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Abstract

In this thesis, I study a cryptographic primitive called Quantum Key Distribution (QKD).
QKD allows two remote parties, the sender Alice and the receiver Bob to share a secret
key, in the presence of an eavesdropper, Eve, whose power is only limited by the laws of
quantum physics. In classical cryptography, public key cryptography is widely used to per-
form secret key agreement. However, the security of public key cryptography is based on
some unproven mathematical assumptions while QKD can be proven unconditionally se-
cure, based on the fundamental laws of quantum mechanics. QKD security proofs however
only apply to implementations verifying some trust assumptions that may be violated in
a practical setup. As a matter of fact, an implementation may leak information through
side channels not considered in the security proof, opening security loopholes and the pos-
sibility for a potential eavesdropper to launch so-called side channel attacks targeting the
implementation. Such attacks have indeed been recently demonstrated both on research and
commercial QKD systems. This highlights the importance of implementation security in
QKD.

I focus my study on the implementation and the practical security of continuous-variable
(CV) QKD protocols and more particularly on the Gaussian-modulated coherent state pro-
tocol. More precisely, I have concentrated my work on two important challenges in practical
CV QKD:

(1) Side channel attacks on practical CV QKD systems: I have studied different imper-
fections in an implementation of a CV QKD system and analyzed their impacts on the secu-
rity and performance. Moreover, for the first time, I have proposed and studied a detector-
based side channel attack in CV QKD: saturation attack. This opens a new security loophole
that we have characterized experimentally in the lab, on a real CV QKD system.

(2) Integration of a CV QKD system within an optical network: I have studied care-
fully the different noise impairments that can be encountered when deploying CV QKD in
coexistence with intense classical channels in a Dense Wavelength Division Multiplexing
(DWDM) network. We have moreover demonstrated experimentally for the first time the
feasibility of a CV QKD deployment in a DWDM network.
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Résumé

Dans cette thèse, j’étudie une primitive cryptographique appelée distribution quantique
de clés, (en anglais Quantum Key Distribution ou QKD). La distribution quantique de clés
permet à deux parties distantes, l’expéditrice Alice et le récepteur Bob de partager une clé
secrète en présence d’une espion, Eve, dont la puissance est seulement limité par les lois de
la physique quantique. Contrairement à la cryptographie à clé publique qui est largement
utilisée et dont la sécurité est fondée sur des hypothèses non prouvées mathématiques, la
sécurité inconditionnelle de la QKD est basée sur les lois fondamentales de la mécanique
quantique. Les preuves de sécurité en QKD s’appliquent en revanche uniquement à des
dispositifs expérimentaux vérifiant des hypothèses en terme de confiance. Ces hypothèses
peuvent être violées dans des configurations pratiques. En effet les dispositifs expérimen-
taux peuvent présenter des imperfections et rayonner de l’information par des canaux cachés
auxiliaires non considérés dans le preuve de sécurité ouvrant la voie à des attaques. Les at-
taques par canaux auxiliaires qui exploitent les imperfections des appareils ont déjà été
démontrés à la fois sur des systèmes QKD de recherche et des systèmes commerciaux. Cela
souligne l’importance de la sécurité pratique dans la mise en œuvre des protocoles de QKD.
J’ai concentré mon travail de thèse sur la distribution quantique de clés à variables continues
(en anglais CV QKD) et en particulier, sur l’étude pratique d’implémentations de protocoles
à états cohérents modulés de façon gaussienne. Plus précisément, mes contributions portent
sur deux aspects essentiels en CV QKD:

(1) Les attaques par canaux auxiliaires sur des systèmes CV QKD pratiques. J’ai étudié
différentes imperfections pouvant intervenir dans la mise en œuvre pratique d’un système
de CV QKD et analysé leurs impacts sur la sécurité et leurs effets sur la performance. En
particulier, j’ai proposé et étudié théoriquement une attaque par canaux cachés originale,
visant les détecteurs en CV QKD: l’attaque par saturation. Nous avons de plus démon-
tré expérimentalement la faisabilité de cette attaque sur un système CV QKD dans notre
laboratoire.

(2) L’intégration d’un système de CV QKD au sein des réseaux optiques DWDM. J’ai
étudié attentivement les différentes sources de bruit qui peuvent être rencontrées lorsque
l’on déploie un système CV QKD en coexistence avec des canaux classiques intense, au
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sein d’une architecture optique DWDM. Nous avons en outre démontré expérimentalement
pour la première fois la faisabilité du déploiement d’un système CV QKD dans un réseau
optique DWDM.

Mots-clés: cryptographie quantique, la distribution quantique de clés, la communication
quantique, variables continues, détection homodyne, sécurité pratique, attaque à canal aux-
iliaire, piratage quantique, multiplexage en longueur d’onde
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Résumé en français

Dans cette thèse, j’étudie une primitive cryptographique appelée distribution quantique
de clés, (en anglais Quantum Key Distribution ou QKD) et en particulier l’utilisation de
variables continues. Plus précisément, j’ai concentré mon travail sur l’étude de sécurité
pratique d’implémentations de la distribution quantique de clés à variables continues (en
anglais CV-QKD).

Partie I: Introduction

1.1. Cryptographie classique

A l’ère d’Internet, la communication numérique est d’une grande commodité dans la vie
des gens. Avec l’augmentation du trafic Internet, la sécurité des communications acquiert
une importance croissante, étant donné que tout message non crypté est potentiellement ac-
cessible à un espion. Dans une communication sécurisée, un message secret est transmis par
une émettrice appelée Alice vers un récepteur appelé Bob, tandis qu’un espion appelé Ève
ne devrait accéder en aucune façon au message secret, si la communication est sécurisée.
Afin d’assurer la sécurité de la communication, on peut avoir recours à la cryptographie pour
effectuer le cryptage, qui joue aujourd’hui un rôle important dans le monde numérique. En
cryptographie moderne, il existe principalement deux types de protocoles cryptographiques:
symmetric-key et asymmetric-key.

En cryptographie symétrique, Alice utilise une clé privée pour crypter son message, tan-
dis que Bob utilise la même clé pour décrypter le message envoyé par Alice. Il est donc
demandé aux deux parties de partager une clé secrète et d’en préserver le secret pendant le
cryptage et le décryptage. En revanche, la cryptographie asymétrique, aussi appelée cryp-
tographie à clé publique, utilise une clé publique pour crypter le message du côté d’Alice,
tandis que Bob utilise une clé privée pour décrypter le message. La clé publique est dis-
tribuée au public (tout le monde peut y avoir accès), tandis que la clé privée est gardée
secrète et qu’elle est connue uniquement de Bob.
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Le problème de la distribution des clés et la sécurité informatique Il est prouvé qu’un
protocole de cryptage symétrique, appelé masque jetable (en anglais one time pad ou OTP)
(appelé également chiffre Vernam [175]), offre une sécurité inconditionnelle [157]. La sécu-
rité inconditionnelle du cryptage implique qu’Ève ne peut rien savoir du message, sans
qu’il faille pour autant remettre en doute ses compétences informatiques. Cependant, afin
d’assurer la sécurité théorique des informations dans l’implémentation du protocole OTP
(masque jetable), il y a plusieurs conditions requises. Notamment, Alice et Bob doivent
partager des clés secrètes identiques qui doivent être véritablement aléatoires et dont la
longueur doit être au moins égale au message, de plus, la clé ne peut être réutilisée. Ces
conditions requises pourraient être difficiles à réaliser. D’abord, les nombres aléatoires
vrais ne peuvent apparemment pas être générés au moyen d’un procédé physique classique,
en raison de la nature déterministe de la physique classique. Deuxièmement, l’utilisation
du protocole OTP implique la distribution d’un nombre important de clés secrètes, si le
message à crypter est très long, et une clé secrète ne peut être créée sur un canal dont la
sécurité n’est pas assurée. C’est ce que l’on appelle le problème de la distribution des clés.
Pour ces raisons, le protocole OTP est utilisé seulement quand un très haut niveau de sécu-
rité est exigé. Par contre, des protocoles de cryptographie symétrique comme Standard de
Chiffrement Avancé (en anglais Advanced Encryption Standard ou AES) et Standard de
Chiffrement des Données (en anglais Data Encryption Standard ou DES) requièrent seule-
ment un petit nombre de clé secrètes pour chiffrer de grandes quantités de données et sont
aujourd’hui largement utilisés pour assurer la sécurité des communications. Cependant, ces
techniques ne peuvent toujours pas résoudre totalement le problème de distribution des clés
et n’offrent pas une sécurité inconditionnelle.

Étant donné l’augmentation du volume d’informations nécessitant d’être chiffrées, la
cryptographie à clé publique est devenue plus populaire et est aujourd’hui largement dé-
ployée dans les systèmes de cryptographie. Cela est dû principalement au fait que la cryp-
tographie à clé publique apporte une solution pratique au problème de distribution des clés,
comparativement à la cryptographie symétrique. Ainsi, Alice chiffre les données à l’aide
d’une clé publique connue de tous et Bob déchiffre les données grâce à une clé privée
que lui seul connaît. La sécurité de la cryptographie à clé publique repose sur l’hypothèse
mathématique non démontrée qu’il existe des fonctions univoques faciles à calculer mais
difficiles à inverser. Par exemple, concernant le protocole RSA largement utilisé [151],
sa sécurité repose sur l’hypothèse selon laquelle il est difficile de factoriser de grands en-
tiers. Cependant, cette hypothèse n’a pas encore été prouvée, il est encore possible que
quelqu’un trouve des algorithmes hautement efficaces permettant de factoriser de grands
nombres et de violer la sécurité de RSA. En fait, dans le domaine du calcul quantique, il a
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été démontré que l’algorithme de Shor [160] peut efficacement factoriser un grand nombre.
En d’autres termes, si un gros ordinateur quantique venait à être construit, il pourrait être
facile de porter atteinte à la sécurité de la plupart des systèmes à clé publique, comme le
protocole RSA. Bien que ces grands ordinateurs quantiques soient encore loin d’être une
réalité, les éventuels espions peuvent toujours enregistrer la communication aujourd’hui et
casser le chiffre plus tard, le jour où un ordinateur quantique sera disponible. En revanche,
même avec les technologies actuelles, l’augmentation de la puissance de calcul des super-
ordinateurs existant aujourd’hui représente également une menace pour la sécurité de la
cryptographie à clé publique. Par exemple, la factorisation d’un module RSA de 768 bits
[73] a été réalisée avec succès récemment.

Comme nous l’avons vu, la sécurité de la cryptographie classique repose souvent sur
des hypothèses de puissance de calcul non prouvées, ce qui signifie que des avancées
matérielles ou des algorithmes seraient susceptibles d’altérer la sécurité. Les hypothèses
de calcul peuvent être vues comme une vulnérabilité potentielle pour la cryptographie clas-
sique d’aujourd’hui. Lorsque l’on requiert un haut niveau de sécurité de communication,
alors il ne faut pas prendre le risque que l’hypothèse soit cassée, ce qui porterait atteinte à
la sécurité.

1.2. La distribution quantique de clés

En fait, le problème de distribution des clés peut être potentiellement résolu par l’une
des applications les plus prometteuses de la technologie d’information quantique: La dis-
tribution quantique de clés (en anglais Quantum Key Distribution ou QKD). Contrairement
aux algorithmes de calcul sécurisés, la sécurité de la QKD est établie, indépendamment
de la puissance de calcul d’un espion. La sécurité de la QKD repose sur les lois fonda-
mentales de la mécanique quantique, notamment sur la théorie du théorème de non clon-
age quantique: on ne peut pas copier parfaitement un état quantique inconnu. Le principe
d’incertitude d’Heisenberg, étroitement apparenté, lie le phénomène parasitaire des signaux
observés chez Alice et Bob aux fuites d’informations potentiellement détournées vers Eve.
La perturbation des signaux d’Alice et de Bob augmente au fur et à mesure qu’Eve a accès
aux informations. Alice et Bob peuvent choisir une fraction de leurs données au hasard
pour évaluer ces perturbations et établir le lien avec l’information accessible à Eve. La
fuite d’informations correspondante vers Eve peut alors peut être éliminée dans la clé fi-
nale partagée par Alice et Bob, grâce aux méthodes d’amplification de la confidentialité.
La clé secrète de QKD générée peut être utilisée pour réaliser un chiffrage OTP, en per-
mettant d’assurer la sécurité inconditionnelle de la communication sur une la liaison (canal
authentifié classique et canal quantique public).
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Bref aperçu sur le développement de la QKD Le premier protocole de QKD et le plus
connu est le BB84 [11]. Il a été introduit par Bennett et Brassard en 1984. Ce protocole
repose sur le chiffrage d’informations discrètes (bits) sur la phase ou la polarisation d’états
mono photoniques et la valeur de bit est mesurée à la réception par des analyseurs de phase
ou de polarisation, puis par des détecteurs mono photoniques. Par conséquent, on parle de
protocole QKD à variable discrète (DV). Depuis l’invention du BB84, plusieurs protocoles
de QKD ont été proposés [44, 154] et la QKD s’est considérablement développée ces vingt
dernières années, à la fois au niveau théorique et expérimental. Sur le plan théorique, un
certain nombre de preuves de sécurité ont été rigoureusement établies pour prouver la sécu-
rité théorique des informations de la QKD [154]. Sur le plan expérimental, la distance de
distribution de clés de QKD a atteint plus de 300 km sur une liaison à fibres optiques en
laboratoire [76] et 144 km d’espace libre [156]. Des taux de génération de clés secrètes
supérieurs à 1 Mbits/s ont également été atteints [27]. De plus, les applications de la QKD
se sont étendues aux réseaux. Des réseaux de QKD de la taille de grandes villes ont été
démontrés dans [131, 153]. Récemment, un réseau de QKD dont il a été fait état dans
[177], a non seulement servi à des fins scientifiques mais aussi à des fins de protection des
communications réelles des institutions militaires ou financières. Dans cette thèse, plutôt
que d’étudier les protocoles de DV QKD comme BB84, je me concentre sur une approche
alternative de la QKD, la QKD à variable continue (CV). En CV-QKD, des nombres réels
sont encodés dans les quadratures du champ électromagnétique, qui peuvent être mesurés
par une détection homodyne au lieu de détecteurs de photons uniques. Le protocole de CV-
QKD le plus établi est le GG02 [48], qui a été proposé par Grosshans et Grangier en 2002.
Le protocole GG02 requiert seulement des composants télécoms optiques standards pour la
préparation et la détection d’états cohérents. Comparativement à la DV QKD, la CV-QKD
se trouve à un stage moins avancé aux niveaux théorique et expérimental. Ces dernières
années, des résultats remarquables ont cependant été atteints dans ces deux directions. Sur
le plan de la théorie, des preuves de sécurité du protocole à modulation gaussienne contre
[38, 123] les attaques collectives et arbitraires [92, 147] ont déjà été établies. De récents
travaux montrent également que des progrès ont été réalisés en termes de preuves de sécu-
rité de compossibilité [86]. Sur le plan expérimental, plusieurs démonstrations de CV-QKD
ont été réalisées avec des systèmes de fibres optiques [25, 34, 64, 68, 103, 137], et il a été
récemment prouvé que la CV-QKD peut couvrir 80 km sur une liaison à fibres optiques en
laboratoire [68].

Perspectives pour la QKD Grâce aux efforts réalisés par les chercheurs ces vingt dernières
années, la QKD a atteint une maturité suffisante pour être mise en œuvre dans le monde réel,
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assurant une communication sécurisée. Concernant les approches DV et CV, des produits
commerciaux sont sortis sur le marché. Pour la DV QKD, les acteurs principaux sont les
sociétés telles qu’ID Quantique [3], MagiQ Technologies Inc., Austrian Institute of Tech-
nology [1], Anhui Quantum Communication Technology Co., Ltd.[2], tandis que pour la
CV-QKD, on peut citer SeQureNet [5] et Quintessence Labs [4] qui sont allées jusqu’à
commercialiser cette technologie. Etant donné le besoin considérable d’un haut niveau de
sécurité des communications, la QKD pourrait jouer un rôle important à l’avenir dans une
infrastructure de communication sécurisée. Selon les prévisions, le marché mondial de la
QKD pourrait représenter plus d’un milliard de dollars US en 2018 [60].

1.3. Motivations sous-tendant notre travail

Comme les QKD sont utilisées pour assurer des communications sûres dans le monde
réel, il est crucial de vérifier leur sécurité et performance, surtout pour les mises en service
de systèmes commerciaux. Les utilisateurs de QKD sont en fait intéressés par la sécurité
et les performances réelles que peuvent offrir les systèmes QKD plutôt que par la sécurité
théorique qui est mise en avant. La sécurité pratique des systèmes QKD est un sujet impor-
tant qui a été activement étudié au cours des dernières années dans la communauté QKD.
Deux directions majeures apparaissent dans l’étude pratique des QKD: (1) le piratage quan-
tique (ou les attaques par canaux cachés) sur les systèmes QKD pratiques; (2) l’intégration
des systèmes QKD dans un réseau optique. Dans cette thèse, je me suis plus particulière-
ment concentré sur ces deux aspects avec les mises en œuvre de protocoles CV-QKD.

Attaques par canaux cachés dans le système CV-QKD Le concept d’attaques par canaux
cachés est dérivé de la cryptologie classique, qui définit qu’une une attaque par canaux
cachés vise à obtenir des informations grâce à l’installation physique d’un système de
cryptologie au lieu d’engager une attaque brutale et violente ou de chercher les faiblesses
théoriques dans les algorithmes cryptographiques. Des informations précieuses peuvent
fuiter de différents canaux cachés, telles que la consommation énergétique, les signaux
électromagnétiques ou toute sorte de signaux physiques qui peuvent être émis à partir d’un
système de cryptographie. Les attaques par canaux cachés prennent en principe pour cible
la manière dont un protocole cryptographique est mis en œuvre, plutôt que le protocole
lui-même.

Les systèmes QKD pratiques sont aussi confrontés au défi des attaques par canaux
cachés. La sécurité inconditionnelle des QKD repose fortement sur la validité d’hypothèses
sur les équipements QKD. Toutefois ces hypothèses ne peuvent pas toujours être vérifiées
dans les mises en œuvre réelles, puisque les équipements réels ont toujours quelques im-
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perfections qui peuvent les amener à se comporter assez différemment des modèles mathé-
matiques décrits dans la preuve de sécurité. Certaines imperfections peuvent provoquer des
failles, permettant à un écouteur clandestin de lancer des attaques pouvant mettre en péril sa
sécurité. Il faut noter que l’existence d’attaques par canaux cachés n’est pas en contradic-
tion avec l’existence des preuves de sécurité dans les QKD, puisque les attaques par canaux
cachés ne sont pas couvertes par les preuves de sécurité. En fait, les attaques par canaux
cachés sur les DV QKD ont été étudiées au cours des années passées et sont devenues un
sujet brûlant de la recherche portant sur les QKD. Diverses stratégies de piratage quantique
ont été proposées, dans lesquelles les détecteurs de photon unique de Bob sont souvent con-
sidérés comme les cibles, par exemple, les attaques par décalage temporel [137, 194], les
attaques par aveuglement [42, 116], les attaques "after gate" [185], les attaques sur le temps
mort des détecteurs [184], etc. Certaines de ces attaques ont aussi été démontrées expéri-
mentalement [42, 107, 190] y compris une mise en œuvre complète d’un parfait écouteur
clandestin [42]. D’autres attaques visant différents équipements ont aussi été proposées
pour mettre en péril la sécurité pratique des systèmes DV QKD [43, 93, 168, 190].

Les systèmes CV-QKD ne sont pas non plus à l’abri du problème des attaques par canaux
cachés. L’un des problèmes de sécurité essentiels dans la mise en œuvre des CV-QKD con-
cerne une référence de phase classique, l’oscillateur local (OL), qui est généralement trans-
féré par le réseau public sur le canal entre Alice et Bob. Le signal de l’OL ne transporte pas
d’informations mais est une référence de phase pour la mesure homodyne et ses caractéris-
tiques ont un lien étroit avec les paramètres dans l’étalonnage d’un système CV-QKD, et
particulièrement l’étalonnage du bruit de photon. En effet, en fonction de la manipulation
du signal de l’OL, des attaques sur l’étalonnage du bruit de photon ont été proposées pour
mettre en péril la sécurité pratique des systèmes CV-QKD [32, 51, 66, 111]. Des mesures
possibles pour contrer les attaques visant l’OL ont été proposées ensuite: (1) en contrôlant
le signal de l’OL et le bruit de photon en temps réel [66]. (2) en utilisant des techniques
d’asservissement de la phase, Alice et Bob peuvent générer localement le signal de l’OL
plutôt que de l’envoyer d’un côté vers l’autre au moyen d’un canal ouvert [139, 162].

Afin de réduire l’écart entre la sécurité théorique et la sécurité pratique des DV ou des
CV-QKD, en particulier, pour faire face aux menaces d’ attaques par canaux cachés sur les
QKD, deux approches principales ont été examinées: (1) développer un protocole QKD
device independent (DI) [6]. (2) examiner autant de canaux cachés possibles dans les mises
en œuvre de systèmes QKD, et développer les contremesures correspondantes. Pour ce
qui touche à la première approche, la DI QKD permet d’éviter les hypothèses qui doivent
s’appliquer aux équipements dans la mise en œuvre de QKD. La DI QKD offre une belle
solution en théorie pour contrer les attaques par canaux cachés, toutefois, il ne s’agit pas
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d’une solution pratique au regard du niveau de la technologie actuelle. Il apparaît que même
pour une efficacité de détection proche de (1), la DI QKD peut seulement générer un taux
de clé très bas [23, 45]. Un autre fait qui rend les protocoles DI QKD moins réalistes est
qu’ils impliquent un test sans faille des inégalités de Bell qui, jusqu’à présent, n’a pas été
démontré expérimentalement. En fait, une approche alternative appelée measurement device
independent (MDI) QKD [100] a donné quelques résultats utiles ces dernières années. La
MDI QKD peut éviter toute attaque par canaux cachés visant une extrémité d’un système
QKD, en particulier la partie avec les détecteurs. Les protocoles de MDI QKD ont été mis
en œuvre par plusieurs groupes et ont donné des résultats prometteurs en termes de taux
de clé et de distance [98, 152, 169, 170]. Tous ces travaux portant la MDI portent sur les
protocoles DV QKD. Le développement de protocoles MDI dans le domaine de la CV-
QKD est relativement lent. Une raison évidente en est qu’avant cette thèse, aucune faille
de sécurité liée aux détecteurs n’avait été rapportée concernant les protocoles CV-QKD.
Néanmoins, des protocoles MDI CV-QKD avec des états cohérents [95, 113] et avec des
états comprimés [94, 193] ont été proposés ces dernières années. Toutefois, en raison de
l’analyse théorique et du niveau de technologie actuel, ils sont encore loin de la mise en
œuvre pratique.

L’étude de device independent dépasse le cadre de cette thèse. J’ai choisi une autre
approche en étudiant et analysant les différents canaux cachés qui pourrait mettre en péril
la sécurité des mises en œuvre pratiques et existantes de CV-QKD. De manière réaliste,
il est impossible de découvrir tous les canaux cachés qui pourraient apparaître dans une
mise en œuvre pratique. Cependant, je peux toujours étudier ce qui importe le plus pour la
sécurité pratique et faire un classement des différents types d’attaques par canaux cachés. En
effet, à partir de l’expérience des attaques par canaux cachés connues dans la QKD, une fois
qu’une faille spécifique a été trouvée, la protection n’est en général pas trop difficile à mettre
en place et, en principe, toutes les attaques par canaux cachés liées à une faille spécifique
peuvent être éliminées grâce à une seule contremesure. Par exemple, une fois que le signal
de l’OL peut être produit localement chez Alice et Bob [139, 162], les systèmes CV-QKD
sont protégés vis-à-vis de toutes les attaques reliées à l’OL. [51, 66, 111]. Par conséquent,
l’analyse des canaux cachés améliorerait en fin de compte la sécurité pratique des systèmes
CV-QKD et ouvrirait la voie à une certification de sécurité des QKD.

Dans cette thèse, j’ai étudié différentes imperfections dans la mise en œuvre des CV-
QKD et analysé leur impact sur la sécurité et la performance. J’ai aussi découvert et étudié
une nouvelle faille de sécurité qui peut aboutir à un nouveau type d’attaques par canaux
cachés dans un système CV-QKD: l’attaque par saturation.
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Intégration de la CV-QKD dans les réseaux optiques Un avantage intéressant de la
QKD est qu’elle est compatible avec les réseaux optiques actuels. Un autre sujet de cette
thèse est l’étude de l’intégration des systèmes CV-QKD dans les réseaux optiques. Avec
le développement des QKD, les QKD peuvent passer d’une application point à point à une
configuration de réseau [131, 153]. D’un autre côté, le Multiplexage par répartition en
longueur d’onde (en anglais Wavelength-division multiplexing ou WDM) permet d’avoir
de multiples canaux optiques, à différentes longueur d’onde, pour partager une seule fibre
optique. Il serait intéressant que les QKD soient acheminées par le réseau de fibre optique
existant avec des signaux classiques.

La première architecture de coexistence de la technologie WDM avec les QKD a été pro-
posée par [173]. La faisabilité de la coexistence des QKD avec le réseau WDM a été étudiée
et démontrée ces dernières années [15, 17, 30, 126, 132]. Ces études ont montré que le bruit
induit par les signaux classiques forts pourrait empêcher les communications QKD, parce
que la puissance optique des canaux classiques est habituellement plusieurs fois plus élevée
que le signal quantique des QKD. Surtout, dans le cas d’une coexistence avec des canaux
de Multiplexage par répartition en longueur d’onde dense (en anglais Dense Wavelength-
division multiplexing ou DWDM), où la différence de longueur d’onde entre le signal quan-
tique et le signal classique est très petite (espacement de canaux de 0,8 nm). Divers bruits
additionnels dus à une isolation insuffisante et aux effets optiques non-linéaires des signaux
classiques peuvent impacter la communication quantique, ce qui peut finalement aboutir à
un taux de clé nulle pour la QKD. La coexistence avec des canaux classiques intenses est en
effet un défi pratique pour la QKD.

La plupart des études et démonstrations portent essentiellement les systèmes DV QKD.
Par contraste, peu d’études [138] ont été faites sur l’intégration d’un système CV-QKD dans
un réseau WDM. Il est probable que la CV-QKD ait un avantage compétitif sur la DV QKD
en ce qui concerne l’intégration à un réseau WDM grâce à sa détection cohérente. Une
analyse prometteuse a été menée en [138], dans laquelle un système CV-QKD coexiste avec
plusieurs canaux classiques dans un réseau WDM, mais il n’y a pas eu de démonstration
expérimentale. Ceci conduit à s’interroger sur le fait que la CV-QKD soit plus performante
que la DV QKD en termes de taux de clé et de distance, dans le cas d’une coexistence.

Dans cette thèse, nous avons étudié avec soin les différents effets optiques que l’on peut
rencontrer dans l’architecture de coexistence de la QKD avec un réseau DWDM. De plus,
nous avons démontré expérimentalement, pour la première fois, la faisabilité d’un système
CV-QKD dans un réseau DWDM.
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Partie II: Une attaque originale par canaux cachés visant les systèmes CV-QKD: at-
taque par saturation

Dans cette direction, j’ai proposé et étudié théoriquement une attaque par canaux cachés
originale, visant les détecteurs en CV-QKD: l’attaque par saturation. Nous avons de plus
démontré expérimentalement la faisabilité de cette attaque sur un système CV-QKD dans
notre laboratoire.

L’attaque par canaux cachés est un problème vital pour les mises en œuvre pratiques
de CV-QKD, car les preuves de sécurité ne prennent pas en compte toutes les imperfec-
tions expérimentales possibles. Par exemple, dans la mise en œuvre pratique de CV-QKD
[66, 103], l’oscillateur local est transmis sur le réseau public sur la ligne optique reliant
Alice et Bob, multiplexée avec le canal quantique. Ainsi, l’oscillateur local est accessible et
être ainsi manipulé par un attaquant dans les mises en œuvre pratiques. Il est important de
noter que l’oscillateur local peut en principe être généré localement chez Bob, comme cela
a été démontré dans de récentes expériences démonstration des principes [139, 162], là où
l’oscillateur local est verrouillé en phase avec les signaux quantiques émis par Alice. Toute-
fois, verrouiller en phase deux lasers distants provoque plus de complexité et de bruit et
toutes les démonstrations pratiques complètes sur les CV-QKD ont jusqu’à présent été réal-
isées sur un oscillateur local "public". Ceci ouvre la porte à différentes stratégies d’attaque
basées sur la manipulation d’oscillateur local. Un espion peut, par exemple, modifier
plusieurs propriétés de l’impulsion de l’oscillateur local, telles que l’intensité, la longueur
d’ondes ou la forme de l’impulsion [51, 56, 57, 66, 111, 112, 114]. L’écouteur clandestin
peut, en particulier, fausser l’étalonnage du bruit de photon en manipulant l’intensité de
l’oscillateur local ou son chevauchement avec le signal quantique. Nous avons en effet vu
que l’excès de bruit est exprimé en unités de bruit de photon. Si le bruit de photon est suré-
valué alors que toutes les autres mesures demeurent identiques, l’excès de bruit dans l’unité
de bruit de photon sera alors sous-évalué. Par conséquent Alice et Bob surévalueront alors
leur taux de clé secrète, ce qui aboutira à un problème de sécurité.

Dans cette attaque par saturation, nous présentons une nouvelle faille et démontrons
qu’elle peut être utilisée pour attaquer un système pratique CV-QKD mettant en œuvre un
protocole d’état cohérent à modulation gaussienne (en anglais Gaussian-modulated coherent
state ou GMCS) [50]. Au lieu d’attaquer l’oscillateur local, nous visons la détection homo-
dyne située chez Bob, plus spécifiquement, la partie électronique de la détection homodyne.
Dans les points suivants, nous nous attacherons à présenter brièvement l’analyse théorique
et la démonstration expérimentale de l’attaque par saturation, ainsi qu’une nouvelle stratégie
pour introduire une saturation du détecteur; nous évoquerons aussi les contre-mesures pos-
sibles pour répondre à une attaque par saturation.
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2.1. La théorie de l’attaque par saturation

Principe de l’attaque par saturation Une hypothèse fondamentale dans les preuves de
sécurité des systèmes CV-QKD est que la réponse de la détection homodyne est linéaire
en ce qui concerne la quadrature d’entrée. Cette hypothèse est nécessaire car l’évaluation
des paramètres suppose implicitement la linéarité de la mesure de quadrature de Bob par
rapport à la valeur envoyée par Alice. Toutefois, cette supposition de linéarité ne tient pas si
la détection homodyne de Bob est exploitée dans un régime non linéaire. Dans le cas d’un
détecteur pratique, la zone de linéarité est limitée. Si la valeur de quadrature d’entrée est
trop grande, la linéarité ne peut être vérifiée, ce qui aboutit à un comportement saturé.

D’après le modèle linéaire gaussien, évaluer les paramètres consiste à évaluer la ma-
trice de covariance. La matrice de covariance est invariable quels que soient les change-
ments linéaires. En effet, l’évaluation de la sécurité dans les systèmes CV-QKD repose
uniquement sur l’évaluation de moments du second ordre (variance) de la quadrature, alors
que les moments du premier ordre (valeur moyenne) ne sont pas contrôlés. Ceci offre à
Ève une occasion de manipuler la valeur moyenne des quadratures. En conjuguant cela à
l’exploitation de l’existence d’une zone de saturation du détecteur, une stratégie pour Ève
pourrait consister à introduire activement un grand déplacement sur la quadrature reçue par
Bob pour amener la détection homodyne à fonctionner dans sa région saturée. Comme la
valeur moyenne de la sortie de détection homodyne est, par défaut, non contrôlée, Ève peut
librement décider de déplacer la valeur moyenne. Ceci peut induire une réponse non linéaire
sur le détecteur qu’elle contrôle. Cela permet à Ève d’influencer les résultats de mesures de
Bob. L’évaluation des paramètres peut ainsi être faussée et la valeur des paramètres dépen-
dra du déplacement, qui est activement contrôlé par Ève.

En résumé, voici notre idée d’une nouvelle attaque: en introduisant activement un dé-
placement sur les quadratures mesurées par Bob, Ève peut obliger le détecteur à fonctionner
dans la zone saturée ce qui l’aidera à manipuler les résultats des mesures et ainsi l’évaluation
des paramètres. Et, plus important encore, contrairement aux attaques dans lesquelles la
mesure du bruit de photon est influencée, l’attaque par saturation ne fausse pas l’estimation
du bruit de photon mais influence l’évaluation de l’excès de bruit.

Modèle linéaire gaussien et estimation des paramètres dans les CV-QKD Avant d’expliquer
en quoi consiste l’attaque par saturation, nous allons tout d’abord brièvement évoquer le
mode par canaux et l’évaluation des paramètres dans les CV-QKD, qui sont des éléments
cruciaux pour l’étude de la sécurité pratique des systèmes CV-QKD. Dans les systèmes CV-
QKD, il a été prouvé que, pour ce qui concerne les attaques individuelles [40, 47] ou collec-
tives [38, 123] un attaquant (Ève) optimisait son attaque en menant une attaque gaussienne.
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Nous pouvons donc supposer qu’Ève interagit sur un canal gaussien sur lequel Alice et Bob
échangent leurs états quantiques. Grâce à l’optimalité de l’attaque gaussienne, le modèle
de communication entre Alice et Bob dans les CV-QKD peut donc être caractérisé par le
modèle linéaire gaussien et il peut être décrit par un canal à bruit blanc gaussien additif:

y = tx+ z (1)

Où, t =
√

ηT , T est la transmission par canal et η correspond à l’efficacité de Bob. La mod-
ulation d’Alice suit la distribution gaussienne de telle sorte que x est une variable gaussienne
aléatoire centrée sur zéro avec une variance donnée. La variable z est le bruit total qui suit
une distribution normale centrée avec une variance inconnue. Cette variance comprend le
bruit de photon, l’excès de bruit et le bruit électronique de Bob. Le canal linéaire gaussien
est caractérisé par deux paramètres: la transmission par canal entre Alice et Bob et un fac-
teur bruit connu comme l’excès de bruit. La transmission par canal a un lien avec la perte
de canaux, elle peut être établie directement à partir de la corrélation entre les données
d’Alice et de Bob. L’excès de bruit est la variance de bruit au-dessus du bruit de photon
qui peut être dû à des imperfections des équipements (à savoir du modulateur, du détecteur,
de l’électronique, etc.) ou aux actions d’Ève sur le canal. Des mesures des variances de
Bob et d’Alice et de leur covariance sont nécessaires afin d’évaluer ces deux paramètres;
une mesure du bruit de photon est aussi nécessaire. Alice et Bob peuvent alors calculer leur
matrice de covariance en fonction de l’évaluation des paramètres et ainsi évaluer leurs taux
de clé secrètes éventuels.

Saturation de la détection homodyne La mesure de la détection homodyne se fait par
la soustraction de deux photocourants suivie par de l’électronique pour l’amplification et
l’acquisition. En général, on considère que la portée de la détection linéaire de l’électronique
d’acquisition est infinie. Cependant, dans un détecteur homodyne pratique, quelle que soit
l’importance de la portée de la détection linéaire, elle ne peut être infinie. Nous proposons
donc un modèle de saturation avec des limites supérieures et inférieures prédéfinies de la
détection homodyne. Pour les valeurs situées entre ces deux limites, la réponse de la détec-
tion homodyne est normale, sinon la réponse est continuelle. Pour simplifier l’analyse, nous
avons supposé, dans ce modèle, que la portée de la détection linéaire peut être décrite par
un paramètre unique, α , intrinsèque au détecteur:

y = α, tx+ z+∆ > α

y = tx+ z+∆, | tx+ z+∆ |< α

y =−α, tx+ z+∆ 6−α

(2)
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Fig. 1 Caractérisation expérimentale du comportement à la saturation d’une détection ho-
modyne pratique. (a) Moyenne de la sortie homodyne vs faible intensité. (b) Variance de la
sortie homodyne vs faible Intensité.

∆ est défini comme un facteur de déplacement qui peut être introduit et contrôlé par Ève.
De plus, nous avons confirmé de façon expérimentale la prédiction de ce modèle de sat-
uration en observant la saturation de notre détection homodyne pour des intensités fortes
et faibles. Nous avons mesuré les variances et les moyens de sortie homodyne pour dif-
férentes intensités faibles. Quand la détection homodyne n’est pas saturée, les sorties de
détections homodyne (valeur moyenne et variance) varient de façon linéaire en ce qui con-
cerne la faible intensité. Cependant, quand l’intensité de l’oscillateur local est relativement
élevée, la réponse de la détection homodyne dépassera le seuil de saturation. La réponse de
la détection homodyne est alors saturée et la variance mesurée chutera rapidement (Fig.1
(b)). Les résultats de la simulation du modèle de saturation correspondent parfaitement à
nos données expérimentales (Fig.1 (a)(b)). Cela démontre que le modèle de saturation que
nous avons proposé est réaliste et peut être encore utilisé pour interpréter notre attaque par
saturation.

Le stratégie d’attaque par saturation Un projet de la stratégie de l’attaque par saturation
est proposé à la Fig.2; il décrit les étapes suivantes:

1. Ève met en œuvre une attaque complète interception-réémission [104] au moyen
d’une détection hétérodyne, elle peut obtenir des informations sur les deux quadra-
tures envoyées par Alice, à savoir X et P.

2. Ève renvoie alors un état cohérent dont les quadratures se composent des résultats de
ses mesures conjugués à un déplacement approprié des quadratures.
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Fig. 2 Description générale des systèmes GMCS CV-QKD soumis à une attaque par satu-
ration. Alice: prépare l’état cohérent avec les quadratures X et P; Ève: phase de mesure
et de re-préparation, G: gain, D: déplacement; Bob: réalise la détection homodyne, AM:
modulateur d’amplitude, η1,η2: coefficients de transmission des signaux, PM: modulateur
de phase, −α,α: gamme de la linéarité.

3. Alice et Bob évalueront le taux de leur clé avec la détection homodyne saturée, où
l’excès de bruit est en fait contrôlé par Ève. Ils sous-évalueront donc l’excès de bruit
introduit par l’attaque complète interception-réémission et l’attaque d’Ève pourra
rester couvert et lui donner un avantage sur Alice et Bob.

Analyse et résultats de la simulation Une attaque complète d’interception-réémission
s’élèvera à deux unités de bruit de photon de l’excès de bruit [104] chez Alice, ce qui
révélera la présence d’Ève. Toutefois, Ève peut contrôler la valeur moyenne du déplace-
ment des quadratures qu’elle envoie ensuite à Bob. Elle peut ainsi introduire une saturation
de la détection homodyne autant qu’elle le souhaite en changeant la valeur déplacée. Dès
lors, Ève peut réduire les deux unités de bruit de photon de l’excès de bruit sur le canal
Alice-Bob à une valeur arbitraire basse de l’excès de bruit évaluée par Alice et Bob. Cette
attaque peut bien sûr affecter la quantité d’informations entre Alice et Bob et Bob et Ève.
Ainsi, cette attaque influencera le taux de clé. Mais les résultats de notre simulation mon-
trent qu’une attaque peut être couronnée de succès sur de très grandes distances. S’ils sont
visés par une telle attaque, Alice et Bob peuvent être amenés à croire qu’ils ont des taux
de ’clés sécurisées’ positifs et accepter des clés qui sont, cependant, totalement non fiables.
Cela montre qu’Ève peut voler avec succès des informations sans être détectée. Dans la sim-
ulation, comme nous pouvons le constater sur la Fig.3 (a), d’après le modèle linéaire, l’excès
de bruit total estimé dans le cas d’une attaque complète interception-renvoi est de 2.1. Avec
un tel excès de bruit, Alice et Bob ne peuvent déterminer aucun taux de clé. Toutefois,
l’évaluation de l’excès de bruit peut être manipulée en changeant la valeur de déplacement.
Sur la Fig.3 (a), pour ce qui concerne les longues distances (à savoir supérieures à 20 km)
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Fig. 3 (a) Excès de bruit ξ̂sat (chez Alice) par rapport au déplacement ∆ sur des distances
différentes. (b) Transmission par canal quantique par rapport à la distance avec différents
∆. La variance d’Alice VA ∈ {1,100}, l’efficacité de Bob η = 0,55, l’excès de bruit de
l’électronique vele = 0,015, l’intégralité de l’excès de bruit dans un cas linéaire ξ = 2,1,
efficacité de réconciliation β = 0,95, coefficient d’atténuation a = 0,2dB/km.

l’excès de bruit sous l’attaque par saturation ξ̂sat diminue toujours alors que ∆ augmente.
Plus particulièrement, quand ∆ est proche de α , ξ̂sat est considérablement réduit. Pour ce
qui concerne les distances courtes (à savoir inférieures à 20 km), quand ∆ augmente, ξ̂sat

augmente d’abord puis diminue, mais ξ̂sat peut toujours devenir arbitrairement petit quand
∆ est assez grand. Et, plus important encore, nous pouvons observer à partir de la Fig.3 (a),
qu’Ève peut obtenir une valeur arbitraire basse de ξ̂sat en manipulant ∆ quelle que soit la
distance, ce qui montre qu’en cas d’attaque par saturation, la clé générée d’Alice et Bob a
été détériorée.

Un inconvénient de l’attaque par saturation est que la transmission évaluée pour le canal
est réduite. Sur la Fig.3 (b) nous déterminons la transmission évaluée pour le canal en
échelle logarithmique par rapport à la distance, dans laquelle la courbe noire est la trans-
mission évaluée par rapport à la distance en l’absence d’attaque alors que les autres courbes
correspondent à la transmission évaluée dans le cas d’une attaque par saturation. Nous con-
statons que, la transmission évaluée peut être fortement réduite par rapport à la transmission
effective en l’absence d’attaque.

2.2. Démonstration expérimentale de l’attaque par saturation

Nous avons pu démontrer cette attaque lors d’expériences, avec le support des résultats
théoriques prometteurs de l’attaque par saturation. Nous avons réalisé une "Ève" fonc-
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Fig. 4 Résultats expérimentaux: La distribution de XB par rapport à XA pour différentes
valeurs de déplacement.

tionnelle pour mener l’attaque par saturation de façon expérimentale, dans laquelle l’étape
principale consiste à préparer un déplacement précis et important. Plus particulièrement,
pour pouvoir provoquer un déplacement contrôlé sur les données renvoyées par Ève, nous
avons modifié l’ "héritage" du système CV-QKD d’Alice en introduisant une boucle de
Sagnac conjugué à un séparateur de faisceaux variable (VBS). Nous examinons la config-
uration avec un séparateur de faisceaux hautement transmetteur [128] pour provoquer un
déplacement.

Avec notre système expérimental, nous effectuons plusieurs tests en changeant les valeurs
de déplacement. Pour VA = 5, nous augmentons progressivement la valeur de déplacement et
la distribution expérimentale entre XB et XA est montrée sur la Fig.8.6. En raison de l’action
de déplacement, nous pouvons observer que les distributions sont identiques dans la zone
linéaire (0-2V) seules les valeurs moyennes sont différentes les unes des autres. Cependant,
en raison de la portée de détection linéaire finie, quand ∆ <−103,5

√
N0, la distribution se

réduit quasiment à une ligne, ce qui révèle l’effet de saturation de notre détection homodyne.
De plus, de façon expérimentale, avec une variance de modulation donnée d’Alice VA = 5,
nous modifions les valeurs de déplacement et de gain, puis mesurons l’excès de bruit et la
transmission par canal par une procédure CV-QKD standard. Les résultats expérimentaux
et ceux de la simulation sont montrés sur la Fig.4. Ainsi nous pouvons clairement constater
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les évaluations de l’excès de bruit chutent sous les seuils correspondants de taux de clé
nulle autour de la limite de saturation, ce qui prouve que notre attaque par saturation peut
créer une lacune de sécurité. D’un autre côté, nous pouvons aussi prévoir l’évaluation de
l’excès de bruit dans les simulations, et faire une comparaison avec les valeurs expérimen-
tales. Comme l’indique la Fig.5, la prévision correspond au comportement de l’évaluation
de l’excès de bruit que nous observons dans les expériences. Cela représente, cependant,
un défi par rapport à notre système expérimental, car nous pouvons constater partir de la
Fig.5 qu’il est difficile de contrôler avec précision le déplacement de sorte que l’évaluation
de l’excès de bruit tombe exactement en-dessous du seuil de clé nulle mais toujours à une
valeur positive.

Fig. 5 Excès de bruit d’Alice par rapport au déplacement. Résultats expérimentaux: Sym-
bole plus G = 1, carré G = 1,5625, diamant G = 2,25. Paramètres expérimentaux: variance
d’Alice VA = 5, Efficacité de Bob η = 0,55, excès de bruit de l’électronique vele = 0,015,
limite de détection α1 =−103,5. Résultat de simulation: (1) Lignes continues sur couleur
rouge, noire et bleue: évaluations de l’excès de bruit pour des paramètres donnés; (2) Lignes
continues avec des pointillés: seuils de clé nulle pour des paramètres donnés; les simula-
tions sont réalisées sur la base de modèle théoriquement, dans lequel les paramètres sont
réglés même que paramètres expérimentaux.

Attaque par un laser extérieur Il est difficile de produire expérimentalement un déplace-
ment cohérent directement dans le mode du signal quantique tout en conservant une bonne
stabilité. Il est donc intéressant de chercher de nouvelles méthodes pour provoquer la satura-
tion sur la détection homodyne à partir d’une autre approche ayant un système expérimental
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plus simple. Pour cette raison, nous avons proposé une nouvelle stratégie d’attaque: nous
provoquons un changement important de la mesure homodyne avec une lumière extérieure
dans un mode différent du signal QKD.

Lors de cette nouvelle attaque, nous voulons tirer parti d’une autre imperfection de la
détection homodyne pratique: La transmission/réflexion du séparateur de faisceaux 50/50
n’est pas exactement identique, ce qui aboutit à une petite fuite de l’oscillateur local sur la
sortie de détection homodyne. Une telle fuite provoque un décalage des signaux homodynes
et un bruit qui dépend de l’intensité de l’oscillateur local. Le décalage de la détection ho-
modyne joue le rôle du terme de décalage du signal dans Eq.2. La soustraction de l’intensité
de l’oscillateur local peut être améliorée en ajustant l’atténuation d’un chemin optique après
le séparateur de faisceaux en présence de l’oscillateur local seul. Cependant, si l’on insère
une autre impulsion ou une lumière à onde continue avec une intensité relativement forte
dans le port signaux, l’équilibre est détruit à nouveau. De plus, la plupart des séparateurs
de faisceaux ont des propriétés dépendant des longueurs d’ondes [56, 57, 112], donc la
transmission du séparateur de faisceaux peut être faussée de manière significative selon la
longueur d’onde de la lumière d’entrée. Dans ce sens, Ève peut contrôler la transmission du
séparateur de faisceaux en sélectionnant la longueur d’ondes appropriée.

Une nouvelle stratégie d’attaque En prenant en considération les deux imperfections
d’une détection homodyne: le déséquilibre d’un séparateur de faisceaux et la portée finie
de la détection linéaire), nous pouvons formaliser une nouvelle stratégie d’attaque visant un
système pratique CV-QKD:

1. Ève met en œuvre une attaque complète renvoi-attaque [104] (juste après Alice) en
faisant une détection hétérodyne.

2. Ève insère un laser extérieur (impulsion ou onde continue) dans le port signaux de
Bob, avec une longueur d’ondes différente du signal d’une QKD et une intensité li-
brement choisie. Ainsi, l’intensité du laser extérieur ne peut pas être suffisamment
soustraite par la détection homodyne de Bob ce qui provoque un déplacement sur le
signal homodyne de Bob. Le laser extérieur provoque deux sortes de bruit: son pro-
pre bruit de photon dans un mode différent de faible intensité [112] et le bruit dû à la
fluctuation de l’intensité [16].

3. En raison du déplacement à partir du laser extérieur, la détection homodyne de Bob
est saturée. Par conséquent, l’évaluation de l’excès de bruit d’Alice et Bob peut être
faussée vers une valeur arbitraire faible si Ève règle l’intensité du laser externe de
façon appropriée.
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Comme nous pouvons le prévoir, avec une détection homodyne linéaire, l’évaluation
de l’excès de bruit total d’Alice et Bob se compose du bruit dû à l’attaque d’interception-
réémission et au laser extérieur. Cependant, si le déplacement dû au laser extérieur est
suffisamment grand, la sortie homodyne peut être saturée comme dans les attaques par satu-
ration [140]. En fait, Ève contrôle activement la valeur de déplacement en sélectionnant les
propriétés propres du laser extérieur. Par conséquent, l’action d’Ève peut fausser l’excès de
bruit en excès estimé d’une attaque d’interception-réémission et le laser extérieur vers une
valeur arbitrairement faible. Comme cela apparaît sur la Fig.6, pour une limite de détection
α1 = −α2 = 20 et la transmission du séparateur de faisceaux Tbs = 0,49, l’excès de bruit
estimé chez Alice varie avec l’intensité du laser extérieur, cela montre l’impact de l’action
d’ Ève sur l’estimation de l’excès de bruit. Pour une distance donnée, Ève peut choisir
une intensité laser appropriée pour fausser l’estimation de l’excès de bruit jusque sous le
seuil de clé nulle de sorte qu’Alice et Bob pensent toujours partager une clé sûre selon leurs
paramètres d’estimation alors que les clés générées ne sont pas sûres du tout.

(a) (b)

Fig. 6 Estimation de l’excès de bruit à côté d’Alice par rapport au laser externe sur
l’oscillateur local (nombre de photons par impulsion I2/I1). l’efficacité de Bob η=0,6,
l’excès de bruit de l’électronique Vele = 0,01. (a) Valeurs de I2/I1: de 0 à 0,14, (b) Valeurs
de I2/I1: de 0,116 à 0,126.

2.3. Contre-mesure

Pour empêcher une telle attaque basée sur la saturation, de façon intuitive, Bob devrait
éviter que la détection homodyne fonctionne dans une zone non linéaire ou saturée lorsqu’il
fait des mesures. Bob peut donc tester toutes les données juste après l’acquisition des don-
nées et vérifier si les mesures de quadrature ont été acquises dans un régime linéaire. Pour
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ce faire, Bob a besoin d’un étalonnage précis de la limite de détection homodyne [−α,α].
Le bloc complet qui comprend les données mesurées dans la zone de saturation serait to-
talement mis au rebut. D’après la post-sélection gaussienne [33], nous pouvons, de plus,
traiter les données mesurées dans la zone linéaire et les transformer en entrée gaussienne
dans laquelle la preuve de sécurité tient.

La deuxième contre-mesure est proposée par Kunz-Jacques and Jouguet [81]: Alice
et Bob testent la linéarité entre le bruit et la mesure du signal en utilisant un procédé
d’atténuation active chez Bob, à savoir un modulateur d’amplitude. En principe, la randomi-
sation de l’atténuation des ports signaux peut empêcher Ève de fixer des valeurs propres de
déplacement qui amènent la saturation du détecteur. Cependant, dans l’analyse, les auteurs
considèrent un cas non réaliste dans lequel il n’y a pas de perte sur le canal entre Alice et
Bob T = 1. Il n’apparaît pas clairement pourtant qu’un tel test de linéarité puisse aussi fonc-
tionner dans le cas d’un canal ayant des pertes. Nous constatons donc, à partir de l’analyse
précédente, que le comportement de l’estimation de l’excès de bruit est, de façon évidente,
différente lorsque la distance change. D’un autre côté, un tel test linéaire augmente aussi
la complexité de la mise en œuvre là où un modulateur d’amplitude supplémentaire et les
paramètres d’estimation sont modifiés.

Comme l’attaque par saturation est une attaque par canaux cachés au moyen d’un dé-
tecteur, un "measurement device independent" (MDI) CV-QKD [95, 113] pourrait être une
solution potentielle pour contrer de telles attaques. Les protocoles MDI CV QKD ne sont
pas éloignés de la mise en œuvre. Très récemment, une preuve de principe de MDI CV-QKD
a été réalisée [135].

Partie III: L’intégration d’un système de CV-QKD au sein des réseaux optiques DWDM

Dans cette direction, j’ai étudié attentivement les différentes sources de bruit qui peuvent
être rencontrées lorsque l’on déploie un système CV-QKD en coexistence avec des canaux
classiques intenses, au sein d’une architecture optique DWDM. Nous avons en outre dé-
montré expérimentalement pour la première fois la faisabilité du déploiement d’un système
CV-QKD dans un réseau optique DWDM.

Le multiplexage en longueur d’onde (Wavelength Division Multiplexing ou WDM) per-
met de partager une seule et même fibre pour transporter de multiples canaux optiques util-
isant différentes longueurs d’onde. La compatibilité WDM des communications quantiques
et classiques permettrait de déployer la QKD sur des fibres activées. Ceci augmenterait la
compatibilité des communications quantiques avec les infrastructures optiques existantes et
se traduirait par une amélioration notable en termes de rentabilité et de marchés potentiels
pour la QKD.
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Comparativement à la DV-QKD, la CV-QKD présente une meilleure tolérance au bruit
lorsqu’elle est intégrée à un réseau WDM, grâce à sa détection cohérente. Seuls les pho-
tons dans le même mode spatio-temporel et de polarisation que le signal quantique con-
tribueraient à l’excès de bruit, tandis que les photons émettant du bruit dans des modes
différents seraient supprimés efficacement. On est parvenu à des résultats prometteurs dans
l’analyse de [138], lorsque le bruit de diffusion Raman spontanée et des bruits d’émission
spontanée amplifiée d’un amplificateur à fibre dopée à l’erbium (EDFA) sont examinés, dans
un régime de coexistence du réseau WDM avec un système CV-QKD. Malheureusement,
il n’y a pas de démonstrations expérimentales de ces travaux. Ainsi, il reste à savoir si la
CV-QKD fonctionne mieux que la DV-QKD dans une architecture de coexistence avec un
réseau WDM.

3.1. Excès de bruit induit sur la CV-QKD dans un réseau DWDM

Nous examinons un environnement de réseau optique relativement générique où le sys-
tème CV-QKD pourrait être déployé: le système CV-QKD est multiplexé avec propagation
avant (d’Alice vers Bob) et arrière (inverse) de canaux DWDM, en utilisant des composants
passifs MUX et DEMUX. De plus, un amplificateur erbium est utilisé pour régénérer les
canaux classiques vers l’avant. Comme cela a été analysé dans [138], les photons parasites
ayant un impact sur le port de signal de la détection homodyne peuvent être ou non dans le
même mode spatio-temporel que l’oscillateur local (OL). Comme l’oscillateur local contient
108 photons par mode, cela implique que le photocourant associé à un photon dans le mode
de l’OL est supérieur de 80dB à un photon dans un autre mode, ce qui illustre la propriété
de filtrage « intégré » associée à une détection cohérente. Comme cela a déjà été observé
[15, 30, 132], la diffusion Raman spontanée est la source dominante de bruit pour la QKD
dans un environnement DWDM, dès que la longueur de la fibre est supérieure à plusieurs
kilomètres. Il s’agit d’un processus de diffusion inélastique pendant lequel les photons dif-
fusés sont convertis en photons d’une longueur d’onde plus grande ou plus courte, appelés
respectivement diffusion Stokes et Anti-Stokes. La diffusion Anti-Stokes est moins proba-
ble que la diffusion Stokes. Par conséquent, afin de minimiser la quantité de bruit due à la
diffusion Raman, il est préférable de placer le canal quantique à une longueur d’onde plus
courte que pour les canaux classiques. Nous supposerons que cette règle de conception a été
suivie et que nous devons seulement nous concentrer sur l’effet des photons de la diffusion
Raman Anti Stokes spontanée (SASRS) sur le système CV-QKD.
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3.2. Démonstration de la coexistence de la CV-QKD avec des canaux classiques de
DWDM intenses (DWDM)

Pour mesurer expérimentalement l’excès de bruit induit par les canaux DWDM mul-
tiplexés, nous avons inséré un système CV-QKD dans un banc d’essai DWDM et avons
utilisé un système dédié à l’acquisition d’excès de bruit, en minimisant le bruit du système
associé aux dérivées temporelles, de façon à ce que le bruit induit par le DWDM puisse se
résoudre de façon assez précise. Nous commençons par une description de notre installation
CV-QKD puis nous détaillerons le système d’acquisition.

CV-QKD: réalisation expérimentale Notre système CV-QKD met en œuvre le protocole
GMCS [48] et utilise un laser DFB avec modulation externe à 1531.12 nm pour générer des
impulsions d’une largeur temporelle de 50ns à un taux de répétition de 1MHz. Ces im-
pulsions sont divisées sur un séparateur de faisceaux 90/10 dans l’oscillateur local et les
impulsions de signal. Les impulsions de signal sont fortement atténuées (jusqu’à attein-
dre le niveau de quelques photons par impulsion) et leurs quadratures ont une modulation
gaussienne, en utilisant des modulateurs d’amplitude et de phase, avec des variances de
quadrature VA. L’oscillateur local et le signal sont multiplexés dans le temps (retard de 200
ns) et multiplexés par polarisation avant d’être envoyés à Bob par le canal de fibre optique.
A la réception, du côté de Bob, le signal et les impulsions de l’oscillateur local sont dé-
multiplexés par polarisation et dans le temps. Une description détaillée de l’installation est
donnée dans [64]. L’information de quadrature est récupérée grâce à un détecteur homo-
dyne équilibré de bruit électronique -25dB en dessous du bruit de photon. L’intensité de
l’oscillateur local est réglée pour obtenir un nombre moyen de 108 photons par impulsion
chez Bob. La gamme de tensions d’entrée de la carte d’acquisition de données est réglée
de façon suffisamment faible (±1 Volts) pour obtenir une bonne résolution pour réaliser
des mesures à la sortie du détecteur homodyne, ce qui réduit le bruit électronique à 0,3%
du bruit de photon. Cependant, ce réglage pourrait permettre des attaques par saturation
du système CV-QKD comme proposé récemment [140–142], mais nous n’examinerons pas
cette question ici, ou toute autre question liée aux attaques par canaux cachés.

Pour réaliser des mesures du bruit de photon, Alice bloque les impulsions de signal à
l’émission avec son modulateur d’amplitude, tandis qu’un deuxième modulateur d’amplitude
placé sur le canal classique (en vert sur la Fig.7) est utilisé pour bloquer la sortie optique du
canal classique multiplexé. Par ailleurs, lorsqu’à la fois les signaux quantiques et classiques
sont multiplexés sur la même fibre, nous disons que la variance du ”bruit total” est mesurée.
Afin de limiter l’impact de la fluctuation statistique sur les estimations de variance [68], des
fenêtres de taille 108 impulsion ont été utilisées pour estimer les variances des mesures des
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Fig. 7 Installation pour mesures d’excès de bruit pour système CV-QKD fonctionnant en
coexistence avec un canal intense DWDM. Des modules d’insertion et d’extraction (ADM
1 et 2) sont utilisés pour insérer et extraire, respectivement, le canal quantique vers et à
partir de la fibre optique. Un modulateur d’amplitude (AM) est utilisé pour déconnecter
le canal classique, tandis que le signal de sortie d’Alice est bloqué de façon synchrone par
le modulateur d’amplitude à l’intérieur du système CV-QKQ d’Alice. La figure représente
l’installation avec un canal classique de propagation avant. Quand le canal classique fonc-
tionne en configuration arrière, la sortie de l’AM est connectée à l’entrée d’ADM2 (au lieu
de l’entrée d’ADM1).

quadratures à la fois pour le bruit de photon et le bruit total. Nous avons intégré l’installation
CV-QKD décrite ci-dessus dans un environnement DWDM et l’installation expérimentale
est décrite dans la Fig.7. Nous avons utilisé un laser continu à longueur d’onde accordable
(modèle TLS-AG Yenista) pour le canal classique. La longueur d’onde du canal quantique
est réglée à 1531.12 nm (canal de l’UIT 58) de façon à ce que le canal quantique soit en con-
figuration Anti-Stockes par rapport à tout canal classique de la bande C [17]. La longueur
d’onde du canal classique est réglée à 1550.12 nm (canal de l’UIT 34), en fonction du choix
des ADM disponibles dans le laboratoire. Il serait possible de sélectionner une longueur
d’onde du canal quantique proche du canal classique, comme illustré dans [30], de façon à
minimiser encore le bruit Raman induit. Les deux canaux sont multiplexés et démultiplexés
vers et à partir de la bobine de la fibre optique au moyen d’ADM. Un filtre passe-bande
supplémentaire (n’apparait pas dans la Fig. 7) avait également été placé (avant l’ADM) sur
le canal classique de façon à retirer les bandes latérales (un tel filtrage serait naturellement
présent si un multiplexeur (MUX) multi-canaux avait été utilisé, comme cela apparaît sur la
Fig.7).

Tests de coexistence expérimentale CV-QKD: résultats et analyse Nous avons fait
fonctionner notre banc d’essai expérimental de CV-QKD multiplexé avec un canal clas-
sique DWDM à 25km, 50km et 75km à la puissance d’un canal classique après variation
de l’ADM de 0mW à 8mW. Pour chaque essai expérimental, la transmission T et l’excès
de bruit ξ ont été évalués à partir des données expérimentales. L’excès de bruit mesuré à
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la sortie d’Alice comme fonction de la puissance classique apparaît sur la figure8. Nous
comparons ces valeurs expérimentales à l’excès de bruit attendu, c’est-à-dire la somme de
l’excès de bruit du système (étalonné à 0.03N0 dans notre cas, chez Alice) et du bruit associé
à l’émission Raman spontanée, qui peut être calculée théoriquement [80, 138]. Nous nous
attendons notamment à ce que l’excès de bruit soit une fonction linéaire de la puissance de
lancement. Nous positionnons également les seuils de clé nulle sur la Fig.8, c’est-à-dire

Fig. 8 Mesures de l’excès de bruit en configuration de canal vers l’avant (a) et vers l’arrière
(b). Les points de données noirs, rouges et bleus sont l’excès de bruit évalués chez Alice
pour une longueur de canal de 25km, 50km et 75km, pour différentes puissances de canal
classique. Les lignes en pointillés indiquent la courbe d’excès du bruit attendu et les traits
horizontaux pleins sont des seuils de clé nulle pour les distances de canal respectives. Voir
texte pour détails.

l’excès de bruit maximum qui peut être toléré, afin de pouvoir obtenir un taux de clé se-
crète positif. Si l’on considère des attaques collectives et une efficacité de réconciliation
de 0.95, le seuil de clé nulle pour 25km est 0,137N0, 0,083N0 pour 50km et 0,064 N0 pour
75km. On observe donc qu’un taux de clé positif peut être obtenu pour une puissance de
canal classique allant jusqu’à 14mW à 25km, 3,7mW à 50km et 0,89mW à 75km dans une
configuration vers l’avant, tandis que la puissance classique admissible vers l’arrière chute
à 9,3mW, 2mW et 0,23mW, respectivement. Le taux de clé de sécurité (en cas d’attaques
collectives) a été calculé à partir de l’évaluation de l’excès de bruit ξ et de la transmission
T en prenant en compte des effets limités sur la taille du bloc de données de 108. Nous nous
sommes basés sur les pires estimations de l’excès de bruit (avec une déviation de 3 sigmas),
en suivant l’analyse [68]. Avec un seul canal 0dBm à une distance de 25km, le taux de clé
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est de 24,11kb/s vers l’avant et de 22,98kb/s vers l’arrière. Sur une longueur de canal de
50km, le taux de clé tombe à 3,16kb/s et à 2,27kb/s, respectivement. Nous avons également
obtenu un taux de clé positif de 0,49kb/s à 75km en réduisant la puissance du canal classique
(on considère que la sensibilité du récepteur du canal classique est inférieure à -25dBm) à
-3dBm vers l’avant et à -9dBm vers l’arrière. Il est important de signaler le rendement
(nombre de bits secrets par impulsion de signal QKD) du système CV-QKD dans un envi-
ronnement WDM. Dans notre expérience avec un canal classique sur une distance de 25km,
le rendement est de 485×10−4 bits/impulsion, ce qui est deux fois plus élevé que ce qui a
été récemment rapporté, 485×10−6 bits/impulsion, expérience DV QKD [130]. Par contre,
les systèmes DV QKD les plus récents peuvent fonctionner à une fréquence d’horloge de
l’ordre du GHz, ce qui n’a toujours pas été démontré avec les systèmes CV-QKD, fonction-
nant actuellement à une fréquence d’horloge exprimée en MHz, même si rien n’empêche
fondamentalement de l’augmenter à 100 MHz, ou même au Ghz.

Fig. 9 Puissance de canal classique tolérable par rapport à la distance accessible : Perfor-
mance de la QKD dans le contexte de coexistence avec des canaux optiques classiques. Les
couleurs rouge et bleu représentent nos résultats avec un système CV-QKD, dans une con-
figuration de canal classique vers l’avant et vers l’arrière, tandis que des travaux réalisés
auparavant avec les systèmes DV-QKD sont en vert: (a) Townsend [173], (b) Patel et al.
[129], (c) Eraerds et al. [30], (d) Choi et al. [17], (e) Chapuran et al. [15], (f) Patel et al.
[130]. Étoiles: expériences faites dans la bande C (DWDM). Carrés: expériences faites en
CWDM. Les lignes en pointillés rouges et bleus sont la courbe de simulation avant et arrière
pour le taux de clé nul dans l’expérience en cours. Les bandes grises montrent la gamme de
tensions d’entrée de l’émetteur dans différent réseaux optiques standardisés.
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3.3. Comparaison avec la DV-QKD

Pour illustrer la grande capacité de coexistence DWDM de la CV-QKD, nous avons
réalisé une étude comparative par rapport à des expériences précédentes sur la DV-QKD
[15, 17, 30, 129, 130, 173], et nous avons montré dans la Fig.9 une comparaison de la
distance accessible de la QKD, comme fonction de la puissance multiplexée classique (en
CWDM ou DWDM, voir légende). Dans la Fig.9, les points de données pour la CV-QKD
indiquent la distance maximum accessible (seuil de taux de clé nulle). Les taux de clé
correspondent à des points expérimentaux pris sur notre système CV-QKD et affichés sur
la Fig.9 sont: 12b/s pour 25km; 8b/s pour 50km et 9b/s pour 75km. Il faut remarquer que
les résultats DV-QKD mentionnés dans la Fig.9 ont aussi été acquis lorsqu’on était tout
près du seuil de clé nulle. Il est important de noter que les différents résultats mentionnés
dans cette comparaison ne reposent pas tous sur une analyse de sécurité unifiée. Les taux
de clé sont liés à des raisons de sécurité contre des attaques collectives dans[17, 30, 130],
attaques individuelles dans [173] et des attaques générales dans [129], tandis que parmi ces
références, seulement [130] prend en compte des effets limités. Comme cela a été expliqué
précédemment, nous avons pris en considération les attaques collectives et les effets de clé
de taille finie en compte pour les raisons de sécurité pour les dérivations de clé CV-QKD
associées à nos expériences.

On observe que la CV-QKD peut atteindre de plus grandes distances de transmission
pour une puissance de lancement d’un canal classique donnée. Par contre, pour une dis-
tance de transmission donnée, la CV-QKD peut tolérer du bruit venant de multiples canaux
classiques avec une puissance de transmission caractéristique de 0dBm. Ceci est partic-
ulièrement vrai pour les distances de transmission de 25 et 50km, comme illustré sur la
Fig.9. La CV-QKD peut aussi être déployée en coexistence avec des canaux classiques avec
des niveaux de puissance inédits – grâce à la propriété de sélection de mode de sa détec-
tion cohérente. Cela facilite l’intégration de la CV-QKD dans différentes architectures de
réseaux optiques et, en particulier, dans des réseaux d’accès. Cette intégration requiert, en
général, que la QKD soit capable de coexister avec des canaux classiques de plusieurs dBm
de puissance. Comme on peut le voir sur la Fig. 9, une bonne co-existence de la CV-QKD
permettrait son intégration dans différents réseaux optiques passifs standards comme, par
exemple, Gigabit PON, 10G-PON et WDM/TDM PON [7].

Optimisation de l’affectation de canaux classiques A la lumière des résultats expéri-
mentaux et des perspectives prometteuses pour l’intégration de la CV-QKD dans les réseaux
optiques, nous avons simulé une intégration réussie de la CV-QKD dans certaines architec-
tures de réseaux optiques passifs WDM (WDM-PON). A cet effet, nous avons appliqué
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Fig. 10 attribution des canaux classiques optimisée pour la CV-QKD dans le WDM-PON.
En noir: le canal 1531.12 nm attribué au canal quantique. Les rayures rouges et vertes
représentent les canaux classiques de retour et d’aller, positionnés sur la grille de longueurs
d’onde DWDM. Chaque point bleu (relié par la ligne bleue) représente la valeur simulée
de l’excès de bruit induit par la diffusion Raman résultant (d’une puissance précisée) d’un
canal classique de retour vers le canal quantique. Les données simulées pour l’excès de
bruit émanant des canaux d’aller ne figurent pas.

un programme simple d’optimisation pour l’intégration du système CV-QKD dans WDM-
PON, ce qui nous a permis de proposer des attributions de canal classique en minimisant
l’excès de bruit induit sur la CV-QKD.

Pour une distance de réseau d’accès typique de 25km, nous avons envisagé l’attribution
de canaux classiques dans la bande C et il s’est avéré que la CV-QKD pouvait coexister
avec 5 paires de canaux classiques (avec une puissance de lancement nominale WDM-PON:
2dBm pour l’aller et 1dBm pour le retour). L’optimisation (à une distance de transmission
donnée) se fait en choisissant de façon séquentielle la position du canal classique qui max-
imise l’excès de bruit supplémentaire sur la QKD, jusqu’à atteindre le nombre maximum de
canaux compatibles avec un taux de clé secrète positif.

Si la sensibilité du détecteur sur les canaux classiques le permet, il est même réaliste
de penser que l’on peut réduire la puissance du canal classique en dessous des spécifica-
tions nominales d’un réseau WDM-PON, tout en continuant de faire fonctionner les canaux
classiques. Nous avons étudié l’impact de cette hypothèse dans la Fig.10. Nous pouvons
voir, par exemple, que 14 paires de canaux (chacune avec une puissance de lancement de
10dBm) pourraient être multiplexées avec un canal CV-QKD à 50km et tandis que 2 paires
de canaux (puissance de lancement également de 10dBm) pourraient coexister avec la CV-
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QKD sur 75km. Les résultats de cette simulation indiquent clairement que la grande ca-
pacité de coexistence de la CV-QKD avec des canaux classiques multiplexés WDM jouera
probablement un rôle important dans l’intégration de la QKD dans les réseaux optiques.

3.4. Conclusion

Le succès des technologies émergentes des réseaux de fibres optiques dépend en grande
partie de leur capacité à s’intégrer totalement dans les infrastructures existantes. Nous avons
démontré la grande capacité de coexistence de la CV-QKD intense (environ 0 dBm) avec
des canaux classiques, dans une configuration DWDM. Nous avons caractérisé et étudié
l’influence de la source principale de bruit: la diffusion Raman. Nous avons aussi prouvé
par nos expériences que la CV-QKD peut coexister avec une intensité de canaux DWDM
atteignant 11,5dBm, tandis qu’un taux de clé positif pourrait aussi être obtenu avec un canal
classique multiplexé DWDM de 3dBm avec propagation avant sur une distance de 75 km. Il
ressort également que la CV-QKD, qui bénéficie d’un filtrage intégré monomode (associé à
la détection cohérente) est moins impactée par le bruit des photons induit par le DWDM que
les systèmes DV-QKD testés jusqu’à présent et peut par conséquent atteindre des distances
de transmission plus grandes pour une puissance donnée de lancement de canal classique
DWDM. Les résultats de ces expériences indiquent que la CV-QKD, et plus généralement
les communications cohérentes fonctionnant à la limite du bruit de photon, sont une tech-
nologie prometteuse permettant d’utiliser en même temps communications quantiques et
classiques sur le même réseau de fibres optiques, et pouvant de ce fait jouer un rôle im-
portant pour le développement des communications quantiques sur les réseaux de fibres
optiques déjà existants.





Chapter 1

Introduction

1.1 Background

1.1.1 Classical cryptography

The need for encryption

In the age of Internet, digital communication brings great convenience to people’s lives.
With the increase of Internet traffic, secure communication becomes more and more impor-
tant, any message without encryption can be potentially accessed by an eavesdropper. In
a secure communication, a secret message is transmitted from a sender called Alice to a
receiver called Bob, where an eavesdropper called Eve should not have any access to the
secret message if the communication is secure. In order to achieve secure communication,
cryptography can be used to perform encryption, which now plays an important role in the
digital world. In modern cryptography, there are mainly two types of cryptographic proto-
cols: symmetric-key cryptography and asymmetric-key cryptography.

In symmetric-key cryptography, Alice uses a private key to encrypt her message while
Bob uses the same key to decrypt the message sent by Alice. It thus requires two parties to
share a secret key and to keep it private between them during the encryption and decryption.
By contrast, asymmetric-key cryptography, also known as public-key cryptography, uses a
public key to encrypt the message on Alice side, while Bob uses a private key to decrypt the
message. The public key is publicly distributed (everyone can access it), while the private
key is kept secret and only known to Bob.

It is proven that one particular symmetric-key encryption protocol, called the one-time
pad (OTP) protocol (also known as Vernam cipher [175]) is unconditionally secure [157].
The unconditional security of encryption means that Eve cannot learn anything about the
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message while no assumption need to be made on her computing capabilities. In the OTP
protocol, the message and the key are both in the form of a binary string while the length of
the key is equal to the length of the message. For encryption, a bitwise exclusive OR (XOR)
is performed on the bits of the message and the key to generate a ciphertext. Decryption is
done by performing a bitwise XOR between the bits of the ciphertext and the key.

The key distribution problem

In order to achieve the information-theoretically security in the implementations of OTP
protocol, there are several requirements. In particular, Alice and Bob need to share an
identical secret keys that must be truly random whose length must be at least the same as
the message, moreover key can not be reused. These requirements could be difficult to
achieve, first, true random numbers seem to be impossible to generate by means of classical
physical process due to the deterministic nature of classical physics. Second, the use of
OTP protocol requires large resources of secret key to be distributed if the message to be
encrypted is very long and secret key cannot be established over an insecure channel. This
is known as the key distribution problem. Traditionally, trusted couriers seem to be the
only candidate to solve the key distribution problem, however key are costly and inefficient.
For these reasons, OTP is only used when one requires very high level of security. On
the other hand, other symmetric-key cryptography protocols such as Advanced Encryption
Standard (AES) and Data Encryption Standard (DES) only need small amount of secret
keys to encrypt large amount of data, which are now widely used to secure communications.
However these techniques still can not fully solve the key distribution problem and do not
provide unconditional security.

Computational security

With the increase of information that need to be encrypted, public-key cryptography
has become more popular and is widely deployed in cryptographic system nowadays. It is
mainly because public-key cryptography provides a practical solution to the key distribution
problem compared to symmetric-key cryptography, where Alice encrypts data with a public
key that is known by everyone and Bob decrypts data with a private key that is only known
by himself. The security of the public-key cryptography relies on the unproven mathemati-
cal assumption that there exists one way functions that are easy to compute but difficult to
invert. For example, concerning the widely used RSA [151] protocol, its security is based
on the assumption that it is difficult to factor large integers. However, such assumption has
not been proven yet, it is still possible that one finds high efficient algorithms to factor large
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numbers and break the security of RSA. In fact, in the field of the quantum computing, it has
been shown that Shor’s algorithm [160] can efficiently factor a large number. It means that
if a large quantum computer is ever built, most of the classical public-key schemes, such as
the RSA protocol, will be broken easily. Although large scale quantum computers are still
far away, possible eavesdroppers can still record the communication today and crack the in-
formation in the future when quantum computer will be available. On the other hand, even
with today’s technologies, the increase computational power of current supercomputers is
also a threat on the security of public-key cryptography. As an example, factorization of a
768-bit RSA modulus [73] has been successfully demonstrated recently.

As we have seen, the security of classical cryptography often relies on some unproven
computational power assumptions, which means that advances in hardware or algorithms
could potentially alter the security. Computational assumption can be seen as a potential
vulnerability for today’s classical cryptography. If one indeed requires high level security of
communication, then one may not want to take any risk that the assumption can be broken,
leading to a security break.

1.1.2 Quantum key distribution

In fact, the key distribution problem can be potentially solved by one of the most promis-
ing applications in quantum information technology: Quantum Key Distribution (QKD). In
contrast to computationally secure algorithms, QKD can be proven secure independently of
the computational power of an eavesdropper. The security of QKD is based on the funda-
mental laws of quantum mechanics, in particular the quantum no-cloning theorem: one can-
not copy an unknown quantum state perfectly. The closely related Heisenberg’s uncertainty
principle links the disturbance of Alice’s and Bob’s observed signals to the information that
may have leaked to Eve. The disturbance of Alice and Bob’s signal increases with the infor-
mation that Eve has access to. Alice and Bob can randomly choose a fraction of their data to
estimate such disturbance and bound the information accessible to Eve. The corresponding
leaked information of Eve can then be eliminated in the final key shared by Alice and Bob
through the privacy amplification methods. The generated secret key of QKD can be used
to perform OTP encryption, providing method to achieve secure communication over a link
(classical authenticated channel and public quantum channel) with unconditional security.

Brief outlook on QKD development

The first and best known QKD protocol is called BB84 [11], which was introduced by
Bennett and Brassard in 1984. This protocol relies on encoding discrete information (bits)
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onto phase or polarization of single photon states and the bit value is measured at reception
with phase or polarization analysers followed by single photon detectors. It is therefore
called a discrete-variable (DV) QKD protocol. After BB84 had been invented, several QKD
protocols have been proposed [44, 154] and QKD has developed dramatically both at the
theoretical and experimental level over the past two decades. On the theoretical side, a
number of security proofs have been rigorously established to prove the information the-
oretic security of QKD [154]. On the experimental side, the key distribution distance of
QKD has reached more than 300 km over a optical fiber link in laboratory [76] and 144 km
over free space [156]. Secret key generation rates over 1 Mbits/s have also been reached
[27]. Moreover, the applications of QKD have been expanded to network. Metropolitan
size QKD networks have been demonstrated in [131, 153]. Recently, QKD network which
was reported in [177], not only served for scientific purposes but also to protect real com-
munications for military or financial institutions.

In this thesis, rather than studying the DV QKD protocols such as BB84, I focus on an
alternative approach of QKD, the so called continuous-variable (CV) QKD. CV QKD en-
codes real numbers over the continuous variable degree of freedom of the electro-magnetic
field, the field quadratures, that can be measured by using a homodyne detection instead
of single photon detectors. The most established CV QKD protocol is GG02 [48] which
was proposed by Grosshans and Grangier in 2002. GG02 protocol only requires standard
optical telecom components for the preparation and detection of coherent states. Compared
to DV QKD, CV QKD is still at an earlier stage in both theories and experiments. In recent
years, remarkable achievements have however been made in these two directions. In the-
ory, security proof of Gaussian protocols against collective [38, 123] and arbitrary attacks
[92, 147] have been already established, recent work also shows progress in composable
security proof [86]. On the experimental side, several demonstrations of CV QKD have
been performed with fiber systems [25, 34, 64, 68, 103, 137], and it has been demonstrated
recently that CV QKD can reach 80 km over a fiber link in laboratory [68].

Prospects for QKD

Thanks to the efforts made by the researchers over the past two decades, QKD is now
mature enough to be implemented in real world for secure communication. For both DV
and CV approaches, commercial products have been released on the market. For DV QKD,
important actors are companies such as ID Quantique [3], MagiQ Technologies Inc., Aus-
trian Institute of Technology [1], Anhui Quantum Communication Technology Co., Ltd.[2]
while for CV QKD SeQureNet [5] and Quintessence Labs [4] have pushed the technology
up to commercialization. With the great need of high level secure communication, QKD
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could potentially play an important role in the future secure communication infrastructure.
It is expected that the global market of QKD would reach over 1 billion US dollar in 2018
[60].

1.2 Motivations for our work

As QKD is put in use to ensure secure communication in the real world, it is critical
to verify their practical security and performance, especially for commercial system imple-
mentations. QKD users are actually interested in the actual security and the performances
that QKD systems can provide rather than the theoretical security which has been claimed.
Practical security of QKD is an important topic which has been actively studied over the
recent years in the QKD community. There are two important directions in the practical
study of QKD: (1) quantum hacking (or side channel attacks) on practical QKD systems;
(2)integration of QKD systems within a optical network. In this thesis I focus on these two
aspects in particular with the implementations of CV QKD protocols.

1.2.1 Side channel attacks in CV QKD system

The concept of side channel attack comes from classical cryptography, where a side
channel attack aims on gaining information from a physical implementation of a crypto-
system, instead of performing brute force attack or looking for theoretical weaknesses in
the cryptographic algorithms. Valuable information can leak from various side channels,
such as power consumption, electromagnetic or any kind of physical signals that can be
emitted from a crypto-system. Side channel attacks usually target the way a cryptographic
protocol is implemented, rather than the protocol itself.

Practical QKD systems also face the challenge of side channel attacks. The uncondi-
tional security of QKD strongly relies on the validity of assumptions on the QKD devices.
However these assumptions can not be always met in actual implementations, since real de-
vices always have some imperfections that could lead them to behave quite differently from
the mathematical models described in the security proof. Certain imperfections may lead to
loopholes, enabling an eavesdropper to launch attacks capable of compromising its security.
Note that the existence of side channel attacks does not contradict the existence of security
proofs in QKD, since side channel attacks are not originally covered by security proofs.

In fact, side channel attacks on DV QKD have been studied through the past years and
become a hot topic in QKD research. Various quantum hacking strategies have been pro-
posed, in which, single photon detectors of Bob are often considered as the targets, for
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example, time shift attack [137, 194], blinding attack [42, 116], after gate attack [185], de-
tector dead time attack [184] and so on. Some of these attacks have been also demonstrated
experimentally [42, 107, 190] including a full field implementation of a perfect eavesdrop-
per [42]. Other attacks aiming on different devices have also been proposed to compromise
the practical security of DV QKD systems [43, 93, 168, 190].

CV QKD is also not immune to the problem of side channel attacks. One of the most
important security issues in the implementations of CV QKD concerns a classical phase
reference, the local oscillator (LO), which is commonly transfered publicly on the channel
between Alice and Bob. LO signal does not carry any information but is a phase reference
for the homodyne measurement and its characteristics are closely related to the parameters
in the calibration of a CV QKD system, and in particular shot noise calibration. Indeed,
based on the manipulation of LO signal, shot noise calibration attack have been proposed
to compromise the practical security of CV QKD systems [32, 51, 66, 111]. Possible coun-
termeasure against LO related attacks have however been later proposed: (1) Monitoring
LO signal and shot noise in real time [66]. (2) By using phase locking technique, Alice and
Bob can locally generate LO signal rather than sending it from one side to another through
a open channel [139, 162].

In order to close the gap between the theoretical security and the practical security of
DV or CV QKD, in particular, to resolve the threats of side channel attacks on QKD, two
main approaches are considered: (1) Develop device independent (DI) QKD protocol [6].
(2) Address as many as side channels in implementations of QKD systems, and develop
corresponding countermeasures. The first approach, DI QKD has a potential to remove
the assumptions that needs to be applied to the devices in QKD implementation. DI QKD
provides a beautiful solution in theory to counter against side channel attack, however it
is not a practical solution regarding to the level of current technology. It turns out that
even for near-unity detection efficiency, DI QKD can only generate a very low key rate
[23, 45]. Another fact that makes DI QKD protocols less realistic is that they involve a
loophole-free Bell test which has not been experimentally demonstrated so far. In fact, an
alternative approach called measurement device independent (MDI) QKD [100] has reached
some fruitful results in recent years. MDI QKD can remove any side channel attacks aiming
one side of a QKD system in particular the part with the detectors. MDI QKD protocols have
been implemented by several groups and have shown some promising results in terms of key
rate and distance [98, 152, 169, 170]. All these works concerning MDI are focused on DV
QKD protocols. The development of MDI protocols in CV QKD domain is relatively slow.
An noticeable reason is that before this thesis, there had been no security loopholes related
to the detector reported for CV QKD protocols. Nevertheless, MDI CV QKD protocols
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with coherent states [95, 113] and with squeezed states[94, 193] have been proposed in the
recent years. However according to theoretical analysis and present technology level, they
are still far from practical implementations. The study of device independent is beyond the
reach of this thesis, instead, I have pursued a different approach, studying and analyzing
various side channels that could compromise the security of practical and existing CV QKD
implementations. Realistically, it is impossible to find all the side channel that would appear
in actual implementation. However I can still study what matters most for the practical
security and classify different types of side channel attacks. Indeed, from the experience
of known side channel attacks in QKD, once a specific loophole is found, the protection is
usually not too hard to realize and usually all the side channel attacks related to a specific
loophole can be eliminated thanks to a single countermeasure. For example, once LO signal
can be locally produced on Alice and Bob side [139, 162], CV QKD system are immune
to all the LO based attacks [51, 66, 111]. Therefore side channel analysis would eventually
improve the practical security of CV QKD systems and pave the way toward QKD security
certification.

In this thesis, I have studied different imperfections in implementations of CV QKD and
analyzed their impacts on the security and performance. I have also discovered and studied
a new security loophole that can lead to a new type of side channel attack in a CV QKD
system: saturation attack.

1.2.2 Integration of CV QKD within optical networks

An appealing advantage of QKD is that it is compatible with current optical network. In
this thesis, study of the integration of CV QKD system with optical network is another topic.
With the development of QKD, QKD can be extended from a point-to-point application to a
network configuration [131, 153]. Meanwhile, Wavelength Division Multiplexing (WDM)
allows multiple optical channels, at different wavelengths, to share a single optical fiber.
It would be appealing for QKD to be conducted through the existing optical fiber network
together with classical signals.

The first coexistence architecture of WDM technology with QKD was proposed by
Townsend [173]. In recent years, the feasibility of QKD coexistence with a WDM network
has been studied and demonstrated [15, 17, 30, 126, 132]. These studies have shown that the
noise induced by strong classical signals could prevent QKD communications, because the
optical power of the classical channels is typically many orders of magnitude higher than
the quantum signal of QKD. Especially, in case of coexistence with Dense Wavelength Di-
vision Multiplexing (DWDM) channels, where the wavelength difference between quantum
signal and classical signal is very small (0.8 nm channel spacing). Various additional noise
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due to insufficient isolation and optical non-linear effects of classical signals can impact on
quantum communication which may finally result in a null key rate for QKD. Coexistence
with intense classical channels is indeed a practical challenge for QKD.

Most of the studies and demonstrations are limited on DV QKD systems. In contrast,
only few studies [138] have been done on the integration of a CV QKD system within a
WDM network. CV QKD may have a competitive edge over DV QKD for the integra-
tion with WDM network thanks to its coherent detection. A promising analysis has been
conducted in [138], where a CV QKD system coexists with several classical channels in
a WDM network, however there is no experimental demonstration. This opens the ques-
tion that whether CV QKD could perform better than DV QKD, in terms of key rate and
distance, in a real coexistence implementation.

In thesis, we have studied carefully the different optical effects that can be encountered
in the coexistence architecture of CV QKD with a DWDM network. Moreover, we have
demonstrated experimentally for the first time the feasibility of a CV QKD system in a
DWDM network.

1.3 Outline

• In Chapter 2, the basic elements of continuous variable quantum information theory
are presented. These elements are necessary to understand quantum key distribution
with continuous variables.

• In Chapter 3, we present general principles and the developments of QKD.

• In Chapter 4, several CV QKD protocols and their implementations are presented. We
also briefly present the security proofs of CV QKD.

• In Chapter 5, various imperfections of a practical CV QKD implementation are stud-
ied, in which, I mainly focus on studying the imperfections of Bob’s device.

• In Chapter 6, we review known side channel attacks in CV QKD system. This chapter
is mainly based on [56–58, 66, 72, 111, 112, 165].

• In Chapter 7, we report a newly discovered side channel attack in CV QKD: satura-
tion attack. This attack explores the loophole related to the imperfect linearity of the
homodyne detection. We show that for practical realistic parameters, the saturation
attack can lead to a full security break.
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• In Chapter 8, based on the theoretical study conducted in the previous chapter, we
experimentally have demonstrated the saturation attack. We have first prosed a mod-
ified strategy which is experimentally realizable. We have analyzed the experimental
results and deduced the condition under which a successful attack is possible. We
moreover report a new attack strategy to induce detector saturation by inserting an
external light and show that it can also lead to a security break.

• In Chapter 9, we study and experimentally demonstrate the coexistence of a CV QKD
system with several intense classical channels in a DWDM network.

1.4 Detailed list of contributions

I list my contributions in this thesis below and indicate their corresponding chapters at
the end.

1. I have analyzed various imperfections in a practical homodyne detection and included
them in an original mathematical model. I have moreover demonstrated a deconvo-
lution method in simulation, that can potentially be useful to improve CV QKD per-
formance when the system is running at a repetition rate higher than the homodyne
detection bandwidth.

2. I have experimentally observed the saturation effects on a shot noise limited homo-
dyne detection: the output voltage is not linear with the optical quadrature input. I
have moreover identified the sources of saturation and developed several theoretical
models to describe our homodyne detection by taking saturation effect into account.

3. By exploiting the saturation effect, I have proposed a new side channel attack in CV
QKD: saturation attack [140, 141]. I have studied theoretically this saturation attack
and shown that it can lead to a full security break. For the first time, I have demon-
strated a detector-based side channel attack in CV QKD, which opens a new type of
loopholes in all implementations of CV QKD systems. This new loophole has no con-
nection with the well known vulnerability of LO pulses in the implementation, which
thus requires new types of countermeasures.

4. By using a proper detector model that correctly describes the behavior of our homo-
dyne detection, I have optimized Eve’s attack parameters under two possible criteria
so that a successful saturation attack can be achieved.
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5. I have proposed a saturation attack strategy, which is suitable for experimental demon-
stration. In collaboration with other researchers in our team, we have experimentally
realized a functional "Eve", capable of actively performing a controlled displacement
of the quadratures in order to induce saturation of the homodyne detection.

6. We have performed an experimental demonstration of saturation attack based on the
proposed strategy. We have experimentally studied the relation between Eve parame-
ters and Alice-Bob channel parameter estimation results. Furthermore, I have deduced
the condition (Eve’s parameter and initial parameter of Alice and Bob) under which
a successful saturation attack can be experimentally realized with our experimental
setup of Eve.

7. I have proposed a new strategy to induce homodyne detection saturation by inserting
an external laser. This new attack can potentially reduce the complexity of the cor-
responding experimental setup and allows high precision of induced saturation with
current technology.

8. I have studied and analyzed theoretically various noise contributions in a co-existence
regime of a CV QKD system and a DWDM network.

9. In collaboration with other researchers in our team, we have experimentally demon-
strated for the first time that a CV QKD system can co-exist with intense several
classical channels in a DWDM network [67, 79, 80].

The imperfections analysis (contribution 1) is discussed in Chapter 5; theoretical
study of the saturation attack (contributions 2, 3, 4) is presented in Chapter 7; ex-
perimental demonstration of the saturation attack (contributions 5, 6, 7) is described
in Chapter 8 and the co-existence study and demonstration of CV QKD wavelength
multiplexed with intense classical signals (contributions 8, 9) is presented in Chapter
9.
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Chapter 2

Quantum information with continuous
variables

Quantum information is a young discipline which combines knowledges and techniques
from different scientific fields, in particular: quantum mechanics and information theory.
Quantum information aims to study the information processing capabilities operated by the
manipulation of quantum states. Quantum information also offers new applications such as
quantum computation and quantum cryptography, which can not be achieved in the contest
of classical information processing.

Quantum information with continuous variable (CV) is interesting to us since we study
QKD with continuous variables in this thesis. One motivation to study continuous vari-
able starts from the fact that it captures the behavior of many quantum optical states and
measurements that can be realized efficiently in experiments.

In this chapter, we first give a brief presentation of classical information theory, then
we present useful tools for studying continuous variables in phase space. The content of
this chapter is mainly based on the test books of information theory [21, 115] and quantum
optics [84, 155], as well as references [40, 85, 102].

2.1 Classical information theory

In this section, we introduce elements of information theory which will be useful to study
QKD. In particular, we will describe the notions of entropy, mutual information and channel
capacity which have been introduced by Shannon in 1948 when classical information theory
was born. A more detailed presentation can be found in references [21, 115].
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2.1.1 Entropy

Entropy, also known as Shannon entropy, is a measure of the uncertainty of a discrete
random variable. The entropy H(X) of a random variable X is defined as:

H(X) =− ∑
x∈X

p(x) log2 p(x) (2.1)

In which X is a random variable taking values in the alphabet X and p(x) = Pr{X = x}
is the probability distribution function. The base of the logarithm is 2, thus the entropy is
expressed in bits. Note that the entropy can be also expressed in other base of the logarithm.
The entropy only depends on the probability distribution of the random variable X , but not
on the actual values that are taken by X .

The notion of entropy can be extended to two random variables X and Y with a joint
probability distribution function p(x,y), where the joint entropy H(X ,Y ) is defined as:

H(X ,Y ) =− ∑
x∈X

∑
y∈Y

p(x,y) log2 p(x,y) (2.2)

In fact, the joint entropy can be further generalized to n random variables X1, · · · ,Xn, with
their joint probability distribution function p(x1, · · · ,xn):

H(X1, · · · ,Xn) =− ∑
x∈X1

· · · ∑
y∈Xn

p(x1, · · · ,xn) log2 p(x1, · · · ,xn) (2.3)

Based on the definition, several properties of the entropy can be directly deduced:

Theorem 2.1.1.1. (Properties of the entropy).

1. H(X)≥ 0, H(X) = 0 if X is a fixed value.

2. H(X1, · · · ,Xn)≤H(X1)+ · · ·+H(Xn) with equality only if X1, · · · ,Xn are independent.

3. If X contains n elements and n is finite, then H(X) ≤ log2n with equality only if X
follows uniform distribution on X.

Conditional entropy is another important notion in the information theory. It quantifies
the amount of information that is needed to describe the outcome of a random variable Y
while the input of another random variable X is known. The conditional entropy of Y with
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given X is defined as:

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x)

=− ∑
x∈X

p(x) ∑
y∈Y

p(x|y) log2 p(y|x)

=− ∑
x∈X

∑
y∈Y

p(x,y) log2 p(y|x),

(2.4)

In which p(y|x) = p(x,y)
p(x) is the conditional probability distribution function. H(Y |X = x) is

the entropy of Y conditioned on X with a certain value x. The conditional entropy H(Y |X)

can be seen as the result of averaging H(Y |X = x) over all possible values x that X takes.
By comparing to the definition of entropy, we directly have the following property for

the conditional entropy :
H(X |Y )≤ H(X) (2.5)

with equality if X and Y are independent random variables.
The chain rule property connects the concepts of entropy, joint entropy and conditional

entropy:
H(X ,Y ) = H(Y )+H(X |Y ) = H(X)+H(Y |X) (2.6)

The chain rule shows that the entropy of two random variables is the entropy of one plus the
conditional entropy of the other. From this property we can further deduce that :

H(Y |X) = H(X |Y )−H(X)+H(Y ), (2.7)

which is known as Bayes’ rule. Besides Shannon entropy, the Rényi entropy also describes
a family of entropic quantities for a random variable. The Rényi entropy of order α of a
random variable X can be defined as:

Hα(X) =
1

1−α
log2 ∑

x∈X
p(x)α ,α ≥ 0,α ̸= 1 (2.8)

With some particular values of α , one can find several kinds of entropic quantities :

• α = 0: max-entropy of X , H0(X) = log2 |X|. H0 is the logarithm of the size of the
support of X .

• α → 1: Shannon entropy of X , H1(X) = H(X).

• α = 2: collision-entropy of X , H2(X) = log2 ∑x∈X p(x)2.
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• α =∞: min-entropy of X , H∞(X)= log2 supx∈Xp(x)2. Min-entropy can be understood
as the best guessing probability of the random value X .

For a given random variable X , Hα(X) decreases with the value of α , where H0(X) ≥
H1(X) ≥ H2(X) ≥ H∞(X). The inequalities becomes saturated when X follows a uniform
distribution. For n independent random variables X1 · · ·Xn, their Rényi entropies are addi-
tive: Hα(X1 · · ·Xn) = Hα(X1) · · ·Hα(Xn).

The Shannon entropy is also related to the optimal compression rate one can achieve for
a given random variable, which is given in the source coding theorem. A source code C of
a random variable (or a source) X is a mapping from alphabet X to a set of bit strings with
finite-length in the range of X . A source symbol x can be recovered from C(x) with a source
code.

Theorem 2.1.1.2. (Shannon’s source coding theorem[158]). N independent and identi-
cally distributed (i.i.d.) random variables each with entropy H(X) can be compressed into
NH(X) bits or more with negligible risk of information loss, as N tends to infinity; con-
versely, if they are compressed into fewer than NH(X) bits it is virtually certain that some
information will be lost.

Shannon’s source coding theorem shows that one cannot describe a random variable (a
source) with a number of bits whose entropy is lower than the one of the source.

2.1.2 Mutual information

We now move to the next important notion: mutual information, which is closely re-
lated to entropy. Mutual information quantifies the degree of dependence or correlation
between two random variables. For two random variables X and Y with a joint probability
distribution function p(x,y) and probability distribution functions p(x) and p(y), the mutual
information I(X ;Y ) is the relative entropy between p(x,y) and p(x)p(y):

I(X ;Y ) =− ∑
x∈X

∑
y∈Y

p(x,y) log2
p(x,y)

p(x)p(y) (2.9)

I(X ;Y ) is a measure of the correlation between X and Y , if X and Y are independent vari-
ables, then I(X ;Y ) = 0. Several properties of mutual information can be deduced from its
definition and are summarized as follows:
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Fig. 2.1 Venn diagram of relationship between entropy and mutual information.

Theorem 2.1.2.1. (Properties of the mutual information)

I(X ;Y ) =H(X)−H(X |Y ) (2.10)

I(X ;Y ) =H(Y )−H(Y |X) (2.11)

I(X ;Y ) =H(X)+H(Y )−H(X ,Y ) (2.12)

I(X ;Y ) =I(Y ;X) (2.13)

I(X ;X) =H(X) (2.14)

Eq.(2.10) illustrates that mutual information I(X ;Y ) is the reduction in the uncertainty of
X given the knowledge of Y . Eq.(2.12) shows the relationship between entropy and mutual
information and this relation is shown in Fig.2.1, where I(X ;Y ) is the intersection of the
information in X with the information in Y . Eq.(2.14) proves that the mutual information of
a random variable with itself is its entropy. Thus entropy is also refereed to self-information.

2.1.3 Channel capacities

Besides entropies and mutual information, channel capacity is another important notion
which was introduced by Shannon in Shannon’s noisy-channel theorem [158]. The channel
capacity gives the limit on the rate of communication of information over a communication
channel. A scheme of communication channel is shown in Fig. 2.2, in which:

• A transmitter transforms the message into a signal sent it through the channel. In
particular, it produces a input variable X within an alphabet X.

• The channel is the physical medium which carries the signal while some noise can
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Fig. 2.2 Communication channel scheme.

add to the signal.

• A Receiver recovers the message from the received signal. In particular, it produces a
output variable Y within an alphabet Y.

The mathematical interpretation of a communication channel is that, the output variable
Y of the channel depends probabilistically on the input variable X and a probability transi-
tion matrix p(y|x) determines the probability of observing the output y given the input x. If
the probability distribution of the output only depends on the input at that time, the channel
is considered as memoryless. For a memoryless channel with input X and output Y , the
capacity C is defined as:

C = max
p(x)

I(X ;Y ), (2.15)

in which the maximum is taken for all possible distributions {p(x)}.
One of the most studied channel is the so called Binary Symmetric Channel (BSC). One

side (transmitter) sends a bit through the BSC. Due to the added noise from the channel, the
other side (receiver) receives the correct bit with a probability p or an erroneous bit with a
probability 1− p, while the input X and output alphabet Y are both are {0,1}. This means
that the transition matrix p(y|x) is given by:

p(Y = y|X = x) =

1− p if y = x

p if y ̸= x
(2.16)

A scheme of BSC with the transition probabilities p and 1− p is shown in Fig.2.3. The
capacity of the BSC is given as:

CBSC = 1−G(p), (2.17)

where G(p) =−p log2 p−(1− p) log2(1− p) is the binary entropy function. One can prove
this result by calculating the mutual information of the input variable X and the output
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Fig. 2.3 Binary symmetric channel.

variable Y in the BSC:

I(X ;Y ) =H(X)−H(X |Y ) (2.18)

=H(Y )− ∑
x∈0,1

p(x)H(Y |X = x) (2.19)

=H(Y )− ∑
x∈0,1

p(x)h(p) (2.20)

=H(Y )−G(p) (2.21)

≤1−G(p) (2.22)

For the last inequality H(Y ) ≤ 1 is because the entropy of a binary random variable is
upper bounded by 1. Equality happens when the input distribution of X is uniform. The
capacity of BSC is reached when the input distribution is equal to 1 (p = 1), and hence X is
an uniform binary random variable.

Another important channel is the Additive White Gaussian Noise Channel (AWGNC).
which is with great interest for QKD with continuous variables. In the AWGNC, the output
Y and the input X are connected by Y = X +Z, in which Z is a Gaussian noise centered on
zero (⟨Z⟩) and of a variance σ2

Z . Actually Z is a random variable which follows a normal
distribution and is independent of X . A scheme of AWGNC is represented in Fig.2.4.

The capacity of the AWGNC is infinite if there is no restriction on the variance of input
variable X . If the variance of X is finite, noted Σ 2

X , then the capacity of the AWGNC is the
following:

CAWGNC =
1
2

log2 (1+SNR) , (2.23)

in which, SNR is the signal-to-noise ratio which is the ratio of Σ 2
X/σ2

Z . We compute this
capacity in the section 2.1.4 after we generalize the notions of random variable and entropy
receptively for infinite dimensional Gaussian variable and for differential entropy.
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Fig. 2.4 Additive white Gaussian noise channel. It represents the relation: Y = X +Z, where
X is the input variable, Z is added Gaussian noise variable and Y is the output variable.

2.1.4 Gaussian random variable and its entropy

In the following chapters of this thesis, we will study a specific CV QKD protocol,
namely GG02 (Gaussian Modulated Coherent State) protocol [48], that is based on Gaussian
random variable encodings and Gaussian channels. Particularly, it is related to the mutual
information and entropies of Gaussian variables . In this subsection, we will briefly present
important results.

Differential entropy

A Gaussian variable is a continuous random variable, where the definition of Shan-
non entropy is only applied to discrete random variable. A random variable X is said to
be continuous, when its cumulative distribution function F(x) = Pr(X ≤ x) is continuous.
f (x) = F ′(x) is the probability density function (or probability distribution function) for X
and it needs to satisfy

∫
∞

−∞
f (x) = 1.

The notion of Shannon entropy can be extended to continuous random variable by defin-
ing the differential entropy. The differential entropy of a continuous random variable X with
its probability distribution function f (x) is defined as:

h(X) =−
∫

D
f (x) log2 f (x)dx, (2.24)

where D is the integral domain: the support set of the random variable X , where f (x) > 0.
Unlike entropy of discrete variables, differential entropy can be negative.

The definition of differential entropy of a single random variable can be also extended
to a set of random variables X1, · · · ,Xn, where the joint differential entropy with their joint
probability distribution function f (x1, · · · ,xn) is defined as:

h(X1, · · · ,Xn) =−
∫

f (x1, · · · ,xn) log2 f (x1, · · · ,xn)dx1 · · ·dxn (2.25)

As in the discrete case, for two random variable X ,Y with joint probability distribution
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function f (x,y), one can define the conditional differential entropy h(X |Y ):

h(X |Y ) =−
∫

f (x,y) log2 f (x|y)dxdy. (2.26)

Since f (x|y) = f (x,y)/ f (y), we can further deduce that:

h(X |Y ) = h(X ,Y )−h(Y ). (2.27)

The mutual information between two continuous random variables X and Y with joint
distribution function f(x, y) is defined as:

I(X ;Y ) =
∫

f (x,y) log2
f (x,y)

f (x) f (y)
dxdy. (2.28)

Similarly to the discrete case, we can deduce the properties of mutual information in the
continuous case from the definition:

I(X ;Y ) =h(X)−h(X |Y ) (2.29)

=h(X)−h(Y |X) (2.30)

=h(X)+h(Y )−h(X ,Y ) (2.31)

Gaussian random variable

A random variable X is called Gaussian random variable if its probability distribution
function follows a normal (Gaussian) distribution:

f (X = x) =
1√

2πσ2
e−

(x−x0)
2

2σ2 , (2.32)

in which x0 is the mean value or the expectation E(X) of the distribution. σ is the standard
deviation with VX = σ2, the variance of the random variable X . The variance of X is defined
as:

Var(X) = E[(X −E[X ])2] = E[X2]−E[X ]2. (2.33)

The Gaussian variable X is denoted as X ∼ N (x0,σ
2), which shows that X is deter-

mined by the first two moments of its probability distribution function.

An ensemble of Gaussian random variables also follows a Gaussian distribution, and
is totally characterized by the first two moments of its probability distribution function.
One can describe an ensemble of n Gaussian random variables X⃗ = (X1, · · · ,Xn) by its joint
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probability distribution function:

f (X⃗ = x⃗) =
1√

(2π)ndet(KAB)
e−

1
2 (X⃗−X⃗0)K−1(X⃗−X⃗0)

T
, (2.34)

in which X⃗0 = (E[X1], · · · ,E[Xn]) is a dimension n vector, and det(K) is the determinant
of a matrix K. K is called the covariance matrix, which is used to generalize the notion of
variance to multiple dimensions. The covariance matrix K is defined as

K =


Cov(X1,X1) · · · Cov(X1,Xn)

Cov(X2,X1) · · · Cov(X2,Xn)
... . . . ...

Cov(Xn,X1) · · · Cov(Xn,Xn)

 , (2.35)

where each item Cov(i, j) in matrix K is a covariance between two variables Xi and X j with
i = {1 · · ·n} and j = {1 · · ·n} :

Cov(Xi,X j) = E[(Xi −E[Xi])(X j −E[X j])] = E[XiX j]−E[Xi]E[X j] (2.36)

In this thesis, we will focus in particular on the case where two Gaussian random variables
X and Y are centered on zero. In such case the covariance matrix of two variables reduces
to:

KAB =

[
VA ⟨XY ⟩

⟨XY ⟩ VB

]
, (2.37)

where the variances VA =Var(X) and VB =Var(Y ). ⟨XY ⟩ is the covariance between X and
Y , because Cov(X ,Y ) = E[XY ]−E[X ]E[Y ] = ⟨XY ⟩ =

∫
dx
∫

xy f (x,y)dy since E[X ] = 0.
And the joint probability distribution function becomes:

f (X = x,Y = y) =
1

2π
√

VAVB −⟨XY ⟩2
e
− x2VB−2xy⟨XY ⟩2+y2VA

VAVB−⟨XY ⟩2 , (2.38)

in which the equality det(KAB) =VAVB −⟨XY ⟩2 has been taken into account.

Differential entropy of Gaussian variables

Regarding Gaussian variables, one can calculate analytically the differential entropy of
a Gaussian variable X based on the definition (Eq. (2.24)) and the probability distribution
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function (Eq. (2.32)) :

h(X) =−
∫

f (x) log2(
1√

2πσ2
)dx−

∫
f (x) log2(e)

x2

2πσ2 dx

=
1
2

log2(2πσ
2)+

1
2

log2(e)

=
1
2

log2(2πeσ
2)

(2.39)

For n Gaussian random variables X1, · · · ,Xn with their joint probability distribution function
defined in Eq. (2.34), the joint differential entropy can be expressed as:

h(X1, · · · ,Xn) =
1
2

log2 ((2πe)ndet(K)) (2.40)

From this equation, we can further calculate the conditional differential entropy for two
Gaussian random variables X and Y (Eq. (2.38)):

h(Y |X) = h(Y,X)−h(X) =
1
2

log2

(
2πe

det(KAB)

VA

)
, (2.41)

in which, we define the conditional variance VB|A:

VB|A =
det(KAB)

VA
=VB −

⟨XY ⟩2

VA
(2.42)

Based on the results above, we can further express the mutual information I(X ;Y ) between
two correlated Gaussian random variables X and Y . From Eq. (2.39) and Eq. (2.41), it is
clear that:

I(X ;Y ) = h(Y )−h(Y |X) =
1
2

log2(2πeVB)−
1
2

log2(2πeVB|A)

=
1
2

log2

(
VB

VB|A

) (2.43)

The equivalent expressions of I(X ;Y ) can be also given as following:

I(X ;Y ) =h(X)−h(X |Y ) = 1
2

log2

(
VA

VA|B

)
, (2.44)

I(X ;Y ) =h(X)+h(Y )−h(X ,Y ) =
1
2

log2

(
VAVA

det(KAB)

)
, (2.45)
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Capacity of additive white Gaussian noise channel

The previous results can be used to prove the capacity of the additive white Gaussian
noise channel which is introduced in the section 2.1.3. The mathematical model of the
AWGNC is known as: Y = X +Z (Fig.2.4), in which X is a random variable with variance
Σ2, Z is a Gaussian noise Z ∼ N (0,σ2

Z) and is independent with X , and Y is the output
variable. Hence the transition probability of the AWGNC can be given as:

f (Y = y|X = x) =
1√

2πσ2
Z

e
− (y−x)2

2σ2
Z , (2.46)

To compute the capacity of the AWGNC, we first express the mutual information I(X ;Y )
between input X and output Y , and use the fact that X and Z are independent:

I(X ;Y ) =h(Y )−h(Y |X)

=h(Y )−h(X +Z|X)

=h(Y )−h(Z|X)

=h(Y )−h(Z),

(2.47)

in which, h(z) =
1
2

log2(2πeσ2
Z) since Z ∼ N (0,σ2

Z) (Eg.(2.39)). Due to the fact of inde-
pendence between X and Z, and E[Z] = 0, the variance of Y can be given by:

Var(Y ) =Var(X +Z) =E[(X +Z)2]− (E[X ]+E[Z])2 (2.48)

=E[X2]−E[X ]2 +E[Z2] (2.49)

=Var(X)+Var(Z) = Σ
2
X +σ

2
Z . (2.50)

Moreover, Theorem 8.6.5 in [21] shows that, for a given variance, the normal distribution
maximizes the entropy over all distributions, so we can bound h(Y ):

h(Y )≤ 1
2

log2
(
2πe(Σ 2

X +σ
2
Z)
)
. (2.51)

By taking above equation into Eq.(2.47), we find the upper bound of I(X ;Y ):

I(X ;Y ) = h(Y )−h(X)≤ 1
2

log2

(
1+

Σ 2
X

σ2
Z

)
, (2.52)
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where the equality is reached when the input follows a normal distribution. Thus, the ca-
pacity of the AWGNC is given by:

CAWGNC =
1
2

log2 (1+SNR) , (2.53)

where SNR = Σ 2
X/σ2

Z and the input needs to follow a normal distribution.

2.2 Phase space representation

The goal of this chapter is to present a formalism specifically adapted to study quantum
information with the continuous variables in bosonic systems, in particular, the quantized
electro-magnetic field. More detailed information of phase space representation can be
referred to references [84, 155].

2.2.1 Electromagnetic field and quadrature operators

The electric field E⃗ and the magnetic field H⃗ are connected through the Maxwell equa-
tions. The electric field follows a wave equation deduced from Maxwell equations in the
vacuum:

∇
2E − 1

c2
∂ 2E
∂ t

= 0, (2.54)

in which c = (µ0ε0)
1/2 is the speed of light in vacuum and µ0 and ε0 are the free space per-

mittivity and permeability. For a given mode m, the solution of the wave function describes
the electric field E⃗n(⃗r, t) in terms of propagating plane waves with the space vector r⃗ and
time t, the multimode electric field E⃗ (⃗r, t) can be expressed as:

E⃗ (⃗r, t) =∑
m

E⃗m(⃗r, t) (2.55)

=∑
m

E0,n⃗em[αmei(⃗km⃗r−ωmt)+α
∗
mei(⃗km⃗r−ωmt)], (2.56)

in which ωm is the angular frequency, e⃗m is the polarization vector, k⃗m is the propagation
vector. αm = |αm|eiϕm is the complex amplitude where |αm| is a constant amplitude and ϕm

is a constant phase. E0,n contains the prefactors:

E0,m =
√

h̄ωm/ε0, (2.57)
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in which h̄ is the reduced Planck constant. So far, the radiation field is expressed in a clas-
sical picture. In quantum optics, by replacing the complex amplitude αm by the harmonic
oscillator annihilation operators âm and creation operators â†

n of photon, one can quantize
the electric field for a given mode m:

E⃗m(⃗r, t) = ∑
m

E0,m⃗em[âmei(⃗km⃗r−ωmt)+ â†
mei(⃗km⃗r−ωmt)]. (2.58)

âm and â†
m obeys the commutation relation for bosons:

[âm, ân] = 0, [âm, â†
n] = δmn, [â†

m, â
†
n] = 0. (2.59)

In which the bracket notation stands for the commutation [x,y] = xy− yx for x and y. As
we have seen, the subscript m refers to a particular mode. In the remaining parts, if there is
no ambiguity, m will be omitted. With the notion of quadrature operators one can rewrite
Eq.(2.58) into:

E⃗ (⃗r, t) = E0⃗e[X̂ cos(⃗k⃗r−ωt)+ P̂sin (⃗k⃗r−ωt)], (2.60)

where X̂ and P̂ are the quadrature operators of the electric field and their relation with (â, â†)

is given by:

X̂ =
1√
2
(â† + â), (2.61)

P̂ =
i√
2
(â† − â), (2.62)

where the reduced Plank’s constant is normalized to 1. It can be done by rescaling the phys-
ical units. X̂ and P̂ are equivalent to the position and momentum of an harmonic oscillator in
classical mechanics. In contrast to (â, â†), X̂ and P̂ are Hermitian and can thus be measured.
The commutation relation of (â, â†) imposes the commutation rule for X̂ and P̂:

[X̂m, P̂n] = iδmn, [P̂m, P̂n] = 0. (2.63)

This rule further leads to the Heisenberg uncertainty relation:

∆X̂∆P̂ ≥ 1
2
|⟨[X̂ , P̂]⟩| ≥ 1

2
, (2.64)

with ∆Â = (⟨A2⟩−⟨A⟩2)1/2.
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Shot noise unit

We now introduce the notion of shot noise unit N0, which is the basic unit to calibrate
the system. If we consider the reduced Planck constant h̄ in the commutation relation and
uncertainty relation of the quadrature, Eq.(2.63) and Eq.(2.64) can be given as:

[X̂ , P̂] = ih̄, (2.65)

∆X̂∆P̂ ≥ h̄
2

(2.66)

Naturally, one would use the minimum value of the uncertainty relation as the basic unit of
the system, where N0 = 1/2h̄ such that:

[X̂ , P̂] =2iN0, (2.67)

∆X̂∆P̂ ≥N0 (2.68)

As we shall see, in the following chapters concerning the CV QKD, we will consider N0 = 1
as the shot noise which implies h̄ = 2, and it is achievable with rescaling the physical units.
In this chapter, we remain use h̄ = 1 to present the tools for CV quantum system, which
imposes N0 = 1/2.

2.2.2 Continuous-variable quantum system and Fock state representa-
tion

A continuous variable (CV) system is a canonical quantum system composes a set of N
modes (i.e N modes of the electromagnetic field) of infinite dimension, it can be described
in the Hillbert space:

H =
N⊗

m=1

Hm, (2.69)

which is a tensor product of N infinite-dimensional Fock spaces Hm. Fock spaceHm is as-
sociated with a particular mode, where a mode is characterized by its energy, its polarization
and its spatial and temporal mode. Hm can be described by the Fock space: |0⟩ · · · |n⟩ · · ·, in
which, |n⟩ is known as the Fock state representing the state of n indistinguishable photons
present in the specific mode.

The Fock states {|n⟩} are closely connected to the annihilation and creation operators
â and â†. For a single mode of the field with frequency ω , |n⟩ are the eigenstates of the
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number operator N̂ = â†â with eigenvalue n:

â†â|n⟩= n|n⟩. (2.70)

This equation can be interpreted as the presence of n quanta in a particular mode. Thus the
Fock state |n⟩ is also known as photon number state. A Fock state |n⟩ is an eigenvector of
the Hamiltonian:

H|n⟩= h̄ω(â†â+
1
2
)|n⟩. (2.71)

The state |0⟩ is known as vacuum state which implies a state with no photon. In fact, the
annihilation and creation operators â and â† can be defined with {|n⟩}[84, 155]:

â|n⟩=
√

n|n−1⟩, (2.72)

â†|n⟩=
√

n+1|n+1⟩ (2.73)

By adding n photons to a vacuum state |0⟩, one can generate a Fock state:

|n⟩= 1√
n!
(â†)n|0⟩. (2.74)

The Fock states |n⟩ are the eigenstates of the number operator N̂ and form a basis of orthog-
onal states with its orthogonality and completeness relation:

⟨m|n⟩= δmn, (2.75)
∞

∑
n=0

|n⟩⟨n|= 1. (2.76)

In general, an arbitrary state with one mode can be described by the density matrix operator:

ρ =
∞

∑
m,n=0

ρm,n|m⟩⟨n|, (2.77)

with Tr[ρ] = 1 and ρ is a Hermitian positive operator which means the eigenvalues are all
positive. Such formalism of a single-mode field’s basis can be extended to a global Hilbert
space H with N modes, where the basis is defined as:

|n1, · · · ,ni, · · · ,nN⟩= |n1⟩⊗ · · ·⊗ |nm⟩⊗ · · ·⊗ |nN⟩, (2.78)
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with nm ∈ N photons in the mode m ∈ {1, . . . ,N}. The vacuum state of the global Hilbert
space H is denoted as |0⟩ ≡ |0, · · · ,0, · · · ⟩. In order to generate the Fock basis, one can add
ni photons in the mode i to the vacuum state:

|n1, . . . ,nN⟩=
1√

n1! · · ·nN!
â†n1

1 · · · â†nN
N |0⟩. (2.79)

Accordingly, a density matrix can be expressed as:

ρ =
∞

∑
m⃗,⃗n=0

ρm⃗,⃗n|m1, · · · ,mN⟩⟨n1, · · · ,nN |, (2.80)

with m⃗ = (m1, · · · ,mN) and n⃗ = (n1, · · · ,nN). Indeed, it is very useful to study quantum
systems with the density matrix when the dimension of the Hilbert space is small. However,
for an infinite-dimensional Hilbert space, it might be more convenient to use the quadrature
operator than the density matrix to describe the quantum system. In a N mode system, the
quadratures can be given in a vector û:

û = (û1, ·, û2N)
T = (X̂1, P̂1, ·, X̂N , P̂N)

T (2.81)

The commutation relation then turns into:

[ûk, ûl] = iΩkl (2.82)

in which Ω follows the symplectic form:

Ω =
N⊗

m=1

[
0 −1
1 0

]
, (2.83)

and an operator S is symplectic if:

SΩST = Ω, (2.84)

which means that it remains invariant under a symplectic transformation.

2.2.3 Quadrature eigenstates and coherent states

In the phase space representation, rather than Fock states, we are concerned with two
kinds of states which play important roles: quadrature eigenstates and coherent states.
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Quadrature eigenstates

Quadrature eigenstates are eigenstates of the quadrature operators X̂ and P̂ which obey
the following relation:

X̂ |x⟩= x|x⟩, (2.85)

P̂|p⟩= p|p⟩, (2.86)

where, |x⟩ is called a position eigenstate and |p⟩ a momentum eigenstate. SinceX̂ and P̂ are
Hermitian, they form two orthonormal bases of the Fock space:

⟨x|x′⟩= δ (x− x′), (2.87)

⟨p|p′⟩= δ (p− p′), (2.88)

which further give the resolutions of the identity:∫
∞

−∞

|x⟩⟨x|dx = 1, (2.89)∫
∞

−∞

|p⟩⟨p|d p = 1. (2.90)

These two bases are connected by Fourier transform:

|x⟩= 1√
2π

∫
∞

−∞

e−ixp|p⟩, (2.91)

|p⟩= 1√
2π

∫
∞

∞

eixp|x⟩. (2.92)

For a given quantum state |ψ⟩, its wave function ψ(x)and corresponding Fourier transform
ψ(p) are linked to the quadrature eigenstates:

ψ(x) = ⟨x|ψ⟩, (2.93)

ψ(p) = ⟨p|ψ⟩ (2.94)

However, the quadrature eigenstates are not related to physical states since their energy
diverges.

Coherent state

The photon number states represent the states with precise number of photons. However,
in experiments, such states are difficult to realize for n > 2. In contrast, a coherent state is
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the quantum state output by a laser. This makes coherent state interesting both for theories
and experiments. The number of photons in a coherent state is not precisely known. A
coherent state |α⟩ is defined as the eigenstate of the annihilation operator:

â|α⟩= α|α⟩, (2.95)

in which α is a complex number. The states |α⟩ are not orthogonal, since â is a non-
Hermitian operator. On the other hand, a coherent state can be also seen as a displaced
vacuum state, in order to study it, let us first define unitary displacement operator:

D̂(α) = eα â†−α∗â, (2.96)

which is unitary operator because i(α â† −α∗â) is Hermitian. As unitary operator, the dis-
placement operator D(α) follows the rules:

D̂−1(α) = D̂†(α) = D̂(−α). (2.97)

The Hadamard lemma shows that for two operators Â and B̂:

eÂB̂e−Â = B̂+[Â, B̂]. (2.98)

If we moreover consider Â = α â† −α∗â and B̂ = â, with the property of the unity operator
Eq.(2.97) and the commutation relation of â and â† we can further deduce that:

D̂†(α)âD̂(α) =â+α, (2.99)

D̂†(α)â†D̂(α) =â† +α
∗. (2.100)

which shows that the operation of D(α) displaces the â and â† by the amount of α and α∗.
If we apply the annihilation operator â to a displaced vacuum D̂(α)|0⟩, then we have:

âD̂(α)|0⟩=D̂(α)D†(α)âD̂(α) (2.101)

=D̂(α)(â+α)|0⟩ (2.102)

=αD̂(α)|0⟩, (2.103)

in which, we have considered Eq.(2.97), Eq.(2.99) and â|0⟩ = 0 to achieve Eq.(2.101).
Eq.(2.101) shows that D̂(α)|0⟩ is an eigenstate of the annihilation operator with eigenvalue
α , which is just the definition of the coherent state in Eq.(2.95). So that |α⟩ = D̂(α)|0⟩
means that coherent state is a vacuum state with some displacement. With similar tech-
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nique, the displacement action on the quadrature operators can be deduced:

D̂†(α)X̂D̂(α) =X̂ +
√

2Re(α), (2.104)

D̂†(α)P̂D̂(α) =P̂+
√

2Im(α). (2.105)

In which Re(α) and Im(α) are the real and imaginary parts of α . A coherent state |α⟩
can be thus considered as a vacuum state which is displaced by a quantity of dx = Re(α)

along the quadrature X̂ and a quantity of dp = Im(α) along the quadrature P̂ in the phase
space. One can further expand the coherent state |α⟩ in the Fock basis with the help of the
Baker-Hausdorff formula:

D(α) = e−|α|2/2eα â†
e−α∗â (2.106)

According to the alternative interpretation of coherent state: D̂(α)|0⟩, |α⟩ can be written as:

|α⟩=D̂(α)|0⟩= e−|α|2/2eα â†
e−α∗â|0⟩ (2.107)

=e−|α|2/2
∞

∑
n=0

αnâ†n

n!
|0⟩ (2.108)

=e−|α|2/2
∞

∑
n=0

αn
√

n!
|0⟩. (2.109)

As we can see from Eq.(2.107), the number of photon in a coherent state is not precisely
known, but the relative phase can still be well defined. In contrary to Fock states which
have totally random phase. One can deduce the probability that n photons can be found in a
coherent state |α⟩:

P(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
, (2.110)

which is actually a Poisson distribution with mean value and variance equal to |α|2. The set
of coherent states does not form an orthonormal basis. By using the Eq.(2.95) and Eq.(2.96),
one can deduce the scalar product of two coherent states α and β :

⟨β |α⟩=⟨0|D†(β )D†(α)|0⟩= ⟨0|D(α −β )|0⟩= ⟨0|D(α −β )⟩ (2.111)

=e−
1
2 |α−β |2 , (2.112)

which shows that two coherent states are not orthogonal, though they become approximately
orthogonal when |α −β | ≫ 1. Note that the completeness relation can be applied to a set
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of coherent states:

1
π

∫
|α⟩⟨α|d2

α = 1. (2.113)

Finally, let us note that, the Heisenberg uncertainty principle (Eq.(2.64)) is saturated for a
coherent state, where the product of uncertainty quantities is minimal. To prove this, we can
compute the first and second moment of the quadrature operators for a coherent state |α⟩:

⟨X̂⟩=⟨α|X̂ |α⟩= 1√
2
⟨α|â† + â|α⟩ (2.114)

=
1√
2
(α∗+α), (2.115)

⟨X̂2⟩=⟨α|X̂2|α⟩= 1
2
⟨α|â†â† + â†â+ ââ† + ââ|α⟩ (2.116)

=
1
2
(1+(α∗+α)2). (2.117)

Similar results can be also found for P̂, which gives:

∆
2X̂ =⟨X̂2⟩−⟨X̂⟩2 =

1
2
, (2.118)

∆
2P̂ =⟨P̂2⟩−⟨P̂⟩2 =

1
2
. (2.119)

which shows that coherent states have minimal uncertainty on their quadratures.

2.2.4 Wigner function

The Weyl operator is a generalization of the displacement operators in the N-mode case:

D̂(⃗ξ ) = e−i⃗ξ T Ωû, (2.120)

where ξ⃗ is a vector in the 2N-dimensional phase space, û and Ω are defined in Eq.(2.81)
and Eq.(2.82). The Wigner characteristic function is then defined as:

χρ (⃗ξ ) = Tr[ρD̂(⃗ξ )] (2.121)
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A state ρ can then be described by the Wigner characteristic function in the phase space
instead of using the density matrix:

ρ =
1

(2π)N

∫
χρ(−ξ⃗ )D̂(⃗ξ )d2N

ξ⃗ (2.122)

Through the Fourier transform of the characteristic function, the Wigner function of the
state can be obtained:

W (⃗ξ ) =
1

(2π)N

∫
e−i⃗ξ T Ωζ⃗

χρd2N
ζ⃗ (2.123)

A N-mode state ρ can be related to its Wigner function parameterized by the quadratures in
the N dimensional phase space:

W (X1,P1, · · · ,XN ,PN) =

1
(2π)N

∫
RN

ei(P1y1+···+PNyN)⟨X1 − y1, · · · ,XN − yN⟩|ρ|X1 + y1, · · · ,XN + yN⟩dy1 · · ·yN

(2.124)

An operational interpretation of Wigner function is that it gives a genuine probability func-
tion for a particular quadrature in terms of homodyne measurement results. Specifically, for
a N-mode state described by its Wigner function (Eq.(2.124)), the probability distribution of
XN through the homodyne measurement result is given by integrating the Wigner function
over the quadratures that are not measured:

Pr(XN) =
∫
R2N−1

W (X1,P1, · · · ,XN ,PN)dP1 · · ·PNdX1 · · ·XN−1 (2.125)

The trace of the state ρ can be achieved by the integration of the Wigner function in the
phase space:

Tr[ρ] =
∫
RN

Wρ (⃗ξ )dξ⃗ . (2.126)

Moreover, for an arbitrary operator Ô, its expectation can by computed as an average of its
Wigner transform in phase space:

⟨Ô⟩=
∫
RN

O(⃗ξ )Wρ (⃗ξ )dξ⃗ . (2.127)

More details about Wigner function can be found in [84, 155]. Under the phase space rep-
resentation, the quantum state is represented by the Wigner function formalism with the
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quadrature operators instead of density operator formalism. However, these two formalisms
are equivalent. One can choose either of them to study the quantum state, for practical
reasons, it is preferred to choose the one with which is easy to perform mathematical ma-
nipulation for a specific case.

2.3 Gaussian states

Among various continuous-variable states, Gaussian states are of practical interest as
they represent a large clan of the states that can be produced experimentally. A state is said
to be Gaussian if its characteristic function and Wigner function are both Gaussian.

For a general state ρ (density operator), the displacement vector d⃗ ∈ R2N is defined as:

d⃗ = ⟨û⟩= Tr[ρ û] (2.128)

In which û ∈ R2N is the quadrature operator defined in Eq.(2.81) while the positive semi-
definite symmetric 2N ×2N covariance matrix γ is defined by:

γi j = Tr[ρ{(ui −di)(u j −d j)+(u j −d j)(ui −di)}], (2.129)

in which ui and di stand for coordinates of the vector û and d⃗. Gaussian states are defined
by a Gaussian characteristic function:

χρ (⃗ξ ) = e−
1
4 ξ⃗ T Γξ⃗+iDT ξ⃗ , (2.130)

with D = Ωd⃗ and covariance matrix Γ = ΩγΩ. The Wigner function of a Gaussian state can
be obtained through the Fourier transform of the characteristic function:

W (û) =
1

π2N
√

det(γ)
e−(û−d⃗)T γ−1(û−d⃗). (2.131)

Thus Gaussian states are totally described by the first two moments of the Wigner func-
tion (Eq.(2.130)), precisely the displacement vector d⃗ and the covariance matrix γ . Not all
real symmetric matrices correspond to physical states, since they do not always satisfy the
Heisenberg uncertainty relation. For Gaussian states, a necessary and sufficient condition to
be satisfied by the covariance matrix γ is:

γ + iΩ ≥ 0. (2.132)
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which generalizes the Heisenberg uncertainty principle.

2.3.1 Symplectic Analysis

The covariance matrices of Gaussian states are characterized by the symplectic invari-
ants. We now briefly present the symplectic analysis which is useful to study Gaussian
states. Williamson theorem shows that for any N covariance matrix γ , there is a non-unique
symplectic transformation S such that:

SγST = υ , (2.133)

with υ , a diagonal covariance matrix:

υ =
N⊗

i=1

[
υk 0
0 υk

]
, (2.134)

where υk are known as the symplectic eigenvalues, which are the eigenvalues of the ma-
trix |iΩγ|, where |X | means

√
XX†. Such symplectic diagonalization in the phase space is

similar to the density operator diagonalization in the Hilbert space.

With the symplectic eigenvalues υk, one can rewrite the uncertainty principle (Eq.(2.132))
into:

υk ≥ 1,∀k = 1, · · · ,N. (2.135)

For pure Gaussian states, this bound saturates with υk = 1. The purity µ of a Gaussian state
ρ with covariance matrix γ is defined as:

µ = Tr(ρ2) =
1√

det(γ)
. (2.136)

One-mode normal decomposition

To decompose a state ρ means to determine the symplectic eigenvector (also known as
symplectic spectrum) υ for the given covariance matrix γ . If the determinant is applied to
Eq.(2.133) one can find:

det(SγST ) =det(γ) (2.137)

=det(υ) =
N

∏
k=1

υ
2
k , (2.138)
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since the determinant is a symplectic invariant with S = 1. For the one-mode case where
N = 1, one can find the eigenvalue υ1 as the determinant of the 2×2 covariance matrix γ1

of the single mode state:

υ1 =
√

det(γ1). (2.139)

Two-mode normal decomposition

The two-mode covariance matrix can be expressed as:

γ12 =

[
υ1 C12

CT
12 υ2

]
, (2.140)

with γ1,γ2 and C12 as 2× 2 real matrices. To determine the symplectic eigenvalues υ1 and
υ2 of υ12 of Eq.(2.140), a second symplectic invariant ∆ is needed and is given by:

∆ = υ
2
1 +υ

2
2 = det(γ1)+det(γ2)+det(C12) (2.141)

With det(γ12) = υ2
1 υ2

2 one can see that the symplectic eigenvalues are solutions of the
second order polynomial:

A2 −∆A+det(γ12) = 0 (2.142)

which give the solution:

υ
2
1,2 =

1
2

(
∆±

√
∆2 −4det(γ12)

)
(2.143)

2.3.2 One-mode Gaussian state

One-mode Gaussian states are totally described by the displacement operator d =(dX ,dP)

and a covariance matrix γ :

γ =

[
a b
c d

]
. (2.144)

Vacuum and coherent state:

The vacuum state is a state with a null mean value that is centered at the origin of phase
space ( d = (0,0)), its covariance matrix is the identity:

γ =

[
1 0
0 1

]
= 12, (2.145)
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Coherent state is a displaced vacuum state characterized by a displacement vector d =

(dX ,dP) (dX ,dP ̸= 0) while its covariance matrix is same as vacuum state (Eq.(2.145)).

Squeezed state:

The squeezed coherent state, or squeezed state in short is generalized by displacing a
squeezed vacuum state. The squeezed vacuum state has null mean value and is achieved by
applying a squeezing operator S(r) to the vacuum state |0⟩:

S(r)|0⟩= 1√
cosh(r)

∞

∑
n=0

√
(2n)!

2nn!
tanhn(r)|2n⟩, (2.146)

in which r is a squeezing parameter. When r > 0, the quadrature X̂ is squeezed which means
the variance is less than the shot noise and the quadrature P̂ is anti-squeezed; for r < 0, vise
versa. The mean photon number of the squeezed vacuum state is sinh2(r) which means the
squeezed vacuum states contain photons. The covariance matrix of squeezed vacuum state
and squeezed state is both given by:

γ =

[
e−2r 0

0 e2r

]
, (2.147)

Besides the covariance matrix, squeezed state is characterized by a displacement vector
d = (dX ,dP) (dX ,dP ̸= 0).

Thermal state and noisy coherent state:

The thermal state has a null mean d = (0,0) and the covariance matrix is given by:

γ =

[
V 0
0 V

]
, (2.148)

in which V relates to the the mean number of photons n̄ contained in the thermal state
V = 2n̄+1. The vacuum can be considered as the case when no photon is contained n̄ = 0.

With a displacement vector d = (dX ,dP) (dX ,dP ̸= 0) applied to the thermal state, one
can obtain the noisy coherent state which is a noisy version of coherent state. At last, we
summarize all the states mentioned above in Fig.2.5 represented in phase space.
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Fig. 2.5 One-mode Gaussian states in phase space, without displacement: vacuum state,
squeezed vacuum state, thermal state; with displacement: coherent state, squeezed coherent
state, noisy coherent state

2.3.3 Two-mode Gaussian state

A two-mode Gaussian state is characterized by a displacement vector d =(dX1,dP1 ,dX2,dP2)

and a covariance matrix:

γ12 =

[
γ1 C12

CT
12 γ2

]
, (2.149)

One can trace out the two-mode Gaussian state to get one-mode Gaussian state which is
characterized by the covariance matrix γ1 and displacement d = (dX1,dP1). If C12 = 0 which
means that there is no correlation between the two modes, then the covariance matrix γ12

can be expressed as a tensor products of one mode Gaussian states:

γ12 = γ1 ⊕ γ2 (2.150)

Two-mode squeezed state:

The two mode squeezed vacuum state plays an important role in CV quantum informa-
tion processing such as CV QKD and teleportation, it is similar as the Bell state 1/

√
2(|00⟩+

|11⟩) in qubit quantum information. Such similarity can be observed through the Fock basis



40 Quantum information with continuous variables

expansion of the two-mode squeezed vacuum state:

|TMS⟩= 1
cosh(r)

∞

∑
n=0

tanhn(r)|n,n⟩ (2.151)

The two-mode squeezed vacuum state has a null mean while the two-mode squeezed
state is displaced with the vector d = (dX1,dP1 ,dX2,dP2). Their covariance matrices are both
given by:

γT MS =

[
cosh(2r)12 sinh(2r)σz

sinh(2r)σz cosh(2r)12

]
, (2.152)

in which the unity 12 is given in Eq.(2.145) and

σz =

[
1 0
0 −1

]
. (2.153)

Tracing the second mode of a two-mode squeezed vacuum results in a thermal state with its
variance cosh(2r) = 2n̄+1.

2.3.4 Gaussian operations

A Gaussian operation maps every Gaussian input state into a Gaussian output state.
The interesting point of Gaussian operations is that it can be performed on Gaussian states
through linear optical elements such as phase-shifters, beam-splitters, squeezers and dis-
placements along with homodyne measurement. All these Gaussian operations are achiev-
able with current technology. In chapter 4, we will see that various CV-QKD protocols can
be realized through the Gaussian operations on the Gaussian states experimentally.

Any Gaussian unitary transformation corresponds to a symplectic operation S∈Sp(2N,R)
in phase-space. In particular, there is an unitary transformation U related to a real symplectic
transformation such that the Weyl operators satisfies the relation:

UD̂(⃗ξ )U† = D̂(Sξ⃗ ),∀ξ⃗ ∈ R2N . (2.154)

In which D̂ is the displacement operator which is defined in Eq.(2.96).

Displacement operator:

The displacement operation is a Gaussian operation since it doesn’t change the covari-
ance matrix but only changes the mean value of the Gaussian. A displacement operation
D̂(z) change the mean values between the output and input state as dout = din + z. Note that
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the effect of the displacement operator is not limited to Gaussian states but can be more
generally applied to non-Gaussian states.

Let us again focus on the symplectic transformation which corresponds to the unitary
transformation U generated from a quadratic Hamiltonian The symplectic transformation
implies the mapping between the output and input state:

ûout = Sûin. (2.155)

Through the symplectic operation S, the covariance matrix and the displacement vector
between the output and input state can be given by:

γout = SγinST , (2.156)

dout = Sdin. (2.157)

The symplectic operation S also preserves the canonical commutation relation:

SΩST = Ω, (2.158)

Passive transformations

As an important subset of symplectic transformations, passive transformation is formed
by orthogonal symplectic transformation: P(N) = S ∈ Sp(2,R)

⋂
O(2N). These transfor-

mations correspond to phase shift and beam splitter operations. Any passive transformation
over N modes can be divided into a set of these two operations. Passive transformations
preserve the eigenvalues of the covariance matrix which means it keeps the total number of
photons unchanged.

Phase Shift:

A phase shift is a single-mode operation which is characterized by a phase θ . It acts
a rotation θ on the quadratures in phase space and the symplectic transformation Sps(θ) ∈
Sp(2,R) is given by:

Sps(θ) =

[
cosθ sinθ

−sinθ cosθ

]
. (2.159)
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Beam-splitter:

The beam-splitter operation is characterized by a transmittance T which combines two
modes coherently. Its symplectic transformation SbS(θ) ∈ Sp(4,R) is given by:

Sbs(T ) =

[ √
T12

√
1−T12

−
√

1−T12
√

T12

]
. (2.160)

Active transformations

Unlike the passive transformations, active transformations, are another subset of the
symplectic transformations that inject photons in the system.

Squeezing:

The symplectic transformation Ssq(r) ∈ Sp(2,R) of a single mode squeezing operation
is given by

Ssq(r) =

[
e−r 0
0 er

]
, (2.161)

with r as the squeezing parameter. It can be achieved by pumping a non-linear media with
high intensity source using Optical Parametric Amplification (OPA).

For the two-mode squeezing transformation Ssq2(r) ∈ Sp(4,R), it is described by the
squeezing parameter r, the symplectic matrix can be written as:

Ssq2(r) =

[
cosh(r)12 sinh(r)σz

sinh(r)σz cosh(r)12

]
, (2.162)

Euler decomposition

Any Gaussian operation over N modes can be decomposed through Euler decomposi-
tion into a first passive transformation over all the N modes, followed by a single-mode
squeezing operation for each mode, and a second passive transformation over all N modes.
The Euler decomposition of any symplectic transformations S ∈ Sp(2,R) can be written as:

S = K
N⊕

k=1

[
e−rk 0

0 erk

]
L, (2.163)

in which K,L ∈ P(N) are passive transformations. This decomposition provides a way to
express any arbitrary symplectic transformations over N modes.
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2.3.5 Entropy of Gaussian states

Von Neumann entropy

As we have seen in section 2.1.4, the concept of Shannon entropy is replaced to the
one of differential entropy when continuous variables are encountered. A continuous-
variable quantum system over N-mode is characterized by the density operator ρ as shown
in Eq.(2.80). The Von Neumann entropy can be used on the continuous-variable quantum
system, where it is defined as:

S(ρ) =−Tr[ρ log2 ρ]. (2.164)

S(ρ) is a finite quantity since it is calculated over states with bounded energy. If ρ is
diagonal through in the orthogonal basis |i⟩:

ρ = ∑
i

λi|i⟩⟨i|. (2.165)

Then the Von Neumann entropy is can be interpreted as the Shannon entropy of the eigen-
values distribution {λi}:

S(ρ) = H(λ ). (2.166)

Entropy of Gaussian states

At last we would like to determine the entropy of Gaussian states. The entropy is invari-
ant under a displacement operation, so that the entropy of a Gaussian state is not related to
its first moment. Thus for a N-mode Gaussian state ρg, its entropy is fully determined by
its covariance matrix γg. Specifically, the Williamson theorem indicates that there exists a
symplectic transformation S such that:

SγgST =
N⊗

k=1

[
υk 0
1 υk

]
, (2.167)

with υk = 1, · · · ,N as the symplectic eigenvalues of the state. Based on the Williamson’s
theorem, the Gaussian state ρg can be mapped to a product of N thermal states through a
unitary operation with the symplectic eigenvalues υk = 2n̄k where n̄k is the mean photon
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number in the mode k. So that one can have the entropy of a Gaussian state as:

S(ρg) =
N

∑
k=1

S(ρt(n̄k)), (2.168)

where ρt(n̄k) is denoted as a single mode thermal with mean photon number n̄k for the mode
k. So that to generalize the entropy of a Gaussian state, one first needs to compute the Von
Neumann entropy of a thermal state. The density matrix of a thermal state is known as:

ρt =
∞

∑
n=0

n̄n

(n̄+1)n+1 |n⟩⟨n|, (2.169)

with n̄ = Tr[ρn] as the mean photon number. The Von Neumann entropy of the state ρt can
be computed:

S(ρt) =−Tr[ρt log2 ρt ] =− 1
n̄+1

∞

∑
k=0

(
n̄

n̄+1

)k

log2

[
1

n̄+1

(
n̄

n̄+1

)k
]

(2.170)

=− 1
n̄+1

∞

∑
k=0

(
n̄

n̄+1

)k

[k log2(n̄)− k log2(n̄+1)− log2(n̄+1)] (2.171)

=(n̄+1) log2(n̄+1)− n̄ log2 n̄. (2.172)

in which we have used the relation:

∞

∑
k=0

kxk =
x

(1− x)2 (2.173)



Chapter 3

Practical quantum key distribution

3.1 Quantum key distribution

Quantum Key Distribution (QKD) allows two remote parties, the sender Alice and the
receiver Bob, to share a secret key. If an adversary, Eve, eavesdrops on the communication
link, her action would unavoidably introduce disturbances, which would be noticed by Alice
and Bob. A QKD protocol is designed, so that it aborts if Eve’s disturbance is too high, in
order to prevent Alice and Bob from accepting compromised keys. An attractive feature
of QKD is that generated keys are truly random and can be continuously refreshed. Such
properties are well suited to the requirements of OTP encryption protocol, where the keys
must be perfect random and can not be reused, in order to achieve information-theoretic
secure link encryption [8].

3.1.1 A generic QKD protocol

In order to precisely explain how QKD works, we first present a generic QKD protocol
which can be applied for both discrete and continuous variables. A conceptual schematic of
QKD is shown in Fig.3.1. There are mainly two stages in a QKD protocol: (1) quantum
communication; (2) classical post-processing, which are carried through two communica-
tion channels, respectively: (1) quantum channel; (2) classical channel. In the following
parts, we first present the two stages in QKD, then we describe the two channels that are
involved.
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Fig. 3.1 QKD protocol.

Quantum communication

The first stage of a QKD protocol is quantum communication part, which can be de-
scribed under a prepared-and-measured (P&M) scheme or a entanglement-based (E-B)
scheme:

• P&M scheme: Alice encodes classical information on the quantum states, in partic-
ular, she encodes a classical random variable a on non-orthogonal quantum states.
Alice then sends these quantum states through a communication channel to Bob, this
channel is called quantum channel. At the output of the quantum channel, Bob mea-
sures the received quantum states to obtain a classical random variable b which is
partially correlated with the random variable a of Alice. By repeating this process,
Alice and Bob exchange a significant number of quantum states, and generate two
sets of partially correlated data on each side. These two sets of data are called raw
key.

• E-B scheme: Alice prepares a quantum bipartite states and measures one half of the
state which enable her to obtain a classical random variable a. Meanwhile, such
measurement projects the quantum bipartite states on a sub-system, on which Alice
prepares the corresponding quantum states according to the particular protocol and
sends them to Bob. Bob performs the measurements on the quantum states to extract
a random variable b. From Bob’s point of view, the measurement in EB scheme is
same as in the P&M scheme. At the end, Alice and Bob actually share a bipartite
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quantum systems described in HA ⊗HB.

In fact, under the P&M scheme Alice and Bob also virtually distribute bipartite quantum
states. It has been proven that for any P&M protocol, there is a corresponding EB repre-
sentation [85]. Such equivalence is often used in proving the security of QKD protocol,
where the security proof for the EB protocol can be translated into the corresponding P&M
protocol and vice versa.

Classical post-processing

After the quantum communication, Alice and Bob go into the second stage of a QKD
protocol: classical post-processing, where they process their raw key by exchanging infor-
mation over a classical channel. This stage consists of following steps: sifting, parameter
estimation, error correction and privacy amplification.

1. Sifting: Alice and Bob exchange classical message to indicate which basis or quadra-
ture has been used for the encoding or the measurement in the quantum communica-
tion protocol. The two parties then discard the part of the raw key in particular for
which encoding and measurement basis are complementary while the key they keep
is called the sifted key.

2. Parameter estimation: Alice and Bob compare a random subset of their sifted key
and estimate their statistics to know different parameters of the quantum channel such
as channel transmission and Quantum Bit Error Rate (QBER), QBER refers to the
different fractions between Alice’s and Bob’s bit strings. Based on such parameter
estimation , Alice and Bob can estimate the mutual information IAB between their
sifted key and compute an upper bound of information that is accessed by Eve for
a given attack model. Concerning a particular security proof, if the upper bound of
Eve’s information is higher than Alice and Bob’s mutual information, which means
no secret key can be generated, then Alice and Bob abort the following key generation
protocol .

3. Error correction (information reconciliation): After the sifting and parameter estima-
tion, the remaining partially correlated key goes into this step. Alice and Bob want to
agree on an identical bit string by using classical error correction techniques. Infor-
mation reconciliation can consist of having Bob sharing a key identical to Alice data
(direct reconciliation) or Alice sharing a key identical to Bob data (reverse reconcili-
ation). After error correction, the partially correlated key of Alice and Bob becomes
perfectly correlated but some information has leaked to Eve.
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4. Privacy amplification: In this step, Alice and Bob process on the correlated key from
previous step, in order to eliminate the information that Eve may have. In this step, the
choice direct or reverse reconciliation plays an important role. Since the fraction of
the key that need to be discard is based on the upper bound information of Eve which
is computed in the parameter estimation for direct or reverse reconciliation with a
given security proof. After removing the corresponding fraction of the key, Alice and
Bob thus transform the correlated key which is partially known by Eve into a secret
key which is fully unknown by Eve. Usually, this step is done by using two universal
hashing functions.

Two channels

The two stages above of a QKD protocol involve two channels:

• Quantum channel: In the quantum communication part, the quantum channel is the
transmission link between Alice and Bob which enables the two parties to exchange a
series of quantum states. Eve can perform any actions that are allowed by physics to
eavesdrop on the quantum channel, such as measuring or manipulating the states that
Alice sends to Bob. In practical implementations, the physical form of the quantum
channel can be an optical fiber link or free space.

• Classical channel: Unlike the quantum communication over the quantum channel,
the classical post processing over the classical channel must be authenticated which
means that Eve is allowed to listen to the classical channel but not allowed to manipu-
late the messages between Alice and Bob in the classical channel. In order to achieve
a secure authentication channel, it requires an initial secret key which is shared by Al-
ice and Bob. The authentication key can be later refreshed from the key generated by
QKD after the first round of QKD . In this sense, QKD grows the initial secret keys
from short ones into long ones, rather than creating secret keys from nothing. An-
other important observation of the classical channel is that the different steps of clas-
sical post-processing are involved in one-way or two-way classical communication.
One-way communication means that one party sends classical information to another
one and receive no feedback from the other side. Two-way communication means
that two parties both send and receive information bidirectionally. As we mentioned
about the step of error correction and privacy amplification that are carried through
one way communication from Alice to Bob (forward) or Bob to Alice (backward),
which corresponds to direct or reverse reconciliation. The two-way classical com-
munication consists of both backward and forward communication while the steps of
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sifting, parameter estimation and post-selection are involved in the two-way classi-
cal communication. In practical implementations, the classical channel can be any
classical communication links such as Ethernet.

3.1.2 Security of a key in QKD

Intuitively, one would define the security of a key, which is also a measurement of QKD
security. Recently, the universal definition of security was given by Renner [148], and it
is characterized by the distance between a perfect key and the output key S generated by
a realistic protocol. A perfect key means the key shared by Alice and Bob is identical,
perfectly random distributed and secure (Eve has no knowledge). According to [148], in a
realistic QKD protocol, the joint state of the eavesdropper’s quantum system and the key S
can be expressed as:

ρSE = ∑
s∈S

pS(s)|s⟩⟨s|⊗ρ
s
E . (3.1)

In which key S is a random variable with a probability distribution pS(s) and eavesdropper’s
state is described by the density matrix ρs

E in the Hilbert space HE given that S = s (Eve’s
knowledge on the key S). |s⟩ is an orthonormal basis of the key S in Hilbert space HS. Then
one can define the security of a key : S is ε-secure with respect to HE if

1
2
∥ρSE −ρS ⊗ρE∥1 ≤ ε, (3.2)

where ρE is any state of Eve and ρs = ∑s∈S
1
|S| |s⟩⟨s| is a mixed state in HS. This illustrates

that if a QKD protocol is ε secure, then the keys shared by Alice and Bob are identical, truly
random, and independent from the Eve’s knowledge except with a small probability ε . A
typical value of ε is 10−10 which provides sufficient security for the cryptographic purposes
[9, 149].

QKD is usually combined with other cryptographic protocols and one would concern
the security of the whole cryptographic scheme instead the security of QKD alone. The
notion of "composable security" can be then introduced. As shown in [9, 149] QKD can
be proven to be composably secure in the security framework defined by Renner [148]. It
means in particular if we consider a set of cryptographic protocols (involving QKD), where
each of them is εi-secure, then as a whole set of protocol is also ε-secure with a security
parameter ∑εi.
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3.1.3 Security model of QKD

Once the security of a key is defined, one can deduce the security proofs of QKD, which
give the expression of the secret key rate. In order to prove the security of QKD, one
needs to consider certain attack models. In this subsection, we briefly present three types
of attacks that are considered in the security proofs of QKD: individual attack, collective
attack and coherent attack. Each attack corresponds to a level of Eve’s capability. As we
shall see security proofs are valid against attacks that are not necessary limited by current
technologies but only by quantum physics. On the other hands, the validity of the security
proofs also relies on certain assumptions. Thus in the following parts, we will first list the
assumptions which are necessary for the security proofs. Then we will classify the different
attack models that are considered in QKD security proofs.

Assumptions

Although QKD security can be established independently of computational assump-
tions, there still are several assumptions need to be satisfied, in order to apply security
proofs. We will consider in the following part, only device-dependent QKD that applies to
existing practical system.

1. Eve’s power is limited by the laws of physics, she can perform any actions on the
quantum channel which are allowed by quantum mechanics.

2. The classical channel must be authenticated which means that Eve is allowed to listen
to the classical channel but not allowed to modify the messages exchanged between
Alice and Bob on the classical channel.

3. Alice’s and Bob’s devices are considered as safe boxes, where Eve has no access.

4. The hardware of Alice and Bob must function properly and Eve should not have
influence on them. (As we will see, this assumption can be hard to be achieved in
practice while the violation of this assumption can often lead to a security break.)

5. The random number generators which are used by Alice and Bob need to be truly
random which means that the produced random variable can not be predicted.

These requirements are essential for the validity of the security proofs, any violation of
any assumptions above could compromise the security of QKD.
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Classification of attacks and secret key rates

Based on the operations carried out by Eve, there are three types of attacks that are
usually considered in QKD:

• Individual attack: Eve interacts each pulse sent by Alice with an individual ancilla
and stores the resulting state of the ancilla in a quantum memory. Eve then measures
her ancillas in the appropriate basis after Bob reveals his measurement choice (sifting
step). The maximum information that Eve can get on Bob’s key is limited by the
classical mutual information (Shannon rate in section 2.1.2) IBE (reverse reconcilia-
tion) or IAB (direct reconciliation), which is deduced from the Csiszár–Körner bound
[22]. After the one way processing, the secret key rate under the individual attack for
reverse reconciliation can be expressed as:

KIndividual = IAB − IBE , (3.3)

in which IAB is the mutual information between Alice’s and Bob’s ray keys. The
secret key rate can be expressed in the analogous way for IAE in the case of direct
reconciliation.

• Collective attack: Eve interacts each pulse sent by Alice with an individual ancilla
and stores the state of a long block ancilla in a quantum memory until the end of the
classical post processing. Then she measures coherently all ancilla with a quantum
computer to optimize her information on the block. It is proven by Devetak and
Winter [24] that the Eve’s information under collective attack ( reverse reconciliation)
is bounded by Holevo quantity χBE (Devetak-Winter bound). This Holevo quantity
[54] χBE is given as:

χBE = S(ρE)−∑
b

p(b)S(ρE|b), (3.4)

in which S is Von Neumann entropy which is defined in section 2.3.5, b is a symbol
of Bob’s alphabet with p(b) as its probability distribution, ρE|bis the state of Eve’s
ancilla and ρE = ∑b p(b)ρE|b is Eve’s partial state. Given with Holevo bound [24],
we can express the secret key rate under the collective attack for reverse reconciliation
with χBE :

KCollective = IAB −χBE . (3.5)

And similar for χAE in the case of direct reconciliation.

• Coherent attack: Eve interacts a pre-entangled multi-pulse ancilla with all pulses ex-
changed by Alice and Bob. She stores the state of the ancilla in a high-dimensional



52 Practical quantum key distribution

quantum memory until the end of the classical post processing. She then measures
coherently the ancilla with a quantum computer to optimize her information on the
key. Coherent attack is the most powerful attack that is allowed by quantum physics,
which is also known as general attack.

3.2 Implementations of QKD: Discrete variable vs contin-
uous variable

There are mainly two approaches to perform QKD in order to generate secret keys: dis-
crete variable QKD (DV-QKD) and continuous variable (CV) QKD, which divides QKD
into two families. The important difference between DV and CV QKD lie in the detec-
tion part: DV QKD uses single photon detection techniques while CV QKD uses coherent
detection techniques.

In this section, we briefly compare DV QKD with CV QKD from the views of imple-
mentations. More detailed information on CV QKD can be found in Chapter 4.

Discrete variable

In DV QKD, Alice encodes information with discrete variables such as the phase or
the polarization states of single photons. To measure the information, Bob typically uses a
single photon detector.

The first and best known DV-QKD protocol is BB84 [11]. In the implementation of the
BB84 protocol, it requires perfect single photon sources to meet the assumptions in the se-
curity proofs. However in practice, efficient single photon sources are difficult to realize and
in most implementations of BB84, weak coherent pulses (WCPs) are used instead, in which
the same quantum state may be encoded on more than one photon. The use of WCPs allows
Eve to launch the so-called photon number splitting attack (PNS) [59] which imposes to
reduce the mean photon number sent by Alice and therefore reduces the distribution length
of QKD. Fortunately, the decoy state methods [99, 178] was introduced to beat down the
PNS attack, which largely increases the practical performance of DV-QKD in terms of dis-
tance and key rate. Regarding to the detection parts, InGaAs avalanche photodiode (APD)
are commonly used at telecom wavelengths which are well suit for fiber optics communi-
cations. Recently, new technologies, such as self-differencing APD [26], sine-wave gating
APD [96, 189] and superconducting nanowire single photon detectors (SNSPDs) [117] have
been developed and can improve DV-QKD performance significantly.
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Table 3.1 Differences between DV-QKD and CV-QKD.

DV-QKD CV-QKD
Source Single photon source Weak modulated coherent laser

Attenuated coherent laser Squeezed laser
Detector Single photon detectors Homodyne detectors
Telecom wavelength Yes Yes
Compatibility with WDM Yes [30, 129, 130] DWDM friendly [80, 138]
Parameter estimation QBER Excess noise and channel loss
Security proof Arbitrary attack for Arbitrary attack for

BB84 [154] Gaussian protocols [92]
Finite analysis Yes [172] Yes [91, 92]

Continuous variable

In CV QKD, information is encoded with continuous variables such as the phase and
the amplitude of an electromagnetic field in an infinite dimensional Hilbert space. Alice
uses a weak coherent laser for encoding while Bob uses a coherent detection (homodyne or
heterodyne detection) to measure the quadratures of the received states. Homodyne detec-
tion is a mature technology from optical communications. More information of homodyne
detection can be found in section 5.1. In principle, the bandwidth of off-the-shelf homodyne
detectors can reach 10 GHz with the electronic noise 10 dB less than the shot noise [28, 61].
The use of homodyne detection can offer another advantage to CV-QKD where the noises
in different optical modes can be effectively suppressed. As we will see in Chapter 9, such
characteristic will further enable CV-QKD compatibility with dense wavelength division
multiplexing (DWDM). In fact, an appealing feature of CV-QKD is that one can implement
it fully with off-the-shelf components from telecom industry. A brief history of CV-QKD is
presented in the next chapter, which includes presentations of the security proofs and of the
implementations.

We have summarized the differences between DV-QKD and CV-QKD in Table.3.1. In-
terested readers can refer to the technical reviews of QKD in [44, 154] and recent develop-
ments of QKD in [101].





Chapter 4

Continuous variable quantum key
distribution protocols and security proofs

QKD can be realized with a discrete encoding of classical information onto quantum
states of light. The information can for example be encoded in the phase or polarization of
single photon states, that can be discriminated with single photon detectors. Continuous-
variable (CV) QKD protocols, in which light carries continuous information such as the
value of the quadrature of a coherent state or a squeezed state, have been proposed as an-
other option to realize QKD. In this chapter, we present several QKD protocols relying on
continuous variable encodings.

We first present a review of the development of CV QKD, presenting both the exper-
imental and theoretical progress in this domain. We then introduce the main protocol in-
vestigated in the thesis, the Gaussian Modulated Coherent State (GMCS) protocol [48, 50].
We will also present some other CV QKD protocols such as no-switching protocol [179]
and discrete modulation protocol [87, 167, 195]. Finally, we present a brief sketch of the
security of CV QKD protocols. For more details on this topic, one can refer to the additional
references [44, 154, 182].

4.1 Introduction: An overview of CV QKD

QKD protocols using continuous-variables were first proposed in 1999, based on a dis-
crete modulation of Gaussian states [53, 145, 146]. In 2001, squeezed states protocol based
on a continuous (Gaussian) modulation of squeezed states was introduced by Cerf et al.
[14]. The idea of Gaussian modulation was soon extended to the coherent states, where
Gaussian modulated coherent state (GMCS) protocol [48] was proposed by Grosshans and
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Grangier in 2002, thus it is also known as GG02. In the following year, GMCS protocol
was implemented with homodyne detection [50]. Instead of using homodyne detection,
another coherent state protocol called no-switching protocol was later proposed by Weed-
brook et al. [179, 180] and implemented by Lance et al. [82], in which heterodyne detection
is used, allowing to operate Bob passively (i.e with no active switching between quadra-
ture measurement). In order to reach longer transmission, reverse reconciliation [50] and
post-selection [161] had been introduced to overcome the 3 dB loss limits inherent to co-
herent state protocols with direct reconciliation. In order to further extend the secure range
of CV QKD, multidimensional reconciliation method was proposed by Leverrier et al. [90]
and improved by Jouguet et al. [63] for error correction codes with small signal noise ratio
(SNR). All these protocols can be considered as Gaussian protocols except post-selection,
in which Alice modulates input quadrature with Gaussian modulations, while Bob performs
measurement with homodyne or heterodyne detection.

Other than Gaussian modulation protocols, two-way quantum communication protocol
[134] and an improved discrete modulation protocol [87] have been later proposed, which
have shown the possibility to further improve the transmission range. Weedbrook et al.
[181, 183] have also proposed a CV QKD protocol using wavelengths in the microwave
regime. Microwave CV QKD would be adapted for exchange secret keys over short dis-
tances, although not yet implemented. Recently, the concept of measurement device inde-
pendent (MDI) [100] has been introduced in CV QKD, where MDI CV QKD protocols with
coherent states [95, 113] and with squeezed [94, 193] have been proposed. Such MDI CV
QKD protocols are still in an early stage and not yet implemented.

From a practical implementation point of view, GMCS protocol is probably the most
mature CV QKD implementation among different CV QKD protocols. GMCS protocol
have been realized with stander telecommunication fiber [34, 64, 103, 137] for distances
from 5 km to 25 km, including one field test [34] in SECOQC 1 network [8, 131] and another
one with classical symmetric encryption system running up to 6 months [64]. Recently,
thanks to progress in reconciliation [90] and error correction code [63], GMCS QKD has
been demonstrated over 80 km of standard telecom fiber system in lab environment [68].

The activities devoted to study discrete modulation CV QKD protocols are less and the
progress have been comparatively slower. Ever since the first discrete modulation CV QKD
protocols [53, 145, 146] have been invented, several protocols based on phase encoding
have been proposed [52, 119, 122], the main difference of these protocols lie in the number
of the prepared coherent states and their positions in the phase space. However, whether the

1Secure Communication based on Quantum Cryptography: An European project of Sixth Framework
Programme from 1.4.2004 to 10.10.2008 (www.secoqc.net).
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optimal attack against such protocols are Gaussian or not is not clear, limiting the generality
of the security to be derived [87]. Recently, a generalized protocol has been introduced by
Sych and Leuchs [167] which has a general description of different discrete modulation CV
QKD protocols. Implementation of discrete modulation CV QKD have been demonstrated
also with telecom fibers over a 24 km channel distance [25] and with 10 dB loss of the
channel [159].

Regarding to the security proof of CV QKD, Gottesman and Preskill [46] have given the
first security proof in CV QKD using squeezed states. For the Gaussian modulation proto-
cols, the security proofs against individual Gaussian attacks were first given by Cerf et al.
[14], Grosshans and Grangier [48] for the direct reconciliation and by Grosshans et al. [50]
for the reverse reconciliation. Individual Gaussian attacks are further proven as the optimal
attack among all collective attacks [47] which covers all the Gaussian and non Gaussian
attacks. With the proof that Gaussian attacks are optimal among collective attacks against
Gaussian modulation CV QKD, the security proof of CV QKD against collective attacks can
be derived [38, 88, 123]. All these collective Gaussian attacks have been fully character-
ized by Pirandola et al. [133]. Regarding the coherent attack or general attack, by using the
exponential de Finetti theorems [147] or the post-selection technique [20], one can reduce
a general attack to a collective attack and the security of Gaussian protocol against general
attack is proved. It is important to notice that all these security proofs mentioned above
are considered in the asymptotic regime, where the finite-size effects and the composable
security proof are not included. Finite-size effects have been partially studied in [91], un-
der the assumption of Gaussian attack. Leverrier et al. [92] has then proved the security of
CV QKD using coherent states against arbitrary attacks in the finite-size regime. Recently,
the composable security proof has been given for a CV QKD protocol with squeezed states
[36, 37] and it has been implemented in [41]. More recently, Leverrier [86] has proved the
composable security for CV QKD with Gaussian-modulated coherent states.

4.2 Gaussian modulated coherent state protocol

We first start by presenting Gaussian modulated coherent state (GMCS) protocol, which
uses the Gaussian modulated quadratures of coherent states to encode information and a
homodyne detection to perform the measurement. Then we present an typical implementa-
tion of the GMCS protocol as well as the Gaussian linear model that describes the quantum
channel in the GMCS protocol. In the end, we briefly present the parameter estimation and
related finite size effect.
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4.2.1 Protocol

We present here the GMCS protocol without assuming a specific implementation for
both direct [48] and reverse protocol[50]. Each step in the generic QKD protocol (section
3.1.1) now becomes more specific. The GMCS protocol consists of two stages: (1) quantum
communication with coherent states; (2) classical post-processing with direct or reverse
reconciliation. The protocol starts with quantum communication over the quantum channel:

1. Preparation (1): Alice generates 2N random numbers Xi=1...N , Pi=1...N . Each N ran-
dom numbers of Xi=1...N or Pi=1...N are prepared according to a centered normal Gaus-
sian distribution with a variance VA.

2. Preparation (2): Alice prepares the coherent states |X + iP⟩ with the coordinates of
quadratures X and P as (Xi,Pi)i=1...N in the phase space, she then sends these coherent
states through the quantum channel.

3. Measurement: Bob generates N random binary numbers bi=1...N and for each pulse
i = 1 . . .N performs a homodyne detection to measure either X or P quadrature based
on the random bit bi. From the measurements, Bob thus obtains N classical random
variables yi=1...N .

After the quantum communication, Alice and Bob perform the classical post-processing
tasks using the authenticated classical channel:

1. Sifting: Bob reveals Alice the values of random bit bi=1...N about his choice on the
quadrature measurement through a public authenticated channel. Alice thus keeps
approximately N values of the 2N values in (Xi,Pi)i=1...N with respect to Bob’s choice
of quadrature. These values are known as Alice’s data: xi=1...N (different from the
quadrature coordinates Xi). So Alice and Bob share a sequence of N correlated clas-
sical variables (xi,yi)i=1...N .

2. Parameter estimation (1): Alice selects randomly a subset of M < N values from the
N correlated variables in the previous step. She reveals the M values to Bob as well as
their index in the sequence, so that the two parties both select the same random subset
data (x j,y j) j=1...M.

3. Parameter estimation (2): The subset (x j,y j) j=1...M will be used to estimate the pa-
rameters which characterize the quantum channel: channel transmission T and excess
noise ξ . Based on these two values and Alice’s variance VA, Alice and Bob can fur-
ther estimate the mutual information IAB between them and the upper bound of Eve’s
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information χAE for direct reconciliation or χBE for reverse reconciliation. If IAB is
smaller than χAE or χBE , it means Eve can have more information than Alice and Bob,
and the key generation protocol aborts (no key is output).

4. Error correction (information reconciliation): Based on the estimation of IAB, the two
parties choose appropriate binary functions to convert the remaining classical values
(xk,yk)k=1...N−M into two bits strings on each side. For the reverse reconciliation, Bob
sends Alice a syndrome as the reference for Alice to estimate Bob’s measurements.
By selecting a proper error correction code, Alice can compute a correct value to
estimate Bob’s measurements thus correct the errors. For the direct reconciliation,
the procedure is inversed where Alice sends a syndrome to Bob where Bob performs
estimations in order to correct errors.

5. Privacy amplification (1): In case of reverse reconciliation, based on the estimation
of Eve’s knowledge χBE in the step 2-3 and the length of the bit strings after the error
correction (step 4), Alice can computes the length l of secret key which they can distill
from the common bit string shared by the two parties. For the direct reconciliation,
Bob compute the length l of secret key based on χAE .

6. Privacy amplification (2): Alice (reverse reconciliation) or Bob (direct reconciliation)
creates a random hashing function to transform the N−M bit string into a l bits string
and sends the description of the hashing function through the public authenticated
channel to the other party. Alice and Bob both apply this function to their own bit
string so that the two parties obtain identical bit strings with a length l, which is
known as a secret key.

4.2.2 Implementation

A typical implementation of the GMCS protocol is shown in Fig. 4.1 [68]. On Alice
side, she generates 100 ns wide pulses from a continuous-wave distributed feedback laser
emitting at 1550 nm with an integrated electro-optics modulator. A repetition rate of 500
kHz is considered in [34, 68, 103]. With the help of a 99/1 beam splitter, these pulses are
then split into a strong phase reference pulse (with a typical photon number of 108) known as
local oscillator (LO), and a weak signal (few photons). With the help of a phase modulator
and a amplitude modulator, the signal is continuously modulated to place the coherent states
in the complex plane (quadratures X and P) with a two-dimensional Gaussian distribution
centered on zero. In order to limit the crosstalk between the LO pulse and the signal pulse,
these pulses are multiplexed in time and polarization, where a Faraday mirror delay line
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Fig. 4.1 Implementation of GMCS protocol. AM, amplitude modulator; PM, phase modu-
lator; FM, Faraday mirror; PBS, polarization beam splitter; PC, polarization controller; PD,
photodetector; and BS beam splitters; QRNG, quantum random number generator.

(typical length: 40 m) is added on the signal path. A Faraday mirror is used at the end of
the delay line so that polarization of signal is rotated by 90 degree. Hence the polarizations
of signal pulse and the LO pulse on the quantum channel are orthogonal. At the output of
Alice, polarization beam splitter (PBS) is used to combine the signal and LO path. Alice
sends both the modulated signal pulse and LO pulse through a single fiber to Bob.

At the reception side, a polarization controller is placed at the input of Bob device to
adjust the polarizations of received signal and LO pulses. A PBS is followed to separate
the signal pulse and LO pulse into signal path and LO path respectively. At the LO path, a
phase modulator is added to enable Bob to apply a phase ϕ = 0 or ϕ = π/2 to measure X
or P quadrature. In order to measure the quadratures X or P randomly, a quantum random
number generator is required to produce truly random bits. A Faraday mirror with 40 m
delay is set right after the phase modulator in order to compensate the delay between the
signal pulse and LO pulse. The polarization of the LO pulse is rotated by 90 degree to
coincide with the polarization of the signal pulse after being reflected on a Faraday mirror.
Finally, the signal pulse interferes with the LO pulse on a balanced homodyne detection,
since they are in the same spatial-temporal mode. As we shall see in section.5.1, the output
of homodyne detection is proportional to the quadrature values.

4.2.3 The Gaussian linear model

In order to further explain the security of the GMCS protocol, we now go into the detail
of the quantum communication part over the quantum channel (P&M scheme). As men-
tioned in section 4.1, the optimal attack for Eve has been proven as Gaussian attack among
both individual [40, 47] and collective attacks [38, 123]. Thus we can assume that Eve
interacts on a Gaussian channel on which Alice and Bob exchange their quantum states.
With the optimality of the Gaussian attack, the communication model between Alice and
Bob can therefore be characterized by the Gaussian linear model and can be described by
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an AWGNC (see section.2.1.3). The Gaussian linear channel is characterized by two pa-
rameters: channel transmission (T ) between Alice and Bob and a noise factor known as
the excess noise (ξ ). The channel transmission is related to the channel loss, it can be de-
rived directly from the correlation between Alice and Bob’s data. The excess noise is the
noise variance in excess of the shot noise, which can be due to imperfections of devices (i.e
modulator, detector, electronics etc.) or Eve’s actions on the channel.

In the preparation stage, Alice encodes the continuous variables XA and PA (both sampled
from a centered Gaussian modulation of variance VA ) onto a coherent state (the results could
be described by measuring the optical quadratures with a homodyne detection):

X = XA +X0

P = PA +P0,
(4.1)

where X0 and P0 are quadratures of the vacuum state whose variance is one unit of shot
noise (N0). Since the vacuum state is independent of the modulation, the cross term ⟨XAX0⟩
is equal to zero. XA and X0 are both centered so their mean values are both zero. At the
output of Alice, the variance of the quadrature X is 2:

V = ⟨X2⟩−⟨X⟩2

= ⟨X2
A⟩︸︷︷︸

VA

+⟨XAX0⟩︸ ︷︷ ︸
null

+⟨X0XA⟩︸ ︷︷ ︸
null

+⟨X2
0 ⟩︸︷︷︸

N0

−⟨XA⟩2︸ ︷︷ ︸
null

−⟨X0⟩2︸ ︷︷ ︸
null

=VA +N0

(4.2)

V is the variance of the quadratures of the optical states sent by Alice which includes the
modulation variance VA and the shot noise N0. Alice sends the coherent states through the
quantum channel which is noisy and lossy.

After going through the transmission channel, the excess noise and vacuum noise due to
loss will add on the state of Alice at the output of channel: Bob’s station. On Bob side, he
performs a homodyne detection whose output is proportional to the quadrature value with an
efficiency η (see section.5.1). In practice, the homodyne detection also has some electronic
noise due to the electronic circuits. The electronic noise is modeled as a thermal state with
a variance vele. The output state of Bob’s homodyne measurement for quadrature X on the
received state thus reads out:

XB =
√

ηT (XA +X0 +Xex)+
√

1−ηT X ′
0 +Xele. (4.3)

2Since the treatment for the quadrature P is totally symmetric with X , we only look at the X quadrature for
simplicity.
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In which η is the efficiency of the homodyne detection, Xele is the state of electronics
noise(variance vele). η and vele are two values which are calibrated before the QKD pro-
tocols. Xex is the quadrature variable of excess noise (variance ξ ). The sources of excess
noise can arise from different phenomena: technical noises due to various imperfections of
Alice and Bob’s devices, Eve’s action on the quantum channel. Since the excess noise must
be compared to the signal variance at the input of the channel, the excess noise variance
(ξ ) we consider here is actually brought back to the input of the channel which is on Alice
side. In this thesis, if we don’t mention specifically otherwise, the expression of the excess
noise is always refereed to Alice side. X ′

0 is a vacuum state associated with the loss of the
transmission channel (T ) and the detector efficiency (η) with a variance of N0.

Since the vacuum states X0 and X ′
0 are independent from the other states, the variance of

Bob can be thus directly deduced from Eq.(4.3):

Var(XB) = ⟨(XB −⟨XB⟩)2⟩= ηT (VA +N0 +ξ )+(1−ηT )N0 + vele

= ηT (VA +N0 +
1−ηT

ηT
N0︸ ︷︷ ︸

Noise due to the loss

+ ξ +
vele

ηT︸ ︷︷ ︸
Total excess noise

) (4.4)

From Eq.(4.4), we can see that there are two parts of noise contribution on the state of Bob:
noise due to the loss of the channel and the detector efficiency 1−ηT

ηT N0; total excess noise
including added excess noise ξ and electronic noise vele

ηT . All these noises are considered to
be brought to Alice side.

As we can see from Eq.(4.4), the noise contribution due to the channel loss and the
detector efficiency loss are mixed. In the so called "realistic model" [103], one assumes that
Eve can not go inside Bob’s device and in particular that Eve can not influence the calibrated
value of η and vele. In this model, one can moreover separate the noise contribution which
are added at different stages: (1) the added noise on the open channel; (2) the noise due to
the loss of Bob’s detector and its electronic noise. The latter part is considered as trusted
noises source on which Eve has no access. The application of the realistic model requires
to calibrate the values of η and vele beforehand. More discussion about calibration and its
influence on the QKD security can be found in [85].

In fact, Bob’s detector can be modeled as a beam splitter with transmission η , due to
the loss of the detector, one more vacuum state X ′′

0 adds on the received state of Bob, which
turns Eq.(4.3) into:

XB =
√

ηT (XA +X0 +Xex)+(
√

η
√

1−T X ′
0 +

√
1−ηX ′′

0 )+Xele. (4.5)
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From Eq.(4.5), we can further deduce the variance of Bob quadrature measurements:

Var(XB) = ηT (VA +N0 +ξ )+η(1−T )N0 +(1−η)N0 + vele

= ηT (VA +N0︸ ︷︷ ︸
V

+
1−T

T
N0 +ξ︸ ︷︷ ︸

χch

)+η(
1−η

η
N0 +

vele

η︸ ︷︷ ︸
χhom

)

= ηT (V +χch)+ηχhom.

(4.6)

The total variance of Bob in Eq.(4.6) is same as in Eq.(4.4), but we can separate the contri-
butions from the channel line χch and from Bob’s detection χhom. χch consists in the noise
due to the loss of the channel 1−T

T N0 and the added excess noise ξ which are both brought
back to Alice side. χhom consists in the noise due to the loss of the detector 1−η

η
N0 and

the electronics noise of detector vele
η

, where these two noises are brought to the input of
Bob’s device. We can now express the total noise on Alice side that adds to the initial state
prepared by Alice:

χtot = χch +
χhom

T , (4.7)

in which the factor 1
T indicates that the noise χhom is brought back to the input of the channel.

We can thus express the variance of Bob quadrature measurements as:

Var(XB) = ηT (V +χtot), (4.8)

where χtot is the total added noise. Eq.(4.8) shows that the variance of Bob can be inter-
preted as the sum of the initial variance of Alice’s quadrature and the noise added through
a lossy and noisy channel. When we consider that the shot noise unit N0 as 1, then all the
values are normalized in shot units. The covariance matrix of the state shared by Alice and
Bob can be thus expressed as:

ΓAB =

[
V ·12

√
ηT (V 2 −1)σz√

ηT (V 2 −1)σz ηT (V +χtot) ·12

]
, (4.9)

in which 12 and σz are given in Eq.(2.145) and Eq.(2.153).

4.2.4 Parameter estimation

So far, we have presented the quantum communication part in the GMCS protocol under
the assumption of the Gaussian linear model. In the following, we will present the classi-
cal post-processing part. First, a subset of the sifted data is used to proceed to parameter
estimation. This step is essential for the security of the protocol, since it estimates the chan-
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nel transmission and the excess noise which fully characterize the quantum channel in the
Gaussian linear model. Based on these estimations, Alice and Bob can further quantify the
mutual information between their data, and estimate the upper bound of Eve’s information
for direct or reverse reconciliation, which can further be used to determine whether a secret
key can be generated.

In order to estimate channel transmission T and excess noise ξ from Alice and Bob’s
correlated variables, we consider the Gaussian linear model between Alice and Bob as we
have presented in the previous subsection. This model can be rewritten as followed, where
an additive Gaussian noise is added on the initial quadratures prepared by Alice:

XB = tXA +XN . (4.10)

In Eq.(4.10), t =
√

ηT , T is the channel transmission and η is the Bob’s efficiency. On Alice
side, XA is a Gaussian random variable centered on zero with variance VA. XN is the total
noise which follows a centered normal distribution with variance σ2

N = N0 +ηT ξ + vele.
This variance includes shot noise N0, excess noise ξ and electronic noise of Bob vele.

In order to compute the covariance matrix of the state shared by Alice and Bob, one
need to estimate parameters such as the variance of Alice’s and Bob’s data, Var(XA) and
Var(XB), and the correlation between Alice and Bob, Cov(XA,XB). We obtain the following
equations relating measured data to parameter estimation :

Var(XA) = ⟨(XA −⟨XA⟩)2⟩= ⟨X2
A⟩=VA, (4.11)

Var(XB) = ⟨(XB −⟨XB⟩)2⟩=VB = ηT︸︷︷︸
t

VA︸︷︷︸
⟨X2

A⟩

+N0 +ηT ξ + vele︸ ︷︷ ︸
σ2

N

, (4.12)

Cov(XA,XB) = ⟨XAXB⟩−⟨XA⟩⟨XB⟩= ⟨XAXB⟩=
√

ηTVA. (4.13)

Here in Eq.(4.12), the expression of Bob’s variance is equivalent to the one in Eq.(4.4) or
Eq.(4.6), σ2

N is the total noise variance on Bob’s side. It includes the shot noise N0, the
excess noise on Bob side ηT ξ and the electronic noise of the detector vele.

Additionally, in order to evaluate the shot noise N0, Bob needs to perform an additional
measurement, he can for example close the signal port so he can measure the variance when
the input signal is vacuum. When there is no signal impinging on the homodyne detection,
the variance of homodyne detection can be used to calibrate the shot noise value. In this
case Eq.(4.10) reduces to XB0 = XN0 . Here XN0 follows a centered normal distribution with
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variance σ2
N0

= N0 + vele. Shot noise measurement thus allows to have one more equation:

Var(XB0) = N0 + vele. (4.14)

As we have mentioned before, η and vele are calibrated values, measured before launching
the QKD protocol. If we don’t consider the finite size effect [91] and assume that all the
estimations are in their asymptotic values, the total loss coefficient ηT can be thus estimated
by Eq.(4.13):

t = ηT =
⟨XAXB⟩

Var(XA)
. (4.15)

And the estimation of channel transmission T and excess noise ξ can be deduced from
equation Eq.(4.11)-Eq.(4.13):

T =
⟨XAXB⟩2

ηVar(XA)2 , (4.16)

ξ =
Var(XB)

ηT
−Var(XA)−

N0

ηT
− vele

ηT
. (4.17)

By knowing N0 (Eq.(4.14)), all variances and correlations can be normalized in shot noise
units and can then be used to estimate the mutual information between Alice and Bob, and
the upper bound of Eve’s information. Thus Alice and Bob can estimate the secret key rate
that they can generate.

Finite size effect in parameter estimation

So far we have described the parameter estimation in asymptotic regime, assuming in-
finite quantity of exchanged data is available. In practice, due to the finite resource for the
quantum communication, the parameter estimation is carried out with data of finite block
size, where only finite number of data is exchanged. Here we briefly present the finite size
effect of parameter estimation in GMCS protocol which has been studied in [65, 91]. The
full finite size analysis should also include the secret key rate [91], but here we only focus
on the parameter estimation part.

We consider Alice and Bob use a set of correlated variables (x j,y j) j=1...M to perform
parameter estimation, where x and y are two variables with a finite number quantity M which
represent the variables of XA and XB in asymptotic limit, x also follows a centered normal
distribution with a variance of VA. The relation between x j and y j can be also described by
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the Gaussian linear model (Eq.(4.10)):

y j = tx j + z j. (4.18)

In which z j=1...M is a variable that describes the added noise state XN (Eq.(4.10)), z follows a
centered normal distribution with unknown variance σ2

N = N0+ηT ξ +vele. As the analysis
in [91] shows, t̂ and σ̂2 can be estimated through Maximum-Likelihood method [118], for
the Gaussian linear model and their estimations are following:

V̂A =
1
M

M

∑
j=1

x2
j , (4.19)

t̂ =
∑

M
j=1 x jy j

∑
M
j=1 x2

j
, (4.20)

σ̂
2
N =

1
M

M

∑
j=1

(y j − t̂x j)
2. (4.21)

Here the total noise variance σ̂2
N is estimated instead of Bob’s variance. It is equivalent to

the parameter estimation setup as we show previously (Eq.(4.11)-Eq.(4.13)), since Bob’s
variance is the summation of the noise variance and Alice’s variance. The precisions of
each estimation depend on M, that is the number of samples used.

In order to calibrate the shot noise N0, another set of correlated variables (x0 j ,y0 j) j=1...M′

can be collected when the signal input is vacuum, where y0 j = z0 j and z0 follows a centered
normal distribution with unknown variance σ2

0 = N0 + vele. Similar to the previous estima-
tors, σ̂2

0 can be estimated by Maximum-Likelihood method:

σ̂
2
0 =

1
M′

M′

∑
j=1

y0
2
j . (4.22)

Besides the number of samples, the precision of shot noise N0 depends also on the estimation
of electronic noise ∆vele, which is calibrated before the QKD protocol. The estimators V̂A,
t̂, σ̂2 and σ̂0

2 are independent with their distributions as:

t̂ ∼ N

(
t,

σ2
N

∑
M
j=1 x2

i

)
, (4.23)
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MV̂A

VA
,
Mσ̂2

N

σ2
N

∼ χ
2(M−1), (4.24)

M′σ̂0
2

σ2
0

∼ χ
2(M′−1). (4.25)

In which t, VA, σ2 and σ2
0 are the real values of the parameters (mean values of each dis-

tribution). The estimation V̂A, t̂, σ̂2 and σ̂0
2 can thus have some deviations to their real

values. With large but finite numbers M and M′, one can compute the uncertainty part of
each parameter estimation:

∆t = zεPE/2

√
σ̂2

N
MVA

,∆σ2
N = zεPE/2

σ̂2
N
√

2√
M

,

∆σ2
0 = zεPE/2

σ̂0
2√2√
M′ ,∆VA = zεPE/2

V̂A
√

2√
M

(4.26)

By quantifying the uncertainty part of each estimator, Alice and Bob can make sure that
the parameter estimation is between its lower and upper bound with a high probability 1−
εPE/2. For example, the estimation of loss coefficient is in its confidence interval [t̂ −
∆t, t̂+∆t]. In Eq. (4.26), zεPE/2 is the solution of the relation 1−erf(zεPE/2/

√
2)/2 = εPE/2,

where erf(x) = 2√
π

∫ x
0 e−t2

dt is the error function and εPE is the probability that the estimated

parameter does not belong to its confidence interval with a typical value εPE = 10−10.

As we can observe in Eq. (4.26), with the increasing number of the samples used to
compute the estimator, the uncertainty of the estimator decrease which will lead to an in-
crease of the estimation’s precision. The estimation of channel transmission T̂ and excess
noise ξ̂ can be deduced from Eq.(4.19)-Eq. (4.21)

T̂ =
t̂2

η
, (4.27)

ξ̂ =
σ̂2

N − σ̂2
0

t̂2 , (4.28)

where the confidence intervals of these two estimations can be referred to the previous
estimators. In order to know a tight upper bound of Eve’s information (Eve’s information
is maximum), one expects a worst case estimation of T̂ and ξ̂ , where T̂ is at its minimum
value while ξ is at its maximum value (section 7.3). It further requires that t̂ and σ̂2

0 are at
their minimum values: tmin = t̂−∆t and σ2

0min
= σ̂2

0 −∆σ2
0 while σ̂2

N is at its maximum value
σ2

Nmax
= σ̂2

N +∆σ2
N . The finite size effect of parameter estimation is unavoidable in practice,

Alice and Bob should always consider the worst case of estimations to ensure the security
of the secret key generation.
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4.3 No-switching protocol

In no-switching protocol, Alice also uses the Gaussian modulation of coherent states to
encode information [179, 180], where the state preparation stage is equivalent to the one
in the GMCS protocol. Compared to the GMCS protocol, the main difference of the no-
switching protocol are lying on Bob side and on the classical processing part, which are
following:

• In the quantum communication part, the difference lies in the measurement step of
Bob: instead of measuring randomly the quadratures X or P, Bob measures the two
quadratures simultaneously with a heterodyne detection, where the heterodyne detec-
tion consists two homodyne detections. Bob thus doesn’t need to generate a random
bit in order to randomly switch between the two bases.

• In the classical post-processing part, the sifting step is no longer needed, since the X
and P quadratures are simultaneously measured so Alice and Bob don’t need to dis-
card the values in wrong bases. Alice and Bob can thus have 2N correlated classical
variables (xi,yi)i=1...2N to further distill secret keys through direct or reverse reconcil-
iation. The available correlated data for the classical post processing is thus 2 times of
the one in GMCS protocol which can leads a higher key rate generation. However, 3
dB noise is added on the data when one uses a heterodyne detection, which will lower
the secret key rate.

4.3.1 Implementation

In the implementation of no-switching protocol, on Alice side, the setup is same as the
one in GMCS protocol. On Bob side, the quantum random number generator and the phase
modulator on the LO path are no longer needed compared to the implementation of GMCS
protocol. On the other hand, an additional homodyne detection is required to realize a full
heterodyne detection. A typical setup of no-switching protocol is shown in Fig.4.2. On
the classical post-processing part, except the shifting step is omitted, the remaining steps
are same as the step 2-6 in GMCS protocol. Thus error correction code used for GMCS
protocol can be also applied on no-switching protocol.

Due to the use of heterodyne detection, no-switching protocol is also known as hetero-
dyne protocol. In fact, the idea of using heterodyne detection can be extended to all the
other CV QKD protocols.



4.4 Discrete modulation CV QKD protocol 69

Fig. 4.2 Implementation of no-switching protocol. AM, amplitude modulator; PM, phase
modulator; FM, Faraday mirror; PBS, polarization beam splitter; PC, polarization con-
troller; PD, photodetector; and BS beam splitters; π/2: phase shift; dotted line in Bob:
signal path; solid line in Bob: LO path.

4.4 Discrete modulation CV QKD protocol

As we have mentioned in the section 4.1, the first CV QKD protocols were based on the
discrete modulation of Gaussian states [53, 145, 146]. In this section, we first present the
representative discrete modulation CV QKD protocols: binary modulation [195], four-state
[87] and multi-letter protocol [167], where we focus mainly on the quantum communica-
tion part. Then we briefly compare the discrete modulation protocols with the Gaussian
modulation protocols from the views of implementations and security proofs.

4.4.1 Protocols

Binary modulation protocol

The binary modulation protocol is studied in [195], and its equivalent entanglement-
based scheme is BB92 protocol [10]. The protocol starts with quantum communication
over the quantum channel:

1. Preparation (1): Alice prepares the states |α⟩ and |−α⟩, which are two coherent states
with same amplitude but opposing phase. The reference frame is chosen such that the
signal are modulated in X quadratures.

2. Preparation (2): Alice randomly sends |α⟩ or |−α⟩ with equal probability. If |α⟩ is
sent, Alice stores a classical variable x = 1, while if |−α⟩ is sent, she stores x = 0.
Alice thus obtains a sequence of classical random variables x.

3. Measurement: Bob generates a random binary number b and performs a homodyne
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detection to measure either X or P quadrature based on the random bit b. From the
measurements, Bob thus obtains a sequence of classical random variables y.

After the quantum communication, Alice and Bob perform the classical post-processing
over the classical channel. Like Gaussian modulation protocols, the shared classical vari-
ables (x,y) can be processed through direct or reverse reconciliation to become secret keys.
In particular, the classical variables will also go through the sifting, parameter estimation,
error correction and privacy amplification. But the main difference is that the data where
Bob measures the P quadrature is public announced and is used to estimate Eve’s interfer-
ence. In the sifting step, Alice and Bob dismiss all the data when Bob chooses to measure
the P quadrature.

Four state protocol

Now we present for the four-state protocol [87]. The quantum communication of the
four-state protocol can be described as:

1. Preparation (1): Alice prepares a series of random number k = 0,1,2,3 with equal
probability as her classical random variables x.

2. Preparation (2): Alice prepares the corresponding coherent states |αk⟩= ae(2k+1)iπ/4

with same amplitudes a and sends them through the quantum channel.

3. Measurement: Bob randomly measure either X or P quadrature by performing a ho-
modyne detection. Through the measurements, Bob wants to reveals the sequence of
k, where he obtains a sequence of classical random variables y.

After the quantum communication, Alice and Bob proceed direct or reverse reconcilia-
tion to convert the bits strings into secret keys.

Multi-letter protocol

In discrete modulation CV QKD protocol, the preparation states can be actually increas-
ing to an arbitrary number N. The multi-letter protocol [167] can be seen as a general
protocol to describe various discrete modulation CV QKD protocols. The quantum commu-
nication of the multi-letter protocol can be expressed as:

1. Preparation (1): Alice prepares a series of random number k = 1 . . .N with equal
probability as her classical random variables x.



4.4 Discrete modulation CV QKD protocol 71

2. Preparation (2): Alice prepares the corresponding coherent states |αk⟩= ae(2k+1)iπ/N

with same amplitudes a and sends them through the quantum channel.

3. Measurement (1): Bob measures X and P quadrature simultaneously by performing
a heterodyne detection. The results of the measurements are βX and βP which can be
considered as a pure coherent state |β ⟩= |βX + iβP⟩.

4. Measurement (2): Bob looks for a state αp which is the closest alphabet’s state to the
state β where |⟨αp|β ⟩|2 = maxk|⟨αk|β ⟩|2. So that he can attributes a classical number
p to the measured state β as his variable y.

After the quantum communication, Alice and Bob proceed direct or reverse reconcilia-
tion to convert the classical variables x and y into secret keys.

4.4.2 Discrete modulation vs Gaussian modulation CV QKD

In the quantum communication part, discrete modulation protocols are simpler to im-
plement experimentally compared to Gaussian modulation protocols, since they only need
phase modulation to encode information, the amplitude modulator on Alice side is not
needed. Same as Gaussian protocols, discrete modulation protocols also require homo-
dyne or heterodyne detection on Bob side. In the classical post preprocessing part, the
reconciliation problem of discrete modulation protocols can be treated by a model of binary
channel with additive noise, for which there exist high efficiency error correction codes such
as low-density parity-check codes [150]. Good error correction codes available for discrete
modulation protocols also imply that such protocols have potentials to reach long distance
for secure key distribution. On the other side, for Gaussian protocols, it has been shown
that multidimensional reconciliation methods [90] at low SNR can not reach very high effi-
ciency. Until recently, Jouguet et al. [63] has also developed high efficiency error correction
codes at low SNR [63], which enables long distance key distribution for GMCS protocol
[68].

For the security proofs, as mentioned in section 4.1, the optimality of Gaussian at-
tacks has not yet been proven valid for discrete modulation CV QKD protocols, where
security proofs with optimal Gaussian attacks can not apply to discrete modulation cases
[38, 88, 123, 147]. Nevertheless, according to [87], an important observation shows that
at low modulation variances of a four-state protocol, the four state modulation has a good
approximation to the Gaussian modulation. Consequently, one can prove the security of
four-state protocol by using the Gaussian upper bound (less tight) of Eve’s information pro-
vided in [38]. Moreover, Leverrier and Grangier [89] have proposed a decoy state method
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with four state modulation in order to approximate to the Gaussian modulation. Therefore,
with such modulation scheme, the authors prove its security against the collective attack,
and theoretically such protocol can generate secret keys over 50 km even if the finite size
effect is considered.

4.5 Security proof of CV QKD

In this section, we will present the security proof of CV QKD. We focus on the main
topic of this thesis: GMCS protocol with reverse reconciliation. Note that we neglect all the
finite size effects, which means the numbers of N and M in section 4.2.1 are large enough
(but M is a negligible small amount compared to N ) so that the secret key rate approaches
its asymptotic limit.

We first describe a entanglement based (EB) CV QKD scheme (Fig.4.3) which is a
useful tool to study the security proof. Then we will present the secret key rate formulas for
individual and collective attacks in the asymptotic limit.

4.5.1 Entanglement based CV QKD scheme

In order to further present secret key rates under different attack models, we first de-
scribe a unified EB CV QKD scheme (Fig.4.3), where different Gaussian protocols can be
described by it [38–40, 49]. In this EB scheme (Fig.4.3), on Alice side, she first prepares a
two-mode squeezed vacuum state (EPR state AB0) with null mean value d = (0,0) and its
covariance matrix is described by:

ΓAB0 =

[
V ·12

√
V 2 −1 ·σz√

V 2 −1 ·σz V ·12

]
. (4.29)

Fig. 4.3 Entanglement-based representation of Gaussian protocols with realistic model of
the detector.
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In which V =VA+1 is the variance of a thermal state with shot noise unit N0 as 1. Alice then
measures one half of the state AB0: mode A, which is mixed with a vacuum mode through
a beam splitter (BS1) with transmission TA. Alice’s measurements output the quadrature
(XA,PA) and project mode B into a Gaussian state, whose covariance matrix is given by
[40]:

Γ
XA,XB
B0

=


µV +1
V +µ

0

0
V +µ

µV +1

 . (4.30)

in which µ = (1−TA)/TA, and its mean value is expressed as:

dXA,XB
B0

= (

√
TA(V 2 −1)

TAV +(1−TA)
XA,

√
(1−TA)(V 2 −1)
(1−TA)V +TA

PA). (4.31)

As we can see the projection of mode B is actually a squeezed state who is displaced by
a bivariate Gaussian distribution. The value of TA corresponds to the choice of Alice’s
detection and the state that mode B projects. If TA = 1, Alice performs a homodyne detection
on either X or P of mode A, which projects the mode B0 onto squeezed states. For example,
if Alice measures quadrature X , the connivance matrix and the mean of the projected state
are given as:

Γ
XA
B0

=

[
1/V 0

0 V

]
, (4.32)

dXA
B0

= (
√

1−V 2XA,0). (4.33)

This Gaussian state is actually a X-squeezed vacuum state displaced along the X quadrature
with a amount of

√
1−V 2XA. Alice can also prepare the corresponding P-squeezed vacuum

state by measuring the quadrature P of mode A. Such state preparation exactly agrees with
the P&M scheme in the squeezed states protocol [14].

If TA = 1, Alice performs a homodyne detection which projects the mode B0 onto
squeezed states. If TA = 1/2, Alice performs a heterodyne detection on both X and P of
mode A, which projects the mode B0 onto coherent states. The connivance matrix and the
mean of the projected state are given as:

Γ
XA,XB
B0

=

[
1 0
0 1

]
, (4.34)
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dXA,XB
B0

= (

√
2

V −1
V +1

XA,

√
2

V −1
V +1

PA). (4.35)

It actually describes a coherent state whose quadrature values of X and P are given by√
2(V −1)/(V +1)XA and

√
2(V −1)/(V +1)PA respectively. By using Var(XA) = (V +

1)/2, we can calculate the variance of this coherent state:

Var(XB0) = 2
V −1
V +1

V +1
2

=V −1 =VA. (4.36)

This corresponds exactly to the state preparation in the GMCS protocol (P&M scheme) [48]
as we have seen in section 4.2.3.

The projected state is then sent to Bob through the quantum channel, where Eve per-
forms eavesdropping, it allows her to have a state E. On Bob side, he performs a homodyne
(TB = 1) or a heterodyne (TB = 1/2) detection which corresponds to the transmission of the
beam splitter (BS2), TB = 1 or TB = 1/2. In such case, if the detection is assumed to be
perfect which means η = 1 and vele = 0. Bob thus obtains the quadrature XB and PB through
his measurements.

In fact, EB scheme can also be used to describe the realistic P&M model, where Bob’s
detector is modeled by a beam splitter with a transmission ηTB, where η is the efficiency of
the detector. Here we particular focus on the case of homodyne detection where TB = 1. The
electronics noise of the detector is modeled by a thermal state F0 which enter the other input
of the beam splitter (BS2), the variance of F0 is VN = 1+ vele/(1−η). In order to simplify
the calculation, the state F0 is considered to be obtained from a two-mode squeezed state
F0G with its variance VN . After Bob’s homodyne projective measurement, it would result
the quadrature XB and the system AFG.

4.5.2 Secret key rate under different attack models

In this subsection, we will present the secret key rate formulas under the individual
attack [50] and collective attack [38, 123] for GMCS protocol with reverse reconciliation in
the asymptotic limit. For both of the two attacks, we consider the realistic model (Eq.(4.7))
[103] which means Eve has no accessible information on χhom. Here we take the shot noise
N0 as 1 unit so that all variances are expressed in shot noise units.
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Individual attacks

Under individual attacks, the secret key rate can be expressed as:

KIndividual = β IAB − IBE , (4.37)

where β is the reconciliation efficiency with a value between 0 and 1 which depends on the
error correction code. IAB is the mutual information between Alice and Bob. IBE is the upper
bound of the mutual information between Bob and Eve, in the case of reverse reconciliation.
For direct reconciliation, the considered quantity is the mutual information between Alice
and Eve IAE . IAB and IBE can be both deduced from Shannon formulas which have been
introduced in Chapter 2. The communication model between Alice and Bob is based on
the AWGNC as shown in section.4.2.3, which allows to compute IAB. Eve performs her
measurements between the sifting and the error correction step, where her knowledge is
limited to the Shannon information in her ancilla: IBE between her measurement results and
Bob’s data.

Let us first look at the mutual information IAB, which can be directly deduced from
Eq.(2.53). The SNR quantifies the mutual information, in which the "signal" is Alice’s
modulation variance VA and the "noise" is the total noise χtot that is brought back to Alice
side.

IAB =
1
2

log2(1+SNR) =
1
2

log2(1+
VA

1+χtot
) =

1
2

log2
V +χtot

1+χtot
. (4.38)

In order to calculate IBE , we can use Eq.(2.43):

IBE =
1
2

log2
VB

VB|E
. (4.39)

Thus this problem turns into calculating the conditional variance VB|E while the variance of
Bob VB is known Eq.(4.8) In the realistic model, we consider state B1 is at the output of the
channel where VB|E consists the conditional variance VB1|E and χhom:

VB|E = ηVB1|E +ηχhom. (4.40)

The corresponding quadrature XB1 at the output of the channel is actually an estimation of
the quadrature XA sent by Alice with some errors:

XB1 = tXA +XNA. (4.41)

In which VB1|A =Var(XNA). One the other hand Eve measures the state B1 which gives her
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quadrature PE with some errors:

PB1 = λPE +PNE . (4.42)

In which VB1|E = Var(PNA). The commutation relation between XNA and PNE can be ex-
pressed as:

[XNA,PNE ] =[XB1 − tXA,PB1 −λPE ] (4.43)

=[XB1,PB1]−λ [XB1,PE ]− t[XA,PB1]+ tλ [XA,PE ] (4.44)

=[XB1,PB1] = 2iN0, (4.45)

in which commutations between two quadratures of different modes are zero. With this
commutation relation [XNA,PNE ] = 2iN0, one can further express the uncertainty relation:

VB1|AVB1|E =Var(XNA)Var(PNE)≥ N2
0 . (4.46)

In order to calculate VB1|A, one can use the covariance matrix ΓAB1 of the state shared by
Alice and the state B1:

ΓAB1 =

[
V ·12

√
T (V 2 −1) ·σz√

T (V 2 −1) ·σz T (V +χch) ·12

]
. (4.47)

By using Eq.(2.42), VB1|A can be expressed as:

VB1|A =Var(XB1)−
⟨XAXB1⟩
⟨X2

A⟩
(4.48)

= T (V +χch)−
T (V 2 −1)

V
(4.49)

= T (
1
V
+χch). (4.50)

Now one can inject Eq.(4.50) and Eq.(4.46) into Eq.(4.40) to find the lower bound of
VB|E :

VB|E = ηVB1|E +ηχhom ≥ η

[
1

T ( 1
V +χch)

+χhom

]
. (4.51)

Hence the upper bound of Eve’s information can be derived from VB (Eq.(4.6)) and VB|E
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(Eq.(4.51)):

IBE =
1
2

log2
T 2(V +χtot)(

1
V +χch)

1+χhomT ( 1
V +χch)

. (4.52)

Collective attacks

Under collective attacks, the secret key rate can be expressed as:

KCollective = β IAB −χBE , (4.53)

in which IAB has been derived for the case of individual attacks (Eq.(4.38)), while the upper
bound of Eve’s information is given by the Holevo quantity [148]:

χBE = S(ρE)−
∫

p(XB)S(ρ
XB
E )dXB. (4.54)

XB is Bob’s measurement output with its probability distribution p(XB), ρ
XB
E is Eve’s state

conditional on XB. S(ρ) stands for the von Neumann entropy of the state ρ [24]. In sec-
tion.2.3.5, we have given the expression of a n mode Gaussian state’s entropy, one can
rewrite Eq.(2.168) such that:

S(ρ) = ∑
k

g
(

υk −1
2

)
, (4.55)

with υk as the symplectic eigenvalues of the covariance matrix which characterizes ρ , and
function g(x) is defined as:

g(x) = (x+1) log2(x+1)− x log2 x (4.56)

Since Eve’s state E is a purifying system of state AB1 (Fig.4.3), so that S(ρAB1) = S(ρE).
Bob’s homodyne measurement outputs XB and the system AEFG is pure (Fig.4.3), one can
deduce that S(ρXB

AFG) = S(ρXB
E ) and S(ρXB

AFG) is independent of XB for Gaussian protocols.
Then χBE turns into:

χBE = S(ρAB1)−S(ρxB
AFG). (4.57)

Thus, the calculation of χBE converts into calculating the symplectic eigenvalues of ρAB1

and ρ
XB
AFG. The covariance matrix of ρAB1 is given by Eq.(4.47). By using Eq.(2.143) of two



78 Continuous variable quantum key distribution protocols and security proofs

mode decomposition ( section.2.3.1), one can find the symplectic eigenvalues of ΓAB1 :

υ
2
1,2 =

1
2

[
∆1 ±

√
∆2

1 −4D1

]
, (4.58)

In which

∆1 =V 2(1−2T )+2T +T 2(V +χch)
2, (4.59)

D1 = det(ΓAB1) = T 2(V χch +1)2. (4.60)

In order to find the covariance matrix of ρ
xB
AFG, we first describe the matrix of the system

AB1FG (Fig.4.3):

ΓAB1FG = ΓAB ⊕Γ
EPR
F0G . (4.61)

Based on the equation above, we want to further express the matrix of the system ABFG
which requires a model for Bob’s detector. A beam splitter transformation Sbeam

B1F0
can be used

to model the efficiency η of Bob’s detector and F0, a thermal state, models the electronic
noise of the detector vele. By considering such model, the matrix of ABFG is given by:

ΓABFG = Y T [ΓAB ⊕Γ
EPR
F0G ]Y (4.62)

with Y =
(
1A ⊕Sbeam

B1F0
⊕1G

)
. One can then rearrange the lines and columns of the matrix

ΓABFG which gives:

ΓAFGB =

[
ΓAFG σT

AFG;B

σAFG;B ΓB.

]
(4.63)

The state ρ
xB
AFG is obtained after Bob’s homodyne measurement on the system AFGB, such

projection gives the covariance matrix of ρ
xB
AFG:

Γ
xB
AFG = ΓAFG −σ

T
AFG;B(XΓBX)MP

σAFG;B, (4.64)

where X = diag(1,0,0,0) and MP stands for the Moore Penrose inverse of a matrix. One
can calculate directly the symplectic eigenvalues of Γ

xB
AFG which gives

υ
2
3,4 =

1
2
(∆2 ±

√
∆2

2 −4D2). (4.65)
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in which

∆2 =
V
√

D1 +T (V +χch)+∆1χhom

T (V +χtot)
, (4.66)

D2 =
√

D1
V +

√
D1χhom

T (V +χtot)
. (4.67)

And the last symplectic eigenvalue is simply υ5 = 1. Thus the upper bound on Eve’s Holevo
information bound χBE is given by:

χBE = g
(

υ1 −1
2

)
+g
(

υ2 −1
2

)
−g
(

υ3 −1
2

)
−g
(

υ4 −1
2

)
,

where g(x) is defined in Eq.(4.56). Thus the secret key rate formula for Gaussian collective
attack is given by:

KCollective = β IAB −χBE . (4.68)

In this thesis, we use Eq.(4.68) to calculate secret key rate unless otherwise noted.





Chapter 5

Analysis of imperfections in CV QKD
implementations

In section 4.2.2, we have presented a typical implementation of the GMCS protocol. In
reality, there exists various imperfections on both sides of the implemented system, such as
the laser source and modulators on Alice side, the homodyne detector on Bob side. These
device imperfections influence the performance of the CV QKD system, and some of them
may lead to security loopholes, thus we need to carefully study and evaluate their impacts.

In this chapter, we analyze several imperfections in a CV QKD system implementing
the GMCS protocol. We first analyze imperfections in the homodyne detection on Bob
side and their influences on the system performance. Then we show a proof of principle
demonstration of a deconvolution method, which can be used to partially solve the pulses
overlap problem of the homodyne detector in a CV QKD system, when it is operated at a
repetition rate close or above the bandwidth of the homodyne electronics. In the end, we
discuses other imperfections such as imperfect Gaussian modulation and phase noise that
can be encountered on Alice’s side, which have been addressed in [65].

5.1 Imperfections of the homodyne detection

Let us first focus on Bob side in a CV QKD implementation, where Bob performs a
homodyne detection to measure the quadratures. The main purpose to study imperfections
in a homodyne detection are following: (1) evaluate the impact of imperfections on CV
QKD performance; (2) More importantly, evaluate whether there exists vulnerabilities for
Eve to launch side channel attacks on the homodyne detection part.

Compared to the photon counting techniques in DV QKD, homodyne detection is a
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technology widely used in classical optical telecommunication. Homodyne detection can be
realized at low cost, high bandwidth and high efficiency. However due to the requirement
of CV QKD, a shot noise limited homodyne detection is needed to be designed specifically,
since the performance of CV QKD protocol is sensitive to the detector noise. In order
to design a high quality homodyne detection in practice, it is necessary to study possible
imperfections that appear in a homodyne detection.

In this section, we explain the principle of homodyne measurement: its output is pro-
portional to the quadrature values. Meanwhile we analyze different imperfections of the
homodyne detection which can affect the quadrature measurements and the performance
of CV QKD. This is done by developing an original mathematical model of the homodyne
detection based on the previous works [35, 102]. In this new model (Fig. 5.1), we consider
the following imperfections:

• Imbalance factor of the beam splitter (ε): There is a small deviation (less than 10−3

in our case) between the transmission (t2
bs = 0.5+ε) and the reflection (r2

bs = 0.5−ε)
of the 50/50 beam splitter.

• Efficiencies of two detectors (η1, η2) : In practice, the efficiencies of two photo diodes
can not be exactly matched. ∆η is the difference between two efficiency η1 and η2,
which can be defined as:η1 = η +∆η/2,η2 = η −∆η/2, and η = (η1+η2)/2,∆η =

(η1 −η2). Such deviation between the two photo detectors can be almost eliminated
by adjusting the loss of the two optical paths.

Fig. 5.1 Homodyne detection setup with different imperfections. τ and τ ′: time delays be-
tween optical pulses before and after beam splitter; ε: imbalance of beam splitter; η1,η2
efficiencies of two detectors; signal field Es and LO field ELO; E1 and E2: optical fields after
beam splitter; T : channel transmission; PD: photodiode. |0⟩ is denoted as the added vac-
uum state due to the loss. G stands for the amplification factor of the homodyne detector’s
electronics.
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• Chirp of the laser source : In our system, we use a Alcatel LMI1905 laser as Alice’s
laser source. According to the experimental test in [35], this laser has a spectral
linewidth of ∆λ = 0.01nm (Full width at half maximum, FWHM) with its central
wavelength at 1543.2nm. The corresponding frequency linewidth can be thus given
by :

∆ f =
c

λ 2 ∆λ , (5.1)

in which c is the speed of the light in vacuum and λ is the central wavelength, which
gives ∆ f = 1.26 GHz in our case. Moreover, since the laser is externally modulated,
the central wavelength of the laser drifts with time during the pulse duration (100ns)
over a relatively wide range (Chirp effect), this relation can be given by an empirical
formula according to the experimental results [35]:

λ (t) = 1543.2+1.08∗10−4t +0.02e−0.03636(t−8.3), (5.2)

in which λ is in the unit of nm and time t is in ns. The frequency of the laser can thus
be expressed as:

f (t) =
c

nλ (t)
, (5.3)

where n is the refractive index of the single mode fiber as n = 1.5.

• Intensity fluctuation: In practice, the intensity of a laser fluctuates. Such intensity
fluctuation can be quantified over a time t0:

f =
√
⟨(I −⟨I⟩t0)

2⟩t0/I (5.4)

in which I is the laser intensity.

• Time delay mismatch between signal and LO pulse before and after beam splitter : Due
to the different fiber path lengths, signal and LO pulse will arrive at the beam splitter
(τ) and photon detectors (τ ′) at different time. As we shall see, such imperfection
has an impact on the quadrature measurement when the chirp of the laser source is
considered.

A figure depicting a practical homodyne detection setup with the imperfections men-
tioned above is shown in Fig.5.1. In order to analyze the impact of these imperfections, that
can possibly influence the quadrature measurements in CV QKD, we need to return to Alice
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side where she prepares the quadrature X and P of coherent states. As explained in section
4.2.2, Alice prepares two kinds of pulses: signal pulses and LO pulses. A signal pulse con-
tains only a few photons and is considered as a quantum field. The relations between the
signal operators âs, â†

s and their quadratures X , P are given by:

âs =
X + iP
2
√

N0
, â†

s =
X − iP
2
√

N0
. (5.5)

In which N0 is the shot noise variance. The commutation relation and uncertainty re-
lation of X and P are given by Eq.(2.67) and Eq.(2.68). The LO pulse contains approxi-
mately 108 photons at reception and is considered as a classical field, its intensity is given
by ILO = aLOa∗LO, with the classical amplitude aLO. Alice sends signal pulses and LO pulses
through a lossy channel with a transmission T . On Bob side, the LO pulse interferes with
the signal pulse on a beam splitter of a homodyne detector. Before the beam splitter, the
quantum field of the signal pulse (Es(t)) and LO pulse (ELO(t)) are give by:

Ês(t) =
√

T âsei(2πt f (t)+ϕ)+
√

1−T â0, (5.6)

ÊLO(t) = aLOei(2π(t+τ) f (t+τ)), (5.7)

in which f (t) is the laser’s frequency (Eq.(5.3)), t is a time variable and â0 is the annihilation
operator for a vacuum mode. Due to the different lengths between LO path and signal path,
a time delay τ between signal and LO pulse is induced. The phase modulator is placed on
the LO path at Bob, which enables him to control the phase ϕ between LO and signal pulse.

The two fields, Ês(t) and ÊLO(t), then interfere on the beam splitter and the two pho-
todiodes (PD) transform the optical fields into photocurrents. In practice, the 50/50 beam-
splitter has a small deviation ε with its transmission and the reflection ratio as tbs =

√
1/2+ ε

and rbs =
√

1/2− ε . After the beam splitter, the loss and the lengths of the two optical paths
are not identical but with small deviations. By considering these facts, the output fields of
PD 1 and PD 2 are given by:

Ê1(t) =
√

η [
√

T (rbsÊs(t)+ tbsELO(t))+1/
√

2
√

1−T â′0]+
√

1−η â+0 , (5.8)

Ê2(t + τ
′) =

√
η [
√

T (tbsÊs(t + τ
′)− rbsELO(t + τ

′))+1/
√

2
√

1−T â′0]+
√

1−η â−0 ,
(5.9)

in which τ ′ is the time delay between E1(t) and E2(t), â′0 is associated to the vacuum mode of
quadrature operator X ′

0 introduced on the lossy channel and a±0 is associated to the vacuum
mode of quadrature operator X ′′

0 due to the loss of the detector, with the variance Var(X ′
0) =

Var(X
′′
0 ) = N0. Here, we assume η1 ≈ η2 = η and ∆η is a small value. As we shall see,
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∆η only has an impact in case the strong LO intensity ILO. The photocurrent of homodyne
detection is the subtraction between two intensities I1 = Ê1Ê∗

1 and I2 = Ê2Ê∗
2 :

∆I(t) = I1(t)− I2(t), (5.10)

The final output of homodyne detection is actually a voltage signal, which is an integration
of photocurrent over the pulse duration (tp = 100ns):

∆UHD =
1
tp

∫ tp

0
∆I(t)dt. (5.11)

Such operation is carried out by a charge amplifier. By taking Eq. (5.5), Eq. (5.8) and Eq.
(5.9) into equation above, we can deduce the output of the homodyne detection:

∆UHD = ηT ILO(∆η/η +2ε)+

√
ηT ILO√

N0
[
√

ηT (XA
1
tp

∫ tp

0
A(t)dt +X0)

+
√

ηT (PA
1
tp

∫ tp

0
B(t)dt +P0)+

√
η
√

1−T X0 +
√

1−ηX ′
0]+Xele,

(5.12)

in which Xele is the electronics noise of the detector, Note that the coherent state encoding
of Alice ”adds” a vacuum mode (X0,P0). A(t) and B(t) are given by:

A(t) = 0.5(cosθ1(t)+ cosθ2(t)), (5.13)

B(t) = 0.5(sinθ1(t)+ sinθ2(t)), (5.14)

where θ1(t) and θ1(t) are both functions of t:

θ1(t) = [ϕ +2πt f (t)−2π(t + τ) f (t + τ)], (5.15)

θ2(t) = [ϕ +2π(t + τ
′) f (t + τ)−2π(t + τ + τ

′) f (t + τ + τ
′)]. (5.16)

If we moreover use the relations: cosθ1+cosθ2 = 2cos θ1+θ2
2 cos θ1−θ2

2 and sinθ1+sinθ2 =

2sin θ1+θ2
2 cos θ1−θ2

2 for A(t) and B(t), Eq.(5.12) can be transformed into:

∆UHD =
1
tp

∫ tp

0
∆I(t)dt

= ηT ILO(∆η/η +2ε)+

√
ηT ILO√

N0
[
√

ηT (Xϕ +X0)+
√

η
√

1−T X ′
0 +
√

1−ηX ′′
0 ]+X ′

ele,

(5.17)
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in which Xϕ is a function of time t, and is the quadrature measurement output of Bob:

Xϕ =
1
tp

∫ tp

0
cos[πa2(t,τ,τ ′)]{(XA cos[ϕ +πa1(t,τ,τ ′)]+PA sin[ϕ +πa1(t,τ,τ ′)]}dt,

(5.18)

whose value is dependent on ϕ with

a1(t,τ,τ ′) = t f (t)+(τ ′− τ) f (t + τ)− (t + τ + τ
′) f (t + τ + τ

′), (5.19)

a2(t,τ,τ ′) = t f (t)− (2t + τ + τ
′) f (t + τ)+(t + τ + τ

′) f (t + τ + τ
′). (5.20)

From Eq.(5.17), we can observe that, ideally, if there are no imperfections (ε = 0,τ =

0,τ ′ = 0), LO intensity can be subtracted absolutely, and Bob can measure the quadrature
XA or PA (proportional to LO intensity ILO) by measuring X quadrature with ϕ = 0 or P
quadrature with ϕ = π/2. However if we take the imperfections into account, systemic
errors will be introduced that will impact the performance of CV QKD: (1) if the imbalance
part ∆η/η +2ε ̸= 0 then LO intensity won’t be eliminated totally, and it will contribute to
the excess noise; (2) if the time delays τ,τ ′ ̸= 0, this will induce excess noise together due
to the chirp of Alice’s laser source.

In order to analyze these impacts on the excess noise, we need to study Bob’s quadra-
ture output. If we scale the homodyne output by

√
ηT ILO/N0, then we can express Bob’s

measurement result as:

XB =
√

ηT N0/ILOILO(∆η/η +2ε)+
√

ηT (Xϕ +X0)+
√

η
√

1−T X ′
0 +
√

1−ηX ′′
0 +Xele,

(5.21)

where XB is consistent with Eq.(4.5) but here we have taken the impact of imperfections into
account. If we take the shot noise as N0 = 1, Bob’s variance is given by:

Var(XB) = ⟨(XB −⟨XB⟩)2⟩
= ηT (∆η/η +2ε)2ILO(⟨(ILO −⟨ILO⟩)2⟩/I2

LO)+ηT [Var(Xϕ)+1]+η(1−T )+(1−η)+ vele

= ηT (∆η/η +2ε)2ILO(⟨(ILO −⟨ILO⟩)2⟩/I2
LO)+ηTVar(Xϕ)+1+ vele,

(5.22)

In which, fLO =
√

⟨(ILO −⟨ILO⟩t0)
2⟩t0/ILO is known as the LO intensity fluctuation over a

time t0, in this case t0 = tp. If such fluctuation can be neglected, the imbalance part ∆η/η +

2ε only changes the mean value of XB. However, if fLO is large, intensity fluctuations will
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(a) (b)

Fig. 5.2 (a) CMRR vs imbalance of beam splitter (ε). (b) CMRR vs efficiency deviation
(∆η/η).

contribute to the excess noise, which is the first term in Eq.(5.22): ILO(∆η/η + 2ε)2 f 2
LO.

In order to quantify the leakage of the LO on the homodyne output (or the balance of the
homodyne detection), we introduce the common mode rejection ratio (CMRR) which is
defined as: CMRR = −20log10(2δ ), where δ = ∆η/η +2ε . In Fig.5.2, we independently
change the values of ε (Fig.5.2(a)) and ∆η/η (Fig.5.2(b)) and we can observe that CMRR
reduces with the increase of these two values. To achieve a balanced homodyne detection,
one needs to adjust both ε and ∆η/η to reach a high value of CMRR. In order to evaluate the
impact of CMRR and LO intensity fluctuation on the secret key rate, we show the relation
between secret key rate and CMRR in Fig.5.3 for two intensity fluctuation ratios: fLO =

1%,5%, with the assumption that ILO contains 108 photons. From Fig.5.3, we can conclude
that if the LO intensity fluctuations are large, then the requirements on the CMMR are more
strict. For example, with an intensity fluctuation ratio of 5%, it requires more than 80 dB of
CMRR to maintain a positive secret key rate, in contrast, if the intensity fluctuation ratio is
1% then 60 dB CMRR is high enough to achieve such key rate.

We now consider the imperfection related to the imbalance of the optical paths which
induces a time delay between signal pulse and LO pulse (τ) and a time delay between two
optical pulses after the beam splitter (τ ′). As we can see from Eq.(5.18), due to the chirp
of the emitting laser f (t) and time delays τ,τ ′, a phase variation πa1(t,τ,τ ′) is introduced
and a factor cos[a2(t,τ,τ ′)] is introduced on the quadrature measurement Xϕ . It is obvious
to see that the factor cos[a2(t,τ,τ ′)] reduces the quadrature value of Xϕ in Eq.(5.18), which
further reduces the correlation between Alice and Bob quadratures. We will consider the
case where a2(t,τ,τ ′) is very small and close to zero such that cos[a2(t,τ,τ ′)] ≃ 1 and
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Fig. 5.3 Secret key rate (collective attack) versus CMRR. Alice’s variance VA = 20, Bob’s
efficiency η = 0.55, excess noise of electronics vele = 0.015, excess noise from other con-
tributions ξ = 0.01, reconciliation efficiency β = 0.9, channel transmission T = 0.38.

make this approximation in the following analysis.

Since the phase variation πa1(t,τ,τ ′) depends on the time t, the homodyne output con-
sists of a time-average of Xϕ over the pulse duration. By calculating the integral (Eq.(5.17))
with realistic parameters, the relation between homodyne output ∆UHD and time delays τ is
shown in Fig.5.4 (a). As we can see, the deviation of the homodyne output becomes obvious
when τ increases. The phase variation even induces oscillation on the output signal when τ

is larger than 0.5 ns. Meanwhile, we have also considered taking τ ′ = 1 ns for each curve in
Fig.5.4 (a). However, there are no obvious differences between the curves with τ ′ and with-
out τ ′. Thus we don’t show the curves with time delay τ ′. And we can conclude that phase
variation is more sensitive to the imbalance of optical paths before the beam splitter than
to the imbalance of optical paths after the beam splitter. The phase variation πa1(t,τ,τ ′)
induces homodyne signal oscillation and the corresponding quadrature measurement Xϕ is
also influenced. Such phase variation in fact reduces Bob’s measured variance. We plot the
relation between Bob’s variance and time delay τ in Fig.5.4 (b). In order to show the impact
of the time delay, we set channel transmission (T ) and efficiency of homodyne detection η

to 1 and the excess noise as ξ = 0. As we can see, even 0.1 ns time delay (2 cm in fiber
length) will reduce the measured variance by almost one half. As a consequence, channel
transmission estimation is reduced. On the other hand, the phase variation πa1(t,τ,τ ′) also
introduces excess noise, which is known as the phase noise. In order to simplify the calcu-
lation of phase noise, approximately, we can assume the variation of laser’s frequency with
time is upper bounded by the change due to the chirp of the laser during the pulse width
duration (τp =100 ns), where f (t), f (t + τ), f (t + τ + τ ′) ∼ ∆ fch. In our case, considering
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Fig. 5.4 (a) The output signal after charge amplifier of homodyne detection with different
time delay (τ =0, 0.05 ns, 0.1 ns, 0.5 ns, 1 ns) between signal and LO pulse before beam
splitter. (b) Bob’s variance vs time delay between signal pulse and LO pulse before beam
splitter. Here we assume Alice’s variance VA = 20, electronic noise of homodyne detection
vele = 0.01, LO pulse duration is tp = 100 ns, channel transmission T = 1 efficiency of
homodyne detection η = 1, excess noise ξ = 0.

the time delays are much smaller than the pulse duration where τ,τ ′ ≪ tp and using the
wavelength empirical formula (Eq.(5.2)), we can deduce ∆ fch = 3.1 GHz with τp =100 ns.
Then we can simplify the terms a1 and a2 in Xϕ (Eq.(5.18)): a1 ≃ −2τ∆ fch and a2 ≃ 0
which are both independent of time t. Eq.(5.18) can be further simplified to:

Xϕ = XA cos(ϕ −2πτ∆ fch)+PA sin(ϕ −2πτ∆ fch), (5.23)

Thus the phase variation on ϕ is given by ∆φ = πa1 =−2πτ∆ fch. Provided with Eq.(5.23),
we can estimate the excess noise due to the phase variation ∆φ . If we set ϕ = 0 in Eq.(5.23)
and assume ∆φ << 1 (which is a realistic condition), Eq.(5.23) can be approximately turned
into :

X ′
ϕ=0 = XA cos(∆φ)+PA sin(∆φ)≃ XA +PA∆φ , (5.24)

and the excess noise due to ∆φ can be estimated by:

ξ∆φ = ⟨(X ′
ϕ=0 −XA)

2⟩ ≃ ⟨(XA +PA∆φ −XA)
2⟩= ⟨P2

A⟩∆φ
2 =VA∆φ

2 (5.25)

≃ 2πτ∆ fchVA. (5.26)

In fact such result also agrees with the analysis in [139], where if we consider a time t for
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the phase variation ∆θ(t), then the corresponding excess noise can be given by:

ξ∆θ(t) =VA⟨(∆θ(t))2⟩, (5.27)

in which VA is Alice’ modulation variance, ∆θ(t) is the phase variation ∆θ(t) respect to a
time t. According to [191], ∆θ(t) can be approximately treated as a Gaussian variable with
a zero mean and its variance can be given by:

⟨(∆θ(t))2⟩= 2t
τc
. (5.28)

in which tc is the coherence time of the laser and, in our case, it can be determined by [191]:

τc ≃
1

π∆ fch
. (5.29)

If we moreover consider the time between t = 0 and t = τ , we can deduce the excess noise
due to the phase variation:

ξ∆φ ≃ 2πτ∆ fchVA. (5.30)

For ∆ fch = 3.1 GHz, if we want to limit the phase noise below 0.1N0, the time delay τ

needs to be lower than 0.002 ns for a modulation variance VA = 5N0. In Fig.5.5, we show
such relation between phase noise and time delay τ in our case: ∆ fch1 = 3.1 GHz, and in

Fig. 5.5 Excess noise due to phase variation ξ∆φ versus time delay τ between signal pulse
and LO pulse. Alice’s variance VA = 5. Lase linewidth ∆ fch1 = 3.1 GHz,∆ fch2 = 500 MHz.
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comparison to a laser with less chirp effect ∆ fch2 = 500 MHz. We can observe that the
excess noise due to the phase variation can be reduced by balancing the optical paths of
signal and LO; by reducing the chirp effect of the laser source. Note that such phase noise
can be further reduced by using phase compensation techniques which was introduced in
[35].

In this section, we have studied two kinds of imperfections: (1) The first kind of im-
perfections, the imbalance factor (ε,∆η) of the homodyne detection results LO intensity
leakage on homodyne output signals, which may induce excess noise if the LO intensity
fluctuation is large. (2) The second kind of imperfections such as time delays (τ,τ ′) and
chirp of laser source that induce phase variation on Bob’s quadrature measurement, which
can induce excess noise and reduce the channel transmission estimation. Such observations
agree with the analysis in [65], as we shall see in the section 5.3.2 (Eq.(5.39)).

5.2 Deconvolution method: Correct overlapping pulses

5.2.1 Motivation: finite bandwidth of homodyne detection

In order to integrate QKD technology with practical applications, researchers have re-
cently made great efforts to increase the secure distance and the key generation rate. High
speed quantum key distribution is becoming a hot topic. In discrete variable QKD, the high-
est key rate record is 1 Mbit/s over 50 km [27]. CV QKD using homodyne detection is
a good candidate to perform high speed QKD. Since, in principle, the homodyne detectors
used in CV QKD have no difference from the ones used in classical coherent communication
system. However, as we mentioned, GMCS protocol requires a very low electronic noise
and shot noise limited homodyne detector to effectively detect Eve’s attack. The homodyne
detectors used in classical communication system usually cannot meet such requirements,
since they usually has high bandwidth but also high electronic noise, which are not suitable
for CV QKD. In the design of a shot noise limited homodyne detector, it’s challenging to
achieve very low electronics noise and large bandwidth at same time. In [103], electronic
noise is around 1% of the shot noise with a bandwidth around 2 MHz. Recently, a 300
MHz bandwidth detector was experimentally tested [28] and the level of shot noise is 14 dB
higher than the electronic noise.

Intuitively, one can increase the secret key rate of CV QKD by raising the clock repeti-
tion rate, since the secret key rate is proportional to its operation rate. However, in practice,
due to the finite bandwidth of a practical homodyne detection, when the laser pulse rep-
etition rate becomes close to the bandwidth of the homodyne detection, a non-negligible
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Fig. 5.6 Secret key rate (collective attack) versus repetition rate. Alice’s variance VA = 20,
Bob’s efficiency η = 0.55, excess noise of electronics vele = 0.015, excess noise from other
contributions ξ = 0.01, reconciliation efficiency β = 0.9, channel transmission T = 0.38.

overlap between adjacent electrical pulses at the output of the homodyne detection will be
expected. If the electrical pulses have overlap in the time domain, the measured quadrature
value contains contributions from adjacent pulses. Such overlap will further contribute to
excess noises in GMCS protocol. The estimation of excess noise due to overlapping pulses
has been analyzed in [16], where the excess noise contributed by electrical pulses overlap
(from the two adjacent pulses) is:

ξoverlap = 2(VA +1)× e−
B2

R2 . (5.31)

In which R is the laser repetition rate and B is the bandwidth of homodyne detection. The
relation between the electrical pulse width τ and bandwidth B is given by τ ∼ 1/B. Such
relation is verified by the experimental tests [16]. From Eq.(5.31), we can see that the in-
crease of the repetition rate results additional excess noise, which lowers the secret key
generation. Our homodyne detector has a bandwidth around few MHz. In order to evaluate
the excess noise due to the overlapping effect for a given bandwidth, we assume that two de-
tectors have bandwidths as 10 MHz and 20 MHz respectively. The secret key rate increases
proportionally to the repetition rate. However, due to the finite bandwidth of the detector,
when the repetition rate reaches a certain value, the overlapping effect becomes important
and contributes to excess noise, which will further lower secret key rate. Such behavior
can be observed in Fig.5.6, where we can see that secret key rate (under collective attack)
significantly increases when the detector bandwidth increases. The simulation parameters
are given in the caption and all the units are normalized in shot noise units.
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Fig. 5.7 Pulse width with different values of τ .

Fortunately, excess noises dues to the overlapping between adjacent pulses can be further
reduced by deconvolution. In the following part, we are going to study such method.

5.2.2 Deconvolution principle

The details of the deconvolution method have been studied in [78] for the homodyne
detection. Briefly, in this deconvolution method, one first needs to quantify the overlapping
effects that neighboring pulses have on each other. Correlation between two quadrature
measurements will describe the influence from the neighboring pulses. The correlations
between the i quadrature measurement and i+ j th quadrature measurement is defined by:

C j = ⟨QiQi+ j⟩ (5.32)

which is averaged over i. Meanwhile, Qi is the i th quadrature measurement associated
with the ith pulse. Hence for a specific measurement Qi we can find all the correlations (or
influence) from i th to i+ j th pulse. Since for a single pulse, the influences come from
not only one neighboring pulse but a series of following pulses. Then one can correct the
quadrature according to the correlation C j and the corresponding quadrature measurement:

Q′
i = Qi −

∞

∑
j

C jQ j, (5.33)

in which Q′
i is the quadrature after subtracting the effects from neighboring pulses: the

quadrature corrected by the deconvolution. After doing this, one can reduce the influence
from overlapping effects. This is so called deconvolution, more details can be found in [78].
The relation between the electrical pulse width τ and the homodyne detection bandwidth B
depends on the electrical pulse shape. Here we assume a exponential decay function (Eq.
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Fig. 5.8 First 1000 pulses vs Time unit. (a) Initial pulses. (b) Modulated pulse with pulse
shape and electronic noise.

(5.34)) to describe the electrical pulse shape.

S(t) =
1
τ

e−
t
τ , (5.34)

in which τ value is the discharging time of a peak pulse which relates to the capacitor
and resistor in the electronics design. We also vary the pulse width τ , Fig (5.7) shows the
shape of the pulse with different values of τ . What matters in this overlapping problem is
the ratio between the repetition period and the pulse width τ . If the pulse width is larger
than the repetition period T of the pulses train, neighboring pulses will overlap. To study
this problem, we set the repetition period of pulse train T = 1 time unit, while we set τ to
multiple times of the period. In this simulation, we consider τ = 2 which means the pulse
width is two times the period, this width is enough to observe overlapping effect.

5.2.3 Proof of principle: deconvolution for homodyne detection in CV
QKD

In this section, we present a proof of principle simulation to demonstrate the deconvolu-
tion method that can be potentially used in the homodyne detection. We used the Simulink
set-up and programs in Matlab to realize the deconvolution demonstration. In the following
steps, we first explain how we generate the overlapping pulses, then perform the deconvo-
lution. At last, we evaluate the results.
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Fig. 5.9 First 100 pulses vs Time unit. (a) Initial pulses. (b) Sampled pulses from Fig.5.(b).
(c) Filtered pulses by using deconvolution. (d) Output pulse with gate decision.
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First we generate a train of pulses with a binary distribution as initial data, each pulse
is a Dirac function with an amplitudes either 1 or -1. Unlike the GMCS protocol using
Gaussian modulation, here we only consider a binary modulation as a proof of principle.This
corresponds to a binary modulation CV QKD protocol [195], which we have introduced in
Chapter 4. Here we use the amplitudes 1 and -1 to designate with the coherent states |α⟩
and |−α⟩, where the sign indicates the phase encoding of the states.
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We then apply an exponential decay to each pulse. Two adjacent pulses can have some
overlap due to their widths. Additionally, we apply a thermal noise with variance of 0.005
to the curves, in order to simulate the electronic noise of the detector. Such modulated
pulses can be seen as the received quadrature signals, here we consider a zero loss channel
( Tch = 1) and a detector with perfect efficiency (η = 1). Fig.5.8 shows first 1000 initial
pulses and modulated pulses with a shape described by Eq. (5.34).

We sample the modulated pulses at a given frequency and make a gate decision on the
sampled data, depending whether its value is below zero (output -1) or above zero (output
1). Due to the overlap, there could be errors at the output compared to the initial data. We
then apply the deconvolution method as mentioned before to the sampled pulses.

We illustrate this process in Fig.5.9, where the first 100 initial pulses with binary mod-
ulation are shown in Fig.5.9 (a). In Fig.5.9 (b), the 100 sampled pulses are taken from the
received signal Fig.5.8(b). Fig.5.9 (c) displaces the filtered pulses with the deconvolution
technique. If we compare the individual pulse in Fig.5.9 (b) and Fig.5.9 (c), we can see that
the errors introduced by overlapping effect have been reduced thanks to the deconvolution
(Fig.5.8 (c)). Fig.5.9 (d) is the final output pulses with a gate decision, they represent the
pulses after the deconvolution and will be compared with the initial pulses to evaluate how
many errors have been corrected.

The error ratio is computed from 10000 pulses and has been evaluated for different ratios
τ/T for pulses that have been processed with or without deconvolution in Fig.5.10. We can
see from this figure, after the deconvolution, it is very obvious that the error ratio has been
significantly improved, i.e. for a pulse width equal to twice the period τ/T = 2, the error
rate is reduced from 11.73% without deconvolution to 0.2 % with deconvolution. It means
that only 2 errors appear in the total of 10000 pulse after deconvolution.

In the end we show the improvement of the deconvolution method with difference pulse
width-repetition period ratios. As we can see from Fig.5.10, the improvement of error ratio
with deconvolution (distance between the blue and the red curve) is significant for τ/T <

2.5, with almost all the errors eliminated. However, the efficiency of such deconvolution
technique is limited: when the pulse width is much lager than the repetition period. i.e.,
τ/T = 4, deconvolution can only partially correct the errors, while it still remains lots of
errors due to the overlapping effects.

In this subsection, we have shown the feasibility of the deconvolution method using a
simulation. This shows that it is possible to correct the effect of overlap pulses to reduce
the error rate and further reduce the excess noise in a discrete modulation CV QKD pro-
tocol [195]. Further study need be done to extend this deconvolution method to Gaussian
modulation protocols and integrate it into practical set up.
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5.3 Other possible imperfections

In the implementation of the GMCS protocol, besides the imperfections of Bob’s ho-
modyne detection, there are other imperfections that can influence the security and the per-
formance. In this section, we discuss two device imperfections that can affect Alice based
on the analysis of Jouguet et al. [65]. The first one concerns modulation imperfection: in
practice, the theoretical Gaussian modulation can be only approximately approached by a
discrete modulation. The second one concerns the phase noise that can be introduced in the
preparation process of the coherent states.

5.3.1 Imperfect Gaussian modulation

In Gaussian protocols, ideally, for each signal, Alice prepares the quadratures X ,P ∼
N (0,VA) of the coherent state |X + iP⟩ centered on the point (X ,P) in phase space. The
random variable X or P is supposed to follow a perfect Gaussian distribution, which is
continuous and unbounded, and requires an infinite amount of randomness. However, in
practice, it is impossible to generate a perfect Gaussian modulation for the quadratures X
and P due to the limitations of Alice’s hardware and software. First, the analog-to-digital
converters, which drive the modulators, generate only discrete voltages with a typical bit
depth of 10. Second, amplitude modulator only works over a finite range of values. Third,
the speed of the quantum random number generator is limited (for example, 16 Mbit/s for
Quantis from ID Quantique). Due to these reasons, the coherent state that Alice actually
prepares for the ideal value (X ,P) is actually centered on (X ′,P′), where (X ′,P′) is a point
on a finite grid, and it is an approximation value for the ideal value (X ,P).

We thus need to compare the quality of the modulation that can be realized in practice
with the theoretical perfect Gaussian modulation. This modulation implementation can im-
pact the practical security of a CV QKD setup. In theory, from Eve’s view, the state that
Alice sends to Bob is a Gaussian mixture of the coherent states (thermal state). Hence if
Eve can not tell the difference between a thermal state and the state that is prepared by a dis-
crete modulation in practice, then the security of the practical protocol is not compromised.
We can study this problem with ε-secure analysis [148]: considering the usual protocol with
perfect Gaussian modulation preparation is ε-secure, and that the trace distance between the
ideal state (with perfect Gaussian modulation) and the actual state (with discrete modulation
approximation) is bounded by εprep, then the practical protocol with approximated modu-
lation is (ε + εprep)-secure. To ensure the security of the practical protocol, it is enough to
make sure εprep is small enough, where εprep = 10−10 can be a realistic value in a practical
implementation.
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According to the analysis in [65], there are mainly two ways of discretizations for the
Gaussian modulation: Cartesian and Polar grid. In order to analyze the quality of the Gaus-
sian modulation realized by these two methods, one can compute the trace distance between
the ideal thermal state ρ and the state prepared in practice σ for each case. It is moreover
shown that based on the gentle measurement lemma [127, 186], the trace distance ||ρ −σ ||1
can be expressed as:

||ρ −σ || ≤ Rρ +∆diag +2∆nondiag +2
√

Rσ . (5.35)

in which Rρ ,∆diag,∆nondiag and
√

Rσ are parameters whose values depend on the particular
method of preparing Gaussian modulation.

Under the Cartesian grid approximation, the coordinates are discretized uniformly with
a square grid [−N,N]× [−N,N]. The discretized values for the vertical and horizontal di-
rection in phase space can be written as: xk = pk = δk, in which δ = A

N is the predetermined
discretization step. Parameter A determines the truncated range of the actual distribution
that is prepared in practice. Once A is fixed, N then determines the discretization step.
With these parameters fixed, one can express the prepared state σc under the Cartesian grid
approximation and moreover calculate the trace distance ||ρ −σc||.

The authors give an numerical example to show how fine the grid need to be to have
a good approximation. The parameters are chosen as: VA = 20, A = 7

√
VA and N = 4A,

in which A = 7
√

VA means that the actual Gaussian distribution is cut off at 7 times the
standard deviations

√
VA with VA as modulation variance; N = 4A means that the distribution

is discretized in steps of δ = 1/4 of shot noise units. For VA = 20, it requires 2× 4× 7×
√

VA + 1 = 253 discretization steps, which is, an 8-bit discretization grid. By taking these
values into account, the authors shows that ||ρ −σc|| ≤ 3.31×10−11, which means the trace
distance is bounded by εprep = 3.31×10−11 and can be considered sufficiently small.

As we have seen in section 4.2.2, in the implementation of the GMCS protocol, the
Gaussian modulation is realized using a phase and an amplitude modulator and can naturally
be analyzed in polar coordinates. It is also important to study how much discretization is
required in polar coordinates to obtain a good approximation of an ideal thermal state ρ .
Under the polar grid approximation, the coordinates are discretized uniformly on [0,R]×
[0,2π], where the discretized value of the amplitude and phase in polar coordinates can be
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written as:

rk =

(
k+

1
2

)
R
K
,k ∈ [0,K −1], (5.36)

θl =

(
l +

1
2

)
2π

L
, l ∈ [0,L−1]. (5.37)

Based on such discretization, one can express the prepared state σp and calculate the trace
distance ||ρ −σp||. An numerical example is also given by the authors, where for VA = 20,
L = 2000 and R = 7

√
VA, it requires a 17-bit discretization of the amplitude to achieve

εprep ≤ 10−10. It fuhrer needs 11 bits for the angle and 15.5 bits for the modulus on average
to draw values corresponding to this discretization. It shows that in Polar approximation, it
requires more discretization steps to achieve the same quality of modulation compared to
the Cartesian grid approximation.

5.3.2 Phase noises from the state preparation

Beside the discrete modulation approximation, another kind of imperfection need to be
considered on Alice side: some phase noise can be introduced when Alice prepares the
quadrature of the coherent state. To be clear, the phase noise means the excess noise due
to the phase variation. This kind of noise is unavoidable since it is due to the technical
imperfection. A typical value of phase noise variance is around 0.01N0 [105]. Since phase
noise is introduced on Alice side, such noise will degrade the mutual information between
Alice and Bob IAB. However, phase noise won’t increase the knowledge of Eve on Bob’s
measurement in case of reverse reconciliation: the Holevo bound of Eve’s information χBE

in the case of collective attack (Eq.(4.53)). χBE quantifies the information that Eve can
obtain on the raw key which does not depended on phase noise. This would however not be
true under direct reconciliation where Eve’s information depends on Alice’s data.

Since phase noise is a local noise on Alice’s side, we can consider in a realistic model
that the phase noise can be trusted,i.e not given to Eve. This is in contrast to the paranoid
model where all noise sources are supposed to be under the control of Eve. As we have seen
in Chapter 4, a realistic model can also be applied on the detection stage in CV QKD, where
the electronic noise and efficiency of the detector are calibrated before the protocol. If phase
noise can be calibrated correctly, it can be subtracted from the excess noise estimation to
compute Eve’s information, which can lead to a better secret key rates in practice. However,
the calibration of the phase noise need to be careful and precise, since if the phase noise
is overestimated, then the estimation of excess noise will be underestimated, which could
open opportunities to Eve to compromise the security.
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To model the phase noise, we refer to the analysis of Jouguet et al. [65] and use the EB
CV QKD scheme (section.4.5.1 ) to apply a phase rotation U(θ) = exp(iθa†a) on Alice’s
state with a random phase θ with its probability distribution p(θ). Alice then actually
prepares a state with a noisy phase: ρα =

∫
U(θ)|α⟩⟨α|U(θ)† p(θ)dθ instead of preparing

the coherent state |α⟩. The coherent state affected by the phase noise is a mixture of states
with random phase shifts θ . Alice then sends this state to Bob through the quantum channel.
On Bob side, it is assumed that Bob performs a perfect homodyne detection (η = 1 and
vele = 0) and all the noise contribution are from the phase noise. By considering this things,
the covariance matrix shared by Alice and Bob can be given as:

ΓAB =

[
VA12

√
κTVAσz√

κTVAσz (TVA +N0 +T ξph)12

]
. (5.38)

Where σz = diag(1,−1) and κ = (
∫

p(θ)cosθdθ)2 = (E[cosθ ])2, is the factor due to the
random shifts θ , it corresponds to the square of the expectation value of cosθ .

For the sake of the security in practical CV QKD system, we need to analyze the impact
of the phase noise on parameter estimation. If we take phase noise into account, the channel
transmission and the excess noise estimation become:

T̂θ = T κ,

ξ̂θ = ξph = (1−κ)VA.
(5.39)

As we can see from Eq.(5.39), the factor κ will not only introduce extra excess noise,
but also reduce the transmission estimation. κ is a value close to 1 with a small deviation
due to the phase rotation operation, its impact on the excess noise also depends on the
modulation variance VA. In practice, we moreover need to quantify the value of κ , so that
we can bound the phase noise due to the laser source. An example was shown in [65] where
the value of E1 = E[sin2

θ ] can be experimentally measured, where E[sin2
θ ] = 3×10−3N0

for a modulation variance VA = 2.5N0. The phase noise is small such that sinθ ≃ θ and
cosθ ≃ 1−2/θ 2. Thus we can further determine:

E[cosθ ]≃ E[1−2/θ
2]≃ 1−E1/2. (5.40)

By taking all these facts into account, the phase noise is 0.0075N0 with VA = 2.5N0. Accord-
ing to [65], such amount of noise can be considered as the trusted noise that is calibrated
by Alice and Bob, so that the final secret key rate can be improved in practice. In the next
subsection, we will find out the origin of the phase noise and study it from another angle.



Chapter 6

Side channel attacks in practical
quantum key distribution systems

In the security proof of QKD, it is assumed that Eve can use every possible measure
that is allowed by quantum mechanics to attack the open quantum channel, even if the
technologies do not exist today. However, the security proof doesn’t take account into all
the implementation imperfections, which may open loopholes to Eve to compromise the
practical security.

In recent years, quantum hacking or side channel attacks aiming on the QKD imple-
mentations has become a hot topic in quantum cryptography field. It is one of the most
important challenges that QKD face to move forward to widely practical use. The concept
of side channel attack is transverse and also applies to classical cryptography. Thus in this
chapter, we start with a brief introduction of side channel attacks in classical cryptography.
Then we give a brief overlook on the side channel attacks in discrete variable QKD. At last,
we present detailedly and study various side channel attacks in continuous variable QKD;
we also discusses possible countermeasures against these attacks.

6.1 Side channel attacks in classical cryptography

In classical cryptography, side channel attacks concerns the attacks on a cryptographic
system which can be used to obtain information by exploiting physical properties of the
system. Compared to mathematical cryptanalysis which focuses on the algorithm and pro-
tocol, side channel attack are usually specific to a given implementation, and for the same
reason, are very critical to the practical security of real implementations. Smart cards and
field-programmable gate array (FPGA) are often considered in side channel attacks, since
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they often constitute the key elements of embedded system.
Here we give a glance on the different methods used in side channel attacks. A more

detailed presentations of side channel attacks can be found in [75, 196]. There are several
ways to classify the side channel attacks:

1. Considering the interference with the target system operation, side channel attacks
can be divided into passive attacks and active attacks. Passive attacks only observe
the target system’s process, but do not disturb its operation. In contrast, active attacks
influence the target system’s behavior, such influence would be observed from the
outside world, but may not be detected by the system. Usually, the target system
works abnormally under active attacks.

2. Depending on the physical contact with the components of the target system, side
channel attacks can be sorted as invasive attacks and non-invasive attacks. In invasive
attacks, one needs to depackage the target module and access directly its internal
components; for example, one can connect a probing needle to the data bus of a
cryptographic module to observe the data transfer. On the other hand, non-invasive
attacks externally exploit useful information which is not intentionally leaked from
the system, the emission can be in the form of running time, power consumption,
electromagnetic radiation etc.

3. Depending on the methods used in analyzing the sampled data, side channel attacks
can be grouped in simple side channel attack and differential side channel attack.
Simple side channel attack can extract the secret key directly from the sampled data
of a single trace acquisition from the side channel. This kind of attack is based on a
straightforward correlation between the secret information and side channel informa-
tion. However, in particular, because too much noise appears in the measurements,
the connection between leakage and secret keys is usually not obvious. In such case
differential side channel attack is required. By using statistical analysis on several
side channel acquisition traces, differential side channel attack can be used to guess
the secret key even when the correlation between the side-channel leakage and the
secret key is weak.

Note that the three axes above are orthogonal. The classification of a given side channel
attack depends on the specific methods the attack uses. Some known side channel attack
methods have broken the security of the hardware or software implementations in crypto-
graphic systems such as block ciphers (DES, AES, Camellia, etc.), public key ciphers (RSA
type ciphers, elliptic curve crypto-system, etc.) and stream cipher. Others have also been
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used to break the security of implementations of signature schemes, message authentication
code schemes and even networking systems. Examples of typical side channel attacks are
listed below:

1. Timing attacks: The idea of such attack is to exploit the variance of processing time
during a cryptographic operation. The attacker can extract the secret parameters by
measuring the running time of each process in a cryptographic system. This attack
was first proposed by Kocher [74] against a RSA implementation.

2. Power analysis attacks: The power consumption of a cryptographic device can also
provide valuable information about the system operation and relevant secret parame-
ters. Among different side channel attacks, power analysis attacks have been proven
to be one of the most powerful attacks thanks to its efficiency and simplicity to im-
plement. Various power analysis attacks have been successfully demonstrated against
symmetric and public key ciphers. Power analysis attacks can be further divided into
simple and differential power analysis, in which the simple ones extract the secret
keys directly from the power trace, while the differential ones looks for statistical
correlation between the power consumption and secret keys.

3. Electromagnetic analysis attacks: Each component of any electrical devices usually
emits electromagnetic radiation when the device is under operation. An adversary can
observe these emissions and find their relations with the underlying computation or
data, and deduce the secret parameters. Electromagnetic side channels can often be
used when power side-channels are unavailable. Such attacks can be also performed
as simple or differential ones.

4. Acoustic & visible light attack: The acoustic emanations is one of the first discov-
ered side channels. One of the primitive acoustic attacks (also as the first official
reported side channel attack) was reported by Wright [188]: MI5, the British intelli-
gence agency was trying to listen to the actions of a mechanical cipher machine used
by the Egyptian Embassy in London, in order to break the encryption. Recently, it has
been showed that the keyboard acoustic emanations can be used to learn English text
[197]. The visible lights may also lead to powerful side channels. For example, one
can recover the signal of a computer screen by detecting its reflection on a wall [77].

5. Fault induction attacks: A cryptographic system is assumed to operate in normal
conditions to ensure the security it provides. It has however been shown that hard-
ware faults and errors occurring can indeed lead to security breaks of cryptographic
modules. Such kind of attacks is known as fault induction attack. A fault induction
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attack usually consists two steps: fault injection and fault exploitation, where the dif-
ficulty often lies in the latter step. In the first step, a fault is injected to the target
system, where an adversary can induce an inappropriate voltage, radiations and light
or change the temperature to disturb the normal operation. Note such fault injection
may damage the system which would result in permanent abnormal operation. In the
second step, one would try to learn secret parameters from the erroneous behavior
with the simple or differential analysis. As a good example, fault induction attack
has been demonstrated on digital signature crypto-system using RSA with Chinese
Remaindering Theorem (CRT) [70].

In the attack methods listed above, the first four ones are passive and typically non-invasive,
since the power consumption, electromagnetic radiations etc. may passively leak informa-
tion. Meanwhile, fault induction attacks are by essence active but not necessarily invasive.
On the other hand, an adversary can combine several side channel analysis and techniques
to achieve more powerful attacks.

6.2 Side channel attacks in discrete variable QKD systems

In quantum cryptography, side channel attacks can also aim at the practical implemen-
tations of QKD systems. However, the techniques mentioned above have not been exactly
implemented in quantum hacking demonstrations. However, the side channel techniques
from classical cryptography have inspired researchers in quantum cryptography to discover
powerful attack against practical implementation of QKD systems. One of the most pow-
erful attacks in discrete variable QKD system is known as blinding attack, which was first
proposed by Makarov [116].

Blinding attack

The blinding attack can be considered as a fault induction attack, it targets the sin-
gle photon detectors in DV QKD system. The original blinding attack [107, 116] on the
avalanche photodiode (APD), consists in two steps: (1) Eve shines a bright light to Bob’s
APD to force the APD works in the linear mode instead of Geiger mode. Thus the APD is
not sensitive to single photon anymore but acts as classical intensity photodiode. (2) Once
the APD is set in linear mode, Eve employs the intercept resend attack and resends tailored
light pulses to Bob. Such tailored pulses produce a ”click” in one of Bob’s detectors only
if Bob chooses the same basis as Eve’s re-prepared signal. As a consequence, Eve can con-
trol which detector of Bob generates a ”click” each time. This will lead Eve to know the
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secret key without disturbing the QKD system, in the sense that QBER has no noticeable
change. Blinding attack has been successfully demonstrated on a commercial QKD system
[107]. The applicability of the blinding attack is not limit to APD, but can be applied also to
superconducting nanowire single-photon detector (SNSPD) [109, 110]. The blinding attack
finally leads to a full field implementation of a perfect eavesdropper against a research sys-
tem [42]. This highlights the importance of the blinding attack in the practical security of
QKD. The early proposed countermeasure [192] have been shown that it was not sufficient
to defeat the blinding attack [108]. Recently efficient countermeasures against the blinding
attack has been proposed, where Bob randomly varies the efficiency of his single photon
detector [83, 97]. Following the idea of blinding attack, demonstrations have shown that
laser damage on APDs can also give opportunities to Eve for eavesdropping in QKD system
[13].

Besides the blinding attack, several other quantum hacking strategies have been also
proposed aiming at single photon detectors of DV QKD, such as time shift attack [137, 194],
after gate attack [185], detector dead time attack [184] and phase remapping attack [190].
We will not detail the principle of these attack here, one can refer to the corresponding
references for more information. Regarding these detector-based attacks, MDI QKD [100]
could be a potential solution which removes all side channels threats from the detector part.

Besides single photon detector, other components can also become the target of side
channel attacks, such as the laser source [166, 168], beam splitter [93], Faraday mirror
[164], modulators [43, 62]. All these attacks essentially exploit the imperfections of QKD
implementation, instead of using the sophisticated side channel analysis techniques such as
differential power analysis. However, these techniques would be helpful for quantum hack-
ers to discover more powerful attack, which would brings great challenge for the practical
security of QKD. In this thesis, I focus on the study of implementation imperfection and
related security issues of CV-QKD rather than side channel techniques in classical cryptog-
raphy. We now move to a detailed presentation of recent reported attacks on CV QKD.

6.3 Side channel attacks in continuous variable QKD sys-
tems

In CV QKD, parameter estimation is crucial for Alice and Bob to evaluate the security.
Most importantly, excess noise estimation is the reference for Alice and Bob to decide to
abort the protocol or proceed to key generation. Any flaw in the excess noise estimation can
possibly lead to serious security problem that Eve’s action is undiscovered, which can fully
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compromise the practical security of CV QKD. As we shall see, in most of the side channel
attacks of CV QKD, Eve’s action will influence the excess noise estimation in different
ways.

In this section, we present and study various side channel attacks in CV QKD. All these
attacks explorer the vulnerabilities of CV QKD implementations that allow Eve to break
the practical security, some of them can be even achieved with today’s technologies. We
first start with the intercept-resend attack [104], which is combined with most of the side
channel attacks in CV QKD. Then we present the shot noise calibration attacks [66, 111] and
wavelength attacks [56, 57, 112] which mainly target Gaussian modulation protocols [48,
179]. We also present the side channel attacks target discrete modulation QKD protocols
[195, 195], such as state-discrimination attack [58], single photon detector attack [165] and
Trojan horse attack [72].

Besides introducing the original ideas of each attack in Gaussian protocols, we have
moreover analyzed the relation between the excess noise estimation and the Eve’s action,
which clearly illustrate the threat of these attacks. Meanwhile, we also discuses the possible
countermeasures against these side channel attacks.

6.3.1 Intercept-resend attack

We first introduce the intercept-resend attack in CV QKD. This attack is achievable
with today’s technologies and its security analysis has been studied in previous work [104,
121]. Most of the practical attacks have combined the intercept-resend attack or at least
used its concept. A proof of principle demonstration has also been shown experimentally
by Lodewyck et al. [104].

A full intercept-resend attack breaks any entanglement between Alice and Bob [104,
121]. In such attack, Eve intercepts all the pulses sent by Alice on the quantum channel and
measures simultaneously the X and P quadratures, with the help of a heterodyne detection.
Eve then prepares a coherent state according to her measurement results and sends it to
Bob. Under such attack, the correlation between Eve and Bob data will be stronger than
the one between Alice and Bob so that Eve always has an information advantage over Alice
and Bob. Due to the heterodyne measurement disturbance and coherent state shot noise,
the intercept-resend attack will introduce two shot noise units of excess noise. Moreover,
in practice, Eve’s device and her action can introduce additional technical excess noise on
Bob’s measurements. A full intercept-resend attack will therefore introduce in practice at
least two shot noise units of excess noise, which will be spotted by Alice and Bob when they
estimate the excess noise. In the following part, we will show the impact of the intercept-
resend attack on the estimation of channel transmission and excess noise in the GMCS
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protocol.

Attack description

A general description of an intercept-resend attack is shown in Fig.6.1, in which there
are mainly two parts: the quantum channel between Alice and Bob, and Eve’s station. Alice
and Bob run the standard GMCS protocol while Eve performs intercept-resend attack. In
order to simplify our analysis, we assume that Eve’s station is located at Alice’s output and
that the channel transmission between Alice-Bob and Eve-Bob are equal.

In Fig.6.1, the quadrature information (X ,P) is encoded and sent by Alice where (XA,PA)
are centered Gaussian modulated variables of variance VA; X0,P0 designate quadrature of a
the vacuum state whose variances is one shot noise unit (N0). Encoding the information
onto a coherent state, we have:

X = XA +X0,

P = PA +P0.
(6.1)

Eve in the middle cuts down the quantum channel and intercepts all the pulses sent from
Alice. There are mainly two stages of Eve’s action: quadrature measurement and quadrature
re-preparation.

By using a heterodyne detection, Eve measures Alice’s quadrature XA and PA simultane-
ously. Her measurement results (XM,PM) can be expressed as:

XM =
1√
2
(XA +X0 +X ′

0 +XNA,E ),

PM =
1√
2
(PA +P0 +P′

0 +PNA,E ),
(6.2)

Fig. 6.1 General description of intercept-resend attack. Alice: prepares the coherent state
with quadratures X and P; Eve: measurement and re-preparation stage, G:gain, Bob: per-
forms the homodyne detection, AM:amplitude modulator, PM:phase modulator.
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in which X0 is a noise term due to the coherent state encoding of Alice while X ′
0 is a noise

term due to 3 dB loss in the heterodyne detection. XNA,E is a random noise that accounts for
the technical noise of Alice’s preparation and Eve’s measurement process with its variance
ξA,E .

In the re-preparation stage, Eve prepares a coherent state with quadratures (XE ,PE) ac-
cording to her measurement (XM,PM). Eve can also induce an amplification (g) on the data
XM which she will resend to Bob. In our further analysis, we only look at the X quadrature
but the treatment for the quadrature P is totally symmetric. The X quadrature of the coherent
state resent by Eve can be written as:

XE = gXM +X ′′
0 =

g√
2
(XA +X0 +X ′

0 +XNA,E )+X ′′
0 . (6.3)

Where, X ′′
0 is a noise term due to coherent state encoding of Eve. X0, X ′

0 and X ′′
0 all

follow a Gaussian distribution N (0,N0) with their variance equal to one unit of shot noise
N0.

On Bob side, Bob performs a homodyne detection on the coherent state sent by Eve.
Taken into account the loss and noise introduced by the channel, the measured quadrature
XB can be written as:

XB = t(XE +XNE,B)+
√

1− t2X ′′′
0 +Xele. (6.4)

After the propagation though the lossy channel, technical noise of Eve and Bob XNE,B

(Var(XNE,B) = ξE,B), vacuum noise
√

1− t2X ′′′
0 (Var(X ′′′

0 ) = N0) and electronic noise of Bob
Xele (Var(Xele) = vele) are added to the quadrature prepared by Eve (XE). Here t =

√
ηT ,

where T is the channel transmission between Eve and Bob, and η is Bob’s efficiency. The
correlation between Alice and Bob quadratures and the variance of Bob quadrature mea-
surements can be described as:

Cov(XA,XB) = ⟨XAXB⟩−⟨XA⟩⟨XB⟩=
tg√

2
⟨X2

A⟩, (6.5)

Var(XB) = ⟨X2
B⟩−⟨XB⟩2 =

t2g2

2
[Var(XA)+2N0 +ξsys]+ (1− t2)N0 + t2N0 + vele

=ηT
G
2

Var(XA)+ηT
G
2
(2N0 +ξsys)+N0 + vele.

(6.6)
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Fig. 6.2 Information evaluation under intercept-resend attack. Alice’s variance VA = 20N0,
efficiency of Bob η = 0.6, excess noise of electronics vele = 0.01N0, excess noise due to
intercept-resend attack ξIR = 2N0, excess noise of system ξsys = 0.1N0.

Information analysis

In Eq. (6.5) and (6.6), we can see that the estimated channel transmission now becomes
T̂ = t2g2

2 = T G
2 . In order to compensate the loss from the heterodyne detection, we can

choose an amplification coefficient g=
√

2, so that the estimated value is not biased (T̂ = T ).
Based on Eq.(4.17), the excess noise estimation on Alice side is ξ̂ = 2N0 + ξsys, where
ξsys = ξA,E + 2

GξE,B. We can introduce a noise variable XN which contains all the noise
added to Bob’s measurement, the variance of XN is σ2

N = ηT G
2 (2N0 +ξsys)+N0 + vele.

As we can see, at least two units of excess noise have been added after the intercept-
resend action. One can show that such added noise won’t allow Alice and Bob to extract any
secure keys. In fact, Namiki and Hirano [120] have deduced that, under the intercept-resend
attack, a necessary condition to obtain secure key distribution is ξ̂ < 2T̂ . We can moreover
observe that under such condition if ξ̂ > 2, then it implies T > 1, which is not a physical
channel. It verifies that it’s impossible to obtain a secret key under the intercept-resend
attack. On the other hand, the intercept-resend attack is not more effective than individual
or collective attack, where two units of excess noise is already much higher than the null key
thresholds deduced by individual or collective attack for any channel transmission values
(section 4.5.2).

In the end, we would like to quantify the information that gained by Eve under the
intercept-resend attack. Particularly, we want to evaluate the mutual information between
Alice-Bob and Eve-Bob. We have compared these mutual information in Fig.6.2 for dif-
ferent channel transmissions. As shown in 6.2, with reasonable simulation parameters, Eve
always has information advantage over Alice and Bob under the intercept-resend attack,
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which is another indication that there is no security between Alice and Bob at all under the
attack.

6.3.2 Shot noise calibration attack

In CV QKD, shot noise is the variance of the homodyne detection output when local
oscillator (LO) interferences with a vacuum mode. Since the estimated excess noise is
expressed in shot noise units, if the shot noise is overestimated while all the other measure-
ments remain unchanged, the estimated excess noise in shot noise unit will be underesti-
mated. Alice and Bob will then overestimate their secret key rate which opens chance to
Eve to learn a portion of the generated key. In a typical implementation (section.4.2.2), local
oscillator is usually transmitted on the open channel between Alice and Bob which can be
accessed by Eve. Such configuration leaves an opportunity to Eve to manipulate the LO in
different ways.

The concept of calibration attack on CV QKD was first proposed by Ferenczi et al.
[32]. The ’calibration’ implies the fact that the shot noise level is calibrated while Eve can
potentially bias the shot noise measurement by manipulating the LO pulse in different ways,
and thus bias the excess noise estimation.

In [32], the authors propose a calibration attack, in which Eve first intercepts the signal
and LO pulse as in the intercept attack. In the resending part, Eve changes both the intensity
of signal and LO pulse and sends them to Bob. If the intensity of the signal pulse is larger
than LO pulse, the analysis shows that Eve can have an information advantage over Alice
and Bob. In [51], the authors proposed an equal-amplitude attack on a binary modulation
CV QKD protocol, in which, Eve also first intercepts the signal and LO pulse as in inter-
cept attack. According to her measurement results, she reproduces and resends two weak
squeezed states with same intensity at the level of the signal pulses. It has been shown that
the measured excess noise of Alice and Bob is much lower than the actual shot noise. So
the excess noise arising from the attack can appear smaller than the tolerable threshold from
the security proofs.

In this section, we focus on presenting and studying two attacks related to the shot noise
calibration : Local oscillator intensity attack [111, 114] and calibration attack by changing
the shape of LO pulse [66]. These two attacks both target the GMCS protocol and explore
the implementation vulnerability related to LO manipulation by Eve. These attacks can
break the security under certain assumptions of the shot noise calibration procedure, which
will be presented in the following parts.
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Traditional shot noise calibration

The exact procedure used to calibrate shot noise calibration depends on the implemen-
tation and is not considered in the security proofs of CV QKD. Thus, in practice, there is no
standard method to proceed such calibration. However, traditionally, there are mainly two
approaches to carry out shot noise calibration in CV QKD experimental implementations:

• Method A: Before the CV QKD protocol, Alice and Bob measure the LO power1;
Bob measures the variance of homodyne detection when the LO pulse interferes with
a vacuum mode (no signal). This variance of the homodyne detection output is con-
sidered as the calibrated shot noise value. Alice and Bob consider the measured values
of intensity and shot noise variance as their references during whole CV QKD proto-
col. Such calibration procedure was considered in early implementations of CV QKD
[50, 51] where the LO intensity was not monitored.

• Method B: Before the CV QKD protocol, Alice and Bob establish a linear relationship
between the shot noise variance and the LO power. This can be achieved by varying
the LO intensity and measuring the corresponding homodyne output variance when
the signal input is vacuum. Then during the protocol running, Bob monitors the input
power of LO pulse by diverting a small fraction of LO pulses with a beam splitter.
By using the previously established linear relationship, Alice and Bob can estimate
the shot noise variance level based on the measured LO power during CV QKD. This
calibration procedure is usually considered in most of CV QKD implementations.
[34, 68, 103].

Local oscillator intensity attack

In the analysis of this attack, we assume that Alice and Bob use the Method A (sec-
tion.6.3.2) to calibrate the shot noise. However, during the key distribution of a GMCS
protocol, each LO pulse’s intensity can deviate compared to the initial LO intensity which
is used for the shot noise calibration. The LO intensity fluctuation is not the quantum fluc-
tuation of each LO pulse itself, but the deviation between the initial pulse for shot noise
calibration and the pulse for the key distribution. LO pulse is a strong classical signal and
its relative quantum fluctuations are small and can be assumed to be negligible [16]. How-
ever, if the LO intensity is not monitored, it gives a chance to Eve to attack the GMCS
protocol and affects the parameter estimation of Alice and Bob.

1Since intensity is the power transferred per unit area, in practice, we measure the power LO pulse to refer
to LO intensity.
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LO intensity fluctuations can be quantified by a ratio γ > 0, where |α ′
lo|2 = γ|αlo|2, in

which αlo is the initial amplitude of LO pulse used for shot noise calibration while α ′
lo

is the actual amplitude of LO pulse. If Bob does not monitor LO intensity, the output of
homodyne detection scales with the LO intensity α2

lo. If we neglect the electronic noise,
Bob’s measured quadrature under LO intensity fluctuation γ can be given by:

XB,l =
√

γXB (6.7)

In [111], the authors have prosed a LO intensity fluctuation attack in which Eve manipu-
lates the LO intensity under a collective attack model. In consequence, Alice and Bob will
overestimate the secret key rate that they can generate, which shows that the security can be
compromised.

A practical attack with LO intensity fluctuation Here we focus on explaining the idea
of LO intensity fluctuation and its impact on practical security with current technology.
Importantly, we will study the parameter estimation under the attack. Under the assumption
of using Method. A (section.6.3.2), we moreover formalize an attack strategy that can break
the practical security by taking advantage of LO intensity fluctuation. In this attack, Eve
manipulates the LO intensity and combines it with an intercept-resend attack as described
in section 6.3.1. In the resending part of the intercept-resend attack, Eve can prepare a LO
pulse with an intensity freely chosen by her. Such manipulation of LO intensity can be seen
as the LO intensity fluctuation which is considered in [111]. Fig. 6.1 can be used to describe
this attack, where in addition Eve also controls LO intensity.

If Eve sends a LO pulse with lower intensity to Bob, the variance measurement of Bob
will become smaller due to the reduction of LO intensity. However, if Alice and Bob don’t
monitor LO intensity they still normalize the variance with the previously measured shot
noise. If we moreover consider the combined impact of intercept resend attack and the LO
intensity fluctuation ratio γ , the state of Bob can be given as (with g = 2 as described in
section 6.3.1):

XB,γ =
√

γ[
√

ηT (XA +X0 +X ′
0 +X ′′

0 +Xsys)+
√

1−ηT X ′′′
0 ]+Xele. (6.8)

Note that the electronic noise Xele does not scale with LO intensity, since it is independent
of LO intensity. We can express the variance of Bob based on XB,l measured data:

VB,γ = γ[ηTVA +ηT (2N0 +ξsys)+N0]+ vele, (6.9)
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Fig. 6.3 Excess noise estimation versus LO intensity fluctuation ratio under the LO intensity
attack. Alice’s variance VA = 20N0, efficiency of Bob η = 0.6, excess noise of electronics
vele = 0.01N0, excess noise due to intercept-resend attack ξIR = 2N0, excess noise of system
ξsys = 0.1N0, channel transmission T = 0.4.

N0 is the calibrated shot noise value. As we can see from Eq.(6.9), the channel transmission
estimation under the attack can be also deduced as:

T̂γ = ηγT . (6.10)

Based on Eq.(6.9) and (6.10), the excess noise estimation in shot noise units of Alice and
Bob can be expressed as:

ξ̂γ =
VB,l −N0 − vele

η T̂γN0
− VA

N0
=

γ[ηTVA +ηT (2N0 +ξsys)+N0]−N0

ηγT N0
− VA

N0
. (6.11)

As we can see in Eq.(6.11), ξ̂γ varies with the fluctuation ratio γ , where γ is controlled by
Eve. In this sense, Eve can manipulate the excess noise estimation of Alice and Bob by
controlling the intensity of LO pulse. We show the relation between ξ̂γ and γ in Fig.6.3,
where we can see that, with realistic simulation parameters, ξ̂γ can be set to any small value
when γ changes. We have considered here a full intercept-resend attack, which means that
no secure key can be generated as shown in section 6.3.1. However, the parameter estimation
of Alice and Bob is biased, in particular, the excess noise estimation is manipulated and can
reach arbitrary small values, leading to a security break: Alice and Bob will generate keys
that are known by Eve.
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Fig. 6.4 Experimental results in [66]. Red: calibrated linear relationship between the vari-
ance of the homodyne detection measurements and the local oscillator power. Green: the
linear relationship when delaying the trigger of the homodyne detection by 10 ns

Countermeasure As we can see, the main problem of the LO intensity attack is that
Alice and Bob do not monitor the intensity of the LO pulse. However the actual shot noise
varies with LO intensity. In [114], the authors have proposed a way to stabilize the LO
intensity, Bob monitors the intensity of LO pulses by splitting a small part of LO pulse with
a beam splitter and uses an amplifier or attenuator to adjust the LO intensity based on the
monitoring value. Hence Alice and Bob can ensure that the received LO intensity pulse is
correct. A beam splitter with tunable transmission can also serve this purpose for a simple
implementation.

Another solution is considered in [68]: Alice and Bob calibrate the relationship between
LO intensity and shot noise variance before the protocol and Bob measures LO intensity
during the key distribution protocol and use it to rescale Bob’s measurement results. Thus
with this method Alice and Bob can ensure the shot noise estimation is correct. However
such method can be defeated by the attack we will introduce in the next subsection.

Calibration attack by delaying the LO pulse

Jouguet et al. [66] have proposed a calibration attack in which an eavesdropper changes
the shape of the LO pulse to introduce a delay on the clock trigger. As a consequence, the
variance of the shot noise measurement can be lowered without changing the LO intensity.
The value of the shot noise will be overestimated and consequently the excess noise will
be underestimated. In the following, we will briefly explain this calibration attack and its
countermeasure[66]. In this attack, it is assumed that Alice and Bob use Method B (sec-
tion.6.3.2) to calibrate the shot noise. In a practical CV QKD system, a trigger signal of
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clock is necessary to perform measurements with a pulsed homodyne detection. In partic-
ular, the maximum variance of homodyne output is achieved at the end of the optical pulse
of duration τ (τ = 100 ns in [66]). As we mentioned, the trigger signal is generated by LO
pulse which can be possibly modified by Eve. For example, Eve can attenuate the beginning
of the LO pulse, then it will induce a delay on the trigger signal. Once the trigger signal is
delayed, the measurement of the homodyne detection output is not at the maximum point.
So for a given LO power, the measured shot noise variance is smaller than the prediction
arising from the calibrated linear relationship of Method B. In Fig.6.4, Jouguet et al. [66]
have measured experimentally the linear relationship between the variance of the homodyne
detection measurements and the LO power with and without a delayed trigger, where a de-
layed trigger of 10 ns results in a decrease of the detection response slope about 60% (the
green line in Fig.6.4).

If the trigger signal has been delayed during the QKD protocol, the detection response
slope decreases. Thus, if Alice and Bob still use the calibrated relationship then they will
overestimate the shot noise variance, and consequently underestimate the excess noise. In
this sense, Eve can manipulate the excess noise estimation by controlling the actual rela-
tionship between shot noise variance and LO power.

By changing the shape of LO pulse, a calibration attack strategy can be further proposed,
which contains mainly two parts:

1. Eve performs a full intercept-resend attack.

2. Eve delays the LO pulses, in order to introduce a delay on the trigger used to perform
the homodyne measurement at Bob.

The scheme of the attack is essentially depicted on Fig. 6.1, where in addition Eve resends
delayed LO pulses according to the strategy. As we have discussed in Chapter 4, the total
noise added on Bob’s measurements is VN = η T̂ ξ̂ +N0+vele, T̂ is the channel transmission
estimation and ξ̂ is the excess noise estimation. If Eve doesn’t delay LO pulses, N0 is the
real shot noise that matches with the previously calibrated liner relation.

If Eve can change the slope of the homodyne detection response by delaying the LO
pulses and the shot noise can be wrongly estimated from the calibrated relation. The mod-
ified shot noise value is denoted as N̂′

0. When Eve delays the LO pulse, it does not affect
the total noise added on Bob (VN) expressed in shot noise units, however the excess noise
estimation (ξ̂cal) will be affected due to the change of shot noise estimation.

Then the excess noise estimations with/without calibration attack can be expressed as
follow:

ξ̂ =
VN −N0 − vele

η T̂
, (6.12)
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ξ̂cal =
VN − N̂′

0 − vele

η T̂
. (6.13)

By considering these two equations, the relation between ˆξcal and ξ̂ can be known:

ξ̂cal = ξ̂ +
N̂

′
0 −N0

η T̂
. (6.14)

ξ̂cal need to be further transformed into shot noise units, where the shot noise estimation is
the modified value (N̂′

0):

ξ̂cal

N̂′
0
=

N0

N̂′
0

[
ξ̂

N0
+

1
η T̂

(
1−

N̂
′
0

N0

)]
. (6.15)

Excess noise estimation analysis From Eq. (6.15), we can see that Eve can manipulate
the excess noise estimation by controlling the value of N̂′

0/N0, if the value becomes very
large, the excess noise estimation under the attack can be arbitrary small. To achieve this,
Eve should make Alice and Bob overestimate the shot noise (N̂′

0/N0 > 1), by decreasing the
slope of homodyne detection response (Fig.6.4 ), as mentioned before.

As the second part of the calibration attack, Eve implements a full intercept-resend at-
tack which will introduce at least two units of excess noise (section 6.3.1). In practice, a
typical value of excess noise under a full intercept-resend attack is for example 2.1 [104],
including 0.1 technical noise in practice. If Eve attacks the shot noise calibration by delay-
ing the LO pulse then the estimated excess noise becomes ξ̂cal (Eq. (6.15)). We show in
Fig. 6.5 that Eve can control the excess noise estimation ξ̂cal by changing the ratio N̂′

0/N0.

For different channel transmissions, Eve can choose different N̂′
0/N0 ratios to achieve a

relatively low value of excess noise estimation (Fig.6.5). For example, with a transmission
T = 0.3 or T = 0.7, Eve should apply a ratio N̂

′
0/N0 ≈ 1.35 or N

′
0/N0 ≈ 2 so that the excess

noise estimated by Alice and Bob becomes close to zero, they thus believe that they can still
share a secret key, which in fact is not secure at all. The values of N̂

′
0/N0 ≈ 1.35,2 are also

realistic values as shown in Fig. 6.4.

Countermeasure: Real time shot noise calibration The previously described calibration
attack is based on the fact that the shot noise calibration is overestimated using the method B
calibration procedure. Alice and Bob can instead measure the shot noise in real time during
the quantum communication phase. There are two approaches to realize this idea. The first
approach is shown in Fig.6.6 (a), in which an optical switch or an amplitude modulator can
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Fig. 6.5 Excess noise estimation versus N̂′
0/N0 ratio under the LO calibration attack. Alice’s

variance VA = 20N0, efficiency of Bob η = 0.6, excess noise of electronics vele = 0.01N0,
excess noise due to intercept-resend attack ξIR = 2N0, excess noise of system ξsys = 0.1N0,
channel transmission T = 0.3,0.7.
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Fig. 6.6 Countermeasure against calibration attack [66]: Real time shot noise calibration.
(a) Real-time shot noise measurement using an amplitude modulator on Bob’s signal path.
(b) Real-time shot noise measurement using a second homodyne detection on Bob’s local
oscillator path.

be used to randomly apply a strong attenuation (with attenuation ratio r ≈ 0 and r ≈ 1 ) on
Bob’s signal path. For those signal pulses with r ≈ 0, Bob receives essentially a vacuum
pulse and can measure the shot noise. For those signal pulses with r ≈ 1, Bob can measure
the quadratures.

Another approach is shown in Fig.6.6 (b), where an additional homodyne detector is
introduced to measure the shot noise in real time. A 10/90 beam splitter is inserted into LO
path to split part of LO intensity so that the additional homodyne detector can measure the
variance of this LO part, where the shot noise variance is proportional to this variance with
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the ratio of the beam splitter. These two approaches of real time shot noise calibration will
be designated as the Method C for the shot noise calibration.

However a drawback of such countermeasure is that, since an additional amplitude mod-
ulator is introduced, the efficiency of homodyne detection will drop due to extra attenuation.
Moreover a portion of the pulses are needed for the shot noise estimation and must be dis-
carded for the secret key generation. These two facts finally result in decreasing the secret
key generation rate and reachable distance. It has been shown that after implementing coun-
termeasure, the maximum reachable distance for a positive key rate has dropped from 80
km to 50 km.

6.3.3 Wavelength attack

The wavelength attack has been first proposed on a DV QKD system [93], where Eve
can take advantage of the fiber beam splitter whose intensity transmission is wavelength-
dependent. By exploiting this property, Huang et al. [56] and Ma et al. [112] have then
proposed a wavelength attack on a CV QKD system with no-switching protocol [179].
Huang et al. [57] have moreover extended such wavelength attack to a CV QKD system
with GMCS protocol. The wavelength attacks are feasible even under the assumption that
Alice and Bob use the real time shot noise calibration (Method.C [66]).

Wavelength dependent beam-splitter

Fused bi-conical taper beam splitter are widely used in the fiber QKD systems because
of their low cost and low insertion loss. However, intensity transmission of fused bi-conical
taper beam splitter is wavelength-dependent. The relationship between wavelength λ and
the intensity transmission Tbs is given in Ref. [171]:

Tbs(λ ) = F2 sin2
(

Cλ 2.5w
F

)
. (6.16)

where F2 is the maximal power that is coupled, C ·λ 2.5 is the coupling coefficient, and w is
the heat source width.

Among different commercial types of fused bi-conical taper beam splitter, the double
wavelength type is the most popular one thanks to its stable performance in a wide wave-
length range. Huang et al. [57] have experimentally tested the two double wavelength type
10/90 (reflection/transmittance) and a 50/50 fused bi-conical taper beam splitter in their
laboratory, the results are shown in Table.6.1.
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Table 6.1 The transmission T of Thorlabs double wavelength type 10/90 beam splitter and
a 50/50 beam splitter with different wavelengths λ (nm)[57].

λ (nm) 1270 1290 1310 1330 1350 1370
Tbs (10 : 90 BS) 0.9050 0.9066 0.9020 0.8978 0.9014 0.8991
Tbs (50 : 50 BS) 0.5327 0.5253 0.5144 0.5052 0.5011 0.4965

λ (nm) 1390 1410 1430 1450 1470 1490
Tbs (10 : 90 BS) 0.8985 0.8938 0.8940 0.8985 0.8989 0.8985
Tbs (50 : 50 BS) 0.4931 0.4862 0.4902 0.4885 0.4908 0.4873

λ (nm) 1510 1530 1550 1570 1590 1610
Tbs (10 : 90 BS) 0.9012 0.8995 0.8956 0.9026 0.9022 0.9060
Tbs (50 : 50 BS) 0.4954 0.4960 0.5012 0.5069 0.5155 0.5265

Wavelength attack on GMCS protocol

The transmission of a fused bi-conical taper beam splitter varies with the wavelength
due to its wavelength dependent property. Such property can be moreover taken advantage
by an Eve to implement a side channel attack. Huang et al. [57] have proposed a wave-
length attack on GMCS protocol, in which, there are mainly two parts: Eve implements a
full intercept-resend attack; Eve prepares and resends two extra coherent state pulses, so
that under certain regimes, she can possibly bias the excess noise estimation of Alice and
Bob. The assumptions in this attack are: (1) The beam splitter of Bob’s homodyne detec-
tion is wavelength dependent and its transmission property is in Table.6.1; (2) Alice and
Bob use the improved shot noise calibration procedure that is proposed in section.6.3.2 [66]
(Method.C ): Monitoring LO intensity and measuring shot noise in real time (with atten-
uation ratio r1 ≈ 0 and r2 ≈ 1); (3)Alice and Bob use reverse reconciliation to distill the
key.

The real time shot noise calibration procedure is considered in this attack, thus the pa-
rameter estimation is different from the one mentioned in Chapter 4. Since in practice, the
realistic values of the attenuation ratios are considered as r1 = 0.001 for shot noise estima-
tion and r2 = 1 for quadrature measurements [57]. So that the variance measurement of Bob
concerning r1 and r2 is (i=1,2):

VB,i = riηT (VA +ξ )N0 +N0 + vele (6.17)

The estimation of the excess noise and the shot noise thus become:

N̂0 = r2VB1−r1VB2
r2−r1

− vele,

ξ̂ = [ VB2−VB1
(r2−r1)ηT −VA]/N̂0.

(6.18)
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The scheme of this wavelength attack can be referred to Fig. 6.1, where Eve’s re-
preparation pulses are modified and Bob’s beam splitter is wavelength dependent. In the
first part of the attack, Eve launches a full intercept-resend attack, where she can have the
information advantage over Alice and Bob (Full analysis in section 6.3.1). In this part, Eve
measures the quadrature X and P of Alice with a heterodyne detection, then prepares the
coherent states according to her measurement results, and sends them to Bob. Here the
wavelength of the resent pulses is 1550 nm with 0.5 transmission through the beam splitter
according to the Table.6.1. Additionally, Eve can change the slope of the homodyne detec-
tion response by delaying the trigger time, thus it will reduce the variance measurement, γ

is considered as the reduction ratio of variance measurement that is controlled by Eve. In
this case the shot noise is calibrated in real time, Alice and Bob can have correct estimation
of shot noise with the attenuation ratio r1 and r2, instead of overestimating it as mentioned
in previous section[66]. In this part, the variance measurement of Bob is :

Vpart1,i = γ[riηT ′(VA +2N0 +ξsys)+N0]+ vele, (6.19)

In which 2N0 is due to a full intercept-resend attack, γ and T ′ are introduced by Eve, where
T = ηT ′ and T is the normal channel transmission.

In the second part of the attack, Eve prepares and resends two extra sets of fake LO/signal
pulses with wavelengths different from the ones that Alice sends to Bob. Precisely, the
wavelengths of the fake signal and LO pulses are following:

λ s
1 = 1410nm,T s

bs1 = 0.4862,
λ lo

1 = 1490nm,T lo
bs1 = 0.4873;

λ s
2 = 1310nm,T s

bs2 = 0.5144,
λ lo

2 = 1590nm,T lo
bs2 = 0.5155,

(6.20)

Since the 50/50 beam splitter is wavelength dependent, for different wavelength pulses, the
transmissions through the beam splitter T j

i (i = bs1,bs2; j = s, lo) vary according to the
Table.6.1. The notations of s and lo indicate that they will go to the signal path and the
LO path, respectively. To achieve this, Eve can prepare the pulses in the same polarization
mode as the signal or LO pulse of Alice.

Eve then randomly sends these two sets of fake LO/signal pulses to Bob with same prob-
ability, i.e 50% for one set (λ s,lo

1 ), 50% for the other set (λ s,lo
2 ). Since the fake LO/signal

pulses prepared in the second part are in different wavelengths, they won’t have any interfer-
ence on Bob’s homodyne detection. However, each pulse, it will generate its own shot noise



6.3 Side channel attacks in continuous variable QKD systems 121

and since the transmittances deviate from 0.5, an extra differential current proportional to
the light intensity will contribute to the output of homodyne detection. It can be seen as a
similar case as the beam splitter is imbalanced, which we have analyzed in the chapter 5.
An extra contribution on the first set of LO pulses is (2T lo

b1 −1)ηIlo
1 = Dlo

1 , which results in
a noise variance proportional to the intensity Ilo

1 . The contributions of all these pulses are
following:

Ds
1 = (1−2T s

b1)ηIs
1,

Dlo
1 = (2T lo

b1 −1)ηIlo
1 ,

Ds
2 = (1−2T s

b2)ηIs
2,

Dlo
2 = (2T lo

b2 −1)ηIlo
2 .

(6.21)

The assumption made by the authors is that for each pair of LO/signal: For a signal and a
LO pulse, they cancel out their own noise variance contributions with each other, such that
D = Ds

1 = −Dlo
1 = −Ds

2 = Dlo
2 . Therefore the fake LO/signal pulses only contribute their

own shot noises since they don’t interfere with each other. By considering such assumption
and the procedure that the two sets of LO/signal pulses are randomly chosen to be sent
Bob with a probability 50%, the authors have shown that Bob measurement variance in the
second part is give by (more details in [57]):

Vpart2,i = (1− ri)
2D2 +(35.81+35.47r2

i )D. (6.22)

On Bob side, Bob measures the quadratures that are prepared by Eve in the first part and
also measures the additional pulses in the second part at same time. So the variance of Bob
is the total of the ones in the first and the second part of the attack (i=1,2):

VB,i =Vpart1,i +Vpart2,i = γ[riηT ′(VA +2N0 +ξ )+N0]+ vele

+(1− ri)
2D2 +(35.81+35.47r2

i )D.
(6.23)

Excess noise estimation analysis By taking VB,1 and VB,2 into Eq. (6.18), the estimation
of shot noise and excess noise under this wavelength attack is:

N̂0 = γN0 +(1− r1r2)D2 +(35.81−35.47r1r2)D,

ξ̂w1 = [(2N0 +ξsys)+VA −VAN̂0/N0

+(r1 + r2 −2)D2/ηγT ′+35.47(r1 + r2)D]/N̂0.

(6.24)

Since the noise variance is proportional to the LO intensity, the analysis of the wavelength
attack have used the intensity in terms of photon number to represent the noise variance. The



122 Side channel attacks in practical quantum key distribution systems

shot noise variance is N0 =ηILO, where the intensity of LO is ILO = 108 in the unit of photon
number. In order to launch a successful attack, Eve needs to ensure that the estimation of
shot noise is not biased, since the real time shot noise calibration is considered. On the other
hand, Eve needs to bias the excess noise estimation.

Here is a numerical example to show the feasibility of this attack. According to Eq.
(6.24), it is possible for Eve to make N̂0 = N0 and ξ̂ arbitrarily close to zero by choosing
proper intensities of Is

i , Ilo
i and γ . With γT ′ = T = 0.5, ξsys = 0.1, η = 0.5, VA = 10N0,

r1 = 0.001 and r2 = 1, a simple calculation shows that, by taking the following values into
Eq. (6.24): γ = 0.47, Is

1 = 3.72×105, Ilo
1 = 4.04×105, Is

2 = 3.56×105 and Ilo
2 = 3.31×105,

we have N̂0 = 1.0002N0 and ˆξw1 = 0.0026N0. With such an excess noise estimation, Alice
and Bob will conclude that they can still share a secret key, however in the first attack
part, Eve has learned all the information by launching a full intercept resend attack, so the
practical security has been compromised.

Wavelength attack on no-switching protocol

Huang et al. [56] and Ma et al. [112] have proposed the wavelength attack on a CV QKD
system with no-switching protocol [179]. As we have introduce in Chapter 4, the main
difference of no-switching protocol’s implementation, compared to GMCS protocol with
homodyne detection, is that on Bob side, a heterodyne detection is used. The heterodyne
detection consists two homodyne detections, which can measure the quadratures X and P
simultaneously.

There are two assumptions in this attack: (1) all the beam splitters are wavelength de-
pendent, where their transmissions are according to Eq.(6.16); (2) The efficiencies of the
two homodyne detections are both equal to η . (3) Alice and Bob monitor LO intensity
while the linear relationship between LO power and shot noise variance has been calibrated
(Method B in section.6.3.2); (4) Alice and Bob use reverse reconciliation to distill the key.

In this wavelength attack (Fig.6.7), Eve also uses the concept of intercept resend attack
as described in 6.3.1, where Eve first cuts down the quantum channel and measures Alice’s
quadratures X and P by using a heterodyne detection (Eq. (6.2)). On the resending part,
instead of preparing the states according to her heterodyne measurement, Eve resends a
fake signal pulse and a fake LO pulse with wavelengths λs and λlo and intensities |a′s|2 and
|a′lo|2. Due to the wavelength-dependent property of the beam splitters in different stages,
the transmissions of these two pulses are T1 and T2. With the help of the wavelength tunable
laser diodes and intensity modulators, the wavelength and amplitude of these fake states are
carefully chosen to satisfy the following conditions:
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Fig. 6.7 Wavelength attack setup on a practical CVQKD system with heterodyne detection
(dashed line: signal path, solid line: LO path) [56, 111]. LD, laser diode; AM, amplitude
modulator; PM, phase modulator; FM, Faraday mirror; PBS, polarization beam splitter; PC,
polarization controller; D, photodetector; and BS1-5, beam splitters. BS2-5 have the same
wavelength-dependent property.

(1−T1)(1−2T1)|a′s|2−(1−T2)(1−2T2)|a′lo|2 =
√

2ηT XM|alo|,
T1(1−2T1)|a′s|2 −T2(1−2T2)|a′lo|2 =

√
2ηT PM|alo|.

(6.25)

In which |alo|2 is the LO intensity of Alice, η is the efficiency of homodyne detection, T
is the channel transmission between Alice and Bob, (XM,PM) is the measured quadrature
Eq.(6.2). If Eve chooses the same wavelength and intensity of fake LO pulse as the same as
the one sent by Alice, then the transmission of all the beam splitters on the fake LO pulse
are equal to 0.5, which turns Eq.(6.25) into:

(1−T1)(1−2T1)|a′s|2 =
√

2ηT XM|alo|,
T1(1−2T1)|a′s|2 =

√
2ηT PM|alo|.

(6.26)

Since the fake LO pulse is in same wavelength and amplitude as the one Alice prepares, the
shot noise estimation is not biased, it remains equal to N0 and it won’t rise an alarm for Bob
when he monitors LO intensity. Eve sends both the fake signal pulse and modified LO pulse
to Bob. Bob then measures both quadratures simultaneously with his heterodyne detection.
The wavelengths of the fake signal pulse and fake LO pulse are different so that they cannot
interfere on the homodyne detection. The outputs of homodyne detection consists of two
parts: interferences between fake signal pulse and vacuum state; between fake LO pulse and



124 Side channel attacks in practical quantum key distribution systems

vacuum state. The measurements of Bob will thus become:

XB,wave =

√
ηT
2

(XA +X0 +X ′
0 +Xsys)+XNW ,

PB,wave =

√
ηT
2

(PA +P0 +P′
0 +Psys)+PNW .

(6.27)

XB,wave or PB,wave describes the output state of the homodyne detection that Bob initially
measures X quadrature (with phase choice ϕ = 0) or P quadrature (with phase choice ϕ =

π/2), where the fake signal pulse goes through BS2/BS4 and the fake LO pulse go through
BS3/BS4. XNW or PNW is the deviation of XB,wave or PB,wave from XM or PM. Xsys or Psys is the
excess noise due to the device’s imperfections and the factor

√
1/2 is due to the heterodyne

detection. The variance of XNW and PNW can be approximated by (more details in [111]):

VNW ≈ 2ηT2(1−T2)(1−2T2)
2N0 +8ηT2(1−T2)

2N0 (6.28)

In fact VNW is the sum of the fake signal pulse’s and the LO pulse’s shot noises after they
go through the beam splitters in the heterodyne detention part, since they both contribute
their own shot noise, instead of interfering on the homodyne detection. We can then further
express the variance of Bob under this wavelength attack as:

VB =
ηT
2

(VA +2N0 +ξsys)+2ηT2(1−T2)(1−2T2)
2N0 +8ηT2(1−T2)

2N0 (6.29)

Excess noise estimation analysis By using Eq.(6.29) for excess noise estimation (Eq.(4.17)),
one can deduce that:

ξ̂w2 = 2N0 +ξsys −
2N0

ηT
+

2VNW

ηT
, (6.30)

where ξ̂w2 is a function of the transmission T2 (since VNW depends on T2) and Eve can
control T2 by changing the wavelength of the resent signal pulse. As mentioned before,
the excess noise estimation is further normalized in shot noise units. In Fig.6.8, we show
the excess noise estimation of Alice and Bob versus transmission T2, where Eve is able
to induce a small value of excess noise by selecting proper wavelength of the fake signal
and thus controlling the beam splitter’s transmission (T2). In the security analysis of [56]
and [112], the authors have analyzed the conditional variance V wave

B|A under the individual
attacks. To show the feasibility of the attack, if the conditional variance V wave

B|A under the
attack is smaller than VB|A, then it means that Alice and Bob underestimate V wave

B|A , so that
an attack is possible. Such analysis is actually equivalent to the excess noise analysis, since
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Fig. 6.8 Excess noise estimation of Alice and Bob vs beam splitter transmission T2 (fake
sigal) under wavelength attack. Alice’s variance VA = 20, efficiency of Bob η = 0.6, channel
transmission T = 0.9, excess noise due to intercept-resend attack ξIR = 2, excess noise of
system ξsys = 0.1.

the conditional variance VB|A quantifies the total noise that add to the final measurement,
where VB|A = ηT ξ/2+N0, ξ is the excess noise that secret key is possible. Thus if V wave

B|A <

ηT/2ξ +N0, the wavelength attack reduces the estimated excess noise, and the practical
security is compromised.

Countermeasure on wavelength attack Unlike the calibration attack focusing on manip-
ulating the shape of LO pulses, the wavelength attack aims at wavelength-dependent beam
splitters: instead of modifying LO pulses, Eve re-prepares extra signal and LO pulses with
different wavelengths and intensities to influence the excess noise estimation. A possible
countermeasure consists in adding wavelength filters before the detection (to ensure that the
wavelengths used for the attacks are close to the system wavelength, which would force
the attacker to use high-power signals to launch the attack), and a monitoring of the local
oscillator intensity (to detect these high-power signals). An improved shot noise real time
calibration is also proposed as a countermeasure: with one more attenuation ratio (r3 = 0.5)
to test the linearity of the excess noise estimation, the attack can be prevented [81].

6.3.4 State-discrimination attack

All of the attacks that we have studied so far, are aiming on the CV QKD protocols with
Gaussian modulations. Other than Gaussian modulation protocols, discrete modulation CV
QKD protocols (section 4.4) have been proposed as another approaches [87, 119, 122, 195],
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Fig. 6.9 The state-discrimination attack on a four-state protocol [58].

which may potentially improve the secure distances, since the exist error correction codes
are at high efficiency for long distance. In discrete modulation protocols, Alice encodes
the information on the phase of some nonorthogonal coherent states, and Bob performs
homodyne detection to obtain the quadratures to extract the discrete key information. As
mentioned in Chapter 4, there are several discrete modulation protocols based on the ways
that Alice prepares the coherent states, such as binary modulation [195], four state [87], six
state [122] and multi-letter protocol [167].

It has been shown in theory and experiments that a state-discrimination receiver can
discriminate the nonorthogonal coherent states with error rates below the standard quantum
limit which referred to the limit of a perfect homodyne detection [29, 174]. It implies
that, with a proper eavesdropping strategy, Eve may detect the phase information of signal
states without introducing too much disturbance on the quantum channel by using a state-
discrimination receiver [29, 174].

In such state-discrimination attack [58], the authors have proposed an eavesdropping
strategy, which can be seen as an alternative intercept-resend attack (section 6.3.1) where
Eve uses a state-discrimination receiver to performer the measurements instead of using the
heterodyne detection. In the next part, we explain the details of this state-discrimination
attack targeting on the four state protocol [87].

Attack description In the four state protocol [87], Alice randomly sends one of the four
coherent states with same probability 1

4 : |αk⟩ = |αei(2k+1)π/4⟩ with k ∈ {0,1,2,3}, where
α is the amplitude and is related to the modulation variance VA = 2α2. On Bob side, Bob
randomly measures one or both of the two quadratures X and P by performing homodyne
detection or heterodyne detection. After reconciliation and privacy amplification, Alice and
Bob can share a secret key.
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The assumptions in the state-discrimination attack: (1) Alice and Bob use reverse rec-
onciliation to distill the key, (2) Bob performs a perfect homodyne detection where the
efficiency η = 1 and electronic noise vele = 0, (3) Alice and Bob use a perfect channel to
connect with each other, where the channel transmission T = 1.

In this attack (Fig.6.9), Eve in the middle cuts down the quantum channel and intercepts
all the coherent states sent by Alice. She then amplifies the received states with a heralded
noiseless linear amplifier [12]. The purpose of such noiseless linear amplifier is in prin-
ciple to decrease the error rate for the discrimination of the four nonorthogonal states. A
probabilistic noiseless linear amplifier can amplify the amplitude of a coherent state without
introducing extra noise. So that the use of noiseless linear amplifier can decrease the error
probability of the state-discrimination receiver at the expense of a rate decrease. After am-
plifying the states with a probabilistic noiseless linear amplifier, Eve prepares the coherent
states |βk⟩⟨βk|= |gαk⟩⟨gαk| with a success probability Ps that depends on the gain of ampli-
fier g > 1. When Eve fails to amplify the states (i.e. with probability 1−Ps), a vacuum state
|0⟩⟨0| is generated. The amplification of the noiseless linear amplifier can be described as a
trace-preserving operation:

T [|αk⟩⟨αk|] = Ps|gαk⟩⟨gαk|+(1−Ps)|0⟩⟨0| (6.31)

The success probability of the noiseless linear amplifier depends on several experimental
factors. Based on the general principles in [12], its upper bound can be expressed as:

Ps 6
1− e−|α|2

1− e−|gα|2 (6.32)

Eve then measures the amplified coherent states |βk⟩⟨βk|, k ∈ {0,1,2,3} with her state-
discrimination receiver to capture the encoded classical information of |αk⟩⟨αk|: the phases
of the states. Then she re-encodes on the coherent states according to her state-discrimination
measurements. Since her state-discrimination receiver is not perfect, there can be a cer-
tain probability that Eve can not discriminate the coherent states. According to [29, 174],
the error probabilities to discriminate the four amplified nonorthogonal coherent states in a
quadrature phase-shift keying (QPSK) is:

Pe = 1− [1− 1
2

erfc(
√
|gα|2/2)]2, (6.33)

in which erfc(x) = 2√
π

∫
−∞∞e−t2

dt. When Eve fails to discriminate the state |αk⟩, she thus
produces a state |α ′

k⟩ ̸= |αk⟩ with a failure probability Pe. The reproduced states of Eve thus
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contain three parts: The coherent states |αk⟩ with a successful discrimination probability
1−Pe; The coherent states |α ′

k⟩ with a error discrimination probability Pe; The vacuum state
that have been introduced with the noiseless linear amplifier. It is moreover assumed that
Eve uses a lossless and noiseless channel to connect Bob, Bob performs a perfect homodyne
detection (η = 1,vele = 0), and Eve’s failure discriminations will introduce error bits. By
performing a homodyne detection, Bob measures the states that are sent by Eve, the state of
Bob under these assumptions can be expressed as:

ρB = Ps(1−Pe)|αk⟩⟨αk|+PsPe|α ′
k⟩⟨α ′

k|+(1−Ps)|0⟩⟨0| (6.34)

For the security analysis, it is necessary to evaluate the parameter estimation under such
attack: channel transmission and excess noise. From Eq.(6.34), the channel transmission
becomes:

T̂SD = Ps(1−Pe) (6.35)

And Bob’ variance measurement becomes:

VB = PsVA +N0 (6.36)

Thus we can further express the excess noise estimation by taking Eq.(6.35) and Eq.(6.36)
into Eq.(4.17):

ξ̂SD =
VAPe

1−Pe
(6.37)

Where the contributions of excess noise are from the vacuum state |0⟩ and the error state
|α ′

k⟩. From Eq.(6.37), we can see the excess noise is mainly due to the error probability that
Eve discriminates the coherent states. Based on T̂SD and ξ̂SD, Alice and Bob can moreover
evaluate the Holevo bound under collective attack to estimate the information that can be
accessed by Eve. Meanwhile, the real mutual information between Bob and Eve, IBE , can be
seen as classical information that Eve sends to Bob, and can be derived from Bob’s measured
variance Eq.(6.36), and the conditional variance VB|E = Ps(1−Pe)+PsPe +1−Ps = 1 as:

IBE =
1
2

log2(PsVA +N0) (6.38)

To analyze whether Eve can steal information without being noticed by Alice and Bob,
one need further compare the mutual information IAB between Alice and Bob, the Holevo
information χBE that is estimated by Alice and Bob, and the real mutual information IBE

between Eve and Bob. For a successful attack Eve must verify: IAB > χBE so that Alice and
Bob believe that they can extract a secret key (with perfect reconciliation efficiency, β = 1)
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(a) (b)

Fig. 6.10 The mutual information IAB, χBE and IBE as a function of modulation variance VA
of the four-state protocol under the state-discrimination attack for (a) Gain value g = 1 (b)
Gain value g = 6 [58].

and IBE > χBE so that Eve can have more information than the upper Holevo bound that
Alice and Bob estimate for Eve, thus Alice and Bob underestimate Eve’s information and
still believe there is a secret key, so the security is compromised.

In Fig. 6.10, the authors compare the three values IAB, χBE and IBE for different gain
value g. In which Fig.6.10 (a) shows that with g = 1 (the amplifier doesn’t work), with
relatively small amplitudes of the states, Eve will have relatively high error probability to
discriminate the coherent states that she intercepts. If the error probability is high, then the
excess noise estimation becomes large Eq.(6.37) and Alice and Bob will conclude χBE >

IAB, and abort the protocol. However, when Eve uses the noiseless linear amplifier, for
example, with a gain value g = 6 (Fig.6.10 (b)), the error discrimination probability can
be dramatically decreased so that excess noise becomes relatively small, thus according to
Alice and Bob’s estimation, IAB > χBE . However the real information that Eve can get is
more than the Holevo information estimated by Alice and Bob IBE > χBE . Hence Eve can
have information advantage over Alice and Bob, and the security of discrete modulation CV
QKD has been compromised.

In [58], the authors have moreover studied a lower error discrimination bound for Pe,
that is allowed in quantum mechanics, known as Helstrom bound. Such Helstrom bound
can help Eve to optimize her strategy to achieve a better performance. We can consider
the error discrimination bound Pe is between the bound that is deduced in Eq.(6.33) and the
Helstrom bound. Thus Eve’s state-discrimination attack can at least achieve the performance
that is shown in Fig.6.10 (b) with a gain value g = 6.
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Countermeasure: Decoy state method Such attack can be prevented by the decoy state
method which is introduced in [87] for the four-state protocol. In this improved four-state
protocol, Alice randomly prepares and sends the state for the key generation σkey and the
decoy state σdecoy with probability p and 1− p, such that the mixed state that Bob will
measure is a Gaussian state σG.

pσkey +(1− p)σdecoy = σG (6.39)

Alice can randomly use the Gaussian state σG to perform parameter estimation or use σkey

for key distribution. When Alice and Bob introduce decoy states, Eve cannot distinguish
whether the state is σkey, σdecoy or σG. According to [87], with the decoy state method,
the four state protocol can thus be treated as a Gaussian modulation CV QKD protocol.
The discrimination receiver is noneffective for Gaussian states, since the key information
is encoded in both the amplitudes and the phases of the signal states, which are not QPSK
signals. In this case, the state-discrimination attack will be not more effective than the
general collective attacks.

Single photon detector attack

Other than using a state discriminator to discriminate the coherent states, a single photon
detector also can be used for this purpose. In [165], the authors have proposed a single
photon detector (SPD) attack on a binary modulation CV QKD protocol [195], in which,
Eve launches a modified intercept resend attack where she uses a single photon detector
instead of heterodyne detection to measure the two states |α⟩ and |−α⟩ of Alice. The single
photon detector can be seen as an alternative state discriminator that introduces enough low
error probability to discriminate the two states of Alice. The excess noise due to such error
can be low enough to allow Alice and Bob to extract a secret key under certain conditions
(See the analysis in Sec.6.3.4). The security analysis in [165] has shown that the error rate
that the single photon detector introduces can be even smaller than the error rate due to
the channel loss under certain parameter regions, so that Eve can learn information without
being noticed. The main specificity of single photon detector attack, compared to the state-
discrimination attack is that Eve uses a single photon detector as the state discriminator and
the target protocol is a binary coherent state modulation protocol.

Similarly to the state-discriminate attack, such attack does not apply to the Gaussian
modulation protocol, hence the decoy state method mentioned before can be also a counter-
measure. Another possible countermeasure, for Alice and Bob, would be to reconstruct the
probability density distribution of each state measured by Bob, since Eve’s attack will affect
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the probability density distribution of Bob’s measurement.

6.3.5 Trojan horse attacks on CV QKD

Trojan-horse attack was first proposed against some DV QKD systems [43]. In Trojan
horse attack, Eve shines a bright light towards Alice or Bob’s device and probes its reflected
light to read out the phase or amplitude information of different modulators. Trojan-horse
attack can be achieved by different techniques such as, Optical Frequency Domain Reflec-
tometry (OFDR), Optical Time Domain Reflectometry (OTDR) or even homodyne detec-
tion.

Recently, a Trojan-horse attack has been proposed by Khan et al. [72] on practical CV
QKD systems, in particular, on the binary modulation protocol [71, 195] where Alice en-
codes the information on the phase of two coherent states (|α⟩ and |−α⟩). Unlike the other
attacks we have introduced so far, this proposed attack has been demonstrated in experiment
as a proof of principle. In the demonstration, the authors only consider Alice’s device, since
the goal for Eve is to read out the phase encoded information of Alice’s phase modulator.

In this attack Fig.6.11, Eve prepares a strong signal as Trojan-horse pulse (contains up
to 109 photon ) and a LO pulse. Eve uses a 50/50 fiber coupler to connect her device with
Alice’s and sends the Trojan-horse pulse into Alice’s device. After traveling through the
components in Alice, the strong Trojan-horse pulse will attenuate to a very weak signal
due to the loss of components. This weak back reflected signal pulse carries the phase
information of the phase modulator which can be recovered by interfering with the LO
pulse on the two homodyne detections of Eve. These two homodyne detections can be seen
as a heterodyne detection which can measure both X and P quadratures. By performing such
Trojan-horse attack, Eve can try to discriminate between the two phase modulated coherent

Fig. 6.11 The Trojan-horse attack, Eve’s setup. LO: local oscillator; THP: Trojan-horse
pulse; PC: polarization controller;HWP/QWP: half quarter wave plate; PBS: polarizing
beam splitter [72].
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states at the output of Alice.
The principle of this Trojan-horse attack is simple, however technical issues can make

the attack difficult to realize in practice. The first challenge is the delay of the LO pulse with
respect to the back reflected pulse: the delay of LO pulse needs to be carefully controlled so
that it is as same as the delay of the Trojan-horse pulse which travels inside Alice’s device.
A fiber patch cord and a motorized picosecond delay stage can be used to control the delay
of the LO pulse so that when the back reflected signal pulse returns to Eve’s device, it
overlaps with the prepared LO pulse. Another challenge is the visibility of Eve’s detection.
In order to increase the visibility, the transmission of the Trojan-horse pulse inside Alice
need to be optimized. To achieve this, polarization controllers are used in Eve’s setup and
the variable attenuator of Alice is set to 0 dB. Moreover, homodyne detection data is further
processed with calibration pulse [71] to eliminate the error due to the phase drifts of the two
coherent states prepared by Alice. After considering all these issues, Khan et al. [72] have
achieved a success rate of 98.73 % to read out the phase modulation information of Alice to
discriminate the two coherent states.

To study the security impact of Trojan-horse attack, it is essential to analyze the pa-
rameter estimation, especially the estimated excess noise as the previous attacks show. As
matter of a fact, the Trojan horse attack could possibly introduce additional excess noise.
Such analysis thus requires a full implementation of CV QKD protocol. Moreover, it is also
important to quantify the information that is gained by Eve. Since the Trojan-horse pulse
may pass once or twice through Alice’s modulator, the phase-space distribution of states
received by Eve may not coincide with the distribution set by Alice. So the mutual informa-
tion between Alice-Bob, and Bob-Eve still remains as a question according to the analysis
in [72]. This question further determines whether Eve can steal information without being
noticed. For the Gaussian modulation protocols [68], since Alice uses both phase and am-
plitude modulators to achieve a Gaussian modulation and it is also a continuous modulation,
it will be much more difficult for Eve to read out the amplitude and phase information at
same time. Further study still need to be done to show the feasibility of the Trojan-horse
attack on Gaussian modulation CV QKD protocols [72].

A possible countermeasure against this Trojan-horse attack could be to employ a watch-
dog detector to monitor the incoming light into Alice or to use an optical isolator at the
entrance of Alice’s device to prevent incoming Trojan-horse pulses.

6.3.6 Conclusions

In this section, we have presented the main side channel attacks against CV QKD. For
the attacks against Gaussian protocols, we have evaluated the impact of Eve’s action on
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the excess noise estimation. The bias of the excess noise estimation leads Alice and Bob to
underestimate Eve’s accessed information, which brings chance for Eve to fully compromise
the security without being discovered.

Regarding to the vulnerability in the practical implementation of CV QKD system, ma-
nipulating the LO is an important issue that Eve can possibly take advantage of. LO ma-
nipulation problem concerns all the CV QKD protocol, where LO pulse is sent in a open
channel. It concerns not only Gaussian protocols, but also discrete modulation protocols.
The main approach to comprise the practical security in CV QKD is to manipulate LO in
different ways so that Eve can bias the estimation of shot noise and thus the excess noise.
The threat of such attacks can be removed if Alice and Bob monitor LO in a proper way or
measure the shot noise in real time.

In order to compromise the security of discrete modulation CV QKD protocols, an op-
tion for Eve is to discriminate the coherent states of Alice without introducing too much
noise. To achieve this, Eve can use a state discriminator or single photon detector to per-
form measurements. Another possible approach for Eve is to use a Trojan horse pulse to
probe the encoded information of the phase modulator that Alice uses. However, all of
these attacks aiming on the discrete modulation protocols cannot be easily applied against
Gaussian modulation protocols.

Finally, almost all the successful side channel attacks in CV QKD combine the intercept-
resend attack with their own strategies or at least use the concept of intercept-resend. The
intercept resend attack can be achieved with simple implementation from today’s technolo-
gies. By launching such attack, Eve learns all the encode information of Alice with the
cost of introducing two shot noise units of excess noise on Bob’s measurement. In order to
perform an efficient side channel attack, Eve must combine the intercept-resend attack with
a particular strategy to bias the excess noise estimation of Alice and Bob. As we have seen,
there are several possibilities for Eve to achieve this by taking advantage of vulnerability in
CV QKD implementations. In the end, we summarize all these side channel attacks in CV
QKD in Table.6.2.
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Table 6.2 Summary of various side channel attacks in CV QKD.

Attack Protocol IR Target Countermeasure
CV QKD
Equal-amplitude Binary • State of LO intensity
[51] modulation LO, signal monitor
Calibration GMCS • Intensity of LO intensity
[32] LO, signal monitor
Calibration GMCS • LO intensity LO intensity
[111, 114] fluctuation monitor
Calibration GMCS • LO pulse shape Real time shot
[66] noise measurement
Wavelength GMCS • Beam splitter; Wavelength filter
[57] Wavelength of

LO, signal
Wavelength No-switching • Beam splitter; Wavelength filter;
[56, 112] Wavelength of Check the linearity

LO, signal of excess noise
State- Four state ◦ Signal state Decoy state method
discrimination [58] discrimination
Single photon Binary ◦ Signal state Decoy state method;
detector [165] modulation discrimination Probability distribution

by SPD reconstruction
Trojan horse Binary ∗ Alice’s Watch dog detector;
[72] modulation modulators Isolator

•: Attack uses an intercept-resend attack (Heterodyne detection) [104];
◦: Attack is of the intercept-resend type, but the intercept does not use the heterodyne
detection;
∗: Attack has no relation with intercept-resend attack.



Chapter 7

A new side channel attack on CV QKD
system: Saturation attack

As we have seen from the previous chapter, side channels are crucial problem for practi-
cal implementations of CV QKD, since security proofs do not take into account all possible
experimental imperfections. In this chapter, we present a new loophole and show that it can
be used to attack a practical CV QKD system implementing Gaussian-modulated coherent
state (GMCS) protocol [50]. Instead of attacking local oscillator, we aim at the homodyne
detection located on Bob side, specifically, the electronics of the homodyne detection. We
propose an attack that we name saturation attack, consisting in a full intercept-resend at-
tack [104] combined with the exploitation of the induced nonlinear response of homodyne
detection. Under this saturation attack, we can show that Eve can manipulate the measure-
ment results on Bob’s side and get information without being discovered. Importantly, our
attack is practical that can be realistically launched against existing implementations.

This chapter is organized as follows. We first present the idea of the saturation attack in
section 7.1. Then in section 7.2, we show the influences of saturation effect on a practical
homodyne detector in experiments. In section 7.3, we propose a practical attack using
the saturation of the homodyne detection electronics. In section 7.4, we use numerical
simulations to analysis the estimation of channel transmission, excess noise and secret key
rate under the saturation attack. In the end, we give the counter measures and conclusions
in section 7.5 and 7.6.
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7.1 Principle of the saturation attack

Unlike the attacks aiming at the local oscillator, we introduce a new attack which ex-
plores the non linearity of the homodyne detection response. A fundamental assumption in
the security proofs of CV QKD is that the response of homodyne detection is linear with
respect to input quadrature. This assumption is necessary because parameter estimation im-
plicitly assumes the linearity of Bob quadrature measurement with respect to the value sent
by Alice. However, this linearity assumption does not hold if Bob’s homodyne detection is
operated in a non linear regime. For a practical detector, the linearity region is limited. If
the value of input quadrature is too large, linearity may not be verified, leading to a saturated
behavior.

From section 4.2.4, we can observe that, based on the Gaussian linear model (Eq.(4.10)),
the parameter estimation consists in the evaluation of the covariance matrix. The covariance
matrix is invariant under any linear shifts. Indeed the security evaluation in CV QKD relies
solely on the evaluation of second order moments of the quadrature, while the first order
moments (mean value) are not monitored. This leaves Eve a chance to manipulate the
mean value of quadratures. Combining this with exploiting the existence of a detector’s
saturation region, a strategy for Eve is to actively introduce a large displacement on the
quadrature received by Bob to force the homodyne detection to operate in its saturated
region. Since mean value of the homodyne detection output is by default not monitored,
Eve can freely decide to displace the mean value. This can induce a non linear response on
the detector which is under her control. This enables Eve to influence Bob’s measurement
results. Parameter estimation can thus be biased and the value of the parameters will depend
on the displacement, which is actively controlled by Eve.

In brief, here is our idea for a new attack: by actively introducing a displacement on the
quadratures measured by Bob, Eve can force the detector to work in the saturated region
which will help her to manipulate the measurement results and thus the parameter estima-
tion. Importantly, unlike the attacks in which the shot noise measurement is influenced,
saturation attack does not bias the shot noise estimation but influences the excess noise
estimation.

7.2 Saturation of homodyne detection

Saturation typically occurs when the input field quadrature overpasses a threshold. This
threshold depends on parameters of homodyne detector’s electronics, such as the ampli-
fiers linearity domain or the data acquisition card (DAQ) range (Fig.7.1). If Bob measures
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Fig. 7.1 A practical homodyne detection with different linear detection range. PD: photodi-
ode, BS: Beam splitter, LO: Local oscillator

quadrature signals falling outside of the detector’s linearity range, the variance is modified
by a factor that depends on the detector linearity range and on the data range. However, it
will typically lead to a wrong variance estimation. The linear model (Eq.(4.10)) in particular
does not hold under saturation of the homodyne detection.

7.2.1 Saturation model

The quadrature measurement at Bob side is carried out by a homodyne detection. This
measurement is performed via the subtraction of two photo-currents followed by an elec-
tronics for amplification and acquisition. Usually we consider that the linear detection range
of the acquisition electronics is infinite which was the case considered in the previous sec-
tion. We then denote the measured quadrature as XBlin (XB in section II). However, in a
practical homodyne detector, no matter how large the linear detection range is, it can not be
infinite. We propose a saturation model (Eq.(7.1)) with predefined upper and lower bounds
of the homodyne detection response. For values between these two bounds, the response
of homodyne detection behaves normally, otherwise the response is constant. To simplify
the analysis, we have assumed in this model that the linear detection range can be described
by one single parameter, α , intrinsic to the detector. Under this saturation model with the
linear detection limit [−α,α], the measured quadrature is called XBsat . The relation between
XBsat and XBlin is the following:

XBlin > α, XBsat = α

i f | XBlin |< α, then XBsat = XBlin(α >> 1)

XBlin 6−α, XBsat =−α

(7.1)
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As expected, if α → ∞, the saturation model returns to the linear model. In a typical (non
saturated) CV QKD implementation, the value of α is large enough to ensure that field
quadratures almost never overpass the limit of homodyne detection response. Alice and
Bob can make sure of this by choosing a relativity high value of α2 for Bob’s detector
compared to number of photons impinging on the detector. Since the limit α is fixed only by
the acquisition electronics linearity, a practical way to guarantee with high probability that
α >> XBlin is to lower the LO intensity so that the shot noise value N0 << α2. In general,
input quadrature modulation variance are calibrated in shot noise units which depends on LO
intensity and Alice can choose a Gaussian modulation with ⟨XBlin⟩= 0 and Var(XBlin)<<α2

so that the detector does not saturate. However, as mentioned earlier this procedure cannot
cope with situation where XBlin is strongly displaced between emission and reception after
propagation through a open channel, as it will be the case in saturation attack.

7.2.2 Experimental observation of saturation

In a practical balanced homodyne detector, the common mode rejection ration (CMRR)
is not infinite and the mean value of the homodyne detection in absence of input signal is
affected by the imbalance, leading to: ⟨XB0,lin⟩= εILO, where ILO is the LO intensity, and ε is
the imbalance factor which is dependent on experimental imperfections such as photodiode
quantum efficiency mismatch or beam-splitter imbalance.

Accounting for these imperfections (but in absence of saturation), the relation between
measured noise variance (in volts squared) and LO intensity (in watt) usually can be written
as: Var(XB0,lin) = AILO +B (We neglect the quadratic part since in our case the LO power is
relatively low) [16]. ILO is the LO intensity, A is linear with ILO and is related to shot noise
while B is independent of ILO and is related to electronic noise. The value of A and B can
be determined experimentally.

Due to the limit linearity range of acquisition electronics in our homodyne detector,
our experimental shot noise measurement tests have revealed that the measured shot noise
variance can drop non-linearly when the LO intensity is above a certain value. We have
analyzed this behavior with the saturation model presented in the previous subsection and
compared its prediction to experimental measurements of Fig.7.2. We display the measured
variance and mean of the homodyne detection output with vacuum input signal for different
LO intensities. When the homodyne detection is not saturated, the shot noise variance is
linear with respect to LO intensity. Due to imperfect balancing of homodyne detection,
measured mean value ⟨XB0,lin⟩ also increases linearly with LO intensity. In Fig.7.2, such
linear behavior can be observed when LO intensity is below 35 µW in our setup. Due
to the imbalance of homodyne detection (ε), mean value of homodyne detection output
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Fig. 7.2 Shot noise measurements of homodyne detection (a) Mean value ⟨XB0,sat ⟩vs LO
Intensity. (b) Shot noise variance Var(XB0,sat ) vs LO Intensity.

can become very high when LO intensity is relatively strong. If those values overpass the
threshold of DAQ card (in the present case 0.5 V), the detection response is saturated and
its output becomes constant (Fig.7.2 (a)). As a consequence, measured shot noise variance
strongly decreases (Fig.7.2 (b)) when such saturation happens.

In order to check the validity of the saturation model introduced in Eq.(7.1), we have
simulated the expected homodyne detection response with our saturation model and com-
pared it with experimental measurement. We first determine the parameter ε , A and B
from linear fit on ⟨XB0,lin⟩ and Var(XB0,lin) versus LO intensity, in the linearity domain
(ILO < 35µw). The saturation parameter α is here fixed by our DAQ range: α = 0.5V .
We then apply the saturation model Eq.(7.1) to the variable XB0,lin to obtain XB0,sat . We com-
pute the mean ⟨XB0,sat ⟩ and the variance Var(XB0,sat ), which result in the behavior shown in
Fig.7.2. For the measured shot noise under saturation, the simulation results match very
well with our experimental data. It indicates that our proposed saturation model is realistic
and can be further used to interpret our saturation attack.

7.3 Attack strategy

7.3.1 Intercept-resend attack

Before we explain our attack strategy, we first remind the intercept-resend attack which
is an important part of the saturation attack (section 6.3.1). The intercept-resend attack in
CV QKD is achievable with today’s technologies and its security analysis has been studied
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in previous work [104]. A full intercept-resend attack breaks any entanglement between
Alice and Bob. In such attack, Eve intercepts all the pulses sent by Alice on the quantum
channel and measures simultaneously the X and P quadratures, with the help of a hetero-
dyne detection. Eve then prepares a coherent state according to her measurement results
and sends it to Bob. Under such attack, the correlation between Eve and Bob data will be
stronger than the one between Alice and Bob so that Eve always has an information ad-
vantage over Alice and Bob. However due to the heterodyne measurement disturbance and
coherent state shot noise, the intercept-resend attack will introduce two shot noise units of
excess noise. Moreover, in practice, Eve’s device and her action can introduce additional
excess noise on Bob’s measurements. So a full intercept-resend attack in practice will intro-
duce at least two shot noise units of excess noise, which will be spotted by Alice and Bob
when they estimate the excess noise and secret key rate. This assumes that the estimation
procedure is not biased, we will see that a saturation attack can, on the contrary, bias the
estimation and lead to an attack.

7.3.2 Saturation attack strategy

In our saturation attack, the goal of Eve is to combine a full intercept-resend attack with
an induced saturation of Bob detector, so that Bob’s measurements and Alice-Bob parameter
estimation are biased and lead to accept key material that is totally insecure (potentially
fully known by Eve). In order to learn the information on data encoded by Alice, Eve can
simply launch a full intercept-resend attack [104]. By inducing saturation, Eve can bias the
estimated excess noise below the null key threshold (calculated under collective attack in
asymptotic limit[38, 123]), so that according to their estimation, Alice and Bob will assume
they can obtain a positive key rate while no secure key can be obtained from the actual
correlation.

We propose a general description of our saturation attack in Fig.7.3, in which there are
mainly two parts: Alice-Bob channel, and Eve’s station. Alice and Bob run the standard
GMCS protocol while Eve performs saturation attack. In order to simplify our analysis,
we assume that Eve’s station is located at Alice’s output and that the channel transmission
between Alice-Bob and Eve-Bob are equal. Moreover, we assume that Alice and Bob mea-
sure their shot noise and monitor the LO intensity in real time [66], with two transmission
coefficients of signal randomly decided at Bob side (η1 = 1,η2 = 0).

In Fig.7.3, Eve in the middle cuts down the quantum channel and intercepts the signal
sent from Alice. There are mainly two stages of Eve’s action: quadrature measurement and
quadrature re-preparation. By using a heterodyne detection, Eve measures Alice’s quadra-
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Fig. 7.3 General description of GMCS CV QKD under the saturation attack. Alice: prepares
the coherent state with quadratures X and P; Eve: measurement and re-preparation stage,
G:gain, D:displacement; Bob: performs the homodyne detection, AM:amplitude modulator,
η1,η2: signal transmission coefficients, PM:phase modulator, −α,α: linear working range.

ture XA and PA simultaneously. Her measurement results (XM,PM) are expressed as:

XM =
1√
2
(XA +X0 +X ′

0 +XNA,E ) (7.2)

PM =
1√
2
(PA +P0 +P′

0 +PNA,E ) (7.3)

Where X0 is a noise term due to the coherent state encoding of Alice while X ′
0 is a noise

term due to 3 dB loss in the heterodyne detection. XNA,E is a random noise that accounts for
the technical noise of Alice’s preparation and Eve’s measurement process with its variance
ξA,E .

In the re-preparation stage, Eve prepares a coherent state with quadratures (XE ,PE) ac-
cording to her measurement (XM,PM). Eve can also induce a displacement (∆X ,∆P) and an
amplification (g) on the data XM before optical encoding. In our further analysis, we only
look at the X quadrature but the treatment for the quadrature P is totally symmetric. The
resend quadrature of Eve can be written as:

XE = gXM +∆X +X ′′
0 =

g√
2
(XA +X0 +X ′

0 +XNA,E )+∆X +X ′′
0 (7.4)

Where, X ′′
0 is a noise term due to coherent state encoding of Eve. X0, X ′

0 and X ′′
0 all follow

N (0,N0) with their variance equal to one unit of shot noise (N0).

Introducing displacement on coherent states is experimentally achievable [187] and
since Eve prepares the new states, the displacement parameter (∆X ,∆P) can be freely chosen
by her. In order to compensate the loss from the heterodyne detection, we can choose an
amplification coefficient g =

√
2.
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Linear detection On Bob side, Bob measures the quadrature sent by Eve by performing
a homodyne detection. We first consider Bob uses a homodyne detection whose linear
detection range is infinite (Fig.1). The measured quadrature (XBlin) can be written as

XBlin = t(XE +XNE,B)+
√

1− t2X ′′′
0 +Xele (7.5)

After the propagation though the lossy channel, technical noise of Eve and Bob XNE,B

(Var(XNE,B) = ξE,B), vacuum noise
√

1− t2X ′′′
0 (Var(X ′′′

0 ) = N0) and electronic noise of Bob
Xele (Var(Xele) = vele) are added to the quadrature prepared by Eve (XE). Here t =

√
ηT ,

where T is the channel transmission between Eve and Bob, and η is Bob’s efficiency. The
correlation between Alice and Bob and the variance of Bob can be described as:

Cov(XA,XBlin) = ⟨XAXBlin⟩=
tg√

2
⟨XAXA⟩+ t∆X⟨XA⟩=

tg√
2

Var(XA), (7.6)

Var(XBlin) = ⟨X2
Blin

⟩−⟨XBlin⟩
2 =

t2g2

2
[Var(XA)+2N0 +ξsys]+ (1− t2)N0 + t2N0 + vele

+ t2
∆

2
X − t2

∆
2
X = ηT

G
2

Var(XA)+ηT
G
2
(2N0 +ξsys)+N0 + vele

(7.7)

In Eq. (7.6) and (7.7), we can see that with an ideal linear detection range, the induced
displacement ∆x has no influence on the measurement results, since the terms of ∆x has
been removed in both correlation and variance measurements.

Under linear detection and intercept-resend attack with the gain G = g2 = 2, the corre-
lation (Eq.(7.6)) is not modified by Eve’s action, so that the estimated channel transmission
is not biased (T̂lin = T ). Based on Eq.(7), the excess noise estimation on Alice side is
ξ̂lin = 2N0 + ξsys, where ξsys = ξA,E + 2

GξB,E . Similarly in section 4.2.4, we introduce the
noise variable XN which contains all the noise added to Bob’s measurement, the variance of
XN is σ2

N = ηT G
2 (2N0 +ξsys)+N0 + vele.

Saturation detection As we have seen the linearity of the homodyne detection cannot be
guaranteed by arbitrary large detection range, a more realistic model is taking saturation
into account, with a linear detection region limited between α and −α (Eq.(7.1)). Under
this modified model, we denote XBsat as the quadrature measured by Bob. XBsat = XBlin only
if XBlin does not overpass the linear detection limit [α ,−α]. Otherwise the measurement
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results are constant, equal to the value of detection limit.

XBlin > α, XBsat = α,

i f | XBlin |< α, then XBsat = t(XE +XNE,B)+
√

1− t2X ′′′
0 +Xele,

XBlin 6−α, XBsat =−α

(7.8)

Since Eve actively induces the displacement (∆X ,∆P), she can freely set the displacement
value so that XBlin can partially overpass the limit [−α,α]. In further analysis, we consider
∆ = t∆X as the displacement value of Eve. In order to realize a fixed value of ∆, Eve can
choose a proper ∆X once she knows t, that typically depends on the distance between Eve
and Bob. The measured quadrature XBsat will be influenced by the saturation due to the
induced displacement. The correlation ⟨XAXBsat ⟩ and Bob’s variance Var(XBsat ) will both
decrease due to saturation. As we shall see, parameter estimation affected by saturation can
lead to excess noise below the null key threshold.

In the next section, we will show that under certain conditions of our attack strategy,
Eve can manipulate the channel transmission and the excess noise estimated by Alice and
Bob, so that her intercept resend action can remain under cover while fully compromising
the practical security of the CV QKD protocol.

7.4 Security Analysis

7.4.1 Parameter estimation under the saturation attack

The channel transmission and excess noise estimation fully characterize the quantum
channel of CV QKD, we thus only need to analyze the impact of saturation on these two
estimated parameters. It is in particular critical to evaluate whether an induced saturation
can reduce the excess noise estimation as thus opens the door to severe attacks.

Channel transmission estimation

Under the saturation attack, Alice encodes XA and Bob measures XBsat (Eq.(7.8)) and
they evaluate the correlation coefficient: Cov(XA,XBsat ) (calculation details can be found in
Appendix A.1.). From this correlation coefficient (Eq.(A.3)), the estimation of the channel
transmission under saturation attack, T̂sat , can be expressed as:

T̂sat = T
G
8
[1+ erf(

α −∆√
2Var(XBlin)

)]2 (∆ > 0) (7.9)
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In which, erf is the error function defined as erf(x) = 2√
π

∫ x
0 e−t2

dt and Var(XBlin) is the
variance of Bob’s measurement under linear detection. As we have discussed in section
III, a reasonable assumption for the detector linearity limit α is that α2 >> Var(XBlin) and
α2 >> N0, so that the measurement results of Bob (without displacement) and thus the
parameter estimation cannot be affected by saturation. This agrees with the prediction of

Eq.(7.9): if α −∆ is much larger than
√

2Var(XBlin), then T̂sat ∼= T
G
2

which is the estimated
value under the linear model. However when ∆ is close to α , the impact of saturation
becomes important, and T̂sat becomes smaller. An extreme case is when ∆ is much larger
than α , the error function becomes −1 and T̂sat = 0.

Excess noise estimation

Eq.(4.17) shows that the estimated excess noise depends on the variance of Bob’s mea-
surement and on the channel transmission between Alice and Bob. Under the saturation
attack, these two values will both decrease. We need to evaluate these two values to see
whether the induced saturation will result in reducing the estimated excess noise. We have
already analyzed T̂sat in the previous subsection (Eq.(7.9)). With Eq.(7.8), we can calculate
Var(XBsat ) (Eq.(A.17)) under saturation attack (calculation details can be found in Appendix
A.2.). Based on T̂sat and Var(XBsat ), we are able to express the estimated excess noise in shot
noise units under the saturation attack:

ξ̂sat

N0
=

2Var(XBlin)(1+A− B2

π
)−2

√
2Var(XBlin)

π
(α −∆)A∗B+(α −∆)2(1−A2)−4N0 −4vele

η
G
2 (1+A)2N0

− VA

N0
(7.10)

in which

A =erf(
α −∆√

2Var(XBlin)
), (7.11)

B =e
− (α−∆)2

2Var(XBlin
) (7.12)

From Eq.(7.10), we can find that when the value of α −∆ is much larger than
√

2Var(XBlin),
then A → 1 and B → 0, so that ξ̂sat =

Var(XB)
ηT −Var(XA)− N0

ηT − vele
ηT = ξ̂lin (Eq.(4.17)). It can

be considered that no saturation is induced and the excess noise estimation is not affected.
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A necessary condition for reducing estimated excess noise A necessary condition to
have a successful attack is to reduce the excess noise estimation ξ̂sat < ξ̂lin. We can then
study under which condition the excess noise estimation is reduced by the saturation attack.
We have seen that to have obvious saturation effect, ∆ needs to be close to α . By considering
ε = α −∆, when ∆ is close to α , ε can be considered as a small value and particularly,
ε <<

√
2Var(XBlin). So we can make the following approximation: A ≈ ε√

2Var(XBlin)
, B ≈

1− ε2

2Var(XBlin)
with higher order terms in ε that can be neglected. By solving the inequality

ξ̂sat < ξ̂lin for small ε and considering the gain value G = 2, we can obtain the condition:

(1− 2
π
)σ4

B +
√

2εσ
3
B −3(N0 + vele)σ

2
B −2

√
2ε(N0 + vele)σB < 0 (7.13)

where σ2
B = Var(XBlin). Since ε << σB, the terms of second or higher in ε have been ne-

glected. Inequality Eq.(7.13) will be always satisfied (for small ε) if Var(XBlin)<
3(N0+vele)

1− 2
π

.
Such necessary condition turns into a condition on the channel transmission and on Alice’s
input modulation. Eve can not choose Alice’s input modulation and the necessary condition
reduces to a condition on the channel transmission: T < 2π+2

π−2
N0+vele
VA+ξ

. This maximal channel
transmission is related to the minimal distance that enables Eve to reduce the excess noise
estimation by launching a saturation attack.

Estimated excess noise can be made arbitrary small According to the intermediate
value theorem, we can prove that ξ̂sat can be manipulated to be arbitrary close to zero
when the value of ∆ is chosen probably between 0 and 2α . ξ̂sat is a function of ∆, and
when ∆ = 0, ξ̂sat(0) = ξ̂lin = ξ , where ξ = 2N0 +ξsys under intercept-resend attack. When
∆ = 2α , since we assume that α2 >>Var(XBlin) then we have A =−erf( α√

2Var(XBlin)
) =−1,

and ξ̂sat(2α)→−∞. Moreover, ξ̂sat is a continuous function of ∆ over the interval [0,2α).
Then according to the intermediate value theorem, for any target excess noise that Eve wants
to achieve ξT in (−∞, ξ ], there always exists a ∆ ∈ [0,2α) so that ξ̂sat = ξT . In a practi-
cal attack, Eve wants to manipulate the estimated excess noise to be as small as possible
but positive. Eve is always able to find a particular ∆T that enables ξ̂sat(∆T ) = ξT for any
0 < ξT << N0.

7.4.2 Defining criteria of success for the saturation attack

Alice and Bob estimate the key rate based on their estimation of excess noise and channel
transmission. If the excess noise is too large, it won’t allow Alice and Bob to distill any
secret key. A full security break consists in an attack where Eve has full knowledge on the
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generated key while Alice and Bob still accept this compromised key material. An intercept-
resend attack is an attack strategy that leads, in general, to a denial of service but not to a
full security break on CV QKD. By performing saturation attack, we can however obtain a
full security break under certain conditions. It is important to clarify what one means by an
attack in this context. For this reason, we define a level I criteria for a successful attack:

Level I criteria for a successful attack:

• The attacker Eve performs the saturation attack (Intercept-resend attack on each
pulse combined with displacement of each resent pulse).

• Alice and Bob obtain a positive key rate from their estimated parameters T̂sat and
ξ̂sat .

This condition corresponds to a full security break because Alice and Bob will obtain a
positive key rate under the attack and thus accept key material, while this key is insecure as
it can be fully obtained by Eve.

While level I criteria defines conditions for a successful attack, the induced saturation
can in practice strongly decrease the estimated channel transmission (Eq.(7.9)). This can
be a problem in practice since Alice and Bob usually have a good a-priori estimate of the
channel transmission based on the distance and the attenuation coefficient. If the measured
channel transmission is much lower than the expected value for the given link distance, it
is reasonable for Alice and Bob to be suspicious and they may reject the key. Moreover,
secret key rate drops when channel transmission becomes smaller. Such facts weaken the
attacking power of Eve. By choosing different values of ∆ and g, the attacker Eve can
however mitigate these effects and seek to achieve a stronger criteria for a successful attack:

Level II criteria for a successful attack:

• The attacker Eve performs the saturation attack (Intercept-resend attack on each
pulse combined with displacement of each resent pulse).

• Maintain the channel transmission estimation unaffected (T̂sat = T ).

• Alice and Bob obtain a positive key rate from their estimated parameters T̂sat and
ξ̂sat .



7.4 Security Analysis 147

7.4.3 Analysis and simulation results

We formalize two strategies in order to meet the two criteria for the success of the satu-
ration attack, respectively. We use Eq.(7.9) and Eq.(7.10) to perform numerical evaluation
of Tsat and ξsat , in order to study the impact of the saturation attack.

Numerical simulations

We have performed numerical simulations of the estimated excess noise ξ̂sat , the esti-
mated channel transmission T̂sat , and the secret key rate under collective attack. We have
used the simulation parameters which are referred to realistic values given in [68]: Bob’s ef-
ficiency η = 0.55, electronic noise vele = 0.015, fiber attenuation coefficient a = 0.2dB/km.
We consider the total excess noise (in the absence of saturation) as the sum of the system
excess noise ξsys = 0.1 and of the excess noise ξIR = 2 due to intercept-resend attack [104].
The value of system excess noise ξsys = 0.1 is relatively high compared to the other exper-
iment results in CV QKD [68] but it has been encountered in the experimental study[104].
It can moreover be considered as a pessimistic value from Eve’s preceptive that therefore
will not weaken our predictions concerning the power of the saturation attack on practical
systems.

We have followed the procedure described in [63] to set Alice’s variance with respect
to distance: to achieve a high reconciliation efficiency in practical CV QKD (β = 0.95),
optimized error correction codes need to work with a fixed signal to noise ratio (SNR); then
Alice thus needs to optimize her modulation variance with respect to the distance in order
to work at a given SNR.

Meeting level I criteria: reduce the excess noise below the null key threshold

To meet this criteria, we formalize strategy I:

• Eve implements the saturation attack as described in the section VI.B.

• Eve chooses the gain value G = g2 = 2 in order to compensate the loss due to hetero-
dyne detection.

• By choosing the value of ∆, Eve bias the excess noise estimation of Alice and Bob
below the null key threshold, so that Alice and Bob can obtain a positive key rate.

The key idea of this strategy is that, for a given distance with the knowledge of Var(XBlin),
Eve can manipulate ξ̂sat by changing ∆. More importantly, Eve needs to manipulate ξ̂sat be-
low the null key threshold to meet the level I criteria of our saturation attack. ξ̂sat is a func-
tion of ∆ (Eq.(7.9)), the behavior of ξ̂sat versus ∆ is shown in Fig.7.4 (a). Under the linear
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Fig. 7.4 Strategy I (a) Excess noise (Alice side) versus ∆ with different distance. (b) Quan-
tum channel transmission versus distance with different ∆. Alice’s variance VA ∈ {1,100},
Bob’s efficiency η = 0.55, excess noise of electronics vele = 0.015, total excess noise in lin-
ear case ξ = 2.1, reconciliation efficiency β = 0.95, attenuation coefficient a = 0.2dB/km.

model, the total estimated excess noise under a full intercept-resend attack is ξ̂lin = ξ = 2.1,
including 0.1 technical noise (black curves in Fig.7.4 (a)). With such an excess noise, no key
rate can be established by Alice and Bob. However, ξ̂sat can be manipulated by changing
the value of ∆. In Fig.7.4 (a), for long distance (i.e. above 20 km) ξ̂sat always decreases
when ∆ increases. Especially when ∆ is close to α , ξ̂sat is significantly reduced, which
agrees with the analysis in subsection 7.4.1 For short distance (i.e. below 20 km), when ∆

increases, ξ̂sat first increases then decreases, but ξ̂sat can still become arbitrary small when
∆ is large enough. Importantly, from Fig.7.4 (a), we can see that Eve can obtain an arbitrary
small value of ξ̂sat by manipulating ∆ at any distance, which agrees with the analysis in
subsection 7.4.1.

As already mentioned in subsection 7.4.1, a drawback of the saturation attack is that
the estimated channel transmission is reduced T̂sat < T (Eq.(7.9)). In Fig.7.4 (b) we plot
the estimated channel transmission in log scale versus distance, in which the black curve is
the estimated channel transmission (T ) versus distance in absence of attack while the other
curves are estimated channel transmission (T̂sat) under the saturation attack. We can see
that, the estimated channel transmission can be strongly reduced in comparison to the actual
transmission in absence of attack. This is especially true at short distance, where ∆ needs to
be large enough to effectively reduce the excess noise estimation: larger ∆ means more loss
is induced on channel transmission. However with a lower channel transmission estimation,
the corresponding null key threshold (i.e. the maximum tolerable estimated excess noise
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Fig. 7.5 Strategy I. (a) Null key threshold and estimated excess noise versus ∆. Solid line:
null key threshold under saturation attack. Dash line: estimated excess noise under satura-
tion attack. (b) Key rate versus distance. Alice’s variance VA ∈ {1,100}, Bob’s efficiency
η = 0.55, excess noise of electronics vele = 0.015, total excess noise in linear case ξ = 2.1,
reconciliation efficiency β = 0.95, attenuation coefficient a = 0.2dB/km.

allows a positive key rate) becomes smaller. In our case we consider a choice of Alice’s
modulation variance optimizing the key rate based on realistic key rate. At short distance
the chosen variance can be relatively large (around 30 SNU) while at long distance it is
relatively small (below 5 SNU).

Although Eve can bias ξsat to an arbitrary small value at any distance, it is still not
enough to guarantee that Alice and Bob can obtain a positive key rate for any distance. The
null key threshold (ξnull) is computed from channel transmission estimation T̂sat (Fig.7.4(a))
and can be possibly smaller than ξ̂sat , especially at shorter distances. We need to study
further the condition under which Alice and Bob can obtain a positive key rate. Under
saturation attack, ξnull varies with T̂sat and thus with ∆. By varying ∆, we can compare ξnull

and ξ̂sat to study the condition of ξ̂sat < ξnull so that Alice and Bob can obtain a positive key
rate under saturation attack. In Fig.7.5(a) we plot ξnull and ξ̂sat versus ∆, where the solid line
is ξnull and dash line is ξ̂sat with different colors for different link distances. We can see that
for link distance 11 km, no matter how small ξ̂sat is, there is no intersection between ξnull

and ξ̂sat , so that there exists no value of ∆ that can meet the condition ξ̂sat < ξnull . When
the distance increases to 11.15 km, there is an intersection around ∆ = 21.58. At 11.15
km, as long as Eve chooses a value of ∆ slightly larger than 21.58, she can make sure that
ξ̂sat < ξnull so that the level I criteria of our saturation attack is achieved. At large distance,
there always exists intersections between ξnull and ξ̂sat , so that it is always possible for Eve
to achieve ξ̂sat < ξnull by manipulating ∆. In our case, 11.15 km is the shortest distance for
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which level I criteria can be satisfied.
For ∆ = 21.58 and other values of ∆ close to α , we evaluate the estimated secret key

rate versus distance in Fig.7.5 (b). For a fixed ∆, the impact of saturation attack varies with
the distance. For example when ∆ = 21.58, ξ̂sat is just below null key threshold at 11.15
km, however with same ∆ = 21.58 at 12 km, ξ̂sat becomes negative. In our simulation, we
assume that if ξ̂sat < 0, Eve can always add an extra noise to guarantee ξ̂sat = 0.0001, which
is smaller than the null key threshold at the minimal attack distance. Under this assumption,
we show the variation of estimated secret key rate with respect to distance for different
fixed values of ∆. For ∆ < 21.58, the shortest distance under which a positive key rate
can be obtained becomes larger than 12 km. The key rate also decreases when ∆ increases
illustrating the increasing impact of the saturation attack and T̂sat decreasing in comparison
to T .

Meeting level II criteria: reduce the excess noise below the null key rate threshold and
maintain the channel transmission unaffected

The saturation of the homodyne detection can lower the correlation between Alice and
Bob’s data, which will result in the decrease of the estimated channel transmission T̂sat

(Fig.7.4(b)). However, in the context of the intercept-resend attack, there is no restriction
on the gain (g) for Eve: Eve can choose a proper value of g to compensate the loss due
to the saturation attack so that the measured channel transmission appear unaffected. To
meet criteria II of our saturation attack, we formalize the strategy II. Strategy II is similar to
strategy I except for the second step where the choice of the gain is decided as followed.

Eve estimates how much loss the saturation attack will induce to the channel transmis-
sion estimation (Eq.(7.9)), and determines a value of g in order to compensate the loss due
to the saturation. If g satisfies the condition:

2
√

2
g

−1 = erf(
α −∆√

2[ηT g2

2 Var(XA)+ηT g2

2 (2N0 +ξsys)+N0 + vele]
) (7.14)

As a matter of fact, if Eq.(7.14) is accepted, then ⟨XAXBsat ⟩=
1
2
⟨X2

A⟩t and channel trans-

mission estimation becomes T̂sat = T , which meets our requirement that the channel trans-
mission estimation for Alice and Bob is not biased.

The gain g can be described as a function of ∆, we can find the numerical solutions of
Eq.(7.14) to determine the value of g, this corresponds to the curves displayed in Fig.7.6 (a).
Furthermore, in order to see whether we can have a full security break with this new choice
of g under the saturation attack, we still need to analyze the estimation of excess noise and
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Fig. 7.6 Strategy II. (a) Decision of g. (b) Excess noise (Alice side) versus ∆ with differ-
ent distance. Alice’s variance VA ∈ {1,100}, Bob’s efficiency η = 0.55, excess noise of
electronics vele = 0.015, total excess noise in linear case ξ = 2.1, reconciliation efficiency
β = 0.95, attenuation coefficient a = 0.2dB/km.

secret key rate for Alice and Bob. By taking the g solutions of Eq.(7.14) into account, the
behavior of ξ̂sat versus ∆ is shown in Fig.7.6 (b). As we can see, for long distance (above
30 km), it is still possible to reduce ξ̂sat close to zero by choosing a value of ∆ close to α .
Thus the power of our attack under this strategy is also limited by the distance according
to Fig.7.6 (b). We also need to study the condition for ξ̂sat < ξnull as we previously did in
level I criteria. However the analysis is simpler, because the estimated channel transmission
is not biased, so that the null key threshold does not depend on the attack parameter ∆.
Under strategy II, the null key threshold only varies with distance. In Fig.7.7 (a) we enlarge
the scale of Fig.7.6 (b) and compare the estimated excess noise to the null key threshold
for different distances. As we can see, when the distance reaches 31 km, the condition
ξ̂sat < ξnull can be satisfied with a choice of ∆ around 19.5. For larger distance, it is always
possible to meet the level II criteria conditions under strategy II by manipulating ∆ and g.

We also estimate the secret key rate of Alice and Bob versus distance (Fig.7.7 (b)) with
the assumption that if ξ̂sat < 0, ξ̂sat is set to 0.005, i.e. a value is much smaller than the
null key threshold at the shortest attacking distance. The shortest reachable distance where
Alice and Bob can obtain a positive key rate varies with different values of ∆. As excepted
from Fig.7.7 (a), ∆ = 19.35 corresponds to the optimal attack parameter, for which an attack
is possible for all distances above 31 km, and this is confirmed in Fig.7.7 (b). Moreover,
an advantage of strategy II is that for the achievable distance in Fig.7.7 (b), the key rate is
always higher with strategy II than with strategy I (Fig.7.5 (b)) for the same distance. Strat-
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Fig. 7.7 Strategy II (a) Null key threshold and estimated excess noise versus ∆. Solid line:
Null key threshold under saturation attack with strategy II. Dash line: Estimated excess
noise under saturation attack. (b) Key rate versus distance. Alice’s variance VA ∈ {1,100},
Bob’s efficiency η = 0.55, excess noise of electronics vele = 0.015, total excess noise in lin-
ear case ξ = 2.1, reconciliation efficiency β = 0.95, attenuation coefficient a = 0.2dB/km.

egy II optimizes the choice of g to maintain the channel transmission estimation unaffected
and leads to a more powerful attack, that can however not be valid for all experimental
parameters. Reaching level II criteria makes our attack more efficient and convincing.

7.5 Countermeasure

After figuring out a loophole that leads to the above described attack, now we are trying
to propose possible countermeasures. To prevent such saturation attack, intuitively, Bob
should avoid the homodyne detection working in a nonlinear or saturated region when he
makes measurements. Therefore Bob can test all the data just after data acquisition and
check whether quadrature measurements have been acquired in a linear regime. In order
to do this, Bob thus needs a precise calibration of the homodyne detection limit [−α,α].
The whole block which contains the data measured in saturation region would be totally
discarded. Based on Gaussian post-selection [33], we can moreover process on the data that
are measured in the linear region and transform them into a Gaussian input where security
proof holds.

The second countermeasure is proposed by Kunz-Jacques and Jouguet [81]: Alice and
Bob test the linearity between the noise and signal measurement by using an active atten-
uation device on Bob’s side, i.e. an amplitude modulator. In principle, the randomization
of signal port’s attenuation can prevent Eve to set proper values of displacement that in-
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duce detector saturation. However, in the analysis, the authors consider a unrealistic case
where there is no loss on the channel between Alice and Bob T = 1. It is not clear yet that
such linearity test can also works when a lossy channel is considered. As we can see from
previous analysis, the behavior of excess noise estimation obviously is very different when
distance changes. On the other hand, such linear test also increases the complexity of the
implementation, where an additional amplitude modulator and the parameter estimation is
modified.

Since the saturation attack is a detector-based side channel attack, measurement device
independent (MDI) CV QKD [95, 113] could be a potential solution to defeat such kind of
attack. MDI CV QKD protocols are not far away from implementations, very recently, a
proof-of-principle demonstration of MDI CV QKD has been already performed in experi-
ment [135].

7.6 Conclusions

We have proposed the saturation attack combined with a full intercept-resend attack. In
simulations, we have shown the feasibility of our attack under realistic experimental condi-
tions. Unlike other attacks manipulating LO in CV QKD, our attack has no influence on the
LO but on the displacement value of quadratures, so that even if Alice and Bob monitor the
LO intensity in real time, our saturation attack can still work. Our attack is achievable with
current technology and impacts the security of a practical CV QKD system. It highlights
the importance of exploring the assumptions in security proofs when implementing QKD
protocol on practical setups. Suitable counter measures are necessary for practical CV QKD
to fix the loopholes that attackers can exploit.





Chapter 8

Experimental study of saturation attack
on a CV QKD system

In this chapter, we present the experimental demonstrations of the saturation attack stud-
ied in chapter 7. We have realized a functional "Eve" to perform the saturation attack exper-
imentally, in which, the key step is to prepare a precise and strong displacement. However,
this step is a technical challenge. Producing a coherent displacement directly in the mode
of the quantum signal is difficult to achieve with good stability. It is therefore interesting to
seek new methods to induce saturation on homodyne detection from another approach with
simpler experimental setup. For this reason, we have proposed a new attack strategy: we
induce strong shift in the homodyne measurement with an external light in a different mode
from the QKD signal. In this chapter, we will tackle these issues one by one and show that
our results are important steps towards a fully experimental saturation attack.

8.1 Saturation attack with two stations for Eve

8.1.1 Attack strategy

In the saturation attack strategy from section.7.3.2, we assume that Eve has a single
station which is close to Alice. In this station, Eve launches the saturation attack with
two actions: quadrature measurement and quadrature re-preparation. However, Eve can
optimize further her strategy: she can perform her two actions in two remote stations which
are respectively close to Alice and to Bob. Under this assumption, we propose a modified
saturation attack strategy: Eve in the middle cuts down the quantum channel and places
a station A close to Alice in order to perform quadrature measurements. She then sends
her measurement information classically to another station close to Bob (station B), based
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Fig. 8.1 Experimental implementation of the saturation attack with two stations for Eve.
The part on the left is simulated.

on the classical measurement information Eve re-prepares the corresponding coherent state,
that she displaces before sending it to Bob. Bob then performs an homodyne detection,
with a detector which is assumed to be perfectly linear over a region [−α,α], and saturated
beyond. This attack scheme is represented in Fig.8.1. In order to avoid confusion with
the attack strategy proposed in section.7.3.2, let us briefly go through this new strategy and
clarify notations for each step of Eve’s action and Alice-Bob protocol:

1. Alice’s quadrature preparation: Alice prepares the Gaussian modulation coherent
states [50] (variance VA) with its quadrature X and P1:

X = XA +X0, (8.1)

in which X0 is a noise term due to the coherent state encoding of Alice.

2. Eve’s quadrature measurement in station A: Eve performs a full heterodyne detection
on the state of Alice, which gives her the measurement of quadrature X (and P):

XM =
1√
2
(XA +X0 +X ′

0 +XNA,E ), (8.2)

In which X ′
0 is a noise term due to 3 dB loss of heterodyne detection. XNA,E is a noise

variable with its variance ξNA,E :

XNA,E = XNA +
√

2XNEm
, (8.3)

in which XNA is the technical noise of Alice’s preparation, while XNEm
is the tech-

nical noise due to Eve’s measurement. Eve then sends her (classical) measurement

1Similar as in previous chapter, we neglect the analysis of quadrature P by symmetry.
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information XM to Eve’s station B which is close to Bob.

3. Eve’s quadrature re-preparation and resending in station B: Eve receives the classi-
cal information XM from station A, she prepares a corresponding coherent state XE

according to XM with a gain g:

XE = gXM +∆X +X ′′
0 =

g√
2
(XA +X0 +X ′

0 +XNA,E )+∆X +X ′′
0 (8.4)

Eve induces a displacement (∆X ,∆P) and applies an amplification (g) on the data XM

before optical encoding. X ′′
0 is a noise term due to coherent state encoding of Eve.

Eve then sends the new state XE to Bob who is next to her station B.

4. Bob’s quadrature measurement: Bob performs a homodyne detection on the received
state XE . If the linear detection range is infinite (−∞,∞), we would have:

XBlin =
√

η(XE +XNE )+
√

1−ηX ′′′
0 +Xele, (8.5)

in which XNE is a noise variable with its variance ξNE , which is due to the technical
noise of Eve’s preparation. Since Eve’s station B is close to Bob, then there is no loss
induced on XE . Based on Eq.(8.5), we could further compute Bob’s variance:

Var(XBlin) =⟨X2
Blin

⟩−⟨XBlin⟩
2

=η
G
2

VA +η
G
2
(2N0 +ξsys)+N0 + vele

(8.6)

in which ξsys = ξA,E + 2
GξE , is the total technical excess noise variance due to Alice,

Eve and Bob’s action, 2N0 is due to the full heterodyne detection in step 2, G = g2 is
the amplification applied by Eve. Considering a realistic homodyne detection whose
linear detection range is limited by [α1,α2], then Bob’s measurement on XE yields:

XBsat =


α1, if XBlin 6 α1 < 0
√

η(XE +XNE )+
√

1−ηX ′′′
0 +Xele, if α1 < XBlin < α2

α2, if XBlin > α2 > 0

, (8.7)

in which η is the efficiency of Bob and we consider a more realistic case where the
lower bound α1 and upper bound α2 are not symmetric α2 ̸=−α1.

In this new strategy, Eve circumvents the whole quantum channel and transmits the classical
information between Eve’s station A and B without any loss. This is also the main difference
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between the saturation attack with one station (chapter 7) and two stations. In order to
evaluate Alice and Bob’s estimations of channel transmission and excess noise under this
new strategy with two stations, we can refer to the analysis of chapter 7 and simply set the
real channel transmissions T = 1, such that Eq.(7.9) and Eq.(7.10) can be applied to this new
case. The necessary condition to reduce excess noise estimation when ∆ ≈ α (Eq.(7.13))
still holds, where Var(XBlin) now refers to Eq.(8.6). In fact, all the conclusions drawn from
chapter 7 can be extended to this new strategy with the change of T = 1 and with Var(XBlin)

given by Eq.(8.6).

8.1.2 Experimental demonstration model

Our goal is to experimentally demonstrate the saturation attack and show that it leads
to a full security break. In particular, we need to evaluate whether the estimated excess
noise is below the null key threshold and whether or not the estimated channel transmis-
sion is biased, which are the two criteria in section.7.4.2. Note that as an important part of
the saturation attack, the intercept-resend attack has already been realized experimentally
by Lodewyck et al. [104]. Indeed, the consequence of a full heterodyne detection in step
(2) is 2 shot noise units of excess noise induced on Alice and Bob’s parameter estimation.
Such amount of noise can be simulated by adding Gaussian noise. In order to study exper-
imentally the impact of the saturation effect, we decide to experimentally realize the step
(3) (4) of the saturation attack with two stations (section. 8.1.1) while virtually simulating
the step (1) (2), as shown in Fig.8.1. Specifically, in Eve’s station B, we act as a modified
’Eve’ and generate two independent Gaussian variables XA and XNIR , XA represents Alice’s
variable with a variance Var(XA) = VA, while XNIR is a independent variable with variance
Var(XNIR) = 2N0. In this sense, we prepare numerically the received classical measurement
information XM = XA +XNIR , which has been simulated at the step (1) (2). On the other
hand, Eve has the ability to freely control the displacement value ∆X and the amplification
g as shown in Eq.(8.4) of step (3). In experiment, we have the control over 4 factors: XA,
XNIR , g and ∆x. This can be summarized in the following equation:

XE =gXM +∆X +X ′′
0 (8.8)

= g︸︷︷︸
Controlled by Eve

( XA︸︷︷︸
Simulation of Alice

+ X0 +X ′
0︸ ︷︷ ︸

Simulated by XNIR

+XNE )+ ∆x︸︷︷︸
Controlled by Eve

+ X ′′
0︸︷︷︸

Encoding

(8.9)

Compared to Eq.(8.4), we remove the factor 1/
√

2, since the heterodyne detection is sim-
ulated and we can directly compensate this factor by increasing g. XNE corresponds to the
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experimental technical noise due to Eve. We need to calibrate its variance Var(XNE ) = ξE

in experiment. In step (4), Bob performs a homodyne detection on the received state XE .
The linear detection range of the homodyne detection [α1,α2] also needs to be calibrated in
experiment. Bob’s measurement output XBsat is given by Eq.(8.7), in which XE is given by
Eq.(8.8). Bob’s variance under linear detection is given by:

Var(XBlin) = ηGVA +ηG(2N0 +ξE)+N0 + vele. (8.10)

Let us now consider the parameter estimation between Alice and Bob. The channel trans-
mission and excess noise can be thus estimated through standard procedure described in sec-
tion.4.2.4: By taking Var(XA), Var(XBsat ) and Cov(XA,XBsat ) into Eq.(4.16) and Eq.(4.17),
we can deduce T̂sat and ξ̂sat under our saturation attack. These two values can be measured
from experimental data.

We can also predict parameter estimations under our attack by using a saturation model
and conducting through an analysis similar to the one in chapter 7. The channel transmission
estimation is given by:

T̂sat =
G
4
[1+ erf(

∆−α1√
2Var(XBlin)

)]2, (|∆−α1|<< |∆−α2|,∆ < 0,α1 < ∆ < 0). (8.11)

And the excess noise estimation in shot noise units is given by:

ξ̂sat

N0
=

2Var(XBlin)(1+A− B2

π
)−2

√
2Var(XBlin)

π
(∆−α1)A∗B+(∆−α1)

2(1−A2)−4N0 −4vele

ηG(1+A)2N0

− VA

N0
, (|∆−α1|<< |∆−α2|,∆ < 0,α1 < 0),

(8.12)

in which

A =erf(
∆−α1√

2Var(XBlin)
), (8.13)

B =e
− (∆−α1)

2

2Var(XBlin
) . (8.14)

Var(XBlin) is given by Eq.(8.10) and ∆ =
√

η∆X . The condition |∆−α1|<< |∆−α2| means
that the ∆ is closer to the lower limit α1 than the upper limit α2. In experiment, we intend to
prepare displacement ∆ that is close to α1. Eq.(8.11) and Eq.(8.12) provide theoretical pre-
dictions of parameter estimation under our proposed attack strategy. They are also our ref-
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erences to set the experimental values of ∆ and G to achieve the two criteria of a successful
attack (section.7.4.2). Note that under our strategy, although there is no loss between Eve’s
station B (Alice) and Bob, the estimated channel transmission T̂sat could be smaller than
1 when the saturation effect appears according to Eq.(8.11), i.e T̂sat ≃ G/4 when ∆ ∼ α1.
These values of ∆ and G are under the control of Eve while the other parameters in Eq.(8.11)
and Eq.(8.12) need to be experimentally calibrated. Besides the standard calibrations in a
normal CV QKD protocol, such as Bob’s efficiency η , detector electronics noise vele and
shot noise N0, we also need to calibrate the values of lower linear detection limit α1 and
technical noise due to the displacement preparation ξE . We emphasize that in this attack,
we don’t influence shot noise calibration, but only focus on studying the consequence of
homodyne detection saturation. Given these calibrated values, we can evaluate the impact
of detector saturation on parameter estimation and further compare them with experimental
data.

8.2 Experimental demonstration of saturation attack

Based on the experimental proposal in the previous section, we have realized each step in
experiment to perform the demonstration of saturation attack. According to the analysis in
the previous parts, the key step to launch saturation attack is to prepare a strong and precise
displaced coherent state signal. In this section, we focus on explaining our implementation
of displacement in the attack and analyzing the experimental results.

8.2.1 Implementation of displacement

The implementation of displacing an arbitrary state was first proposed by Paris [128].
Briefly, phase space displacement of a arbitrary state can be realized by interfering the ar-
bitrary state with an intense coherent state on a very asymmetric beam splitter, where the
transmittance T → 1 (or T → 0). Such method has been used to experimentally displace
a Fock state [106], a squeezed state [124] and a coherent state [187]. The specific imple-
mentation details of displacement in each of these experiments are different, but they can
be mainly summarized as the following two cases: (a) In Fig.8.2(a), an arbitrary quantum
state |ψ0⟩ (port b) is fed by a strong coherent state |α⟩ (port b) over a highly transmitting
beam splitter (the transmittance T → 1), the output (port d) state |ψ⟩ is a displaced state
of |ψ0⟩ with a displacement

√
1−T α . Experimentally, the strong coherent state is real-

ized by an intense laser of amplitude α . Such configuration is considered in [187]. (b) In
Fig.8.2(b), an arbitrary quantum state |ψ0⟩ (port a) interferes a strong coherent state |α⟩
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(port b) on a highly reflecting beam splitter (the transmittance T → 0), |ψ0⟩ is displaced at
the output (port d) of beam splitter with a displacement

√
T α . Such configuration is used by

Lvovsky and Babichev [106] and Neergaard-Nielsen et al. [124] with some modifications.
In Lvovsky and Babichev [106], the beam splitter is replaced by a dielectric mirror with
the reflectivity of 99.99 %; in [124], the authors have used the half-wave plates (HWP) and
a polarizing beam splitter (PBS) to independently tune the splitting ratios of the two input
beams (port a and b). Note that one can lock the phase of displacement by monitoring the
other output port (port c) with a standard photo diode [124].

The results of these two configurations are equivalent: a displacement is induced on an
arbitrary state. According to the experimental requirements, one can choose either of them
to realize displacement of a quantum state.

(a) (b)

Fig. 8.2 Experimental implementation of displacement with (a) a highly transmitting beam
splitter T → 1; (b) a highly reflecting beam splitter T → 0.

8.2.2 Experimental setup

According to the experimental demonstration proposal in section.8.1.2, we have realized
experimentally the step (3) and step (4) of the saturation attack with two stations. Particu-
larly, in order to be able to induce a controlled displacement on Eve resent data (step(3)), we
have modified the "heritage" CV QKD Alice system by introducing a Sagnac loop combined
with variable beam splitter (VBS). We consider the configuration with a highly transmitting
beam splitter to induce the displacement (Fig.8.2(a)), the experimental setup is shown in
Fig.8.3. Displacing the signal is achieved as follows. The VBS, with splitting ratio T=99.9%
(the transmittance), splits the pulse from the circulator into two. The signal pulse, which
is the less intense pulse along the clockwise direction, goes under Gaussian modulation by
amplitude modulator (AM1) and phase modulator (PM1) and further heavily attenuated by
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Fig. 8.3 Experimental setup: saturation attack by coherent displacement on a CV QKD
system.

isolator (connected in reverse to achieve an attenuation higher than 30dB). High intense
pulse travels along anti-clockwise directions, named as pump pulse, meets the signal pulse
at VBS. The interference on this strongly unbalanced beam splitter effectively displaces the
signal pulse. The amplitude modulator AM2 controls the intensity of the pump and thence
the amount of displacement. A PIN diode attached to the VBS helps to monitor the stability
in displacement. Finally, the circulator directs the displaced signal towards the polarization
beam splitter (PBS) that polarization multiplex the local oscillator and displaced signal to
the output fiber channel.

At Bob station (step(4)), displaced signal and local oscillators are de-multiplexed and
send to homodyne detector. A phase modulator PM2 applies either 0 or 90 degree of phase
on local oscillator for measuring either of the quadratures. This phase modulator is also
used for stabilizing relative phase drift between signal and local oscillator.

8.2.3 Parameter calibration

As mentioned in section.8.1.2, we need to calibrate several experimental parameters,
such as Bob’s efficiency η = 0.54, electronic noise vele = 0.01N0 and shot noise N0, these
calibrations are performed as in the normal CV QKD protocol. To launch the saturation
attack, we (Eve) need to calibrate two extra parameters: technical noise due to the displace-
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Fig. 8.4 Excess noise due to displacement preparation vs Displacement.

ment preparation ξE and lower linear detection limit α1. Such calibration can be realized
by strongly displacing the vacuum state with our experimental setup mentioned in previ-
ous section. When there is no signal input but with a strong displacement, the output of
homodyne detection is given by:

XBlin,0 = ∆+X0 +Xele, (8.15)

From XBlin,0 , we can deduce its mean and variance :

⟨XBlin,0⟩= ∆, (8.16)

Var(XBlin,0) = ηξE +N0 + vele. (8.17)

Thus in the linear region α1 < XBlin < α2, we can experimentally measure the excess noises
ξE due to the displacement added on final measurements, provided we have calibrated the
efficiency η and shot noise N0. Note that, on the other hand, in the saturation region of
homodyne detection, we are unable to correctly measure such noise in experiments due to
the saturation effect as we have seen in chapter 7. In order to calibrate the technical noises
at high values of displacement under our experimental setup, we use the polynomial fitting
of order 2 on the measured values in linear region and it gives:

ξE(∆) = 1.484×10−3
∆

2 +5.538×10−2
∆+0.4753. (8.18)

From the equation above, we find the relation between the induced technical noise from
displacement preparation in Eve’s station B and the value of displacement. All these results
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Fig. 8.5 Experimental measurements and predictions of relation Mean vs Displacement.

can be summarized in the Fig.8.4. Meanwhile, with highly displaced vacuum signal, we can
also predict the lower saturation limit α1 when the displacement is high enough. The mean
value for XBsat,0 6 α1 < 0 in the saturation region directly reveals α1:

⟨XBsat,0⟩= α1. (8.19)

As shown in Fig.8.5, the experimental data (green square) in the linear region can be de-
scribed by Eq.(8.16), and the data in the saturation region can be described by Eq.(8.19)
which gives the value of α1. We also use the saturation model Eq.(8.7) to predict the be-
havior as shown in Fig.8.5(blue curve) where the noise of displacement ξE has been cali-
brated by Eq.(8.18). Another observation from the experimental data and simulation is that
the turning point between linear and saturation region is not exactly sharp but somehow
smooth, and it is due to the added noise ξE . From Fig.8.5, we calibrate the lower bound
of detection limit as α1 = −103.5

√
N0. It corresponds to a voltage value of -2.5 V for our

homodyne detector. Note that in our setup of homodyne detection, the range of DAQ is set
to [-10V, 10V] instead of [-0.5V, 0.5V] in section.7.2, thus the saturation effect is due to the
electronics and amplifiers of the homodyne detection and not due the DAQ range setup.

8.2.4 Analysis of experimental results

With our experimental setup, we perform several tests by changing the values of dis-
placement ∆ and gain G. For VA = 5, we gradually increase the displacement value ∆ and
the experimental distribution between XB and XA is shown in Fig.8.6. Due to the displace-
ment action, we can observe that the distributions are same in the linear region (0-2V) except
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Fig. 8.6 Experimental distribution XB vs XA for different values of displacement.

the mean values are different from one to another. However, due to the finite linear detec-
tion range, when ∆ < −103.5

√
N0, the distribution shrinks to almost a line which reveals

the saturation effect of our homodyne detection. In our experiments, for each set value of
∆ and G, the corresponding parameter estimation yields excess noise ξ̂sat and channel trans-
mission T̂sat . Experimentally, with a given modulation variance of Alice VA = 5, we vary the
values of ∆, G and measure ξ̂sat , T̂sat through a standard CV QKD procedure as mentioned
in section.8.1.2. As we can see in Fig. 8.7, for Alice modulation variance VA = 5, it is clear
that the excess noise estimation ξ̂sat drops below the null key threshold around the satura-
tion limit α1, and the null key threshold ξnull is deduced based on the corresponding T̂sat and
VA = 5. On the other hand, given by the calibrated values α1 = −103.5 and ξE (Eq.8.18),
we can also predict the excess noise estimation ξ̂sat with Eq.(8.11) in simulations, and com-
pare them with experimental values. As shown in Fig. 8.7, the prediction from Eq.(8.11)
matches the behavior of excess noise estimation that we observe in experiments.

An important observation of Fig. 8.7 is that the excess noise estimation ξ̂sat falls sharply
around the detection limit, where for a small range of ∆ values, ξsat varies from a large
positive value quickly to a negative value. The large variations of ξ̂sat respect to small
values of ∆ is mainly due to the saturation effect itself as we can see from the simulation
curves in Fig. 8.7 and also by the analysis in chapter 7. The variation of ξ̂sat can be moreover
quantified by its variance. In the case of G = 2.25 shown in Fig. 8.7, for 25 measured values
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Fig. 8.7 Alice Excess noise vs displacement. Experimental results: Symbol plus G = 1,
square G = 1.5625, diamond G = 2.25. Experimental parameters: Alice’s variance VA = 5,
Bob’s efficiency η = 0.55, excess noise of electronics vele = 0.015, detection limit α1 =
−103.5. Simulation results: (1) Solid lines on color red, black and blue: excess noise
estimations for given parameters; (2) Solid lines with dots: null key thresholds for given
parameters; simulations are performed based on Eq.(8.11) and Eq.(8.12), in which parame-
ters are set same as experimental parameters and the noise due to displacement is referred
to Eq.(8.18).

of ξ̂sat around saturation limit −103.986 < ∆ < −103.184, we can calculate its variance
Var(ξsat) = 1.1942, which can not archive the requirement for a successful attack. In fact,
in order to achieve a successful saturation attack, we need to bias ξ̂sat into the region 0 <

ξ̂sat < ξnull and further reduce Var(ξ̂sat)< 10−2N0 for our saturation model. Approximately,
it implies a precision about 10−3√N0 on ∆. It however represents a challenge with our
experimental system, as we can see from Fig. 8.7, it is difficult to precisely control ∆ ∼ α1

such that the excess noise estimation falls exactly into the region 0 < ξ̂sat < ξnull .

In order to achieve a successful attack so that a positive key rate must be obtained. We
need to further determine the choice of ∆ and G on our experimental setup. In order to
achieve this, for VA = 5 with given calibrated values α1 = −103.5 and ξE (Eq.(8.18)), we
continuously change the values of ∆ and G in Eq.(8.11) and Eq.(8.12) to predict ξ̂sat and T̂sat .
For each set of (∆,G), we further calculate the secret key rate Ksat based on corresponding
ξ̂sat , T̂sat with the assumption that if ξ̂sat < 0, Ksat is set to zero. By repeatedly calculating
Ksat , we find the values of G and ∆ compatible with a positive key rate: Ksat > 0. This result
is shown in Fig.8.8. In this figure, we construct a 3D key rate curve from which we can
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predict the optimal choice of ∆ and G where the key rate is maximum.

Moreover, from Fig.8.8 we can study when the second criteria of a successful attack
(section.7.4.2) is met: when the channel transmission between Alice and Bob is not biased
while they are still able to generate a positive key rate. We consider a procedure that Al-
ice’s modulation variance is optimized depending on the distance [63]. In our case, optimal
modulation variance VA = 5 corresponds to a loss T = 0.05. Based on Eq.(8.11), we also
calculate T̂sat from the values of ∆ and G. A given estimated loss, i.e, T̂sat = 0.05, corre-
sponds to a pair value of ∆ and G as shown in Fig.8.8 (Red dash line). The intersection
points between this red dash line (T̂sat = 0.05) and the positive key rate projection line (2D
blue line) thus give the choice of ∆ and G that meet the second criteria T̂sat = T . There
can be sometimes no intersection points between yellow/green dash lines (T̂sat = 0.11,0.2
) and the blue line. Indeed for distances below 44 km, we can not meet the second criteria
T̂sat = T for VA = 5. Fig.8.8 can be used as a reference for Eve to choose the values of ∆ and
G so that the first or the second criteria (section.7.4.2) of a successful attack can be met.
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8.3 A side channel attack on CV QKD by inserting an ex-
ternal laser

In the previous section, we have described an experimental demonstration of the satura-
tion attack, however, the stability and precision experimentally achievable for displacement
preparation are not good enough to allow Eve to launch the attack efficiently. For this rea-
son, we propose a new attack strategy to induce saturation on homodyne detection: instead
of a strong displaced signal, we propose to insert an external light into Bob’s signal port.
This new strategy is simple to implement experimentally and allows a high precision control
of induced saturation.

8.3.1 Imperfections of a balanced homodyne detection

In this attack with an external laser, we want to take advantage of imperfection in a
practical homodyne detection: The transmission and reflection of a 50/50 beam splitter are
not exactly equal. In CV QKD, this imperfection results in a small LO intensity leakage
on the homodyne detection output. Such leakage contributes to a DC component in the
measured quadrature signal and a noise variance which depends on the laser intensity. The
DC component induces a offset on homodyne output signal, which actually plays a role as
signal displacement (∆) in saturation attack (Eq.(8.4)). The noise variance consists of two
parts: the shot noise of LO pulse and a noise term depends on the LO intensity fluctuation
(Eq.(5.22)), which have been addressed in section.5.1. In order to balance a homodyne
detection (reduce LO intensity leakage), in practice one can adjust the attenuation of one of
the optical paths after the beam splitter.

However, such balancing is only valid for the LO pulse going into the LO port. On
the other hand, for the light going the signal port is not balanced. If one sends an intense
laser on the signal port, then a large DC component due to this laser will be induced on the
homodyne output signal. Moreover, most of the beam splitters have wavelength dependent
properties [56, 57, 112], thus the transmission of the beam splitter can be biased signifi-
cantly depending on the wavelength of the input light. In this sense, Eve has the possibility
to ’control’ the transmission of Bob’s beam splitter by selecting proper wavelength of an
external light. In order to study how these two imperfections (saturation and imbalance)
impact on the homodyne output signal, we perform a simple experiment test. This test is
actually a shot noise measurement (input signal as vacuum) as we have performed in sec-
tion.7.2.2, but we intentionally imbalance the homodyne detector with two setups: 1st and
2nd, by adjusting the optical loss before two photo diodes. The homodyne detection bal-
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(a) (b)

Fig. 8.9 Shot noise measurements of homodyne detection with two balance sets (a) Mean
value vs LO Intensity. (b) Shot noise variance vs LO Intensity.

ance of 1st setup is worse than the 2nd balance set. It means that imbalance factor for the 1st
setup ε1 = 1−2T1 is larger than the imbalance factor for the 2nd setup ε2 = 1−2T2. Ti=1,2

is an equivalent transmission of the beam splitter which has taken the optical losses before
two photo diodes into account. For the 1st or 2nd setup, the outputs of homodyne detection
are given by:

XB,01,2 =
√

η(1−2T1,2)I +X0 +Xele, (8.20)

in which I is photon number per pulse. We adjust the DAQ detection range to [−0.5V,0.5V ]

which are the linear detection limits. Any homodyne signals out of this range will be satu-
rated to −0.5V or 0.5V . By increasing the LO intensity, the mean value and noise variance
for the 1st and 2nd sets both increase proportionally with the LO intensity in the linear
region as discussed in section.7.2.2. However when LO intensity is relatively high, the
response of homodyne detection overpasses the saturation threshold and the detection is
saturated so that the mean value is constant (Fig.8.9(a)) and the measured variance drops
quickly (Fig.8.9(b)). By using the saturation model (Eq.(8.7)) we can account such results.

Another observation from this test is that, for a same LO intensity (30µW ), saturation
happens in the 1st setup (Blue curve in Fig.8.9(b)) but not 2nd setup. The reason for this
behavior is the following: when we vary the LO intensity, for each measurement, the ho-
modyne output signal always includes a DC component whose value is proportional to the
balance factors ε1 or ε2. With our setup the 1st balance is worse than the 2nd where ε1 > ε2,
consequently the homodyne signal of 1st setup reaches the detection limit at a smaller value
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of LO intensity compared to the 2nd setup. The impact of ε1 and ε2 can also be observed
on the mean value measurements as shown in Fig.8.9(b). The mean value is proportional to
the balance factors as predicted by Eq.(8.20).

These experimental tests comfort use to propose us to formalize a new attack, where Eve
inserts an external laser into the signal port, such that the balance of the homodyne detection
is biased.

8.3.2 Attack strategy

By considering the two imperfections (saturation and imbalance) of a homodyne detec-
tion mentioned above, we formalize a new hacking strategy targeting on a CV QKD system.
In this attack, an external light is inserted into the signal port of Bob’s homodyne detection,
in order to function as the displacement in the saturation attack. We have two assumptions
in this attack: (1) The balance of Bob’s homodyne detection for LO port is perfect, which
means the transmission of the beam splitter for LO pulse is Tlo = 0.5. (2) We implement the
real time shot calibration ( Method. C in section. 6.3.2 ), thus the shot noise measurement
is not influenced. Let us now go into details of this new attack and analyze the impact of the
external laser. This attack is mainly divided into two parts:

1. Eve implements a full intercept-resend attack [104] by performing a heterodyne de-
tection, which gives her full information of both quadratures X and P sent by Alice.
In order to simplify the analysis, we consider the case where Eve performs measure-
ments and resending with single station right after Alice as in Chapter 7. We can thus
deduce Bob’s variance from this step under a linear detection:

VB1 = ηT
G
2

VA +ηT
G
2
(ξIR +ξsys)+1+ vele, (8.21)

in which ξIR = 2 is the excess noise due to IR attack, ξsys is system excess noise, T is
channel transmission and G = g2 is a gain factor introduced by Eve. All the units are
normalized in shot noise units (N0 = 1).

2. Eve inserts an external laser (pulsed or CW) into the signal port of Bob’s homodyne
detection in general is not coherent with the CV QKD signal. In practice, Eve can
set the polarization of the second laser as the one of the CV QKD signal, if the po-
larization multiplexing technique is used (section.4.2.2). Since this external light is
incoherent with LO, there is no interference between the external light and LO, we
can thus independently analyze the impact of this external light on the homodyne out-
put. According to the analysis mentioned before, the imbalance of the signal where
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the external laser is sent, leads to a DC component on the output signal:

XB,2 =
√

η(1−2Tbs)I2 +X0 +Xele, (8.22)

in which Tbs is the transmission of homodyne detector’s beam splitter for the external
light, it includes the optical loss before two photo-diodes, in this attack we consider
Tbs = 0.49. Note that the value of Tbs is assumed to be known by Eve as in the
wavelength attack [56, 57, 112]. I2 is the number of photons per pulse of the external
laser impinging on Bob’s signal port. The impact of the DC component on homodyne
output plays the same role as the displacement ∆ in the saturation attack: bias the
mean value of the measured quadrature signal. Under this external laser attack, the
equivalent displacement of Bob homodyne measurement can be given by:

∆ =
√

η/I1(1−2Tbs)I2 = r
√

ηI1(1−2Tbs), (8.23)

in which I1 is the photon number of one LO pulse, r = I2/I1 is the photon number
ratio between one LO pulse and the external light with I2 as the photon number of
the second laser. ∆ is normalized in the square root of shot noise units. On the other
hand, the external laser includes two kinds of noise: its own shot noise in a different
mode of LO and the noise due to its intensity fluctuation [16]. The shot noise can be
deduced from an unbalanced two port homodyne detection model [112]:

N0,2 = 4Tbs(1−Tbs)I2. (8.24)

The noise due to intensity fluctuation has been analyzed in [16] and also in sec-
tion.5.1. If the the intensity fluctuation ratio of the second laser is given by f2 =√
⟨I2

2 ⟩−⟨I2⟩2/I2, then the corresponding noise variance is given by:

Vf ,2 = η f 2
2 (1−2Tbs)

2I2
2 . (8.25)

In our analysis, we consider f2 = 0.1%. Given with N0,2 and Vf ,2, the total noise
variance induced by the external laser in shot noise units is given by:

VB2 = N0,2 +Vf ,2 = 4Tbs(1−Tbs)r+ηr2 f 2
2 (1−2Tbs)

2I1. (8.26)

In order to achieve a security break, Eve needs to properly set the intensity of the
second laser I2 to effectively bias the noise due to the intercept-resend attack and the
second laser. We will analyze this issue in the following subsection.
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8.3.3 Security analysis and simulations

The second laser is incoherent with LO pulses, thus, under the linear detection region,
Bob’s measurement variance is the summation of the variances in step 1 and 2 of the attack:

Var(XBlin) =VB1 +VB2 (8.27)

= ηT
G
2

VA +ηT
G
2
(ξIR +ξsys)+1+4Tbs(1−Tbs)r+ηr2 f 2

2 (1−2Tbs)
2I1 + vele

(8.28)

If we further choose G = 2, by taking Eq.(8.27) (Var(XBlin)) into Eq.(4.17), we can deduce
the excess noise estimation of Alice and Bob with a linear detection:

ξ̂lin = ξIR +ξsys +VB2/(η T̂lin). (8.29)

And the channel transmission estimation:

T̂lin = T. (8.30)

However, if the equivalent displacement (∆ in Eq.(8.23)) due to the external light is large
enough, homodyne detection output can be saturated as in saturation attack [140]. In fact,
Eve actively controls the value of ∆ by selecting proper properties of the external light, in
particular the value of I2. In consequence, Eve’s action can bias the estimated excess noise
of intercept-resend attack and the external light to an arbitrary small value.

Similar as in the previous analysis, we perform the parameter estimation of Alice and
Bob under the attack, since they determine whether Eve can have a security break. In order
to analyze the estimations of channel transmission T̂sat and excess noise ξ̂sat under this
attack, we refer to the results of saturation attack with one Eve’s station (Chapter 7). We can
simply use the expressions of ∆ (Eq.(8.23)) and Var(XBlin) (Eq.(8.27)) into the saturation
model (Eq.(7.8)). Moreover, by taking Eq.(8.23) and Eq.(8.27)into Eq.(7.9) and Eq.(7.10),
we can deduce T̂sat and ξ̂sat under this attack with an external laser. With such modifications,
we can perform simulations to predict T̂sat and ξ̂sat with respect to Eve’s action (choice of
I2) in simulations. The simulation parameters are considered as follows: gain factor of Eve
G = 2, beam splitter ratio for second laser Tbs = 0.49, intensity fluctuation of the second
laser f2 = 0.1%, beam splitter ratio for LO pulse Tlo = 0.5, photon number per one LO pulse
I1 = 108, detection limit α1 = −α2 = 20, detector efficiency η = 0.6, detector electronic
noise vele = 0.01, VA is optimized with distance according to the procedure in [63].

In order to calculate ξ̂sat and ξnull , we continuously change the value of I2 and thus the
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Fig. 8.10 Estimation of Alice excess noise vs photon number per pulse ratio r. η = 0.6,
Tbs = 0.49, vele = 0.01

ratio r, each value of r corresponds to a set of T̂sat and ξ̂sat as the parameter estimation of
Alice and Bob. For a given variance VA and T̂sat , we can further deduce the corresponding
null key threshold ξnull . These results are shown in Fig.8.10 with several distances (20, 25,
30, 35, 40km), the estimated excess noise at Alice side varies with the ratio r, it shows the
impact of Eve’s action on parameter estimation. Similarly as in the saturation attack, the
behavior of ξ̂sat is ’sharp’ around detection limit, which meets our expectations. Since the
saturation effect is the detector’s own property, in this attack, we just use a new method to
induce saturation. Although the curves are sharp around r = 0.12 in Fig.8.10, if we enlarge
the scale of r, each value of ξ̂sat does correspond to an unique value of r. It means once Eve
has enough precision on the intensity of the second laser, she can accurately manipulate the
excess noise estimation.

A drawback of this attack is that if Eve wants to induce enough saturation, the corre-
sponding noises becomes large since it increase with the ratio r, as shown in Fig.8.10. On
the other hand, for a same ratio r, the excess noise estimation in the linear region at short
distance, i.e 25km, is larger than the one at long distance, i.e.40 km, which is due to the
factor 1/(η T̂lin) in Eq. (8.29). For a given distance, Eve can choose a proper ratio r to
bias the estimated excess noise ξ̂sat below the null key threshold ξ̂null such that Alice and
Bob still believe they share a secure key according to their parameter estimation, however



174 Experimental study of saturation attack on a CV QKD system

the generated keys are not secure at all. Thus the first criteria defined in section.7.4.2 is
achieved. Moreover, we can also achieve the second criteria : T̂sat = T and ξ̂sat < ξnull . It
requires Eve to set the value of g according to Eq.(7.14), where ∆ and Var(XBlin) are referred
to Eq.(8.23) and Eq.(8.27).

In order to clearly demonstrate influences of saturation effect on the parameter estima-
tions, in Fig.8.11 we plot the distribution between Alice and Bob’s data for a saturation (red
dots) and non saturation case (blue dots), with (a) r = 0.1227 and (b) r = 0.1 at 25 km. The
first observation from Fig.8.11 is that if the linear detection is arbitrary large, the distribution
of XBlin vs XA is not biased but with a displacement (blue dots). However, if we consider a
realistic detector, the distribution of XBsat vs XA has been significantly altered (red dots) due
to detector saturation, which result in wrong parameter estimation. The second observation
is that Eve needs to increase the ratio r to a enough high value such that ξ̂sat is biased below
ξnull . In Fig.8.11(a), the choice of r = 0.1227 corresponds to a security break which means
ξ̂sat < ξnull while the choice of r = 0.1 in Fig.8.11(b) can not lead to a security break. It
means that Eve needs to insert a light with sufficient high intensity to bias Bob’s distribution
in order to achieve a security break, otherwise, Alice and Bob can still detect the noise due
to intercept-resend attack through their parameter estimation even if saturation is induced.
Fig.8.10 is the reference that Eve can set the value of r.

(a) (b)

Fig. 8.11 Bob vs Alice’s data distribution. Red: XBsat , blue: XBlin (1) r = 0.1227, security
break; (2) r = 0.1, no security break.

Furthermore, we can also extend this attack to the case where Eve has two stations as
discussed in section.8.1. It is also possible to further propose a corresponding experimental
plan as in section.8.1.2 where the setup consists of a intercept-resend attack with two Eve’s
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stations and a second laser inserted into signal port of Bob’s homodyne detection. In order
to analyze the security, we can just apply a few modifications on the previous analysis, to
deduce the estimations of excess noise and channel transmission: (1) Take Eq.(8.27) with
T = 1 into Eq.(8.11) and Eq.(8.12); (2) Replace ∆ in Eq.(8.11) and Eq.(8.12) with Eq.(8.23)
for Tbs > 0.5. With such modifications, we can moreover deduce the conditions that can
satisfy the first and second criteria of a successful attack as mentioned in section.7.4.2.

Compared to saturation attack relying on coherent displacement, this new attack is
much easier to realize experimentally, since Eve doesn’t need to prepare a strong displace-
ment signal with very high precision, which is experimentally challenging as shown in
the previous section. Moreover, this attack only requires the precision of the laser inten-
sity. According to the simulations before, a successful attack is possible with the choice
of I2 = rI1 = 0.1227× 108 = 1227× 104, which shows that Eve needs a precision of 104

photons on the second laser to accurately bias the excess noise estimation. Such precision is
realistic and achievable with current technology. On the other hand, this attack also explores
the imperfection of detector saturation, thus the countermeasures available for saturation at-
tack can be also applied to this attack.

8.4 Conclusion

In this chapter, we have performed the first experimental demonstration of the saturation
attack in experiment. This demonstration is based on a modified saturation attack strategy
where Eve has two stations, which is slightly different from the case analyzed in Chapter
7. Importantly, we have experimentally realized a functional "Eve" to perform a coherent
displacement operation which is a core part of our saturation attack. We have experimen-
tally studied the relation between Eve parameters (gain and displacement) and Alice-Bob
parameter estimation. Based on our experimental parameters, we have moreover deduced
the choices of Eve’s parameters (gain and displacement) that two possible criteria for a suc-
cessful attack (section.7.4.2) can be achieved. However, the precision and stability of the
coherent displacement operation can not meet the strict requirements in saturation attack. In
fact, implementation of strong and precise displacement is experimental challenging, where
we still need more efforts to improve it. For this reason, we have proposed a new attack strat-
egy to induce detector saturation. By exploring the imperfection of the beam splitter used in
homodyne detection, we use an external light to function like the strong displacement as in
saturation attack. According to our analysis, this new attack can also lead to a security break
of a CV QKD system, we have also deduced Eve’s parameter choice that a successful attack
is possible. Moreover, this new attack is more experimentally friendly compared to satura-
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tion attack, since it only requires accurate control of laser intensity instead of complicated
implementation of displacement.



Chapter 9

Compatibility of CV QKD system with
WDM network

In this chapter we move to another topic in this thesis: study the compatibility of CV
QKD system with Wavelength Division Multiplexing (WDM) network. Such study is an
important step towards integration of CV QKD systems into real optical network.

This chapter is mainly divided in two parts: (1) In the preliminary work, I have ana-
lyzed different noise contributions in a coexistence regime of Dense Wavelength Division
Multiplexing (DWDM) classical channels with CV QKD system and their impacts on the
system performance. It is done through theoretical analysis and simulations with realistic
experimental parameters, along with few simple experimental tests. (2) In the main work,
we perform a full demonstration of coexistence of CV QKD with intense DWDM classical
channels [80], where a CV QKD system is inserted into a DWDM test-bed. This part of
work has been done through the collaboration with several researchers in our team and in
particular, Dr.Rupesh Kumar.

9.1 Introduction

Wavelength Division Multiplexing (WDM) allows to share a single optical fiber to trans-
port multiple optical channels using different wavelengths. WDM compatibility of quantum
and classical communications would allow to deploy QKD on lit fiber. This would boost the
compatibility of quantum communications with existing optical infrastructures and lead to
a significant improvement in terms of cost-effectiveness and addressable market for QKD.

However, coexistence with intense classical channels raises new challenges for QKD.
The optical power used on optical classical channels is orders of magnitude higher than for



178 Compatibility of CV QKD system with WDM network

quantum communication. Multiplexing classical and quantum signals on a single fiber can
result in very important additional noise for the quantum communication, due to insufficient
isolation or to optical non-linear effects [18]. Coping with such noise is in general a major
problem for QKD systems and filtering techniques are needed to improve the ratio between
quantum signal and WDM-induced noise. The implementation of this filtering can result in
additional losses and severely impact the performance of QKD. This is in particular the case
for systems that rely on spectrally wide-band single photon detectors[163].

Pioneering work on QKD and wavelength division multiplexing has been performed at
the very early days of QKD research by Paul Townsend and coworkers [173], with one
classical channel at 1550nm multiplexed with a quantum channel at 1300nm. This cor-
responds to a Coarse Wavelength Division Multiplexing (CWDM) configuration, that has
been studied in several other works [15, 17]. The large spectral separation the quantum and
the classical channels presents the advantage of reducing the amount of noise due to Raman
scattering (that is approximately 200nm wide) onto the quantum channel. CWDM-QKD
integration configuration has however several limitations: it can only accommodate shorter
distance (due to the higher attenuation for QKD at 1300nm) and the coexistence is limited
to a small number (below 8) of classical channels due to the large inter-channel spacing in
CWDM. One could thus use this configuration in priority in the context of access networks,
where it seems best suited [7].

On the other hand, if QKD is to be transported over long-distance links (beyond 50km)
and in coexistence with a large number of classical channels, which is the case in core or
wide-area optical networks, then Dense Division Wavelength Multiplexing (DWDM) is re-
quired. DWDM compatibility, i.e. the capacity to coexist with standard optical channels, all
multiplexed in the C band (wavelength range 1530–1565nm), with relatively narrow chan-
nel spacing (from 1.6nm to 0.2nm), is the focus of the present article. DWDM compatibility
of QKD has initially been studied by Peters et al. [132], where Raman noise was identified
as the main impairment for links longer than a few km. A coexistence test of QKD with
two forward-propagating classical channel and a total input power of 0.3 mW has been per-
formed. Despite this input power below typical optical network specifications and the use
of some filtering, QKD could not be operated beyond 25 km. More recently, several new
DWDM compatibility experiments have been performed, with discrete variable QKD (DV-
QKD) systems and more efficient filtering techniques. In [30], 4 classical channels where
multiplexed with a DV-QKD system and 50km operation was demonstrated. However, the
input power of the classical channels was attenuated below -15dBm, to the smallest possible
power compatible with the sensitivity limit of the optical receiver (-26dBm). This technique
was also used in [129] with an input power limited down to -18.5dBm and in addition the
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use of a temporal filtering technique developed in [17] to obtain a range of 90km.

The extended working range for DV-QKD coexistence with DWDM channels demon-
strated in [30, 129] is of practical interest. However, these demonstrations have been per-
formed with strongly attenuated classical channels, more that 15dB below the standard level
of optical input power commonly used in existing optical network. This indicates the diffi-
culty of integrating DV-QKD in optical networks in coexistence with standard optical power
(around 0dBm). Coexistence of DV-QKD with 0dBm channels has however recently been
demonstrated over 25 km [130], but it requires additional use of fine-tuned time and spectral
filtering.

In fact compared to DV-QKD, CV QKD has a better noise tolerance in the integration
with WDM network thanks to its coherent detection. Only photons in the same spatio-
temporal and polarization mode as the quantum signal would contribute as excess noise
while noise photons in different modes would be suppressed effectively. Promising results
have been shown in the analysis of [138], where spontaneous Raman scattering noise and
amplified spontaneous emission noises of an erbium-doped fiber amplifier (EDFA) are con-
sidered in a coexistence regime of WDM network with CV QKD system. Unfortunately,
there are no experimental demonstrations of this work, which leave a question that whether
CV QKD can performer better than DV-QKD in such coexistence architecture with WDM
network.

In the first part of this chapter, we extend the analysis of Qi et al. [138] and study
different source of excess noise from the classical channels. In the second part of this
chapter, we show that the use of CV QKD could be advantageous in order to deploy QKD
in DWDM coexistence with standard optical channels: we have shown that CV QKD can
coexist with classical channels whose cumulated power could be as high as 11.5 dBm at
25 km. We have also demonstrated CV QKD operation (with a key rate of 0.49kbit/s) at
75 km in coexistence with a -3 dBm channel. This stronger coexistence capability can
be obtained without any additional filtering and could be of significant advantage in many
practical situations related to QKD integration in standard optical networks.

9.2 Preliminary: analysis of noise contributions and simu-
lations

In a coexistence regime of WDM classical channels with CV QKD system, there are
different noise contributions on the CV QKD signal, such as noises due to classical chan-
nels leakage, spontaneous anti-Stokes Raman scattering (SASRS), cross phase modulation
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(XPM) and four-wave mixing (FWM). If the wavelength of the noise photons coincides
with that of the quantum signal, they cannot be filtered out at Bob’s side and will contribute
to excess noise and lower the performance of CV QKD system. However, compared to
DV-QKD in WDM network, the homodyne detection in CV QKD acts as a mode selector
so that the noise photons in modes orthogonal to the LO mode are suppressed efficiently.
Only photons in the same spatiotemporal and polarization mode as LO will contribute to
excess noise [138]. As mentioned in chapter 4, excess noise is the key factor which need to
be evaluated in CV QKD protocol, we would like to evaluate excess noise variances due to
various nonlinear optical effects in a coexistence regime.

In order to evaluate these noises, we consider a coexistence model of CV QKD signal
and classical signals as shown in Fig.9.1: the CV QKD system is multiplexed with for-
ward (from Alice to Bob) and backward (reverse) propagating DWDM channels, by using
multiplexer (MUX) and de-multiplexer (DEMUX) passive components. The wavelengths
of quantum channel signal and classical channel signal are considered as λq and λc. The
efficiencies of MUX and DEMUX are denoted as ηM and ηD.

9.2.1 Excess noise due to spontaneous Raman scattering effect

As already notice in [15, 30, 132], Spontaneous Raman Scattering (SRS) is the dominant
source of noise for QKD in a DWDM environment, as long as the fiber length is beyond a
few km. It is an inelastic scattering process during which scattered photons get converted
into photons of either longer or shorter wavelength, respectively called Stokes and Anti-
Stokes scattering. Anti-Stokes scattering is less probable than Stokes. Therefore, in order to
minimize the amount of noise due to Raman scattering, it is preferable to place the quantum
channel at a wavelength lower than the ones of the classical channels (λc < λq). We will
assume here that this design rule has been followed so that we only need to focus on the
effect of Spontaneous Anti-Stokes Raman Scattering (SASRS) photons on CV QKD system.

Fig. 9.1 Coexistence model of CV QKD signal and classical signals. Pin:Input power at point
A, SMF:Single mode fiber. MUX: multiplexer, DEMUX: demultiplexer, ηM: Efficiency of
MUX, ηD: Efficiency of DEMUX, ηBob: Efficiency of Bob.
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Since the SASRS noise varies with distance, it is interesting to evaluate its value at the output
of DEMUX (C point in Fig.9.1) or the excess noise at Bob side.

Based on the analysis in [138], let us evaluate the excess noise due to SASRS photons.
If the total input power at point A in Fig.9.1 is Pin, then the forward SASRS noise power
within a bandwidth of ∆λq (measured at point B ) is given by [15, 30]:

PSASRS = PinβrLe−αL
∆λq, (9.1)

in which βr is the spontaneous Raman scattering coefficient, Pin (measured at point A in
Fig.9.1) is the input power of the classical signal, L is the fiber length and α is the fiber
attenuation coefficient (dB/km).

As we mentioned, only the SASRS photons in the spatiotemporal mode as LO would
contribute in band excess noise. Thus we need to estimate the SASRS noise photon number
per spatiotemporal mode. In order to estimate this number, we first evaluate the total mode
number Nmode and total number of SASRS photons Ntot for a given bandwidth ∆λq of the
quantum channel. In experiments, if we measure the SASRS power PSASRS by using an
optical power meter at point B in Fig.9.1, the readout of optical power meter is the total
energy received in one second:

PSASRS = Ntothν , (9.2)

in which hν is the energy of one photon with h as Planck constant and ν is the frequency of
the quantum signal. Ntot is the total number of SASRS photons within a bandwidth of ∆λq

and a time window of ∆t = 1s at point B. Corresponding to ∆λq and ∆t = 1s, Nmode is given
by:

Nmode = |∆ν∆t|= c
λ 2

q
∆λq, (9.3)

In which λq is the central wavelength of the quantum signal laser, c is the speed of light
in vacuum. With the efficiency of DEMUX as ηD, the SASRS photon number in one mode
at the output of DEMUX is given by:

⟨NSASRS⟩=
NtotηD

Nmode
=

PSASRS

hνNmode
ηD =

λ 3
q

hc2 PinβrLe−αL
ηD, (9.4)

in which λq is the LO wavelength, h is plank constant, c is the speed of light in vacuum.

Since LO defines a single spatiotemporal mode, the number of noise photons in matched
mode with LO at Bob (point C in Fig.9.1) can be deduced from Eq.(9.4) and given by:

⟨Nin
GMCS⟩=

1
2

m⟨NSASRS⟩=
1
2

mPinβrLe−αL
ηD

λ 3
q

hc2 , (9.5)
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in which the factor 1/2 is due to the polarization selection of the LO, m is the number
of classical channels. According to [138], SASRS is modeled as output of a chaotic source
with Bose–Einstein photon statistics, thus the excess noise due to SASRS in matched modes
is given by:

ξSASRS = 2ηBob⟨Nin
GMCS⟩N0 = ηBobmPinβrLe−αL

ηD
λ 3

q

hc2 N0, (9.6)

where ηBob is efficiency of Bob, and N0 is shot noise. With the similar approach, we can
also derive the excess noise due to the backward SASRS. With the backward SASRS power
Pin,b (measured at point A), we can know this power within a bandwidth of ∆λ :

PSASRS,b = Pin,bβr
1− e−2αL

2α
∆λq. (9.7)

Thus the excess noise contributed by backward SASRS noise photons in matched mode
with quantum signal is given by:

ξSASRS,b = ηBobmPin,bβrL
1− e−2αL

2α
ηD

λ 3
q

hc2 N0. (9.8)

In order to characterize the excess noise due to SASRS, we perform simulations with
realistic experimental parameters (Table.9.1). According to Eq.(9.6), we plot the excess
noise (on Bob side) due to forward SASRS versus distance for different input powers of
one classical channel. It simulates the situation that several classical channels (with input

Table 9.1 Simulation Parameters

Parameter Value
α (Fiber attenuation coefficient) 0.21dB/km
βr (Spontaneous Raman scattering coefficient) 2×10−9/(km ·nm)
λc (Wavelength of classical channel) 1559.75 nm
λq (Wavelength of quantum channel) 1554.94 nm
∆λ (3 dB linewidth of LO) 0.02 nm
∆ tq (Duration of LO pulse) 100 ns
∆λ f ilter (1dB passband of WDM filter) 0.46 nm
ηD (Efficiency of DEMUX filter) 0.64 (or -1.9 dB )
ηBob (Efficiency of homodyne detection) 0.6
Pin (Input power of one classical channel) 1mw −→ 20mw
L (Length of fiber) 0km −→ 100km
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Fig. 9.2 Simulation of excess noise (on Bob side) due to spontaneous anti-Stokes Raman
scattering (forward) with different input powers of one classical channel, simulation param-
eters are in Table.9.1.

power per channel as 0 dBm) are inserted into the DWDM system, since the excess noise
(Eq.(9.6)) is proportional to both the input power (Pin) and the number of channels (m). As
shown in Fig.9.2, the maximum noise variance is found at about 21 km, then the excess
noise decreases with distance. And SASRS excess noise is three orders of magnitude lower
than the shot noise. It thus requires high precision of CV QKD system to observe SASRS
excess noise in experiments.

CV QKD performance with SASRS noises

In order to show the CV QKD performance in a DWDM integration environment. It
is interesting to evaluate the secret key rate of CV QKD when there are several DWDM
classical channels. We have simulated the secret key rate for GMCS protocol with reverse
reconciliation for collective attack (section.4.5.2). The simulation parameters are given in
Fig.9.3 which are realistic values for a practical CV QKD system. We have assumed input
power of each classical channel is 0 dBm. As shown in Fig.9.3, one classical channel will
shorten the secure distance about from 50 km to 45 km. But when there are 10 classical
channels, CV QKD can still operate with a distance of more than 25 km. We can see that it is
possible to multiplex CV QKD with several 0 dBm classical channels without significantly
reducing its performance.
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Fig. 9.3 Secure key rate with collective attack. Secure key rates are calculated under differ-
ent conditions: no classical channel and different number of classical channels; Simulation
parameter: Alice’s variance VA = 10, efficiency of Bob ηBob = 0.6, efficiency of DEMUX
filter ηD = 0.64, excess noise of electronics vele = 0.01, excess noise of system ξsys = 0.01,
reconciliation efficiency β = 0.9, attenuation coefficient α = 0.21dB/km.

Experimental characterization of Spontaneous Raman Scattering in DWDM environ-
ment

In order to validate the prominence of Raman Scattering as source of noise, we have
conducted experiments to estimate the value of the Raman scattering coefficient, βr, and
to validate experimentally the validity of Eq.(9.6) in order to predict the amount of excess
noise induced by Spontaneous Raman Scattering on homodyne detector.

The experimental setup is shown in Fig.9.4(a). Classical channel at 1550.12nm (ITU
channel 34) is multiplexed either in forward of backward direction into the fiber through Add
and Drop Modules (ADM1/ADM2) and we perform noise measurement with a homodyne
detector. Add and Drop Modules are DWDM elements that allow to multiplex/demultiplex
(add/drop) a particular wavelength to/from an optical fiber channel on which it is placed.
ADMs exhibits comparatively less insertion loss (≈ 0.5dB) than WDM modules (≈ 2dB).
Moreover, we have obtained cross channels isolation of -46dB between adjacent chan-
nels and -96dB between non-adjacent channels. The wavelength of the classical channel
is scanned over the entire C band (1530nm - 1565nm) with 5mW input power. Raman scat-
tered photons at the wavelength 1531.12nm (ITU channel 58) of the quantum channel are
collected through the Add/Drop port of ADM2.
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(a) (b)

Fig. 9.4 Characterization of Raman noise.(a): Experimental setup. ADM- Add/Drop mod-
ule, AM- Amplitude modulator, PMBS- Polarization Maintaining 50/50 Beam Splitter, PD-
Photo diodes. (b): Noise (in excess of shot noise) induced by a classical channel of various
power on a homodyne detection. Circles and squares are experimental data obtained for the
classical channel in forward and backward directions, respectively. Blue, red and black col-
ors indicate classical channel power of 8mW, 5mW and 3mW, respectively. Experimental
data is fitted using Eq.(9.6) and Eq.(9.8) in forward (dotted) and backward (solid) directions.

We have characterized the Raman scattering coefficient, βr, by measuring the intensity
of backscattered photons, from a fiber spool of 25 km, using a power meter (model NOVA
II, OPHIR optronics) at the point A in Fig. 9.4 (a) and an ADM of bandwidth 0.8 nm. We
can use Eq.(9.6) to relate the power of Raman backscattering to the value of the coefficient
βr, whose measurement (that depends on the wavelength of the classical channel) varies
from 1.5×10−9/km.nm. to 3.1×10−9/km.nm and agrees with that given in [30].

For the characterization of the excess noise induced by Raman scattered photons on
the homodyne measurement we have used a specific technique to evaluate both total noise
and shot noise variance. An amplitude modulator (AM) is used to close the signal port
of homodyne detector during the shot noise measurement and is kept open for total noise
measurement. In order to minimize the effect of homodyne output drift, shot noise and total
noise measurements are taken in every alternative intervals. Forward and backward Raman
noise variance are measured for different fiber channel lengths with various classical channel
launch power. Results are as shown in Fig.9.4 (b). As we can see, in the forward scattering
direction Raman noise reaches a maximum at 1/α ∼ 21km, where α = 0.046 is the fiber
attenuation per km, and then decreases along with classical channel power. In the backward
direction, noise reaches a saturation level as the distance increases. The experimental data
is fitted using respective parts of Eq.(9.6) and Eq.(9.8) and found in good agreement with
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the theory.

9.2.2 Excess noise due to classical channel leakage

We now move forward to another noise source in the coexistence regime of CV QKD
with DWDM: leakage from classical channels. Compared to quantum signal, the power of
classical channel is several orders of magnitude higher. Despite the wavelength of quantum
signal is different from classical channel, a small fraction of the classical signal can leak
into the quantum channel due to the finite isolation of the DEMUX (a typical value for non-
adjacent channel is -80 dB while adjacent channel is -40 dB). However this kind of noise is
so called out-band noise which can be effectively filtered out by the homodyne detection,
according to the analysis in [138], such contribution on excess noise is negligible. Here
we focus on studying the in-band noise due to side band photons of the classical channel.
A classical channel laser has a broadband noise background which generates the sideband
photons. The sideband photons at same wavelength as quantum channel can not be filtered
out by the homodyne detection and they contribute excess noise in matched mode with
quantum signal. For typical semiconductor distributed feedback (DFB) laser, the power of
sideband photons is typically -60dB below the main mode (central wavelength). However,
if the power of classical channel is large, the excess noise due to sideband photons is not
negligible, since it contributes in-band noise. Similar as the study of SASRS noise, in order
to evaluate the excess noise due to side band photons, we need to deduce the total number
of noise photons Ntot,sb and total modes number Nmode corresponding to the bandwidth ∆λq

and a time window ∆t = 1s, where the Nmode is given by Eq.(9.3). With a input power of
classical channel at point A in Fig.9.1 as Pin, the total number of sideband photons is given
by:

Ntot,sb =
rsbPine−αL

hν
, (9.9)

Here rsb is side band ratio for the classical channel laser, a typical value is around -60 dB.
Thus the number of sideband photons per mode is given by:

⟨NSB⟩=
Ntot,sb

Nmode
=

λ 3
q

hc2∆λq
Pine−αLrsbηD. (9.10)

According to Eq.(9.5) and Eq.(9.6), the excess noise due to sideband photons is given by:

ξsb = mηBob⟨NSB⟩N0. (9.11)
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Fig. 9.5 Excess noise due to sideband photons versus fiber length, λc = 1559.75 nm, λq =
1554.94 nm, rsb =−61.62 dB, ηD =−1.9 dB, m = 1.

In order to observe the excess noise due to sideband photons, we remove the MUX and
increase the power of the classical channel, the experimental scheme can be refereed to Fig.
9.4 without using ADM1. The wavelength of classical channel is set to λc = 1559.75nm,
while the quantum channel is λq = 1554.94nm. We vary the input power of classical channel
(pump) from 20 mw to 5 mw for three fiber pool lengths: 10km, 25km and 50km. As shown
in Fig.9.5, we observe that the sideband noises are much higher than SASRS noises. It is
mainly due to the following reasons: (1) Sideband photons contribute in-band noise; (2)
The input power is up to 20 mw which is relative high; (3) We remove the MUX in the
experiment, thus there is no bandpass filtering on the sideband photons. In fact, as we shall
see, if the MUX is added, the sideband noises can be reduced to a great extent thanks to
the bandpass filtering property (or isolation) of the MUX. The theoretical predictions from
Eq.(9.11) in Fig.9.5 also match well with the experimental data. If we moreover add the
MUX, Eq.(9.11) can be re-written as:

ξsb = mrbpηBob⟨NSB⟩N0, (9.12)

in which rbp is the channel isolation of the MUX, a typical value for adjacent channel is
about -30 dB. We can thus predict the expected excess noise due to sideband photons if
MUX is used. For example, sideband photons from a 0 dBm channel adjacent to quantum
channel would lead to an amount of excess noise about 1.6∗10−4N0 at 25 km. We can con-
clude that the excess noise due to the classical channel leakage is negligible in a coexistence
regime of CV QKD and DWDM system.



188 Compatibility of CV QKD system with WDM network

9.2.3 Excess noise due to cross phase modulation

Cross phase modulation (XPM) is another nonlinear effect. The presence of a classical
channel will change the nonlinear part of silica’s refractive index sensed by the quantum
channel. Due to this nonlinear refractive index of silica, a phase shift of the quantum chan-
nel that depends on the classical channel power will be introduced after propagating on a
distance of fiber [18]. This nonlinear phenomenon is called XPM. In brief, XPM effect in
WDM systems converts power fluctuations in a particular channel to phase fluctuations in
the other channels. We can quantify these phase fluctuations. The refractive index has the
form:

n = n0 +n2
Pin

Ae f f
, (9.13)

in which n0 is the ordinary refractive index of the optical fiber, n2 is the intensity-dependent
refractive index (3× 10−23m2/mw), Ae f f is effective core area of fiber, Pin is the optical
power in mw launched into the fiber at point A (Fig.9.1) and Le is effective length defined
by

Le =
1− e−αL

α
(9.14)

Here α is the fiber attenuation coefficient and L is the real fiber length. The optical power
fluctuations change the refractive index (Eq.(9.13)) and the refractive index fluctuation
changes the phase after propagation of the optical fiber. This part of phase variation is
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Fig. 9.6 Phase variation of XPM with different input power Pin, fiber attenuation coeffi-
cient α=0.21 dB/km, intensity-dependent refractive index, n2 = 3× 10−23m2/mw, wave-
length of pump λc=1559.75 nm, wavelength of LO λq=1554.94 nm, effective area of fiber
Ae f f =83µm2, efficiency of DEMUX filter ξ =0.64.
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given by [18], [19]:

φ0 =
4πn2LePin

λcAe f f
, (9.15)

in which, φ0 is the phase variation in radians (in case Pin is constant) and λc is the wavelength
of classical channel. In Fig.9.6, we can see that the phase variation will become higher
when fiber length goes longer. But when the distance goes over 50 km, attenuation of
the classical channels makes the phase drift variation saturate with distance. Clearly, any
fluctuations in the optical power of the classical channel will produce corresponding phase
changes in the quantum channel and can potentially impact the CV QKD system. The signal
pulse and LO pulse propagate with classical channel through a same fiber. Due to optical
power fluctuations and modulation of classical channel, XPM can induce phase variation
both on the quantum signal and on the local oscillator. These variations can be different
since LO and signal pulses are time-multiplexed, the phase between signal pulse and LO
pulse can drift. The homodyne detection at Bob side in GMCS CV QKD protocol is very
sensitive to such phase drift. The relation between phase drift and excess noise variance have
been already estimated in [137]. Approximately, a phase drift (∆φ ) between LO and signal
will introduce an amount of VA∆φ 2 excess noise, where VA is Alice modulation variance.
Considering pessimistic value (i.e.high) for the power fluctuations in classical channel (1%
to 5% of input power) and since the phase variation is linear with input power (Eq. (9.15)),
the statistical law followed by the power fluctuation will give us the phase noise variance. If
we assume that the power fluctuations follow a centered Gaussian distribution of 0.05 mw
power fluctuation (5% of 0 dBm classical channel power), XPM will introduce a maximum
phase fluctuations variance of about 9 ∗10−6 in squared radians. The phase noise variance
on the relative phase between signal and LO will be in same order of magnitude as the
phase fluctuations. If we moreover assume that Alice modulation variance is 20 shot noise
units (SNU), a pessimistic estimate for the introduced excess noise (VA∆φ 2) will be around
1.8 ∗ 10−4 in SNU. For one 0 dBm classical channel, a rough upper bound on the XPM
excess noise will be lower than the noise introduced by Raman scattering.
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9.3 Demonstration of coexistence of CV QKD with intense
DWDM classical channels

9.3.1 Excess noise on CV QKD operated in DWDM coexistence regime:
experimental set-up

To experimentally measure the excess noise induced by multiplexed DWDM channels,
we have inserted a CV QKD system in a DWDM test-bed, and have used a dedicated scheme
for excess noise acquisition, minimizing system noise associated to temporal drifts, so that
DWDM-induced noise could be resolved with enough precision. We start by a description
of our CV QKD set-up and then detail our acquisition scheme.

CV QKD experimental set-up

Our CV QKD system implements the GMCS Protocol [48] and uses a externally mod-
ulated DFB laser at 1531.12 nm to general pulses of temporal width 50ns at a repetition
rate of 1MHz. These pulses are split on a 90/10 beam splitter into local oscillator and sig-
nal pulses. Signal pulses are strongly attenuated (to the level of a few photons per pulse)
and their quadratures are Gaussian modulated using amplitude and phase modulators, with
quadrature variance VA. Local oscillator and signal are time multiplexed (200ns delay) and
polarization multiplexed, before being sent to Bob through the fiber channel. At reception,
on Bob side, signal and local oscillator pulses are polarization and time de-multiplexed. De-
tailed description of the setup is given in [64]. The quadrature information is retrieved by
using a balanced homodyne detector of electronic noise -25dB below the shot noise. The
intensity of the local oscillator is set in order to have a mean number of 108 photons per
pulse at Bob. The input voltage range of the data acquisition card is set sufficiently low (±1
Volts) to obtain a good resolution for the homodyne output measurement, which reduces the
electronic noise down to 0.3% of shot noise. Such setting however could open a door for
recently proposed saturation attack on CV QKD system (chapter 7) [140], but we will not
be considering this issue, or other issue related to side-channel attacks here.

To perform shot noise measurement (Eq.(4.14)) Alice blocks the signal pulses at emis-
sion with her amplitude modulator while a second amplitude modulator, placed on the clas-
sical channel (in green on Fig.9.7) is used to block the optical input of the multiplexed clas-
sical channel. On the other hand, when both quantum and classical signals are multiplexed
on the same fiber, we say that the ”total noise” variance (Eq.(4.14)) is being measured. In
order to limit the impact of statistical fluctuation in variance estimation [68], windows of
size 108 pulses were used to estimate the quadrature measurement variances both for shot
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noise and for total noise.

Fig. 9.7 Setup for excess noise measurement for CV QKD system operated in coexistence
with one DWDM intense channel. Add-Drop Modules (ADM 1 and 2) are used to add and
drop, respectively, the quantum channel to and from the optical fiber. Amplitude modulator
(AM) is used to switch off the classical channel, while Alice output signal is synchronously
blocked by the AM inside Alice CV-QKQ system. The figure represents the set-up with a
forward propagating classical channel. When the classical channel is operated in backward
configuration, the output of the AM is connected to the input of ADM2 (instead of the input
of ADM1).

We have integrated the above described CV QKD setup into a DWDM environment and
the experimental setup is depicted in Fig. 9.7. We have used a wavelength tunable contin-
uous laser (model TLS-AG from Yenista) for the classical channel. The wavelength of the
quantum channel is set at 1531.12 nm (ITU channel 58) so that the quantum channel would
be in the Anti-Stockes configuration with respect to any classical channel in the C band
[17]. The wavelength of the classical channel is set at 1550.12 nm (ITU channel 34) based
on the choice of available ADMs in the laboratory. It would be possible to select a quantum
channel wavelength close to the classical channel, as illustrated in [30], in order to further
minimize the Raman induced noise. Both channels are multiplexed and de-multiplexed to
and from the optical fiber spool by means of ADMs. An additional bandpass filter (not
shown in Fig. 9.7) had also placed (before the ADM) on the classical channel in order to
remove sidebands (such filtering would naturally be present if a multi-channel MUX had
been used, as shown in Fig.9.1).

In our derivation of the secret key rate, we have opted for a conservative approach and
have considered that the losses associated to the ADMs are part of the fiber channel and not
of the QKD system. This approach is conservative because it does not require to assume
that the ADMs insertion loss are calibrated (and this calibration trusted). Moreover, this
approach allows to directly take into account possible variations of the insertion loss of the
ADMs, due to wavelength drift of the CV QKD laser around the transmission window of
the ADMs, in the estimation of channel transmittance T (Eq.(4.13)).
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(a) (b)

Fig. 9.8 (a): Drift of homodyne output. Relative drift between shot noise variance mea-
surements in consecutive blocks, as a function of data window size. Data window size
ranging from 1ms to 200s have been used (corresponding to window size ranging from 103

to 2× 108 homodyne measurements). At short time scales (below 105 measurements) the
relative drift is negligible (region shaded in blue), while it becomes comparable to the sys-
tem noise (10−3N0 for time scales of several seconds (regions shaded in red). (b): Timing
diagram. Data acquisition is divided in relatively short periods (N =105 pulses, correspond-
ing to 100 ms). Shot noise and total noise measurements are performed alternatively on
each consecutive period, in order to limit the relative drift.

Excess noise measurement and drift compensation

To evaluate the excess noise with a good statistical precision large data blocks should
be used. This is indeed an important issue when one wants to deal properly with finite-
size issues [68]. In our case, we should typically compute estimators on data blocks of
size 108 in order to have a statistical fluctuations around 10−4N0 and thus below system
excess noise. However, the value of homodyne output can drift with time (essentially due to
temperature fluctuations that modify the balancing conditions of the homodyne detection).
This temporal drift results in an additional noise that depends on data block size, as one
estimates shot noise and total noise on two consecutive data blocks, as we can see from
Fig.9.8(a). If large window size (200s) were used to measure consecutively total noise and
shot noise, then the drift could generate an additional noise of the order of 1.5×10−3N0 and
thus strongly affect the precision of our DWDM-induced noise measurements.

One way to mitigate this effect is on the other hand to use smaller data blocks so that the
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noise induced by the relative drift becomes negligible at this timescale. Using this principle,
we have used data blocks of size 105 pulses (100ms) alternatively for the acquisition shot
noise and total signal measurements. Excess noise estimation on data blocks of 108 acqui-
sition is then obtained by concatenating 103 data blocks obtained at the 100 ms timescale,
reducing the relative statistical uncertainty.

To perform shot noise measurement in our set-up, the emission of Alice and the emis-
sion of the laser source on the classical channel were shut down simultaneously during
100ms with respective amplitude modulators, as depicted on Fig. 9.8(b). The relative drift
at the 100ms timescale is around 10−5N0 (measured at Bob), can be neglected since it is
significantly smaller than the CV QKD system excess noise (10−3N0 in our case, at Bob).

As proposed in [66], it is possible to use another scheme in order to perform time-
resolved shot noise measurements: it consists in using an amplitude modulator located at
the entrance of Bob to modulate ηB, and to use Eq.(4.12) (for different value of ηB) to
evaluate both shot noise and excess noise variance. This approach is feasible but would
interfere with some routines already implemented in our CV QKD implementation, related
to Alice-Bob data synchronization and phase tracking. We have therefore not opted for this
design in our DWDM test-bed but plan to do so it in future field trials.

9.3.2 CV QKD experimental coexistence tests: results and analysis

We have operated our experimental test-bed of CV QKD multiplexed with one DWDM
classical channel (described in the previous section), at 25km, 50km and 75km with a clas-
sical channel power after the ADM varied from 0mW to 8mW. For each experimental run,
transmission T and excess noise ξ were evaluated from the experimental data, using the
Eq.(4.11,4.12,4.13,4.14).

The measured excess noise at the output of Alice as a function of classical power are
displayed in Fig.9.9. We compare these experimental values to the expected excess noise,
i.e. the sum of the system excess noise (that is calibrated to be 0.03N0 in our case, at
Alice) with the noise associated to spontaneous Raman emission, that can be computed
from Eq.(9.6) and Eq.(9.8). We in particular expect the excess noise to be a linear function
of the launch power.

We also position the null key thresholds on Fig.9.9, i.e. the maximum excess noise that
can be tolerated in order to be able to obtain a positive secret key rate. Assuming collec-
tive attacks and 0.95 reconciliation efficiency, the null key threshold for 25km is 0.137N0,
0.083N0 for 50km and 0.064N0 for 75km.

It can thus be seen that a positive key rate can be obtained for classical channel power up
to 14mW at 25km, 3.7mW at 50km and 0.89mW at 75km in forward configuration whereas
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Fig. 9.9 Excess noise measurements in forward (a) and backward (b) channel configuration.
Black, red and blue data points are the excess noise evaluated at Alice for channel length
of 25km, 50km and 75km, for different classical channel power. Dashed lines indicate the
expected excess noise curve and solid horizontal lines are null key threshold for respective
channel distance. See text for details.

in backward direction admissible classical power drops to 9.3mW, 2mW and 0.23mW, re-
spectively. The secure key rate (under collective attacks) has been calculated from the eval-
uated excess noise ξ and transmission T taking into account finite-size effects with our data
block size of 108. Worst-case estimators for the excess noise (with 3 sigma of deviation)
have be used, following the analysis [68]. With single 0dBm channel at distance 25km,
the key rate is 24.11kb/s in forward and 22.98kb/s in backward direction. In 50km channel
length the key rate drops to 3.16kb/s and 2.27kb/s, respectively. We have also obtained a
positive key rate of 0.49kb/s at 75km by reducing the classical channel power (while consid-
ering classical channel receiver sensitivity below -25dBm) to -3dBm in forward and -9dBm
in backward direction. One important thing to point at here is the yield (secure key bit
per QKD signal pulse) of CV QKD system in WDM environment. In our experiment with
0dBm classical channel over 25km the yield is of 485×10−4 bits/pulse which is two order
of magnitude higher than the recently reported, 485×10−6 bits/pulse, DV-QKD experiment
[130]. On the other hand, the latest DV-QKD system can be operated at GHz-clock rate,
which has still not yet been demonstrated with CV QKD systems, currently operated at
MHz clock rate, even though no fundamental barrier prevents to upgrade it to 100 MHz if
not GHz clock rate.
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Fig. 9.10 Tolerable classical channel power vs Reachable distance: Performance of QKD in
the context of coexistence with classical optical channels. Red and blue colors represents our
results with a CV QKD system, in forward and backward classical channel configuration,
while previous works with DV-QKD systems are in Green: (a) Townsend [173], (b) Patel
et al. [129], (c) Eraerds et al. [30], (d) Choi et al. [17], (e) Chapuran et al. [15], (f) Patel
et al. [130]. Stars: experiments conducted in the C-band (DWDM). Squares: experiments
conducted in CWDM. The doted red and blue lines are the forward and backward simulation
curve for the null key rate in the current experiment. Gray bands show transmitter input
power range in different standardized optical networks.

Comparison with DV QKD

To illustrate the strong DWDM coexistence capacity of CV QKD, we have made a com-
parative study with previously reported DV-QKD experiments [15, 17, 30, 129, 130, 173],
and displayed in Fig.9.10 a comparison of the reachable distance of QKD, as a function of
the classical multiplexed power (in CWDM or DWDM, see caption). In Fig.9.10, the data
points for CV QKD indicate the maximum reachable distance (null key threshold). The key
rates corresponding to experimental points taken with our CV QKD system and displayed on
Fig.9.10 are: 12b/s for 25km; 8b/s for 50km and 9b/s for 75km. Note that DV QKD perfor-
mances mentioned in Fig.9.10 have also been acquired very close to the null key threshold.
One important thing to note that the different results mentioned in this comparison do not
all rely on a unified security analysis. Key rates are derived for security proofs valid against
collective attacks in [17, 30, 130], individual attacks in [173] and general attacks in[129],
while among these references, only [130] takes finite-size effects into account. As previ-
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ously explained, we have considered collective attacks and have taken finite-key effects into
account for the CV QKD secure key derivations associated to our experiments.

It can be seen that CV QKD can reach longer transmission distances for a given classical
channel launch power. Conversely, for a given transmission distance, CV QKD can tolerate
noise from multiple classical channels with typical transmission power of 0dBm. This is
particularly true for 25km and 50km transmission distance as shown in Fig.9.10. CV QKD
can also be deployed in coexistence with classical channels of unprecedent power levels-
thanks to the mode selection property of its coherent detection. This gives CV QKD an
advantage for the integration into different optical network architectures and in particular
into access networks. Such integration requires, in general, capacity for QKD to co-exist
with classical channels of several dBm of power. As it can be seen in Fig. 9.10, strong
co-existence of CV QKD would allow its integration into different standard passive optical
networks such as, for example, Gigabit PON, 10G-PON and WDM/TDM PON [7].

Fig. 9.11 Optimized classical channel allocation for CV QKD in WDM-PON network. In
Black: the 1531.12 nm channel allocated for the quantum channel. Red and Green bars
represents the backward and forward classical channels, positioned on the DWDM wave-
length grid. Each blue dot (connected by the blue line) represents the simulated value of
the Raman-induced excess noise arising from one backward (of specified power) classical
channel onto the quantum channel. Simulated data for excess noise from forward channels
is not shown.
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Optimization of classical channel allocation

In the light of the experimental results and the promising perspective defined for CV
QKD integration in optical networks, we have simulated how we could effectively integrate
CV QKD in some WDM Passive Optical Network architectures (WDM-PON). To this ef-
fect, we have applied a simple optimization routine to the integration of CV QKD system
into WDM-PON, that allowed us to propose classical channel allocations by minimizing the
excess noise induced on CV QKD.

For a typical access network distance of 25km, we have considered classical channel
allocation in the C band and found that CV QKD could coexist with 5 pairs of classical
channels (with nominal WDM-PON channel launch power: 2dBm in forward and 1dBm
backward). Optimization(at a give transmission distance) is performed by choosing sequen-
tially the position of the classical channel that maximize the additional excess noise on
QKD, up to the maximum number of channels compatible with a positive secret key rate.

If the detector sensitivity on the classical channels allows, it might even be realistic
to reduce the classical channel power below the nominal specifications of a WDM-PON
network, while still being able to operate the classical channels. We have studied the impact
of this hypothesis in Fig.9.11. We can see for example that 14 pairs of channels (each
with -10dBm launch power) could be multiplexed with one CV QKD channel at 50km and
while 2 pairs of channels (also with -10dBm launch power) could coexist with CV QKD at
75km. These simulation results clearly indicate that the strong coexistence capacity of CV
QKD with WDM multiplexed classical channels is likely to play an important role in the
integration of QKD into optical networks.

9.3.3 Conclusion

The success of emerging optical network technologies relies for a large part on their
ability to be seamlessly integrated into existing infrastructures. We have demonstrated the
successful co-existence capability of CV QKD intense (around 0 dBm) classical channels,
in a DWDM configuration. We have characterized and studied the influence of the main
source of noise: Raman scattering and have demonstrated experimentally that CV QKD can
coexist with a DWDM channel intensity as high as 11.5dBm, while positive key rate could
also be obtained with a -3dBm forward DWDM multiplexed classical channel at 75km.

It can be also seen that CV QKD, benefiting from a built-in single mode filtering (associ-
ated with the coherent detection) is less affected by DWDM-induced noise photons that the
DV QKD systems tested so far in this regime, and can therefore reach longer transmission
distances for a given DWDM classical channel launch power.
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These experimental results indicate that CV QKD, and more generally coherent com-
munications operated at the shot noise limit are a promising technology in order to jointly
operated quantum and classical communications on the same optical fiber network, and
can therefore play an important role for the development of quantum communications over
existing optical networks.



Chapter 10

Conclusion and Perspectives

In this thesis, I have mainly studied the practical security of continuous variable quantum
key distribution system from both theoretical and experimental sides. At the beginning and
during the time of this thesis, there are some important achievements that have been made in
CV QKD: on the theoretical side, security proofs against general attack in asymptomatic re-
gion [147] and finite size region [92] have been gradually established. Composable security
for CV QKD with Gaussian-modulated coherent states [86] has been also analyzed. On the
experimental side, CV QKD in standard telecom fiber systems over 80 km [68] and secret
key rate over 1 Mbps [55] have been demonstrated in lab environment. All these results
have reduced the gap between the discrete variable and continuous variable QKD protocols.
These achievements also indicate that CV QKD is forwarding towards the next stage: prac-
tical use in real world and commercial products [5], which rise the importance of practical
study in CV QKD. In this thesis, I have concentrated my work on two important challenges
in practical study of CV QKD: side channel attacks on practical CV QKD systems and the
integration of a CV QKD system within an optical network.

10.1 Side channel attacks in CV QKD

In the study of side channel attack, for the first time I have proposed and studied a
detector-based side channel attack in CV QKD: saturation attack, which opens a new type
of loophole in all implementations of CV QKD systems using homodyne detection. This
new loophole has no connection with the well known vulnerability of local oscillator pulses
in the implementation of CV QKD, which thus requires new types of countermeasures. We
have moreover performed an experimental demonstration of saturation attack, in which we
have experimentally studied the condition under which a successful saturation attack can be
realized with our experimental setup of Eve.
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Saturation attack highlights the importance of exploring the assumptions in security
proofs when implementing CV QKD protocol on practical setups. The discover of the
saturation attack has changed the stereotype that the detection part in CV QKD is robust
against side channel attacks, and our attack would be a great motivation for developing
practical Measurement-Device-Independent (MDI) CV QKD [94, 95, 113, 135, 193]. In
DV QKD, many quantum hacking strategies targeting on single photon detectors have been
already demonstrated experimentally on research and commercial systems [42, 42, 107, 116,
137, 190, 194], which is one of the most important reasons for the birth of MDI QKD.

Beside its network configuration, the main advantage of MDI QKD is to defeat detector
based side channel attack, thus our saturation attack, a detector-based side channel attack,
for sure will push forward the study of MDI CV QKD. Indeed, MDI CV QKD protocols
[94, 95, 113, 193] have been proposed not very late after the saturation attack and recently
proof of principle demonstration has also been performed [135]. However, MDI CV QKD
protocols still face challenges or even limitations from the points of the views of theories and
practical implementations [31]. For examples, the performance of MDI CV QKD largely
depends on the efficiency of homodyne detector, it requires almost one unity efficiency (98%
in the analysis of [135], however this value is unrealistic) to achieve a significant key rate
when loss is encountered. The implementation of local oscillator in MDI CV QKD also
faces the challenge that an eavesdropper can manipulate the local oscillator in a untrusted
relay. Possible solutions have been proposed by [136], however most of technical issues of
these solutions have not yet been solved (and will not be solved very soon), which means it
still needs much more efforts to implement a practical MDI CV QKD.

On the other hand, in order to defeat side channel attacks in CV QKD and improve
the participial security of CV QKD, other than developing device independent QKD, we
can pursue another approach: address as many as vulnerabilities in implementations of
CV QKD systems, and develop corresponding countermeasures. As we have presented in
chapter 6, we have reviewed side channel attacks in CV QKD which are recently reported.
Along with our saturation attack, the main targets of side channel attack in CV QKD can
be summarized as: local oscillator, homodyne detection and source preparation, in which
the first two targets seem to have important impacts on the practical security of CV QKD,
where suitable countermeasures are needed. However these known side channel attacks are
not end of story, since current security proofs have not include the side channel attacks, any
implementation flaws can still open new security loopholes in CV QKD. By discovering
more loopholes in the implementations of CV QKD and performing systematic tests of
different side channel attacks, we can eventually move towards the certification of CV QKD.
Such action is actually undergoing in DV QKD [176], while CV QKD still has a long way
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to go.

10.2 Integration of CV QKD within optical networks

In the study of integration of a CV QKD system within an optical network, we have
demonstrated the successful co-existence capability of CV QKD intense (around 0 dBm)
classical channels, in a DWDM configuration. We have characterized and studied the influ-
ence of the main source of noise: Raman scattering and have demonstrated experimentally
that CV QKD can coexist with a DWDM channel with high intensity. It can be also seen
that CV QKD, benefiting from a built-in single mode filtering (associated with the coher-
ent detection) is less affected by DWDM-induced noise photons that the DV QKD systems
tested so far in this regime, and can therefore reach longer transmission distances for a given
DWDM classical channel launch power. These experimental results indicate that CV QKD,
and more generally coherent communications operated at the shot noise limit are a promis-
ing technology in order to jointly operated quantum and classical communications on the
same optical fiber network, and can therefore play an important role for the development of
quantum communications over existing optical networks.

Our work is the first experimental confirmation that CV QKD has good compatibility
with intense classical signal under a DWDM environment, however our demonstration was
performed under a lab environment, where there is no real traffic on classical channels.
Thus it will be interesting to insert a CV QKD system into a real optical network to test
the performance of CV QKD where real modulated classical signals co-exist with quantum
signals. At the end of the chapter 9, we have proposed the optimization of classical chan-
nel allocation for a real optical network specification. Under a real field test of CV QKD
system co-existing with real classical signals in a optical network, CV QKD system could
suffer much more critical conditions compared to the test in a lab environment, not only the
classical signal, but also the environment such as temperature, humidity, physical variation
could also impact the performance and stability of the CV QKD system. It is very important
to verify that CV QKD can be performed under all these realistic conditions, while in DV
QKD, several field tests have been already performed [153, 177].

If we would like to further improve the compatibility of CV QKD with classical chan-
nels in terms of key distribution distance and key rate, we need eventually to improve the
performance of CV QKD. There are still large spaces to improve CV QKD performance
from both quantum communication and post processing parts. In the quantum communi-
cation parts, high clock rate and high bandwidth homodyne detection can largely improve
the secret key rate. Recent demonstration has shown that CV QKD system can generate 1
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Mbps secret key rate [55]. Although homodyne detection is a mature technology in classical
optical communication, it is still challenge to achieve the features of homodyne detection
that are favorable to CV QKD, such as high bandwidth, high efficiency and low electronic
noise. In the post processing part, error correction code with small signal noise ratio [63]
has been already been proposed for long distance key distribution [68]. Recently high speed
reconciliation algorithm has been proposed [69] to allow extract more than 1 bit of secret
key per channel use. CV QKD with high key rate output could be a future direction, since
CV QKD usually outperforms DV QKD in secret key rate at short distance, however the
performance of CV QKD is sensitive to transmission loss.



Appendix A

Calculation details in saturation attack

A.1 Calculation of the correlation under the saturation at-
tack

In order to clearly show the calculation, we consider ysat , y, x and z as the notations
of XBsat , XBlin , XA and XN respectively. We use XBsat (Eq.(7.8)) to calculate the correlation
Cov(XA,XBsat ) under the saturation attack. We assume here α >> 1 and consider ∆ ≥ 0,
while the analysis of ∆ ≤ 0 is similar. The saturation model can be considered as:

ysat = α, t
g√
2

x+ z+∆ > α

ysat = t
g√
2

x+ z+∆, | t
g√
2

x+ z+∆ |< α(α >> 1,∆ ≥ 0)

ysat =−α, t
g√
2

x+ z+∆ 6−α

(A.1)

x ∼ N (0,σ2
x ) and z ∼ N (0,σ2

z ) are both centered Gaussian variables with probability
density function pX(x) and pZ(z), respectively:

pX(x) =
e
− x2

2σ2x
√

2πσx
, pZ(z) =

e
− z2

2σ2z
√

2πσz
. (A.2)

In which σ2
x = Var(XA) and σ2

z = N0 +ηT ξ + vele. By knowing pX(x) and pZ(z), we can
calculate Cov(x,ysat) with double integral of x and z in the domain Dxz. Dxz is defined in
Eq.(A.1): −α < tg√

2
x+ z+∆ < α , tg√

2
x+ z+∆ ≤ −α and tg√

2
x+ z+∆ ≥ α . A long but
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straight forward calculation of Cov(x,ysat) is presented as follows:

Cov(XA,XBsat ) = ⟨xysat⟩−⟨x⟩⟨ysat⟩= ⟨xysat⟩

=
∫∫
Dxz

xypX(x)pZ(z)dxdz =
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(A.3)

In which, the error function erf(x) is defined as:

erf(x) =
2√
π

∫ x

0
e−t2

dt. (A.4)

And we have used the integral formulas of erf(x) provided in [125]. In Eq.(A.3), Var(XBlin)=

σ2
z + t2g2

2 σ2
x is variance of Bob with no saturation. In this calculation, the integrals of the

odd functions with symmetric bounds (−∞,∞) are equal to zero.



A.2 Calculation of the variance of Bob under the saturation attack 205

A.2 Calculation of the variance of Bob under the satura-
tion attack

In order to calculate the variance of Bob under the saturation attack, we use the step
function θ(x) which is defined as:

θ(x) =

1,x ∈ [0,∞)

0,x ∈ (−∞,0]
(A.5)

With Eq.(A.5) we can transform Eq.(A.1) into:

ysat = yθ(y+∆+α)θ(−y−∆+α)+α[1−θ(y+∆+α)θ(−y−∆+α)]

≈ α +(y+∆−α)θ(−y−∆+α) = α +(y− ε)θ(−y+ ε).
(A.6)

in which:

ε = α −∆(α > 0,∆ ≥ 0), (A.7)

y = t
g√
2

x+ z. (A.8)

Since x and z are both Gaussian variables, y is also a Gaussian variable (y ∼ N (0,σ2
y )),

with its probability function pY (y)= e
− y2

2σ2y√
2πσy

and σ2
y =Var(XBlin) is the variance of Bob under

linear detection. In order to estimate Var(XBsat ) = Var(ysat) = ⟨y2
sat⟩− ⟨ysat⟩2, we need to

calculate ⟨ysat⟩ and ⟨y2
sat⟩, respectively:

⟨ysat⟩= α + ⟨(y− ε)θ(−y+ ε)⟩= α +C, (A.9)

⟨y2
sat⟩= ⟨α2 +2α(y− ε)θ(−y+ ε)+(y− ε)2

θ(−y+ ε)⟩ (A.10)

= α
2 +2αC+D. (A.11)

In which C and D are equal to ⟨(y− ε)θ(−y+ ε)⟩ and ⟨(y− ε)2θ(−y+ ε)⟩, and can be
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calculated as follows:
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We have used y′ = y− ε in the calculations of C and D. Provided with C and D, we can
calculate Var(ysat):

Var(ysat) = ⟨y2
sat⟩−⟨ysat⟩2 = α
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(A.17)

in which:

A =erf(
α −∆√

2Var(XBlin)
),B = e

− (α−∆)2

2Var(XBlin
) (A.18)
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Sécurité pratique de systèmes de cryptographie quantique :

Étude d’attaques et développement de contre-mesures
Hao QIN

RESUME : Dans cette thèse, j’étudie une primitive cryptographique appelée distribution quantique de
clés. La distribution quantique de clés permet à deux parties distantes de partager une clé secrète en pré-
sence d’une espion, dont la puissance est seulement limité par les lois de la physique quantique. J’ai concen-
tré mon travail de thèse sur la distribution quantique de clés à variables continues et en particulier, sur l’étude
pratique d’implémentations. J’ai proposé et étudié théoriquement une attaque par canaux cachés originale,
visant les détecteurs : l’attaque par saturation. Nous avons de plus démontré expérimentalement la faisa-
bilité de cette attaque sur un système de la distribution quantique de clés à variables continues dans notre
laboratoire. Enfin, nous avons en outre démontré expérimentalement pour la première fois la faisabilité du
déploiement d’un système de la distribution quantique de clés à variables continues dans un réseau optique
du multiplexage en longueur d’onde dense.

MOTS-CLEFS : cryptographie quantique, la distribution quantique de clés, la communication quantique,
variables continues, détection homodyne, sécurité pratique, attaque à canal auxiliaire, piratage quantique,
multiplexage en longueur d’onde

ABSTRACT : In this thesis, I study a cryptographic primitive called quantum key distribution which allows
two remote parties to share a secret key, in the presence of an eavesdropper, whose power is only limited by
the laws of quantum physics. I focus my study on the implementation and the practical security of continuous-
variable protocols. For the first time, I have proposed and studied a detector-based side channel attack on a
continuous-variable system : saturation attack. This attack opens a new security loophole that we
have characterized experimentally in our laboratory, on a real continuous-variable system. Finally,
we have demonstrated experimentally for the first time the feasibility of a continuous-variable sys-
tem deployment in a Dense Wavelength Division Multiplexing network, where quantum signals
coexist with intense classical signals in a same fiber.

KEY-WORDS : quantum cryptography, quantum key distribution, quantum communication,
continuous variable, homodyne detection, practical security, side channels, quantum hacking, wa-
velength division multiplexing
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