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Abstract

Self-driving cars have the potential to provoke a mobility transformation that will
impact our everyday lives. They offer a novel mobility system that could provide more
road safety, efficiency and accessibility to the users. In order to reach this goal, the
vehicles need to perform autonomously three main tasks: perception, planning and
control. When it comes to urban environments, perception becomes a challenging task
that needs to be reliable for the safety of the driver and the others. It is extremely
important to have a good understanding of the environment and its obstacles, along
with a precise localization, so that the other tasks are well performed.

This thesis explores from classical approaches to Deep Learning techniques to per-
form mapping and localization for autonomous vehicles in urban environments. We
focus on vehicles equipped with low-cost sensors with the goal to maintain a reason-
able price for the future autonomous vehicles. Considering this, we use in the proposed
methods sensors such as 2D laser scanners, cameras and standard IMUs.

In the first part, we introduce model-based methods using evidential occupancy grid
maps. First, we present an approach to perform sensor fusion between a stereo camera
and a 2D laser scanner to improve the perception of the environment. Moreover, we add
an extra layer to the grid maps to set states to the detected obstacles. This state allows
to track an obstacle over time and to determine if it is static or dynamic. Sequentially,
we propose a localization system that uses this new layer along with classic image
registration techniques to localize the vehicle while simultaneously creating the map of
the environment.

In the second part, we focus on the use of Deep Learning techniques for the local-
ization problem. First, fwe introduce a learning-based algorithm to provide odometry
estimation using only 2D laser scanner data. This method shows the potential of neural
networks to analyse this type of data for the estimation of the vehicle’s displacement.
Sequentially, we extend the previous method by fusing the 2D laser scanner with a
camera in an end-to-end learning system. The addition of camera images increases
the accuracy of the odometry estimation and proves that we can perform sensor fusion
without any sensor modelling using neural networks. Finally, we present a new hybrid
algorithm to perform the localization of a vehicle inside a previous mapped region. This
algorithm takes the advantages of the use of evidential maps in dynamic environments
along with the ability of neural networks to process images.

The results obtained in this thesis allowed us to better understand the challenges
of vehicles equipped with low-cost sensors in dynamic environments. By adapting our
methods for these sensors and performing the fusion of their information, we improved
the general perception of the environment along with the localization of the vehicle.
Moreover, our approaches allowed a possible comparison between the advantages and
disadvantages of learning-based techniques compared to model-based ones. Finally, we
proposed a form of combining these two types of approaches in a hybrid system that
led to a more robust solution.



Résumé
L’arrivée des voitures autonomes va provoquer une transformation tres importante
de la mobilité urbaine telle que nous la connaissons, avec un impact significatif sur
notre vie quotidienne. En effet, elles proposent un nouveau systeme de déplacement
plus efficace, plus facilement accessible et avec une meilleure sécurité routiere. Pour
atteindre cet objectif, les véhicules autonomes doivent effectuer en toute sécurité et de
maniére autonome trois taches principales: la perception, la planification et le controle.

L’objectif de cette these est d’explorer différentes techniques pour la cartographie
et la localisation des voitures autonomes en milieu urbain, en partant des approches
classiques jusqu’aux algorithmes d’apprentissage profond. On s’intéresse plus spéci-
fiquement aux véhicules équipés de capteurs bon marché avec I'idée de maintenir un
prix raisonnable pour les futures voitures autonomes. Dans cette optique, nous utilisons
dans les méthodes proposées des capteurs comme des scanner laser 2D, des caméras et
des centrales inertielles a bas cott.

Dans la premiere partie, nous introduisons des méthodes classiques utilisant des
grilles d’occupation évidentielles. Dans un premier temps, nous présentons une nouvelle
approche pour faire de la fusion entre une caméra et un scanner laser 2D pour améliorer
la perception de I'environnement. De plus, nous avons ajouté une nouvelle couche
dans notre grille d’occupation afin d’affecter un état a chaque objet détecté. Cet état
permet de suivre I'objet et de déterminer s’il est statique ou dynamique. Ensuite, nous
proposons une méthode de localisation s’appuyant sur cette nouvelle couche ainsi que
sur des techniques de superposition d’images pour localiser le véhicule tout en créant
une carte de I’environnement.

Dans la seconde partie, nous nous intéressons aux algorithmes d’apprentissage pro-
fond appliqués a la localisation. D’abord, nous introduisons une méthode d’apprentissage
pour l'estimation d’odométrie utilisant seulement des données issues de scanners laser
2D. Cette approche démontre 'intérét des réseaux de neurones comme un bon moyen
pour analyser ce type de données, dans 'optique d’estimer le déplacement du véhicule.
Ensuite, nous étendons la méthode précédente en fusionnant le laser scanner 2D avec
une caméra dans un systeme d’apprentissage de bout-en-bout. L’ajout de cette caméra
permet d’améliorer la précision de I’estimation d’odométrie et prouve qu’il est possible
de faire de la fusion de capteurs avec des réseaux de neurones. Finalement, nous présen-
tons un nouvel algorithme hybride permettant a un véhicule de se localiser dans une
région déja cartographiée. Cet algorithme s’appuie a la fois sur une grille évidentielle
prenant en compte les objets dynamiques et sur la capacité des réseaux de neurones a
analyser des images.

Les résultats obtenus lors de cette these nous ont permis de mieux comprendre
les problématiques liées a l’'utilisation de capteurs bon marché dans un environnement
dynamique. En adaptant nos méthodes a ces capteurs et en introduisant une fusion
de leur information, nous avons amélioré la perception générale de I’environnement
ainsi que la localisation du véhicule. De plus, notre approche a permis d’identifier les
avantages et inconvénients entre les différentes méthodes classiques et d’apprentissage.
Ainsi, nous proposons une maniere de combiner ces deux types d’approches dans un
systeme hybride afin d’obtenir une localisation plus précise et plus robuste.
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CHAPTER 1. INTRODUCTION

Résumé du Chapitre 1

Apres une décennie d’investissements massifs dans le développement de véhicules
autonomes, la date d’arrivée d’une voiture véritablement autonome est encore incon-
nue. En particulier, il n’est toujours pas possible pour un véhicule d’étre completement
autonome en milieu urbain. De nombreuses grandes entreprises travaillent partout
dans le monde dans ce but, cependant, malgré toutes ces recherches et tous ces in-
vestissements, des accidents impliquant des véhicules autonomes et semi-autonomes se
produisent encore. La plupart des problemes pouvant entrainer des accidents provien-
nent du manque de précision dans la compréhension de I’environnement. Cette these
est motivée par les défis encore ouverts dans la perception d’une voiture autonome.
Nous nous concentrons sur le cas d'une voiture autonome équipée de capteurs a faible
cout pour créer des méthodes plus robustes qui permettront de faciliter les taches de
planification et de controle de trajectoire, les rendant plus sures et plus efficaces. Dans
ce chapitre, nous présentons en détail les motivations et les objectifs de ces travaux,
ainsi que la structure du reste de ce document.



CHAPTER 1. INTRODUCTION

1.1 Motivations

In recent years, there has been enormous efforts in the study and development of
autonomous vehicles. An autonomous vehicle, also known as self-driving car, is a
vehicle that is able to guide itself without human conduction. This topic of research
started on the 1970s, where the first self driving cars were created. The research
progress achieved in the last years has developed enough technology to make possible
autonomous vehicles in controlled or simple environments.

What is the reason behind this increasing interest in self-driving cars? First of all,
we may consider that for many people the idea of using a car that drives automatically
seems fascinating in itself. However the technology innovation aspect is not the only
reason why the world is so excited by this novelty. Many believe that autonomous
driving is a key technology for the industry to be able to increase road safety. In USA,
a National Highway Traffic Safety Administration (NHTSA) study [Singh, 2015] showed
that 94% of the car accidents are caused by human errors. For this reason, the use of
autonomous vehicles could be an important change to decrease the number of accidents.
Besides road safety, there are several other advantages, such as transportation of elderly
and people with disabilities, increase of the driver’s productivity, reduction of road
congestion and many more.

After a decade of massive investment in the development of autonomous vehicles,
the date of arrival of a true self-driving car is still unknown. When it comes to urban
environments, we are still not able to have a vehicle in operation which is completely
autonomous. Several important companies are working to achieve this goal all over
the world and even with all the research and investment, accidents are still happening
involving autonomous and semi-autonomous vehicles [Wakabayashi, 2018|[Boudette,
2018]. Most of the problems that can result in accidents come from the lack of preci-
sion in the understanding of the environment (pedestrians and other vehicles) and the
prediction of their actions.

In order to perceive the environment these vehicles are equipped with several sen-
sors, such as laser scanners, cameras and radars. The choice of the right sensors is
fundamental for the safety of the driving task. However, it is important to maintain a
reasonable price for the vehicle and for this reason, we can not use all the most precise
and powerful sensors and computers available. Therefore, one of the main challenges is
to chose the right sensor configuration along with the most fit system to process their
data, fusion it and drive autonomously the vehicle.

There are three fundamental components for any autonomous robotic system to
perform these tasks (Figure 1.1):

e Perception is related to the ability of an autonomous system to collect informa-
tion from its sensors and extract relevant knowledge from the environment.

e Planning is the process of making decisions in order to achieve the goal of the
system.

e Control refers to the ability to execute the planned actions that has been gen-
erated in the previous level.
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Figure 1.1: Components of an autonomous robotic system along with their most common
tasks.

In Figure 1.1 we show some examples of tasks that each block is responsible to
address. Each block task is highly dependent on the well performance of the tasks of a
precedent block. For example, in order to perform safely the trajectory planning, it is
necessary to have a reliable representation of the environment and a precise localization
of the vehicle. This information is developed in the perception block and needs to be
well adapted for the type of algorithms that are applied in the posterior components.
These algorithms also need to be adapted for the type of sensors that a vehicle is
equipped with. As mentioned before, low cost sensors could facilitate the deployment
of autonomous vehicles, however these sensors provide less information with lower
precision to the algorithms. Therefore, the methods developed at the perception block
need to be able to deal with these difficulties.

In this thesis we are motivated by the still open challenges in the perception aspect.
We focus on the case of an autonomous vehicle equipped with low cost sensors to create
more robust methods that will allow to facilitate the tasks of path planning and control,
making them safer and more efficient.

1.2 Objectives of the Thesis

As introduced in the previous section, the perception block is crucial for all the remain-
ing tasks of an autonomous vehicle to be well performed. One of the main challenges
is to find the best representation of the environment that will give enough information
for the vehicle to drive autonomously. This information usually is given in the format
of maps, which represents the obstacles around the vehicle and can provide even more
complex information, such as the type of obstacles (pedestrians, vehicles, buildings)
and their states (static, moving). The more precise and descriptive is the information
defined in this block, the better the remaining tasks can be executed. For example, one
of the open challenges for autonomous driving is the prediction of the other vehicles
behavior. This is only possible if in the perception layer, we are able to detect those
vehicles and track them overtime.



CHAPTER 1. INTRODUCTION

Considering this, one of the objectives of this thesis is to provide a suitable represen-
tation of the environment taking into consideration our constraints: low-cost sensors,
that will maintain a reasonable price for the future self-driving cars, and the complexity
of an urban environment. The use of low-cost sensors increase the necessity of sensor
fusion in order to have a reliable understanding of the surroundings. While driving
in an urban environment makes necessary that our methods deal with highly dynamic
environments and with the lack of precise localization data. Taking this into account,
in this work we chose to focus our mapping process using two sensors: 2D laser scanners
and cameras.

The mapping process is often tightly correlated with the localization of the vehicle.
At first glance, localization of autonomous vehicles seems significantly easy thanks to
the use of GPS. However, the precision and availability of GPS data cannot be reliable
for any situation. Therefore, it is necessary to create a system where the vehicle does not
depend only on GPS information for having a precise localization. This is possible when
we perform the localization based on the mapping of the environment. This problem is
known as Simultaneous Localization and Mapping (SLAM), which has been one of the
main research topics in the robotics field. In viewing of this, our objective is to create
and apply SLAM algorithms to allow the vehicle to perceive the environment and to
have a precise localization within it, considering the previously mentioned constraints.

Most of the existing SLAM techniques explicitly models the sensors characteristics,
robot motion and the environment based on geometry. These classical methods are
also referred as model-based SLAM. The state-of-the-art for model-based SLAM has
become very popular in the robotics field in the last decades. However, they still face
many challenging issues, specially in large-scale urban environments where there are
a large amount of information to be processed and several dynamic obstacles. In the
meanwhile, deep learning techniques have received a lot of attention in the computer
vision field and researchers have been exploring how it could be applied to the SLAM
problem. The use of learning-based methods could potentially deal with the difficulties
found in model-based algorithm, facilitating not only the SLAM problem, but also the
fusion of different sensors.

The research in this thesis aims to explore how the recent advances in Deep Learning
techniques can be combined with SLAM to address the challenges of model-based
only SLAM. Learning-based methods are already well adapted to receive as input
camera images, however the use of laser scanners is not yet commonly explored by
these techniques. By using neural networks, we could eliminate the need of sensor and
environment modelling, making these approaches free to discover such representations
as it sees fit. Our objective is to not only research how these techniques can be applied
to the SLAM problem using 2D laser scanners and cameras, but also to be able to
compare them to classical approaches, and even to explore the creation of a hybrid
method (model and learning based techniques together).

6
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1.3 Context of the thesis

This thesis was conducted at the Center for Robotics (CAOR) of MINES Paristech.
The research was supervised by Dr. Cyril Joly and Dr. Arnaud de La Fortelle, and
supported by the chair Drive for All, an international effort on the future of ground
autonomous driving. The chair is sponsored by the industrial partners PSA Peugeot,
Valeo and Safran, and it brings together four universities: MINES Paristech, EPFL,
UC Berkeley and Shanghai Jiao Tong. The aim of this group is to gather international
knowledge and apply it on the vehicles provided by the industrial partners. This group
addresses the main challenges currently in the development of autonomous vehicle,
such as path planning, vehicle control and perception.

1.4 Publications

The results presented in this thesis were published as conference or journal articles. The
list bellow presents these publications and the corresponding chapters in this thesis.

1. Valente, Michelle, Cyril Joly, and Arnaud de La Fortelle. "Fusing Laser Scanner
and Stereo Camera in Evidential Grid Maps.” 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2018. (chap-
ter 4)

2. Valente, Michelle, Cyril Joly, and Arnaud De La Fortelle. "Grid Matching Lo-
calization on Evidential SLAM.” 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 2018. (chapter 5)

3. Valente, Michelle, Cyril Joly, and Arnaud de La Fortelle. "Evidential SLAM fus-
ing 2D Laser Scanner and Stereo Camera.” Unmanned Systems (2019).(chapter 4
and chapter 5)

4. Valente, Michelle, Cyril Joly, and Arnaud de La Fortelle. ”An LSTM Network for
Real-Time Odometry Estimation.” Intelligent Vehicles Symposium (IV). IEEE,
2019. (chapter 6)

5. Valente, Michelle, Cyril Joly, and Arnaud de La Fortelle. "Deep Sensor Fusion for
Real-Time Odometry Estimation.” International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2019. (chapter 7)

6. Valente, Michelle, Cyril Joly, and Arnaud de La Fortelle. "Deep Learning Local-
ization in 2D Laser Maps”. Currently under review. (chapter 8)
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1.5 Structure of the document

The remainder of the manuscript is organized in four parts as follow:
Part I introduces to the context of this work and it is divided into two chapters:

e In chapter 2 the automotive context is introduced by presenting the main con-
cepts of the perception of an autonomous vehicle, such as its most common sen-
sors, how to perform the fusion between them and how to store their data.

e In chapter 3 the theory of Simultaneous Localization and Mapping (SLAM)
problem is explained. We present the state-of-the-art solutions to this problem
from classical approaches to deep learning methods, using two main types of
sensors: cameras and laser scanners.

Part II describes mapping and localization methods based on the Evidential theory.
It is composed of two chapters:

e In chapter 4 we first introduce the theory of occupancy grid maps and the Evi-
dential model that will be used as base for our proposed approach. Sequentially,
we propose a fusion method that uses evidential grid maps to improve the en-
vironment representation detected by a stereo camera and a 2D laser scanner.
Moreover, we introduce a new life-long grid map layer that allows to distinguish
between static and dynamic obstacles.

e In chapter 5 we use the life-long grid map introduced in the previous chapter
to propose a new localization solution based on image registration, where the
differentiation between static and dynamic obstacles can increase the localization
accuracy.

Part IIT explores the use of Deep Learning techniques to address the localization
problem of autonomous vehicles. It is made up of three chapters:

e In chapter 6 we first present the important concepts of Deep Learning to better
understand the remaining chapters. Sequentially, we propose an end-to-end deep
learning approach for real-time odometry estimation based on 2D laser scanners.

e In chapter 7 we extend the method presented in the previous chapter, by creating
a network that is able to fuse the input of a 2D laser scanner with the images of
a monocamera.

e In chapter 8 we propose an approach for localization that mixes the classic
occupancy grid SLAM with deep learning techniques. The proposed method
is able to relocalize a vehicle in a previous mapped region by estimating the
odometry and the drift related to the map using convolutional neural networks.

Part IV concludes this thesis and it is composed of one chapter:

e In chapter 9 the results of this thesis are discussed and summarized along with
hints for future research.



Part 1

Context and theoretical background

This part introduces to the context of this work. Details on the background allow
to refine the topic of the thesis that touch both the state of the automotive industry
and current research carried in the field of localisation. First, the main aspects of
the perception of a self-driving vehicle are presented. In this section we expose the
most common sensors along with their characteristics, how to fusion the information
coming from different sources and how to store the data into maps. Sequentially, the
theoretical background of the SLAM problem is presented along with the state-of-the-
art from classical approaches to deep learning methods.
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Résumé du chapitre 2

Les concepts clés permettant de donner la capacité de perception de I’environnement
au véhicule autonome sont présentés dans ce chapitre. Tout d’abord, nous passons
en revue les capteurs les plus courants qui permettent a un véhicule autonome de
conduire et de percevoir le monde qui ’entoure. Ensuite, nous montrons comment
les informations provenant de ces capteurs peuvent étre fusionnées pour améliorer la
compréhension de I’environnement. Enfin, nous présentons comment les informations
recueillies a partir de 'ensemble des capteurs peuvent étre représentées sous forme
de cartes, qui sont un outil essentiel pour effectuer différentes taches telles que la
localisation et la planification de chemin.
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2.1 Introduction

As presented in the previous chapter, the main objective of this work is to create
mapping and localization solutions for an autonomous vehicle. To achieve this goal,
we need to define important aspects of the perception of our robotic system. In this
chapter we present these key concepts that will allow us to define later the constrains
of our solutions.

Humans constantly interact with the world while simultaneously acquiring informa-
tion from it. We hear sounds, see objects and touch them. However, it is our perception
that gives meaning to these actions and allows us to decipher the information we get
from the world. Moreover, only after we perceive the information that we acquire, we
can perform the right action for it. For example, if we hear a sound, understand that
it is a fire alarm, we know that it is necessary to evacuate from a building. However,
without the perception and knowledge that we have to understand that it was a fire
alarm, only the sound information would not be useful.

Now imagine how that works for an autonomous vehicle. The vehicle drives in a road
acquiring a constant stream of information coming from its sensors, such as images,
laser scanner pointclouds, radar distances and GPS positions. All this information can
be then translated into pedestrians behavior, other vehicles localization, street signs
and much more. The understanding of the meaning behind the different type of data
is crucial for the vehicle to take the right actions and to perform fast decisions that
can maintain the safety of its passengers. Just as perception allows humans to make
associations and act on them, the ability to perceive the environment and understand
it is a fundamental task for an autonomous vehicle to drive safely.

The key concepts in order to give this ability to perceive the environment to the
system of an autonomous vehicle are presented in this chapter. First, we overview the
most common sensors that allows an autonomous vehicle to drive and perceive the
world. Sequentially, we show how the information from these sensors can be fused to
increase the understanding of the environment. Finally, we present how the information
gathered from the different sensors can be stored into maps, which are an essential tool
to perform different tasks, such as localization and path planning.

2.2 Sensors

In this section we will highlight some of the most important characteristics of the sensors
used on an autonomous vehicle. An example configuration with the most common
automotive sensors is presented in Figure 2.1. Cameras, laser scanners and radars are
the most commonly used sensors in autonomous vehicles to detect the obstacles and
map the environment. Along with these sensors usually we can find a GNSS receiver,
commonly known as GPS, for global positioning and for high-frequency positioning,
sensors such as IMUs and wheel encoders.
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Figure 2.1: An example of sensor configuration for an autonomous vehicle

2.2.1 LiDAR

Light Detection And Ranging (LiDAR) is an active sensor based on the emission of
laser beams at fixed angular steps. It measures the reflected pulses once the beam hits
an object and analyzes it to calculate the distance to the object. This type of sensor
typically operate in the near-infrared spectrum and some can work outdoors at ranges
from a few meters out to over a hundred meters.

The most common and less expensive type of LIDAR sensors used in robotics ap-
plications are the 2D LiDARs. This means, they are able to see a planar slice of the
world around them, but not above or below. There are also another type of LiDARs
that can detect the world in 3D. This can be done either when multiple laser sensors
are used, or when the laser sensor is rotated to take multiple scans. The first case is
used by the Velodyne! line of 3D LiDAR sensors, while the second one is projected by
researchers because of the lower cost [Surmann et al., 2001][Ricaud et al., 2017].

Almost all the current autonomous vehicles are equipped with a LiDAR. This pop-
ularity is due to the high accuracy of this kind of sensors. However, there are still
some drawbacks such as the sensitivity to dust, rain, and snow. Rasshofer et al. [2011]
provide an overview on the fundamentals of LIDAR systems and show how they can be
influenced by weather phenomena as well. Besides the weather, LiDAR sensors can be
sensitive to vibrations and impacts, which can influence the perception of autonomous
vehicles.

The major limitations for 3D laser scanners in the automotive industry is the high
price. Recently, the industry has been developing a more affordable 3D LIDAR [Ack-
erman, 2016a,b]. The goal is to replace mechanical scanning LiDAR, that physically
rotate the laser and receiver assembly to collect data over an area that spans up to
360° with Solid State LiDAR (SSL) that will have no moving parts. This new tech-
nology can make this type of sensors suitable for automotive industry. There are also
more affordable options to 3D laser scanners when the height field-of-view (FOV) is
limited by a fewer number of laser scanner layers, these options usually help avoiding
the problem of skidding produced by elevated or irregular ground.

thttp://velodynelidar.com/
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Figure 2.2: Pinhole camera model: a 3D point X is mapped to a point x on the image plane
by the ray connecting the point and the center of projection C.

2.2.2 Radar

Radar stands for Radio Detetion and Ranging and it is a popular active sensing tech-
nology for vehicles. It can be used for different purposes such as adaptive cruise control,
collision avoidance and obstacles detection. Just like laser based sensors, the radar emit
strong radio waves and the receiver collects the reflected signals back. The range of
obstacle is calculated by the time-of-flight information. Another advantage is that the
velocity of the object can be calculated directly from the frequency shift between the
emitted signal and Doppler echo.

Most of the radars operate at 24 Ghz and they are able to detect short and medium
range obstacles. However lately it has become more common the use of long-range
radars at 77 GHz, it has a low resolution but can detect obstacles up to 200m away.
They are a popular choice of sensor because they are robust mechanically and operate
effectively under a wide range of environmental conditions. They can provide range
and azimuth measurements as well as range rates. Moreover, they generate less data,
which can reduce the computational power.

2.2.3 Vision sensors

Vision sensors are classified as passive sensors, once they do not emit any ray and
perceive the environment based on the different wavelength spectra. The drawbacks
using this sensors usually are related to environment aspects, like lack of light or weather
conditions (rain, snow, dust). However, the cameras allow you to detect environment
close what a human eye can see. Therefore, the main advantage for this kind of
sensor is the available methods for distinguish objects that are detected based on their
physical properties, such as texture, color and contrast. This ability allows autonomous
vehicles to perform several important tasks, like detection of traffic lights, pedestrians,
other vehicles and lane markings. The availability and price make them applicable for
automotive applications in large scale.

Most commercial cameras can be described as pinhole cameras, which are modeled
by a perspective projection, shown in Figure 2.2. It defines the mathematical projection
from 3D world coordinates to 2D image plane coordinates. This transformation consists
in first a projection from 3D world coordinates to 3D camera coordinates, and then the
projection from 3D camera coordinates to 2D image coordinates.

16



CHAPTER 2. PERCEPTION FOR AUTONOMOUS VEHICLES

catadioptrie

Figure 2.3: Perspective, diotropic and catadioptric images. Image from [FL()REZ and Stiller,
2011].

However a real camera is not perfect and sustain a variety of different characteris-
tics. For geometric measurements, the main concern is camera distortion. In computer
vision geometric measurements is essential to have an accurate knowledge of the im-
age projection parameters. Those parameters can be found by performing a camera
calibration process. It consists in recovering the following parameters:

1. The intrinsic camera parameters, i.e. the inner transformations of the camera,
including focal length, position of the principal point, sensor scale and skew factor.

2. The non-linear lens distortion parameters.

3. The external transformation parameters for each of the views of the camera in
the calibration process.

There are several strategies to camera calibration, since correctly calibrated cameras
are required for many applications in perception. Some approaches make use of a
special, calibrated 3D setup, where the position of all 3D points and the camera center
are known [Heikkila and Silven, 1997]. Other approaches, more utilized by researchers
for its simplicity, use multiple views of a 3D pattern of known structure but unknown
position and orientation in space [Zhang, 1999]. Finally, there are some methods that
make no assumptions about the 3D structure of the scene, known as self-calibration
methods [Faugeras et al., 1992].

The combination of two projective cameras with overlapping field-of-views provides
a stereo imaging system able to give 3D range measurements. This is done by finding
the disparity between the simultaneous images captured by the left and right cameras,
which consists in the number of pixels a particular point has moved in the right camera
image compared to the left camera image.

A perspective camera covers typically a 45 horizontal field-of-view (Figure 2.3(a)).
Some automotive applications, however, require to cover larger zones. To this end,
a perspective camera can be modified by the use of a wide-lens, creating a so-called
fish-eye system (i.e. dioptric camera) [Miyamoto, 1964]. Fish-eye cameras can cover
up to 180 horizontal field-of-view (Figure 2.3(b)), but radial lens distortions cause
a nonlinear pixel mapping of the image plane. This can add complexity to image
processing algorithms. Kannala and Brandt [2006] presented a generic geometric model
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and a calibration method based on a planar calibration pattern that can be used for
both fish-eye lenses and conventional cameras.

Another interesting vision sensor is the catadioptric camera [Nayar, 1997] (also
called omnidrectional camera). It consists of a perspective camera with a convex mirror
and it provides a 360 field of view in a single image (Figure 2.3(c)). It is worth
mentioning that images obtained with the use of catadioptric cameras are characterized
by a low resolution and a central blind spot. Mei and Rives [2006] propose a model
based on the exact theoretical projection function and with the addition of parameters
to model real-world errors, in order to calibrate omnidirectional single viewpoint sensors
from planar grids.

A different approach to have a wider field-of-view is to use a cluster of cameras.
This group of cameras are known as omnidirectional multi-camera system (OMS) or
polycameras. The series Ladybug by PointGrey? is an example of this kind of system.
Taking the Ladybug3 as an example, it comprises six individual cameras and provides
a 360 field-of-view.

2.2.4 Dead-Reckoning and Inertial Positioning

Dead-Reckoning (DK) is the process of estimating the position and orientation of a
robot based on the previous position measurements. The most simple way of providing
this estimation is using encoders, which are rotatory sensors usually fixed to the wheels
of the robot. However, it is not possible to estimate lateral movements or quantify
slippages using only encoders. For this reason, the odometry measurements usually is
completemented with Inertial Measurements units.

Inertial Measurement Unit (IMU) [Morrison, 1987] is a device that measures linear
and angular motion with a combination of gyroscopes and accelerometers. Once this
sensor is connected to the vehicle, it provides a continuous stream of data related to the
linear acceleration of the car on three principal axes, combined with angular velocity
values.

Their use in autonomous vehicles is to provide an independent source for computing
the position and orientation of the vehicle relative to some initial pose. This sensor
may be sometimes the only means of navigation when other sensors, like GPS, are
unavailable.

The main advantage of these sensors is that they are not subject to external factors.
However, their precision is not high and after some measurements it can contribute to
generate an integration drift, which means that the estimation of the pose of the sensor
deteriorates over time. Considering this, IMU is a common sensor used as complement
for high-frequency local positioning and it is very often used with other sensors to
perform data fusion.

Zhttps://www.ptgrey.com/360-degree-spherical-camera-systems
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2.2.5 Global navigation satellite systems (GNSS)

The main idea of a GNSS is to use receivers to measure the time of arrival of satellite
signals and compare it to the transmission time to calculate the signals propagation
time. This time is used to estimate distances from the GNSS receiver and the satellites.
From these distances, GNSS receivers calculate the position by means of multilateration
which relies on multiple satellite measurements to produce a position fix. At this time
there are several examples of GNSS in operation: the USA’s Global Positioning System
(GPS), the Russian GLONASS, the Europe’s Galileo positioning system and China’s
BDS. GPS is the most popular and that is why a GNSS system is commonly called by
GPS.

Due to errors such as Ionospheric and Atmospheric delays, and signal blocking,
inexpensive commercial GPS receivers can have not a reliable accuracy. However,
additional hardware and infrastructure can be added to reduce these errors. Differential
GPS (DGPS) [Parkinson and Enge, 1996] is an enhancement to GPS that provides
improved position and timing performance. It uses one or a group of fixed, ground-
based reference stations whose positions are accurately known. Each station is equipped
with at least one GPS, and it broadcasts the differences between its GPS observation
and internally computed observations. The most commonly DGPS technique used is
the RTK-GPS (Real-Time Kinematics GPS) [Langley, 1998] created in the mid-1990s.
It requires the installation of a reference station at a fixed and known location closed
to the mobile GPS receiver. Through a radio link the reference station transmits data
to the mobile GPS. The mobile GPS receives the data from the station and the data
coming directly for its own GPS unit and processes it. Since the two GPS are closed
to each other and one remains at a fixed location, errors and position ambiguities
can be significantly reduced and provide an accuracy of 1 to 5 cm [El-Rabbany, 2002].
However, to use this kind of technology, it is necessary to have several reference stations
and afford the access to them, these reasons increase the cost and make it not a viable
commercial solution.

2.2.6 Conclusion

In this section, we presented the most common sensors that can be found in an in-
telligent vehicle. In Table 2.1 we can observe the different characteristics for cameras,
radars and LiDARs. It is easy to notice the complementary aspects of these sensors and
how their fusion could increase the perception of the environment for an autonomous
vehicle. There are different parameters that can be used to evaluate the sensors, such
as accuracy and robustness. Accuracy refers to how close the measurements are to
the true values, while robustness is used to evaluate the quality of being reliable and
unlikely to fail in challenging conditions. In this work, we focus on solutions based
on low-cost sensors, which usually comes along with the drawback of lower accuracy
and robustness. Therefore, in order to perform robust and safe driving in these condi-
tions, it is even more necessary to fuse the information coming from a variety sensors.
Considering this, in the next section we will present an overview of the different ways
sensor fusion can be performed.
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Camera | Radar | LiIDAR

Object Detection Medium | High High
Object Classification High Low Low
Distance Estimation Medium | High High
Velocity Estimation Low High | Medium

Lane Detection High Low Low

Functionality in poor lighting Low High High

Functionality in bad weather Low High | Medium

Cost Medium Low High

Table 2.1: Each of the three main perception sensors has their own advantages and disadvan-
tages. In this table we can observe that radar, LIDAR and cameras are more complementary
than competitive, making their fusion necessary for autonomous vehicles.

2.3 Sensor Fusion

In the previous chapter we analyzed the different sensors of an autonomous vehicle
and how they have complementary advantages and disadvantages (Table 2.1), making
data fusion an important task to create a robust and safe perception system. The
vehicle perception can be improved in many aspects by merging data from different
sensors, such as having a more rich representation of the environment, more precise
measurements and a better management of the uncertainty of each sensor. To provide
this, fusion approaches need to take into account several aspects for each sensor: the
nature of the data, the field of view, synchronization times, and frequency.

Although combining information from different senses is a quite natural and effort-
less process for human beings, imitate the same process in robotic systems is an ex-
tremely challenging task [Chavez-Garcia, 2014]. By fusing redundant information com-
ing from different sensors we obtain a more precise and trustful output that can gen-
erate better decisions. There are three main challenges to perform data fusion. First,
a precise data association process need to be done, therefore a calibration method is
necessary in order to be able to correspond the data coming from different sources.
Second, it is necessary to create a design architecture of the fusion approach, where it
will be defined in which stage the fusion will be performed. And third, define how the
uncertain and imprecise data is managed. These steps are different depending on the
application and the type of sensors. In this section we will first overview the fusion ar-
chitectures that can be applied and sequentially the types of methods that can manage
the uncertain and imprecise data to perform the fusion.
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2.3.1 Fusion architecture

In order to merge data coming from two different sources we need to define in which
step of the process we will associate them. Intelligently combining information from
the sensors will give a more complete view of the world and will improve the perception
of a robotic system. Obtaining a classification of the different fusion architectures is a
difficult task due to multidisplinarity and the large number of case studies reported in
the literature. However, for autonomous vehicles we can try to separate the different
algorithms into two main groups:

1. Low-level: the raw sensor data coming from each sensor are fed to a fusion
algorithm. For example, in the mapping task context, we can simply transform
all sensor data into metric information, and sequentially perform the fusion [Baig
and Aycard, 2010][Valente et al., 2018a]. This can be done directly since all the
data will be in the same format.

2. High-level: the raw sensor data is processed and passed through an algorithm,
which depends on the task, before performing the fusion. For example, in the
context of an obstacle detection method, the data from different sensors can
be passed to different algorithms that perform obstacle detection, and then the
output of the different obstacles detected can be fused to have a complete view
of the environment [Chavez-Garcia and Aycard, 2015][Wei et al., 2018].

This classification is directly related to the level of abstraction of the sensor data.
We could also consider a third classification, a hybrid fusion, where a method could
take the raw data of a sensor and fusion with the processed data of another sensor.
Each of these fusion architectures has certain advantages and disadvantages depending
on the application and the types of sensors applied to the task.

2.3.2 Fusion methods

Several methods have been proposed to combine information coming from different
sensors. Chavez-Garcia [2014] separates the most commonly used approaches to multi-
sensor data fusion into three categories: probabilistic fusion, evidential belief reasoning
and fuzzy logic. Here we summarize the main characteristics of these methods.

1. Probabilistic Fusion

Bayesian [Bernardo and Smith, 2009] methods or probabilistic methods, rely on
the probability distribution to represent the uncertainty of the sensor data. The
probabilistic data fusion is generally based on the Bayes theorem for combining
information. In practical, the fusion can be implemented in a number of ways,
such as using Kalman or extended Kalman filters, through sequential Model Carlo
methods, or through the use of functional density estimates [Durrant-Whyte and
Henderson, 2008].
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2. Evidential Belief Reasoning

Evidence Theory (ET), also known as Dempster-Shafer theory of evidence, [Wu
et al., 2002] adds the notion of assigning beliefs and plausibilities to possible
measurement hypotheses along with the required combination rule to fuse them.
This type of approaches aim at quantifying different degrees of belief. This is
interesting because it allows each sensor to contribute information in different
levels of details. It can also be interesting to model dynamic environments, where
there are a lot of uncertain or imprecise information.

3. Fuzzy Logic

Due to the powerful theory to represent vague data, fuzzy set theory is particu-
larly useful to represent and fuse sensor information [Russo and Ramponi, 1994].
Fuzzy logic allows the uncertainty in multisensor fusion to be directly represented
in the inference process by allowing each proposition, as well as the actual im-
plication operator, to be assigned a real number from 0.0 to 1.0 to indicate its
degree of truth. This normalization process allows efficient fuzzy data fusion
when incomplete or vague data is used.

4. Deep Learning

In Chavez-Garcia [2014] the authors did not mention the use of deep learning
methods for sensor fusion, however in the last years the interest of using this type
of techniques for this purpose has been increasing. The interest of using this type
of approach is that a lot of constraints and difficulties of sensor can be facilitated.
For example, sensor calibration is not necessary, since these parameters can be
learned from the network directly. Moreover, we do not need to define a common
model for the fusion, since most of the time the fusion can be performed by just
concatenating the information from the sensors. This information can be passed
through a specialized network before or not.

Most of the existing deep sensor fusion solutions are based on object detection,
like in [Xu et al., 2018] where the authors fuse 3D laser scanners and camera
images to predict object’s bounding boxes. There are also methods that use
sensor fusion for end-to-end learning [Patel et al., 2017], where the input is the
data of different sensors and the output is directly steering commands.

2.3.3 Conclusion

In this section, we gave a brief overview of how data fusion can be performed to increase
the perception of the environment. In this work, the sensor fusion will be explored at
different times in order to increase the information detected in the environment. The
improvement in perception will be necessary not only for mapping purpose (chapter 4),
but also to increase the accuracy in localization methods (chapter 7).

In the next section, we will present how the information detected by different sensors
can be stored into maps. The use of maps can be necessary for different tasks of an
autonomous vehicles and can be a common data format to perform sensor fusion.
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2.4 Map representation

After choosing the sensors and how to perform their fusion, a very important step
for the perception of autonomous vehicles is to choose the right map representation
in order to store the information coming from the sensors. Depending on the type of
sensor, application and environment one map representation can be more suitable than
others.

The main representations of maps are classified into three main categories:

1. Metric maps represent the geometric properties of the environment, such as the
distance to the obstacles in the environment.

2. Topological maps use a high level of abstraction, where the environment is
represented by a purely symbolic description.

3. Hybrids maps are based on the mix between topological and metric character-
istics.

2.4.1 Metric Maps

In metric maps, the information gathered from the sensors are stored representing the
metric information of the obstacles detected. This type of map is robust to map large-
scale environments and it is popular to use to Simultaneous Localization and Mapping
(SLAM) approaches, where the metric information helps to estimate the localization
of the mobile robot. In the literature we can find two main types of metric maps:
feature-based and grid-based maps.

2.4.1.1 Feature-based maps

For this representation, the raw data is processed to identify and extract features which
will be used to build the map. The main goal of this kind of strategy is to provide a
more compact representation of the environment. A common approach is to identify
geometric primitives like points, lines and circles. However, it is a hard task to do
in irregular scenarios like in outdoor environments. This approach is also common in
visual SLAM where features of the environments are extracted using image features
[Pink, 2008].

In general this type of map can be more compact than grid-based maps if the mobile
robot is in a well structured environment. Moreover, this type of map are closer to
the kind of perception of environment that humans have, which can provide accurate
results if the geometric primitives are chosen correctly. The main drawback of this
kind of map is that only environments containing the basic geometric primitives can
be correctly represented.
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2.4.1.2 Grid-Based

Grid-based maps were first introduced in [Elfes, 1991] in the format of an Occupancy
Grid and has been one of the most common representations for popular SLAM solu-
tions. The map represents the environment in regular cells and the occupancy state
of the cell indicates the probability of the cell to be occupied by an obstacle or not.
There are different strategies to update the state of the cell once a new data arrives,
such as Bayesian filtering, Dempster-Shafer and Fuzzy logic.

Bayesian filtering [Coué et al., 2006] is the most common background used, since
it is easy to cope with errors and uncertainty coming from the sensors. Moras et al.
[2011] introduced a variation of the occupancy grid called Credibilist Occupancy Grid,
also known as Evidential Grids, that is based on Dempster-Shafer theory. This rep-
resentation offers an interesting solution to differentiate between unknown (no infor-
mation) and doubt caused by conflicting information in the matching process. The
extra information provided by this map representation is a good approach for dynamic
environments. Another popular grid-based map are the Octomaps [Wurm et al., 2010],
which is an extension of an occupancy grid map to a 3D space model. It consists of an
octree data structure that is represented by a tree with nodes, where each parent node
splits into eight equal-sized voxels.

2.4.2 Topological maps

This representation has a high level of abstraction, where the environment is repre-
sented by a purely symbolic description. The topological map can be viewed as a
graph of places, where at each node, the information concerning the place and the way
to each other places connected to it, is stored. Usually this kind of map are gener-
ated on top of a grid-based or feature-based map by breaking the map into coherent
regions [Chang et al., 2007]. The fundamental weakness of this map resides in the lack
of metric information, and the difficulty of using this map for dynamic environments.
Topological mapping has a long tradition in mobile robotics. In one of the first articles
on topological mapping [Simmons and Koenig, 1995], a Partially Observable Markov
Decision Process (POMDP) model is used to estimate the position of a robot as a prob-
ability distribution. More recently, Bernuy and Ruiz-del Solar [2018] uses this type of
maps along with semantic information obtained from neural networks to perform a
localization algorithm which uses a Particle Filter for obtaining vehicle’s pose.

2.4.3 Hybrid Maps

The characteristics of metric and topological maps are complementary, which made
researchers explore the use of both in hybrid maps. In the context of autonomous
vehicles, the use of hybrid maps is explored when common road objects are used to
improve the use of metric maps. For example, in Choi [2014] the authors propose
a hybrid map-based SLAM. Their method describes the environment traversed by a
vehicle using a grid map and a feature map together, where tall objects such as street
lamps and trees are added.
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2.4.4 Conclusion

In this section, we gave an overview of the different types of maps that can be used
to perceive the environment from a robotic system. The use of maps is fundamental
to perform a variety of necessary tasks of any autonomous system. In our work, the
maps are used for different purposes, such as to perform data fusion, to differentiate
the obstacles detected in the environment and for our localization methods. In chap-
ter 4 grid-based maps will be presented in more details, more specifically probabilistic
occupancy grid maps and evidential grid maps.

2.5 Conclusion

In this chapter, we presented the main aspects of the perception of an autonomous
vehicle. We showed the different types of sensors that can be applied to autonomous
vehicles. It is possible to observe that each sensor has their own characteristics, which
makes them more reliable for certain applications than others. For this reason, it
is necessary to use a variety of sensors when it comes to a complex system like as
an autonomous vehicle. Considering this, we introduced the main concepts of sensor
fusion that are necessary for the perception of this system. Finally, we presented the
different ways to store the information gathered from the sensors in the form of maps.

Perception is only the first stage in the pipeline for the functioning of an intelligent
vehicle. Once the vehicle is able to extract relevant data from the surrounding envi-
ronment, it can use it localize itself, to plan the path ahead and to actually actuate,
all without human intervention. Each stage has its own challenges in order to create
an autonomous vehicle, however all of them rely on the fact that we need real time
processing and even more important, they need to be a robust and reliable systems.

In the next chapter, we will present how we can use this information to localize the
vehicle while simultaneously mapping the environment. This task is a popular problem
in the robotic community known as SLAM, and it is necessary for an autonomous
vehicle to map its surroundings and to have a precise localization that is not dependent
on a GNSS device.
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Résumé du chapitre 3

Dans ce chapitre, nous présentons plus en détail la problématique du SLAM, ainsi
que sa notation mathématique et les méthodes de pointe pour le résoudre. Nous sé-
parons les méthodes présentées en deux catégories principales : SLAM basé sur un
modele existant et SLAM basé sur 'apprentissage. La premiere catégorie est con-
stituée des approches SLAM classiques, tandis que la seconde regroupe de nouvelles
méthodes qui ont émergé avec la popularité des techniques de Deep Learning. Nous
concluons enfin cet état de I'art en présentant I'objectif de cette these en regard de ce
qui a été présenté jusqu’ici.
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3.1 Introduction

We presented in the previous chapter the key aspects of the perception for an au-
tonomous vehicle. After gathering the information from different sensors and storing
it, the next step is to create a map of the environment during its trajectory while simul-
taneous localizing the vehicle in this map. In this chapter, we present the theoretical
background and the state-of-the-art for this challenging task.

Simultaneous Localization and Mapping (SLAM) is the technique used for mobile
robots to build a map of the environment and at the same time use this map to
determine the robot’s location. The SLAM problem was first introduced by Hugh
Durrant-Whyte and John J. Leonard [Leonard and Durrant-Whyte, 1991], which was
based on the work of Smith, Self and Cheeseman [Smith et al., 1990]. This problem is
known as a chicken egg problem, since an accurate map is necessary for reliable location
and an accurate location is essential for building a consistent map.

The most simple form of localizing a robot inside an environment is using its odome-
try. For example, in a terrestrial mobile robot one can use the displacements measured
by encoders in their wheels to estimate the current position and orientation of the
robot. However, error is accumulated when the robot moves and eventually is so large
that we cannot have a good estimation of the robot position. The main challenge is to
provide a way of correcting the estimation of the robot state (position and orientation)
while simultaneously creating the map of the environment. One of the main challenges
is not only to prov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>