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rien; cette thèse n’aurait pas eu la même saveur sans vous. Enfin, malgré un bref passage entravé
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Pour leur accompagnement au cours de ces trois ans et tous les perfectionnements qu’elles
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v



LIST OF FIGURES

1.1 Example of a Bayesian Network using Example 2 . . . . . . . . . . . . . . . . . . . 13
1.2 Bayesian Networks’s equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Example of equivalence classes and their associated essential graph . . . . . . . 17
1.4 Modeling of a simple process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Structure of a Probabilistic Relational Model . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Example of a probabilistic relational model’s system’s instantiation . . . . . . . . . 20

2.1 Example of a transformation process in biology . . . . . . . . . . . . . . . . . . . . 30
2.2 Example of a transformation process . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 PO2 main schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Example of a domain ontology using PO2 . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Overview of the ON2PRM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Generic relational schema RSPO2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Example of a relational schema built from the domain ontology example . . . . . . 37
2.8 Variety of the transformation processes structures . . . . . . . . . . . . . . . . . . 41
2.9 Plan of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 Evolution of F-score ratio for two different processes with the dataset length . . . . 45
2.11 Evolution of F-score in function of n (p = 1, dataset size = 50) and ratio evolution in

function of n and s for M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Structure of the Stack Model RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Overview of the CAROLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Excerpt of a knowledge base about students and universities . . . . . . . . . . . . 55
3.4 Relational schema RSU built from HU . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Relational schema RSU built from HU updated after enrichment . . . . . . . . . . . 61
3.6 Causal Discovery protocol when a model is learned . . . . . . . . . . . . . . . . . 64
3.7 Causal Discovery protocol when a model cannot be learned . . . . . . . . . . . . . 67
3.8 Example of an instantiated transformation process using the PO2 ontology . . . . 69
3.9 Comparison of the different learnings . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.10 EG and their relational schema learned during the three iterations . . . . . . . . . 73
3.11 Model constructed from the expert assumption Hc . . . . . . . . . . . . . . . . . . 75
3.12 Summary of the number of observed inter and intra step relations . . . . . . . . . . 76
3.13 Excerpt of the EG learned for Hc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Small ontology’s example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 R0. General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 R1. Missing value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 R2. Multiple Instantiations of Object Properties: domain . . . . . . . . . . . . . . . 86
4.5 R3. Multiple Instantiation of Object Properties: multiple range . . . . . . . . . . . . 87
4.6 R4. Distinction between different configurations of the same object property . . . . 89

vi



4.7 R5. Distinction between different configurations of multiple object properties: range 90
4.8 R5. Distinction between different configurations of multiple object properties: domain 90
4.9 R6. Self-references in the knowledge base . . . . . . . . . . . . . . . . . . . . . . 91
4.10 Overview of the ACROSS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.11 Examples of cycles in an ontology and how to remove them . . . . . . . . . . . . . 96
4.12 Schema of the excerpt of DBPedia used to represent writers . . . . . . . . . . . . 98
4.13 Automatic generation of the author’s relational schema . . . . . . . . . . . . . . . . 99
4.14 Relation Schema defined from the knowledge base and the expert’s knowledge . . 101
4.15 Probabilistic relational model learned on a DBPedia extract about authors, and its

associated essential graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.16 Example of a class creation’s user’s modification . . . . . . . . . . . . . . . . . . . 103

A.1 Example of a set of instances (a) and its deduced relational schema (b) . . . . . . 116
A.2 Proposition of a division of the Student class . . . . . . . . . . . . . . . . . . . . . 117
A.3 Example of a Mutually Explaining Class . . . . . . . . . . . . . . . . . . . . . . . . 118
A.4 Illustration of the creating relational slot user’s modification . . . . . . . . . . . . . 119

vii



LIST OF TABLES

2.1 Heuristic used to compare two BNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Variation of the mean F-score in function of different parameters tested with a

dataset of size 50 with 100 repetitions . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Comparison of performances for recall, precision and F-score for M1 and M2 with

different sizes of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Different cases for causal validation . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Discretization of the Movie dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Cheese plan of experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Discretization of the Writers dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Joint probability of the attribute releaseDate depending on the attributes writer.birthDate

and writer.min arwu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Summary of the ON2PRM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4 Summary of the CAROLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Summary of the ACROSS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 Every defined user’s modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



‘I’m sure. But look at it this way. What really is the point of trying to teach anything to anybody?’
This question seemed to provoke a murmur of sympathetic approval from up and down the table. Richard

continued. ‘What I mean is that if you really want to understand something, the best way is to try
and explain it to someone else. That forces you to sort it out in your own mind. And the more

slow and dim-witted your pupil, the more you have to break things down into more and more
simple ideas. And that’s really the essence of programming. By the time you’ve sorted out a
complicated idea into little steps that even a stupid machine can deal with, you’ve certainly

learned something about it yourself. The teacher usually learns more than the pupil. Isn’t that
true?’

- Douglas Adams, Dirk Gently’s Holistic Detective Agency
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INTRODUCTION

The idea of an artificial intelligence (AI) able to define concepts and reasoning with them has al-

ways been an appealing idea, even at the earliest beginning of computer science. Widely consid-

ered as the first computer programmer, Ada Lovelace acknowledged in 1843 in her notes describ-

ing the first algorithm in history (dedicated to compute Bernoulli numbers) that the true potential

of computers was their ability to deal with abstract concepts (Menabrea et al., 1843) rather than

just being number crunchers. Although she also conceded that at that time machines were only

capable of computation and not creation, the concept of an AI able to apprehend and mimic com-

plex human reasoning kept being brought back, in particular by Alan Turing who even designed

a test to evaluate the potential of such an AI (the famous Turing test, still never succeeded to this

day) (Turing, 1950).

In the mid 1970s the field of expert systems emerged with the goal of mimicking the deci-

sion making process of a human, usually narrowed to a specific domain, such as medicine with

MYCIN (van Melle, 1978), an expert system dedicated to diagnose infectious diseases, or che-

mistry with DENDRAL (Buchanan and Sutherland, 1968), able to infer molecules structure from

spectroscopic analyses. Expert systems are based on the transcription of expert rules (such as: ”If

a customer buys a car, then they might be interested in an insurance”) into logical predicates that

allow logical and probabilistic inferences. Expert systems are divided into two distinct parts: the

knowledge base, that encompasses all the facts and rules the system needs to know; and the in-

ference engine, that combines the rules of the known facts to infer new truths. If at the beginning

the knowledge bases were fairly small, they quickly grew in size with time. As a consequence

the problem of their structuring was raised, and how it should be dealt with in order to ease

the ”human to computer” translation. This gave room to knowledge engineering, term coined

by Freigenbaum(Feigenbaum and McCorduck, 1983), a key contributor to DENDRAL. The main
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idea behind this new domain was to give tools to build, maintain and interact with resources

previously defined by human operators. The aspect of knowledge representation was here a key

feature, to which ontologies brought an answer.

In the 1980s ontologies were considered in AI both as a philosophical concept to describe the

world, and as a component for knowledge-based systems. The first use of the term in the way we

now know it can be traced to Tom Gruber, who laid the foundations of their current definition.

In his work, he defines ontologies as a group of domain’s concepts and relations that can be

used to describe any agent or community of agents (Gruber, 1995). Indeed, ontologies organize

and structure the knowledge in terms of concepts, relations between them, and instances (Staab

and Studer, 2009). According to Feilmayr and Wöß, ontologies’ success stems from this huge

adaptability: ”An ontology is a formal, explicit specification of a shared conceptualization that is

characterized by high semantic expressiveness required for increased complexity.”(Feilmayr and

Wöß, 2016). This adaptability allows them to be defined on different levels depending on their

genericity (Guarino, 1998). In this thesis, we will focus on domain ontologies, which are used as

a common and standardized vocabulary for representing any domain (e.g. life-science, geogra-

phy). Those ontologies can be defined using different reference languages as recommended by

the W3C1. In the following, we will consider only the RDF2 and OWL3 languages, which are

based on the XML markup language.

RDF is a formal representation model for resources where data is written as <subject, predi-

cate, object> triple. Subject and predicate are denoted by a unique Universal Ressource Identifier

(URI); in the case of the object, it can also be a unique URI, or a datatype (such as a number, a

name, etc.), depending of the relation we want to describe. For instance:

• < db:International Semantic Web Conference, dct:subject, dbc:Artificial intelligence con-

ferences> 4 identifies the subject of the International Semantic Web Conference (ISWC) as

the AI, which is also another resource of this website, with other predicates.

• <db:International Semantic Web Conference, dbp:history, ”2002”>, on the contrary, states

that the ISWC has been created in 2002, which is strictly a value.

OWL helps to extend the RDF notation by adding the concepts of classes, properties and

axioms, which provide more semantic. In this thesis, we will mainly use the concepts of:

• Class: a class represents a entity such as a conference, a movie, an animal... Semantically it

1World Wide Web Consortium, who promotes standards for every web-related developments: http://www.w3.org/XML
2https://www.w3.org/RDF/
3https://www.w3.org/OWL/
4For a better readability those URI have been shortened using a prefix. db stands for http://dbpedia.org/page/, dct for

https://dublincore.org/specifications/dublin-core/dcmi-terms/subject#, dbc for http://dbpedia.org/page/Category and dbp
for http://dbpedia.org/page/property

2



Introduction

embodies the same entity (e.g. a lion) that can then be instantiated multiple times. Example:

zoo 1, which is an instance of the class Zoo, has three lions, instances of the class Lion: lion 1,

lion 2 and lion 3.

• Object Property: an object property is a relation that links two classes or instances, with

one as the subject (the domain) and one as the object (the range). This relation is written as

a triple. Example: the property hasForAnimal helps to define the animals of a zoo: <zoo 1,

hasForAnimal, lion 1>. A symmetric property can also exist: <lion 1, isAnimalOf, zoo 1>.

• Datatype Property: a datatype property is a relation that links a class or an instance to a

data value. The individual and the data are always respectively the subject and the object.

Example: the property hasForAge attributes an age to each animal, for instance <lion 1,

hasForAge, ”15”>. Since the object is always a data value, there is no symmetric property

for the datatype properties.

Thanks to the introduction of ontologies, domains can now easily be structured. However, the

more complex they grow, the more difficult their data’s analysis also becomes. Indeed, adding

more facts opens to more issues, such as incomplete data, which renders analysing more chal-

lenging since information is missing. In addition to this, there is intrinsic uncertainty in many

complex domains, as the observed phenomena are not always fixed and cannot be determined

with certainty.

Example 1. An omniscient robot would be able to give an accurate weather estimate of to-

morrow, as it would know every relevant parameters to compute its prediction. A common

human, however, would only have access for instance to the sky; the only prediction they

would be able to give would be of the form ”If the sky is cloudy, then rain is highly probable”.

All of these new issues add subtleties that need specific tools in order to study and analyze

them. Since ontologies and classical system experts are dedicated to logical reasoning, other va-

rious approaches have been proposed to expand their ability to work with such complex domains,

such as for instance probabilistic reasoning which is best suited for dealing with uncertainty.

Frameworks have already been proposed:

• BayesOWL (Ding et al., 2006, Zhang et al., 2009) and a similar framework OntoBayes (Yi

Yang and Calmet, 2005) directly represent a probabilistic model using the OWL notation.

• MEBN/PR-OWL and PR-OWL 2.0 (Carvalho et al., 2013, da Costa et al., 2008) represents

in a similar fashion a probabilistic model using PR-OWL 2, an upper ontology written in

OWL.

• HyProb-Ontology (Mohammed, 2016) presents a hybrid ontology able to deal both with
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continuous and discrete data in an ontology (on the contrary of the previous frameworks

that were only able to deal with discrete variables).

These frameworks represent an interesting and efficient way of modeling the probabilistic

dependencies, while offering a way for using probabilistic inference tools within the ontology.

However they do not offer a way to learn such dependencies between the different values of the

ontology.

In this thesis, we present novel methods in order to bridge this gap between ontological

knowledge and probabilistic reasoning. Our work will present and develop different methods

to exploit and reason on the knowledge encapsulated in knowledge bases using probabilistic

learning.

OBJECTIVES

Reasoning over a domain requires to have the objects of interest modeled, usually through the

means of different variables. In Example 1, for instance, the weather can be represented by the

rain frequency, the clouds opacity, etc. Therefore, a good modeling of such a domain requires to

represent these variables. However, if we want this model to be explanatory, we need to repre-

sent the probabilistic dependencies between these variables. To do that, the scientific method for

instance rests on several well-defined steps, with among them formulating and verifying hypo-

thesis through experiments. Experiments, however, are sometimes difficult to carry out, for legal,

practical, temporal, economical or ethical reasons: to this intent a model can help amplify the

human thought process (Churchman, 1968), and give scientists a better overview on the whole

operation. As a consequence, modeling is a large part of the scientific method: it helps to encom-

pass all known facts, to reason with them as a whole set, and to check the formulated hypothesis

for making predictions.

Yet learning an accurate modeling of any given domain can also be a hard problem, which

nearly every time requires a good grasp of its issues. Indeed, the choice of the model basis and its

key components is essential and, if done wrongly, can throw off the whole model’s predictions.

For instance in statistical models, the most critical part of the analysis usually depends of the

quality of the translation from the core subject to the model (Cox, 2006).

In this thesis, we offer new methods to use knowledge about domains encompassed in know-

ledges bases in order to improve probabilistic reasoning. The term ”Knowledge base” is often

used interchangeably in literature with other such as ”ontologies” or ”knowledge graphs” (Ehrlinger

and Wöß, 2016). Since Google introduced this last term in 2012 to refer to the use of semantic

knowledge in Web search, no concrete definition has been given. Several attempts have been
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made on the requirements a knowledge graph should have, based on characteristics such as the

size (Huang et al., 2017), or on the restriction only to RDFs bases (Färber et al., 2017). In this

dissertation, we will consider the definition of Ehrlinger and Wöß (2016) in which a knowledge

base is an ontology structure combined with a large population. More formally, we denote a

knowledge base KB as a couple (O, F) where the ontology O is represented in OWL and the

knowledge graph F represents the data in RDF.

• The ontology O = (C, DP,OP,A) is defined by a set of classes C, a set of owl:DatatypePro-

perty DP in C × TD with TD being a set of primitive datatypes (e.g. integer, string), a set

of owl:ObjectProperty OP in C × C, and a set of axioms A (e.g. property’s domains and

ranges).

• The knowledge graph F is a collection of triples (s, p, o), called instances, where s is the

subject of the triple, p a property that belongs to DP ∪OP and o the object of the triple.

Our main goal is to learn a probabilistic model in order to discover new knowledge using

theF triples and the semantic information brought byO. We chose to focus on specific domains

that shared common features such as uncertainty, missing values, complex relations between the

potential variables that were possible to model using probabilistic models. Probabilistic models

are dedicated to represent random variables and the relations between them under the form of

probabilistic distributions (that we will detail in Chapter 1). This allows (1) a good flexibility, as all

domains with uncertainty can be represented and (2) a good readability. Indeed, on the contrary

of some ”black-box” models such as the neural networks, that present a very efficient way to

learn but a poor explainability of the learned results, probabilistic models allow the analysis of

the relations between the variables. This usually gives a visual and interpretable model, useful

when dealing with complex domains.

In this thesis we present and develop three different methods for guiding the learning of a

probabilistic model using expert knowledge. The novelty of our approach is that this expert

knowledge is brought from the knowledge base on one hand, and from a human expert of the

domain on the other hand, which guaranties a model learned as close as possible to the target

domain. Moreover, throughout our work, one of our main goals was the accessibility for the

so-called experts. This accessibility is expressed on two levels: (1) during the extraction of the on-

tological knowledge used for the learning, and (2) for the learned model exploitation afterwards.

For all our contributions the focus has been set notably on causality as part of causal discovery,

which is an hard but rewarding goal when it comes to modeling and understanding complex

domains.

The originality of our approach is the combination of two research domains with broadly

5



different paradigms. Both are dedicated to describe a model as close as possible to the reality, but

with two different visions: while the Bayesian approach favors the statistical analysis of the given

data in order to discover knowledge among what it already knows, the ontological approach is

based more on the information brought by the expert in order to discover new explicative and

predictive rules. In these thesis however we will demonstrate how both of these approaches

can mutually benefit by 1) enhancing the reasoning with probabilistic variables by introducing

semantic knowledge and 2) enriching the ontological knowledge by learning new rules.

THESIS OUTLINE AND CONTRIBUTION

This thesis is organized in several chapters. All of the original works are validated and illustrated

with complete examples that were used to validate our publications.

• Chapter 1. Background and State of the art gives an overview on the different methods we

used and the state of the art. It focuses on probabilistic models such as Bayesian networks

(BNs) and Probabilistic Relational Model (PRMs), as well as their learning, especially under

constraints. A second part of this chapter is dedicated to causality, causal discovery, and the

main challenges they raise.

• Chapter 2. Learning a Probabilistic Relational Model from a specific ontology presents

an example drawn from a given ontology, and how it can be used to learn a probabilistic

model. In this chapter, we focus on how using an ontology can greatly help to learn a model

closer to the reality. We introduce here our first contribution, the ON2PRM algorithm,

which allows to learn a probabilistic relational model from any domain ontology using the

specific core ontology presented in this chapter.

Publications.

– Munch M., Wuillemin PH., Manfredotti C., Dibie J. and Dervaux S. Learning Proba-

bilistic Relational Models using an Ontology of Transformation Processes. In: ODBASE

2017.

• Chapter 3. Interactive learning from any knowledge base presents CAROLL, a first algo-

rithm dedicated to build a relational schema from any knowledge base by using a human

expert contribution. This method is guided by a causal assumption formulated by the ex-

pert. The aim of the causal assumption here is to motivate the learning of the model by

giving it a precise purpose: checking whether the expert’s belief is true or not. In this chap-

ter, we present this method as well as the causal discovery aspect of our work.

Publications.

– Munch M., Wuillemin PH., Dibie J., Manfredotti C., Allard T., Buchin S. and Guichard
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E. Identifying control Parameters in Cheese Fabrication Process Using Precedence Con-

straints. In: DS 2018.

– Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Towards Interactive Causal

Relation Discovery Driven by an Ontology In: FLAIRS 2019.

• Chapter 4. Semi-automatic learning from any knowledge base presents ACROSS, an al-

gorithm where the contribution required from the expert is reduced compared to the algo-

rithm introduced in the previous chapter. Our aim here is to be able to learn a probabilistic

model from any knowledge base while easing as much as possible the workload asked to

the expert. In this chapter we give a detailed overview of the differences with the previous

methods, as well as the tools given to the expert in order to help them.

Publications.

– Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Interactive Causal Discovery

in Knowledge Graphs. In: PROFILES/SEMEX@ISWC 2019.

• Conclusion and Perspectives summarizes the results presented in these thesis, discuss their

limitations and presents some perspectives works for the future.

Domain studied in this thesis

Several in-use knowledge bases will be presented in this thesis, reflecting the adaptability of

our methods. One uses the Process and Observation Ontologya (PO2), dedicated to trans-

formation process; and two have been extracted from DBPediab, restricted to the subjects

we wanted to analyze. The first is about moviesc and have been enriched with information

from the website ImDBd. The second is about books’ authorse.
ahttp://agroportal.lirmm.fr/ontologies/PO2
bhttps://wiki.dbpedia.org/
chttps://bit.ly/2RYVjG8
dhttp://www.imdb.com/
ehttps://bit.ly/2X0eeCw
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CHAPTER 1

BACKGROUND AND STATE OF THE ART

The main challenge of our approach is the combination of two different domains of artificial intel-

ligence that are not usually studied together: knowledge representation and uncertainty reason-

ing. We already have briefly presented, in the introduction, knowledge bases and how we define

them in this thesis. In order to better understand the issues and challenges raised, this chapter

presents the state of the art on the different tools we have used.

Section 1.1 describes probabilistic theory (1.1.1), and more especially Bayesian networks (1.1.2),

how to learn them (1.1.3), and essential graphs (1.1.4). In subsection 1.1.5, we present a Bayesian

networks’ object-oriented extension: the probabilistic relational models. The goal of this thesis is

to propose an approach combining ontologies and probabilistic models in order to learn a model

semantically close to the reality. As a consequence we do not offer an extended comparison be-

tween the different learning methods, as it falls out of the scope of our study. That is why in these

sections we only briefly touch the learning algorithms and scores chosen for the rest of our work;

but since learning using ontology knowledge is similar to learning under constraints, we develop

the current state of the art on the matter (1.1.6). The last section is dedicated to explain the works

aiming to combine probabilistic models and ontologies (1.1.7).

Section 1.2 presents the main ideas we develop in this thesis on the matter of causality. It

first covers the principal definitions and tools described in the literature (2.2.1) that we use in this

thesis. Afterwards it presents the problem of causal discovery (1.2.2) and how it is handled in

other works. It concludes with some thoughts on causality, ontologies and explanation (1.2.3).
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1.1 PROBABILISTIC MODELS

Probabilistic models are an efficient way to express probabilistic dependencies between different

variables. They fall into different categories, depending on the way these relations are expressed.

In these thesis, we will concentrate on probabilistic graphical models which use graph theory to

show the conditional dependence structures. In order to introduce these models, we first give a

short review on discrete probability theory.

1.1.1 DISCRETE PROBABILITY THEORY

We define a random variable as a variable that can present different states. For each problem we

wish to study, we define a set of variables able to describe all of its parameters.

Example 2. We define three random Boolean variables R, S and G. These respectively ac-

counts for whether it is raining (True) or not, whether the sprinkler is on (True) or not, and

whether the grass is wet (True) or not. Our problem is then described by the Cartesian prod-

uct of all the possible values for each variable: { (R,S,G), (¬R,S,G), (¬R, ¬S,G)...}.

The goal of discrete probability theory is (1) to evaluate, for each of the defined variables, the

mapped probability function; and (2) to express, if possible, the impact of a group of variables

over the others. To do so, we denote X as a random variable, and P (X) its associated law.

Using it, discrete probability theory aims to answer two kinds of questions:

1. ”What is the probability that X takes the value xi and Y the value yi?”, which is denoted

P (X = xi, Y = yi). P (X,Y ) is known as the joint probability.

2. ”What is the probability that X takes the value xi knowing that Y has taken the value yi?”,

which is denoted P (X = xi|Y = yi). P (X|Y ) is known as the conditional probability and

is read ”probability of X knowing Y ”. It is important to note that this probability is defined

only if we deal with a non-zero intersection, i.e. P (Y = yj) > 0.

Independence

In the particular case where X and Y are independent (meaning the value of one has no

influence over the value of the other), those quantities can easily be computed, with:

1. P (X = xi, Y = yi) = P (X = xi)P (Y = yi)

2. P (X = xi|Y = yi) = P (X = xi)

We distinguish discrete from continuous probability theory with the types of random variables

used to describe the problem. Indeed, if the number of variable’s states is finite or countable, then
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we consider the variable as discrete, meaning all of its states can be singled out. On the contrary,

if the states are represented by the set of real numbers R (or a portion of it), then the variable is

considered as continuous.

Example 3. When we consider a coin throw, the space is usually finite, with each state re-

ferring to a possible outcome: Dcoin = {head, tail}. On another hand, when we consider the

average income of a population, we deal with quantities that cannot realistically be listed,

thus: Dincome = R+. If we want to study it with the discrete probability theory, we thus have

to discretize its values, by creating categories in which every possible value can be sorted.

Determining (X1, X2, ...Xn)

Defining a space sometimes requires to discretize all the possible outcomes, event the less

likely.

The discretization occurs when we want to specify different categories among those we

are presented with. In this thesis, the most usual case is when we have a continuous space

that we want to transform into a discrete one: for instance, Dincome = R+ can become

Dincome = {D<1200, D>1200} where we distinguish between when the income is less than

1200 and when it is bigger.

If we consider a coin’s tossing, a lot more is theoretically possible than just head or tail:

the coin can fall on its edge, or be lost, or stolen,... We however chose to consider that the

coin will always fall back either on head or tail, and ruled out these other possibilities.

In this thesis, we will only briefly cover this subject, as it is not at the core of our work.

It is however essential to keep in mind that defining the different states we will take into

account in our problem is already taking a stance in the modeling of our event

Both discrete and continuous variables have different properties and definitions; in the fol-

lowing we will only consider the discrete probability theory. This implies that all the variables

we deal with are either (1) discrete or (2) have been discretized. Discrete probability theory at-

tributes to each variable’s state a probability that varies between 0 (the state will never occur)

and 1 (the state is certain); the probability of the union of all the possible states is 1, meaning the

space represents indeed all of the possible values. For the following, we denote P (x) the marginal

probability representing P (X = x).

Example 4. If in our coin example the coin is balanced (meaning one side is not favored over

the other), then we have P (tail) = P (head) = 0.5: no event is more likely to happen than

the other. Moreover, P (tail) + P (head) = 1, meaning that we do not take into account other
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outcomes.

In a more general setting, we can express the rule of the marginal probabilities sum and the

rule of the probabilities product. Be DomainV the set of all possible values of the random variable

V , we have

Property 1. ∀x ∈ DomainX ,∀y ∈ DomainY , P (x, y) = P (x|y)P (y) = P (y|x)P (x)

It can be written as P (X,Y ) = P (X|Y )P (Y ).

Property 2. P (x) =
∑

y∈DomainY
P (x|y)P (y).

It can be written as P (X) =
∑

Y P (X|Y )P (Y ).

Using Property 1, Thomas Bayes defined in 1763 his famous Bayes’ rule (Bayes, 1763).

Theorem 1: Bayes’ rule. Being X and Y two random variables such that P (Y ) 6= 0, we have

P (X|Y ) =
P (Y |X)P (X)

P (Y )

This theorem helps to express the a posteriori probability of X , meaning the probability of X

after Y has been observed. This is especially useful as it helps to compute any probability, given

we know (1) its conditional probabilities and (2) the marginal laws a priori. We can also express

Bayes’ rule as P (X|Y ) ∝ P (Y |X)P (X), meaning that P (X|Y ) (the posteriori) is proportional to

the product of P (Y |X) (the likelihood) and P (X) (the a priori). Following this intuition, Pearl (1988)

presented a probabilistic graphical model based on Bayes’ rule, the Bayesian network.

1.1.2 BAYESIAN NETWORKS

A Bayesian network is a probabilistic graphical model based on the representation of different

variables and their influence on each other using tools from the graph theory.

Definition 1: Bayesian Network. A Bayesian Network of dimension n is defined by:

• a directed acyclic graph G = (V,E), where V and E are respectively the set of all its nodes

and arcs. V contains n nodes, each representing a variable. For simplification’s purpose,

we associate in the following the variables with their graphical representation (i.e. their

representing nodes).

• a set of random variables equal to V and defined such that:

p(V ) =
∏
x∈V

p(x|Parents(x))

where Parents(x) is the set of all parent nodes of x in the graph.
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Since the value of a variable depends only on the values of its parents (i.e. the parents of

the associated node in the graph), then a Bayesian network is the graphical representation of the

dependencies between the variables. To each node with parents, a conditional probability table

is assigned, which gives the probability values of each value of the variable in function of the

value of its parents variables.

Figure 1.1: Example of a Bayesian Network using Example 2. Each variable has a conditional prob-
ability table that shows how their values depend on their parents.

This allows a double reading very useful for our analysis. Suppose we want to model the

system described in Example 2, and that we have learned the Bayesian network presented in

Fig.1.1. We can then easily answer two types of questions:

• Qualitative questions: ”Does the value of the grass variable depend on the value of the rain varia-

ble?” A simple look at the graph can answer: since there is an arc from the Rain node to the

Grass node, then we can deduce they are not independent. We can also see that the Rain is

not the only variable with an influence over the Grass, since Sprinkler and Grass also share

an arc.

• Quantitative questions: ”What is the influence of the rain variable over the value of the sprinkler

variable?” We can then look at the conditional probabilities table and answer: for instance,

if we have Rain=True, then the probability that the Sprinkler is actually On is 0.1, which is

low. However, if in this example the answer can appear as trivial (since a simple look at

the graph could help answer it), these kind of questions can become much harder when

involving non-direct relations (such as: ”What is the influence of the rain variable over the value

of the grass variable?”).

In order to allow this double analysis, we first need to learn the Bayesian network. It requires

two steps: a first for learning the structure of the graph, and a second to learn the probabilistic

parameters.
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1.1.3 LEARNING BAYESIAN NETWORKS

Learning a Bayesian network’s structure is a NP-hard problem (Chickering et al., 2002), since as

the number of variables goes up, the number of possible structures also raises: a 10 variables

problem has for instance approximately 4.1018 possible solutions. As a consequence, the most

common way to efficiently learn a structure is to look for graphs subsets in order to eliminate

the least effective solutions and avoid considerable amount of useless calculations. There are two

principal manners for selecting these structures: independence (or constraints) based algorithms,

and score based algorithms .

• Constraints based algorithms (e.g. PC Spirtes et al. (2000)) are based on statistical tests.

They are structured in three steps. Firstly, a non-oriented graph is built using independence

tests between the variables. Then, once the first graph has been built, other independence

tests are used to single out the specific structure A → B ← C, also called V-structure.

Indeed, V-structures indicate a complete independence between A and C, which can help

orient the edges (an example on a possible use of V-structures to orient edges is given in

Example 19). Finally, once all V-structures have been identified, the rest of the edges are

also oriented, being careful not to create V-structures.

• Score based algorithms, on the contrary, are composed of two parts: a search algorithm (e.g.

Greedy Equivalent Search GES Chickering (2003)) and an heuristic score (e.g. AIC (Akaike,

1974), BIC (Schwarz, 1978) or BDeu (Buntine, 1991)). At each iteration of the algorithm, a

change is brought to the graph (addition, removal, inversion of an arc) and a new score

is computed. Scores are composed of two parts: firstly, they tend to search for the best

structure that maximizes it. However, this component alone is not good enough, as it tends

to favor complete graphs (i.e. graphs where each node are linked to the others), which

usually result from over-fitting. As a consequence, scores also have to take into account

a simplification factor, which applies Occam’s razor philosophy: the simplest solution is

usually the best.

From an historic point of view, constraint based algorithms (such as PC) learning results have

been considered as better than score-based ones, due to the use of statistical tests. Moreover, in

the scope of causal analysis theory that have been defined over the past years, these methods are

also better than the score based algorithms. Yet, the statistical tests constitute also one of their

weaknesses, as they can become quickly very demanding of data in order for their predictions to

be robust. That is why score based algorithms are in the end usually more used than constraint

based.
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The main idea of our work is to integrate ontological knowledge as a constraint into the lear-

ning. However, the way classical constraint based algorithms are defined do not allow knowledge

other than the one deduced from independence tests. In particular, even if we try to integrate

our own semantic constraints, conflicts can be raised if they contradict what the algorithm have

determined (e.g. two variables are statiscally dependent but the ontology tells us that they are

not). As a consequence, we chose to use an heuristic algorithm, as they were the most efficient

solution for integrating constraints from ontological and expert knowledge.

Once a structure has been found the probabilistic dependencies can be learn. To do so, two

methods are also possible: a statistical learning based on the maximization of likelihood, or a

Bayesian learning based on the estimation of the parameters considering the data set as ad-

ditional unobserved variables. This last method, however, is very demanding and expensive,

making the first solution easier to use. The learning of parameters consists thus in estimating

P (X|parents(X)) in the dataset. This is mainly done by estimation of the frequencies and the

consideration of a priori (Koller and Friedman, 2009).

One of the drawbacks of this approach is that when the scores are very close a structure can be

chosen over another although both are valid choices. In particular, this can be highly critical when

it comes to arc orientation. As stated before, the orientation of an arc in the Bayesian network

only shows that one variable’s values depend on another variable’s values, given the computed

probability tables. However, whether the orientation would be A → B or A ← B is usually not

significant, as the marginal probabilities P (A) and P (B) are the same: those structures are said to

be part of the same Markov equivalence’s class.

Method used

For the rest of this thesis, unless otherwise stated, we learn Bayesian networks using a

Greedy Hill Climbing algorithm with the BIC score.

1.1.4 ESSENTIAL GRAPHS

Learning a Bayesian network requires two steps: learning the structure, and then learning the

probabilistic parameters from data on that structure. However, even if two structures are diffe-

rent, they can sometimes lead to the same joint distributions, as shown in Fig.??.

On the contrary, some arcs’ orientation cannot be reversed without modifying the probabilistic

dependencies. This is the case when they indicate independence between the nodes.
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Figure 1.2: Bayesian Networks’s equivalence. In this example, BN1 and BN2 have a different structure
but lead to the very same joint distributions. They are said to belong to the same Markov equivalence’s class.

Example 5. Given three variables A, B, C, a structure such as A→ B ← C indicates an inde-

pendence between A and B: fixing one (i.e. imposing its value) can give information about

the other, but will have no impact on it. This particular configuration is called a V-structure,

and its arc’s orientation cannot be reversed without changing the nodes’ independences: if

we reverse A→ B or B ← C, then A and B are no more independent.

Definition 2: Immorality. An immorality is a V-structure A→ B ← C where there is no path

linking A and C.

An essential graph (Madigan et al., 1996) is a semi-oriented graph designed to represent im-

moralities in graphs. Every Bayesian network has one, with which it shares the same skeleton

(i.e. the same graph structure but non-oriented). It has two kind of edges:

• Oriented arcs which designate all the Bayesian networks’ arcs that are oriented the same

way. Indeed, if all the models that have the same equivalence class have an arc oriented the

same way, then this orientation is kept in the essential graph.

• Non-oriented arcs which, on the contrary, designate Bayesian networks’ arcs that can be

reversed without modifying the probabilistic dependencies. They are called non-essential

arcs.

Two different Bayesian networks can share the same essential graph. In this case, they are said

to be part of the same Markov equivalence’s class. Essential Graphs are used to find arcs’ orienta-

tion that are dependent of the learning: if an arc is oriented in the essential graph, then it means

that no matter the learning, it will always be that way. They are not causal by essence, but under

the right hypothesis (that we will detail later), they can be used to deduce causal knowledge.
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Figure 1.3: Example of equivalence classes and their associated essential graph. (a) In this ex-
ample, due to the V-structure, there is only one Bayesian network in the equivalence class, which thus has
the same structure as the essential graph. (b) In this example, the equivalence class is composed of three
Bayesian networks. Since none of the arcs are oriented the same way in the three examples, the essential
graph is only composed of edges. (c) In this example, the equivalence class is composed of two Bayesian
networks sharing a V-structure. The resulting essential graph is composed here of oriented and non-oriented
edges.

1.1.5 PROBABILISTIC RELATIONAL MODELS

Bayesian networks are useful to represent probabilistic dependencies between a set of nodes.

Their learning only requires a database composed of distinct examples with all the variables and

their values. However, they can be limited when presented with complex settings with multiple

nodes as they make no distinction between those during the learning. This is the case whenever

one wants to learn a probabilistic model where a same group of nodes is repeated multiple times

(see Example 6 for a detailed example). Since the Bayesian network cannot make distinctions,

then this group has to be learned as many times as it is present, which increases the error margin.

Example 6. Be a process requiring the use of an oven for multiple steps. This oven is rep-

resented by three attributes: the temperature Te, the time Ti and the energy E. The higher

and longer the temperature and time are, the higher the consumed energy is: the probabilistic

relation is Te → E ← Ti. Since the oven is used at multiple steps during the process, then

we have multiple measurements for the oven’s attributes, one for each use, that we denote

StepN .X for ”attribute X measured at Step N”. As a consequence the learning set is composed

of multiple instances of the same attributes measured at different times, as shown in Fig.1.4.

Our goal would be to learn Te→ E← Ti; however, this is not possible, as the learning makes

no link between Stepi.X and Stepj .X , which are considered as two different attributes. More-

17



over, attachment to a class is not taken into account: Stepi and Stepj are not considered as two

different entities. As a consequence, in the best case scenario, we would only be able to learn

two small networks Step1.T e→ Step1.E ← Step1.T i and StepN .T e→ StepN .E ← StepN .T i,

instead of the only one we would like to learn.

Figure 1.4: Modeling of a simple process. If we want to model a process using multiple times an oven
represented by three attributes Te, T i and E, then the database used for the Bayesian network will have
multiple instances of these attributes with no way of distinguish them as ”part of the same entity”.

This is particularly restraining for the modeling of complex domains described by ontologies,

where a same class can be instantiated multiple times. Ideally, we would like our learning to take

into account the structuring brought by the ontology, where each concept is represented by an

OWL class that can be instantiated one or multiple times. Considering this would require the

learning to be able to comprehend:

• Object properties. They organize the relations between the classes that should be exploited.

For instance, a isBefore object property creates a temporal property between two classes.

Given two instants ti and tj such that ti < tj , an attribute from ti can be parent of an

attribute from tj , but not the contrary (since we want to learn an explanatory model the

future cannot have an influence on the past).

• Classes instantiations. If a same concept (i.e. an apparel, a person, ...) intervenes multiple

times in our domain, we would like to learn a single model to represent it, and not one

model for each instance of this concept. This is the case developed in Example 6.

This cannot easily be done with a classical Bayesian network, and that is why in this thesis

we propose to couple ontologies with an oriented-object extension of Bayesian networks called

probabilistic relational models.

Probabilistic relational models have been first proposed by Friedman et al. (1999). They en-

compass multiple relations between class-object Bayesian networks, thus allowing a better repre-

sentation between the different attributes (Torti et al., 2010). To allow such complexity they are

defined on two levels (whereas Bayesian networks only requires one): the relational schema and
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the relational model.

• The Relational Schema (Fig.1.5(a)) defines different groups of attributes called classes.

Classes can be referenced to each other through so-called reference slots. The relations

between classes are represented by oriented relations going from a class towards another,

and are called slot chains (as they use reference slots to be defined). The orientation of these

relations is important, as it will have an influence on the learning of the Relational Model:

it is always unique (two classes cannot mutually refer to each other). At this point, only the

group of attributes are defined and not the probabilistic dependencies.

• The Relational Model (Fig.1.5(b)) defines the probabilistic dependencies between the at-

tributes. While the intra-classes relations are not constrained (in our example, relations

between {X , Y } or between {U , V , W}, meaning that inside these sets any probabilistic

relation can be learned), the inter-classes’ probabilistic dependencies are influenced by the

slot chains: (1) if there is no slot chain between two classes, then their attributes cannot

share probabilistic dependencies; (2) if there is one, then the direction of the probabilistic

dependencies must follow the orientation of the slot chain.

Ontological and Relational Schema’s classes

The term class is used both for the ontology and the relational schema indifferently. Howe-

ver, the distinction is important, especially in our work where they are used for different

purposes. That is why, for the rest of this thesis, we distinguish them by annotating ontolo-

gy’s classes as O-classes.

Figure 1.5: Structure of a Probabilistic Relational Model. A Probabilistic Relational Model is de-
scribed by two levels. (a) The relational schema defines groups of attributes as classes, and how those are
related. (b) The relational model gives the probabilistic dependencies between the attributes.

Once both the relational schema and model are defined, the classes can be instantiated to

build a probabilistic system. Using classes A and B defined in Fig.1.5, we can build a system as a

combination of classes with respect to the reference constraints defined in the relational schema.

Once defined, it can be instantiated as shown in the example presented in Fig.1.6. An instancia-

19



ted system is considered as a classical Bayesian network: therefore it shares the same properties

presented in this section, and has an essential graph.

Figure 1.6: Example of a probabilistic relational model’s system’s instantiation. Using the classes
defined in Fig.1.5 we can instantiate this system, composed of two classes A and three classes B.

Learning a probabilistic relational model can be an hard task, as one should both learn the

relational schema and model. In this thesis, we focus on two parts:

• The translation of an ontology to the relational schema.

• The learning of the relational model from the relational schema and the data.

This last part is made easier by the fact that, in our work, the relational schema is not learned

but built using an ontology. Since the relational schema is fixed, learning the relational model

is similar to Bayesian network learning (Getoor and Taskar, 2007). Furthermore the relational

schema also brings some information (shaped as constraints) that can improve the learning’s

results.

1.1.6 LEARNING UNDER CONSTRAINTS

Learning a Bayesian network is an NP-hard problem whose difficulty drastically increases with

the number of variables to consider. Learning blindly (i.e. without any external insight on the

model) with an heuristic approach requires to test nearly all possible combinations, which is not

optimal. On another hand, having some information about the model can help limit useless

computation. We define such information as constraints we want to use to guide our learning

towards a learned model closer to the reality.

Looking at Bayesian networks, numerous related works have established that using con-

straints with heuristic algorithms effectively improve structure (De Campos et al., 2009, Suzuki,

1996) and parameters (De Campos and Ji, 2008, Niculescu et al., 2006) learning. They may be

more or less strict: in this thesis, the relational schema defines structural constraints as an orde-

ring between the different variables.
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Definition 3: Precedence constraint. Given two nodes A and B, a precedence constraint from

A to B implies that if A and B are connected by an arc, this has to be oriented such that

A→ B.

We distinguish between complete and partial node ordering. We define a complete node

ordering, if, for every two variables in the Bayesian network, there is a precedence constraint

between them. On the contrary, we define a partial node ordering if the ordering is not complete.

The peculiar case of Bayesian networks

Given three nodes A, B and C; the set S of the two precedence constraints A → B and

B → C is a partial node ordering since there is no precedence constraint between A and C.

However, a Bayesian network is a directed acyclic graph, meaning that cycles are forbidden:

therefore we can easily infer from S a third precedence constraintA→ C. As a consequence,

in a Bayesian network, if for all nodes there is at least one precedence constraint such that

all nodes can be placed in a chain such asNode1→Node2→ ... →NodeN , then the ordering

is complete.

Theorem 2: Bayesian networks’ partial ordering. If for all nodes of a BN there exists a prece-

dence constraint such that the nodes can be placed in a chain, then the set of these precedence

constraints is a complete ordering.

The K2 algorithm (Cooper and Herskovits, 1992) is an heuristic Bayesian network’s struc-

ture learning algorithm that requires a complete ordering of its variables beforehand. This eases

greatly the calculations since a lot of computations are left aside: if we have the precedence con-

straint A → B then we do not need to test B → A. However, in order to apply K2 we need a

thorough knowledge of the domain, which can be hard to come by, especially with numerous

variables. Learning under partial knowledge has also been tackled, for instance, by Parviainen

and Koivisto (2013) who propose a dynamic programming algorithm for learning Bayesian net-

works using partial precedence constraints to improve its efficiency.

In this thesis we focus on using a partial node ordering for guiding a heuristic algorithm to

learn a Bayesian network.

1.1.7 USING ONTOLOGIES TO LEARN BAYESIAN NETWORKS

Combining ontological knowledge in order to learn Bayesian networks has already been tackled

by several works, since it offers a good compromise between asking for an expert input which
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can be time-consuming and prone to mistakes (Druzdzel and Gaag, 2000), and relying entirely on

the data which is not efficient as the algorithms are mostly score-based and do not take common

sense into account. Masegosa and Moral (2013) propose, for instance, a method of edges selection

in a Bayesian network using domain/expert knowledge. In this thesis, we will, however, focus on

the combination of ontologies with Bayesian networks and probabilistic relational models. Most

of the following works are based on similar methods, where the ontology brings knowledge in

order to guide the structure building. Despite their great results, we wanted to focus, in our work,

on a method able to transform any ontology; in order to do so, we had to consider pitfalls that felt

prohibitive.

• Dedication to specific ontologies. A lot of works offer a transformation specifically de-

signed for a single ontology, without possibilities of transfer towards another one. For in-

stance, Bucci et al. (2011) use predefined templates to model support medical diagnosis,

which cannot be extended to other ontologies; Helsper and Gaag (2002), Zheng et al. (2007)

requires to construct a specific ontology to guide the construction of the Bayesian network

structure.

• Use of ontology’s extensions. The methods that require specific Bayesian ontologies’ ex-

tensions such as the ones described in the introduction are limiting, since not all ontologies

use them. This is the case for instance of the work presented by Devitt et al. (2006).

• Direct translation of Object Properties. Properties management can raise multiple issues.

In a lot of the described approaches, the Bayesian network structure is not learned, but

derived from the ontology: this is not what we aim to do as not all ontologies transcribe such

direct dependencies. For instance, Fenz (2012) consider that the object properties directly

serve as probabilistic dependencies if they are selected beforehand by an expert. Ben Ishak

et al. (2011) take a similar stance, and assume that the ontology’s properties are already

causal in order to build an Object Oriented Bayesian Network.

• Cardinality management. To the best of our knowledge, no method addresses the case of

object properties cardinality. Consider the classes Teacher and Student, and the object pro-

perty hasForTeacher. By definition, a single teacher can have an unfixed number of students,

which can be represented easily in the ontology, but not so simply in a probabilistic model.

A further description of the problem and of one possible answer is given in chapter 6.

A few works have also been presented on the matter of combining object oriented Bayesian

networks and ontologies (Ben Messaoud et al., 2011, Truong et al., 2005). Manfredotti et al. (2015)

proposes the idea to map a probabilistic relational model’s relational schema with an ontology to

guide the learning of the relational model, which is the idea we develop in this thesis. However,
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they do not explain how to do this translation.

1.2 CAUSALITY

As introduced in the introduction, our main motivation is the discovery of new knowledge in

complex domains represented by an ontology. If the learning of a probabilistic model is a great

help for the analysis of such domains, it is however not enough as it is only able to show proba-

bilistic dependencies. In this section, we will present the main notions about causality and causal

discovery.

1.2.1 OVERVIEW

Causality has been a topic of research for a long time (Reinchenbach, 1978, Suppes, 1970). In the

early 1990s Pearl and others began to explore the meaning behind Bayesian networks edges (Pearl

and Verma, 1991), which resulted in the works of Pearl (2009) that introduced causal models.

Definition 4: Causal models. Directed acyclic graphs whose edges’ orientations transcribe a

causal dependency between the nodes.

Indeed, if Bayesian networks only show the correlation, causal models give causation, which

is an efficient way to describe a model by offering a good insight on the relations between the

variables and allowing to answer complex questions about them. In his recent book, Pearl and

Mackenzie (2018) describe a causal ladder in order to distinguish the different levels of causal

questions. It is composed of three rungs that go from the bottom to the top:

1. Association. The lowest rung is about observing, and answers the question: ”What if I see

...?”. It is the most simple question, as it treats mostly correlation in the data. The authors

place it at the level of machines and animals, as they deem them able to do that kind of

computation.

2. Intervention. The middle rung is about intervening, and answers the question: ”What if I

act on this factor?”. Intervention is all about modifying a possible explaining factor to see if

it changes the outcome. For instance, we know that umbrellas and rain are correlated; if we

intervene on the umbrella factor (by preventing or forcing people to take one), will it have

an influence on the weather? If so, then the umbrella is probably a causal factor for the rain;

if not (as we should hope!), then it is not. This powerful reasoning tool tends however to

be difficult to set, as not all events can be modified at will: the opposite experiment of the

one we described in the example would be very hard to check, as it is nearly impossible to

control the weather. Nevertheless, when it is possible, it can give a very astute overlook of
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the causal knowledge encompassed in the model.

3. Counter-factual. The highest rung is about imagining, and answers the question: ”What

would have happened, had I done that?”. It is the most difficult question to answer, as it inter-

rogates us on a set of events that did not happen, and on which we have no data. However,

it can be answered using causal knowledge: I went outside with my umbrella and it was

raining. Would it had rained, had I not taken my umbrella? If I use the causal knowledge

discovered earlier (the umbrella has no causal effect on the rain), then I am able to answer:

yes, it would have rained, umbrella or not. Answering counter-factual is the final goal for

causal studies.

Classical Bayesian networks are at the first level. Our goal, in this thesis, is to constraint

their learning with knowledge from the ontology and the expert in order to guide it with causal

constraint towards a causal Bayesian network and thus climb the two last rungs.

Definition 5: Causal Bayesian Network. Bayesian network whose graph is also a causal model.

The edges transcribe both a probabilistic dependency and a causal effect, the head being the

cause and the tail the effect.

As we have seen in Section 1.1.4, a same dataset can lead to learn several different but equi-

valent Bayesian networks. The goal of causal Bayesian networks learning is, then, to identify

(if possible) among them the true model that respects every causal dependencies between the

variables. This is not an easy task, that can be done using the second rung of the causality ladder,

the interventions. However, this solution cannot be applied every time, for ethical, economical

or practical reasons: we cannot for instance force a control group to smoke to assess whether it

might have a causal impact on lungs cancer. This problem sparked the research field of causal

discovery.

1.2.2 CAUSAL DISCOVERY

Due to its implications in the field of explanations, causality is currently a trending topic in the

computer science research community. However, it is far from an easy task. As any statistician

comes to know, ”Correlation is not causation”: a rainy weather and people having umbrellas

usually come together, however we cannot assert that one event brings the other without external

knowledge.
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Simpson’s paradox

First proposed by the statistician Edward Simpson in 1951, the Simpson’s paradox is a bla-

tant demonstration of the importance of external knowledge in the data and that correlation

is not causation.

A study focuses on a group of sixty men and sixty women that took (or not) a drug, and

whether they had an heart attack afterwardsa. The data is presented in this table.

Control Group (No Drug) Treatment Group (Took Drug)

Heart attack No heart attack Heart attack No heart attack

Female 1 19 3 37

Male 12 28 8 12

Total 13 47 11 49

Simpson suspected that the drug might have a negative effect on male subjects. Looking

at the general data, we can see that 22% of the control group suffered from an heart attack,

while only 19% of the people who took the drug did: thus the drug seems to have a good

impact on the heart condition. However, when looking at each individual on the base of

their gender, we can asses that while 30% of men from the control group suffered from an

heart attack, 40% did within the treatment group (a similar but of lesser magnitude conclu-

sion can be drawn for women): this time, the drug seems indeed to be bad for the heart

condition.

The paradox takes place in such a way it appears that knowing the person’s gender

would render the drug harmful. It demonstrates that depending the way it is processed, a

same dataset can lead to opposite conclusions.

aThis example is taken from The Book of Why (Pearl and Mackenzie, 2018), itself presenting the fictitious data
set used by Simpson.

As a consequence, a data set in which we want to discover causal knowledge must answer

some quality criteria about the variables and the data quality.

The variables are defined by the causal sufficiency criteria (Spirtes et al., 2000).

Definition 6: Causal sufficiency. Be S a set of variables. We say that S is causally sufficient if

and only if for every common cause P of two or more variables, P either (1) is in S itself or

(2) has the same value for every variables in S.

The causal sufficiency insures to prevent a classic pitfall of causal discovery which is missing

variables. For instance, a correlation can be found between one’s shoe size and reading ability.
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Using common sense, we know from experience that this is because both of these variables are

explained by a third variable, the age: the older we are, the bigger our shoes are and the better

we can read. Thus, attempting causal discovery with the truncated dataset would only lead to

absurd discoveries. This is because when we consider only the shoe size and the reading ability,

we are not in a causal sufficiency condition. The age is denoted as a confounding factor.

The quality of the data is sensitive to classical pitfalls such as missing data, selection bias,

measurement error, non stationary or heterogeneous data and deterministic cases (Glymour et al.,

2019). In the same way that a bad data processing can lead to erroneous conclusions, if not all

possible events are present in the learning set, or if their proportion is altered and do not represent

reality, then it is impossible to draw good causal discoveries.

As presented in Section 1.1.2, there are two Bayesian networks structure learning type of algo-

rithms: heuristic and independence-based. In order to learn causal structures, this last category

usually gives a better outlook on causality as they try to find the ”true” orientation of the arcs.

The principal algorithms are PC (Peter and Clark) and FCI (Fast Causal Inference), its variant that

can handle confounding variables (Spirtes et al., 2000). MIIC (Multivariate Information based

Inductive Causation) (Verny et al., 2017) is another algorithm that uses independence-based al-

gorithms to obtain information considered as partially causal and thus allow to discover latent

variables. These algorithm’s drawback is that they do not easily allow constraints during their

learning. There are approaches that combine these two families: GFCI (Greedy Fast Causal In-

ference) (Ogarrio et al., 2016) uses GES (Greedy Equivalent Search) to learn a structure, and FCI

to prune it. However it does not offer a management of the different constraints as precise as we

would like. That is why we preferred statistical methods and used essential graphs to deduce

mandatory essential arcs.

Other works have already proposed the use of an essential graph to learn causal models:

Hauser and Bühlmann (2014) propose two optimal strategies for suggesting interventions in or-

der to learn causal models with score-based methods and the EG; Castelletti and Consonni (2020),

Eberhardt (2008), Shanmugam et al. (2015) use an essential graph to build a causal Bayesian net-

work while maintaining a limited number of intervention recommendations. These approaches

do not require any external knowledge about the domain. In our case however, the data is en-

compassed in an ontology and is not sorted in a way such that a Bayesian network can be learned

directly: as a consequence, while processing it, it can be interesting to see which information can

be recovered from the ontology’s semantic.

26



Chapter 1. Background and State of the Art

1.2.3 ONTOLOGIES AND EXPLANATION

The act of explaining usually echoes the causality. The Oxford dictionary defines an explanation

as ”a statement, fact, or situation that tells you why something happened; a reason given for something”.

The idea of using knowledge from ontologies in order to learn explanatory and causal models

has been considered in several works. Ćutić and Gini (2014) presents the idea of integrating

causal knowledge from ontologies for causal discoveries; Messaoud et al. (2009) offers a method

to iterative causal discovery by integrating knowledge from beforehand designed ontologies to

causal Bayesian networks learning. The main pitfall of these works is that they consider the

properties within an ontology as causal, which is not the case each time and explains why we

tried, in this work, to develop a more generic method.

One of the main interests of integrating knowledge from ontologies would be the ability to

provide constructed and understandable explanations to why artificial intelligences have reach

to this or that conclusion. Indeed, explainable artificial intelligences is a trending topic that rose

with the multiplication of ”black box” systems (i.e. systems that cannot explain their results in a

manner humans can reason with). A lot of works have emerged on this topic (Ribeiro et al., 2016,

Zhang and Chen, 2018), mostly about neural networks. On another hand, Bayesian networks,

because of their graphical structure, are much easier to explain. Works can be done on their

structure and sensitivity analysis (Lacave and Diez, 2002, 2004), but in general they are pretty

straightforward to understand, since every node value can be explained with respect to the others.

However, ontologies can bring another layer of explanation as they allow to introduce semantic

notions to describe the relations between the nodes. Indeed, as we have seen before, there is no

semantics behind the orientation of the probabilistic relations in a Bayesian network: A → B

has the same validity (i.e. one model is not better than the other) as B → A. However, if an

ontology can give us an information such that A → B is not possible, then we would have more

informations about the model and rule out all Bayesian networks with this relation.

As a consequence, ontologies can help to build arguments and explanations that models such

as Bayesian networks would not be able to discover. For instance, Besnard et al. (2014) presents

a tool combining ontological and causal knowledge in order to generate different argument and

counterarguments in favor of different facts by defining enriched causal knowledge. They how-

ever did not cover the learning part.
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1.3 CONCLUSION

Probability theory is the most efficient way to express events’ likelihood. Bayesian networks,

thanks to the addition of a graphical support, are well suited to describe complex models. How-

ever, if we want to couple their learning with ontological knowledge, they cannot express all the

subtleties expressed in an ontology (e.g. O-classes, instantiation, properties), especially in the case

of ontologies where large relational informations are encompassed.

That is why, in this thesis, we chose to use probabilistic relational models: because of their two

layers, the relational schema and the relational model, they allow a two-times learning which can

better model our domains. They first define the classes and their attributes, then the probabilis-

tic relations between them. Works have already been proposed on the combination of graphical

models and ontologies. However, they were not generic enough to be adapted to any ontology,

or were assuming criteria really hard to respect in real-life ontologies, such as the causality of the

object properties. Once the model learned, we have proposed methods able to explain it even

further with causal reasoning. Following the state of the art, we have decided to use the essential

graph, that encompass all the Bayesian networks of the same Markov equivalence class. By intro-

ducing causal knowledge during the learning, we aim to give semantic and causal explanations

of the domain, thanks to the knowledge base.
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CHAPTER 2

LEARNING A PROBABILISTIC RELATIONAL MODEL FROM

A SPECIFIC ONTOLOGY

Contribution.

Munch M., Wuillemin PH., Manfredotti C., Dibie J. and Dervaux S. Learning Probabilis-

tic Relational Models using an Ontology of Transformation Processes. In: ODBASE 2017,

Rhodes.

In this chapter, we present the first method we developed in order to couple ontologies and

probabilistic models. For this work, we wanted to evaluate the gain that coupling ontologies

with probabilistic relational models could bring when learning domain’s model. That is why

we first concentrated on a single specific ontology. To do so, we chose to study the Process and

Observation Ontology PO2 (Ibanescu et al., 2016). This ontology is dedicated to transformation

processes, which are interesting to study as they can be complex (multiple variables, temporality).

Section 2.1 first presents the transformation processes’ specifities and which issues they raise

for their modeling (2.1.1); in a second time, it presents in more details the ontology PO2 and how

it is efficient to represent transformation processes (2.1.2).

Section 2.2 gives an overview of the algorithm we developed (2.2.1) and describes in more

details its two key steps: the building of the relational schema (2.2.2) and the learning of the

relational model (2.2.3).

Section 2.3 presents our evaluation of this method, through a generation of synthetic datasets

(2.3.1), the description of our protocol of evaluation (2.3.2) and comparison of the learning results

(2.3.3).
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Section 2.4 discusses our algorithm and more specifically points two features from the studied

domain that prevent our method from being generic: the concepts of explaining and explained

attributes (2.4.1) and the temporality (2.4.2).

Section 2.5 concludes this chapter.

2.1 DOMAIN OF APPLICATION

In this chapter, we focus on a particular ontology that sparked our interest on combining proba-

bilistic graphical models and ontologies: the PO2 ontology, dedicated to transformation processes.

We describe what we consider as a transformation process, before introducing the PO2 ontology.

2.1.1 TRANSFORMATION PROCESSES

A transformation process is a generic way of describing a sequence of steps. By analogy, each step

(i.e. operation) can itself be considered as a small thermodynamic system, with information enter-

ing (the inputs) and leaving (the outputs) it. The particularity -and difficulty- of analyzing them

is that this flow of information is heterogeneous (different variables, scales) and time-dependent:

each operation takes place within a specific time frame. This raises a substantial amount of vari-

ables that needs to be described, as illustrated in Fig.2.1.

Figure 2.1: Example of a transformation process in biology. The multiple measures • represent a
challenge to analyse, depending of the angle we wish to study them.

In this figure, an example of a transformation process is given. Each black dot • indicates a

variable associated to the scale (ordinate axis) and the step (abscissa axis). In order to study this,

it would be interesting to analyse how the variables influence each other: to do so, we have to

conduct multiple analysis, across the steps, scale and variables themselves.
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For the rest of this section, we define the following vocabulary when describing a transforma-

tion process:

• A step is an operation taking place at a specific time, that can be absolute (e.g. ”January the

1rst 2020, 15:03 p.m.”) or relative (”step 1 happens before step 2”).

• A process is a succession of steps.

• An attribute is a variable that represents a measure taken during the transformation process.

• An input is an attribute defined at the beginning of the step that characterize it (e.g. an oven

temperature).

• An output is an attribute that results from the step.

We will also consider that all transformation processes studied in this Section are well-defined:

all inputs and outputs are useful to describe it. In most cases outputs are consequences of inputs.

Two steps are considered identical if they share the same inputs and outputs, even if their value

can vary. For instance, while baking a cake, we always define the step Cooking with oven tempera-

ture as an input. However, the temperature value itself can change, depending on what we intend

to cook.

In conclusion, transformation processes are characterized by two kinds of complexity: time

and scale. The goal of learning probabilistic model to represent a transformation process would

be to be able to explain the different attributes with respect to the others in spite of these issues.

Example 7. Suppose an agro-food company wants to test a new process for baking their

cakes. They have defined a process Baking Cake, composed of the following steps succes-

sion: Mixing→ Cooking→ Tasting. This process is detailed in Fig.2.2. Having a probabilis-

tic modeling of it would allow us to verify the impact of the quantity of eggs, milk, oven’s

temperature on the taste of the final product.

Figure 2.2: Example of a transformation process. The process is defined by three steps. We suppose
that the cake dough is passed from one step to another, becoming an intrinsic input for Cooking and Tasting.
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2.1.2 PROCESS AND OBSERVATION ONTOLOGY PO2

The description of the transformation processes we gave in the previous section is coherent with

the way the core ontology PO2 is defined. Its conceptual components are mainly composed

of four classes: the Step, Participant, Observation and Attribute classes. The participants and

observations are described as follows:

• Participants represent the inputs. In the ontology, they can be of three natures: method

(e.g. a measurement method, a selection method); mixture (e.g. a cake); and device (e.g.

an oven). The mixture usually represents the product transformed throughout the whole

process.

• Observations represent the outputs. They usually embody the different measures taken

on the mixture and are characterized by multiple concepts: scale, sensory or computed

observations...

The attribute is the intrinsic value associated to those participants and observations in order to

describe them. They are themselves characterized by a numeric value and a unit, given by the

datatype properties po2:hasForValue and po2:hasForUnite.

In this ontology, a process is a whole operation with a particular goal (e.g. baking a cake,

transforming a product); if two processes share the same goal, they are the same. However, there

are multiple means for a same end: a same goal doesn’t mean that we need to always have the

same succession of steps. As a consequence, the ontology differentiates the different succession of

steps as itineraries. In an itinerary, each step is defined both by its participants and observations,

and its relations to the other steps, for instance with the property isBefore. An overview of these

conceptual components is given in Fig.2.3.

Figure 2.3: PO2 main schema. Selected view of the ontology with the classes that we have considered
(Step, Observation, Participant, Attribute) and the datatype properties used.

However, in order to specify this ontology and adapt it to any transformation process, thus

defining a domain ontology, one must first define new classes to introduce the particularities of

the considered process. To do so, we use the is-a property who allows two classes to share the

same specifications inside an ontology.
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Example 8. In order to define the domain ontology of the Example 7, we need to define new

steps, participants, observations and attributes. We define these new classes using the is-a

property: Mixing is-a Step, Egg is-a Participant, ... As a consequence, Mixing is considered as

a Step class and shares its specifications: it can be linked with po2:isBefore to other step classes,

and can own participants and observations. The result is shown in Fig.2.4.

This defines a new domain ontology using the core ontology we presented in this section.

Figure 2.4: Example of a domain ontology using PO2. This is built using the transformation process
example defined in Example 7. The new classes are specified thanks to the is-a property.

2.2 ON2PRM ALGORITHM

In this section we present our first contribution, the ON2PRM algorithm (ONtology TO PRM),

whose purpose is to learn a probabilistic relational model from any domain ontology PO2
domain

using the core ontology PO2. Figure 2.5 gives an overview of its development.

2.2.1 OVERVIEW

The goal of learning a probabilistic relational model from a given domain is to be able to ex-

plain the different probabilistic dependencies (if they exist) between the variables. Yet, not all

transformation processes can be transformed into a probabilistic relational model. Indeed, until

now we have presented transformation processes as a succession of steps guided towards a same

goal. However, probabilistic learning is based on a statistical counting: over all the presented

evidences, the algorithm counts the repetition of each particular value to determine if they are

frequent (high count) or not. This requires (1) that we have discrete data, (2) that the evidences

themselves follow a same pattern and (3) that there are enough evidences so the statistical count-

ing is meaningful.
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For the first point, using PO2 establishes that the only way to gather data is to use the Attribute

class and the datatype property po2:hasForValue. In the following, we assume that all measures

have been done using the same scale and that po2:hasForUnit is not necessary. The second point

ensures that we compare what is comparable: as two processes with not the same goal cannot

be compared, two different itineraries of a same process also cannot be compared, as they do not

have the same steps, participants and observations. As a consequence, each itinerary of a same

transformation process represents a different probabilistic relational model; and a probabilistic

relational model can only be learned if there are multiple repetitions of this itinerary, which check

the third point: the dataset used for the learning has to be complete and sound, with (if possible)

no missing data. This last point is a strong pre-requisite, but is essential if we want our learning

to make sense. Indeed, learning a probabilistic model requires to use a statistical counting of the

different events, to evaluate their likelihood, whose measurement may be distorted by too many

missing values.

Once this is established, we can use what we know of the transformation process domain in

order to ease the learning. Indeed, we have to take into account two constraints:

C1. Temporality. The steps are recorded in time, which means that we can always define one

in relation to the others. Since we aim to learn an explaining model, we take the assump-

tion that a variable can always be influenced by one anterior or concomitant: the past can

explain the future, but not the contrary. More specifically, this means that in our model,

given three steps such that Step1 → Step2 → Step3, attributes from Step2 can be explained

by attributes from Step1 or Step2 but not from Step3.

C2. Compartmentalization. The conceptual difference between participants and observations

is that participants are attributes fixed at the beginning of the step, while observations are

attributes which are the result of this step. Therefore, the same way as past events can

explain future events, participants can explain observations of the same step - but not the

contrary.

This gives us a guideline for our new algorithm ON2PRM, that we will present in this section.

The main idea behind this algorithm is to define a generic relational schema RSPO2

that respects

C1 and C2 that will be the same for all processes. Once defined, it can be used to automatically

build the relational schema RSPO2

domain for any domain ontology of PO2
domain. The relational model

RMdomain can then be learned, using the constraints given by RSPO2

domain.
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Figure 2.5: Overview of the ON2PRM Algorithm. Overview of the algorithm allowing to learn a
probabilistic relational model from any domain ontology PO2

domain using the core ontology PO2.

2.2.2 BUILDING THE RELATIONAL SCHEMA

Given the constraints C1 and C2, we can define the generic relational schema presented in Figu-

re 2.6. In this figure, we describe two generic steps happening at times t and t + 1, both with

participants and observations.

C1 ensures that events can have a probabilistic relation towards concomitant or future ones,

but not on past events. This constraint is translated into a temporal relational chain between the

Step classes, with an orientation from Stept to Stept+1.

C2 ensures that participants can have a probabilistic relation towards observations of the same

step, or participants and observations of the next steps, but not on past observations or past parti-

cipants. This constraint is translated both by the explanatory relational chain between participant

and observation, and also by the temporal one between Stept and Stept+1.

When building a specific relational schema RSPO2

domain for a given domain, we define as many

step classes as there are steps in the domain ontology. Each is linked with temporal relational

chains that we determine using the po2:isBefore object property.

Example 9. In the cooking transformation process of Example 7, we have three steps, there-

fore three classes in RSPO2

cooking . They are linked such that for instance Cooking has a relational

chain towards Tasting and Mixing has one towards Cooking. However, using the Cook-

ing’ reference slot allows Mixing an other relational chain towards Tasting. The resulting

relational schema is presented in Figure 2.7.
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Figure 2.6: Generic relational schema RSPO2

. This generic relational schema is designed so it respects
transformation processes constraints. All participants and observations of a same step are linked by an
explanatory relational chain; all steps are linked together by a temporal relational chain.

Markov Property

An event follows the Markov property if and only if its future state is not influenced by its

past state. In this case, the future only depends on the event’s current state. More formally,

we note that

∀t ∈ [0;N ], ∀k ∈ [0; t], P(Xt+1 | Xt,Xt−1,... Xt−k) = P(Xt+1 | Xt)

It can be generalized for a transformation process: in this case, to determine the state of

a step, we only need to know the state of the one before. By default, thanks to the temporal

slot chains between the different steps, each step has ”access” to more than the previous

step, and thus in theory a variable in one step can have a conditional probability depending

on the variables from any step before. It would be easy to restrict the learning order so to

respect the Markov property: however, it is a particular case that we do not consider in

our works. As a consequence and unless mentioned otherwise, we do not restrict the slot

chains during the learning of the probabilistic relations: if a relational schema’s class A

has access through a slot chain to a class B, then the attributes of A can have a probabilistic

relation with the attributes of class B.

While defining the steps, we look at its participants, observations, and their associated at-

tributes. For each, we define an attribute in RSPO2

domain such that:

• The name of the attribute is composed as follows: name of the participant/observation + name

of the attribute,

• The value of the attribute is the value given by the datatype property po2:hasForValue,

• The attribute is associated to the subclasses Participant or Observations depending if it is

linked to a Participant or an Observation through the object property po2:hasForAttribute.
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Example 10. We look at the Cooking Step, which has for participant oven and for observation

aspect. We suppose the oven has for attribute Temperature and the aspect has the attribute Color.

As a consequence we define two variables: Temperature of the Oven, that goes in the subclass

Participant of the Cooking class and Aspect color, that goes in the subclass Observation.

Figure 2.7: Example of a relational schema built from the domain ontology example. This is built
using the transformation process example defined in Example 7. It is composed of the three steps we defined
and the different attributes that describe the participants and observations.

The role of RSPO2

domain is to guide the direction of the (possible) learned relations, in order to

constraint them towards a probabilistic model that respects the constraints C1 and C2 given by

the transformation processes and PO2.

2.2.3 LEARNING THE RELATIONAL MODEL

Once RSPO2

domain built, we can learn the relational model RMdomain. As described in Chapter 1, the

learning of a probabilistic relational model while knowing the relational schema is comparable

to learning a Bayesian network under constraints. The interest of the relational schema is that

it defines a partial node ordering for the attributes. As a consequence, each class defined in

RSPO2

domain can be learned as a small Bayesian network, while respecting the following learning

order 1→ 2→ 3:

1. The previous attributes. All attributes (participants and observations) attached to the pre-

vious steps (if they exist) are grouped in a same set.

2. The current participants. All attributes attached to the considered step’s participants are

grouped together.

3. The current observations. All attributes attached to the considered step’s observations are

grouped together.

The probabilistic relations learned are then kept in RMdomain. However, it is important to note

that we only keep the ones that are engaged with variables (participant or observation) of the step

that we are learning: all relations learned between the previous attributes set are not kept: this is

due to the fact that these attributes are all mixed in a same group without compartmentalization
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between them.

Parallel steps

Until now we have only presented small transformation processes composed of a linear suc-

cession of steps. However, PO2 allows the creation of parallel steps, meaning steps that are

defined before a same steps, but that are not related. This is usually the case for transforma-

tion processes that require multiple preparations: for instance, a mixture prepared in a step

Mixing can require two different ingredients respectfully prepared in steps Ingredient 1

Preparation and Ingredient 2 Preparation. Those two do not interact, so they do not share a

po2:isBefore object property; and during the specific relational schema construction, they are

not linked through a relational chain, although they both have a relational slot with Mixing.

This is why, when learning the Mixing class for the relational model, we do not con-

sider possible learned probabilistic relations between attributes of the set of the previous

attributes (in our example, Ingredient 1 Preparation and Ingredient 2 Preparation). Even

if they both are before the same step, they do not interact, and cannot share a probabilistic

relation.

Once each class is learned in the relational model, the classes of the probabilistic model are

known and defined, it becomes possible to instantiate the system and build a Bayesian network.

In the rest of this chapter, we are going to focus on the evaluation of this algorithm and on how it

helps to improve the learning and its result compared to the classical naive learning of a Bayesian

network.

2.3 EVALUATION

In order to evaluate our algorithm, we have defined the following protocol that consists of four

parts:

1. Random creation of transformation processes. We generate a succession of steps, with

different participants and observations whose attributes share probabilistic relations. In

real life, this constitute the ground truth we aim to approach and model.

2. Generation of synthetic data sets. They are generated following the probability distribu-

tions described in the transformation processes and represent the experimental data. They

are presented in two fashions: a raw one which is a simple data table and a structured one

represented in a dedicated domain ontology using PO2.

3. Learning a Bayesian network. Since (1) an instantiated probabilistic relational model is

equivalent to a Bayesian network, and (2) it is harder to learn a probabilistic relational model
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than a Bayesian network, we have chosen to compare our algorithm to Bayesian network

learning methods. We define arbitrarily two methods M1 and M2 that both correspond to

the combination of classical scores and an heuristic algorithm: M1 represents Greedy Hill

Climbing (Gámez et al., 2011) with the BIC score (Schwarz, 1978), and M2 the Local Search

with tabu list (Holland, 1975) with the BDeu score (Buntine, 1991). For each of these methods,

we test two kinds of learning:

• Naive learning. We simply use the raw data set generated in part 2, and learn a

Bayesian network without constraining or bringing knowledge from the fact that we

are dealing with a transformation process. We denote it M1 or M2, depending on the

method used.

• Learning with ON2PRM. We use the algorithm as defined in Section 3.2 on the struc-

tured data generated in part 2, with either M1 or M2 while learning the relational

model. We denote ON2PRM(M) to indicate that we have used the learning method

M.

4. Evaluating and comparing the scores of the resulting Bayesian networks. We define scores

to assess the proximity of the results with the ground truth.

The next subsections will give more details about this protocol and will present the results.

2.3.1 GENERATION OF SYNTHETIC DATA SETS

We generate random transformation processes based on the definitions given in Section ??: a

transformation process is a succession of different steps, each step being composed of inputs and

outputs. We consider for the following the vocabulary of the PO2 ontology since its conception of

transformation processes is similar to our definition.

Since one of our motivation for studying transformation processes was their complexity, we

had to take into account specific parameters to evaluate their diversity. Indeed, limiting the study

to only one or two transformation processes without characterization would have been harmful

for the results, considering one cannot represent alone this diversity spectrum. Thus, we define

five process complexity criteria to qualify a process:

1. the number s of steps in a process;

2. the maximal number p of parallel steps, representing how many direct parents a step can

have;

3. the number n of attributes in a class;

4. the numberm of modalities for the attributes, meaning the number of value an attribute can

have;
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5. the maximum number d of probabilistic dependencies an attribute may have.

The higher the process complexity criteria are, the harder to learn the corresponding proba-

bilistic models are. As a matter of fact, during learning of a the relational model:

• a high number of steps s induces more probabilistic relational model’s classes to learn;

• a high number of parallel steps p, attributes n and probabilistic dependencies d induces

more possible links to evaluate;

• a high number of modalities m induces a more difficult learning, due to bigger conditional

probability tables to compute.

These difficulties are also retranscribed during the Bayesian networks learning, where more

steps increase the number of attributes and possible probabilistic relations between them. In the

following, we make the hypothesis that the process complexity criteria are better addressed by

ON2PRM where the ontology semantic knowledge reduces the learning’s complexity. Therefore,

we argue that if the results of our approach outperforms that of a standard method for simple

processes, it will also have better results in learning more complex processes. Considering this

assumption and to be as close as possible to the modeling of real transformation processes, we

decided to fix two process complexity criteria: m = 2 (i.e. binary attributes) and d = 3, and to

have three criteria that vary: s ∈ {3, 5, 8}, p ∈ {1, 2, 3} and n ∈ {2, 4}. This leads us to 16 possible

configurations, since the case {s = 3 ∩ p = 3} (i.e. a process composed of three parallel steps

without interaction) is not relevant to study.

Even with all these parameters fixed, the number of possible transformation process is high:

Figure 2.8 illustrates this notion by giving an example of randomly decided inter-steps (a) and

inter-attributes (b) relations. Finally, even with a same structure, the probabilistic dependencies

between the attributes were randomly defined. In the end, we generated 10 transformation pro-

cesses for each configuration, meaning a total of 160 processes.

While studying transformation processes, we in reality never have access to these models: as a

consequence, in order to mimic the reality of experiments we have to draw a dataset from random

sampling, where each sample represents a complete experiment. These datasets are presented in

two forms:

• A raw form, where the experiments are just presented as a classical data set (variables and

values for each sample), without any compartmentalization between the attributes.

• A structured form, where every experiment is recorded in a knowledge base built following

the generation of the associated transformation process from which the experiments are

extracted. These domain ontologies are also characterized by the same process complexity

degree criteria defined above: the number of steps is fixed by s, the number of participants
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(a) Fixed s = 5 and fixed p = 3 (b) Fixed n = 2 and fixed d = 3

Figure 2.8: Variety of the transformation processes structures. (a) shows the diversity of inter-classes
relations: even with a same skeleton, the steps can be linked differently. On another hand, (b) shows that
even with the steps and relations fixed, the probabilistic dependencies between the attributes can also be
different.

and observation attributes by n.

For each of the 160 built transformation processes, we generate 100 datasets of four different

sizes: 50, 100, 150 and 200, which gives us 64,000 datasets. The size of those datasets have been

voluntarily kept low, as usually in real life experiments are hard to realize. In this experiment,

we have chosen to verify how well our algorithm would perform with small datasets, as good

learning are usually harder to perform under those conditions. The overall plan of experiments

is shown in Figure 2.9.

Figure 2.9: Plan of experiments. For each configuration of process complexity degree criteria (1), we
generate 10 transformation processes (2). For each of these, we then generate 100 datasets of different sizes
(3) under two forms (raw and structured).

2.3.2 EXPERIMENTS

As mentioned before, the generated transformation processes represent the goal, the ground truth

we wish to approach. Thus, the closer the models we learn (using the generated datasets) are to

them, the better these models represent the reality, and as a consequence the better is the learning
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Table 2.1: Heuristic used to compare two BNs. TN: True negative. FN: False negative. TP: True
positive. FP: False positive

Learned
Model ∅ → ←

∅ TN FN FN
→ FP TP FN
← FP FN TP

method. Thus, we define an estimation criteria to evaluate the proximity between two Bayesian

networks. This can be done rather by studying either the probability distributions (using for

instance the Kullback–Leibler divergence (Kullback, 1959)), or the structural differences (with

the recall, precision and f-score measures (Kent et al., 1955)). The first allows us to compare

between the models the probability distributions of a same variable and see how it was impacted

by the different learning methods (i.e. if its probability is still the same or not despite the possible

different structures). On the contrary, the second study focuses only on the structure and not on

the probability distribution: it compares whether an arc is missing or not, its orientation, etc.

Since our extended goal goes beyond the simple fact of finding probabilistic dependencies, we

also wish to have a true semantic modeling of the domain able to explain how the different at-

tributes interact with each other. In this focus, the structural analysis brings us more information,

since it also allows an understandable (from the domain’s knowledge viewpoint) interpretation

of the relations. Indeed, due to the semantic value added, edges orientation is crucial: that is why

we consider the presence of arcs as well as their orientation while evaluating the performance.

As a consequence, our evaluation protocol is based on the structural differences between the

ground truth and the learned model using ON2PRM(M) or directly M. In order to compute these

differences, we have to count the number of true positive TP and true negative TN (i.e. right

learning), and false positive FP and false negative FN (i.e. wrong learning). These are defined

following the heuristic reported in Table 2.1.

This helps us to compute the following scores:

• Recall R estimates the number of links found out of the total we have to find: R =
TP

TP + FN

• Precision P estimates the proportion of true links among the ones found: P =
TP

TP + FP

• F-score F computes the mean value of recall and precision: F =
2RP

R+ P

For each dataset, we realize two learnings with ON2PRM(M) and two learnings with M. Then,

we compute the F-score for each, compared with the original transformation process. For each

of the 160 processes, we then have 400 F-scores, 100 for each data set size. In order to have a

comprehensible and synthetic analysis, we present, in the next section, the computed average of

the F-score for each of the 16 categories of transformation processes and the four sizes of dataset.
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Table 2.2: Variation of the mean F-score in function of different parameters tested with a dataset
of size 50 with 100 repetitions. The value between brackets represents the confidence interval at 99%.
bold: highest value in column, italic: lowest value in column. s: number of steps, p: maximal number of
parallel steps, n: number of attributes

s p n ON2PRM(M1) M1 ON2PRM(M2) M2

3
1 2 0.40 [0.03] 0.27 [0.03] 0.56 [0.03] 0.33 [0.03]

4 0.33 [0.02] 0.25 [0.02] 0.45 [0.02] 0.26 [0.02]

2 2 0.24 [0.03] 0.17 [0.03] 0.43 [0.03] 0.26 [0.03]
4 0.25 [0.01] 0.20 [0.01] 0.38 [0.02] 0.24 [0.02]

5

1 2 0.40 [0.02] 0.29 [0.02] 0.54 [0.02] 0.27 [0.02]
4 0.30 [0.01] 0.22 [0.01] 0.43 [0.01] 0.22 [0.01]

2 2 0.37 [0.02] 0.27 [0.02] 0.54 [0.02] 0.27 [0.02]
4 0.29 [0.01] 0.21 [0.01] 0.42 [0.01] 0.21 [0.01]

3 2 0.37 [0.02] 0.28 [0.02] 0.52 [0.02] 0.27 [0.02]
4 0.28 [0.01] 0.22 [0.01] 0.41 [0.01] 0.21 [0.01]

8

1 2 0.45 [0.01] 0.29 [0.02] 0.58 [0.01] 0.25 [0.01]
4 0.31 [0.01] 0.21 [0.01] 0.43 [0.01] 0.17 [0.01]

2 2 0.37 [0.02] 0.25 [0.02] 0.52 [0.02] 0.22 [0.01]
4 0.31 [0.01] 0.22 [0.01] 0.44 [0.01] 0.18 [0.01]

3 2 0.34 [0.02] 0.24 [0.02] 0.52 [0.02] 0.22 [0.01]
4 0.31 [0.01] 0.22 [0.01] 0.43 [0.01] 0.18 [0.01]

2.3.3 RESULTS

Comparison on datasets of size 50

Table 2.2 presents the results for the two methods M1 and M2, with and without ON2PRM, on the

learning with the smallest datasets (size 50). In every case, the results of learning with ON2PRM

are significantly better, with a confidence interval at 99%. This goes into the sense of our hypoth-

esis: keeping the data compartmentalized using the ontology’s semantic enhances the learning.

This can be explained by the fact that the relational schema respectsC1 andC2: while using it, the

algorithm already has some direction constraints (temporal and structural), and does not test use-

less hypothesis. It drastically reduces the number of possibilities the method M has to consider.

As a consequence, even with a very reduced dataset size, we obtain a far better result.

Impact of the data set size

Table 2.3 presents the evolution of the F-score depending on the dataset size for two different

combination of transformation processes complexity criteria, with (a) a low-complexity and (b)

a high-complexity. Once again, we can assess that ON2PRM(M) is better than M. We can also

observe that the F-score increases with the dataset size, which is coherent: the more examples we

have, the better and more precise the learning is. Moreover, we can also assess that the more com-

plex (process complexity criteria wise) a transformation process is, the lower the F-score is, which

is also coherent: since there are more parameters to test (more steps, more possible connections),
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then the room for error is more important.

Differences between the methods

As shown in Table 2.3, recall and precision are both as significant as F-score; however depending

on the methods, performance varies. Precision tends to be, in fact, better with M1, while recall is

better with M2. Since the difference between recall and precision for M2 is smaller than for M1, it

explains why M2 has the best F-score.

Table 2.3: Comparison of performances for recall, precision and F-score for M1 and M2 with
different sizes of the dataset. The value between brackets represents the confidence interval at 99%.

Method Length Recall Precision Fscore
ON2PRM(M) M ON2PRM(M) M ON2PRM(M) M

M1 50 0.26 [0.04] 0.16 [0.03] 0.95 [0.05] 0.81 [0.09] 0.4 [0.05] 0.27 [0.04]
100 0.39 [0.04] 0.24 [0.04] 0.97 [0.02] 0.87 [0.07] 0.54 [0.05] 0.37 [0.05]
150 0.47 [0.04] 0.28 [0.04] 0.97 [0.02] 0.86 [0.06] 0.62 [0.04] 0.41 [0.05]
200 0.51 [0.04] 0.31 [0.04] 0.97 [0.02] 0.88 [0.06] 0.66 [0.04] 0.44 [0.05]

M2 50 0.44 [0.04] 0.27 [0.04] 0.82 [0.04] 0.46 [0.05] 0.56 [0.04] 0.33 [0.04]
100 0.53 [0.04] 0.33 [0.04] 0.90 [0.03] 0.61 [0.06] 0.66 [0.04] 0.42 [0.05]
150 0.57 [0.04] 0.38 [0.05] 0.92 [0.03] 0.69 [0.05] 0.70 [0.03] 0.48 [0.05]
200 0.61 [0.04] 0.4 [0.04] 0.94 [0.02] 0.72 [0.05] 0.73 [0.03] 0.50 [0.05]

(a) Parameters of the process: s = 3, p = 1, n = 2

Method Length Recall Precision Fscore
ON2PRM(M) M ON2PRM(M) M ON2PRM(M) M

M1 50 0.19 [0.01] 0.13 [0.01] 0.91 [0.02] 0.61 [0.03] 0.31 [0.02] 0.22 [0.01]
100 0.29 [0.01] 0.21 [0.01] 0.93 [0.01] 0.73 [0.03] 0.44 [0.01] 0.33 [0.02]
150 0.36 [0.01] 0.27 [0.01] 0.94 [0.01] 0.77 [0.02] 0.52 [0.02] 0.40 [0.02]
200 0.42 [0.01] 0.32 [0.02] 0.94 [0.01] 0.8 [0.02] 0.58 [0.02] 0.46 [0.02]

M2 50 0.33 [0.02] 0.19 [0.01] 0.61 [0.02] 0.16 [0.01] 0.43 [0.02] 0.18 [0.01]
100 0.42 [0.02] 0.26 [0.02] 0.78 [0.02] 0.32 [0.02] 0.54 [0.02] 0.29 [0.02]
150 0.48 [0.02] 0.32 [0.02] 0.84 [0.02] 0.44 [0.02] 0.61 [0.02] 0.37 [0.02]
200 0.52 [0.02] 0.36 [0.02] 0.87 [0.01] 0.52 [0.02] 0.65 [0.01] 0.42 [0.02]

(b) Parameters of the process: s = 8, p = 3, n = 4

Evolution with dataset size

Even with few data a difference between the two learning approaches appears. Moreover while

raising the size of the dataset, every score increases. In order to quantify and compare the per-

formance of learning with ontology and without, we introduce the following ratio RT of the

performances: RT = performance with ON2PRM(M)
performance with M

The more RT is above 1, the more the learning with the ON2PRM algorithm is efficient. We

have used this value to compare the evolution of scores with processes complexity and the dif-

ferent complexity criteria defined (number of step s, number of parent p and number of attribute

n). Figure 2.10 illustrates the evolution of the ratio RT for two processes, (a) a simple and (b) a

complex. As we can see, it is always above 1, confirming that the learning with ON2PRM(M)

is more efficient. However, we can also asses its decrease, which explains that the more data

we have, the lesser the difference between ON2PRM(M) and M is, meaning that the additional
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Chapter 2. Learning a Probabilistic Relational Model from a Specific Ontology

data complements M for its lack of structuration. Depending on the methods this drop can be

narrower or wider: while M1 stays practically stable M2 drops faster. Moreover the ratio varies

equally with the complexity for M2: ON2PRM efficiency is higher with a complex process, which

translates into a higher RT .

(a)
Simple process (s = 3, p = 1, n = 5)

(b)
Complex process (s = 8, p = 3, n = 5)

Figure 2.10: Evolution of F-score ratio for two different processes with the dataset length.

Influence of the numbers of steps and attributes

Finally, we want to analyse the impact of the number of steps and attributes, which are the criteria

the most impacted by the compartmentalization of the PRM. Figure 2.11 presents the evolution

of the F-score in function of the number of steps, for two different numbers of attributes given.

We can assess that (1) the more attributes there are, the lower the F-score is; and (2) given the

confidence interval, it does not appear that the number of steps has a significant influence on the

F-score, even if the global tendency seems to be a stagnation for ON2PRM(M) and a decrease for

M. As shown in the figure, if computed, the ratio RT appears to augment with the number of

steps, which shows that the efficiency of ON2PRM(M) also increases. This is in accordance with

what has already been shown: since the relational schema helps to have a better compartimenta-

lization, a higher number of steps will be computed the same way for ON2PRM(M), whereas it

will add more complexity for M alone that cannot differentiate between the different steps.

Following the results presented in this section, we can conclude that our algorithm is efficient

when learning a probabilistic model of a domain represented in the PO2 ontology: the graphs

structures are indeed closer to the ground truth than when learning with a naive learning.

However, the ON2PRM algorithm has been built for domain ontologies using the core onto-

logy PO2, which is limited. Indeed, this algorithm asks for some prerequisites that are not always

guaranteed in other common ontologies. Next section will discuss its limits and how it could be

expanded to other applications.
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s 3 5 8
n 3 5 3 5 3 5

Ratio 1.70 1.95 2.35 2.45

Figure 2.11: Evolution of F-score in function of n (p = 1, dataset size = 50) and ratio evolution
in function of n and s for M2.

2.4 DISCUSSION

Since the only difference between learning with ON2PRM and learning without stems from the

relational schema, we can safely assess that the compartmentalization brought by this schema

helps improve the learning results, which seems logical: the more information we know about

the domain, the closer to it our learning will be. Thus the relational schema seems to be the

perfect way to introduce all ontology’s knowledge when coupling ontologies with probabilistic

relational models.

However, the one we introduced in this chapter is not general: it is specific to the PO2 ontology,

since the classes defined in RSPO2

are directly recovered from its concepts: Step, Participant,

Observation and Attribute. Moreover, they are also not direct translations, since the Attribute

class is translated into an attribute and not a class in the relational schema. All of these choices

have been made consciously and illustrate the good grasp of the transformation processes domain

that we had: while designing RSPO2

, we already knew what was interesting, and what was not,

and thus directly selected the parts of interest. However, as introduced in this section, the choices

that have been made are not generic enough and cannot be replicated for any ontology. In the next

sections we will detail this particularities and how to deal with the challenges and difficulties they

raise.
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Chapter 2. Learning a Probabilistic Relational Model from a Specific Ontology

2.4.1 DETERMINATION OF EXPLAINING AND EXPLAINED ATTRIBUTES

Given how a transformation process is defined, we have imposed a learning constraint over the

participants’ and observations’ attributes: if a probabilistic relation is found between them, the

direction of such relation has to be from the participant’s to the observation’s attributes. Placing

ourselves from a causal and explanatory view point, we can say that ”the participant’s attribute

explains the observation’s attribute.” Thus we determine that two attributes sharing a causal links

can be defined as follow: the one causing is denoted the explaining attribute, while the one who

is caused is denoted the explained attribute.

In a broader context, as long as we keep this causal and explanatory viewpoint, explaining

and explained attributes are also present. Being able to identify them would allow us to set new

learning constraints that could be translated into a relational schema.

Example 11. Be {A,B,C} a set of explaining attributes and {D,E,F} a set of explained at-

tributes. This means that:

• any relation found inside the set is not structurally constrained: we have no a priori on

their orientation.

• any relation found between attributes of the two sets is constrained: its orientation has

to be from the explaining to the explained set.

This raises the question of the attribute identification, which finds an echo in Pearl’s ladder of

causality presented in Section 1.2. Indeed, if finding correlations in a dataset is easy, determining

causation in the same dataset would however require external input. The first question we ask

then is: would it be possible to determine if an attribute is either explaining or explained just from

the given ontology, without expert knowledge? In other words, does the ontology own enough

causal information to be able to dispense ourselves with humans interventions?

First of all, as mentioned in Section 1.1.7, some works tend to assume that ontologies’ object

properties are causal: in this case, determining explaining from explained attributes would be

easy, as we could do the parallel between range and explaining on one hand, and domain and

explained on the other. However, looking at most of the real-life ontologies shows that it is not

as easy, since object properties are usually defined on anti-causal terms. For instance in PO2, the

relation < observation, po2:observes, participant > would bear no sense on a causal ground: the

observation does not have to decide the state of the object of study! Moreover, some ontologies

use symmetric properties, which are the inverse of the properties they reflect. In our example, it

could be the relation<participant, po2:isObservedBy, observation> (which here would be causal,

but does not exist in PO2). In the case of such symmetric properties, how could we determine the
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context of the attributes?

As a consequence an automatic detection would not be easily applicable, due to the variety of

the ontologies defined. That is why in the next chapter, in addition of ontological knowledge, we

introduce expert knowledge, the equivalent of human intervention.

2.4.2 DEFINING THE TEMPORALITY

The same way as the explanatory’s constraints are given by the participants and observations, the

temporal constraints are given by the succession of steps and the po2:isBefore properties. However,

if causality between attributes can sometimes be difficult to define (meaning given two attributes

we cannot always determine a constraint of direction for their probabilistic link), temporality is

much more easier to define. Indeed, if we can assign to each attribute a certain time, then we can

be sure that past events can always explain future one, without ambiguity.

If the representation of time is usually well controlled in ontologies (with hand-made proper-

ties such as po2:isBefore or by using universal ontologies such as the Time Ontology1), the way to

achieve it is not democratized and can vary. This renders the elaboration of a generic algorithm

hard, since we cannot provide a solution for every possibility in advance.

Moreover, not all ontologies use temporality to define their domain. The fact that PO2 did

eased our elaboration of ON2PRM since it gave us a first constraint easy to determine and under-

stand: a step à time t can only have an influence over steps at time t+k. In the case of an ontology

not defined with temporality, this constraint has to be removed from the relational schema.

2.5 CONCLUSION

In this chapter, we have demonstrated that learning a domain described by an ontology is more

precise if we also use the knowledge encompassed in the ontology. More precisely, we have

presented a specific ontology, PO2, dedicated to represent transformation processes. Using its

semantic and our understanding of the domain, we have defined RSPO2

, a generic relational

schema able to guide the learning of a probabilistic relational model from any domain ontology

using PO2 as a core ontology. The learning itself is done thanks to the algorithm ON2PRM that

we have defined.

However, as raised in the previous section, PO2 presents characteristics that cannot be found

in all other ontologies. As a consequence the relational schema RSPO2

and our algorithm are not

generic enough to be applied elsewhere. In the scope of this thesis, it felt interesting to explore

this path and try to see how our approach could be expanded to address any ontology.

1https://www.w3.org/TR/owl-time/
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CHAPTER 3

INTERACTIVE BUILDING OF A RELATIONAL SCHEMA

FROM ANY KNOWLEDGE BASE

Contributions.

Munch M., Wuillemin PH., Dibie J., Manfredotti C., Allard T., Buchin S. and Guichard E.

Identifying control Parameters in Cheese Fabrication Process Using Precedence Constraints.

In: DS 2018, Chypre.

Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Towards Interactive Causal Rela-

tion Discovery Driven by an Ontology. In: FLAIRS 2019, Florida, USA.

Chapter 2 introduces our algorithm ON2PRM that allows to learn a probabilistic relational

model from any domain ontology using the PO2 ontology’s core. The main idea is to use a re-

lational schema in order to compartmentalize the different variables, and then to learn a proba-

bilistic relational model. This method however is not generic, as it requires a pre-made relational

schema tailored for PO2. In the discussion, we presented the issues that were preventing us to

apply it to any ontology, and concluded that human intervention was required to bring expert

knowledge in order to explain some points. In this chapter, we will present how and to which

extent this human intervention is needed, and how to handle it in order to semi-automatically

build a relational schema from any ontologies. We will conclude by showing how this human

intervention allows causal discovery.

Section 3.1 continues the discussion initiated in the last chapter: we first come back to the

different types of constraints and explain them (3.1.1); then we present the Stack Model RS, a

structure able to guide the construction of the relational schema for any ontology in order to
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express these constraints (3.1.2).

Section 3.2 presents CAROLL (Causal Assumption to pRobabilistic RelatiOnaL modeL), our

algorithm of construction of RS that integrates expert knowledge. This is done in 4 steps: (1)

defining an expert assumption (3.2.1); (2) selecting the corresponding variables (3.2.2); (3) enrich-

ing the learning dataset (3.2.3); (4) validating the learned model (3.3.1).

Section 3.3 describes our method to deduce causal knowledge from the learned result. We

first present how to validate the causality of arcs in the scope or our work (3.3.1). We then present

the different possible conclusions we can draw (3.3.2), and present the particular case of incom-

patibility between our constraints’ sets (3.3.3). Finally, we discuss the setting this causal discovery

requires (3.3.4).

Section 3.4 shows how we evaluate our method. It presents several examples taken from

diverse domains, with different aims. First, we show that our algorithm is able to match our

previous results (see Section 2.3) with a synthetic dataset reproducing a transformation process

(3.4.1). In a second time, we show that it is able to deal with well-known knowledge bases with a

portion extracted from DBPedia about movies, and how any expert can integrate its own know-

ledge in order to constraint the learning (3.4.2). Finally, we show that our algorithm is compatible

with a real-life example on cheese processing with experts from the french National Research

Institute of Agronomy (INRA) (3.4.3).

Section 3.5 discusses the limits of our algorithm and Section 3.6 concludes this chapter.

Experts, users and ontologies

In the following, we will use the terms expert and user interchangeably. By definition, ex-

perts are knowledgeable both on the domain of interest and on the ontology’s concepts

themselves, while users are simply using our algorithm, following the steps described in

section 3.2. However, in order to obtain interesting results, users have to be experts of the

studied domain, otherwise they won’t be able to provide interesting expert knowledge. In

the following, we suppose we interact with an expert who wants to discover new facts about

their domain.

3.1 DEFINITION OF A GENERIC RELATIONAL SCHEMA

Ontologies are built to encompass expert knowledge and structure it in a way that can be easily

handled by computers. The first step of ontologies’ design is to determine competency questions

that allow to define their utility scope (Grüninger and Fox, 1995). To do so, expert knowledge
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Chapter 3. Interactive Building of a Relational Schema From Any Knowledge Base

is required, usually under the form of human expert inputs. If the design choices they bring are

useful to build an ontology close to the target domain, they however lead to design choices that

can broadly vary depending on the experts and the competency questions. This explains in part

the wide diversity we can encounter for ontologies. As a consequence, the idea of designing a

fully automated passage from knowledge bases to probabilistic models is hard to conceive.

On another hand, they already have been ideas to propose the integration of human expert

inputs during the construction of probabilistic of causal models. In the medical domain Jeon and

Ko (2007) proposed a semi-automatic algorithm which extracted nodes from an ontology and let

the expert draw the causal relationships between them. However, this method can be tiresome

if there are a lot of nodes. Moreover the expert does not always know all the causal relations

involved in the domain. On another hand, the approach proposed by (Devitt et al., 2006) also

strongly depends on expert knowledge, while trying to lighten their work by integrating struc-

turation from the ontology. Their approach consists of four steps: (1) selection of the variable

of interest, (2) definition of their different values, (3) definition of the relations between the vari-

ables using the ontology’s properties and (4) estimation of the conditional probability tables. This

allows the expert to have a solid input over the Bayesian network construction, but also to rely

on what the ontology already knows. However, this approach presents the pitfalls already men-

tioned in Sections 1.1.7 and 3.4.3, such as the fact that ontologies properties are not always causal

by nature and not all have a structure that can be directly translated into a Bayesian networks.

The interest of our approach with probabilistic relational model is that it allows a two-times

approach: first we build a global relational schema, that allows more liberty and imprecisions to

the expert than a Bayesian network thanks to the classes compartmentalization and the relational

slots. Once it is defined, it can also adapt to changes from the data: for instance, new experiments

can be integrated, without having to modify the defined relational schema. In the next sections,

we will present a template to easily build this generic relational model: the Stack Model.

3.1.1 EXPLICITATION OF CONSTRAINTS

When we built RSPO2

we defined two types of constraints: temporal and causal. This distinction

was done due to the specificities of the transformation process’ domain, and the two types were

treated the same way in the relational schema: a relational chain separating two classes (as shown

in Figure 2.6). When building our new truly generic relational schema RS, we wanted to keep

this simplicity, and decided to keep the relational chain between the different classes to create

constraints during the learning.

Thus, the same way as temporal and causal constraints were defined to keep track of the origin
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of our learning, integrating expert knowledge in our generic relational schema requires that we

distinguish between:

• Ontology’s structural constraints, which are relational slots directly derived from the on-

tology and whose causality have been approved by the expert.

• Expert’s causal constraints, which are relational slots defined by the expert in addition of

the one he has validated from the ontology.

As we will see in the next section, the ontological structure and the expert’s constraints both

lead to defining relational slots. Yet, it is important to keep in mind that even if a constraint has

been directly derived from the ontology, it always has to be approved by an expert. Moreover,

it is also possible that the expert rebut all ontology’s semantic constraints, if they deem them not

causal: the relational schema would be in that case entirely defined by the expert. As a conse-

quence, the distinction we introduce here is only to show that the expert will have the possibility

of keeping part of the ontology’s structure (such as the temporal properties) to guide the con-

struction of the relational schema. In the following, we keep the distinction in order to show

whether a design choice has been decided considering the ontology original’s semantic or the

expert’s decision.

The main difference between our model and the others presented in the state of the art is

that we never assume a relation between two attributes. The relational schema we build with the

ontology and the expert only tells us that ”This attribute can explain this other attribute”. We decide

the direction, but not the presence of the relation, which itself depends on the data encompassed

in the ontology.

Definition 7: Potential explanation. Given two variables A and B, and a learning constraint

CA→B such that if a probabilistic link is found between A and B, it has to be oriented from

A to B. We say that CA→B is a potential explanation. A potentially explains B, and B is

potentially explained by A.

If a probabilistic relation is found between A and B, their potential explanation can be trans-

lated into two kinds of relations: (1) a direct probabilistic relation from A to B or (2) a sequence

of probabilistic relations from A to B such that, given other variables X , Y , ... it exists a path

A → X → Y → ... → B. This distinction is important, and will be covered in more details in

Section 3.3. For now, we consider that a causal path from A to B can be structured following one

of these two examples.
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3.1.2 STRUCTURE OF THE STACK MODEL

In the same way we used RSPO2

in the last chapter to guide the construction of a relational schema

dedicated to a specific transformation process, we now aim to define a guideline RS for the con-

struction of a relational schema for any ontology. To do so, we introduce the Stack Model, which

is a guideline to build relational schemas. This appellation comes from the fact that in all the

relational schemas we will define using it, classes are piled together. Their relational chains go

from top to bottom, allowing the causal relations to ”flow” from the higher classes to the lower.

This structure encompasses the two kinds of constraints we introduced before, ontological and

expert. In the next section we will illustrate how these constraints are introduced in order to

build a specific relational schema.

Figure 3.1: Structure of the Stack Model RS. This generic relational schema can adapt to any ontology.
During its building, it can encompass between ontological (red) and expert (blue) constraints.

A Stack Model is composed of different classes, that can encompass other classes themselves,

in the same way than a Step class in RSPO2

was composed of the Participant and Observation

classes. These classes own attributes whose relations with other attributes are influenced by their

position in the Stack Model. Indeed, attributes in the upper class are considered as potentially

explaining the attributes in the lower classes, while attributes from the lower classes are considered

as potentially explained by those of the higher. On another hand, if two attributes are from the same

class, then the orientation is impossible to determine from the given constraints alone. Finally, in

the same way there had to be a slot chain between steps for their attributes to share a probabilistic

link in RSPO2

, there must be a slot chain between the classes for their attributes to interact.

Example 12. Given the example described in Figure 3.1:

• A potentially explains E thanks to an expert causal constraint.

• A potentially explains F thanks to an ontological causal constraint.

• A and C cannot have any probabilistic relation because there is no slot chain between

them. The same can be said on F and G, since they are not in the same class: the
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subdivision made by the expert causal knowledge prevents them of sharing a slot chain.

• A and B on the contrary are in the same class: they can share a probabilistic link, but we

cannot assess its orientation from the given constraints alone.

3.2 CAROLL ALGORITHM

In this section we present the CAROLL (Causal Assumption to pRobabilistic RelatiOnaL modeL)

algorithm, whose overall overview is given in Figure 3.2. On the contrary of the ON2PRM algo-

rithm, we are here agnostic when considering the domain we want to model. As a consequence,

before starting to build a relational schema, we need a motivation. For PO2, the motivation was

to understand how each participant and their values were influencing the observations and the

final result of the transformation process. In our case, we need an expert to give us this moti-

vation, which is formulated as an expert assumption: a causal statement about the domain the

expert wants to verify (initialization). From there, a first relational schema is semi-automatically

built (step 1), that is then enriched in a second time (step 2). Using this relational schema, we

learn a model and submit it to the expert that can validate it or not (step 3). In case of reject from

the expert, the relational schema has to be built again, or the model is considered as incapable of

answering the expert’s assumption.

Figure 3.2: Overview of the CAROLL algorithm. This algorithm is composed of three different steps.
Each dotted line indicates when a human expert’s input is required.

In the rest of this section we cover the different steps and how the expert knowledge inter-

venes. As an illustration, we consider the small ontology about university shown in Figure 3.3.
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Student Name

Year of Birth

Sex

Place of Birth

Social Standing

University

Name

FeesCourses

Name

Subject

isRegisteredInisAttendingTo

isOffering

hasForName

hasForBirthYearhasForSexhasForBirthPlace

hasForSocialStanding

hasForName

hasForFees

hasForName

hasForSubject

Biology 101”Pancreatic cell” Harvard

rdf:type
rdf:type

hasForSubject isOffering

Figure 3.3: Excerpt of a knowledge base about students and universities.

This ontology is composed of three main O-classes (Student, Course and University), each being

characterized by specific datatype properties.

3.2.1 EXPERT ASSUMPTION

As we have defined in Section 2.2.1, a good statistical learning relies on three criteria: (1) presence

of discret data, (2) this data is comparable and (3) it is instantiated enough. In order to apply

the method described in the next section, these pre-requisites must also be met: the knowledge

base we wish to study must have datatype properties that are instantiated enough and are linked

together through associations of classes instances and object properties. However, expanding our

methods to knowledge bases other than PO2 raises a new question, which is whether a given

knowledge base can be translated into probabilistic models or not. To answer this question, the

expert must determine if the study of this knowledge base can help him to better understand the

domain: they must have a goal.

In order to initialize our algorithm, we need a goal for the model we want to learn. This goal

takes the form of an expert’s causal assumption and serves two purposes: (1) it gives a criteria

to estimate the quality of the model: ”Can the learned model validate or not this assumption?”. The

same way as ontologies’ competency questions determines the scope of an ontology, the expert

assumption gives a purpose to the model learning. Moreover, it (2) helps the user to make their

selection and estimate if a variable is interesting or not.

Definition 8: User’s causal assumption. Be H a user’s causal assumption, and ∀i ∈ {1, n}

∀j ∈ {1,m}, Ci and Ej variables of a domain. We express H as ”C1, C2,... Cn have a causal

influence over E1, E2,... Em”, and denote

• C1, C2,... Cn as the explaining attributes.

• E1, E2,... Em as the explained attributes.
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Since the user’s assumption is supposed to transcribe a causal reasoning, we will sometimes

present the explaining attributes as causes and the explained attributes as consequences.

Example 13. As an illustration, using the university ontology, we pose HU : ”The birthplace of

a student has a causal influence over its university”.

The user’s assumption H is a statement the expert wishes to verify through the analysis of

the learned model. It transcribes a potential causality between the attributes Ci and Ej : the

expert does not know if there is a relation, but if there is one, then it is oriented from Ci to Ej .

However, the presence of a path alone is not enough to determine wither it is causal or not: it also

need to be causally validated, through methods we will detail in the following. As for now, we

define a causal path as a path (direct or indirect) between two variables whose causality has been

validated. Once the model is learned and validated, several cases are possible:

1. Causal paths are indeed found from all the explaining attributes to all the explained at-

tributes: H is totally verified.

2. Causal paths are found from some of the explaining attributes towards some of the ex-

plained attributes: H is partially verified.

3. No causal path is learned between the explaining and explained attributes: H is refuted.

It is important to note that the absence of causal path between C and E variables is not a way

of evaluating the learned model, as it is only a possible result. However, any of these possible

results can only be concluded if the model has been validated by the expert beforehand. We will

detail the protocol of validation in Section 3.4.

If the assumption gives a statement that the user wishes to verify thanks to the learned model,

then the so-called model has to own variables that would represent the main attributes of the

assumption. This raises a new interrogation: with PO2, we considered only the participant’s and

observations po2:hasForValue datatype property as able to define new attributes. However, it was

a specificity of this particular ontology, that not all ontologies share. As a consequence, we need

to expand our definition of potential variables for building the relational schema.

Since the learning is based on statistical counting, we need values that can be repeated and

compared. For this, we chose to keep looking at datatype properties, which are the only way to

associate datatypes (i.e. values) to ontology concepts. As a consequence, we consider by default

all datatype properties as potential variables for the relational schema (and thus do not restrict

this definition to only one type of datatype property as it was the case in PO2). However, this

opening raises new issues, as not all datatype properties are considered useful for the learning,

for several criteria:
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C1. The datatype property is not relevant to the problem, meaning it cannot help to answer the

assumption. This is a subjective reason, that can only be raised by the user. This is due to the

fact that ontologies can sometimes be very broad and cover a huge part of a same domain.

In this case, the user reserves the right not to include it in the relational schema.

C2. The datatype property cannot be used for statistical learning. This is the case when the

values it takes: (1) are all the same (e.g the characteristic of an apparel that is used for all

repetitions) or (2) are all different (e.g. an ID). In this case, the statistical learning is impos-

sible, since the datatype property’s values do not seem to be influenced by other variables

in the model.

C3. The datatype property has not enough instantiations. This is also linked to the fact that

we wish to learn using statistical methods: if we do not have enough repetitions, then using

this datatype property would bring a lot of missing values, which would render the learning

imprecise and lower its overall quality.

C4. The datatype properties’ values cannot be discretized. It is especially important in case of

a continuous set of values (e.g. an income, a population size), but has to be considered as

well in case of finite set of values with too many different values (e.g. the different cities

of a country). In those cases, the statistical learning cannot be directly done, as we need to

discretize in order to create categories. The number of categories has to stay acceptable in

regards of statistical learning standards: the more they are, the more difficult the learning

will be. This discretization has to be decided by the expert, as its design can greatly influence

the result of the learning. If however the expert cannot define a proper discretization then

the datatype property has to be discarded.

Using these restriction, we pose the definition of the attributes useful for the learning, to which

we will refer in the following.

Definition 9: Attribute useful for the learning. An attribute useful for the learning is a datatype

property whose set of values does not present one of the criteria C1, C2, C3 or C4.

3.2.2 ASSUMPTION’S ATTRIBUTES IDENTIFICATION

This part is done in several steps: (1) recovery of the datatype properties corresponding to the

assumption’s attributes; (2) verification of their connections with each other and (3) their ability

to answer the assumption. If all these steps are validated, we create the Explaining and Explained

classes in the relational schema.

From the user’s assumption, a first selection is made (as shown in Step 1 of Figure 3.2). This

selection is based on a similarity analysis of the attributes composing H and looks for their equiv-
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alent in the ontology. The goal of this selection is to gather variables for the relational schema that

would represent the attributes defined in H.

For all variables Ci and Ej in H, we look for their equivalent in the ontology using a similarity

measure (such as the Jaccard’s measure we selected for our work). To do so, we go through all the

knowledge base’s entities and compute the similarity measure between the variable name and

the entity’s rdfs:label (i.e. its name). If the measure is higher than a tolerance threshold fixed by

the user, then the entity is kept and treated differently depending of its type:

T1 Datatype property: if the entity is a datatype property that respects the criteria to be an

attribute useful for the learning, then it is kept.

T2 O-class: if the entity is an O-class, then we look at all its datatypes properties. For each we

apply T1.

T3 Object Property: if the entity is an object property, then we look at the classes at its range

and domain and apply to each T2.

Example 14. Given HU : ”The birthplace of a student has a causal influence overs its university”

and the university ontology, we define two attributes:

• birthplace of a student: we select the datatype property hasForBirthplace

• university: we select the O-class University, which owns two datatype properties: has-

ForName and hasForFees.

We consider that hasForBirthplace and hasForFees as useful for the learning, and keep them.

However, hasForName (which refers to the university’s name) does not respect R4: for the sake

of the example, we consider that the number of universities’ names is too important and that

it is not possible to discretize them. As a consequence, hasForName is discarded.

Once the set of the datatype properties useful for the learning and corresponding to the as-

sumption have been selected, we realize a first verification to see if they are ”connected”. Indeed,

the interest of learning a probabilistic model is to verify the evolution of each variable in corre-

spondence with the others: as a consequence, we have to be able to tell, for each example, the

value that every variable takes relative to the others. This requires that each datatype property

is joined to the other via a path in the knowledge base, i.e. a combination of object properties

that links the O-classes domains of the selected datatype properties. If such a path exists, then

we have a connected knowledge graph. Otherwise, the attributes that cannot be connected are

discarded.

When the final set of selected datatype properties has been built, we have to verify if it can an-

swer the assumption, i.e. if the set is enough to represent each attribute of the assumption. If not,
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we consider that the knowledge base cannot answer the assumption and we stop the algorithm:

the assumption has to be changed. To do so, we review each variable of H and check its set of

attributed datatype properties:

• If there is none, this variable cannot be represented considering the information encom-

passed in the knowledge base: the assumption cannot be answered.

• If there is at least one, this variable is validated and we look at the others.

If all variables are validated, then the knowledge base is sufficient to answer the assumption.

We create two classes in the relational schema, Explaining and Explained, in which we sort the

corresponding attributes. The Explaining class is placed on the top, meaning that it is potentially

causal of all the variables in the class under it (and thus the Explained class as well). If required,

the user can also add expert knowledge in order to stratify the variables inside the classes. This

expert knowledge can take two forms:

• C1 and C2 have no interaction→ they are placed in two parallel classes without relational

chain

• C1 potentially explains C2 → we create two stacked classes and place C1 in the upper one,

C2 in the lower.

Example 15. From HU , we trace the relational schema RSU presented in figure 3.4.

Figure 3.4: Relational schema RSU built from HU . From the user’s assumption, we only have two
attributes that have been placed in the Explaining and Explained classes.

Once the relational schema is built with the classes containing the attributes built from the se-

lected datatype properties, the learning is theoretically possible. However, we only have created

the attributes that are directly about the assumption: it is then highly probable than the knowl-

edge base owns other potential attributes useful for the learning that would enrich the model.

This enrichment step is described in the next section.

3.2.3 ENRICHMENT

The act of enrichment consists of adding new attributes to the relational schema’s classes in order

to have more information and precision about the possible causal relations. Indeed, in case of
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indirect causation (i.e. when A has a causal influence over B through a causal path with other

variables X , Y , ...), even if the main causal relation is learned (A → B), the final graph lacks of

explanation (we miss the fact that A influences B through X and Y ). Since the user’s assumption

only covers the most important part of the model, we need to complete it so we get the most

accurate possible answer.

In order to enrich the model, we need to find other attributes useful for the learning, and

integrate them in the relational schema. To do so, we must assure that they are linked together, the

same way as the selected attributes were joined by a chain of object properties. As a consequence,

we find new attributes to enrich our model by radiating around those we already have found in

the knowledge base. For each entity, we look at the triples it is involved in and the entities that

share these triples. These entities are also analyzed, until every potential attribute useful for the

learning has been found.

1. For each datatype property selected as an attribute useful for the learning, we look at its

domain O-class.

2. For each O-class, we look at its datatype properties and check if they are useful: if so, they

are added in the relational schema.

3. For each object property linking the O-classes we are studying, we look at the other O-

classes and study them too.

Example 16. From the University ontology and HU , we also select hasFor Sex, hasForBirthPlace

and hasForSocialStanding to describe the student; and hasForSubject to describe the courses he

is enrolled in.

In the end, we gather a set of datatype properties, that represent a group of variables we want

to place in the relational schema. Unlike the previous section were the variables were placed

automatically (in the Explaining and Explained classes), this placement is done by the expert,

according to its knowledge of the domain. They have the ability to create new classes they can

place above, under, or in parallel to other classes. In some cases, they can also use the ontology

structure to define automatic classes in the relational schema (for instance, using the po2:isBefore).

In this case, they are given the possibility of creating as many classes as there are of instances

of the O-classes, which are automatically linked by relational slots mimicking the selected object

property (in our example, po2:isBefore). However, we do not develop this particular in this chapter,

as it echoes our following work and raises new problem about automation that we do not see fit

to present for now. For a more detailed approach on how to automatically deduce a relational

schema from a knowledge base’s semantic, see Chapter 4.

60



Chapter 3. Interactive Building of a Relational Schema From Any Knowledge Base

Example 17. We update RSU with the new variables that we have found. We estimate that

the birthplace, the birth date and the sex can potentially explain the social standing and create

Class 0. On another hand, we estimate that the information about the courses are potentially

explained by the university, but not the contrary: as a consequence, Class 1, which represents

the informations about the courses, is placed under the Explained class. This means that even

if Class 1 can bring more information about the model, it is not required to answer HU . The

result is shown in Figure 3.5.

Figure 3.5: Relational schema RSU built from HU updated after enrichment. The new Class 0 and
Class 1 classes have been manually added by the expert.

3.2.4 VALIDATION

Once the relational schema has been fully designed, we can learn the relational model following

the same protocol as presented in the previous chapter with RSPO2

. For each class of the rela-

tional schema, we build a dataset in order to learn a small Bayesian network, which will be the

base for the class’s relational model’s structure. However, this dataset is built by taking into ac-

count attributes from the class we aim to represent in the relational model, but also from other

potentially causal classes (for instance, the relational schema of Figure 3.5 shows that in order to

learn Class0, we also need to include in the dataset attributes from Explaining). From there, it be-

comes possible then to learn probabilistic relations between attributes that are both not part of the

class we aim to represent. As a consequence, for Bayesian network learned from each class, we

only keep the probabilistic relations learned that include at least one attribute of the considered

step (see Section 2.2.3). All the other relations are not kept in the relational model.
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Example 18. If we consider the relational schema defined in Figure 3.5:

• The Explaining class is learned with the following dataset:
Student student.hasForSex student.hasForBirthPlace student.hasForBirthDate

s1 s1.sex s1.birthPlace s1.birthDate

... ... ... ...

Since it is the first class with no class parent, all learned relations are kept.

• The Class0 class is learned with the following dataset:
Student student.hasForSocialStanding

s1 s1.socialStanding Explaining class dataset

... ...

However, only the relations involving the social standing are kept.

• The Explained class is learned with the following dataset:
Student student.hasForUniversity university.hasForFees

s1 u1 u1.fees Class0 class dataset

... ... ...

Once again, all the relations involving the university fees are kept. In this dataset, it is

important to note that we introduce the student.hasForUniversity column, which forces

to look only at the university in which the student is: this highlights the importance of

the connected data, i.e. each instance has to be linked to the others in order to compare

them.

The system is then instantiated and the resulting model (a Bayesian network) is then presented

to the expert.

A first important thing to note is that a Bayesian network does not automatically allows causal

discovery, as it was covered in Section 1.2. In order to analyse the result and determine if it is valid

or not, we need first to apply methods in order to discover causality and determine if for all arcs’

orientations, those are causal or not. These methods are detailed in the next section. Once done,

the model we have learned is thus partially or completely causally oriented. Two verifications

have then to be done:

1. All the causally oriented arcs are coherent for the expert.

2. There either is a causally oriented path from the explaining attributes (or some of) to the

explained attributes (or some of), either no path at all.

If and only if those two conditions can be verified, then the causal assumption can be an-

swered. However, one must keep in mind that this model was learned under two strong assump-

tions: (1) the causal knowledge brought by the expert is true and (2) the data described in the

knowledge graph represents the reality (and not just a part of it). False information can indeed

lead towards the learning of a model that does not represent the reality, but a distorted one we

assume was true. A better discussion of the consequences of such a learning are given in Section
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3.3.4.

As a consequence, even if the model cannot answer the assumption, it helps raising new ques-

tions for the expert. In the following we present the classical issues an expert can encounter

during the validation and how to deal with them.

• A relation is learned but shouldn’t exist.

– The orientation is wrong. It means that the relational schema has to be questioned.

– The relation itself has to be questioned. It means that the knowledge base is biased

and not balanced. New experiments should be done under other conditions and added

for the model learning.

• A relation is not oriented. The relational schema and knowledge base alone are not enough

to determine the causal orientation of the relation. The expert should run interventional

experiments (if possible) to determine the orientation.

• A relation should exist but is not present. The knowledge base is biased and does not

present all the possibilities. The expert should do more experiments to test the relation

between the two variables in questions and add their results to the knowledge base.

As a consequence, even if the assumption is not answered, the model can suggest new experi-

ments and modifications that challenge the expert’s knowledge in order to give a better overview

of the domain.

3.3 TOWARDS CAUSAL DISCOVERY

Once the model learned and instantiated, we have a Bayesian network whose relations are orien-

ted. However, before causal validation or rebuttal, we are not able to deduce if these orientations

are causal or not. In this section, we will cover a method able to help the expert validate the causal

orientation of the arcs. Once this work done, it can be presented to the expert so they are able to

validate or rebut the model, as described in the previous part. We will also discuss its limits and

the precise framework in which the causal discovery is possible.

3.3.1 VALIDATING CAUSAL ARCS

Causal discovery is possible in our particular case because our model is learned under causal

constraints given by the potentially causal relations. These relations are all encompassed in the

relational schema and thus are directly transcribed in the learning, which results in a model influ-

enced by the ontological and expert knowledge. This result can be seen as the intersection of all the

model constrained by the datatype properties’ values on one hand and all the model constrained
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by the expert knowledge on another. This reduces the search space, and orients our learning

towards the true causal model.

However, the informations brought during the learning are usually not enough to determine

the whole truth and, in the end, multiple models can be possible. Similarly to the essential graphs

presented in Section 1.1.4, with this method we determine, among all the possible models, which

ones have the same orientations. We consider these common arcs as causal.

In order to analyse these common arcs, we propose a protocol in three steps: first analyzing

the inter-classes arcs in the relational schema, then complementing what we deduce with the

essential graph. This protocol is represented in Figure 3.6.

Figure 3.6: Causal Discovery protocol when a model is learned. The set on the left represents all
the models that respect the constraints given by the data. The set on the right represents all the models that
respect the expert knowledge’s constraints encompassed in the relational schema. The set at the intersection
represents all the models that respect both of these constraints. The × represents the learned model (i.e. the
one that is the most probable given the set of constraints). The smallest set in the intersection represents ×’s
Markov’s equivalence class.

Causal arcs validated by constraints: the inter-classes relations

Since all classes have been determined either by the expert’s causal assumption (Explaining and

Explained class) or the expert himself (during the enrichment), we consider that if a relation fol-

lows a given direction, its orientation has been validated by the expert. As a consequence, we can

automatically consider all inter-classes relations as causal given the information brought by the

expert.

During the validation, those relations are the first to be submitted to the expert, since they are

a direct result from their input in the CAROLL algorithm. If they do not agree with a conclusion,

then it means that the relational schema itself is wrong and should be re-evaluated.

Causal arcs validated by the essential graph: the intra-classes relations

On the contrary of inter-classes relations, intra-classes relations have not been directly influenced

by the expert. By essence, all variables in a same class are variables to which the expert could
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Case Type of relation Essential Graph Expert Validation Knowledge base Validation Causality
1 Inter-class → True True Validated
2 Inter-class True False Validated
3 Intra-class → False True Validated
4 Intra-class False False Not Validated

Table 3.1: Different cases for causal validation. Depending of the type of the relation and its orienta-
tion in the essential graph, different cases are possible. As stated before, these conclusions are only possible
if the (1) the causal knowledge brought by the expert is true and (2) the knowledge base’s data represents
the reality.

not bring causal order, usually because he did not have information. As a consequence, more

variables there are in a class, more probable it is to have intra-classes relations. Their orientation

is not fixed by expert knowledge, and in their case it is possible that the learned model does not

represent the reality.

In order to determine which can be oriented, we look at the essential graph. As defined in

Section 1.1.4, the essential graph is a semi-oriented graph that shares the same structure as the

considered Bayesian network, but whose arcs’ orientation transcribes essential arcs (i.e. arcs al-

ways oriented the same way in the Bayesian networks’ Markov’s equivalence class). In the in-

troduction of this section, we presented our learning as the result of an intersection between two

sources: the data brought by the ontology and the expert knowledge. As shown in Figure 3.6, the

result of our learning is at the intersection of the two constraints obtained from these sources, and

it is also part of a Markov’s equivalence class (shown in green). This means that when consulting

the essential graph of the learned model, we have access to all the graphs that respect the expert’s

constraints. Under this pre-requisite, we then determine that if an arc is an essential arc (i.e. it is

always oriented the same way), then it is considered as causal (i.e. all the models that respect the

set of constraints present this orientation).

3.3.2 POSSIBLE CONCLUSIONS

It is important to note that these two methods are complementary, and cannot lead to contradic-

tory results. This is due to the fact that the expert knowledge guide the learning, and automati-

cally rule out models whose essential graph could contradict it: in other words, it is impossible to

learn an essential graph’s oriented arc that would go against the potential causality defined by the

expert. Considering this, all possible cases are described in Table 3.1. Moreover, in the last case,

it is sometimes possible to deduce the causality by propagation of the other causal constraints we

deduced and validated.

Example 19. Consider three variables A, B and C such that A→ B → C. When learning the

model, since there are no V-structure, we thus obtain the following essential graph A B C,
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meaning that either (i) A→ B → C or (ii) A← B ← C are possible.

We suppose that the expert had put a potential causality between A and the set of B and

C, thus creating two classes, one with A and another with B and C. As a consequence, when

referring to the Table 3.1, we have two cases:

• Between A and B, we have the case 2: the causality is validated by the expert knowle-

dge, and even if the essential graph cannot help, we can infer that A→ B.

• Between B and C, we have the case 4: neither the expert nor the essential graph can

help.

However, as we have said, the essential graph pointed towards only two models, (i) and (ii).

Given what we have deduced between A and B, the only remaining possible model is thus

(i): we can then infer B → C.

Once all of the arcs that could be causally determined have been oriented, we can now evaluate

the model. If the expert does not agree with a causal relation, the model has to be re-evaluated

the way we presented before. On the contrary, if the model seems plausible, then we can look for

causal path between the explaining and explained variables. However, if a path exists but has a

non-causal relation in it, then it is not possible to deduce anything.

Three conclusions are possible for the study of the causal influence of explaining over ex-

plained attributes:

• Direct causation (A → B). Given our university example, it would mean finding a direct

causally validated relation between hasForBirthP lace→ hasForFees.

• Non-direct causation (A → ... → B). That would mean finding for instance a causally

validated relation such that hasForBirthP lace→ hasForSocialStanding→ hasForFees.

• Independence (no directed path). Other possible paths could have been found, such as for

instance hasForSocialStanding → hasForFees. But there is no causally validated path

between hasForBithP lace and hasForFees.

3.3.3 INCOMPATIBILITY OF CONSTRAINTS

In some cases, it is possible that the two sets of constraints (expert’s and knowledge base’s) are

incompatible, resulting in the absence of a learned model. If this particular situation clearly in-

dicates that it is not possible to answer the expert causal assumption, it however brings some

indications that can be used to do causal discovery.

Indeed, the same way as anti-causal orientations or presence of arcs between independent

variables can indicate a problem either in the data set or in the expert knowledge, the absence

of learned model strongly suggests that the expert should reconsider either their learning set or
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what they know about the domain.

Figure 3.7: Causal Discovery protocol when a model cannot be learned. This particular case can be
explained by two reasons: either the dataset does not represent the whole domain, or the expert constraints
are not correct.

As a consequence, the causal discovery can be done by answering two questions (as illustrated

in Figure 3.7).

• ”Does the dataset really represent the domain?” Maybe other entries should be added in order

to be more generic.

• ”Are the expert constraints true?” Maybe they are false and/or too restrictive.

3.3.4 DISCUSSION

As we brushed before, this causal discovery is only possible because of particular pre-requisites

that we distinguished in Section 1.2.2.

Causal Sufficiency

Causal sufficiency indicates that all variables needed to learn a complete causal model are taken

into account. Indeed, a classic pitfall of causal discovery is to consider only a part of the important

variables, which would lead to fallacious causal relations: if A is a common cause to B and C but

is omitted in the model, it is highly probable that a relation between B and C is learned, despite

the absence of direct causation in the true model.

As a consequence, the relational schema built with CAROLL must take into account all rel-

evant variables. Usually, the user’s assumption is precise enough to avoid this issue, and the

enrichment is there to help the expert to check within the ontology all the potential variables

he could have omitted. Yet, if the knowledge base partially represents the domain, the causal

sufficiency can be questioned.

67



Data quality

As we described in Section 1.2.2, multiple criteria define the data quality: missing data, selection

bias, measurement error, non stationary or heterogeneous data and deterministic case. If one of

them is not respected, then the data used does not represent the domain, and thus the possible

results are biased.

Consequences

If one of these two pre-requisite is not respected, then the intersection that we studied in the

previous section is not true anymore, and the assumption about the essential arcs being causal

does not stand. As a consequence, all the causal discovery is invalided.

3.4 EVALUATION

In this section, we will present three applications of the CAROLL algorithm. The first application

is similar to the one of the previous chapter, since once again it covers transformation processes.

The interest of this part is to show that through a different algorithm we can obtain similar results.

The second application shows how CAROLL can handle classical ontologies with an extract from

DPPedia. In this part, we play the role of experts as we tackle the films’ domain. Finally, the third

application proposes a real life example with the analysis of a domain ontology used by experts

of the National Research Institute of Agronomy for cheese processing.

3.4.1 SYNTHETIC DATA SET

In this experiment, we present a simple example of a transformation process designed by us.

Fig. 3.8 presents its instantiation in PO2 and Fig. 3.9 (a) its model, built such that each attribute is

represented by one binary variable. For simplification purposes, we suppose here that the orig-

inal object properties hasForParticipant and hasForObject are directly datatype properties here, in

order to simplify the illustration. This does not change the overall idea of PO2. The same way we

explained in Chapter 2, we generate from this model 5,000 different instances of the transforma-

tion process, which corresponds to a knowledge base of 165,000 RDF triplets. Since every variable

is known and binary, we consider for the rest of this experiment all defined datatype properties

as useful for the learning. The user’s causal assumption Hf is: ”p1, p2 have an influence over o4,

o5”.
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Step 1 Step 2 Step 3
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Figure 3.8: Example of an instantiated transformation process using the PO2 ontology. The terms
hfP and hfO are respectively short for the datatype properties hasForParticipant and hasForObservation.

Relational Schema Construction

Hf defines two participants p1 and p2 considered as explaining, and two observations o4 and o5

considered as explained. For each we select the attribute useful for the learning corresponding

in the knowledge base. For the enrichment, we use the expert’s knowledge of both the domain

and the ontology: all participants’ useful datatype properties can be considered as explaining and

all observation’s useful datatype properties as consequence. Due to the temporality induced be-

tween the steps, we also introduce potential explanations between Step 1, Step 2 and Step 3. This

result adds new classes in the initial relational schema: for each step Si, we define one explaining

class Ei and one consequence class Ci, organized such that for all i < j, Ei and Ci classes can

explain Ej and Cj classes. Fig. 3.9 (b) shows the essential graph learned and its relational schema.

Results Discussion

In this small example, the domain is known enough for the classes to be precise (i.e. the expert was

able to give potential causal relations between nearly every variable). As a consequence, the final

model 3.9 (b) only presents inter-classes relations (which are automatically causally validated by

definition). It is interesting to note that a lot of these relations are also validated by the essential

graph.

Since the generative model is known for this experiment (Fig. 3.9 (a)), we compare the result of

learning using the relational schema (Figure 3.9 (b)) and without (Figure 3.9 (c)). In this example,

the intake of the relational schema is important: while (b) is close to the real model (only one

relation has not been learned), the model learned without relational schema (c) is not as close and

even suggest one anti-causal relation (from o3 to p4). Moreover it leads to a false answer to Hf :

p2 is shown with an indirect influence over o5 through p4, whereas it is not the case in the true

model.
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Figure 3.9: Comparison of the different learnings. (a) Ground truth. (b) Model learned with the
CAROLL algorithm. (c) Model learned without the CAROLL algorithm. The grey variables are the expert’s
causal assumption’s.

3.4.2 MOVIES

The DBpedia database collects and organize all available information from the Wikipedia1 ency-

clopedia. Since it describes 4.58 million things (including persons, places, ...), we have decided

for our test to only study a small part of it, on a subject simple enough where we could easily play

the role of an expert. To validate our approach we use the DBPedia part dedicated to films and

the user’s causal assumption He: The origin country of a film has an influence on its number of won

awards. We play the role of the user: since we are not expert of the domain, the results have to be

taken lightly. However, this example allows us to show that (1) the CAROLL algorithm can work

with well-known knowledge bases without adaptation and (2) the user can easily integrate new

constraints in order to modify the relational schema.

Description of the dataset

Since DBPedia encompasses triples created from the Wikipedia database, it is a massive knowl-

edge graph where not all relations are relevant to our problem. That is why we have extracted a

small portion of it, only dedicated to films. The knowledge base used is composed of instances

of movies selected from DBPedia, completed with other data from the Internet Movie Database,

IMDb2. The result is an ontology composed of a single class, <http://dbpedia.org/ontology/-

Film>, from which radiate diverse datatype properties: <dbpedia:ontology/runtime>, <dbpe-

dia:ontology/country>, ... and also three that we have created, for the IMDb score, the genre,

and the number of nominations and awards.

1https://www.wikipedia.org/
2http://www.imdb.com/

70



Chapter 3. Interactive Building of a Relational Schema From Any Knowledge Base

Table 3.2: Discretization of the Movie dataset. Most of attributes have been discretized in order to
form equivalent subsets.

Attribute C1 C2 C3 C4
Budget (M$) 1 - 3.5 3.5 - 18 18 - 5000

Size 3098 3075 3051
Gross (M$) 0 - 3.5 3.5 - 30 30 - 3900

Size 3079 3075 3070
Release Year 1906 - 1988 1988 - 2005 2005 - 2017

Size 3207 3091 2926
Runtime (min) 1 - 96 96 - 110 110 - 356

Size 3294 2968 2962
ImdbScore (/10) 1.5 - 6.1 6.1 - 6.9 6.9 - 9.3

Size 3186 3160 2878
Country America Europa Other

Size 6418 1987 819
Win False True
Size 5800 3424

Nomination False True
Size 4789 4435

Genre Drama - Romance Comedy - Romance Thriller - Drama Adventure - Action
Biography Drama Crime Family

Size 3059 2942 2019 1204

Relational Schema Construction

The attributes are the origin countryO and the number of won awardsW . Using similarity mea-

sures,O is described by the datatype property<imdb:hasForOriginCountry> andW is described

by the datatype property <imdb:hasForWonAwards>. O is discretized using the different conti-

nents, while W is transformed in a binary variable, that takes True if the film has won an award

and False otherwise.

The explaining class is then enriched with the runtime, the budget and the release year, since

they describe the film before its release. Each variable is discretized in equivalent categories.

Moreover, the website IMDb attributes to each movie one or multiple genres: to add this infor-

mation, we use the k-means algorithm to learn four clusters of films, each representing a certain

combination of genres. The consequence class is also enriched with the number of nominations,

the IMDb note (average notation of the film given by the users of the website) and the gross,

since they describe how the public reacted to the film after its release. All of these variables are

also discretized in categories of equivalent proportions (see Table 3.2).

Some attributes were discarded since they could not be efficiently discretized (such as the

different actors); other because they don’t help to check He (such as the Wikipedia ID page).

Finally, a cleaning was done to remove all films were the country, ether it had win an award, the

ImDB score, the release year and the runtime were unknown (i.e. no missing data). We have

81,000 RDF triplets, representing 9,000 films.
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Results Discussion

Using the relational schema, a PRM and its corresponding essential graph (Figure 3.10 (a)) are

learned, in which two inter-classes relation are not oriented (budget and runtime over the gross),

but they can be easily determined thanks to the expert knowledge. Plus, the Consequence class

relations’ study is straight-forward as they are all already oriented and validated by the user.

On the other hand, no Explaining class relation is oriented, meaning that all possible models are

Markov equivalent.

However, from this first iteration, the user judges the influence of the release year and the

budget over the country incoherent: we thus split the Explaining class into two new classes, E0

with the Country variable and E1 with the rest of the explaining variables, while we keep the

Consequence class unchanged. Using this newly defined relational schema we define a second

iteration resulting in the learning of a new PRM and its associated EG (Figure 3.10 (b)). The essen-

tial graph remains unchanged, meaning that our addition of expert knowledge has not modified

the independence model of the first learning. However, thanks to the addition of the new expert

knowledge, we are closer to the true causal model.

From there, the expert continues to suggest new modifications of the relational schema in

order to integrate more potential causality between the attributes. For each of these modifications,

a new model was learned. Figure 3.10 (c) shows the final model resulting of the last iteration. It

shows a relational schema far more divided than in the first pass of the algorithm. In this case,

we can see that some relations change from (a) and (b) in order to respect the new set of expert

constraints, such as for example the addition of a direct relation from the gross towards the win

variables.

As stated before, we are not experts of the domain, and the conclusion we draw have to be

read keeping that in mind. However, given that our experts constraints are true, that there are no

missing variables and that the dataset represents the reality, we can now asses that He is verified:

the origin country indirectly causes whether a film receives or not an award, mainly through the

release year and the budget variables.

3.4.3 CONTROL PARAMETERS IN CHEESE FABRICATION

In this last part, we present an application of our algorithm on a real-life application. The data was

given by the INRA’s TrueFood project, dedicated to investigate the impact of some combinations

of thermophile lactic bacteria (i.e. Streptococcus thermophiluss, Lactobacillus helveticus LH with

2 distinct levels and Lactobacillus delbrueckii LD with 2 distinct levels) on the characteristics
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Figure 3.10: EG and their relational schema learned during the three iterations. (a) First model
learned with only two classes in the relational schema (b) Second model that distinguishes Country from
the rest of the explaining variables (c) Third model where multiple classes are created in order to better
compartmentalize the variables

of hard cooked cheese. More precisely, they aim to evaluate to what extent this impact can be

affected by different factors.

Our dataset focuses on 24 hard cooked cheese of 10kg each. They were manufactured during

three weeks in January 2008, and made using 100 liters vats. During the process, they study the

effect of the variation of three factors F1, F2 and F3:

F1 = Three different temperatures applied for the milk heating (53°C, 55°C and 57°C). Santiago-

López et al. (2018) shows the impact of milk heating and of combination of lactic bacteria

during cheese manufacture on the formation of peptides.

F2 = Two combinations of thermophile lactic bacterias.

F3 = Three kinds of milks. These milks differ in their protein content and their production con-

ditions. O’Callaghan et al. (2017) shows the impact of the type of milk used for the cheese

manufacture (especially the influence of the cows feeding system) on the organoleptic pro-

perties of hard cheeses.

Various parameters were also monitored, such as the different measures of proteolysis. In

particular, the potentially bioactive peptides content of the cheeses were measured at several

steps of the cheese ripening. Finally, the cheeses’ sensory properties were also assessed at the end

of the ripening step: texture and flavor were evaluated by 11 panelists on a 10 points scale.

For this experiment, we follow the assumption Hc formulated by the experts: ”F1, F2 and F3

have a causal influence over the potentially bioactive peptide content of the cheese and its sensory proper-

ties”. They want to asses if F1, F2 and F3 are control parameters, i.e. if determining them can

influence the result.
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F1. Temperatures F2. Bacterias F3. Milk Number of samples

53

1
A 1
B 2
C 1

2
A 1
B 2
C 1

55

1
A 1
B 2
C 1

2
A 1
B 2
C 1

57

1
A 1
B 2
C 1

2
A 1
B 2
C 1

Table 3.3: Cheese plan of experience. Repartition of the 24 cheeses among the three criteria F1, F2 and
F3.

Description of the dataset

The knowledge base describe a transformation process composed of three different steps: Step in

the vat, Ripening and Mastication. For each of the 24 studied cheeses, we had:

• Step in the vat: is described by three processing control parameters (Temperature, Starters

and Type of milk), and two measured (Hardening and Clotting times). The measured times

are useful for the evaluation of the bioactive peptide content.

• Ripening: is described by the measured value of five different concentrations in cheese:

butyric acid, propionic acid, acetic acid, free amino acids and free amino groups, which can

have an impact on the cheese sensory properties.

• Mastication: is described by scores attributed by a panel of 11 judges. For each cheese

sample, they evaluate 45 different criteria (e.g. spice aroma, sugar or fat perception), divided

in 10 texture attributes and 35 flavor attributes. The scores range from 0 to 10. They are

useful to evaluate the cheese sensory properties.

Table 3.3 shows how the main factors were distributed among the cheeses. For each, we also

had two measures of time, five concentrations and thirty-nine scores. As a consequence,

taking into account the tested control parameters, each of the 24 cheeses was represented by

49 variables.

Construction of the Relational Schema

From Hc we deduce that:

• F1, F2 and F3 are directly represented by the three processing control parameters attached

to the step in the vat presented in the previous section. They do not need a discretization,

as the number of tested modalities is within the range of acceptable for statistical learning
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given the length of the database (in our case, 3 to 5 modalities is good).

• The bioactive content is measured by the Hardening and Clotting times, also measured du-

ring the step in the vat. The cheese sensory properties are measured by the scores given in

the mastication step.

If the explained variables can be easily discretized, we are however presented with a high

number of them (especially the notes), which can lessen the quality of the results. As a conse-

quence we first realize a statistical analysis in order to check whether all attributes are useful for

the learning or not. This shows notably that the notes attributes during the mastication step have

a variance σ < 0.25. Given the standard variation calculated by
√
σ, it means that for these at-

tributes the variation over the whole samples is less than ±0.5 points. Since the notation is on

a scale of 10, we consider it to be too low to observe meaningful variations among the different

samples given the discretization. As a consequence, we remove them from the studied set, leav-

ing 39 attributes (9 texture attributes and 30 flavor attributes). Moreover, instead of placing all of

the explained attributes in the Explained class, the expert adds a compartmentalization between

the times and the notes, since they are not part of the same step: the times are now potentially

explaining the notes, as their step is the first to happen.

During the enrichment, we finally add the Concentrations measured in the Ripening step.

The final relational schema is presented in Figure 3.11. We can see that the expert have chosen to

rename the classes such that each step has a class, that can be subdivided if necessary.
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Figure 3.11: Model constructed from the expert assumption Hc. Each class representing a step is se-
parated from the ontology’s structure validated by the expert. The first Step Step in the vat is also subdivided
in two classes by expert knowledge.

Results Discussion

The interest of our approach is the reduction of the space search and the guidance towards a

model closer to the reality. As we have seen, we only have 24 repetitions for 49 variables, which
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is not ideal considering all the tests and (as we will see) the intersections between some of the va-

riables. The relational schema helps to compartmentalize these different variables with potential

causality, allowing to remove models that would not have been interesting (for instance, models

that showed that concentrations or scores could explain the temperature).

First of all, we look at the inter and intra classes relation, showed in Figure 3.12. We can see

that the three potential control parameters share relations with all the classes, meaning that they

directly explain some of their attributes. As a consequence, Hc is at least partially validated.

It is interesting to note that there are a lot of intra-class relations between the different notes

variables, meaning that at least some of them are strongly correlated. In an other study, it could

be interesting to group those who are correlated in order to reduce the number of variables in the

model. Finally, only three sensory notes are not linked at all to any parameter, meaning they are

not explained by any variable in the model.

Temperature
Starters
Type of milk

CONTROL PARAMETERS

Hardening time
Clotting time

Concentrations (×5)

Notes (×36) Notes (×3)

5

5

6

1

4

1

6

40

Figure 3.12: Summary of the number of observed inter and intra step relations. We can see that
three notes are not linked to any parameters, and that the others have a lot of intra-step relations, showing
that at least some of them are strongly correlated.

While the study of the times during processing and concentrations is pretty straight-forward,

all being completely or partially explained by the control parameters, an interesting trend in the

sensory notes attributes can be observed while looking at the essential graph. Figure 3.13 presents

a part of the learned essential graph, as it mostly focuses on the link between the potential con-

trol parameters and the cheese sensory variables. In this figure, the flavor attributes have been

grouped in sets in order to enhance the readability. In it, we can see that the six relations shared

between the control parameters and the sensory variables are mostly from the type of milk (and

one from the starters): those are thus directly explaining some of the variables. More especially,

we can see that the explained variables are texture attributes: as a consequence, the type of milk

mainly explain the cheese’s texture. If we take for instance T1 and T2, we can see that T1 is directly

caused by the milk’s type: even if the relation is not oriented in the essential graph, it remains an

76



Chapter 3. Interactive Building of a Relational Schema From Any Knowledge Base

inter-classes relation and is causally validated by the expert. Moreover, since we have a relation

Milk’s type → T1, then we can orient T1 → T2, meaning that T2 is indirectly explained by the

Milk’s type. The two texture attributes not represented in the network are related to time and

concentration attributes and not directly linked to the control parameters.

On another hand, the flavor attributes are not analyzed as easily. On the contrary, we can

notice that a large group of 21 flavor attributes (over the 30), F1, is d-separated from the control

parameters by another sensory attribute, meaning that this part is in fact equally independent

from the control parameters despite being part of the network. This can be explained by multiple

facts: (1) as we have seen before, there are a lot of correlations between the attributes; (2) the

notes for these attributes have a low variance; (3) they are numerous, despite the low number of

repetitions of the experiments (24 cheeses analyzed).

Definition 10: d-separation. In a directed acyclic graph, a set Z d-separates the sets X and Y

if one of these condition hold:

(i) There is a path from X to Y that traverses Z

(ii) There is a path from X to Y such that X...← m→ ...Y and X is in Z

(iii) There is a path from X to Y such that X... → m ← ...Y such that m is not in Z and no

descendant of m in in Z.

Theorem 3: d-separation. If X and Y are not d-separated, then they are connected.

Theorem 4: d-separation and independence. If X and Y are d-separated by Z, then they are

independent if Z is known.

These observations are validated by the experts: considering the milk differences in terms

of production conditions and composition, the influence of the milk on the cheese texture was

expected. In addition, flavor attributes are indeed more likely to be correlated with each other. In

order to disambiguate their analysis, it would be interesting to group them (in order to remove

those that are too much correlated), and add more repetitions. Since nearly all flavor attributes

are linked together, it could also be interesting to profile the cheeses with their different flavor

values. This way, instead of reasoning with all the numerous flavor attributes, we could directly

check the influence of the control parameter on the cheese type.

3.5 DISCUSSION

The CAROLL algorithm we presented in this section trades the total autonomy of the ON2PRM

algorithm with a better adaptability to diverses knowledge bases. The general relational schema
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Figure 3.13: Excerpt of the EG learned for Hc. We denote Ti the singular texture attributes and Fi the
groups of flavor attributes (this grouping is done for a better readability). Grey attributes d-separates F1

from the control parameters.

guideline we introduce, the Stack Model, is an helpful tool able to directly model potential causal-

ity given a human expert. This input of information helps to guide the learning towards the true

causal model. However, this algorithm also present some issues.

• It is very demanding to the expert. As we have seen, the expert has to manually validate

the variables, and eventually place them in the relational schema if they have been selected

from the enrichment session. If it was an acceptable task for the small examples we have

presented, this can become tiresome when dealing with knowledge bases presenting a lot

of potential variables.

• It does not directly use the ontology’s structure. Since the user has to define all of the rela-

tional schema’s classes, those are indeed created by a human and never automatically de-

duced from the object properties as it was the case with the ON2PRM algorithm of Chapter

2.

• It does not handle well the classes instantiated multiple times in a same process.

The last issue is a throwback to one of the problem we raised while presenting the Bayesian

networks and probabilistic relational models in Section 1.1.5. In case of an oven instantiated

multiple times in the same transformation process, we want to be able to learn only one ”object”

Oven, instead of having to learn multiple times for each instantiations. With the CAROLL al-

gorithm however, this is not possible: each time the oven is instantiated, we have to learn the

relation between its attributes.

3.6 CONCLUSION

We presented, in this chapter, our algorithm able to semi-automatically build a relational schema

from any knowledge base. To do so, we ask to a user expert of the studied domain to formulate

a causal assumption H denoted ”C1, C2,... Cn have a causal influence over E1, E2,... Em” with Ci

78



Chapter 3. Interactive Building of a Relational Schema From Any Knowledge Base

potential explaining variables andEj potential explained attributes. The use of potential causality

allows the user to introduce expert knowledge while also respecting the constraints given by

the data: if two variables are not dependent, then the expert cannot force the learning of a link

between them.

This culminates in an algorithm able to integrate expert’s and semantic’s constraints in order

to learn a model to answer the causal assumption, leading to causal discovery. This causal dis-

covery is however possible only in a very specific setting (dataset complete, that represents the

reality, the expert knowledge is true). We propose in this section a protocol to help the experts

verify their claim from the assumption they formulated and eventually question the validity of

the knowledge base or of their understanding of the domain.

As presented in the Discussion section, this algorithm still lacks of some of the criteria we

would have like to find when coupling ontologies and probabilistic relational models. More espe-

cially, it would be interesting to study whether integrating more of the way the data is structured

while building the relational schema is possible and, if yes, if it can be done while reducing the

work required from the expert.
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CHAPTER 4

SEMI-AUTOMATIC BUILDING OF A RELATIONAL SCHEMA

FROM A KNOWLEDGE BASE

Contribution.

Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Interactive Causal Discovery in

Knowledge Graphs. In: PROFILES/SEMEX@ISWC 2019.

In this Chapter we present our last contribution on combining knowledge graphs and proba-

bilistic relational models. We introduce a new algorithm, ACROSS (AutomatiC RelatiOnal Schema

conStruction), dedicated to the automatic construction of a relational schema from a knowledge

base. Compared to the CAROLL algorithm introduced in Chapter 3, our objective here is to de-

duce as much information as possible from the knowledge base.

Section 4.1 gives an overview of the challenges and issues raised by the automatic generation

of a relational schema from a knowledge base. First we present the general idea of how to pass

from an knowledge base to a relational schema (4.1.1). Then we present the translation rules R

we have defined (4.1.2). Finally, we present the limit cases and the pre-requisite the knowledge

base must have in order to be translated (4.1.3).

Section 4.2 presents the ACROSS algorithm. It first opens with a comparison between CA-

ROLL and ACROSS’s philosophies (4.2.1). Then, we detail its four main parts: the initialization

(4.2.2), the automatic (4.2.3) and interactive (4.2.4) parts, and the learning (4.2.5).

Section 4.3 presents the application of ACROSS on a real knowledge base built from the DB-

pedia ontology. It presents the context, which is about authors and books (4.3.1); then the appli-

cations and experiments (4.3.2), and a discussion on the obtained results (4.3.4).
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Section 4.4 discusses the work presented in this chapter, covering its limits (4.4.1) and high-

lighting the importance of the expert feedback (4.4.2).

Section 4.5 concludes this chapter.

4.1 CLOSING THE OPEN-WORLD ASSUMPTION

As we have presented in the introduction, ontologies and probabilistic models share different

philosophies. While ontologies are dedicated to model expert knowledge to represent a domain,

the Bayesian approach favors the statistical analysis of the given data. Both are able to reason

within the domain, but they take a very distinct approach when dealing with the data. Indeed, on

the contrary of probabilistic models where all cases must be represented, ontologies assume the

open-world assumption (OWA), i.e. that they assume that what is not observed is still possible.

This is one of the biggest issues we encountered, as moving from ontologies to probabilistic mod-

els requires to close the OWA: what is not observed is either impossible (e.g. there is no particle

going faster than the speed of light) or missing data (e.g. we have no data for a given experi-

ment because the device supposed to record the measures was not working, or the expert was not

interested in it).

In the settings presented in the previous chapters, the expert was drawing himself the limit,

by selecting the relevant attributes and defining possible causal explanations; in this section, we

will define guideline rules aiming to automatically close the open-world assumption. These rules

are thought to be as generic as possible, in order to represent most of the cases.

4.1.1 GENERAL IDEA

The main idea of our automatic transition from a knowledge base to a probabilistic relational

model is the same presented in multiple works of the state of the art (Ben Messaoud et al., 2011,

Manfredotti et al., 2015, Truong et al., 2005): O-classes are directly translated to relational schema’s

classes. Moreover, to define their attributes, we keep the idea introduced in Chapter 2 and use

datatype properties. This raises a first important point: since we need values to learn a model,

and that datatype properties are only associated to values when they are instantiated, we only

consider the instantiated part of the knowledge base. This echoes what we have already defined

in Chapter 3: in order to learn the relations between the different attributes, we have to link them,

i.e. to find an instantiated chain of object properties between the instances to connect them.

In this section, we will consider the small ontology of Figure 4.1 as an illustration for our

examples. It is defined by two O-classes A and B, and two object properties OP1 and OP3 such
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that A OP1−−→ B and A
OP3−−→ A (A is self-referencing). In this ontology, there are four datatypes

properties such that A is the domain of DP1 and DP2 and B the domain of DP3 and DP4.

Figure 4.1: Small ontology’s example. We use this ontology as an illustration for Section 4.1.2. For each
rule, we define a set of instances created from this ontology. This allows us to show that even with such a
simple example there are multiple and very different possible knowledge bases.

Using this ontology, we can already illustrate the importance of connected instances. If A and

B are instantiated, but not the object property OP1, then we cannot link the instances of A and

B, even if they seem connected in the ontology. This is due to the OWA: A and B’s instances can

be connected, but there is no obligation for them to be in order to exist within the ontology1. As

a consequence, if we want to learn a model as close as possible to the real data, we have to look

at the instances, and not at the global schema of the ontology that does not reflect the reality of

the instantiated data. Looking at the instances is indeed the only way to (1) gather the values

associated to the datatype properties and (2) see how each instance is linked to the others. This

last point is used to build the dataset on which is based the relational model learning.

As a consequence, the transformation of a knowledge base to a relational schema is studded

with numerous special cases depending on the way each ontology is instantiated. We can deduce

that the transition is not easy and requires a good definition. In the next sections, we will present

a set of rules R to apply in order to deduce the relational schema from a knowledge base.

4.1.2 DEFINING THE TRANSFORMATION RULES

In this section, we will define the rules R that describe how to automatically transform a knowle-

dge base into a relational schema. We start by the most generic, R0, and continue with others Ri

dedicated to more specific cases.

Each of these rules is illustrated by a small example based on the ontology presented in Figure

4.1. The examples will always be structured in three parts as follow:

(i) An example of the instantiated data in which we assume a common notation for any instan-

tiation: iXn is the nth instantiation of the O-class X . This instantiated data and the ontology

of Figure 4.1 form the knowledge base used in the example, and represents a particular case

where the definition of a new rule is required.

1Some ontologies allow to more specify the context in which each instantiation is created (by defining for instance a
min cardinality). In this thesis, we do not consider such information, as not all ontologies use it.
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(ii) The resulting relational schema obtained by applying the rule Ri to the instantiated data in

(i).

(iii) An excerpt of the dataset used to learn the relational model built from the data in (i) and the

relational schema in (ii). The goal of (iii) is to show the difficulty of linking the considered

instances in order to properly learn a probabilistic model.

R0. General Rule

We suppose we have a knowledge base formed by the ontology of Figure 4.1 and the two sets

of instances as described in Figure 4.2 (a). When applying RO, we create for each instantiated

O-class its equivalent class in the relational schema of Figure 4.2 (b). Attributes are added using

the corresponding datatype properties. As we can see in this example, the datatype property DP4

is not instantiated in Figure 4.2 (a), and thus is not represented in the relational schema, despite

having been defined in the ontology.

(a)
(b)

B class dataset

Instance self.DP3 A.DP1 A.DP2
iB1 iB1.DP3 iA1.DP1 iA1.DP2
iB2 iB2.DP3 iA2.DP1 iA2.DP2

(c)

Figure 4.2: R0. General case. The classes and the attributes of the relational schema (b) are defined
using the instantiated data (a). Since DP4 is not instantiated, it is not represented, despite its presence in the
ontology of Figure 4.1. The dataset (c) illustrates that we only link the instances that can be linked: there is
no object property between the first instantiation of the O-class A and the second instantiation of B (i.e. iA1

and iB2), so they are not associated.

As we can see in Figure 4.2 (c), the attributes values for every relational schema’s classes are

brought by the instances that have helped to define this class. As a consequence, for each of these

classes, a group of the knowledge base’s instances are associated. Vice versa, each knowledge

base’s instance is either associated to a unique class, or it is not part of the final relational schema

at all.

R0.

Considering a knowledge base, the relational schema is generated such that:

• The instantiated O-classes are transposed as relational schema’s classes.

• The instantiated object properties are transposed as relational slots.

• The instantiated datatype properties are transposed as attributes.
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R1. Missing Datatype Properties

For this example, we consider a knowledge base composed of the ontology in Figure 4.1 and the

combined datasets of Figure 4.2 (a) and 4.3 (a). In this example we have iB3, an instantiation of

the O-class B with the datatype property DP4, which was not the case for the example used to

illustrate of R0. Considering the new knowledge base, the attribute DP4 is now also added to the

relational schema, resulting in two missing values for iB1 and iB2 in the B class’s dataset of 4.3

(c).

(a)

(b)

B class dataset

Instance self.DP3 self.DP4 A.DP1 A.DP2
iB1 iB1.DP3 ∅ iA1.DP1 iA1.DP2
iB2 iB2.DP3 ∅ iA2.DP1 iA2.DP2
iB3 iB3.DP3 iB3.DP4 iA2.DP1 iA2.DP2

(c)

Figure 4.3: R1. Missing value. This example also uses the instantiated set of Figure 4.2. In this case, the
datatype property DP4 is instantiated for some instances (but not all). As a consequence, it is added to the
relational schema (b), but it introduces missing values (∅) in the dataset (c).

R1.

Given a set of instances S of the same O-class, and a datatype property DP such that:

• The subset S+ of S is instantiated with DP

• The subset S− of S is not instantiated with DP

DP is added to the relational schema as an attribute, to which we associate a missing value

for every instance of S−.

R2. Multiple Instantiations of Object Properties: handling the domain classes

Ontologies usually put no restrictions on the number of object properties per instance. If we

consider the set described in Figure 4.4 (a), A is instantiated with two OP1 object properties, each

with a different instantiation of B. Even if this case is slightly different from the previous one, we

however define the same relational schema as before. This is due to the fact that the instances of

B do not interact with each other (iB1 and iB2 are parallel), and thus they can be grouped in the

same class.
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(a)
(b)

B class dataset

Instance self.DP3 self.DP4 A.DP1 A.DP2
iB1 iB1.DP3 iB1.DP4 iA1.DP1 iA1.DP2
iB2 iB2.DP3 iB2.DP4 iA1.DP1 iA1.DP2

(c)

Figure 4.4: R2. Multiple Instantiations of Object Properties: domain. In this case, we consider iB1

and iB2 as two parallel instances that do not directly interact, even if they are linked to the same instance
iA1. As a consequence, the relational schema does not vary from the one defined in Figure 4.3 (b), and the
dataset (c) can still be filled.

R2.

Given two O-classes A and B, and an object property OP such that A OP−−→ B. If there are

multiple instances of B involved with a same instance of A through different instantiations

of OP , then R0 can still be applied.

R3. Multiple Instantiations of Object Properties: handling the range classes

The case of multiple instantiations of object properties becomes a bit more complicated when

dealing with instances that are range of multiple instances of the same object property. This can

be however quite common: multiple students attending the same university (student1
attendsTo−−−−−→

university1, student2
attendsTo−−−−−→ university1), multiple papers written by the same author (paper1

isWrittenBy−−−−−−−→ author1, paper2
isWrittenBy−−−−−−−→ author1), etc. In this case, the problem is raised when we

want to build the dataset of the range class. Indeed, on the contrary of the previous cases where the

attributes of linked instances could always be traced (in Figure 4.4 (a) iA1 is linked to iB1, so in (c)

the attribute A.DP1 corresponds to the value iA1.DP1), we have here no mean of distinguishing

the different attributes. If we apply the relational schema previously defined to the instances

proposed in Figure 4.5 (a), which value should be attributed in the class B dataset for A.DP1:

iA1.DP1 or iA2.DP1? Since we cannot separate the two values, we need to group them: this is

called an aggregation.

An aggregation is an operation we can apply anytime when at least one instance is range of

several identical object properties. This operation can be a mean, minimum, maximum value,

or any possible operation that can be applied to a set of values, such as a boolean (”Does this set

have a value at least superior or equal to 5?”) or a count (”How many values are there in this set?”). It

has to be defined by the expert, as it is impossible to automatically deduce the most appropriate
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aggregator. If the expert cannot provide one, the link between the two classes in the relational

schema is severed, and we cannot make the instances correspond to each other (an example will

be shown during the application case in Section 4.3, where the attribute Country’s name cannot

be aggregated). For the following, given a datatype property DP, we denote aggDP the aggregated

attribute corresponding toDP , {v1, v2, ...vn} the set of values to which the aggregation is applied,

and aggDP{v1, v2, ...vn} the result of this aggregation.

Figure 4.5 presents a case where an aggregation is needed: for the sake of the example, we

consider two sets of instances, one that requires an aggregation (ia1 and ia2) and one similar to

4.2 (a). The objective is to show that if at least one instance requires an aggregation, we need to

aggregate all the attributes.

(a) (b)
B class dataset

Instance self.DP3 A.aggDP1 A.aggDP2

iB1 iB1.DP3 aggDP1{iA1.DP1, iA2.DP1} aggDP2{iA1.DP2, iA2.DP2}
iB3 iB3.DP3 aggDP1{iA3.DP1} aggDP2{iA3.DP2}

(c)

Figure 4.5: R3. Multiple Instantiation of Object Properties: multiple range. If an instance is the
range of several identical object properties(a), then we need an aggregation in order to express the dataset.
A new intermediate class, Aggregated A, is also defined in the relational schema (b). It takes the place of the
A class in the dataset (c): we do not consider anymore each individual instance from A.

R3.

Given two O-classes A and B, and an object property OP such that A OP−−→ B. If there are

multiple instances of A involved with a same instance of B through different instantiations

of OP , then the values of the different attributes attached to A must be aggregated. In the

relational schema, a new class Aggregated A is created between A and B to which the newly

defined aggregated attributes are associated.

R4. Distinction Between Different Configurations: The Same Object Property

As of now, we have only studied examples where all O-classes instantiations where presenting

the same object properties: for each problem, all instantiations of B had, for instance, only one

instantiation of OP1 coming from A. This case is usually taken as granted, but due to the OWA,
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it is not. In the beginning of this section, we described a case where instances of A and B are

not connected despite sharing an object property in the ontology. Similarly, it is possible that in

a same ontology some instances of B share an object property with A while others don’t. This

raises a fundamental problem: is the missing object property A OP1−−→ B (1) a fact, or (2) a missing

value?

Example 20. Suppose an ontology dedicated to describe books, composed of three O-classes:

Book, Editor and Writer, and two object properties: Editor edited−−−→ Book and Writer
wrote−−−→

Book. Some instances of books are filled without an editor or a writer, and are missing either

the edited or wrote object property.

(1) In the first case, the omission is voluntary. Some book have no editors (maybe because

they have been self-published), and as a consequence it may be interesting to distinguish

them from books that have one. The omission is a fact (i.e. ”The book has no editor”), and

not a missing value. The books should therefore be considered as two different classes.

(2) In the second case, however, the missing value indicates that the knowledge base is not

complete. Some books have no authors, which seems unlikely: the omission in this case

is not voluntary, but an artifact of the dataset. Thus, the books should not be separated

on whether they have or not an author, and should be considered the same, in an unique

class.

This question, as we introduced before, cannot be answered without expert knowledge, as it

directly stems from closing the OWA. However, our goal, in this case, is to offer a first relational

schema fully automatically deduced from the knowledge base, that the expert will be allowed to

modify. That is why, in our rules, we consider all missing object properties as a deliberate choice

(first solution (1)), and create as many classes in the relational schema as there are special cases.

An illustration is given in Figure 4.6, where the instantiations of the B O-class leads to two new

B classes in the relational schema.

This choice allows the user to have a good overview of the data. Moreover, it does not make

assumptions on the domain and stick as much as possible to the different cases: we suppose that

every piece of information, present or missing, has been intentionally designed this way for the

knowledge base. This choice also allows the expert to have a brand new look over its data, and

eventually discover some patterns (such as books with no authors or publishers) that could have

been hidden in the original knowledge base.
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(a)
(b)

B 1 class dataset
Instance self.DP3 A.DP1

iB1 iB1.DP3 iA1.DP1
iB1 iB1.DP3 iA1.DP1

B 2 class dataset
Instance self.DP3

iB2 iB2.DP3

(c)

Figure 4.6: R4. Distinction between different configurations of the same object property. iB1

and iB2 both are instances of the B O-class, but with different configurations, since one shares an object
property with A and the other don’t. As a consequence, we distinguish them in the relational schema and
create two classes (despite having only one B O-class in the knowledge base).

R4.

Given one O-class B range of an object property OP , and S a set of instances of B such that:

• The subset SB+ of S is instantiated as a range of an OP ’s instance

• The subset SB− of S is not instantiated as a range of an OP ’s instance

For each subset, a new class is created in the relational schema. Their attributes correspond

to the sets’ instances’ datatype properties, and the relational slot representing OP is added

only for SB+ .

R5. Distinction Between Different Configurations: Different Object Properties

Similarly to the problem we just described, it is also possible that there exist multiple distinct

object properties between two O-classes. As a consequence, the number of possible combinations

is raised.

Example 21. Be a knowledge base about a university with twoO-classes Teacher andUniver-

sity and two object properties Teacher hasStudiedIn−−−−−−−−→ University and Teacher teachesIn−−−−−→ Univer-

sity. There are four possible configurations for the university: (1) universities where there are

teachers that teaches and have studied in, (2) universities where there are teachers that only

teaches, (3) universities where there are teachers that have only studied in, and (4) universities

with no teachers. Note that if the two last cases seem ludicrous, they are, however, allowed

by the OWA, once again highlighting the need of a human supervision while dealing with

knowledge bases.

Same as the previous problem, we consider, in this case, each combination as a possibility that

must be specified: we create as many classes in the relational schema as there are of combinations
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among the instantiations, be it from the point of view of the range (Figure 4.7) or the domain (Figure

4.8).

(a)
(b)

B 1 class dataset
Instance self.DP3 A.DP1

iB1 iB1.DP3 iA1.DP1

B 2 class dataset
Instance self.DP3 A.DP1

iB2 iB2.DP3 iA1.DP1

(c)

Figure 4.7: R5. Distinction between different configurations of multiple object properties:
range. iB1 and iB2 are both instances of the B O-class, but are linked to iA1 with different object prop-
erties. As a consequence, they are divided in two different relational schema’s classes, B 1 and B 2.

(a)
(b)

B 1 class dataset
Instance self.DP3 A.DP1

iB1 iB1.DP3 iA1.DP1

B 2 class dataset
Instance self.DP3 A.DP1

iB2 iB2.DP3 iA2.DP1

(c)

Figure 4.8: R5. Distinction between different configurations of multiple object properties: do-
main. iA1 and iA2 are both instances of the O-class A, but are the domain of different object properties. As
a consequence, they are both treated as different classes in the relational schema.

R5.

Given one O-class A, and the sets Sdomain and Srange of object properties that take A respec-

tively for domain and for range. For each instance of A presenting a unique combination of

datatype properties from Sdomain ∪ Srange, we create a new class in the relational schema.

R6. Self-References in the Knowledge Base

Sometimes, anO-class can be self-referencing. If this is possible and common in ontologies, this is

however impossible to be directly represented in relational schemas, where cycles are forbidden.

On the contrary, if we want to represent a cycle of self-referencing in a probabilistic schema, we

need to decompose it into a succession of classes in order to be able to compare them: we compare

the first steps of the cycle together, then the second steps, the third... until the last.
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Example 22. Let’s suppose a knowledge base dedicated to represent biological genes. Each

gene is composed of a succession of nucleotids, following each other like a string. We have

one O-class, Nucleotide, and one object property, Nucleotide isBefore−−−−−→ Nucleotide. To describe

a gene, we then have a set of Nucleotide’s intantiations, each linked to the other through the

same isBefore object property. To compare two genes, we will then need to compare:

• The first nucleotide of one gene with the first nucleotide of the others

• The second nucleotide of one gene with the second nucleotide of the others

• ...

As a consequence, self-referencing classes are transcribed in the relational schema with respect

to their position in the succession of instances. Figure 4.9 gives an example where we added the

object property OP that allows A to self-reference. In the instantiation example (a) we can see six

instances of A, which directly translate into three classes in the relational schema.

(a)
(b)

A 3 class dataset

Instance self.DP1 A 2.DP1 A 2.A 1.DP1
iA3 iA3.DP1 iA2.DP1 iA1.DP1
iA6 iA6.DP1 iA5.DP1 iA4.DP1

(c)

Figure 4.9: R6. Self-references in the knowledge base. Each instance is considered as a different class
in the relational schema, so it allows a better comparison between the instances: for instance, iA3 and iA6 are
both in the third position, so they are part of the same relational schema’s class.

R6.

Given one self-referencingO-classA, we instantiate as many classes in the relational schema

as there are instances linked through self-reference.

4.1.3 LIMITS AND CONCLUSION

The rules R we have presented share the same objective: guiding the automatic generation of

a relational schema by giving general directive to close OWA. They all point towards a same

definition of a relational schema’s class, which is:
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Definition 11: ACROSS’s relational schema’s class. A relational schema’s class is defined in

ACROSS as a group of instances of the same class, that are all domain of the same object

properties and range of the same object properties. Its attributes are defined by their in-

stances’ datatype properties.

We also give the definition of Parents and Children to describe the relations between the rela-

tional schema’s classes. However, it is important to note these restrictions are here mainly to help

define a first model to ease the expert’s load of work, and are not definitive. The modifications

they may be subject to will be discussed in the next section.

Definition 12: Parents and Children. Be iX an instance of the O-class X . For every object

property in which iX is involved, we denote

• iP as a Parent of iX if and only if there is a relational slot such that iP → iX

• iC as a Child of iX if and only if there is a relational slot such that iX → iC

The way these rules R are created also leads to a restriction on the relational slots. As we have

seen, to each relational schema’s classes are associated to a group of unique instances from the

knowledge base, in order to bring the values for the relational classe’s attributes. The restrictions

of the relational slots assure us the minimum number of missing values.

Property 3. Given two relational schema’s classes A and B that share a relational slot such

that A→ B.

1. For every instance of the knowledge base associated to B, it is linked to at least one

instance associated to A.

2. It exists at least one instance of the knowledge base associated to A that is linked to

minimum one instance associated to B.

This property guarantees that there are no missing parents: all instances will have at least a

parent if a relational slot points towards their class.

This definition allows to clear an issue we encountered in Chapters 2 and 3: a class is now

considered as a group of instances that are defined in a same ”context” (i.e. which are range and

domain of the same properties). As a consequence, even if a class is instantiated multiple times

(such as an oven in a same recipe), as long as its instances are comparable (share the same context),

then they are part of the same relational schema’s class.

This means that the generated relational schema owns at the very least as many classes as

there are instantiated O-classes in the ontology, and potentially much more if there are multiple

combinations of object properties (i.e if R5 is applied). In fact, this leads to one of the limita-

tions of our automatic deduction: while sticking as much as possible to the data described in the
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knowledge graph, multiple combinations of object property could lead to an exponential number

of relational schema’s classes which would potentially bear no sense and be hard to review for

the expert. As a consequence, this method of automatic generation is more efficient with classes’

instantiations that share a similar pattern: same datatype properties (less missing values) and

same object properties (same context, so same relational schema’s classes).

However, even if these rules give a good start for the elaboration of the relational schema,

they are not able to devise a fully functional one. This is due to our will of always keep the expert

close to the decision process. Indeed, in case of aggregations (R3), we still need them to define

the aggregation function; some datatype properties, even if they are still relevant for the learning

(see Definition 9), are not relevant for the domain’s representation (for instance, the Wikipedia

ID page for the movie example of Section 3.4.2); some distinctions made between classes (R4 and

R5) are not true and need, on the contrary, to be combined. Finally, we define the relational slots

between the classes according to the ontologies’ object properties which are not causal by essence.

All of these problems require a human expert verification, that we will define more precisely in

the next section.

4.2 ACROSS ALGORITHM

In the previous section, we have presented the main general rules to automatically translate any

knowledge base to a relational schema. However, as we have pointed out in Section 4.1.3, these

rules alone are not enough and need human expert verification. In this section, we present the

ACROSS algorithm and how this introduction of human expert’s knowledge, under the form of

user’s modifications, is intertwined with the automatic generation we described.

4.2.1 COMPARISON BETWEEN CAROLL AND ACROSS

The first major difference between CAROLL and ACROSS is the absence of user’s assumption.

Indeed, since the relational schema is automatically generated from the knowledge base, we don’t

need a motivation anymore to structure the relational schema. This raises another distinction:

on the contrary of CAROLL, where a model was built for a purpose (i.e. to verify the user’s

assumption), a model built with ACROSS has no stop criteria: it can always be enhanced, and

will truly be considered as validated when all edges are causally oriented. This last option is

more demanding, because the model is no longer considered as finished when it becomes able to

answer the user’s assumption. On the contrary, it will be up to the expert to keep in mind what

they want to verify with the model and to use it to decide their own criteria of validation. Indeed,
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in order to realize these modifications, the expert must have formulated their own questions and

hypothesis.

A second difference is the clear separation between the automatic portion of the algorithm

(i.e. the first step of the relational schema generation) and the interactive section (i.e. the second

step of user’s modifications). CAROLL allows a control over every automatic decision, but these

several verifications could grow tiresome and repetitive if there are too many variables to check.

On another hand, ACROSS allows the user to first have a good overview of the overall data, not

only of the classes and object properties, but also on the way they are instantiated (in order to

distinguish the particular cases raised by the rules described in the previous section). It is only at

this moment, when all the available data is visualized, that (1) the expert can decide whether the

data can be fitted in a model (i.e. not too many particular cases, for instance defined by R5) and

that (2) their contribution is required.

Despite these two main differences, the algorithms are pretty similar. More particularly, once

the relational schema has been defined by the user’s modifications, the overall learning, verifica-

tion and causal discovery remain mostly the same. That is why in the following sections we will

detail mostly the two first steps, and not the evaluation and causal discovery as it was already

covered in Section 3.3.

Figure 4.10 gives an overview of the algorithm and, as in Figure 3.2, shows in dotted lines the

steps where expert’s inputs are required.

Figure 4.10: Overview of the ACROSS algorithm. The algorithm is composed of three distinct steps:
a fully automatic generation of the relational schema, an injection of expert knowledge and an expert vali-
dation. Once these three steps are done, the causal discovery is possible. Each dotted line indicates when a
human’s input is required.
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4.2.2 INITIALIZATION

For the initialization, we only require a knowledge base about the domain we wish to represent.

As for every previous examples, this knowledge base has to be relevant for causal reasoning,

i.e. it has to represent a domain whose variables and causal relations are interesting to model.

Moreover, it must respect the same criteria defined in Section 3.2.1: enough classes’ instantia-

tions, presence of datatype properties. It has to contain all the important information to build a

relational schema. To these criteria, we must also add a new one, that we have sketched out in the

discussion of the previous section (4.1.3): the classes must show similar patterns (same datatype

or object properties between the instances), and not too many particular cases (such as different

object properties combinations).

When a knowledge graph has been selected, a first pass is made to verify whether the ob-

ject properties create cycles between the classes, as they would prevent the good running of the

algorithm. Indeed, as we have presented, the orientation of the relational schema’s relational

slots is initially made according to the orientation of the object properties. However, this raises a

problem when the orientation of the object properties creates a loop between the O-classes, as it

would be transcribed into a cycle in the relational schema, which would not be possible. Figure

4.11 (a) gives an example of the two kinds of cycles that can be found: a first one across multiple

instances, and a second between only two instances. The second one is usually due to symmetric

properties, i.e. object properties defined in the ontology as the contraposition of existing proper-

ties (e.g. isMotherOf and hasForMother). Both of these cycles have to be broken in order to use

the ACROSS algorithm, the easiest solution being to remove an object property (as shown in (b)

which presents one of the possible solution to the problem). Yet, this solution is not easily done,

since removing an object property in any cases (and not only when presented with symmetric

object properties) also removes semantic meaning and orients the construction of the relational

schema towards a certain direction. If the user’s modifications described in Section 4.2.4 are able

to correct afterwards the relational schema, it would really ease the expert’s load of work if the

cycle’s breaking is already leaning towards a causal orientation. Moreover, if removing an object

property can be easily done in the case of symmetric properties, it becomes a bit more uneasy

when dealing with cycles spreading over multiple object properties: in this case, the suppression

of one (or more) object properties has a deeper meaning, that can bear more consequence in the

expression of the knowledge base’s semantic.

As a consequence, in case of cycles in the ontology, the best solution for now would be for the

expert to preselect beforehand which object properties he would prefer to keep. If not possible, an
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easiest (but not as efficient) solution is to break every cycle by removing a random object property

in it. As we have seen, if this can be considered when dealing with symmetric properties, this

however cannot be properly considered for bigger loops. Section 4.4.2 presents another idea that

could guide towards a semi-automatic solution.

Figure 4.11: Examples of cycles in an ontology and how to remove them. (a) This set of instances
presents two kind a cycles: (1) between a, b and c and (2) between b and d. (b) Example of a solution to
remove the two cycles shown in (a).

4.2.3 RELATIONAL SCHEMA’S AUTOMATIC GENERATION

When we are assured that the ontology’s cycles are dealt with, the automatic generation is done

in two steps.

1. Initialization of the Relational Schema. The first step of the relational schema’s automatic

generation is to create the highest classes in the relational schema, i.e. the classes that are not

range of any object property. They are defined using the rules we introduced in the previous

section. It is important to note that such a class always exist in the ontology, as long as all cycles

have been prevented during the initialization. Once defined, they give us a starting point: every

other class we build afterwards must be linked to them.

2. Completion of the Relational Schema. Once initialized, we look for O-classes’ instances

in the knowledge base such that (1) they are not part yet of a relational schema’s class; (2) for

every object properties they are involved in, the domain instances belong to one of the relational

schema’s class (i.e. their parents are already part of the relational schema). For every class defined

this way, we complete the relational schema and add them with the corresponding relational slots.

We loop this step until there are no more instances to add in the relational schema or that we do

not find any more possible child to create new classes.

The relational schema created this way is strongly dependent of the instances represented

in the knowledge base, and especially the object properties’ orientations. However, as we have

already pointed out, this semantic does not always reflect the causality, and the choices we have

automatically made are potentially wrong. That is why this relational schema is only a first draft,

and can never be considered as valid without the expert’s validation first.
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4.2.4 USER MODIFICATIONS

The expert is presented with the created relational schema, to which he is able to bring several

modifications which are denoted as user’s modifications. They are categorized in three different

types: addition, removal, modification. Those can be applied at four different granularities in

the schema: at the class, relational slot, attributes or instances level. The user can technically use

as many modifications as they wish, as long as these can be applied, in order to define a relational

schema as close as possible to what he knows about the domain.

However, these modifications raise new questions, since they have to be consistent with the

knowledge base: for instance, we cannot create a relational slot between two classes that represent

O-classes which are not linked (directly, or through a combination of object properties) in the

knowledge base. As a consequence, their use is limited given the instances represented in the

knowledge base. More details about these user’s modification and their limits are covered in

Appendix A.

4.2.5 LEARNING

Once the relational schema has been approved by the expert, the relational model can be learned.

It is done exactly the same way as described in the previous chapters, using the datasets for each

class and its potential parents, and taking into account each missing value.

The way the relational schema is generated even allows to solve a recurrent issue mentioned

in section 3.5. Indeed, until now, when an O-class was instantiated multiple times in different si-

tuations (i.e. an oven used for multiple preparation steps in a single recipe), the learning we have

described for ON2PRM and CAROLL required to learn as many classes as there were instantia-

tions of the O-class (instead of a single one). This issue is solved with ACROSS, where during the

generation of the relational schema, we group instances with a same context (i.e. they are instan-

tiated in a same fashion, see Definition 11) in the same classes. This way, all the instantiations of

a same O-class in the knowledge base, if they are in a same context, can be learned together.

4.3 EVALUATION

In order to illustrate the ACROSS algorithm, we chose to work with a part of the DBpedia knowle-

dge base dedicated to writers. We want to see whether the information we know about an author

and their background has an influence over the books they write.
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Figure 4.12: Schema of the excerpt of DBPedia used to represent writers. Only the datatype prop-
erties kept in the final relational schema are showed.

4.3.1 DOMAIN

The same way we have restricted our domain of study to movies in the previous chapter, we

chose here to restrain our study to a much smaller knowledge base2, dedicated to writers that

have written books. During this first pre-selection, we have selected four classes to represent our

domain: Writer, University, Country and Book. This selected part of the ontology is presented in

Fig. 4.12. Considering all possible properties (object and datatype) associated to every instances

of these classes, we obtain a dataset of 6,908 triples and 185 writers.

4.3.2 EXPERIMENTS

The chosen ontology can be causally studied: we can formulate causal questions and hypothesis

over its different attributes, and have expert knowledge in order to guide the construction of the

relational schema. Moreover, it does not present cycles within its classes. As a consequence, the

automatic generation can begin without beforehands modifications.

Automatic generation

The Writer class is the only class which is not range of a datatype property. As a consequence,

it is the first to be added to the new relational schema, alongside datatype properties such as

dbp:Genre, dbp:Gender and dbp:Birthdate, which respectively represent the type of books the author

writes about, its sex and its birth date. The same way as we were automatically determining

whether an attribute is or not relevant for the learning in Chapter 3, we apply a selection over

the other datatype properties. For instance, the DP occupation is not easily discretizable and, as a

consequence, is discarded. The result of this first selection is shown in Figure 4.13 (a).

From the Writer class, the University and Book classes are defined in the relational schema.

2https://bit.ly/2X0eeCw
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The Book class is pretty straight-forward, and has for attributes the datatype properties dbp:release-

Date and dbp:numberOfPages, which respectively represent the book’s date of release and number

of pages. On another hand, the University class presents more difficulties. For example, it in-

troduces an aggregation: indeed, some universities had multiple authors enrolled. As a conse-

quence, during the revision of the relational schema, the expert will need to find an aggregator

for the author’s attributes. Finally, the university is represented by two attributes: dbp:Endowment

and dbp:ARWURanking, which respectively represent the University’s funding and its position in

the Academic Ranking of World Universities (ARWU). The result is shown in Figure 4.13 (b).

Finally, the Country class is added, with for attribute rdfs:label, which indicates the country’s

name. Since multiple universities can be registered in a same country, we also need to aggregate

the university’s attributes. The result is shown in Figure 4.13 (c).

Figure 4.13: Automatic generation of the author’s relational schema. Each step (a), (b) and (c)
corresponds to an automatic addition following the ACROSS algorithm. User’s modifications have not been
applied yet and an expert’s input is still needed for the two aggregations.

User’s modification

According to the original knowledge base, the sequence of relational slots is such that Country←

University←Writer→ Book (as shown in Figure 4.13 (c)). However, this presents two anti-causal

relations, as it considers that the Writer’s attributes might explain the University’s which, in turn,

might explain the Country’s. On the contrary, it seems more logical to build a model such that the

Country’s attributes might explain the University’s which themselves explain the Writer’s. As a

consequence, the relations between Country and University on one hand, and the relation between

University and Writer on another hand, are reversed in order to obtain Country → University →

Writer→ Book.
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Every time the relational schema is modified, the potential aggregation are re-evaluated. After

the changes we introduced, the current aggregation automatically determined is such that:

• The new relation Country → University removes the aggregation, since a university can

only have one country.

• The new relationUniversity →Writer transforms the aggregation between the two classes.

Indeed, as it is possible for a university to welcome several writers, it is also possible for

some writers to have attended multiple universities. As a consequence, the aggregation

remains, but the attributes aggregated change: we now need to aggregate the university’s

attributes.

Moreover, since the Country is linked to the Writer through the University, then in order to

link Country to Writer, we also need an aggregator for the Country attributes. Since Country repre-

sents the country of the university to which the author went, then if the author went to different

universities, they probably also went to different countries, hence the aggregation.

The different attributes to aggregate (University’s and Country’s) are presented to the expert

(in this case, us) so they can either propose an aggregation or discard the relational slot.

• Writer and University. For each university, we create two aggregated variables. The ARWU

Rank is aggregated as the highest university’s rank to which the author went; similarly, the

endowment is aggregated as the highest endowment among all of the universities an author

went to.

• University and Country. The only available country’s attribute to aggregate is the label, for

which we, however, found no possible intelligent aggregation. As a consequence, the rela-

tional chain between Country and Writer is severed: during the construction of the Writer’s

dataset, we do not consider the Country’s attribute anymore.

In the end, for each class, we keep the following attributes and discretize them as follows:

• dbo:Country: each country is only represented by its label. Since the majority of our writers

are Anglo-Saxon, we distinguish five categories: USA, Canada, Great Britain, Europe and

Asia.

• dbo:University: each university is represented by its ARWU, and its endowment. The en-

dowment is split by its median value. The ARWU ranking is split between the first hundred

universities, and the rest.

• dbo:Writer: each writer is represented by their gender, their genre and their birth date.

Genders are split between male and female, while genres are split between fiction and non-

fiction. Birth dates are separated by their median, 1950. Two aggregated attributes have

been also added: the highest rank among all universities they went to, and the highest
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Table 4.1: Discretization of the Writers dataset. The attributes indicated by a * are aggregated at-
tributes. They refer to the writers.

Attribute C1 C2 C3 C4 C5
Number of pages 6 250 > 250

Size 292 456
Release Date 6 1980 > 1980

Size 236 512
Genre Fiction Non Fiction
Size 692 56

Gender Male Female
Size 592 156

Birthdate 6 1950 > 1950
Size 486 262

Endowment 6 109 > 109 Missing
Size 92 57 22

University’s Max Endowment* 6 109 > 109 Missing
Size 316 419 13

ARWU rank 6 100 > 100 Missing
Size 46 123 2

University’ Max ARWU Rank* 6 100 > 100
Size 238 510

Country Name U.S England Canada Asia Unknown
Size 125 25 11 8 2

Country
Label

University
ARWU rank Endowment

Writer
Gender Genre Birthdate

Book
Number of Pages Release Date

Aggregator

MaxMin

Figure 4.14: Relation Schema defined from the knowledge base and the expert’s knowledge.
Since a writer can have multiple universities, we introduce an aggregation between the two classes.

endowment they went to, with the same discretization used before.

• dbo:Book: each book is represented by its number of pages and its release date. The num-

ber of pages is split between books with 250 pages or less and the others; the release date

attribute is split between books published before 1980 and those published after.

The final relational schema defined both from the knowledge base and the expert’s knowledge

is presented in Fig. 4.14.

4.3.3 RESULTS

Once the relational schema has been validated, we learn the different classes. Each of them has a

different context, so they are all learned separately. Moreover, there is no self-referencing class, so

there is no need for memory. Figure 4.15 presents both the probabilistic relational model learned

(a), as well as its essential graph (b), which are both analyzed in this section.

Inter-classes relations. We have three interclasses relations: one between Label and Endow-
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(a)

Label

ARWU rank Endowment

GenderGenreBirthdate

Number of PagesRelease Date

MaxMin

(b)

Figure 4.15: Probabilistic relational model learned on a DBPedia extract about authors, and its
associated essential graph. (a) Probabilistic relational model learned. Plain arrows indicates probabilistic
relations. (b) Associated Essential graph. Plain arrows indicate essential arcs, non-oriented ones indicate the
edges. Dashed arrows only serve as a visual cue to indicate aggregation.

ment, one between the highest ARWU rank and the book’s release date, and another one

between the author’s birth date and the book’s release date. Since the relational schema’s

classes have been built from the knowledge base and the relational slot’s direction decided

by the user, then we have a causal discovery validated by both the ontological and user’s

knowledge.

Intra-class relations. Among the oriented relations in the essential graph, only one is an intra-

class relation, and is thus validated by the data: from Release Date towards Number of

Pages. The other intra-class relation (between ARWU Rank and the Endowment) is not

oriented, and thus the given ontological and expert’s knowledge are not enough to assume

the causality between those two attributes.

4.3.4 DISCUSSION

For this experiment, we play the role of experts. As such, it falls to us to validate or not the

learned model. In this particular case, the relations validated either by expert or ontological’s

knowledge appears reasonable and agree with common sense. For instance, it seems logical that

a university’s ARWU rank and its endowment are correlated, and that the endowment itself is

explained by the university’s country. As a consequence, we can causally accept the relations

already oriented in the essential graph or the inter-classes ones.

Only one non-oriented relation remains, between the ARWU rank and the endowment. Ho-

wever, this orientation can be deduced, as we have shown in the previous chapter’s Example 19.

Since we have Label Endowment ARWU Rank, but that we know that Label→Endowment, thus

we can infer that Endowment→ARWU Rank (or otherwise we would create a V-structure).

However, as it has already been discussed in 3.3.4, all of this causal discovery remains true
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Table 4.2: Joint probability of the attribute releaseDate depending on the attributes
writer.birthDate and writer.min arwu. The low values 0.01 are an artifact of learning and indicate
that these combinations are not encountered in the dataset.

writer.birthDate writer.min arwu releaseDate
before 1980 after 1980

before 1950 100 or less 0.58 0.42
after 1950 100 or less 0.01 0.99

before 1950 101 or more 0.44 0.56
after 1950 101 or more 0.01 0.99

Writer
GenderGenre Birthdate

Book
Number of Pages Release Date

Aggregator

Mean Min

Writer
Success

Figure 4.16: Example of a class creation’s user’s modification. It is interesting to note that since
an author can write multiple books, this creates a new aggregation between the book’s attributes and the
author’s success attribute.

only if we meet some pre-requisite. A further look into our data and the learned relations can

indeed question the validity of this model. For instance, it indicates that a book’s release date

can be explained by both the highest rank of the university its author went to, and this author’s

birth date (the joint probability is presented in Table. 4.2). It shows that, basically, authors born

before 1950 tend to publish slightly more before 1980 when they are from a top-tiers school. On

another hand, youngest authors tend to publish after 1980, which at first seems logical: writers

born after 1980 would hardly be able to publish books prior to their birth. However, we have no

instance in our dataset of books published before 1980 written by persons born after 1950, which

explains why we learned this relation. This underlines the importance of a complete and verified

knowledge base: if our dataset is representative, then we acknowledge the fact that youngest

authors cannot publish before 1980. On another hand, if our dataset is not representative, it

means that our learned relation cannot be causal, as we have missing arguments.

Some user’s modifications presented in Section 4.2.4 were not used here, such as the class

creation. A good example would have been if we had a variable able to indicate an author’s

success. It would then have been possible to study the impact of an author’s books on this newly

introduced attribute. To do so, we would have split the Author class in two, to see how an

aggregation of the books’ attributes would have influenced this variable. Fig.4.16 presents the

corresponding relational schema.
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4.4 FINAL REMARKS

In this chapter, we have presented ACROSS, an algorithm dedicated to learn a probabilistic rela-

tional model from an ontology using as much as possible the knowledge of the knowledge base.

The most important part of this work is the translation from the knowledge base to a fully func-

tional relational schema. We have tried to present in this chapter all the main possible cases and

how to treat them; however, due to the high diversity of the knowledge bases, new cases are still

possible. Moreover, even if the rules we have introduced do not cover all possibilities, the main

idea behind our work remains the same. Indeed, we aim to automatically create a structure that

would allow to distinguish all particular situations and to compare data that are comparable: if

two books are instantiated, one with an author and another without, then they are first considered

as two separated entities, even if they are both from the same O-class Book.

Defining what is comparable or not is a direct consequence of the difference between knowle-

dge bases and probabilistic models: whereas the first assume that what that has not been defined

can still exist (thanks to the Open-World Assumption), the other considers that we must only

consider the existing things (meaning in our case that what hasn’t been instantiated in the know-

ledge base is not possible). In order to pass from one model to the other, we thus need to close the

open-world assumption. By doing so, we also propose to the expert a novel visualization of their

data, by discovering among the instances patterns that might have been hidden in the knowledge

base.

The expert is also given the opportunity to modify at will the generated result, by the mean

of user’s modifications which allow different operations. Similarly as for the rules we defined,

we kept in mind during the writing that those modifications have to be the most generic possible

and can be used despite the wide variety of knowledge bases. However, some particular cases

may have eluded us. Once again, the main idea behind those user’s modification is to propose an

intuitive way for the experts to manipulate the relational schema in order to reflect their own

knowledge of the domain.

Once this has been analyzed and the relational schema has been drawn, the learning is similar

to what has already been covered in the previous chapters with ON2PRM and CAROLL.

4.4.1 LIMITS

As we have brushed before, the biggest challenge of the ACROSS algorithm is that the automatic

decisions the algorithm takes tend to flood the information: each time a particular context is dis-

covered (ie. a combination of relational model’s classes and object properties), a new class is
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added to the relational schema. This might, in the long run, distinguish a lot of possibilities and

create too many classes for the expert to manually verify. In this case, the best solution might be

to skip the automatic part and ask from the start to the expert to manually design the relational

schema. As for every user’s interaction design, the most important point is to keep the number

of verification’s operations lower than the required number of operations for manually doing the

task. In our case, if it is simpler for the users to design the relational schema themselves, then

ACROSS is not useful. However, it still offers another visualization of the data that the ontology

does not automatically provide, and thus can still be useful for the understanding of the domain.

4.4.2 EXPERT FEEDBACK

On the contrary of the CAROLL algorithm, we do not include here a mandatory user’s assump-

tion. However, as we have seen throughout this chapter, some tasks asked to the expert are

tedious and repetitive, such as the cycle breaking or the relational slots orientations. Should we

introduce a new type of user’s assumption’s formulation within the ACROSS algorithm, these

two tasks could be more automatized: if we have a cycle between the three O-classes A, B and

C, and the user’s assumption: ”Do A explain C?”, then we can easily deduce that the most fitting

orientation might be A→ B → C, without requiring expert’s intervention.

More generally, we tried while designing ACROSS to compartmentalize to the maximum the

expert’s intervention, in order to keep a clear track of the relational schema, and what has in-

fluenced its design: ”Is the creation of this class due to the ontology’s semantic, or the expert’s user’s

modification?” is the kind of question that should be easily answered. Indeed, the bigger a knowl-

edge base is, the more complex the relational schema we have to deal with is. That is why we

had at heart to propose a simple solution, easy to understand and to retrace. However, as for

CAROLL, this new algorithm also requires the expert to understand and know how the ontology

is structured.

4.5 CONCLUSION

In conclusion, we have presented in this chapter a third algorithm dedicated to pass from a

knowledge base to a probabilistic relational model. The novelty of the algorithm presented in

this chapter is the highlight that has been put on the automation of certain tasks. On the contrary

of ON2PRM, dedicated to only one particular ontology, or CAROLL, which required a lot of ex-

pert’s inputs, ACROSS aims to exploit the most knowledge possible from the knowledge graph,

leaving the expert to answer the questions that depends only of the domain and that could never
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be answered automatically without a very good understanding of the subject by the algorithm

(which was the case for ON2PRM and the PO2 ontology).
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CONCLUSION AND PERSPECTIVES

This chapter concludes our work on the topic of combining knowledge bases and probabilistic

relational models to outperform both of them. In a first part, we will briefly recall our differ-

ent achievements and propositions, and confront them to define their strenghts and limits. In

a second and final part, we will discuss futur works and possibilities opened by what we have

presented.

SUMMARY OF RESULTS

The introduction presented our problem and to what extent finding a solution to it would help

to develop new reasoning tools. Indeed, one of the main issues of automatic learning is the lack

of domain’s knowledge, which is usually brought by experts. If ontologies greatly contribute

by bringing a structuration based on semantics to the data, they however do not allow a strong

probabilistic reasoning. On another hand, probabilistic models are great to represent probabilistic

relations between different variables in order to describe a domain; they however usually lack ex-

pert’s knowledge inputs, and domain’s semantics is not taken into account during their learning.

That is why we chose to focus on the combination of these two different fields, in order to offer

a new way of learning more semantically accurate probabilistic models. The interest is double.

Firstly, since ontologies are dedicated to represent real-life domains, being closer to their seman-

tics would mean that the learned models would also be closer to the real-life models. Secondly, a

model learned using experts’ knowledge might be more easily understood by these experts, and

as a consequence can be more easily exploited by them.

We present in Chapter 1 the state of the art of the two main topics of this thesis, with an

emphasis on the combination of knowledge bases and probabilistic models. As we have seen,

this idea has already been brushed by different works; however, many of them assumed chara-
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teristics that were not always encountered in ontologies (such as the causal object properties).

Moreveover, only a few works exploited the definitions of the ontologies’ classes and properties

to ease the learning, for instance by using probabilistic relational models (instead of Bayesian net-

works). In this chapter we also gave a good emphasis on causality, as our main goal is in the end

the exploitability of the learned model by the experts: we wish to provide a model able to answer

questions about a domain, and explain how the different variables interact with each other.

Chapter 2 presents our first algorithm, ON2PRM (ONtology TO Probabilistic Relational Mod-

els). The main idea is to provide an algorithm able to learn a probabilistic relational model from

any knowledge base using a specific ontology. In our case, we chose the PO2 (Process and Ob-

servation Ontology) ontology, dedicated to transformation processes. The specifity of ON2PRM

stems from the fact that the probabilistic relational model’s relational schema, that guides the

learning, is designed beforehand by a human so that it fits the PO2 semantic. As a consequence,

it requires an important upstream work of understanding the ontology’s semantic to build the

relational schema; but when it is finished, the rest of the learning can be done without requiring

anymore expert’s intervention (modulo the data discretization and the eventual attributes selec-

tion). This chapter essentially focuses on the learning of a probabilistic relational model from a

knowledge base and the assessment of the contribution of such a pairing. As we demonstrate, the

addition of semantic knowledge helps to guide the learning even with small datasets (i.e. with

only a handful of values) toward a better result, closer to the ground truth. Our first result is thus

a validation of the interest of coupling knowledge bases and probabilistic relational models.

Table 4.3: Summary of the ON2PRM algorithm.

Criteria Algorithm
Autonomy No human intervention required

Which knowledge bases Any knowledge base using the PO2 ontology
Principle (1) A general relational schema have been de-

fined beforehand by an expert using the PO2 on-
tology. (2) A specific relational schema is built
from the knowledge base and the general rela-
tional schema. (3) A relational model is learned
from the knowledge base and the specific re-
lational schema. (4) A probabilistic relational
model is built from the relational model.

Contribution.

Munch M., Wuillemin PH., Manfredotti C., Dibie J. and Dervaux S. Learning Probabilis-

tic Relational Models using an Ontology of Transformation Processes. In: ODBASE 2017,

Rhodes.
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We discuss in Chapter 3 the limits of ON2PRM, which strongly depends on the relational

schema built using PO2. As a consequence, we introduce a second contribution, the CAROLL

(Causal Assumption to pRobabilistic RelatiOnaL modeL) algorithm. The novelty compared to

the ON2PRM algorithm can be summarized in two points: firstly, it allows the users to define a

relational schema on the fly, guided by a causal assumption they have formulated in the beginning

of the process; and secondly, it includes a stronger part on the exploitability of the learned model

by introducing causal verification and reasoning. The first point allows the transformation of any

knowledge base into a probabilistic relational model, as long as the experts can formulate a causal

assumption they wish to verify with this knowledge base. On another hand, CAROLL requires

more expert’s inputs than ON2PRM, as the expert’s contribution is higher: for each potential

attribute in the relational schema, the expert has to place it, and define the relational schema’s

classes that will encompass them. The price of this flexibility is therefore the workload required

from the expert, which can become overwhelming when the knowledge base is too massive (i.e.

too many classes and datatype properties).

This chapter presents two results:

• A flexible algorithm able to guide an expert to learn a probabilistic relational model from

any knowledge base

• A causal verification method able to exploit expert understanding of a domain in order

to discover new causal knowledge

Table 4.4: Summary of the CAROLL algorithm.

Criteria Algorithm
Autonomy? Human evaluation required for (1) the construc-

tion of the relational schema and (2) the causal
verification

Which knowledge bases? Any knowledge base from which a causal as-
sumption can be formulated

Principle? (1) An expert formulates a causal assumption.
(2) From this causal assumption a relational
model is built by the expert using the knowledge
base. (3) The probabilistic relational model is
learned from the relational model. (4) A causal
verification is used to check wheither the expert
validates the model or not. (5) Depending of
the validation the causal assumption is either an-
swered or rejected.

Contributions.

• Munch M., Wuillemin PH., Dibie J., Manfredotti C., Allard T., Buchin S. and Guichard

E. Identifying control Parameters in Cheese Fabrication Process Using Precedence Con-

109



straints. In: DS 2018, Chypre.

• Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Towards Interactive Causal

Relation Discovery Driven by an Ontology. In: FLAIRS 2019, Floride, USA.

Chapter 4 introduces our last contribution, the ACROSS (AutomatiC RelatiOnal Schema con-

Struction) algorithm. Compared with CAROLL, whose relational schema’s construction required

a user’s assumption, ACROSS proposes to automatically generate a relational schema from the

knowledge base the user wishes to study. The user is then given the possibility, throught user’s

modifications, to modify at will this first draft in order to integrate their own knowledge of the

domain. The main advantage of this new approach is that we try to exploit more the instances of

the knowledge base, and the way these are connected together. This allows the expert to have a

new vizualisation of the data to the expert, by highlighting patterns (such as missing values, use

of different object properties, ...) that could have been hidden in the knowledge base. If the knowl-

edge base is simple enough, this can eventually simplify the expert’s workload by generating a

usable relational schema.

In this chapter, we especially put the emphasis on the definition of clear rules that can be ap-

plied to any knowledge bases, despite their great variety. However, when this variability becomes

too important (especially in case of huge knowledge bases with a lot of instances), the relational

schema automatically generated can become a hinder for the expert. That is why ACROSS has to

be considered more as a complement of CAROLL instead of a replacement: both of these algo-

rithms work towards the same goal (the learning of a semantical probabilistic model), but put the

emphasis on different methods. While CAROLL favors the interactivity with the expert, ACROSS

proposes a better compartimentation between automatization and expert’s inputs, and tries to go

further with the automatic exploitation of the ontology’s semantic. Both, in the end, offer a causal

analysis of the learned model following the method introduced in Chapter 3.

This chapter brings one results: an algorithm able to pass from any knowledge base to a

probabilistic model while being as automatized as possible.

Contribution.

Munch M., Dibie J., Wuillemin PH. and Manfredotti C. Interactive Causal Discovery in

Knowledge Graphs. In: PROFILES/SEMEX@ISWC 2019.
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Table 4.5: Summary of the ACROSS algorithm.

Criteria Algorithm
Autonomy? A first relational schema draft is fully automat-

ically generated. Human’s intervention is re-
quired (1) to eventually modify it and (2) to
causally validate it.

Which knowledge bases? Any knowledge base whose domain is interest-
ing to study from a causal viewpoint

Principle? (1) A relational schema draft is generated from
the knowledge base’s instances. (2) Throught
user’s modifications the expert is given the pos-
sibility of modify it. (3) The probabilistic relational
model is learned from the relational model. (4) A
causal verification is used to check whether the
expert validates the model or not.

DISCUSSION AND FUTURE WORKS

If the interest of ON2PRM mostly stems from its hability to demonstrate the contribution of cou-

pling knowledge bases and probabilistic relational models, the two others algorithms, CAROLL

and ACROSS, propose different approaches in order to effectively tackle this issue. Depending of

the knowledge base we wish to reason with, one of them or a combination of both can be most

adapted:

• A small knowledge base: if there are only a handful of classes, and not too many particular

cases (such as combinations of different object properties for a same class), ACROSS is the

most adapted as it can quickly generate a first relational schema. However, if the expert has

a very precise idea of what they want to represent, CAROLL can also be applied.

• An important knowledge base: if the number of classes and properties is more important,

it then depends on the complexity of the instanciations. If there are not too many particular

cases, ACROSS would yield the best results while saving time for the expert. On the con-

trary, if the number of particular cases is too high and creates too many relational schema’s

classes for the experts to efficiently handle, then they should prefer CAROLL.

In any case, ACROSS still offers a good overview on how the data is instantiated, and might

still yield interesting results even if it is not directly used as a relational schema afterwards. Es-

pecially, it can give the expert some ideas on how the data is really organised and guide them

when designing the relational schema using CAROLL. Moreover, ON2PRM shows that once a

relational schema has been designed for a specific ontology, any knowledge base using this on-

tology can be easily transformed into a probabilistic relational model. As a consequence, once

the work of design has been realised, it can then be used for many datasets as long as they lie on

the ontology’s semantic. This opens a lot of future possibilities for the different domains we have
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covered throughout our work.

Firstly, as we have pointed out, the learning of a complete probabilistic and causal model of a

domain structured by an ontology can bring a lot to this domain’s analysis and the evolution of its

knowledge graph. As we have seen in our different experiments, once the model learned, we are

able to (1) point out missing entities, such as datatype properties (see the Book example in Exam-

ple 20) or instances (see the Writers’ birthdate problem in Table 4.2) and (2) offer a new overview

of the way the instances are linked together with ACROSS. However, probabilistic models also

allow to simulate new data through inferences. For instance, once a model about a transformation

process is learned, we can infere the different possible results and their probabilities while fixing

some parameters (such as the quantity of an ingredient) or, on the contrary, see which parame-

ters are the best to fix in order to obtain a particular result. This may help us complete missing

data, and even populate the ontology with new values, once the model has been validated. This

is particularly useful for certain domains, such as biology, where data is hard to obtain. Being

able to simulate experiments without running them can help the experts to focus on less trivial

questions.

Secondly, as we have seen, learning a causal Bayesian network from data alone is a reward-

ing but complex task. Thanks to the combination with ontologies, we can define semantic con-

straints that can help the learning by restricting the search space. This allows to work with small

datasets from whose it would be, usually, hard to learn even non-causal probablistic relations.

More generally, using ontologies for learning probabilistic models can expand their accuracy and

representativeness of the target domain.

All of these contributions and possible applications, both for ontologies and probabilistic mod-

els, can help experts to better understand their domains by bringing new ways of explaining the

different results. Indeed, each of them has to be motivated by arguments from either the expert

knowledge, or the statistical learning. As a consequence, the same way ACROSS allowed the ex-

pert to check a specific assumption about the domain, each attribute’s value could also theorically

be explained throught a combination of different arguments from these categories. That is why

we would like to focus on the research field of explanation generation. Indeed, as we have seen in

the experiment on real data of Section 3.4.3, the learned models can sometimes be overwhelming

and difficult to understand for the experts. As we have covered in Section 1, some works have al-

ready been done for explaining Bayesian networks (Lacave and Diez, 2002, 2004). However, they

mostly focus on highlighting some parts of the networks, without drawing more conclusions. On

the contrary, we would like to expand what we have presented throughout this thesis: once a

probabilistic model generated from a knowledge base, the main interest would be to define how
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Conclusion and Perspectives

to best exploit such a model for the expert’s benefit.

To do so, we aim to learn rules from our learned Bayesian network using the knowledge dis-

covered by combining ontologies and probabilistic models. This is similar to rule discovery, an

ongoing topic for ontologies that focuses on learning logical rules directly from knowledge bases,

Some works have already focused on learning what they define as explanation trees (similar to

decision trees) from Bayesian networks (Flores, 2005, Nielsen et al., 2008). The main idea behind

the construction of these so-called explanations trees is to focus on the mutual information be-

tween the different variables, which represents the quantity of information they share: the higher

it is, the closer the variables are. Using this as a measure of ”strenght” for the different learned

arcs, they chose to keep only the arcs with the stronger values to define the tree, thus highligting

the variables that are the closest with each other. Applying this method to our learned model

should thus yield interesting results, as it would provide another way of reading the network

without having to verify each relation. It would (1) offer a new way of verifying the model and

(2) provide to the expert an easy to understand tool for prediction, in complement of the Bayesian

network. Moreover, given that the learned probabilistic relational model has been causally vali-

dated, it would also allow to build a causal explanation tree, which would allow to tackle causal

discovery from a new perspective, which would thus be another possible application of our work.

Finally, even if this generation of argument is not possible due to the absence of model validation

(by lack of data or causal information), these rules offer new ways for improving the model. If,

for instance, we find a quasi-certain rule linking two entities that should not be linked, then it

gives the expert new ways of improving the model (for instance by providing new data or revis-

ing the relational schema). Therefore, be it with or without enough knowledge (ontological and

expert), we would always be able to guide the experts in order to improve their representation of

the domain.

In a global context of black-box artificial intelligences, being able to provide explanations to

back the system’s predictions is a real strenght that these future works will try to uncover, thanks

to the combination of knowledge representation and probabilistic learning.
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APPENDIX A

USER’S MODIFICATIONS

Section 4.2.4 introduces the concept of user’s modifications, which are methods given to the user

so they can modify the relational schema automatiquely generated in the first part of the ACROSS

algorithm. In this appendix, we present in more details these modifications, and to what extent

they can be used.

In order to classify them, we define three types of actions (Add, Remove, Modify), and four

levels of granularity (Class, Relational slot, Instances and Attributes). Not all combinations are

however possible (for instance, ”Adding an instance” is not something that can be reasonably

expected); on another hand, some combinations require multiple definitions, depending of the

context (such as ”Adding a class”). Table A.1 summarizes what we will present in the following.

Table A.1: Every defined user’s modification. All possible and defined user’s modifications are pre-
sented here.

Entity
Action Add Remove Modify

Class
A.0.3

A.0.1A.0.4
A.0.2

Relational Slot A.0.6 A.0.7 A.0.8
Instances A.0.9
Attribute A.0.5

A.0.1 DELETE A CLASS

A class have been created in the relational schema, but it is of no interest for the expert. It can

be, for instance, a class with no datatype properties that would not bring any information to the

model. As a consequence, the expert is given the possibility of removing it. If this class was
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sharing relational slots with other classes, these are removed as well (which could possibly break

relational chains).

A.0.2 FUSE TWO CLASSES OF THE SAME TYPE

As seen before, a sameO-class in the ontology can lead to two different classes in the probabilistic

relational model. For exemple, if we consider the book example (see Example 20), we may have

two kinds of books: those whose author is present in the data, and those whose author is not.

Following R5, this leads by default to the creation of two relational schema’s classes, Book with

Author and Book without Author. However, the user is given the opportunity to fuse these

two classes: this will aggregate the instances, creating one class Book and consider the missing

parents (in our example, authors) as missing values.

A.0.3 DIVIDE A CLASS

Sometimes, attributes of a class can explain and be explained by attributes of another class.

Example 23. Suppose a knowledge graph described by two O-classes such as Student attends−−−−→

Course, and an instanciation set such as Figure A.1 (a). In this case, the relational model

automatically deduced (Figure A.1 (b)) does not allow to express possible causality between

on one hand, the student’s interest and the class’s subject and, on another hand the class’s

difficulty and the student’s note.

Figure A.1: Example of a set of instances (a) and its deduced relational schema (b). In this case,
there might be a problem for the determination of the relational slot’s orientation: indeed, if we want the
student’s interest to potentially explain the class’s subject, while also defining the class’s difficulty as poten-
tially explaining the student’s note, then we cannot do it with only two classes, regardless of the relational
slot’s direction.

In this example, we cannot only draw a relational slot Student→ Class or Class→ Student,

since we need arrows to be oriented in both directions. Thus, the expert is given the opportunity

to divide a class in order to better sort the relational slots between them. In this specific example,

we can create two Student classes: Student1, that contains the student’s interest, and Student2,
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that contains the note. We then define relational slots such that: Student1 → Class→ Student2.

This result is illustrated in Figure A.2.

Figure A.2: Proposition of a division of the Student class. This new relational schema has been built
from the one proposed in Figure A.1 (b). It now allows to express more complex interaction between the
different attributes, without creating a cycle in the final result.

More generally, this user’s modification allows the expert to divide a class in order to sort the

different attributes in multiple class. This allows to better express complex relations of potential

causality.

A.0.4 CREATE A MUTUALLY EXPLAINING CLASS

In the previous user’s modification, we assumed the expert knew how to divide the class (creating

Student1 and Student2 and knowing which attributesto put in it). As a consequence, the division

is done manually.

In the case where an expert knows that attributes from different classes might mutually ex-

plain each other, but without knowing exactly which one, they can create a mutually explaining

class. This new class allows to group two or more classes of different types in the ontology to

share a relation without it being oriented. During the learning, the attributes’ relations are learned

without taking care of the original property orientation between the O-classes. Then, once they

are learned, new classes are created according to (i) the relations’ orientation and (ii) the attributes’

class. An illustrated example is given in Figure A.3.

The interest of this user’s modification is the same as the previous one: allowing the user to

better express subtle potential explanations between the different classes’ attribute. The main

difference with the Divide a class user’s modification is that this time, the expert does not know

how to divide the class: with this method we offer to automatically deduce it.
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Figure A.3: Example of a Mutually Explaining Class. The attributes from the Student and the Class
are grouped together in a same class (a). After the learning of the relations (b), these classes are divided
into different groups depending of (i) the relations’ orientation and (ii) the attributes’ class. This creates new
classes in the PRM ((1), (2) and (3)), which, when defined, allow us to have a relational schema similar to the
one of Figure A.2.

A.0.5 REMOVE AN ATTRIBUTE

On the contrary of the CAROLL algorithm, ACROSS automatically adds all datatype properties

to the relational schema as long as they are instantiated datatype properties. This requires a

double verification from the expert: (1) whether the attribute is interesting for the problem and

(2) whether it is useful for the learning or not (according to Definition 9). If the first verification is

completely subjective, the second can be somewhat automatized once the classes are defined and

their set of instances known: if values are all constant, or on the contrary all different, then this

attribute is not to be kept. A limit can also be drawn in case of too many missing values.

A.0.6 CREATE A RELATIONAL SLOT

All properties in the knowledge base can sometimes not be enough for expressing the causality

between the classes. For instance, we can have a relation such that A→ C ← B, but in which the

expert would like to express the potential causality A→ B. As a consequence, they are given the

possibility of defining new relational slots between the relational schema’s classes. This user’s

modification must however respect two conditions: (1) the new relational slot does not create a

loop between the classes, and (2) there is a combination of object properties in the knowledge

base such that the instances of the two classes we join are linked. Moreover, in case of multiple

possible combinations of object properties, the expert must choose which one is represented by

the newly added relational slot. Figure A.4 shows an illustration of this problem.

A.0.7 REMOVE A RELATIONAL SLOT

The same way a class can be removed, a relational slot can be removed in the relational schema. In

this case, the learning is not able anymore to find relations between attributes of the two separated
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Figure A.4: Illustration of the creating relational slot user’s modification. Considering the set of
instances described in (a), we build the relational schema shown in (b). If the expert wants to add potential
causality from the A to the B class, they need to create a relational slot between these classes. (c) presents in
dotted line this addition, which is possible since (1) it does not induce a cycle inside the relational schema
and (2) the set of instances allows a combination of OP from A’s instances to B’s instances. However, two
combinations are possible: throught OP1 and OP3, or OP2 and OP4, which could possibly lead to totally
different ways of pairing the instances: the first way associates iA1 with iB1, while the second way associates
iA1 with iB2. In these cases, the expert has to choose wich association to favour.

classes as the possible causation is removed.

A.0.8 REVERSE A RELATIONAL SLOT

The expert is given the opportunity of reversing the relational slot between two classes, mostly to

better express the orientation they think is the most likely causal. The same way as when creating

a relational slot, this reversal must insure that no cycle is created in the relational schema.

A.0.9 FILTER THE INSTANCES USED FOR THE LEARNING

In some very specific cases, the expert might want to focus on certain instances, and not on the

whole set. It is usually the case when they are presented with too many missing values for in-

stances’ datatype properties: instead of ruling out the datatype property because it is not useful

for the learning, the expert can, on the contrary, choose to remove all instances that are missing

this property. This, however, apply a selection filter over the dataset which can eventually deteri-

orate its representativness.
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APPENDIX B

RÉSUMÉ EN FRANÇAIS

L’idée de cette thèse est de combiner deux domaines de l’intelligence artificielle, l’ingénierie des

connaissances et l’apprentissage probabiliste, afin d’améliorer l’apprentissage de modèles experts

et de réaliser de la découverte de savoir.

L’ingénierie des connaissances est centrée sur la représentation de connaissances expertes sous

la forme de structures spécialisées, les ontologies. Chaque ontologie est dédiée à la représentation

d’un domaine, et le décrit à l’aide de concepts orientés objets, tels que les classes, les propriétés

et les instances. Ces structures sont principalement construites manuellement en coopération

avec des experts du domaine, et permettent ainsi d’exprimer un savoir particulier, dit expert,

qui ne peut généralement pas être représenté de manière automatique dans les apprentissages

classiques. Ainsi, l’ingénierie des connaissances permet une représentation poussée des domaines

que l’on souhaite étudier, et offre une description poussée des données dont on dispose.

L’apprentissage probabiliste est dédié à l’apprentissage de modèles représentant des domaines

à forte variabilité. L’incertitude qui émaille ainsi les données issues de tels domaines (liée par ex-

emple à des mesures manquantes, des modifications intrinsèques, etc.) peut ainsi être représentée

de façon précise, grâce à l’utilisation des probabilités. Si l’apprentissage de ces modèles est rela-

tivement simple, et peut apporter des résultats satisfaisants même à partir de bases de données

de faibles tailles, il est néanmoins possible d’enrichir ce procédé par l’introduction de contraintes

supplémentaires. Dans cette thèse, nous présentons donc trois façons d’intégrer les connaissances

expertes fournies par une ontologie dans l’apprentissage d’un modèle probabiliste dédiée à la

représentation des données décrites dans cette ontologie.

Le Chapitre 1 se concentre sur l’état de l’art des connaissances sur le domaine et la présentation
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des outils utilisés pour la suite. Nous y introduisons la notion de modèles probabilistes, ainsi que

les différents modèles maniés tout au long du manuscrit : les réseaux Bayésiens et leurs dérivés

orientés objet, les Modèles Relationnel Probabilistes. L’intérêt de la combinaison avec les ontolo-

gies et l’utilisation de contraintes durant l’apprentissage est également souligné, à travers des ex-

emples tirés de travaux tirés de l’état de l’art. Dans une deuxième partie, un point sur la causalité

et la déduction de connaissances causales est réalisé. Nous y présentons les principales avancées

et difficultés, ainsi que les applications possibles dans notre cas (notamment, encore une fois, via

l’utilisation d’ontologies).

Le Chapitre 2 présente nos premiers travaux réalisés dans le cadre de la thèse. A partir d’une

ontologie spécifique donnée, PO² (Process and Observation Ontology), dédiée à la représentation

de processus de transformation, nous mettons en place un protocole expérimental visant à démontrer

l’efficacité de l’introduction de connaissances expertes lors de l’apprentissage d’un modèle re-

lationnel probabiliste. Dans une première partie, nous présentons le domaine d’application ;

dans une seconde, nous décrivons notre première proposition, l’algorithme ON2PRM (ONtol-

ogy to Probabilistic Relational Model). Celui-ci a pour but d’automatiquement s’adapter à un

jeu de données décrit par l’ontologie PO² et d’apprendre un modèle probabiliste : s’il permet

effectivement une amélioration significative du résultat d’apprentissage, il manque néanmoins

d’adaptabilité et ne peut être appliqué à d’autres ontologies. La conception d’une méthode générique

est néanmoins compliquée et parsemée de questions diverses.

Le Chapitre 3 poursuit cette réflexion sur la recherche d’un algorithme plus générique, et

propose ici CAROLL (Causal Assumption to pRobabilistic RelatiOnal modeL). L’idée derrière

cette proposition a germé avec le constat que les experts désirant étudier leur domaine disposent

généralement d’une idée très spécifique de ce qu’ils souhaitent vérifier. Exprimée sous la forme

d’une causal assumption (affirmation causale) du type ”Est-ce que les paramètres A, B, C, . . . ont

une influence sur les paramètres D, E, F. . . ?”, cette affirmation permet d’exprimer des contraintes

favorisant l’initialisation du modèle d’apprentissage. L’efficacité de cette approche est démontrée

à travers trois exemples d’évaluation : un premier sur un jeu de données synthétiques, généré

pour l’occasion ; un second sur un jeu de données extrait de l’ontologie DBPedia (construite à

partir du site internet Wikipedia) ; et un troisième sur une problème concret, en coopération avec

des experts de l’INRAE (Institut National de la Recherche pour l’Agriculture, l’Alimentation et

Environnement).

Ce chapitre introduit également notre méthode de déduction de causalité à partir d’un modèle

probabiliste et des contraintes expertes introduites durant l’apprentissage. Nous y discutons no-

tamment du cadre de leur apprentissage et de leur validation.
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Le Chapitre 4 propose une dernière méthode visant à tirer partie de la structure des ontologies

pour favoriser l’apprentissage de modèles probabilistes à partir des ontologies. Il présente ainsi

ACROSS (AutomatiC RelatiOnal Schema conStruction), dont l’objectif est la généralisation des

méthodes présentées jusqu’à maintenant pour offrir une expérience la plus automatique possible

aux experts désirant étudier les données contenues dans une ontologie. Cette méthode soulève

néanmoins de nombreux questionnements, abordés durant ce chapitre ; la principale difficulté

étant la différence de philosophies entre ontologies et modèles probabilistes. En effet, les on-

tologies appliquent l’open-world assumption (supposition du monde ouvert), qui part du prédicat

que tout ce qui n’est pas décrit dans l’ontologie peut exister ; à l’opposé, les modèles proba-

bilistes présupposent que tout ce qui n’est pas présent dans la base d’apprentissage ne peut pas

avoir lieu. Cette différence de principe crée une dissonance qu’il est important d’adresser si l’on

souhaite apprendre un modèle probabiliste.

Nous concluons cette thèse par une comparaison entre les différentes méthodes, et leurs cadres

d’application.
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A. Hauser and P. Bühlmann. Two optimal strategies for active learning of causal models from

interventional data. International Journal of Approximate Reasoning, 55(4):926—-939, 2014.

E. Helsper and L. C. Gaag. Building bayesian networks through ontologies. pages 680–684, 01

2002.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Arbor, MI, 1975.

Z. Huang, J. Yang, F. van Harmelen, and Q. Hu. Constructing disease-centric knowledge graphs:

A case study for depression (short version). Artificial Intelligence in Medicine, pages 48–52,

2017.

L. Ibanescu, J. Dibie, S. Dervaux, E. Guichard, and J. Raad. Po2- a process and observation

ontology in food science. application to dairy gels. Metadata and Semantics Research, pages

155–165, 2016.

D. Janssens, G. Wets, T. Brijs, K. Vanhoof, T. Arentze, and H. Timmermans. Integrating Bayesian

networks and decision trees in a sequential rule-based transportation model. European Journal

of Operational Research, 175(1):16–34, 2006.

B. Jeon and I. Ko. Ontology-based semi-automatic construction of bayesian network models for

diagnosing diseases in e-health applications. pages 595–602, 2007.

A. Kent, M. M. Berry, F. U. Luehrs, and J. W. Perry. Machine literature searching VIII. Operational

criteria for designing information retrieval systems. American Documentation, 6(2):93–101,

1955.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive

Computation and Machine Learning. The MIT Press, 2009. ISBN 0262013193.

128



S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.

C. Lacave and F. J. Diez. A review of explanation methods for bayesian networks. Knowledge

Eng. Review, 17(2):107–127, 2002.

C. Lacave and F. J. Diez. A review of explanation methods for heuristic expert systems. Knowledge

Eng. Review, 19(2):133–146, 2004.

J. Li, T. le, L. Liu, J. Liu, Z. Jin, and B. Sun. Mining causal association rules. Proceedings - IEEE

13th International Conference on Data Mining Workshops, ICDMW 2013, pages 114–123, 12

2013.

D. Madigan, S. A. Andersson, M. D. Perlman, and C. T. Volinsky. Bayesian model averaging

and model selection for markov equivalence classes of acyclic digraphs. Communications in

Statistics–Theory and Methods, 25(11):2493–2519, 1996.

C. Manfredotti, C. Baudrit, J. Dibie-Barthélemy, and P.-H. Wuillemin. Mapping ontology with prob-

abilistic relational models - an application to transformation processes. pages 171–178, 01

2015.

A. R. Masegosa and S. Moral. An interactive approach for bayesian network learning using do-

main/expert knowledge. International Journal of Approximate Reasoning, 54(8):1168–1181,

2013.

L. Menabrea, C. Babbage, A. Lovelace, and A. L. Sketch of the Analytical Engine invented by

Charles Babbage ... with notes by the translator. Extracted from the ’Scientific Memoirs,’ etc.

[The translator’s notes signed: A.L.L. ie. Augusta Ada King, Countess Lovelace.]. R. & J. E.

Taylor, 1843.

M. B. Messaoud, P. Leray, and N. B. Amor. Integrating ontological knowledge for iterative causal

discovery and visualization. 5590:168–179, 2009.

A.-W. Mohammed. Knowledge-oriented semantics modelling towards uncertainty reasoning.

SpringerPlus, 5, 2016.

M. Munch, P. Wuillemin, C. E. Manfredotti, J. Dibie, and S. Dervaux. Learning probabilistic re-

lational models using an ontology of transformation processes. On the Move to Meaningful

Internet Systems, 10574:198–215, 2017.

129



M. Munch, P. Wuillemin, J. Dibie, C. E. Manfredotti, T. Allard, S. Buchin, and E. Guichard. Identify-

ing control parameters in cheese fabrication process using precedence constraints. Discovery

Science, 11198:421–434, 2018.

M. Munch, J. Dibie, P. Wuillemin, and C. E. Manfredotti. Towards interactive causal relation dis-

covery driven by an ontology. Florida Artificial Intelligence Research Society Conference, pages

504–508, 2019a.
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Résumé : Cette thèse se concentre sur l’intégration 

des connaissances d’experts pour améliorer le 

raisonnement dans l’incertitude. Notre objectif est de 

guider l’apprentissage des relations probabilistes 

avec les connaissances d’experts pour des domaines 

décrits par les ontologies. 

Pour ce faire, nous proposons de coupler des bases 

de connaissances (BC) et une extension orientée 

objet des réseaux bayésiens, les modèles relationnels 

probabilistes (PRM). Notre objectif est de compléter 

l’apprentissage statistique par des connaissances 

expertes afin d’apprendre un modèle aussi proche 

que possible de la réalité et de l’analyser 

quantitativement (avec des relations probabilistes) et 

qualitativement (avec la découverte causale). Nous  

avons développé trois algorithmes à travers trois 

approches distinctes, dont les principales 

différences résident dans leur automatisation et 

l’intégration (ou non) de la supervision d’experts 

humains. L’originalité de notre travail est la 

combinaison de deux philosophies opposées : alors 

que l’approche bayésienne privilégie l’analyse 

statistique des données fournies pour raisonner 

avec, l’approche ontologique est basée sur la 

modélisation de la connaissance experte pour 

représenter un domaine. La combinaison de la 

force des deux permet d’améliorer à la fois le 

raisonnement dans l’incertitude et la connaissance 

experte. 
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Abstract : This thesis focuses on integrating expert 

knowledge to enhance reasoning under uncertainty. 

Our goal is to guide the probabilistic relations’ 

learning with expert knowledge for domains 

described by ontologies. 

To do so we propose to couple knowledge bases 

(KBs) and an oriented-object extension of Bayesian 

networks, the probabilistic relational models (PRMs). 

Our aim is to complement the statistical learning with 

expert knowledge in order to learn a model as close 

as possible to the reality and analyze it quantitatively 

(with probabilistic relations) and qualitatively (with 

causal discovery). We developped three algorithms 

throught three distinct approaches, whose main 

differences lie in their automatisation and the 

integration (or not) of human expert supervision. 

The originality of our work is the combination of 

two broadly opposed philosophies: while the 

Bayesian approach favors the statistical analysis of 

the given data in order to reason with it, the 

ontological approach is based on the modelization 

of expert knowledge to represent a domain. 

Combining the strenght of the two allows to 

improve both the reasoning under uncertainty and 
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