
HAL Id: tel-03162066
https://pastel.hal.science/tel-03162066

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to handwriting recognition using deep
neural networks and quantum computation

Bogdan-Ionut Cîrstea

To cite this version:
Bogdan-Ionut Cîrstea. Contributions to handwriting recognition using deep neural networks and
quantum computation. Artificial Intelligence [cs.AI]. Télécom ParisTech, 2018. English. �NNT :
2018ENST0059�. �tel-03162066�

https://pastel.hal.science/tel-03162066
https://hal.archives-ouvertes.fr

T

H

È

S

E

2018-ENST-0059

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité Signal et Images

présentée et soutenue publiquement par

Bogdan-Ionuţ CÎRSTEA
le 17 décembre 2018

Contributions à la reconnaissance de l’écriture manuscrite en
utilisant des réseaux de neurones profonds et le calcul

quantique

Directrice de thèse :
Laurence LIKFORMAN-SULEM

Jury
Thierry PAQUET, Professeur, Université de Rouen Rapporteur
Christian VIARD-GAUDIN, Professeur, Université de Nantes Rapporteur
Nicole VINCENT, Professeur, Université Paris Descartes Examinateur
Sandrine COURCINOUS, Expert, Direction Générale de l’Armement (DGA) Examinateur
Laurence LIKFORMAN-SULEM, Maître de conférence, HDR Télécom ParisTech Directrice de thèse

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Acknowledgments

I would like to start by thanking my PhD advisor, Laurence Likforman-Sulem.

Laurence was always there to provide help and moral support, especially in the most

difficult moments of this thesis project. This thesis would not have been completed

without her support.

I am very grateful to Télécom Paristech and the DGA (Direction Générale de

l’Armement), who co-financed this thesis through a DGA-MRIS scholarship and,

particularly, to Sandrine Courcinous, who accepted to review this thesis, and to

Emmanuèle Grosicki, who initiated this project.

I would also like to thank NVIDIA Corporation for the donation of the Tesla K40

GPU which was used to perform this research.

Many thanks to the jury, who accepted to review this work, which is not necessarily

in the comfort zone of most handwriting recognition researchers.

Finally, I would like to thank my love, Sabina, my friends and my family for their

continuous and unwavering support.

Résumé

Au cours des dernières années, l’apprentissage profond, le domaine d’étude des réseaux

de neurones artificiels à couches multiples, a eu un impact important sur de nom-

breux domaines de l’intelligence artificielle, y compris la reconnaissance de l’écriture

manuscrite. Le calcul quantique, en revanche, malgré une longue histoire, n’a été

étudié que très récemment pour les applications d’apprentissage automatique. Dans

cette thèse, nous fournissons plusieurs contributions des domaines de l’apprentissage

profond et du calcul quantique à la reconnaissance de l’écriture manuscrite.

Nous commençons par intégrer certaines des techniques d’apprentissage pro-

fond les plus récentes (comme dropout, batch normalization et différentes fonctions

d’activation) dans les réseaux de neurones à convolution et obtenons des meilleures

performances sur le fameux jeu de données MNIST. Nous proposons ensuite des

réseaux TSTN (Tied Spatial Transformer Networks), une variante des réseaux STN

(Spatial Transformer Networks) avec poids partagés, ainsi que différentes variantes

d’entrâınement du TSTN. Nous présentons des performances améliorées sur une

variante déformée du jeu de données MNIST. Dans un autre travail, nous comparons

les performances des réseaux récurrents de neurones Associative Long Short-Term

Memory (ALSTM), une architecture récemment introduite, par rapport aux réseaux

récurrents de neurones Long Short-Term Memory (LSTM), sur le jeu de données de

reconnaissance d’écriture arabe IFN-ENIT. Enfin, nous proposons une architecture

de réseau de neurones que nous appelons réseau hybride classique-quantique, capable

d’intégrer et de tirer parti de l’informatique quantique. Alors que nos simulations

sont effectuées à l’aide du calcul classique (sur GPU), nos résultats sur le jeu de

données Fashion-MNIST suggèrent que des améliorations exponentielles en complex-

ité computationnelle pourraient être réalisables, en particulier pour les réseaux de

neurones récurrents utilisés pour la classification de séquence.

Abstract

During the last past years, deep learning, the field of study of artificial neural networks

with multiple layers, has had a strong impact on many fields of artificial intelligence,

including handwriting recognition. Quantum computation, on the other hand, despite

having a history spanning decades, has only very recently been studied for machine

learning applications (arguably, for several years only). In this thesis, we provide

several contributions from the fields of deep learning and quantum computation to

handwriting recognition.

We begin by integrating some of the more recent deep learning techniques (such

as dropout, batch normalization and different activation functions) into convolutional

neural networks and show improved performance on the well-known MNIST dataset.

We then propose Tied Spatial Transformer Networks (TSTNs), a variant of Spatial

Transformer Networks (STNs) with shared weights, as well as different training

variants of the TSTN. We show improved performance on a distorted variant of the

MNIST dataset. In another work, we compare the performance of Associative Long

Short-Term Memory (ALSTM), a recently introduced recurrent neural network (RNN)

architecture, against Long Short-Term Memory (LSTM), on the Arabic handwriting

recognition IFN-ENIT dataset. Finally, we propose a neural network architecture,

which we denote as a hybrid classical-quantum neural network, which can integrate

and take advantage of quantum computing. While our simulations are performed

using classical computation (on a GPU), our results on the Fashion-MNIST dataset

suggest that exponential improvements in computational requirements might be

achievable, especially for recurrent neural networks trained for sequence classification.

Table of Contents

Acknowledgments i

Résumé ii

Abstract iii

Introduction 1

1 Introduction to deep learning 3

1.1 Short introduction to machine learning 4

1.2 Computational primitives . 6

1.2.1 Matrix vector multiplication 6

1.2.1.1 Element-wise multiplication 7

1.2.1.2 Convolution . 7

1.2.1.3 Factorized matrix vector multiplication 8

1.2.2 Nonlinear activation functions 9

1.3 Artificial neural network architectures 10

1.3.1 Multilayer perceptrons (MLPs) 12

1.3.1.1 Input layer . 12

1.3.1.2 Hidden layers . 12

1.3.1.3 Output layer . 12

1.3.1.4 Representational power 12

1.3.2 Convolutional neural networks (CNNs) 13

1.3.2.1 Convolutional layer 14

1.3.2.2 Subsampling layer 15

1.3.2.3 Output layer for classification 16

1.3.2.4 CNN design patterns 16

1.3.3 Recurrent neural networks (RNNs) 17

1.3.3.1 Standard RNNs . 17

1.3.3.2 Long short-term memory (LSTM) 18

TABLE OF CONTENTS v

1.3.3.3 Bidirectional RNN (BRNN) 19

1.4 Performance measures . 19

1.4.1 Label error rate (LER) . 20

1.4.2 Character error rate (CER) 20

1.4.3 Word error rate (WER) . 20

1.5 Gradient-based optimization . 20

1.5.1 Loss functions . 21

1.5.1.1 Cross-entropy . 21

1.5.1.2 Connectionist temporal classification (CTC) 21

1.5.2 Gradient descent . 28

1.5.2.1 Finite differences . 29

1.5.2.2 Simultaneous perturbation stochastic approximation

(SPSA) . 30

1.5.2.3 Backpropagation . 31

1.5.2.4 Backpropagation through time (BPTT) 34

1.5.2.5 Vanishing / exploding gradients 35

1.5.3 State of the art optimization algorithms and heuristics 36

1.5.3.1 ADAM optimization 36

1.5.3.2 Gradient clipping . 36

1.5.4 Helpful methods for optimization / regularization 37

1.5.4.1 Dropout . 38

1.5.4.2 Batch normalization 38

1.5.4.3 Early stopping . 39

1.6 Conclusion . 40

2 Deep learning-based handwriting recognition 41

2.1 The role of handwriting recognition tasks in the history of neural

networks . 42

2.1.1 MNIST for classification . 42

2.1.2 Other tasks and datasets . 45

2.1.2.1 MNIST for benchmarking generative models 45

2.1.2.2 Pixel by pixel MNIST 46

2.1.2.3 Recognizing multilingual handwritten sequences . . . 46

2.1.2.4 Online handwriting sequential generative models . . 46

2.2 The history of neural networks applied to handwriting recognition . . 47

2.2.1 Datasets . 47

2.2.1.1 IAM . 47

vi TABLE OF CONTENTS

2.2.1.2 RIMES . 47

2.2.1.3 IFN-ENIT . 48

2.2.2 Deep neural networks (DNNs) 48

2.2.3 Recurrent Neural Networks (RNNs) 49

2.2.4 Architectures mixing convolutional and recurrent layers 50

2.3 Conclusion . 53

3 Improving a deep convolutional neural network architecture for

character recognition 56

3.1 Architecture . 57

3.2 Nonlinear activation functions . 58

3.3 Gradient-based optimization and loss function 59

3.4 Initialization . 59

3.5 ADAM variant . 59

3.6 Dropout . 61

3.7 Batch normalization . 61

3.8 Early stopping . 61

3.9 Experiments . 62

3.10 Conclusions . 63

4 Tied Spatial Transformer Networks for Digit Recognition 64

4.1 Common elements . 65

4.1.1 Convolutional architectures 65

4.1.2 Activation functions and parameter initialization 68

4.1.3 Loss function and optimization 70

4.1.4 Regularization . 70

4.2 Experiments . 71

4.2.1 CNN, STN and TSTN comparison 72

4.2.2 The regularization hypothesis 73

4.3 Discussion . 74

4.4 Conclusion . 75

5 Associative LSTMs for handwriting recognition 76

5.1 Methods . 78

5.1.1 Holographic Reduced Representations 78

5.1.2 Redundant Associative Memory 79

5.1.3 LSTM . 81

5.1.4 Associative LSTM . 81

TABLE OF CONTENTS vii

5.2 Results . 85

5.2.1 Dataset . 85

5.2.2 Image normalization . 85

5.2.3 System details . 85

5.2.4 Results . 86

5.3 Discussion . 88

5.4 Conclusion . 89

6 Hybrid classical-quantum deep learning 90

6.1 Motivation for using quantum computing 92

6.2 Introduction to the quantum circuit model of quantum computing

with discrete variables . 94

6.2.1 The qubit . 94

6.2.1.1 Multiple qubits . 95

6.2.2 Unitary evolution . 96

6.2.2.1 Single qubit . 96

6.2.2.2 Multiple qubits . 97

6.2.3 Measurement . 99

6.2.3.1 Full measurement . 99

6.2.3.2 Partial measurement 100

6.3 Discrete-variable quantum neural networks using partial measurement 101

6.4 Introduction to hypernetworks . 103

6.5 Proposed parameterization . 106

6.5.1 Quantum (main) RNN . 106

6.5.2 Output layer . 107

6.5.3 Loss function . 108

6.5.4 Classical (hyper) RNN . 109

6.6 Simulation results . 110

6.6.1 Task and dataset . 110

6.6.2 System details . 112

6.6.2.1 Baseline classical LSTM 112

6.6.2.2 Hybrid classical-quantum parameterization 113

6.6.2.3 Common settings . 113

6.6.3 Approximate computational cost 114

6.6.4 Accuracy estimation under ε-sampling approximation 115

6.7 Experimental results . 115

6.8 Discussion . 121

viii TABLE OF CONTENTS

6.9 Conclusion . 126

Conclusions 127

Publications 129

Appendices 130

A Other Achievements 131

B Contributions à la reconnaissance de l’écriture manuscrite en util-

isant des réseaux de neurones profonds et le calcul quantique 132

B.1 Introduction . 132

B.2 Amélioration d’une architecture de réseau neuronal convolutionnel

profond pour la reconnaissance de caractères 133

B.2.1 Architecture . 133

B.2.2 Détails d’implémentation . 134

B.2.3 Expériences . 135

B.2.4 Conclusions . 137

B.3 Réseaux de Transformateurs Spatiaux Liés pour la reconnaissance de

chiffres . 137

B.3.1 Architectures convolutives . 138

B.3.2 Details d’implementation . 140

B.3.3 Expériences . 142

B.3.3.1 Comparaison des réseaux convolutionnels de classific-

ation, des RTSs et des RTSLs 143

B.3.3.2 L’hypothèse de la régularisation 144

B.3.4 Discussion . 145

B.3.5 Conclusion . 146

B.4 Associative LSTMs pour la reconnaissance de l’écriture manuscrite . . 146

B.4.1 Ensemble de données . 147

B.4.2 Normalisation d’image . 147

B.4.3 Détails des systèmes . 147

B.4.4 Résultats . 147

B.5 Apprentissage profond hybride

classique-quantique . 148

B.5.1 Architecture proposée . 150

B.5.1.1 RNN quantum (principal) 150

B.5.1.2 Couche de sortie . 151

TABLE OF CONTENTS ix

B.5.1.3 Fonction de perte . 152

B.5.1.4 Hyper RNN classique 152

B.5.2 Résultats de la simulation . 153

B.5.2.1 Tâche et ensemble de données 153

B.5.2.2 Détails des systèmes 154

B.5.2.3 Approximation du coût de calcul 156

B.5.2.4 Estimation de la précision de classification sous ap-

proximation de l’échantillonnage de précision ε . . . 157

B.5.3 Résultats . 157

B.5.4 Conclusions . 159

B.6 Conclusions . 160

List of Figures

2.1 Architecture from [54]. CONV denotes convolutional layers. BN de-

notes Batch Normalization. MAXP denotes max-pooling. 55

3.1 CNN architecture . 57

3.2 All misclassified samples of the MNIST test set. The first number is

the estimated label, the second one is the ground truth. 63

4.1 Classification CNN architecture . 66

4.2 Untied STN architecture, composed of two coupled CNNs, one dedic-

ated to localization, the other to classification 66

4.3 TSTN architecture, similar to the untied STN architecture, but using

shared weights . 66

4.4 Detailed classification CNN architecture 1 (fmap = feature map) . . . 67

4.5 Cluttered MNIST input images (left) and the same images processed

by a Spatial Transformer as part of a STN1 system (right) 71

5.1 Example images from IFN-ENIT before and after Otsu thresholding

and ocropy normalization. The odd images, from top to bottom, are

the inputs (unnormalized), while the even ones are thresholded and

normalized. For better visualization, the input images are scaled 0.5×. 87

6.1 Suspected relationship between the BQP, P and NP complexity classes.

PH is a complexity class which can be interpreted as a generalization

of NP. Figure from [4]. 93

LIST OF FIGURES xi

6.2 Illustration of a 3-qubit system which undergoes unitary evolution

under 3 general 1-qubit unitaries. The three qubits are illustrated as

wires and the general 1-qubit unitaries as rectangle boxes. We illustrate

the general 1-qubit unitaries as unitary gates (even though, technically,

they would each be decomposed into multiple simpler 1-qubit gates)

for simplicity. The 3 general 1-qubit unitaries are enclosed in a dashed

box to indicate that their collective action can be interpreted as a

single unitary transform, generated by taking the tensor product of

the three general 1-qubit unitary matrices. 99

6.3 Recurrent hypernetwork architecture: the hyper LSTM generating the

weights of the main LSTM (at every timestep). Adapted from [100]. . 105

6.4 A more detailed view of the hyper RNN in Fig. 1. The hyper RNN

(shown in orange) takes in, at every timestep, the previous hidden

state of the main RNN and the current input of the main RNN, and

outputs the embedding vector zt, from which the weights of the main

RNN will be generated (denoted by W (zt)). Figure from [100]. 105

6.5 Example of a hybrid classical-quantum recurrent neural network similar

to those we simulate. A recurrent hypernetwork (in orange) implemen-

ted on a classical computer dynamically generates unitary transforms

for a main network (in black), implemented on a quantum computer.

The unitary matrices Ut are dynamically generated by the classical net-

work for each input (sequence) from the classical network activations

h′t, using the fixed matrix Wl. No nonlinearity is used in the quantum

neural network. We illustrate the hypernetwork as a typical RNN,

with the same weight matrix Wh applied at every time step, followed

by elementwise nonlinearity f , but, in principle, any architecture could

be used. The inputs xt are only provided to the hyper-RNN, processed

through the fixed matrix Wx. The figure is simplified for illustration

purposes. In our experiments, an LSTM is used as the hyper-RNN. . 107

6.6 Examples of coats from Fashion-MNIST 112

6.7 Examples of shirts from Fashion-MNIST 112

B.1 Achitecture du réseau convolutionnel 134

B.2 Tous les échantillons mal classés de l’ensemble de test MNIST. Le

premier numéro est l’étiquette estimée, le second est la vérité-terrain. 136

B.3 Architecture du réseau convolutionnel (CNN) de classification 138

xii LIST OF FIGURES

B.4 Architecture de type Réseau de Transformateur Spatial (RTS), com-

posée de deux réseau convolutionnels (CNN) couplés, l’un dédié à la

localisation, l’autre à la classification 138

B.5 Architecture de type Réseau de Transformateur Spatial Lié (RTSL),

similaire à l’architecture RTS (non lié), mais avec des poids partagés

(liés) . 138

B.6 Architecture détaillée du réseau convolutionnel de classification 1

(fmap = feature map = carte des caractéristiques) 139

B.7 Images d’entrée de cluttered MNIST (à gauche) et les mêmes images

traitées par un module Transformateur Spatial dans le cadre d’un

système RTS1 (à droite) . 143

B.8 Exemple d’un réseau neuronal récurrent hybride classique-quantique

similaire à ceux que nous simulons. Un hypernetwork récurrent (en

orange) implémenté sur un ordinateur classique génère dynamique-

ment des transformations unitaires pour un réseau principal (en noir),

qui serait implémenté sur un ordinateur quantique (mais qu’on simule

classiquement). Les matrices unitaires Ut sont générées dynamique-

ment par le réseau classique pour chaque exemple (séquence) à partir

des activations du réseau classiques h′t, en utilisant la matrice entrâın-

able Wl. Aucune non-linéarité n’est utilisée dans le réseau neuronal

quantique. Nous illustrons l’hypernetwork comme un RNN typique,

avec la même matrice entrâınable de poids Wh appliquée à chaque pas

de temps, suivie de la non-linéarité par élément f , mais, en principe,

toute architecture pourrait être utilisée. Les entrées xt ne sont fournies

qu’à l’hyper-RNN, traitées par la matrice entrâınable Wx. La figure

est simplifiée à des fins d’illustration. Dans nos expériences, un LSTM

est utilisé comme hyper-RNN. 151

B.9 Exemples de manteaux de Fashion-MNIST 154

B.10 Exemples de chemises de Fashion-MNIST 154

List of Tables

1.1 CTC notation . 22

3.1 Proposed CNN architecture . 58

3.2 Comparison with state-of-the-art results on the MNIST test set (single

system, no data augmentation) at the time this work was originally

performed (May 2015) . 62

4.1 Architecture 1: localization CNN (left) and classification CNN (right) 68

4.2 Architecture 2: localization CNN (left) and classification CNN (right) 69

4.3 Results on the cluttered MNIST database for different systems, archi-

tectures and training procedures . 72

5.1 Character error rates (CERs) for various LSTM and Associative LSTM

systems. We denote LSTM RNNs with n units by LSTM-[n] and

Associative LSTM (ALSTM) with n units by ALSTM-[n]. We add

the prefix B for Bidirectional RNNs. 86

6.1 Potential implementations for neural network concepts using quantum

computing concepts. [203] proposed using full quantum measurement

to implement a neural network’s nonlinearity (activation function),

while [161] used partial measurement. [79] used the expectation of

repeated partial quantum measurements as output layer for a binary

classification task (to provide the predicted class probabilities). 102

6.2 Approximate computational cost (operations) per time step for each

system component (classical LSTM and quantum AFDF). 116

6.3 Extra cost factor from repeated measurements under different ε ap-

proximations. 116

xiv LIST OF TABLES

6.4 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 2000 training examples,

14 x 14 pixels, batch size 25. 117

6.5 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 2000 training examples,

14 x 14 pixels, batch size 100. 118

6.6 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 10000 training examples,

14 x 14 pixels, batch size 100. 118

6.7 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 2000 training examples,

20 x 20 pixels, batch size 100. 119

6.8 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 2000 training examples,

28 x 28 pixels, batch size 100. 120

6.9 Comparison in terms of accuracy and computational costs between

classical LSTMs and our proposal. Results for 10000 training examples,

28 x 28 pixels, batch size 100. 120

B.1 Architecture du réseau convolutionnel proposé 135

B.2 Comparaison avec les résultats les plus récents sur l’ensemble de test

MNIST (système unique, pas d’augmentation de données) au moment

où ce travail a été effectué (Mai 2015) 136

B.3 Architecture numéro 1: réseau convolutionnel de localisation (à gauche)

et réseau convolutionnel de classification (à droite) 140

B.4 Architecture numéro 2: réseau convolutionnel de localisation (à gauche)

et réseau convolutionnel de classification (à droite) 141

B.5 Résultats sur la base de données cluttered MNIST pour différents

systèmes, architectures et procédures d’entrâınement 144

B.6 Taux d’erreur de caractères (Character Error Rate - CER) pour divers

systèmes LSTM et ALSTM. Nous désignons les RNNs LSTM avec n

unités par LSTM-[n] et les ALSTMs avec n unités par ALSTM-[n].

Nous ajoutons le préfixe B pour les RNNs bidirectionnels. 148

B.7 Coût de calcul approximé (opérations) par pas de temps pour chaque

composant de système (LSTM classique et AFDF quantique). 158

B.8 Facteur de coût supplémentaire à partir de mesures répétées sous

différentes approximations ε. 158

LIST OF TABLES xv

B.9 Résultats pour 2000 exemples d’entrâınement, 28 x 28 pixels, taille

des lots 100 exemples. 159

B.10 Résultats pour 10000 exemples d’entrâınement, 28 x 28 pixels, taille

du lot 100. 160

Introduction

During the last past years, deep learning, the field of study of artificial neural networks

with multiple layers, has had a strong impact on many fields of artificial intelligence,

including handwriting recognition. Quantum computation, on the other hand, despite

having a history spanning decades, has only very recently been studied for machine

learning applications (arguably, for several years only). An important reason for why

quantum machine learning is in its infancy stage is the lack of large scale, practical

quantum computers.

In this thesis, we provide several contributions from the fields of deep learning

and quantum computation to handwriting recognition.

In Chapter 1, we will shortly introduce the most relevant methods and techniques

from deep learning (and, more generally, machine learning) for the work described in

this thesis.

In Chapter 2, we will discuss the relationship between deep learning and hand-

writing recognition from two different, but closely-related perspectives. First, we

will present the historical role of handwriting recognition tasks and datasets in the

development and the rise to prominence of neural networks. We will then discuss the

state of the art in handwriting recognition, focusing on neural network architectures.

In Chapter 3, we present our work integrating some of the more recent (particularly

at the time the work was performed) deep learning techniques (such as dropout,

batch normalization and different activation functions) into convolutional neural

networks and show improved performance on the well-known MNIST dataset.

In Chapter 4, we describe Tied Spatial Transformer Networks (TSTNs), a variant

of the previously introduced Spatial Transformer Networks (STNs) with shared

weights. We also describe different training variants of the Tied Spatial Transformer

Networks and show how we obtain improved performance on a distorted variant of

the MNIST dataset.

In Chapter 5, we compare the performance of Associative Long Short-Term

Memory (ALSTM), a recently introduced recurrent neural network (RNN) archi-

2

tecture, against Long Short-Term Memory (LSTM), on the Arabic handwriting

recognition IFN-ENIT dataset.

Finally, in Chapter 6, we shortly describe the basic principles of quantum compu-

tation we make use of and propose a neural network architecture which can integrate

and take advantage of quantum computing. While our simulations are performed

using classical computation (on a GPU), our results on the Fashion-MNIST dataset

suggest that exponential improvements in computational requirements might be

achievable, especially for recurrent neural networks trained for sequence classification.

We conclude with a discussion about the ultimate potential of neural networks

to solve handwriting recognition and how quantum computation might aid in this

effort, as a step towards human-level AI.

Chapter 1

Introduction to deep learning

Contents

1.1 Short introduction to machine learning 4

1.2 Computational primitives 6

1.2.1 Matrix vector multiplication 6

1.2.2 Nonlinear activation functions 9

1.3 Artificial neural network architectures 10

1.3.1 Multilayer perceptrons (MLPs) 12

1.3.2 Convolutional neural networks (CNNs) 13

1.3.3 Recurrent neural networks (RNNs) 17

1.4 Performance measures . 19

1.4.1 Label error rate (LER) . 20

1.4.2 Character error rate (CER) 20

1.4.3 Word error rate (WER) 20

1.5 Gradient-based optimization 20

1.5.1 Loss functions . 21

1.5.2 Gradient descent . 28

1.5.3 State of the art optimization algorithms and heuristics . . 36

1.5.4 Helpful methods for optimization / regularization 37

1.6 Conclusion . 40

In this chapter, we provide a brief introduction to the main deep learning tech-

niques we have used in this thesis. A much more thorough introduction to deep

4 1. Introduction to deep learning

learning is provided by [87]. For briefer reviews, see [131], [168]. We will first provide

a short introduction to machine learning (of which deep learning is a subdomain),

followed by a presentation of the main computational primitives used in this thesis

to create deep learning systems (practically all the most significant deep learning

systems are composed of two basic types of operations: linear and nonlinear). We then

introduce the main types of neural network architectures: multilayer perceptrons,

convolutional neural networks and recurrent neural networks. These can be used

to address different types of problems and can be combined creatively. We then

introduce the main performance measures used to benchmark handwriting recognition

systems: the label error rate (whose complement is the accuracy), character error rate

(CER) and word error rate (WER). In the following section we present gradient-based

optimization, introducing loss functions, gradient descent (with backpropagation and

backpropagation through time) and some state of the art optimization algorithms

(like ADAM) and regularization methods (like dropout).

1.1 Short introduction to machine learning

In this section we very briefly introduce the main concepts in the field of machine

learning, of which deep learning is a subfield. This section is inspired by the present-

ation in [11].

The machine learning field and particularly neural networks, the main subject of

this thesis, use an approach denoted as data-driven. This approach can be intuitively

described in the following manner. Suppose we want to recognize the handwriting

in a particular image. Unlike in most of computer science, we don’t know how to

explicitly write an algorithm which can achieve this. Even when a researcher is able

to recognize the handwriting in a particular image, he is unable to consciously access

how his brain performs the recognition, so as to directly translate the process into a

programmable algorithm. Instead, we will first train an algorithm on a dataset. We

will also use separate datasets to validate our approach and test what performance

we could expect in the real world. The validation dataset can be used to calibrate

the algorithm. Ideally, the test dataset is only touched once, to benchmark the final

performance of the algorithm.

Three different learning paradigms are the best-known and most relevant in

machine learning. In the case of supervised learning, which will be by far the most

relevant for this thesis, the datasets are labeled and the algorithm is expected to

learn the mapping f : input → label. Another paradigm is unsupervised learning,

1.1. Short introduction to machine learning 5

where only inputs are provided (no labels) and the algorithm is expected to learn to

generate data similar to the inputs in the training set. Finally, reinforcement learning

uses a process similar to how animals are trained: the algorithm is expected to learn

how to act in a certain environment so as to maximize a cumulative reward.

Handwriting recognition fits in the supervised learning paradigm. In this task, an

array of pixels representing an image is provided as an input and the algorithm has

to learn to assign it a sequence of labels (in the most general case). The handwriting

recognition pipeline can be formalized in the following manner:

1. Input: a set of N images, each labeled with a sequence of labels; each label

belongs to an alphabet of K symbols. This data is denoted as the training set.

2. Learning: We use the training set to learn the mapping between images of

handwriting and the corresponding label sequence. This step is denoted as

learning a model.

3. Evaluation: The quality of the model is evaluated by asking it to predict the

sequences of labels for a new set of images (the test set) never seen before

and comparing the predictions to the true label sequences (ground truth). The

intuition behind this procedure is that the performance on the test set should

be indicative of the performance in the real world (after deployment).

The validation set is used to perform what is called hyperparameter tuning.

Hyperparameters are parameters whose values are usually chosen using a different

procedure than that used for the trainable parameters. For neural networks, for

example, some examples of hyperparameters are the number of layers, the number of

units (neurons), the learning rate of the stochastic gradient procedure (see Section

1.5). In the case of neural networks, while trainable parameters are usually modified

using stochastic gradient descent, the hyperparameters are usually chosen by trying

out different values on the validation set and settling on the value which works best.

It is essential not to use the test set for tweaking the hyperparameters, so as not to

risk overfitting to the test set. Overfitting to the test set intuitively means that

the model obtains much better performance than what would actually be observed

during deployment, for real-world data. Using the test set to tune hyperparameters

can be interpreted as effectively including it into the training set, so the performance

reported on the test set would be too optimistic compared to what can be expected

when the model is deployed. On the other hand, if the test set is only used once, at

the very end, it can be expected to provide a useful measure of how well the model

6 1. Introduction to deep learning

will generalize to real data. For these reasons, we should only evaluate on the test

set once, at the very end.

The validation set, which can be used for tweaking the hyperparameters, can be

obtained by splitting the training set into a slightly smaller training set, and using

the rest of the data as the validation set. Intuitively, the validation set is used like a

fake test set to tune the hyperparameters. For many datasets, and particularly those

most used for benchmarking, the splits into different training and validation sets are

already provided. This can aid with easier comparisons of the performance obtained

by different algorithms.

1.2 Computational primitives

In their most general form, neural networks can be interpreted as computational

graphs composed of primitive operations. The computational graphs allow for a

richer set of primitive operations than those we described here, but we will restrict

ourselves to the most commonly used and most successful operations.

1.2.1 Matrix vector multiplication

Matrix vector multiplication is probably the most widely-used deep learning compu-

tational primitive. It is a type of linear operation (no nonlinear effect) and is used

as a component in all the most successful neural network architectures, including

those used in this thesis: multilayer perceptrons, convolutional neural networks and

recurrent neural networks..

In the most common setting, the vector x ∈ Rn represents information previously

processed by the neural network and / or unprocessed (input) information. The

matrix W ∈ Rm∗n is dense and all of its entries are modifiable (trainable) - see

Subsection 1.5. The result of this operation is the vector y ∈ Rm:

y = W ∗ x (1.1)

Usually, a vector of biases b ∈ Rm is added to the matrix vector multiplication

result, so that the previous equation becomes:

y = W ∗ x+ b (1.2)

We can obtain the same result by appending the value 1 to the end of the column

vector x and the column b to the matrix W , so that we can keep Eq. 1.1.

1.2. Computational primitives 7

In the next subsections we will introduce various primitives which can be inter-

preted as matrix vector multiplications, where the matrices are factorized in different

manners.

1.2.1.1 Element-wise multiplication

Element-wise multiplication can be interpreted as matrix vector multiplication where

the matrix is diagonal. Here again, the vector x ∈ Rn represents information previously

processed by the neural network and / or unprocessed (input) information, while

the diagonal matrix D ∈ Rn∗n contains the trainable parameters. By reshaping the

diagonal matrix to the vector d ∈ Rn:

y = D ∗ x = d • x (1.3)

Biases can be added analogously to how this was performed in the previous

subsection.

Element-wise multiplication is notably used in state of the art Long Short-Term

Memory (LSTM - see Section 1.3.3.2) recurrent neural networks. The convolution

operation, a computational primitive we describe in next, can also be factorized as

Discrete Fourier Transforms and element-wise multiplications, but we won’t go into

more details here (see [9]).

1.2.1.2 Convolution

The convolution operation is widely used in state of the art neural networks architec-

tures, particularly Convolutional Neural Networks (CNNs). We will only describe

discrete convolution applied to functions with finite support (vectors in the 1D case

and images in the 2D case), as these are the most relevant for neural networks.

Discrete convolution can be reformulated as matrix vector multiplication [8].

We will consider two vectors f and g with indices in {0..., N − 1}. The result of

their 1D convolution can be written as:

o[n] = f [n] ~ g[n] =
u=N−1∑
u=0

f [n− u] ∗ g[u] (1.4)

where ~ denotes the convolution operator.

This can be extended to 2D arrays as follows:

8 1. Introduction to deep learning

o[m,n] = f [m,n] ~ g[m,n] =
u=M−1∑
u=0

v=N−1∑
v=0

f [m− u, n− v] ∗ g[u, v] (1.5)

We will describe the intuition behind the convolution operation when we discuss

Convolutional Neural Networks in Section 1.3.2.

1.2.1.3 Factorized matrix vector multiplication

The previously introduced matrix vector multiplication is the most popular linear

operation in neural networks, but it can be quite expensive in computational time

and memory. For a vector of size N and a matrix of size N ×N , the computational

and memory complexity are O(N2). In this subsection we briefly present several

methods which factorize the matrix in the matrix vector multiplication, in order

to reduce the computational and / or memory complexity. We introduce a similar

approach, which factorizes the matrix (and uses quantum computation) in Chapter

6. For this reason, we focus here on some of the methods most similar and relevant

to our own.

[147] replaced the W matrix in fully-connected layers with the matrix product

A ∗ C ∗D ∗ C, with A and D diagonal matrices, C the discrete cosine transform and

C−1 the inverse discrete cosine transform, reducing the computational complexity

of a to O(N ∗ log(N)) and the number of trainable parameters to O(N), while

maintaining comparable statistical performance for the task of object recognition on

the ImageNet dataset.

[38] proposed a similar factorization, with O(N∗log(N)) computational complexity

and O(N) trainable parameters hidden-to-hidden transform of a recurrent neural

network (see Section 1.3.3.1). The resulting transform is the product of multiple

unitary matrices, some of which represent the Discrete Fourier Transform and the

Inverse Discrete Fourier Transform. The RNN parameterization obtained state of

the art results at the time of the proposal on several long-term dependency tasks.

Our proposal in chapter 6 also decomposes the matrix W into a product of multiple

unitary matrices, some of which represent Fourier transforms, but potentially reduces

the computational and memory complexities even further, due to the use of quantum

computation.

[121] introduced a Kronecker parameterization of the matrix implementing the

hidden-to-hidden transform of a recurrent neural network (see Section 1.3.3.1),

showing that, at least for certain tasks, the number of parameters in the hidden-to-

1.2. Computational primitives 9

hidden part of the RNN can be drastically reduced, from O(N2) to O(N ∗ log(N)) and

the computational complexity is reduced. In chapter 6, we propose a neural network

architecture which makes use of quantum computation and can also dramatically

reduce the number of trainable parameters, but also the computational complexity (to

O(log(N)2)), while maintaining comparable performance, using a similar Kronecker

matrix factorization.

1.2.2 Nonlinear activation functions

All previously described computational primitives are linear. Nonlinear operations are

also necessary, otherwise a machine learning system containing only linear operations

would not be expressive enough, no matter how many linear operations were composed.

Intuitively, no matter how many linear operations are composed, the entire system

is no more powerful than a simple linear regression. On the other hand, even the

composition with a single nonlinear operation makes neural networks universal

approximators of continuous functions [73].

In neural networks, nonlinearity is introduced using the concept of an activation

function, which is applied element-wise to the input.

Historically, the most popular activation function used to be the sigmoid function:

σ(x) =
1

1 + e−x
(1.6)

Another activation function with a long history is the tanh function:

tanh(x) =
ex − e−x

ex + e−x
(1.7)

Currently, one of the most successful activation functions is the Rectified linear

unit (ReLU) [86]:

ReLU(x) =

x, if x > 0.

0, otherwise.
(1.8)

The interest of ReLU activation functions is that they provide less vanishing

gradients because they saturate less (as compared to the logistic function)

Leaky rectified linear units (LReLUs) [140] have been found to either match or

surpass ReLUs in performance by some authors [140] [200]:

10 1. Introduction to deep learning

LReLU(x) =

x, if x > 0.

ax, otherwise.
(1.9)

a is the scaling factor and is fixed. Parametrized Rectified Linear Units (PReLU)

[105] is another rectified activation function, with the same equation as for LReLU.

The difference, though, is that a is a trainable parameter (through gradient-based

optimization). A different a can be chosen for each neuron or the a values can be

’tied’ so that several neurons (see the next section for an introduction to the concept

of artificial neuron) share a same value. This helps reduce the number of trainable

parameters and, thus, can prevent overfitting.

The softmax nonlinearity is commonly used in the setting of supervised learning

with discrete labels (classes). In this setting, it is most often combined with the cross-

entropy loss function (see Subsection 1.5.1.1). Given K distinct classes, the softmax

takes as input a vector x of K real values (this vector can be obtained from a vector

of inputs or previously processed values through e.g. matrix vector multiplication).

The softmax then processes these K values to provide the probabilities corresponding

to the K classes. For each class k ∈ 1, .., K, its corresponding probability is:

p(k) =
exk∑K
j=1 e

xj
(1.10)

1.3 Artificial neural network architectures

Artificial neural networks (ANNs) are the main topic of this thesis. As their name

suggests, ANNs represent machine learning architectures (very loosely) inspired by

their biological counterparts.

The basic computational unit in ANNs is the artificial neuron. The first celebrated

model of an artificial neuron was introduced in 1943 by [144]. We will denote

the output of a neuron’s computation by the term activation. In biology, neurons

are connected by synapses with varying strengths (weights) and each neuron has

a threshold (whose electrical activity, which could be roughly interpreted as the

activation in our description, has to be greater than for the neuron to fire). Artificial

neurons have corresponding (and simplified) weights w connecting them to other

neurons and bias b (the simplified equivalent of the biological threshold). To connect

this model to the machine learning framework, the weights w and bias b are trainable

parameters (whose values are optimized during the learning process).

The most basic widely-encountered modern artificial neurons (as they appear

1.3. Artificial neural network architectures 11

especially in multilayer perceptrons, which will be described in the following subsec-

tion) compute a dot product, followed by an element-wise nonlinearity (such as those

described in Section 1.2.2). Given a set of inputs x, the activation h of a neuron

connected to the inputs using weights w and bias b is:

h = f(w ∗ x+ b) (1.11)

where f is the element-wise nonlinearity.

This is a highly simplified model of biological neurons, which display many more

features e.g. spiking, dendrites, etc. [3].

To distinguish the artificial neurons from their much more complex biological

counterparts, they are often denoted by the term units. In this thesis, we will mostly

use the term units and whenever we use the term neurons, artificial neurons are

implied.

The basic structural element of an ANN is a layer containing multiple units.

The first and the last layer are somewhat special, containing the ANN’s inputs and,

respectively, outputs. All the other layers are denoted as hidden layers.

Artificial neural networks come in many flavors (architectures), especially since

the resurgence of neural network research during the last decade. We will present

in this chapter the three most important architectures: the multilayer perceptron

(MLP), the convolutional neural network (CNN) and the recurrent neural network

(RNN). MLPs and CNNs are also called feedforward neural networks (because

they don’t use recurrence in their computation), differently from RNNs. These

architectures are based on somewhat different computational primitives. Briefly, they

were introduced to deal with different problems: MLPs with general single inputs

without any particular structure, CNNs with visual inputs (particularly images) and

RNNs with temporal sequences.

As will be highlighted in Chapter 2, these architectures can be mixed and

composed according to the problem we need to solve. A widely-used analogy is that

of neural network layers as lego blocks, which can be assembled creatively to solve

new problems or to improve performance on old ones. Indeed, much (arguably, most)

of the research in neural networks involves designing new layers (lego blocks) and /

or assembling them into new architectures appropriate for the problems we’re trying

to solve.

12 1. Introduction to deep learning

1.3.1 Multilayer perceptrons (MLPs)

Multilayer perceptrons (MLPs) also appear in the literature by the name Deep Neural

Networks (DNNs), somewhat ambiguously (since other neural network architectures

with multiple layers can also be called deep neural networks).

We will briefly describe each type of layer in the MLP.

1.3.1.1 Input layer

The input layer represents the input as a vector and is connected to the first hidden

layer. To make the notation uniform with that of the hidden layers, the input layer

could be denoted by h0 and the first hidden layer as h1.

1.3.1.2 Hidden layers

In their most common variant, each MLP hidden layer i ∈ {1, ..M} is a vector of

units hi connected to the previous layer hi−1 by the weight matrix Wi and vector of

biases bi. The corresponding equation is:

hi = f(Wi ∗ hi−1 + bi) (1.12)

where f is an element-wise nonlinearity. In the vast majority of cases, the same

nonlinearity is used for every unit in the layer, though different nonlinearities for

different units are also possible.

The matrix Wi is most often dense; in this case, the corresponding layer is denoted

as fully-connected.

1.3.1.3 Output layer

In the case of classification (which is the most interesting one for this thesis), the

output layer can most often be described as a hidden layer with softmax nonlinearity,

output weights Wo and biases bo:

o = softmax(Wo ∗ hM + bo) (1.13)

1.3.1.4 Representational power

A multilayer perceptron with a single hidden layer is an universal approximator

[73] of continuous functions: for any function f(x) and any ε > 0, there exists a

neural network g(x) with one hidden layer and an e.g. sigmoid nonlinearity such

1.3. Artificial neural network architectures 13

that, for any x, |f(x)− g(x)| < ε. The motivation for deep neural networks, even if

shallow networks are also universal approximators, comes from the fact that there

exist functions which require exponentially more computational resources when

approximated by a shallow artificial neural network than by a deep one [156] [158]

[155].

1.3.2 Convolutional neural networks (CNNs)

In this subsection we will discuss the Convolutional Neural Network (CNN), which

is a specialized neural network architecture initially proposed for image processing.

Like MLPs / DNNs, CNNs also contain neurons connected by learnable weights

and biases and the operations performed by the neurons (units) are like in MLPs:

each neuron will receive some inputs, then perform a dot product and then apply

a nonlinearity to the result. The entire system is also differentiable (like MLPs),

uses a loss function and the typical optimization procedures (stochastic gradient,

backpropagation) apply, as will be discussed in Section 1.5. Although mostly used

for image processing, in recent years, the use of different CNN variants has been

extended to many more domains, e.g. speech recognition [205] or natural language

processing [82]. Our presentation is mostly inspired by the excellent introductions in

[10] and [12]. We will assume that the inputs to the CNN are images, to simplify

the presentation; extensions to CNNs processing text or other types of inputs are

straightforward and many of the ideas and motivations carry over naturally to those

cases.

The first significant difference between CNNs and MLPs is the pattern of con-

nectivity of each neuron. While in MLPs neurons in a layer are fully-connected to

all the neurons in a consecutive layer, in CNNs the pattern of connectivity is sparse

and local. This is inspired by work in neuroscience, where Hubel and Wiesel [113]

have discovered that neurons in the visual cortex of cats act as local filters over their

input space. The small sub-region of the input each cell is sensitive to is called a

receptive field, a term also used to denote the connectivity pattern of CNN neurons.

Another conceptual difference between CNNs and MLPs is that in CNNs the

neurons / units are replicated across 2D arrays. A 2D array of replicated units shares

the same trainable parameters and is called a feature map. This means that the

weights and biases of multiple neurons have the same values. The shared trainable

parameters are also denoted as a filter. As is also the case for RNNs and discussed in

more details in Section 1.5, the gradient with regard to a shared trainable parameter

is the sum of the gradients with regard to all the parameters being shared.

14 1. Introduction to deep learning

The replicated units and replicated filters allow for features to be detected

regardless of the position in the input image where they appear. This property

is called equivariance and roughly means that the resulting feature map changes

similarly to how the input image would. If the image were translated one pixel to

the left, so would the resulting feature map after applying the filter.

Similarly to MLPs, CNNs are deep neural networks, with multiple layers. A

CNN is obtained by stacking repeatedly blocks of convolutional and subsampling

layers, which will be discussed below. For classification, the task of most interest for

this thesis, the repeated blocks of convolutional and subsampling layers are most

commonly followed by fully connected layers and a softmax layer.

For clarity, we’ll discuss how CNNs work when a single example (image) is

provided as input. Modern CNNs are usually trained on mini-batches containing

multiple images. The discussion here can easily be extended to the mini-batch case,

by adding an extra dimension (corresponding to the mini-batch) to every tensor.

1.3.2.1 Convolutional layer

For simplicity, we will only discuss stride 1 convolution here, which is the most

relevant for the work in this thesis. We will also not discuss zero padding settings. A

discussion on strides and paddings for convolutional layers is provided in [12].

The feature maps discussed in the previous subsection will be obtained in a

CNN in the following manner. The input image is convoluted with a linear filter, a

bias term is added and then a nonlinear function f is applied. The convolution can

be interpreted as repeatedly applying the same function across sub-regions of the

entire image. To allow for a richer representation of the data, each convolutional or

subsampling hidden layer contains multiple feature maps hk, k ∈ 0, ...,K. We will

denote the k-th feature map by hk and the corresponding filter, composed of trainable

weights and biases, by Wk and bk and the input image by x. A nonlinear function is

then applied element-wise to every pixel in every feature map. The corresponding

equation for pixel [i, j] in feature map hk is:

hk[i, j] = f((Wk ~ x)[i, j] + bk) (1.14)

We have introduced convolution in Section 1.2.1.2. f can be any nonlinearity in

Section 1.2.2, with ReLU being a popular modern choice.

The discussion above would apply exactly for a CNN with a single convolutional

layer. Similarly to the theoretical results obtained for deep MLPs [158], deep CNNs

1.3. Artificial neural network architectures 15

are more expressive than shallow ones [149]. We will now extend the discussion of the

convolution operation to two consecutive hidden layers, m− 1 and m. We will denote

feature map k in layer m by hmk . The input image could be interpreted as layer 0.

For an RGB image, it would contain three feature maps (one for each of the red,

green and blue channels), while a grayscale image would contain a single feature map.

The layers hm can be convolutional (including the input image) or subsampling (the

subsampling layer is presented in the next subsection). By aggregating the weights

Wk for every feature map hk, we obtain a 4D tensor which contains elements for

every destination feature map hmk , every source feature map hm−1l , source vertical

position i and source horizontal position j. Wkl[i, j] denotes the weights connecting

each pixel of the k-th feature map at layer m with the pixel coordinates [i, j] of the

l-th feature map at layer m− 1. The biases b can be represented as a vector indexed

by the destination feature maps; bmk denotes the bias corresponding to destination

feature map hmk .

1.3.2.2 Subsampling layer

Many different proposals for subsampling layers exist, but we will discuss here the

max-pooling layer, which is the most successful and most widely-used subsampling

layer. Other notable uses of subsampling are the average pooling layer [53] and using

a stride larger than 1 in the preceding convolutional layer [177]. What is common to

these layers is that, when applied to a group of pixels of a feature map, they first

optionally perform a transformation of the pixels, then select one of them as the

result. What is specific to max-pooling is that it selects the pixel with the maximum

value (of the group).

The most common choice is to divide the pixels into non-overlapping groups, with

the most common choice being groups of 2 pixels width and 2 pixels height. When

used with max-pooling, this is called 2 × 2 max-pooling and is the most widely used

setting for a pooling layer.

A more detailed discussion of various types of pooling layers, with different modes

to group pixels (with potential overlapping and various subsampling options, as well

as the sizes of the corresponding resulting feature maps) is provided in [12].

Given input feature map i, the output feature map o is given by:

o[m,n] = max(i[2∗m, 2∗n], i[2∗m+1, 2∗n], i[2∗m, 2∗n+1], i[2∗m+1, 2∗n+1]) (1.15)

16 1. Introduction to deep learning

The main motivation behind the max-pooling layer is to provide some translation

invariance and robustness to small image distortions. The resulting reduction in

feature map size (both the width and the height are divided by 2 in the case of 2 ×
2 max-pooling) also helps to reduce the computational requirements of the CNN.

An interesting feature of the max-pooling layer is that it doesn’t contain any

trainable parameters.

1.3.2.3 Output layer for classification

When the CNN is used for classification, all the pixels in the feature maps resulting

from the last layer (convolutional, nonlinear or subsampling) are reshaped to a 1D

array. Fully-connected layers and a softmax layer can then be added to perform

classification.

Other possibilities exist in the literature to obtain classification scores from 2D

feature maps (e.g. [177]), but we won’t discuss them here.

1.3.2.4 CNN design patterns

In this section we will very briefly mention some of the most influential CNN

architectures in deep learning. The most influential task on which CNNs are trained

is object recognition on the ImageNet dataset [23].

Our simplified description of a CNN above is most in line with the VGG CNN

architecture [171], since it is the one closest to the CNNs we have used in our work.

This architecture is very homogeneous, containing 3 × 3 convolutional layers and

2 × 2 max-pooling layers. It was introduced in the context of the ImageNet Large

Scale Visual Recognition Competition (ILSVRC) 2014, where it was the runner-up.

One of the early influential CNN architectures trained with backpropagation was

LeNet-5, introduced by Yann LeCun for the task of digit recognition [130], which we

discuss in more detail in Section 2.1.1.

AlexNet [126] is the architecture which popularized the use of CNNs in Computer

Vision, after winning the ILSRVC challenge in 2012. It also popularized the use of

GPUs for training neural networks and led to deep learning becoming the dominant

paradigm in Computer Vision.

GoogleNet [185] won the ILSRVC 2014 challenge and introduced Inception Mod-

ules, which significantly reduced the number of trainable parameters (compared to

e.g. AlexNet). The GoogleNet architecture has gone through several iterations, the

most recent one being v4 [184].

1.3. Artificial neural network architectures 17

Residual CNNs (ResNets) [104] won ILSVRC 2015 and introduced skip connec-

tions to ease the training of very deep networks, by reducing the problem of vanishing

gradients (see Subsection 1.5.2.5. As of 2018, ResNet variants are often the default

choice for using CNNs in practice.

We have only briefly mentioned some of the most famous CNN architectures. A

more detailed discussion regarding the architectures mentioned above is provided in

[12].

We will discuss in more detail some CNNs which have been influential in the

context of handwriting recognition (including LeNet) in Chapter 2.

1.3.3 Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) extend the deep neural network approach to se-

quential inputs. Probably the most particular feature of RNNs is that are constrained

to use the same ’transition function’ for each time step (by ’tying’ the weight matrix

at each timestep). They can thus construct features which are independent of the

particular timestep at which they appear and can learn to predict outputs / output

sequences from input sequences independently of sequence length.

1.3.3.1 Standard RNNs

Standard RNNs represent the simplest type of RNN. The equation for a vanilla RNN

is:

ht = σ(Whh ∗ ht−1 +Whx ∗ xt + bh) (1.16)

Here, ht is the representation learned by the RNN for each input xt at time t.

Whh and bh are trainable. σ is an element-wise nonlinearity (for example, sigmoid,

tanh or ReLUs - see Subsection 1.2.2).

Predictions can then be computed from the learned representations ht. For

example, in the case where we would want to predict a new output (which we will

denote by ŷt) at every timestep t, we can use the following equations:

ŷt = Wyh ∗ ht + by (1.17)

Here, Wyh and by are trainable parameters.

Some useful loss functions for RNNs are described in section 1.5.1. The RNNs

can be trained using gradient-based optimization (see section 1.5).

18 1. Introduction to deep learning

1.3.3.2 Long short-term memory (LSTM)

In theory, recurrent neural networks are universal sequence approximators (with

a sufficient number of hidden units, an RNN can approximate any measurable

sequence-to-sequence mapping to arbitrary accuracy) [167] and are Turing-complete

[170]. In practice, however, researchers have found it hard to train RNNs, because

of optimization problems such as the vanishing gradient problem [110], [42] - see

Subsection 1.5.2.5. The Long-short term memory (LSTM) cell [112], which is described

in this subsection, is one way of dealing with this issue.

The LSTM equations are:

ct = ft • ct−1 + it • tanh(Whc ∗ ht−1 +Wxc ∗ xt + bc) (1.18)

with ct being the cell state, ft, the output of the forget gate, and it the value of the

input gate.

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf ∗ ct−1 + bf) (1.19)

Wcf corresponds to the weight of the peephole connexion between the cell and the

input gate.

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci ∗ ct−1 + bi) (1.20)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco ∗ ct + bo) (1.21)

ht = ot • tanh(ct) (1.22)

• signifies element-wise multiplication. These equations correspond to the LSTM

variant with added peephole connections. We can simplify the LSTM by removing

these connections; the equations of the input, forget and output gate then become:

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 + bf) (1.23)

it = σ(Wxi ∗ xt +Whi ∗ ht−1 + bi) (1.24)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 + bo) (1.25)

The equation for the final output (ht) stays the same.

1.4. Performance measures 19

1.3.3.3 Bidirectional RNN (BRNN)

In a standard RNN, the output at a given time t depends exclusively on the inputs

x0 through xt (via the hidden layers unrolled in time h0 through ht−1). However,

while this makes sense in some contexts, many sequences have information relevant

to output yt both before, as well as after timestep t. For example, in handwriting

recognition, both the sequence of drawn characters before and after the current

character provide information about the drawn character currently processed. To use

all this information, we need a modified architecture.

Bidirectional RNNs add another set of hidden layers to a recurrent network which

goes backwards in time, besides the set of hidden layers which goes forwards in time

of a standard RNN. These two sets of hidden layers are entirely separate and do not

interact with each other, except for the fact that they are both used to compute the

output. Using the trainable parameters, the BRNN is first run forward in time (from

time 0 to the end) to compute the forward hidden layers, and then run backward in

time (from the end to time 0) to compute the backward hidden layers. Finally, using

the values at both of the hidden layers for a given timestep, the output corresponding

to every timestep is computed.

Denoting the forward layer by
−→
ht and the backward layer by

←−
ht , the equations

1.16 for the network are modified as follows :

−→
ht = σ(Whh ∗

−−→
ht−1 +Whx ∗ xt +

−→
bh) (1.26)

←−
ht = σ(Whh ∗

←−−
ht+1 +Whx ∗ xt +

←−
bh) (1.27)

ŷt = W
y
−→
h
∗
−→
ht +W

y
←−
h
∗
←−
ht + by (1.28)

1.4 Performance measures

We use performance measures to characterize the performance of our recognition

systems. Commonly used performance measures for machine learning systems which

label examples with a discrete number of potential labels (classes) are the label error

rate (LER) for non-sequential data and the character error rate (CER) and word

error rate (WER) for sequential data and more particularly handwriting recognition.

20 1. Introduction to deep learning

1.4.1 Label error rate (LER)

For a dataset S, the LER is the ratio of examples the classifier mislabels:

LER =
number of errors

number of examples
(1.29)

Another commonly used measure is the accuracy, which can be described as

1− LER.

1.4.2 Character error rate (CER)

The formula for the character error rate is:

CER =
S +D + I

N
(1.30)

where S is the number of substituted characters, D is the number of deleted

characters, I is the number of inserted characters, and N is the number of characters

in the ground-truth.

1.4.3 Word error rate (WER)

Similarly to the formula for the character error rate, the formula for the word error

rate is:

WER =
S +D + I

N
(1.31)

where S is the number of substituted words, D is the number of deleted words, I

is the number of inserted words, and N is the number of ground-truth words.

1.5 Gradient-based optimization

In previous sections we have discussed various neural network architectures. Generally,

all these architectures can be represented as parameterized functions f(x, θ), where

by x we denote the inputs and by θ we denote the trainable parameters. We can

suppose that, initially, the parameters θ are initialized randomly; this is actually

commonly used for neural networks (with specific probability distributions often used

to accelerate the training).

In the next subsection we will first introduce loss functions, which are used to

quantify the quality of the set of trainable parameters θ. The loss function is minimized

1.5. Gradient-based optimization 21

by the optimization process, which searches for the corresponding parameters θ. We

will then briefly discuss optimization, the process of finding the parameters θ which

minimize the loss function L. Our discussion is mostly inspired by the presentation

in [13].

1.5.1 Loss functions

Ideally, we would want our machine learning systems to perform as well as possible

on new data, according to some performance measures (see Section 1.4).

However, we often don’t have access to real test-time data and optimizing the

system on test-time data can often lead to overfitting (see Section 1.5.4).

Also, the most commonly encountered performance measures are often not dif-

ferentiable, a property which is strongly desirable. For these reasons, we will often

optimize the machine learning system according to a loss function which is different,

but related to the desired performance.

1.5.1.1 Cross-entropy

Here we will place ourselves in the setting of supervised learning. We have a training

set S of examples x associated with labels y and want to train a classifier to provide

labels for new unlabelled examples x. We will train the classifier to maximize the

probability p(y|x) predicted by the classifier (which is equivalent to minimizing the

negative log probability). Denoting the loss function by O(x, y), for a single example

x with associated ground-truth label y we have:

O(x, y) = − log(p(y|x)) (1.32)

By assuming that the data samples (x, y) are independent, the loss function over

the entire training set O(S) becomes the sum of the loss functions over each separate

sample (x, y):

O(S) =
∑

(x,y)∈S

[− log(p(y|x))] (1.33)

This loss can be minimized through gradient-based optimization.

1.5.1.2 Connectionist temporal classification (CTC)

In this subsection we will present the Connectionist Temporal Classification (CTC)

model, as introduced by Alex Graves in [95]. This presentation is heavily inspired by

22 1. Introduction to deep learning

the blog articles [37] and [119], as well as Alex Graves’ thesis [92] and book [93].

Symbol Meaning
L finite alphabet of n labels; blank (-) not included
L′ L ∪ blank(−)
X (Rm)?, m-dimensional input space (sequences of m-

dimensional vectors)
Z L?, output space, set of all sequences over L
DX×Z underlying distribution of the data (pairs of input se-

quences and corresponding label sequences)
S set of training examples supposed to be drawn from DX×Z
T length of RNN input/output sequence
U length of label sequence
(x, l) example in S, x = (x1, .., xT), l = (l1, .., lU) and U <= T
h : X → Z temporal classifier (RNN) to be trained
NW : (Rm)T → (Rn)T RNN with m inputs, n outputs and trainable parameters

W , as a continuous map applied on a length T sequence
ytk sequence of RNN outputs (the activation of output unit k

at time t)
π path, element of L′T

l ∈ LU label sequence or labeling
B : L′T → LU function mapping path π to label sequence l
l′ modified label sequence, with blanks added to the begin-

ning and the end and inserted between every pair of labels
in l

l′a:b subsequence of l′ from a-th to b-th labels
αt(s) forward variable, the total probability of l′1:s at time t
βt(s) backward variable, the total probability of l′s:|l′| starting

from time t
OML(S,NW) objective function

Table 1.1 – CTC notation

CTC can be applied to supervised sequence classification tasks, such as handwrit-

ing recognition or speech recognition. It helps represent information in an invariant

(or at least robust) manner to sequential distortions. It is also interesting for the fact

that it doesn’t require any pre-segmentation of the input or any post-processing of

the output labels to produce the final predicted label sequence.

We will start by introducing the list of symbols used in the algorithm, similarly

to the presentation in [119], in Table 1.5.1.2.

In handwriting recognition, the goal is to build a classifier which can convert

an image (which can be viewed e.g. as a sequence of pixels or a sequence of pixel

windows) to a sequence of labels (e.g. the individual characters or words). The

1.5. Gradient-based optimization 23

sequence of pixels represents the input to our classifier, while the sequence of labels

represents the desired output of the classifier; thus, the whole problem of recognizing

lines, words or characters of handwritten text can be posed as supervised sequence

classification (mapping from an input sequence to an output sequence). In this work,

we mainly deal with character and word images.

We will use a classifier (an RNN) which takes in the input sequence x and generates

outputs ytk at every timestep t of the input sequence. ytk will be the probability of

outputting label k from alphabet L′, which is the same as the alphabet L augmented

with the - (blank) symbol, for reasons which will become clearer later in this section,

at timestep t. To have the RNN output probabilities, we can use a softmax layer (see

the softmax nonlinearity in Subsection 1.2.2).

We would like to measure the loss of our classifier by considering the RNN

classifier as a function transforming the input sequence to the output sequence. For

this reason, we would like our loss function to be of the following form:

OML(S,NW) = −
∑

(x,l)∈S

ln(p(l|x)) (1.34)

where l is the label sequence and x is the input sequence.

Notice that this CTC loss fuction is the generalization of the cross-entropy loss

used for feedforward neural networks (see Subsection 1.5.1.1), except that now both

the input and the output are sequences. We can then minimize this loss function via

some standard minimization algorithm (such as gradient descent). Minimizing the

objective function defined above maximizes the log likelihood of observing our desired

label sequence. The problem we have is that the sequence of RNN outputs and the

sequence of labels can be of different lengths (denoted by T and U , respectively).

Intuitively, we can think of the CTC algorithm as performing alignment as a part

of training the classifier (aligning the T inputs to the corresponding U outputs).

Other models which also perform alignment have been proposed in the deep learning

literature; for a review, see [60].

We can train the RNN using gradient-based optimization, as long as we can

differentiate Equation 1.34 with regard to (w. r. t.) ytk. Because the training examples

are independent, we can rewrite the gradient of the loss function w. r. t. the entire

training set as the sum of the gradients of the loss function w. r. t. each separate

training example:

24 1. Introduction to deep learning

∂OML(S,NW)

∂ytk
=
∂ −

∑
(x,l)∈S ln(p(l|x))

∂ytk
= −

∑
(x,l)∈S

∂ln(p(l|x))

∂ytk

= −
∑

(x,l)∈S

1

p(l|x)

∂p(l|x)

∂ytk

(1.35)

We now need to map between the loss function OML(S,NW) and the RNN outputs

ytk. We will start by denoting the output of the RNN for an entire input sequence as

a path. If we assume that the RNN outputs are conditionally independent given the

input sequence (an assumption which can be satisfied by not allowing any connections

between the RNN’s output layer and its hidden or output layer), then the probability

of path π can be decomposed into the product of probabilities ytπt , where πt is the

t-th element of path π:

p(π|x) =
T∏
t=1

ytπt (1.36)

We can map from path π to a label sequence using only characters from alphabet

L by removing all blanks and all duplicate (consecutive) letters. We denote the blank

character by ’-’ and the mapping function by B. For example, the path ’-b-ee’ will

be mapped by B to label sequence ’be’, while the path ’b–e-e’ will be mapped to

label sequence ’bee’. If we denote by l the label sequence resulting from removing all

blanks and all duplicate (consecutive) letters through the action of B, we obtain:

p(l|x) =
∑
B(π)=l

p(π|x) =
∑
B(π)=l

T∏
t=1

ytπt (1.37)

By taking the logarithm of the equation above and reversing its sign, we obtain

OML(S,NW), which we can minimize to train the RNN. The naive computation of

p(l|x) using the equation above is intractable, though, since the number of different

paths grows exponentially w. r. t. the path length.

Fortunately, p(l|x), as well as the gradients ∂p(l|x)
∂ytk

, can be computed efficiently

using a forward-backward algorithm similar to those used for training Hidden Markov

Models (HMMs), as we will describe below. From ∂p(l|x)
∂ytk

, gradients w. r. t. the RNN’s

trainable parameters can be computed, so that the trainable parameters can be

learned.

Instead of working directly with ground-truth label sequence l, we will construct

1.5. Gradient-based optimization 25

a modified ground-truth label sequence l′, in which the blank label is inserted at the

start and at the end of l′ and between every consecutive characters. The length of l′

is thus |l′| = 2 · |l|+ 1.

Denote by l′1:s the subsequence of l′ which starts at the first element and ends at

the sth element. Let αt(s) be the total probability of observing l′1:s at time t, which

we also denote as the forward variable. This probability can be written as the sum

of probabilities over all the paths that contain l′1:s at time t (equivalently, all the

B(π1:t) = l1: s
2
, where s

2
is rounded down to an integer value):

αt(s) =
∑

π:B(π1:t)=l1: s2

p(π|x) =
∑

π:B(π1:t)=l1: s2

t∏
i=1

yiπi (1.38)

The probability of l is the sum of the probabilities of seeing l′ with and without

the last blank at time T :

p(l|x) = αT (|l′| − 1) + αT (|l′|) (1.39)

The values of α can be computed recursively using dynamic programming. Since

all paths have to start with either the blank symbol b or the first label l1, at time

t = 1 (the base case) we have:

α1(1) = y1−

α1(2) = y1l1

α1(s) = 0,∀s > 2

(1.40)

All other αt(s) can be computed recursively using the following equations:

αt(s) =

ytl′s · (αt−1(s) + αt−1(s− 1)), if l′s = − or l′s−2 = l′s

ytl′s · (αt−1(s) + αt−1(s− 1) + αt−1(s− 2)), otherwise
(1.41)

The intuition behind this equation goes as follows.

If l′s = −, then the last symbol of the prefix is a blank. A blank can only be

reached at time t in one of two ways. First, the entire prefix could already have been

seen by t − 1, followed by the repeated last blank. The probability for this event

is ytl′s · αt−1(s) (ytl′s is the probability of seeing the blank at time t, αt−1(s) is the

probability of already seeing the entire prefix at time t− 1). The second way is to

have seen every symbol of the prefix except for the last blank at time t− 1, and then

26 1. Introduction to deep learning

see the last blank at time t. The corresponding probability is ytl′s · αt−1(s− 1).

Otherwise, if l′s = l′s−2, this means that the original sequence has two identical

consecutive letters (between which we have added a blank in l′). We can (again) see

l′1:s by time t in two ways. We could have seen the entire prefix by time t− 1, so that

at t we see l′s again (the repeated l′s will be removed when processed by B). The

probability corresponding to this event is ytl′s · αt−1(s). Otherwise, we could have seen

everything but the last letter by time t− 1 (and have seen the last letter at time t).

This corresponds to the probability ytl′s · αt−1(s− 1). Thus, we get the same equation

as for the previous case l′s = b.

Finally, in the case of a non-blank letter l′s which is also different from the previous

non-blank letter l′s−2, we can see the entire prefix by time t in the same two manners

described previously, but also in a third manner. l′s can be observed immediately

after l′s−2 (without observing a blank in between) if l′s−2 was observed at time t− 1

and l′s at time t. This corresponds to the probability ytl′s · αt−1(s− 2), the last term

for the second case of Eq. 1.41.

The forward variables αt(s) can thus be computed for any t, s and l′.

We will now detail how to compute the backward variables, βt(s), which define

the total probability of observing l′s:|l′| starting from time t. These variables can

be described as computing the sum of path probabilities over all paths π with the

desired suffix l′s:|l′|:

βt(s) =
∑

B(πt:T)=l s
2 :|l|

p(π|x) =
∑

B(πt:T)=l s
2 :|l|

T∏
i=t

yiπi (1.42)

Similarly to the case of forward variables, computing the βt(s) variables naively

using Eq. 1.42 above is intractable. Instead, we can again compute these variables

recursively.

For the base case, at time t = T :

βT (|l′|) = yT−

βT (|l′| − 1) = yTl|l|

βT (s) = 0,∀s < |l′| − 1

(1.43)

The meaning of Eq. 1.43 is that at time T we can only observe the either last

letter of the label sequence or the last blank.

We can now write the recursive equations:

1.5. Gradient-based optimization 27

βt(s) =

ytl′s · (βt+1(s) + βt+1(s+ 1)), if l′s = − or l′s = l′s+2

ytl′s · (βt+1(s) + βt+1(s+ 1) + βt+1(s+ 2)), otherwise
(1.44)

Eq. 1.44 is symmetrical to Eq. 1.41 and to understand the intuition behind it the

same type of reasoning can be applied as for the intuition behind Eq. 1.41.

We can thus tractably compute both the forward variables αt(s) and the backward

variables βt(s) for all t, s and l′.

Since the forward variable αt(s) provides the total probability of prefix l′1:s at

time t (see Eq. 1.38) and the backward variable βt(s) provides the total probability

of suffix l′s:|l′| at time t (see Eq. 1.42), taking their product αt(s) · βt(s) provides

the probability of all paths corresponding to label sequence l′ which visit the sth

character at time t, but with ytl′s appearing twice:

αt(s) · βt(s) =
∑

B(π1:t)=l1: s2

t∏
i=1

yiπi ·
∑

B(πt:T)=l s
2 :|l|

T∏
i=t

yiπi =
∑

B(π)=l,πt=l′s

yl′ts ·
T∏
i=1

yiπi (1.45)

Dividing by yl′ts (to avoid double counting it):

αt(s) · βt(s)
ytl′s

=
∑

B(π)=l,πt=l′s

T∏
i=1

yiπi =
∑

B(π)=l,πt=l′s

p(π|x) (1.46)

By taking the sum over all possible symbol positions s in Eq. 1.46 (since one of

the symbols must appear at time t), we obtain the total probability of l (as the sum

of probabilities of any s appearing at time t):

p(l|x) =

|l′|∑
s=1

αt(s) · βt(s)
ytl′s

(1.47)

This is valid for any t (from 1 to T), so we can obtain ∂p(l|x)
∂ytk

for any character

k and any time t. To differentiate w. r. t. ytk, we only need to consider those paths

which go through symbol k at time t (the derivatives for the other paths are zero).

Differentiating Eq. 1.46:

28 1. Introduction to deep learning

∂ αt(s)·βt(s)
yt
l′s

∂ytk
=
∂
∑

B(π)=l,πt=l′s

∏T
i=1 y

i
πi

∂ytk
=

∑

B(π)=l,πt=l′s

∏T
i=1,i 6=t y

i
πi
, if k = l′s

0, otherwise

(1.48)

Since the same symbol can be repeated for a single label sequence, we will define

the set of locations where label k occurs in l′ as loc(l, k) = {s : l′s = k}. The previous

equation can then be rewritten as:

∂ αt(s)·βt(s)
yt
l′s

∂ytk
=

αt(s)·βt(s)

ytk
2 , if s ∈ loc(l, k)

0, otherwise
(1.49)

Using Eq. 1.47:

∂p(l|x)

∂ytk
=

∑
s∈loc(l,k)

αt(s) · βt(s)
ytk

2 (1.50)

Using Eq. 1.35 and Eq. 1.39:

∂OML(S,NW)

∂ytk
=

1

αT (|l′| − 1) + αT (|l′|)
·
∑

s∈loc(l,k)

αt(s) · βt(s)
ytk

2 (1.51)

1.5.2 Gradient descent

Gradient descent is an iterative method which starts with an initial set of parameters

theta, which are iteratively refined so that the loss function is gradually minimized.

It is probably the most widely used method for optimizing machine learning models.

A widely used metaphor to describe the gradient descent process is that of a

blindfolded hiker who tries to reach the bottom of a hill. The core intuition behind

this approach (instead of e.g. using random search) is that it can be much easier to

make a small improvement in the loss function than to come up with the optimal

parameters theta in a single step (as would be necessary for random search). We won’t

discuss here more advanced optimization topics, such as second order optimization

methods, but a discussion on these topics can be found in [17].

The core problem we will deal with in this section is how to compute gradients

of the loss function with regard to the trainable parameters. These gradients are

the main component required to be able to perform gradient descent. In the fol-

lowing subsections we will describe some of the main methods used to compute

gradients, starting from the simplest, most general, but also most computationally

1.5. Gradient-based optimization 29

expensive method (finite differences) to the most efficient and most commonly used,

but which requires further assumptions about the neural network being optimized

(backpropagation).

Algorithm 1 Gradient descent
Legend:
t = timestep
θt = neural network parameter values at timestep t
lr = learning rate

Algorithm:
while θt not converged do:

gt = gradient of loss function with regard to θt
θt = θt−1 − lr ∗ gt

We show the basic gradient descent algorithm in Algorithm 1. At every iteration,

some data points from the training set are selected and the gradients of the loss

functions with regard to the neural network parameters. Depending on how many

examples from the training set are used at each iteration, we get different variants

of gradient descent. If a single example is selected randomly at every iteration, we

obtain Stochastic Gradient Descent (SGD). If a fixed number of examples (e. g. 100)

is selected at each iteration, we obtain mini-batch gradient descent (the examples

are denoted as a mini-batch). When all the examples in the training set are used at

every iteration, we obtain batch gradient descent. The trade-off between selecting

more or fewer data points at every iteration goes as follows: using more examples

allows for more useful gradients for the optimization process, but they also require

more computation. Mini-batch gradient descent is the most often used variant of

gradient descent in deep learning research, because it leads to less noisy gradients,

while the code operating on the mini-batch examples can be parallelized (so that the

computational cost isn’t much larger than the cost of processing a single example).

1.5.2.1 Finite differences

The use of finite differences is the simplest and most general idea to compute gradients

and is particularly useful in the case of neural network parameterizations which are

not differentiable or are stochastic. The gradient will be computed (or, more precisely,

approximated) numerically. The intuition behind this method is to compute the

gradient ∂L
∂θi

by ’perturbing’ every separate parameter θi (by adding a small ε > 0) to

measure the impact on the loss function. Several variants of this process exist.

30 1. Introduction to deep learning

The forward difference is:

∂L

∂θi
=
L(θ + ε ∗ ei)− L(θ)

ε
(1.52)

where ei is the unit vector with a 1 in the i-th place.

When ε approaches 0, the forward difference approximates the derivative. Notice

that this quantity, and the derivative in general, is only informative for very small

perturbations to the inputs.

The central difference is given by:

∂L

∂θi
=
L(θ + ε

2
∗ ei)− L(θ − ε

2
∗ ei)

ε
(1.53)

The central difference approximation is more accurate than the forward difference.

Both the forward and the central differences require a number of function eval-

uations equal to two times the number of parameters for every update of all the

parameters.

Finite differences are also useful to check the implementation of analytic gradients,

usually obtained using backpropagation, as detailed in [14].

1.5.2.2 Simultaneous perturbation stochastic approximation (SPSA)

Simultaneous perturbation stochastic approximation (SPSA) is similar to finite

differences, in that it is general enough to be useful for parameterizations which

are not differentiable or are stochastic. The difference is that it ’perturbs’ all the

trainable parameters θ at the same time (in a single step). Let δ be the vector of

perturbations, with δi its i-th component.

Analogously to finite differences, the forward difference is:

∂L

∂θi
=
L(θ + ε ∗ δi)− L(θ)

ε ∗ δi
(1.54)

Similarly, the central difference is:

∂L

∂θi
=
L(θ + ε

2
∗ δi)− L(θ − ε

2
∗ δi)

ε ∗ δi
(1.55)

SPSA only requires two function evaluations for one update of all the parameters,

resulting in much higher computational efficiency per update step compared to finite

differences. The price to pay is noisier gradients; on average, though, the gradient

approximation is an almost unbiased estimator of the gradient, as shown in [33].

1.5. Gradient-based optimization 31

Recently, there has been a revival of interest in SPSA-like optimization algorithms,

which have been shown competitive against state of the art reinforcement learning

optimization algorithms [165] and even against backpropagation for supervised

learning [195]. This is discussed in more details in Chapter 6.

1.5.2.3 Backpropagation

In this subsection we will present the intuition behind the backpropagation procedure,

which is the most widely used procedure to obtain the gradients of loss functions

with regard to the neural network trainable parameters. We will keep the description

simple and focus on toy examples to highlight the intuition behind the method, like in

[15]. The more complicated expressions required by the neural network architectures

we have implemented are handled by the automatic differentiation provided by

modern software like TensorFlow or PyTorch.

Backpropagation is a technique for computing derivatives quickly, which has

been used in a variety of technical fields beyond deep learning. If finite differences

and SPSA use numerical methods to obtain gradients, backpropagation obtains the

gradients analytically. Formulated succintly, backpropagation computes gradients of

mathematical expressions through recursive application of the chain rule.

Gradient descent (GD) through backpropagation is much faster than using finite

differences. Backpropagation can accelerate training modern neural networks by up

to 10 million times [5].

Backpropagation and automatic differentiation are applied most naturally to

optimizing a function by decomposing it into modules for which local gradients can

be easily derived and then chained (using the chain rule). Automatic differentiation

highly simplifies the task of obtaining the analytic gradients (compared to deriving

them on paper).

We will exemplify backpropagation on the following toy neural network:

p = f(x,w) = σ(x0 ∗ w0 + x1 ∗ w1 + b) (1.56)

which corresponds to a neural network with two inputs x = [x0, x1] and a single

unit, with sigmoid nonlinearity (and trainable parameters w = [w0, w1, b] - weights

w0, w1 and trainable bias b).

We will suppose that the neural network is used for binary classification, with

output p signifying the probability of example x = [x0, x1] belonging to class 0 (and

1 − p the probability of it belonging to class 1). We will use as loss function the

32 1. Introduction to deep learning

cross-entropy:

L = y ∗ log(p) + (1− y) ∗ log(1− p) (1.57)

where y is the ground-truth class corresponding to example x.

The neural network can naturally be decomposed in the following modules (the

loss can be considered another module):

z = x0 ∗ w0 + x1 ∗ w1 + b (1.58)

p = σ(z) =
1

1 + e−z
(1.59)

We will now compute the gradients for each module’s output w.r.t. all its inputs

and parameters:

∂L

∂p
=
y

p
− 1− y

1− p
(1.60)

∂p

∂z
=
∂σ(z)

∂z
=

e−z

(1 + e−z)2
=

1 + e−z − 1

1 + e(− z)
∗ 1

1 + e(− z)
= σ(z) ∗ (1− σ(z)) (1.61)

∂z

∂w0

= x0 (1.62)

∂z

∂w1

= x1 (1.63)

∂z

∂b
= 1 (1.64)

∂z

∂x0
= w0 (1.65)

∂z

∂x1
= w1 (1.66)

We can now use the chain rule on the gradients of the modules to obtain the

gradients of the loss function w.r.t. the trainable parameters (∂L
∂w0

, ∂L
∂w1

, ∂L
∂b

). The

chain rule specifies the correct way to chain the gradients of the modules - through

multiplication:

1.5. Gradient-based optimization 33

∂L

∂w0

=
∂L

∂p
∗ ∂p
∂z
∗ ∂z

∂w0

(1.67)

∂L

∂w1

=
∂L

∂p
∗ ∂p
∂z
∗ ∂z

∂w1

(1.68)

∂L

∂b
=
∂L

∂p
∗ ∂p
∂z
∗ ∂z
∂b

(1.69)

We can see that the expressions ∂L
∂p

and ∂p
∂z

appear in all three gradient expressions,

so it would be redundant to recompute them each time. We can store the intermediate

gradients in separate variables to avoid redundancy in computation and gain efficiency

by introducing intermediate variables (denoted as dLdp for ∂L
∂p

and dLdz for ∂L
∂z

= ∂L
∂p
∗

∂p
∂z

). At the same time, we will separate the computation into a forward propagation

phase (running the neural network and computing the loss, propagating computation

forward from the inputs through the neural network all the way to the loss function)

and a backward propagation phase (computing the gradients of the loss function

w.r.t. the trainable parameters, propagating values backwards from the loss function

to the trainable parameters):

Algorithm 2 Forward and backward propagation for a toy neural network. We
use Python-like ’code syntax’, with the results of the computation shown to the
rightmost, after ’#’ (corresponding to comments in Python)

e.g. input values: x0 = 1, x1 = 2, label y = 0, trainable parameters
w0 = 1, w1 = −1, b = 1

#forward phase
z = x0 ∗ w0 + x1 ∗ w1 + b # 0
p = σ(z) = 1

1+e−z
0.5

L = y ∗ log(p) + (1− y) ∗ log(1− p) # -1

#backward phase
dLdp = y

p
− 1−y

1−p #-2

dLdz = dLdp ∗ p ∗ (1− p) # -0.5
dLdw0 = dLdz ∗ x0 # -0.5
dLdw1 = dLdz ∗ x1 # -1
dLdb = dLdz ∗ 1 # -0.5

After the gradients have been computed, they can be directly plugged into gradient

descent or variants, like ADAM (see Section 1.5.3.1).

For our toy example, the number of variables is small. For realistic neural networks,

operating on thousands or even millions of inputs, vectorizing both the forward and

34 1. Introduction to deep learning

the backward phases is important for efficient computation (especially on GPU).

More details are provided in [16].

1.5.2.4 Backpropagation through time (BPTT)

Backpropagation Through Time (BPTT) is simply an extension of backpropagation,

which uses the chain rule, to Recurrent Neural Networks (RNNs), where the same

trainable parameters appear repeatedly in multiple expressions.

We will derive BPTT for a simplified, toy model of a RNN, but the extension to

full, state of the art architectures like LSTMs is straightforward. Furthermore, modern

neural network software like TensorFlow or PyTorch uses automatic differentiation,

so we don’t need to manually derive the BPTT equations when implementing RNNs.

The model is not supposed to be useful, but is illustrative for how the gradients

of a loss function with regard to (w.r.t.) parameters shared across timesteps are

computed.

Our toy model starts by taking as input a single real number, x0; this can be

interpreted as the system’s initial state. At each timestep t, our toy model will

obtain its next state xt+1 by multiplying the previous state, xt, with the trainable

parameter (single real number) at. After T such timesteps, we obtain the output

y = xT . The key feature of this model, to make it similar to RNNs, will be that

all the trainable parameters at share the same value a (at = a,∀t ∈ {0, ..., T − 1}).
Denoting the trainable parameter a at timestep t as at will be useful to illustrate

how the derivatives are computed for each separate step t and how they are then

combined to output the derivative w.r.t. the shared parameter a. This corresponds

to summing the derivatives w.r.t. each separate at across all timesteps t.

The equations describing the model can thus be written as:

xt+1 = at ∗ xt = a ∗ xt (1.70)

y = xT (1.71)

The derivative of the state xt+1 w.r.t. the previous state xt:

∂xt+1

∂xt
= at = a (1.72)

Using the chain rule, we can obtain the derivative of the output y w.r.t. the state

at timestep t xt:

1.5. Gradient-based optimization 35

∂y

∂xt
=

∂y

∂xt+1

∗ ∂xt+1

∂xt
=

∂y

∂xt+1

∗ at =
∂y

∂xt+1

∗ a (1.73)

The derivative of the output y w.r.t the state at the last timestep is 1:

∂y

∂xT
= 1 (1.74)

By induction, we can prove that:

∂y

∂xt
= aT−t (1.75)

The derivative of the output y w.r.t the trainable parameter at, at every timestep

t can now be derived:

∂y

∂at
=

∂y

∂xt+1

∗ ∂xt+1

∂at
=

∂y

∂xt+1

∗ at ∗ x0 = aT−t ∗ at ∗ x0 = aT ∗ x0 (1.76)

Because the trainable parameters at are shared (they are all equal to a), to obtain

the derivate of y w.r.t. a we need to sum all the derivatives of y w.r.t. at:

∂y

∂a
=

t=T−1∑
t=0

∂y

∂at
= T ∗ aT ∗ x0 (1.77)

Although this toy model is not useful in practice and lacks several features of

full RNNs (nonlinearities, multiple inputs, vector of hidden states, inputs at every

timestep, loss functions), it is illustrative of full RNNs through its recurrence and

shared trainable parameters (which can be interpreted as a temporal invariance) and

how the gradient w.r.t. the shared trainable parameters is the sum of the gradients

at different timesteps. Another illustrative feature is represented by the vanishing /

exploding gradients, which we describe in the following subsection.

1.5.2.5 Vanishing / exploding gradients

The expression of the derivative ∂y
∂a

that we have obtained in Eq. 1.77 illustrates

well the problem of vanishing / exploding gradients, which had plagued RNNs [111]

particularly before the invention of LSTMs [112] and which can still impede the

learning of very long term dependencies, even for modern RNN architectures like

LSTM [112] or GRU [61]. We can observe in Eq. 1.77 that the gradient magnitude

explodes (|∂y
∂a
| becomes very large) if |a| > 1 and vanishes (|∂y

∂a
| becomes tiny) if

36 1. Introduction to deep learning

|a| < 1. When the gradient explodes, the values of the trainable parameters change

very significantly between learning epochs, leading to unstable training. On the other

hand, when the gradient vanishes, the learning can become so slow that it almost

stops.

For vanilla RNNs (see Section 1.3.3.1), the main contributor to the vanishing

/ exploding gradient problem is the hidden-to-hidden transition matrix Whh. The

intuition is similar to our toy example: for most matrices Whh, the gradient will

either vanish or explode.

1.5.3 State of the art optimization algorithms and heuristics

In this subsection we describe ADAM, a state of the art optimization algorithm

for training deep learning systems and gradient clipping, a heuristic often used to

diminish the difficulty posed by exploding gradients when training recurrent neural

networks.

1.5.3.1 ADAM optimization

ADAM [125] is an optimization algorithm which has been developed for improving

the performance of stochastic gradient descent (SGD) on stochastic non-stationary

loss functions and sparse gradients.

ADAM is also claimed [125] to allow for less hyper-parameter tuning. When using

simpler optimization procedures such as SGD, different learning rates have to be

chosen for different neural network layers, leading to more hyper-parameters which

need to be set; [125] claims that this is not necessary when using ADAM. On the

other hand, the algorithm introduces a few additional hyper-parameters (ε and a few

other parameters described in detail in [125]).

We describe the basic algorithm in Algorithm box 3. For a more detailed descrip-

tion, see the relevant publication [125].

1.5.3.2 Gradient clipping

Gradient clipping is a method which limits the magnitude of the gradients, used to

deal with exploding gradients in RNNs (see Subsection 1.5.2.5). It was introduced by

[152].

Multiple variants of gradient clipping exist. The one used in this thesis is clipping

by global norm, which is implemented in TensorFlow and described by [34].

1.5. Gradient-based optimization 37

Algorithm 3 ADAM
Legend:
t = timestep
θt = neural network parameter values at timestep t
lr = learning rate
ε = hyper-parameter to make the algorithm numerically stable

Algorithm:
while θt not converged do:

gt = gradient of loss function with regard to θt
mt = moving average of gt
vt = moving average of g2t
θt = θt−1 − lr ∗ mt√

vt+ε

We suppose the gradients g of a neural network’s parameters are provided as a

list of tensors {g1, ..., gM}. Usually, each tensor contains the gradients of the trainable

parameters of one neural network layer (so the neural network in our example would

contain M layers). Gradient clipping by global norm also takes in the hyper-parameter

clip norm.

The global norm of all the gradients is:

global norm =

√√√√(
M∑
i=1

||gi||2)) (1.78)

where ||gi|| is the L2 (Euclidean) norm equal to the square root of the sum of the

squared elements of the tensor gi.

Each gradient is then obtained by multiplying its original value (before clipping)

by clip norm
max(global norm,clip norm)

.

This procedure helps alleviate the problem of exploding gradients and keep

magnitudes of the values of the trainable parameters bounded, making the neural

network (particularly in the case of RNNs) more numerically stable.

1.5.4 Helpful methods for optimization / regularization

In this subsection we describe dropout, batch normalization and early validation,

which are mostly useful for regularization purposes (to prevent overfitting). Batch

normalization has also been claimed to ease the optimization of neural networks.

38 1. Introduction to deep learning

Algorithm 4 Dropout
Legend:
l = layer index
xl = input of layer l
yl = output of layer l
p = dropout probability
Equations without dropout during training:
yl = W l ∗ xl + bl

xl+1 = f(yl)
Equations with dropout during training:
rl∼Bernoulli(p)
x̃l = rl · xl
yl = W l ∗ x̃l + bl

xl+1 = f(yl)
Equations without dropout during validation / test:
yl = W l ∗ xl + bl

xl+1 = f(yl)
Equations with dropout during validation / test:
yl = p ∗ (W l ∗ xl + bl)
xl+1 = f(yl)

1.5.4.1 Dropout

Dropout [178] is a regularization method which allows for much bigger networks to

be trained without overfitting. The basic idea is to randomly drop neurons from

the neural network during training with probability p sampled from a Bernoulli

distribution. The result of this procedure is that this training approximates training

an ensemble of much thinner neural networks. During validation or testing, an

approximation of using the ensemble of thinned networks can be obtained by scaling

the activations by the same probability p.

See Algorithm 4 and [178] for more details.

1.5.4.2 Batch normalization

Batch normalization [116] is a regularization method which allows for much faster

training of neural networks because it can allow the optimization algorithm to even

work with slightly higher learning rates and to converge in fewer epochs. Batch

normalization addresses the so-called problem of internal covariate shift [116], which

can be defined as the changing (shifting) of the input distribution when training

a classifier. A deep neural network can be seen as a composition of stacked layers,

1.5. Gradient-based optimization 39

Algorithm 5 Batch normalization
Legend:
n = number of examples in the mini-batch
i = index of the example in the mini-batch
µ = mean value of the examples in the mini-batch
σ2 = variance of the examples in the mini-batch
ε = hyper-parameter to make the algorithm numerically stable
β, γ = learned parameters to restore the layer’s representational power
Algorithm:
µ = 1

n

∑n
i=1 xi

σ2 = 1
n

∑n
i=1 (xi − µ)2

x̃i = xi−µ√
σ2+ε

BNγ,β(xi) = γ · x̃i + β

each taking as input the output of previous layers. During training, as we modify

the parameters of the lower layers, the distribution of the input to the higher layers

changes. Batch normalization works by standardizing the inputs between each layer

of a neural network (to mean 0 and variance 1) during training, while also adding a

few trainable parameters so that the original inputs can be recovered and the trained

system does not lose any representational power. In doing so, it also improves the

gradient flow through the network, by reducing the dependence of gradients on the

scale of the parameters or of their initial values [116].

For more details on batch normalization, see the original publication [116].

1.5.4.3 Early stopping

Early stopping is a regularization technique which can improve the performance of

machine learning systems by reducing overfitting. For a provided dataset, the training

set is used to minimize a certain loss function. To reduce the possibility of overfitting,

the system’s performance on the validation set is measured at different points in time.

It can happen that performance on the training set keeps improving, while validation

set performance deteriorates / stagnates (overfitting). When using early stopping,

the state of the system (determined by the values of its trainable parameters) is

reverted to the point in time where validation performance was highest.

To make the description more concrete, we describe a setup often used when

training neural networks in Algorithm 6.

40 1. Introduction to deep learning

Algorithm 6 Early stopping
Legend:
max epochs = maximum number of epochs to train
epoch = current training epoch
max epochs no improvement = maximum number of epochs without performance
improvement on validation set during which training can continue
best epoch = epoch at which the best validation performance was achieved

Algorithm:
while epoch < max epochs do:

update parameters on entire training set
measure performance on validation set
if best performance on validation set:

save system parameters
best epoch = epoch

else if epoch− best epoch > max epochs no improvement:
revert to saved system parameters
break

epoch = epoch+ 1

1.6 Conclusion

In this chapter we have provided a short introduction to the deep learning aspects

most relevant to this thesis. This included the most popular operations that are used

within systems based on deep learning architectures, as well as the most popular

architectures (multilayer perceptron, convolutional neural network and recurrent

neural network). We have also described the optimization procedures used for training

deep learning systems. The handwriting recognition systems presented in the next

chapters will make use of the deep learning architectures presented here, particularly

recurrent and convolutional, as well as the optimization procedures described.

Chapter 2

Deep learning-based handwriting

recognition

Contents

2.1 The role of handwriting recognition tasks in the history

of neural networks . 42

2.1.1 MNIST for classification 42

2.1.2 Other tasks and datasets 45

2.2 The history of neural networks applied to handwriting

recognition . 47

2.2.1 Datasets . 47

2.2.2 Deep neural networks (DNNs) 48

2.2.3 Recurrent Neural Networks (RNNs) 49

2.2.4 Architectures mixing convolutional and recurrent layers . 50

2.3 Conclusion . 53

In this chapter, we will first discuss the role played by handwriting recognition

tasks in the history and resurgence of neural networks. The most significant role here

is played by the highly influential Modified NIST (MNIST) [132] dataset, which has

been referred to as ’the drosophila of machine learning’ [108], serving as a benchmark

for classification. We also describe other tasks, some of which use the same dataset,

which have led to influential results in the field of deep learning.

In the second part of this chapter, we will present the historical evolution of

end-to-end trained systems for handwriting recognition tasks, all the way up to some

42 2. Deep learning-based handwriting recognition

of the most recently-proposed architectures. We divide the architectures into three

categories, with corresponding subsections: deep neural networks (DNNs), recurrent

neural networks (RNNs) and architectures mixing convolutional and recurrent layers

(CNN-RNNs).

These discussions aren’t necessarily meant to be exhaustive, as the literatures

on deep learning and handwriting recognition are vast, but to at least present the

major milestones from the last decades which link the two fields. Furthermore, we

review the papers from a ’personalized’ perspective, focusing subjectively on aspects

we perceive as salient and relevant for this discussion.

2.1 The role of handwriting recognition tasks in

the history of neural networks

The recent history of neural networks, starting with the 1990’s, has seen the use of

several handwriting tasks and datasets as influential benchmarks and showcases of

the power of neural networks. We briefly highlight these tasks and datasets in this

subsection.

2.1.1 MNIST for classification

The Modified NIST (MNIST) dataset is probably the best known and most influential

dataset in all of machine learning.

[133] introduced MNIST and reported human accuracy of around 0.2%. The

dataset contains 60000 training grayscale images and 10000 test images of handwritten

digits (0 to 9) of size 28 × 28.

[130] introduced the LeNet-5 CNN architecture as part of a system which was

used commercially, reading millions of checks per month in the United States in

the late 1990s. This was one of the first major commercial applications of neural

networks and the first major commercial success of CNNs. When benchmarked on

MNIST, LeNet-5 obtained the best results on MNIST among all methods

LeNet-5 used some architectural design principles similar to those used by mod-

ern CNNs, such as alternating between convolutional and subsampling (pooling)

layers and progressively reducing the spatial resolution of the feature maps, while

compensating this through an increase in the number of feature maps (for deeper

layers). Gradient-based learning was used and the CNN features were learned directly

from the image pixels. One difference, though, is that LeNet-5 used mean pooling

2.1. The role of handwriting recognition tasks in the history of
neural networks 43

(differently from most recent CNNs, which use max pooling).

Many of the conclusions of [130] also echo very modern or contemporary findings

in the neural network literature.

For example, the main message of the paper is that, in order to build better

pattern recognition systems, it’s better to rely more on automatic learning than

on hand-designed heuristics. This message echoes the contemporary focus on end-

to-end learning (instead of hand-designed features). ’Training all the modules to

optimize a global performance criterion’ (which can be interpreted as the equivalent

for the modern term ’end-to-end learning’) is also presented as more desirable

than ’manually integrating individually designed modules’ (hand-designed pipelines).

Character recognition (using the MNIST database) was explicitly motivated as a

case study for these principles.

The success of end-to-end learning in the paper is motivated similarly to how the

current success of deep learning is: by the availability of more data, more compute

and better algorithms, all three factors being important.

[130] also discovered an early advantage of training a recognizer at the word level,

rather than on pre-segmented characters. The same type of advantage would later be

discovered by the handwriting recognition community for many more datasets and

also be extended for training a recognizer at the line level, rather than word level.

Another modern feature of [130] is that it used a form of data augmentation, by

randomly distorting the original training images. [130] also conjectured that gradient

descent learning can have a regularization effect, a conjecture which seems confirmed

by recent work (e.g. [58]). It also described specialized hardware to accelerate neural

networks, noted the importance of more compute for the obtained state of the art

results (larger compute can lead to better performing systems, but also requires more

learning data) and conjectured that the comparative advantage of neural networks

would increase as the size of the available training data grows.

MNIST has been ’credited’ with contributing to the ’neural network winter’

around 1995-2005, when research on neural networks declined considerably compared

to the previous decade, partially due to the better performance of Support Vector

Machines (SVMs) and other relatively simple machine learning methods (compared

to neural networks) on this dataset [18]. A list of historical results on the MNIST

dataset is compiled at [132].

If MNIST could be credited for the ’neural network winter’ of the 1990’s and early

2000’s, it could also be credited for the current resurgence of neural networks. [109] led

to a breakthrough in neural network research and is the paper which arguably started

44 2. Deep learning-based handwriting recognition

the current wave of deep learning, by showing that adding depth (more layers) to

neural networks can lead to improved performance. Previously, when researchers had

tried to train deeper neural networks using backpropagation, they hadn’t been able to

obtain significant performance gains, most notably due to vanishing gradients. [109]

introduced what would become the paradigm of unsupervised generative pretraining

followed by discriminative fine-tuning training and showed its effectiveness on MNIST.

Although the learning procedure used was quite complicated (especially the specifics

for the MNIST task), improved performance on permutation-invariant MNIST was

achieved. The permutation-invariant task doesn’t take into account the local structure

of pixels in the image; it corresponds to permuting the pixels in each image using

the same permutation. [109] was explicitly motivated as showing better performance

than all purely discriminative algorithms on MNIST, most notably SVMs and neural

networks trained discriminatively with backpropagation. Table 1 in [109] showed

that for the permutation-invariant MNIST task the proposed method obtained the

state of the art results at the time.

[64] reported the first near-human performance on MNIST, by training CNNs on

GPUs. The importance of using GPUs and, more generally, significant computational

power, is noted in the paper, GPUs being up to 50-100 times faster than CPUs and

2012’s computers being 60000 times faster than computers from the 1990’s. Training

is performed using stochastic gradient descent (SGD); unlike other neural network

architectures from the same historical period, no pretraining was required. The

CNNs have small receptive fields, a feature which was also found beneficial for more

modern CNN architectures like VGG [171], used for object recognition. The CNNs

are deep, containing 6-10 layers; [64] notes that these numbers are comparable to the

number of layers between the retina and the visual cortex of macaque monkeys. Data

augmentation is also used, with random distortions applied to the MNIST images.

The ensemble contains 35 neural nets trained on 7 variations of the MNIST dataset

with 5 different preprocessors. Its accuracy on the test set is 0.23%, comparable to

the 0.2% accuracy of humans [133]. Besides the application on MNIST, state of the

art results were also reported for the recognition of Latin and Chinese characters.

Dropout, an influential technique used for regularizing neural networks, which we

discuss in Section 1.5.4.1, was also tested on MNIST [178].

[86], which introduced the popular rectified linear unit (ReLU) activation function

(see subsection 1.2.2 and equation 1.8), was also benchmarked on MNIST; the ReLU

nonlinearity, when used with a feedforward fully-connected neural network, was

shown to be significantly better than the tanh and softplus nonlinearities (the softplus

2.1. The role of handwriting recognition tasks in the history of
neural networks 45

nonlinearity is a smoothed version of ReLU). [86] is also historically important because

it showed that purely supervised learning can work just as well as unsupervised

pretraining, so unsupervised pretraining isn’t really required when enough labeled

data is available in a supervised learning setting.

Batch normalization, a popular regularization technique introduced by [116]

and presented in subsection 1.5.4.2, was also shown to accelerate the training of a

fully-connected three-layer neural network on MNIST, while also leading to higher

test accuracy.

ADAM [125], probably the most popular optimization algorithm for neural

networks currently, presented in subsection 1.5.3.1, was shown to lead to faster

training for two-layer fully-connected neural networks on MNIST, compared to other

state of the art gradient-based optimization algorithms.

Many of the recent neural network architectures (and particularly convolutional

architectures) have been tested on MNIST. A good reference for the results of modern

architectures is [6].

[164] introduced capsule networks, which can be interpreted as a variant of

convolutional neural networks with a different type of pooling (than e.g. max pooling

used in CNNs), in which multiple neurons (units) in a layer are grouped into ’capsules’.

The performance of capsule networks was highlighted on MNIST, where they obtained

0.25% error, compared to 0.39% for a convolutional neural network baseline, while

also using less than half of the trainable parameters of the CNN.

2.1.2 Other tasks and datasets

Even if MNIST classification is by far the best-known handwriting-related task in

the context of machine learning, it is not the only one. We briefly present four other

tasks in this subsection.

2.1.2.1 MNIST for benchmarking generative models

This task consists of binarizing the MNIST images and measuring the log-likelihood

(on the test set) of generative models trained to generate samples from the data

distribution. It was introduced in [128] and has been quite influential for benchmarking

generative models, one of the research areas in deep learning where a lot of effort

has been spent recently. A good source of some state of the art results for this task

is [89].

46 2. Deep learning-based handwriting recognition

2.1.2.2 Pixel by pixel MNIST

The pixel by pixel MNIST task consists of classifying the images which are input

(sequentially) pixel by pixel. It was introduced by [129]. The effect of this input

procedure is to create long time dependencies: the systems have to remember the

inputs for much longer. For images of size 28 × 28 (like MNIST), this corresponds to

sequences of length 784, compared to length 28 if the images were input one column

of pixels per timestep. Long-term dependencies are difficult to model by RNNs and

other systems working with temporal sequences and they motivated the introduction

of many influential neural network architectures, such as LSTMs [112]. This task

also has a permuted variant, where the pixels of the image are permuted (all images

are permuted using the same permutation) before being input, so as to remove any

prior (structural) information contained (e.g. closer pixels are more correlated than

distant ones). Permuted pixel by pixel MNIST is more difficult than its unpermuted

variant. A large number of recent deep learning papers, most proposing novel RNN

architectures, use this task as a benchmark [56] [40] [204][127] [197] [72] [120] [192]

[145] [107] [106] [188].

We propose a novel recurrent architecture using quantum computation in Chapter

6 and benchmark it on a similar task (permuted pixel by pixel), but we use a dataset

of more complex images - Fashion-MNIST [198].

2.1.2.3 Recognizing multilingual handwritten sequences

In 2009, Multi-dimensional LSTMs (MDLSTMs), a recurrent neural network archi-

tecture adapted to processing images, won three competitions at the International

Conference on Document Analysis and Recognition (ICDAR) [21], on handwritten

Arabic word recognition [142], handwritten Farsi/Arabic character recognition [148]

and handwritten French word recognition [99]. These results were very influential in

showing that RNNs can outcompete previously established methods such as Hidden

Markov Models (HMMs) and that end-to-end learning can surpass handcrafted

features.

2.1.2.4 Online handwriting sequential generative models

The IAM On-Line Handwriting Database [20], which contains handwritten English

text acquired from a whiteboard, has been used recently to benchmark the generation

of long sequences with complex structure (of which handwriting is an example). [94]

showed the first impressive results on this task, using LSTMs, with the generated

2.2. The history of neural networks applied to handwriting
recognition 47

handwriting often indistinguishable from human handwriting. A demo of the outputs

of the system can be accessed at [32]. More recent papers using this benchmark

include [63] [62] [57].

2.2 The history of neural networks applied to hand-

writing recognition

In this subsection, we will first briefly present some of the most significant datasets

used to benchmark handwriting recognition systems. We will then briefly discuss the

historical evolution of end-to-end trained systems for handwriting recognition tasks.

We don’t aim to cover the entire literature (which is vast), but present the major

(especially recent) milestones.

2.2.1 Datasets

In this subsection we will briefly present the IAM, RIMES and IFN-ENIT datasets,

which are some of the most popular handwriting recognition datasets, used by many

of the papers we present in this section for benchmarking.

2.2.1.1 IAM

The IAM dataset [143] [19] contains images of handwritten English text. It provides

both images of segmented lines and, separately, images of segmented words, split into

training, validation and test sets. The lines are partitioned into sets of 6482 (training),

976 (validation) and 2915 (test) lines, respectively. The words are partitioned into

sets of 55081 (training), 8895 (validation) and 25920 (test). Of these, only some

words are correctly segmented and marked so in the database: 47952, 7558 and 20305

for the training, validation and test sets, respectively.

2.2.1.2 RIMES

The RIMES dataset [31] contains images of handwritten letters in French (simulated

scenarios). The training set contains 11333 lines and the test set contains 778 lines.

It includes 51739 words in the training set, 7464 words in the validation set and 7776

words in the test set, respectively.

48 2. Deep learning-based handwriting recognition

2.2.1.3 IFN-ENIT

The IFN-ENIT dataset [22] [77] contains 32492 images of Tunisian cities and villages

names, handwritten by more than 400 writers under a large variety of writing styles.

It is divided into five sets, A-E. In the most common setting, sets A-D (containing

26459 images) are used for training and set E (containing 6033 images) is used for

testing.

2.2.2 Deep neural networks (DNNs)

DNNs are the simplest architectures (no recurrence), using the least prior information

about the data. They can still be effective for handwriting recognition tasks, at least

in some cases and under certain conditions, as shown by the papers reviewed here.

[65] showed that DNNs (MLPs) are sufficient to obtain error rates comparable to

those obtained using CNNs on MNIST, as long as the MLPs are large enough and

sufficiently large quantities of augmented data can be provided. A significant factor in

the required scale up of the DNNs is the use of GPU cards. [65] motivate their choice

of DNNs as a much simpler architecture than e.g. CNNs and their work as the first

trying to answer the question: are really big MLPs sufficient (at least for MNIST)? The

MLPs are trained using stochastic gradient descent. Data augmentation is performed

online and continuously and parts of the augmentation code are also accelerated on a

graphical processing unit (GPU), with the rest implemented on CPU. The operations

used for the data augmentation are affine transforms (rotation, scaling and horizontal

shearing) and elastic deformations. The GPU is reported to accelerate the neural

network by a factor of 40 and the data augmentation by a factor of 10 (compared to

a CPU). The test errors obtained are in the range of 0.4%, better than the state of

the art at the time (including CNNs). The authors note the importance of progress

in compute power, which accelerates by 100-1000 times per decade (Moore’s law)

and interpret their results as suggesting that hardware improvements might be even

more important than software or algorithmic improvements (though, ideally, we want

to combine them all).

[50] compared deep MLPs trained with a sequential criterion (state-level Minimum

Bayes risk) against BLSTMs as optical models. For both types of systems, handcrafted

(geometric and statistical) and pixel features were compared. The comparison was

performed on the RIMES and IAM datasets. Overall, similar error rates were observed

for all the tested systems. Though the image preprocessing is claimed to be standard,

it is quite complicated, involving deskewing, deslanting, some form of contrast

2.2. The history of neural networks applied to handwriting
recognition 49

normalization, white pixels added and handwriting region rescaling. The MLP

training procedure is also complicated by unsupervised pretraining and GMM-HMM

bootstrapping. Adding depth through multiple layers is found to be helpful for both

MLPs and RNNs, and pixel and handcrafted features, with higher impact for the

pixel features. The performance of the different systems (RNN and deep MLP) and

different features (handcrafted and pixels) is found to be comparable; n-gram word

language models are used. The RNN and deep MLP are also complementary, as

their ROVER combination achieved state of the art performance at the time of the

publication.

2.2.3 Recurrent Neural Networks (RNNs)

RNNs came into mainstream use for handwriting recognition tasks after the results

obtained by [97], which were also influential in showing the power of RNNs more

generally, beyond handwriting recognition. Even if the MDLSTM architecture con-

tains convolutional elements, we shortly discuss it here rather than in Section 2.2.4

because of its historical importance for the adoption of RNNs. We discuss some

further papers using MDLSTMs in Section 2.2.4.

[97] showed that Multi-dimensional LSTMs (MDLSTMs), a recurrent neural

network architecture adapted to images, obtained state of the art performance on the

IFN-ENIT dataset at the ICDAR 2009 Arabic handwriting recognition contest. Multi-

dimensional RNNs (MDRNNs), of which MDLSTMs are a variant, were introduced

in [96]. The generality of this architecture was highlighted by the fact that none of

the authors understood even a single word of Arabic. The proposal of MDLSTMs led

to the previous state of the art handwriting recognition systems, based on Hidden

Markov Models (HMMs), being superseded by deep learning architectures. As of 2018,

MDLSTMs are still strong competitors for obtaining state of the art handwriting

recognition systems, second only maybe to Convolutional Recurrent Neural Networks

(CRNNs), which we discuss in the next subsection.

[202] showed that a BLSTM can be more accurate than MDLSTMs, when the

input images are normalized (while learning directly from pixels). This approach also

improved upon methods which use handcrafted features. It was tested on Arabic

words from the IFN / ENIT dataset. We discuss this approach in more details in

Chapter 5, as we will use a different RNN architecture on the same dataset, processed

in the same manner.

[59] proposes a four layer bidirectional Gated Recurrent Unit (GRU) with dro-

pout for Arabic handwriting recognition. GRU is a gated recurrent neural network

50 2. Deep learning-based handwriting recognition

architecture similar to the LSTM, but somewhat simplified, making it potentially

faster and less prone to overfitting; it was first introduced by [61]. The network is

tested on the IFN-ENIT database (similarly to [202] and our own work in Chapter 5),

where it is benchmarked against a three-layer BLSTM and shows better performance.

The use of dropout is claimed to improve the system’s generalization ability. The

IFN-ENIT images are preprocessed similarly to [202], by performing dewarping and

rescaling to fixed height of 48 pixels. The gain in accuracy is of almost 1% absolute

CER (character error rate) compared to [202].

[47] studies the effect of applying dropout at different positions in textline hand-

writing recognition systems. The systems tested are 3-layered alternating BLSTMs

and feedforward layers with tanh activations, trained with the CTC loss function.

The datasets used are IAM, RIMES and Bentham [2] and two different setups are

used: one for handcrafted and another for pixel features. The results seem somewhat

inconclusive, as there’s some inconsistency in the results obtained for different data-

sets. For handcrafted features, dropout seems best applied before the first two layers

and after the last one. For pixel features, the best performance is achieved when

applying dropout both before and after all of the layers. Overall, the best results

seem to be obtained when dropout is applied close to the inputs and close to the

outputs.

2.2.4 Architectures mixing convolutional and recurrent lay-

ers

More recently, after 2009, architectures mixing convolutional and recurrent layers

have been obtaining the state of the art results on the most notable handwriting

datasets (like IAM and RIMES) and at ICDAR and ICFHR competitions. Even more

recently, after 2016, attention-based models have become competitive against the

CTC loss and have shown that full end-to-end paragraph transcription (instead of

line transcription) could become feasible in the near term. Also notably, after 2016,

MDLSTMs are being outperformed by Convolutional Recurrent Neural Network

(CRNN) architectures. We will briefly discuss these developments in this subsection.

[48] proposed the first attention-based model for end-to-end handwriting recogni-

tion and the first successful attempt of end-to-end multi-line handwriting recognition,

by combining attention and the Multi-dimensional LSTM (MDLSTM) architecture,

which contains both convolutional and recurrent computational primitives. The sys-

tem works directly at the paragraph level, without requiring any explicit segmentation

2.2. The history of neural networks applied to handwriting
recognition 51

of the paragraph into lines and outputs a sequence of characters. The motivation

is to perform more end-to-end processing of handwriting documents, instead of

separately segmenting lines using another system in a more complex pipeline. This

can be advantageous, since any segmentation errors are difficult to correct by a

system working on segmented lines. Another motivation can be the capability of

the system to learn to read documents in different orders (e.g. left-to-right for Latin

scripts, right-to-left for Arabic scripts, even mixed when combining the two different

types). The attention model is inspired by a similar attention model introduced

initially for the problem of machine translation [39]. The algorithm was tested on

the IAM dataset. While the CER obtained when working directly on paragraphs

was worse than state of the art approaches working at the line level, the results were

encouraging and showed the viability of the proof of concept. Another interesting

result is the competitiveness of attention, combined with the simple cross-entropy

loss function, against CTC; when applied on IAM lines of handwritten text, the

system obtains results comparable to state of the art MDLSTMs with the CTC

loss. Beyond these results, extensions of this system could be expected to perform

integrated end-to-end document layout analysis and text recognition. Furthermore,

while the current system doesn’t take into account the previous character prediction,

it could be extended in this manner; this could also allow integrating a (pre-trained)

language model.

[46] (like [48]) is also motivated by the idea of end-to-end processing of handwritten

paragraphs, instead of separately segmenting lines in a complex pipeline. Like [48],

it also uses MDLSTMs with attention. The main difference (compared to [48]) is

that in this paper it is no longer the case that the output characters are predicted

one at a time, which would be quite inefficient computationally. Instead, an iterative

decoder is used which requires one step per handwriting line (compared to one step

per character in [48]), leading to a speedup of a factor of 20-30. Attention is also used

here, but only to separate paragraphs into lines, not when predicting the characters

corresponding to the image of a handwritten text line. Also differently from [48], the

CTC loss function is used (instead of the more simple cross-entropy). The proposed

method is tested on the IAM and RIMES datasets. On RIMES, it obtained the

state of the art CER at the time of the publication. On IAM, it obtained results

comparable to the state of the art at the time, though somewhat worse. Maybe even

more significantly, the model was shown to obtain better accuracy than models based

on explicit, automatic line segmentation and results comparable or better than when

using the ground-truth segmentation.

52 2. Deep learning-based handwriting recognition

[49] introduces a model based on gated convolutional layers and BLSTMs to predict

character sequences. The convolutional part, which they denote as a convolutional

encoder, is useful to produce multilingual features. The gating output y is produced

through element-wise multiplication, similar to the gating mechanism in LSTMs (see

Subsection 1.3.3.2): y = g(x) • x where g(x) is produced through convolution on the

feature maps x, followed by the sigmoid nonlinearity. The convolutional encoder is

reused between different languages. It is also motivated by its ease of parallelization

(especially on GPUs). This model is shown to improve upon previous models (notably,

MDLSTMs) on a large multilingual database, and also produces state of the art

results on IAM and RIMES (when combined with hybrid word-character n-gram

language models), at both line and paragraph levels.

[76] introduces an attention-based model and tests it on the RIMES dataset.

The architecture is composed of an encoder and a decoder with attention. The

images are first encoded using a convolutional network, then passed through a three-

layer BLSTM. The decoder combines a content-based and a location-based form of

attention. Using an attention model is motivated by the difficulty of CTC and HMM

models to deal with output sequences which are longer than the input sequences. An

element of novelty is using a BLSTM (instead of a LSTM) as the decoder. This is

motivated by the BLSTM’s improved accuracy on handwriting tasks when compared

to LSTMs. To make the decoding possible when using a BLSTM, the sequence length

must be known in advance; this is predicted using a separate MLP. The performance

of this model is evaluated on the RIMES dataset, for both words and textlines. While

the performance is below than that of a hybrid LSTM-HMM system, it is comparable.

In [157], a model composed of convolutional layers, followed by a deep BLSTM,

is proposed and shown to be at least as accurate, and even improve upon the results

of MDLSTMs. The proposed model is motivated by the improved computational

complexity and capability to parallelize, which are also demonstrated empirically.

An extensive empirical comparison is performed between the proposed model and

MDLSTMs on the IAM and RIMES datasets, without any language model. The

model is shown to be at least as accurate with statistical significance, both in terms of

CER (character error rate) and WER (word error rate). To compare against the state

of the art systems in the literature, image augmentation and word-level language

models are used. The performance obtained is slightly worse, but close to the state of

the art for IAM. Interestingly, for RIMES, better than state of the art performance

is obtained.

[182] proposes an encoder-decoder [61] (also known as sequence to sequence -

2.3. Conclusion 53

Seq2Seq [183] - because it takes as input a sequence and outputs another sequence)

architecture with attention. The architecture is composed of a LeNet-like CNN and

a Seq2Seq model with attention [183], with the CNN applied over a sequence of

image patches obtained from images of handwritten words using a horizontal sliding

window. Both LSTM and BLSTM architectures are benchmarked for the Seq2Seq

encoder. The model outputs separate characters. To obtain a word (from the closed

dictionary), the Levenshtein distance is used and the closest word from the standard

dictionary is output. The model obtains competitive results against the state of the

art on the IAM and RIMES datasets and, particularly, the best published results

without language model and with test lexicon.

The recent competitiveness of CRNNs (particularly against MDLSTMs) has

been convincingly demonstrated in the ICFHR2018 Competition on Automated

Text Recognition on a READ Dataset [181], targeting the adaptation of recognition

engines to small, new, multilingual data. Five of the total six submissions and the

best five systems used CRNNs (more precisely, CNNs and BLSTMs), while the sixth

system used MDLSTMs. Intriguingly, the winning system didn’t use any language

model. More generally, the evaluated systems seemed to obtain similar accuracies

with or without language models. The submitted systems seemed able to make use

of even small new document-specific data, decreasing the CER by 50% with only

16 pages of new document-specific data. The systems winning the first and second

place used very similar architectures, combining CNN and BLSTM layers and the

CTC loss function. The main difference between the two is the use of more extensive

augmented data by the winning system. We illustrate the recognition system which

won second place and which is described in [54] in Fig. 2.1. This architecture contains

thirteen convolutional layers (architecture inspired by the VGG CNN [171]), followed

by three BLSTM layers with 256 units per layer. As shown in Fig. 2.1, it makes use

of ReLU nonlinearities, batch normalization and max-pooling. The system is trained

end-to-end using the CTC loss function. The training (and validation) data was

augmented using multiscale representations. A bigram word-level language model

was integrated with this architecture.

2.3 Conclusion

In this chapter, we have discussed the interaction between deep learning and hand-

writing recognition: how handwriting recognition tasks have played a major part

in the resurgence of neural networks and, conversely, how recent neural network

54 2. Deep learning-based handwriting recognition

architectures have led to state of the art handwriting recognition performance. In

the next chapter, we present our first contribution, applying Convolutional Neural

Networks to the recognition of handwritten digits from the MNIST dataset mentioned

in this chapter.

2.3. Conclusion 55

Figure 2.1 – Architecture from [54]. CONV denotes convolutional layers. BN denotes Batch
Normalization. MAXP denotes max-pooling.

Chapter 3

Improving a deep convolutional

neural network architecture for

character recognition

Contents

3.1 Architecture . 57

3.2 Nonlinear activation functions 58

3.3 Gradient-based optimization and loss function 59

3.4 Initialization . 59

3.5 ADAM variant . 59

3.6 Dropout . 61

3.7 Batch normalization . 61

3.8 Early stopping . 61

3.9 Experiments . 62

3.10 Conclusions . 63

In this chapter we report the first contribution of this thesis. We start from a

deep convolutional architecture and we describe the effect of recent (at the time the

work was performed) activation functions, optimization algorithms and regularization

procedures when applied to the recognition of handwritten digits from the MNIST

dataset [132]. The MNIST dataset is popular for this task and a variety of approaches

have been compared using it. This work was presented in [68].

3.1. Architecture 57

We only focus here on those approaches which take into account and exploit

information about the spatial structure of images and which use deep learning, while

discarding the permutation-invariant MNIST task (in the permutation-invariant task,

no prior information about the spatial arrangement of the input pixels is available).

Many of the most recent and most successful proposals also use deep convolutional

neural networks, as we do [134] [141] [90] [88] [136] [64]. Other approaches use

recurrent neural network variants, such as the Multi-dimensional long short-term

memory (MDLSTM) [93] or ReNet [191]. While these approaches encode information

about the spatial structure of the images mainly through the architecture design,

other approaches do so mainly through data augmentation, by using image pixels

shift, scaling, or elastic distortion, in order to help the trained systems become

more invariant to these transforms and to artificially augment the training set.

The most notable of these approaches is [66], where the authors train big simple

feedforward neural networks (also known as multilayer perceptrons - MLPs) using

elastic distortions. As is true for many other tasks, training ensembles of classifiers

often results in better performance than training a single classifier [64] [66] [194]. We

focus here on the setting of a single classifier (no ensemble) and no data augmentation.

3.1 Architecture

Figure 3.1 – CNN architecture

The convolutional architecture we use is shown in Figure 3.1. It follows many of

the guidelines from [171], which has obtained the best single-model performance in the

ILSVRC 2014 object classification competition [163]. Each of the convolutional layers

has filters of size 3x3, with stride 1 (the stride is the distance between the centers of

the receptive fields of neighboring neurons in an activation map). The subsampling

layers are always 2x2 max-pooling with stride 2, which results in subsampling both

image height and width by 2. When choosing the number of units in the convolutional

58
3. Improving a deep convolutional neural network architecture for

character recognition

Input size Convolutional Layer 1
1 x 28 x 28 conv: 3 x 3 full, stride 1, 32 feature maps
32 x 30 x 30 batch normalization
32 x 30 x 30 PReLU
32 x 30 x 30 2 x 2 max pooling, stride 2
32 x 15 x 15 0.5 dropout

Convolutional Layer 2
32 x 15 x 15 conv: 3 x 3, stride 1, 64 feature maps
64 x 15 x 15 batch normalization
64 x 15 x 15 PReLU
64 x 15 x 15 2 x 2 max pooling, stride 2
64 x 7 x 7 0.5 dropout

Convolutional Layer 3
64 x 7 x 7 conv: 3 x 3, stride 1, 128 feature maps
128 x 7 x 7 batch normalization
128 x 7 x 7 PReLU
128 x 7 x 7 2 x 2 max pooling, stride 2
128 x 3 x 3 flatten
128 x 3 x 3 0.5 dropout

Fully Connected Layer
128 x 3 x 3 fully connected layer matrix multiplica-

tion
625 batch normalization
625 PReLU
625 0.5 dropout

Softmax Layer
10 softmax

Table 3.1 – Proposed CNN architecture

layers, we are once more inspired by the guidelines outlined in [171]: we double the

number of units between each consecutive layer, from 32 in the first convolutional

layer to 64 then 128 in the last one. The architecture also contains a fully-connected

layer of 625 units and a softmax layer of 10 classes (corresponding to the 10 digits).

We show the architecture in Table 3.1.

3.2 Nonlinear activation functions

We have tried several nonlinear activation functions, such as ReLU 1.8 (see Equation

1.9, LReLU (see Equation 1.9) and PReLU. For more details about activation

functions in general, as well as the specific ones mentioned above, see Subsection

3.3. Gradient-based optimization and loss function 59

1.2.2. We have obtained the best results using the PReLU activation function, by

allowing each convolutional filter to have its own a value, but tying the values between

different spatial locations of a same convolutional filter.

3.3 Gradient-based optimization and loss function

The loss function we minimize is the average negative log-likelihood of the conditional

distribution of the correct label given the input, log(p(y|x), across training examples

(x, y) from dataset S. This is equivalent to maximizing the multinomial logistic

regression objective. For more details, see Subsection 1.5.1.1. The optimization is

gradient-based and the gradients are computed using the backpropagation algorithm

[162]. We use mini-batches, which can reduce the computational time required by the

optimization procedure, especially when using modern computational architectures

and even more so for GPUs than for CPUs.

3.4 Initialization

Initialization is important because bad initialization can lead to instability in the

gradients (vanishing or exploding gradients) and consequently poor model perform-

ance after training. In contrast, good initialization can accelerate convergence speed.

We have obtained the best results using the initialization method described in

[105]. For simplicity, we initialize the PReLU a parameters with zero values (right

after this initialization, PReLUs behave just like ReLUs). We initialize the batch

normalization γ parameters to 1, and the β parameters to 0 (see Section 3.7). The

neuron weight matrices are initialized using values drawn from Gaussian distributions

with mean 0 and standard deviation
√

2
ni

, where ni is the number of inputs to the

neuron, following the procedure in [105], and the biases are initialized to 0.

This procedure helps avoid both the exponential vanishing and exploding of

gradients, as well as of inputs to each layer during the feedforward phase. We refer

you to [105] for the full mathematical treatment.

3.5 ADAM variant

For an introduction to ADAM, see Subsection 1.5.3.1.

ADAM is supposed to help with optimizing stochastic functions. In our case, the

stochasticity comes from mini-batch training and batch normalization, from dropout,

60
3. Improving a deep convolutional neural network architecture for

character recognition

Algorithm 7 ADAM (variant)

Legend:
t = timestep
θt = neural network parameter values at timestep t
lr = learning rate
decay = learning rate decay
init = initial learning rate value
ε = hyper-parameter to make the algorithm numerically stable

Algorithm:
lr = init
while θt not converged do:

gt = gradient of loss function with regard to θt
mt = moving average of gt
vt = moving average of g2t
θt = θt−1 − lr ∗ mt√

vt+ε

lr = lr ∗ decay

as well as from the inherent noise in the function to be learned (which takes as inputs

images and outputs labels). We briefly describe the algorithm as we have used it

in Algorithm 7. The only modification we have made from the basic algorithm as

described in Subsection 1.5.3.1 and [125] is using a schedule for decaying the learning

rate. A detailed description of ADAM is beyond the scope of this paper; we refer the

reader to the relevant publication [125].

One aspect we have found empirically is that the learning schedule (the way the

learning rate is adjusted during the optimization procedure) is critical in determining

both the speed of learning (the number of epochs required), as well as the final

performance (as measured by the validation accuracy). In spite of the fact that

the authors of [125] claim that this optimization method is quite robust to step

size, we have found that adapting the learning rate during learning still helps. We

thus propose a variant of ADAM which consists in using annealing (multiplying the

learning rate by a constant after each epoch of training). This corresponds to the

last equation in Algorithm 7. An intuitive explanation for why this procedure works

well is that, as the learning rate decays, the optimization takes shorter steps, doing

less exploration, so that it eventually settles into a local minimum [178].

3.6. Dropout 61

3.6 Dropout

For a short introduction to dropout, see Subsection 1.5.4.1. For more details, see the

original paper [178].

3.7 Batch normalization

For a short introduction to batch normalization, see Subsection 1.5.4.2. For more

details, see the original publication [116].

We apply batch normalization to every training mini-batch and we shuffle the

training set, as recommended in [116]. Training with batch normalization leads to

each example being seen in conjunction with other examples in the mini-batch,

so that the training procedure no longer produces deterministic values for a given

training example. This can be seen as having a regularizing effect similar to using

dropout. Applied naively, batch normalization only adds two extra parameters (γ and

β) for each neuron, so the risk of over-fitting as a result of an increase in the number

of parameters is low. As a result of adding the batch normalization β parameters,

the bias parameters are no longer necessary, so we no longer use them in the layers

in which we use batch normalization; therefore, the effective number of parameters

only increases by 1 per neuron. When using the validation set, we no longer split

it into mini-batches, but use it in its entirety. This has the advantage of removing

the randomization introduced by batch normalization (when using mini-batches)

when estimating the system’s accuracy on the validation set. The same procedure is

applied when testing the system’s final performance (on the test set).

3.8 Early stopping

We have used early stopping (see Subsection 1.5.4.3 for a description) when per-

forming optimization: we run the optimization algorithm for a maximum 300 epochs

(maximum 300 passes through the entire dataset using mini-batches) and stop after

30 epochs without improvement on the validation set. Another method we have tried,

but which has worked worse empirically, was to go through a fixed set of learning

rates (e.g 0.1, 0.01, 0.001) in decreasing order, by decreasing the learning rate when

the validation accuracy doesn’t improve after a given number of epochs (e.g. 30).

Note that we do not retrain the model using both the training and validation samples.

62
3. Improving a deep convolutional neural network architecture for

character recognition

3.9 Experiments

The MNIST dataset of 28 x 28 images is split in 3 separate sets: a training set of

50000 images, a validation set of 10000 images and a test set of 10000 examples.

As is standard in the literature ([134], [136]), the only preprocessing we perform

is scaling the inputs to [0, 1] values. We have also tried standardizing the inputs

using global contrast normalization, but haven’t seen improved results.

For the optimization procedure, we have used ADAM, keeping all its hyper-

parameters to their default values in [125], except for the learning rate, which was

annealed during training. We obtain our best system using an initial learning rate of

0.005 and a learning rate decay of 0.98.

As regularization, in the best system we have used dropout [178] with probability

of removing a neuron p = 0.5, in both the convolutional and the fully connected

layers (we don’t apply dropout to the input images). Though one might expect that

overfitting is not a problem for convolutional layers, since they have few parameters

(as a result of the local connection patterns and the tied weights), dropout can

still help by providing noisy inputs to the higher fully connected layers, preventing

them from overfitting [178]. We have also tried values of p = 0 (corresponding to no

dropout), p = 0.2 and p = 0.8.

Notice that we haven’t performed a systematic, extensive hyper-parameter search,

due to limitations in access to computation (GPUs). Using random search [44] or

Bayesian optimization [172] might lead to improved results, as has been observed

empirically in [172]

Model Test error
(%)

Ours 0.38
Deeply-
Supervised
Nets [134]

0.39

Fractional max-
pooling [90]

0.44

Maxout Net-
works [88]

0.45

Network in Net-
work [136]

0.47

Table 3.2 – Comparison with state-of-the-art results on the MNIST test set (single system,
no data augmentation) at the time this work was originally performed (May
2015)

3.10. Conclusions 63

The error rate obtained using our system is shown in Table 3.2. The same table

also shows results of other deep learning approaches which obtain state-of-the-art

results on MNIST without using data augmentation and model ensembles. The

misclassified digits are shown in Fig. 3.2.

Figure 3.2 – All misclassified samples of the MNIST test set. The first number is the
estimated label, the second one is the ground truth.

The network achieves a 0.38 % error rate, matching and slightly improving the

best known performance of a single model trained without data augmentation at the

time the experiments were performed, in May 2015. As of February 2016, the best

performance in this setting was 0.24 % [55].

3.10 Conclusions

We interpret our results as an argument for engineering systems which can perform

automatic (learned) feature extraction, rather than using hand-engineered features.

Using a deep learning approach also allows for deep learning innovations from other

applications domains to be imported and applied with ease and the deep learning

contributions can also be used in other application domains.

In the next chapter, we use CNNs as building blocks of more complex neural

network architectures, which can perform both localization and classification.

Chapter 4

Tied Spatial Transformer

Networks for Digit Recognition

Contents

4.1 Common elements . 65

4.1.1 Convolutional architectures 65

4.1.2 Activation functions and parameter initialization 68

4.1.3 Loss function and optimization 70

4.1.4 Regularization . 70

4.2 Experiments . 71

4.2.1 CNN, STN and TSTN comparison 72

4.2.2 The regularization hypothesis 73

4.3 Discussion . 74

4.4 Conclusion . 75

We now report our second contribution: a new approach applied to CNNs, where

we use spatial transformer networks (STNs) [117]. This work was published in ICFHR

2016 [70]. This chapter closely follows the presentation in [70].

In this chapter we use STNs (Spatial Transformer Networks), deep learning

architectures that include two CNNs coupled using a Spatial Transformer module,

which was first introduced by [117]. The first one, the so-called localization CNN,

is dedicated to spatial transformations. The second one, the classification CNN,

is dedicated to the classification of the transformed images. The input images are

4.1. Common elements 65

transformed using the parameters estimated by the localization CNN and then fed

into the classification CNN, which performs the class prediction.

The advantage of using such coupled systems (localization coupled to classification)

is that the trainable parameters of the localization network are learned during the

training phase, along with those of the classification network, so that images can be

transformed and classified in an unified manner. Since localization and classification

can be regarded as different tasks, the trainable parameters of the two networks would

generally differ. We propose here to tie the trainable parameters of both networks

in order to obtain a regularization effect which can improve performance. We apply

our approach to the recognition of noisy digits, using the cluttered MNIST database

[146], derived from the MNIST database [132] but including additional sources of

noise.

This chapter is organized as follows. In Section 4.1, we describe the common

elements of the three CNN-based classifier systems: the simple classification CNN,

the untied STN and the TSTN. In Section 4.2, we provide comparative results for

the three systems, using two different convolutional architectures (architecture 1 and

architecture 2), the second architecture being more complex and powerful than the

first one. Interpretations of our results are discussed in Section 4.3 and we conclude

in Section 4.4.

4.1 Common elements

In this section, we present the common elements used between the classification

CNN, the untied STN, and the TSTN. For simplicity and to make the comparison of

the results easier, we have tried to keep as many elements as possible (convolutional

architectures, activation function, optimization procedure, regularization) identical

or as similar as possible between the three systems.

4.1.1 Convolutional architectures

All the classification systems presented in this paper are CNN-based. The CNN

classifier includes a single block composed of convolutional and fully connected

layers, while the STN and TSTN include two blocks, one for the localization part

and another for the classification part (see Figures 4.1, 4.2 and 4.3). We perform

experiments using two different architectures, the second one being more complex

and more powerful than the first. These architectures are shown in Table 4.1 and

66 4. Tied Spatial Transformer Networks for Digit Recognition

Table 4.2 and follow many of the guidelines outlined in [171]. The classification CNN

with architecture 1 is shown in more details in Figure 4.4.

Figure 4.1 – Classification CNN architecture

Figure 4.2 – Untied STN architecture, composed of two coupled CNNs, one dedicated to
localization, the other to classification

Figure 4.3 – TSTN architecture, similar to the untied STN architecture, but using shared
weights

Each of the convolutional layers contains filters of size 3x3. ’Same’ mode convolu-

tion (which allows the size of the output of each convolutional map to be equal to

the size of the input) is used in all the layers. The subsampling layers are always 2x2

max-pooling with stride 2, which results in subsampled images with both height and

width divided by 2. We double the number of convolutional feature maps between

each consecutive convolutional layer, from 32 in the first layer to 64 then 128 in the

last one, drawing once more inspiration from [171].

The fully connected parts are identical between CNN architectures 1 and 2, but

different between the localization and classification CNNs. The convolutional parts

are also very similar. The difference is that for architecture 2 we use two consecutive

operations of convolution followed by nonlinearity instead of a single one; these are

followed by pooling operations, for each of the three convolutional layers. This makes

architecture 2 more powerful and also allows the implicit size of its convolutional

4.1. Common elements 67

Figure 4.4 – Detailed classification CNN architecture 1 (fmap = feature map)

filters to be larger. In both architectures, we remove the pooling operation in the last

convolutional layer of the localization CNN. The motivation for this architectural

choice is to keep more of the spatial information that the fully connected layer of

the localization CNN might need in order to output the estimated parameters of the

affine transformation performed by the Spatial Transformer module. Notice also that

since the max-pooling layers do not contain any trainable parameters, this means

that the convolutional layers of the classification and localization CNNs can still

have the same (tied) trainable parameters. For both architectures (1 and 2), the last

layer of the localization CNN contains less units than that of the classification CNN,

imitating the design of the architectures used in [176] and [174].

Generally, the transformation performed on the input image using the Spatial

Transformer can include scaling, cropping, rotations, as well as non-rigid deformations

[117]. In all of our architectures, we only use the affine Spatial Transformer, introduced

in [117] and also used in [176]. It allows for all the transformations previously

mentioned, except for non-rigid deformations, and only requires 6 parameters to be

estimated by the localization network. The implementation we use, introduced and

described in [176], also includes a subsampling factor d, by which both the height and

the width of the image are scaled, after applying the affine transform. For simplicity

and to make comparisons between different models (including between CNNs and

STNs) easier, we use d = 1 in all of our experiments with systems containing

Spatial Transformers. By performing affine transforms, systems integrating the

Spatial Transformer module can both select relevant portions of an image (a form of

attention) and transform those regions into poses which can simplify the recognition

task for the following system components. For all the technical details about Spatial

Transformers, we refer the reader to the relevant publication [117].

68 4. Tied Spatial Transformer Networks for Digit Recognition

Localization CNN Classification CNN
Convolutional Layer 1 Convolutional Layer 1
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 2 Convolutional Layer 2
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 3 Convolutional Layer 3
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
2 x 2 max pooling, stride 2

flatten flatten
Fully Connected Layer Fully Connected Layer
200 neurons linear layer 625 neurons linear layer
ReLU ReLU

0.5 dropout
Affine Transform Layer Softmax Layer
6 parameters 10-class softmax

Table 4.1 – Architecture 1: localization CNN (left) and classification CNN (right)

4.1.2 Activation functions and parameter initialization

For the activation function, we use in all of our experiments the Rectified linear unit

(ReLU) [86], one of the most successful activation functions in deep learning.

For simplicity, we initialize all weight matrices using a method similar to the one

proposed in [105] and which is also used in [174]. Weight matrices are initialized

using values drawn from uniform distributions with mean 0 and standard deviation√
2
ni

, where ni is the number of inputs to the neuron. The biases are initialized to 0.

The procedure, presented in detail in [105], helps avoid gradient instabilities during

the training phase, as well as instabilities of inputs to each layer during inference.

The affine transform layer parameters are initialized to the identity transform, like

in [174].

4.1. Common elements 69

Localization CNN Classification CNN
Convolutional Layer 1 Convolutional Layer 1
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 2 Convolutional Layer 2
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 3 Convolutional Layer 3
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
2 x 2 max pooling, stride 2

flatten flatten
Fully Connected Layer Fully Connected Layer
200 neurons linear layer 625 neurons linear layer
ReLU ReLU

0.5 dropout
Affine Transform Layer Softmax Layer
6 parameters 10-class softmax

Table 4.2 – Architecture 2: localization CNN (left) and classification CNN (right)

70 4. Tied Spatial Transformer Networks for Digit Recognition

4.1.3 Loss function and optimization

As loss function, we minimize the standard negative log-likelihood of the conditional

distribution of the correct label given the input across mini-batches of training

examples.

Each one of the systems we experiment with (classification CNN, untied STN,

TSTN, for each of the two architectures) represents a differentiable function. To

optimize each such function, we use gradient-based optimization methods, with the

gradients being computed from mini-batches of examples, using the backpropagation

algorithm.

We use as optimization algorithm a variant of ADAM [125], in which we multiply

the learning rate by a fixed amount after a certain number of epochs. ADAM is a state

of the art algorithm developed for improving the performance of stochastic gradient

descent (SGD) on stochastic non-stationary loss functions and sparse gradients. We

have presented ADAM in Section 1.5.3.1. Using a good optimizer can be important for

the untied STN and TSTN systems, since each of them is approximately twice deeper

than the corresponding classification CNNs alone, potentially leading to vanishing

gradients as a consequence of the increased depth.

ADAM introduces a few additional hyper-parameters, described in detail in [125],

which we have kept fixed, using the values recommended in [125]. The only parameter

we vary is the learning rate, which we multiply by a fixed amount after a fixed number

of epochs. We have followed the implementation provided by [174] and multiplied

the learning rate by 0.7 after each 20 epochs of training. We use mini-batches of size

256 in all the training procedures.

4.1.4 Regularization

To reduce the risk of overfitting, we use dropout, which we have presented in Section

1.5.4.1. During validation and testing, the activations of the neurons are scaled by

the same probability p. We use p = 0.5 dropout in the fully connected layer of the

classification CNN only, because it is the layer with the largest number of trainable

parameters, where regularization is potentially most useful. We don’t use dropout

in the fully connected layer of the localization network. The intuition behind this

choice is that dropout, as a noisy form of regularization, tends to remove some of the

spatial information present in the unit activations. This spatial information might be

more valuable for the localization task (as compared to the classification one), so we

prefer to preserve more of it (at the risk of overfitting).

4.2. Experiments 71

4.2 Experiments

We have applied TSTNs to the recognition of noisy handwritten digits. The experi-

ments are conducted on the cluttered MNIST database [173] which is derived from

the MNIST database [132] but includes additional noise and transformations, which

make the classification task more difficult. The digits are distorted using random

translation, scale, rotation, and clutter, and the entire image corresponding to each

digit is larger (60 x 60, compared to 28 x 28 for MNIST). The number of training

/ validation / test examples replicates the numbers in MNIST (50000 / 10000 /

10000). We show upscaled image samples from cluttered MNIST and the processing

performed by a Spatial Transformer in Figure 4.5.

The cluttered MNIST database was introduced by [146]. The best test error

obtained on this dataset, to the best of our awareness, is 1.7%, using a CNN with

a Spatial Transformer module [117]. This result is not directly comparable to ours,

due to differences in the training procedure (e. g. the optimization algorithm).

Furthermore, we do not necessarily aim to achieve the state of the art, but rather to

provide preliminary proof that tying the trainable parameters of the localization and

the classification CNNs can provide some benefit.

For our implementation, we use Theano [186] and Lasagne [75] and rely heavily

on the following implementation [175] and example [174] of Spatial Transformer

Networks.

Figure 4.5 – Cluttered MNIST input images (left) and the same images processed by a
Spatial Transformer as part of a STN1 system (right)

72 4. Tied Spatial Transformer Networks for Digit Recognition

4.2.1 CNN, STN and TSTN comparison

We compare in Table 4.3 the proposed TSTN network (tied trainable parameters)

against the untied STN and the classification CNN alone, using each of the two

different architectures on the cluttered MNIST dataset.

We have stopped the training of each system manually, after checking that the

training accuracy is (almost) perfect. In a single case, the untied STN architecture

2 (entry 8 in Table 4.3), we have not been able to get the training procedure to

converge so as to perform comparably to the other systems. To highlight that the

number of epochs of training is comparable and that we have allowed each system a

reasonable amount of training to achieve good performance, we also show in Table

4.3 the number of training epochs and the best training accuracy (achieved up to the

maximum training epoch). For each system and training procedure, we choose the

parameters for which the best validation accuracy is obtained for evaluation on the

test set. A single experiment is performed for each system, with the same random

seed used in all experiments.

As can be seen in Table 4.3, the TSTN systems obtain better results compared

to CNNs and untied STNs, for the same architecture (by comparing between entries

1-3; and between entries 7-9, respectively).

Entry Maximum
training
epochs

Best train-
ing error
(%)

Validation
error (%)

Test error
(%)

1. CNN1 145 0 4.39 4.44
2. STN1 179 0 4.38 4.33
3. TSTN1 196 0.002 3.02 3.14
4. TSTN1-2 127 0.032 4.14 4.25
5. TSTN1-5-20 135 0 3.11 3.15
6. TSTN1-2-20 127 0.002 2.73 2.74
7. CNN2 95 0 1.82 2.18
8. STN2 66 88.64 88.74 88.81
9. TSTN2 231 0 1.30 1.74
10. TSTN2-5-20 141 0 1.24 1.50
11. TSTN2-2-20 178 0 1.22 1.31

Table 4.3 – Results on the cluttered MNIST database for different systems, architectures
and training procedures

4.2. Experiments 73

4.2.2 The regularization hypothesis

One hypothesis we propose for the improved performance of the TSTN is that,

compared to the untied STN, it is better regularized. To test this hypothesis, we have

conducted a series of experiments where we train each of the two TSTN architectures

using a curriculum like-approach: we alternate between training the entire TSTN

during some epochs and training only its classification CNN component during some

different epochs. We test the regularization effect on the tied trainable parameters of

the TSTNs by using only the classification CNN components during the validation

and test phases. The results of these experiments are shown in entries 4-6, 10 and 11

in Table 4.3.

The first such experiment is conducted using architecture 1, by training the entire

TSTN during the odd epochs and training only the classification CNN during the

even epochs. The results, shown in entry 4 (TSTN1-2) in Table 4.3, are slightly

better than for entries 1 and 2, supporting the regularization hypothesis, but they

are worse than those of entry 3.

We have conjectured that the performance could be improved if we allowed for

some initial training epochs for the entire TSTN before alternating between training

the TSTN and classification CNN. Since the TSTN architecture is twice as deep as

the classification CNN, the vanishing / exploding gradient problem is potentially

worse; this is especially true for the parameters of the localization CNN, which is the

farthest from the error signal provided during backpropagation at the softmax layer.

To test this hypothesis, we perform the training procedure according to the following

scheme: the entire TSTN is trained for the first 20 epochs, then we alternate the

training of the entire TSTN every 5 epochs and the training of the classification CNN

during the remaining epochs. This corresponds to the TSTN1-5-20 system (entry

5) of Table 4.3; the performance seems to be improved for architecture 1, becoming

similar to the TSTN’s.

The effect of the frequency of training the entire TSTN system, while only using

the classification CNN during validation / test could also be related to the trade off

between how much we weigh a regularization term against the likelihood term in the

training objective. Training the entire TSTN more often would correspond to using

more regularization. Viewed in this manner, we can compound the regularization

provided using the approaches described in the previous two paragraphs by training

the entire TSTN during the first 20 epochs, then alternating between training the

entire TSTN and the classification CNN every 2 epochs. The results (TSTN1-2-20)

for architecture 1, shown in entry 6, seem to be even better than for the TSTN.

74 4. Tied Spatial Transformer Networks for Digit Recognition

We have also tested the last two approaches using architecture 2 (entries 10 and

11). The same conclusions seem to hold.

4.3 Discussion

In this section we provide several perspectives to interpret the results of our experi-

ments with TSTNs.

First, the parameters learned by the localization CNN can be interpreted as

encoding the knowledge of how to transform input samples (the transformations being

conditioned on each individual sample) so as to simplify the task of recognition for

the following layers of the entire system. By tying the parameters of the classification

and localization CNNs, the TSTN is constrained to become good at both tasks

(transforming the input image and classifying the transformed image).

As already mentioned in the previous section, the gradients of the localization

CNN can become smaller than the gradients of the classification CNN, as a result of

the vanishing gradient problem. This means that the localization CNN can have less

influence in ’guiding’ the search for the optimum parameters (than the classification

CNN), when the two CNNs share parameters. This is somewhat similar to the

problem of vanishing gradients in RNNs, given that almost the same computation is

repeated twice.

Using the localization network can be seen as adding an auxiliary objective,

different from the one that we are finally interested in (cross-entropy as a proxy

for classification error), but which might help improve it [134]. Using the TSTN

objective during certain training epochs can be seen as deviating from the optimal

trajectory which the training procedure would follow if we were to only train the

classification CNN. This makes the optimization of the classification network itself

harder and we have observed empirically that, especially early during training, the

validation performance of the classification CNN alone is worse after the epochs

during which the TSTN objective is used. However, our experiments show that using

the auxiliary TSTN objective leads to better final test performance, even when using

the classification network alone at test time (and the performance is also better than

that of untied STNs).

Another manner to interpret the results is in relationship to curriculum learning

[43]. First training a localization network together with the classification network

could help the classification network by providing it with easier images to classify

(e.g. if the localization network is trained so that it can deslant the digits in the

4.4. Conclusion 75

images). After this initial period, the classification network is then either trained

alone during all the epochs, or the percentage of training epochs with the localization

network could be diminished (different schedules can be imagined, but we have only

explored very simple ones in this work). Further experiments should be performed to

verify this hypothesis.

An advantage of tying trainable parameters in the TSTNs is that we no longer

have to perform a separate hyper-parameter search for the localization CNN. A

disadvantage of STNs (both untied and tied), however, is that the computational time

needed to use them is approximately twice the computation cost of the classification

CNN alone. From this perspective, training procedures where we alternate between

training the entire TSTN and training the classification CNN, while only using the

classification CNN at test time, can be useful to reduce the computational burden

for systems deployed in production.

4.4 Conclusion

In this chapter, we have proposed a new manner of using Spatial Transformer

Network architectures, by tying the trainable parameters between the localization

and classification networks and applied it to the recognition of noisy handwritten

digits.

In the next chapter, we address a more challenging problem, the recognition of

handwritten words, using a recently proposed recurrent neural network architecture.

Chapter 5

Associative LSTMs for

handwriting recognition

Contents

5.1 Methods . 78

5.1.1 Holographic Reduced Representations 78

5.1.2 Redundant Associative Memory 79

5.1.3 LSTM . 81

5.1.4 Associative LSTM . 81

5.2 Results . 85

5.2.1 Dataset . 85

5.2.2 Image normalization . 85

5.2.3 System details . 85

5.2.4 Results . 86

5.3 Discussion . 88

5.4 Conclusion . 89

In this chapter we present results for recognizing Arabic handwriting sequences,

comparing recently-proposed Associative Long Short-term Memory (LSTM) [74]

recurrent neural networks (RNNs) against a benchmark Long Short-term Memory

(LSTM) RNN.

Our motivation is to study the potential benefits of adding extra memory capacity

in RNNs without significantly increasing the number of trainable parameters for

5. Associative LSTMs for handwriting recognition 77

recognizing Arabic handwriting. [74] also motivates introducing Associative LSTMs

as enhancing (augmenting) LSTMs with extra memory. The extra memory is added

by creating redundant copies of the stored information in the Associative LSTM cells

and by using key-value data storage and retrieval mechanisms. The redundant copies

allow for reduced noise when the retrieval process is performed.

As presented in [74], LSTMs have several limitations:

1. The number of memory cells (units) is linked to the size of the recurrent weight

matrices. More precisely, Nh units require O(N2
h) weights, leading to high

memory and computational costs.

2. LSTMs have difficulties reading common data structures, because of lacking

explicit mechanisms for memory indexing during reads and writes.

While previous proposals, such as Neural Turing Machines [98], use external

memory and soft or hard attention mechanisms to address the memory locations for

reading or writing, Associative LSTMs don’t use locations, but distributed storage,

like LSTMs, and the associative mechanism is implemented using key-value pairs.

[74] also motivates Associate LSTMs by comparing them to Redundant Arrays

of Inexpensive Disks (RAID). Similarly to how RAID is used for reliable storage,

Associative LSTMs make use of redundant memory to reduce the noise, without

increasing the number of trainable parameters.

In our study on applying Associative LSTMs to handwriting recognition, we will

follow a similar methodology to that of [202], which showed that a (1D) Bidimensional

LSTM (BLSTM) can be more accurate than Multidimensional LSTMs, if the input

images are normalized (while learning directly from pixels). This approach also

improves upon methods which use handcrafted features. All the above-mentioned

systems were benchmarked on the dataset of handwritten Arabic words IFN / ENIT

[22].

We will use the same dataset and normalization method to compare between

Associative and vanilla LSTMs and will compare multiple configurations of both

types of architectures: single layer, multilayer, unidirectional, bidirectional (and

combinations, e.g. multilayer bidirectional).

In the next section, we will present the theory and motivation behind Associative

LSTMs (including the complex key-value mechanism and redundant associative

memory) and shortly present LSTMs, for comparison. We will then present our

results on the IFN-ENIT dataset, discuss how our work compares to the literature

and conclude.

78 5. Associative LSTMs for handwriting recognition

5.1 Methods

In this section we will describe the ideas behind Associative LSTMs, following closely

the presentation in [74].

5.1.1 Holographic Reduced Representations

We will first describe the idea of Holographic Reduced Representations, which provide

a key-value associative mechanism allowing to represent an indefinite number of key-

value pairs using a vector of fixed size (an associative array). We will use three types

of complex vectors which all have the same size (Nh/2 complex numbers, which can

also be represented as a real vector of size Nh) and represent the keys, their associated

values and the associative array, respectively. For a complex value vector denoted by

x, which can be written as x = (ax[1]eiφx[1], ..., ax[Nh/2]eiφx[Nh/2]) in polar form, its as-

sociated complex key vector r can be written as r = (ar[1]eiφr[1], ..., ar[Nh/2]eiφr[Nh/2]).

ar[k] denotes the absolute value of r[k] and φr[k] denotes the phase of r[k] (sim-

ilarly for x). r and x have the same size, so they can be ’bound’ together using

element-wise complex multiplication (which multiplies corresponding moduli and

adds corresponding phases):

c = r ⊗ x = (ar[1]ax[1]ei(φr[1]+φx[1]), ..., ar[Nh/2]ax[Nh/2]ei(φr[Nh/2]+φx[Nh/2])) (5.1)

c, the associative array, is also denoted by the term memory trace. Given multiple

keys r1, r2 and r3 (and multiple associated values x1, x2 and x3), the memory trace

c is obtained by adding the ’bindings’ resulting from the element-wise complex

multiplication:

c = r1 ⊗ x1 + r2 ⊗ x2 + r3 ⊗ x3 (5.2)

Given a key r, the key inverse r−1 is defined as:

r−1 = (ar[1]−1e−iφr[1], ..., ar[Nh/2]−1e−iφr[Nh/2]) (5.3)

The value xk associated with the key rk can be retrieved (approximately) by

multiplying the memory trace c element-wise with the inverse key r−1k . For example,

for the previous case of keys r1, r2 and r3 and values x1, x2 and x3, to approximately

recover x1:

5.1. Methods 79

r−11 ⊗c = r−11 ⊗(r1⊗x1+r2⊗x2+r3⊗x3) = x1+r−11 ⊗(r2⊗x2+r3⊗x3) = x1+noise

(5.4)

The noise term will be 0 in expectation, if the phases of the elements of the key

vector are randomly distributed.

Instead of using the inverse r−1k for retrieval, [154] and [74] suggest using the

conjugate rk = (ak[1]e−iφk[1], ..., ak[Nh/2]e−iφk[Nh/2]). The intuition behind this choice

is that the moduli of the inverse (ak[1]−1, ..., ak[Nh/2]−1) could have a negative effect,

by magnifying the noise term (a problem which doesn’t occur for the moduli of the

conjugate).

5.1.2 Redundant Associative Memory

One problem of the previously described mechanism is that, as the number of items

to be stored is increased, the noise in Eq. 5.4 also grows. This noise can be reduced

by using multiple memory traces, each of which will store the input vectors after a

certain transformation has been applied to them. During retrieval, an average of the

copies stored in each separate memory trace will be returned.

We will denote the number of copies by Ncopies and the number of items by Nitems.

To each value xk ∈ CNh/2 is associated the key rk ∈ CNh/2. Each value xk and key rk

can also be represented as vectors of size Nh.

The equation corresponding to the s-th memory trace cs can now be written as:

cs =

Nitems∑
k=1

(Psrk)⊗ xk (5.5)

Ps ∈ RNh/2×Nh/2 is the constant random permutation matrix specific to the

memory trace cs. Applying the permutation matrix Ps to the key rk decorrelates the

retrieval noise from the memory trace copy cs.

A noisy version x̃k of the value xk can be retrieved using the following equation:

x̃k =
1

Ncopies

Ncopies∑
s=1

(Psrk)⊗ cs (5.6)

(Psrk) is the complex conjugate of Psrk and the average over all memory trace

copies cs, s ∈ {1, ..., Ncopies} is taken.

We will analyze how the noise scales with the number of copies and the number

80 5. Associative LSTMs for handwriting recognition

of items when x̃k is retrieved. We will assume that each complex element of the

vector rk has modulus 1, so that the complex conjugate acts as an inverse and we

can retrieve xk (without any scaling factor 6= 1) and some additional noise:

x̃k = xk +
1

Ncopies

Ncopies∑
s=1

Nitems∑
k′ 6=k

(Psrk)⊗ (Psrk′)⊗ xk′

= xk +

Nitems∑
k′ 6=k

xk′ ⊗
1

Ncopies

Ncopies∑
s=1

Ps(rk ⊗ rk′) = xk + noise

If the terms Ps(rk⊗rk′) are independent, the sum over the copies
∑Ncopies

s=1 Ps(rk ⊗ rk′)
will be 0 in expectation. If we also assume that the noise due to one item xk′ ⊗

1
Ncopies

∑Ncopies
s=1 Ps(rk ⊗ rk′) is independent of the noise due to the other items, the

variance of the total noise for a retrieved item will be of the order O(Nitems
Ncopies

). By

keeping a number of copies similar to the number of items, this variance can be kept

constant as the number of items is increased.

Redundant associative memory has some nice properties, as described in [74]:

1. The number of copies can be modified at any time, since it is independent

from the number of units and other Associative LSTM hyperparameters. By

increasing the number of copies, the retrieval noise can be reduced and the

memory capacity can be increased.

2. Since no location mechanism is used, like in Neural Turing Machines, but the

storage is distributed, it is not necessary to add any mechanism to search for

free locations to write to or mechanisms to decide which previous locations to

overwrite (if all the locations had previously been written to).

3. More items than the number of copies can be stored, at the cost of increased

retrieval noise.

In [74], a specific task is described to demonstrate how redundant memory copies

can reduce the noise as the number of items is kept fixed, using ImageNet examples

[23]. Each image of width and height 110 (3 color channels) is vectorised, starting

from the data format 3×110×110. The first half of the resulting vector is interpreted

as the real part and the second half as the imaginary part of a complex vector.

Random complex keys with moduli equal to 1 are used for encoding the vectors into

the random associative memory.

5.1. Methods 81

We have reproduced the results which show that, as the number of copies is

increased (with the number of items fixed), the noise diminishes.

5.1.3 LSTM

For convenience, we more briefly describe the LSTM (already presented in Section

1.3.3.2) here, using a notation more similar to that in [74], to make the comparison

between the LSTM and the Associative LSTM simpler.

The LSTM equations are:

ĝf , ĝi, ĝo, û = Wxhxt +Whhht−1 + bh (5.7)

gf = σ(ĝf) (5.8)

gi = σ(ĝi) (5.9)

go = σ(ĝo) (5.10)

u = tanh(û) (5.11)

ct = gf � ct−1 + gi � u (5.12)

ht = go � tanh(ct) (5.13)

σ is the sigmoid function. gf , gi and go are the forget, input and output gates. c

is the cell state and u is the proposed update. Wxh and Whh are weight matrices, bh

is a bias vector and � denotes element-wise multiplication. It can be noted that the

multiple elements at the left hand side of equation 5.7 means that weight matrices

Wxh and Whh include different sub matrices from which each element can be obtained.

5.1.4 Associative LSTM

Associative LSTMs are obtained by combining Holographic Reduced Representations

with LSTMs. To implement an Associative LSTM, we will need to perform complex

82 5. Associative LSTMs for handwriting recognition

vector element-wise multiplication. a complex vector z = hreal + ihimaginary can be

represented as a real vector using the following format:

h =

[
hreal

himaginary

]
(5.14)

where h ∈ RNh , hreal, himaginary ∈ RNh/2. Using this transformation, all the vectors

and matrices in the Associative LSTM can be represented using real numbers.

The Associative LSTM also uses gates, like the LSTM, but additionally introduces

associative keys r̂i, r̂o (and the additional trainable parameters required, corresponding

to extending the matrices Wxh and Whh and biases bh to the necessary dimensions).

The same gates are applied identically to the real and imaginary parts of the complex

vectors, similarly to how σ is applied to the real vectors in the LSTM in Eqs. 5.8, 5.9

and 5.10.

ĝf , ĝi, ĝo, r̂i, r̂o = Wxhxt +Whhht−1 + bh (5.15)

û = Wxuxt +Whuht−1 + bu (5.16)

gf =

[
σ(ĝf)

σ(ĝf)

]
(5.17)

gi =

[
σ(ĝi)

σ(ĝi)

]
(5.18)

go =

[
σ(ĝo)

σ(ĝo)

]
(5.19)

The Associative LSTM formulation introduces a new activation function which

only modifies the modulus of the entries of a complex vector, by restricting it to

the interval [0, 1]. We will first define the vector d ∈ RNh/2, which corresponds

to element-wise normalization by the modulus of each complex number when the

modulus is greater than one:

d = max(1,
√
hreal � hreal + himaginary � himaginary) (5.20)

The function bound is then defined as:

5.1. Methods 83

bound(h) =

[
hreal � d

himaginary � d

]
(5.21)

where � denotes element-wise division. The introduction of this nonlinearity is

motivated in [74] as having worked better than applying a more standard nonlinearity

such as tanh separately to the moduli of the complex numbers.

We will next compute the input key ri ∈ RNh , which will act as a storage key

in the associative array (denoted further by c), the output key ro ∈ RNh , which

corresponds to a lookup key and the update u, which will produce the value to be

stored by multiplying it with gi, similarly to Eq. 5.12 in the LSTM.

The bound nonlinearity is used for all these computations, analogously to how

the tanh nonlinearity is applied in the original LSTM in Eq. 5.11:

u = bound(û) (5.22)

ri = bound(r̂i) (5.23)

ro = bound(r̂o) (5.24)

We will next describe how redundant storage is introduced and the procedure

to use it during memory retrieval. For each copy indexed by s ∈ {1, ..., Ncopies} and

every timestep t, there will be a different cell state (representing a memory trace)

cs,t.

The input keys ri are first permuted using the permutation matrices Ps ∈
RNh/2×Nh/2:

ri,s =

[
Ps 0

0 Ps

]
ri (5.25)

The cell state indexed by s at time t will be computed using the following

expression:

cs,t = gf � cs,t−1 + ri,s ~ (gi � u) (5.26)

where ~ denotes element-wise complex multiplication. Element-wise complex

multiplication between two complex vectors r and u can be written as the following

expression with regard to their real and imaginary parts rreal, rimaginary, ureal and

84 5. Associative LSTMs for handwriting recognition

uimaginary:

r ~ u =

[
rreal � ureal − rimaginary � uimaginary
rreal � uimaginary + rimaginary � ureal

]
(5.27)

Notice the similarity of Eq. 5.26 to the LSTM Eq. 5.12. The left side of the

equation, gf � cs,t−1, is the same as in the LSTM, except for the extension to multiple

cells cs. The right side of the equation, ri,s ~ (gi � u), performs memory ’bounding’,

like in Eq. 5.2 (without redundant storage) and in Eq. 5.5 (when redundant storage

is added). The memory cell c in the LSTM Eq. 5.26 can then be interpreted as

playing the same role as the associative memory trace in Eqs. 5.2 (without redundant

storage) and 5.5 (when redundant storage is added).

The same matrix Ps is used to obtain the permuted output keys ro,s from the

output key ro:

ro,s =

[
Ps 0

0 Ps

]
ro (5.28)

The cells are read out by averaging the copies indexed by s:

ht = go � bound

 1

Ncopies

Ncopies∑
s=1

ro,s ~ cs,t

 (5.29)

The expression 1
Ncopies

∑Ncopies
s=1 ro,s~cs,t is the same as the retrieval from Redundant

Associative Memory in Eq. 5.6. The rest of Eq. 5.29 is the same as Eq. 5.13 for the

LSTM, with the tanh nonlinearity replaced by bound.

Because the matrices Ps are fixed (not learned), using them does not lead to an

increase in the number of trainable parameters. The averaging over the different

copies also means that the resulting vector’s size is independent of the number

of copies. Each permutation can be performed in asymptotic computational time

O(Nh) and all the Ncopies different operations can be parallelized over tensors of size

Ncopies ×Nh.

In [74], for some tasks Whu in Eq. 5.16 is set to 0 and this is observed to lead to

faster learning.

5.2. Results 85

5.2 Results

We will next describe the results we have obtained on the IFN-ENIT dataset. We

will follow a methodology similar to that of [202], training for a fixed number of

epochs and reporting the performance of the trained system on the validation set.

5.2.1 Dataset

The IFN-ENIT dataset contains contains 32492 images of Tunisian cities and villages

names, handwritten by more than 400 writers under a large variety of writing styles.

It is divided into five sets, A-E. In the most common setting, which we will also

follow, sets A-D (containing 26459 images) are used for training and set E (containing

6033 images) is used for testing.

The images vary both in height and in width and range from 85×84 to 162×1069

in the training set and from 40× 170 to 139× 977 in the test set. All the images are

grayscale.

5.2.2 Image normalization

In this subsection we will describe the image normalization procedure we have used

for the IFN-ENIT handwriting images.

We first perform Otsu thresholding [151] using the OpenCV implementation

[27]. We then use the image normalization procedure provided by ocropy [26] which

performs dewarping and image size normalization to the default ocropy image height

of 48 pixels (with the width rescaled proportionally, so as to preserve the aspect ratio).

We then perform contrast inversion on the resulting image and, finally, normalize

the pixel values to [0, 1].

We display IFN-ENIT images before and after Otsu thresholding and ocropy

normalization in Fig 5.1.

5.2.3 System details

We initialize the recurrent weights for all the architectures using the orthogonal

initializer [166]. The forget biases are initialized to 1 and all the other recurrent

biases are initialized to 0. For all the architectures, we have initialized the weights of

the output layer using Xavier initialization and the biases to 0.

The loss optimized is the CTC loss, which is presented is Section 1.5.1.2. All

the results presented are obtained using greedy CTC decoding, presented in Section

86 5. Associative LSTMs for handwriting recognition

1.5.1.2.

For optimization, we have used the ADAM [125] gradient-based optimizer with

default settings (including the default 0.001 learning rate). We also apply gradient

clipping by global norm, with global norm 10. We have used batch size 64 for all the

experiments.

We also present results for bidirectional architectures. Bidirectional RNNs are

discussed in Section 1.3.3.3. The extension to Bidirectional LSTMs and Bidirectional

Associative LSTMs is straightforward.

5.2.4 Results

All the results presented are obtained on the validation set E, with training performed

on the sets A-D.

Our Associative LSTMs use a single copy, since early experiments with multiple

copies didn’t show any gains.

Because the LSTM is about 4− 5× faster, we allow it to run for more training

epochs (150) than the Associative LSTM (100). In all of our experiments with

Associative LSTMs, Whu was set to 0.

System CER Number of
trainable

parameters

Number of
training
epochs

LSTM-128 0.5451 106233 150
LSTM-256 0.5200 343417 150
ALSTM-64 0.5314 40121 100
BLSTM-64 0.3545 73465 150

BALSTM-64 0.3598 80121 100
BLSTM-128 0.3197 212345 150

BALSTM-128 0.2919 233849 100

Table 5.1 – Character error rates (CERs) for various LSTM and Associative LSTM systems.
We denote LSTM RNNs with n units by LSTM-[n] and Associative LSTM
(ALSTM) with n units by ALSTM-[n]. We add the prefix B for Bidirectional
RNNs.

We display the results for different LSTM and Associative LSTM settings in

Table 5.1. By LSTM-[n] we denote LSTM RNNs with n units and analogously for

Associative LSTM (ALSTM). For Bidirectional RNNs, we add the prefix B.

We can see that the ALSTM-64 performs better than the LSTM-128 with about

2.5× less trainable parameters, and somewhat worse than LSTM-256, which contains

5.2. Results 87

Figure 5.1 – Example images from IFN-ENIT before and after Otsu thresholding and
ocropy normalization. The odd images, from top to bottom, are the inputs
(unnormalized), while the even ones are thresholded and normalized. For
better visualization, the input images are scaled 0.5×.

about 8.5× more trainable parameters.

The BALSTM-128 performs better than the BLSTM-128, while the BALSTM-64

doesn’t seem to do better than BLSTM-64. In both cases, the BALSTM and BLSTM

systems have comparable numbers of trainable parameters.

In our implementation, the Associative LSTM seems to be about 4-5 times slower

than an LSTM, for equal number of units. This slowdown is similar to that reported

in [74]. This diminished computational efficiency partly negates the accuracy gains

and motivates us to try other approaches to increase the memory of an RNN, without

88 5. Associative LSTMs for handwriting recognition

increasing the computational cost, as will be discussed in the next chapter.

5.3 Discussion

Other RNN architectures have been proposed motivated by the benefits of increased

memory without increasing the number of trainable parameters and while potentially

reducing the computational cost.

Unitary evolution RNNs [38] replace the full-rank hidden-to-hidden transition

matrices Whh in vanilla RNNs with a factorization of complex matrices:

Whh = D3R2F
−1D2ΠR1FD1 (5.30)

In this equation F and F−1 are the Fourier Transform and Inverse Fourier Trans-

form and are fixed (not learned). Π denotes a fixed random index permutation matrix.

Each of the D1, D2, D3 matrices is diagonal and learned, parameterized as Dj,j = eiwj ,

where wj are real numbers. R1 and R2 are reflection matrices parameterized as

R = I − 2 vv∗

||v||2 , with I the identity matrix and v ∈ Cn a complex vector. F and F−1

require no storage and require O(n log(n)) computation. The D, R and Π matrices

require O(n) storage and O(n) computation. Since a typical vanilla RNN Whh matrix

requires O(n2) storage and O(n2) computation, this parameterization can be much

cheaper, as n, the number of units, grows. By increasing n, unitary evolution RNNs

could allow for potentially vast memory representations, as also discussed in [38].

This is motivated by the fact that the memory capacity of RNN architectures is

usually correlated with the number of units, as shown theoretically in the reservoir

computing literature [118] and empirically in [71].

The parameterization in [121] goes even further in reducing the number of trainable

parameters in the hidden-to-hidden transition matrix, by proposing a Kronecker

factorization which only requires O(log n) parameters and storage and O(n log n)

computational cost. Although the main motivation presented in [121] is reduced

computational cost, the reduced storage and computational cost allow for increased

number of units and increased memory. In the next chapter we will describe a similar

approach, inspired by the work in [121], but which allows the computational cost to

be reduced by using quantum computation.

5.4. Conclusion 89

5.4 Conclusion

In this chapter we have studied the impact of using a mechanism through which

more memory can be added to a RNN without significantly increasing the number

of trainable parameters on a handwriting recognition task. In the next chapter we

will show how quantum computation seems to provide the opportunity for up to

exponentially more memory capacity in an RNN.

Chapter 6

Hybrid classical-quantum deep

learning

Contents

6.1 Motivation for using quantum computing 92

6.2 Introduction to the quantum circuit model of quantum

computing with discrete variables 94

6.2.1 The qubit . 94

6.2.2 Unitary evolution . 96

6.2.3 Measurement . 99

6.3 Discrete-variable quantum neural networks using par-

tial measurement . 101

6.4 Introduction to hypernetworks 103

6.5 Proposed parameterization 106

6.5.1 Quantum (main) RNN . 106

6.5.2 Output layer . 107

6.5.3 Loss function . 108

6.5.4 Classical (hyper) RNN . 109

6.6 Simulation results . 110

6.6.1 Task and dataset . 110

6.6.2 System details . 112

6.6.3 Approximate computational cost 114

6.6.4 Accuracy estimation under ε-sampling approximation . . 115

6. Hybrid classical-quantum deep learning 91

6.7 Experimental results . 115

6.8 Discussion . 121

6.9 Conclusion . 126

In this chapter, we propose a hybrid classical-quantum neural network paramet-

erization which is inspired by previously proposed work on hypernetworks [100]. The

idea of hypernetworks is that a neural network, which we will call the hypernetwork,

can be used to generate the parameters of another network, denoted as the main

network, which is used to make the required predictions. We instantiate this proposal

using recurrent neural network (RNNs) on a binary classification task for sequences.

More specifically, we propose that a classical RNN (implemented on a classical

computer) generates the parameters of a quantum RNN (implemented on a quantum

computer), which will provide the label prediction. We simulate the training of

both components of our system (the classical and the quantum RNN) on a classical

computer (GPU), using stochastic gradient descent (SGD) and backpropagation.

RNNs are Turing-complete [115] [170], so, in some sense, fully general deep learning

computing models. Addressing RNNs differentiates our work from most previous

quantum neural network proposals and using quantum networks differentiates our

work from classical hypernetworks. Section 6.8 provides a more detailed discussion

of this point. In principle, our proposal is general and can address more types of

architectures than RNNs.

The intuition behind our proposal is that quantum computers can allow us

to perform some operations on very high-dimensional spaces with exponentially

less computation compared to classical computers. In the case of RNNs, this high

dimensionality could allow for more memory, so that the quantum RNN remembers

inputs from the distant past with significant computational gains compared to

classical proposals. The hyper-RNN in our proposal can be interpreted as learning to

encode the inputs into the high-dimensional space of the quantum RNN.

To simplify the problem of generating outputs from the quantum computer, in this

work we will only address many-to-one problems [135], in which the input is presented

as a sequence and a single output is required. We will show results suggesting that

our proposed hybrid classical-quantum RNN can perform similarly to a classical

RNN in a long-term sequential dependency task, with potentially exponentially

less computation required. For this, we will choose a task similar to the permuted

pixel MNIST task, a standard benchmark for the long-term memory capabilities

of RNN architectures [121] [38], but using the Fashion-MNIST dataset [198] [199].

92 6. Hybrid classical-quantum deep learning

We simulate our proposal on GPU, but show the approximate computational costs

required if our proposal were run on a quantum computer.

To the best of our awareness, our work is the first to show promising results

suggesting a potential quantum advantage for RNNs on a large, industrial-scale

dataset.

We now summarize the next sections of this chapter. We will begin by briefly

discussing the motivation behind our use of quantum computing in Section 6.1. We

then (in Section 6.2) shortly introduce and illustrate the best-known model of quantum

computation and how some of its features can be related neural network concepts.

In Section 6.3, we discuss a natural implementation of quantum neural networks,

but which is difficult to simulate classically using backpropagation. This difficulty

motivated our proposal for hybrid classical-quantum neural networks in the framework

of hypernetworks, a framework which we introduce in Section 6.4. In Section 6.5 we

describe our proposed parameterization, including details about the main (quantum)

RNN component, with its output layer and the loss function we have used, and the

classical RNN which generates the quantum RNN parameters. In Section 6.6 we

start by motivating our choice of task and dataset, then provide implementation

details for our system and the classical benchmark and the methods we have used

to approximate the computational costs of both systems. We then describe how we

estimate the accuracy of our proposal under ε-sampling approximations. In Section

6.7 we present the results we have obtained. In Section 6.8, we discuss how our

proposal is related to the literature in quantum and classical machine learning, as

well as limitations and potential improvements of our method, followed by conclusions

in Section 6.9.

6.1 Motivation for using quantum computing

In this section, we briefly discuss the motivation behind our use of quantum computing

in the neural network architecture we have proposed.

Quantum computing is the most general and most powerful form of computing

known as of today, while classical computing can be seen as a specialization, imple-

menting a restricted subset of the operations that quantum computers can implement

[30]. An illustration of this generality and power of quantum computation comes

from computational complexity theory. We will first introduce the classes of decisions

problems which can be solved or verified efficiently using classical and quantum

computation, respectively.

6.1. Motivation for using quantum computing 93

In the theory of computational complexity, ’bounded-error quantum polyno-

mial time (BQP) is the class of decision problems solvable by a quantum computer

in polynomial time, with an error probability of at most 1/3 for all instances’ [4].

Meanwhile, the class P ’contains all decision problems that can be solved by a de-

terministic Turing machine using a polynomial amount of computation time’ [28]. At

the same time, ’NP is the set of decision problems for which the problem instances,

where the answer is ”yes”, have proofs verifiable in polynomial time’ [25].

So, to summarize, P corresponds to decisions problems efficiently solvable

classically, BQP to decisions problems efficiently solvable using quantum

computation and NP to decisions problems efficiently verifiable classically.

BQP is known to contain P, while it is suspected that BQP and NP intersect,

but none is completely contained in the other [4]. The intuitive interpretation of

BQP containing P is that there exist problems which quantum computers can solve

efficiently, but classical computers can’t (these problems would belong to BQP, but

not to P) and that, at the same time, any problem which can be solved efficiently

classically can also be solved efficiently using quantum computing. More counter-

intuitively, BQP not contained in NP would mean that there exist problems which

quantum computers can solve efficiently and whose solution can’t even be proved

efficiently classically.

Figure 6.1 – Suspected relationship between the BQP, P and NP complexity classes. PH is
a complexity class which can be interpreted as a generalization of NP. Figure
from [4].

BQP has long been suspected not to be included in NP [4] and recently a problem

has been found which is in BQP but not in NP [159]. The findings of [159] also

imply that, even if it were true that P = NP, quantum computers would still be

able to efficiently solve some problems that classical computers can’t (and whose

94 6. Hybrid classical-quantum deep learning

solution classical computers can’t even check). We illustrate the suspected relationship

between BQP, P and NP in Fig. 6.1.

6.2 Introduction to the quantum circuit model of

quantum computing with discrete variables

In this section, we shortly introduce the best-known model of quantum computation

and discuss and illustrate the most important concepts and operations available in

this model (which we have also used in our proposal). We will also briefly discuss

the similarity between some of these concepts and operations to some concepts and

operations from the field of deep learning.

Several models exist for implementing quantum computation, including adiabatic

quantum computation [1], continuous-variable quantum circuits [7] and discrete-

variable quantum circuits [30]. We will use the discrete-variable quantum circuit

model. This is an universal model of quantum computation (a problem which can

be solved in polynomial time using any other model of quantum computation can

also be solved in polynomial time using the discrete-variable quantum circuit model).

Arguably, this model is also the most natural for computer scientists, due to the

similarities between the classical bit and its quantum version, the qubit, as will be seen

in more details in the next section. In the following sections, we will shortly introduce

the operations available when using discrete-variable quantum circuits which are

relevant for our discussion about quantum neural networks: unitary evolution and

measurement (including full and partial quantum measurements).

6.2.1 The qubit

The quantum equivalent of the classical bit is the qubit. A qubit’s quantum state

can be represented as a complex vector |Ψ〉 =

[
α0

α1

]
of norm 1: |α0|2 + |α1|2 = 1.

Another representation for the qubit’s quantum state is as a superposition of the

basis states |0〉 and |1〉: |Ψ〉 = α0 |0〉+ α1 |1〉, where α0 and α1 can be interpreted

as the amounts of the qubit |Ψ〉 being in the configurations |0〉 and |1〉, respectively.

|0〉 and |1〉 represent the computational basis

[
1

0

]
,

[
0

1

]
. α0 and α1 can be linked to

a probabilistic interpretation, as will be discussed in Section 6.2.3.

6.2. Introduction to the quantum circuit model of quantum
computing with discrete variables 95

6.2.1.1 Multiple qubits

When multiple (n) qubits are put together, the quantum state of the entire ensemble

can be written as a vector of 2n complex numbers of complex norm 1.

In some cases, the quantum state of the entire ensemble can be expressed as a

tensor product. For example, suppose each one of the qubits i, with i ∈ {1, ..., n}, has

been initialized to the state

[
αi

βi

]
= αi |0〉+ βi |1〉. The quantum state of the entire

ensemble of n qubits, when put together, is then the vector of 2n complex numbers

resulting from the tensor product of the n qubit states (vectors):
⊗n

i=1

[
αi

βi

]
=⊗n

i=1 (αi |0〉+ βi |1〉).

We will illustrate the tensor product for two qubits

[
α1

β1

]
= α1 |0〉+ β1 |1〉 and[

α2

β2

]
= α2 |0〉+ β2 |1〉:

[
α1

β1

]
⊗

[
α2

β2

]
= (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉) =

α1

[
α2

β2

]

β1

[
α2

β2

]

=

α1α2

α1β2

β1α2

β1β2

 = α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β2α2 |11〉

(6.1)

Here |00〉 , |01〉 , |10〉 , |11〉 form the computational basis

1

0

0

0

,

0

1

0

0

,

0

0

1

0

,

0

0

0

1

.

Because the quantum state of a quantum system of n qubits is a complex vector

of 2n numbers, a quantum system containing a relatively small number of qubits can

represent gigantic vectors. For example, the quantum state of a system of 300 qubits

is a vector of 2300 complex numbers (more than the number of atoms in the universe).

Moreover, each time an extra qubit is added, the size of the quantum state (and of

the classical memory which would be required just to store it) doubles. The advantage

that quantum computing provides (compared to classical computing) is the efficient

96 6. Hybrid classical-quantum deep learning

manipulation of these huge vectors (but only for certain operations, mostly for matrix-

vector multiplications, where the matrices are structured, as discussed in Section

6.2.2). The entire information in the quantum state also can’t be accessed directly,

but only limited amounts of information can be obtained through measurements, as

will be discussed in Section 6.2.3.

Not all quantum states can be expressed as tensor products. An example of a

quantum state which can’t be expressed as a tensor product is the Bell state. The Bell

state is the simplest example of quantum entanglement of two qubits (quantum

entanglement means that the quantum state of each qubit cannot be described

independently of the state of the others): |Ψ〉 =

1√
2

0

0
1√
2

 = 1√
2
|00〉+ 1√

2
|11〉. It is easy

to prove that this state can’t be factored as a tensor product of the states of the two

qubits: |Ψ〉 6= (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉).

6.2.2 Unitary evolution

Most of the operations which can be applied to an ensemble of n qubits (whose

state can be written as a vector of size 2n) can be described as multiplying its state

by a unitary matrix of size 2n × 2n. However, unitary matrices of size 2n × 2n are

usually computationally intractable for large n (even for quantum computers), unless

the matrix has some special structure. When these matrices can be implemented

efficiently using quantum computers, they can be expressed efficiently as quantum

circuits composed of quantum gates. Efficiently usually means, in this case, that

only a polynomial number of quantum gates is required. Quantum gates are quantum

circuits operating on a small number of qubits and they represent the building blocks

of quantum circuits, similarly to how classical logic gates are used in conventional

digital circuits [29]. Simple quantum gates can be composed to form more complex

unitary operations.

We will first describe the unitary evolution of single qubits and then discuss some

interesting cases for the unitary evolution of multiple qubits.

6.2.2.1 Single qubit

In the case of a single qubit, if we describe the qubit’s state as |Ψ〉, it will evolve

to |Ψ′〉, when a 1-qubit unitary U is applied, through matrix-vector multiplication

(between U and |Ψ〉):

6.2. Introduction to the quantum circuit model of quantum
computing with discrete variables 97

|Ψ′〉 = U ∗ |Ψ〉 (6.2)

In the most general case, for a single qubit, U is a 2× 2 unitary matrix which

can be parameterized as:

U = e
iα
2

[
eiβ cos(φ) eiγ sin(φ)

−e−iγ sin(φ) e−iβ cos(φ)

]
(6.3)

We will use this parameterization in our quantum RNN proposal in section 6.5.1.

General 1-qubit unitaries can be implemented using 4 consecutive elementary 1-qubit

gates [52] [150].

6.2.2.2 Multiple qubits

In the case of a system containing multiple (n) qubits, as mentioned previously, the

most interesting unitaries are those which can be expressed using only a polynomial

number of quantum gates. The structure of these matrices is such that they can be

expressed as tensor products of unitaries applied to (small) subsets of the n qubits.

For example, in the case of n fully general 1-qubit unitaries Uj, j ∈ {1, .., n}, Uj
applied to qubit j, this is equivalent to a 2n × 2n unitary which is the tensor product

of the n 1-qubit unitaries Uj, j ∈ {1, ..., n} multiplying the quantum state of the n

qubits (vector of size 2n):

n⊗
j=1

Uj =
n⊗
j=1

e
iαj
2

[
eiβj cos(φj) eiγj sin(φj)

−e−iγj sin(φj) e−iβj cos(φj)

]
(6.4)

Because general 1-qubit unitaries can be implemented using 4 consecutive ele-

mentary 1-qubit gates [52] [150], the computational complexity of implementing the

above 2n × 2n unitary matrix using quantum computation is only O(n).

We illustrate here the tensor product of two 2× 2 matrices, resulting in a 22 × 22

matrix. This simple example shows the result of applying 2 single-qubit gates acting

independently on each of the qubits of a 2-qubit system (the resulting 22 × 22 matrix

acts on the quantum state - a vector of size 22):

98 6. Hybrid classical-quantum deep learning

[
a11 a12

a21 a22

]
⊗

[
b11 b12

b21 b22

]
=

a11

[
b11 b12

b21 b22

]
a12

[
b11 b12

b21 b22

]

a21

[
b11 b12

b21 b22

]
a22

[
b11 b12

b21 b22

]

=

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

(6.5)

This example illustrates how rapidly the size of the unitary matrices increases

when multiple quantum gates operating on different qubits are used. Analogously to

the case of adding multiple qubits, when multiple gates act on different qubits, the

size of the resulting unitary matrix can grow very fast (for 300 qubits and 300 single

qubit unitaries, each unitary acting on a different qubit, we would get a matrix of

size 2300 × 2300 multiplying a vector of size 2300). This highlights the tremendous

power of quantum computation: with only 300 quantum gates (operations), we can

operate on 2300 vector entries.

In Fig. 6.2, we illustrate a 3-qubit system in quantum state |Ψ〉 = α0 |0〉+α1 |1〉+
α2 |2〉 + α3 |3〉 + α4 |4〉 + α5 |5〉 + α6 |6〉 + α7 |7〉 = α0 |000〉 + α1 |001〉 + α2 |010〉 +

α3 |011〉+ α4 |100〉+ α5 |101〉+ α6 |110〉+ α7 |111〉 =

α0

α1

...

α7

, which undergoes unitary

evolution under 3 general 1-qubit unitaries, resulting in the output quantum state

|Ψ′〉 = α′0 |0〉+ α′1 |1〉+ α′2 |2〉+ α′3 |3〉+ α′4 |4〉+ α′5 |5〉+ α′6 |6〉+ α′7 |7〉 = α′0 |000〉+

α′1 |001〉+α′2 |010〉+α′3 |011〉+α′4 |100〉+α′5 |101〉+α′6 |110〉+α′7 |111〉 =

α′0

α′1

...

α′7

. The

collective action of the 3 general 1-qubit unitaries can be interpreted as multiplying

the quantum state (vector) |Ψ〉 of size 23 by the 23 × 23 unitary matrix generated

by taking the tensor product of the three 2× 2 unitary matrices representing the

general 1-qubit unitaries:
⊗3

j=1 e
iαj
2

[
eiβj cos(φj) eiγj sin(φj)

−e−iγj sin(φj) e−iβj cos(φj)

]
, resulting in the

quantum state (vector) |Ψ′〉 (also of size 23).

6.2. Introduction to the quantum circuit model of quantum
computing with discrete variables 99

|Ψ〉

e
iα1
2

[
eiβ1 cos(φ1) eiγ1 sin(φ1)
−e−iγ1 sin(φ1) e−iβ1 cos(φ1)

]

e
iα2
2

[
eiβ2 cos(φ2) eiγ2 sin(φ2)
−e−iγ2 sin(φ2) e−iβ2 cos(φ2)

]

e
iα3
2

[
eiβ3 cos(φ3) eiγ3 sin(φ3)
−e−iγ3 sin(φ3) e−iβ3 cos(φ3)

]
|Ψ′〉

Figure 6.2 – Illustration of a 3-qubit system which undergoes unitary evolution under
3 general 1-qubit unitaries. The three qubits are illustrated as wires and
the general 1-qubit unitaries as rectangle boxes. We illustrate the general
1-qubit unitaries as unitary gates (even though, technically, they would each be
decomposed into multiple simpler 1-qubit gates) for simplicity. The 3 general
1-qubit unitaries are enclosed in a dashed box to indicate that their collective
action can be interpreted as a single unitary transform, generated by taking
the tensor product of the three general 1-qubit unitary matrices.

6.2.3 Measurement

To output information from a quantum system, we need to use quantum measurement.

Measurement can be described as a stochastic, nonlinear, irreversible operation applied

to one or multiple qubits. From the perspective of programming a quantum computer,

measurement (whether it’s full or partial) is just another primitive which can be

used, similar to quantum gates.

In this section we describe two types of measurement of a quantum system: full

measurement (in which all the qubits a qunatum system are measured) and partial

measurement (in which only a subset of the qubits of a system are measured). We

will discuss measurement in the computational basis {|0〉 , |1〉}. Measurement in other

basis is equivalent to first performing an unitary operation, and then measuring

in the {|0〉 , |1〉} basis. In this sense, the case of the {|0〉 , |1〉} computational basis

is fully general. Both types of quantum measurement can be interpreted as neural

network (stochastic) nonlinear activation functions and such proposals have been

previously put forward, as we will discuss in this section and the next one.

6.2.3.1 Full measurement

Full measurement means that all the qubits of a quantum system are measured. Full

measurement can be used as a stochastic nonlinearity for a quantum neural network

(and this was used in one of the earliest proposals for implementing a quantum neural

100 6. Hybrid classical-quantum deep learning

network [203]), as will be discussed in more detail in the next section.

In the case of a single qubit in superposition |Ψ〉 =

[
α0

α1

]
= α0 |0〉 + α1 |1〉,

full measurement (in the computational basis |0〉 and |1〉) collapses the qubit in a

non-deterministic manner, to the state |0〉 with probability |α0|2 or, respectively, to

the state |1〉 with probability |α1|2. This collapse means that no further information

about the numbers α0 and α1 can be gathered by further measurement (in the

computational basis |0〉 and |1〉): the qubit would remain in the state it collapsed to

initially (with probability 1). Furthermore, the no-cloning theorem [24] prevents

the copying of an arbitrary unknown quantum state (so as to measure multiple copies

of the quantum state). To estimate the probabilities |α0|2 and |α1|2, we would have to

repeatedly recreate the qubit state |Ψ〉 =

[
α0

α1

]
= α0 |0〉+α1 |1〉 and then measure the

qubit. The probability |α1|2 can then be estimated by taking the expectation (mean)

of the successive measurements (and |α0|2 can then be estimated by substracting the

estimate of |α1|2 from 1).

In the case of n qubits, the superposition |Ψ〉 = α0 |0〉+α1 |1〉+...+α2n−1 |2n − 1〉 =
α0

α1

...

α2n−1

 would collapse, after measurement, to the state |i〉 with probability |αi|2,

i ∈ {0, ..., 2n − 1}. Here, we denote by |i〉 the state of the n qubits which would

correspond to the binary representation of the number i (e.g., for 2 qubits, |Ψ〉 =

α0 |0〉+ α1 |1〉+ α2 |2〉+ α3 |3〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉).

6.2.3.2 Partial measurement

Partial measurement means that only a subset of the qubits of a quantum system is

measured. This could be any subset, including all the qubits (this case reduces to full

quantum measurement). We will focus in this section on a simple illustration of how

partial quantum measurement is similar to neural network nonlinearities, which will

be helpful when discussing a natural implementation of a quantum neural network

(but whose training is difficult to simulate) in the next section. Partial quantum

measurement has recently been used to implement a quantum neural network [161],

as will be discussed in more details in the next section.

The simplest scenario to illustrate partial measurement is for a 2-qubit system

in superposition |Ψ〉 = α00 |0〉 + α01 |1〉 + α10 |2〉 + α11 |3〉 = α00 |00〉 + α01 |01〉 +

6.3. Discrete-variable quantum neural networks using partial
measurement 101

α10 |10〉+ α11 |11〉 =

α00

α01

α10

α11

. Suppose that we measure the first qubit. The outcome

0 will be obtained with probability |α00|2 + |α01|2 (analogously, 1 would be obtained

with probability |α10|2 + |α11|2). In the case of the outcome 0, the state of the 2-qubit

system becomes |Ψ′〉 = α00|00〉+α01|01〉√
|α00|2+|α01|2

=

α00√

|α00|2+|α01|2
α01√

|α00|2+|α01|2

0

0

. This corresponds to zeroing

out all the vector entries corresponding to states of the first qubit incompatible with

the outcome measurement (in this case, all the vector entries corresponding to state 1

for the first qubit) and normalizing the remaining non-zero vector entries (compatible

with the outcome measurement, in this case 0 for the first qubit) so that the vector

has norm 1.

For simplicity, we will omit presenting the most general case for partial quantum

measurement here. It is sufficient to note that the same intuition would hold as for

the simple 2-qubit system presented previously: the vector entries corresponding to

states incompatible with the outcome measurement would be zeroed out, while the

remaining non-zero entries (compatible with the outcome measurement) would be

normalized (to vector norm 1).

Partial measurement bears some similarities to the ReLU nonlinearity (see Section

1.5.4.2), in the sense that it zeroes out some entries of the input vector, and to some

methods similar to batch normalization (see Section 1.2.2), in the sense that the

output vector stays normalized (to vector norm 1) after quantum measurement. Since

full measurement can be interpreted as a special case of partial measurement, it

bears the same similarities to ReLU and batch normalization.

6.3 Discrete-variable quantum neural networks us-

ing partial measurement

In this section, we will discuss a natural implementation of quantum neural networks,

but which is difficult to simulate classically using backpropagation. It is this difficulty

that motivated our proposal for hybrid classical-quantum neural networks.

Arguably, as of today, there is no standard quantum neural network architecture

102 6. Hybrid classical-quantum deep learning

Neural network concept Quantum computing
concept

Activations of a single neural
network layer

Quantum state

Matrix-vector multiplication Unitary evolution operator
Nonlinearity (stochastic) Measurement (partial or

full)
Output layer (e.g. for classi-
fication)

Expectation of repeated par-
tial measurements

Table 6.1 – Potential implementations for neural network concepts using quantum comput-
ing concepts. [203] proposed using full quantum measurement to implement
a neural network’s nonlinearity (activation function), while [161] used partial
measurement. [79] used the expectation of repeated partial quantum measure-
ments as output layer for a binary classification task (to provide the predicted
class probabilities).

(as would be the case in classical deep learning for e.g. multi-layer perceptrons,

convolutional neural networks, or recurrent neural networks). This is both due to the

fact that quantum machine learning is a nascent research field and to the lack of wide,

easy access to quantum computers to experiment with. As of today, various quantum

neural network models have been proposed [193], [161], [124] [189], including some

attempts to unify previous proposals in a coherent framework [189].

One can argue that the most natural implementation of a quantum neural network,

using the discrete-variable quantum circuit model of quantum computation, would

include the components described in Table 6.1. We will now discuss in more details

each of these components and some papers which used them.

One of the earliest attempts at implementing nonlinearity in a quantum neural

network (QNN) is [203] (this approach is also reviewed in [169]). [203] proposed

using full quantum measurement as nonlinear activation function, after performing a

unitary transform on the quantum state (the unitary transform being the equivalent

of matrix-vector multiplication in classical neural networks). The proposal in [161], on

the other hand, uses partial quantum measurement (also after performing a unitary

transform on the quantum state) to construct quantum autoencoders. This proposal

could be interpreted as a generalization of the proposal in [203] (since partial quantum

measurement can be seen as a generalization of full quantum measurement). [169]

remarked that, at least at the time the paper was written (around 2014), ’the idea

to use quantum measurements to simulate the nonlinear convergence of associative

memories seems to be the most mature solution to the dynamics incompatibility

problem encountered in the quest for a QNN model.’

6.4. Introduction to hypernetworks 103

For classification purposes, information needs to be output from the quantum

computer, which means that some measurement needs to be performed. For binary

classification (the simplest case and the most interesting one for this chapter), the

simplest solution is to perform partial measurement of one qubit. By running the

quantum circuit multiple times and taking repeated measurements, we can then

obtain an estimate of the probability of measuring the qubit in the state 1 and

interpret this as the probability of class 1 (for binary classification). An estimate

of the probability of class 0 can then be obtained by substracting the estimate

of the probability of class 1 from 1. [79] uses the expectation of repeated partial

measurements (of a single qubit) to provide the predicted probability for a binary

classification task. For an estimation of the predicted probability of O(1
ε
) accuracy, the

method from [79] requires O(1
ε2

) repeated measurements (and, thus, O(1
ε2

) repeated

runs of the full QNN circuit).

The QNN proposal in Table 6.1, while intuitive, is difficult to simulate classically.

Because of the stochasticity of quantum measurement (whether it is full or partial),

this nonlinearity is stochastic and, in our experience, this leads to difficulty in

simulating the training of this proposal with simple backpropagation for multiple

hidden layers. It is this difficulty in simulating, arguably, the most natural model of

a discrete-variable quantum neural network, which led to our proposal combining

classical and quantum computation. Our proposal keeps the analogy between unitary

evolution and matrix-vector multiplication, but we no longer use partial measurement

for nonlinearity. Instead, a classical neural network generates the parameters of the

quantum circuit dynamically based on the input, leading to nonlinear dynamics in

the evolution of the quantum state.

6.4 Introduction to hypernetworks

In this section, we concisely present classical hypernetworks [100], the classical deep

learning proposal which inspired our hybrid classical-quantum proposal, as well as a

previous related work which provided inspiration for our proposed system [80].

Our first source of inspiration for our hybrid classical-quantum proposal is the

work of [80], which showed that nonlinear dynamics can be achieved without using any

explicit (element-wise) nonlinearities. [80] introduces a RNN architecture composed

of input-switched affine transformations, where the recurrent weights are input-

dependent. More precisely, the RNN’s hidden state ht (at time t) depends on the

input xt as described in the following equation:

104 6. Hybrid classical-quantum deep learning

ht = Wxtht−1 + bxt (6.6)

This equation illustrates how the trainable parameters (the weights Wxt and the

biases bxt) depend on the input xt at every timestep t.

In [80], this architecture was used for character-level and, respectively, word-level

language modelling, and was shown to achieve results comparable to the LSTM

architecture, especially as the number of trainable parameters is increased.

[100] proposed what can be interpreted as an extension of [80] and is the work

from classical deep learning closest to our own proposal. In [100], a new architecture is

proposed, named hypernetworks, in which one network, also known as a hypernetwork,

is used to generate the weights for another network (the main network). This

architecture is shown to provide state-of-the-art results at the time it was proposed

for both convolutional and recurrent neural networks. We will focus on the adaptation

to recurrent neural networks, since it is the most relevant to our own work.

When adapted to RNNs, the hypernetwork architecture will use a hyper RNN to

generate the weights of a main RNN. These weights can be different at each timestep

and for each input sequence. This is illustrated in Figure 1. The motivation behind

this design, as presented in [80], is to challenge the paradigm of tying the RNN

weights at each timestep, while potentially allowing for increased expressiveness. In

this manner, a large set of weights can be generated for the main RNN, while only

using a small number of trainable parameters (in the hyper RNN).

The RNN cell used for both the hyper and the main RNN in [100] is the LSTM.

The hyper LSTM will get as input both the previous hidden states of the main LSTM

and the actual input sequence of the main LSTM (concatenated). The outputs of

the hyper LSTM can be interpreted as embedding vectors (denoted by zt in Fig. 2),

which will be used to generate the weights of the main LSTM (denoted by W (zt) in

Fig. 2).

The main result of the paper is that hyper LSTMs can achieve results close to the

state of the art for a variety of sequence modelling tasks, which include character-level

language modelling, handwriting generation and neural machine translation. The

hyper LSTM (and hyper RNNs, in general) can be seen as an extension of input-

switched affine networks [80], in which the weights are defined at every timestep

using an additional RNN, rather than just being chosen from a discrete set, based

on the input from the current timestep.

6.4. Introduction to hypernetworks 105

Figure 6.3 – Recurrent hypernetwork architecture: the hyper LSTM generating the weights
of the main LSTM (at every timestep). Adapted from [100].

Figure 6.4 – A more detailed view of the hyper RNN in Fig. 1. The hyper RNN (shown
in orange) takes in, at every timestep, the previous hidden state of the main
RNN and the current input of the main RNN, and outputs the embedding
vector zt, from which the weights of the main RNN will be generated (denoted
by W (zt)). Figure from [100].

106 6. Hybrid classical-quantum deep learning

6.5 Proposed parameterization

In this section we will describe the parameterization of our hybrid classical-quantum

RNN. We will first describe the quantum component, followed by the output layer,

the loss function and, finally, the classical RNN which generates the parameters of

the quantum RNN. A simplified illustration of our proposal is shown in Fig. 6.5.

6.5.1 Quantum (main) RNN

We will denote the state of our main (quantum) RNN at time t by ht. The main

RNN’s initial state h0 is the uniform superposition. This uniform superposition can

be obtained starting from the n-qubit |0..0〉 state with O(n) computational cost using

n Hadamard gates. At every time step t, our quantum RNN’s state ht is obtained by

multiplying its previous hidden state ht−1 with the matrix Ut, which is generated

from the classical RNN’s hidden state:

ht+1 = Ut ∗ ht (6.7)

We decompose the matrix Ut into the following parameterization:

Ut = At ∗ F ∗Dt ∗ F−1 (6.8)

where F is the Quantum Fourier Transform (QFT), F−1 is the Inverse Quantum

Fourier Transform (IQFT) and At and Dt are parameterized unitary matrices, with

their parameters generated by a classical hyper-RNN. More precisely, At and Dt

are tensor products of general 1-qubit unitary transforms. These 1-qubit unitaries

are general 2 x 2 unitary matrices [35], so At and Dt can be written as the tensor

products of n 2× 2 unitary matrices, as described in Sections 6.2.2.1 and 6.2.2.2.

For readability, we rewrite the equation of a general 2 × 2 unitary A already

presented in Section 6.2.2.1:

A = e
iα
2

[
eiβ cos(φ) eiγ sin(φ)

−e−iγ sin(φ) e−iβ cos(φ)

]
(6.9)

where α, β, γ and φ are modifiable parameters. We will denote all the modifiable

(i.e. trainable) parameters used at time t to generate At and Dt by θt.

The QFT and IQFT can be implemented with O(n log(n)) [101] computational

cost. As discussed in Section 6.2.2.1, general 1-qubit unitaries can be implemented

using 4 consecutive elementary 1-qubit gates [52] [150]. Thus, At and Dt are of size

6.5. Proposed parameterization 107

2n × 2n, include 4 ∗ n trainable parameters only and their respective computational

complexities are O(n) (similarly to the discussion in Section 6.2.2.2). We will use

these complexities when we approximate the computational cost of our hybrid

classical-quantum RNN if it were implemented using a quantum computer.

Figure 6.5 – Example of a hybrid classical-quantum recurrent neural network similar to
those we simulate. A recurrent hypernetwork (in orange) implemented on a
classical computer dynamically generates unitary transforms for a main net-
work (in black), implemented on a quantum computer. The unitary matrices
Ut are dynamically generated by the classical network for each input (se-
quence) from the classical network activations h′t, using the fixed matrix Wl.
No nonlinearity is used in the quantum neural network. We illustrate the
hypernetwork as a typical RNN, with the same weight matrix Wh applied at
every time step, followed by elementwise nonlinearity f , but, in principle, any
architecture could be used. The inputs xt are only provided to the hyper-RNN,
processed through the fixed matrix Wx. The figure is simplified for illustration
purposes. In our experiments, an LSTM is used as the hyper-RNN.

6.5.2 Output layer

For simplicity and to match our simulations which will be described in Section 6.6, we

will suppose that our hybrid classical-quantum RNN is used to solve a many-to-one

(T inputs, single output) sequential task with 2 output classes (binary classification

setting). We denote the probability of predicting the class 0 as p0 and the probability

of predicting the class 1 as p1.

To predict the probability p1 of the class 1, we compute the complex dot product

between the last state of the main (quantum) RNN hT and a complex vector of norm

1 v (this vector contains trainable parameters and its norm is fixed at value 1 during

the entire training procedure by renormalizing it after every update of its trainable

parameters). We then substract the absolute value of the resulting complex number

108 6. Hybrid classical-quantum deep learning

from 1 (we could also have used the absolute value directly, but we have found the

previously described procedure to work better empirically, similarly to [161]):

p1 = 1− |hT ·
v

||v||
| (6.10)

hT being the hidden state of the quantum network at the final time step T .

The dot product of complex unit vectors which we use is equal up to constants

of proportionality with the Euclidean distance of such vectors [196], which can be

implemented using quantum RAM (QRAM), as described in [139], with computational

cost O(n) for n qubits. As described in [139] [150], p1 can be estimated to accuracy

ε using quantum counting with computational complexity O(1
ε
). To obtain this

estimate to accuracy ε, O(1
ε
) repeated runs of the entire quantum RNN have to be

executed.

The predicted probability of the class 0 is then p0 = 1−p1. An example’s predicted

label will then be 1 if p1 > 0.5 (and 0, otherwise). We discuss how we approximate

the classification accuracy (on the validation and test sets) when estimating p1 to

accuracy ε in Section 6.6.4.

We could extend this approach to discriminate between more classes by using

one-vs.-rest classifiers with separate v as in Eq. (6.10) (which we would denote by

vc) for each class c. If we denote the number of classes by C, we would also obtain C

different scores pc using the following equation, similarly to (6.10):

pc = |hT ·
vc
||vc||

| (6.11)

The different scores pc could be normalized to sum to 1 (by dividing each pc

by
∑

c′ pc′). The final prediction would be the class c corresponding to the highest

score pc and the loss function to be minimized could be the negative log-likelihood of

the ground-truth class. This would increase the computational complexity (both for

inference and for training) by a factor equal to C, because the final measurement

would have to be repeated for each separate class.

6.5.3 Loss function

The loss we have used is a max-margin loss similar to the one used in [164]. The

mathematical expression for the loss function L is:

L = y ∗max(0,m+ − p1)2 + (1− y) ∗max(0, p1 −m−)2 (6.12)

6.5. Proposed parameterization 109

where y is the ground-truth label, which we assume 1 for class 1 and 0 for class 2

and m+ and m− are hyperparameters.

The intuition behind this expression is that, in the case of ground-truth label 1, we

only penalize the probability p1 if it is lower than m+ (a similar argument applies for

p0 and ground-truth label 0). This corresponds to maximizing the absolute difference

(margin) between the prediction probabilities for the two classes, |p1− p0|. Intuitively,

we want the predictions of our classifier to be as confident as possible, so that they

are less affected by the noise of the ε-accuracy sampling obtained using quantum

counting. A classifier with more confident predictions would allow us to choose higher

values for ε and, thus, we would need to repeat the quantum measurement fewer

times, leading to reduced computational costs.

A similar loss function and similar motivation were used to train quantum

networks in [114], concurrently to our own work.

6.5.4 Classical (hyper) RNN

We use as the classical (hypernetwork) RNN a single layer Long Short-term Memory

(LSTM) architecture [112], without any peephole connections, to generate the modi-

fiable parameters of the quantum RNN. We denote the hidden state of the network

at time t by h′t and the inputs at time t by xt.

The LSTM equations are:

ct = ft • ct−1 + it • tanh(Whc ∗ h′t−1 +Wxc ∗ xt + bc) (6.13)

ft = σ(Wxf ∗ xt +Whf ∗ h′t−1 + bf) (6.14)

it = σ(Wxi ∗ xt +Whi ∗ h′t−1 + bi) (6.15)

ot = σ(Wxo ∗ xt +Who ∗ h′t−1 + bo) (6.16)

h′t = ot • tanh(ct) (6.17)

where • signifies element-wise multiplication and σ denotes the sigmoid nonlin-

earity often used in neural networks. The multiplications by the weight matrices

Whc, Whf , Whi and Who depends on the previous hidden state h′t−1, so cannot be

110 6. Hybrid classical-quantum deep learning

parallelized across time steps. On the other hand, the multiplications of the matrices

Wxc, Wxf , Wxi and Wxo with xt can be performed in parallel across all time steps

t ∈ 0, ..., T . We denote the action of the matrices Whc, Whf , Whi and Who as hidden-

to-hidden transition and the action of the matrices Wxc, Wxf , Wxi and Wxo as the

input-to-hidden transition. The action of Ut in Eq (6.7) can also be interpreted as a

the hidden-to-hidden transition, since it depends on the previous quantum state ht.

This observation will become relevant when we discuss the estimated computational

cost of our proposal andof the classical LSTM benchmark in Section 6.6.

A new unitary matrix Ut as parameterized by Eq. (6.7) is generated at every time

step t, with the free parameters generated from the state of the classical hypernetwork

h′t. The free parameters of the quantum RNN at time t, θt (used to construct At and

Dt), are obtained from the hiddens units h′t using a linear layer (composed of matrix

Wl and biases bl):

θt = Wl ∗ h′t + bl (6.18)

We will denote the application of the matrix Wl (and biases bl) as the hidden-to-

output-parameters transition.

The same architecture is used as a baseline for standard classical RNN architec-

tures to compare our parameterization against in Section 6.6.

6.6 Simulation results

In this section, we will describe the experiments we have performed. We will start

with the reasoning behind our choices of task and dataset, followed by detailed

descriptions of the systems implementing our proposal and the baseline LSTM.

We then present the calculation of the approximation computational costs of these

systems and accuracy estimations under ε-sampling approximation.

6.6.1 Task and dataset

We are interested in showing that our proposed hybrid classical-quantum RNN can

perform similarly to a classical RNN in long-term sequential dependency tasks, with

potentially exponentially less computation required. For this, we will choose a task

similar to the permuted pixel MNIST task, a standard benchmark for the long-term

memory capabilities of RNN architectures [121] [38].

We will show results on the Fashion-MNIST dataset [198] [199]. The motivation

6.6. Simulation results 111

for choosing this dataset is that it is similar to the well-known MNIST dataset

(same input dimensions, same number of datapoints and same splits), but it is more

challenging. The task we consider consists of first permuting the input pixels of the

images (using the same permutation for the entire dataset). The pixels are then input

one by one and the system has to classify the resulting sequence.

This task (Fashion MNIST) is the same as the permuted pixel MNIST task.

RNN architectures (GRU) have already been benchmarked on the Fashion-MNIST

dataset [198], but in a setting where a full column of pixels is input at every time

step (instead of a single pixel), leading to shorter time dependencies.

To reduce training time (especially for the simulation of the hybrid classical-

quantum systems), we will also perform simulations where we resize the images and

/ or reduce the size of the training set. We will also occasionally vary the batch size.

This is motivated by the fact that when simulating quantum RNNs with high number

of qubits (e. g. 13), larger batch sizes (e. g. 100) no longer fit in our GPU memory.

In these cases, we reduce the batch size when simulating our parameterization. To

provide a fair comparison, we then also show results with the same batch size for the

classical baseline.

To simplify the problem of having to produce outputs from the quantum computer,

we will also simplify the tasks to only discriminating between 2 classes of Fashion-

MNIST. This simplifies the problem of outputting a result from the very high-

dimensional space of the quantum RNN. At the same time, we will try to choose

the most difficult 2 classes to discriminate between, so that the differences between

the capabilities of different RNNs become easier to distinguish and less affected

by the inherent noise of the random parameter initialization, training procedure,

etc. In [114] a similar methodology has been used, for providing simulation results

for a quantum tensor network on the MNIST dataset (simplifying the problem to

distinguishing 2 classes instead of the original 10).

We will thus use classes 4 (representing coats) and 6 (representing shirts) in this

task [198]. Some example images from these classes can be seen in Fig. 6.6 and Fig.

6.7. The training sets will vary from 1000 images from each class up to 5000 images

from each class (corresponding to totals of 2000 and 10000 training samples). The

validation sets contain 1000 images from each class. Both of these sets are composed

of images picked randomly without replacement from the entire original training set

(of 6000 images for each class). We keep the entire test set unmodified (consisting of

1000 images from each class).

We will denote each separate setting with specific image size (sequence length),

112 6. Hybrid classical-quantum deep learning

Figure 6.6 – Examples of coats from Fashion-MNIST

Figure 6.7 – Examples of shirts from Fashion-MNIST

training set size and batch size by the term task setting.

6.6.2 System details

In this subsection we describe the details of the systems we have simulated, namely

the baseline classical LSTM and our hybrid classical-quantum parameterization.

6.6.2.1 Baseline classical LSTM

As the classical baseline, we have used a single layer Long Short-term Memory

(LSTM) architecture [112], without any peephole connections. We have presented

the LSTM architecture in Section 1.3.3.2. To predict the probability of the first of

the two classes, we compute the dot product between the hidden state at the last

time step hT and a vector of same dimension of real trainable parameters v (which

includes the weights of the output layer) and interpret the result as a logit. The loss

function we use is the logistic loss. If we denote the probability of class 1 by p1, we

have:

log (p1) = σ(hT · v) (6.19)

where σ is the sigmoid function.

The logistic loss L is defined by:

L = −y ∗ log (p1)− (1− y) ∗ log (1− p1) (6.20)

The probability of class 0 is p0 = 1− p1.
We have verified empirically that this approach performs similarly to the usual

6.6. Simulation results 113

approach of using a softmax output and cross-entropy loss function (without any

significant loss in prediction accuracy).

We initialize all the LSTM weights using an orthogonal initializer [166] and

initialize the biases of the forget gates to 1, to ease the learning of long-term

dependencies, as suggested for example in [122]. The initial state h0 is initialized

to 0 and the rest of the biases are initialized to 0. The weights and biases of the

output layer are initialized, for simplicity, using a Gaussian distribution (of mean 0

and variance 1).

6.6.2.2 Hybrid classical-quantum parameterization

We have used the same initialization for the classical hyper-RNN (LSTM) in our

proposed parameterization as for the classical benchmark LSTM. The real and

imaginary components of the output layer v in Eq. (6.10) were initialized using

a truncated Gaussian distribution with mean 0 and standard deviation 0.01. The

weights Wl in Eq. (6.18) are initialized to 0 and the biases bl to 1.

For all the results we report, we have used the values m+ = 0.7 and m− = 0.3 for

the margin loss function of our proposal. These values seemed to work best in our

short hyperparameter search trials. Empirically, in our simulations we have found

that increasing m+ to higher values than 0.7 and decreasing m− below 0.3 leads

to more confident predictions, but makes training more difficult. It is possible that

better values can be found with a much more extensive hyperparameter search.

6.6.2.3 Common settings

For optimization, we have used ADAM [125] with default hyperparameters (including

learning rate 0.001) for both the classical baseline and our proposed parameterization.

For both systems, gradient clipping by global norm is used [152], with global norm 5.

For most task settings, we use batches of size 100 (unless specified otherwise).

The optimization is always run for 100 epochs. Validation is performed after every

10000 examples. We keep the best validation accuracy and the corresponding test

accuracy.

For the baseline LSTM system, we will run multiple configurations for each task

setting. We double the number of units for each new configuration, corresponding to

approximately 4 times more trainable parameters. Increasing the number of units

increases the recurrent memory and increasing the number of trainable parameters

leads to more expressive models, but also increased risk of overfitting and higher

computational cost. For each configuration of the baseline system, we train the system

114 6. Hybrid classical-quantum deep learning

multiple times (corresponding to different random seeds from which the trainable

parameters are initialized) for each setting with a fixed number of units and select

the resulting system with the best accuracy on the validation set, for which we also

report the test accuracy. This is a more challenging setup for our proposal, since

the baseline has several chances to obtain good performance, while we only run our

proposal once for each task setting.

6.6.3 Approximate computational cost

In this subsection, we describe the approach we have used for approximating the

computational cost for our proposal and for the baseline. For simplicity, we will use

a quick ’back-of-the-envelope’ computational cost approximation. Obviously, in the

case of an implementation on quantum computers (not a simulation, as in our case),

a lot more factors would come into account which we neglect here for simplicity, most

notably the extra cost of quantum error correction / noise management. We will

focus on the cost at inference / deployment and discuss the training cost in Section

6.8.

Our approach is similar to how the computational cost is estimated in [121],

which proposes a Kronecker-factored RNN similar to our own, but doesn’t make use

of quantum computation. Notably, we will only take into account the dominant cost

of applying the recurrent transition (corresponding to hidden-to-hidden matrices

both for the quantum and the classical systems, as discussed in Section 6.5.4). For a

sequence of T inputs, the hidden-to-hidden transition is applied T times, in contrast

to the output operation, which is only applied once. The hidden-to-hidden transition

is also different from the input-to-hidden transitions in the classical LSTMs and

the hidden-to-output-parameters transition in the hyper-RNN because it can’t be

parallelized across the time steps (the hidden-to-hidden transition must be applied

sequentially, in order, at every time step). We further neglect the cost of using any

biases, because asymptotically it is quadratically smaller than the cost of the matrix

multiplications.

In the case of the benchmark single-layer LSTM comprising h hidden units, we

will approximate the cost of running it at every time step by 4 ∗ h2. We use this

approximation because an LSTM has 4 hidden-to-hidden matrices of size h2: Whc,

Whf , Whi and Who, as described in Section 6.5.4.

The approximate computational cost of our hybrid classical-quantum RNN para-

meterization is obtained in the following manner. First, the cost of the classical

hyper-RNN (an LSTM) is obtained like for the classical benchmark.

6.7. Experimental results 115

We decompose the cost of the quantum RNN in the cost of the QFT and IQFT

and the cost of the parameterized unitaries. Because the QFT and IQFT can be

implemented on a quantum computer in time O(n log(n)) [101] and we simulate

between 8 and 16 qubits, for simplicity, we will approximate these costs as 4 ∗ n.

Because the parameterized unitaries only use single-qubit gates and each such gate

can be decomposed into 4 elementary gates, as described in Section 6.5.1, we will

also approximate these costs as 4 ∗ n. The entire cost per time step of the quantum

RNN for one run is then approximated as 4 ∗ 4 ∗ n, the sum of the costs for the QFT,

the IQFT and the parameterized unitaries.

Since we need to perform repeated measurements after the last time step to

obtain the approximate probability p1 (and thus, repeated runs of the entire quantum

RNN), as described in Section 6.5.2, we also need to consider the costs of these

repeated runs. As described in Section 6.5.2, p1 can be estimated to accuracy ε with

computational complexity O(1
ε
). For simplicity, we will approximate this cost as 1

ε
.

The approximate computational cost per time step for the quantum RNN will then

be
4 ∗ 4 ∗ n

ε
and the same cost for the entire hybrid classical-quantum system will be

4 ∗ h2 +
4 ∗ 4 ∗ n

ε
.

6.6.4 Accuracy estimation under ε-sampling approximation

We estimate the validation and test accuracies of our hybrid systems when repeated

measurements to ε approximation by considering that the number of correct predic-

tions is the sum of the number of correct, confident predictions (sign(p1 − 0.5) =

sign(2 ∗ l− 1) and |p1− 0.5| > ε) and half of the number of predictions which are not

confident enough (|p1 − 0.5| < ε). Here l denotes the ground-truth label, which can

be 0 or 1 (for the case of binary classification). The intuition behind this procedure

is that, for simplicity, we suppose that for half of all the examples for which the

prediction is not confident enough, the ε approximation would lead to a correct

prediction (and for the other half, the prediction would be incorrect).

6.7 Experimental results

In this section we present the results obtained for the various task settings (number

of pixels of input image, number of training examples, batch size) we have considered.

We present these settings and the corresponding results in the order of increasing

temporal dependencies length and in the order of increasing training set size and

116 6. Hybrid classical-quantum deep learning

increasing batch size. We denote the classical benchmark systems by LSTM-[h], where

h is the number of hidden units. For our proposal, we use the notation LSTM-[h′]-[n]q,

where h′ is the number of units of the hyper-LSTM and n the number of qubits

in our quantum parameterization. When presenting the results of the ε-sampling

approximations, we add the notation ε = [value]. We use the notation AFDF-[n]q to

denote the quantum component of our system.

We first show the approximate computational cost per time step for each of our

classical and quantum system components in Table 6.2. In table 6.3 we display the

extra cost factors resulting from repeated measurements under different ε approx-

imations. We have described how the total approximate cost per time step for a

system is obtained from the cost of the classical and quantum subsystems, taking

into account the ε-sampling approximation, in Section 6.6.3. For convenience, we will

display the total approximate cost per time step for each system in each task setting

below (except for the results obtained for our proposal when no ε-accuracy is used,

since the cost would depend on ε).

System Approximate computational cost
LSTM-7 196
LSTM-16 1024
LSTM-32 4096
LSTM-64 16384
LSTM-128 65536
LSTM-256 262144
LSTM-512 1048576

AFDF-9q 144
AFDF-10q 160
AFDF-11q 176
AFDF-13q 208

Table 6.2 – Approximate computational cost (operations) per time step for each system
component (classical LSTM and quantum AFDF).

ε approximation 0.01 0.02 0.03
Extra cost factor 100 50 34

Table 6.3 – Extra cost factor from repeated measurements under different ε approximations.

In Table 6.4, we show the results for the task setting of 2000 training examples of

14 x 14 pixel images and batch size 25. If no ε-sampling approximation were used, our

6.7. Experimental results 117

proposed system (LSTM-16-13q) would obtain the best validation accuracy and only

slightly worse test accuracy than LSTM-256. The approximate computational cost

when ε = 0.03 sampling is used is around 32 times lower than for LSTM-256. The

validation and test accuracy for this approximation, though, are comparable to the

LSTM-32 (which would be of comparable computational cost to the approximation).

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7675 0.7505 1024
LSTM-32 0.8330 0.8030 4096
LSTM-64 0.8020 0.7920 16384
LSTM-128 0.8125 0.7725 65536
LSTM-256 0.8345 0.8120 262144
LSTM-512 0.8295 0.8125 1048576

LSTM-16-13q 0.8385 0.8075 -
LSTM-16-13q
ε = 0.03

0.8335 0.8015 8096

Table 6.4 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 2000 training examples, 14 x 14 pixels,
batch size 25.

Table 6.5 shows the results for a training set of 2000 samples of 14 x 14 pixel

images and batch size 100. Our proposal (LSTM-7-11q) obtains validation and test

accuracies better than LSTM-128 (but worse than LSTM-256 and LSTM-512), for a

computational cost which would be e.g around 10 times lower than for LSTM-128,

under a 0.03 sampling approximation.

In Table 6.6, we show the results obtained for 10000 training examples of 14 x 14

pixel images and batch size 100. LSTM-16-9q obtains a validation accuracy slightly

worse that that of LSTM-64 and test accuracy somewhat worse than LSTM-128. For

a 0.01 sampling approximation, the accuracy would be comparable to LSTM-64, for

comparable cost.

In Table 6.7, we show the results for 2000 training examples of 20 x 20 pixels

and batch size 100. Our proposed hybrid system (LSTM-16-10q) obtains the best

validation and test accuracies, with LSTM-64 performance second best. Under a 0.03

sampling approximation, our proposal would be about 3 times more computationally

efficient than the LSTM-64.

We show the best results our proposal obtains in Table 6.8, for 2000 training

examples of 28 x 28 pixel images and batch size 100. Our proposed system (LSTM-

118 6. Hybrid classical-quantum deep learning

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-7 0.7650 0.7555 196
LSTM-16 0.7330 0.7020 1024
LSTM-32 0.7700 0.7450 4096
LSTM-64 0.7700 0.7710 16384
LSTM-128 0.7925 0.7665 65536
LSTM-256 0.8235 0.8100 262144
LSTM-512 0.8300 0.8170 1048576

LSTM-7-11q 0.7995 0.7880 -
LSTM-7-11q ε =
0.03

0.7910 0.7805 6180

Table 6.5 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 2000 training examples, 14 x 14 pixels,
batch size 100.

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.8045 0.7900 1024
LSTM-32 0.8570 0.8280 4096
LSTM-64 0.8660 0.8475 16384
LSTM-128 0.8840 0.8590 65536

LSTM-16-9q 0.8655 0.8510 -
LSTM-16-9q ε =
0.01

0.8625 0.8490 15424

LSTM-16-9q ε =
0.02

0.8590 0.8432 8224

LSTM-16-9q ε =
0.03

0.8560 0.8365 5920

Table 6.6 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 10000 training examples, 14 x 14 pixels,
batch size 100.

6.7. Experimental results 119

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7520 0.7430 1024
LSTM-32 0.7725 0.7465 4096
LSTM-64 0.8115 0.8005 16384
LSTM-128 0.7875 0.7880 65536
LSTM-256 0.7895 0.7900 262144
LSTM-512 0.7940 0.7945 1048576

LSTM-16-10q 0.8280 0.8035 -
LSTM-16-10q
ε = 0.03

0.8125 0.7955 6464

Table 6.7 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 2000 training examples, 20 x 20 pixels,
batch size 100.

16-9q) obtains the best validation and test accuracies, with LSTM-256 performance

second best. Under a 0.03 sampling approximation, our proposal would be about 44

times more computationally efficient than the LSTM-256. Under a 0.01 sampling

approximation, our proposal would still be about 17 times more computationally

efficient than the LSTM-256 and would obtain the best accuracy both on the

validation and on the test sets among all the benchmarked system for this task.

Finally, in Table 6.9, we show the results obtained for 10000 training examples of

28 x 28 pixels and batch size 100. Here LSTM-16-9q obtains a validation accuracy

better than all LSTM systems with less than 128 units and test accuracy better than

all LSTM systems with less than 512 units. LSTM-512 obtains the best validation

and test accuracies, with LSTM-128 obtaining equal validation accuracy (but worse

test accuracy). Interestingly, the 9 qubits of our proposal correspond to exactly 512

states of the quantum system (log2(512) = 9). If we take into account the ε-sampling

approximation, for ε = 0.01 the test accuracy would be equal to that of LSTM-128, for

a computational cost which would be around 4 times lower. Compared to LSTM-512,

our method would be about 68 times more efficient for ε = 0.01. This result shows

that our proposal would still be computationally efficient even as the number of

training examples is increased, requiring the statistical models to have more capacity,

and suggests that the computational gains could be asymptotically exponential.

Generally speaking, we can observe that our quantum proposal does comparatively

better (relatively to the classical benchmarks) as the tasks contain longer temporal

dependences and, thus, require more memory. They also seem to do somewhat better

120 6. Hybrid classical-quantum deep learning

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7260 0.7160 1024
LSTM-32 0.8115 0.7880 4096
LSTM-64 0.7735 0.7590 16384
LSTM-128 0.8055 0.7880 65536
LSTM-256 0.8155 0.8010 262144

LSTM-16-9q 0.8205 0.8040 -
LSTM-16-9q ε =
0.01

0.8180 0.8030 15424

LSTM-16-9q ε =
0.02

0.8122 0.7955 8224

LSTM-16-9q ε =
0.03

0.8067 0.7935 5920

Table 6.8 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 2000 training examples, 28 x 28 pixels,
batch size 100.

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7920 0.7875 1024
LSTM-32 0.8560 0.8315 4096
LSTM-64 0.8585 0.8495 16384
LSTM-128 0.8870 0.8585 65536
LSTM-256 0.8840 0.8565 262144
LSTM-512 0.8870 0.8745 1048576

LSTM-16-9q 0.8675 0.8620 -
LSTM-16-9q ε =
0.01

0.8642 0.8585 15424

LSTM-16-9q ε =
0.02

0.8625 0.8557 8224

LSTM-16-9q ε =
0.03

0.8578 0.8515 5920

Table 6.9 – Comparison in terms of accuracy and computational costs between classical
LSTMs and our proposal. Results for 10000 training examples, 28 x 28 pixels,
batch size 100.

6.8. Discussion 121

when the training set is smaller, so that the statistical models require less capacity.

Also notable should be the fact that the computational cost grows with the square

of the number of units for the classical LSTM systems, while for the quantum AFDF

parameterizations it is almost linear with the number of qubits, exponentially more

efficient compared to the classical system, as can be observed in the tables presenting

the results. The computational costs of the classical LSTM systems would quickly

become much higher than those of our quantum parameterization, if only single

runs (corresponding to single measurements) were required for the quantum system.

This highlights the potential benefits of optimizing losses which encourage confident

predictions, leading to fewer required repetitions followed by measurements of the

quantum systems.

We also want to highlight the fact that for all of the presented simulations,

our hybrid classical-quantum proposals obtain much higher performance than the

purely classical baselines with the same numbers of neurons (e.g LSTM-16-11q vs.

LSTM-16).

The losses in accuracies incurred from the ε-sampling approximations are relatively

small and get smaller as smaller ε’s are used. Furthermore, it seems reasonable to

expect these results could be improved by doing a more thorough hyper-parameter

search over the max-margin loss parameters. The extra computational cost resulting

from repeated measurements could also be addressed if the quantum systems were

run on multiple quantum processors, since the measurements are independent and

trivially parallelizable.

Another potential advantage of our method could be its stability at training time,

compared to the benchmark LSTMs. We have observed multiple times the LSTMs

becoming unstable during training, due to exploding gradients, even when gradient

clipping is used. On the other hand, we have never observed such behavior with our

current hybrid classical-quantum RNN proposal during training.

6.8 Discussion

In this section we will discuss how our proposal compares to some recent works from

the literatures of classical and quantum machine learning. Because both of these

fields are vast, we won’t aim for extensive reviews, but only a discussion of the most

salient points.

Our work could address some potential limitations of relatively near-term quantum

computers when implementing neural networks, such as limited input size and

122 6. Hybrid classical-quantum deep learning

difficulty of implementing nonlinear behaviors, by having a classical neural network

generate the parameters of the quantum neural twork. Somewhat similar approaches

(hybrid classical-quantum proposals which try to address limited input size for near-

term quantum computers) were also presented in [153] and [41]. [79] proposed a QNN

model aimed at being realisable on near-term quantum processors and used partial

measurement to provide the prediction of the binary label (for binary classification).

This proposal focused on feedforward QNNs whose training was simulated using

stochastic gradient descent (SGD). [79] performed classical simulation of quantum

neural networks for a binary classification task, on a downsampled version of MNIST

restricted to two classes. The authors reported that they couldn’t find any quantum

advantage over classical neural networks for this task. Our proposal differs from the

above-mentioned approaches by using a classical neural network which generates the

parameters of the quantum neural network and by presenting results for RNNs.

A quantum version of a Hopfield network has been proposed recently [160]. [160]

proposes encoding the network into the amplitudes of quantum states, resulting in

potential exponential improvements in computational cost compared to the classical

algorithm. They show that the quantum algorithm they propose obtains comparable

accuracy to that of the classical algorithm. While we also use the idea of encoding a

network into the amplitudes of quantum states, our classical hypernetwork learns

this encoding. Furthermore, we present results for truly sequential tasks (while the

inputs in [160] are fixed size) and compare against a baseline which is much closer to

the state of the art (LSTMs, as opposed to Hopfield networks).

The most similar quantum neural network proposal to ours that we are aware

of is [124]. Concurrent to our work, [124] proposed a continuous-variable quantum

feedforward neural network whose parameters are generated dynamically by a classical

feedforward neural network. In the framework of hypernetworks, this would correspond

to a classical hyper feedforward network generating the parameters of a quantum

main feedforward network. [124] also shows results for a classical simulation of this

proposal for a credit card fraud detection task. Our work is different from [124],

most significantly because we show results for recurrent networks (hyper - classical

RNN and main - quantum RNN), but also because we use discrete-variable quantum

circuits.

Our current main (quantum) network parameterization could be somewhat sub-

optimal for implementation on a physical quantum computer in the following sense.

Because the QFT and IQFT have O(n log(n)) computational cost and don’t contain

trainable parameters, while the parameterized components have O(n) parameters

6.8. Discussion 123

and computational cost O(n), the computational cost of the entire parameteriza-

tion comes down to O(log(n)) / parameter. Ideally, a computational cost of O(1) /

parameter would be desirable. A similar argument has been used to motivate the

introduction of other neural network parameterizations, such as the one in [120]

with O(1) / parameter computational cost (claimed to be an improvement over the

parameterization in [147], with O(log(n)) / parameter cost). We have chosen the

current parameterization because it is relatively easy and computationally cheap

for implementation and simulation on GPU using TensorFlow [36]. More expressive

variations of our parameterization, with O(1) / parameter cost and e. g. O(n2)

parameters for each quantum matrix Ut, such as the one proposed in [161], should

be straightforward to integrate into our framework.

Our approach also alleviates the requirement for quantum RAM of other quantum

machine learning proposals, such as [139], and could potentially completely remove

this requirement. The need for quantum RAM is problematic because, to this day,

no large scale implementation exists and its scalability is uncertain. More precisely,

quantum RAM requires exponential physical resources, even if access times are

sub-exponential [84]. If our proposal were implemented exactly as in our simulations,

we would already only require the use of quantum RAM once for every sequence,

when we need to output the final prediction. Our output layer can be interpreted

as a classifier working on inputs of very high dimensionality. We conjecture that

we could replace the current output layer with a tensor network like Multiscale

Entanglement Renormalization Ansatz (MERA) [190], without significant losses

in statistical accuracy and while maintaining the computational efficiency of the

quantum RNN, while no longer requiring quantum RAM. Promising results for

classifiers working in very high dimensional spaces, using quantum tensor network

parameterizations like MERA or Matrix Product States (MPS), have already been

reported in the machine learning literature [138] [102] [180] [179]. We are interested

in addressing this in future work.

Up to this point, we have addressed the challenges and opportunities of using our

model to provide a quantum advantage only for inference (at deployment, after the

training phase). We will now discuss how training could be performed.

In our simulations, we have performed gradient-based optimization, with gradients

obtained using the backpropagation algorithm. The backpropagation (backprop)

algorithm was not known to be generally feasible for quantum computing when

our experiments were performed. Alternatives, such as finite differences, exist, but

they would have been slower to simulate classically - and also to implement on

124 6. Hybrid classical-quantum deep learning

a quantum computer: finite differences requires a number of function evaluations

(quantum neural network runs) which is linearly dependent on the number of trainable

parameters. Recently, a feasible quantum backpropagation variant (named ’Baqprop’)

has been proposed by [189], which only requires a constant number of function

evaluations, independently of the number of trainable parameters. This procedure

would, in principle, be straightforward to use for training our quantum RNN (and,

consequently, our entire hybrid classical-quantum proposal).

The results obtained in simulations suggest that our proposal could provide a

quantum advantage for sequential classification tasks, in a many-to-one framework

[135] (sequence of inputs, single output required), such as sentiment analysis or

video classification [201]. Addressing many-to-one recurrent tasks using quantum

computation can also be motivated intuitively using the following arguments. First,

recurrent tasks might be easier to address because they result in computational graphs

with very long sequences of operations and quantum computation has been shown

to be especially advantageous (e.g. in proving quantum supremacy for near-term

devices) for deeper circuits [51]. Furthermore, because many-to-one recurrent tasks

only require outputs once at the end of the sequence, the difficulty of using outputs

from a quantum computer while maintaining a computational advantage with regard

to classical computation is also diminished.

The authors of [121] have already shown that the number of parameters in the

recurrent weight matrix can be reduced by orders of magnitude compared to state

of the art models like LSTMs, while keeping comparable statistical performance.

Furthermore, their parameterization is similar to ours, in the sense of only requiring

O(log(n)) parameters for n hidden units (neurons) in the hidden-to-hidden RNN

transition and of using a complex tensor product of the hidden-to-hidden RNN

transition. The differences, though, come from the fact that they use a standard

nonlinearity (the complex ReLU from [38]) and the unitarity of the transformation

is only encouraged through a regularization penalty, not strictly enforced. Most

importantly, the computational complexity of the approach in [121] would be expo-

nentially higher than ours, since quantum computers are not used. The authors of

[121] suggest that their results show that there are advantages for RNNs working

in high-dimensional spaces, but the capacity of the recurrent part of the model can

be drastically reduced without much degradation in model performance. Quantum

computers (and particularly our quantum parameterization) could allow us to push

this paradigm of high-dimensional recurrent space (with relatively low capacity re-

current dynamics) much further, potentially allowing for dimensions larger than the

6.8. Discussion 125

number of visible particles in the universe for a reasonably-sized quantum computer

of several hundreds of qubits.

We want to highlight the fact that decades of engineering have gone into making

classical neural networks obtain state of the art performance for many tasks, while

work on quantum neural networks is only in its infancy. It seems reasonable to expect

that there is a lot of room for improving the performance of hybrid classical-quantum

neural networks, including but not restricted to RNNs, and successfully extending this

approach to more settings and tasks. If the quantum improvements our work suggests

held and generalized to more settings and tasks, universal fault-tolerant quantum

computers could present us with the opportunity of unparalleled neural network

scalability, but also new challenges in terms of system transparency, interpretability

and safety. Recent results in the literature provide more examples of machine learning

settings and tasks for which quantum advantages seem promising. [81] shows that

quantum computing can be used to build generative models which are as general

as some standard deep learning classical counterparts but can be exponentially

more expressive. Furthermore, these quantum models are intractable for classical

computation (the computational cost of any classical algorithm approximating the

quantum algorithm closely enough would be exponentially higher). The recently-

proposed quantum Hopfield network [160] is another example of a neural network

with potential exponential improvements compared to the classical algorithm. There

have also been multiple proposals for discriminative algorithms; [123], for example,

proposes a quantum classifier with running time polylogarithmic in the dimension

and number of data points which, when simulated (on a classical compute), obtains

98.5% accuracy on MNIST (comparable to state of the art classical algorithms).

The results most interesting for general handwriting recognition are likely those

pertaining to quantum computation advantages for sequential tasks in AI, due

to the sequential nature of handwriting recognition. Multiple theoretical results

suggest the quantum computing systems require less memory resources (than classical

computation) to accurately model dynamical systems for sequential tasks [45] [78]

[187]. It seems feasible to take advantage of these features of quantum computation

to construct more efficient recurrent neural networks. Our own empirical results also

suggest that quantum computation could lead to (potentially exponentially) more

efficient recurrent neural networks.

126 6. Hybrid classical-quantum deep learning

6.9 Conclusion

In this chapter, we have presented preliminary results for a new hybrid classical-

quantum neural network parameterization. To the best of our awareness, this is the

first approach aimed at building quantum recurrent neural networks which shows

potential improvements over a near state of the art classical RNN architecture.

Though our results are preliminary, we believe this is one of the first studies which

suggests the potential for quantum advantages for real-world machine learning tasks

and datasets, especially in the case of sequence processing and recurrent neural

networks.

Conclusions

In this last part of the thesis, we will first summarize our work, then provide a more

speculative perspective on the subjects discussed in this thesis, discussing the promise

of neural networks and quantum computation for solving handwriting recognition

(at a human level of performance) and potential implications for artificial general

intelligence.

In Chapter 3, we have improved the performance of CNNs for handwritten

digit recognition using recent (at the time the work was performed) deep learning

techniques.

In Chapter 4, we have introduced Tied Spatial Transformer Networks (TSTNs),

Spatial Transformer Networks (STNs) with shared weights and different training

variants resulting in improved performance on a distorted variant of the MNIST

dataset.

In Chapter 5, we have compared the performance of Associative Long Short-

Term Memory (ALSTM), a recently introduced recurrent neural network (RNN)

architecture, against Long Short-Term Memory (LSTM), on the Arabic handwriting

recognition IFN-ENIT dataset.

Finally, in Chapter 6, we have shown that integrating quantum computing with

neural networks could provide computational gains (in terms of time and memory)

for sequence recognition on the Fashion-MNIST dataset. Our results suggest that

exponential improvements in computational requirements might be achievable, espe-

cially for recurrent neural networks trained for sequence classification.

We will now discuss how our work fits into the larger context of handwriting

recognition and, more speculatively, artificial general intelligence. Some influential

deep learning researchers have argued that supervised learning has effectively been

solved using deep learning, as long as enough data is available [87].

Superhuman performance has already been achieved for some tasks such as ob-

ject recognition and speech recognition, on large datasets (ImageNet [104] [206] for

128

object recognition and Switchboard [103] for speech recognition) . Given the related-

ness between the domains (object recognition, speech recognition and handwriting

recognition) and the success of similar neural network architectures in all three,

superhuman performance for handwriting recognition tasks should also be feasible

with similar methods. Given the growing amount of computation (Moore’s law) and

algorithmic innovations (often imported from related domains like computer vision,

speech recognition or machine translation), the most significant bottleneck might be

the available amount of labeled handwriting recognition data.

How does quantum computation fit into this picture? Quantum computing is

likely not necessary to solve handwriting recognition, or even human-level AI, since

the human brain most likely does not use quantum computation [137]. However,

many recent theoretical and empirical results suggest that quantum computing could

provide benefits for many AI problems.

The results most interesting for general handwriting recognition are likely those

pertaining to quantum computation advantages for sequential tasks in AI, due to

the sequential nature of handwriting recognition. Our empirical results in Chapter 6

suggest that quantum computation could lead to (potentially exponentially) more

efficient recurrent neural networks. Multiple theoretical results also suggest that

quantum computing systems require less memory resources (than classical computa-

tion) to accurately model dynamical systems for sequential tasks [45] [78] [187]. It

seems feasible to take advantage of these features of quantum computation to con-

struct more efficient recurrent neural networks in time and memory and, conversely,

RNNs which obtain improved accuracy for similar computational resources.

The capacity to discriminate ordered sequences of stimuli and, more generally,

the ability to represent and process sequential information and the increased memory

capacity have been proposed as fundamental features which differentiate humans from

other animals. The observed superior human performance on sequential tasks can be

useful for a large variety of problems, some of which humans uniquely can solve, such

as language understanding [83]. In this sense, solving handwriting recognition, for

which deep learning and quantum computation seem appropriate and advantageous

approaches, might be one of the important steps towards human-level AI. The

requirements for less internal memory of quantum systems might also suggest (much

more speculatively) that (potentially strongly) superhuman performance is plausible

both for handwriting recognition and for artificial general intelligence.

Publications

Journal articles

1. Emilio Granell, Edgard Chammas, Laurence Likforman-Sulem, Carlos-D. Mart́ınez-

Hinarejos, Chafic Mokbel, Bogdan-Ionuţ Ĉırstea, ’Transcription of Spanish Historical

Handwritten Documents with Deep Neural Networks’; in Journal of Imaging, vol. 4,

no. 1, p. 15, Jan. 2018 [91].

International conference papers

1. Bogdan-Ionuţ Ĉırstea and Laurence Likforman-Sulem, ’Improving a deep convolu-

tional neural network architecture for character recognition’; in Document Recognition

and Retrieval XXIII (DRR 2016, San Francisco) [68].

2. Bogdan-Ionuţ Ĉırstea and Laurence Likforman-Sulem, ’Tied Spatial Transformer

Networks for Digit Recognition’; in 2016 15th International Conference on Frontiers

in Handwriting Recognition (ICFHR), Shenzhen [70].

International symposiums and national conferences

1. Bogdan-Ionuţ Ĉırstea, ’Recognition and information extraction in multi-lingual

documents with Recurrent Neural Networks and Deep Neural Networks’; in the

Doctoral Consortium of the ICDAR 2015 Conference, Nancy [67].

2. Bogdan-Ionuţ Ĉırstea and Laurence Likforman-Sulem, ’Tied Spatial Transformer

Networks for Character Recognition’; in Rencontres Jeunes Chercheurs of CIFED-

CORIA 2016, Toulouse [69].

Appendices

Annex A

Other Achievements

I have participated to a common work with UPV (Polytechnic University of Valencia,

Spain) and Telecom ParisTech, on the transcription of Spanish historical handwritten

documents with deep neural networks. This work has been published in [91].

In this work, we propose combining optical recognition systems with language models

based on sub-lexical units (characters or hyphenation sub-word units). The main motivation

for using sub-lexical units language models is that they can naturally model Out-Of-

Vocabulary (OOV) words, which can be especially problematic for handwriting recognition

in historical documents. The optical recognition systems are based, in a set of experiments,

on Hidden Markov Models (HMMs), and, in another set, on deep learning systems, namely

Bidirectional Long Short-Term Memory (BLSTMs) and Convolutional Recurrent Neural

Nets (CRNNs). The experiments are performed on the Rodrigo dataset of ancient Spanish

manuscript. When HMM optical recognition systems are used, the language models based

on sub-word units are shown to outperform those based on words for all the metrics studied,

namely Word Error Rate (WER), Character Error Rate (CER) and Out-Of-Vocabulary

(OOV) word accuracy recognition rate. When the deep learning optical recognition systems

are used, the CRNNs are shown to outperform both the HMMs and the BLSTMs, reaching

the lowest WER and CER for the Rodrigo dataset and they also significantly improve the

OOV word accuracy recognition rate.

Annex B

Contributions à la reconnaissance

de l’écriture manuscrite en

utilisant des réseaux de neurones

profonds et le calcul quantique

B.1 Introduction

Au cours des dernières années, l’apprentissage profond, le domaine d’étude des réseaux de

neurones artificiels à couches multiples, a eu un fort impact sur de nombreux domaines de

l’intelligence artificielle, dont la reconnaissance de l’écriture manuscrite. L’informatique

quantique, en revanche, bien qu’elle ait une histoire qui s’étend sur plusieurs décennies,

n’a été étudiée que très récemment pour des applications d’apprentissage machine (dis-

cutablement, pendant plusieurs années seulement). Une raison importante pour laquelle

l’apprentissage par machine quantique en est à ses débuts est le manque d’ordinateurs

quantiques pratiques et à grande échelle.

Dans cette thèse, nous apportons plusieurs contributions des domaines de l’apprentissage

profond et de l’informatique quantique à la reconnaissance de l’écriture manuscrite.

Dans la première section, nous présentons notre travail qui intégre certaines des

techniques d’apprentissage profond les plus récentes (en particulier au moment où le travail

a été effectué), comme dropout, la normalisation par lots (batch normalization) et différentes

fonctions d’activation dans des réseaux neuronaux convolutionnels et nous montrons une

amélioration des performances sur le jeu de données MNIST.

Nous décrivons ensuite les Réseaux de Transformateurs Spatiaux Liés (RTSLs; en anglais:

Tied Spatial Transformer Networks - TSTNs), une variante des Réseaux de Transformateurs

B.2. Amélioration d’une architecture de réseau neuronal
convolutionnel profond pour la reconnaissance de caractères 133

Spatiaux (RTSs; en anglais: Spatial Transformer Networks - STNs) précédemment introduits

avec poids partagés. Nous décrivons également différentes variantes d’entrâınement des

Réseaux de Transformateurs Spatiaux Liés et montrons de meilleures performances sur

une variante déformée du jeu de données MNIST.

Dans la troisième section, nous comparons la performance de l’architecture ALSTM

(Associative Long Short-Term Memory), une architecture de réseau neuronal récurrent

(RNN) récemment introduite, à celle de la LSTM (Long Short-Term Memory), sur le jeu

de données IFN-ENIT de reconnaissance d’écriture arabe.

Nous décrivons ensuite brièvement les principes de base de l’informatique quantique

que nous utilisons et proposons une architecture de réseau neuronal qui peut intégrer

et tirer profit de l’informatique quantique. Bien que nos simulations soient effectuées à

l’aide de calculs classiques (sur GPU), nos résultats sur le jeu de données Fashion-MNIST

suggèrent que des améliorations exponentielles de la complexité algorithmique pourraient

être réalisables, en particulier pour les réseaux neuronaux récurrents entrâınés pour la

classification des séquences.

Nous concluons par une discussion sur le potentiel ultime des réseaux de neurones pour

résoudre la reconnaissance de l’écriture manuscrite et sur la contribution potentielle de

l’information quantique à cet effort, comme un pas vers l’IA de niveau humain.

B.2 Amélioration d’une architecture de réseau

neuronal convolutionnel profond pour la re-

connaissance de caractères

Dans cette section, nous présentons la première contribution de cette thèse. Nous partons

d’une architecture convolutionnelle profonde et décrivons l’effet des fonctions d’activation

récentes (au moment où le travail a été effectué), des algorithmes d’optimisation et des

procédures de régularisation appliquées à la reconnaissance des chiffres manuscrits de

l’ensemble de données MNIST [132]. L’ensemble de données MNIST est populaire pour

cette tâche et une variété d’approches ont été comparées en l’utilisant.

B.2.1 Architecture

L’architecture convolutionnelle que nous utilisons est illustrée dans la Figure B.1. Elle

suit plusieurs des lignes directrices de [171], qui a obtenu la meilleure performance d’un

modèle unique dans le concours de classification d’objets ILSVRC 2014 [163]. Chacune des

couches convolutives possède des filtres de taille 3x3, avec stride 1 (le stride est la distance

entre les centres des champs réceptifs des neurones voisins dans une carte d’activation). Les

couches de sous-échantillonnage correspondent toujours à une opération de max pooling

134
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

Figure B.1 – Achitecture du réseau convolutionnel

2x2 avec stride 2, ce qui permet de sous-échantillonner la hauteur et la largeur de l’image

de 2. Lors du choix du nombre d’unités dans les couches convolutives, nous nous inspirons

une fois de plus des directives décrites dans [171] : nous doublons le nombre d’unités entre

chaque couche consécutive, de 32 dans la première couche convolutive à 64, puis 128 dans

la dernière. L’architecture comprend également une couche entièrement connectée de 625

unités et une couche softmax de 10 classes (correspondant aux 10 chiffres). Nous montrons

l’architecture dans le tableau B.1.

B.2.2 Détails d’implémentation

Nous avons essayé plusieurs fonctions d’activation non linéaires, telles que ReLU [86],

LReLU [140] et PReLU [105]. Nous avons obtenu les meilleurs résultats en utilisant la

fonction d’activation PReLU, en permettant à chaque filtre convolutionnel d’avoir sa propre

valeur a, mais en liant les valeurs entre différents emplacements spatiaux d’un même filtre

convolutif.

La fonction de perte que nous minimisons est la log-vraisemblance négative moyenne

de la distribution conditionnelle de l’étiquette correcte, en fonction de l’entrée. Pour

la procédure d’optimisation, nous avons utilisé ADAM, en conservant tous ses hyper-

paramètres à leur valeur par défaut [125], sauf pour le taux d’apprentissage, qui a été

diminué pendant l’entrâınement. Nous obtenons notre meilleur système en utilisant un

taux d’apprentissage initial de 0,005 et une décroissance du taux d’apprentissage de 0,98.

Nous avons obtenu les meilleurs résultats en utilisant la méthode d’initialisation décrite

dans [105]. Pour simplifier, nous initialisons les paramètres PReLU a avec des valeurs

nulles (juste après cette initialisation, les PReLU se comportent comme les ReLU). Nous

initialisons les paramètres de normalisation de lot γ à 1, et les paramètres β à 0. Les

matrices de poids des neurones sont initialisées en utilisant des valeurs tirées de distributions

gaussiennes avec une moyenne 0 et un écart-type
√

2
ni

, où ni est le nombre d’entrées du

neurone, suivant la procédure dans [105], et les biais sont initialisés à 0.

Nous avons utilisé l’arrêt anticipé (early stopping) lors de l’exécution de l’optimisation:

B.2. Amélioration d’une architecture de réseau neuronal
convolutionnel profond pour la reconnaissance de caractères 135

Input size Convolutional Layer 1
1 x 28 x 28 conv: 3 x 3 full, stride 1, 32 feature maps
32 x 30 x 30 batch normalization
32 x 30 x 30 PReLU
32 x 30 x 30 2 x 2 max pooling, stride 2
32 x 15 x 15 0.5 dropout

Convolutional Layer 2
32 x 15 x 15 conv: 3 x 3, stride 1, 64 feature maps
64 x 15 x 15 batch normalization
64 x 15 x 15 PReLU
64 x 15 x 15 2 x 2 max pooling, stride 2
64 x 7 x 7 0.5 dropout

Convolutional Layer 3
64 x 7 x 7 conv: 3 x 3, stride 1, 128 feature maps
128 x 7 x 7 batch normalization
128 x 7 x 7 PReLU
128 x 7 x 7 2 x 2 max pooling, stride 2
128 x 3 x 3 flatten
128 x 3 x 3 0.5 dropout

Fully Connected Layer
128 x 3 x 3 fully connected layer matrix multiplica-

tion
625 batch normalization
625 PReLU
625 0.5 dropout

Softmax Layer
10 softmax

Table B.1 – Architecture du réseau convolutionnel proposé

nous exécutons l’algorithme d’optimisation pour un maximum de 300 époques (utilisant

des mini-lots) et nous nous arrêtons après 30 époques sans amélioration sur l’ensemble de

validation.

B.2.3 Expériences

Nous avons effectué nos expériences sur le jeu de données MNIST, qui contient des images

de taille 28 x 28 et est divisé en 3 ensembles distincts : un ensemble d’entrâınement de

50000 images, un ensemble de validation de 10000 images et un ensemble de test de 10000

exemples. Comme c’est la norme dans la littérature ([134], [136]), le seul prétraitement

que nous effectuons est de mettre à l’échelle les entrées à des valeurs [0, 1]. Nous avons

également essayé de normaliser les entrées en utilisant la normalisation globale du contraste

(global contrast normalization), mais nous n’avons pas obtenu de meilleurs résultats.

136
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

Comme régularisation, dans le meilleur système, nous avons utilisé dropout [178] avec

probabilité d’enlever un neurone p = 0.5, tant dans la couche convolutive que dans la

couche entièrement connectée (nous n’appliquons pas dropout sur les images en entrée).

Model Test error
(%)

Ours 0.38
Deeply-
Supervised
Nets [134]

0.39

Fractional max-
pooling [90]

0.44

Maxout Net-
works [88]

0.45

Network in Net-
work [136]

0.47

Table B.2 – Comparaison avec les résultats les plus récents sur l’ensemble de test MNIST
(système unique, pas d’augmentation de données) au moment où ce travail a
été effectué (Mai 2015)

Le taux d’erreur obtenu en utilisant notre système est indiqué dans le tableau B.2. Le

même tableau montre également les résultats d’autres approches d’apprentissage profond

qui permettent d’obtenir des résultats de pointe sur MNIST sans utiliser l’augmentation

des données ni les ensembles de modèles. Les chiffres mal classés sont indiqués dans la

figure B.2.

Figure B.2 – Tous les échantillons mal classés de l’ensemble de test MNIST. Le premier
numéro est l’étiquette estimée, le second est la vérité-terrain.

Le réseau atteint un taux d’erreur de 0,38%, améliorant légèrement les meilleures

performances connues d’un seul modèle entrâıné sans augmentation de données au moment

B.3. Réseaux de Transformateurs Spatiaux Liés pour la
reconnaissance de chiffres 137

où les expériences ont été réalisées, en mai 2015. En février 2016, la meilleure performance

dans ce contexte était 0.24% [55].

B.2.4 Conclusions

Nous interprétons nos résultats comme un argument en faveur de systèmes qui peuvent

effectuer l’extraction automatique (apprise) des caractéristiques, plutôt que d’utiliser des

caractéristiques conçues à la main. L’utilisation d’une approche d’apprentissage profond

permet également d’importer et d’appliquer facilement des innovations d’apprentissage

profond d’autres domaines d’application et les contributions d’apprentissage profond pour

l’écriture manuscrite peuvent également être utilisées dans d’autres domaines d’application.

Dans la section suivante, nous utilisons les réseaux convolutionnels comme éléments

constitutifs d’architectures de réseaux de neurones plus complexes, qui peuvent effectuer à

la fois la localisation et la classification.

B.3 Réseaux de Transformateurs Spatiaux Liés

pour la reconnaissance de chiffres

Dans cette section, nous utilisons des Réseaux de Transformateurs Spatiaux Liés (RTSLs;

Tied Spatial Transformer Networks - TSTNs, en anglais), des architectures d’apprentissage

profond qui incluent deux réseaux convolutionnels couplés à l’aide d’un module Transform-

ateur Spatial (Spatial Transformer, en anglais), qui a été introduit par [117]. Le premier

réseau, qu’on va appeler réseau de localisation, est dédié aux transformations spatiales. Le

deuxième, le réseau de classification, est dédié à la classification des images transformées.

Les images d’entrée sont transformées à l’aide des paramètres estimés par le réseau de

localisation, puis introduites dans le réseau de classification, qui effectue la prédiction de la

classe.

L’avantage d’utiliser de tels systèmes couplés (localisation couplée à la classification)

est que les paramètres entrâınables du réseau de localisation sont appris pendant la phase

d’entrâınement, de même que ceux du réseau de classification, afin que les images puissent

être transformées et classifiées de manière unifiée. Étant donné que la localisation et

la classification peuvent être considérées comme des tâches différentes, les paramètres

entrâınables des deux réseaux seraient généralement différents. Nous proposons ici de lier

les paramètres entrâınables des deux réseaux afin d’obtenir un effet de régularisation qui

peut améliorer la performance. Nous appliquons notre approche à la reconnaissance des

chiffres bruités, en utilisant la base de données cluttered MNIST [146], dérivée de la base

de données MNIST [132] mais incluant des sources supplémentaires de bruit.

138
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

B.3.1 Architectures convolutives

Tous les systèmes de classification présentés dans cette section sont basés sur les réseaux

convolutionnels. On va comparer trois réseaux: un réseau convolutionnel classique de

classification, le RTS et le RTSL. Le réseau convolutionnel comprend un seul bloc composé

de couches convolutionnelles et de couches entièrement connectées, tandis que le RTS

et le RTSL comprennent deux blocs, un pour la partie localisation et un autre pour la

partie classification (voir les figures B.3, B.4 et B.5). Nous avons fait des expériences avec

deux architectures différentes, la seconde étant plus complexe et plus puissante que la

première. Ces architectures sont montrées dans le tableau B.3 et le tableau B.4 et suivent

plusieurs des directives décrites dans [171]. Le réseau de classification utilisant la premiere

architecture est montrée plus en détail dans la Figure B.6.

Figure B.3 – Architecture du réseau convolutionnel (CNN) de classification

Figure B.4 – Architecture de type Réseau de Transformateur Spatial (RTS), composée
de deux réseau convolutionnels (CNN) couplés, l’un dédié à la localisation,
l’autre à la classification

Figure B.5 – Architecture de type Réseau de Transformateur Spatial Lié (RTSL), similaire
à l’architecture RTS (non lié), mais avec des poids partagés (liés)

Chacune des couches convolutionnelles contient des filtres de taille 3x3. La convolution

de type ’same’ - qui permet que la taille de la feature map de sortie soit égale à la taille

de l’entrée - est utilisée dans toutes les couches. Les couches de sous-échantillonnage sont

toujours 2x2 max-pooling avec stride 2, ce qui fait que les images soient sous-échantillonnées

B.3. Réseaux de Transformateurs Spatiaux Liés pour la
reconnaissance de chiffres 139

Figure B.6 – Architecture détaillée du réseau convolutionnel de classification 1 (fmap =
feature map = carte des caractéristiques)

en divisant à la fois hauteur et largeur par 2. Nous doublons le nombre de feature maps

entre chaque couche convolutionnelle consécutive, de 32 dans la première couche à 64 puis

128 dans la dernière, en nous inspirant une fois encore de [171].

Les couches entièrement connectées sont identiques entre les architectures 1 et 2, mais

différentes entre les réseaux de localisation et de classification. Les couches convolutives

sont également très similaires. La différence est que pour l’architecture 2, nous utilisons

deux opérations consécutives de convolution suivies d’une non-linéarité au lieu d’une seule

avant chaque max-pooling. Cela rend l’architecture 2 plus puissante et permet également

d’augmenter la taille implicite de ses filtres convolutifs. Dans les deux architectures, nous

supprimons l’opération de pooling dans la dernière couche convolutionnelle du réseau de

localisation. La motivation de ce choix architectural est de conserver plus d’informations

spatiales dont la couche entièrement connectée du réseau de localisation pourrait avoir

besoin afin de fournir les paramètres estimés de la transformation affine effectuée par le

module Transformateur Spatial. Notez également que puisque les couches max-pooling ne

contiennent pas de paramètres entrâınables, cela signifie que les couches convolutives des

réseaux de classification et de localisation peuvent toujours avoir les mêmes valeurs pour

leurs paramètres entrâınables (liés). Pour les deux architectures (1 et 2), la dernière couche

du réseau localisation contient moins d’unités que celle du réseau de classification, imitant

la conception des architectures utilisées dans [176] et [174].

Généralement, la transformation effectuée sur l’image d’entrée à l’aide du Transform-

ateur Spatial peut inclure la mise à l’échelle, le recadrage, les rotations, ainsi que les

déformations non rigides [117]. Dans toutes nos architectures, nous n’utilisons que le Trans-

formateur Spatial affine, introduit dans [117] et également utilisé dans [176]. Il permet

toutes les transformations mentionnées précédemment, à l’exception des déformations non

rigides, et ne nécessite que 6 paramètres à estimer dans les sorties du réseau de localisation.

L’implémentation que nous utilisons, introduite et décrite dans [176], inclut également

un facteur de sous-échantillonnage d, par lequel la hauteur et la largeur de l’image sont

140
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

Localization CNN Classification CNN
Convolutional Layer 1 Convolutional Layer 1
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 2 Convolutional Layer 2
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 3 Convolutional Layer 3
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
2 x 2 max pooling, stride 2

flatten flatten
Fully Connected Layer Fully Connected Layer
200 neurons linear layer 625 neurons linear layer
ReLU ReLU

0.5 dropout
Affine Transform Layer Softmax Layer
6 parameters 10-class softmax

Table B.3 – Architecture numéro 1: réseau convolutionnel de localisation (à gauche) et
réseau convolutionnel de classification (à droite)

mises à l’échelle, après l’utilisation de la transformation affine. Par souci de simplicité

et pour faciliter les comparaisons entre les différents modèles (y compris entre CNN et

STN), nous utilisons d = 1 dans toutes nos expériences avec des systèmes contenant des

Transformateurs Spatiaux. En effectuant des transformations affines, les systèmes intégrant

le module Spatial Transformer peuvent à la fois sélectionner des parties pertinentes d’une

image (une forme d’attention) et transformer ces régions en poses qui peuvent simplifier la

tâche de reconnaissance pour les composants suivants du système. Pour tous les détails

techniques en ce qui concerne les Transformateurs Spatiaux, nous renvoyons le lecteur à la

publication correspondante [117].

B.3.2 Details d’implementation

Pour la fonction d’activation, nous utilisons dans toutes nos expériences l’unité linéaire

rectifiée (ReLU) [86], l’une des fonctions d’activation les plus réussies en apprentissage

profond.

B.3. Réseaux de Transformateurs Spatiaux Liés pour la
reconnaissance de chiffres 141

Localization CNN Classification CNN
Convolutional Layer 1 Convolutional Layer 1
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 32 fea-
ture maps

conv: 3 x 3 same, stride 1, 32 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 2 Convolutional Layer 2
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 64 fea-
ture maps

conv: 3 x 3 same, stride 1, 64 fea-
ture maps

ReLU ReLU
2 x 2 max pooling, stride 2 2 x 2 max pooling, stride 2
Convolutional Layer 3 Convolutional Layer 3
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
conv: 3 x 3 same, stride 1, 128
feature maps

conv: 3 x 3 same, stride 1, 128
feature maps

ReLU ReLU
2 x 2 max pooling, stride 2

flatten flatten
Fully Connected Layer Fully Connected Layer
200 neurons linear layer 625 neurons linear layer
ReLU ReLU

0.5 dropout
Affine Transform Layer Softmax Layer
6 parameters 10-class softmax

Table B.4 – Architecture numéro 2: réseau convolutionnel de localisation (à gauche) et
réseau convolutionnel de classification (à droite)

142
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

Pour simplifier, nous initialisons toutes les matrices de poids en utilisant une méthode

similaire à celle proposée dans [105] et qui est également utilisée dans [174]. Les matrices de

poids sont initialisées à l’aide de valeurs tirées de distributions uniformes avec une moyenne

0 et un écart-type
√

2
ni

, où ni est le nombre d’entrées dans le neurone. La procédure,

présentée en détail dans [105], permet d’éviter les instabilités de gradient pendant la phase

d’entrâınement, ainsi que les instabilités des entrées de chaque couche pendant l’inférence.

Les paramètres de la couche de transformation affine sont initialisés à la transformation

d’identité, comme dans [174].

Chacun des systèmes que nous expérimentons (réseau convolutionnel de classification,

RTS, RTSL, pour chacune des deux architectures) représente une fonction différentiable.

Pour optimiser chacune de ces fonctions, nous utilisons des méthodes d’optimisation basées

sur les gradients, les gradients étant calculés à partir de mini-lots d’exemples, en utilisant

l’algorithme de rétropropagation.

Nous utilisons comme algorithme d’optimisation une variante d’ADAM [125], dans

laquelle nous multiplions le taux d’apprentissage par un montant fixe après un certain

nombre d’époques. L’utilisation d’un bon optimiseur peut être importante pour les systèmes

RTS et RTSL, car chacun d’entre eux est environ deux fois plus profond que les réseaux de

classification correspondants, ce qui peut entrâıner la disparition de gradients en raison de

la profondeur accrue.

ADAM introduit quelques hyper-paramètres supplémentaires, décrits en détail dans

[125], que nous avons maintenu fixes, en utilisant les valeurs recommandées dans [125].

Le seul paramètre que nous modifions est le taux d’apprentissage, que nous multiplions

par un montant fixe après un nombre fixe d’époques. Nous avons suivi l’implémentation

fournie par [174] et multiplié le taux d’apprentissage par 0,7 après chaque 20 époques. Nous

utilisons des mini-lots de taille 256 dans toutes les procédures d’entrâınement.

Pour réduire le risque de surapprentissage, nous utilisons dropout. Nous utilisons

dropout avec p = 0.5 uniquement dans la couche entièrement connectée du réseau de

classification, car c’est la couche avec le plus grand nombre de paramètres entrâınables, où

la régularisation est potentiellement la plus utile. Nous n’utilisons pas de dropout dans la

couche entièrement connectée du réseau de localisation. L’intuition derrière ce choix est

que dropout, en tant que forme bruyante de régularisation, tend à supprimer une partie de

l’information spatiale présente dans les activations de l’unité. Cette information spatiale

peut être plus utile pour la tâche de localisation (par rapport à celle de la classification),

nous préférons donc en préserver une plus grande partie (au risque de surapprentissage).

B.3.3 Expériences

Nous avons appliqué les RTSLs à la reconnaissance des chiffres manuscrits bruités. Les

expériences sont menées sur la base de données cluttered MNIST [173] [146] qui est dérivée

B.3. Réseaux de Transformateurs Spatiaux Liés pour la
reconnaissance de chiffres 143

de la base de données MNIST [132] mais inclut des bruits et transformations supplémentaires

qui rendent la tâche de classification plus difficile. Les chiffres sont déformés à l’aide de la

translation, de l’échelle, de la rotation et de l’encombrement aléatoires, et l’image entière

correspondant à chaque chiffre est plus grande (60 x 60, comparé à 28 x 28 pour MNIST).

Le nombre d’exemples d’apprentissage / de validation / de test reproduit celles de MNIST

(50000 / 10000 / 10000). Nous montrons des échantillons d’image agrandies provenant de

cluttered MNIST et le traitement effectué par un Transformateur Spatial dans la figure

B.7.

Pour notre implémentation, nous utilisons Theano [186] et Lasagne [75] et nous nous

appuyons fortement sur l’implémentation de [175] et sur l’exemple de RTS de [174].

Figure B.7 – Images d’entrée de cluttered MNIST (à gauche) et les mêmes images traitées
par un module Transformateur Spatial dans le cadre d’un système RTS1 (à
droite)

B.3.3.1 Comparaison des réseaux convolutionnels de classification, des

RTSs et des RTSLs

Nous comparons dans le tableau B.5 le réseau RTSL proposé (paramètres entrâınables liés)

avec le RTS (paramètres entrâınables non liés) et le réseau convolutionnel de classification

(seul), en utilisant les architectures 1 et 2 sur le jeu de données cluttered MNIST.

Nous avons arrêté l’entrâınement de chaque système manuellement, après avoir vérifié

que la précision de la classification sur les données d’entrâınement est (presque) parfaite.

Dans un seul cas, l’architecture RTS non liée 2 (entrée 8 dans le tableau B.5), nous

n’avons pas réussi à faire converger l’entrâınement pour qu’elle fonctionne de manière

comparable aux autres systèmes. Pour souligner que le nombre d’époques d’entrâınement

est comparable et que nous avons permis à chaque système un entrâınement raisonnable

144
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

pour atteindre une bonne performance, nous montrons également dans le tableau B.5

le nombre d’époques d’entrâınement et la meilleure précision d’entrâınement (obtenue

jusqu’à l’époque d’entrâınement maximale). Pour chaque système et pour chaque procédure

d’entrâınement, nous choisissons les paramètres pour lesquels nous obtenons la meilleure

précision de validation avant de faire l’évaluation sur l’ensemble de test. Une seule expérience

est effectuée pour chaque système, avec la même random seed utilisée dans toutes les

expériences.

Comme on peut le voir dans le tableau B.5, les systèmes RTSL obtiennent de meilleurs

résultats que les réseaux convolutionnels de classification et les RTS (non liés), pour la

même architecture (en comparant les entrées 1-3 et 7-9, respectivement).

Entry Maximum
training
epochs

Best train-
ing error
(%)

Validation
error (%)

Test error
(%)

1. CNN1 145 0 4.39 4.44
2. STN1 179 0 4.38 4.33
3. TSTN1 196 0.002 3.02 3.14
4. TSTN1-2 127 0.032 4.14 4.25
5. TSTN1-5-20 135 0 3.11 3.15
6. TSTN1-2-20 127 0.002 2.73 2.74
7. CNN2 95 0 1.82 2.18
8. STN2 66 88.64 88.74 88.81
9. TSTN2 231 0 1.30 1.74
10. TSTN2-5-20 141 0 1.24 1.50
11. TSTN2-2-20 178 0 1.22 1.31

Table B.5 – Résultats sur la base de données cluttered MNIST pour différents systèmes,
architectures et procédures d’entrâınement

B.3.3.2 L’hypothèse de la régularisation

Une hypothèse que nous proposons pour la meilleure performance du RTSL est que, par

rapport au RTS (non lié), il est mieux régularisé. Pour tester cette hypothèse, nous avons

mené une série d’expériences où nous entrâınons chacun des deux sous-systemès RTSL

à l’aide d’une approche curriculum: nous alternons entre la formation de l’ensemble du

RTSL à certaines époques et la formation de sa seule composante de classification à des

époques différentes. Nous testons l’effet de régularisation sur les paramètres entrâınables

liés du RTSL en utilisant uniquement sa composante de classification pendant les phases

de validation et de test. Les résultats de ces expériences sont présentés aux entrées 4-6, 10

et 11 du tableau B.5.

B.3. Réseaux de Transformateurs Spatiaux Liés pour la
reconnaissance de chiffres 145

La première expérience de ce type est réalisée en utilisant l’architecture 1, en entrâınant

l’ensemble du RTSL pendant les époques impaires et en n’entrâınant que sa composante de

classification pendant les époques paires, montrée à l’entrée 4 (TSTN1-2) du tableau B.5.

Nous avons émis l’hypothèse que les performances pourraient être améliorées si nous

pouvions prévoir des périodes d’entrâınement initial pour l’ensemble du RTSL avant

d’alterner entre l’entrâınement du RTSL et de son sous-système de classification. Puisque

l’architecture RTSL est deux fois plus profonde que son sous-système de classification, le

problème des gradients qui disparaissent ou explosent (vanishing / exploding gradients) est

potentiellement pire; ceci est particulièrement vrai pour les paramètres du sous-système de

localisation, qui est le plus éloigné du signal d’erreur fourni lors de la rétropropagation.

Pour tester cette hypothèse, nous effectuons la procédure d’entrâınement selon le schéma

suivant: l’ensemble du RTSL est entrâıné pour les 20 premières époques, puis nous alternons

l’entrâınement de l’ensemble du RTSL toutes les 5 époques et l’entrâınement de son sous-

système de classification pendant les autres époques. Cela correspond au système RTSL1-5-

20 (entrée 5) du tableau B.5; la performance semble être améliorée pour l’architecture 1,

devenant similaire à celle du RTSL classique.

L’effet de la fréquence de l’entrâınement de l’ensemble du système RTSL, tout en

n’utilisant que le réseau de classification pendant les phases de validation / test pourrait

également être lié à l’arbitrage entre la pondération d’un terme de régularisation et la

fonction de perte. Un entrâınement plus fréquent de l’ensemble du RTSL correspondrait à

utiliser plus de réguliarisation. De cette manière, nous pouvons compléter la régularisation

fournie en utilisant les approches décrites dans les deux paragraphes précédents en entrâınant

le RTSL entier pendant les 20 premières époques, puis en alternant entre l’entrâınement

du RTSL entier et de son sous-système de classification toutes les 2 époques. Les résultats

(RTSL1-2-20) pour l’architecture 1, présentés à l’entrée 6, semblent être encore meilleurs

que pour le RTSL.

Nous avons également testé les deux dernières approches en utilisant l’architecture 2

(entrées 10 et 11). Les mêmes conclusions semblent s’appliquer.

B.3.4 Discussion

Dans cette section, nous présentons plusieurs perspectives pour interpréter les résultats de

nos expériences avec les RTSLs.

Tout d’abord, les paramètres appris par le réseau de localisation peuvent être interprétés

comme codant la connaissance de la transformation des images d’entrée (les transform-

ations étant conditionnées sur chaque image individuelle) afin de simplifier la tâche de

reconnaissance pour les couches suivantes du système entier. En liant les paramètres des

réseaux de classification et de localisation, le RTSL est contraint de devenir bon aux deux

tâches (transformation de l’image d’entrée et classification de l’image transformée).

146
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

L’utilisation du réseau de localisation peut être vue comme l’ajout d’un objectif

auxiliaire, différent de celui qui nous intéresse finalement (l’entropie croisée), mais qui

pourrait aider à améliorer l’erreur de classification [134].

B.3.5 Conclusion

Dans cette section, nous avons décrit une nouvelle manière d’utiliser les architectures de

Réseaux de Transformateurs Spatiaux, en liant les paramètres entrâınables entre les réseaux

de localisation et de classification, et de les appliquer à la reconnaissance des chiffres

manuscrits bruités. Dans la section suivante, nous abordons un problème plus complexe, la

reconnaissance des mots manuscrits, en utilisant une architecture de réseau de neurones

récurrent récemment proposée.

B.4 Associative LSTMs pour la reconnaissance de

l’écriture manuscrite

Dans cette section, nous présentons les résultats de la reconnaissance des séquences d’écriture

arabe, comparant le réseau récurrent Associative Long Short-Term Memory (ALSTM)

récemment proposé [74] à un LSTM de référence [112].

Notre motivation est d’étudier les avantages potentiels de l’ajout d’une capacité mémoire

supplémentaire dans les réseaux récurrents sans augmenter significativement le nombre de

paramètres entrâınables pour la reconnaissance de l’écriture arabe. [74] motive également

l’introduction des ALSTMs comme améliorant (augmentant) les LSTMs avec mémoire

supplémentaire. La mémoire supplémentaire est ajoutée en créant des copies redondantes

des informations stockées dans les cellules ALSTM et en utilisant des mécanismes de

stockage et de récupération des données à valeur clé. Les copies redondantes permettent de

réduire le bruit lorsque le processus de récupération est effectué.

Dans notre étude sur l’application des ALSTMs à la reconnaissance de l’écriture

manuscrite, nous suivrons une méthodologie similaire à celle de [202], qui a montré qu’un

LSTM bidimensionnel (Bidimensional LSTM - BLSTM) peut être plus précis que des LSTM

multidimensionnels, si les images saisies sont normalisées (en apprenant directement des

pixels). Cette approche améliore également les méthodes qui utilisent des caractéristiques

artisanales. Tous les systèmes susmentionnés ont été comparés en utilisant l’ensemble de

données des mots arabes manuscrits IFN / ENIT [22].

Nous utiliserons le même jeu de données et la même méthode de normalisation pour

comparer les ALSTMs et les LSTMs et nous comparerons des configurations multiples des

deux types d’architectures : monocouche, multicouche, unidirectionnelle, bidirectionnelle

(et combinaisons, par exemple multicouche bidirectionnelle).

B.4. Associative LSTMs pour la reconnaissance de l’écriture
manuscrite 147

B.4.1 Ensemble de données

On utilise le jeu de données IFN-ENIT, qui contient 32492 images de noms de villes et

villages tunisiens, écrits à la main par plus de 400 scripteurs dans une grande variété de

styles. Il est divisé en cinq ensembles, de A à E. Dans le cas le plus courant, que nous allons

également suivre, les jeux A-D (contenant 26459 images) sont utilisés pour l’entrâınement

et le jeu E (contenant 6033 images) est utilisé pour les tests.

Les images varient à la fois en hauteur et en largeur et varient de 85× 84 à 162× 1069

dans le set d’entrâınement et de 40× 170 à 139× 977 dans le set de test. Toutes les images

sont en niveaux de gris.

B.4.2 Normalisation d’image

Nous effectuons d’abord le seuillage d’Otsu [151] en utilisant l’implémentation OpenCV

[27]. Nous utilisons ensuite la procédure de normalisation d’image fournie par ocropy [26],

qui effectue la mise au point (dewarping) et la normalisation de la taille d’image à la

hauteur par défaut de 48 pixels (avec une largeur redimensionnée proportionnellement,

afin de préserver le rapport hauteur / largeur). Nous effectuons ensuite une inversion de

contraste sur l’image résultante et, enfin, normalisons les valeurs des pixels à [0, 1].

B.4.3 Détails des systèmes

Nous initialisons les poids récurrents pour tous les systèmes en utilisant l’initialisateur

orthogonal [166]. Pour tous les systèmes, nous avons initialisé les poids de la couche de

sortie en utilisant l’initialisation Xavier et les biais à 0 [85].

La perte optimisée est la perte CTC [95] et tous les résultats présentés sont obtenus en

utilisant un décodage CTC gourmand (greedy) [95].

Pour l’optimisation, nous avons utilisé ADAM [125] avec les paramètres par défaut (y

compris le taux d’apprentissage par défaut de 0.001). Nous appliquons également l’écrêtage

de gradient par norme globale, avec la norme globale 10. Nous avons utilisé la taille de lot

64 pour toutes les expériences.

Nous présentons également des résultats pour les architectures bidirectionnelles. L’extension

aux LSTM bidirectionnelles et aux ALSTM bidirectionnelles est simple.

B.4.4 Résultats

Tous les résultats présentés sont obtenus sur l’ensemble de validation E, avec l’entrâınement

effectué sur les ensembles A-D.

Nos LSTM associatives utilisent une seule copie, puisque les premières expériences avec

des copies multiples n’ont montré aucun gain.

148
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

Parce que le LSTM est environ 4-5 fois plus rapide que l’ALSTM associatif nous

l’entrâınons pendant plus d’époques d’entrâınement (150) que l’ALSTM (100). Dans toutes

nos expériences avec les ALSTMs, Whu a été mis à 0 (voir [74] pour plus de détails).

System CER Number of
trainable

parameters

Number of
training
epochs

LSTM-128 0.5451 106233 150
LSTM-256 0.5200 343417 150
ALSTM-64 0.5314 40121 100
BLSTM-64 0.3545 73465 150

BALSTM-64 0.3598 80121 100
BLSTM-128 0.3197 212345 150

BALSTM-128 0.2919 233849 100

Table B.6 – Taux d’erreur de caractères (Character Error Rate - CER) pour divers systèmes
LSTM et ALSTM. Nous désignons les RNNs LSTM avec n unités par LSTM-
[n] et les ALSTMs avec n unités par ALSTM-[n]. Nous ajoutons le préfixe B
pour les RNNs bidirectionnels.

Nous affichons les résultats pour différents réseaux LSTM et ALSTM dans le tableau

B.6. Par LSTM-[n], nous désignons les LSTMs avec n unités et de façon analogue pour le

ALSTM. Pour les RNN bidirectionnels, nous ajoutons le préfixe B.

Nous pouvons voir que l’ALSTM-64 fonctionne mieux que le LSTM-128 avec environ

2,5 fois moins de paramètres entrâınables, et un peu moins bien que le LSTM-256, qui

contient environ 8,5 fois plus de paramètres entrâınables.

Le BALSTM-128 est plus performant que le BLSTM-128, tandis que le BALSTM-64

ne semble pas faire mieux que le BLSTM-64. Dans les deux cas, les systèmes BALSTM et

BLSTM ont un nombre comparable de paramètres entrâınables.

Dans notre implémentation, l’ALSTM semble environ 4 à 5 fois plus lent qu’un LSTM,

pour un nombre égal d’unités. Ce ralentissement est similaire à celui signalé dans [74].

Cette diminution de l’efficacité des calculs annule en partie les gains de précision et nous

incite à essayer d’autres approches pour augmenter la mémoire des réseaux récurrents, sans

augmenter le coût de calcul, comme nous le verrons dans la section suivante.

B.5 Apprentissage profond hybride

classique-quantique

Dans cette section, nous proposons une paramétrisation hybride classique-quantique des

réseaux de neurones, qui s’inspire des travaux précédemment proposés sur les hyper-réseaux

B.5. Apprentissage profond hybride
classique-quantique 149

(hypernetworks) [100]. L’idée des hypernetworks est qu’un réseau neuronal, que nous

appellerons réseau hyper (hyper network), peut être utilisé pour générer les paramètres

d’un autre réseau, que nous désignerons comme réseau principal (main network), qui est

utilisé pour résoudre la tâche (par exemple, classifier). Nous instancions cette proposition

en utilisant des réseaux neuronaux récurrents (recurrent neural networks - RNNs). Plus

spécifiquement, nous proposons qu’un réseau neuronal récurrent classique (implémenté sur

un ordinateur classique) génère les paramètres d’un réseau neuronal récurrent quantique

(implémenté sur un ordinateur quantique), qui résoudra la tâche. Les réseaux neuronaux

récurrents sont Turing-complets [115] [170], donc, dans un certain sens, des modèles de

calcul d’apprentissage profond entièrement généraux. L’adressage des réseaux neuronaux

récurrents différencie notre travail de la plupart des propositions de réseaux neuronaux

quantiques précédentes et l’utilisation des réseaux quantiques différencie notre travail des

hypernetworks classiques. En principe, notre proposition est générale et peut couvrir plus

de types d’architectures que juste les réseaux neuronaux récurrents.

L’intuition derrière notre proposition est que les ordinateurs quantiques peuvent nous

permettre d’effectuer certaines opérations dans des espaces de très haute dimension avec

un nombre de calculs exponentiellement inférieur à celui des ordinateurs classiques. Dans

le cas des RNNs, cette dimensionnalité élevée pourrait permettre davantage de mémoire,

de sorte que le RNN quantique se souvienne des entrées du passé lointain avec des gains

de calcul significatifs par rapport aux propositions classiques. L’hyper-RNN dans notre

proposition peut être interprété comme apprenant à coder les entrées dans l’espace de

grande dimension du RNN quantique.

Pour simplifier le problème de la génération de sorties à partir de l’ordinateur quantique,

dans ce travail, nous ne traiterons que des problèmes many-to-one [135], dans lesquels

l’entrée est présentée sous forme de séquence et une seule sortie est requise. Nous montrerons

des résultats suggérant que notre RNN hybride classique-quantique proposé peut fonctionner

de la même façon qu’un RNN classique dans une tâche de dépendance séquentielle à long

terme, avec un besoin de calcul potentiellement exponentiellement moindre. Pour cela, nous

choisirons une tâche similaire à la tâche MNIST à pixels permutés, un repère standard

pour les capacités mémoire à long terme des architectures RNN [121] [38], mais en utilisant

le jeu de données Fashion-MNIST [198] [199]. Nous simulons notre proposition sur carte

graphique (Graphics Processing Unit - GPU), mais montrons les coûts de calcul approximés

requis si notre proposition était exécutée sur un ordinateur quantique.

Au meilleur de notre connaissance, nos travaux sont les premiers à montrer des résultats

prometteurs suggérant un avantage quantique potentiel pour les RNNs sur un ensemble de

données à grande échelle (à échelle industrielle).

150
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

B.5.1 Architecture proposée

Dans cette section, nous allons décrire le paramétrage de notre RNN hybride classique-

quantique. Nous décrirons d’abord la composante quantique, puis la couche de sortie, la

fonction de perte et, enfin, le RNN classique qui génère les paramètres du RNN quantique.

Une illustration simplifiée de notre proposition est présentée dans la Fig. B.8.

B.5.1.1 RNN quantum (principal)

Nous indiquerons l’état de notre RNN principal (quantique) au temps t par ht. L’état

initial du RNN principal h0 est la superposition uniforme. Cette superposition uniforme

peut être obtenue à partir de l’état n-qubit |0..0〉 avec un coût de calcul O(n) en utilisant

n portes de Hadamard. A chaque pas de temps t, l’état ht de notre RNN quantique est

obtenu en multipliant son état précédent ht−1 par la matrice Ut, qui est générée par l’état

h′t du RNN classique:

ht+1 = Ut ∗ ht (B.1)

Nous décomposons la matrice Ut avec le paramétrage suivant:

Ut = At ∗ F ∗Dt ∗ F−1 (B.2)

où F est la transformée de Fourier quantique (Quantum Fourier Transform - QFT) pour

n qubits, F−1 est la transformée de Fourier quantique inverse (Inverse Quantum Fourier

Transform - IQFT) pour n qubits et At et Dt sont des matrices unitaires paramétrées

(entrâınables), avec leurs paramètres générés par un hyper-RNN (la QFT et la IQFT ne

contiennent pas des paramètres entrâınables). Plus précisément, At et Dt sont des produits

tensoriels de transformées unitaires générales à un qubit. Ces transformées unitaires pour

un qubit sont des matrices unitaires 2 x 2 générales [35], de sorte que At et Dt peuvent

être écrites comme des produits tensoriels de n matrices 2× 2.

Une matrice unitaire générale 2× 2 A peut s’écrire comme suit:

A = e
iα
2

[
eiβ cos(φ) eiγ sin(φ)

−e−iγ sin(φ) e−iβ cos(φ)

]
(B.3)

où α, β, γ et φ sont des paramètres modifiables. Nous indiquerons par θt l’ensemble

des paramètres modifiables (entrâınables) utilisés au temps t pour générer At et Dt.

Le QFT et l’IQFT peuvent être implémentés avec un coût de calcul de O(n log(n))

[101]. Les matrices unitaires générales sur un qubit peuvent être implémentées en utilisant

4 portes élémentaires consécutives sur un qubit [52] [150]. Ainsi, At et Dt sont de taille

2n × 2n, comprennent uniquement 4 ∗ n paramètres entrâınables et leurs complexités de

calcul respectives sont O(n). Nous utiliserons ces complexités lorsque nous approximerons

B.5. Apprentissage profond hybride
classique-quantique 151

le coût de calcul de notre RNN hybride classique-quantique s’il était implementé sur

ordinateur quantique.

Figure B.8 – Exemple d’un réseau neuronal récurrent hybride classique-quantique similaire
à ceux que nous simulons. Un hypernetwork récurrent (en orange) implé-
menté sur un ordinateur classique génère dynamiquement des transformations
unitaires pour un réseau principal (en noir), qui serait implémenté sur un or-
dinateur quantique (mais qu’on simule classiquement). Les matrices unitaires
Ut sont générées dynamiquement par le réseau classique pour chaque exemple
(séquence) à partir des activations du réseau classiques h′t, en utilisant la
matrice entrâınable Wl. Aucune non-linéarité n’est utilisée dans le réseau
neuronal quantique. Nous illustrons l’hypernetwork comme un RNN typique,
avec la même matrice entrâınable de poids Wh appliquée à chaque pas de
temps, suivie de la non-linéarité par élément f , mais, en principe, toute
architecture pourrait être utilisée. Les entrées xt ne sont fournies qu’à l’hyper-
RNN, traitées par la matrice entrâınable Wx. La figure est simplifiée à des fins
d’illustration. Dans nos expériences, un LSTM est utilisé comme hyper-RNN.

B.5.1.2 Couche de sortie

Pour simplifier et pour relier cette partie à nos simulations qui seront décrites dans la

section B.5.2, nous supposerons que notre RNN hybride classique-quantique est utilisé pour

résoudre une tâche séquentielle many-to-one (T entrées, une sortie) avec 2 classes de sortie

(classification binaire): 0 et 1. Nous indiquons la probabilité de prédire la classe 0 comme

p0 et la probabilité de prédire la classe 1 comme p1.

Pour calculer la probabilité p1 de la classe 1, nous calculons le produit scalaire complexe

entre le dernier état du RNN principal (quantique) hT et un v complexe de norme 1

(ce vecteur v contient des paramètres entrâınables et sa norme est fixée à la valeur 1

pendant tout l’entrâınement en renormalisant v après chaque mise à jour de ses paramètres

entrâınables). Nous soustrayons ensuite de 1 la valeur absolue du nombre complexe résultant

(nous aurions aussi pu utiliser directement la valeur absolue |hT · v
||v|| |, mais nous avons

152
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

constaté que la procédure décrite précédemment fonctionnait mieux de manière empirique,

de la même manière que [161]):

p1 = 1− |hT ·
v

||v||
| (B.4)

hT étant l’état du réseau quantique au pas de temps final T . Le produit scalaire des

vecteurs unitaires complexes que nous utilisons peut être obtenu en utilisant la distance

euclidienne de tels vecteurs [196]. La distance euclidienne peut être implémenté à l’aide

de la RAM quantique (QRAM - Quantum Random Access Memory), comme décrit dans

[139], avec un coût de calcul O(n) pour n qubits. Comme décrit dans [139] [150], p1 peut

être estimé avec précision ε en utilisant l’algorithme de comptage quantique, avec une

complexité de calcul O(1ε). La probabilité de la classe 0 est p0 = 1− p1.

B.5.1.3 Fonction de perte

La perte que nous avons utilisée est une perte de marge maximale similaire à celle utilisée

dans [164]:

L = y ∗max(0,m+ − p1)2 + (1− y) ∗max(0, p1 −m−)2 (B.5)

où y est l’étiquette de la vérité terrain et m+ et m− sont des hyperparamètres.

L’intuition derrière cette expression est que, dans le cas de l’étiquette vérité-terrain 1,

nous ne pénalisons la probabilité p1 que si elle est inférieure à m+ (un argument similaire

s’applique pour p0 et l’étiquette vérité-terrain 0). Cela correspond à la maximisation de

la différence absolue (marge) entre les probabilités de prédiction pour les deux classes,

|p1− p0|. Intuitivement, nous voulons que les prédictions de notre classificateur soient aussi

fiables que possible, afin qu’elles soient moins affectées par le bruit de l’échantillonnage de

précision ε obtenu en utilisant l’algorithme de comptage quantique. Un classificateur avec

des prédictions plus sûres nous permettrait de choisir des valeurs plus élevées pour ε et,

par conséquent, nous aurions besoin de répéter la mesure quantique moins souvent, ce qui

réduirait les coûts de calcul.

B.5.1.4 Hyper RNN classique

Nous utilisons comme RNN classique (hyper-réseau) une architecture LSTM à couche unique

[112], sans aucune connexion de type peephole, pour générer les paramètres modifiables du

RNN quantique. Nous notons l’état caché de l’hyper-réseau (classique) au temps t par h′t

et les données d’entrée au temps t par xt. Nous utilisons la même architecture comme base

de référence pour les architectures RNN classiques standard auxquelles nous comparons

notre proposition.

B.5. Apprentissage profond hybride
classique-quantique 153

Une nouvelle matrice unitaire Ut paramétrée par l’eq. B.1 est générée à chaque pas de

temps t, avec les paramètres générés à partir de l’état de l’hyper-réseau classique h′t.

Les paramètres modifiables du RNN quantique au temps t, θt (utilisés pour construire

At et Dt), sont obtenus à partir de l’état h′t en utilisant une couche linéaire (composée de

la matrice Wl et des biais bl):

θt = Wl ∗ h′t + bl (B.6)

Nous dénoterons l’application de la matrice Wl (et des biais bl) comme la transition

état-vers-paramètres-de-sortie.

B.5.2 Résultats de la simulation

Dans cette section, nous allons décrire les expériences que nous avons effectuées. On va

commencer avec le raisonnement derrière nos choix de tâche et de jeu de données, suivi par

des descriptions détaillées des systèmes mettant en oeuvre notre proposition et le LSTM

de base. Nous présentons ensuite le calcul des coûts de calcul approximés de ces systèmes

et l’estimation de la précision de classification sous approximation de l’échantillonnage de

précision ε.

B.5.2.1 Tâche et ensemble de données

Nous sommes intéressés à montrer que notre RNN hybride classique-quantique proposé

peut fonctionner de la même façon qu’un RNN classique dans les tâches de dépendance

séquentielle à long terme, avec un besoin de calcul potentiellement exponentiellement

moindre. Pour cela, nous choisirons une tâche similaire à la tâche pixels permutés de

MNIST, un benchmark standard pour les capacités mémoire à long terme des architectures

RNN [121] [38].

Nous afficherons des résultats sur l’ensemble de données Fashion-MNIST [198] [199]. Le

choix de cet ensemble de données est motivé par le fait qu’il est similaire à l’ensemble de

données bien connu du MNIST (mêmes dimensions d’entrée, et mêmes nombres d’exemples

d’entrâınement, de validation et de test), mais il est plus difficile. La tâche que nous

considérons consiste d’abord à permuter les pixels d’entrée des images (en utilisant la même

permutation pour l’ensemble entier des données). Les pixels sont ensuite entrés un par un

et le système doit classer la séquence résultante. Cette tâche (Fashion-MNIST) est la même

que la tâche pixels permutés MNIST (mais utilise un autre ensemble de données). Afin de

réduire le temps d’entrâınement (en particulier pour la simulation des systèmes hybrides

classiques-quantiques), nous effectuerons également des simulations où nous réduirons la

taille de l’ensemble d’entrâınement.

Pour simplifier le problème de devoir produire des sorties du RNN quantique, nous

154
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

simplifierons également les tâches pour ne distinguer que 2 classes de Fashion-MNIST. Cela

simplifie le problème de produire une sortie à partir de l’espace en très haute dimension

du RNN quantique. Dans le même temps, nous essaierons de choisir les 2 classes les

plus difficiles à distinguer, afin que les différences entre les capacités des différents RNN

deviennent plus faciles à distinguer et moins affectées par le bruit inhérent à l’initialisation

des paramètres aléatoires, à la procédure d’entrâınement, etc.

Nous utiliserons donc les classes 4 (représentant des manteaux) et 6 (représentant des

chemises) dans cette tâche [198]. Quelques exemples d’images de ces classes peuvent être

vues dans la figure B.9 et la figure B.10. Les ensembles d’entrâınement varieront de 1000

images pour chaque classe jusqu’à 5000 images pour chaque classe (correspondant au total

de 2000 et 10000 images d’entrâınement). Les ensembles de validation contiennent 1000

images de chaque classe. Ces deux ensembles sont composés d’images choisies au hasard

sans remplacement sur l’ensemble de la série d’entrâınement originale (de 6000 images pour

chaque classe). Nous conservons l’ensemble du jeu de test non modifié (composé de 1000

images de chaque classe).

Figure B.9 – Exemples de manteaux de Fashion-MNIST

Figure B.10 – Exemples de chemises de Fashion-MNIST

B.5.2.2 Détails des systèmes

Dans cette sous-section, nous décrivons les détails des systèmes que nous avons simulés, à

savoir le LSTM classique de référence et notre proposition hybride classique-quantique.

B.5.2.2.1 LSTM classique de référence Comme base de référence classique,

nous avons utilisé une architecture LSTM (Long Short-Thort-Term Memory) à couche

unique [112], sans aucune connexion de type peephole. Pour prédire la probabilité de la

première des deux classes, nous calculons le produit scalaire entre l’état à la dernière étape

temporelle hT et un vecteur de même dimension des paramètres réels entrâınables v (qui

B.5. Apprentissage profond hybride
classique-quantique 155

contient les poids de la couche de sortie) et interprétons le résultat comme un logit. La

fonction de perte que nous utilisons est la perte logistique.

Nous avons vérifié de manière empirique que cette approche fonctionne de manière

similaire à l’approche habituelle qui consiste à utiliser une fonction de sortie softmax et de

perte d’entropie croisée (sans perte significative de la précision de la prédiction).

Nous initialisons tous les poids LSTM à l’aide d’un initialiseur orthogonal [166] et

initialisons les biais des portes d’oubli à 1, afin de faciliter l’apprentissage des dépendances

à long terme, comme suggéré par exemple dans [122]. L’état initial h0 est initialisé à 0

et le reste des biais sont initialisés à 0. Les poids et les biais de la couche en sortie sont

initialisés, par souci de simplicité, en utilisant une distribution gaussienne (moyenne 0 et

variance 1).

B.5.2.2.2 Système hybride classique-quantique Nous avons utilisé la même

initialisation pour l’hyper-RNN classique (LSTM) dans notre proposition de système que

pour la référence classique LSTM. Les composantes réelles et imaginaires de la couche de

sortie v dans l’eq. B.4 ont été initialisées en utilisant une distribution gaussienne tronquée

avec une moyenne 0 et un écart-type 0,01. Les poids Wl dans l’eq. B.6 sont initialisés à 0

et les biais bl à 1.

Pour tous les résultats que nous rapportons, nous avons utilisé les valeurs m+ = 0.7 et

m− = 0.3 pour la fonction de perte de marge de notre proposition. Ces valeurs semblaient

donner les meilleurs résultats dans nos essais limités de recherche d’hyperparamètres.

B.5.2.2.3 Paramètres communs Pour l’optimisation, nous avons utilisé ADAM

[125] avec les hyperparamètres par défaut (y compris le taux d’apprentissage 0,001) à la fois

pour la réference classique et pour notre proposition de système. Pour les deux systèmes,

l’écrêtage de gradient par norme globale [152] est utilisé, avec norme globale 5.

Pour la plupart des paramètres de tâche, nous utilisons des lots de taille 100 (sauf

indication contraire). L’optimisation est toujours exécutée pour 100 époques. La validation

est effectuée tous les 10000 exemples. Nous conservons la meilleure précision de validation

et la précision de test correspondante.

Pour le système LSTM de référence, nous essayerons plusieurs configurations pour

chaque tâche. Nous doublons le nombre d’unités pour chaque nouvelle configuration, ce qui

correspond à environ 4 fois plus de paramètres entrâınables. L’augmentation du nombre

d’unités augmente la mémoire récurrente et l’augmentation du nombre de paramètres

entrâınables conduit à des modèles plus expressifs, mais également à un risque accru de

surapprentissage et à un coût de calcul plus élevé. Pour chaque configuration du système

de référence, nous entrâınons le système plusieurs fois (correspondant à différentes graines

aléatoires - random seed - à partir desquelles les paramètres entrâınables sont initialisés)

pour chaque système avec un nombre fixe d’unités et sélectionnons le système résultant avec

156
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

la meilleure précision sur l’ensemble de validation, pour lequel nous rapportons également

la précision de test. Ceci est une configuration plus difficile pour notre proposition de

système, car le système de référence a plusieurs chances d’obtenir de bonnes performances,

alors que notre proposition aura une seule chance.

B.5.2.3 Approximation du coût de calcul

Dans cette section, nous décrivons l’approche que nous avons utilisée pour approximer

les coûts de calcul de notre proposition et du système classique de référence (LSTM).

Par souci de simplicité, nous utiliserons une approximation rapide des coûts de calcul.

Évidemment, dans le cas d’une implémentation sur des ordinateurs quantiques (et non

d’une simulation, comme dans notre cas), il faudrait prendre en compte un plus grand

nombre de facteurs que nous négligeons ici pour des raisons de simplicité, notamment le

surcoût de la correction d’erreur et de la gestion du bruit. Nous nous concentrerons sur les

coûts d’inférence/déploiement.

Notre approche est similaire à la façon dont le coût de calcul est estimé dans [121],

qui propose un RNN où les matrices de poids sont factorisées par Kronecker (similaire au

nôtre, sans faire appel au calcul quantique). Notamment, nous ne prendrons en compte que

le coût dominant de l’application de la transition récurrente (entre deux états consecutifs

d’un réseau récurrent, qu’il soit classique ou quantique). Pour une séquence d’entrées T , la

transition récurrente est appliquée T fois, contrairement à l’opération de sortie (qui génère

les probabilités des classes), qui n’est appliquée qu’une seule fois. La transition récurrente

est également différente des autres opérations (la multiplication des entrées par une matrice

de poids dans le LSTM classique ou la géneration des paramètres du RNN quantique à

partir de l’état de l’hyper-RNN classique), car elle ne peut pas être parallélisée (elle doit

être appliquée séquentiellement, dans l’ordre, à chaque pas de temps). Nous négligeons en

outre le coût d’utilisation de tout biais, car asymptotiquement, ils sont quadratiquement

plus petits que le coûts des multiplications matrice - vecteur.

Dans le cas du modèle LSTM monocouche de référence comprenant des unités cachées

h, nous estimons le coût de son exécution à chaque pas de temps par 4 ∗ h2. Nous utilisons

cette approximation car un LSTM a 4 matrices récurrentes de taille h2.

Le coût de calcul approximé de notre RNN hybride-classique est obtenu de la manière

suivante. Tout d’abord, le coût de l’hyper-RNN classique (un LSTM) est obtenu comme

pour la référence classique.

Nous décomposons le coût du RNN quantique en coût du QFT et du IQFT et le coût

des matrices unitaires paramétrées. Comme le QFT et l’IQFT peuvent être implémentés sur

un ordinateur quantique avec un temps O(n log(n)) [101] et que nous simulons entre n = 8

et n = 16 qubits, pour simplifier, nous estimons ces coûts à 4 ∗ n (parce que log2(n) ≤ 4

pour 8 ≤ n ≤ 16). Comme les matrices unitaires paramétrées n’utilisent que des portes à

B.5. Apprentissage profond hybride
classique-quantique 157

un seul qubit et que chacune de ces portes peut être décomposée en 4 portes élémentaires,

comme décrit dans la section B.5.1.1, nous estimons également ces coûts à 4 ∗ n. Le coût

total par pas de temps du RNN quantique pour une éxécution est alors estimé à 4 ∗ 4 ∗ n,

somme des coûts du QFT, de l’IQFT et des matrices unitaires paramétrées.

Puisque nous devons effectuer des mesures répétées après le dernier pas de temps pour

obtenir une approximation de la probabilité p1, comme décrit dans la section B.5.1.2, nous

devons répéter l’éxécution du RNN quantique pour chaque nouvelle mesure. Comme décrit

dans la section B.5.1.2, p1 peut être estimé avec précision ε si on mesure O(1ε) fois (et

on répéte l’éxécution du RNN quantique O(1ε) fois). Pour des raisons de simplicité, nous

approcherons le nombre de répétitions de l’éxécution du RNN quantique à 1
ε . Le coût de

calcul approximé par pas de temps pour le RNN quantique sera alors
4 ∗ 4 ∗ n

ε
et le coût

approximé par pas de temps pour l’ensemble du système hybride classique - quantique sera

4 ∗ h2 +
4 ∗ 4 ∗ n

ε
.

B.5.2.4 Estimation de la précision de classification sous approximation

de l’échantillonnage de précision ε

Nous estimons la précision de classification de validation et de test de nos systèmes hybrides

lorsque des mesures répétées O(1ε fois (à précision ε) sont effectuées comme suit.

Nous comptons pour combien d’exemples |p1 − 0.5| < ε (correspondant à tous les

exemples pour lesquels la prédiction n’est pas suffisamment fiable). Par souci de simplicité,

supposons alors que pour la moitié des exemples pour lesquels la prédiction n’est pas

suffisamment fiable, l’approximation ε conduirait à une prédiction correcte (et pour l’autre

moitié, la prédiction serait incorrecte). Nous recalculons ensuite les précisions de validation

et de test en utilisant cette hypothèse (exactement la moitié de tous les exemples pour

lesquels la prédiction n’est pas suffisamment fiable serait prédite correctement, au lieu

d’utiliser le nombre initial de prédictions correctes, mais pas suffisamment fiables).

B.5.3 Résultats

Dans cette section, nous présentons les meilleurs résultats obtenus pour les différents para-

mètres de tâche (nombre de pixels de l’image d’entrée, nombre d’exemples d’entrâınement,

taille du lot) pris en compte. Nous présentons ces paramètres et les résultats correspondants

dans l’ordre croissant des dépendances temporelles, dans l’ordre croissant de la taille du jeu

d’apprentissage et de la taille du lot. Nous désignons les systèmes de référence classiques

par LSTM-[h], où h est le nombre d’unités cachées. Pour notre proposition, nous utilisons

la notation LSTM-[h′]-[n]q, où h′ est le nombre d’unités de l’hyper-LSTM et n le nombre

de qubits de notre RNN quantum. Lors de la présentation des résultats des approximations

d’échantillonage de précision ε, nous ajoutons la notation ε = [value]. Nous utilisons la

158
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

notation AFDF-[n]q pour désigner la composante quantique de notre système.

Nous montrons d’abord le coût approximé de calcul par pas de temps pour chacun des

composants classiques et quantiques de notre système dans le tableau B.7. Dans le tableau

B.8, nous affichons les facteurs de coûts supplémentaires résultant de mesures répétées sous

différentes approximations de précision ε. Nous avons décrit comment le coût approximé

total par pas de temps d’un système est obtenu à partir du coût des sous-systèmes classiques

et quantiques, en tenant compte de l’approximation de précision ε, dans la section B.5.2.3.

Pour des raisons de commodité, nous afficherons l’approximation du coût total par pas de

temps pour chaque système dans chaque paramètre de tâche ci-dessous (à l’exception des

résultats obtenus pour notre proposition lorsqu’aucune précision ε-accuracy n’est utilisée,

puisque le coût dépendrait de ε).

System Approximate computational cost
LSTM-7 196
LSTM-16 1024
LSTM-32 4096
LSTM-64 16384
LSTM-128 65536
LSTM-256 262144
LSTM-512 1048576

AFDF-9q 144
AFDF-10q 160
AFDF-11q 176
AFDF-13q 208

Table B.7 – Coût de calcul approximé (opérations) par pas de temps pour chaque composant
de système (LSTM classique et AFDF quantique).

ε approximation 0.01 0.02 0.03
Extra cost factor 100 50 34

Table B.8 – Facteur de coût supplémentaire à partir de mesures répétées sous différentes
approximations ε.

Nous montrons les meilleurs résultats obtenus par notre proposition dans le tableau B.9,

pour 2000 exemples d’entrâınement de 28 x 28 pixels et d’une taille de lot de 100 exemples.

Notre proposition de système (LSTM-16-9q) obtient la meilleure précision de validation

et de test, avec la performance LSTM-256 deuxième meilleure. Avec une approximation

d’échantillonnage de 0,03, notre proposition serait environ 44 fois plus efficace en calcul

que le LSTM-256. Sous une approximation d’échantillonnage de 0,01, notre proposition

B.5. Apprentissage profond hybride
classique-quantique 159

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7260 0.7160 1024
LSTM-32 0.8115 0.7880 4096
LSTM-64 0.7735 0.7590 16384
LSTM-128 0.8055 0.7880 65536
LSTM-256 0.8155 0.8010 262144

LSTM-16-9q 0.8205 0.8040 -
LSTM-16-9q ε =
0.01

0.8180 0.8030 15424

LSTM-16-9q ε =
0.02

0.8122 0.7955 8224

LSTM-16-9q ε =
0.03

0.8067 0.7935 5920

Table B.9 – Résultats pour 2000 exemples d’entrâınement, 28 x 28 pixels, taille des lots
100 exemples.

serait toujours environ 17 fois plus efficace en calcul que le LSTM-256 et obtiendrait

la meilleure précision à la fois sur les ensembles de validation et de test pour

cette tâche.

Dans le tableau B.10, nous montrons les résultats obtenus pour 10000 exemples

d’entrâınement de 28 x 28 pixels et de taille de lot 100. Ici LSTM-16-9q obtient une

meilleure précision de validation que tous les systèmes LSTM avec moins de 128 unités et

une meilleure précision de test que tous les systèmes LSTM avec moins de 512 unités. Le

LSTM-512 obtient les meilleures précisions de validation et de test, tandis que le LSTM-128

obtient la même précision de validation (mais une précision d’essai inférieure). Fait intéress-

ant, les 9 qubits de notre proposition correspondent exactement à 512 états du système

quantique (log2(512) = 9). Si l’on tient compte de l’approximation de l’échantillonnage

à ε-près, pour ε = 0, 01 la précision de test serait égale à celle du LSTM-128, pour un

coût de calcul qui serait environ 4 fois inférieur. Par rapport à LSTM-512, notre méthode

serait environ 68 fois plus efficace pour ε = 0, 01. Ce résultat montre que notre proposition

resterait efficace du point de vue calcul même si le nombre d’exemples d’entrâınement

augmente, ce qui exige que les modèles statistiques aient plus de capacité, et suggère que

les gains sur le plan du calcul pourraient être asymptotiquement exponentiels.

B.5.4 Conclusions

Dans cette section, nous avons présenté des résultats préliminaires d’une nouvelle para-

métrisation de réseau neuronal hybride classique-quantique. À notre connaissance, il s’agit

160
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

System Best valida-
tion accuracy

Test accuracy Approximate
computa-
tional cost

LSTM-16 0.7920 0.7875 1024
LSTM-32 0.8560 0.8315 4096
LSTM-64 0.8585 0.8495 16384
LSTM-128 0.8870 0.8585 65536
LSTM-256 0.8840 0.8565 262144
LSTM-512 0.8870 0.8745 1048576

LSTM-16-9q 0.8675 0.8620 -
LSTM-16-9q ε =
0.01

0.8642 0.8585 15424

LSTM-16-9q ε =
0.02

0.8625 0.8557 8224

LSTM-16-9q ε =
0.03

0.8578 0.8515 5920

Table B.10 – Résultats pour 10000 exemples d’entrâınement, 28 x 28 pixels, taille du lot
100.

de la première approche visant à construire des réseaux récurrents quantiques de neurones

qui présente des améliorations potentielles par rapport à une architecture RNN classique

proche de l’état de l’art. Bien que nos résultats soient préliminaires, nous pensons qu’il

s’agit d’une des premières études montrant des résultats empiriques prometteurs indiquant

des avantages quantiques potentiels pour des tâches et des jeux de données d’apprentissage

automatique de grande échelle.

B.6 Conclusions

Dans cette dernière partie, nous allons d’abord résumer notre travail, puis fournir une

perspective plus spéculative sur les sujets abordés dans cette thèse, en discutant de la

promesse des réseaux neuronaux et du calcul quantique pour résoudre la reconnaissance de

l’écriture manuscrite (à un niveau humain de performance) et des implications potentielles

pour l’intelligence générale artificielle.

Dans notre première contribution, nous avons amélioré les performances des réseaux

convolutionnels pour la reconnaissance manuscrite des chiffres à l’aide de techniques récentes

(au moment où le travail a été effectué) d’apprentissage profond.

Nous avons ensuite introduit les Réseaux Transformateurs Spatiaux Liés (RTSL), des

Réseaux Transformateurs Spatiaux (RTS) avec des poids partagés, et différentes variantes

d’entrâınement permettant d’améliorer les performances sur une variante déformée de

l’ensemble de données MNIST.

B.6. Conclusions 161

Dans notre contribution suivante, nous avons comparé la performance de l’ALSTM

(Associative Long Short-Term Memory), une architecture de réseau neuronal récurrent

récemment introduite, avec celle du LSTM (Long Short-Term Memory), sur le jeu de

données IFN-ENIT (pour la reconnaissance d’écriture arabe).

Enfin, nous avons montré que l’intégration de l’informatique quantique aux réseaux de

neurones pourrait fournir des gains de calcul (en termes de temps et de mémoire) pour

la reconnaissance de séquences sur l’ensemble de données Fashion-MNIST. Nos résultats

suggèrent que des améliorations exponentielles de la complexité de calcul pourraient

être réalisées, en particulier pour les réseaux de neurones récurrents entrâınés pour la

classification des séquences.

Nous allons maintenant examiner comment notre travail s’intègre dans le contexte plus

large de la reconnaissance de l’écriture manuscrite et, plus spéculativement, de l’intelligence

artificielle générale. Certains chercheurs influents en apprentissage profond ont soutenu que

l’apprentissage supervisé a été efficacement résolu grâce à l’apprentissage en profondeur,

tant qu’il existe suffisamment de données [87].

Des performances surhumaines ont déjà été obtenues pour certaines tâches telles que la

reconnaissance d’objets et la reconnaissance vocale, sur des jeux de données volumineux

(ImageNet [104] [206] pour la reconnaissance d’objet et Switchboard [103] pour la recon-

naissance vocale). Etant donné la corrélation entre les domaines (reconnaissance d’objet,

reconnaissance de la parole et reconnaissance de l’écriture) et le succès d’architectures

de réseau de neurones similaires dans les trois domaines, des performances surhumaines

pour les tâches de reconnaissance de l’écriture devraient également être réalisables avec

des méthodes similaires. Étant donné le puissance croissante en matière de calcul (loi de

Moore) et d’innovations algorithmiques (souvent importées de domaines connexes tels que

la vision par ordinateur, la reconnaissance vocale ou la traduction automatique), le goulot

d’étranglement le plus important pourrait être la quantité disponible de données étiquetées

de reconnaissance d’écriture manuscrite.

Comment le calcul quantique s’inscrit-il dans cette perspective? L’informatique quantique

n’est probablement pas nécessaire pour résoudre le problème de la reconnaissance de

l’écriture manuscrite, ni même de l’IA au niveau humain, car le cerveau humain n’utilise prob-

ablement pas l’informatique quantique [137]. Cependant, de nombreux résultats théoriques

et empiriques récents suggèrent que l’informatique quantique pourrait apporter des avant-

ages à de nombreux problèmes d’IA.

Les résultats les plus intéressants pour la reconnaissance générale de l’écriture manuscrite

sont probablement ceux qui concernent les avantages du calcul quantique pour les tâches

séquentielles en IA, en raison de la nature séquentielle de la reconnaissance de l’écriture

manuscrite. Nos résultats empiriques présentés dans la section précédente suggèrent que le

calcul quantique pourrait conduire à des réseaux neuronaux récurrents (potentiellement

exponentiellement) plus efficaces. De multiples résultats théoriques suggèrent également

162
B. Contributions à la reconnaissance de l’écriture manuscrite avec

des réseaux de neurones profonds et le calcul quantique

que les systèmes d’informatique quantique nécessitent moins de ressources mémoire (que le

calcul classique) pour modéliser avec précision des systèmes dynamiques pour des tâches

séquentielles [45] [78] [187]. Il semble possible de tirer parti de ces caractéristiques du calcul

quantique pour construire des réseaux neuronaux récurrents plus efficaces en temps et

en mémoire et, inversement, des RNNs qui obtiennent une meilleure précision pour des

ressources de calcul similaires.

La capacité de discriminer des séquences ordonnées de stimuli et, plus généralement, la

capacité de représenter et de traiter l’information séquentielle et la capacité de mémoire ac-

crue ont été proposées comme des caractéristiques fondamentales qui différencient l’homme

des autres animaux. Les performances humaines supérieures observées sur des tâches séquen-

tielles peuvent être utiles pour une grande variété de problèmes, dont certains peuvent

être résolus seulement par l’homme, comme la compréhension du langage [83]. En ce sens,

la résolution de la reconnaissance de l’écriture manuscrite, pour laquelle l’apprentissage

profond et le calcul quantique semblent des approches appropriées et avantageuses, pourrait

être l’une des étapes importantes vers l’IA au niveau humain. Les exigences de moins de

mémoire interne pour la mémoire interne des systèmes quantiques pourraient également

suggérer (beaucoup plus spéculativement) que la performance surhumaine (potentiellement

fortement) est plausible tant pour la reconnaissance de l’écriture manuscrite que pour

l’intelligence artificielle générale.

References

[1] “Adiabatic quantum computation.” [Online]. Available: https://en.wikipedia.org/wiki/
Adiabatic quantum computation

[2] “Bentham collection | tranScriptorium.” [Online]. Available: http://transcriptorium.eu/
datasets/bentham-collection/

[3] “Biological neuron model.” [Online]. Available: https://en.wikipedia.org/wiki/Biological
neuron model

[4] “BQP.” [Online]. Available: https://en.wikipedia.org/wiki/BQP

[5] “Calculus on Computational Graphs: Backpropagation – colah’s blog.” [Online]. Available:
http://colah.github.io/posts/2015-08-Backprop/

[6] “Classification datasets results.” [Online]. Available: http://rodrigob.github.io/are we there
yet/build/classification datasets results.html

[7] “Continuous-variable quantum information.” [Online]. Available: https://en.wikipedia.org/
wiki/Continuous-variable quantum information

[8] “Convolution as matrix multiplication.” [Online]. Available: https://en.wikipedia.org/wiki/
Toeplitz matrix#Discrete convolution

[9] “Convolution theorem.” [Online]. Available: https://en.wikipedia.org/wiki/Convolution
theorem

[10] “Convolutional Neural Networks (LeNet) - DeepLearning 0.1 documentation.” [Online].
Available: http://deeplearning.net/tutorial/lenet.html

[11] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/classification/

[12] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/convolutional-networks/

[13] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/optimization-1/

[14] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/optimization-1/#numerical

[15] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/optimization-2/

[16] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/optimization-2/#mat

https://en.wikipedia.org/wiki/Adiabatic_quantum_computation
https://en.wikipedia.org/wiki/Adiabatic_quantum_computation
http://transcriptorium.eu/datasets/bentham-collection/
http://transcriptorium.eu/datasets/bentham-collection/
https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/BQP
http://colah.github.io/posts/2015-08-Backprop/
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://en.wikipedia.org/wiki/Continuous-variable_quantum_information
https://en.wikipedia.org/wiki/Continuous-variable_quantum_information
https://en.wikipedia.org/wiki/Toeplitz_matrix#Discrete_convolution
https://en.wikipedia.org/wiki/Toeplitz_matrix#Discrete_convolution
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
http://deeplearning.net/tutorial/lenet.html
http://cs231n.github.io/classification/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/#numerical
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/#mat

[17] “Deep learning book. Optimization chapter.” [Online]. Available: http://www.
deeplearningbook.org/contents/optimization.html

[18] “Discriminative learning for DBNs [9 mins] - Deep neural nets with generative pre-
training | Coursera.” [Online]. Available: https://www.coursera.org/lecture/neural-networks/
discriminative-learning-for-dbns-9-mins-nLRJy

[19] “IAM Handwriting Database - Computer Vision and Artificial Intelligence.” [Online].
Available: http://www.fki.inf.unibe.ch/databases/iam-handwriting-database

[20] “IAM On-Line Handwriting Database - Computer Vision and Artificial Intelligence.” [Online].
Available: http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database

[21] “ICDAR 2009 Competitions.” [Online]. Available: http://www.cvc.uab.es/icdar2009/
competitions.html

[22] “IFN/ENIT - database Arabic OCR handwritten arabic word recognition, Arabic database.”
[Online]. Available: http://www.ifnenit.com/

[23] “ImageNet.” [Online]. Available: http://www.image-net.org/

[24] “No-cloning theorem.” [Online]. Available: https://en.wikipedia.org/wiki/No-cloning theorem

[25] “NP complexity class.” [Online]. Available: https://en.wikipedia.org/wiki/NP (complexity)

[26] “Ocropy.” [Online]. Available: https://github.com/tmbdev/ocropy

[27] “OpenCV.” [Online]. Available: https://opencv.org/

[28] “P complexity class.” [Online]. Available: https://en.wikipedia.org/wiki/P (complexity)

[29] “Quantum logic gate.” [Online]. Available: https://en.wikipedia.org/wiki/Quantum logic gate

[30] “Qubit.” [Online]. Available: https://en.wikipedia.org/wiki/Qubit

[31] “RIMES database.” [Online]. Available: http://www.a2ialab.com/doku.php?id=rimes
database:start

[32] “RNN handwriting generation demo.” [Online]. Available: https://www.cs.toronto.edu/
˜graves/handwriting.html

[33] “Simultaneous perturbation stochastic approximation.” [Online]. Available: https:
//en.wikipedia.org/wiki/Simultaneous perturbation stochastic approximation

[34] “TensorFlow clip by global norm.” [Online]. Available: https://www.tensorflow.org/versions/
r1.1/api docs/python/tf/clip by global norm

[35] “Unitary matrix wiki,” https://en.wikipedia.org/wiki/Unitary matrix.

[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A system for large-scale machine learning,” 2016. [Online]. Available:
https://research.google.com/pubs/pub45381.html

[37] Andrew Gibiansky, “Speech Recognition with Neural Networks.” [Online]. Available:
http://andrew.gibiansky.com/blog/machine-learning/speech-recognition-neural-networks/

http://www.deeplearningbook.org/contents/optimization.html
http://www.deeplearningbook.org/contents/optimization.html
https://www.coursera.org/lecture/neural-networks/discriminative-learning-for-dbns-9-mins-nLRJy
https://www.coursera.org/lecture/neural-networks/discriminative-learning-for-dbns-9-mins-nLRJy
http://www.fki.inf.unibe.ch/databases/iam-handwriting-database
http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
http://www.cvc.uab.es/icdar2009/competitions.html
http://www.cvc.uab.es/icdar2009/competitions.html
http://www.ifnenit.com/
http://www.image-net.org/
https://en.wikipedia.org/wiki/No-cloning_theorem
https://en.wikipedia.org/wiki/NP_(complexity)
https://github.com/tmbdev/ocropy
https://opencv.org/
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Qubit
http://www.a2ialab.com/doku.php?id=rimes_database:start
http://www.a2ialab.com/doku.php?id=rimes_database:start
https://www.cs.toronto.edu/~graves/handwriting.html
https://www.cs.toronto.edu/~graves/handwriting.html
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
https://www.tensorflow.org/versions/r1.1/api_docs/python/tf/clip_by_global_norm
https://www.tensorflow.org/versions/r1.1/api_docs/python/tf/clip_by_global_norm
https://research.google.com/pubs/pub45381.html
http://andrew.gibiansky.com/blog/machine-learning/speech-recognition-neural-networks/

[38] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary Evolution Recurrent Neural Networks,” nov
2015. [Online]. Available: http://arxiv.org/abs/1511.06464

[39] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to
Align and Translate,” sep 2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[40] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling,” mar 2018. [Online]. Available:
http://arxiv.org/abs/1803.01271

[41] M. Benedetti, J. Realpe-Gómez, and A. Perdomo-Ortiz, “Quantum-assisted Helmholtz
machines: A quantum-classical deep learning framework for industrial datasets in near-term
devices,” aug 2017. [Online]. Available: https://arxiv.org/abs/1708.09784

[42] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp.
157–166, mar 1994. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/18267787http:
//ieeexplore.ieee.org/document/279181/

[43] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” Proceedings of
the 26th Annual International Conference on Machine Learning - ICML ’09, pp. 1–8, 2009.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.9439

[44] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter Optim-
ization,” in Advances in Neural Information Processing Systems, 2011, pp. 2546–2554. [Online].
Available: http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization

[45] F. C. Binder, J. Thompson, and M. Gu, “A practical, unitary simulator for non-Markovian
complex processes,” sep 2017. [Online]. Available: http://arxiv.org/abs/1709.02375

[46] T. Bluche, “Joint Line Segmentation and Transcription for End-to-End Handwritten
Paragraph Recognition,” apr 2016. [Online]. Available: http://arxiv.org/abs/1604.08352

[47] T. Bluche, C. Kermorvant, and J. Louradour, “Where to apply dropout in recurrent neural
networks for handwriting recognition?” in 2015 13th International Conference on Document
Analysis and Recognition (ICDAR). IEEE, aug 2015, pp. 681–685. [Online]. Available:
http://ieeexplore.ieee.org/document/7333848/

[48] T. Bluche, J. Louradour, and R. Messina, “Scan, Attend and Read: End-to-End
Handwritten Paragraph Recognition with MDLSTM Attention,” apr 2016. [Online]. Available:
http://arxiv.org/abs/1604.03286

[49] T. Bluche and R. Messina, “Gated Convolutional Recurrent Neural Networks for Multilingual
Handwriting Recognition,” in ICDAR 2017, 2017.

[50] T. Bluche, H. Ney, and C. Kermorvant, “A Comparison of Sequence-Trained Deep Neural
Networks and Recurrent Neural Networks Optical Modeling for Handwriting Recognition,”
pp. 199–210, oct 2014. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-319-11397-5 15

[51] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner,
J. M. Martinis, and H. Neven, “Characterizing Quantum Supremacy in Near-Term Devices,”
jul 2016. [Online]. Available: http://arxiv.org/abs/1608.00263

[52] A. Bouland, J. F. Fitzsimons, and D. E. Koh, “Quantum Advantage from Conjugated
Clifford Circuits,” sep 2017. [Online]. Available: http://arxiv.org/abs/1709.01805

http://arxiv.org/abs/1511.06464
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1708.09784
http://www.ncbi.nlm.nih.gov/pubmed/18267787 http://ieeexplore.ieee.org/document/279181/
http://www.ncbi.nlm.nih.gov/pubmed/18267787 http://ieeexplore.ieee.org/document/279181/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.9439
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
http://arxiv.org/abs/1709.02375
http://arxiv.org/abs/1604.08352
http://ieeexplore.ieee.org/document/7333848/
http://arxiv.org/abs/1604.03286
https://link.springer.com/chapter/10.1007/978-3-319-11397-5_15
https://link.springer.com/chapter/10.1007/978-3-319-11397-5_15
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/1709.01805

[53] Y.-L. Boureau, J. Ponce, J. P. Fr, and Y. Lecun, “A Theoretical Analysis
of Feature Pooling in Visual Recognition,” Tech. Rep., 2010. [Online]. Available:
http://yann.lecun.com/exdb/publis/pdf/boureau-icml-10.pdf

[54] E. Chammas, C. Mokbel, and L. Likforman-Sulem, “Handwriting Recognition of Historical
Documents with Few Labeled Data,” in 2018 13th IAPR International Workshop on
Document Analysis Systems (DAS). IEEE, apr 2018, pp. 43–48. [Online]. Available:
https://ieeexplore.ieee.org/document/8395169/

[55] J.-R. Chang and Y.-S. Chen, “Batch-normalized Maxout Network in Network,” 2015. [Online].
Available: http://arxiv.org/abs/1511.02583

[56] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock,
M. Hasegawa-Johnson, and T. S. Huang, “Dilated Recurrent Neural Networks,” oct 2017.
[Online]. Available: http://arxiv.org/abs/1710.02224

[57] K. B. Charbonneau and O. Shouno, “Neural Trajectory Analysis of Recurrent Neural Network
In Handwriting Synthesis,” apr 2018. [Online]. Available: http://arxiv.org/abs/1804.04890

[58] P. Chaudhari and S. Soatto, “Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks,” oct 2017. [Online]. Available:
http://arxiv.org/abs/1710.11029

[59] L. Chen, R. Yan, L. Peng, A. Furuhata, and X. Ding, “Multi-layer recurrent neural network
based offline Arabic handwriting recognition,” in 2017 1st International Workshop on Arabic
Script Analysis and Recognition (ASAR). IEEE, apr 2017, pp. 6–10. [Online]. Available:
http://ieeexplore.ieee.org/document/8067749/

[60] K. Cho, A. Courville, and Y. Bengio, “Describing Multimedia Content using Attention-based
Encoder–Decoder Networks,” jul 2015. [Online]. Available: http://arxiv.org/abs/1507.01053

[61] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation,” Tech. Rep. [Online]. Available: https://www.aclweb.org/anthology/
D14-1179

[62] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical Multiscale Recurrent Neural Networks,” sep
2016. [Online]. Available: http://arxiv.org/abs/1609.01704

[63] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio, “A
Recurrent Latent Variable Model for Sequential Data,” jun 2015. [Online]. Available:
http://arxiv.org/abs/1506.02216

[64] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column Deep Neural Networks for Image
Classification,” 2012. [Online]. Available: http://arxiv.org/abs/1202.2745

[65] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, Big, Simple Neural
Nets for Handwritten Digit Recognition,” Neural Computation, vol. 22, no. 12, pp. 3207–3220,
2010. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20858131

[66] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Handwritten Digit
Recognition with a Committee of Deep Neural Nets on GPUs,” CoRR, vol. abs/1103.4, 2011.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1103.html#abs-1103-4487

[67] B.-I. Ĉırstea, “Recognition and information extraction in multi-lingual documents with
recurrent neural networks and deep neural networks,” in Doctoral Consortium of the ICDAR
2015 Conference, Nancy, 2015.

http://yann.lecun.com/exdb/publis/pdf/boureau-icml-10.pdf
https://ieeexplore.ieee.org/document/8395169/
http://arxiv.org/abs/1511.02583
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1804.04890
http://arxiv.org/abs/1710.11029
http://ieeexplore.ieee.org/document/8067749/
http://arxiv.org/abs/1507.01053
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1609.01704
http://arxiv.org/abs/1506.02216
http://arxiv.org/abs/1202.2745
http://www.ncbi.nlm.nih.gov/pubmed/20858131
http://dblp.uni-trier.de/db/journals/corr/corr1103.html#abs-1103-4487

[68] B.-I. Ĉırstea and L. Likforman-Sulem, “Improving a deep convolutional neural network
architecture for character recognition,” in Document Recognition and Retrieval XXIII 2016,
San Francisco, 2016.

[69] ——, “Tied spatial transformer networks for character recognition,” in Rencontres Jeunes
Chercheurs of CIFED-CORIA 2016, Toulouse, 2016.

[70] ——, “Tied spatial transformer networks for digit recognition,” in 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE, oct 2016, pp. 524–529.
[Online]. Available: http://ieeexplore.ieee.org/document/7814118/

[71] J. Collins, J. Sohl-Dickstein, and D. Sussillo, “Capacity and Trainability in Recurrent Neural
Networks,” nov 2016. [Online]. Available: https://arxiv.org/abs/1611.09913

[72] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville, “Recurrent Batch
Normalization,” mar 2016. [Online]. Available: http://arxiv.org/abs/1603.09025

[73] G. Cybenkot, “Mathematics of Control, Signals, and Systems Approximation by
Superpositions of a Sigmoidal Function*,” Tech. Rep., 1989. [Online]. Available:
http://www.dartmouth.edu/˜gvc/Cybenko MCSS.pdf

[74] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves, “Associative Long
Short-Term Memory,” feb 2016. [Online]. Available: http://arxiv.org/abs/1602.03032

[75] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,
M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, Diogo149, B. McFee,
H. Weideman, Takacsg84, Peterderivaz, Jon, Instagibbs, D. K. Rasul, CongLiu, Britefury,
and J. Degrave, “Lasagne: First Release.” doi.org, pp. –, aug 2015. [Online]. Available:
https://zenodo.org/record/27878#.WgDcAHUrJCU

[76] P. Doetsch, A. Zeyer, and H. Ney, “Bidirectional decoder networks for attention-based end-to-
end offline handwriting recognition,” in Frontiers in Handwriting Recognition (ICFHR), 2016
15th International Conference on, 2016, pp. 361–366.

[77] H. El Abed and V. Margner, “The IFN/ENIT-database - a tool to develop
Arabic handwriting recognition systems,” in 2007 9th International Symposium on
Signal Processing and Its Applications. IEEE, feb 2007, pp. 1–4. [Online]. Available:
http://ieeexplore.ieee.org/document/4555529/

[78] T. J. Elliott and M. Gu, “Superior memory efficiency of quantum devices for the simulation
of continuous-time stochastic processes,” npj Quantum Information, vol. 4, no. 1, p. 18, dec
2018. [Online]. Available: http://www.nature.com/articles/s41534-018-0064-4

[79] E. Farhi and H. Neven, “Classification with Quantum Neural Networks on Near Term
Processors,” feb 2018. [Online]. Available: http://arxiv.org/abs/1802.06002

[80] J. N. Foerster, J. Gilmer, J. Chorowski, J. Sohl-Dickstein, and D. Sussillo, “Input Switched
Affine Networks: An RNN Architecture Designed for Interpretability,” nov 2016. [Online].
Available: https://arxiv.org/abs/1611.09434

[81] X. Gao, Z. Zhang, and L. Duan, “An efficient quantum algorithm for generative machine
learning,” nov 2017. [Online]. Available: http://arxiv.org/abs/1711.02038

[82] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional Sequence to
Sequence Learning,” may 2017. [Online]. Available: http://arxiv.org/abs/1705.03122

http://ieeexplore.ieee.org/document/7814118/
https://arxiv.org/abs/1611.09913
http://arxiv.org/abs/1603.09025
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/abs/1602.03032
https://zenodo.org/record/27878#.WgDcAHUrJCU
http://ieeexplore.ieee.org/document/4555529/
http://www.nature.com/articles/s41534-018-0064-4
http://arxiv.org/abs/1802.06002
https://arxiv.org/abs/1611.09434
http://arxiv.org/abs/1711.02038
http://arxiv.org/abs/1705.03122

[83] S. Ghirlanda, J. Lind, and M. Enquist, “Memory for stimulus sequences: a divide between
humans and other animals?” Royal Society Open Science, vol. 4, no. 6, p. 161011, jun 2017.
[Online]. Available: http://rsos.royalsocietypublishing.org/lookup/doi/10.1098/rsos.161011

[84] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access memory,” aug 2007.
[Online]. Available: http://arxiv.org/abs/0708.1879

[85] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

[86] X. Glorot, A. Bordes, and Y. Bengio,“Deep Sparse Rectifier Neural Networks,” in International
Conference on Artificial Intelligence and Statistics, 2011, pp. 315–323.

[87] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[88] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout
Networks,” pp. 1319–1327, 2013. [Online]. Available: http://arxiv.org/abs/1302.4389

[89] A. Goyal, A. Sordoni, M.-A. Côté, N. R. Ke, and Y. Bengio, “Z-Forcing: Training Stochastic
Recurrent Networks,” nov 2017. [Online]. Available: http://arxiv.org/abs/1711.05411

[90] B. Graham, “Fractional Max-Pooling,” CoRR, vol. abs/1412.6, 2014. [Online]. Available:
https://arxiv.org/abs/1412.6071

[91] E. Granell, E. Chammas, L. Likforman-Sulem, C.-D. Mart́ınez-Hinarejos, C. Mokbel, and
B.-I. Ĉırstea, “Transcription of Spanish Historical Handwritten Documents with Deep
Neural Networks,” Journal of Imaging, vol. 4, no. 1, p. 15, jan 2018. [Online]. Available:
http://www.mdpi.com/2313-433X/4/1/15

[92] A. Graves, “Supervised sequence labelling with recurrent neural networks.” Ph.D. dissertation,
2008.

[93] ——, Supervised Sequence Labelling with Recurrent Neural Networks, ser. Studies in
Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 385.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-24797-2

[94] ——, “Generating Sequences With Recurrent Neural Networks,” aug 2013. [Online]. Available:
http://arxiv.org/abs/1308.0850

[95] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal
classification,” in Proceedings of the 23rd international conference on Machine learning -
ICML ’06. New York, New York, USA: ACM Press, 2006, pp. 369–376. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1143844.1143891

[96] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-Dimensional Recurrent Neural
Networks,” may 2007. [Online]. Available: http://arxiv.org/abs/0705.2011

[97] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with Multi-
dimensional Recurrent Neural Networks,” in Advances in Neural Information Pro-
cessing Systems, 2009, pp. 545–552. [Online]. Available: http://papers.nips.cc/paper/
3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks

[98] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” oct 2014. [Online].
Available: http://arxiv.org/abs/1410.5401

[99] E. Grosicki and H. El Abed, “ICDAR 2009 Handwriting Recognition Competition,” 2009.

http://rsos.royalsocietypublishing.org/lookup/doi/10.1098/rsos.161011
http://arxiv.org/abs/0708.1879
http://arxiv.org/abs/1302.4389
http://arxiv.org/abs/1711.05411
https://arxiv.org/abs/1412.6071
http://www.mdpi.com/2313-433X/4/1/15
http://dx.doi.org/10.1007/978-3-642-24797-2
http://arxiv.org/abs/1308.0850
http://portal.acm.org/citation.cfm?doid=1143844.1143891
http://arxiv.org/abs/0705.2011
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks
http://arxiv.org/abs/1410.5401

[100] D. Ha, A. Dai, and Q. V. Le, “HyperNetworks,” 2016. [Online]. Available: http:
//arxiv.org/abs/1609.09106

[101] L. Hales, L. Hales, and S. Hallgren, “An Improved Quantum Fourier Transform
Algorithm and Applications,” IN PROCEEDINGS OF THE 41ST ANNUAL SYMPOSIUM
ON FOUNDATIONS OF COMPUTER SCIENCE, pp. 515–525, 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4161

[102] A. Hallam, E. Grant, V. Stojevic, S. Severini, and A. G. Green, “Compact Neural
Networks based on the Multiscale Entanglement Renormalization Ansatz,” nov 2017. [Online].
Available: http://arxiv.org/abs/1711.03357

[103] K. J. Han, A. Chandrashekaran, J. Kim, and I. Lane, “The CAPIO 2017 Conversational
Speech Recognition System,” dec 2017. [Online]. Available: http://arxiv.org/abs/1801.00059

[104] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” dec
2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[105] ——, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification,” feb 2015. [Online]. Available: http://arxiv.org/abs/1502.01852

[106] Z. He, S. Gao, L. Xiao, D. Liu, H. He, and D. Barber, “Wider and Deeper, Cheaper
and Faster: Tensorized LSTMs for Sequence Learning,” nov 2017. [Online]. Available:
http://arxiv.org/abs/1711.01577

[107] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal Recurrent Neural Networks with Scaled
Cayley Transform,” jul 2017. [Online]. Available: http://arxiv.org/abs/1707.09520

[108] G. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Machine Learning
Lecture 1a Why do we need machine learning?” Tech. Rep. [Online]. Available:
https://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides lec1.pdf

[109] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Tech. Rep. [Online]. Available: https://www.cs.toronto.edu/˜hinton/absps/fastnc.pdf

[110] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent Neural
Nets and Problem Solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 06, no. 02, pp. 107–116, apr 1998. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0218488598000094

[111] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recurrent
Nets: the Difficulty of Learning Long-Term Dependencies,” 2001. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7321

[112] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, nov 1997. [Online]. Available: http://www.mitpressjournals.org/doi/10.
1162/neco.1997.9.8.1735

[113] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey
striate cortex.” The Journal of physiology, vol. 195, no. 1, pp. 215–43, mar 1968. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/4966457

[114] W. Huggins, P. Patel, K. B. Whaley, and E. M. Stoudenmire, “Towards Quantum
Machine Learning with Tensor Networks,” mar 2018. [Online]. Available: http:
//arxiv.org/abs/1803.11537

http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4161
http://arxiv.org/abs/1711.03357
http://arxiv.org/abs/1801.00059
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1711.01577
http://arxiv.org/abs/1707.09520
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf
https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
http://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7321
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/4966457
http://arxiv.org/abs/1803.11537
http://arxiv.org/abs/1803.11537

[115] H. Hyotyniemi, “Turing Machines are Recurrent Neural Networks,” 1996. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.5161

[116] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” 2015. [Online]. Available: http://arxiv.org/abs/1502.03167

[117] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer
Networks.” CoRR, vol. abs/1506.0, jun 2015. [Online]. Available: http://arxiv.org/abs/1506.
02025

[118] H. Jaeger, “Echo state network.” [Online]. Available: http://www.scholarpedia.org/article/
Echo state network

[119] W. Jian, “RNNLIB: Connectionist Temporal Classification and Tran-
scription Layer.” [Online]. Available: http://wantee.github.io/2015/02/08/
rnnlib-connectionist-temporal-classification-and-transcription-layer/

[120] L. Jing, Y. Shen, T. Dubček, J. Peurifoy, S. Skirlo, Y. LeCun, M. Tegmark, and M. Soljačić,
“Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs,” dec
2016. [Online]. Available: http://arxiv.org/abs/1612.05231

[121] C. Jose, M. Cisse, and F. Fleuret, “Kronecker Recurrent Units,” may 2017. [Online]. Available:
http://arxiv.org/abs/1705.10142

[122] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent network
architectures,” pp. 2342–2350, 2015. [Online]. Available: https://dl.acm.org/citation.cfm?id=
3045367

[123] I. Kerenidis and A. Luongo, “Quantum classification of the MNIST dataset via Slow Feature
Analysis,” may 2018. [Online]. Available: http://arxiv.org/abs/1805.08837

[124] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and
S. Lloyd, “Continuous-variable quantum neural networks,” 6 2018. [Online]. Available:
http://arxiv.org/abs/1806.06871

[125] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” dec 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

[126] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

[127] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal, Y. Bengio,
A. Courville, and C. Pal, “Zoneout: Regularizing RNNs by Randomly Preserving Hidden
Activations,” jun 2016. [Online]. Available: http://arxiv.org/abs/1606.01305

[128] H. Larochelle and I. Murray, “The Neural Autoregressive Distribution Estimator,” pp. 29–37,
jun 2011. [Online]. Available: http://proceedings.mlr.press/v15/larochelle11a.html

[129] Q. V. Le, N. Jaitly, and G. E. Hinton, “A Simple Way to Initialize Recurrent Networks of
Rectified Linear Units,” apr 2015. [Online]. Available: http://arxiv.org/abs/1504.00941

[130] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=726791

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.5161
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
http://www.scholarpedia.org/article/Echo_state_network
http://www.scholarpedia.org/article/Echo_state_network
http://wantee.github.io/2015/02/08/rnnlib-connectionist-temporal-classification-and-transcription-layer/
http://wantee.github.io/2015/02/08/rnnlib-connectionist-temporal-classification-and-transcription-layer/
http://arxiv.org/abs/1612.05231
http://arxiv.org/abs/1705.10142
https://dl.acm.org/citation.cfm?id=3045367
https://dl.acm.org/citation.cfm?id=3045367
http://arxiv.org/abs/1805.08837
http://arxiv.org/abs/1806.06871
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://arxiv.org/abs/1606.01305
http://proceedings.mlr.press/v15/larochelle11a.html
http://arxiv.org/abs/1504.00941
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=726791

[131] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
may 2015. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature14539

[132] Y. LeCun, C. Cortes, and C. J. C. Burges, “MNIST,” http://yann.lecun.com/exdb/mnist/.

[133] Y. Lecun, Y. Lecun, L. D. Jackel, H. A. Eduard, N. Bottou, C. Cartes, J. S.
Denker, H. Drucker, E. Sackinger, P. Simard, and V. Vapnik, “Learning Algorithms For
Classification: A Comparison On Handwritten Digit Recognition,” NEURAL NETWORKS:
THE STATISTICAL MECHANICS PERSPECTIVE, pp. 261—-276, 1995. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4628

[134] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-Supervised Nets,” sep 2014.
[Online]. Available: http://arxiv.org/abs/1409.5185

[135] F.-F. Li, J. Johnson, and S. Young, “Recurrent Neural Networks,”
http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture10.pdf.

[136] M. Lin, Q. Chen, and S. Yan, “Network In Network,” p. 10, 2013. [Online]. Available:
http://arxiv.org/abs/1312.4400

[137] A. Litt, C. Eliasmith, F. W. Kroon, S. Weinstein, and P. Thagard, “Is the Brain a Quantum
Computer?” Tech. Rep., 2006. [Online]. Available: https://onlinelibrary.wiley.com/doi/pdf/
10.1207/s15516709cog0000 59

[138] D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. B. Garćıa, G. Su, and M. Lewenstein,
“Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A Quantum
Information Theoretic Perspective on Deep Architectures,” oct 2017. [Online]. Available:
http://arxiv.org/abs/1710.04833

[139] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and
unsupervised machine learning,” jul 2013. [Online]. Available: http://arxiv.org/abs/1307.0411

[140] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” Proc. ICML, vol. 30, 2013.

[141] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional Kernel Networks.”
in NIPS, 2014, pp. 2627–2635. [Online]. Available: http://dblp.uni-trier.de/db/conf/nips/
nips2014.html#MairalKHS14

[142] V. Märgner and H. El Abed, “ICDAR 2009 Arabic Handwriting Recognition Competition,”
2009. [Online]. Available: www.ifnenit.com

[143] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence database for offline
handwriting recognition,” International Journal on Document Analysis and Recognition,
vol. 5, no. 1, pp. 39–46, nov 2002. [Online]. Available: http://link.springer.com/10.1007/
s100320200071

[144] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, dec 1943. [Online].
Available: http://link.springer.com/10.1007/BF02478259

[145] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient Orthogonal Parametrisation
of Recurrent Neural Networks Using Householder Reflections,” dec 2016. [Online]. Available:
http://arxiv.org/abs/1612.00188

[146] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models of Visual Attention,”
jun 2014. [Online]. Available: http://arxiv.org/abs/1406.6247

http://www.nature.com/doifinder/10.1038/nature14539
http://yann.lecun.com/exdb/mnist/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4628
http://arxiv.org/abs/1409.5185
http://arxiv.org/abs/1312.4400
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0000_59
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0000_59
http://arxiv.org/abs/1710.04833
http://arxiv.org/abs/1307.0411
http://dblp.uni-trier.de/db/conf/nips/nips2014.html#MairalKHS14
http://dblp.uni-trier.de/db/conf/nips/nips2014.html#MairalKHS14
www.ifnenit.com
http://link.springer.com/10.1007/s100320200071
http://link.springer.com/10.1007/s100320200071
http://link.springer.com/10.1007/BF02478259
http://arxiv.org/abs/1612.00188
http://arxiv.org/abs/1406.6247

[147] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas, “ACDC: A Structured Efficient
Linear Layer,” nov 2015. [Online]. Available: http://arxiv.org/abs/1511.05946

[148] S. Mozaffari and H. Soltanizadeh, “ICDAR 2009 Handwritten Farsi/Arabic Character
Recognition Competition,” in 2009 10th International Conference on Document Analysis and
Recognition. IEEE, 2009, pp. 1413–1417. [Online]. Available: http://ieeexplore.ieee.org/
document/5277795/

[149] Q. Nguyen and M. Hein, “Optimization Landscape and Expressivity of Deep CNNs,” oct
2017. [Online]. Available: http://arxiv.org/abs/1710.10928

[150] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge
University Press, 2010.

[151] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, jan 1979. [Online]. Available:
http://ieeexplore.ieee.org/document/4310076/

[152] R. Pascanu, T. Mikolov, and Y. Bengio,“On the difficulty of training recurrent neural networks,”
in Proceedings of The 30th International Conference on Machine Learning, 2013, pp. 1310–
1318. [Online]. Available: http://jmlr.csail.mit.edu/proceedings/papers/v28/pascanu13.html

[153] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas, “Opportunities and
challenges for quantum-assisted machine learning in near-term quantum computers,” aug
2017. [Online]. Available: http://arxiv.org/abs/1708.09757

[154] T. A. Plate and T. A., Holographic reduced representation : distributed representation for
cognitive structures. CSLI Publications, 2003. [Online]. Available: https://dl.acm.org/
citation.cfm?id=862030

[155] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and When Can Deep
– but Not Shallow – Networks Avoid the Curse of Dimensionality: a Review,” nov 2016.
[Online]. Available: http://arxiv.org/abs/1611.00740

[156] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli, “Exponential
expressivity in deep neural networks through transient chaos,” jun 2016. [Online]. Available:
http://arxiv.org/abs/1606.05340

[157] J. Puigcerver, “Are Multidimensional Recurrent Layers Really Necessary for Handwritten
Text Recognition?” in ICDAR 2017, 2017.

[158] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the
Expressive Power of Deep Neural Networks,” pp. 2847–2854. [Online]. Available:
http://arxiv.org/abs/1606.05336

[159] R. Raz and A. Tal, “Oracle Separation of BQP and PH.” [Online]. Available:
https://eccc.weizmann.ac.il/report/2018/107/

[160] P. Rebentrost, T. R. Bromley, C. Weedbrook, and S. Lloyd, “A Quantum Hopfield Neural
Network,” oct 2017. [Online]. Available: http://arxiv.org/abs/1710.03599

[161] J. Romero, J. P. Olson, and A. Aspuru-Guzik,“Quantum autoencoders for efficient compression
of quantum data,” dec 2016. [Online]. Available: http://arxiv.org/abs/1612.02806http:
//dx.doi.org/10.1088/2058-9565/aa8072

[162] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by
error propagation,” pp. 318–362, jan 1986. [Online]. Available: http://dl.acm.org/citation.
cfm?id=104279.104293

http://arxiv.org/abs/1511.05946
http://ieeexplore.ieee.org/document/5277795/
http://ieeexplore.ieee.org/document/5277795/
http://arxiv.org/abs/1710.10928
http://ieeexplore.ieee.org/document/4310076/
http://jmlr.csail.mit.edu/proceedings/papers/v28/pascanu13.html
http://arxiv.org/abs/1708.09757
https://dl.acm.org/citation.cfm?id=862030
https://dl.acm.org/citation.cfm?id=862030
http://arxiv.org/abs/1611.00740
http://arxiv.org/abs/1606.05340
http://arxiv.org/abs/1606.05336
https://eccc.weizmann.ac.il/report/2018/107/
http://arxiv.org/abs/1710.03599
http://arxiv.org/abs/1612.02806 http://dx.doi.org/10.1088/2058-9565/aa8072
http://arxiv.org/abs/1612.02806 http://dx.doi.org/10.1088/2058-9565/aa8072
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293

[163] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, apr 2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/ijcv/ijcv115.
html#RussakovskyDSKS15

[164] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between Capsules,” oct 2017.
[Online]. Available: http://arxiv.org/abs/1710.09829

[165] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as
a Scalable Alternative to Reinforcement Learning,” mar 2017. [Online]. Available:
http://arxiv.org/abs/1703.03864

[166] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” dec 2013. [Online]. Available:
http://arxiv.org/abs/1312.6120

[167] A. M. Schäfer and H. G. Zimmermann, “Recurrent Neural Networks Are Universal
Approximators,” in Proceedings of the 16th international conference on Artificial Neural
Networks - Volume Part I. Springer-Verlag, 2006, pp. 632–640. [Online]. Available:
http://link.springer.com/10.1007/11840817{ }66

[168] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” apr 2014. [Online].
Available: http://arxiv.org/abs/1404.7828

[169] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a Quantum Neural Network,”
aug 2014. [Online]. Available: http://arxiv.org/abs/1408.7005http://dx.doi.org/10.1007/
s11128-014-0809-8

[170] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural nets,”
in Proceedings of the fifth annual workshop on Computational learning theory - COLT ’92.
New York, New York, USA: ACM Press, 1992, pp. 440–449. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=130385.130432

[171] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” 2014. [Online]. Available: http://arxiv.org/abs/1409.1556

[172] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization
of Machine Learning Algorithms,” in Advances in Neural Information Processing
Systems, 2012, pp. 2951–2959. [Online]. Available: http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms

[173] S. K. Sønderby, “Cluttered MNIST dataset,” https://s3.amazonaws.com/lasagne/recipes/
datasets/mnist cluttered 60x60 6distortions.npz.

[174] ——, “Spatial Transformer Network code example (’recipe’),” https://github.com/Lasagne/
Recipes/blob/master/examples/spatial transformer network.ipynb.

[175] ——, “Spatial Transformer Network code repository,” https://github.com/skaae/transformer
network.

[176] S. K. Sønderby, C. K. Sønderby, L. Maaløe, and O. Winther, “Recurrent Spatial Transformer
Networks,” sep 2015. [Online]. Available: http://arxiv.org/abs/1509.05329

[177] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for Simplicity: The
All Convolutional Net,” dec 2014. [Online]. Available: http://arxiv.org/abs/1412.6806

http://dblp.uni-trier.de/db/journals/ijcv/ijcv115.html#RussakovskyDSKS15
http://dblp.uni-trier.de/db/journals/ijcv/ijcv115.html#RussakovskyDSKS15
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1312.6120
http://link.springer.com/10.1007/11840817{_}66
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1408.7005 http://dx.doi.org/10.1007/s11128-014-0809-8
http://arxiv.org/abs/1408.7005 http://dx.doi.org/10.1007/s11128-014-0809-8
http://portal.acm.org/citation.cfm?doid=130385.130432
http://arxiv.org/abs/1409.1556
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
https://s3.amazonaws.com/lasagne/recipes/datasets/mnist_cluttered_60x60_6distortions.npz
https://s3.amazonaws.com/lasagne/recipes/datasets/mnist_cluttered_60x60_6distortions.npz
https://github.com/Lasagne/Recipes/blob/master/examples/spatial_transformer_network.ipynb
https://github.com/Lasagne/Recipes/blob/master/examples/spatial_transformer_network.ipynb
https://github.com/skaae/transformer_network
https://github.com/skaae/transformer_network
http://arxiv.org/abs/1509.05329
http://arxiv.org/abs/1412.6806

[178] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting.” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[179] E. M. Stoudenmire, “Learning Relevant Features of Data with Multi-scale Tensor Networks,”
dec 2017. [Online]. Available: http://arxiv.org/abs/1801.00315

[180] E. M. Stoudenmire and D. J. Schwab, “Supervised Learning with Quantum-Inspired Tensor
Networks,” 2016. [Online]. Available: http://arxiv.org/abs/1605.05775

[181] T. Strauss, G. Leifert, R. Labahn, and G. Mühlberger, “ICFHR2018 Competition on Auto-
mated Text Recognition on a READ Dataset.”

[182] J. Sueiras, V. Ruiz, A. Sanchez, and J. F. Velez, “Offline continuous handwriting recognition
using sequence to sequence neural networks,” Neurocomputing, vol. 289, pp. 119–128, may 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231218301371

[183] I. Sutskever Google, O. Vinyals Google, Q. V. Le Google, I. Sutskever, O. Vinyals, and Q. V.
Le, “Sequence to Sequence Learning with Neural Networks.” in NIPS, 2014, pp. 3104–3112.
[Online]. Available: https://arxiv.org/pdf/1409.3215.pdf

[184] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning,” feb 2016. [Online]. Available:
http://arxiv.org/abs/1602.07261

[185] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going Deeper with Convolutions,” sep 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[186] T. T. D. The Theano Development Team, R. Al-Rfou, G. Alain, A. Almahairi,
C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky,
Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. B. Snyder, N. Bouchard, N. Boulanger-
Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho,
J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N.
Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe,
V. Dumoulin, S. E. Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow,
M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari,
A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen,
C. Laurent, S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz,
J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van
Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel,
D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard,
J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, É. Simon,
S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian,
S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu,
L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano: A Python framework for fast computation
of mathematical expressions,” may 2016. [Online]. Available: http://arxiv.org/abs/1605.02688

[187] J. Thompson, A. J. P. Garner, V. Vedral, and M. Gu, “Using quantum theory
to reduce the complexity of input-output processes,” jan 2016. [Online]. Available:
http://arxiv.org/abs/1601.05420

[188] J. van der Westhuizen and J. Lasenby, “The unreasonable effectiveness of the forget gate,”
apr 2018. [Online]. Available: http://arxiv.org/abs/1804.04849

[189] G. Verdon, J. Pye, and M. Broughton, “A Universal Training Algorithm for Quantum Deep
Learning,” 6 2018. [Online]. Available: http://arxiv.org/abs/1806.09729

http://arxiv.org/abs/1801.00315
http://arxiv.org/abs/1605.05775
https://www.sciencedirect.com/science/article/pii/S0925231218301371
https://arxiv.org/pdf/1409.3215.pdf
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1601.05420
http://arxiv.org/abs/1804.04849
http://arxiv.org/abs/1806.09729

[190] G. Vidal, “Entanglement Renormalization: an introduction,” dec 2009. [Online]. Available:
http://arxiv.org/abs/0912.1651

[191] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. C. Courville, and Y. Bengio, “ReNet:
A Recurrent Neural Network Based Alternative to Convolutional Networks,” CoRR, vol.
abs/1505.0, 2015. [Online]. Available: https://arxiv.org/abs/1505.00393

[192] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality and learning
recurrent networks with long term dependencies,” jan 2017. [Online]. Available:
http://arxiv.org/abs/1702.00071

[193] K. H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M. S. Kim, “Quantum
generalisation of feedforward neural networks,” dec 2016. [Online]. Available: http:
//arxiv.org/abs/1612.01045

[194] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of Neural
Networks using DropConnect,” in ICML (3), 2013, pp. 1058–1066. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#WanZZLF13

[195] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse, “Flipout: Efficient Pseudo-
Independent Weight Perturbations on Mini-Batches,” mar 2018. [Online]. Available:
http://arxiv.org/abs/1803.04386

[196] N. Wiebe, A. Kapoor, and K. Svore, “Quantum Algorithms for Nearest-Neighbor
Methods for Supervised and Unsupervised Learning,” 2014. [Online]. Available:
http://arxiv.org/abs/1401.2142

[197] S. Wisdom, T. Powers, J. R. Hershey, J. L. Roux, and L. Atlas, “Full-Capacity Unitary
Recurrent Neural Networks,” oct 2016. [Online]. Available: http://arxiv.org/abs/1611.00035

[198] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST.” [Online]. Available: https:
//github.com/zalandoresearch/fashion-mnist

[199] ——, “Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
Algorithms,” aug 2017. [Online]. Available: http://arxiv.org/abs/1708.07747

[200] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in
Convolutional Network,” 2015. [Online]. Available: http://arxiv.org/abs/1505.00853

[201] Y. Yang, D. Krompass, and V. Tresp, “Tensor-Train Recurrent Neural Networks for Video
Classification,” jul 2017. [Online]. Available: http://arxiv.org/abs/1707.01786

[202] M. R. Yousefi, M. R. Soheili, T. M. Breuel, and D. Stricker, “A comparison
of 1D and 2D LSTM architectures for the recognition of handwritten Arabic,”
E. K. Ringger and B. Lamiroy, Eds., feb 2015, p. 94020H. [Online]. Available:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2075930

[203] M. Zak and C. P. Williams, “Quantum Neural Nets,” International Journal of
Theoretical Physics, vol. 37, no. 2, pp. 651–684, 1998. [Online]. Available: http:
//link.springer.com/10.1023/A:1026656110699

[204] S. Zhang, Y. Wu, T. Che, Z. Lin, R. Memisevic, R. Salakhutdinov, and Y. Bengio,
“Architectural Complexity Measures of Recurrent Neural Networks,” feb 2016. [Online].
Available: http://arxiv.org/abs/1602.08210

[205] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. L. Y. Bengio, and A. Courville, “Towards
End-to-End Speech Recognition with Deep Convolutional Neural Networks,” jan 2017.
[Online]. Available: http://arxiv.org/abs/1701.02720

http://arxiv.org/abs/0912.1651
https://arxiv.org/abs/1505.00393
http://arxiv.org/abs/1702.00071
http://arxiv.org/abs/1612.01045
http://arxiv.org/abs/1612.01045
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#WanZZLF13
http://arxiv.org/abs/1803.04386
http://arxiv.org/abs/1401.2142
http://arxiv.org/abs/1611.00035
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1707.01786
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2075930
http://link.springer.com/10.1023/A:1026656110699
http://link.springer.com/10.1023/A:1026656110699
http://arxiv.org/abs/1602.08210
http://arxiv.org/abs/1701.02720

[206] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for
Scalable Image Recognition,” jul 2017. [Online]. Available: http://arxiv.org/abs/1707.07012

http://arxiv.org/abs/1707.07012

Contributions à la reconnaissance de l’écriture manuscrite en
utilisant des réseaux de neurones profonds et le calcul

quantique

Bogdan-Ionuţ CÎRSTEA

RESUME: Dans cette thèse, nous fournissons plusieurs contributions des domaines de l’apprentissage
profond et du calcul quantique à la reconnaissance de l’écriture manuscrite.

Nous commençons par intégrer certaines des techniques d’apprentissage profond les plus récentes
(comme dropout, batch normalization et différentes fonctions d’activation) dans les réseaux de neurones
à convolution et obtenons des meilleures performances sur le fameux jeu de données MNIST. Nous pro-
posons ensuite des réseaux TSTN (Tied Spatial Transformer Networks), une variante des réseaux STN
(Spatial Transformer Networks) avec poids partagés, ainsi que différentes variantes d’entraînement du TSTN.
Nous présentons des performances améliorées sur une variante déformée du jeu de données MNIST. Dans
un autre travail, nous comparons les performances des réseaux récurrents de neurones Associative Long
Short-Term Memory (ALSTM), une architecture récemment introduite, par rapport aux réseaux récurrents
de neurones Long Short-Term Memory (LSTM), sur le jeu de données de reconnaissance d’écriture arabe
IFN-ENIT. Enfin, nous proposons une architecture de réseau de neurones que nous appelons réseau hybride
classique-quantique, capable d’intégrer et de tirer parti de l’informatique quantique. Alors que nos simulations
sont effectuées à l’aide du calcul classique (sur GPU), nos résultats sur le jeu de données Fashion-MNIST
suggèrent que des améliorations exponentielles en complexité computationnelle pourraient être réalisables,
en particulier pour les réseaux de neurones récurrents utilisés pour la classification de séquence.

MOTS-CLEFS: apprentissage profond, calcul quantique, reconnaissance d’écriture manuscrite,
réseau de neurones, réseau récurrent de neurones

ABSTRACT: In this thesis, we provide several contributions from the fields of deep learning
and quantum computation to handwriting recognition.

We begin by integrating some of the more recent deep learning techniques (such as dropout,
batch normalization and different activation functions) into convolutional neural networks and show
improved performance on the well-known MNIST dataset. We then propose Tied Spatial Transfor-
mer Networks (TSTNs), a variant of Spatial Transformer Networks (STNs) with shared weights,
as well as different training variants of the TSTN. We show improved performance on a distorted
variant of the MNIST dataset. In another work, we compare the performance of Associative Long
Short-Term Memory (ALSTM), a recently introduced recurrent neural network (RNN) architecture,
against Long Short-Term Memory (LSTM), on the Arabic handwriting recognition IFN-ENIT data-
set. Finally, we propose a neural network architecture, which we name a hybrid classical-quantum
neural network, which can integrate and take advantage of quantum computing. While our simu-
lations are performed using classical computation (on a GPU), our results on the Fashion-MNIST
dataset suggest that exponential improvements in computational requirements might be achieva-
ble, especially for recurrent neural networks trained for sequence classification.

KEY-WORDS: deep learning, quantum computation, handwriting recognition, neural
network, recurrent neural network

	Acknowledgments
	Résumé
	Abstract
	Introduction
	Introduction to deep learning
	Short introduction to machine learning
	Computational primitives
	Matrix vector multiplication
	Element-wise multiplication
	Convolution
	Factorized matrix vector multiplication

	Nonlinear activation functions

	Artificial neural network architectures
	Multilayer perceptrons (MLPs)
	Input layer
	Hidden layers
	Output layer
	Representational power

	Convolutional neural networks (CNNs)
	Convolutional layer
	Subsampling layer
	Output layer for classification
	CNN design patterns

	Recurrent neural networks (RNNs)
	Standard RNNs
	Long short-term memory (LSTM)
	Bidirectional RNN (BRNN)

	Performance measures
	Label error rate (LER)
	Character error rate (CER)
	Word error rate (WER)

	Gradient-based optimization
	Loss functions
	Cross-entropy
	Connectionist temporal classification (CTC)

	Gradient descent
	Finite differences
	Simultaneous perturbation stochastic approximation (SPSA)
	Backpropagation
	Backpropagation through time (BPTT)
	Vanishing / exploding gradients

	State of the art optimization algorithms and heuristics
	ADAM optimization
	Gradient clipping

	Helpful methods for optimization / regularization
	Dropout
	Batch normalization
	Early stopping

	Conclusion

	Deep learning-based handwriting recognition
	The role of handwriting recognition tasks in the history of neural networks
	MNIST for classification
	Other tasks and datasets
	MNIST for benchmarking generative models
	Pixel by pixel MNIST
	Recognizing multilingual handwritten sequences
	Online handwriting sequential generative models

	The history of neural networks applied to handwriting recognition
	Datasets
	IAM
	RIMES
	IFN-ENIT

	Deep neural networks (DNNs)
	Recurrent Neural Networks (RNNs)
	Architectures mixing convolutional and recurrent layers

	Conclusion

	Improving a deep convolutional neural network architecture for character recognition
	Architecture
	Nonlinear activation functions
	Gradient-based optimization and loss function
	Initialization
	ADAM variant
	Dropout
	Batch normalization
	Early stopping
	Experiments
	Conclusions

	Tied Spatial Transformer Networks for Digit Recognition
	Common elements
	Convolutional architectures
	Activation functions and parameter initialization
	Loss function and optimization
	Regularization

	Experiments
	CNN, STN and TSTN comparison
	The regularization hypothesis

	Discussion
	Conclusion

	Associative LSTMs for handwriting recognition
	Methods
	Holographic Reduced Representations
	Redundant Associative Memory
	LSTM
	Associative LSTM

	Results
	Dataset
	Image normalization
	System details
	Results

	Discussion
	Conclusion

	Hybrid classical-quantum deep learning
	Motivation for using quantum computing
	Introduction to the quantum circuit model of quantum computing with discrete variables
	The qubit
	Multiple qubits

	Unitary evolution
	Single qubit
	Multiple qubits

	Measurement
	Full measurement
	Partial measurement

	Discrete-variable quantum neural networks using partial measurement
	Introduction to hypernetworks
	Proposed parameterization
	Quantum (main) RNN
	Output layer
	Loss function
	Classical (hyper) RNN

	Simulation results
	Task and dataset
	System details
	Baseline classical LSTM
	Hybrid classical-quantum parameterization
	Common settings

	Approximate computational cost
	Accuracy estimation under -sampling approximation

	Experimental results
	Discussion
	Conclusion

	Conclusions
	Publications
	Appendices
	Other Achievements
	Contributions à la reconnaissance de l'écriture manuscrite en utilisant des réseaux de neurones profonds et le calcul quantique
	Introduction
	Amélioration d'une architecture de réseau neuronal convolutionnel profond pour la reconnaissance de caractères
	Architecture
	Détails d'implémentation
	Expériences
	Conclusions

	Réseaux de Transformateurs Spatiaux Liés pour la reconnaissance de chiffres
	Architectures convolutives
	Details d'implementation
	Expériences
	Comparaison des réseaux convolutionnels de classification, des RTSs et des RTSLs
	L'hypothèse de la régularisation

	Discussion
	Conclusion

	Associative LSTMs pour la reconnaissance de l'écriture manuscrite
	Ensemble de données
	Normalisation d'image
	Détails des systèmes
	Résultats

	Apprentissage profond hybride classique-quantique
	Architecture proposée
	RNN quantum (principal)
	Couche de sortie
	Fonction de perte
	Hyper RNN classique

	Résultats de la simulation
	Tâche et ensemble de données
	Détails des systèmes
	Approximation du coût de calcul
	Estimation de la précision de classification sous approximation de l'échantillonnage de précision

	Résultats
	Conclusions

	Conclusions

