, where the mechanical properties of the material are well described by continuum mechanics.

In the continuum description of solids, the stress tensor can be used to define a space, where the
principal components are the orthogonal axes. Any stress state of the system can be mapped to a point
in this space. Through deformation, the system can explore the stress space [71]. Within this space
lays a surface, called yield surface, that separates the elastic from the plastic regime. Below the surface,
any deformation is reversible, while the system is irreversibly deformed as soon as it touches the yield
surface. An equation describing the yield surface is called yield criterion. In crystalline materials,
the fundamental process of deformation is the motion of dislocations. This mechanism shows a weak
pressure dependence. Hence, the yield surface of crystals is characterized by a criterion that neglects any
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pressure dependence and focuses on the maximum shear stress. Examples of such criteria are the von
Mises or Tresca yield criteria [75]. However, the situation is different for amorphous materials; e.g. in
metallic glasses, the pressure has an important influence on plastic deformation [76]. As also previously
discussed in figure 3.9, the critical shear stress τc shows a strong pressure dependence. Additionally,
the existence of stress wells excludes a homogeneous von Mises yield criterion, as it is intrinsically
isotropic. In that case, the critical yield stress would not depend on the loading direction α . Therefore,
a yield criterion that incorporates the pressure dependency as well as the anisotropy is needed. In the
present study, the Mohr-Coulomb yield criterion

τ
c = τ0 −ϕ p, (3.10)

is applied. τc is the critical shear stress at which failure occurs and τ0 and ϕ are two parameters. The
latter controls the influence of the pressure p =−σxx+σyy

2 . Previously, the Mohr-Coulomb yield criterion
has proven to accurately describe the yield surface of a metallic glass subject to a variety of biaxial stress
states [76]. Especially, the Mohr-Coulomb criterion accounts for the asymmetry between the magnitude
of the yield stress in tension and compression. However, there are also other yield criteria available.
For example, in ref. [95] a pressure modified von Mises criterion is used to characterize an amorphous
polymer glass under various deformations.

Equation (3.10), with its parameters τ0 and ϕ , describes the critical shear stress for one loading
direction. As previously discussed and shown, the same local event is activated for multiple loading
angles α . A single set of parameters τ0 and ϕ should detail the same shear transformation. To describe
a rearrangement with the same parameters, the stress tensors, measured for various angles α , must
be projected onto a common direction θ . The angle θ is the characteristic weak plane of the shear
transformation. For the shear component of the stress tensor, this projection is given by

τ
c(θ) =

σ c
yy(α)−σ c

xx(α)

2
sin(2(θ −α))+ τ

c(α)cos(2(θ −α)) (3.11)

By combining equation (3.10) and (3.11) one obtains for the yield criterion

τ
c(α) =

τ0 −ϕ p
cos(2(θ −α))

−
σ c

yy(α)−σ c
xx(α)

2
tan(2(θ −α)). (3.12)

Before applying equation (3.12) on the simulation data, a couple of remarks must be listed: the
1/cos(2(θ −α)) dependency in first term on the right hand side can be understood as the penalty of
shearing in an suboptimal direction. More figuratively speaking, the inclusion is most easily deformed
(smallest critical stress) in the direction of the weak plane θ . If the patch is loaded in a suboptimal
direction, more effort (higher critical stress) is needed to activate the same rearrangement. The second
term on the right hand side has two origins: on the one hand, the anisotropic response of the material
leads to a variation of the components σ c

xx and σ c
yy of the stress tensor. On the other hand, this term

accounts also for the non-zero pre-stresses in the probe.
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Fig. 3.10 The same inclusion as previously under study is loaded in 180 directions for five different
levels of pressure varying between δ = −2% and δ = +2% (black points). Ten rearrangements are
identified and then fitted via the Mohr-Coulomb yield criterion (colored triangles). The values of the fit
parameters are listed in table 3.1.

For the following analysis, the same inclusion as before is examined. Five pressure levels are
considered as the size of the simulation box surface varies between δ =−2% and δ =+2% with steps
of δ = 1%. The following steps are performed to detect local shear transformations: first, for every
single pressure level, two neighboring critical shear stress values τc(α) and τc(α +1) do not belong
to the same local event if one of them is either a local maximum or the computed correlation field
C(α,α +1)< 0.8. This separates the wells for a given pressure level. Then, for a given α , if a shear
transformation has been identified in two adjacent pressure levels, the two data points are attributed to
the same local event. Shear transformations with less than ten data points are neglected in the following
analysis. With this algorithm, ten rearrangements were selected for the inclusion under study.

After the correct identification of the wells, all data points belonging to the same event are fitted using
equation (3.12). Overall, the measured values of the critical local yield stress and the fitted data show a
high degree of agreement (c.f. figure 3.10). Piecewise, τc is accurately described by a Mohr-Coulomb
yield criterion. Sometimes, the fit shows larger discrepancies towards the angular boundaries of a local
event. This is possibly due to competing effects between neighboring shear transformations.

Additionally, this particular inclusion seems to be particularly homogeneous: the values of τ0 (c.f.
tab. 3.1) show only a small variation for the ten events (mean: 1.24, standard deviation: 0.16, min: 0.93,
max: 1.47). This observation holds even more for the pressure influence parameter ϕ ( mean : −0.24,
standard deviation: 0.05, min: −0.31, max: −0.16).
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Table 3.1 For the inclusion shown in figure 3.10, ten rearrangements were identified and fitted with the
Mohr-Coulomb yield criterion (equation (3.12)). The resulting fit parameters τ0 and ϕ are listed in the
table below.

θ [◦] τ0 ϕ

a 6±6 1.15±0.27 −0.21±0.12
a 14±11 0.93±0.28 −0.16±0.15
a 56±14 1.10±0.32 −0.20±0.15
a 69±60 1.28±0.66 −0.26±0.41
a 65±33 1.23±0.42 −0.17±0.36
a 87±24 1.47±0.41 −0.31±0.22
a 106±35 1.34±0.62 −0.31±0.27
a 114±15 1.39±0.50 −0.26±0.17
a 139±10 1.32±0.30 −0.22±0.15
a 154±7 1.20±0.28 −0.25±0.13

Hitherto, the analysis focused on a single inclusion: a circle of radius R f ree = 5 containing 80 atoms.
Naturally, one would like to extend the study to the entire sample to answer the following questions:
what is the number of weak planes in the full system? In other words, how many shear transformations
are accessible? What are the distributions of the two parameters τ0 and ϕ? How does the number of
encoded shear transformations change with the preparation of the sample, e.g. for supercooled liquids at
different temperatures?

Heretofore, there are no answers to these questions. The difficulty remains to accurately and
automatically detect the wells, i.e. the shear transformations. In the following section, first, an example
will be given that illustrates the problem. Subsequently, possible solutions will be proposed and
discussed.

3.3.5 Problems to detect wells in the shear stress landscape

Until now, the analysis discussion has focused on a single inclusion. This is due to the fact, that the
critical shear stress τc does not show the behavior depicted in figure 3.10 for all patches. For other
inclusions, there are hardly any wells in the critical shear stress landscape identifiable (c.f. figure 3.11).
Remarkably, the vertical shift due to a pressure change is still observable for most loading directions.
Yet, the dot product C between the displacement field of two instabilities shows the characteristic red
triangles (see figure 3.12). Measurements, as shown in figure 3.11, make it difficult to automatically
detect shear transformations. In the following section, an explanation for these observations is given.
Afterwards, possible solutions are proposed.

51



Micromechanics

0 20 40 60 80 100 120 140 160 180
α

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

τ
c

δ = −2%
δ = −1%
δ = 0%
δ = +1%
δ = +2%

Fig. 3.11 Example of an inclusion, for which it is difficult to identify wells in the critical shear stress
landscape.
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Fig. 3.12 Although, the critical shear stress does not show the typical wells (c.f. figure 3.11), the dot
product of the displacement field of two instabilities C shows the characteristic red triangles. As an
example, C is shown for δ = 0% for the same inclusion depicted in figure 3.11.
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3.3.6 Suggested solutions

The local yield stress method allows one to look at the atomistic structure of a glass through a mesoscope
- it unveils the shear transformations encoded into the glassy structure. Yet, to continue the analogy,
the mesoscope seems to be sometimes out of focus, as some inclusions do not show the characteristic
stress wells. One can try to focus on a shear transformation by adjusting the position or the size of the
inclusion. Yet, this approach is not easily feasible to perform a statistical analysis.

There are several approaches to deal with these difficulties: one can use the local yield stress
method in its current implementation and try to clean up the data i.e. eliminate the data points that
do not correspond to characteristic wells. Alternatively, one can also try to improve the local yield
stress method: the goal is to place the inclusion in a more natural environment and remove the frozen
boundaries. At the same time, it is desirable not to lose control over the size of the inclusion. A shear
transformation should still only be activated within a predefined length scale.

A simple means to limit the influence of the frozen boundaries is to increase the size of the inclusion.
However, this comes with two caveats: first, as aforementioned, a larger patch acts as a low pass filter.
Within a given site, only the smallest stress barrier can be detected. Hence, a larger patch size reduces
the spatial resolution, as rearrangements, characterized by larger stress barriers cannot be identified.
Additionally, there is no guarantee that the weakest stress shear transformation is close to the center of
the inclusion. Thus, the problem of the frozen boundaries persists.

In another attempt to improve the measurement, the criterion to detect a local event was changed.
Instead of a drop in the shear component of the stress tensor, a reduction of the von Mises stress

σvM =

√(
σyy −σxx

2

)2

+σ2
xy (3.13)

signals the occurrence of a plastic rearrangement. This however, has only minuscule effects on the
resulting measurement itself. The aforementioned problems recur.

A more promising approach seems to improve the method itself by removing the frozen boundaries.
The idea is to place the inclusion in a continuous elastic medium. Thereby, a local event is forced to
occur within the patch, where the atoms are fully relaxed. While the principal idea of an elastic medium
is compelling, its implementation has its challenges. For instance, the elastic matrix surrounding the
patch can be modeled by replacing the Lennard-Jones interactions with harmonic springs. However,
this leads - for certain distances - to an unphysical model with a negative spring constant. This can be
overcome by replacing the Lennard-Jones potential in this range by a polynomial function of higher
order. A drawback of this approach is that a priori there is no cut off for the elastic medium. One has to
deal with the entire sample. The local yield stress method loses one of its features: being computationally
efficient by dividing the system into small parts and parallelizing the calculation.
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3.4 Conclusions

In chapter 1, it was pointed out that plasticity in amorphous materials is an active field of research.
Due to the lack of long range order, there are an overwhelming number of degrees of freedom on the
atomistic level. Trying to capture and describe all this information to understand the material’s behavior
on the macroscopic level is in vain. Therefore, it is desirable to have an observable on the mesocopic
scale, which filters out the relevant information of the microscopic level. Local yield stresses prove to be
a promising candidate.

In the first part of this chapter, an optimal size for the inclusion size of the local yield stress method
is estimated. For this purpose, three correlation indicators that assess the relation between local yield
stresses and the location of plastic rearrangements forced by remote loading are calculated. From the
results obtained, one can conclude that a radius of R f ree = 5 is a good compromise: such an inclusion
size captures the spatially heterogeneous nature of the underlying structure, while at the same time, the
patch size is large enough so that the frozen boundaries do not over constrain the system and severely
influence the measurement.

Next, the distributions obtained from different values of R f ree are compared. Additionally, it is
shown, that a model, based on the weakest link assumption, can be used to derive the distributions for
R f ree > 5 from the one calculated for R f ree = 5. This model also explains that a larger probing radius
acts as a low pass filter, since only the smallest stress barrier within a inclusion is detected.

In the second part of this chapter, the object of study are shear transformations activated through the
local yield stress method. It is demonstrated that the critical yield stress is sensitive towards the loading
direction α , the overall position of the inclusion and the pressure in the simulation box.

The local yield stress method allows to look at the atomistic configuration of a glass through a
mesoscope like apparatus - it unveils the shear transformations encoded into the glassy structure. One
can see, that for inclusions with a diameter of approximately ten interatomic distances, discrete effects
play a significant role. For a local region, a finite number of configurations are accessible through a
shear deformation. Over a range of loading directions, the same instability is activated. This observation
is evocative of slip planes of dislocations in crystalline materials.

Furthermore, the critical local shear stress is sensitive towards the pressure in the simulation box. A
higher pressure is accompanied by a higher critical shear stress. Additionally, the critical local shear
stress of one shear transformation for several pressure levels, is well described by the Mohr-Coulomb
yield criterion. The notion of yield criteria has its roots in the description of a material’s mechanical
response on a macroscopic level. Since the size of a patch is at the lower limit, at which a continuum
mechanics description can be applied, the characteristic 1/cos(2(θ −α)) dependency is not observed
for all local rearrangements. In addition, in the current implementation of the local yield stress method,
the frozen boundaries constrain the patch and can influence the resulting measurements. This chapter
concludes with a series of suggestions how the method itself can be enhanced, by placing the inclusion
in an elastic medium.
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Chapter 4

Relation between local yield stresses and
the dynamics of supercooled liquids

4.1 Preliminary remarks

Over the last 10-15 years, many different order parameters (also called structural indicators) have been
proposed to capture the subtle structural change a liquid undergoes upon cooling. The argument put
forward is usually based on the capability of the order parameter to predict the kinetics of a supercooled
liquid, when only the initial configuration of the material is known. The aim is to show, for instance,
that dynamical heterogeneities can already be seen in the initial configuration, when applying the right
structural measure. Most of the proposed order parameters have a common denominator: they do not
allow any conclusion on the nature of the actual relaxation mechanism [69]. This, however, is needed to
better understand structural relaxation itself and lead the way to new theoretical ideas to elucidate the
glass transition.

In this thesis, a viscous supercooled liquid is regarded as a solid which flows [38, 69]. Adopting this
point of view allows to explain structural relaxation using the mechanical properties of the system in its
inherent state [1, 74, 119]. This approach lead, for instance, to the development of the shoving model,
previously described in chapter 1. Moreover, it was shown that structural relaxation in supercooled
liquids can be seen as a series of Eshelby events that introduce long range stress correlations [69]. More
commonly, Eshelby events are discussed in the context of plasticity of amorphous solids [70, 80].

In this part, the dynamics of three different supercooled liquids are studied as a series of inherent
structures. The succession of local minima of the potential energy not only eliminates thermal vibrations,
but enables to focus on the mechanical description of supercooled liquids. The novelty in the present
study is given by the characterization of the structure using local yield stresses. Local yield stresses have
not only shown a high predictability of mechanically activated events, but they also allow a judgment on
the nature of the rearrangements. By design, they are shear transformations.

In this chapter, the connection between local yield stresses and the dynamics of glassy systems is
investigated. The main focus is to test the capability of local yield stresses to predict the dynamics.
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4.2 Simulation setup

All measurements and observations presented in this chapter were obtained from the following setup
of simulations: three temperatures were chosen (T = 0.32, T = 0.351 and T = 0.5), to cover a wide
range of the supercooled regime. The lowest temperature at T = 0.32 ≃ 0.85TMCT is located in the
deeply supercooled regime. Activated processes dominate the relaxation process. In contrast, the highest
temperature T = 0.5 ≃ 1.04Tonset is close to the onset temperature Tonset . At this temperature, activated
dynamics start to set in, but they are not the dominant contribution to diffusive behavior. The third
temperature T = 0.351 ≃ 0.93TMCT is in between the two. At each temperature, 20 configurations
containing 104 atoms each were equilibrated. To limit the influence of thermal fluctuations, molecular
dynamics simulations were performed in the isoconfigurational ensemble. For every initial configuration,
100 independent equilibrium molecular dynamics runs were performed using randomized starting
velocities. For the molecular dynamics simulations, the integration step was set to dt = 0.01 and the
simulated time span (in Lennard-Jones units) was 106 for T = 0.32, 104 for T = 0.351 and 103 at the
highest temperature T = 0.5. Snapshots of the system were saved at logarithmically increasing time
points. Nine configurations per decade are stored.

Local yield stresses are calculated for the initial inherent structures. Contrary to mechanically
activated rearrangements, thermally induced excitations are statistically isotropic, in the sense that they
do not have a preferred direction. Moreover, for activated dynamics, it is expected that the smallest
accessible barrier dominates the transition statistics. Thus, a new observable ∆τc

min is introduced. ∆τc
min

is the minimum measured local yield stress barrier among all of the probed directions

∆τ
c
min = minα(∆τ

c(α)). (4.1)

∆τc
min is sensitive towards the temperature at which the liquid was prepared. Figure 4.1 shows the

distribution of ∆τc
min for the three investigated temperatures. As one can see, the lower the temperature

the more the distribution is shifted towards larger values of ∆τc
min.

Before starting to examine the correlation between local stress barriers and the dynamics, some
time scales for the binary mixture at these three temperatures are introduced. Figure 4.2 shows the
self-intermediate scattering function for the three temperatures. Using the self-intermediate scattering
function, one can deduce the macroscopic relaxation time, as described in section 2.2

τα = 12,100±355 for T = 0.32, (4.2)

τα = 289±4 for T = 0.351, (4.3)

τα = 8.97±0.18 for T = 0.5. (4.4)
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Fig. 4.1 Probability distribution of ∆τc
min for the three investigated temperatures. The dotted lines

correspond to the mean value of the distribution ⟨∆τc
min⟩= 0.94, 0.71 and 0.51 for T = 0.32, 0.351 and

0.5, respectively.
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Fig. 4.2 Self-intermediate scattering function for the three temperatures under investigation. The arrows
indicate the macroscopic relaxation time τα = 9, 289 and 12072 from highest to lowest T .

In figure 4.3, the average mean squared displacement

⟨rrr2⟩=
〈

1
N

N

∑
i=1

|rrri(t)− rrri(0)|2
〉

(4.5)

is reported. Similar to the self-intermediate scattering function, one can identify different regimes.
Through the change of slope one can distinguish the ballistic regime on short time scales and the
diffusive behavior at long time scales [18]. Similar to the self-intermediate scattering function, the two
regimes are separated by a plateau at lower temperatures. Its length corresponds to the time molecules
need to break out of the cage formed by their neighbors.
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Fig. 4.3 Mean square displacement ⟨rrr2⟩ as a function of time on log-log scale. On short time scales,
molecules rattle in the cages formed by their neighbors (ballistic regime). On long time scales, a diffusive
behavior sets in. At lower temperatures, similar to the self-intermediate scattering function, a plateau
separates the two dynamic regimes.
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4.3 Correlation between local yield stresses and the dynamics of super-
cooled liquids

In this part, the correlation between local yield stresses and equilibrium dynamics is presented. Local
yield stresses are calculated in the initial inherent state. Their evolution in time is not considered
throughout this part. The dynamics of a supercooled liquid can be captured by various physical
observables. In the present case, three of them are chosen: the first passage time τFP, the local relaxation
time τ i

α and the dynamic propensity D . Their connection with local yield stresses is quantified through
correlation coefficients (c.f. section 4.3.2 ). In the following section, 4.3.1, the correlation between local
yield stresses and the location of local events on short time scales is examined.

4.3.1 Local yield stresses and the location of local rearrangements

A first approach to analyze the correlation between local yield stress thresholds and dynamics is to
compare the former to the location of local rearrangements in the system. On short time scales, events
are expected to primarily occur in zones of small local yield stresses. Figure 4.4 shows a local yield
stress ∆τc

min map of a supercooled liquid equilibrated at T = 0.32. Additionally, black circles indicate
the location of the first ten rearrangements, numbered in order of appearance. These were detected from
a single simulation run, using the aforementioned coarse grained harmonic response. As one can see,
most local events occur in blueish regions, characterized by small values of ∆τc

min.
To further quantify the connection between local yield stress thresholds and the location of local

events, the same method as in ref. [13, 88] is applied. A rank correlation coefficient C is computed from
the cumulative distribution function of local yield stress thresholds CDF(∆τc

min)

C (∆τ
c
min) = ⟨1−2CDF(∆τ

c
min)⟩ . (4.6)

At a site, where a local rearrangement was detected, the corresponding value of CDF(∆τc
min) contributes

to C . ⟨. . .⟩ denotes the ensemble average. By design, C is close to 1 (-1), if an event occurs in a region
of small (large) ∆τc

min. A value of C = 0 means that there is no valuable relation between local yield
stresses and the location of rearrangements. It has to be mentioned that equation (4.6) takes neither
the renewal of sites nor the elastic noise of rearrangements into account as the cumulative distribution
function is only calculated from the as quenched, initial inherent state.

Figure 4.5 shows C as a) a function of time and b) as a function of the total number of occurred events.
In both graphs, the correlation shows a strong temperature dependence. The lower the equilibration
temperature, the higher the correlation, the slower the decay of C . The higher correlation at lower
temperatures can be explained as follows: the kinetic behavior is modeled through an activated process.
The picture of a system vibrating a long time around a local minimum and only jumping from time to
time from one inherent state to another, becomes more accurate as the temperature is lowered. In this

60



4.3 Correlation between local yield stresses and the dynamics of supercooled liquids

1

2

3

4

5

6

7

8

9
10 0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

∆
τ

c m
in

Fig. 4.4 Local yield stress ∆τc
min map of a configuration equilibrated at T = 0.32. The location of the first

ten rearrangements detected from a single simulation run are indicated by the black circles (numbered in
order of their appearance). The events occur primarily in blue regions, corresponding to small values of
∆τc

min.

description, the height of the barrier ∆ contributes exponentially to the escape probability

p ∝ exp
(
−∆

T

)
. (4.7)

In other words, the system is much more likely to escape over the smallest barrier than any other.
Generally speaking, a lower equilibration temperature leads to, on average, larger barriers. Hence, the
global minimum becomes more pronounced and completely dominates the escape probability. Contrary,
at higher temperatures there are more often several barriers of similar height. The probability that the
system escapes via a path other than the global minimum increases. As the CDF in equation (4.6) is
only calculated from ∆τc

min, the maximum amplitude of C increases for lower temperatures. In figure
4.5 b), the correlation coefficient shows a plateau for the first 25-30 events for the three temperatures
under investigation. A plateau in the observable suggests that the same site contributes several times to
C . Possibly several mechanism are involved, for instance, back and forth type events [25, 35]. For a site,
there are two neighboring inherent configurations easily accessible and the system moves back and forth
in between the two. Apart from that, it is also imaginable, that a patch visits a series of configurations.
In both cases, the events occur in the same location and therefore, the same value of ∆τc

min contributes
several times to C , leading to a persistence of the correlation coefficient. Alternatively, it could be
possible, that the first events occur on sites with similar CDF values and the plateau occurs as a result of
the ensemble averaging.
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Fig. 4.5 Correlation between the local stress barriers calculated in the as quenched state and the location
of local rearrangements as a) function of time and b) as function of total number of events.

4.3.2 Correlation between local yield stresses and dynamic observables

Any structural measure, that claims to capture the complex nature of glassy dynamics, must be held
accountable by its ability to predict the dynamics of the system. The question to be answered, is how
well the structural measure correlates with the kinetic behavior of the system. For this part of the study,
the structure is characterized by the smallest measured stress barrier ∆τc

min. Local yield stresses are
calculated in the as quenched state at time t = 0. To limit the influence of thermal fluctuations on any
kinetic measurement, molecular dynamic simulations are performed in the isoconfigurational ensemble.
Prior to the calculation of the correlation between ∆τc

min and the kinetics of the system, the relation
between local yield stresses and the system’s dynamic behavior at different temperatures is discussed
qualitatively. This section starts with an introduction of three dynamic observables. The focus is on their
definition in the isoconfigurational ensemble.

Dynamic propensity D . First introduced by Widmer-Cooper and co-workers in ref. [126], the
dynamic propensity is a measure of mobility on the atomistic level. It is defined as follows

Di(t) = ⟨(rrri(t + t0)− rrri(t0))
2⟩iso. (4.8)

Di(t) corresponds to the isoconfigurational ensemble average of the squared displacement of particle i.
The dynamic propensity has proven to be a meaningful measurement, when trying to relate structure and
dynamics in glassy systems [12, 21, 24, 117, 125].

The left column of figure 4.6 shows for each temperature an example of the dynamic propensity. In
the right column, ∆τc

min of the corresponding initial structure computed at t = 0 is depicted. One observes
a remarkable similarity between the kinetics (left) and the structure (right). Areas of low propensity
are at the same time characterized by larger values of ∆τc

min. On the contrary, the structure of highly
mobile particles (large propensity) shows smaller values of ∆τc

min. As the temperature is lowered and
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dynamical heterogeneities become more pronounced, the connection between structure and dynamics is
more apparent.

Coarse graining procedure. The dynamic propensity as defined by equation (4.8) is an atomistic
quantity. Yet, local yield stresses are, by design a coarse grained observable. To compute a correlation
coefficient between these two measurements, the following coarse graining procedure is applied on D :
in accordance with local yield stress computations, a regular lattice with Rsampling = 2.5 is defined. The
average over all atoms within a coarse graining length L of a grid node is computed

D(t) =
1
N

N

∑
i∈L

Di(t), (4.9)

to obtain the coarse grained dynamic propensity D .
Obviously, other coarse graining methods are possible. The influence of the method itself and the

coarse graining length L will be discussed at a later point. For the following calculations, the coarse
graining length is set to L = 2.5, which corresponds also to the interatomic potential cutoff.

Spearman’s rank correlation coefficient. A correlation coefficient can help to evaluate the strength
of the relationship between the dynamics and the structure. Various correlation functions exist to quantify
the relation between two observables. In the present case, the Spearman’s rank correlation coefficient
ρS is used, which was previously applied in similar contexts [24, 51, 118]. An advantage of ρS is its
non-parametric nature. It evaluates the statistical dependence between the ranking of two variables. In
other words, ρS describes how well the relationship between two variables can be expressed using a
monotonic function. ρS can be computed using the following formula

ρS(X ,Y ) = 1− 6∑
N
i=1 d2

i

N(N2 −1)
, (4.10)

di = rg(Xi)− rg(Yi), (4.11)

where rg(Xi) corresponds to the rank of the observable Xi, di is the rank difference between the two
variables and N is the number of observations. A perfect correlation of +1 or −1 is achieved if X is a
monotone function of Y (or vice versa).

Figure 4.7 shows the absolute value of Spearman’s rank correlation coefficient between the local
yield stresses, computed in the initial state and the dynamic propensity as a function of time. As one
can see, the correlation is weak both for short times, where the dynamics did not have enough time to
develop spatial correlations, and for long times, where the memory of the initial configuration is lost.
For the three temperatures, the peak of the correlation is shortly before the macroscopic relaxation time
τα . The maximum value of ρS strongly depends on the temperature. The lower the temperature, the
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Fig. 4.6 For the three temperatures, the dynamical propensity is shown in the left column. The color of
every atom corresponds to its dynamic propensity value. Highly mobile particles are blue, whereas atoms
that hardly moved are colored in red. in the right column, ∆τc

min, computed from the initial configuration
is shown. Zones of high propensity are marked by smaller stress barriers. Atoms in patches with large
stress barriers barely move. As the temperature is lowered, this connection becomes more apparent .
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Fig. 4.7 Absolute value of Spearman’s rank correlation coefficient between the coarse grained dynamic
propensity D and ∆τc

min for the three investigated temperatures. The coarse graining length is set to
L = 2.5. The arrows indicate the macroscopic relaxation time τα .

better the correlation. A peak of

max(ρS(∆τ
c
min,D ; t = 7000)) = 0.61±0.03 for T = 0.32, (4.12)

max(ρS(∆τ
c
min,D ; t = 40)) = 0.42±0.02 for T = 0.351, (4.13)

max(ρS(∆τ
c
min,D ; t = 7)) = 0.16±0.01 for T = 0.5, (4.14)

is measured for the three supercooled liquids, respectively. This strong correlation at low temperatures
demonstrates, that local yield stresses indeed capture a significant part of the structural information
relevant for the ensuing activated dynamics. Additionally, this confirms that dynamical heterogeneities
are of structural origin: configurational stable regions, with large local yield stress values, do not move
significantly over an extended period of time.

Local relaxation time τ i
α . Another observable that captures the structural relaxation process is the

local relaxation time τ i
α . Following the idea proposed by Tong and Tanaka [118], τ i

α is an atomistic
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quantity. It is calculated similar to its macroscopic counterpart (c.f. section 2.2). To distinguish
the two, a superscript i is added to the local quantity. The local relaxation time is calculated in the
following way: first, the self-intermediate scattering function per atom is calculated and averaged over
the isoconfigurational ensemble

F i(kkk, t) =
〈
exp
(
−i kkk · (∆rrri(t)−∆rrrcage

i (t))
)〉

iso (4.15)

∆rrri(t) = rrri(t0 + t)− rrri(t0) (4.16)

∆rrrcage
i =

1
Ni

Ni

∑
j=1

rrr j(t0 + t)− rrr j(t0). (4.17)

As for the macroscopic computation of F , the cage relative displacement field is used and and kkk is set
to the first peak of the static structure factor. Next, for every atom the local relaxation time τ i

α is defined
as follows

F i(kkk, t = τ
i
α) =

1
e
. (4.18)

F i(kkk, t) measures locally the similarity of two atomistic configurations. The local relaxation time thus
indicates the point in time, when, due to local rearrangements, the similarity of two configurations has
reached a value of 1/e. However, τ i

α does not contain any information about how often a zone has
rearranged during this time span.

At the lower temperatures, parts of the systems are so stable that the atoms do not move enough to
assign a local relaxation time. Consequently, these atoms are omitted for the subsequent computations
of correlations coefficients. This concerns only 0.744% of all atoms at T = 0.32 and 0.025% of all
particles at T = 0.351. The local relaxation time can be attributed to all atoms at T = 0.5.

The same coarse graining procedure, previously described for the dynamic propensity, is applied to
the local relaxation time τ i

α . The coarse graining length is set to L = 2.5. For each temperature, one
example of the coarse grained τ i

α is shown in the left column of figure 4.8. The corresponding ∆τc
min field

of the initial configuration is depicted in the right column. Visually, one can identify a strong connection
between the local relaxation time and the local structure. Particles in soft areas have a shorter relaxation
time. On the contrary, atoms in patches with large stress barriers have a longer local relaxation time. At
lower temperatures, this connection between dynamics and structure becomes stronger, as the underlying
landscape increasingly influences the kinetics. This observation can be quantified, using Spearman’s
rank correlation coefficient. Averaged over 20 samples, one obtains for the three temperatures

ρS(∆τ
c
min,τ

i
α) = 0.67±0.01 at T = 0.32, (4.19)

ρS(∆τ
c
min,τ

i
α) = 0.45±0.01 at T = 0.351, (4.20)

ρS(∆τ
c
min,τ

i
α) = 0.18±0.01 at T = 0.5, (4.21)

respectively.
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Fig. 4.8 An example of the coarse grained (L = 2.5) local relaxation time for each temperature is shown
in the left column. On the right hand side, the corresponding ∆τc

min field is shown. The correlation
coefficient between the two fields is ρS = 0.75, ρS = 0.48 and ρS = 0.25 from top to bottom.
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First passage time τFP. The third kinetic observable, considered in the present study, is the first
passage time τFP. It signals the point in time during a simulation run, when a region in space rearranges
for the first time. It thus indicates, how long the initial structure has not changed. At the same time, it is
also an estimate what temporal resolution is needed to observe a local event. To attribute τFP to a site,
local rearrangements are detected using the coarse grained harmonic response, described previously in
section 2.5. The spatial resolution of sites, for which the first passage time is determined, is the same as
for the computation of local yield stresses. Conceptually, the first passage time is very similar to the
trapping time commonly used in the context of kinetic Monte Carlo simulations [109].

As before for the dynamic propensity and the local relaxation time, the isoconfigurational ensemble
average is calculated for every site

τFP = ⟨τFP⟩iso. (4.22)

Especially at the lower temperatures, not all sites in all replica registered a rearrangement over the full
course of the simulation run. As a consequence, theses sites are omitted for the subsequent analysis.
At the lowest temperature T = 0.32, there are 0.25% of the sites, where not all replica rearranged.
At T = 0.351 and at the highest temperature T = 0.5, every site in all replica has undergone a local
rearrangement.

Averaged over 20 samples one obtains for Spearman’s rank correlation coefficient between the local
yield stress ∆τc

min and the first passage time τFP for the three temperatures

ρS(∆τ
c
min,τFP) = 0.69±0.01 for T = 0.32, (4.23)

ρS(∆τ
c
min,τFP) = 0.53±0.01 for T = 0.351, (4.24)

ρS(∆τ
c
min,τFP) = 0.19±0.01 for T = 0.5. (4.25)

At the lowest temperature, an excellent correlation coefficient of almost 0.7 is achieved. The decrease of
the correlation coefficient at higher temperatures is expected as the imprint of the structure vanishes.
T = 0.5 is close to the onset temperature (Tonset = 0.48), which marks the beginning of the landscape
influence regime.

The comparison between the local yield stresses computed in the initial state and the three kinetic
observables delivers a coherent picture: a strong connection between the initial structure and the ensuing
kinetics is established. Particles in regions, characterized by small stress barriers, move greater distances;
hence, their local relaxation time is shorter. Additionally, they overcome their initial barrier sooner as a
shorter first passage time is observed for these sites. In contrast, if for an inclusion a larger stress barrier
is measured, during the ensuing dynamics, the atoms will stay in their initial configuration for a longer
period of time. It takes these particles more time to rearrange for the first time. Consequently, their
dynamic propensity is smaller over the duration of the simulation run.
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Fig. 4.9 The left column shows for each temperature one example of the isoconfigurational ensemble
averaged fist passage time τFP. In the right column the corresponding ∆τc

min field calculated at t = 0 is
shown. As for the dynamic propensity (fig. 4.6) and the local relaxation time (fig. 4.8) the connection
between structure and dynamics becomes stronger as the temperature is lowered. For these three
examples, Spearman’s rank correlation is ρS = 0.78, ρS = 0.52 and ρS = 0.23 from top to bottom.
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4.3.3 On the influence of the coarse graining procedure

In the previous section, the correlation between the coarse grained dynamic propensity as well as the
local relaxation time and the local yield stresses was presented. In the following paragraphs, the influence
of the coarse graining protocol itself and the dependency on the length scale L will be discussed.

Berthier and Jack conclude in ref. [21] that the search for a meaningful relation between static and
dynamic properties of glass forming liquids on an atomistic level is fruitless. However, there exists a
connection between the two on a larger length scale. Therefore, a coarse graining procedure is needed
for atomistic observables.

A first procedure was earlier given by equation (4.9): first, a lattice with Rsampling = 2.5 is defined.
The coarse grained quantity of the atomistic field is the mean of all atoms within a distance L of a grid
node

D =
1
N

N

∑
i∈L

Di. (4.26)

D denotes the coarse grained field and Di is the atomistic observable. All particles within a radius L of
a lattice point contribute equally to the coarse grained field.

Yet, other coarse graining procedures are possible: for instance, the contribution of every particle
(within the length L) can be exponentially weighted as a function of its distance d to the lattice point

D =
∑

N
i∈L Di exp

(
− d

L

)

∑
N
i∈L exp

(
− d

L

) . (4.27)

As before, D denotes the coarse grained field and Di is the atomistic observable.
In order to test the influence of the coarse graining protocol, the absolute value of Spearman’s

rank correlation coefficient ρS, computed between D and ∆τc
min, is shown in figure 4.10. The dynamic

propensity is coarse grained using equation (4.26) as well as equation (4.27). Both times, the coarse
graining length is set to L = 2.5. As one can see, the coarse graining protocol itself does not change the
results qualitatively. Also quantitatively, there are only minor differences between the two procedures. At
intermediate time scales, the exponential weighted curve is always slightly lower than the simple mean.
After the correlation peak, both methods yield the same result, as the two curves start to superimpose
each other.

In the previous paragraph, it was shown that the coarse graining method itself does not change the
interpretation of the results. Next, the dependency of the correlation on the coarse graining length scale
L will be examined. For this purpose, the local relaxation time is coarse grained using equation (4.26) for
different lengths between L = 1 and L = 5. In addition, no coarse graining is applied and the correlation
is computed using the trajectory of single particles. To this end, only the atom closest to the grid point
is taken into consideration (L = 0). The resulting correlation coefficients are plotted as a function of
L in figure 4.11. As one can see, the correlation is weak for single particle trajectories. Yet, a rapid
increase in the correlation is observed for small values of L. For all three temperatures, the peak of the
correlation is at L = 3. This length is slightly larger than the potential cut off Rcut = 2.5.
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Fig. 4.10 For most data points, ρS calculated using the exponentially weighted dynamic propensity (filled
triangles) is within the uncertainty of the correlation computed using equation (4.26) (open symbols
with errorbars).
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Fig. 4.11 Spearman’s rank correlation coefficient computed between ∆τc
min and the local relaxation time

τ i
α as a function of the coarse graining length L. The correlation between structure and single particle

trajectories is weak (L = 0). Yet, there exists a strong connection on a greater length scale. For all three
temperatures, the highest correlation is found for L = 3.0. This length is slightly larger than the potential
cut off (Rcut = 2.5).

One last remark has to be made concerning the coarse graining procedure: by looking at figure
4.6, one might rightly ask, whether a coarse graining on the dynamic propensity is necessary. Indeed,
qualitatively, the behavior of the resulting Spearman’s correlation coefficient does not change whether
a coarse graining is applied or not. Yet, at the lowest temperature, the maximum value of ρS is
approximately 4 percentage points higher if a coarse graining length L = 2.5 is used.

4.3.4 Comparison with other structural indicators or computational methods

It might be interesting to compare how the previously presented predictability of local yield stresses
compares with other structural indicators and computational methods. However, a one-on-one com-
parison remains difficult, as the systems under study vary. Not only are different particle mixtures and
interaction potentials used, but also the dimensionality alternates between two and three. Yet, an attempt
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Fig. 4.12 In a) on the left hand side, the Pearson correlation of propensity predictions is depicted. The
graph neural network (GNN) outperforms other machine learning techniques (e.g. convolutional neural
networks (CNN)). The persistence of the correlation at over a long period of time is remarkable. In b)
on the right hand side, the Spearman’s rank correlation coefficient between the local relaxation time and
structural order as a function of the coarse graining length L is shown. Figures a) and b) are adapted
from refs. [12] and [118], respectively.

is made to put the computed correlation coefficients into perspective. All results discussed below are
obtained using supercooled liquids, where the relaxation time is in the order off τα ≈ 104.

Bapst and co-workers use a state of the art machine learning technique [12]. Their graph neural
network achieves on very short time scales an almost perfect Pearson correlation for the prediction of the
propensity (c.f. figure 4.12 a) ) Next, as the simulated time span increases, the correlation sharply drops
to about 0.5 and afterwards slowly increases to approximately 0.6. The last data point of the correlation
is recorded at a time, where the self-intermediate scattering function has already declined to 0.1. This
long persisting, high predictability of the propensity is a remarkable feature of the graph neural network.
Yet, the insight into the physical processes at play remain very limited using a graph neural network.

Tong et al. use a geometric indicator to characterize the structure [117, 118]. In 2D, the basic
structural unit are triangles formed by three neighboring particles. Structural order is expressed as the
deviation from a “perfect triangle”, where all three neighbors are in touch. At the lowest temperature
studied, Spearman’s rank correlation between this structural order parameter and the local relaxation
time reaches values greater then 0.85, when using an appropriate coarse graining (c.f. figure 4.12 b) ).
Interestingly, they obtain this correlation using the thermalized dynamics. The correlation coefficient
computed using inherent states is lower, approximately 0.7. In sharp contrast to the machine learning
approach, this real space structural indicator has a straight forward interpretation: sterically favored
structures, with a high local packing, show slow dynamics. Although, these vastly different approaches
made it possible to establish an unprecedented link between the dynamics and structure of supercooled
liquids, the underlying mechanism of structural relaxation remains elusive.

This comparison shows that local yield stresses can compete with other structural indicators to
predict the dynamics of an equilibrated supercooled liquid and they need not to shy away from any other
computational method. Additionally, due to their real space nature, all measurements have a physical
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meaning and do not need an complex interpretation: structural relaxation events can be understood as
shear events along weak planes and are strongly localized in space.

4.4 First passage time as a random variable

A welcome feature of the first passage time is, in combination with the isoconfigurational ensemble, its
interpretation as a random variable. Its statistics can give insights into the process involved in structural
relaxation. For instance, the distribution of τFP can help to illustrate what kind of statistical processes
and random variables can be used to describe and model the relaxation of supercooled liquids.

For example, one can think of a simplistic and maybe naive approach: the object of study is a liquid
in the deeply supercooled regime, well below the mode coupling temperature TMCT . Activated dynamics
dominate the relaxation process. As an additional simplification, interactions between rearrangements
(long range elastic interactions, avalanches, etc.) are neglected. Each local event is considered to be
independent of its environment. Under these assumptions, the first passage time of a given site is
exponentially distributed

p(τFP) = λ exp(−λτFP), (4.28)

where the parameter λ determines the rate of a local event. λ depends on the location in the sample. A
soft region will have a higher rate than a hard region.

To test this hypothesis, the distribution of first passage times must be calculated. From a technical
point of view, 100 replica, which corresponds to 100 τFP measurements for a single site, are insufficient
to provide a meaningful distribution. Yet, by rescaling every random variable by its mean τFP/⟨τFP⟩,
one can circumvent this problem by gathering the statistics of all sites: if all random variables are
exponentially distributed, the resulting distribution of the rescaled random variables is an exponential
distribution with a rate of λ = 1.

Figure 4.13 shows the distribution of the rescaled first passage time τFP/⟨τFP⟩ for the three tempera-
tures. The additional green line corresponds to an exponential distribution with λ = 1. For small values
of τFP/⟨τFP⟩, the distribution decreases in lockstep with the green curve. Surprisingly, the measured
distributions deviates significantly for the three temperatures from the green curve for larger values
of τFP/⟨τFP⟩: the slope of the measured distributions decreases considerably. It is much shallower.
Moreover, there seem to be two kinetic regimes: the first regime for small values of τFP/⟨τFP⟩ and the
second regime for larger values of the rescaled relaxation time. The change of slope suggests that the
dynamics slow down, as it is observed for aging dynamics. This phenomenon seems to be very robust:
the same behavior is also observed, when only a subset of the complete data is considered (e.g. only
sites with ∆τc

min or ⟨τFP⟩ within a certain range).
A similar behavior was previously reported in ref. [47], where the cavitation in a glass is examined.

In this context of aging dynamics, it is the expected behavior, as the stability of the material increases
with time. Yet, in the present study, the object of study is the dynamics of a supercooled liquid at thermal
equilibrium. A given site should not age before its first rearrangement. However, it needs to be pointed
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Fig. 4.13 Distribution of the rescaled first passage time τFP/⟨τFP⟩ for the three temperatures. The green
line corresponds to an exponential distribution with a rate λ = 1. For larger τFP/⟨τFP⟩ values, the
distribution deviates significantly from the green model line.

out, that Candelier et al. also observe two dynamical regimes in the dynamics of a supercooled liquid at
thermal equilibrium [29]. According to the authors, there exists a spatiotemporal hierarchy of relaxation
events. The basic process of structural relaxation is a cage jump. Multiple cage jumps form a cluster.
Clusters again aggregate into avalanches. In fact, Candelier et al. observe for the lag time between
two spatially adjacent clusters two kinetic regimes. As in figure 4.13, the rate of the second regime
is much smaller than the one of the first regime. Candelier et al. give the following explanation for
this phenomenon: the long lag times correspond to the average time spent in a cage. In other words,
the long time regime can be interpreted as the waiting time until a cluster gets underway. However,
there exist strong correlations among adjacent clusters. More figuratively speaking, once several cage
jumps have formed a cluster, it is highly probable that another cluster close by is activated. These strong
spatial correlations between clusters accelerate the dynamics and explain the short time regime. In
the literature, the acceleration of the kinetics is more commonly discussed in the context of dynamic
facilitation [17, 61, 122].
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After this short digression into the literature, the discussion of figure 4.13 is continued: before
proposing possible explanations, of what could cause the two dynamical regimes, the following is
remarked. First, at the lowest temperature T = 0.32, for a given site, the first passage time of the slowest
replica is up to two orders of magnitude longer than the fastest replica for that specific site. Second, the
two dynamical regimes are not equally distributed. For 98% of all data points p(τFP/⟨τFP⟩)≥ 10−2. It
is the short time regime that dominates the distribution.

Previously, it was shown that there is a strong connection between structure and the dynamics of
a supercooled liquid. One can suggest that this relation is based on the dominant regime. Under this
assumption, the short time regime would be heavily influenced by the initial structure, i.e. the local yield
stresses. The origin of the long time regime remains an open question. In the beginning of this part, the
assumption was made that each local event is independent and that no interactions occur between them.
However, as shown by Lemaître, atomistic rearrangements cause long range elastic interactions [69].
Could this elastic noise cause the aging-like effect? If this is the case, the elastic interactions would
lead to a stabilization of certain sites, i.e. the barrier, which a site has to overcome increases. However,
new questions arise: why would the elastic noise on average slow down the mechanics? Could these
elastic kicks also lead to a destabilization, i.e. a decrease of the barrier height and thus, accelerate the
dynamics?

This phenomenon of the two kinetic regimes can also result from an erroneous measurement.
Possible methodological weaknesses need to be assessed: for instance, an incorrect detection of a plastic
rearrangement can falsify the resulting distribution. In the present study, a threshold on the coarse
grained harmonic response is used to decide whether or not a site has rearranged. If the threshold is too
high, this will lead to an artificial increase of the first passage time, because not the first rearrangement
is registered, but the second or third local event. In contrast, a threshold too small unnaturally reduces
τFP, as the harmonic response signals an event even though no rearrangement has taken place. Although,
as described in section 2.5, a threshold was used that accounts for sample to sample fluctuations, the
possibility that an incorrect τFP measurement enters the distribution cannot be excluded. However,
neither from the distribution of the coarse grained harmonic response nor from its atomistic counterpart,
a natural threshold emerged, that would allow to separate active from passive sites. In a further analysis,
one could develop the potential energy landscape up to a higher order (i.e. going beyond the harmonic
response), in the hope that a natural threshold emerges. Alternatively, it is also possible to use a
completely different method to detect atomistic rearrangements. For instance, the local strain per atom
can also be used to detect local events [85, 132]. In that case, as soon as the strain reaches a certain
value, a rearrangement has taken place. However, using this method one faces the same pitfall as before
since a value for the threshold needs to be selected.

Another source of error is related to the logarithmic sampling. As the simulated time span increases,
one loses temporal resolution. On short simulated time scales, the temporal resolution of ten snapshots
per decade might be satisfying. Yet, the longer the simulation run, the longer the time window dt
between two stored snapshots. For the lowest temperature dt is up to 105. As a result, back and forth
type of events can be missed. At the same time, a linear sampling with a sufficiently small time window
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dt between two snapshots demands excessive storage capacities. To add some numbers: using the
logarithmic sampling, approximately 5.5 TB of storage is needed for the three temperatures. Ultimately,
the trade-off for a higher temporal resolution are much shorter simulated time spans.

Since the origin of the second kinetic regime is unclear and affects only 2% of all data points, they
are not considered in the ensuing analysis.

4.5 Escape time τesc

Previously, the relation between local yield stresses and dynamic observables was quantified through a
correlation coefficient. The excellent results encourage to further study the connection between local
stress barriers and the first passage time τFP.

In figure 4.14 the first passage time is shown as a function of ∆τc
min/T . For better clarity, not several

thousand data points are plotted for every temperature, but the first passage time is averaged over
∆τc

min/T bins of width 0.18 (filled circles). For the two lower temperatures, T = 0.32 and T = 0.351,
one can clearly see that, on average, not only a greater stress barrier leads to a longer first passage time,
moreover, τFP seems to grow exponentially with the stress barriers. Even more noticeably, for values
∆τc

min/T < 4, the slopes of the two curves are almost the same. In contrast, the much shallower slope
at T = 0.5, is a clear indicator, that for this temperature, the influence of the structure vanishes. This
is also shown by the previously computed much weaker correlation between structure and dynamics.
The underlying structure loses its capability to predict the dynamics. This is expected, as T = 0.5
is above the onset temperature, at which the liquid starts to feel the underlying structural landscape.
This confirms once again that for this temperature, activated dynamics do not accurately describe the
relaxation process.

These observations support the development of a simple model that relates the ∆τc
min and τFP. It is

assumed that the dynamics of a supercooled liquid are activated and interactions between rearrangements
are not taken into consideration. Then, for the escape time, i.e. the time the system needs to overcome a
barrier and rearrange, the following ansatz was made previously [82]

τesc =
1
f0

exp
(

∆E
T

)
. (4.29)

f0 is the attempt frequency, T is the temperature of the supercooled liquid and ∆E is energy barrier of
the corresponding rearrangement. In the present study, the energy barrier of a rearrangement is unknown.
Yet, the local yield stress method allows to measure a local stress barrier. In analogy with equation
(4.29), the following ansatz is proposed

τesc =
1
f0

exp
(

a∆τc

T

)
, (4.30)

where the energy barrier is replaced by
∆E = a∆τ

c. (4.31)
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Fig. 4.14 Mean first passage time as a function of the minimum stress barrier rescaled by the temperature.
For the two lower temperatures, on average, the data is well described by a fit using equation (4.30).
The corresponding fit parameters f−1

0 and a are listed in tab. 4.1. The much shallower slope at T = 0.5
indicates that the dynamics are no more activated. This is expected, since this is a liquid equilibrated
above the onset temperature Tonset = 0.48. The solid lines are obtained by fitting the data via equation
(4.30). The values of the resulting fit parameters f0 and a are listed in tab. 4.1.

78



4.6 Conclusions

Table 4.1 By fitting the first passage time τFP and ∆τc
min using equation (4.30), one obtains for the fit

parameters a and f0 the values listed below.

a f0

T = 0.32 1.34 0.91
T = 0.351 0.87 1.89
T = 0.5 0.33 10.0

From a dimensional analysis, one can see that a is a characteristic volume (surface in two dimensions).
Thus, it can be interpreted as the activation volume of the rearrangement.

For the three temperatures, the full data of τFP and ∆τc
min/T (and not the average) is fitted using

equation (4.30). The resulting curves are shown in figure 4.14 (solid lines). The values of the fit
parameters are listed in tab. 4.1. As aforementioned, T = 0.5 is hardly in the supercooled regime and
the assumptions of the model are questionable for this temperature. Therefore, the following discussion
focuses primarily on the two other temperatures T = 0.32 and T = 0.351. As one can see, the model
accurately describes the data. The attempt frequency decreases as the temperature is lowered. Between
T = 0.351 and T = 0.32 its values drops from f0 = 1.89 down to f0 = 0.91. Comparing the values of
the fitted attempt frequency to the Debye model f0 = (2R f ree)

−1
√

G/ρ [11, 54], which, in the context
of amorphous materials, can serve as an approximation, one finds the same order of magnitude. This
reinforces the view point to regard a liquid as solid which flows. The characteristic volume a increases
for lower temperatures. One finds a = 1.34 and a = 0.87 for T = 0.32 and T = 0.351, respectively.

A series of assumptions were made to deduce equation (4.30). In the following, they are revisited
and discussed: first, for every site only the minimum stress barrier is taken into consideration. Obviously,
the minimum barrier will dominate the transition statistics, yet there is also the possibility to have two
(or more) barriers of similar height. Especially at the higher temperature, this becomes more probable,
as the threshold distribution is narrower. Second, in chapter 3, it was shown that the local critical shear
stress strongly depends on the loading direction. Due to a limited computational time, in the present
study, an angular resolution of ∆α = 10◦ is chosen to calculate the local yield stresses. Therefore, it is
highly possible that there is a loading direction, for which a lower stress barrier is measured. Third, as
aforementioned, every local event is treated independently of its environment. Yet, is been shown that
there exist spatial correlations between them [69].

4.6 Conclusions

In this chapter, the relation between local yield stresses and the dynamics of supercooled liquids were
examined. The three temperatures for the investigated liquids were chosen to cover a wide range of the
supercooled regime. From the highest to the lowest temperature, the relaxation time increases from 9 to
12000. To test the ability of local yield stresses to predict the dynamics, extensive numerical simulations
were performed. On the one hand, local yield stresses are calculated for the initial configurations. On the
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other hand, the simulated time span for the molecular dynamic simulation at thermal equilibrium of the
supercooled liquids is orders of magnitude longer than the corresponding relaxation time. To limit the
influence of thermal fluctuations, molecular dynamic simulations are performed in the isoconfigurational
ensemble.

In the first step, the relationship between the location of the first atomistic rearrangements occurring
during a simulation run and the corresponding value of ∆τc

min is examined. One finds that, first, local
events occur preferably in soft zones, characterized by small stress barriers. Second, the amplitude and
persistence of the correlation coefficient strongly depend on the temperature: the lower the temperature,
the higher the correlation coefficient and the slower the decay. Third, for the first 25-30 events, a plateau
of the correlation coefficient is observed, indicating that the same site contributes multiple times. A
possible explanation for this phenomenon could be either events of back and forth type or a site visiting
a series of configurations.

Next, the relationship between structure and kinetics was quantified by calculating the correlation
between local yield stresses and three dynamical observables, i.e. dynamic propensity, local relaxation
time and the first passage time. Overall, the results are coherent: in zones with small stress barriers, the
first passage time is shorter and, at the same time, the propensity is larger, as the particles move greater
distances. Consequently, the local relaxation time is shorter. In contrast, in regions with large barriers,
the local atomistic structure is more stable and it takes the particles more time to break up the cage.
Ergo, the dynamic propensity is small. For all three kinetic observables, a stronger correlation is found
as the temperature is lowered. This confirms that the structure increasingly influences the dynamics at
lower temperatures. The maximum amplitude found for the correlation between local yield stresses and
the three kinetic observables is comparable to results obtained from state of the art machine learning
techniques or other structural indicators [12, 117, 118].

Then, the underlying statistical process of the first passage time is studied. To this end, the distribution
of the rescaled first passage time is computed. Remarkably, two dynamical regimes are observed. In the
second regime, the dynamics are much slower than in the first. This phenomenon is more commonly
expected when studying out of equilibrium dynamics, for instance, the aging of a glass. For now, the
exact origin of the two regimes is unknown. However, a similar observation has previously been made
in supercooled liquids by Candelier and co-workers [29].

Lastly, it was shown that the first passage time of an inclusion increases exponentially as a function
of the smallest measured stress barrier of a patch.

In this study, a strong connection between local yield stresses and the dynamics of supercooled
liquids was established. It was shown that kinetic phenomena, such as dynamical heterogeneities, can be
traced back to the underlying structure, which is characterized by local stress thresholds. The values
one obtains for the correlation coefficient between kinetic observables and local stress barriers are
comparable to machine learning techniques and other structural order parameters. However, local yield
stress have a lead over other order parameters: it is possible to draw a conclusion on the fundamental
process of structural relaxation. This elementary process can be seen as a strongly localized shear event
along a characteristic weak plane.

80



4.7 Perspectives

The results obtained can guide the way for future works. In the following section, remaining
open questions, concerning especially the two kinetic regimes of the first passage times are addressed.
Possible pathways to answer them are pointed out. Then, a glance beyond the scope of this study is
taken: propositions are made, in which direction future research could continue. Additionally, a set up
for future simulations is exemplified.

4.7 Perspectives

First, it should be clarified, whether the two kinetic regimes, observed in the distribution of the rescaled
first passage time, are of physical origin or whether they are the result of an erroneous measurement. To
eliminate the latter, the same analysis should be performed but with a change in the method to detect
local rearrangements. For instance, one could omit the coarse graining procedure on the harmonic
response or calculate the harmonic response not between two adjacent inherent states but with respect
to the initial configuration. Alternatively, a completely different measure, such as a local strain could
be used to identify a local rearrangement. To verify the physical origin of the phenomenon, one could
try to reproduce the result using a mesoscale model [26–28]. However, one needs to be very careful
interpreting the results, as the input parameters are not the same for the mesoscopic and atomistic model.

Up to now, the focus was placed on examining the influence of local yield stresses on the dynamics
of a supercooled liquid. In a further study, it would be interesting to investigate the influence of the
dynamics on local yield stresses. In other words, to analyze the evolution of local stress thresholds in
time. In figure 4.15, the displacement field of a single rearrangement is depicted on the left hand side.
The two additional figures show the critical shear stress τc in 18 different directions before and after the
event a) far away from the rearrangement and b) very close to the core of the rearrangement. As one can
see, the critical shear stress changes in all 18 probed directions, close to core of the relaxation center.
After the local event, there is a new local environment and thus, all critical stress values are renewed.
Contrary, far away, one observes a persistence of critical shear stresses. They are the same before and
after the local event. This example suggests that the renewal of stress thresholds is closely connected
to relaxation events. Consequently, a number of questions arise: for instance, after a rearrangement,
from which distribution are the new values of the stress thresholds drawn? Is it the same distribution for
all sites, or is there a memory effect, i.e. will a weak site still have a small stress barrier after a local
rearrangement? At the same time, the persistence of the critical stress should be evaluated. For example,
one could try to quantify the amplitude of the elastic noise, by looking at the evolution of the stress
tensor in the undeformed state for passive sites, i.e. patches that do not rearrange. Ultimately, once this
relationship between relaxation events and the renewal of local yield stresses is verified, one could try to
express structural relaxation in terms of local stress thresholds. In other words, to define a correlation
function that uses the local yield stresses as input parameter.

So far, much of the discussion was focused on the dynamics at thermal equilibrium. In the future, it
would be interesting to go out of equilibrium and study aging and rejuvenation effects on local yield
stresses. A possible simulation setup could look as follows: one starts with an initial configuration of an
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Fig. 4.15 On the left hand side the displacement field of inherent states (magnified 20 times) between
t = t0 and t = t1 is shown. The two additional figures a) and b) show the temporal evolution of the local
critical shear stress τc in 18 different directions. As depicted in a), far away, the critical shear stress τc

persists before and after a local event. Close to the core of a rearrangement (shown in b)), the critical
shear stresses are renewed in all directions.

equilibrated supercooled liquid at temperature T = T1. For the ensuing simulation run, the temperature is
set to T = T2. If T2 > T1, the liquid is heated up. For a simulated time period long enough, the system will
be once again equilibrated at T2. It is expected, that the distribution of local yield stress thresholds will
shift with time towards smaller values, before stabilizing at the new equilibrium position. For T2 < T1,
the results depend on the location of T2 with respect to the numerical glass transition temperature Tcomp.
Tcomp denotes the temperature, where the time to equilibrate the liquid (approximately 100 times the
relaxation time) exceeds any reasonable computational time. If T2 > Tcomp a similar behavior as above
mentioned is expected: after a sufficiently long waiting time, one obtains once again an equilibrated
supercooled liquid at T2. This time, however, the distribution of local yield stress thresholds will be
shifted to the right, towards larger stress threshold values. If T2 is below Tcomp, the liquid will fall out of
equilibrium and form a glass. The distribution of local yield stress thresholds will not await a new stable
distribution but will continue to drift towards larger values.
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Chapter 5

Conclusions

As mentioned in the beginning of this manuscript, the glass transitions remains one of the biggest
unsolved problem in solid state physics. Over the last decades, various theoretical concepts were
proposed to explain it. Yet, until this day, no theory can explain the glass transition and its accompanying
phenomena to its full extend. Many questions remain unanswered.

In this manuscript, an infrequent view point is adopted: supercooled liquids are seen as solids which
flow. From this perspective, the drastic kinetic slow down results from the change of the underlying
mechanical properties of the system.

In this thesis, the previously developed local yield stress method is extended and applied on glassy
systems. In chapter 3, it is shown that the local yield stress method works as a mesoscope: by using
the method with an appropriate length scale, one can see that a discrete and finite number of shear
transformations are encoded into the atomistic glassy structure. The multidimensional x− y−α − p
space is divided into zones. Each zone can be associated with a shear transformation. The local yield
stress method limits the degrees of freedom of the system, by focusing on a small spatial region of
the sample. Thus, one can visit these zones in the multidimensional space, which cannot be accessed
through remote loading. Over a range of loading directions, the same event is activated. The critical
local yield stress shows a characteristic stress well for each rearrangement. The same well can still be
identified after displacing the center of the inclusion slightly. Furthermore, these stress wells are strongly
pressure dependent. Upon small pressure variations, the well is moved vertically. A higher pressure is
accompanied by a larger critical local yield stress; in contrast, a lower pressure leads to a reduction of
the critical local yield stress. Additionally, it is found that the stress well, i.e the critical local yield stress
of a shear transformation is accurately described by a Mohr-Coulomb yield criterion. However, due
to difficulties in the accurate detection of wells in the stress landscape, no statistical analysis could be
performed. This is mainly attributed to the frozen boundary conditions in the current implementation of
the local yield stress method. Future works should focus on the development flexible boundaries. One
idea could be to place the inclusion in an elastic medium.

In chapter 4, a strong connection between local slip thresholds and activated dynamics of supercooled
liquids at low temperature is established. The maximum value found for the correlation coefficients
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calculated between kinetic observables and local yield stresses are comparable to state of the art machine
learning techniques or other structural indicators. Yet, local yield stresses have a big advantage over other
order parameters: they allow to draw a conclusion on the fundamental process of structural relaxation.
This elementary process can be seen as a strongly localized shear event along a characteristic weak
plane. Additionally, it was shown that the first passage time, i.e. the point in time a region rearranges
for the first time during a simulation run, can be expressed as a function of the smallest probed stress
barrier. Future works should focus on strengthening this relationship between the local stress barriers
and the dynamics. The aim could be to describe structural relaxation using local yield stresses as input
parameter.
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Appendix A

Rejuvenation and shear banding in model
amorphous solids

The aim of this article was to study the evolution of local yield stresses during shear banding. To this end,
100 samples following the gradual quench protocol (c.f. chapter 2) are prepared. These configurations
are then subject to a global athermal quasistatic shear deformation. Local yield stresses are calculated at
various amounts of strain.

In this article, it is shown that a small amount of plastic strain suffices to erase the memory of the
local, undeformed structure. Surprisingly, essentially one plastic event is enough to bring the local
structure to a unique yield stress distribution, disregarding the initial state. The average of this renewal
distribution is smaller than the corresponding value computed in the steady state. Remarkably, the
average value of the renewal distribution is comparable to the mean local yield stress calculated from the
undeformed inherent state of a supercooled liquid equilibrated at T = 0.9TMCT . This is a clear indication
that the temperature which separates brittle and ductile yielding transitions for amorphous materials is
close to the mode coupling temperature TMCT . A contrast between the local yield stresses of initial and
renewed sites is necessary, in order to lead to the mechanical instability through shear band formation.

M.L. prepared initial configurations, estimated the mode coupling temperature TMCT and participated
at the discussion of the results during group meetings.
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We measure the local yield stress, at the scale of small atomic regions, in a deeply quenched two-dimensional
glass model undergoing shear banding in response to athermal quasistatic deformation. We find that the
occurrence of essentially a single plastic event suffices to bring the local yield stress distribution to a well-defined
value for all strain orientations, thus essentially erasing the memory of the initial structure. It follows that in a
well-relaxed sample, plastic events cause the abrupt (nucleation-like) emergence of a local softness contrast and
thus precipitate the formation of a band, which, in its early stages, is measurably softer than the steady-state flow.
Moreover, this postevent yield stress ensemble presents a mean value comparable to that of the inherent states
of a supercooled liquid around the mode-coupling temperature TMCT. This, we argue, explains that the transition
between brittle and ductile yielding in amorphous materials occurs around a comparable parent temperature.
Our data also permit to capture quantitatively the contributions of pressure and density changes and demonstrate
unambiguously that they are negligible compared with the changes of softness caused by structural rejuvenation.

DOI: 10.1103/PhysRevE.101.033001

I. INTRODUCTION

Shear banding, an intense localization of plastic strain
within narrow bands, is the primary mode of mechanical
failure in a variety of amorphous materials including metallic
glasses [1] or granular media [2]. When loading conditions
permit, bands may extend throughout a piece of material
and sustain repeated plastic activity while preserving their
overall structure [3]. While it is thus clear that the material
inside shear bands is softer than the surrounding, undeformed,
glass, the structural origin of this softness constrast, and the
mechanisms underlying its rapid emergence, remain highly
debated topics [4–8].

Progress on these issues is hampered by basic difficulties
in describing the mechanisms of plastic deformation in glasses
[9–15]. In these systems, indeed, structural disorder disallows
the existence of topological defects akin to crystalline dis-
locations [16,17], and plasticity results from the intermittent
occurrence of local rearrangements (“flips”) triggered when
the atoms within “zones” (small regions a few atoms wide)
reach mechanical instabilities [18–20]. Although the prox-
imity of a packing to instabilities may correlate with usual
observables such as local density, pressure, or shear stress,
these correlations are weak [21,22], and the question remains
open of their predictive value in the context of shear banding.

Mesoscopic models [23,24] of plasticity represent a glass
as an elastic continuum in which zones are embedded. They
prove able to reproduce most of the phenomenology of
amorphous plastic deformation, in particular the appearance
of shear bands, yet only by postulating that local plas-
tic thresholds are weakened after the occurrence of local

*sylvain.patinet@espci.fr

rearrangements [25–28]. No atomistic data, however, exist
that support this idea.

In this article, we use a recently developed numerical
method [22,29,30] that permits to access local yield stress at
the zone scale (i.e., in regions a few atoms wide) in arbitrary
orientations. This method was previously applied to quenched
glasses prior to any plastic deformation. In a companion paper
[31], we use it to show that the Bauschinger effect results
from plasticity-induced yield strength anisotropies. Here we
use this technique to resolve the local yield stress during
shear banding. We thus demonstrate that the occurrence of
a small amount of plastic strain erases the memory of the
local structural properties acquired during aging. Moreover, it
brings the average local yield stress, in all shear orientations,
to a value smaller than in the steady flow state. The mean yield
stress of postevent zones compares with that of supercooled
liquid inherent states (ISs) around TMCT: This explains that
the equilibration temperature separating ductile and brittle
responses is located in the vicinity of TMCT [32]. When loading
a well-relaxed sample, the suddenness of the rejuvenation
process causes a rapid drop in the local yield stress which
precipitates the formation of a band that persists over large
strain scales thanks to the softness contrast.

II. NUMERICAL METHODS

We use the same atomistic model as in Ref. [30]: a
two-dimensional binary system comprising 104 equal-mass
atoms that interact via a Lennard-Jones (LJ) potential with
second-order smoothing at cutoff. All values are given in LJ
units. Preparation and deformation are performed with peri-
odic boundary conditions at a constant volume corresponding
to a density ρ � 1.02. Samples are prepared via a slow
temperature ramp at rate Ṫ = 0.32 × 10−6 across the glass
transition temperature range. This allows for equilibration
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FIG. 1. (a) Mean shear stress τxy (black) and pressure P (blue) as
a function of Hencky’s equivalent shear strain E during simple shear
AQS loading. Bottom: Local maps at E = 0.05; (b) accumulated
strain ε and (c) yield stress τ c

xy.

until the alpha relaxation time is of order Tg/Ṫ � 106, which
corresponds to a fictive temperature Tf � 0.29 as detailed
in Appendix A. When reaching T = 0.078 TMCT, each sam-
ple is further quenched by energy minimization to obtain a
mechanically equilibrated state. These initial states are then
subjected to athermal quasistatic (AQS) [18,33] simple shear
deformation along the x axis up to a linear strain γ = 5,
with steps �γ = 10−4 and a minimization force tolerance of
10−11. Unless otherwise specified, all averages and distribu-
tions are obtained by collecting data from 100 independent
samples.

In such strongly deformed systems, local strains must
be computed using finite-strain theory (see Appendix B). A
scalar measure of local strain ε is provided by the square root
of the second invariant of the logarithmic (Hencky) strain.
The macroscopic counterpart of this quantity is E = ln(γ /2 +√

1 + γ 2/4).
The sample-averaged stress-strain response during

constant-volume AQS loading is reported in Fig. 1(a). It
displays a typical stress overshoot followed by softening.
As observed in other systems [34], macroscopic pressure
P rises sharply until the peak and continues to grow,
albeit more slowly, thereafter. This pressure increase in
our constant-volume simulations is the analog of a volume
increase in typical fixed-pressure experiments. It is the
signature that plastic activity creates configurations that are
less well packed than the original aged ones, an idea usually
invoked to justify the still classical free-volume theory. We
will, however, rule out this interpretation quantitatively by
showing that the plastically induced pressure increase, or
local density decrease, contributes only a minor fraction of
strain softening.

The plastic response of our relaxed systems systematically
involves shear banding as illustrated in Fig. 1(b): Local strain

field maps, as shown here at E = 0.05, typically display a
high-strain region crossing the cell throughout. This phe-
nomenon may only arise from structural causes, since our use
of AQS shearing rules out the competition between timescales
[6], inertia [8], or local heating [4].

Local yield stress values are measured in sheared con-
figurations using the method of Refs. [22,30]. It consists in
isolating circular inclusions of radius Rfree = 5 and straining
them by requiring outer atoms to follow an affine motion
corresponding to pure shear along an arbitrary orientation
α ∈ [0, π ]. Inner, inclusion atoms are free to move nonaffinely
and required, using the AQS method, to remain mechanically
balanced. The first plastic rearrangement they undergo deter-
mines the yield point of the inclusion in orientation α and
defines the local yield stress τ c(α) and critical strain εc(α).
For any considered α, the yield threshold is thus identified for
all inclusions centered at regular grid points. In this article,
we primarily focus on the changes in softness that affect the
forward barriers, in the loading orientation with α = 0, due
to their direct relevance to the forward plastic response. Yet,
we will show [Sec. III C] that softening occurs in all shear
orientations, and in particular in the backward one (α = π/2).

Let us emphasize that we focus here on the threshold τ c,
not on the residual strength �τ c = τ c − τ , with τ the local
stress. �τ c is an adequate predictor of the immediate plastic
response [22,30] but explicitly depends on local stress, i.e., on
elastic loading. τ c does not and thus constitutes an intrinsic
gauge of local glassy structures.

III. LOCAL YIELD STRESS EVOLUTION

A. Shear band profiles

Figure 1(c) presents the resulting local yield stress map in
the loading orientation τ c(α = 0) = τ c

xy at E = 0.05. When
comparing with the strain map of Fig. 1(b), it is strikingly
clear that the material in the band tends to present lower yield
stress values than the material around it. We thus directly see
here that, as expected, plasticity induces softening and thus
localization in the band [35]. Below we use this ability to gain
insight on the mechanisms underlying the band formation and
stability.

To quantify the emergence and evolution of bands, we
focus first on samples (53 of 100) where a single band nu-
cleates horizontally.1 We identify as band center the ordinate
ySB where the x-averaged local strain reaches its maximum
at the macroscopic strain E = 0.1 where the band is clearly
visible in all samples. We then report in Fig. 2, as a function
of y − ySB, the x-averaged strains and yield stresses at several
macroscopic strains.

The strain profiles [Fig. 2(a)] clearly show that the band
grows over time [13,36]. This would be inaccessible in experi-
ments as the band evolution is usually interrupted by mechan-
ical failure [1]. But, in simulations, since periodic boundary

1In 25 samples, a band initially nucleates vertically yet cannot
persist due to the simple shear Lees-Edwards boundary conditions:
A horizontal band then emerges later. The rest of the samples exhibit
more complex behavior and show intermediate crossed configura-
tions, porelike structure [36], and multiple shear bands.
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FIG. 2. Local averages computed along the shear direction x for
different strain levels E as a function of the vertical position y with
respect to the shear band position ySB: (a) strain 〈ε〉x and (b) yield
stress 〈τ c

xy〉x . The symbols used for the different strain levels are the
same as for Fig. 1(a).

conditions maintain the system integrity, the softness contrast
eventually resorbs itself and the system reaches a unique,
statistically homogeneous, steady flow state [31]. The yield
stress profiles [Fig. 2(b)] distinctly show that the softer region
coincides with the band and grows at a similar rate. At E =
0.05, the contrast of local yield stresses between the band and
the outer region is of order 27%, in striking agreement with
experimental hardness measurements in metallic glasses [37].

Similarly band-centered density, shear modulus, and po-
tential energy profiles are displayed in Appendix C. They
show that the band also presents a 2% lower density, a 17%
lower shear modulus, and a 5% higher potential energy than
the surrounding material. In agreement with Ref. [38], these
profiles demonstrate that the position of the band correlates,
albeit at different degrees, with the initial values of the
considered properties in the quenched state. Although the
initial central fluctuation would decrease with system size,
this merely illustrates that the AQS response is completely
governed by structure. Yet the question remains to understand
why softening occurs just after a few percentage strains, thus
promoting the formation of the band.

B. Local yield stress vs. local plastic strain

In this perspective, we report in Fig. 3, for different E ’s,
the average yield stress [Fig. 3 (top)] conditioned by the local
strain ε from the quench state. These data are collected from
all 100 systems of our ensemble (irrespective of the initial
band orientation). The distribution of log10 (ε/ε∗), which is
the abscissa of this lin-log graph, is reported in the bottom
panel and shows a characteristic two-peak structure [20] that
separates low-strain, elastically responding regions with the

FIG. 3. Top: Average yield stresses 〈τ c
xy〉 as a function of the

normalized local strain ε/ε∗ for various macroscopic strain E . The
continuous, dashed, and dash-dotted horizontal lines correspond
to 〈τ c

xy〉 in the as-quenched, steady-state, and renewed ensembles,
respectively. Bottom: Distribution of log10 (ε/ε∗).

high-strain ones, which have undergone local plastic events.
As E increases, the first peak expectedly decreases in ampli-
tude, while the second one grows and shifts rightward, which
is expected to result from the accumulation of plastic activity.
The crossover strain scale between the two peaks happens to
be ε∗ � 2〈εc〉, with 〈εc〉 = 0.054 the average critical strain
in the as-quenched state. ε∗ thus corresponds roughly with
the scale of the local strain change caused by a plastic
rearrangement.

The 〈τ c
xy〉 curves of Fig. 3(a) constitute the first direct

and quantitative observation of local softening associated
with local yielding. They systematically decay with ε, with
a characteristic strain of order ε∗. This key observation en-
tails that the memory of the initial state is erased with a
characteristic strain corresponding to essentially one event. It
explains the rapidity of softening and thus localization. Yet
there are several features of these curves that are surprising
and call for further explanations: (i) the very low strain
(ε/ε∗ � 0.1), elastic regions present higher yield stress values
than the quenched state; (ii) there is a significant spread
between the curves, which entails that the local yield stress
depends on both E and ε; and, more specifically, (iii) at small
E , highly strained regions are unexpectedly softer than the
steady (homogeneous) flow state, so that at a given ε, the
local yield stress grows with E , which constitutes a hardening
effect.

To clarify these issues, we focus on E = 0.05 and dis-
tinguish within each configuration two types of local envi-
ronments: (a) regions where ε < ε∗/8 are called “unyielded”
and (b) those where ε > 2ε∗ are called “yielded.” The dis-
tributions of local yield stresses in these two subsets are
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FIG. 4. (a) Distribution of local yield stresses τ c
xy in the as-

quenched state (black), the steady flow state (blue), at E = 0.05
in the unyielded (red) and yielded (green) areas and the renewed
state (shades of brown). [(b) and (c)] The effect of pressure and
statistical hardening (see text for details) for the as-quenched state
and unyielded sites (b); the steady flow state and yielded sites (c).

shown in Fig. 4, along with their counterparts in the initial
as-quenched ensemble and steady homogeneous flow. We find
that (A) unyielded regions (mainly outside the shear band)
are harder than the as-quenched state and (B) yielded ones
are (unexpectedly) softer than the steady flow. The hardening
and softening previously noted above under points (i) and (iii)

FIG. 5. Distribution of local yield stresses τ c
xy in the loading

(continuous lines) and reverse directions (dashed lines) in the as-
quenched state (black), the steady flow state (blue), at E = 0.05 in
the unyielded (red) and yielded (green) areas.

(respectively)2 hence affect the whole yield stress distribution;
in fact, they even occur in all orientations as shown below in
Fig. 5.

The hardening of unyielded sites can be attributed pri-
marily to a statistical effect: the progressive elimination (ex-
haustion) from this ensemble of the weakest sites of the
quenched state when they yield [39]. Indeed, if we pick out
the unyielded sites at E = 0.05 and plot their yield stress
distribution in the initial quenched state [Fig. 4(b), orange dia-
monds], then we recover the major part of the hardening. The
residual difference is entirely attributable to the large (nearly
0.4) pressure increase during loading. Indeed, in unyielded
sites, 〈τ c

xy〉 depends roughly linearly, but quite weakly, on P
(see Appendix C), and when both exhaustion and the linear
pressure dependence of 〈τ c

xy〉 are taken into account (green
triangles), we recover the distribution of yield stress outside
shear bands.

We previously observed that yielded sites at finite strains
(especially E = 0.05) are weaker than the steady flow state.
We now show this results from a general property of “freshly
renewed,” i.e., postyield sites. To evidence this idea, we pick
out sites that yield (i.e., present a local strain change �ε >

2ε∗) over a fixed, small amount of macroscopic strain �E =
0.05 (as before), yet starting from different initial states, say,
strain E . Figure 4(c) compares the yield stress distributions
in these postyield states for E values ranging from 0 (as-
quenched) to the steady AQS flow state. Strikingly, all these
distribution collapse. This constitutes a key observation of our
work. It establishes that essentially one plastic event brings the
local structure to a unique yield stress distribution, regardless
of the initial state.

Note that the final states explored in Fig. 4(c) present suffi-
ciently different pressure levels that we should see systematic
deviations from collapse.3 This is not the case, which implies
that the pressure-yield-stress relation is specific to each re-
newed ensemble as shown in Appendix C: The renewal pro-
cess does not produce a unique structural “state” but instead
a unique yield stress distribution under different conditions.
This idea is often speculated to hold in the construction of
mean-field [10,40,41] or mesoscale models [25] but was never
directly observed. It entails that shear banding results from a
process akin to nucleation: the production of structures of a
specific softness level after essentially one plastic event.

The hardening of yielded sites with increasing E then
appears to occur due to the rapid elimination, via further
yielding, of the weakest among the freshly renewed sites. As
E increases, beyond 0.05, the regions of a fixed ε comprise
an increasing fraction of sites that have yielded early but are
strong and have resisted since. This finally explains that the
steady flow state is harder than the freshly renewed sites.

2These effects can also be seen in the 〈τ c
xy〉x profiles of Fig. 2(b) as

material outside the band initially hardens, while the middle of the
band softens at largest E ’s.

3Our renewed ensembles show mean pressure differences up to
0.25 which are expected to correspond to mean yield stress differ-
ences ≈0.0625.

033001-4

97



Rejuvenation and shear banding in model amorphous solids

REJUVENATION AND SHEAR BANDING IN MODEL … PHYSICAL REVIEW E 101, 033001 (2020)

FIG. 6. Average local yield stress 〈τ c
xy〉 as conditioned by local

density in unyielded (red) and yielded (green) states at E = 0.05 and
in the renewed ensembles (shades of brown).

C. Local yield stresses in other directions

The distributions of local yield stresses in the forward
(α = 0) and backward (α = π/2) global shear directions are
shown in Fig. 5. As for the forward simple shear direction
investigated above, we report the yielded and unyielded states
at E = 0.05, along with their counterparts in the initial as-
quenched ensemble and steady homogeneous flow. Here τ c

xy =
τ c for 2α = 0 and = −τ c for 2α = π , so that forward (respec-
tively, reverse) barriers correspond to positive (respectively,
negative) abscissa. The lack of τ c

xy → −τ c
xy symmetry in all

three deformed ensembles points to a flow-induced anisotropy
studied in detail in Ref. [31]. We do not address this effect
in this article but focus on the overall changes in softness
that affect the forward barriers in the loading orientation.
We see here that the rejuvenation process, in particular the
strain-softening, occurs in fact in all orientations [31].

D. Local yield stress vs. free volume

To quantify the possible role of local expansion in soften-
ing, we report in Fig. 6 〈τ c

xy〉 as conditioned by local density in
both yielded and unyielded site. These data show very clearly
that, at the same ρ, yielded and unyielded sites present sharply
different yield stresses: local density, hence, cannot predict
local softness. The �2% density difference seen between the
band and the outer, elastic, region corresponds to a maximum
τ c

xy variation of �4%, which is insignificant compared with the
observed �27% change in τ c

xy. The leading cause of softening
is the production by plasticity of packings in a different
“state,” i.e., presenting different τ c

xy vs. ρ (or other) relation,
than the initial material.

E. Variation of local yield stresses with parent temperature

We report in Fig. 7 the average 〈τ c
xy〉 computed for inherent

states obtained after instantaneous quenches from different
parent temperatures of equilibrated liquids. It is noteworthy
that the value 〈τ c

xy〉 � 1.32 in postyield states is comparable
with the average yield stress in the ISs of a supercooled liquid
at 0.9 TMCT, a range of temperatures where the dynamics
of liquids enters the activated regime. This indicates that

FIG. 7. Average local yield stresses 〈τ c
xy〉 of inherent states as a

function of their parent (liquid) temperatures.

postyield structures have comparable barriers heights with
a liquid lying on the upper layers of the potential energy
landscape (PEL). From this standpoint, the fact that the av-
erage yield stress in postyield sites compares with that of
liquid ISs near TMCT appears to constitute a fundamental
feature of the PEL. It then explains that the critical parent
temperature separating brittle and ductile yielding transitions
in amorphous materials is located in the vicinity of TMCT [32],
since a contrast must exist between the yield stress in the
initial state and in the postyield sites for shear banding to
occur.

Note, however, that we consider here just an average.
Furthermore, rearranged and inherent states cannot be strictly
compared due to the nonzero polarization in the barrier en-
semble along the loading direction [31] and to the slight in-
crease of the pressure in flowing states. Despite this oversim-
plification, an inherent state obtained near TMCT is therefore
expected to give a good estimate of the stationary threshold
distributions and thus act as a limit between softening (leading
to strain localization) and hardening regimes in deeply and
poorly quenched glasses, respectively [32]. This result is also
fully consistent with recent findings obtained in oscillatory
shear simulations [42,43], showing that the transition from
annealed to yielded behavior is found for parent temperatures
in the vicinity of the dynamical crossover temperature TMCT.

IV. CONCLUSIONS

All mesoscopic models of amorphous plasticity, starting
from the early works by Argon and coworkers [44] to the most
recent space-resolved models [24], postulate the existence of
local thresholds that are reshuffled during plastic events and
affected by local stress. These general assumptions have been
guided by mainly two observations. First, plasticity results
from the rearrangement of local packings, which suggests
it is primarily controlled by local yielding thresholds. Sec-
ond, it involves avalanche behavior, which implies long-range
correlations mediated by elastic deformations. Mesoscopic
models attempt to take these two observations into account
by separating short scales (local packings, which determine
local yield stresses) from large scales, i.e., the requirement of

033001-5

98



ARMAND BARBOT et al. PHYSICAL REVIEW E 101, 033001 (2020)

mechanical balance which couples elastically local stress
levels. So, clearly, all mesoscopic models implement, of ne-
cessity, the same general script. Yet as soon as one looks at
any level of detail beyond these rough guidelines, there is a
flurry of such models and no consensus on the proper way to
define a reliable one.

The problem is that, until now, as far as we know, no
direct observation had been made of local yield thresholds in
plastically deformed amorphous media. In the absence of such
an observation, it has always remained a question whether the
consideration of local yield thresholds was anything more that
a simplifying assumption. And the key assumption about the
effect of plasticity on local thresholds could only be build
on guesswork: For example, it has never been clear whether
it was meaningful to assume the existence of a well-defined
postyield yield stress distribution. And no test was available
for the prediction of models concerning the dynamics of
their core state variable: the distribution of these local yield
stresses.

The present work, although it does not and cannot solve all
these issues, brings hope that they can be addressed rigorously
in the near future. It will not alleviate the need to rely on
simplifying assumptions, and neither is it intended to provide
a recipe for the construction of mesoscopic model—a still
distant goal. But it probes the rejuvenation process of atomic-
scale yield stresses in a model glass undergoing deformation.
Thus, it brings direct observations that strongly constrain
both model assumptions, especially about the effect of re-
juvenation, and model predictions concerning the dynamics
of local thresholds. Thanks to the focus on a system un-
dergoing shear banding, i.e., comprising quite different local
packings, we could demonstrate that there was indeed a well-
defined postyield yield stress distribution, quite insensitive
to the initial ensemble, and we could access it numerically.
This is evidently a key input for theories of amorphous
plasticity.

Moreover, we found that rejuvenation was an unexpectedly
rapid process, essentially requiring a single event to bring the
local packing to a well-defined softness level, comparable to
that of an IS obtained from a supercooled liquid around TMCT.
This brings several important inputs to theories, specifically
concerning our understanding of shear banding in amorphous
systems. We showed indeed that the rejuvenation drop in
yield stress causes the nucleation-like formation, immediately
after the first yield events, of regions of well-defined softness.
The rapidity of this process, resulting from the intensity and
suddenness of rejuvenation softening, explains that, when
starting from a well-relaxed glass, only a few plastic events
suffice to locally erase the memory of the initial packing
and achieve a soft state, which precipitates the shear banding
instability. Also, the closeness of the postyield yield stress
distribution to that of a liquid around the crossover region hint
at the possibility to explain how the brittle-ductile transition
depend on temperature, a very important practical issue.

By providing access to a relevant internal variable that
characterizes the local mechanical properties, this work opens
promising perspectives for describing nucleation and shear
band dynamics in amorphous solids. It also establishes a
stimulating link between mechanical and thermal proper-
ties, a necessary step to explain how the history of these

FIG. 8. Inherent-state (IS) potential energy per atom as a func-
tion of temperature in equilibrated liquids (gray circles) and in our
gradually quenched system (blue diamond). The green line is a fit of
the equilibrated liquid data. The fictive temperature Tf is estimated
as that where the liquid IS energy extrapolates to that of the gradually
quenched system (see blue dotted lines).

out-of-equilibrium and disordered systems is encoded in their
structure [45].

These observations illustrate the remarkable ability of our
tool to provide much-needed insights on the local mechanisms
of plasticity. We are convinced that a sustained exchange
between such numerical probes, which provide both input
and benchmarks, and the construction of mesoscopic models,
will be instrumental in the coming years for the advancement
of our fundamental understanding of amorphous plasticity.
We only hope the present work is an early step along this
promising route.
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APPENDIX A: EFFECTIVE TEMPERATURE SCALES

1. Determination of the fictive temperature

The notion of fictive temperature Tf is classically used to
map a nonequilibrium glass state onto an equilibrium liquid.
Following Ref. [46], the fictive temperature of our gradually
quenched glass is defined using the inherent state potential
energy: Namely, Tf is defined (see Fig. 8) as the temperature
at which the inherent potential energy of the glass equates that
of equilibrated liquids. We obtain Tf = 0.291 ± 0.007.

2. Determination of the mode-coupling temperature

The mode-coupling temperature TMCT is determined from
a functional fit of the relaxation time τα in the dynamical
regime for different temperatures T [47,48]. We first compute
the self-intermediate scattering function FL(q, t ) = 〈cos(q ·
(r j (t ) − r j (0)))〉, where the subscript L refers to the “large”
particles, r j (t ) is the position of the jth particle at time t , and
〈. . . 〉 denotes the average over j and the time origin. FL(q, t )
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FIG. 9. Relaxation time τα as a function of the equilibration
temperature. The red line is a power-law fit of the data points for
temperatures larger than 0.4. The vertical blue line represents the
location of estimated TMCT.

is averaged over 100 samples, containing 1024 atoms each,
for every temperature. We define the relaxation time τα as
FL(qSF , t = τα ) = 1

e with |qSF | = 6.07 corresponding to the
primary peak of the static structure factor. As reported in
Fig. 9, τα , as computed for temperatures larger than 0.4, is
well fitted by the power-law relation τα ∝ (T − TMCT)γ . We
obtain γ = −0.818 ± 0.005 and TMCT = 0.373 ± 0.001.

APPENDIX B: STRAIN MEASURES

1. Hencky equivalent global shear-strain

Our model glasses are deformed using AQS simple shear
loading up to linear strains γxy = 500%. The global strain
is characterized within the finite-strain theory by using a
Lagrangian description and choosing the Hencky’s logarith-
mic strain definition [49]. The advantages of proceeding in
such a way are threefold: It makes no use of small strain
approximation, it allows us to eliminate rotations, and it will
permit us to characterize macroscopic and microscopic strains
using comparable quantities.

Given F as the deformation gradient, the logarithmic
(Hencky) strain is E = ln(U), where U is the right stretch
tensor, i.e., the unique symmetric and positive-definite tensor
such that F = RU, with R a rotation. Since the right Cauchy-
Green strain

FT F = U2 (B1)

is positive definite, we may also write E = 1
2 ln(U2). More-

over, U2 can be diagonalized, i.e., written as U2 = P−1DP
with D diagonal and P the associated change of basis matrix.
Finally, the invariants of E = P−1 ln(D)P are those of ln(D).

For two-dimensional simple shear deformation, the defor-
mation gradient is

F =
(

1 γ

0 1

)
(B2)

with γ the linear strain and the right Cauchy-Green strain

U2 =
(

1 γ

γ 1 + γ 2

)
. (B3)

FIG. 10. Local averages computed along the shear direction x for
different strain levels E as a function of the vertical position y with
respect to the shear band position ySB: (a) density 〈ρ〉x , (b) shear
modulus in the loading direction 〈Cxyxy〉x , (c) potential energy per
atom 〈e〉x , and (d) pressure 〈P〉x .

It eigenvalues are λ± = ( γ

2 ±
√

1 + γ 2

4 )
2
. Noting that

λ+λ− = 1, since det(U2) = 1, the square-root of the
second tensor invariant of E, E ≡ 1

4 | ln(λ+/λ−)| =
ln ( γ

2 +
√

1 + γ 2

4 ). This is the quantity we refer to in the
manuscript as the macroscopic Hencky strain.

2. Local strain computation

The procedure for computing local strain tensor in our
atomic system is the same as that previously employed in
Refs. [22,30]. It relies on the evaluation of the local, coarse-
grained, deformation gradient tensor F.
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FIG. 11. Local yield stress τ c
xy as conditioned by local pressure

P in yielded (green) and unyielded (red) regions at E = 0.05 and for
renewed sites (shades of brown) at different macroscopic strains.

In continuum mechanics F relates the position in the ref-
erence (undeformed) configuration to the current (deformed)
configuration through the Cauchy-Born rule. For an atomic
system under affine deformation this mapping relates the vec-
tors Xαβ and xαβ connecting atoms α and β in the reference
and current configurations (respectively) by

xαβ
i j = Fi jX

αβ
i j (B4)

with i and j coordinate components. Since local strains are
not affine in general (particularly in glasses [50]) the previous
formula will no longer be exact for each individual atom-
neighbor pair.

For two configurations separated by a small macroscopic
strain interval, as proposed by Zimmerman et al. [51], we
define the atomic-level deformation tensor Fα

i j for atom α by
minimizing the function

Bα =
n∑

β=1

2∑
i=1

g
(
rαβ

0

)(
xαβ

i − Fα
i j X αβ

j

)2
, (B5)

where the sum runs over the n nearest neighbors of α and
where g(rαβ

0 ) is a smooth weighting function that only de-
pends on the distance rαβ

0 between atoms α and β in the refer-
ence configuration [38]. Thus Fα

i j is the best fit of Eq. (B4), in
the least-squares sense, for an atom in its cage. We choose
for g an octic polynomial function [52]. This function has
a single maximum and continuously vanishes at a coarse-
graining length RCG = 5:

g(r) =
{

15
8πR2

CG

[
1 − 2

(
r

RCG

)4 + (
r

RCG

)8]
, for r < RCG

0, otherwise.
(B6)

The minimization of Eq. (B5) with respect to Fα gives

Fα
i j =

2∑
k=1

YikZ−1
jk , (B7)

with

Yik =
n∑

β=1

(
xαβ

i X αβ

k

)
g
(
rαβ

0

)
and Zik =

n∑
β=1

(
X αβ

i X αβ

k

)
g
(
rαβ

0

)
.

(B8)

This procedure is used to compute the strain gradient for
each atom F between macroscopic configuration separated
by small strain intervals �γ = 0.01. For larger �γ , F is nu-
merically integrated by multiplying the deformation gradient
tensors F = FnFn−1 · · · F2F1, where Fi is the deformation
gradient tensors between states i and i + 1 separated by �γ =
0.01.

The local strain is reduced to a scalar following the same
procedure as for the global strain E , which involves the nu-
merical diagonalization of each FT F. Finally, the atomic-level
strain ε is defined as the second tensor invariant of 1

2 ln(FT F).
The ε field is then evaluated on a square grid N2 by

assigning to each grid point the value computed for the closest
corresponding atom. The regular grid lattice constant equals
to Rsampling = L/39 ≈ Rcut, where L is the dimension of the
initially square simulation box and Rcut = 2.5σ is the cutoff
interatomic potential. The grid deforms affinely with the
overall applied strain in simple shear. The local yield stresses
are computed on the same grid.

APPENDIX C: LOCAL PROPERTIES

1. Profiles through the shear band

In Fig. 10, we report the average profiles of density ρ,
elastic modulus Cxyxy, potential energy per atom e, and pres-
sure P for different macroscopic strain levels. As described in
the manuscript, we restrict this analysis to samples featuring
only horizontal shear bands. The profiles are centered on the
shear band ordinate ySB, which is defined at that where the
x-averaged local strain is maximum for E = 0.1.

The values of 〈ρ〉x, 〈Cxyxy〉x, and 〈e〉x in the shear band and
the outer medium are visibly contrasted: The accumulation
of plastic rearrangements brings the system to a less dense,
less rigid, and less stable state. Note, however, that all pro-
files eventually become homogeneous in the stationary flow
state.

Because of the constant volume loading protocol, the aver-
age of ρ is by definition equal to the mean system density.
The local density in the band thus reaches transiently a
minimum around E � 0.05 before increasing again toward
the mean density, its eventual value at large macroscopic
strains.

The evolution of the elastic moduli is somewhat curious.
While it softens in the band, 〈Cxyxy〉x presents an overall de-
crease during the early stages of loading up to the peak stress.
This is expected since the approach to plastic instabilities
reduces the macroscopic elastic modulus [18]. The moduli
in the outer, elastic region then rapidly rises as the stress
decreases from its peak, presumably because the density of
near threshold zone diminishes.

The presence and broadening of the shear band can also be
detected by examining the increase in 〈e〉x. This increase has
already been observed in a very similar atomic system [13],
where it has been interpreted as a rise in effective temperature
through shear-transformation-zone theory.
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It is interesting to note that the shear band position at
E = 0.1, which we take as reference, correlates with various
local properties of the quenched state. Note, finally, that if the
global pressure increases with plastic deformation (see Fig. 1
in the manuscript), then it is almost homogeneous along these
average profiles due to mechanical equilibrium as reported in
Fig. 10(d).

2. Variation of local yield stresses with pressure

We report in Fig. 11 the average of 〈τ c
xy〉 as a function of

the local pressure P in the yielded and nonyielded regions
at E = 0.05 and for renewed states (see manuscript) for
different macroscopic strains. This plot clearly shows that, at
the same P, unyielded and yielded regions present different
yield stresses. Moreover, in either ensemble, the local yield
stress increases nearly linearly with local pressure. This result
is in agreement with the variation of the yield surface obtained
numerically for a metallic glass in Ref. [53], where pressure
or normal stress give results intrinsically similar to a Mohr-
Coulomb criterion. The slopes of the 〈τ c

xy〉 relations differ by

merely 10%. We therefore choose to adjust the slope on all
the data. We find an empirical relationship for yielded and
unyielded sites: 〈τ c

xy〉 = 0.25 P + A, where A is a constant.
Using the identified slope of the local relation between τ c

xy
vs. P, we can now take into account the effect of local pressure
and correct the data in Fig. 4(b) of the manuscript. We
calculate the threshold distribution of unyielded sites at E =
0.05 from the corresponding thresholds in the quenched state
as τ c

xy = τ c
xy(E = 0|E = 0.05, ε < 〈ε∗〉/8) + 0.25�P, where

�P is the variation of local pressure on given sites between
E = 0 and E = 0.05. The corrected curves [green triangles in
Fig. 4(b) in the manuscript] quantitatively reproduce the dis-
tributions τ c

xy of unyielded sites at E = 0.05. This establishes
that changes in the local yield stress for small deformations,
mainly outside of the band, can be attributed both to the
depletion of weak sites and, in the case of constant volume
simulations, to the increase in local pressure.

The relation between 〈τ c
xy〉 and P for the renewed states

at different macroscopic strains still shows a nearly linear
dependency. It, however, slightly deviates from the relation
found for the yielded sites at E = 0.05.
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MOTS CLÉS

Micro-méchanique, Solide amorphe, Liquide surfondu, Dynamique moléculaire

RÉSUMÉ

Dans cette thèse, la méthode de la limite d’élasticité locale est appliquée et approfondie pour étudier d’une part les

réarrangements atomiques isolés et irréversibles induits par cisaillement et d’autre part la relaxation structurelle dans un

liquide formateur de verre, un mélange binaire Lennard-Jones 2D. La méthode permet d’obtenir la réponse mécanique lo-

cale d’un état inhérent de manière directe et non-perturbatrive tout en contrôlant les échelles de longueur et les directions

de chargement. Dans la première partie, l’accent est mis sur une petite inclusion du verre. Sa réponse micromécanique

est sondée dans la limite athermique quasi-statique. L’influence de l’échelle de longueur, sur laquelle la réponse mé-

canique est sondée, est discutée. La variation des statistiques de seuil en fonction de la taille de la zone de sondage peut

être comprise sur la base d’un argument géométrique simple et d’une hypothèse de maillon faible. Ensuite, en détermi-

nant la limite d’élasticité critique locale avec une résolution angulaire élevée sur la direction de chargement, on observe

que seul un nombre fini et discret de réarrangements de cisaillement est accessible, chacun d’eux se caractérisant par un

plan faible distinct. De plus, la limite d’élasticité critique montre une grande sensibilité à la pression. On constate que pour

l’échelle de longueur étudiée, le critère d’élasticité de Mohr-Coulomb décrit par morceaux la contrainte de cisaillement

critique avec précision. Dans la deuxième partie, un lien fort entre la structure et la dynamique des liquides surfondus

est établi. La nouveauté du présent travail est la caractérisation de la structure par des seuils de glissement locaux. Une

forte corrélation est trouvée entre d’une part les barrières de contrainte dans la direction la plus faible calculée dans l’état

inhérent et d’autre part les observables associées à la relaxation de la structure à l’état liquide. Comme attendu, un

coefficient de corrélation plus élevé est constaté pour les liquides équilibrés à des températures plus basses, signe que

le paysage d’énergie potentielle influence davantage la dynamique.

ABSTRACT

In this thesis, the local yield stress method is applied and extended to study single, irreversible atomistic rearrangements
as well as structural relaxation in a model glass-forming liquid, a two dimensional binary Lennard-Jones mixture. The
method gives access to the local mechanical response of an inherent configuration in a direct and non-perturbative
manner while controlling the length scales and loading directions. In the first part, the focus is on a small inclusion of
the glass. Its micromechanical response is probed in the athermal quasi-static limit. The influence of the length scale,
at which the mechanical response is probed, is discussed. The variation of the threshold statistics with the size of the
probing zone can be understood on the basis of a simple geometric argument and a weakest link assumption. Then, upon
determining the dependence of the local critical yield stress on the shear loading direction with a high angular resolution,
it is observed that only a finite and discrete number of shear rearrangements is accessible, each of them having a distinct
weak plane. Furthermore, the critical yield stress shows a high sensitivity towards the pressure in the simulation box. It is
found that for the length scale studied, a Mohr-Coulomb yield criterion describes piecewise accurately the critical shear
stress. In the second part, a connection between structure and dynamics of model supercooled liquids is established. The
novelty in the present work is the characterization of the structure through local slip thresholds. A strong correlation is
found between the stress barriers in the softest direction calculated in the as-quenched state and observables associated
to the relaxation of the liquid structure at parent temperature. As expected, a higher correlation coefficient is detected for
liquids equilibrated at lower temperatures, as the potential energy landscape increasingly influences the dynamics.

KEYWORDS

Micromechanic, Amorphous solid, Supercooled liquid, Molecular dynamics
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