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Résumé

Les interactions onde de choc/couche limite à l’intérieur de tuyères sur-détendues produisent des

grandes régions détachées entrâınant des forces non-axisymétriques appelées charges latérales. Le mé-

canisme générateur (mettant en jeu le décollement, les couches de cisaillement et les disques de Mach)

est auto-entretenu avec des échelles de temps et d’espace relativement bien séparées de celles de la

turbulence. Dans de tels cas, une approche partiellement résolue pour la turbulence (e.g. DDES) est

envisageable afin de réduire les coûts de calcul. Cette thèse vise à étudier la nature potentiellement

globalement instable de cette instationarité à l’aide de simulations numériques hybrides dans le cas

d’une tuyère sur-détendue et par une analyse de stabilité linéaire 3D. La géométrie considérée est une

tuyère TIC, en régime free shock seperation (FSS) et fonctionnant à 3 differents nombres de Mach de

jet Mj = [1.83, 2.09, 2.27]. Les calculs non linéaires confirment les résultats expérimentaux: la densité

spectral d’énergie des perturbations de pression proche paroi est répartie sur 2 pics à fréquence inter-

médiaire (St = 0.2− 0.3) et deux bosses à basse et haute fréquence, respectivement à St < 1 et St ≈ 1.

Pour un Mach de jet Mj = 1.83, l’énergie aux fréquences St = 0.2 et St = 0.3 sont comparables. A

Mj = 2.09, le pic d’énergie à St = 0.2 domine tandis que les deux finissent par disparâıtre pour un

Mach de jet Mj = 2.27. Une PSD calculée pour différentes composantes azimutales de la perturbation

de la pression proche paroi montre une claire séparation azimutale pour toutes les contributions fre-

quentielles. En particulier, alors que le pic à St = 0.3 a une double contribution m = 2−3 à Mj = 1.83

et il est exclusivement de type m = 2 à Mj = 2.09. Le pic à St = 0.2 a, quant à lui, une symétrie

m = 1, avec une signature persistante à l’intérieur de la tuyére à Mj = 2.09. Dans un second temps,

une analyse de stabilité globale est effectuée autour du champ moyen DDES à Mj = 2.09. Une telle

analyse donne un mode instable à St = 0.2 avec une symetrie azimutale de type m = 1. Ce mode se

développe à partir du point de décollement et se localise au niveau de la couche de cisaillement externe.

Mots clés : choc, tuyères, FSS, DDES, stabilité globale, champ moyen.
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Abstract

Shock wave/boundary layer interactions in over-expanded rocket nozzles are responsible for large

detached regions resulting in non-axisymmetric forces called side-loads. The mechanism at stake is

self-sustained and involves separation, shear layers and Mach disks. In such cases, an hybrid approach

for turbulence is required to mitigate the computational cost. This thesis aims at investigating the

possibly globally unstable nature of this unsteadiness by means of a Delayed Detached Eddy Simula-

tions (DDES) on an over-expanded nozzle and comparing it with a fully-3D linear stability analysis.

The geometry considered is a TIC nozzle, experiencing a FSS unsteadiness and operating at 3 different

jet Mach number Mj = [1.83, 2.09, 2.27]. Nonlinear calculations confirm the experimental outcomes:

power spectral densities for wall perturbations is distributed over 2 peaks at intermediate frequency

(St = 0.2− 0.3) and two humps at low-frequency (St < 1) and high frequency (St ≈ 1), respectively.

Particularly, at Mj = 1.83 the peak at St = 0.2 competes with that at St = 0.3, prevails on the latter

at Mj = 2.09 and finally vanishes as the other at Mj = 2.27. A PSD computed for different azimuthal

components of wall pressure perturbation show a clear azimuthal separation for all the contribution

mentionned above. Particularly, while the peak at St = 0.3 has a double contribution m = 2 − 3 at

Mj = 1.83 and exclusively a m = 2 symmetry at Mj = 2.09, the peak at St = 0.2 has constantly a

m = 1 symmetry, which behaves has a persistent signature inside the nozzle at Mj = 2.09. Conse-

quently, a global stability analysis is performed on the DDES mean flow at Mj = 2.09. Such analysis

returns an unstable mode at St = 0.2, characterized by a m = 1 azimuthal symmetry, which develops

from the separation point and is localised at the external shear layer.

Keywords: shock-wave, nozzles, FSS, DDES, global stability analysis, meanflow.
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Introduction

Flow separation is an essential feature in the dynamics of most aerodynamic configurations in

aeronautics or space. In rocket engines, thrust is produced by the expulsion of an exhaust fluid that

has been accelerated to supersonic conditions through a convergent-divergent nozzle. This acceleration

goes along with pressure reduction and the latter could be so strong that the flow separates and an

oblique shock occurs inside the nozzle, yielding performance losses. In this case, nozzles are called

over-expanded. In order to get the optimum performance over most of the flight trajectory, nozzles

are designed to avoid any shock occurrence before exit. Here, where the low flow pressure is forced

to rapidly equilibrate ambient one, shock is unavoidable and it is followed by a series of other shocks

and expansion fans forming the so-called ”shock diamond” structures shown in Figure 1.

Figure 1: Shock diamonds structure during 5M15 engine firing up test in Mojave Desert. From Wired
[3]

However during start-up and shut-down transients, nozzles are necessarily over-expanded and shock

occurs inside the divergent duct, interacting with boundary layer. Depending on the nozzle con-

tour, two different unsteady separations can originate: the Free Shock Separation (FSS) without flow
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reattachment and the Restricted Shock Separation (RSS) with reattachment.

Figure 2: Ariane 5 take off . From www.arianespace.com [4].

Over the past sixty years, many studies devoted to the dynamics of these interactions lead to blame

a self-sustained unsteadiness, associated with an azimuthal mode for the generation of the so-called

side loads that might damage the nozzle.

As part of the program Aérodynamique des Tuyères et Arrières-Corps (ATAC) driven by CNES, the

intent of this work is to investigate the possibly globally unstable nature of this unsteadiness by

means of a Delayed Detached Eddy Simulations (DDES) on an over-expanded nozzle and comparing

it with a fully-3D linear stability analysis. The geometry considered is a TIC nozzle, experiencing a

FSS unsteadiness and operating at three different jet Mach number Mj = [1.83, 2.09, 2.27]. The flow

features at these three different regimes will be compared with the experiments carried out on the

same nozzle geometry and operating conditions, recently published by Jaunet et al. (2017) [13]. At
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Mj = 2.09, when a self-sustained azimuthal unsteadiness clearly emerges over the entire frequency

spectrum, a Global Stability Analysis is performed around the meanflow obtained by time-averaging

the unsteady DDES solution.

Organisation of the manuscript

In Chapter 1, fundamental notions about supersonic nozzles are provided. Secondly, a detailed

analysis of the state of art concerning shock wave boundary layer interactions (SWBLI) and their

connection with the main unsteady phenomena detected in over-expanded nozzles are described. Fi-

nally, phenomenology as well main results about linear stability analysis for laminar and turbulent

flows are reported. Chapter 2 is dedicated to the description of nonlinear and linear governing equa-

tions, as well fundamental notions about stability analysis. In Chapter 3, description of the numerical

strategies adopted in order to solve nonlinear, linear and stability problems is provided. Governing

equations and numerical methods previously described are validated on a laminar and turbulent flow,

respectively in Chapter 4. In Chapter 5, RANS, URANS and DDES nonlinear calculations are shown

in the case of over-expanded nozzle flows and compared with corresponding experiments. Second, a

Global Stability Analysis around RANS base flow and DDES mean flow is described. In Chapter 6,

general conclusions and perspectives are provided .

23



INTRODUCTION

24



Chapter 1

Physical Background

Contents

1.1 Supersonic nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Geometry design for rocket nozzles . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Truncated Ideal Contour (TIC) nozzles . . . . . . . . . . . . . . . . . . . . . . 28

1.2.2 Thrust Optimised Contour and Thrust Optimised Parabolic nozzles . . . . . . 28

1.3 Shock wave-boundary layer interactions in Supersonic nozzles . . . . . . . 30

1.3.1 Free Shock and Restricted Shock Separation in Over-expanded Nozzles . . . . 33

1.3.2 Self-sustained shock oscillation in divergent diffusers . . . . . . . . . . . . . . . 34

1.3.3 Screech tones in under-expanded nozzles . . . . . . . . . . . . . . . . . . . . . . 37

1.3.4 Transonic resonance in divergent diffusers and conical nozzles . . . . . . . . . . 39

1.3.5 Unsteadiness dynamics in modern over-expanded nozzles . . . . . . . . . . . . 39

Supersonic nozzles

The maximum possible thrust provided by a nozzle depending on its contour and the specific

operating conditions, efficient design of nozzles has become a critical aspect of modern launchers. The

main operating parameter is the ratio between the combustion chamber total pressure and the ambient

static pressure (p0/pa), commonly known as Nozzle Pressure Ratio (NPR). While there is an upper

limit to the velocity of a convergent nozzle by the optimum adjustment of NPR, and that limit is the

speed of sound, it has been proven by the Swedish engineer De Laval that it is possible to further

accelerate the flow up to supersonic conditions by adding to the convergent duct a suitably designed

divergent section. For a given exit section, there is however only a single value of NPR at which the
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1.1. SUPERSONIC NOZZLES

exhaust flow can be isentropically expanded up to the static ambient pressure (pe = pa) † still being

supersonic. This value is called design NPR (NPRd) and it is related to the corresponding exit design

Mach number (Md) as

NPRd =
[
1 + γ − 1

2 M2
d

] γ
(γ−1)

. (1.1)

At this value of NPR, the flow is said to be adapted and the maximum exit velocity is reached. However,

the ambient static pressure (resp. chamber total pressure) being greater (resp. lower) than the design

ambient static pressure (resp. design chamber total pressure), the flow is abruptly compressed by an

inner and/or outer shock wave up to the ambient pressure. In this case, nozzles are over-expanded

and the resulting flow is subsonic or slightly supersonic. On the other hand, if NPR is greater than

NPRd , there are outer expansions and nozzles are called under-expanded (see Figure 1.1).

Figure 1.1: Nozzle flow regime during flight at p0 = const with decreasing value of pa from bottom
to top.

At values of NPR different from design, one can use the design Mach number as reference. In this

perspective, people generally prefer using the jet Mach number (Mj) rather than the NPR, which is

defined as

Mj =
[(

NPR(γ−1)/γ − 1
) 2

(γ − 1)

]1/2
. (1.2)

†pe is the nozzle exit static pressure
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1.2. GEOMETRY DESIGN FOR ROCKET NOZZLES

In this framework, over-expanded nozzles are defined for Mj < Md, while for under-expanded ones

Mj > Md.

Although nozzles are designed for adapted conditions for most of their trajectory, at ground level

(p0 = p0,d and pa > pa,d) or during the engine start-up (p0 < p0,d and pa = pa,d), they are usually

over-expanded ‡. For sake of simplicity, let us consider a fully operational engine (p0 = p0,d) at different

value of ambient static pressure p. A typical inviscid one-dimensional supersonic nozzle should behave

as shown in Figure 1.2. As previously mentioned, for fixed nozzle geometry and combustion chamber

conditions, there is only one ambient pressure value for which a flow isentropically and supersonically

expands until the exit section. This pressure is called adaptation pressure and corresponds to the

design condition for the ambient pressure (pa,d). Conversely, the lowest ambient pressure value for

which flow stays isentropically subsonic until exit section, even if sonic at throat, is called limit pressure

(pl). NPR corresponding to this condition is the minimum one guaranteeing a sonic condition at the

throat. For NPR values greater than p0/pl and lower than p0/pusu (i.e. pusu/p0 < p/p0 < pl/p0 ) the

occurrence of a normal shock inside the divergent duct leads to a downstream subsonic solution. At

the ambient pressure value of pusu the normal shock occurs just before the nozzle exit. For NPR values

greater than p0/pusu but lower than p0/pa,d (i.e. pa,d/p0 < p/p0 < pusu/p0 ), the solution would stay

supersonic after the passing of an oblique shock. Shock-wave boundary layer interactions occurring in

actual over-expanded nozzles however lead to flow separation and much more complex configurations,

strictly related to NPR and nozzle contour. This scenario will be highlighted in the next chapter.

Geometry design for rocket nozzles

In supersonic nozzles design, the shape of divergent must be chosen very carefully. In fact, if

the nozzle contour is not proper, although optimal operating conditions normally ensure the correct

behaviour of the system, shock waves may occur inside the duct. For this reason, several nozzle

contours have been developed.

‡p0,d and pa,d are combustion chamber total pressure and ambient static pressure at design conditions, i.e. adapted
conditions, respectively.
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1.2. GEOMETRY DESIGN FOR ROCKET NOZZLES

Figure 1.2: Nozzle flow at different NPR = p0/p for a fully operational engine (p0 = p0,d): adapted flow
for NPR = p0/pa,d; sonic flow throat pressure p∗ ; oblique shock at exit for NPR = p0/pusu ; supersonic-
subsonic flow with inner or outer shock occurrence for p0/pl < NPR < p0/pusu ; pure subsonic flow
with NPR < p0/pl. pl and pa,d are called limit pressure and adaptation pressure, respectively.

Truncated Ideal Contour (TIC) nozzles

The most common technique providing a shock-free and isentropic flow, taking into account the

three dimensional character of the problem, is the Method of Characteristics (MOC). As one can

remark by observing Figure 1.3a, a standard Ideal Contour geometry made by means of MOC however

demands the nozzle to be very long and therefore not suitable for space applications.

Considering that thrust contribution in the last part of the nozzle is very low due to the small wall

slope, a practical solution is truncating the contour, i.e. using a truncated ideal contoured nozzle

(TIC) [14].

Thrust Optimised Contour and Thrust Optimised Parabolic nozzles

The Method of Characteristics is based on the Riemann invariants as compatibility equations in

order to solve the Euler equations inside the nozzle. They do not however provide an optimal nozzle

contour in terms of thrust. Using a variational optimisation approach, Rao (1958) [15] however showed

that it is possible to obtain another set of compatibility equations providing a nozzle contour capable

to produce the maximum thrust at a fixed exit Mach number. Nozzles designed with a such method

are called Thrust Optimised Contour (TOC) nozzles. However, the shock pattern inside the nozzle

drastically changes. In contrast with a TIC nozzle, a TOC nozzle produces an internal shock at the
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(a) The solid black line with red filled circles represents the wall points coming from MOC
method. The red and blue net is the caractheristic one (i.e. kernel).
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(b) Zoom of the characteristic net (i.e. kernel). Right and left characteristic curve are denoted
with red and blue solid line, rispectively. The red filled circle point detected at the intersection
of each couple of caracteristic is uniquely determinated.

Figure 1.3: Ideal Contour nozzle with sharp corner obtained by a 2D Method of Characteristics
(MOC), Me = 3.5.

throat where the contour curvature changes more rapidly as shown in Figure 1.4b.

Later, Rao (1960) [16] proved that the contour designed with his variational method could be

approximated with a skewed parabola, without introducing significant performance loss. In this case,

nozzles are called Thrust Optimised parabolic (TOP) nozzles. As a TOC nozzle, a TOP produces an
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1.3. SHOCK WAVE-BOUNDARY LAYER INTERACTIONS IN SUPERSONIC
NOZZLES

(a) Rapresentation of kernel and nozzle contour
in TIC nozzle.

(b) Rapresentation of kernel and nozzle contour
in TOC nozzle. An internal shock is well visible.

Figure 1.4: Main flow differences for isentropically inviscid calculation between TIC and TOC nozzles.
From Nasuti & Onofri (2009) [5]

internal shock originating at the discontinuity where the contour is approximated by a parabolic curve

[14].

Shock wave-boundary layer interactions in Supersonic nozzles

When flow travels towards less pressured regions, it could achive the null velocity gradient condition

near wall and separates. In the divergent duct of supersonic nozzles, the flow accelerates against an

adverse pressure gradient due to the supersonic expansion and causes the boundary-layer thickening.

In over-expanded nozzles, compression waves can originate from the deflected mean flow and eventually

coalesce into an oblique shock inducing the flow separation, as shown in Figure 1.5.

Depending on nozzle contour, different shock patterns may appear in over-expanded jet flows (Figure

1.6):

• Mach reflection, where the incident shock reflects on the axis of the nozzle at high NPRs. It can

be observed in the plume of all nozzle types but only during flight;

• Mach disk, with the occurring of an incident shock reflecting on a Mach disk. The meeting point

among the incident shock, the reflected shock and the Mach disk is called Triple Point. The

Mach disk is characterised by a strong shock with a downstream subsonic region;

• Cap-shock pattern: when the nozzle is optimised for maximum thrust (TOC, TOP), an internal

shock originates at throat. This shock hits the Mach disk forming complex shock patterns inside

the nozzle. In this case a subsonic zone with large recirculation bubbles, called trapped vortex,

is observed downstream of the Mach disk.
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Figure 1.5: Phenomenology of shock separation. At the incipient separation point, wall pressure
increases sharply from pi to a plateau pressure pp. After that, pressure slightly increases until exit up
to pe. From Aghababaie & Theunissen (2015) [6]

Figure 1.6: Shock patterns in over-expanded nozzle flow; S: separation, SS: separated shock, RS:
reflected shock, TP: triple point, IS: internal shock, MS: Mach stem, RB: recirculation bubbles, J:
supersonic jet, SL: slip line. From Piquet (2017) [7]

In case of weak shocks, flow separation occurs far downstream from the shock foot, otherwise flow

immediately separates with or without reattachment. The first empirical criterion to detect flow sep-

aration in a nozzle has been proposed by Summerfeld et al. (1954) [17]. During this experimental
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campaign, flow separation within a convergent-divergent nozzle appeared to occur until the wall pres-

sure at the nozzle exit pe remained lower than about 0.35–0.4 times the ambient pressure pa. For this

reason, the corresponding formula is known as Summerfeld criterion. More sophisticated separation

criteria have been developed over the past decades, which detailed review you may find in [18].

Separation induced by a shock wave-boundary layer interaction (SWBLI) has been previously observed

in supersonic flows meeting a forward-facing step, a ramp or an incident shock. Inside the downstream

recirculation zone, wall pressure increases slowly from pp to pe, as shown in Fig.(1.7). In this case,

experimental evidences suggest that the separation mechanism depends only on the upstream condi-

tions and not on the downstream geometry. Based on that, Chapman et al. (1958) [19] proposed the

first analytical model to predict the pressure trend inside the separated region.

Figure 1.7: Supersonic flow over forward-facing steps from Matheis & Hickel (2015)[8]. A restricted
ricirculation region is visible bewteen separation point and the forward facing step (left). Near sepa-
ration, wall pressure rapidly increases from ps to a plateau value pp and then more slowly once more
up to pr where flow reattaches (right).

Successive experiments by Kistler (1964) [20] confirmed what was observed by Chapman et al. (1958)

and highlighted the unsteady nature of boundary-layer separation in turbulent supersonic flows. Par-

ticularly, according to Kistler, the separated flow is intermittent and the wall pressure signal at incip-

ient separation point can be modeled as a step function oscillating between ps and pp (see Fig.(1.7)).

Moreover, pressure fluctuations have been observed to propagate in the opposite direction of the local

mean velocity, leading to the hypothesis that an acoustic resonance exists in the separated region.

This phenomenon could be the source of the low-frequency displacement of separation point [20].
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Free Shock and Restricted Shock Separation in Over-expanded Nozzles

The complex separation mechanism, inducing self-sustained oscillations, has soon been suspected

to be related to the asymmetric and unsteady forces (or side-loads) that may damage nozzles during

start-up engine. In order to investigate the nature of this unsteadiness and to characterise flow sepa-

ration, Nave & Coffey (1973) [21] performed several experiments on full scale and cold-flow subscale

models of a J-2S engine. The results of such experiments revealed for the first time the conical and

highly unsteady pattern of two different separation: the Free Shock Separation (FSS) without flow

reattachment and the Restricted Shock Separation (RSS) with reattachment. A phenomenological

sketch of the flowfield and the corresponding wall pressure trend for both cases is shown in Figure

1.8-1.9.

Figure 1.8: Free-shock separation in overexpanded rocket nozzles, wall pressure profile, and phe-
nomenology:——, compression waves/shock,and – – –, boundary/shear-layer edge. From Frey et al.
(2000) [9]

As one can state by observing Figure 1.8, in case of FSS regime, at the separation point the wall

pressure quickly increases up to a plateau pressure pp in a similar way that a supersonic flow over a

facing step (see Figure 1.7). Downstream, inside a recirculation zone, the growth slows down until

a pressure pe is reached at exit. Conversely, as for a RSS regime, the pressure downstream of the

separation point has an irregular trend and reaches values greater than the ambient pressure. This is

due to a reattachment of the separated flow, inducing shocks and expansion waves resulting in wall

pressure peaks with values above ambient pressure [9].
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Figure 1.9: Restricted-shock separation in overexpanded rocket nozzles, wall pressure profile, phe-
nomenology:——, compression waves/shock; . . . ., expansion waves; and – – –, boundary/shear-layer
edge. From Frey et al. (2000) [9]

In the work of Nave & Coffey (1973), the nozzle is observed to switch from FSS to RSS conditions at a

certain value of NPR. Particularly, when FSS is settled separation pressure ratio
(
pw

min/pa
)

decreases

with increasing NPR (Mj), while during RSS state the same quantity increases with NPR (Mj) [21], as

shown in Figure 1.10a. Many years later, these two different separation pressure ratio trends have been

found by Zaman et al. (2015) [22] in convergent-divergent nozzles. In this case, low Md (Md ≤ 1.8)

nozzles first experience a decrease followed by an increase of the pressure separation with increasing Mj

(see Figure 1.10b). On the contrary, in higher Md (Md > 1.8) nozzles, pressure separation decreases

all the way to the exit with increasing Mj (see Figure 1.10c). Particularly, the dimensionless minimum

wall pressure position is shown to scale with the ratio Mj/Md like an hyperbolic tangent [22].

The discovery made by Nave & Coffey increased the interest about such self-sustained unsteadiness

in nozzle flows so that many experiments were conducted on divergent diffusers flows for almost two

decades.

Self-sustained shock oscillation in divergent diffusers

The dynamics complexity as well as the limited numerical resources of time first led to the launch

of several experimental campaigns on two-dimensional diffusers. One of the first experimental in-

vestigations aiming at the characterisation of self-induced fluctuations present in nozzle flows with
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(a) Separation pressure ratio
(
pmin
w /pa = NPR · pmin

w /p0
)

trend with NPR (pc/pa = p0/pa) for
FSS and RSS regimes. From Nave & Coffey (1973) [21]
Good job, you got it!

(b) Wall pressure ratio (pw/pa) trend with Mj

for a Md = 1.6 convergent-divergent nozzle.
From Zaman et al. (2015) [22].

(c) Wall pressure ratio (pw/pa) trend with Mj

for a Md = 2.8 convergent-divergent nozzle.
From Zaman et al. (2015) [22].

Figure 1.10: Comparison between a FSS-RSS transitioning nozzle (top) and two different design Mach
number Md supersonic nozzles (bottom). Two different minimum separation pressure ratio trends
with Mj are visible.

reattaching flow separation have been conducted by Sajben et al. (1977) [23]. In this campaign,

several two-dimensional small-angled divergent diffusers, with area ratio ranging from 1.84 to 2.5, at

transonic flow conditions have been studied. In this scenario, time-mean flow properties are shown to

be correlated to the shock-wave Mach number (Msw) which, based on the spatial minimum static wall

pressure
(
pw

min
)
, reads
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Msw =


((pwmin

p0

)− γ−1
γ

− 1

 2
γ − 1


1/2

(1.3)

and represents a measure of time-mean conditions just upstream of the shock. Particularly, it was

found that for Msw < 1.3 flow separation is due to the adverse pressure gradient in the subsonic flow

and occurs downstream of the shock, while for Msw > 1.3 the pressure jump in the flow, caused by a

stronger lambda-pattern shock, is sufficiently large to immediately separate as shown in Figure 1.11.

For this reason the first separation is called Pressured-Gradient-Induced Separation (PGIS), while the

second one Shock-Induced Separation (SIS). In the latter case, highspeed shadowgraphs have shown

a complex dynamic behaviour driven by turbulent structures, upstream propagating shocklets and

shock oscillations.

Figure 1.11: Flow separation at different values of Msw, by Sajben et al. (1981) [10].

A campaign, made on a same type of 2D nozzle in 1981 [10], have confirmed for SIS cases the existence

of a rich spectrum consisting in a low frequency activity (0.2 kHz) due to the shock oscillation and

high broad peak (1.0-3.0 kHz) inversely scaling with the streamwise direction, related to the local

turbulence in the separated shear layer. Bogar et al. (1983) [24] confirmed the occurence of SIS

mode regardless of area ratio for all two-dimensional divergent diffusers for Msw > 1.3 as well as
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the presence of a low-frequency unsteadiness with or without outer forcings [25]. Hsieh et al. (1987)

[26] numerically reproduced the same experimental test and observed the expected self-sustained shock

oscillation. Similarities in terms of both unsteady and time-average flow properties with the supersonic

flow over forward facing step arose and with them the idea that the concerned unsteadiness could be

due to a similar phenomenon of acoustic resonance. In fact, it would not be the first time that

acoustics play a crucial role in supersonic nozzles, given that acoustic tones had already been detected

in under-expanded nozzles.

Screech tones in under-expanded nozzles

In high NPR over-expanded nozzles and under-expanded nozzles, when the jet Mach number (Mj)

far exceeds unity, a feedback close-loop mechanism known as screech settles. The latter is governed

by three main features of the jet exhausted from the nozzle: the stationary repetitive or ”cellular”

pattern, called shock cells, arising from the train of oblique shock waves and expansion fans; the

sinuous oscillation of the jet and the acoustic waves emanating from the turbulent flow (see Figure

1.12). This phenomenon, first described by Powell (1958) [27] and then by Raman (1998) [11] is

composed of different phases. During the first phase, that is inside the jet, there is the birth of

turbulent structures in the mixing layer. Subsequently, these structures, conveyed in the mixing layer,

pass through the shock cells. Interactions then take place between these structures and the network of

shock cells and acoustic waves are created. These waves spread in all directions, especially upstream,

where they then excite mixing layer at the outlet of the nozzle. This excitation is at the origin of

disturbances in the mixing layer which will in turn produce turbulent structures.

Tam (1986) [12] realised that screech frequencies (f) collapse on the same curve inversely decreasing

with the fully expanded jet Mach number (Mj), when the fully expanded exit diameter (Dj) and

velocity (Uj) are used as the length and the velocity scale of the Strouhal number (St) respectively, as

Uj =
√
γRT0

Mj√
1 + γ − 1

2 M2
j

, Dj = De

1 + γ − 1
2 M2

j

1 + γ − 1
2 M2

d


γ+1

4(γ−1)

,

St = f
Dj

Uj
≈ 0.67

(
M2
j − 1

)− 1
2

[
1 + 0.7Mj

(
1 + γ − 1

2 M2
j

)− 1
2
(
TA
T0

)− 1
2
]−1

,
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Figure 1.12: Resonant screech loop mechanism, by Raman (1998)[11].

with De the nozzle exit diameter, T0 the combustion chamber temperature and TA the ambient jet

temperature. The above mentioned correlation for screech frequency with Mj in terms of Strouhal

number St is shown in Figure 1.13.

Figure 1.13: Strouhal number (St) trend with jet Mach number (Mj) according to Tam’s correlation
(1986) [12] for screech frequency.
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Transonic resonance in divergent diffusers and conical nozzles

Even though self-sustained shock oscillations in small divergent diffusers were suspected to be

due to a standing wave produced by the interaction of an upstream and a downstream propagating

travelling wave [26], there were no solid theory satisfactorily proving the experiments evidences about

that. For this reason, Zaman et al. (2002) [28] launched an experimental campaign on several small

convergent-divergent nozzles and diffusers with different geometries and operating conditions. The

unsteadiness detected, called transonic resonance, have been proven to be due to a phenomenon

different from screech. While the former takes place in two or three stages at low Mj with a frequency

(ftr) increasing almost linearly with Mj , the latter takes place in only one stage at high Mj with

a frequency (fsc) decreasing linearly with Mj , as shown in Figure 1.14. As for Zaman, the inner

shock and the external fluctuating pressure behave like a dual oscillator whose fundamental resonance

frequency (ftr) results in a good agreement with experiments if compared with a one-quarter acoustic

standing wave as

ftr = a
(
1−M2

e

)
4L (1.4)

where Me is the Mach number in the separated region at exit, a the local speed of sound and L is

approximated with the distance between the shock foot and the nozzle exit. However, this model is

less and less predictive for higher-NPR nozzle flows. The reason for that, according to Wong (2005)

[29], is that a standing-wave resonance can occur only in low supersonic or transonic flows while it

tends to be attenuated in a high supersonic ones. By a perturbative quasi-one-dimensional model

coupled with a dual-oscillator concept, the damping effect is shown to be due to the interaction and

correlation between compressibility and velocity in the subsonic domain downstream of the shock [29].

Unsteadiness dynamics in modern over-expanded nozzles

As technology advances, many experimental studies have been conducted on supersonic or hyper-

sonic cold subscaled rocket nozzle flows. As for unsteady dynamics, Torgren (2002) [30] observed for

a TIC nozzle the axial movement of the shock only in presence of a forced outer pressure fluctuation

and without flow reattachment. The key role of outer pressure fluctuation in sustaining low-frequency

shock oscillation has been confirmed by Ostlund et al. (2004) [31]. In this work two different source of
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(a) Experimental dimensional data (�)
for a specific nozzle (Dt = 0.0077,
De = 0.0102, L = 0.0381, Md =
1.6). Corresponding non-dimensional
data (M) with ’stage correction’

(b) Experimental dimensional data (�)
for a specific nozzle (Dt = 0.0077,
De = 0.0102, L = 0.0381, Md =
1.6). Corresponding non-dimensional
data (M) with ’stage correction’

Figure 1.14: Difference between screech and transonic tones, from Zaman et al. (2002). The dashed
line represents the condition when the flow is just choked (pl pressure condition in Figure 1.2), the
dotted line when a normal shock is expected at the nozzle exit (pusu pressure condition in Figure 1.2),
and the chain-dashed line when the flow is adapted (pa,d pressure condition in Figure 1.2).

side loads are described: the former due to random pressure fluctuations and the latter to FSS/RSS

transition. In the first case, flow inside the separated region is intermittent as for the case of super-

sonic flow over forward-facing step: pressure perturbation can be correctly modelled with a low and

high-frequency part, correlated with shock displacement and shear layer-boundary layer interaction

respectively. The first attempt to find a modal separation in over-expanded nozzle dynamics was

made by Baars et al. (2012) [32]. In this work, a TOP nozzle experiencing a FSS regime reveals in

the energy spectrum of wall pressure fluctuations two distinct peaks without any outer forcing. The

first is related to a low-frequency unsteadiness (0.2 kHz) due to the shock displacement, while the

second covers a large band of high frequencies (1.0-10.0 kHz) and its energy grows with increasing

distance downstream. By computing a PSD for each azimuthal mode, the entire spectrum appears to

be distributed over the first two Fourier modes. Particularly, the 0th mode energy decreases along the

streamwise direction, while the 1st mode energy (the only mode responsible for side loads) remains

relatively constant [32]. The experiments carried out by Jaunet et al. (2017) [13] on a TIC nozzle ex-

periencing a FSS regime at different NPR values revealed the axisymmetric shape (in azimuth) of the
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low frequency mode as well as the existence of high-frequency organised structures mainly contained

in the asymmetric pressure mode and responsible for off-axis loads.

Because of difficulties in experimentally recovering the actual aerodynamic side loads, many efforts

have been devoted to study this phenomenon from a numerical point of view. Chen et al. (1994)

[33], by means of RANS calculations, numerically showed the existence of two different solutions at

the same NPR value for the same nozzle geometry previously investigated by Nave & Coffey [21]:

one with a recirculation bubble inside the separated region at nozzle lip and another with a large

trapped vortex behind the Mach disk. URANS methods turned out to be very efficient in capturing

unsteadiness in many compressible flows such as airfoil buffetting [34, 35, 36] as well in evaluating

low-frequency oscillations and the resulting side loads found in subscale rocket models [37, 38, 39].

However, they fail when wall turbulence and self-sustained oscillations get close in term of frequencies

(less than one order of magnitude). On the other hand, using a Direct Numerical Simulation (DNS) or

a Wall-Resolved Large Eddy Simulation (WRLES) for such turbulent flows (Reynolds number rang-

ing between 105 and 107) is difficult or even impossible with the current technology. The compromise

adopted by Olson & Lele (2013) [40] was lowering the Reynolds number of their LES calculation. A

low-frequency shock oscillation has been detected at a frequency slightly different from experiments

unlike shock position and amplitude oscillations, which change significantly as strongly dependent

on incoming boundary layer. Two alternative solutions are the use of a Wall-Modelled Large Eddy

Simulation (WMLES) [41] or a Detached Eddy Simulation (DES) first proposed by Spalart et al.

(1997) [42]. The interest for the latter methodology, permitting a computational resource saving for

the RANS-treated boundary layer resolution, has highly increased in recent years. Deck (2009) [43]

and Shams et al. (2013) [44] highlighted the capacity of Delayed Detached Eddy Simulations (DDES)

in capturing RSS self-sustained unsteadiness in an axisymmetrical TOC nozzle. Recently, Martelli et

al. (2020) [45] performed a DDES calculation of an over-expanded TIC nozzle experiencing a FSS

regime. Simulations, validated with experimental measurements, confirmed for a prescribed NPR the

existence of a low-frequency breathing mode as well an higher frequency secondary contribution. The

azimuthal PSD analysis revealed a m = 0 azimuthal mode related to shock oscillation at low-frequency

as well a m = 1 azimuthal mode responsible for side-loads associated to the higher frequency. The

latter is compatible with screech correlation proposed by Tam et al. [12] as well with the findings by

Jaunet et al. [13]. A feedback-loop model involving the turbulent shear layers, triple point and second
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Mach disk is proposed to explain the side-loads mode.

The insight that nozzle low-frequency shock oscillations were due to a standing wave produced by

an upstream and a downstream propagating travelling wave [26] is nowadays the commonly accepted

theory [28, 29, 45] and known as transonic resonance. On the contrary, the nature of high frequency

unsteadiness is not yet clear and it is often associated to screech [27, 12, 11, 13, 45].

Another question raised is whether the flow dynamics in a such unsteadiness has a linear or nonlinear

origin. In the former case, analysis tools like Dynamic Mode Decomposition (DMD) [46] or Global

Stability Analysis could be used to extract information about its nature and source. The results of

Larusson et al. (2014) [47] confirmed the DMD fidelity in reproducing transonic resonance phenomena

in 2D planar nozzles.
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The mathematical formulation of the flow dynamics is based on the well known Navier-Stokes

equations. Current computational resources do not however permit to solve such partial differential

nonlinear equations for highly turbulent flow regimes. The objective of this chapter is to provide an

overview of the different strategies adopted in such cases. Particularly, a full description of RANS/LES

methods will be provided by detailing the strategy adopted in this work of thesis. Finally, a presen-

tation of the linear stability framework will be given.

Nonlinear Compressible Navier-Stokes equations

The instantaneous continuity, momentum and energy equation for a three-dimensional, compress-

ible, unsteady flow in Cartesian coordinates can be written as:
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

∂ρ∗

∂t∗
+ ∂

∂x∗j

(
ρ∗u∗j

)
= 0

∂ (ρ∗u∗i )
∂t∗

+ ∂

∂x∗j

(
ρ∗u∗ju

∗
i + p∗δij − τ∗ij

)
= 0

∂ (ρ∗E∗)
∂t∗

+ ∂

∂x∗j

(
ρ∗E∗u∗j + p∗uj + q∗j − u∗i τ∗ij

)
= 0

(2.1)

where the superscript ∗ denotes dimensional quantities and Einstein summation for repeated indices

is used. The flow quantities of interest are the density ρ∗, the streamwise, wall-normal and spanwise

velocity components u∗i in the cartesian coordinate directions x∗i (i = 1, 2, 3), the static pressure p∗

and the total specific energy E∗. The latter is obtained by adding the flow specific internal energy e∗

to the specific kinetic one as

E∗ = e∗ + u∗iu
∗
i

2 . (2.2)

The viscous stresses due to the friction between the fluid and the surface of an element are provided

by the viscous stress tensor τ∗ij . It describes the stress component affecting a plane perpendicular to

the i-axis, along the direction of the j-axis. For most practical problems, the fluid is assumed to be

Newtonian and the components of the viscous stress tensor are defined by

τ∗ij = µ∗L

(
∂u∗j
∂x∗i

+ ∂u∗i
∂x∗j
− 2

3
∂u∗k
∂x∗k

δij

)
, (2.3)

where µ∗L denotes molecular dynamic viscosity and represents the resistance for unit area of a fluid to

a unit deformation by shear stress.

The heat transfer due to temperature gradient is provided by q∗j and generally reads a form of Fourier’s

law of heat conduction, i.e.,

q∗j = −κ∗∂T
∗

∂xj
(2.4)

with κ∗ standing for the thermal conductivity coefficient and T ∗ for the absolute static temperature.

For a three-dimensional problem the above equations result in a system of five equations for the

five conservative variables ρ∗, ρ∗u∗, ρ∗v∗, ρ∗w∗, and ρ∗E∗ with seven unknown primitive variables,
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namely: ρ∗, u∗, v∗, w∗, E∗, p∗ and T ∗ . Therefore, to close the system we need two more additional

equations, which have to be thermo-dynamic relations between the state variables, e.g. a function

linking pressure to density and temperature, and another one expressing internal energy in terms of

pressure and temperature.

Assuming that the working fluid is a thermally perfect gas, these closing are respectively the thermal

and caloric equations of state given respectively by

p∗ = ρ∗R∗T ∗ (2.5a)

e∗ = c∗vT
∗, (2.5b)

where R∗ = R∗/M∗ is the perfect gas constant divided by the molar mass of the fluid, commonly

set at 287.1 J kg−1 K−1 for air, c∗v the specific heat capacity at constant volume linked to specific heat

capacity at constant pressure c∗p by the specific heat ratio γ =
c∗p
c∗v

, set at 1.4 for diatomic gas †.

Molecular dynamic viscosity µ∗L, for a perfect gas, strongly depends on temperature but only weakly

on pressure. For this reason fluid is often imposed to obey Sutherland’s law, i.e.

µ∗L = µ∗L,ref

(
T ∗

T ∗ref

)3/2
T ∗ref + T ∗S
T ∗ + TS

, (2.6)

where µ∗L,ref = 1.716× 10−5 N m−2 s is the dynamic viscosity at the reference temperature T ∗ref =

273.15 K reference temperature and T ∗S = 110.4 K is the Sutherland temperature.

In the case of gases, the thermal conductivity coefficient κ∗ depends on temperature in a similar way.

For this reason, the relationship

κ∗ = c∗p
µ∗L
Pr

(2.7)

is usually accepted for air, for which the Prandtl number Pr is assumed to be constant and set at the

value Pr = 0.72.

Dimensionless Navier-Stokes equations

In the present work, the dimensionless compressible Navier-Stokes equations are solved. They are

obtained by expressing each dimensional variable as the product of a corresponding dimensionless

†The gas constants are based on the following standard coefficients: R∗ ≈ 8.314 J K−1 mol−1 for ideal gas, M∗ =
0.028 96 kg mol−1 and c∗p = 1005 J kg−1 K−1 for dry air at standard temperature and pressure (STP).
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quantity and a reference one, and injecting it in Eqs.(2.1). However the reference quantities are not

those associated to free stream conditions (U∞, ρ∞, T∞) as for external aerodynamics problems, but

the total ones (a∗0,∞, ρ
∗
0,∞, T

∗
0,∞). For the sake of simplicity, we will refer to them omitting the symbol ∗.

By using the dimensional group (a∞0 , ρ∞0 , T∞0 , Lref), with Lref the characteristic length of the problem,

the dimensionless variables are defined as

ρ = ρ∗

ρ∞0
, ui = u∗i

a∞0
, T = T ∗

T∞0
, xi = x∗i

Lref
, (2.8)

µL = µ∗L
µ∞L,0Re

∞
0

= 1
Re∞0

(T )
3
2

(1 + T ∗s /T
∞
0

T + Ts/T∞0

)
, (2.9)

p = p∗

ρ∞0 (a∞0 )2 = p∗

p∞0 γ
, (2.10)

τij =
τ∗ij

ρ∞0 (a∞0 )2 =
τ∗ij
p∞0 γ

, (2.11)

qj = −cp
µL
Pr

∂T

∂xj
, (2.12)

t = t∗
a∞0
Lref

, (2.13)

with

p = ρT

γ
, cp = 1

γ − 1 , cv = cp
γ
, e = cvT, a∞0 =

√
γRT∞0 . (2.14)

The Reynolds number is based on the dimensional total quantities and is therefore defined as

Re∞0 = ρ∞0 a
∞
0 Lref

µ∞0
, (2.15)

that, in case of external aerodynamics, is related to the free stream Reynolds number (Re∞) and Mach

number (M∞) by the following expression

Re∞0 =
p∞0
√
γ√

RT∞0

Lref

µ∞0
= Re∞
M∞

(
T∞0
T ∗∞

) 1
γ−1

(1 + T ∗s /T
∞
0

1 + T ∗s /T
∗
∞

)
(2.16)
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with

T∞0
T ∗∞

=
[
1 + γ − 1

2 M2
∞

]
, Re∞ = ρ∞U∞Lref

µL,∞
, M∞ = U∞

a∞
. (2.17)

Computational approaches to turbulent flows

Solving numerically the Navier-Stokes equations is possible by means of Direct Numerical Sim-

ulation (DNS), which requires that the whole range of spatial and temporal scales of the flow must

be resolved. As stated first by Richardson, and then assessed by Kolgomorov, the more turbulent a

flow is, the greater the number of stages of dissipating eddies which composes it. According to the

theory of energy cascade, in turbulent flows the most energetic eddies, whose size is comparable to the

characteristic flow scale, are unstable and break up, transferring their energy to smaller eddies. The

smallest eddies, at which energy is dissipated, are of the order of the so-called Kolmogorov scales (η,

uη, τη), whose universal features permits us to derive the following important relations relative to the

largest scales of the problem (l0, u0, τ0) in space, velocity and time respectively [48]

l0
η
≈ Re

3
4 ,

u0
uη
≈ Re

1
4 ,

τ0
τη
≈ Re

1
2 . (2.18)

Eq.(2.18) tell us that simulating the evolution of the system over a single time unit would require a

number of volumetric elements scaling with Re
9
4 for a number of iterations scaling with Re

1
2 , with

a consequent number of operations approximately of the order of Re3. These conclusions lead us to

the impossibility, with the current computational resources, to tackle the vast majority of practical

engineering problems by means of DNS.

To this day, three different approaches have been proposed to overcome this limit: the Reynolds-

Average Navier-Stokes (RANS) equations, the Large-Eddy Simulations (LES) and Detached Eddy

Simulations (DES). While in a RANS approach all turbulence is modelled by solving an additional

equation, the idea behind LES is the spectral separation of larger turbulent scales from the smaller

scales, where the former are resolved directly and the latter approximated by a model. Over the past

few years, DES has become popular thanks to a greater accuracy compared to RANS combined with

a smaller computational cost than LES.
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Nonlinear Compressible URANS equations

The first approach to tackle turbulent flows was presented by Reynolds in 1883 [49]. The method-

ology is based on the decomposition of the flow variables into a time-average and a fluctuating part

and solving the governing equations (2.1) only for the former. The obtained equations are called

RANS (Reynolds Averaging Navier-Stokes) equations. However, in the case of non-constant density,

such as high-Mach compressible flows in supersonic jet nozzles, it is more convenient to employ a

time averaging (Reynolds averaging) for density and pressure, while a mass-weighted averaging (Favre

averaging) in addition to the time averaging for the other variables. Mass-averaging the flow variables

can be done by multiplying the primitive ones by the density, averaging this product and dividing by

the average density as

ũ = ρu

ρ
ṽ = ρv

ρ
w̃ = ρw

ρ
T̃ = ρT

ρ
ẽ = ρe

ρ
Ẽ = ρE

ρ
= ẽ+ ũiũi

2 + ũ′′i u
′′
i

2︸ ︷︷ ︸
K

(2.19)

After that, assuming the perfect gas hypothesis

p = ρRT̃ ẽ = cvT̃ γ = cp
cv

R = cp − cv (2.20)

and defining the following fluctuating quantities

u = ũ+ u′′ v = ṽ + v′′ w = w̃ + w′′ ρ = ρ+ ρ′

p = p+ p′ T = T̃ + T ′′ e = ẽ+ e′′ (2.21)

for which, the following relations are met

b′ = 1
T

∫ T

0
b′ dt = 0 b′′ = 1

T

∫ T

0
b′′ dt 6= 0 ρb′ = 1

T

∫ T

0
ρb′ dt = 0 (2.22)

by replacing the averaged flow primitive variables in Eq.(2.21) in Eqs. (2.1) and subsequently time

averaging the latter, one can achieve the following Favre-and Reynolds-Averaged Navier-Stokes equa-

tions
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

∂ρ

∂t
+ ∂

∂xj
(ρũj) = 0

∂

∂t
(ρũi) + ∂

∂xj

(
ρũiũj + pδij − τ totij

)
= 0

∂

∂t

(
ρẼ
)

+ ∂

∂xj

[
ρũjẼ + ũjp+ qtotj − ũiτ totij

]
= 0

(2.23)

where 

τ totij = τ lamij + τ turbij

τ lamij = µL

[(
∂ũi
∂xi

+ ∂ũj
∂xj

)
− 2

3δij
∂ũk
∂xk

]

τ turbij = −ρũ′′i u′′j +

XXXXXXXXXXXXXXXX

µL

[(
∂u′′i
∂xi

+
∂u′′j
∂xj

)
− 2

3δij
∂u′′k
∂xk

]
︸ ︷︷ ︸

=τ ′′ij�τ
lam
ij

≈ −ρũ′′i u′′j

qtotj = qlamj + qturbj

qlamj = q̃j = −cp
µL
Pr

∂T̃

∂xj
qturbj = ρũ′′jh

(2.24)

In order to close the system (2.23)-(2.24), we need to provide:

• six components of the Favre-averaged Reynolds-stress tensor
(
τ turbij

)
;

• three components of the turbulent heat-flux vector
(
qturbj

)
.

A common way to write the term τ turbij is using the Boussinesq’s Eddy-Viscosity hypothesis, i.e.

− ρũ′′i u′′j ≈ µT

[(
∂ũi
∂xi

+ ∂ũj
∂xj

)
− 2

3δij
∂ũk
∂xk

]
− 2

3ρKδij (2.25)

while the term qturbj is usually approximated as

ρũ′′jh ≈ −cp
µT
PrT

∂T̃

∂xj
(2.26)

where µT stands for the turbulent eddy viscosity and PrT for the turbulent Prandtl number, which is

assumed to be constant over the whole flowfield and set at 0.9 for air.
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The Boussinesq ’s hypothesis permits to close the system after determining µT by means of one or two-

equation turbulence model. In the former case, due to the lack of any information about K modelling,

the last term in Eq.(2.25) is ignored.

Spalart Allmaras (SA) one-equation model

One of the most used turbulence models in RANS calculations is the Spalart-Allmaras model [50].

It has been derived as a simple convection-diffusion equation for the pseudo turbulent viscosity variable

ν̃ where the source term is obtained as a balance between a production term P and a destruction term

D associated to same quantity, as

∂ (ρν̃)
∂t

+∂ (ρν̃uj)
∂xj

− 1
σ

∂

∂xj

[
(ρν + ρν̃) ∂ν̃

∂xj

]
= cb1 (1− ft2) S̃ρν̃ + cb2

σ

∂ν̃

∂xj

∂ρν̃

∂xj︸ ︷︷ ︸
P

− ρ
[
cw1fw −

cb1
κ2 ft2

](
ν̃

dw

)2

︸ ︷︷ ︸
D

(2.27)

where the presence of density ρ is justified by the will to extend the above equation to compressible

flows [51].

The various constants in the model are standard-defined as

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41,

cv1 = 7.1, cw2 = 0.3, cw3 = 2, (2.28)

ct1 = 1, ct2 = 2, ct3 = 1.1, ct4 = 0.5
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which build the following quantities for the model

χ = ν̃/ν, fv1 = χ3

χ3 + C3
v1
, fv2 =

(
1− χ

1 + χfv1

)
,

ft2 = ct3e
(−ct4χ2), fw = g

(
1 + c6

w3
g6 + c6

w3

) 1
6

,

S̃ = Ŝ + ν̃

κ2d2
w

fv2, Ŝ =
√

2 Ω̃ijΩ̃ij , Ω̃ij = 1
2

(
∂ũi
∂xj
− ∂ũj
∂xi

)
, (2.29)

cw1 = cb1/κ
2 + (1 + cb2)/σ,

r = min

(
ν̃

S̃κ2d2
w

, 1
)

and g = r + cw2
(
r6 − r

)
.

The closure problem depends on turbulent viscosity µT , which is computed by µT = fv1ρν̃.

To improve the robustness and the near-wall numerical behaviour of the model, which is modelled by

the functions fv1, fv2, fw e r, the Edwards Modification [52] has been developed. This new version

resembles the ”standard” version (SA), except for the lack of the trip term ft2 and the following two

modified variables

S̃ = W̃
1
2

( 1
χ

+ fv1

)
, r =

tanh
(

ν̃

S̃κ2d2
w

)
tanh(1.0) , (2.30)

W̃ =
(
∂ũi
∂xj

+ ∂ũj
∂xi

)
∂ũi
∂xj
− 2

3

(
∂ũk
∂xk

)2
or

4
3

(
∂ũi
∂xi

)2
+
(
∂ũi
∂xj

+ ∂ũj
∂xi

)2

︸ ︷︷ ︸
i 6=j

(2.31)

The turbulence model chosen for all calculations in this work is the Spalart-Allmaras One-Equation

Model with Edwards Modification.
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Fundamentals of LES approach

As mentioned in §2.2, in LES a low-pass filtering is applied to the flowfield variables so that the

filtered field could be computed on a coarser grid than that required by a DNS calculation [48]. The

filtering operation, commonly applied in wavenumber space, leads to a system that needs to be closed.

One or more equations are thus required to model the so-called residual stress tensor τ rij concerning

all the scales above the filter cut-off frequency. These equations form a Sub-Grid-Scale (SGS) model.

The simplest SGS model, first proposed by Smagorinsky et al. (1965)[53] and used by Deardoff (1970)

[54], builds the residual stress tensor through a linear eddy viscosity model and a mixing length

hypothesis as

τ rij = −2νrΩ̃ij , νr = (Cs∆)2 Ŝ (2.32)

where Cs is a constant to be calibrated and ∆ the grid spacing. Therefore, any LES calculation

made on a sufficiently refined grid would tend to the solution provided by a DNS, in contrast with

the RANS methodology, whose best converged solution would be at most as good as the turbulence

model [42]. However, although more accurate than a RANS calculation, the computational cost of a

LES remains prohibitive in terms of degree of refinement and time-step requirements, especially for

configurations at high Reynolds numbers and for wall-bounded flows. For this reason, the interest in

hybrid RANS-LES approaches, permitting major saving, both in term of computational resource and

mamory footprint, for the boundary layer resolution, has highly increased in recent years.

Hybrid RANS/LES methodologies

Detached Eddy Simulation (DES)

The first formulation of an hybrid methodology RANS/LES, called Detached Eddy Simulation

(DES97), was made by Spalart et al. (1997) [42] who proposed to make the destruction term of the

canonical Spalart-Allmaras model (2.27) grid-sensitive, by replacing the near wall distance dw with d̃

as

d̃ = min (dw, CDES∆) (2.33)

with ∆ = max (∆xi) and CDES a constant calibrated for the case of isotropic homogeneous turbulence

and usually set at CDES = 0.65. The above equation permits to keep the RANS behaviour inside the
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boundary layer, where dw � ∆, as well as acting as a Smagorinsky SGS model where dw � ∆ if the

grid is adequate. Despite its simple heuristic, DES97 nonethless has some major drawbacks, namely:

- the incursion of LES mode inside the boundary layer;

- the delay in the development of shear layer instabilities;

- the erroneous activation of near-wall damping terms in LES mode.

Delayed Detached Eddy Simulation (DDES)

As mention in Spalart et al. (1997), the RANS preservation of the boundary layer is only assured

with a grid size exceeding the boundary layer thickness δ. Unfortunately this can happen despite the

user’s foresight in the case of boundary layer thickening and separation, leading to the activation of

the DES limiter d̃ = CDES∆ inside the boundary layer and a consequent eddy viscosity reduction [55].

This phenomenon, commonly known as MSD (Model Stress Depletion), has been shown by Menter

and Kuntz (2004) [56] to be the cause of the further upstream displacement of the separation point

predicted by RANS (using the same model) in the case of high-loaded airfoils. For this reason the

authors named this phenomenon grid-induced separation.

To protect the boundary layer from the incursion of LES mode, Spalart et al. (2006) [55] proposed a

new version of DES called DDES (Delayed Detached Eddy Simulation) including a shielding function

fd, which is supposed to be 0 in the RANS region and 1 in the LES one, reading

fd = 1− tanh
(
(8rd)3

)
, rd = ν̃√

∂ui
∂xj

∂ui
∂xj

κ2d2
w

, (2.34)

d̃ = dw − fd ·max (0, dw − CDES∆) , ∆ = ∆max = max (∆xi) . (2.35)

In this strategy, rd acts as a sensor distinguishing the points inside from those outside the boundary

layer, according on the values of local turbulent viscosity and velocity gradient norm. Particularly, the

inner points are those with moderate velocity gradient values and must be treated in a RANS way,

thus with a greater value of turbulent viscosity. Conversely, the points outside the boundary layer,

treatable in a LES way, are those with high velocity gradients (e.g. shear layers) and thus with less

levels of modelled turbulence (i.e. turbulent viscosity) required. Therefore, with function fd build to
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get a smooth transition between RANS regions and LES ones, d̃ naturally switches between dw and

CDES∆ according to fd.

Zonal Detached Eddy Simulation (ZDES) and Extended Delayed Eddy Simulations (EDDS)

According to Deck (2011) [57], though the shielding function fd aimed to protect the attached

boundary layer from MSD, its combination with the use of ∆max as subgrid scale has been proved to

delay the formation of instabilities in free shear layers. A first solution has been proposed by Chauvet

et al. (2007)[58] who introduced a flow-dependent length-scale ∆ω

∆ω =

√√√√√√√
3∑
i=1

N2
i∆xj∆xk︸ ︷︷ ︸
i 6=j 6=k

(2.36)

where Ni is the unit vector giving the projection of the cell face along the direction of vorticity ω. An

easier to implement version has been proposed by Pont (2015) [59] as

∆ω =

√√√√∑Nf
i=1 ω · Si
2||ω|| (2.37)

However, an exclusive use of ∆ω in Eq.(2.35) is not recommended since it leads to reduce the eddy

viscosity and worsening the MSD effect. For this reason, Deck (2011) [57] suggests to adopt a zonal

approach to shield the boundary layer by the using ∆max as well as to ensure a rapid switch into the

LES mode through ∆ω as

∆ =
{

∆max fd < fd0

∆ω fd > fd0
(2.38)

where fd0 is an user-defined variable in the range (0.75, 0.99) and usually set at fd0 = 0.8, after

calibrating on flat-plate boundary layer calculations.

The combination of Deck ’s zonal approach and the DDES by Spalart et al. (2006) comes down to an

enhanced version of the Extended Delayed Detached Eddy Simulation (EDDES) proposed by Riou et

al. (2009) [60] which originally required ∆ = 3
√

Π3
i=1∆xi. However as highlighted by Deck (2011) [57],

this modification is not negligible because it makes ∆ time-flow dependent and not only grid sensitive.

This modified version of EDDES has already been successfully adopted by Martelli et al. (2020) [45]

in the case of unsteady FSS over-expanded nozzles.
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Correction of RANS model damping term behaviour

As mentioned by Spalart et al. (2006), standard DES could mis-interpret the LES region as a

situation of ”wall proximity”and excessively lower the eddy viscosity through fv1, fv2 and ft2 functions

of the SA model [55]. To prevent the erroneous activation of near wall functions, Spalart et al. (2006)

introduced the factor Ψ, build as

Ψ2 = min

[
100,

1− cb1
cw1κ2f∗w

(ft2 + (1− ft2) fv2)
fv1max (10−10, 1− ft2)

]
(2.39)

where f∗w = 0.424 is the limit value of fw in Eqs.(2.29). In this way, the corrected DDES formulation

in Eq.(2.35) changes in

d̃ = dw − fd ·max (0, dw −ΨCDES∆) (2.40)

An analogous derivation for the near-wall corrected version of SA model with Edward’s modification

(SAE) has been shown by Mockett (2009) [61] as

Ψ2
SAE = min

100,
[

max
(
fv1, 10−10)

max (χ, 10−10) + f2
v1

]−1
 (2.41)

An alternative near-wall treatment, proposed by Chauvet et al. (2007), Riou et al. (2009) and Deck

(2011), suggests to fully disable the activation of fv1, fv2 and ft2 functions by imposing

fv1 = 1, fv2 = 0, ft2 = 0, fw = 1 (2.42)

However, though this solution remains well posed in the zonal frame (Chauvet, Deck) it may corrupt

the boundary layer solution when used with an EDDES formulation [61, 57]. For this reason, it has

been decided to adopt the solution provided by Eq.(2.41) in the rest of this work.
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Global Stability framework

The notion of instability is related to the tendency of a physical system to depart from its equilib-

rium as it is perturbed. Different definitions of stability exist in the literature. In the rest of this work,

we will restrict ourselves to that of linear (in)stability. An equilibrium is linearly unstable if injecting

an infinitesimal perturbation causes the system to depart exponentially fast from this equilibrium.

On the other hand, if the system eventually relaxes towards this equilibrium, the latter is said to be

linearly stable. In the field of fluid mechanics, such equilibria are known as base flows. Depending on

the properties of this base flow, various types of stability analyses could be conducted. For instance,

base flows which slowly evolves in the advection direction are traditionally studied through the prism

of local stability. By relying on a parallel flow assumption, the linearized equations governing the

spatio-temporal dynamics of infinitesimal perturbations can be studied in the Fourier domain thus

greatly facilitating their analysis and massively reducing the computational cost of such analyses. Al-

ternatively, if such simplifying assumptions do not hold, one needs to study the properties of this base

flow via the framework of global stability analysis. The latter approach has been considered in this

work. In the rest of this section, a brief overview of global stability analysis for laminar and turbulent

flows is given in section 2.3.1 and 2.3.1 while the precise set of equations considered are presented in

section 2.3.3.

Laminar flows

Depending on the properties of the investigated flow (e.g. whether it is laminar or turbulent),

different modelling strategies could be employed. For low Reynolds numbers flows, one classically

models their dynamics using the standard (in-)compressible Navier-Stokes equations. In this frame-

work, the canonical example of a globally unstable flow is the two-dimensional flow past a circular

cylinder wherein, for Re > 48, the flow exhibits the well-known Bénard-von Kàrmàn vortex street (see

Figure 2.1).

Numerous studies have been conducted on this particular flow configuration [62, 63, 64, 1]. Close to

Re = 50, the predictions of linear stability analyses are consistent with the experimental observations

and numerical simulations : the flow pattern associated to the unstable pair of modes is represen-

tative of the von Kàrmàn vortex street and the predicted frequency is in good agreement with the
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(a) Base flow solution. White lines are isolines
at null streamwise velocity and represents the
boundary of the wake bubble. Lw denotes the
length wake.

(b) Unsteady solution. Von-karman vortex
street is visible behind the cylinder.
Sorry, I need that
Sorry, I need that

Figure 2.1: Incompressible flow past a cylinder at Re = 55. Streamwise velocity contours.

observed frequency. Similar analyses have been successfully extended to compressible flows. For in-

stance, Beneddine et al. (2015) [65] have shown that, for under-expanded jets, global stability analysis

predicts the existence of an unstable global mode whose behaviour is consistent with the screech dy-

namics.

Despite these remarkable agreements for low Reynolds number flows, as one moves away from the

stability threshold, the qualitative and quantitative agreements between the predictions of stability

analyses and the experimental or numerical observations deteriorate rapidly. This increasing discrep-

ancy is classically attributed to the fact that, as the Reynolds number increases, the base flow and

the mean flow rapidly differ. In this context, Barkley (2006) [66] has shown in his seminal work that,

for the cylinder flow, a stability analysis conducted around the mean flow (rather than the base flow)

yields better agreements even relatively far from the stability threshold. In particular, such analysis

predicts the existence of a marginally stable mode whose eigenfrequency and flow features are in good

agreements with experimental and numerical observations. Although a proper theoretical justification

is still lacking, similar results have been obtained by Sansica et al. (2018) [67] for the three-dimensional

supersonic flow past a sphere. It needs to be emphasized however that, by definition, such analysis

requires a priori knowledge of the mean flow, thus limiting its applicability to situations wherein this

mean flow can either be computed from long time average obtained from direct numerical simulations
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or high-resolution experimental data.

It needs to be noted that the mean flow is not a solution to the Navier-Stokes equations. As such, the

validity of stability analysis around the mean flow lies on the well-posedness of neglecting the influence

of the Reynolds stresses in the perturbation equation. As to circumvent this issue, Mantic-Lugo et al.

(2014) [68] proposed an extension of the linear stability framework known as a self-consistent model.

In this new framework, the coupling between the “instantaneous” mean flow and the perturbations is

accounted for by explicitly taking into account the associated Reynolds stresses. Note however that,

for the sake of tractability, it is assumed that this perturbation can be well approximated by consid-

ering only the leading eigenmode of the linearized Navier-Stokes operator. The resulting system of

equations (i.e. an algebraic nonlinear equation for the mean flow forced by the perturbation’s Reynolds

stresses and the linearized equations for said perturbation) are solved iteratively as the amplitude of

the perturbation is increased. For small amplitudes, the “instantaneous” mean flow and associated

perturbation reduce to the classical base flow and eigenmode. As the amplitude of the perturbation

increases, the “instantaneous” mean flow slowly gets distorted into the classical mean flow while the

leading eigenmode increasingly resembles the marginal eigenmode obtained from a stability analysis

around the mean flow. Further theoretical and empirical justifications of mean flow stability analysis

have been proposed over the years. For instance, Sipp & Lebedev (2007) [69] have shown, by means of

a weakly nonlinear expansion about the stability threshold, that such an analysis is valid only if the

0-th (fundamental) harmonic is much stronger than the second harmonic. Otherwise, as for the case

of open cavity flow, linear stability analysis around the mean flow returns an unstable mode with a

frequency different from nonlinear flow. Turton et al. (2015) [70] have provided strong evidence that

stability analysis around the mean flow is valid only for monochromatic (single-frequency) oscillations.

Turbulent flows

For high-Reynolds number flows which are typically turbulent, the concept of base flow is strongly

dependent on the modelling strategy adopted. One could use for instance an approach wherein tur-

bulence is entirely modelled such as the RANS/URANS formulation. In this framework, the fixed

point of the URANS equations is nothing but the solution of the RANS ones. As such, the concept

of base flow is well posed and one can study whether this solution is linearly stable or not. Such an

approach has first been proposed by Crouch et al. (2007) [71]. In their work, the authors considered a
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two-dimensional turbulent transonic flow past a NACA0012. After having computed the base flow (so-

lution to the RANS equations), both the URANS equations and turbulence model have been linearized

in the vicinity of this particular solution and its stability investigated using classical tools from global

stability analysis. This analysis reported the existence of an unstable mode whose behaviour was found

to be in good agreement with results from the literature and observations from nonlinear calculations.

Shortly after, Sartor et al. (2015) [72] used the same framework to conduct stability, receptivity and

sensitivity analyses for a two-dimensional OAT15A airfoil. In the same vein, a fully three-dimensional

stability analysis on swept and unswept wings have been performed recently [73, 74, 75].

When turbulence is only partially modelled, as in LES or Hybrid methods, or even unmodelled (as

in direct numerical simulations), the fixed point of the equations is simply the laminar solution. As

discussed previously, conducting a stability analysis around this particular solution is however of very

limited practical value for high-Reynolds number flows. If one aims at studying the properties of

turbulent fluctuations, the mean flow thus represents the most coherent statistical object as they live

in the same region in phase space (in contrast to the laminar solution). It must be noted however that,

for highly turbulent flows, the nonlinear terms in the perturbation’s equations may not be neglected

so easily. Unfortunately, the computational cost associated to converging the expected value of these

nonlinear terms is tremendously high and has been, up to now, essentially limited to the incompressible

limit. Various approaches have been proposed in the literature to bypass these computations. Most

of them relies on the use of the so-called resolvent operator [76, 77, 78, 79]. Despite their attractive-

ness, such methods however raise numerous theoretical and practical questions yet unanswered and

far beyond the scope of the present thesis. For the sake of clarity, the discussion about the connection

between the resolvent operator and the Reynolds stresses in turbulent flows is postponed.
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Linearised Compressible URANS (LURANS) equations around base flow

From a general point of view, compressible URANS equations (2.23)-(2.24)-(2.26) and one-equation

turbulence model (2.27) can be written in a compact form as

∂q
∂t

+∇ ·F (q) = 0 (2.43)

where q = (ρ, ρu, ρE, ρν̃)T is the RANS state vector and F represents the flux vector, including the

turbulent component coming from the turbulence model. The operator F can be split into the sum

of a linear operator L and a nonlinear quadratic one N , so that Eq.(2.43) can be written as

∂q
∂t

+∇ · [L (q) + N (q,q)] = 0. (2.44)

If one considers the system perturbed around its steady RANS solution (i.e. base flow) q = qb ,

Eq.(2.44) reads

∂ (q + q′)
∂t

+∇ ·
[
L (q) + L

(
q′
)

+ N (q,q) + N
(
q,q′

)
+ N

(
q′,q

)
+ N

(
q′,q′

)]
= 0, (2.45)

where L (q) and N (q,q) depend only on base flow, L (q′) only on perturbations, while N (q,q′) 6=

N (q′,q) are cross-terms involving both base flow and perturbations. Focusing on the effects of a

low-amplitude perturbation (q′ � 1) evolving on top of a desirable base flow results in neglecting the

nonlinear terms so that we obtain

∂q′

∂t
+∇ ·

[
L
(
q′
)

+ N
(
q,q′

)
+ N

(
q′,q

)]
= 0 (2.46a)

∇ · [L (q) + N (q,q)] = 0. (2.46b)

The equations for the perturbation can be recast in matrix form as

∂q′

∂t
− J q′ = 0, (2.47)

where q′ =
[
ρ′, (ρu)′ , (ρE)′ , (ρν̃)′

]T
represents the RANS conservative variables perturbations and

J the Jacobian operator of compressible URANS equations about the base flow. It is worthwhile to
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remark that LURANS equations in Eq.(2.47) differ from Linearised Navier-Stokes (LNS) equations

only for the presence of turbulent stress tensor τ turbij perturbations in the momentum equation and

produced by the corresponding linearised version of turbulence model. Further details will be given

in section 3.2.1.

Assuming a normal mode decomposition, the asymptotic behaviour of a perturbation around the base

flow can be described by q′ = q̂ (x) expλt +c.c., which injected in Eq.(2.47) permits to reduce it to the

classical eigenvalue problem

(J − Iλ) q̂ (x) = 0, (2.48)

with λ = σ + iω. A base flow q will be considered as being linearly unstable if at least one of the

eigenvalues of the associated linearized operator has a positive real part σ. The dynamical behaviour

(in terms of frequency) is given by the imaginary part of the corresponding eigenvalue while the spatial

structure of the corresponding global instability is described by the eigenmode q̂ (x). The numerical

strategy adopted to solve Eq.(2.48) will be detailed in section 3.5.
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Chapter 3

Numerical method
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The code used in this work is Phoenix[80], a finite volume structured code solving RANS/URANS

equations and DDES, which has been developed at Pprime Institute in collaboration with Dynfluid

Laboratory. The tool can manage single-block as well multi-blocks cartesian grids, that can be easily

generated in the CGNS standard format, enabling to handle complex geometries. Phoenix is com-

pletely written in Fortran90 and adopts the MPI libraries for parallel computing. Although the code
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has been equipped with a variety of spatial discretizations and temporal integration schemes from the

beginning [80], its parallelisation is recent and only ultimated during the last 3 years. During this

period, an important work has been conducted in order to generalise the data communications among

different processors in case of multi-block geometries, that are crucial when dealing with structured

meshes for axisymmetric geometries (i.e. nozzle flows). Last but not least, in order to keep the same

spatial precision across overlapping MPI boundaries, a modular user-defined updating of ghost cells

has also been implemented.

In the present chapter, a detailed description of the numerical strategies adopted to solver the linear

and nonlinear governing equations will be given.

Nonlinear solver

Conservative form of nonlinear compressible URANS equations

In the finite volume framework, a conservative form of dimensionless compressible URANS equa-

tions must be formulated. This is possible by defining a state vector q = [ρ,m, ρE, ρν̃]T , with mi = ρui

the momentum flow quantity in the i-th direction. Integration of Eqs.(2.23) and (2.24) over a cell with

volume dΩ and face dS as

∂

∂t

∫
Ω

q dΩ +
∮
∂Ω

(Fc − Fv) dS︸ ︷︷ ︸
R(q)

= 0, (3.1)

where R(q) is the residual vector composed by Fc and Fv, convective and viscous flux vector re-

spectively. These vectors, after considering the projection dSi = nidS of the face dS along the i-th

direction, result in

Fc =



nimi

m1
ρ
nimi + n1p

m2
ρ
nimi + n2p

m3
ρ
nimi + n3p(

E + p

ρ

)
nimi


Fv =



0

n1τ
tot
11 + n2τ

tot
12 + n3τ

tot
13

n1τ
tot
21 + n2τ

tot
22 + n3τ

tot
23

n1τ
tot
31 + n2τ

tot
32 + n3τ

tot
33

n1Θ1 + n2Θ2 + n3Θ3


(3.2)
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where

Θi = τ totij

(
mj

ρ

)
+ cp

(
µL
PrL

+ µT
PrT

)
∂T

∂xi
(3.3)

and the viscous stress tensor τ totij reading



τ tot11 = 2
3 (µL + µT )

[
2∂u1
∂x1
−
(
∂u2
∂x2

+ ∂u3
∂x3

)]

τ tot22 = 2
3 (µL + µT )

[
2∂u2
∂x2
−
(
∂u1
∂x1

+ ∂u3
∂x3

)]

τ tot33 = 2
3 (µL + µT )

[
2∂u3
∂x3
−
(
∂u1
∂x1

+ ∂u2
∂x2

)]



τ tot12 = τ tot21 = (µL + µT )
(
∂u1
∂x2

+ ∂u2
∂x1

)

τ tot13 = τ tot31 = (µL + µT )
(
∂u1
∂x3

+ ∂u3
∂x1

)

τ tot23 = τ tot32 = (µL + µT )
(
∂u2
∂x3

+ ∂u3
∂x2

)
.

(3.4)

Primitive variables are computed from the conservative ones as follows



ui = qi+1
q1

p = (γ − 1)
[
q5 −

1
2

(
q2

2 + q2
3 + q2

4
)

q1

]
T = pγ

q1
.

(3.5)

Afterwards, one can collect all the flux terms in the residual vector R(q) as

R(q) =



q2 dS1 + q3 dS2 + q4 dS3

f11 dS1 + f12 dS2 + f13 dS3

f12 dS1 + f22 dS2 + f23 dS3

f13 dS1 + f23 dS2 + f33 dS3

fe1 dS1 + fe2 dS2 + fe3 dS3


where



f11 = q2 ·
q2
q1

+ p− τ tot11

f12 = q3 ·
q2
q1
− τ tot12

f13 = q4 ·
q2
q1
− τ tot13

f22 = q3 ·
q3
q1

+ p− τ tot22

f23 = q4 ·
q3
q1
− τ tot23

f33 = q4 ·
q4
q1

+ p− τ tot33

, (3.6)

with
fe1 =

[(
q5 + p− τ tot11

)
q2 − τ tot12 q3 − τ tot13 q4

]
/q1 + qctot1

fe2 =
[(

q5 + p− τ tot22
)

q3 − τ tot21 q2 − τ tot23 q4
]
/q1 + qctot2

fe3 =
[(

q5 + p− τ tot33
)

q4 − τ tot31 q2 − τ tot32 q3
]
/q1 + qctot3

and qctoti = −cp
(
µL
PrL

+ µT
PrT

)
∂T

∂xi
.

(3.7)

The closure problem depends on turbulent viscosity µT , which is initialised as usual in literature at

0.1µL and then updated at each time step after solving the turbulence model equation.
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Conservative form of Spalart Allmaras model

As for URANS equations, when a finite volume approach is chosen, the integral form rather than

the differential equation (2.27) of the Spalart-Allmaras turbulence model is preferred,

∂

∂t

∫
Ω
ρν̃ dΩ +

∮
∂Ω

(
F Tc − F Tv

)
dS︸ ︷︷ ︸

RT

−
∫

Ω
QT dΩ = 0, (3.8)

where Ω represents the control volume, ∂Ω its surface, and dS a surface element of Ω.

The turbulent convective flux F Tc is defined as

F Tc = ρν̃ (njuj) , (3.9)

while the turbulent viscous flux F Tv is given by

F Tv = njτ
T
jj (3.10)

where nj is the j-th component of the unit normal vector.

The normal viscous stresses reads

τTjj = 1
σ

[ρ (ν + ν̃)] ∂ν̃
∂xj

(3.11)

and the source term in Eq.(3.8) is

QT = cb1 (1− ft2) S̃ρν̃ + cb2
σ

∂ν̃

∂xj

∂ρν̃

∂xj
− ρν̃

[
cw1fw −

cb1
κ2 ft2

]
ν̃

d2 . (3.12)

In the present work, the Edwards modification is adopted in the integral form of the turbulence model.

Linear solver

The linear solver adopted in this work has been developed at Dynfluid Laboratory [81] and inte-

grated in Phoenix in order to use the same numerical strategies [67]. In the next paragraph, as done

for nonlinear URANS equations, an accurate description of the linear N-S equations will be provided.
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Conservative form of the linearised compressible URANS Equations

Starting from the conservative form of the compressible URANS equations (3.1), and by linearising

the latter about the base flow q =
[
ρ,m, ρE, ρν̃

]T
, it is possible to obtain the following Linearised

Compressible URANS (LCURANS) equations

∂

∂t

∫
Ω

q′ dΩ +
∮
∂Ω

(
F′c − F′v

)
dS︸ ︷︷ ︸

R(q′)

= 0, (3.13)

where q′ = [ρ′,m′, (ρE)′]T is the state vector of the perturbation (in conservative form) and R(q′) the

residual vector composed by F′c and F′v, the linearised convective and viscous flux vector respectively.

It is important to note that the linear solver has been developed in analogy with the nonlinear one

so that the conservative quantities are the independent variables while primitives are functions of the

former. In this perspective, primitive variables perturbations are obtained as linear expansion about

q of the corresponding formula based on conservative variables.

The residual vector can be rearranged as its equivalent nonlinear ones in the following way

R′(q) =



q′2 dS1 + q′3 dS2 + q′4 dS3

f′11 dS1 + f′12 dS2 + f′13 dS3

f′12 dS1 + f′22 dS2 + f′23 dS3

f′13 dS1 + f′23 dS2 + f′33 dS3

fe′1 dS1 + fe′2 dS2 + fe′3 dS3


where



f′11 = q2
q1

(
2q′2 −

q2
q1

q′1

)
+ p′ − τ ′11

f′12 = f′21 = 1
q1

(
q2q′3 + q3q′2 −

q2 q3
q1

q′1

)
− τ ′12

f′13 = f′31 = 1
q1

(
q2q′4 + q4q′2 −

q2 q4
q1

q′1

)
− τ ′13

f′22 = q3
q1

(
2q′3 −

q3
q1

q′1

)
+ p′ − τ ′22

f′23 = f′32 = 1
q1

(
q3q′4 + q4q′3 −

q3 q4
q1

q′1

)
− τ ′23

f′33 = q4
q1

(
2q′4 −

q4
q1

q′1

)
+ p′ − τ ′33

,

(3.14)

with the total stress tensor perturbation τ ′ij
†, that can be split in its laminar and turbulent contribution

as

τ ′ij = τ ′lam + τ ′turb, (3.15)

†For the sake of simplicity, the superscript tot has been neglected for perturbations
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which are defined as

τ ′lam = µL

[(
∂u′i
∂xi

+
∂u′j
∂xj

)
− 2

3δij
∂u′k
∂xk

]
+ µ′L

[(
∂ui
∂xi

+ ∂uj
∂xj

)
− 2

3δij
∂uk
∂xk

]
(3.16)

τ ′turb = µT

[(
∂u′i
∂xi

+
∂u′j
∂xj

)
− 2

3δij
∂u′k
∂xk

]
+ µ′T

[(
∂ui
∂xi

+ ∂uj
∂xj

)
− 2

3δij
∂uk
∂xk

]
, (3.17)

with the following primitive variables perturbations



ρ′ = q′1

u′i = 1
q1

(
m′i −

mi

q1
q′1

)
p′ = (γ − 1)

{
q′5 + 1

2q1

[
q′1
q1

(
q2

2 + q3
2 + q4

2)− 2 (q2q
′
2 + q3q

′
3 + q4q

′
4)
]}

T ′ = γ

q1

(
p′ − p

q1
q′1

)
.

(3.18)

The most sensible part of the linearised equations is the energy equation, that is directly linked to the

state equation through the heat flux perturbation q′c =
[
q′c1 , q

′
c2 , q

′
c3

]T,† in the following way

fe′i = Ai −Bi + qc′i (3.19)

with 

τ totij = τ lam + τ turb

qc′i = −cp

[
µL
PrL

∂T ′

∂xi
+ µ′L
PrL

∂T

∂xi

]
− cp

[
µT
PrT

∂T ′

∂xi
+ µ′T
PrT

∂T

∂xi

]
= qc′lam + qc′turb

Ai = q5u
′
i + q′5ui + pu′i + p′ui

Bi = τ totij u
′
j + τ ′ijuj

(3.20)

Conservative form of Linearised SA model with Edward’s modification

The choice to use the SA model is related to its differentiability. In fact, as done for LURANS

equations, also the turbulence for perturbations has been obtained by linearising Eq.(3.8) about the

base flow q. In the following formula, for the sake of simplicity, the superscript ′ has been neglected

for all perturbative terms. Conversely, all terms with overbar symbol refer to base flow quantities.

The linearised version of SA model has the same form as Eq.(3.8), with the linearised turbulent

convective flux F Tc defined as
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F Tc =
[
q6
mi

q1
+ q6

q1

(
mi −

mi

q1
q1

)]
ni, (3.21)

and the linearised turbulent viscous flux F Tv given by

F Tv = 1
σ

[
(µ+ q6) ∂

∂xi

(
q6
q1

)
+ (µ+ q6) ∂

∂xi

(
q6
q1
− q6
q1
· q1
q1

)]
ni (3.22)

where ni is the i-th component of the unit normal vector and q6 is the turbulent conservative variable

ρν̃. The source term in Eq.(3.8), including the Edward’s modification, is linearised as

QT =cb1
(
Sq6 + Sq6

)
+

cb2
σ

[
∂q6
∂xi

∂

∂xi

(
q6
q1
− q6
q1
· q1
q1

)
+ ∂q6
∂xi

∂

∂xi

(
q6
q1

)]
+

cw1
d2

(
fwq6ν̃ + fw ν̃q6 + q6 ν̃fw

)
.

(3.23)

with the pseudo-turbulent viscosity perturbation defined as

ν̃ = 1
q1

(
q6 −

q6
q1
q1

)
(3.24)

and the other auxiliary functions reading

χ = 1
µ

(
q6 −

q6
µ
µ

)
, fv1 = 3C3

v1χ
2(

χ3 + C3
v1
)2χ, (3.25)

W = 8
3
∂ui
∂xi

(
∂ui
∂xi

)
+ 2

(
∂ui
∂xj

+ ∂uj
∂xi

)
︸ ︷︷ ︸

i 6=j

(
∂ui
∂xj

+ ∂uj
∂xi

)
︸ ︷︷ ︸

i 6=j

, (3.26)

S = W
1
2

[1
2

(
µ

q6
+ fv1

)
W

W
+ µ

q6
− µ

q62 q6 + fv1

]
, g = r ·

[
1 + Cw2

(
6r5 − 1

)]
, (3.27)

r = δ

tanh(1.0)

 4e−2·δ(
e−2·δ + 1

)2

( ν̃
ν̃
− S

S

)
, δ = ν̃

Sκ2d2 , fw = g

(
1 + c6

w3
g6 + c6

w3

) 1
6
(

c6
w3

g6 + c6
w3

)
.

(3.28)

The closure problem depends on the following equation linking turbulent pseudo-viscosity perturbation

and turbulent viscosity one

µt = fv1q6 + fv1q6. (3.29)
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Spatial discretisation

Phoenix is a cell-centered solver. Therefore, after initialising the conservative variables at each cell,

the residual vector is discretised in order to integrate Eq.(3.1) or Eqs.(3.13) with their corresponding

turbulence transport equations, for nonlinear and linear equations respectively. Particularly, in the

cell-centred framework, three different approaches for the approximation of the discretised residual

vector at each face of a cell are available:

- averaging the fluxes computed from the cell-centred values to the left and to the right of the cell

face;

- averaging the flow variables computed from values at the centroids of the grid cells to the left

and to the right of the cell face;

- computing the fluxes from flow quantities interpolated separately to the left and to the right

side of the cell face.

Phoenix adopts the first and the third strategy in the case of Central Schemes with Artificial Dis-

sipation and in the case of Upwind Schemes, respectively. In this work the central scheme used to

discretise the URANS equations is a third-order Directional Non Compact (DNC) scheme, while a

second order TVD scheme based on the upwind Roe’s scheme has been chosen for the discretisation

of the turbulence equation. The same numerical strategies are adopted in solving both nonlinear and

linear URANS equations.

Spatial discretisation of URANS equations

In the case of hexahedral structured grids, the fluxes balance
∮
∂Ω FdS =

∮
∂Ω (Fc − Fv) dS in

Eq.(3.1) or Eq.(3.13) at each cell is based on the following finite difference approach∮
∂Ω

FdS =
(
RI+1/2,J,K −RI−1/2,J,K

)
︸ ︷︷ ︸

R̃I

+
(
RI,J+1/2,K −RI,J−1/2,K

)
︸ ︷︷ ︸

R̃J

+
(
RI,J,K+1/2 −RI,J,K−1/2

)
︸ ︷︷ ︸

R̃K

(3.30)

where I ± 1/2, J ± 1/2,K ± 1/2 represent the face in the positive/negative i−th direction, respectively.

From now on, for the sake of simplicity, let us consider only the contribution to fluxes balance along
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the I direction.

If we introduce the spatial operators

µ ()I+1/2 = 1
2
[
()I+1 + ()I

]
(3.31a)

δ ()I+1/2 = ()I+1 − ()I , (3.31b)

a second order scheme reads

R̃I = µRI+1/2 − µRI−1/2 = δµRI +O
(
∆x2

1

)
, (3.32)

with the contributions in the other directions
(
R̃J , R̃K

)
built in the same way.

After explicitly correcting the dispersive error, one can obtain the following fourth order DNC scheme

R̃I = δ

(
I− 1

6δ
2
)
µRI +O

(
∆x4

1

)
. (3.33)

However, both schemes in Eq.(3.32) and Eq.(3.33) are not dissipative and need artificial dissipation to

stabilise convective fluxes Fc (or F′c). For this reason, people generally prefer separating the viscous

contribution from the convective one. In this work, the same spatial scheme is adopted both for Fc

(or F′c) and Fv (or F′v) so that

R̃I = R̃c
I + R̃v

I
, (3.34a)

R̃c
I = δ

(
I− 1

6δ
2
)
µFc

I , (3.34b)

R̃v
I = δ

(
I− 1

6δ
2
)
µFv

I . (3.34c)

In order to stabilise the above scheme, the author chose to use a Scalar Dissipation Scheme, also known

as JTS (Jameson-Schmidt-Turkel) scheme, which was firstly proposed by Jameson et al. (1981) [82]

to solve the Euler equations. In this solution the artificial dissipation dI+1/2 consists in

dI+1/2 = |µΛI+1/2
c | · εI+1/2

(2)

δqI+1/2+O(∆x1)︷ ︸︸ ︷(
qI+1 − qI

)
+

− |µΛI+1/2
c | · εI+1/2

(4)

(
qI+2 − 3qI+1 + 3qI − qI−1

)
︸ ︷︷ ︸

δ3qI+1/2+O(∆x3
1)

(3.35)

with
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- Λc = ui dSi + adS, spectral radius of the convective flux Jacobian ∂Fc/∂q ‡ ;

- νI = |p
I+1 − 2pI + pI−1|
pI+1 + 2pI + pI−1 ∝ |

∂2p
∂x2 ∆x2 +O(∆x4)| § ;

- ε
I+1/2
(2) = k(2)max

(
νI+1, νI

)
;

- ε
I+1/2
(4) = max

(
0,
(
k(4) − εI+1/2

(2)

))
︸ ︷︷ ︸

=O(1)

where a is the sound velocity.

The pressure-based sensor ε
I+1/2
(4) is used to switch off the third order term δ3qI+1/2 at shocks and

suppress any high-order schemes oscillations near discontinuities. Additionally, the sensor ε
I+1/2
(2)

switches off the first-order term δqI+1/2 in smooth parts of the flowfield, in order to minimise the

dissipation. The contributions in the other directions
(
dJ+1/2,dK+1/2

)
are built in the same way so

that the overall artificial dissipation d at each cell is computed as

d =
(
dI+1/2,J,K − dI−1/2,J,K

)
︸ ︷︷ ︸

d̃I

+
(
dI,J+1/2,K − dI,J−1/2,K

)
︸ ︷︷ ︸

d̃J

+
(
dI,J,K+1/2 − dI,J,K−1/2

)
︸ ︷︷ ︸

d̃K

, (3.36)

and added to the convective discretised flux R̃c
I

so that Eq.(3.34) becomes

R̃I = R̃c
I + d̃I + R̃v

I
, (3.37a)

d̃I = δµdI . (3.37b)

Since artificial dissipation in Eq.(3.35) results in a blend of third-order term and a first-order term,

which is enabled only in strong pressure gradient region, it is traditionally accepted to be a third order

accurate term. Therefore a fourth order DNC scheme with a such artificial dissipation is commonly

accepted as a globally third order scheme.

As for viscous fluxes R̃v, the τij cell-centred value is computed after evaluating the velocity gradient

components ∂ui/∂xj , as well as the temperature gradient ones ∂T/∂xi, by means of Green’s Theorem

as
∂A

∂xi
= 1

Ω

∮
∂Ω
AdSi ≈

1
Ω

NF∑
m=1

Amni,mdS (3.38)

‡In the linear solver Λc is computed using the baseflow variables as Λc = ui dSi + adS.
§In the linear solver the pressure sensor is based on the baseflow pressure p to avoid any division by zero.
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with NF number of cell faces and Am quantity face values. In the present work, the latter is discretised

by a 2nd order accurate finite difference approach as Eq.(3.32), so that the above formula reduces to

the following discretised version

∂A

∂xi
≈ 1

Ω
∑
M

δ
(
µAMdSMi

)
M = I, J,K. (3.39)

Spatial discretisation of turbulence transport equation

Eq.(3.8), as its linear counterpart, includes quantities depending only on flowfield variables and

others depending on gradients. In the present work, the former are evaluated at each cell-center while

the latter are computed using Eq.(3.39). After computing each single term, the turbulent residual RT

is discretised by a 2nd order TVD scheme.

A TVD scheme consists in a central scheme obtained as an average of the convective fluxes combined

with an additional limited dissipation term preventing the generation of new extrema in the flow

solution [83]. In this work, the central scheme adopted for turbulent vector flux RT (including the

viscous and convective part) is a 2nd order scheme (see Eq.(3.32)). In order not to downgrade the

precision, a second order dissipation term is adopted. For the sake of simplicity, if we call ρν̃ with q

and consider only the contribution on the face (I − 1/2, J,K), the aforementioned dissipation dI−1/2

is obtained by a preprocessing approach in terms of Roe’s solver [84] as

dI−1/2 = 1
2 |µλ

I−1/2|
(
q
I−1/2
R − qI−1/2

L

)
dS, (3.40)

where qR and qL are the approximations of q on the right and left sides of the I-th cell and computed

as (
q
I−1/2
R − qI−1/2

L

)
= δqI−1/2 − 1

2
[
ψ
(
δqI−1/2, δqI+1/2

)
+ ψ

(
δqI−1/2, δqI−3/2

)]
︸ ︷︷ ︸

upwinding term

(3.41)

with the flux limiter ψ defined by

ψ(x, y) = minmod (x, y) = sign(x) ·max [0,min (|x|, y · sign(x))] . (3.42)

Like in the case of RANS equations, λI represents the derivative of the convective flux F Tc with respect

to conservative variable q as
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λI = ∂F Tc
∂q

∣∣∣∣I = ΛTc
∣∣∣∣I = mI

i

qI1
ni
¶. (3.43)

In the present work, the upwinding term in Eq.(3.41) is approximated as

minmod
(
δqI−3/2,minmod

(
δqI−1/2, δqI+1/2

))
, (3.44)

and the resulting 2nd order TVD scheme is

R̃T |I = δµRT |I + δµdI . (3.45)

The dissipation term, as its equivalent in Roe’s scheme and many other upwind schemes, would produce

a non-physical expansion shocks failing to satisfy the entropy condition at sonic point. In order to solve

this problem, the modulus of the convective eigenvalue can be modified using the following Harten’s

entropy correction

|ΛTc | =


|ΛTc |, |ΛTc | > c(

ΛTc
)2

+ c2

2c , |ΛTc | ≤ c
(3.46)

where c is a small value, commonly set equal to some fraction of the local speed of sound a. In the

present work c is set at 5% of velocity of sound a.

Time integration

In this work, an implicit loosely coupled algorithm is used to integrate the (linear/nonlinear)

URANS equations and (linear/nonlinear) Spalart-Allmaras turbulence equation separately [85]. His-

torically, this approach has been preferred due to the fact that the turbulence model equations are

solved only to obtain the eddy viscosity as well as to its flexibility in using different turbulence model

by simply adding separate routines to a pre-existing Navier-Stokes code [86]. Particularly, in this work

the turbulence transport equation is marched one time step for each Navier–Stokes iteration [85]. A

Local Time Stepping (LTS) Technique or a Selective Frequency Damping (SFD) [87, 88] has been

used to solve steady problems, with the latter method implemented by the author. Conversely, a Dual

¶In the linear solver, ΛTc

∣∣∣∣I = mi
I

qI1
ni.

74



3.4. TIME INTEGRATION

Time Stepping (DTS) method has been used to solve steady and unsteady problems respectively. In

the next paragraph, a detailed description of the above time-integration methods will be provided.

Steady Flows: Local time stepping (LTS) technique

URANS equations

The idea of Local Time Stepping (LTS) technique is advancing the solution in each control volume

with a local maximum time step ∆tL obeying to a CFL condition imposed all over the computational

domain. If we use an Euler implicit time-integration for the spatially discretised version of Eq.(3.1)

or Eq.(3.13), after a linearisation in time, we obtain the following implicit scheme at each cell center

[( 1
∆tL

)
ΩI + ∂R̃

∂q

∣∣∣∣n
]

∆q = −R̃n, (3.47)

where R̃n = R̃n
I + R̃n

J + R̃n
K and ∆q = qn+1 − qn. It is worthwhile noting that if ∆tL tends

to infinity, the above scheme reduces to a Newton’s method, which is known to have a quadratic

convergence property. However this property is guaranteed only if the Jacobian matrix ∂R̃/∂q is exact.

Unfortunately, explicit expression for the Jacobian matrix resulting from the exact linearisation of any

second or higher order numerical flux is extremely expensive. A solution for compressible structured

solver has been proposed by Luo et al. (1998) [89] under the name of Matrix-Free Method. This

algorithm is based on the simplification of the Jacobian matrix with ∂R̃∗/∂q, where R̃∗ is the first

order Rusanov numerical inviscid flux defined as

R̃∗ = δµR∗I + δµR∗J + δµR∗K (3.48)

with

R∗I+1/2 = 1
2
[
Fc

I+1 + Fc
I − |ΛI+1/2

c |
(
qI+1 − qI

)]
= µ Fc

I+1/2 − |µΛI+1/2
c |
2 δqI+1/2. (3.49)

After replacing ∂R̃/∂q with ∂R̃∗/∂q in Eq.(3.47) and several mathematical manipulations, one can

obtain the following tridiagonal system with the I direction terms for the i-th conservative variable
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∆qi

(
Ω

∆tL
+ |µΛI+1/2

c |
2 + |µΛI−1/2

c |
2

)
︸ ︷︷ ︸

DI

= −R̃
I
i + |µΛI+1/2

c |
2 ∆qI+1

i + |µΛI−1/2
c |
2 ∆qI−1

i − δ
(
µdFIc,idS

I
)

(3.50)

where dFc,i is the exact differential of the i-th component of convective flux Fc. To take in account

the contribution of viscous term Fv that is not simultaneously diagonalizable, an approximation of

viscous spectral radius Λv is added in the diagonal operator DI [89, 85] as

DI =
(

Ω
∆tL

+ |µΛI+1/2
c |
2 + |µΛI−1/2

c |
2 + µΛI+1/2

v dSI+1/2

µΩI+1/2 + µΛI−1/2
v dSI−1/2

µΩI−1/2

)
(3.51)

where

ΛIv =
(
µIL
PrL

+ µIT
PrT

)
γ

ρI
‖. (3.52)

Under the assumption that

dFc ≈ Fc (q + ∆q)− Fc (q), (3.53)

Eq.(3.50) can be iteratively resolved to find ∆q and advance the solution in time.

Turbulence transport equation

An Euler implicit scheme, similar to that described in the previous paragraph, is employed for

the time integration of the discretised turbulence transport equation. However, when dealing with

turbulence models, the source term becomes so dominant that flow variables changes rapidly in space

and in time at much smaller time scales than those of RANS equations. This process significantly

increases the stiffness of Eq.(3.8) and the usual remedy to that is treating the source term QT †† in an

implicit way. For this purpose, the linearisation of the source term about the current time n results in

QT
∣∣∣∣n+1

= QT
∣∣∣∣n + ∂QT

∂q6

∣∣∣∣n (qn+1
6 − qn6

)
(3.54)

‖In the linear solver ΛIv =
(
µL

I

PrL
+ µT

I

PrT

)
γ

ρI
.

††The lack of ˜ symbol means that the term is well defined at each cell without the need to be approximated.
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with q6 = ρν̃. If one uses Eq.(3.54) to make QT implicit in Eq.(3.8) and adopts the same linearisation

in time for the turbulent flux balance RT , an equivalent Euler implicit scheme for the turbulence model

can be obtained as

[(
1

∆tL
+ ∂QT

∂q6

∣∣∣∣n
)

Ω + ∂RT

∂q6

∣∣∣∣n
]

∆q6 = −
(
R̃T −QTΩ

) ∣∣∣∣n, (3.55)

with ∂RT /∂q6 =
(
∂F Tc /∂q6 + ∂F Tv /∂q6

)
dS. In the case of one or two turbulence transport equations,

the implicit terms ∂QT /∂q6 and ∂F Tc /∂q6 are diagonal and easy to obtain analytically. Whilst, the

turbulent viscous counterpart ∂F Tv /∂q6 is usually estimated with its spectral radius ΛTv as

∂F Tv
∂q6

≈ ΛTv = 2(µL + µT )
ρ

‡‡ (3.56)

and added to the diagonal operator as well, giving no reason to use a Matrix-Free approach.

In this work, Eq.(3.55) is first discretised in space and then marched in time with frozen flow vari-

ables immediately after Eqs.(3.50)-(3.53) are solved [85]. The tridiagonal system deriving from the

discretisation in space of Eq.(3.55) is solved by a Thomas Algorithm to obtain ∆q6 =
(
qn+1

6 − qn6
)

and advance the turbulent variable q6 in time.

Unsteady Flows: Implicit Dual Time Stepping (DTS) technique

URANS equations

The efficiency of Matrix-Free method in solving steady problems can be exploited to solve unsteady

ones in Dual Time Stepping (DTS) framework as proposed by Luo et al. (2001) [90]. This approach,

based on the following second-order time accurate version of Eq.(3.1)

Ω
∆t

(3
2qn+1 − 2qn + 1

2qn−1
)

= −Rn, (3.57)

requires the solution of an equivalent pseudo-steady problem as

Ω∂q∗

∂t∗
= −R(q∗) (3.58)

‡‡In the linear solver ΛTv = 2(µL + µT )
ρ

.
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with q∗ approximation at the time t∗ of qn+1 and the unsteady residual R(q∗) reading

R(q∗) = R(q∗) + 3Ω
2∆tq

∗ + Ω
∆t

(
−2qn + 1

2qn−1
)
. (3.59)

If Eqs.(3.58)-(3.59) are spatially discretised and iteratively solved by an Euler implicit scheme with a

Matrix-Free approach, one can come to the following DTS implicit scheme


R̃l = R̃(ql) + 3Ω

2∆tq
l + Ω

∆t

(
−2qn + 1

2qn−1
)

[( 1
∆tL

+ 3
2∆t

)
ΩI +

(
∂R̃∗
∂q

)](
ql+1 − ql

)
= −R̃l

.

(3.60)

Before advancing the solution in each cell q of the physical time step ∆t, the system above is marched

in the fictitious time ∆tL by a LTS technique for a number of iterations l so that the unsteady residual

R̃l
drops at least of one order of magnitude. After that, the solution qn−1 is updated with qn as well

as qn with the converged pseudo-steady solution ql+1.

As one can state by comparing Eq.(3.60) with Eq.(3.47), the pseudo-steady implicit formula differs

from the the classical Euler one only by the diagonal term 3/ (2∆t) ΩI. This means that, compared

to an explicit scheme, the DTS implicit scheme has a higher computational cost for each physical

iteration. However, the advantage of DTS method is the possibility of advancing the solution with a

grid resolution-independent physical time step, which is much higher of that required by an explicit

scheme on the same grid. Given that the greatest level of grid refinement is usually demanded near

wall, this numerical property of DTS scheme perfectly blends with hybrid formulations, which have

been developed to save computational cost inside boundary layer where a LES approach is not strictly

required.

Turbulence transport equation

An analogous version of Eq.(3.60) can be obtained for Eq.(3.55) as


R̃6

l = R̃6(ql6) + 3Ω
2∆tq

l
6 + Ω

∆t

(
−2qn6 + 1

2q
n−1
6

)
[(

1
∆tL

+ ∂QT

∂q6
+ 3

2∆t

)
Ω +

(
∂RT

∂q6

)](
ql+1

6 − ql6
)

= −R̃6
l
.

(3.61)
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with q6 = ρν̃ and R̃6 = R̃T −QT .

Giving that Eq.(3.61) has the same form of Eq.(3.55), the former is numerically solved as the latter

to advance the turbulent variable q6 in time.

Steady Flows: Selective Frequency Damping (SFD)

In contrast with laminar flows, turbulent flows require an higher grid refinement level or, as it

happens for URANS methods, an additional turbulence transport equation in order to accurately

resolve or model wall turbulence. As mentioned in section 3.4.1.2, a turbulence transport equation

includes stiff source terms which, together with the grid refinement-sensitiveness from which the Local

Time Stepping (LTS) technique suffers, does not permit to converge the steady state with reasonable

computational resources or even with a reasonable precision by this method. In order to bypass this

drawback, people generally adopt a multigrid technique, which consists in converging at best the

steady solution on a rough grid and then interpolating the obtained solution on a more refined grid

and iterate this process. Another expedient, which does not require any differently refined grids, is

the Selective Frequency Damping (SFD).

The SFD approach consists in considering the continuous URANS equations as a nonlinear system q̇ =

f(q), where q is the vector of conservative quantities (including the pseudo-turbulent viscosity q6 = ρν̃)

and f(q) = −∇ · F (q) the RHS vector (including any turbulence model term) with appropriate

initial and boundary conditions for q. Therefore, the base flow qb is a steady solution, given for

q̇ = f(qb) = 0. In the case of linear instability, if the system is very small perturbed about its steady

solution, any solution q will quickly depart from qb. In this perspective, computing the base flow

means stabilising the above system.

According to the Linear Control Theory, one can design a feedback control loop to stabilise an unstable

system. The SFD method, by using exactly this strategy, applies a low-pass frequency filter to the

system, obtaining a filtered solution q, in the following way:

{
q̇ = f(q)− χ (q − q)
q̇ = (q − q) /∆

(3.62)

where ∆ is inverse of the cut-off frequency (ωc) and χ is the control coefficient. Usually, ωc is set at

an half of the dominant disturbance frequency, while χ twice the growth rate.
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The version implemented in this work is that proposed by Jordi et al. (2014) [88], which avoids any

modification of the original solver. According to this, the proportional filter is activated on the output

qj of the j-th DTS iteration. In this view, Equations (3.62) can be written in a compact way as

d

dt

(
q
q

)
=
(
−χI χI

1
∆I − 1

∆I

)(
q∗
q

)
(3.63)

and exactly integrated over one time step ∆t, yielding

(
qj+1

qj+1

)
= 1

1 + χ∆

(
I + χ∆eI χ∆(I− eI)

I− eI χ∆I + eI

)(
q∗
qj

)
(3.64)

where e = e−(χ+1/∆)∆t. In this way, at the j-th iteration of the unsteady solver, the solution qj is

updated and filtered, until qn ≈ qn + ε, with ε imposed by a stop criterion. This method has been

successfully tested by Richez et al. (2016) [91] in finding the steady RANS solution in a turbulent

separated flow past an airfoil.

Even though this formulation is the more convenient when dealing with complicated solver because

it only needs an output correction, the control parameters setting (∆, χ) is more tricky and if they

are not carefully chosen a steady solution can be even not reached. Particularly, Casacuberta et al.

(2018) [92] have shown that when flow exhibits only one instability mode (σ, ω), the steady solution

is always obtained for the following choice of parameters

χ = |σ|+ ω

2 , (3.65a)

∆ = 2
|σ| − ω

. (3.65b)

It is evident that in order to successfully converge towards a steady state with such a method, an a

priori knowledge of the instability is required. However, while ω can be easily obtained by a nonlinear

calculation, only a linear stability analysis about the base flow would provide σ. In order to solve

this ambiguity, Casacuberta [92] suggested the so-called flow unleash method, which consists in first

driving the solution at low enough residual and restarting the calculation from that point. In this

way, instabilities would grow and solution will depart from the converged steady state with a growth
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rate σ∗ close to σ, which is employed to update the value of (∆, χ) and activate the SFD back. The

more accurate the initial steady solution is, the less the process must be iterated. An application of

this method for turbulent flows will be provided in section 4.2.1.
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Eigenvalue solver

The unsteady Reynolds-averaged Navier-Stokes equations linearized in the vicinity of a given base

flow read
∂q′

∂t
+∇ ·

[
L
(
q′
)

+ N
(
q,q′

)
+ N

(
q′,q

)]
= 0. (3.66)

For the sake of simplicity, we will however use hereafter the following notation

∂q′

∂t
− J q′ = 0, (3.67)

where J denotes the Jacobian operator of the URANS equations and q′ =
[
ρ′, (ρu)′ , (ρE)′ , (ρν̃)′

]T
is

the state vector (in conservative form) of the system. For a fully three-dimensional flow, this Jacobian

operator can be represented as a kn×kn matrix (k denoting the number of conservative variables and

n the number of grid points in the domain). For the flow configurations investigated in the present

work, computing the leading eigenvalues and eigenvectors of such a large matrix is currently intractable

using standard direct solvers. Consequently, the time-stepper formulation of the instability problem

coupled with an iterative eigenvalue solver (e.g. the Arnoldi method), a technique originally proposed

by Edwards et al. (1994) [93] and popularized by Bagheri et al. (2009) [94], is used in this thesis.

The solution to Eq. (3.67) can be written as

q′(τ) = eτJq′(0)

where M = eτJ is a matrix known as the exponential propagator of the system, mapping an initial

condition at time t = 0 to the corresponding solution at time t = τ . From a practical point of view,

this matrix-vector product can be easily computed by marching forward in time the linearized URANS

equations using q′(0) as the input vector. It is then relatively easy to compute the leading eigenvalues

and eigenvectors

λM q̂ = Mq̂

of this exponential propagator using a standard iterative eigenvalue solver. Note that the eigenvalues

of M are related to those of the Jacobian operator J through the relation

λJ = log λM
τ

while their eigenvectors are identical. These equivalences come from the very definition of the matrix

exponential.
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Although it has become relatively standard nowadays, let us explain the basic idea behind the Arnoldi

algorithm used to compute these eigenpairs for the sake of completeness and clarity. It can be con-

sidered an advanced variant of the simpler power iteration method. Given the exponential propagator

M and a normalised initial vector u0 = q0/‖q0‖, the power iteration constructs the following m-

dimensional Krylov subspace Km

Km(M,u0) = {u0,Mu0, . . . ,Mm−1u0}. (3.68)

It can be shown that as m increases, the last vector of this sequence slowly converges toward the

leading eigenvector of M while the corresponding eigenvalue can be recovered from the associated

Rayleigh quotient. Moreover, raising the exponential propagator to a given power k simply amounts

in practice to integrate the linearized equations foward in time from time t = 0 to time t = kτ where

τ is our sampling period. It should be emphasized however that the Krylov sequence Km becomes

increasingly ill-conditioned as m increases.

In order to overcome this drawback, the Arnoldi method combines the power iteration with a modified

Gram-Schmidt process. The Arnoldi factorisation reads

MVm = VmHm + βvm+1eTm+1 (3.69)

with Vm an orthonormal set of vectors, Hm a m×m upper Hessenberg matrix, and βvm+1 the residual

which, by construction, is orthogonal to Vm. Figure 3.1 visualises the shape of the matrices involved

in the process. It can be shown that the pair (λH ,Vmŷ), where λH and ŷ are the eigenvalues and the

corresponding eigenvectors of Hm, provides a good approximation for the eigenpairs of the matrix M.

The Arnoldi procedure to be carried out in order to construct iteratively these different matrices is

described step by step in Table 3.1.

Figure 3.1: Matrix representation of the Arnoldi decomposition. From Bucci, Phd thesis (2017) [95]
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Table 3.1: Arnoldi algorithm step-by-step

1
Set an initial arbitrary vector u0 and normalize it such
that it has unitary norm.

v1 = q0
‖q0‖

2
The new Krylov vector vk is computed from vk−1 by
integrating forward in time the linearized equations.

vk = Mvk−1

3

A Gram-Schmidt iteration is then used to orthonor-
malize vk with respect to the previous Krylov vectors.
This is accomplished in two steps. hj,k−1 are the terms
in the upper diagonal Hessenberg matrix.

for j = 1→ k − 1

hj,k−1 = vjvk
vk = vk − hj,k−1vj

end

4
The subdiagonal term of the Hessenberg matrix is the
norm of the new orthogonal vector.

hk,k−1 = ‖vk‖

5
Finally vk is normalised to get the new orthogonal
direction in the Krylov subspace.

vk = vk
hk,k−1

6
Repeat from step 2 until k is equal to the desired di-
mension m of the Krylov subspace.

while k ≤ m

k = k + 1
goto step 2

end

7
Solve the small m ×m eigenvalue problem using LA-
PACK [96]

[µH , ŷ] = eig(H)

8
Approximate the eigenvectors of the exponential prop-
agator M from the orthonormal Krylov basis Vm and
its eigenvalues from those of the Hessenberg matrix.

λ = µH and q̂ = Vmŷ

9
Recover the eigenvalues of the Jacobian matrix J from
those of the propagation matrix M and the relative
residual rk associated at each q̂k.

λ = log(µ)
∆T and rk = |βyk(m)|
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Boundary conditions

Navier-Stokes as well as URANS equations require initial conditions as well as boundary conditions.

The latter include both physical conditions that solutions must respect (i.e. symmetry, solid walls,

etc.) and artificial ones derived from the fact that any numerical simulation can consider only a

part of the real physical domain (i.e. farfield for inflow/outflow, periodic boundaries, continuity over

overlapping MPI boundaries, etc.) [83]. In the next paragraphs, a detailed description of boundary

conditions used in this work will be provided.

Farfield non-reflecting boundary condtions

In order to avoid any outgoing disturbances be reflected back into the computational domain

at boundaries, non-reflective boundary conditions based on characteristics are adopted. Depending

on the sign of the eigenvalues of the convective flux Jacobians ∂Fc/∂q, disturbances are conveyed

outside or inside the domain along the characteristics. For example, if one considers the entire set of

eigenvalues Λc = [u · n,u · n,u · n,u · n + a,u · n− a]T , in the case of subsonic inflow there is only

one positive eigenvalues and consequently an outgoing characteristic. Conversely, for subsonic outflow

the situation reverses. The approach chosen in this work is that of Whitfield [97], which is based on

the one-dimensional Euler equations. If we denote with the supscript∞ the free-stream condition and

with S that about a point just inside the domain, primitive variables at boundary B must be specified

as follows

SUPERSONIC INFLOW =



pB = p∞

ρB = ρ∞

uB = u∞

SUPERSONIC OUTFLOW =



pB = pS

ρB = ρS

uB = uS

(3.70)
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SUBSONIC INFLOW =



pB = 1
2 [p∞ + pS − ρSaS (u∞ · n− uS · n)]

ρB = ρ∞ + pB − p∞
a2
S

uB = u∞ − n
[
p∞ − pB
ρSaS

] (3.71)

SUBSONIC OUTFLOW =



pB prescribed

ρB = ρS + pB − pS
a2
S

uB = uS + n
[
pS − pB
ρSaS

] (3.72)

Free-stream variables are imposed in terms of Mach number M thanks to the practical reference

quantities (see section 2.1.1 for further details). As for the linear solver, the above formula are kept in

the same for baseflow variables or linearised for perturbations, as in Crouch (2007) [71]. Particularly,

for the case of subsonic outflow, a null pressure perturbations (p′ = 0) is prescribed at boundary [81].

Injection boundary conditions

A non-reflecting boundary condition for the Euler equations consisting in the specification of the

total pressure, total temperature, and two flow angles is adopted.

Let us consider a boundary with prescribed upstream total quantities (p∗0, T ∗0 ). The static pressure at

this boundary follows

p∗ =
[
1 + γ − 1

2 M2
]− γ

γ−1
p∗0, (3.73)

with the superscript * referring to dimensional quantities. Rewriting the above equation for dimen-

sionless variables defined in §2.1.1 leads to

p = 1
γ
RPI

[
1 + γ − 1

2 M2
]− γ

γ−1
(3.74)
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where RPI represents the ratio between the prescribed total pressure p∗0 and the reference total

pressure p∞0 . By using the isentropic relations, one can obtain the following formula linking the Mach

number M and velocity u at the same station

M2 =

||u||2

RTI

1− γ − 1
2
||u||2

RTI

, (3.75)

with RTI defined as the ratio between the prescribed total temperature T ∗0 and the reference total

temperature T∞0 . If Eq.(3.74) and Eq.(3.75) are coupled with the dimensionless state equation, the

following system of equations is obtained



b =


1 + γ − 1

2

1
RTI

(u · n
niθi

)2

1−
γ − 1

2 ·RTI

(u · n
niθi

)2



−1

p = RPI

γ
b

γ
γ−1

ρ = p · γ
RTI · b

(3.76)

where ni and θi are the i-th component of the unit normal vector and the i-th flow direction cosine,

respectively.

In order to close the above system of equations, in case of subsonic inflow at this boundary, Whithman

[98] suggests to solve the left running Characteristic Equation linearised about an interior point S as

dp− ρSaSd (u · n) = 0 on C− : dx
dt

= −aS , (3.77)

and is easily integrated as follows

pS − ρSaS (u · n)
∣∣∣∣
S

= p− ρSaS (u · n) . (3.78)

Inserting the above equation in the system (3.76), we obtain the following one that can be solved by

a Newton-Raphson:
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

b =


1 + γ − 1

2

1
RTI

(u · n
niθi

)2

1−
γ − 1

2 ·RTI

(u · n
niθi

)2



−1

p = RPI

γ
b

γ
γ−1

ρ = p · γ
RTI · b

p = ρSaS (u · n) + pS − ρSaS (u · n)
∣∣∣∣
S

.

(3.79)

As for linear solver, a null perturbations (q′ = 0) is imposed at boundary, while the same formulation

is kept for base flow variables [81].

Adiabatic Wall Function boundary condition

When a sufficiently refined grid in the vicinity of walls costs too much in terms of computational

resources, a wall function is adopted. In the present work, the laminar and logarithmic regions of

boundary layer are identified by the following conditions


U+
s = y+ y+ < 11.13

U+
s = 1

κ
log y+ + 5.25 y+ > 11.13

(3.80)

with:

Uτ =
√
τw
ρw
, U+

s = V
(1)
t

Uτ
y+ = y(1)Uτρw

µw
(3.81)

where the superscript (1) denotes quantities related to the first cell near wall and κ the Von-karman

constant. Vt is the tangent velocity, while ρw, τw and νw are density, shear stress and dinamic viscosity

at wall, respectively.

The first step is obtaining the value of temperature at wall Tw, is accomplished by imposing the

adiabatic flux condition at wall as

88



3.6. BOUNDARY CONDITIONS

Tw = T (1) +


µ(1) + µ

(1)
t

cp

(
µ(1)

Pr
+ µ

(1)
t

Prt

)

(
V

(1)
t

)2

2 . (3.82)

Consequently, dynamic viscosity at wall µw is computed through Tw by the Sutherland’s law as

µw = µ(1)
[
Tw
T (1)

] 1
2
[

1 + S/T (1)

1 + S/Tw

]
. (3.83)

Imposing the null pressure gradient condition inside the boundary layer permits to compute ρw as

follows

dP

dy
= 0 =⇒ ρw = ρ(1)T

(1)

T
(1)
w

. (3.84)

In order to tackle compressible boundary layer formulation, the following Van Driest transformation

[99] is needed

V ∗t = A arcsin
(
V

(1)
t

A

)
(3.85)

where

A =

√√√√√√√2cp

(
µ(1)

Pr
+ µ

(1)
t

Prt

)
Tw

µ(1) + µ
(1)
t

. (3.86)

At this stage, depending on whether the point considered is inside the linear region or the logarithmic

one, Eq.(3.87) rather than Eq.(3.88) is iteratively solved to compute Uτ

V ∗t
Uτ

= ρwUτy
(1)

µw
, (3.87)

V ∗t
Uτ

= 1
κ

ln
(
ρwUτy

(1)

µw

)
+ 5.25. (3.88)
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Finally, stress tensor τij and heat flux qci are simply obtained via τw as

τ
(1)
ij = τwij = τw (ti · nj + tj · ni) , (3.89)

qc
(1)
i = τw

(
V

(1)
t · ni

)
, (3.90)

qcwi = 0. (3.91)

Spalart Allmaras boundary condition

As for the turbulent transport equation, the only variable to be specified at boundaries is q6 = ρν̃.

A null-value is specified at walls, while when adiabatic wall functions are adopted, the value for the first

cell near wall (denoted with the superscript (1)) is based on a the following mixing-length formulation

for turbulent viscosity µt

µ
(1)
t = ρ(1)

(
κy(1)

)2 (
1− e−y+/26

)2 ∂U+
s

∂y
(3.92)

where ∂U+
s /∂y is selected linear or logarithmic depending on the value of y+.

Eq.(3.92) with the model functions in Eqs.(2.28)-(2.29) permits to get the following 4th order degree

equation

(ρν̃)4 − µt (ρν̃)3 = µ3µtC
3
v , (3.93)
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which provides the following real solution

C1 =
√

3Cb
(
256Cb + 27µ4

t

) 1
2

Cb = C3
vµ

3µt

C0 = Cvµµt =⇒ C3
0 = Cbµ

2
t

C2 = C1
18 + 0.5C3

0

C3 = C1
18 − 0.5C3

0

C4 = 4
(
C

1
3
2 − C

1
3
3

)

rc4 =
(
µ2
t + C4

) 1
2

ρν̃ = 1
4

(µt + rc4) +
√

2

(
rc4µ

2
t − 2C

1
3
3 rc4 + 2C

1
3
2 rc4 + µ3

t

) 1
2

rc
1
2
4



(3.94)
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Chapter 4

Validation of numerical strategy
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As previously mentioned, the code used in this work is Phoenix [80], developed at Pprime Institute

in collaboration with Dynfluid Laboratory. Although the code had been already validated for 2D

laminar flows (Guiho et al. 2016 [81]) and for simple three-dimensional laminar flows (Sansica et

al. 2018 [67]), during the last three years a large amount of work has been spent in terms of data

communications among different processors, in order to tackle 3D turbulent flow past more complex

geometries. These modifications included the numerical strategies in nonlinear and linear solver as

well as the implementation of new methods for the search of fixed points (i.e. SFD). For this reason,

a full validation of the new version of the code was required before tackling the main objective of the

present thesis, i.e. the linear and nonlinear analysis of turbulent nozzle flows. The 2D cases of laminar

flow past a cylinder and transonic turbulent flow past an airfoil have been selected to validate the code
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and they will be presented in this chapter. In the considered laminar flow, Navier-Stokes equations are

solved, while, in the turbulent one, the former are coupled with a Spalart-Allamaras turbulence model

in a common RANS/URANS framework, as described in sections 3.1-3.2 for linear and nonlinear

calculations. A 3rd order DNC scheme with a JST Scalar Dissipation Scheme is adopted for N-S

equations, while the SA turbulence model is discretised with a 2nd order TVD scheme with Harten’s

entropy correction (see sections 3.3.1-3.3.2 for more details). Particularly, in the turbulent case a

Ducros shock sensor [100] is added to the standard pressure sensor and a Quadratic Constitutive

Relation (QCR2000) [101] is adopted for stress tensor formulation instead of classical Boussinesq’s

approximation.

Finally, an implicit loosely coupled algorithm is used to integrate the N-S equations and turbulence

equation separately by a Dual-Time Stepping (DTS) Technique. Further details are present in section

3.4.2.

2D laminar flow past a cylinder

The chosen laminar case is the 2D quasi-incompressible flow past a cylinder. The cartesian struc-

tured 1-block grid used for all computations is shown in Figure 4.1 and consists in (nx, ny) = (241, 145)

points in the streamwise and wall-normal direction, respectively. The computational domain has been

first divided in 4 portions, each of them independently meshed and finally connected in a single C-grid.

The flow parameters used in all computations are listed in Table 4.1.

Free-stream Mach number M∞ = 0.1
Free-stream stagnation temperature T0,∞ = 288 K
Reynolds number Re ∈ [20, 60]

Table 4.1: Flow parameters for the 2D quasi-incompressible cylinder flow.

No slip boundary condition with adiabatic temperature and pressure extrapolation is prescribed at

the cylinder walls. Farfield boundaries are treated with a non-reflective boundary condition [97] at

imposed Mach number M = M∞.

The numerical parameters used for all calculations are listed in Table 4.2.
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40

60

401

(a) Schematic representation of the computa-
tional domain.

(b) Computational grid.
gggggggggg

ggggggg

Figure 4.1: Computational grid used in the Nonlinear, Linear and Stability calculations for the 2D
laminar cylinder flow.

physical time-step 0.1
DTS iterations CFL 10
DTS iterations 100
JST k2 coefficient 0.5
JST k4 coefficient 0.01

Table 4.2: Numerical parameters

Base flow calculation: steady Navier-Stokes solution

Nonlinear Navier-Stokes (NLNS) solution is obtained via a Local Time Stepping (LTS) (see section

3.4.1 for further details) technique at CFL = 10. Calculation is stopped when the maximum ||L||∞

norm of residual among conservative variables all over the computational domain reached 10−8, i.e.

max
{
||L||ρ∞, ||L||ρu∞ , ||L||ρE∞

}
≤ 10−8. As one can state by observing Figure 4.2, LTS method rapidly

converges to the steady state solution even for unsteady cases such as Re = 55. However, the number

of iterations required to get a converged steady solution do not really change for all Reynolds number

examined.

The base flow obtained for Re = 55 is shown in Figure 4.3. It is possible to detect the presence of

a recirculation bubble in the cylinder wake, which length (Lw) is commonly measured as its size in

the streamwise direction measured from the rear stagnation point. It is well known that this quantity

grows nearly linearly with Reynolds number Re. The base flow calculation has been validated with
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Figure 4.2: Quasi-incompressible flow past a cylinder at Re = 55. Convergence history in base flow
computing by Local Time Stepping method.

data available in literature, i.e. the Lw trend with Re and Drag Coefficient (CD), which are shown in

Figure 4.4 and Table 4.3, respectively.

Figure 4.3: Base flow calculation: streamwise velocity contours for Re = 55. White lines are isolines
at null velocity and represents the boundary of the wake bubble.
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Re CD CGLD
20 2.05 2.05
40 1.53 1.54

Table 4.3: Base flow calculation: comparison in terms of Drag Coefficient (CD) with calculations
from Giannetti & Luchini (2007) [1] (GL)

Figure 4.4: Base flow calculation: length of the bubble wake (Lw) for different Reynolds number
(Re). Red triangles correspond to the current simulation, black empty circles to data from Giannetti
& Luchini (2007) [1].

Nonlinear unsteady calculation: unsteady Navier-Stokes solution

Unsteady calculations have been initialised with their corresponding base flow and then perturbed

with a pulse localised in the wake of cylinder. As one can state by observing Figure 4.5, if the base

flow is unstable, flow evolves with a growth rate σNL towards a limit cycle with a frequency fNL,

expressed as Strouhal number StNL = fNLD/U∞. Otherwise, even if previously perturbed, flow

stabilises. According to Figure 4.6, nonlinear stability threshold seems to be located at Rec ∈ [46, 47],

in accordance with literature for which instabilities are found to occur about Rec ≈ 46.6 [1].
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(a) Lift coefficient trend with time, starting from
base flow. The red dotted line slope represents
the growth-rate (σNL).

(b) DFT Amplitude spectrum computed on the
saturated limit cycle signal. Only one harmonic
at StNL = 0.132 is visible.

Figure 4.5: Quasi-incompressible flow past a cylinder at Re = 55. Growth-rate (σNL) and limit cycle
frequency (StNL) for a nonlinear calculation.

(a) Lift coefficient trend with time at Re = 46 (b) Lift coefficient trend with time at Re = 47

Figure 4.6: Quasi-incompressible flow past a cylinder at Re = 46 and Re = 47. Lift coefficient trend
with time for a stable (4.6a) and unstable (4.6b) baseflow.

Linear unsteady calculation: LNS solution

Linearised Navier-Stokes (LNS) equations are solved around the fixed point of Navier-Stokes equa-

tions. As one can state by observing Figure 4.8, if the base flow is unstable, any perturbation exponen-

tially grows in time with a growth rate σL and a Strouhal number StL. As expected, in this case there

is no saturation, which is a nonlinear mechanism, but perturbation is going to increase indefinitely.

However, far from saturation and near base flow, linear and nonlinear solution evolves in time with
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Figure 4.7: Quasi-incompressible flow past a cylinder at Re = 55: unsteady calculation. Streamwise
velocity contours. Von-karman vortex street is visible behind the cylinder.

the same growth rate (see Figure 4.21) thus highlighting the consistency between linear and nonlinear

solver.

(a) Lift coefficient trend with time, for pertur-
bation. The red dotted line slope represents the
perturbation growth-rate (σL).

(b) Amplitude spectrum. The only peak is lo-
cated at StL = 0.120.

Figure 4.8: Quasi-incompressible flow past a cylinder at Re = 55. Growth-rate (σL) and frequency
(StL) instability, for a linear calculation.
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Figure 4.9: Quasi-incompressible flow past a cylinder at Re = 55. Consistency between linear and
nonlinear calculation.

Linear Stability around base flow

A Linear Stability Analysis has been performed around the base flow. In accordance with non-

linear and linear calculations, for unstable base flows, the resulting eigenspectrum (see Figure 4.10a)

shows a single complex-conjugate pair of modes with positive-real part eigenvalue σ, which addition-

ally imaginary part ω = 2πSt is compatible with the observed limit cycle frequency. The streamwise

velocity component of this unstable mode has a packet shape and localised in the cylinder wake (see

Figure 4.10b). When the same calculation is carried out at different Reynolds numbers, growth rate

is seen shifting from negative values, for stable baseflows, to positive ones, for unstable baseflows, as

shown in Figure 4.11a. The critical value of Re for which the global mode becomes unstable is about

Rec = 46.6 as it occurs in nonlinear flow. Instabilities frequency grows with increasing value of Re as

reported in Figure 4.11b. Both σ and St are in good agreement with previous equivalent calculations

solved via incompressible solvers [1].

As expected, linear stability analysis is less and less predictive moving away from the stability thresh-

old, as shown in table 4.4. On the other hand, as described by Barkley [66], far from stability threshold

a linear stability analysis around the meanflow would return a marginally stable mode matching the

limit cycle frequency. However, this is valid only because this particular flow has no higher harmonics

[69], being a monochromatic oscillation [70] (see Figure 4.5b).
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(a) Eigenspectrum. A single unstable mode at
(σ, St) = (0.030, 0.119) is visible.

(b) Streamwise velocity component mode ûx for
global unstable mode at (σ, St) = (0.030, 0.119)

Figure 4.10: Quasi-incompressible flow past a cylinder at Re = 55. Linear Stability Analysis around
base flow.

(a) Growth rate (σ) for different Reynolds num-
ber (Re).

(b) Strouhal number (St) for different Reynolds
number (Re).

Figure 4.11: Linear Stability Analysis around base flow. Red triangles correspond to the current
simulation, black empty circles to data from Giannetti & Luchini (2007) [1].

Linear Stability around mean flow

For the cases at Re = 60−70, a Linear Stability Analysis around the meanflow has been performed.

The meanflow has been previously computed by time-averaging the unsteady solution, once limit cycle

settled, for 60 periods at a convergence residual about 10−6. In this case, Global Stability Analysis

returns a marginally stable mode at a frequency very close to the nonlinear one, as shown in Figure
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Re (σ, St)LBF (σ, St)NL ∆StBF%
48 (0.005,0.117) (0.005,0.120) 2.5
50 (0.013,0.118) (0.013,0.123) 4.1
55 (0.030,0.119) (0.030,0.130) 9.2
60 (0.046,0.120) (0.045,0.135) 11.1

Table 4.4: Comparisons between global linear stability analysis around the base flow (BF) and
nonlinear calculations (NL). The Strouhal number and growth rate of the nonlinear calculations (NL)
are also reported as well the percent error in Strouhal prediction (∆St%)

4.12. The comparison in terms of (σ, St) between linear stability around the base flow and around the

meanflow in Table 4.5 confirms the better frequency capture by the latter.

Re (σ, St)BF (σ, St)MF (σ, St)NL ∆StBF% ∆StMF
%

60 (0.046,0.120) (0.000,0.134) (0.045,0.135) 11.1 0.7
70 (0.072,0.120) (0.000,0.143) (0.070,0.145) 16.1 1.4

Table 4.5: Comparisons between global linear stability analysis performed on base flow (BF) and
meanflow (MF). The Strouhal number and growth rate of the nonlinear calculations (NL) are also
reported as well the percent error in Strouhal computation (∆St%).

(a) Linear Stability Analysis around base flow. (b) Linear Stability Analysis around meanflow

Figure 4.12: Quasi-incompressible flow past a cylinder at Re = 60. Comparison between Linear
Stability Analysis around baseflow and around meanflow.
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2D turbulent buffeting on OAT15A

The turbulent case chosen to validate the nonlinear and linear URANS solver is the 2D transonic

turbulent flow past a OAT15A airfoil. The cartesian structured 1-block grid used for all computations

is shown in Figure 4.13. Inlet and outlet boundaries are 40 times the chord length in the streamwise and

vertical direction, away from the leading and trailing edge, respectively. The computational domain

has first been divided in multiples portions, each of them independently meshed to get the desirable

refinement level near the shock foot and finally connected in a single C-grid. The resulting grid is

composed of approximately 70,000 cells: 120 points in the profile wall-normal direction, 90 points in

the wake along the longitudinal direction and 586 points along both the wall profile and lateral farfield

boundary. This grid guarantees the first mesh point in the boundary layer be always below y+ = 2.

(a) Schematic representation of the computa-
tional domain for OAT15A airfoil.

Sorry, I need that
ggggggg

(b) Computational grid for OAT15A airfoil.
gggggggggg
ggggggg

Figure 4.13: Computational grid used in the Nonlinear, Linear and Stability calculations for the 2D
turbulent OAT15A airfoil flow.

The flow parameters used in all computations are listed in Table 4.6.

Wall function boundary condition with adiabatic temperature and pressure extrapolation are pre-

scribed at walls. Farfield boundaries are treated with a non-reflective boundary condition [97] at

imposed Mach number M = M∞. Particularly, only a limited region in the upstream farfield bound-

ary is prescribed with an Angle of Attack (AoA) α∞ 6= 0◦ .

The numerical parameters used for all calculations are listed in Table 4.7.
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Free-stream Mach number M∞ = 0.73
Free-stream flow angle α∞ = [4.05, 4.50] ◦
Free-stream stagnation temperature T0,∞ = 288 K
Free-stream stagnation pressure p0,∞ = 101 325 Pa
chord length c = 0.23 m
Reynolds number Re = 3.2× 106

Table 4.6: Flow parameters for the 2D transonic turbulent buffeting

physical time-step 0.05
DTS iterations CFL 10
DTS iterations 100
JST k2 coefficient 0.5
JST k4 coefficient 0.01
Harten coefficient 0.05

Table 4.7: Numerical parameters

Base flow calculation: Steady RANS solution

As mentioned in section 3.4.3, turbulence models contain stiff terms lowering the capability of Local

Time Stepping (LTS) techniques in converging steady state solutions. For this reason, in this case

the author adopted the Selective Frequency Damping (SFD) method in order to obtain the base flow

(see section 3.4.3 for further details). Particularly, the control coefficients (∆, χ) have been selected

by using the flow-unleash method and due to the need for an a priori knowledge of the unsteady

solution, the latter has been computed from scratch. After having obtained a first URANS solution,

as shown in Figure 4.14a, the former has been initially forced towards the steady state by a LTS

method. Once we reached a first approximation for base flow, the latter is used to initialise another

unsteady calculation, which is run until saturation. During this trip, an approximation for instability

growth rate σ∗ is extracted by the slope of lift coefficient trend in logarithmic scale, while frequency

is taken in term of angular velocity equal to that of the observed limit cycle ω∗ †. Using formula in

Eqs. (3.65), ∆ and χ are computed and SFD is activated on the saturated unsteady solution. A base

flow converged with a precision of 10−8 is obtain in about 250, 000 Dual Time Step (DTS) iterations

and it is shown in Figure 4.15. As shown in Figure 4.14b, SFD permits to converge more rapidly than

LTS during the first iterations and although after this first residual fall down convergence speed is the

†This choice is done under the assumption that limit cycle frequency is close to that of any perturbation around the
base flow.
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same order of LTS, this ”head start” of SFD leads it to get earlier the steady solution.

(a) Lift coefficient trend under flow-unleash
method. Firstly, LTS method is activated on the
saturated limit cycle in order to get an approx-
imated steady solution. Secondly, instabilities
are left to naturally develop and limit cycle is
reached again. Finally, SFD is properly activated
to stabilise the unsteady solution.

(b) Residuals trend in time for LTS and SFD
methods in logarithmic scale. The black and red
line correspond to the action of LTS and SFD,
respectively.
you found my trick! Good job!
I know, I know, sorry
That ’s the last time I joke, I promise

Figure 4.14: Transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5◦. SFD action under a
flow-unleash method is used to get the steady solution.

Figure 4.15: Base flow calculation for a 2D transonic turbulent flow past an OAT15A airfoil at
α∞ = 4.5◦: streamwise velocity contours. The solid black line is the sonic line.
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Nonlinear unsteady calculation: Unsteady RANS (URANS) solution

The converged steady RANS solution, obtained by filtering the unsteady URANS one, is used as

initialisation for a new unsteady nonlinear calculation to get the instability growth rate. In order to

accelerate the development of instabilities, flow has been perturbed with a pulse localised at the shock

foot. As expected, base flow at α = 4.5◦ is unstable and flow evolves with a growth rate σNL towards

a limit cycle with a frequency fNL, expressed as Strouhal number StNL = fNL · c/U∞ (see Figure

4.16).

(a) Lift coefficient trend with time, starting from
base flow. The solid red line slope represents the
growth-rate (σNL).
I need it, try to understand

(b) DFT power spectrum computed on the sat-
urated limit cycle signal. A peak at StNL =
0.0631 is well visible as its second and third har-
monics.

Figure 4.16: Transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5. Growth-rate (σNL) and
limit cycle frequency (StNL) for a nonlinear calculation.

A flow visualisation by numerical schlieren of saturated limit cycle is reported in Figure 4.17. Un-

steadiness seems mainly due to a lambda-pattern shock displacing back and forth along the airfoil

surface. Frequency fNL at α∞ = 4.5◦ is about 67 Hz and buffet onset is at α∞ ≈ 4.0◦. Previous

calculations and experiments have found no significant changes in buffet frequency with the AoA (An-

gle of Attack) α∞. However, as shown in Table 4.8, even if the buffet onset detected in the current

simulation is slightly delayed when compared with experiments (Jacquin et al. 2009 [2]) or with more

accurate turbulence description simulations (Deck 2005 [35], Z-DES), it seems in quite good agreement

with analogous previous calculations.

A meanflow has been computed by time-averaging the unsteady solution, once limit cycle settled, for
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Figure 4.17: Unsteady solution for a 2D transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5◦:
instantaneous density gradient (||∇ρ||) contour in logarithmic scale. A strong lambda shock is well
visible on the airfoil surface.

αcrit [◦] METHOD fNL [Hz] ∆f%
Brunet (2003) 4.0 2D URANS 78 13.0
Deck (2005) 4.5 2D URANS 70 1.5
Deck (2005) 4.0 DES 70 1.5
Deck (2005) 3.5 Z-DES 70 1.5
Jacquin (2009) 3.5 EXP 69
Sartor (2015) 3.5 2D URANS 77 11.6
Present work 4.0 2D URANS 65 5.8

Table 4.8: Comparison in terms of buffet onset αcrit and corresponding frequency fNL with previous
numerical calculations and experiments. The percent error in frequency computation (∆f%) with
experiments (Jacquin et al. 2009 [2]) is also reported.

120 periods. As one can state by comparing Figure 4.18a with 4.15, the lambda shock is remarkably

smoothed due to the averaging of unsteadiness in the shock foot. Inside the supersonic bubble, which

appears more flattened along the vertical direction, it is possible to detect the upstream front of

shock excursion, while the downstream one is located near the sonic line. Pressure Root Mean Square

(RMS) σ has been computed run-time for different streamwise wall location x and compared with an

analogous 2D URANS calculation done by Deck (2005) in Figure 4.18b. A good agreement is found

especially in the shock foot mean position, located where the continuous line reach its maximum.

However, in terms of flow frequency response, comparing Figure 4.16b with Figure 4.5b, the limit cycle
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(a) Meanflow streamwise velocity contours. The
black line is the sonic line.
Sorry, I need that
Sorry, I need that
Sorry, I need that
It is more elegant, isn’t it?

(b) Comparison in terms of pressure RMS (σ)
between current unsteady calculation (empty cir-
cles) and an analogous 2D URANS calculation
(continuous line) performed by Deck (2005) [35]
for different streamwise wall locations. c is the
coord length.

Figure 4.18: Transonic turbulent flow past an OAT15A aurfoil at α∞ = 4.5◦. Statistical properties
for 120 periods time-averaged unsteady solution.

observed in this turbulent flow is quite different from that occurring in the laminar flow past a cylinder.

Particularly, while the laminar cylinder flow DFT spectrum shows a monochromatic oscillation with

a single harmonic even far from its stability threshold, in the turbulent one there are a second and

third harmonic still visible. As shown in Figure 4.16b, at α∞ = 4.5◦ the energy related to the second

harmonic of the signal is about ten per cent of that for the fundamental. This means that in this flow,

nonlinear effects are so strong that a linear stability analysis performed around the meanflow may not

be frequency-predictable according to Sipp & Lebedev (2007) [69] and Turton et al. (2015) [70]. This

scenario will be highlighted in the last paragraph of this chapter. However, it is interesting to note

that the weight of higher harmonics in the power spectrum increases the further away we move from

the buffet onset, which current nonlinear calculations returns to be located at α∞ ≈ 4.0◦. Actually, as

shown in Figure 4.19, in the proximity of this threshold, energy appears to be almost totally located

at the fundamental harmonic as already mentioned by Sartor et al. (2015) [72].
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Figure 4.19: Unsteady solution for a 2D transonic turbulent flow past an OAT15A airfoil at α∞ = 4.0◦:
a peak at StNL = 0.0623 is well visible with no too much energetic harmonics.

Linear unsteady calculation: LURANS solution

Linearised URANS (LURANS) equations are solved around the fixed point of URANS equations.

As one can state by observing Figure 4.20, in accordance with the nonlinear calculation, base flow at

α∞ = 4.5◦ is linearly unstable and perturbation exponentially grows in time with a growth rate σL

and a Strouhal number StL. As for the laminar flow past a cylinder, far from saturation and near

base flow, linear and nonlinear solution evolves in time with a growth rate value very close, as shown

in Figure 4.21. This further highlights the consistency between the linear and nonlinear solvers also

in the RANS framework.
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(a) Lift coefficient trend with time for perturba-
tion, logarithmic scale. The red dotted line slope
represents the perturbation growth-rate (σL).

(b) Amplitude spectrum. The only peak is lo-
cated at StL = 0.055.
as usual, sorry

Figure 4.20: Transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5◦. Growth-rate (σL) and
frequency (StL) instability, for a linear calculation.

Figure 4.21: Transonic turbulent flow past an OAT15A aurfoil at α∞ = 4.5◦. Consistency between
linear and nonlinear calculation.

Linear Stability around the base flow

A Linear Stability Analysis has been performed around the base flow. In accordance with nonlinear

calculation, the same stability threshold at α∞ ≈ 4.0◦ is found. The resulting eigenspectrum (see

Figure 4.22a) shows a single mode with positive-real part eigenvalue σ, which additionally imaginary

part ω = 2πSt is compatible with the observed limit cycle frequency. The spatial structure of this

unstable mode is localised in the shock and it is particularly important near the foot and in the

reflected shock wave originating from the triple point (see Figure 4.22b).
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(a) Eigenspectrum. A single unstable mode at (σ, St) = (0.054, 0.055) is visible.
Good job, you got it!

(b) Real part of streamwise velocity component
mode ûx for global unstable mode at (σ, St) =
(0.054, 0.055)

(c) Real part of density mode ρ̂ for global un-
stable mode at (σ, St) = (0.054, 0.055)
Good job, you got it!

Figure 4.22: Transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5◦. Linear Stability Analysis
around base flow.

Linear Stability around the meanflow

For the case at α∞ = 4.5◦, a Linear Stability Analysis around the meanflow has been performed.

The turbulent meanflow has been previously computed by time-averaging the turbulent unsteady

solution, once limit cycle settled, for 120 periods. In this case, two different global stability analyses
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have been carried out: one using LNS equations and another using LURANS equations. As for

stability analysis around meanflow using LNS equations, one can state by observing Figure 4.23b that

such an analysis returns a mode that is not marginally stable, in contrast with laminar flows, and

does not match the frequency of nonlinear limit cycle. As previously mentioned, it is in the author

opinion that this apparent inconsistency is due to the greater importance of nonlinearities present in

the flow when operating far from stability threshold and that are visible in the frequency spectrum

as higher harmonics of the fundamental oscillation. On the other hand, as shown in Figure 4.24b, a

linear stability analysis performed using LURANS equations around the meanflow returns no unstable

modes.

(a) Linear Stability Analysis around base flow
(LURANS). A single unstable mode is visible at
(σ, St) = (0.054, 0.055)

(b) Linear Stability Analysis around mean-
flow (LNS). A single unstable mode is visible at
(σ, St) = (0.173, 0.097)

Figure 4.23: Transonic turbulent flow past an OAT15A airfoil at α∞ = 4.5◦. Comparison between
Stability Analysis around base flow and meanflow. The latter using LNS equations.

α∞ (σ, St)BF (σ, St)MF (σ, St)NL ∆StBF% ∆StMF
%

4.5 (0.054,0.055) (0.173,0.097) (0.065,0.062) 11.3 56.4

Table 4.9: Comparisons between global linear stability analysis performed on base flow (BF) and
meanflow (MF). The Strouhal number and growth rate of the nonlinear calculations (NL) are also
reported as well the percent error in Strouhal computation (∆St%).
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(a) Linear Stability Analysis around base flow
(LURANS). A single unstable mode is visible at
(σ, St) = (0.054, 0.055)

(b) Linear Stability Analysis around meanflow
(LURANS). No unstable modes are visible.
Sorry, I need that

Figure 4.24: Transonic turbulent flow past an OAT15A aurfoil at α∞ = 4.5◦. Comparison between
Stability Analysis around base flow and meanflow. The latter using LURANS equations.
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Chapter 5

Over-expanded nozzle dynamics
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In this chapter, we will finally tackle the nonlinear and linear analysis of under-expanded nozzle

flows. First, a description of the computational setup adopted will be provided, including reference

quantities for dimensionless N-S equations, meshing strategies, boundary conditions as well initialisa-

tion. Secondly, the above strategies will be validated on a steady RANS calculation that will be used

to initialise the unsteady DDES calculations. In section 5.3, the TIC nozzle considered, experiencing a

FSS unsteadiness and operating at 3 different jet Mach numbers Mj = [1.83, 2.09, 2.27] (corresponding

to NPR = [6, 9, 12]), will be analysed by means of nonlinear DDES calculations. The results will be

compared with avalaible experimental data obtained at Pprime facility and published by Jaunet et

al. (2017) [13]. The section 5.5 will be dedicated to the presentation of Global stability Analysis

for the case at Mj = 2.09. First, a linear analysis performed around the steady RANS solution will

be tackled and second a more consistent linear stability analysis around the DDES meanflow will be
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detailed. Conclusions will be drawn by the analysis of the stability spectrum and the spatial shape of

an unstable global mode compatible in terms of frequency and symmetry with nonlinear calculations.

Numerical Strategy

The nozzle geometry here considered is a Truncated Ideal Contour (TIC), obtained by means of

2D axisymmetric Method of characteristics technique with boundary layer correction and based on

Delery ’s strategies [102]. The nozzle is finally truncated by imposing a wall exit angle θ = 3◦. The

resulting shape is shown in Figure 5.1 and geometrical properties are listed in Table 5.1.

Figure 5.1: TIC nozzle axisymmetric geometry, Md = 3.5.

design Mach Md = 3.5
throat radius Rt
exit radius Re/Rt = 2.55
divergent length L/Rt = 9.63
convergent length l/Rt = 3.68
curvature radius ρ = Rc/Rt = 10
wall exit angle θ = 3◦

Table 5.1: TIC nozzle features

The reference quantities chosen are the free-stream stagnation ones (a∗0,∞, ρ
∗
0,∞, T

∗
0,∞), where the su-

perscript ∗ denotes dimensional quantities. Under the assumption of isentropically resting flow at free

stream conditions, T ∗0,∞ and p∗0,∞ are set equal to nozzle combustion chamber temperature (260 K)

and standard sea-level pressure (0.1 MPa) respectively, while the nozzle throat radius (Rt) is chosen

as reference length Lref.

The Reynolds number, based on the free-stream stagnation quantities, is therefore defined as
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Re∞0 =
ρ∗0,∞a

∗
0,∞Lref

µ∗0,∞
= 5.0× 105. (5.1)

The three-dimensional computational domain includes the nozzle and the farfield region, discretised

with 9 blocks. The nozzle and the external region obtained from its extrusion until the outlet is made

of 5 blocks meshed together with an O-H topology to avoid any singularity about the longitudinal axis

(see Figure 5.2c). The remaining farfield region is composed by four additional O-grid blocks. Domain

boundaries are 4 and 2 times the overall nozzle length (L∗ = l + L) away from the nozzle exit in the

streamwise and radial direction, respectively.

For the O-H structured blocks of the domain, the grid resolution is nx = 813 in the longitudinal

direction (697 of which are within the nozzle and 117 in the exterior part) and nr = 177 (nθ = 89)

in the radial (azimuth) direction for each of the 4 blocks surrounding the core nozzle. The 4 O-grid

blocks in the exterior part have 117, 309 and 352 points along the longitudinal, radial and azimuth

directions, respectively. The resulting grid, consisting in 69 millions of cells, is shown in Figure 5.2.

Concerning the boundary conditions, wall function boundary condition with adiabatic temperature

and pressure extrapolation are prescribed at nozzle walls (see section 3.6.3 for further details). Nozzle

inflow is assumed to be subsonic and primitive variables (ρ, p,u) are found by coupling the linearised

outgoing characteristic equation, 1D isentropic relations and state equation with imposed total tem-

perature T0 = T0,∞, total pressure p0 = NPRpa and flow angle α = 0 [98, 83] (see section 3.6.2 for

further details). The resulting system of equations is iteratively solved by a Newton method. Outlet

is assumed to be subsonic with prescribed pressure pa = p0,∞, while farfield lateral boundaries and

inflow are treated with a non-reflective boundary condition [97] at imposed free stream Mach number

M∞ = 0.05 (see section 3.6.1 for further details).

Steady RANS solution

Grid resolution is based on a convergence study for the separation location predicted by RANS

simulations. These steady solutions, which were computed using a Local Time Stepping (LTS) method,

are shown in Figure 5.4. The resulting shock system appears to be composed of a first Mach disk

(located at xd1), originating from the oblique shock coming from the separation point, and a series
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(a) Axonometric view.
sorry, I need that

(b) Transverse view.
sorry, I need that

(c) Visualisation of O-H topology grid structure

Figure 5.2: Computational grid used in the RANS, URANS and DDES calculations.

of expansion fans and compression waves forming a cellular pattern of Mach disks in the streamwise

direction. This regular structure is due to the fact that when a compression wave or an expansion fan

hits a pressure boundary condition, in this case imposed by the external environment, the reflected

wave must adjust flow pressure. Therefore, compression waves are reflected as expansion fans and

expansion fans as compression waves. As shown in Figures 5.4b-5.4d-5.4f, these reflections happen

along an internal and external shear layer, which originates from the triple and the separation point,
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respectively. Only two Mach disks (located at xd2 and xd3) are visible in this periodic spatial structure,

while the others are necessarily smoothed by the grid decreasing refinement towards the outlet.

As it happens for over-expanded nozzle flows, separation point (xs) is always inside the nozzle and

progressively shifts towards the exit with the increasing value of NPR. Particularly, at NPR = 6

the first two Mach Disks locations are inside the nozzle, with the second approaching the exit. When

NPR increases, all the shock system moves downstream and consequently only the first Mach disk

stays inside the nozzle. This flow topology lasts until the design condition is met. At this condition

no more shocks are produced and pressure isentropically expands down to the ambient pressure (pa).

A good approximation of this condition was obtained by a 2D Euler calculation using the Method of

Characteristics. The corresponding Ideal Contour nozzle matching the TIC geometry here considered

resulted in a design Mach number M ideal
d = 2.5 (see Figure 5.3). Therefore, the design NPR (NPRd)

was calculated from M ideal
d as

NPRd =
[
1 + γ − 1

2
(
M ideal
d

)2
] γ

(γ−1)
= 18 (5.2)
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Figure 5.3: Nozzle Contour. TIC nozzle geometry (continous line), Ideal Contour nozzle obtained by
MOC (filled circles line), symmetry axis (dashed line). yt corresponds to the throat radius Rt.

As mentioned in section 3.4.3, LTS method suffers from poor convergence especially in RANS cal-

culations with highly refined grids. Just to give an idea to the reader, the infinity norm residual
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: RANS solution at different NPR conditions: NPR = 6 (top), NPR = 9 (middle),
NPR = 12 (bottom). On the left, contours of static pressure in terms of ratio with static ambient
pressure p = p∗/p∗a. The colorscale is centered at p = 1 (i.e. where pressure p∗ matches ambient
pressure pa) to highlight the shock system. xs is the separation point, while xd = (xd1, xd2, xd3) the
locations of the 1st, 2nd and 3rd Mach Disk. All these characteristic positions are listed in Table 5.2.
On the right, contours of streamwise velocity u. The solid black line is the sonic line.
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NPR xs/L xd1/L xd2/L xd3/L

6 0.332 0.524 0.846 1.080
9 0.530 0.737 1.147 1.495
12 0.643 0.901 1.417 2.024

Table 5.2: RANS calculation: comparisons in terms of separation point (xs), location of 1st Mach
Disk (xd1), location of 2nd Mach Disk (xd2) and location of 3rd Mach Disk (xd3) at different NPR
conditions.

||L||∞ = max
{
||L||ρ∞, ||L||ρu∞ , ||L||ρE∞

}
dropped by three orders of magnitude down to 10−1 in 30,000

iterations. The problem is that, in this case, computing 1,000 LTS iterations takes approximately 20

hours on 308 processors of Occigen (CINES supercomputer). Hence, obtaining a sufficiently converged

base flow calculation
(
||L||∞ < 10−5) is not feasible in terms of computational resources through this

strategy. Nevertheless, even if only a residual ||L||∞ ≈ 10−1 is obtained, a good agreement in terms of

wall pressure trend (pw) and separation point (xs) with experiments is obtained, as shown in Figure

5.5.

(a) Separation point location (xs) at different
NPRs. Black stars, experiments; emply black
circles, RANS simulations.
sorry, i need that
sorry, i need that

(b) Wall pressure trend at different NPRs.
Solid lines, RANS; filled (empty) circles, mea-
surements from experimental campaign of 2016
(2019). Black, red and blue color stands for
NPR = 6, 9, 12 data, respectively.

Figure 5.5: Comparison between experiments and RANS calculations in terms of wall pressure and
separation point location along the same generatrix for different NPRs. p0 and L are the combustion
chamber total pressure and the divergent length, respectively.

Unfortunately, URANS methods did not permit to destabilise the shear layers and consequently no

turbulent eddies were detected. As a consequence, unsteadiness could not be triggered. The reason

for is the excessive turbulent viscosity produced as shown in Figure 5.6. In fact, previous calculations
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performed on turbulent shear layers have shown that the turbulent to molecular viscosity ratio (µT /µ)

must be less than 1000. Otherwise, the development of the instabilities are damped in these regions.

It would interesting to investigate whether the same pathology is found with other turbulence models

(e.g. κ− ε, κ− ω SST). In this work we choose to decrease the level of modelled turbulent viscosity,

by adopting a DDES formulation for turbulence.

Figure 5.6: RANS solution, NPR = 9. Contours of turbulent to molecular viscosity ratio (µT /µ).
Turbulent viscosity is too much high to permit the shear layers destabilisation.

Unsteady DDES solution

RANS calculation at NPR = 9 is used to initialise the corresponding DDES calculation. Turbulent

structures naturally develop near the nozzle exit and propagate throughout the domain during a long

numerical transient, as one can see from the table 5.3. After that, a self-sustained unsteadiness settles

without any need to be sown. In order to save computational time and numerical resources, DDES

calculations for the other cases (NPR = 6, 12) are initialised with the unsteady DDES solution at

NPR = 9. The numerical scheme parameters used for unsteady calculations are listed in Table 5.3.

As one can state by comparing Figure 5.6 with Figure 5.7, the modelled turbulent viscosity present in

the DDES flowfield is two order of magnitudes lower than that present in the URANS solution. This

result could explain a possible correlation between turbulent viscosity and shear layer unsteadiness.
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physical time-step 2.35× 10−6 s
numerical transient time 1.18× 10−2 s
DTS iterations CFL 30
DTS iterations 60
JST k2 coefficient 0.5
JST k4 coefficient 0.09
Harten coefficient 0.05

Table 5.3: Numerical parameters for nonlinear unsteady calculations

Figure 5.7: Instantaneous DDES solution, NPR = 9. Contours of turbulent to molecular viscosity
ratio (µT /µ). The maximu value of turbulent viscosity is localised at the separation point, with a
lower value at the shear layers.

Flowfield visualisation

A numerical Schlieren is shown in Figure 5.8. The flow at NPR = 6 and NPR = 9 shows

quite similar features with instabilities apparently originating in the vicinity of the separation point,

growing when advecting in the streamwise direction and eventually triggering where the reflected

shock coming from the triple point hits the external shear layer. From this point to downstream,

more and more turbulent eddies seem to detach and to propagate upstream, possibly closing the

loop. Particularly, those structures detaching from the external shear layer near the second Mach disk

seem to interact with the nozzle lip, from which some kind of radiation appears to emanate into the

external environment. Moreover, compression waves similar to shocklets (already observed in Chen

et al. (1994) [33]) seem to radiate from the internal shear layer to the external one. Particularly, at

NPR = 6 this phenomenon is well visible in the region between separation and the triple point.

The case at NPR = 12 is quite different from the previous ones. The external shear layer seems to

be less unsteady with no turbulent eddies developing inside the nozzle with most of turbulent motion

being localised in the region near the second Mach disk. In this regard, as the previous regimes
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examined, the first Mach disk seems to oscillate almost rigidly with the separation shock, in contrast

with the more complex motion of the second Mach disk. Similarly, the internal shear layer seems to be

significantly less unsteady than the external one, which is probably due to a slight delay in triggering

the turbulent shear layers. In this regard, it should be stressed that, as mentioned in section 2.2.3, this

is a very sensitive aspect of DDES formulation which depends on the local grid refinement (∆max),

local vorticity (∆ω) and the distance of the closest cell to wall (dw), with CDES the only easily-

tunable parameter. Particularly, the author observed that for low values of CDES , delay in triggering

shear layer instabilities decreases but boundary layer becomes less and less protected from the LES

incursion. In order to reduce this inconvenient, as proposed by Ashton (2017) [103], the classical

shielding function fd is opportunely modified as follow

fd = 1− tanh
(
(c1rd)3

)
(5.3)

with c1 and CDES values listed in Table 5.4.

NPR c1 CDES
6 16 0.2
9 16 0.2
12 32 0.4

Table 5.4: RANS/LES transitioning parameters adopted

Particularly, the RANS/LES parameters adopted for the case at NPR = 6 and NPR = 9 are the

same used by Martelli et al. (2020) [45] in a similar DDES calculation.
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(a) Unsteady visualisation for NPR = 6

(b) Unsteady visualisation for NPR = 9

(c) Unsteady visualisation for NPR = 12

Figure 5.8: Unsteady DDES solution. Contours of density gradient (||∇ρ||) at different NPR condi-
tions: NPR = 6 (top), NPR = 9 (middle), NPR = 12 (bottom). Logarithmic scale.

Statistical features

The flow topology of the mean pressure field obtained by time-averaging the unsteady DDES

solution is shown in Figure 5.9. It seems that inter-Mach disks distances increases with the pressure

ratio NPR, so that at high NPRs the shock waves-expansion fans pattern is more stretched. The flow

features of this mean flow are quite similar as those of the RANS solution, but if one observes in detail
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Table 5.5 can easily realise that all characteristic positions are slightly shifted upstream. Actually, it

is important to stress that mean flow computed is not a solution of neither N-S equations nor URANS

equations, while the RANS solution is the base flow of URANS equations. Therefore, it is evident

that, even though both these solutions appear globally quite similar, they are deeply different.

(a)

(b)

(c)

Figure 5.9: Mean DDES solution at different NPR conditions: NPR = 6 (top), NPR = 9 (middle),
NPR = 12 (bottom), longitudinal view. Contours of mean pressure p = p∗/p∗a. The colorscale is
centered at p = p∗/pa = 1 (i.e. where mean pressure p matches ambient pressure pa) to highlight the
shock system.
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NPR xs/L xd1/L xd2/L xd3/L ∆d1−2/L ∆d2−3/L signal length

6 0.287 0.493 0.877 1.161 0.384 0.284 68 Tf=2 kHz
9 0.426 0.669 1.116 1.526 0.447 0.410 78 Tf=2 kHz
12 0.576 0.805 1.324 1.869 0.519 0.545 66 Tf=2 kHz

Table 5.5: DDES mean flow calculations: comparisons in terms of mean separation point (xs) and
mean locations of the first 3 Mach disks (xd1, xd2, xd3), at different NPR conditions. Inter-Mach disk
distances (∆d) are also reported, as well the signal length in terms of periods of a wave signal at 2 kHz
(Tf=2 kHz), corresponding to St = 0.2. L is the nozzle divergent length.

The mean streamwise velocity field u is shown in Figure 5.10. Two different annular regions are

distinguishable: the inner one limited by the internal shear layer, and the second one between the

internal and the external shear layer. Particularly, the former appears to be strictly supersonic while

the latter is subsonic just downstream a Mach disk and accelerates up to supersonic conditions just

before the following Mach disk. This is possible thanks to external annular region that, ”bending”

towards the internal one because of expansion fans, reduces the inner region flow section. As one can

state by observing this figure with special attention, the mean flow seems to be axisymmetric but not

perfectly: this happens because, as we will see further, the unsteady solution is very rich in terms of

frequency spectrum with a large amount of energy localised at low frequency. Consequently, since a

mean flow is statistically converged only when all its frequency content is converged, the higher is the

energy present at low frequencies, the higher is the time necessary to converge this solution. For this

reason, in case of highly unsteady flows, the time required is so huge that it is even not affordable in

terms of computational resources. For information, the signal length over which the unsteady solution

was averaged is listed in Table 5.5 in terms of periods of a single-frequency wave oscillating at 2 kHz
†. Just to give an idea to the reader, computing one period of such frequency wave, with a physical

time-step ∆t = 2.35× 10−6 s, takes 16 hours on 308 processors of Occigen (CINES supercomputer).

Streamlines are added to the mean streamwise velocity field u in Figure 5.11. Two different recircula-

tion regions are well visible near the shock separation and the nozzle lip at NPR = 6 and NPR = 9,

as already observed by Martelli et al. (2020) [45] in an analogous over-expanded TIC experiencing

a FSS regime. Particularly, at NPR = 9 the recirculation region near the shock separation seems

vanished, while at NPR = 12 that near the nozzle lip moved upstream. Moreover, in contrast with

classical TIC flow topology, at this NPR condition a trapped vortex appears downstream the second

†The frequency at 2 kHz corresponds to a Strouhal number St = 0.2.
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(a) NPR = 6, longitudinal view
fff

(b) NPR = 6, transverse plane at
x/L = 0.550

(c) NPR = 9, longitudinal view
fff

(d) NPR = 9, transverse plane at
x/L = 0.779

(e) NPR = 12, longitudinal view
fff

(f) NPR = 12, transverse plane at
x/L = 0.934

Figure 5.10: Contours of the mean streamwise velocity u at different NPR conditions: NPR = 6
(top), NPR = 9 (middle), NPR = 12 (bottom). The continuous black and red lines are the sonic line
and 0-value streamwise velocity isolines, respectively. The transverse slice are taken just downstream
the first Mach disk.

Mach disk. The presence of a such vortex has been already observed in TOC nozzle flows, downstream

the first Mach disk.

The over-expanded state of the TIC nozzle under consideration is well visible in Figure 5.12. Mean

wall pressure (pw) isentropically decreases in the streamwise direction down to separation. Here an

oblique shock occurs and pressure immediately jumps up to a plateau value reaching ambient pressure

at exit. This almost constant trend for pressure inside the separated region proves that flow does
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Figure 5.11: Contours of the mean streamwise velocity u at different NPR conditions: NPR = 6
(top), NPR = 9 (middle), NPR = 12 (bottom). Streamlines are denoted with a solid black line. Two
recirculation regions are well visible near the nozzle lip and the separation shock. In addition, for the
nozzle flow at NPR = 12, a trapped vortex is visible downstream the second Mach disk.

not reattach as for nozzles experiencing a FSS regime. The result of increasing NPR is shifting the

separation point downstream and consequently lowering the plateau pressure. DDES calculations are

here compared with two different experimental campaigns carried out on the same nozzle at same op-

erating conditions. In view of the uncertainty in measurements, the overall pressure trend is in a good

approximation with experiments, given that numerical data fall almost between the experimental ones

coming from both campaigns. Only a slight discrepancy is observed in separation point capturing. It

is in the author’s opinion that separation point upstream shifting is due to RANS/LES transition, as

already mentioned in Martelli et al. (2020) [45]. Data in Figure 5.12a and 5.12b correspond to gen-

eratrix at azimuth positions θ = 0◦ and θ = 180◦ in the counter-clockwise rotation, respectively. The
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mutually coherence in numerical results corresponding to these different azimuth positions confirms

the meanflow axisymmetricity.

(a) Wall generatrix at θ = 0◦. (b) Wall generatrix at θ = 180◦

Figure 5.12: Comparison between experiments and DDES in terms of mean wall pressure along the
same generatrix for different NPRs. Solid lines, DDES; filled (empty) circles, measurements from
experimental campaign of 2016 (2019). Black, red and blue color stands for NPR = 6, 9, 12 data,
respectively. p0 is the combustion chamber total pressure and L the divergent length.

(a) Wall generatrix at θ = 0◦. (b) Wall generatrix at θ = 180◦

Figure 5.13: Comparison between experiments and DDES in terms of wall pressure RMS along the
same generatrix for different NPRs. Solid lines, DDES; filled (empty) circles, measurements from
experimental campaign of 2016 (2019). Black, red and blue color stands for NPR = 6, 9, 12 data,
respectively. p0 is the combustion chamber total pressure and L the divergent length.

As for perturbations, Figure 5.13 gives interesting insights. Standard deviation (σ) shows a sharp

peak localised at separation point due to shock oscillations as showed in previous works about nozzles

experiencing a FSS regime [31, 45]. The pressure signal at the streamwise location of this peak is
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shown in Figure 5.14c.

(a) Supersonic flow over forward-facing step: wall pressure signal at different locations inside
the separated region. From Kistler (1964) [20]

Good job, you got it!

(b) Volvo S7 short nozzle: wall pressure sig-
nals at different positions through the separation
zone. The signal denotated with c) is taken at
the wall location where RMS reaches its maxi-
mum value. From Ostlund et al. (2004) [31]

(c) Unsteady DDES solution. Wall pressure sig-
nal at the separation point for different NPR con-
ditions: NPR = 6 (top), NPR = 9 (middle),
NPR = 12 (bottom).
Good job, you got it!

Figure 5.14: Intermittency inside the separated region.

As one can state observing Figure 5.14c, at NPR = 6 and NPR = 9 pressure jumps between two

levels, one corresponding to a point located outside the separated region and the other inside. This is

the result of separated region intermittency, already observed early by Kistler (1964) [20] for supersonic

flows over a forward-facing step (see Figure 5.14a) and later by Ostlund et al. (2004) [31] (see Figure

5.14b) in nozzle flows experiencing a FSS regime. On the other hand, at NPR = 12 this behaviour

seems to be not present and replaced by a simpler harmonic oscillation.
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After the sharp peak, pressure RMS attenuates at nozzle exit, as already seen in the case of airfoil

buffeting (see Figure 4.18b). By observing Figure 5.13, this attenuation seems to occur increasingly

monotonic at higher NPRs. Nevertheless, while the DDES calculations for NPR = 9, 12 match quite

well with experiments, the numerical simulation for NPR = 6 shows a greater unsteadiness at exit

compared with the corresponding experimental data.

Spectral Analysis

Analysis of unsteady wall pressure perturbation p′ is performed by means of Power Spectral Density

(PSD), referred here with 〈pp∗〉. Frequency is expressed in terms of Strouhal number (St = fDj/Uj),

which is based on the fully expanded jet velocity (Uj) and the fully expanded jet diameter (Dj), given

by

Uj =
√
γRT0

Mj√
1 + γ − 1

2 M2
j

, Dj = De

1 + γ − 1
2 M2

j

1 + γ − 1
2 M2

d


γ+1

4(γ−1)

(5.4)

where T0 is the stagnation temperature, De is the nozzle exit diameter and Mj is the fully expanded

jet Mach number defined as

Mj =
[(

NPR(γ−1)/γ − 1
) 2

(γ − 1)

]1/2
. (5.5)

In order to better recognise the dominant frequency ranges, PSDs are shown in a pre-multiplied form

and normalised by the dynamic pressure of the fully expanded jet γPjM
2
j , with Pj = pa. PSDs are

computed using Welch’s method [104], i.e. subdividing the pressure signal into Nblock blocks with 50

% overlap that are then individually Fourier-transformed. The PSD spectrum is finally obtained by

averaging the DFT energy spectra of the various segments, in order to minimise the variance of the

power spectral density estimator. The PSD parameters adopted are listed in Table 5.6.

NPR Nblock Nsnapshots/block ∆f [Hz] Nperiodsf=2 kHz

6 6 1475 24 83
9 6 1440 25 80
12 4 1408 38 53

Table 5.6: PSD computation parameters. The frequency at 2 kHz corresponds to a Strouhal number
St = 0.2.
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Spectra for different azimuthal positions at a fixed streamwise location are provided by Figure 5.16.

For the case at NPR = 6, DDES calculations match quite well experiments confirming the presence of

a low-frequency hump (St < 0.1), two different peaks at St = 0.2 and St = 0.3, with the latter more

energetic than the former, and a high-frequency hump around St ≈ 1. High-frequencies energy seems

to be slightly over-estimated by numerics. Increasing NPR value up to 9, the peak at St = 0.2 becomes

dominant compared to that at St = 0.3 and strongly emerges over the entire spectrum. Numerical

calculations well reproduce this behaviour, except for the presence of an energetic low-frequency hump

that is not captured experimentally. When NPR is increased up to 9, both experiments and numerical

calculation present a drastic change in the frequency content: intermediate frequency peaks as well the

high frequency hump disappear and all the pressure perturbation energy is localised at a low-frequency

hump, which is non necessarily homogeneous along the azimuth direction. There is a discrepancy in

terms of frequency and energy between DDES simulation and experiments, that in the author’s opinion

is mainly due to the shortness of numerical signal.

In order to analyse the unsteady behaviour of wall pressure perturbation along the nozzle contour, pre-

multiplied spectra for different streamwise locations on two different generatrix are provided by Figure

5.17-5.18. At NPR = 6, both experiments and DDES show the peak at St = 0.3 to increasingly prevail

that at St = 0.2 away from separation point, until the former merges with the high-frequency hump,

which become more and more dominant downstream. Conversely, the low-frequency hump seems to

gradually disappear. The over-estimation by numerical simulations of frequencies around St ≈ 1 seems

to affect only turbulence structures near nozzle exit (x/L = 0.757− 0.852). As for NPR = 9, this

numerical energy over-estimation seems to be lower. In this case, both intermediate frequency peaks

(St = 0.2− 0.3) are dominant in the short-medium distance from separation point. Particularly, the

energy of the peak at St = 0.2 increases in the streamwise direction except for near-separation and

nozzle exit locations. Actually, at separation point a low-frequency hump dominates the spectrum, as

provided by the experimental measurement at x/L = 0.481. However, while experiments observe an

abrupt drop for the energy of this hump in the streamwise direction, DDES returns not so important

energy loss for the same hump. On the other hand, energy in high-frequency hump increases in the

streamwise direction both for experiments and numerical simulations and become dominant near nozzle

exit. At NPR = 12, both DDES and experiments depict the low-frequency hump energy decreasing

in the streamwise direction, giving birth to the suspect that flow motion be essentially due to the
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separation shock. The slight peak position shifting between simulations and experiments is very likely

due to the fact that DDES predicts a separation point slightly upstream compared with experiments.

By means of PSD, the unsteady pressure perturbation has revealed certain signatures in frequency.

First Baars et al. (2012) and later Jaunet at al. (2017) for the same TIC nozzle here considered, have

shown also a precise azimuth selection for the peaks present in the PSD spectrum. For this reason,

a PSD of the first three pressure perturbation azimuthal modes is presented in Figure 5.19. For all

cases, DDES reproduces the same distribution provided by experiments in terms of azimuth selection

for each frequency component. Particularly, at NPR = 6 the component at St = 0.3 is associated

almost exclusively to the mode m = 2, while the St = 0.2 component and the low-frequency hump

(St ≈ 0.05) are related to the mode m = 1. A peak at St = 0.1 is also visible for the mode m = 0.

The high-frequency hump (St ≈ 1) contributes in terms of energy to all azimuth modes, confirming

to be related to turbulent structures. When NPR increases up to 9, the azimuth selection for all

frequencies keeps constant and the St = 0.2 mode becomes dominant. The over-estimation of low-

frequency hump energy in DDES calculation is clustered in the m = 0 mode, confirming a probable

deficiency in reproducing the axysimmetric time-behaviour in this case. The same problem is detected

at NPR = 12: while experiments gives a low frequency peak energy almost homogeneously distributed

over the first three azimuthal modes, DDES over-estimates the energy for the m = 0 mode. In any case,

numerical simulation seems to globally reproduce the same mechanism provided by the experiments.

Particularly, at NPR = 12 a very little peak between St = 0.15 and St = 0.2 with symmetry m = 1

is also captured by the numerical simulation (see Figure 5.15).

Figure 5.15: Nozzle flow at NPR = 12. Zoom visualisation for the Premultiplied PSD spectrum of
the main m azimuthal mode for the wall pressure perturbation p in Figure 5.19e.
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The spatial and frequency evolution of PSD for each single azimuthal mode at differentNPR conditions

is shown in Figure 5.21. If one considers the evolution of the 0th mode (m = 0) at increasing values of

NPR, it seems that at NPR = 6 this mode appears mainly localised at low frequency (St ≈ 0.1) for

locations ranging from the shock separation to the first Mach disk (x/L < 0.5) and at high frequency

(St ≈ 1) for near nozzle exit positions, the latter related to developed turbulence. When NPR is

increased up to 9, the same mode is energetic all over the nozzle at very low frequency (St ≈ 0.01), while

at NPR = 12 it is localised near separation at moderate low frequency (St ≈ 0.1). The 1st azimuthal

mode (m = 1) appears as a signature peaking at St = 0.2 already atNPR = 6, exclusively for positions

ranging from the shock separation to the first Mach disk, while moving in the streamwise direction

it seems to greater and greater contribute to the energy of high frequency hump. At NPR = 9, the

above mentioned signature spreads all over the nozzle domain, providing a lower contribution to the

high frequency hump for near nozzle exit position. Finally, at NPR = 12 the persistent signature

previously observed vanishes except for a weak energy peak at St ≈ 0.15, which is still visible all over

the nozzle. At this condition, the mode is localised at moderate low-frequency in the region between

separation and the first Mach disk. The 2nd azimuthal mode (m = 2) exhibits a spatial distribution at

different NPRs similar to the 1st one. Actually it emerges all over the domain already at NPR = 6

and its energy peak shifts towards the nozzle exit at NPR = 9. At NPR = 12, the frequency content

changes as the 1st mode and the signature previously observed vanishes. At this condition, the energy

appears localised near the shock separation at 0.01 < St < 0.1.

In conclusion, the energy peak of PSD for the 1st and 2nd azimuthal modes at St = 0.2 and St = 0.3

appears to be located near 1st Mach disk position and somewhere between the 1st and 2nd Mach disks,

respectively. Moreover, by observing Figure 5.20, if one compares the screech correlation formula

proposed by Tam (1986) [12] with the frequency of the 1st azimuthal mode peak at the different NPR

(Mj) there is a good match. Nevertheless, as already told by Jaunet et al. (2017) [13], even though this

result could confirms that the 1st azimuthal mode is possibly due to a screech-like phenomenon, further

investigations regarding potential acoustic radiation should be carried out to assess this hypothesis.

Preliminary conclusions on nonlinear dynamics

In this section, the author has shown the capability of Delayed Detached Eddy Simulations (DDES)

in numerically reproducing the behaviour of an over-expanded TIC nozzle experiencing a FSS regime at
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three different nozzle pressure ratios NPR = [6, 9, 12]. The unsteadiness involved has been described

with surprising fidelity when compared with experiments (Jaunet et al. 2017 [13]) in terms of statistical

properties (i.e. mean flow, RMS) as well spectral ones (i.e. PSD spectra) for all NPRs swept. The

apparition of azimuthal-selected peaks in the PSD spectra is prevalent in the range of nozzle pressure

ratios NPR = [6, 9], while at NPR = 12 only a weak peak at St = 0.1 is visible, as confirmed by the

experiments.

A detailed analysis, performed by means of azimuthal PSD spectra extracted at several nozzle sections,

permitted to describe the frequency as well the spatial distribution of each single azimuthal component

of wall pressure perturbation. This analysis has shown that all unsteady dynamics of such over-

expanded nozzle is mainly related to a m = 0 low-frequency oscillation due to the separation shock;

two unsteadiness at intermediate frequency St = 0.2 and St = 0.3, keeping the same azimuthal

selection (respectively at m = 1 and m = 2) for all NPR regimes; a high frequency contribution,

comprising all azimuthal components, provided by the turbulent structures developing in the vicinity

of the nozzle exit. Such complex flow motion characterised by frequencies near those of turbulence,

required a more sensitive treatment, than classical URANS methods could provide.

The question that now raised is the following: could this intense signature in the frequency-azimuthal

wavenumber plane be the trace of a global instability? In the next chapter, we will try to give an

answer to such a question.
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(a) DDES calculation for NPR = 6 at x/L =
0.665

(b) Experiments for NPR = 6 at x/L = 0.667,
from Jaunet et al. (2017)

(c) DDES calculation for NPR = 9 at x/L =
0.665

(d) Experiments for NPR = 9 at x/L = 0.667
from Jaunet et al. (2017)

(e) DDES calculation for NPR = 12 at x/L =
0.665

(f) Experiments for NPR = 12 at x/L = 0.667
from Jaunet et al. (2017)

Figure 5.16: Premultiplied PSD of wall pressure perturbation p for different azimuth positions at a
fixed streamwise location.
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(a) DDES calculation for NPR = 6
ffff

(b) Experiments for NPR = 6, from Jaunet et
al. (2017)

(c) DDES calculation for NPR = 9
ffff

(d) Experiments for NPR = 9 from Jaunet et
al. (2017)

(e) DDES calculation for NPR = 12
ffff

(f) Experiments for NPR = 12 from Jaunet et
al. (2017)

Figure 5.17: Premultiplied PSD of wall pressure perturbation p for different streamwise locations at
azimuth position θ = 0◦.
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(a) DDES calculation for NPR = 6
ffff

(b) Experiments for NPR = 6, from Jaunet et
al. (2017)

(c) DDES calculation for NPR = 9
ffff

(d) Experiments for NPR = 9 from Jaunet et
al. (2017)

(e) DDES calculation for NPR = 12
ffff

(f) Experiments for NPR = 12 from Jaunet et
al. (2017)

Figure 5.18: Premultiplied PSD of wall pressure perturbation for different streamwise locations at
azimuth position θ = 180◦.
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(a) DDES calculation for NPR = 6 at x/L =
0.665

(b) Experiments for NPR = 6 at x/L = 0.667,
from Jaunet et al. (2017)

(c) DDES calculation for NPR = 9 at x/L =
0.665

(d) Experiments for NPR = 9 at x/L = 0.667
from Jaunet et al. (2017)

(e) DDES calculation for NPR = 12 at x/L =
0.665

(f) Experiments for NPR = 12 at x/L = 0.667
from Jaunet et al. (2017)

Figure 5.19: Premultiplied PSD of main m azimuthal mode wall pressure perturbation pm at a fixed
streamwise position. Green, blue and yellow denotes spactra for m = 0, 1, 2 respectively.
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Figure 5.20: Comparison bewteen Tam’s correlation (1986) [12] and 1st azimuthal mode peak fre-
quency at different values of NPR (Mj)

(a) 0th azimuthal mode for
NPR = 6

(b) 0th azimuthal mode for
NPR = 9

(c) 0th azimuthal mode for
NPR = 12

(d) 1st azimuthal mode for
NPR = 6

(e) 1st azimuthal mode for
NPR = 9

(f) 1st azimuthal mode for
NPR = 12

(g) 2nd azimuthal mode for
NPR = 6

(h) 2nd azimuthal mode for
NPR = 9

(i) 2nd azimuthal mode for
NPR = 12

Figure 5.21: Contours of premultiplied PSD for main azimuthal mode of wall pressure perturbation
(St〈pmp∗m〉) in space and frequency domain. The black lines denote the separation point (SP ) and
the location of the first Mach Disk (MD), respectively.
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Linear Stability

Linear Stability around the base flow

As mentioned in section 5.2, a nonlinear solution obtained through a full turbulence modelling,

as done by URANS equations, did not permit to trigger shear layer instabilities and consequently no

unsteadiness has been detected. Nevertheless, there are some open questions: if stability analysis is

consistent with nonlinear calculation, LURANS equations should return an asymptotic globally stable

solution, but in which way? LURANS stability spectrum would provide or not any stable global mode

compatible with the unsteadiness detected at St = 0.2 and St = 0.3? In order to answer this question,

a global stability analysis around a steady RANS solution at NPR = 9 is tackled. The linearised

URANS equations are solved forward in time with a sampling period ∆ts, in order to build run-

time the Hessenberg matrix representing the approximation of the propagation matrix M = eJ∆ts .

The Krylov space dimension adopted is K = 76 and the sampling period is ∆ts = 6.35× 10−5 s.

These choice of parameters ensures a 8 snapshots-discretisation par period and a signal length of

approximately 9 periods of a single-frequency wave oscillating at 2 kHz (corresponding to St = 0.2).

The stability spectrum is shown in Figure 5.22.

Figure 5.22: Nozzle Flow at NPR = 9. Eigenspectrum for Global Stability Analysis around the
RANS base flow. Two stable modes are visible at St ≈ 0.2 and St ≈ 0.3, denoted with a red and a
blue empty circle, respectively.

As one can state by observing this figure, besides the unstable modes at null frequency which are
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not physical ‡, there are no unstable global modes. Nevertheless, there are two stable modes on the

same branch at St ≈ 0.2 and St ≈ 0.3 denoted with a red and blue empty circle, respectively. The

corresponding eigenvector for the streamwise, radial and azimuthal velocity components are shown in

Figures 5.23-5.24.

(a) streamwise velocity mode component ûx
Sorry, I need it

(b) radial velocity mode component ûr
Sorry, I need it

(c) azimuthal velocity mode component ûθ
Sorry, I need it

Figure 5.23: LURANS : three-dimensional view of the stable global mode at (σ, St) = (−0.052, 0.200).
The iso-surfaces of the (a) streamwise, (b) radial and (a) azimuthal velocity mode component are
plotted for the levels ûx = ±1.0× 10−6, ûr = ±1.0× 10−7 and ûθ = ±1.0× 10−7, respectively. White
and black iso-surfaces for positive and negative values, respectively. The azimuthal m = 1 feature is
well visible in the shape of the mode.

‡A more in depth analysis of these modes shows that their spatial shape do not break any flow symmetry and thus
do not correspond to any pitchfork bifurcation. Moreover, these modes are weakly converged by the Arnoldi algorithm.
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(a) streamwise velocity mode component ûx
Sorry, I need it

(b) radial velocity mode component ûr
Sorry, I need it

(c) azimuthal velocity mode component ûθ
Sorry, I need it

Figure 5.24: LURANS: three-dimensional view of the stable global mode at (σ, St) = (−0.077, 0.298).
The iso-surfaces of the (a) streamwise, (b) radial and (a) azimuthal velocity mode component are
plotted for the levels ûx = ±1.0× 10−6, ûr = ±1.0× 10−7 and ûθ = ±1.0× 10−7, respectively. White
and black iso-surfaces for positive and negative values, respectively. The azimuthal m = 2 feature is
well visible in the shape of the mode.
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Both modes are localised at shear layers in a wave-packet shape and show a clear azimuthal symmetry.

In fact, the mode at St ≈ 0.2 exhibits an azimuthal m = 1 symmetry, while that St ≈ 0.3 an m = 2

one, both of them perfectly in accordance with the peaks present in the PSD spectra related to

nonlinear DDES (Figure 5.19c) and experiments (Figure 5.19d). This result is very interesting as it

leads to the conclusion that these modes are already present in the LURANS stability spectrum, but

they are stable. Moreover, Figure 5.25 seems to indicate that the physical nature of this two modes is

different, with the global mode at St ≈ 0.3 emanating some kind of acoustic radiation in the exterior

environment.

(a) Longitudinal view of the stable global mode
at (σ, St) = (−0.052, 0.200).

(b) Longitudinal view of the stable global mode
at (σ, St) = (−0.077, 0.298).

Figure 5.25: LURANS stability: contours of the streamwise velocity mode component ûx. The global
mode at (σ, St) = (−0.077, 0.298) seems to emanate some kind of acoustic radiation.

Actually, in the URANS approach, turbulent fluctuations are modelled as an extra viscosity, whose

production and dissipation mechanisms are based on an additional transport equation. In this frame-

work, the turbulent flow field is described by its mean statistical part 〈φ〉 and the only unsteadiness

reproduced are those characterised by low-frequency oscillations, well-separated by the modelled wall

turbulence §. Therefore, LURANS, in analogy with URANS equations, would not be able to describe

the temporal evolution of any instabilities, especially if they are convective, related to turbulent scales.

The result here shown seems to confirm this tendency, with a linear stability analysis returning global

modes, which are consistent in terms of spatial shape and frequency, but stable.

Therefore, in order to resolve at least a part of turbulent spectrum, a partial resolved turbulence

approach is required. In this way, the spectral filtering of turbulence energy, provided by a LES ap-

proach, permits to separate the large scale fluctuating part from the small one, and modelling only

§In the case of airfoil buffeting, the low-frequency self-sustained oscillation observed (f ≈ 100 Hz) is two order of
magnitudes lower than turbulent scales (f ≈ 10 kHz)
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the latter. In this context, the cut-off wave number kc is given by the grid size ∆, as kc = π/∆ and

the resulting filtered LES equations have the same mathematical form of URANS equations. In this

view, one can consider to develop the turbulent field φ into several ranks of fluctuating parts φ′[k] as

φ = 〈φ〉+
∞∑
n=1

φ′[kn−1,kn] (5.6)

and each one defined with the following partial integration of their generalised Fourier transform

φ′[kn−1,kn] (ξ) =
∫ kn

kn−1
φ̂′eikξ dk, (5.7)

where φ̂′ is the Fourier transform of the spatially filtered variable φ′ (ξ) and kn is a series of partitioning

wave numbers. While URANS approach aims at modelling the entire turbulent spectrum φ′[0,∞], a

LES approach only the smaller scales φ′[kc,∞]. In this scenario, a DDES shifts from URANS to LES,

when there is a sufficient grid refinement (∆ << dw), permitting to resolve the large turbulent scales.

Nevertheless, it should be stressed that when turbulence is fully resolved (i.e. DNS), or only partially

modelled (i.e. LES, DDES), base flow stays laminar, while the corresponding unsteady solution lies in

the chaotic turbulent saddle. In such cases, even if obtaining a steady state solution could be possible,

the latter would be inappropriate if one is interested in studying the turbulent fluctuation dynamics

around it. In this context, mean flow represents the most coherent statistical object living in the same

saddle of turbulent perturbations. In this scenario, could a global stability analysis, performed around

the DDES mean flow, return any marginally-stable or even unstable global mode compatible with the

unsteadiness at St ≈ 0.2 and St ≈ 0.3?
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Linear Stability around the meanflow

In contrast with laminar flow, it is commonly accepted that, the nonlinear effects cannot be so

easily neglected when studying the dynamics of perturbations on top of otherwise turbulent flows. For

this reason, we will not talk about linearised equations but rather about nonlinear disturbance ones.

In this framework, let us assume that the spatial structure of the mean flow q is known. If we consider

a turbulent solution perturbed around the mean flow which is based on a Reynolds decomposition,

starting from a compact form of Navier-Stokes equations (2.1) analogous to that written for URANS

equations (2.44), it is possible to obtain the following equations for turbulent perturbations (5.8a) and

mean flow (5.8b)

∂q′

∂t
+∇ ·

[
L (q) + N (q,q) + L

(
q′
)

+ N
(
q,q′

)
+ N

(
q′,q

)
+ N

(
q′,q′

)]
= 0 (5.8a)

∇ ·
[
L (q) + N (q,q) + N (q′,q′)

]
= 0, (5.8b)

where N (q′,q′) is the so-called Reynolds Stress tensor.

The NonLinear Disturbance Navier-Stokes (NLDNS) equations around the mean flow are obtained by

solving the system of Eqs.(5.8a)-(5.8b) as

∂q′

∂t
+∇ ·

[
L
(
q′
)

+ N
(
q,q′

)
+ N

(
q′,q

)]
= ∇ ·

[
N (q′,q′)−N

(
q′,q′

)]
, (5.9)

where q′ =
[
ρ′,m′, (ρE)′

]T
represents the N-S conservative variables perturbations and the different

terms can be explicitly expressed in the following way



∂ρ′

∂t
+
∂m′j
∂xj

= 0

∂m′i
∂t

+ ∂

∂xj

(
mju

′
i +m′jui + p′δij + τ ′lam

)
= ∂

∂xj

(
f ′′ij − f ′′ij

)
∂ (ρE)
∂t

+ ∂

∂xj

[
ρEu′j + (ρE)′ uj + pu′j + p′uj − q′lam − (uiτ ′lam + u′iτlam)

]
= ∂

∂xj

(
g′′ij − g′′ij

)
(5.10)

with

τ ′lam = µL

(
∂u′j
∂xi

+ ∂u′i
∂xj
− 2

3
∂u′k
∂xk

δij

)
+ µ′L

(
∂uj
∂xi

+ ∂ui
∂xj
− 2

3
∂uk
∂xk

δij

)
, (5.11)
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q′lam = cp
PrL

(
µL
∂T ′

∂xj
+ µ′L

∂T

∂xj

)
, (5.12)

f ′′ij = m′ju
′
j − µ′L

(
∂u′j
∂xi

+ ∂u′i
∂xj
− 2

3
∂u′k
∂xk

δij

)
and (5.13)

g′′ij = (ρE)′ u′j + p′u′j −
[
u′iτ
′
lam +

(
uiµ
′
L + u′iµ

′
L

)(∂u′j
∂xi

+ ∂u′i
∂xj
− 2

3
∂u′k
∂xk

δij

)
+ cp
PrL

µ′L
∂T ′

∂x′j

]
. (5.14)

NLDNS equations around the mean flow q can be written in the following compact form

∂q′

∂t
− J q′ = ∇ ·

[
N (q′,q′)−N

(
q′,q′

)]
︸ ︷︷ ︸

f

, (5.15)

where J is the Jacobian operator of compressible N-S equations about the mean flow and turbulent

fluctuations act as an unsteady forcing term f on the momentum and energy equations.

The comparison between LURANS equations and NLDNS ones around the N-S mean flow permits

to draw some important considerations. First, both are obtained from two different approaches for

turbulence: URANS equations in (2.44) are obtained for a statistical average 〈q〉 of the turbulent

solution (∂〈q〉/∂t 6= 0), while Eq.(5.8b) is valid for the long term time-averaged solution q. Moreover,

in the URANS approach, as described in the previous paragraph, a full modelling of the turbulent

energy spectrum, expressed by the term N (q′,q′) is adopted through the introduction of one or two

additionally turbulence equations. In this way, the Reynolds Stress tensor is no more unknown and

it is reintroduced in the flux vector, as it is for turbulent viscosity in the new extended state vec-

tor q = [ρ, ρu, ρE, ρν̃]T . These assumptions permits to derive a new set of equations (i.e. URANS),

admitting a steady turbulent solution (i.e. RANS) which is a fixed point and the base flow of the equa-

tions. Anyway, the statistical representation of turbulent solution and the turbulent energy spectrum

modelling only explains the steady term absence in f , while the unsteady term N (q′,q′) is due to the

nonlinear turbulent fluctuations, that in case of infinitesimal amplitude perturbations are neglected.

However, when dealing with complex and high turbulent flows, requiring a partially or full resolved

approach for turbulence, the forcing term f exists but it is difficult or even unfaisable to take it in

account because of the large computational cost demanded. In these cases, there are two alternative
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options: assuming f negligible and evaluating this hypothesis a posteriori by solving LNS equations

and Linear Stability around the turbulent mean flow [105] or considering this forcing f as the sum of

harmonic components, because of the presence of N (q′,q′), without modelling it [106]. The second

approach leads to Resolvent analysis and assumes turbulent fluctuations to be the optimal forcing in

exciting convective (linearly globally stable) instabilities.

In the laminar flow past a cylinder bifurcating into a single frequency limit cycle (Barkley [66]), a

global stability analysis performed around the mean flow results in a better capturing of the unsteadi-

ness if compared with an analogous one performed around the base flow. In this case, Eq.(5.15 comes

to Eq.(2.47) and a marginally stable mode (σ = 0) with a frequency matching that of the limit cycle

observed in nonlinear calculations. Such condition has been called by Turton et al. (2015) [70] Real

Zero Imaginary Frequency (RZIF) and it has been proven to be always verified for monochromatic

oscillations. Moreover, the resolvent operator is not defined for any Real Zero Imaginary Frequency

(RZIF) [70] global mode. In fact, as already mentioned by Beneddine et al. (2016) [76] this means

that, if a resolvent analysis is performed on a marginally stable case, the resolvent operator should

display a theoretically infinity response near this frequency and a consequent clear separation of the

singular values near this frequency. However, what happens in non-single frequency oscillations? The

answer to this question has been provided by Sipp & Lebedev (2007) [69]. In such case, a global

stability analysis around the mean flow returns a non-RZIF mode, i.e. globally unstable and with a

frequency not matching the nonlinear one. This discrepancy is proven to be larger and larger with the

increasing of higher harmonics strength.

The experimental results carried out on the over-expanded nozzle flow considered in this work have

shown a self-sustained unsteadiness which emerge over the entire spectrum without higher harmonics.

This observation, confirmed by nonlinear calculations performed by means of Delayed Detached Eddy

Simulations (DDES), is in the author’s opinion a reasonable assumption to neglect the forcing term f

as a first approximation.

A global stability analysis around a time-averaged DDES solution at NPR = 9 is tackled. As men-

tioned in section 5.3.2, the frequency spectrum is so rich that statistically converging all the frequency

content is too much expensive in terms of computational resources. Consequently, the lack of a perfect

convergence in the mean flow computation can induce the occurrence of spurious modes in the linear

stability analysis. For this reason, the long-term time averaged DDES solution has been also averaged
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in the azimuth direction. The linearised N-S equations around the DDES mean flow are then solved

forward in time with a sampling period ∆ts = 6.35× 10−5 s and a Krylov space dimension K = 85

was adopted. These choice of parameters ensures a 8 snapshots-discretisation par period and a signal

length of approximately 11 periods of a single-frequency wave oscillating at 2 kHz (corresponding to

St = 0.2). The stability spectrum is shown in Figure 5.22.

Figure 5.26: Nozzle Flow at NPR = 9. Eigenspectrum for Global Stability Analysis around the mean
flow. An unstable mode (σ, St) = (0.06, 0.22) matching the unsteadiness at StNL ≈ 0.2 is denoted
with an empty red circle. Conversely, another mode at St = 0.3, which can be probably associated to
the nonlinear activity with symmetry m = 2, is stable.

As one can state by observing this spectrum, two global modes at St ≈ 0.2 and St ≈ 0.3 are present.

In contrast with what provided by LURANS stability analysis, the mode at St ≈ 0.2, denoted with

a red empty circle, is unstable, while that at St ≈ 0.3 is stable. The St ≈ 0.2 eigenvector for the

streamwise, radial and azimuthal velocity components of are shown in Figure 5.27.
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(a) streamwise velocity mode component ûx
Sorry, I need it

(b) radial velocity mode component ûr
Sorry, I need it

(c) azimuthal velocity mode component ûθ
Sorry, I need it

Figure 5.27: LNS around DDES meanflow: three-dimensional view of the unstable global mode at
(σ, St) = (0.06, 0.22). The iso-surfaces of the (a) streamwise, (b) radial and (a) azimuthal velocity
mode component are plotted for the levels ûx = ±1.0× 10−4, ûr = ±7.0× 10−5 and ûθ = ±7.0× 10−5,
respectively. White and black iso-surfaces for positive and negative values, respectively. The azimuthal
m = 1 feature is well visible in the shape of the mode.
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The comparison between Figure 5.27 with Figure 5.23 leads to an interesting result: a linear stability

performed around the DDES meanflow produce a unstable global mode at St ≈ 0.2 matching in terms

of frequency and spatial shape that provided by the linear stability analysis around the RANS base

flow. Particularly, the ”mean flow” global mode exhibits a less elongated structure in the streamwise

direction when compared with its ”base flow” counterpart. The stable global mode at St ≈ 0.3 is not

shown here, because not sufficiently converged.

In contrast with the stability spectrum for LURANS equations, that provided by stability analysis

around the mean flow shows a series of unstable modes even at low-frequency. This unstable modes

are probably due to the activity related to the low-frequency hump observed in the PSD spectra and

required further analyses in the future.

Preliminary conclusions on linear dynamics

The linear stability analyses performed first around the RANS base flow and secondly around

the DDES mean flow have given interesting insights in the process of understanding of the unsteady

activity observed in over-expanded TIC nozzle at NPR = 9.

The azimuth-selected unsteadiness at St = 0.2 and St = 0.3 observed in DDES calculations and exper-

iments are found both in the LURANS stability spectrum and LNS stability spectrum. Particularly,

in the LURANS spectrum both global modes are stable, but are consistent in term of frequency and

azimuthal symmetry with the unsteadiness expected. The global modes at St = 0.2 and St = 0.3 are

localised at the inner and external shear layer in a packet shape. Conversely, for the linear stability

analysis performed around the DDES mean flow, the global mode at St ≈ 0.2 is unstable but shows

the same spatial structure of that provided by LURANS equations.

The first main conclusion that we can draw is that LURANS Stability is consistent with the URANS

nonlinear dynamics. In fact, no global unstable modes exist as well no unsteadiness are detected in

the URANS nonlinear calculation. Anyway, this result opens three alternative scenarios. According

to the the first, the unsteadiness at St = 0.2 and St = 0.3 are related to two effectively global unstable

modes, but which result stable because of a modelling deficiency in the turbulence models adopted. In

this scenario, the eigenfrequency of these mode is not enough separated from the turbulent unresolved

scales and turbulent viscosity, tempting to close this resolution gap, is overproduced and stabilises

the underlying self-sustained mechanism. In this case, it would be interesting to investigate whether
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another turbulence model (e.g. κ−ω SST), maybe limiting the turbulent viscosity production, would

permit to reproduce the above mentioned unsteadiness in nonlinear URANS calculation as well pro-

vide global unstable modes in LURANS stability.

Alternatively, in a second scenario, these modes could be related to convective instabilities, which

are linearly globally stable and need a forcing to be triggered. In this case, URANS, and thus also

LURANS, methods are known not to permit the development of convective mechanisms but only

self-sustained ones occurring at frequencies well-separated from the turbulent scales. In this scenario,

a strategy based on the resolvent or receptivity analysis of the turbulent mean flow (even URANS)

could be attractive tools. Finally, in the case of a third possible scenario, if the mechanisms involved

is nonlinear, not even such tools could be useful to extract any information [107].

Concerning the interest in global stability analysis around the DDES mean flow, one can easily assume

that, the mean flow being not so different from the base flow, as shown in Figure (5.5b) and (5.12b),

such an analysis permits to get rid of any turbulent viscosity effect. In this way, a linear stability

analysis using LNS equations around the mean flow takes in account turbulence only in terms of dis-

tortion. In this approach, a global unstable mode at St ≈ 0.2 is effectively provided and its spatial

shape is very similar to that of the corresponding stable mode in LURANS spectrum. Nevertheless,

the weakness of such an analysis lies in the absence of the turbulent fluctuation forcing term f in

Eq.(5.15). That being said, considering this term necessarily leads to three possible options: exactly

computing each term, consuming large-time and memory resources, and solving Eq.(5.15) without the

possibility to extract any global mode, because the system of equations is not homogeneous; modelling

this forcing term and thus slipping back to a URANS-like method, with consequently above mentioned

drawbacks; considering f as an harmonic forcing and turning towards a resolvent analysis.
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Chapter 6

Conclusions et perspectives

Conclusion

The main objective of this work was to reproduce numerically the self-sustained unsteadiness oc-

curring in over-expanded nozzles and to provide a description in terms of flow instabilities. The interest

in such a work derives from the will of better understanding the origin of side loads, antisymmetric

and highly unsteady forces occurring during start-up and shut-down of rocket engines severely limiting

their performances. A wide literature dedicated to the study of such unsteady forces have lead many

evidences on the important role played by the interaction among turbulent boundary layer, shear

layers and shock-wave. The nature of these unsteadiness has been studied in detail in this thesis by

means of nonlinear numerical simulations and linear stability theory.

An over-expanded TIC nozzle experiencing a free shock separation regime at three different nozzle

pressure ratios NPR = [6, 9, 12] has been analysed by means of RANS, URANS and DDES calcu-

lation. At least a partial resolution of the turbulence energy spectrum, which is not admitted in a

RANS/URANS approach, is required to correctly destabilise the shear layers involved in the triggering

process of the unsteady dynamics. The resulting unsteady motion, reproduced by DDES simulations,

have shown the same frequency-and-azimuthal selected peaks in the power spectral densities spectra

provided by previous experiments (Jaunet et al. 2017 [13]) performed on the same nozzle at the same

operating conditions. Particularly, the nozzle flow exhibits a high-frequency activity at St = 0.2 and

St = 0.3 prevalent in the range of nozzle pressure ratios NPR = [6, 9]. By means of azimuthal PSD

spectra extracted at several wall locations, it has been shown that, when present, such peaks keep the

same azimuthal selection (respectively at m = 1 and m = 2) for all NPR regimes.
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In order to demonstrate the existence or not of any unstable global mode related to such unsteadiness,

a linear stability analysis for the nozzle flow at NPR = 9 is tackled. Two globally stable modes,

compatible in terms of frequency and azimuthal symmetry, are present in the stability spectrum ob-

tained from the linearised unsteady RANS equations. This result is consistent with the corresponding

URANS nonlinear equations, for which no unsteadiness was reproduced. The fact that these modes are

exactly localised at shear layers gives different scenarios about the understanding of this phenomenon.

As already mentioned, triggering the shear layer instabilities/unsteadiness plays a crucial role in re-

producing correctly the nonlinear unsteady dynamics. First, the shear layer stabilisation could be due

to the adopted turbulence model over-producing turbulent viscosity. In this case, another turbulence

model could eventually provides a self-sustained dynamics. Second, these modes could be effectively

linearly globally stable, because related to convective instabilities and particularly sensitive to (pos-

sibly very low amplitude) external perturbations. Finally, the mechanism involved could be simply

nonlinear.

In order to reduce the effect of the modelled turbulent viscosity, as a first approximation, a quasi-

laminar linear stability analysis was performed around the DDES solution averaged both in time and

in the azimuthal direction. A globally unstable mode at St ≈ 0.2 is effectively provided and its spatial

shape is very similar to that of the corresponding stable mode in the eigenspectrum of the linearised

URANS equations. This result seems to corroborate the hypothesis according to which the stability

of the modes at St = 0.2 and St = 0.3 is linked to the amplitude of the turbulent viscosity provided

by the Spalart-Alamaras model, even though the presence of turbulent fluctuation forcing term is

required, in order to be mathematically well-posed. It should be stressed that injecting the turbulent

forcing term would change the mathematical nature of the problem and into a linear affine problem

for which the eigenvalues and eigenvectors are not defined.

The physical phenomenon related to these unsteadiness is not clear, even though the frequencies re-

lated to the peak at m = 1, at different values of NPR, follow the Tam’s correlation for screech

frequency, as already reported in Jaunet et al. 2017 [13]. Nevertheless, the authors concluded that

this mode cannot be due to a screech-like phenomenon because no acoustic contribution is observed.

In support of this assessment, the m = 1 global mode at St = 0.2 obtained in this work appears not

to emit acoustic radiations. This is in stark contrast with the m = 2 mode at St = 0.3. This scenario

seems to be in contrast with that proposed by Martelli et al. (2020) [45].
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Perspectives

The results produced in this work are not entirely conclusive. They nonetheless provide several

insights and raise numerous questions that need answering.

As for the nonlinear dynamics,

1a) analysing the nozzle flow at NPR = 9 with other turbulence models (e.g. κ − ω SST ) is a

priority, in order to corroborate the hypothesis according to which URANS methods are not

capable to describe this type of self-sustained dynamics.

2a) The nozzle flow at NPR = 12 exhibits flow features as well as frequency content very different

when compared with the other cases (i.e. NPR = 6, NPR = 9). At this regime, the pressure

gradient is greater than the other ones, requiring a greater protection for the boundary layer

in order to avoid any LES filtering occurrence in this region. This is possible by increasing

a particular coefficient of RANS/LES transitioning, which necessarily delays the shear layer

triggering. Although the comparison with the corresponding experimental data gives confidence

in the simulation, the very low activity recorded in the shear layers, if compared with the other

NPR conditions, requires more investigations maybe adopting another grid, forcing the shear

layers, or testing other RANS/LES treatments (e.g. Z-DES).

3a) In order to complete the nonlinear analysis, one could investigate other NPR conditions and

particularly verify whether the condition of isentropic flow is reached at a value close to that

predicted by the MOC analysis (NPR = 18, see Figure 5.3). In this kind of parametric study,

one would analyse the behaviour of the frequency content at increasing value of NPR up to

under-expanded conditions, when classical screech phenomena is supposed to settle.

4a) It would be interesting to study other nozzle contours (e.g. Thrust Optimised Parabolic, Thrust

Optimised Contour), characterised by different shock system topologies.

As for the linear dynamics,

1b) for the nozzle flow at NPR = 9, it is mandatory to verify the consistency of the linearised

URANS equations when a different turbulence model is adopted (e.g. κ−ω SST ). In case both
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URANS and LURANS finds a self-sustained mechanism at St = 0.2 and/or St = 0.3 compatible

in terms of azimuthal symmetry, we could conclude that this unsteadiness is definitely related to

a global linear instability. Otherwise, the mechanism is very likely due to a convective instability

or a nonlinear mechanism;

2b) If LURANS returns globally stable modes at St = 0.2 and St = 0.3 with other turbulence

models (and in accordance with URANS), it would be interesting to tackle a receptivity analysis

(e.g. Pseudo-spectrum [108], Resolvent) to assess the hypothesis that these modes are effectively

globally linearly stable and require a forcing to be excited.

3b) It would be interesting to extend the same analysis done for the TIC nozzle flow at NPR = 9

to other NPR regimes and nozzle contour (e.g. TOP, TOC).
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Cosimo TARSIA MORISCO

Nonlinear dynamics and linear stability
analysis of over-expanded nozzle flows

Résumé : Les interactions onde de choc/couche limite à l’intérieur de tuyères sur-détendues produisent
des grandes régions détachées entrâınant des forces non-axisymétriques appelées charges latérales. Le
mécanisme générateur (mettant en jeu le décollement, les couches de cisaillement et les disques de
Mach) est auto-entretenu avec des échelles de temps et d’espace relativement bien séparées de celles de
la turbulence. Dans de tels cas, une approche partiellement résolue pour la turbulence (e.g. DDES)
est envisageable afin de réduire les coûts de calcul. Cette thèse vise à étudier la nature potentiellement
globalement instable de cette instationarité à l’aide de simulations numériques hybrides dans le cas
d’une tuyère sur-détendue et par une analyse de stabilité linéaire 3D. La géométrie considérée est une
tuyère TIC, en régime free shock seperation (FSS) et fonctionnant à 3 differents nombres de Mach de jet
Mj = [1.83, 2.09, 2.27]. Les calculs non linéaires confirment les résultats expérimentaux: la densité spectral
d’énergie des perturbations de pression proche paroi est répartie sur 2 pics à fréquence intermédiaire
(St = 0.2− 0.3) et deux bosses à basse et haute fréquence, respectivement à St < 1 et St ≈ 1. Pour un
Mach de jet Mj = 1.83, l’énergie aux fréquences St = 0.2 et St = 0.3 sont comparables. A Mj = 2.09, le pic
d’énergie à St = 0.2 domine tandis que les deux finissent par disparâıtre pour un Mach de jet Mj = 2.27.
Une PSD calculée pour différentes composantes azimutales de la perturbation de la pression proche paroi
montre une claire séparation azimutale pour toutes les contributions frequentielles. En particulier, alors
que le pic à St = 0.3 a une double contribution m = 2−3 à Mj = 1.83 et il est exclusivement de type m = 2 à
Mj = 2.09. Le pic à St = 0.2 a, quant à lui, une symétrie m = 1, avec une signature persistante à l’intérieur
de la tuyére à Mj = 2.09. Dans un second temps, une analyse de stabilité globale est effectuée autour du
champ moyen DDES à Mj = 2.09. Une telle analyse donne un mode instable à St = 0.2 avec une symetrie
azimutale de type m = 1. Ce mode se développe à partir du point de décollement et se localise au niveau
de la couche de cisaillement externe.

Mots clés : choc, tuyères, FSS, DDES, stabilité globale, champ moyen.

Abstract : Shock wave/boundary layer interactions in over-expanded rocket nozzles are responsible for
large detached regions resulting in non-axisymmetric forces called side-loads. The mechanism at stake is
self-sustained and involves separation, shear layers and Mach disks. In such cases, an hybrid approach for
turbulence is required to mitigate the computational cost. This thesis aims at investigating the possibly
globally unstable nature of this unsteadiness by means of a Delayed Detached Eddy Simulations (DDES)
on an over-expanded nozzle and comparing it with a fully-3D linear stability analysis. The geometry
considered is a TIC nozzle, experiencing a FSS unsteadiness and operating at 3 different jet Mach number
Mj = [1.83, 2.09, 2.27]. Nonlinear calculations confirm the experimental outcomes: power spectral densities
for wall perturbations is distributed over 2 peaks at intermediate frequency (St = 0.2− 0.3) and two humps
at low-frequency (St < 1) and high frequency (St ≈ 1), respectively. Particularly, at Mj = 1.83 the peak at
St = 0.2 competes with that at St = 0.3, prevails on the latter at Mj = 2.09 and finally vanishes as the other
at Mj = 2.27. A PSD computed for different azimuthal components of wall pressure perturbation show
a clear azimuthal separation for all the contribution mentionned above. Particularly, while the peak at
St = 0.3 has a double contribution m = 2− 3 at Mj = 1.83 and exclusively a m = 2 symmetry at Mj = 2.09,
the peak at St = 0.2 has constantly a m = 1 symmetry, which behaves has a persistent signature inside
the nozzle at Mj = 2.09. Consequently, a global stability analysis is performed on the DDES mean flow
at Mj = 2.09. Such analysis returns an unstable mode at St = 0.2, characterized by a m = 1 azimuthal
symmetry, which develops from the separation point and is localised at the external shear layer.

Keywords : shock-wave, nozzles, FSS, DDES, global stability analysis, meanflow.
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