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CHAPTER 1
Introduction

1.1 Motivation

In this manuscript, we present and study sampling strategies for statistical learning related
problems. The goal is to deal with issues typically arising in a big data context when the
number of observations and their dimensionality impose limitations on the learning process.
We thus propose to tackle this issue by employing two sampling strategies:

e Speed-up the learning process by sampling the most useful observations.

e Scale-up the problem by discarding some observations to reduce the complexity and the
size of the problem.

To introduce the problem we deal with, we first give a quick reminder on Empirical Risk
Minimization (ERM) in the context of binary classification. The binary classification problem
is considered a running example all along this manuscript. Because it can be easily formulated,
it is undeniably the most documented statistical learning problem in the literature and many
of its results extend to more general frameworks (e.g., multi-class classification, regression,
ranking). Let (€2, A, IP) be a probability space and (X, Y') a random pair defined on (2, A, P),
taking its values in some measurable product space X x {—1, +1}, with common distribution
P(dz,dy): the r.v. X represents some observation, hopefully useful for predicting the binary
label Y. The distribution P can also be described by the pair (F,n) where F'(dz) denotes the
marginal distribution of the input variable X and n(z) = P{Y = +1 | X =z}, 2z € X, is
the posterior distribution. The objective is to build, based on the training dataset at disposal, a
measurable mapping ¢g : X — {—1,+1}, called a classifier, with minimum risk:

Lig) & P{g(X) # V). (1.1)

It is well-known that the Bayes classifier g*(x) = 2I{n(x) > 1/2} — 1 is a solution of
the risk minimization problem inf, L(g), where the infinimum is taken over the collection of
all classifiers defined on the input space X'. The minimum risk is denoted by L* = L(g*).
Since the distribution P of the data is unknown, one substitutes the true risk with its empirical

estimate
n

~ 1
Ln(g) = ~ > Hg(X;) # Yi}, (1.2)
i=1
based on a sample (X1, Y1), ..., (X,,Y,) of independent copies of the generic random pair

(X,Y). The true risk minimization is then replaced by the empirical risk minimization

in L, (q), 1.3
min Ln(9) (1.3)
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where the minimum is taken over a class G of classifier candidates, supposed rich enough to
include the naive Bayes classifier (or a reasonable approximation of the latter). Considering a
solution g, of (1.3), a major problem in statistical learning theory is to establish upper confi-
dence bounds on the excess of risk L(g,) — L* in absence of any distributional assumptions
and taking into account the complexity of the class G (e.g., described by geometric or combi-
natorial features such as the VC dimension) and some measure of accuracy of approximation
of P by its empirical counterpart P, = (1/n) > 1", d(x, ;) over the class G. Indeed, the
excess of risk of the empirical risk minimizers is typically bounded as follows

L) — L* < 25up [n(g) — L(g)| + (inf Lig) - L*) . (1.4)
geG 9€eg

The second term on the right hand side is referred to as the bias and depends on the richness
of the class G, while the first term, called the sfochastic error, is controlled by means of re-
sults in empirical process theory, see Boucheron et al. (2005a). Unfortunately, one of the thing
typically overlooked in this kind of analysis is how to efficiently solve the ERM problem, i.e
how to find g,,. It is usually approximated by some incremental optimization algorithm, itera-
tively computing estimator of the gradient of the empirical risk. We investigate efficient ways
to scale-up the learning process and introduce sampling-based approachs to build approxima-
tions of g,,. We do so in two different fashions:

e We replace the empirical risk L,, (9) by an approximation based on fewer terms Ln(g).
It naturally makes the learning problem easier. Let g, be a minimizer of L, (g), then
(1.4) becomes:

L) — L* < 25up | En(g) — Ing)| + 25up | Enlg) — L(g)] + (inf Lig) - L*) .
9€g g€eg 9€g

We focus on appropriately controlling 2sup¢g |Ln(g) — En(g)\ which we typically
do conditionally upon the observations. Such strategy is discussed and implemented in
chapters 2 and 6 for two different problems.

e When computing estimator of the gradient, most incremental algorithms uniformly and
independently sample observations within the dataset. We propose to use non uniform
sampling methods to compute an estimator of the gradient of fn with smaller variance.
For the algorithms we propose, if we denote by g, (7") the classifier obtained after T’
iterations of the optimization algorithm, then following the lines of Bottou & Bousquet
(2007), inequality (1.4) becomes:

~

L(gn(T)) - L < En(gn(T)) - Ln(ﬁn)
)

+ 25up|Enlg) — L(g)| + (inf Lig) - L*) .
=Y geg

(@)

where (1) corresponds to the optimization error and (2) corresponds to the stochastic er-
ror. This decomposition illustrates the well known fact (see Bottou & Bousquet (2007))
that when solving the Empirical Risk Minimization problem, we have to take into ac-
count the randomness induced by the observations so that the optimization accuracy is
of the same order. We particularly pay attention to this fact and illustrate it both theoret-
ically and empirically in chapter 3, 4 and 5.
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The rest of this chapter is devoted to overview our different contributions. Here and through-
out, the indicator function of any event £ is denoted by I{€} and the variance of any square
integrable r.v. Z by 02(Z).

1.2 Learning from Survey Training Samples

This subsection is a summary of chapter 2. We place ourselves in the context of bi-
nary classification, when the observations used to train a classifier are drawn by means
of a sampling/survey scheme and exhibit a complex dependence structure. We consider,
(X1,Y7), ..., (X,,Y,) asample of independent copies of (X,Y") observed on a finite pop-
ulation on Z,, := {1, ..., n}. We call a survey sample of (possibly random) size N < n
of the population Z,,, any subset s := {i1,...,iy(s} € P(Z,) with cardinality N =: N(s)
less than n. A sampling scheme is defined by a probability distribution R,, on the set of all
possible samples s € P(Z,,) conditionally on the observations D,, = {(X;,Y;) : i € Z,}.
The probability that the unit ¢ belongs to a random sample .S drawn from the conditional dis-
tribution R, is called first order inclusion probability and is denoted by m; = P, {i € S}.
We set w,, = (71, ..., 7). Given an observed sample S, it is fully determined by the r.v.
€, = (€1, ..., €y), where¢; =I{i € S}forl <i<mn.

Most available results (see Boucheron et al. (2005¢) for instance) deal with the case where the
dataset D,, is at disposal. However this is not the case here as we only observe a subset of
observations. Therefore, these results are not directly applicable to our problem, in particular
because of the dependence structure induced by the sampling scheme. Nevertheless, we show
that the theory of ERM can be extended to the case where statistical learning is based on
observations obtained via survey samples.

Horvitz-Thompson risk. As defined in Horvitz & Thompson (1951), for any classifier candi-
date g, the (not available) empirical risk L, (g) = n~! > 1<i<n {Y: # g(X;)} is replaced by
its Horvitz-Thompson version :

n

— 1 €;
Le,(9) = n;mﬂ{g(&) #Yi}, (1.5)
1=
where €, = (€1, ..., €,) denotes the vector in correspondence with the sample drawn.

While many sampling plans are of interest for our problem, we particularly pay attention to
Rejective sampling, a sampling design R,, of fixed size N < n, that generalizes the simple
random sampling without replacement (where all samples with cardinality NV are equally likely
to be chosen). This sampling plan is more difficult to analyse because the ¢; are dependent
r.v.. Therefore, when statistical learning is based on the observation of a sample drawn by
means of a rejective scheme, classical results from learning theory do not immediately apply.
Nevertheless, we show that similar results can be established for minimizer of (1.5) in the
rejective case. it is due to the fact that this scheme form a collection of negatively associated
(see Brindén & Jonasson (2012), Kramer et al. (2011) ) random variables, a rather tractable
type of dependence structure. Using the negative association property, we show that for a
given rejective sampling scheme €,, with first order inclusion probabilities 7r,, and with k,, =
N/(n x min,<,, m;) we have for any solution g,, of the minimization problem infyeg Le, (g),
an upper-bound on the stochastic error risk of order Op((k, (logn)/N)/?).
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The property of negative association being shared by many other sampling schemes, the
same argument can be thus naturally applied to carry out a similar rate analysis for train-
ing data produced by such plans. However, this analysis cannot be extended to all sampling
scheme. We circumvent this difficulty using the results established for rejective plan and
relying on coupling argument. Consider a complex sampling scheme R}, with first order in-
clusion probabilities 7w}, = (7}, ..., 7)) described by the vector € = (¢}, ..., €) (with
not necessarily negatively associated r.v). Let g be a minimizer of the HT empirical risk
Le:(9) = (1/n) X0 (e /n)I{Y; # g(X;)} over a class G. Since we already established
results in the rejective case, we introduce a rejective sampling scheme R,, described by the

L.V. €y, With first order inclusion probabilities 7, = (71, ..., m,) as well as the following
quantity:

. 1 <~ ¢

Le,(9) = - 3 —IHYi # 9(X0)}, (16)

=1 1

for any classifier g. Observe that (1.6) is different from the HT empirical risk Le, (g) related to
the rejective sampling scheme €,, because it involves the 7’s instead of the 7;’s. The excess
of risk of the HT empirical risk minimizer can be expressed as follows:

L(gs) — inf L(g) < 2sup |L(g) = Ln(g)| + 2510 |Zu(g) — Le, (9)|
g€y geg geg

+ 2sup }‘Z/En (9) — Len(g)‘ + 2sup ‘Lén(g) - I_/e;;(gﬂ - (1.7
geg 9eg

We controlled the first term on the right hand side of (1.7) by using Vapnik-Chervonenkis and
McDiarmid inequalities (see e.g. Vapnik (2001) and chapter A), assertion (i) of Proposition
2.4 established in the rejective case provides a control of the second term. The third term is
bounded by means of the coupling argument while the last term is controlled by assumptions
related to the closeness between the first order inclusion probabilities 7r, and 7r,,. More pre-
cisely, the assumptions required in the subsequent analysis involve the total variation distance
between the sampling plans R,, and R :
dry(Ru, B) S 037 [Rals) ~ Ri(s)]
SEP(In)

With 7 = (N/n) min;<, 7} and k,, = (IN/nxmin;<,, 7;), we show that L(g;;) —infycg L(g)
is of the order of Op((in (log n) /N)'/2) 4+ 2(k% + k) (n/N) infr, dry(Rn, RY), where the
infinimum is taken over the set of rejective schemes R, with first order inclusion probabilities

T = (T, ..., Tp).

The rate bound obtained depends on the minimum error made when approximating the sam-
pling plan by a rejective sampling plan in terms of total variation distance. It is of the same
order as in case where observations are sampled uniformly up to a multiplicative term and
show that learning with survey sample is possible when taking into account the first order
inclusion probabilities.

1.3 Sampling Strategies for Stochastic Gradient Descent (SGD)

We present in this section a summary of the results establish in chapter 3, 4 and 5, in which we
introduce the problem of non uniform sampling strategy for stochastic gradient descent (SGD
in short). The Empirical Risk Minimization problem previously introduced is of the utmost
importance and implementing efficient algorithms to solve this problem is a question that we
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tried to answer. Here we consider a more general framework than the binary classification one,
and consider optimization problems of the form :

in L, (0) = - 1(Z;,0), 1.8
pia Tl0) = iy, 2102 9
where © is a Euclidean space, typically R? with d > 1, and I(Z1,.), ..., (Zy,.) form

a collection of real-valued convex continuously differentiable functions on ©. Indeed, such
an optimization problem typically arises in a broad variety of statistical learning problems,
in particular supervised tasks, where the goal pursued is to learn a predictive model, fully
determined by a parameter 6. The performance of the predictive function defined by 6, is
typically measured by the expectation L(0) = E[¢((X,Y"), )], referred to as the risk, where ¢
is a loss function assumed convex w.r.t. 6. It is usually assessed via its empirical counterpart

1 n
=~ U(Xi,Y3),0), (1.9)

based on n > 1 supposedly available independent training examples (X1,Y7), ..., (Xn, Ya),
copies of the random pair Z = (X, Y"). The minimization problem (1.8) can be solved incre-
mentally, by means of variants of the stochastic approximation method originally introduced
in the seminal contribution of Robbins & Monro (1951). This one consists in computing suc-
cessive estimates of a minimizer of (1.2) using the recursive equation

Or1 = 0 — 1 (6r) (1.10)

from a preliminarily picked initial value 6y € ©, where 7, denotes an estimator of the gradient
an and y is the learning rate or step-size. The implementation of SGD is quite straightfor-
ward for the minimization of standard mean statistics, as it is usually performed by sampling
uniformly at random (with or without replacement) a subsample of observations before com-
puting an estimator of the gradient. In contrast to the batch approach, where all the data are
used to estimate the gradient at each iteration (i.e. 7(0) = VEH(H) forallt > 0and 0 € ©),
only subsets of the data sample are involved in the gradient estimation steps of sampled in-
cremental algorithms, with the aim to reduce computational cost when n is large. In the most
commonly used implementation of the stochastic gradient descent (SGD) algorithm, the gra-
dient estimator is computed from a subset of reduced size S < n uniformly drawn without
replacement among all possible subsets of the dataset of size .S at each step ¢ > 0. In practice,
the main limitation of this incremental optimization technique is due to the stochastic noise
induced by the choice at random of the data involved in the gradient estimator computation
at each iteration. In particular, most of the theoretical justification of the SGD are established
in a very general framework (see Robbins & Monro (1951) or Bach & Moulines (2011a) for
instance) that encompasses the ERM case. We propose to introduce non uniform sampling
strategy as well as a novel analysis highlighting the benefit of using non uniform sampling
strategy for the ERM problem. We first introduce in chapter 3 a novel implementation of the
SGD algorithm, where the data subset used at a given step is not picked uniformly at random
among all possible subsets but drawn from a specific adaptive sampling scheme, depending on
the past iterations. We then propose a general framework to extend these results using survey
sampling theory in chapter 4 in which we also take into account the distribution of the obser-
vation in our final analysis. We conclude this section by considering the specific case where
the empirical risk takes the form of a U-statistic and propose and efficient implementation of
the SGD Algorithm in this case. Here and throughout, the gradient and Hessian operators with
respect to § are denoted by V and V? respectively. By convention, V¥ corresponds to the iden-
tity operator and gradient values are represented as column vectors. For any vector V' € R,
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we denote by ||V|| its euclidian norm and for any matrix A we denote by A7 its transpose.

1.3.1 A Non Uniform Sampling Strategy for SGD

In order to speed up the learning process, we introduce a specific variant of the SGD algo-
rithm with an adaptive sampling scheme, in the sense that it may vary with ¢, depending on
the past iterations. We consider non uniform sampling with replacement. We first start by
identifying a good sampling distribution by choosing the one minimizing the variance of the
estimator. When drawing a sample S of size .S with first order inclusion p; independently with
replacement, the quantity

;ZW(ZZ’Q) (1.11)

ies i

is an unbiased estimator of Vin(H) with corresponding variance equal to :

1 N IVUZO2 [V (0)]]2
SZ;H (' W VL@ (1.12)

— Di S

To achieve the best estimation of the gradient (i.e minimizing the variance) at parameter 6
conditionally upon the observations, it is therefore natural to sample observation Z; with prob-
ability: p;(0) = [|VI(Z;,0)|/ >25=1 [VI(Z},0)]|. Unfortunately, practical implementation
of the above sampling scheme is not pertinent because it requires to evaluate all gradients to
calculate the norms ||VI(Z1,0,)|, ..., ||VI(Zy,,0:)|| at each iteration, which is precisely what
we are try to avoid when using SGD. We therefore propose a sampling scheme approximating
p; = (pi(6:));, without requiring any additional gradient evaluations. We use some old
values of the gradient in our approximation. More precisely, the main idea is to replace each
unknown gradient norm ||VI(Z;, 6;)|| by a (possibly outdated) norm g;; = [|VI(Z;,0)|| at
some former instant k& = k(i,t) corresponding to the last time & < ¢ when the Z; was picked.
More formally, we define the random sequence g; as

e .(1 (S
grs = IVUZL O] i e G @13
’ Gt otherwise.

Then, a natural way to approximate p; is to construct p; = (py;);; where we set for each i

B gt,i
ti = —=n -
Zj:l 9t.j

It turns out that convergence cannot be guaranteed with this choice, because a certain compo-
nent p;; can get arbitrarily close to zero. A possible remedy is to enforce a greedy sampling
scheme:

(1.14)

Vi € {17 ) n}? Dti = pPYi + (1 - P)ﬁt,ia (115)

where v = (v1,...,Vy,) is a probability distribution with v; > 0 for 1 < i < n,and 0 <
p < 1. This condition has the following interpretation : p; is a mixture between two laws of
probability and one of this law (v) is independent from the past. Now that we have defined
our sampling strategy, the algorithm we propose is simply to compute at each iteration ¢ an
estimator of the gradient based on equation (1.11) by sampling observation according to p; :=
(pt,i)"_,. This sampling strategy can also be efficiently implemented in practice and we show
that sampling under this strategy only has an additional cost of O(log(n)). Theoretical results
are then established by means of asymptotic argument where we show that with this sampling
strategy, the asymptotic behaviour of #; is optimal up to an error proportional to p. Note that



Chapter 1. Introduction 7

all the result obtained in chapter 3 hold true conditionally upon the observations and therefore
do no take into account the statistical nature of our problem (i.e we solve ERM because we
do not know the true risk). We deal with this issue in the next section where we discuss of
a similar problem (Non uniform sampling strategy for SGD) in the context of M-estimation.
More specifically we use the framework of survey sampling introduced previously to extend
our results .

1.3.2 Horvitz Thompson Gradient Descent (HTSGD) and Applications to M-
Estimation

The previous sections strongly suggests to use sampling technique to scale up learning from
datasets. We now show how to incorporate efficiently survey schemes into such iterative tech-
niques for M-estimation. More precisely, we propose a specific estimator of the gradient, that
is referred to as the Horvitz-Thompson gradient estimator (HTGD estimator in short). For the
estimator thus produced, consistency and asymptotic normality results describing its statistical
performance are established. The framework we consider is the same than in section 1.3.1.
We define the Horvitz-Thompson estimator of the gradient £,,(0) based on a survey sample
S drawn from a design S,, with (first order) inclusion probabilities {;}1<;<, and inclusion
vector €, = (€1,...,€,) as

n

1 1 1 i
ls,0) = = 3 — VI(Z:,0) = = > 2 VI(Z,,0). (1.16)
.ES 3

-
i=1 "

Equipped with this notation, we study the property of a SGD algorithm when the estimator of
the gradient is computed by sampling observations within some dataset under some sampling
plan S, (possibly depending upon ¢ and the current value of the parameter). We denote by
0,,(T) the value of the parameter at time 7". Conditioned upon the data D,, = {Z1, ..., Z,},
we study the asymptotic properties of the M -estimator produced by the HTGD algorithm.
The limit results stated below essentially rely on the fact that the HT estimator (1.16) of the
gradient of the empirical risk is unbiased. Reduction of the asymptotic variance of 0,(T) (of
L, (6,(T)), respectively) is investigated later in the Poisson case (i.c when the ¢; are inde-
pendent r.v.). We show that under some appropriate assumptions, the sequence {60,,(t)}+>0
converges to a minimizer of the empirical risk and

VI (0ult) = 6:) = N(0.2r,0),

where the asymptotic covariance matrix X 5, is the unique solution of a Lyapunov equation
involving the 7;’s and defined in chapter 4. By a direct application of the second order Delta
method, we then characterize the behaviour of Ly, (6,,(t)) — Ly (67) where 67 is an empirical
risk minimizer. We then discuss how one should choose 7; in the Poisson case (case where
the ¢; are independent) and recall the result of chapter 3 by showing that sampling with m;
proportional to [|VI(Z;,0)| yields optimal results when trying to minimize the variance of
L (0, () — En(ﬁ;kl) Denoting by N the expected size of a sample, our analysis is then finally
completed by studying the behaviour of 6,,(t) as n, N tend to +oc at appropriate rates. This
is quite different from what we did in chapter 3 because we limited our analysis to the case
where n is set in advance and all our results were obtained conditionally upon the observations.
Doing so allow us to illustrate the well-known trade-off between (asymptotic) generalization
and optimization errors, ruled by the limit behaviour of n-y; /N (see Bottou & Bousquet (2008)
for instance). More precisely we show that under supplementary assumptions, if lim ny, /N =
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¢ > 0, then we have the convergence in distribution:

. * * *
o (30 0)} =00
where lim,, o0 NI';, = I'" and A* is the asymptotic covariance matrix involved in the
TCL for M -estimator applied to 6 — 6*. With ; typically or order O(1/t), the condition
limny; /N = ¢ > 0 gives an idea of how the number of iteration should be tuned according to
the number of observation and the batch size to yield optimal results. Numerical experiments
are then displayed in section 4.6.

1.3.3 Stochastic Gradient Descent Algorithms based on Incomplete U-Statistic

Here we discuss of the implementation of SGD for U-Statistics. We briefly introduce the
problem and notations and explain the difference with the problems of section 1.3.1 and 1.3.2.

Generalized U -statistics are extensions of standard sample mean statistics. In machine learn-
ing, they are used as performance criteria in many problems, Metric Learning and AUC in
particular are two examples that we consider in our experiments. It is defined as follows:

Definition 1.1. Let K > Land (di, ..., dg) € N*. Let X1,y = (X9, ) X0,
1 <k < K, be K independent samples of sizes nj > d; and composed of i.i.d. random vari-
ables taking their values in some measurable space X} with distribution F(dx) respectively.

Let H : de’l X oo x X I%K — R be a measurable function, square integrable with respect to
the probability distribution y = F {X) “o...9F f?dK . Assume in addition (without loss of
generality) that H (X(l), o, xE )) is symmetric within each block of arguments x(*) (valued
in X:’“), 1 < k < K. The generalized (or K-sample) U-statistic of degrees (di, ..., dg)
with kernel H, is then defined as
M. x@2), | x(K)
Un(H) = ] ZH (Xh > UNIED <) ) (1.17)
k= 1 k I
where n = (ni1, ..., ng), the symbol > Lo > 1, tefers to summation over all elements
K nE\ : . .

of A, the set of the [[,_, (d:) (;r)ldex VC(C]:)OI‘S (I, .(}C)., Ik ), I) being a set of dj, indexes
1<id; <. <ig, §nkandXIk = (Xi1 Y e Xidk)forl <k<K.

Subsection 1.3.1 and 1.3.2 advocates the use of SGD to deal with the number of terms in-
volved in (1.8). Note that when the empirical risk takes the form of a generalized U-statistics,
the number of terms involved in the sum is of order O(n%+4x) making the problem ex-
tremely difficult to solve. Nevertheless we show how to implement the SGD in this case.

We place ourselves in the parametrized setting. Still denoting by © the parameter space, with
H: Hle X ng x © — R a convex loss function, we denote the empirical version of the risk
by 6§ € © — L, (6) = U,(H(.; 6)). As we have mentioned before, the implementation of
SGD is quite straightforward for the minimization of standard mean statistics, as it is usually
performed by sampling uniformly at random (with or without replacement) a batch of obser-
vations before computing an estimator of the gradient. When the empirical risk takes the form
of a U-statistic, the SGD algorithm could be implemented this way. It would lead to estimator
of the gradient equal to:

gn,(e)—iz ZVH WX X ), (1.18)
Hk l(dk) I
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/
where »; refers to summation over all (Z:) subsets X' g’;) = (X;Ek), ey X ZSIZ)) related to
aset I of dj indexes 1 < iy < ... < ig, < njandn’ = (n}], ..., ). In the case of

U-Statistic, we prove that this strategy (which we later refer to as "computing a complete U-
statistic") is not efficient. We instead propose to proceed differently by drawing independently
with replacement among the set of index vectors A, giving a gradient estimator in the form of
a so-called incomplete U -statistic (see Lee (1990a)):

g5(0) :% S ovaxy, L x ), (1.19)
(I, ..., Ig)eDp

where Dp is built by sampling B times with replacement in the set A. The parameter B is

the number of terms averaged. For the same computational cost (i.e., taking B = Hé{:l (Z}%))

and implementing SGD with (1.19) rather than (1.18) yields more accurate results, essentially

because (1.19) has smaller variance w.r.t. to VL(6) (except in the case where K = 1 = dy).

Intuitively, sampling an incomplete U-statistic is better because the number of observations

involved is greater than the number of observation involved in the complete estimator.

This is highlighted when we compare the performance of the SGD methods described above
conditionally upon the observed data samples by studying both the asymptotic and non asymp-
totic behaviour of the SGD algorithm for both of the implementations. As we have done earlier
in this chapter, we propose generalization bounds where (see Bottou & Bousquet (2007)), we
decompose the stochastic error as follows:

EIL(6:) ~ L(O")] < 28 [sup L, (6) - L((ﬂ@ VE[L,60)-Lu@))]. .20

& =
where §* = argming.g L(6). The generalization bound show the advantage of using an
incomplete U-statistic (1.19) as the gradient estimator while highlighting the well-known fact
that when using some optimization method to solve the Empirical Risk Minimization problem,
we have to take into account the generalization bounds so that the optimization accuracy is of
the same order (see subsection 1.3.2). Numerical experiments on Metric Learning problem
and AUC optimization are then displayed.

1.4 Fast Learning Rates for Graph Reconstruction

This section is a summary of chapter 6 in which we present a brief overview of the graph
reconstruction problem. We first set our context before describing the problem of interest. Let
G = (V, E) be an undirected random graph withaset V' = {1, ..., n} of n > 2 vertices and
aset B ={e;;: 1 <i#j<n}e{0,1}""1 describing its edges: for all i # j, we have
e;j = e;; = +1if the vertices i and j are connected by an edge and ¢; ; = ¢;; = 0 otherwise.
We also assume that for all ¢ € V, a continuous r.v. X is associated to vertex 7. The X;’s are
i.i.d. and for any ¢ # j, the random pair (X;, X;) gives some information useful to predict
the occurrence of an edge connecting the vertices ¢ and j. Conditioned upon the features
(X1, ..., Xy), any binary variables ¢; ; and ey ; are independent only if {7, 5} N {k, 1} = 0.
In particular, the conditional distribution of e; j, i # j, is supposed to depend on (X;, X;)
solely and is described by:

n(Xi, Xj) =P{ei; = +1| (X4, Xj)}. (1.21)
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The learning problem introduced by Biau & Bleakley (2006), referred to as graph reconstruc-
tion, consists in building a symmetric reconstruction rule g : X* — {0,1}, from a training
graph G, with nearly minimum reconstruction risk

R(g) =P{g(X1,X2) # e12}, (1.22)

thus achieving a comparable performance to that of the Bayes rule g*(x1, x2) = I{n(z1, z2) >
1/2}, whose risk is given by R* = E[min{n(Xy, X2), 1 —n(X1,Xs)}] = inf, R(g).

The reconstruction risk (1.22) is replaced by its empirical version based on the labelled sample
D, = {(X;, Xj,ei5) : 1 <i<j<n}relatedtoG:

ﬁnw)—n(f_l) S T{g(Xi X)) # ei) (1.23)

1<i<j<n

Let g, be an empirical risk minimizer : mingeg ﬁn(g), where G is a class of recon-
struction rules. As we have done before, the performance of g, is then measured by
R(gn) — infgeg R(g), which can be bounded if we can derive probability inequalities for
the maximal deviation R

sup [Rn(g) — R(g)|- (1.24)

&Y
Biau & Bleakley (2006) establish rate bounds of the order Op(1/+/n) for the reconstruction
risk of g,, under appropriate complexity assumptions (namely, G is of finite VC-dimension).
We prove that rates of order Op(logn/n) are always attained by the minimizers of the empir-
ical reconstruction risk (1.23) with no additional assumptions. To establish this result, we rely
on some arguments used in the fast rate analysis for empirical minimization of U-statistics
(Clémencgon et al., 2008a), although these results only hold true under restrictive distribu-
tional assumptions. Whereas the quantity (1.23) is not a U-statistic, we rewrite the difference
between the excess of reconstruction risk of any candidate rule ¢ € G and its empirical coun-
terpart as the sum of its conditional expectation given the X;’s, which is a U-statistic, plus a
residual term. Denoting by A(g) = R(g) — R* the excess reconstruction risk with respect to
the Bayes rule, its empirical estimator is given by

For all g € G, one may write:

An(g) — Ag) = Un(g) + Wa(g), (1.25)

where
Un(g9) =E[An(9) — Alg) | X1, ..., Xin]

is a one sample U-statistic of degree 2.

Under a certain “low-noise” condition, the analysis carried out by Clémencon et al. (2008a)
shows that the small variance property of U-statistics lead to fast learning rates for empirical
risk minimizers. We show that this condition is always fulfilled for the specific U-statistic
Un(g) involved in the decomposition (1.25). This result is due to the fact that the empirical
reconstruction risk is not an average over all pairs (i.e., a U-statistic of order 2) but an average
over randomly selected pairs (random selection being ruled by the function n). We then con-
clude the proof of the results by establishing that the remaining term W,,(g) is also of order

Op(1/n).
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We finally conclude our analysis by scaling up the learning process. Similarly to chapter 35,
for large training graphs, the complexity of merely computing ﬁn(g) is prohibitive as the
number of terms involved in the summation is O(n?). Just like we did in section B.3.3, we
introduce a sampling-based approach to build approximations of the reconstruction risk with
much fewer terms than O(n?). Instead of the empirical reconstruction risk (1.23), we con-
sider an incomplete approximation obtained by sampling pairs of vertices (and not vertices)
with replacement. A parallel can easily be drawn with the results obtained in chapter 5 where
we recommended to implement the SGD algorithm with incomplete U-Statistic, which corre-
sponds in this case to sampling edges instead of nodes. Formally, we define the incomplete
graph reconstruction risk based on B > 1 pairs of vertices as

Rz(g Z T{g(X;, X;) # ei;}, (1.26)

( 7])6735

where Pp is a set of cardinality B built by sampling with replacement in the set ©,, = {(i,7) :
1<i<j<n}.Foranybe{l, ..., B}andall (i,j) € ©,, denote by (i, j) the variable
indicating whether the pair (i, j) has been picked at the b-th draw. The incomplete risk is then
represented by:

B
75fB(g) ! Z (4,7) ]I{g(XuX ) # ez,j} (1.27)

(B.38) is an unbiased estimator of the true risk (1.22) and given the X;’s, its conditional expec-
tation is equal to (4.2). When taking B = o(n?), computational costs are significantly reduced,
at the price of a slightly increased variance. We characterize the performance of solutions gp
to the computationally simpler problem mingcg R B(g) and show that with only B = O(n)
pairs, the rate is of the same order (up to a log factor) as the one obtained by Biau & Bleakley
(2006) for the maximal deviation sup g |7€n(g) — R(g)| related to the complete reconstruc-
tion risk ﬁn( g) with O(n?) pairs. As expected, we show that the number B > 1 of pairs of
vertices plays the role of a tuning parameter, ruling a trade-off between statistical accuracy
(taking B(n) = O(n?) fully preserves the convergence rate) and computational complexity.
Numerical experiments are displayed in section 6.5 to illustrate our different results.
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CHAPTER 2
Learning from Survey Training Samples

Abstract The generalization ability of minimizers of the empirical risk in the context of bi-
nary classification has been investigated under a wide variety of complexity assumptions for
the collection of classifiers over which optimization is performed. In contrast, the vast ma-
jority of the works dedicated to this issue stipulate that the training dataset used to compute
the empirical risk functional is composed of i.i.d. observations and involve sharp control of
uniform deviation of i.i.d. averages from their expectation. Beyond the cases where training
data are drawn uniformly without replacement among a large i.i.d. sample or modelled as a
realization of a weakly dependent sequence of r.v.’s, statistical guarantees when the data used
to train a classifier are drawn by means of a more general sampling/survey scheme and ex-
hibit a complex dependence structure have not been documented in the literature yet. In this
chapter, we show that the theory of empirical risk minimization can be extended to situations
where statistical learning is based on survey samples and knowledge of the related inclusion
probabilities. We prove that minimizing a weighted version of the empirical risk, referred to
as the Horvitz-Thompson risk (HT risk), over a class of controlled complexity lead to a rate
for the excess risk of the order O((k,,(logn)/N)'/?) with x,, = (N/n)/ min;<,, 7;, when
data are sampled by means of a rejective scheme of (deterministic) size N within a statisti-
cal population of cardinality N < n with probability weights 7; > 0. Extension to other
sampling schemes are then established by a coupling argument. Beyond theoretical results,
numerical experiments are displayed in order to show the relevance of HT risk minimization
and that ignoring the sampling scheme used to generate the training dataset may completely
jeopardize the learning procedure.

2.1 Introduction

Whereas statistical learning techniques crucially exploit data that can serve as examples to
train a decision rule, they may also make use of weights individually assigned to the observa-
tions, resulting from survey sampling. Such weights could correspond either to true inclusion
probabilities or else to calibrated or post-stratification weights, minimizing some discrepancy
under certain margin constraints for the inclusion probabilities. In the context of statistical
inference based on survey data, the asymptotic properties of specific statistics such as Horvitz-
Thompson estimators (¢f Horvitz & Thompson (1951)), whose computation involves not only
the observations but also the weights, have been investigated, in particular, mean estimation
and regression have been the subject of much attention, refer to Hajek (1964), Rosen (1972),
Robinson (1982), Deville & Sirndal (1992), Berger (1998) for instance, and a comprehen-
sive functional limit theory for distribution function estimation is progressively documented in
the statistical literature, see Gill et al. (1988), Breslow & Wellner (2007), Breslow & Wellner
(2008), Breslow et al. (2009), Saegusa & Wellner (2011). At the same time, the last decades
have witnessed a rapid development of the field of machine-learning. Revitalized by different
breakout algorithms (e.g. SVM, boosting methods), its practice is now supported by a sound
probabilistic theory based on recent non asymptotic results in the study of empirical processes,

15
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see Devroye et al. (1996a), Koltchinskii (2006), Boucheron et al. (2005a). However, most pa-
pers dedicated to theoretical results grounding the Empirical Risk Minimization approach, the
main paradigm of statistical learning, assume that the training of a decision rule is based on
a dataset formed of independent replications of a generic random vector Z, a collection of
n > 11i.i.d. observations 7, ..., Z, namely. In contrast, few results are available in situa-
tions where the training dataset is generated by a more complex sampling scheme. One may
refer to Bardenet & Maillard (2015) for concentration inequalities permitting to study the gen-
eralization ability of empirical risk minimizers when the training data are obtained by standard
sampling without replacement (SWOR in abbreviated form) or to Steinwart et al. (2009) in the
case where the decision rule is learnt from a path of a weakly dependent stochastic process.

In this chapter, we extend the ERM theory to situations where the training dataset is generated
by means of a more general sampling scheme, with possibly unequal probability weights. We
first consider the case of rejective sampling (sometimes referred to as conditional Poisson
sampling), an important generalization of basic SWOR. The rate bound results obtained by
means of properties of so-termed negatively related random variables in this case are next
shown to extend to a class of more general sampling schemes by a coupling argument. In
addition, numerical experiments are carried out in order to provide empirical evidence of the
approach developed. They show in particular that statistical accuracy of the ERM paradigm
may fail if the sampling scheme underlying the training dataset is ignored.

The chapter is organized as follows. In section 2.2, the probabilistic framework of the present
study is described and basic results of the probabilistic theory of classification are briefly
recalled, together with some important notions of survey theory. The main theoretical results
are stated in section 2.3, while illustrative numerical experiments are presented in section 2.4.

2.2 Background and Preliminaries

As a first go, we start with recalling key concepts pertaining to the theory of empirical risk
minimization in binary classification, the flagship problem in statistical learning. A few no-
tions related to survey theory are next described, which will be involved in the subsequent
analysis. Throughout the chapter, the indicator function of any event £ is denoted by I{£},
the Dirac mass at any point a by d,, the power set of any set £ byP(E), the cardinality of any
finite set A by #A.

2.2.1 Binary Classification - Empirical Risk Minimization Theory

The binary classification problem is undeniably the most documented statistical learning prob-
lem in the literature and certain results extend to other general frameworks (e.g. multi-class
classification, regression,ranking). With (2, .4, P) a probability space and (X,Y’) a random
pair defined on (€2, A, P), taking its values in some measurable product space X x {—1,+1},
with common distribution P(dz, dy): the r.v. X models some observation, hopefully useful
for predicting the binary label Y. The distribution P can also be described by the pair (F, )
where F'(dx) denotes the marginal distribution of the input variable X and n(z) = P{Y =
+1 | X =z}, z € X, is the posterior distribution. The objective of binary classification is
to build, based on the training dataset at disposal, a measurable mapping g : X +— {—1,+1},
called a classifier, with minimum risk:

L(g) € P{g(X) £ V). @1
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IThe Bayes classifier g*(x) = 2I{n(x) > 1/2} — 1 is a solution of the risk minimization
problem inf, L(g), where the infinimum is taken over the collection of all classifiers defined
on the input space X'. The minimum risk is denoted by L* = L(g*). Since the distribution P
of the data is unknown, one substitutes the true risk with its empirical estimate

n

1

Lu(g) = — > Mg(Xy) # Vi), 2.2)
i=1
based on a sample (X1,Y7), ..., (X,,Y,) of independent copies of the generic random pair

(X,Y). The true risk minimization is then replaced by the empirical risk minimization

in Ly, (q), 2.3
min Ln(g) (2.3)

where the minimum is taken over a class G of classifier candidates, supposed rich enough to
include the naive Bayes classifier (or a reasonable approximation of the latter). Considering a
solution g, of (2.3), a major problem in statistical learning theory is to establish upper confi-
dence bounds on the excess of risk L(g,) — L* in absence of any distributional assumptions
and taking into account the complexity of the class G (e.g. described by geometric or combi-
natorial features such as the VCdimension) and some measure of accuracy of approximation
of P by its empirical counterpart P, = (1/n) > " d(x, ;) over the class G. Indeed, one
typically bounds the excess of risk of the empirical risk minimizers as follows

L(gn) — L* < 2sup|Ln(g) — L(g)| + ( inf L(g) — L* ) .
g€y 9€g

The second term on the right hand side is referred to as the bias and depends on the richness
of the class G, while the first term, called the stochastic error, is controlled by means of results
in empirical process theory, see chapter A and Boucheron et al. (2005a).

Remark 2.1. (ON RISK SURROGATES) Although its study is of major interest from a the-
oretical perspective, the problem (2.3) is generally NP-hard. For this reason, the cost
function I{—Y¢g(X) > 0} is replaced in practice by a non-negative convex cost function
»(Yg(X)), turning empirical risk minimization to a tractable convex optimization problem.
Typical choices include the exponential cost ¢(u) = exp(u) used in boosting algorithms,
the hinge loss ¢(u) = (1 + u)4+ in the case of support vector machines and the logit cost
¢(u) = log(1l 4 exp(u)) for Neural networks, see Bartlett et al. (2006) and the references
therein.

In this chapter, we consider the situation where the training data used to compute of the empir-
ical risk (2.2) is not an i.i.d. sample but the product of a more general sampling plan of fixed
size N > 1.

2.2.2 Sampling Schemes and Horvitz-Thompson Estimation

Let n > 1. In the standard superpopulation framework we consider, (X1,Y1), ..., (X,,Y})
is a sample of independent copies of (X,Y) observed on a finite population Z, :=
{1, ..., n}. We call a survey sample of (possibly random) size N < n of the population Z,,,
any subset s := {i1,...,in(s)} € P(Z,) with cardinality N =: N(s) less than nn. A sampling
design is determined by a conditional probability distribution R,, on the set of all possible sam-
ples s € P(Z,,) given the original data D,, = {(X;,Y;) : i € Z,,}. Foranyi € {1, ..., n},
the first order inclusion probability, m; = P, {i € S} is the probability that the unit ¢ belongs
to a random sample S drawn from the conditional distribution R,,. We set ™ = (71, ..., 7).
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The second order inclusion probabilities are denoted by 7; ; = Pg, {(i,7) € S?}, for any
i # jin{1,...,n}?. The information related to the observed sample S C {1,...,n} is fully
enclosed in the r.v. €, = (€1, ..., €,), where ¢; = I{i € S} for 1 < i < n. The 1-d marginal
conditional distributions of the sampling scheme €,, given D,, are the Bernoulli distributions
B(m;) = mid1 + (1 — m;)dp, 1 < i < n, and the covariance matrix I, of the r.v. €, has
entries given by I',, (¢, j) = m; ; — mmj, with 7; ; = ; by convention, for 1 < 4,5 < n. Ob-
serve that, equipped with the notations above, > -, ., € = n(S). One may refer to Cochran
(1977), Deville (1987) for accounts of survey sampling techniques. Notice also that, in many
applications, the inclusion probabilities are built using some extra information, typically by
means of auxiliary random variables W7y, ..., W, defined on (€2, A, P) and taking their val-
ues in some measurable space W: Vi € {1, ..., n}, m = Nh(W;)/ > <, h(W;), where
N maxi<j<p h(W;) <> i, h(W;) almost-surely and h : YW —]0, +o0o[ is a measurable
link function. The (X;,Y;, W;)’s are generally supposed to be i.i.d. copies of a generic r.v.
(X,Y,W). See Sirndall & B. Swensson (2003) for more details. For simplicity, the 7;’s are
supposed to be deterministic in the subsequent analysis, which boils down to carrying out the
study conditionally upon the W;’s in the example aforementioned.

Horvitz-Thompson risk. As defined in Horvitz & Thompson (1951), the Horvitz-Thompson
version of the (not available) empirical risk L,(g) = n~! Y i<icn {Yi # g(Xi)} of any
classifier candidate g based on the sampled data {(X;,Y;) : i € S} with S ~ R,, is given by:

n

— 1 1 1 €
Le,(9) = = Y —Hg(Xi) #Yi} = — Y —I{g(X;) # Yi} (2.4)
M ies T i T
with the convention that 0/0 = 0 and where €,, = (€1, ..., €,) denotes the vector in corre-

spondence with the sample S. Observe that, conditionally upon the (X;,Y;)’s, the quantity
(2.4), that shall be referred to as the empirical Horvitz-Thompson risk (empirical HT risk in
short) throughout the chapter, is an unbiased estimate of the empirical risk En(g) Its (point-
wise) consistency and asymptotic normality are established in Robinson (1982) and Berger
(1998) for a variety of sampling schemes. Limit results of functional nature are established in
Gill et al. (1988) for specific biased sampling models, refer also to Breslow & Wellner (2007),
Breslow & Wellner (2008), Saegusa & Wellner (2011), Bertail et al. (2013).

We investigate the statistical performance of minimizers g,, of the HT risk (2.4) over the class G
under adequate assumptions for the sampling scheme R,, used to generate the training dataset.
We point out that such an analysis is far from straightforward due to the possible dependence
structure of the terms involved in the summation (2.4): except in the Poisson case (recalled
below), concentration results for empirical processes cannot be directly applied to control
maximal deviations of the type

sup|Le, (9) — L(g)|-
geg

Conditional Poisson sampling. One of the simplest sampling plan is undeniably the Pois-
son survey scheme (without replacement), a generalization of Bernoulli sampling originally
proposed in Goodman (1949) for the case of unequal weights: the ¢;’s are independent and
the sampling distribution is thus entirely determined by the first order inclusion probabilities

Pn = (p1, ---, pn) €J0,1[™:

Vs € P(Zn), Puls)=][p [1C0-pi). 25)

ieS igS
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Observe in addition that the behaviour of the quantity (2.4) can be then investigated by
means of results established for sums of independent random variables. However, the ma-
jor drawback of this sampling plan lies in the random nature of the corresponding sample
size, impacting significantly the variability of (2.4). The variance of the Poisson sample size
is given by d,, = Z?:l pi(1 — p;), while the conditional variance of (2.4) is in this case:
S (1 —pi)/pi)I{g(X;) # Y;}. For this reason, rejective sampling, a sampling design R,
of fixed size N < n, is often preferred in practice. It generalizes the simple random sampling
without replacement (where all samples with cardinality N are equally likely to be chosen,
with probability (n — N)!/n!, all the corresponding first and second order probabilities being
thus equal to N/n and N(N —1)/(n(n— 1)) respectively). Denoting by 7, = (71, ..., 7x)
its first order inclusion probabilities and by S,, = {s € P(Z,) : #s = N} the subset of all
possible samples of size NV, it is defined by:

Vs € Spy Rals) =C 1w [J(1-pa), (2.6)
1€ i¢s
where C =1/3 " cs [licsPi Hi¢5(1—pi) and the vector p,, = (p1, ..., pn) €J0, 1[" yields

first order inclusion probabilities equal to the 7;’s and is such that >, p; = n. Under this
latter additional condition, such a vector p,, exists and is unique (see f)upacova (1979)) and
the related representation (2.6) is then said to be canonical'. Comparing (2.6) and (2.5) reveals
that rejective ‘R,, sampling of fixed size N can be viewed as Poisson sampling given that the
sample size is equal to N. It is for this reason that rejective sampling is usually referred to as
conditional Poisson sampling. One must pay attention not to get the 7;’s and the p;’s mixed
up: the latter are the first order inclusion probabilities of P,,, whereas the former are those
of its conditional version R,,. However they can be related by means of the results stated in

Hajek (1964) (see Theorem 5.1 therein): Vi € {1, ..., n},
mi(l—pi) = pi(l—m) x (11— (7 —m)/d, +o(1/d})), 2.7)
pi(l=m) = m(l—pi)x (1= (P—pi)/dn+0(1/dpn)), (2.8)

where dy, = 37 mi(1=m;), & = (1/dy;) 320y wf(1=mi) and p = (1/dn) 3214 (pi)*(1—-pi).

More examples of sampling schemes with fixed size are given in section 2.8.

2.3 Main Results

We first consider the case where statistical learning is based on the observation of a sample
drawn by means of a rejective scheme. As shall be seen below, the main argument underlying
the results obtained relies on the fact that the related scheme form a collection of negatively
associated (binary) random variables, a rather tractable type of dependence structure. This
property being shared by many other sampling schemes of deterministic size, the same argu-
ment can be thus naturally applied to carry out a similar rate analysis for training data produced
by such plans. Extensions of these results to more general sampling schemes are also consid-
ered by means of a coupling technique.

"Notice that any vector p}, €]0, 1[™ such that p; /(1 — p;) = cpi/(1 — p}) foralli € {1, ..., n} for some
constant ¢ > 0 can be used to write a representation of R,, of the same type as (2.6)
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2.3.1 Horvitz-Thompson Empirical Risk Minimization in the Rejective Case
For clarity, we first recall the definition of negatively associated random variables, see Joag-
Dev & Proschan (1983).

Definition 2.2. Let Z;, ..., Z, be random variables defined on the same probability space,
valued in a measurable space (F, E). They are said to be negatively associated iff for any pair
of disjoint subsets A; and As of the index set {1, ..., n}

Cov (f((Zi)iear), 9((Zj)jens)) <0, (2.9)

for any real valued measurable functions f : E#41 — Rand g : E#42 — R that are both
increasing in each variable.

The theorem stated below reveals that any rejective scheme €,, forms a collection of negatively
associated r.v.’s. The proof is given in Appendix 2.6.

Theorem 2.3. Letn > 1 and €, = (€1, ..., €n) be the vector of indicator variables related
to a rejective plan on L,,. Then, the binary random variables €1, ..., €, are negatively
associated.

The result above permits to handle the dependence of the terms involved in the summation
(2.4). It is the key argument for proving the following proposition, which extends results for
training datasets generated by basic sampling without replacement (i.e. in the case of all equal
weights: m; = N/nfori =1, ..., n), refer to Bardenet & Maillard (2015) (see also Serfling
(1974)).

Proposition 2.4. Suppose that the sampling scheme €,, is rejective with first order inclusion
probabilities 7, and that the class G is of finite VC dimension V < +o0. Set k, = N/(n X
min;<,, ;). Then, the following assertions hold true.

(i) Forany 6 € (0,1), with probability larger than 1 — 6, we have: YN < n,

L —L

_ ~ ‘ < \/2ﬁnlog(§) + Viog(n+1) 19 log(2) + Vlog(n + 1)

(2.10)

(ii) For any solution g, of the minimization problem inf ;cg Le, (g) is such that, for any
d € (0, 1), with probability at least 1 — §, we have: ¥n > 1,

log(3) + Vlog(n + 1) log(3) + Vlog(n + 1)

+4kp

N : 3N
21log(2
oY o228 e gy - 1.
n n geg

The factor x involved in the bounds above reflects the influence of the sampling scheme
(notice incidentally that £, > 1since Y . m; = N). Inthe SWOR case, i.e. when m; = N/n
forall i € {1, ..., n}, it is then minimum, equal to 1. More generally, when N = o(n)
as n — +o0, as soon as the weights cannot vanish faster than N/n, the rate achieved by
minimizers of the HT risk is of the order O(/(logn)/N). Many sampling schemes (e.g. Rao-
Sampford sampling, Pareto sampling, Srinivasan sampling) of fixed size are actually described

L(gn) — L* < 2\/2HN
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by random vectors €, with negatively associated components, see Brindén & Jonasson (2012)
or Kramer et al. (2011). Hence, Proposition 2.4’s proof shows that the bounds stated above
immediately extend to these cases. See section 2.8 for more details and references. Before
showing how the rate bounds established can be extended to even more general sampling
schemes, a few remarks are in order.

Remark 2.5. (COMPLEXITY ASSUMPTIONS) We point out that the results stated can be estab-
lished, essentially by means of the same argument as that developed in the section 2.6, under
complexity assumptions of different nature, involving metric entropy conditions for instance
(see e.g. van der Vaart & Wellner (1996)).

Remark 2.6. (MODEL SELECTION) A slight modification of the argument involved in Proposi-
tion 2.4 straightforwardly leads to bounds on the expected excess risk E[L(ge,, )| —infyeg L(g).
Following the Structural Risk Minimization principle (see Vapnik (2001)), such VC bounds
can be next used as complexity regularization terms to penalize additively the HT risk (2.4)
and, for a sequence of model classes G, with k£ > 1 of finite VC dimension, select the classifier

among the minimizers {arg mingeg, Le, (g), k¥ > 1}, which has approximately minimal risk.

Remark 2.7. (BIASED HT RISK) As recalled in section 2.7, the canonical parameters p,, are
practically used to build a rejective sampling scheme €,, rather than its vector of first order in-
clusion probabilities (71, ..., mx), whose explicit computation based on the p;’s is a difficult
task, refer to Chen et al. (1994) for dedicated algorithms. For this reason, one could be nat-
urally tempted to minimize the alternative risk estimate L, (9) = (1/n) >, ., (&/p:) I{Y; #
g(X;)}. As proved in section 2.7, refinements of Eq. (2.7)-(2.8) show that

n

sup Lo (9) — Le,(0)] < Iy

n
9¢€ i=1

1 1

bi U

< 6Nrn/(ndy), 2.11)

one may directly derive a rate bound for solutions of inf,cg Le, (g) from bound (i) in
Proposition 2.4. In particular, the learning rate achieved by g, is preserved when 1/v N =
O(min;<p m;) asn, N — +oo.

2.3.2 Extensions to More General Sampling Schemes

We now extend the rate bound analysis carried out in the previous subsection to more com-
plex sampling schemes (described by a random vector €, possibly exhibiting a very complex
dependence structure). In order to give an insight into the arguments which the extension is
based on, additional notations are required. In this section, we consider a general sampling
design R} with first order inclusion probabilities 7} = (7], ..., ) described by the vector
€ = (€f, ..., €) and investigate the performance of minimizers g;; of the HT empirical

n

risk Lex (9) = (1/n) >0 (e /m7)I{Y; # g(X;)} over a class G. We also consider a re-

1
jective sampling scheme R,, described by the r.v. €,, with first order inclusion probabilities

7, = (m, ..., m,) defined on the same probability space, as well as the following quantity:
Loilg) = 237 S1% £ 9(X0) @12)
€n g - n 7T* ) g 1 .

=1

for any classifier g. Observe that (2.12) differs from the HT empirical risk L, (g) related
to the rejective sampling scheme €,, in the weights it involves, the 7}’s instead of the 7;’s
namely. Equipped with this notation, the excess of risk of the HT empirical risk minimizer can
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be bounded as follows:

L(g;) — inf L(g) < 2sup |L(g) = Lu(g)| + 25up |Zu(9) — Le, ()
9€9 9€9 9€g

+ 2sup ’Een(g) — Le, (g)‘ + 2sup ‘Len (9) — I:E;;(g)‘ . (2.13)
gey 9€G

Whereas the first term on the right hand side of (2.13) can be classically controlled using
Vapnik-Chervonenkis and McDiarmid inequalities (see e.g. Vapnik (2001)), assertion (i) of
Proposition 2.4 provides a control of the second term. Following in the footsteps of Hajek
(1964), the third term shall be bounded by means of a coupling argument, i.e. a specific choice
of the joint distribution of (€, €,) satisfying the distributional margin constraints, while
the second term is controlled by assumptions related to the closeness between the first order
inclusion probabilities 7}, and 7,,. More precisely, the assumptions required in the subsequent
analysis involve the total variation distance between the sampling plans R,, and R:
dry (Ru, B) S 037 [Rals) ~ Ri(s)]
SEP(In)

Theorem 2.8. Suppose that Proposition 2.4’s assumptions are fulfilled.  Set rky =
(N/n)minj<, 7} and Ky = (N/n)/minj<, m;. Then, there exists a universal constant
C < +o0 such that we have, ¥Yn > 1,

E | L(gy) — inf L(g)

geg

log (3 1 1 log (4 1 1
]Sz\/QRN oa(3) + Viea(n 1) T+ Viogtn 1)

174 2log(2
+C\/:+2 Oi(é) +2(k + £N8)(n/N)dry (R, R;,), (2.14)

where the infinimum is taken over the set of rejective schemes R, with first order inclusion
probabilities 7, = (71, ..., TN).

The proof is given in section 2.6. The rate bound obtained depends on the minimum error
made when approximating the sampling plan by a rejective sampling plan in terms of total
variation distance. In practice, following in the footsteps of Hajek (1964) or Berger (1998), it
can be controlled by exhibiting a specific coupling (€}, €,). One may refer to Berger (1998)

for many coupling results of this nature, in particular when the approximating scheme €,, is of
rejective type.

2.4 Illustrative Numerical Experiments

In this section we display numerical experiments to illustrate the relevance of HT risk min-
imization. We first consider the case where g(X) = sign(k(X)76 + b), where k is some
mapping function, 1" denotes the transposition operator, 6, b are some parameters. As men-
tioned in 2.1, we consider the hinge loss as a convex surrogate of the 0 — 1 loss and add some
lo regularization term. This leads to the "Weighted SVM" formulation below:

min — 3" L max(0, 1 - Yi(k(X:)70 — b)) + A6]>
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We use the gaussian r.b.f kernel and perform cross validation to appropriately choose the value
of A\. We then consider the task of learning classification trees using the CART algorithm.
These classifiers are trained using the scikit-learn library Pedregosa et al. (2011) and, we
account for the randomness of our experiments by shuffling our datasets and repeating the
experiments 50 times.

We first generate a two class dataset D in R0 of size 20000 by sampling independent ob-
servations from two multivariate normal distribution. A similar dataset D;.4; of size 2000 is
generated to test our classifiers. Denoting by I,; the identity matrix in R?, the positive class
has mean (0, ..., 0) and covariance matrix equal to I3, the negative class has mean (1,...,1)
and covariance matrix equal to 10 x I;9. We then build a dataset D of size 1100 via a rejective
sampling scheme applied to D. Observations from the negative class being more noisy we as-
sign them first order probability equal to 0.1, and assign first order probability equal to 0.01 to
observation from the positive class. To allow for a fair comparison, we also build a dataset D
of size 1100 by sampling without replacement within D. We then learn the different classifiers
on D and D, and display the results in Table2.1.

Mean Standard deviation

Weighted SVM on D 0.02 0.005
Unweighted SVMonD  0.18 0.02
SVM on D 0.04 0.005
Weighted CART on D 0.06 0.01
Unweighted CART on D 0.11 0.03
CART on D 0.08 0.01

TABLE 2.1: Average over 50 runs of the prediction error on Dy, and its standard deviation.

Overall, taking into account the inclusion probability allows to consider a training set of re-
duced size and therefore reduce the computational complexity of the learning procedure with-
out damaging the quality of the prediction.

The same conclusions can be drawn from the analysis of the following datasets which were
obtained via a stratified sampling design. We point out that this sampling scheme involves
negatively associated (binary) random variables so that the theoretical results obtained in this
chapter apply to training data sampled by means of this scheme as well.

incalndiv. GJB privacy3 privacy4

N 4079 2001 316 301
Number of features 326 130 95 124

TABLE 2.2: Number of observations and features for our different datasets

The dataset incalndiv > contain informations on the food consumption of the french popu-
lation. The dataset GJB® contains questions about job seeking and the internet, workforce
automation, online dating and smartphone use among Americans. The datasets privacy3* and

https://https://www.data.gouv.fr/fr/datasets/
3http: //www.pewinternet.org/datasets/june-10-july-12-2015-gaming-jobs—-and-broadband/
‘nttp://www.pewinternet.org/datasets/nov-26-2014-jan-3-2015-privacy-panel-3/


https://https://www.data.gouv.fr/fr/datasets/
http://www.pewinternet.org/datasets/june-10-july-12-2015-gaming-jobs-and-broadband/
http://www.pewinternet.org/datasets/nov-26-2014-jan-3-2015-privacy-panel-3/
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privacy4’ contain questions about privacy and information sharing. On the datasets incalndiv
and incaCompl we try to predict whether or not someone is an adult, on the dataset GJB we
will try to learn to predict the gender, and on the datasets privacy3 and privacy4 we will predict
an answer to some questions among 5 possibilities.

We perform our experiments by randomly splitting the datasets incalndiv, incaCompl,GJB into
a training set (roughly 70 percent of the initial dataset) and a test set. The size of privacy3 and
privacy4 being much smaller we perform 10-fold cross-validation.

incalndiv  GJB privacy3 privacy4

Weighted SVM 0.16 0.36 0.46 0.48
Unweighted SVM 0.19 0.43 0.50 0.52
Weighted CART 0.04 0.41 0.49 0.54
Unweighted CART 0.05 0.43 0.52 0.57

TABLE 2.3: Average over 50 runs of the prediction error

2.5 Conclusion

Most theoretical studies providing a statistical explanation for the success of learning algo-
rithms based on the ERM paradigm fully ignore the possible impact of the sampling scheme
producing the training data and stipulate that observations are independent replications of a
generic r.v. or are uniformly sampled without replacement in a larger dataset. Through the
generalizable example of rejective sampling, this chapter shows that such studies can be ex-
tended to situations where training data are obtained by more general sampling schemes and
possibly exhibit a complex dependence structure, provided that related probability weights are
appropriately incorporated in the risk functional.

2.6 Technical Proofs

2.6.1 Proof of Theorem 2.3

Considering the usual representation of the distribution of (e1, ..., €x) as the conditional
distribution of a sample of independent Bernoulli variables (e], ..., €}) conditioned upon
the event ) ;" | €& = N (see subsection 2.2.2), the result is a consequence of Theorem 2.8 in

Joag-Dev & Proschan (1983).

2.6.2 Bernstein’s Inequality for Sums of Negatively Associated Random Vari-
ables

For simplicity, we first establish the following tail bound for negatively associated random
variables, which extends the usual Bernstein inequality in the i.i.d. setting, see Bernstein
(1964) and section A.2.2. Proofs of Proposition 2.4 and Theorem 2.8 are then deduced from

5http: //www.pewinternet.org/datasets/jan-27-feb-16-2015-privacy-panel-4/
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Theorem 2.3 and Theorem 2.9 (see section 2.6). Althought it is not done here, Hoeffding
inequality for sums of negatively associated random variables could also be easily derived and
we refer to the proofs of A.2.1.2 to establish this result.

Theorem 2.9. Let Z1, ..., Zy be negatively associated real valued random variables such
that |Z;| < ¢ < 400 a.s. E[Z;] = 0 and IE[ZE] = U?for 1 <i < n. Then, forall t > 0, we

have: ¥n > 1,
N t2
P Zi >ty <exp|— 5 .
{; } ( §Ct+22?=1 o7

Before detailing the proof, observe that a similar bound holds true for the tail probability
P (Zf\il Z; < —t) (and for P (\ SN Zi) > t> as well, up to a multiplicative factor 2). Refer
also to Theorem 4 in Janson (1994) for a similar result in a more restrictive setting (i.e. for tail
bounds related to sums of negatively associated r.v.’s).

Proof. Similarly to what we did in section chapter A, the proof starts off with the usual Cher-
noff method: for all A > 0,

P {ZN: 7, > t} < exp (—m +logE [&Z?:l ZD . (2.15)

=1

Next, observe that, for all ¢ > 0, we have
1 1 n
E [etz?ﬂ Z,} ) [ tZn ot 3200 ZZ} <E [eth] E [ p Dy Z] H 7 (2.16)

using the property (2.9) combined with a descending recurrence on ¢. The proof is finished by
plugging (2.16) into (2.15), using an adequate control of the log-Laplace transform of the Z;’s
throught Hoeffding’s Lemma A.7 and optimizing finally the resulting bound w.r.t. A > 0, just
like in the proof of the classic Bernstein inequality, see chapter A and Bernstein (1964). [

2.7 On Biased HT Risk Minimization

Eq. (2.11) directly results from the following lemma.

Lemma 2.10. We have, for p,;s such Suppose that d,, > 1. We have, foralli € {1, ..., n},
6
‘1/71'2‘ — 1/])1“ < df X (1 —m)/m.
n

Proof. The proof follows from the representation (5.14) on p1509 in Hajek (1964). Denote

by Py a Poisson sampling distribution on Z,, with inclusion probabilities p1, ..., pp, the
canonical parameters of R,,. Foralli € {1, ..., n}, we have:
-1
w1 —p; 1—ps
pilom 2 Pls) 2 ZZ (1 =p;) + (pr — ps)
! ¢ SEP(Tn): i€Tn\{s} SEP(Tn): i€Tn\{s} hes “i€s J v

-1

— Z Py (s) Z PN(S)Z o (Pn—pi) >
e (=p5)

s €T\ {5} s €T\ {5} hes D jes(l—pj) ( + 5

JES
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Now recall that for any = €] — 1, 1], we have:

1 2
1—:U§1 <l-—-z+2z".

+x
It follows that
-1
1 — 1— s
Ql_ipf <i-| S Ps) S Py (1 —pn)(pn ng
Di T ) )
s 1€, \{s} s 1€, \{s} hes (Zjes(]‘ — pj))

-1

N S P Y Pe)Y (1 —pn)(pn —pi);
st i€, \{s} st i€Tp\{s} hes <Zjes(1 - pj)>

Following now line by line the proof on p. 1510 in Hajek (1964) and noticing that > ._ (1 —

pj) > 1/2d,, (see Lemma 2.2 in Hajek (1964)), we have
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and similarly
(1= pn)(Pn = pi)* _ 1 <
T < p)
hes (Zjes(l - pj)) (Zjes(l —pj)> n

This yieds: Vi € {1, ..., n},

and

leading then to

and finally to

1—71'1' 2 1_7Ti 2
( ) )2 S ( . )(*Jf*g)-
UL dp Pi T T dnp d

Since 1/d? < 1/d,, as soon as d,, > 1, the lemma is proved. O

2.8 Sampling Training Data - Technical Details

2.8.1 Further Details on the Rejective Scheme

Let N < n and consider a vector w = (7, ..., m,) of first order inclusion probabilities.
Further define S,, := {s € P(Z,) : #s = N}, the set of all samples in population Z,,
with cardinality N. The rejective sampling Hajek (1964); Berger (1998), sometimes called
conditional Poisson sampling, exponential design without replacement or maximum entropy
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design, is the sampling design R, that selects samples of fixed size N(s) = N so as to
maximize the entropy measure H(Ry,) = — > s Rn(s) log Ry (s), subject to the constraint
that its vector of first order inclusion probabilities coincides with 7r. It is easily implemented
in two steps:

1. Draw a sample S according to a Poisson plan P,, with properly chosen first order in-
clusion probabilities p,, = (p1, ..., pn). The representation is called canonical if
Z;‘Zl p; = n. In that case, relationships between each p; and m;, 1 < 7 < n, are
established in Hajek (1964).

2. If n(S) # n, then reject sample S and go back to step one, otherwise stop.

Vector p must be chosen in a way that the resulting first order inclusion probabilities co-

incide with 7r, by means of a dedicated optimization algorithm Tillé (2006). The corre-

sponding probability distribution is given for all s € P(Z,,) by R,(s) = % o
S/E n n

[Tics pi ITigs(1 — pi) X I{#s = N}, where oc denotes the proportionality.

2.8.2 Examples of Sampling Plan with Negatively Associated Random Variables

Below we list two examples of sampling scheme involving negatively associated r.v..

2.8.2.1 Stratified Sampling

A stratified sampling design permits to draw a sample S of fixed size N(S) = N < n

within a population Z,, that can be partitioned into K > 1 distinct strata Z,,,,...,Z,,
(known a priori) of respective sizes Ny, ..., Nk adding up to n. Let Ny,..., Nx be non-

negative integers such that Ny + --- + Nxg = N, then the drawing procedure is imple-
mented in K steps: within each stratum Z,,, k € {1,..., K}, perform a SWOR of size
N < ny yielding a sample Si. The final sample is obtained by assembling these sub-samples:
S=U i{zl Sk. The probability of drawing a specific sample s by means of this survey design

N\ L
is RS"(s) = Zle <n:> . Naturally, first and second order inclusion probabilities depend

on the stratum to which each unit belong: for all ¢ # j in U, 7;( R}") = Zszl ~ Hieln,}
1
and m; ; (RY) = Y10, R 1, 4) € UR, ).

2.8.2.2 Rao-Sampford Sampling

The Rao-Sampford sampling design generates samples s € P(Z,,) of fixed size N ( ) =N
with respect to some given first order inclusion probabilities w/° := (7f¥5 .. 7E9) fulfill-
ing the condition )" , 7TRS = n, with probability

RRS = Z ﬂ_RS H
i€s jgés ]

Here, > 0 is chosen such that ) s€P(Tn) RRS(s) = 1. In practice, the following algorithm
is often used to implement such a design Berger (1998):
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. select the first unit ¢ with probability 7riRS /n,

. select the remaining n — 1 units j with drawing probabilities proportional to 7% /(1 —

J
RS\ ; _
; ) ,i=1,...,m,

. accept the sample if the units drawn are all distinct, otherwise reject it and go back to

step one.
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Sampling strategies for
Stochastic Gradient Descent
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CHAPTER 3

Adaptive Sampling Scheme for Incremental Optimization
using Stochastic Gradient Descent Algorithm

Abstract A wide collection of popular statistical learning methods, ranging from K -means
to Support Vector Machines through Neural Networks, can be formulated as a stochastic gra-
dient descent (SGD) algorithm in a specific setup. In practice, the main limitation of this
incremental optimization technique is due to the stochastic noise induced by the choice at
random of the data involved in the gradient estimator computed at each iteration. In this
chapter, we introduce a novel implementation of the SGD algorithm, where the data subset
used at a given step is not picked uniformly at random among all possible subsets but drawn
from a specific adaptive sampling scheme, depending on the past iterations in a Markovian
manner, in order to refine the current statistical estimation of the gradient. Beyond an algo-
rithmic description of the approach we propose, rate bounds are established and illustrative
numerical results are displayed in order to provide theoretical and empirical evidence of its
statistical performance, compared to more "naive" SGD implementations. Computational
issues are also discussed, revealing the practical advantages of the method promoted.

3.1 Introduction

In this chapter, we consider the generic minimization problem

in L, (0) = — > U1(Z;,0), 3.1
iy a0 = iy | D002 G0
where © is a Euclidean space, typically R? with d > 1, and [(Z1,.), ..., I(Z,,.) form a col-

lection of real-valued convex continuously differentiable functions on ©. Such an optimiza-
tion problem typically arises in a broad variety of statistical learning problems, in particular
supervised tasks, where the goal pursued is to learn a predictive model, fully determined by a
parameter 6, in order to predict a random variable Y (the response/output) from an input ob-
servation X taking its values in a feature space &X'. The performance of the predictive function
defined by 6 is measured by the expectation L(0) = E[I(6; (X,Y))], referred to as the risk,
where [ is a loss function assumed convex w.r.t. 6. As mentionned before, the distribution
(X,Y) being unknown in practice, the risk functional is replaced by its statistical counterpart,
the empirical risk namely, given by

n

~ 1

Ln(0) = — > _U((X:,Y3), 0), (3.2)
i=1

based on n > 1 supposedly available independent training examples (X1, Y1), ..., (X, Y,),

copies of the random pair (X,Y"). This supervised problem shall serve as a running exam-

ple throughout the chapter. The minimization problem (3.2) can be solved incrementally, by

31
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means of variants of the stochastic approximation method originally introduced in the seminal
contribution of Robbins & Monro (1951). This consists in computing successive estimates of
a minimizer of (3.2) using the recursive equation

Or1 = 0 — v (6r) (3.3)

from a preliminarily picked initial value 6y € ©, where 7; denotes an estimate of the gradient
an and v, is the learning rate or stepsize. In contrast to the batch approach, where all the
data are used to estimate the gradient at each iteration (i.e. 74(f) = VL, (0) for all ¢ > 0
and 0 € O), subsets of the data sample only are involved in the gradient estimation steps of
sampled incremental algorithms, with the aim to reduce computational cost when n is large. In
the most commonly used implementation of the stochastic gradient descent (SGD) algorithm,
the gradient estimate is computed from a subset of reduced size S < n uniformly drawn
without replacement among all possible subsets of the dataset of size .S at each step ¢ > 0.

In the present chapter, we introduce a specific variant of the SGD algorithm with an adap-
tive sampling scheme, in the sense that it may possibly be different from sampling without
replacement (SWOR) and vary with ¢, depending on the past iterations. Rate bounds and limit
theorems guaranteeing the theoretical validity of the methodology we propose are established.
In addition, the Markovian dynamics governing the evolution of the instrumental sampling
distribution is shown to offer crucial advantages regarding computational efficiency. Finally,
very encouraging experimental results are displayed, supporting the relevance of our method,
in comparison to the usual mini-batch SGD implementation or alternative SGD techniques
standing for natural competitors.

The chapter is structured as follows. A short review of the SGD methods documented in the
literature, those based on non SWOR sampling schemes in particular, can be found in section
3.2. A description of the specific variant we propose in this chapter is given in section 3.3,
together with a detailed discussion about the computational cost inherent to its implementation.
The analysis assessing the validity of the estimate output by the algorithm proposed is carried
out in section 3.4, whereas illustrative experiments are presented in section 3.5. Finally, some
concluding remarks are collected in section 3.6.

3.2 Non Uniform Sampling (NUS) - State of the Art

We start off with a brief review of sampled incremental optimization algorithms, whose
archetype is the celebrated SGD algorithm (Robbins & Monro (1951)). Although relevant
references in this area are much too numerous to be listed in an exhaustive manner, we point
out that significant advances have been recently made in the design of efficient incremental
methods, see for instance Mairal (2014), Mairal (2013), Johnson & Zhang (2013a), Shalev-
Shwartz & Zhang (2012), Schmidt et al. (2013) or Defazio et al. (2014) that achieve better
performances than the traditional SGD method (for instance, by having the variance of the
estimator going to O as in Johnson & Zhang (2013a), Defazio et al. (2014)). In order to study
adaptative sampling scheme, we only considered the classical framework of SGD and did not
compare to theses methods. In the original implementation of the SGD algorithms, a single
observation (i.e. S = 1), indexed by ;41 say, is chosen uniformly at random in {1, ..., n}
at each iteration ¢ + 1 to form the gradient estimate VI(Z;,_,, 6;), its convergence following
then from basic stochastic approximation theory. More recently, several papers have shown
the possible gain from the use of non-uniform sampling, that is, choosing ;41 according to
a non-trivial distribution p well-suited to the specific optimization problem considered: this
approach boils down to finding an optimal distribution, in the sense that it minimizes an upper
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bound on the convergence rate of the estimator Zhao & Zhang (2014), D.Needell et al. (2014),
Clemencon et al. (2014). As far as NUS is concerned, it is natural to ask what relevant choice
of the probability distribution must be chosen in order to achieve the smallest expected risk:
for instance, the sampling scheme may depend on the Lipschitz constant of the gradient as pro-
posed in D.Needell et al. (2014) or on upper bounds for the norm of the gradient, see Zhao &
Zhang (2014). Despite these recent contributions, some questions remain open. 1) In general,
usual analyses of NUS algorithms do not fully grasp the impact of the sampling scheme on the
performance. For instance, Defazio et al. (2014) establish performance bounds which prove
the convergence of NUS scheme for SAGA. Although the attractivity of NUS is demonstrated
in the simulations, the bound itself does not fully reveal the performance gain w.r.t. uniform
sampling. 2) As opposed to uniform sampling, the choice of an index i;;; according to a
non-trivial distribution on {1, ..., n} is obviously more demanding in terms of computational
time. The question of an efficient sampling implementation remains posed. In particular, it is
important to quantify the increased complexity caused by NUS. 3) Proposed rules for choosing
the sampling distribution p depend on global properties of the functions [(Z;, #) (namely the
Lipschitz constants L;). They do not build upon the amount of information gathered on the
optimization problem as the algorithm proceeds. An alternative is to use adaptive sampling,
updating the sampling distribution p = p; at each iteration ¢ in a Markovian fashion, as in the
algorithm described below.

As shall be seen in the subsequent analysis, the NUS approach proposed in this chapter has
theoretical and practical advantages regarding all these aspects. Whereas rate bound analysis
by means of standard tools is poorly informative in general in the present setting, the asymp-
totic viewpoint developed in this chapter clearly highlights the benefit to using the specific
NUS method we promote.

3.3 Adaptive Sampling SGD (AS-SGD)

We now turn to the description of the variant of SGD method considered in this chapter. The
main novelty arises from the use of a specific instrumental sampling distribution evolving at
each iteration. We also provide some insight into the gain one may expect from such a method
and discuss the computational issues related to its implementation. Here and throughout, if
I = (i1,...,ig) is a S-uplet on {1, ..., n} and h is a function on {1, ..., n}, we use
the (slightly abusive) notation ), _; h(i) to represent the sum ZSII h(iy). For the rest of
this chapter, all expectations are taken conditionally upon the observations (i.e the randomness
only lies in the sampling strategy) and for any 6 € O, ||0|| denotes its euclidean norm.

3.3.1 The Algorithmic Principle

Let S < n be fixed. At each iteration ¢t > 1, the generic AS-SGD is implemented in three
steps as follows:

1. Compute the instrumental probability distribution p; on {1, ..., n} from the informa-
tion available at iteration ¢.

2. Form a random sequence of .S indexes I;1] = (igl, e ,zgi)l) by sampling indepen-

dently S times according to distribution p;.
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3. Update the estimate using the equation

Vi(Z;0
0141 = I (6r — % Z M) - (3.4)

N5
1€l 41 P

where K is a compact convex set and IIx is the orthogonal projection on K. Let F; =
o(I,...,I;) be the o-algebra generated by the past variables up to time ¢. Conditioned upon
Fi, we have: igl), ce igs) o pi. Setpgj = P(iﬁ)l = j|F) forj =1, ..., n. Equipped
with these notations, observe that the original SGD algorithm corresponds to the case where
S=1landp;; =1 /m. When S > 1, notice that, in contrast to the mini-batch SGD (based on
the SWOR scheme), one samples with replacement here and, due to the fact that the p; ;’s are
not equal in general, it is necessary to normalize the individual gradients by Np; ; in order to
guarantee the unbiasedness condition of the increment, which is classically required to ensure
proper convergence of the algorithm, see Robbins & Monro (1951), D.Needell et al. (2014),
Zhao & Zhang (2014), Clemencon et al. (2014):

n

1 VI(Zi6,) VI(Z;,0) -
S Z npt ‘ Fe me NPt j V() (3-)

1€li41 j=1

3.3.2 Ideal Sampling Distribution

In order to provide some insight into the specific dynamics we propose to build the successive
sampling distributions p;, we first evaluate a bound on the amount of decrease of the functional.
We assume that hypothesis below is fulfilled.

Assumption 1. For alli € {1, ..., n}, the function § — [(Z;,0) is convex, continuously
differentiable and its gradient VI(Z;, 6) is L;-Lipschitz continuous with L; < +oc.

Let 0; be the sequence defined by (3.4) and K = ©. By virtue of Assumption 1 and Theorem
2.1.5 in Nesterov & Nesterov (2004), we have Ly, (01+1) < Ly (6;) + (VL (0), 0141 — 04) +

%||9t+1 — 0,]|> where L = 2 3~ L;. Taking the conditional expectation, we obtain that

E’)’tzA(Qmpt)

E[En(0t+1)|ft] < En(ﬁt) — '}’tHVEn(et)||2 + 212 ’

where

2

1 Vi(Z;,0
AOp) = (| Y Y0 ’ft

i€l pt,z

_ 12": IVU(Zi,6) % n*(S = DIIVLn(60)]?
S bt,i S '

i=1

At iteration t, the probability p; = pj(0;) ensuring the steepest descent on the
above bound is clearly given by p; = argmin,A(6;,p) or equivalently by P =
IVU(Zi, 0)11/ >25=1 IVU(Zj,64)| fori € {1, ..., n}, as mentioned in Zhao & Zhang (2014)
and Clemencon et al. (2014). Unfortunately, practical implementation of the above sampling
scheme is prohibitively complex, as it would require to evaluate all gradients to calculate
the norms ||VI(Z1,6,)], ..., ||VI(Z,,0:)| at each iteration which is precisely what we try to
avoid. The crucial point is therefore to propose a sampling scheme approximating p; without
requiring any additional gradient evaluations.
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3.3.3 A Practical Sampling Distribution - Our Proposal

The main idea is to replace each unknown gradient norm ||VI(Z;, 6;)|| by a (possibly outdated)
norm g ; = [|VI(Z;,0;)| at some former instant k& = k(i,t) corresponding to the last time
k < t when the i-th component was picked. More formally, we define the random sequence g,
as
4 e (1) (S)
s = { IVU(Zi, 0| i€ {ih i) 36)
Gt otherwise.

Then, a natural way to approximate pj is to set for each ¢

_ Gt
Dti = n .
Zj:l 9t.j

It turns out that convergence cannot be guaranteed with the choice (3.7), because a certain
component p;; can get arbitrarily close to zero, so that the i-th index is too rarely, or even
never, picked!. A possible remedy is to enforce a greedy sampling scheme or, as we will refer
to it, a Doeblin-like condition on the transition kernel of the underlying Markov chain, see
S.Meyn & Tweedie (2009):

3.7

Vi c {17 ey n}? pt,i = pv; + (1 - p)ﬁt,i; (38)

where v = (v1, ..., vy) is an arbitrary probability distribution satisfying v; > 0 for 1 <1i <mn,
and 0 < p < 1. This condition has the following interpretation: p; is a mixture between
two laws of probability and one of this law is independent from the past. The AS-SGD is
summarized in Algorithm 1 below.

Algorithm 1 AS-SGD

Input: 0y, p, T, S, (Vt){—g . v
Initialization:
fori =1tondo
Set got = ||VI(Z;, 00)|
end for
Ay =buildtree(gp)
fort =0toT — 1do
Define p; and p; according to (3.7) and (3.8)
It+1 = Sample(ﬁtv Sa oV, At)
VI(Z;,0
Or1 = (00 — 56 D ien, #)
Update g;11 according to (3.6)
Air1 = updatetree(As, 11, gis1)
end for
Return 01

3.3.4 Computationally Efficient Sampling

We point out that there is an additional computational price to pay when implementing
NUS instead of uniform sampling. Given a non uniform distribution p = (p1,...,p,) on
{1, ..., n}, the simulation time needed to generate a r.v. with distribution p is larger than

! Consider for instance the case n = 2, X = R, 1(Z1,0) = 62,1(Z2,0) = (§ — 1)*> and 6, = 0.
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in the case of uniform distribution. Indeed, one may resort to the inversion method (see De-
vroye (1986) for instance), which boils down to inserting an element in the sorted vector
p = (p1,p1 + p2, .., p1 + ...pn) and requires [logy(n)| operations. Unfortunately, changing
the i-th component of p (just like in the algorithm we propose) changes n — ¢ components
in the vector p. Our approach based on the notion of binary research tree is inspired from
Devroye (1986) and overcome this difficulty.

Building / updating a tree. For simplicity, assume that n is even. Define a tree A; with n
terminal leaves in correspondence with the indexes in {1, ..., n} the weight g; ; is assigned
to the leaf No. i. Each pair (2k + 1,2(k + 1)) of adjacent terminal leaves, k£ € {0, ..., n/2},
admits a common ancestor, which the weight g 2x+1 + g4 2(k41) 1S assigned to. Continuing
this way in a "bottom-up" fashion, the weight Sy = ). g¢; is assigned to the root node. The
function buildtree used in Algorithm 1 generates such a tree from scratch and is used at the
initialization ¢t = 0. Atstep t+ 1, g¢+1 is essentially identical to g; except for a few .S elements
which have been updated. The tree A;y1 being close to A;, it does not have to be rebuilt from
scratch. The routine updatetree given in section 3.7 provides a computationally efficient
way to update the tree A; 1 from A;.

g1+ ...+ g4
VRN
g1+ 92 g3+ g4

gl/ \92 93/ \94

FIGURE 3.1: A binary tree for n = 4.

Simulating a random index. Suppose that we seek to generate a r.v., say igr)l, according to

distribution p;. Using a r.v. U generated according to the uniform distribution on [0, 1], a path
is generated from the root to one of the leaves by comparing U to successive thresholds. The
generated variable zgl is defined as the index of the obtained leaf. The procedure is detailed
in the subroutines sample and sample_tree (see section 3.7). Therefore updating an
element 7 of the distribution is equivalent to update the path from ¢ to the root of the tree and
takes [log,(n)| operations, while sampling from our distribution is equivalent to follow a path
from the root of the tree to one of its leaves. Table 3.1 summarizes the iteration complexity of
the proposed method.

SGD AS —SGD
Complexity Sc  S(c+ (2 — p)[logy(n)])

TABLE 3.1: Comparison of iteration complexities of AS-SGD and SGD with uniform sam-
pling: ¢ = complexity of pointwise gradient computation, .S = sample size.

3.4 Performance Analysis

We recall the transpose of a matrix A is denoted by A”. We start off by giving a rate bound
analysis of the algorithm we proposed and then study the asymptotic behavior of the estimator
0 produced by our algorithms.

3.4.1 Preliminary results

In our analysis, we assume that
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Assumption 2. 1) The function § — En(H) is a-strongly convex, i7) The minimizer 6} of Ly,
belongs to the interior of .

The lemma stated below provides a bound on the Mean Square Error a; = E(||0; — 0}[]?),
where 6, is generated by Algorithm 1. Its proof is strongly inspired by Bach & Moulines
(2011a) and A.Nemirovski et al. (2009), where similar bounds are provided.

Lemma 3.1. Let Assumptions 1 and 2 hold true. Set v; = 1t~ where 3 € (0, 1] and assume
v1 > B/(2a). For each t € N*,
ar < Cy/p, (3.9)

2B2 B . .
where C = max(mv‘;zll, Sr) when 3 =1and C = max( =, °t) otherwise, with

1 n
B, = — -1 1(Z;,0)]]?.
STLQ;% sup | VL(Z, 0)

Remark 3.2. One mights easily check that choosing v so as to minimize B, would lead to
take v; o supgei ||VI(Z;, 0)|| which is the sampling distribution proposed in Zhao & Zhang
(2014).

We emphasize the fact that sharper bounds on a; can be obtained. One could for instance easily
generalize the approach of Bach & Moulines (2011a) which provides bounds on a; which are
not only tighter but also valid under weaker assumptions on the step size. This would come at
the price of a rather tedious bound in (3.9). As explained below, such an involved bound would
actually be unnecessary for our purpose, and Lemma 3.1 is in fact sufficient to derive the main
result of the next paragraph. It also admits a simpler proof provided in section 3.8.1. Before
skipping to the main result, we first discuss the bound in (3.9). Lemma 3.1 establishes that
the adaptive sampling scheme preserves the convergence rate in O(t*5 ) obtained in the uni-
form sampling case. Nevertheless, Lemma 3.1 is merely a sanity check, because unfortunately,
the bound does not suggest that adaptive non-uniform sampling generates a performance im-
provement: the minimum of the right hand side in (3.9) is attained for p = 1 which boils
down to select a constant sampling probability. This is in contradiction with numerical results,
which suggest on the opposite that strong benefits can be obtained by adaptively selecting the
sampling probability. In order to obtain results that fully grasp the benefits of our adaptive
sampling strategy, we investigate from now on the asymptotic regime ¢ — oo. The following
Lemma provides an estimate of the value b; ; = E[||gi — VI(Z;, 6;-1)||?], which quantifies the
mean square gap between the current (unobserved) gradients and the outdated gradients used
to generate the next samples.

Lemma 3.3. Suppose that the assumptions of Lemma 3.1 hold true. For any t € N¥,

(2L;)%2%  ©

bii <

Lemma 3.3 upper-bounds the gap between our approximation of the gradient and its true value.
The bound obtained depend on the batch-size and the step-size. We now state in the following
section a Theorem Central Limit (TCL) on #; — 6. The covariance matrix involved in the
TCL depends on the sampling distribution and we show that its norm is minimal with the non
uniform sampling strategy we propose.
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3.4.2 Main results

We now turn to the analysis of the asymptotic behaviour and prove how our algorithm improve
on SGD.

Assumption 3. The function Ly, is twice differentiable in a neighborhood of 6.
We introduce the sampling probability given by 7* = pv + (1 — p)7*, where,
vz
C i IVIZ;, 65)l

forany i = 1, ..., n. We define Q* = Y1, VI(Z;,0:)VI(Z;,0;)T /(Sn?}) and denote
by H = V2L, (6) the Hessian at point 6*.

@3.11)

Theorem 3.4. Suppose that Assumptions 1, 2 and 3 hold true and that the stepsize satisfies
the condition of Lemma 3.1. Then the sequence (0; — 0;,)/\/7; converges in distribution to
a zero-mean Gaussian variable whose covariance matrix ¥ = ¥(p,v) is the solution to the
following Lyapunov equation

SH+HS =Q" (iff<1)
N(Ig+2mH) + (Ig+2nH)E =2mQ" (ff=1).

The proof is provided in section 3.8.3. The following Corollary is directly obtained by use of
the second order delta-method Pelletier (1998). We denote by Tr(A) the trace of any square
matrix A.

Corollary 3.5. Under the assumptions of Theorem 3.4, v, YLy (6y) — Ln(6%)) converges in
distribution to the rv. V = (1/2)ZT%(p,v) /2 H%(p,v)"/2Z where Z is a Gaussian vector
N(0, Iy). In addition, we have E(V) = tr(HX(p, v))/2.

We now use Corollary 3.5 to compare our method with the best possible fixed choice of a
sampling distribution. Note that the search for an optimal fixed distribution is also discussed
in Clemencon et al. (2014).

When the distribution is fixed, say to p, the asymptotic covariance of the normalized error is
given by X(1, p) as defined in Theorem 3.4. Motivated by Corollary 3.5, we refer to the optimal
fixed sampling distribution as the distribution p minimizing tr(H (1, p)). It is straightforward
to show that

arg n%in tr(HX(1,p)) =77,

where 7* is defined in (3.11). We also set 02 = tr(HX(1,7*)). The following proposition
follows from standard algebra and its proof is omitted due to the lack of space.

Proposition 1. Let ¥(p, v) be the asymptotic covariance matrix defined in Theorem 3.4. Then,

o} < te(HX(p,v)) < 07 (1+Sp/(1— p)).

Proposition 1 implies that the asymptotic performance of the proposed AS-SGA can be made
arbitrarily closed to the one associated with the best sampling distribution provided that p is
chosen closed to zero. It is of course tempting to set p = 0 in (3.8) however in this case, the
statement of Theorem 3.4 would be no longer valid.
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3.5 Numerical experiments

We consider the ls-regularized logistic regression problem. Denoting by n the number of
observations and by d the number of features, the optimization problem can be formulated as

follows:
1 « A2

in — i i, 0) + =10 3.12
;gﬁgn;f(yz,% )+ 51e17, (3.12)
where f(x,y,0) = log(1 + exp(—yx78) the (y;)", are in {—1,+1}, the (z;)"_, are in R?
and A > 0 is a scalar. Note that for this problem one mights easily have access to the quantities
L; and B; = supgepa || VI(Z;,0)| .-We used the benchmark dataset covtype with n = 581012,
d=2>54, \ = ﬁ and v, = ﬁ as proposed in L.Bottou (2012) , where y; is determined

using a small sample of the training set. We considered the cases v; = % (ASGD), v; ~ L;
(ASGD-Lip) and v; ~ B; (ASG-B), ran the algorithm for different values of the parameter
p and compared it to the usual stochastic gradient descent with uniform sampling (SGD),
lipschitz sampling (SGD-Lip) and upper-bound sampling (SGD-B) for the same parameters.
In this scenario, C ~ d , the computational times related to the SGD and the AS-SGD are
comparable (see Table 1).

-~ ASGD ] — SGD-B
w0 — sGD 101 -- ASGD-B
| |
I '
i
!

Evolution of F(4,)
Evolution of F6,)

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Number of passes over the dataset Number of passes over the dataset

— SGD-Lip
10t - - ASGD-Lip

Evolution of F16,)

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Number of passes over the dataset

FIGURE 3.2: Evolution of En(Ot) with. S =10and p = 0.7

Experiments suggest that choosing v; ~ L; leads to better performances and that using a small
value of p leads to poor (respectively good) performance when 6, is far (respectively close)
from 6;,. This suggests that a strategy could consist in running a classical SGD to get closer to
67 and then run AS-SGD. One could also use the AS-SGD with a decreasing step-size policy.
We dit not study these policies due to space limitations.
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FIGURE 3.3: Evolution of En(ﬂt) with different values of p (v; ~ L;, S = 10) (left) and
different sampling strategies (p = 0.7,.S = 10) (right)

3.6 Conclusion

Motivated by recent work on SGD with non uniform probability, we introduced a novel imple-
mentation of the SGD algorithm with an adaptative sampling. We proposed a specific adaptive
sampling scheme, depending on the past iterations in a Markovian manner that achieves low
simulation cost. We also proposed a rigorous analysis to justify our approach and gave suffi-
cient conditions to obtain theoretical guarantees.

3.7 Algorithms for Efficient NUS

In this section, we provide the main procedures called by Algorithm 1 to efficiently generate
a collection of S i.i.d random indexes on {1,...,n}. If A is a tree with n leaves and e is a
node, we denote by w(e) the weight of node e. The root of A is denoted by root(e). Father(e)
is the father of a node e (and the empty set if e = root(.A). Son(e) is the list of sons of e (and
the emptyset if e is a leaf) and the elements of the list are referred to as son(e)[1], son(e)[2].
The functions isroot(e) and isleaf(e) return boolean values equal to one if e is the root or a
leaf respectively. Finally, if e is a leaf, label(e) returns the index of the leaf e in {1,...,n}.
The procedure buildtree is omitted but discussed in section 3.3.4. The algorithm Sample
simply consists in writing the probability distribution as a mixture and is also omitted.

Algorithm 2 Sample_tree Algorithm 3 Update_tree

Input: A Input: A, I, g
e =root(A) for i € I do
Draw U ~ Uniform([0, w(e)]) e =leaf(A, 1)
repeat =g, —w(e)
if U < w(son(e)[1]) then w(e) « gi
e < son(e)[1]) repeat
else e <—father(e)
U < U — w(son(e)[1]) w(e) + w(e) + 6
e < son(e)[2] until isroot(e)
end if end for
until isleaf(e) Return A

Return label(e)
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3.8 Technical Proofs

3.8.1 Proof of Lemma 3.1

Using the non expansiveness of the projection, the strong convexity and the definition of B,
we get a1 < (1—2a7y;)ap+~7 B?E. We will now prove the lemma by induction. The property
is checked for ¢ = 1 by definition of C'. Assume the result holds true for a; then, we have
atr1 < ((1—2a7)v:C +~v2B?)/p and it is sufficient to show that (1 — 2ay,);C + 17 B? <
1+1C which is equivalent to 72 B2 < C'(yi+1 — 1 + 2a92). If 3 = 1, then, using 2ay; > 1,
we get: Y11 — Y + 2072 > Goy—1m () and therefore

t(t+1))
Biai  _ Bim tt+1) _ 2Bjm a.13)
Vert =+ 2097 T 2 (2071 1) T 2am = 1

which gives the result. If 0 < 8 < 1,

t+1

2 2
2 _ —B 7 7 1B
Yi+1 — Yt + 200 =™ / e +2at27 p Oét27 _4t5+1
t
71 (2amt' P = §)
> e >0
since 2ay; > 5. We get
Bzfyf Bz,yl tB+1 B2
5 S 28 1-8 <547
Ye+1 — e+ 20 t2F 2amtt=F - B)) 2«
which concludes the proof.
3.8.2 Proof of Lemma 3.3
We consider a stepsize 7y; such that
C
ar <~ (3.14)
p

and we denote by T4 the indicator function of any event A i.e., the r.v. equal to one on this
event and to 0 elsewhere. Consider any index ¢ and instant ¢ and let A} , the event "the index i
has not been picked since instant k". Using the Doeblin Condition we have:

P(A:) = E[Hegzo---ﬂezﬂzoﬂe;ﬂéo] < E[E[Héio‘]——t*l]"‘]Iefﬁ_l:()]
< (1= PVi)SE[HeLl:o'-'He;ﬂrl:o] < (1= pry)StH)
Conditionally upon A%C ¢» we have g¢; = VI(Z;,0,_1). Since (Ai; ¢ k<t is a partition of the

state space, the law of total probability combined with Assumption 1 and the independence
induced by the Doeblin Condition yields: E[||g.; — VI(Zi, 0;—1)|?] < L2 % E[ll0r_1 —
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0: 1 |12](1 — pry)SE=F), Using E[||0r_1 — 0¢—1]1?] < 2a¢—1 + 2aj_1 < 4Cyi/p leads to:

C < ~
Elllgr; — VI(Zi, 0-1)|"] < 4(L¢)2;Zw(1—pw)5“ *)
k=1

=
= 4(Lz‘)2; > k(1= pri)®F.

k=0

For all 1 < ty < ¢, we have by splitting the sum in two terms:

t—1 t—1
Ve

E Yen(1 = prg)F < —— 0 <+ (1— i)t E Ve—k-

k=0 1= (1= pm) k=to

Taking 2ty ~ t for instance and using the classical integral test for convergence gives the
result.

3.8.3 Proof of Theorem 3.4

The proof is prefaced by the following Lemma, whose proof is given at the end of this section.

Lemma 3.6. Under the Assumptions of Theorem 3.4, the sequence (0y,p;) converges to
(0, ) with probability one.

We now prove the main result. We use the decomposition 6,1 = 6; — 'YtVEn(Gt) + Y€1 +

YeMt+15 where we set Dt+1 = (1/5) EiEIH.l Vl(Zi, Ht)/(npm'), €t+1 = an(et) — Dt+1,
Ne+1 = (Ui (Pe+1) — Ge41) /s P41 = 01 — Dy

We next check Conditions C1 to C4 in G.Fort (2014). Conditions C1 and C4 are immediate
consequences of Assumptions 2 and 3. We check that e; satisfies Condition C2. First, by
virtue of(3.5), (e;) is a martingale increment sequence adapted to F; i.e., E(e;41|F:) = 0.
Second, for all t € N*and 7 = 1,...,n, p; > pv; > 0 with probability one. There-
fore, it is straightforward to check that ||e;|| < M as. for some constant M, which
only depends on p, v and By, ..., By. Third, we analyze the asymptotic behaviour of the
conditional covariance Q; = E(et+1ef+1|ft). After some algebra, we obtain that Q; =
(1/n2) Z?:l (1/(Spt,z))(Vl(Zz, Qt) — an(et))(Vl(Zl, Qt) — VEn(Gt))T USiI’lg Lemma 3.6
along with the continuity of VI(Z;, 6) for each i, we directly obtain that Q; tends to Q* with
probability one. Condition C2 in G.Fort (2014) is thus fulfilled. Turning to Condition C3, we
shall prove that vy, Y 27]t+1 converges to 0 in Ly. Using Cauchy-Schwarz inequality:

—1/2 —1/2
E(lv; *ne1) = Bl 064111, 1 0)

_ 1/2
<E(lnea )Y (v Pgess #0)) 2.

Defining u; = E(||n:41]|?) and vy = P(n:41 # 0), the above inequality reads

_ V.
E(y; ) < v ;i. (3.15)

We first analyze u;. Observe that

nes1|1? = v 2 1M (drs1) — el < 29 2 (1 (Ber1) — Ocl|® + | des1 — 0c1?)
<4y %||pus1 — 041* = 4| Dysa |,
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where the last inequality is due to the non-expansiveness of the projection operator. Therefore
Since p¢ ; admits a fixed deterministic lower-bound for each 7 and since the gradients VI(Z;, 0)
are bounded on /C, there exists a deterministic constant M’ such that ||D;1]|> < M’. In
particular, the sequence |74 1||? is uniformly integrable. We now prove that 7,11 — 0 almost
surely. Consider an € > 0 such that the ball B(6*, 2¢) of center §* and radius € is contained in
K. By Lemma 3.6, for all w on a set of probability one, there exists /N (w) such that ||6;41(w)—
0*|| < eforall ¢t > N(w). Using again that || D;;(w)|| is a bounded sequence and v; — 0,
it is clear that ;|| Dy11(w)|| < € for ¢ large enough. Thus, for ¢ large enough, ¢¢41(w) € K
which implies that 7,41 (w) = 0. Almost surely, the sequence 7,1 converges to zero. Putting
all pieces together, |71 1]|? is a uniformly integrable sequence which tends a.s. to zero. As a
consequence, u; = E(||7:+1]|?) tends to zero as t — co. We now analyze v; = P(1,41 # 0).
For ¢ > 0 be defined as above, note that the event {7n:+; # 0} is included in the event
{||¢t+1 — 0| > €}. By Markov inequality,

vt < € E(|¢r1 — 0°[1) < 2 2(E( @1 — Oell*) + E(16: — 67%)

_ C,
<22 (2B(IDual?) + ).

where we used Lemma 3.1 to obtain the last inequality. Recalling that Dy is bounded, it
is clear that v;/~; is a bounded sequence. Finally, by inequality (3.15), we conclude that
E(||y, Y Nest ||) tends to zero. Condition C3 in G.Fort (2014) is satisfied. This completes the
proof of Theorem 3.4.

Proof of Lemma 3.6

Almost sure convergence of 6; to 6} directly follows from the Robbins-Siegmund Lemma and
follows the same line of reasoning than L.Bottou (1998): it is therefore omitted. It remains to
show that foreach j = 1,...,n, p; — 7} as., where 77 = [|[VI(Z;,0)[|/ 325 [IVI(Z;,07) |-
Let A; denote the event that index j is picked infinitely often (i.e., there exists an infinite
sequence (tx, ng)keny on N* x {1,...,S} such that zgk"’“) = j). As can be easily checked, the
Doeblin condition p; ; > pv; ensures that A; has probability one. For a fixed w € A; and
using the continuity of § — VI(Z;,0), we obtain that g; ;(w) converges to [|VI(Z;,0})]|. As

J0Yn
a consequence, py,j(w) — 77 (w) and the result follows.






CHAPTER 4

Horvitz Thompson Stochastic Gradient Descent :
Application to M-estimation

Abstract Building upon the results of chapter 2 and 3, we propose to incorporate survey
schemes into the SGD Algorithm. In the M-estimation context, we establish asymptotic re-
sults for the estimator produced, highlighting the trade-off between statistical and optimiza-
tion accuracy (see Bottou & Bousquet (2008)) in large scale learning. This chapter extends
the result establish in the previous chapter by studying the limit behaviour of the estima-
tor produced as the number of observation goes to infinity and by taking into account the
distribution of the observations.

4.1 Introduction

In many situations, data are collected by means of a survey technique and the related weights
(the true inclusion probabilities of the individual units forming the statistical population of
interest) must be used by the statistician to compute unbiased statistics (see chapter 2). The
availability of massive information in the Big Data era, which statistical procedures could theo-
retically now rely on, has motivated the recent development of parallelized/distributed variants
of certain inference techniques or statistical learning algorithms, see Bekkerman et al. (2011),
Mateos et al. (2010), Navia-Vazquez et al. (2006) or Bianchi et al. (2013) among others. It
also strongly suggests to use sampling techniques as we did in the previous chapter, as a rem-
edy to the apparent intractability of learning from datasets of explosive size, in order to break
the current computational barriers, see Clémencon et al. (2013) or Clémencon et al. (2016).
It is the purpose of the present chapter to explore this approach further, by showing how to
incorporate efficiently survey schemes into the SGD algorithm and highlight how it affects
the statistical performance of the estimator produced. More precisely, the variant of the SGD
method we propose involves a specific estimator of the gradient, that shall be referred to as
the Horvitz-Thompson gradient estimator (HTGD estimator in short) throughout the chapter
and accounts for the sampling design used to select the subsample for gradient evaluation at
each iteration. For the estimator thus produced, consistency and asymptotic normality results
describing its statistical performance are established under adequate assumptions on the first
and second order inclusion probabilities. They reveal that accuracy may significantly increase,
i.e. the asymptotic variance of the estimator produced by the HTGD procedure may be dras-
tically reduced, when the inclusion probabilities of the survey design are picked adequately,
depending on some supposedly available extra information, compared to a naive implemen-
tation with equal inclusion probabilities. This is thoroughly discussed in the particular case
of the Poisson survey scheme. Although it is one of the simplest sampling designs, many
more general survey schemes may be expressed as Poisson schemes conditioned upon specific
events, see e.g. Berger (2011). These theoretical results are also supported by strong empirical
evidence. Many variants of the SGD technique, far too numerous to be listed here, have been
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introduced these last few years in order to improve its scalability/speed,; attention should be
paid to the fact that the analysis presented here only aims at sheding light on the impact of
survey sampling on this technique, in its most generic form.

The rest of the chapter is structured as follows. Basics in M -estimation and SGD techniques
together with key notions in survey sampling theory are briefly recalled in section 4.2. Sec-
tion 4.3 first describes the Horvitz-Thompson variant of the SGD in the context of a general
M -estimation problem. In section 4.4, limit results are established in a general framework,
revealing the possible significant gain in terms of asymptotic variance resulting from sampling
with unequal probabilities in presence of extra information. They are next discussed in more
depth in the specific case of Poisson surveys. Illustrative numerical experiments, consisting
in fitting a logistic regression model (respectively, a semi-parametric shift model ) with extra
information, are displayed in section 4.6.

4.2 Theoretical Background and Preliminaries

As a first go, we start off with describing the mathematical setup and recalling key concepts
in survey theory involved in the subsequent analysis. We recall that the indicator function of

an event B3 is written I{3}. The square root of a symmetric semi-definite positive matrix B by
B2,

4.2.1 Iterative )M -Estimation and SGD Methods

Set two positive integers d and ¢. Let Z be an R%-valued random vector (r.v.) with unknown
distribution Pz and © a compact subspace of R? equipped with the euclidean norm ||.||. Con-
sider a certain smooth loss function [ : R? x © — R that is square P-integrable for any
f € O. Given this theoretical framework, we are interested in solving the risk minimization
problem

%Igél L(6), (4.1)

where L : € © — E[I(Z,0)] € R is the risk function with its empirical counterpart

~ 1 <&
Ly:0€0©— =Y U(Z,0), (4.2)
s
based on the observation of n > 1 independent copies Z1, ..., Zy of Z (see Examples 4.1 and

4.2 below). As n — 400, asymptotic properties of M -estimators, i.e. minimizers of En (9),
have been extensively investigated, see van de Geer (2000) for instance.

Gradient descent. The popular approach to solve empirical risk minimization, introduced in
chapter 3, consists in implementing variants of the standard gradient descent method, follow-
ing the iterations R

On(t+1) =0,(t) — vV Ln(0), t>1, (4.3)

with an initial value 6,,(0) arbitrarily chosen and a non-negative learning rate (step size or
gain) ;. The latter is taken such that >/ v = +oo and ;17 72(t) < +oo, see e.g.
Bertsekas (2003). The true gradient is replaced by a counterpart computed from a subsample
S C {1,...,n} of reduced size N < n, so as to fulfill the computational constraints, and
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drawn at random (uniformly) among all possible subsets of same size at each iteration:

1
In:0€0— NEZSVZ(ZZ»,Q). (4.4)

The variant of the SGD that we introduced in chapter 3 proposed to use more complex sam-
pling schemes to speed-up the learning process. Unfortunately the results established were
true conditionally upon the observations and only related to the empirical risk. We extend this
analysis in the present chapter to the true risk by characterizing the asymptotic behaviour of
L(6,(t)) — L(6*). This analysis can be applied to the two following examples.

Example 4.1. (BINARY CLASSIFICATION) In the usual binary classification framework
introduced in chapter 2, 'Y is a binary random output, taking its values in {—1,+1} say, and
X is an input random vector valued in a high-dimensional space X, modeling some (hopefully)
useful observation for predicting Y. Based on training data {(X1,Y1),...,(Xn,YN)}, the
goal is to build a prediction rule sign(h(X)), where h : X — R is some measurable function
that minimizes the risk

Ly (h) = Ep(=Yh(X))].

Here, the expectation is taken over the unknown distribution of the random vector (X,Y') and
¢ : R — [0,400) denotes a cost function, i.e. a measurable function such that p(u) >
I{u > 0} for any u € R. For example, when ¢ is chosen as the convex function u € R
(u+1)%/2 € Ry, then the optimal decision function is given by h* : x € X +— 2P{Y = +1 |
X =z} — 1 € [-1,1] and the classification rule H* : © € X — sign(h*(x)) € {—1,+1}
coincides with the naive Bayes classifier. For simplicity, assume that p is differentiable and
that the decision function candidates h(x) belong to the parametric set {h(.,0) : 6 € ©} of
square integrable functions (with respect to the distribution of X ) indexed by © C RY, ¢ > 1,
such that 0 — h(., 0) is differentiable. Finding the prediction rule with minimum risk amounts
to solving (4.1) with Z = (X,Y) and [(Z,0) = o(=Y h(X,0)) for all 0 € ©. In the ideal
case where a standard gradient descent could be applied, a sequence 0, = (61(t),--- ,04(t)),
t > 1, would be iteratively generated using the update equation

Ot +1) =60, + wE[Y VR(X,0;) ¢ (-Y h(X, 6;))]

with learning rate ~; > 0. Naturally, as the distribution of (X,Y) is unknown, the expectation
involved in the t-th iteration cannot be computed and must be replaced by a statistical version:

1 n
— > YiVh(X;,0:) ¢ (=Y h(X;,6,)),
Lt

in accordance with the Empirical Risk Minimization paradigm.

Example 4.2. (LOGISTIC REGRESSION)  Consider the same probabilistic model as above,
except that the goal pursued is to find 6 € © so as to minimize L,(0) in (4.2) with Z; =
(X5, Y:) and 1(Z;, 0) defined as

- U (emecm) o (o) )

foralli € {1,...,n} and 0 € O. This is equivalent to maximizing the conditional log-
likelihood given the X;’s related to the parametric logistic regression model:

Po{Y = +1| X} = exp(h(X, 0))/(1 + exp(h(X,0))), 0 € O.
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4.2.2 Survey Sampling and Horvitz-Thompson Estimation

We recall a few notations introduced in chapter 2 and 4. Let (€2, A, P) be a probability space
and n a positive integer. In the framework we consider throughout the chapter, it is assumed
that 71, ..., Z, is a sample of i.i.d. random vectors defined on (€2, A, P) and taking their
values in R?. They are interpreted as independent copies of a generic r.v. Z observed on a
finite population U, = {1,...,n}. A survey sample of the population is defined as a non-
empty subset S C U,, with cardinality N = N(S) less that n, selected at random according
to a probability distribution R,, on P (U, ), the power set of U,,. The latter is called a sampling
scheme/design/plan without replacement. We shall consider R,, as a conditional distribution
given the statistical population I/, and the possible observations assigned to each of its units.
In this setting, for any ¢ € U, the probability that the unit ¢ belongs to a random sample .S
drawn from such a R,, is called the (first order) inclusion probability:

mi(Ry) = Pg, {i € S}.
We set w(R,,) = (m1(Ry), ..., mn(Ry)). The second order inclusion probabilities are
7Ti7j(Rn) = PRn{i €8,j€ S},

for any (i, j) in U2. In particular, ; ;(R,,) = m;(R,). When no confusion is possible, we shall
omit to mention the dependence in R,, when writing the first/second order probabilities of in-
clusion. The information related to the random sample S C U, is fully enclosed in the random
vector €, = (€1,...,€,) with components ¢; = I{i € S}, i € U,. Given the statistical popu-
lation, the conditional 1-d marginal distributions of the sampling scheme €,, are the Bernoulli
distributions B(m;) = m;01 + (1 — m;)d0, ¢ € Uy, with 0, the Dirac mass at point z € R. The
conditional covariance matrix of the r.v. €, is given by I';, = {m,j — mﬂj}l <ij<n’ Observe
that )" ; ¢; = N(S), which can be fixed or random depending on R,,.

Poisson schemes. One of the simplest survey designs is the Poisson scheme (without re-
placement), denoted by p,,. For such a plan, conditioned upon the statistical population of
interest, the ¢;’s are independent Bernoulli random variables with parameters p1, ..., p, in
(0, 1]. Thus, the first order inclusion probabilities 7;(p,,) = pi, i € Uy, fully characterize p;,.
The size N(S) of a sample S generated this way is random with mean )" ; p; and goes to
infinity as n — +oo with probability one, provided that min;<;<, p; remains bounded away
from zero. In addition to its simplicity (regarding the procedure to select a sample thus dis-
tributed), the Poisson design plays a crucial role in sampling theory, insofar as it can be used
to build a wide range of survey plans by conditioning arguments Hajek (1964). For instance,
a rejective sampling plan of fixed size N < n corresponds to the distribution of a Poisson
scheme €,, conditioned upon the event {) " ; ¢; = N}. One may refer to Cochran (1977),
Deville (1987) for accounts of survey sampling techniques and examples of designs to which
the subsequent analysis applies.

Horvitz-Thompson estimators. We recall a few definitions and give the variance of
Horvitz-Thompson estimators in the Poisson case. Suppose that independent random vec-
tors @1, ..., Q. are observed on the population U4,. They are viewed as copies of a generic
r.v. @ taking its values in R?. A natural approach to estimate the total Q,, = > ;" | Q; based
on a sample S C U,, generated from a survey design R,, with positive (first order) inclusion
probabilities {7; }1<;<, consists in computing the Horvitz-Thompson estimator (HT estimator
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in abbreviated form)

1 " €;
- —0, = 20.. 4.5
Qr, =D Q=3 0 (4.5)
€S =1
Given the whole statistical population @1, ..., N, the HT estimator is an unbiased estimate

of the total: E(Qg, | @1, -.,Qn) = Qu almost-surely. Its conditional variance is given by

n

V(Qr, | Qr.....Qu) = Y. M QT

1,j=1
In particular, when the survey design is a Poisson plan F,, with positive probabilities
P1,- - -, Pn, this turns into

n

V(Qr, | Qe Q) = S 2R ,QT. “.6)

i=1

7

Remark 4.1. (AUXILIARY INFORMATION) In practice, the first order inclusion probabilities
are defined as a function of an auxiliary variable, say W taking its values in RY, d’ > 1, which
is observed on the entire population. Specifically, a link function 7 : RY — (0,1] is chosen
so that m; = 7(W;) for all i € U,. When (W) and @ are dependent, proceeding this way
may help us select more informative samples and consequently yield estimators with reduced
variance. A more detailed discussion on the use of auxiliary information in the present context
can be found in subsection 4.4.1.

Going back to the SGD problem, the Horvitz-Thompson estimator of the gradient an(Q)

based on a survey sample S drawn within the population i, = {1,...,n} from a design R,
with vector of (first order) inclusion probabilities 7, = (71,...,my) and inclusion vector
€, = (€1,...,€n) 18
1 1 1 &
lr,(0) ==Y = VI(Z,0)==> —=VI(Z,0), 6co. 4.7)
" ies ™ N

As pointed out in Remark 4.1 and in section 3.3.2, this estimator would be most efficient if
each m; was strongly correlated with the corresponding VI(Z;,0), i € U,,. This suggests to
devise a procedure where the survey design used to estimate the gradient may change at each
step, as in the HTGD algorithm described in the next section. For instance, one could stipulate
the availability of extra information W7, ..., Wy and assume the existence of a link function
m: W x © — (0, 1] such that m; = w(W;,0) for all i € U,,.

Of course, such an approach would be beneficial only if the cost of the computation of the
weight 7 (W;, 0) is smaller than that of the gradient VI(Z;, #). As shall be seen in section 4.6,
this happens to be the case in many situations encountered in practice.

4.3 The Horvitz-Thompson Gradient Descent

This section presents, in full generality, the variant of the SGD method we propose. It can be
implemented in particular when some extra information about the target (the gradient vector
field in the present case) is available, allowing hopefully for picking a sample yielding a more
accurate estimation of the (true) gradient than that obtained by means of a sample chosen
completely at random. Several tuning parameters must be picked by the user, including the
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parameter N which controls the number of terms involved in the empirical gradient estimation
at each iteration.

HORVITZ-THOMPSON GRADIENT DESCENT ALGORITHM (HTGD)

(INPUT.) Datasets {Z1,...,Z,} and {Wy,..., W, }. Maximum (expected) sample
size N < n. Collection of sampling plans R,,(#) with positive first order inclusion
probabilities 7;(6) for 1 < i < n, indexed by § € © with (expected) sample sizes less
than N. Learning rate v, > 0. Number of iterations 7" > 1.

1. (INITIALIZATION.) Choose 6,,(0) in ©.

2. (ITERATIONS.) Fort =0,...,T

(a) Draw a survey sample from U,, = {1,...,n}, described by the inclusion vector

et = (egt), cees egf)), according to R,, = R,,(0,,(t)) with inclusion probabili-
ties 7; (0, (t)) for i € U,.

(b) Compute the HT gradient estimate at 6,,(t)

n t)

i
iz:: ) VG On(t)-

S|

lr, (0n(1)) :=

(c) Update the estimator

O.(t+1)=0,(t) — v LR, (0n(t)).

(OuTPUT.) The HTGD estimator 6,,(T').

Conditioned upon the data (Z1, W1),. .., (Z,, W), the asymptotic accuracy of the estimator
or decision rule produced by the algorithm above as the number of iterations 7" tends to infinity
is investigated in the next section under specific assumptions. Beyond consistency, special
attention is paid to the issue of choosing properly the sampling plans R,,(€) so as to minimize
the asymptotic variance of the estimator 6,,(7") or that of its empirical risk.

4.4 Conditional Asymptotic Analysis - Main Results

This section is dedicated to the analysis of the performance of the HTGD method, conditioned
upon the observed population and under adequate constraints related to the (expected) size of
the survey samples. We first discuss the case of Poisson survey schemes and next investigate
how to establish limit results in a more general framework. They are similar to the results
established in section 3.4.2 and serve as a preliminary for our main results. All expectations
are taken conditionally upon the observations in this section.

4.4.1 Poisson Schemes with Unequal Inclusion Probabilities

Here we will recall a result establish in chapter 3. Fix § € © and N < n. Given 41, ..., Zy,
consider a Poisson scheme P,, on the population &, = {1,...,n} with positive parameter
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Pn = (P1,--.,pn). Then, Eq. (4.6) implies

E[|er,0) - VL.0)| 1 21, .. 2] = nQZ P vi(z,,60))?.

=1

Searching for the parameter p,, such that the Lo distance between the empirical gradient eval-
uated at 6 and the HT version given Z1, ..., Z, is minimum under the constraint that the
expected sample size is equal to N < n yields the optimization problem

n

1—p; _ -
min " p‘p IVU(Z:,6)|* subjectto > p; = N. 4.8)

n
an(O,l] i=1 7 i=1

Suppose that P{VI(Z,0) = 0} = 0 for all § € ©; this is true in particular when the set {z €
R : Vi(z,6) = 0} has finite cardinality and the distribution of Z is absolutely continuous
with respect to the Lebesgue measure. Then we have |VI(Z;,6)|| > 0 with probability one
for all i € U, and § € ©. As can be shown by means of the Lagrange multipliers method, in
this setting the solution corresponds to weights being proportional to the values taken by the
norm of the gradient just like in section 3.3.2.

IVI(Zi, 0)|l
2= IVU(Z;, 0l

provided that the following condition is fulfilled:

Pi(0) <1 forall i€ U,. (4.9)

A straightforward application of Hoeffding’s inequality shows that if

_EVIZON N _ [, EIVUZO]

~ sup [|[Vi(z,0)]| " sup [|[Vi(z,0)| |
z€R4 z€R4

then condition (4.9) is satisfied with probability larger than 1 — exp (—2n52) .

Remark 4.2. (ON THE SATURATION OF THE LINEAR CONSTRAINTS)  When the latter con-
dition is not satisfied, some of the conditions p;(#) < 1 are saturated and the solution of (4.8)
is given by the Karush-Kuhn-Tucker method. Since the objective function is strictly convex
and the constraints are affine, the following conditions, related to the Lagrangian

n

> B Vi ) + <2pz~ - N) + 3" pilpi — 1),
! i=1

i=1 =1

n
are necessary and sufficient: () Zpi =N andforalliel, (ii)0<p; <1,

HW(Z@,Q)II2
p;

(dii) =X+ pi, () i >0, (v) pi(pi —1) =0.

Denoting by m < N the number of components of the solution p,, that are equal to 1
and by o a permutation of U, such that [|[VI(Z,),0) < ... < [[VI(Z@),0)|. the
constraint (i) can be rewritten as N = m + Z ||Vl( .0)||/v/X\, so that Poli) =
(N=m)IVUZs i), DI/ 3521 (VU Z g5, 0) || for i < n— mandpg() = 1fori > n—m+1.
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However, selecting a sample distributed this way requires to know the full statistical popu-
lation VI(Z;,6). In practice, one may consider situations where the weights are defined by
means of a link function (W, #) and auxiliary variables W7, ..., W), such that the inclusion
probabilities are correlated with their corresponding gradient, as suggested previously. Ob-
serve in addition that the goal pursued here is not to estimate the gradient but to implement
a stochastic gradient descent involving an expected number of terms fixed in advance, while
yielding results close to those that would be obtained by means of a gradient descent algorithm
with mean field (1/n) "7 | VI(Z;,0) based on the whole dataset. However, as shall be seen
in the subsequent analysis (see Proposition 4.6), in general these two problems do not share
the same solution from the angle embraced in this article.

In the next subsection, assumptions on the survey design under which the HTGD method
yields accurate asymptotic results, surpassing those obtained with all equal inclusion proba-
bilities (i.e. m; = N/n for all i € U,,), are exhibited.

4.4.2 Limit Theorems - Conditional Consistency and Asymptotic Normality

We now consider a collection of general (i.e. not necessarily Poisson) sampling schemes
{R,.(0)}oco with positive first order inclusion probabilities {7, () }pco. Conditioned upon
the data D,, = {Z1,...,2Z,} (or D,, = {(Z1,W1),...,(Zn, W,)} in the presence of extra
variables, ¢f Remark 4.1) available in the population I, = {1,...,n}, we study the asymp-
totic properties of the M -estimator produced by the HTGD algorithm. The limit results stated
below essentially rely on the fact that the HT estimator (4.7) of the gradient of the empirical
risk is unbiased. Reduction of the asymptotic variance of 6, (T) and Ly, (6, (T)) will be inves-
tigated in the Poisson case in the next subsection. The asymptotic analysis also involves the
regularity conditions listed below, which are classically required in stochastic approximation.

Assumption 4. The conditions below hold true.

1. For any z € R?, the mapping 6 € © + I(z,0) is of class C.

2. For any compact set K C O, we have with probability one: Vi € U,

IAEA]
ek Wi(e)

3. The set of stationary points £,, = { € O : {5(0) = 0} is of finite cardinality.
Theorem 4.3. (CONDITIONAL CONSISTENCY)  Suppose that Assumption 4 is fulfilled and
that

o the learning rate decays to 0 so that )~ v = +00 and )~ Y2(t) < 400,

o the HTGD algorithm is stable, i.e. there exists a compact set Ko C RY such that

0, (t) € Ko forall t > 0.

Then, conditioned upon the data D, the sequence {0,,(t)}+>0 converges to an element of the
set L, with probability one as t — +oc.

The stability condition is generally difficult to check. In practice, one may guarantee it by
confining the sequence to a compact set fixed in advance and using a projected version of
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the algorithm above. For simplicity, the present study is restricted to the simplest framework
for stochastic gradient descent and we refer to Kushner & Yin (2010) or Borkar (2008) (see
section 5.4 therein) for further details.

Consider a stationary point 6 € L,. The following local assumptions are also required to
establish asymptotic normality results conditioned upon the event

e0;) = { 1im_6.(0)=0;}.
Assumption 5. The conditions below hold true.

1. There exists a neighbourhood V of 67 such that for all z € RY, the mapping 6 € ©
I(z,0) is of class C? on V.

2. The Hessian matrix H,, = V2En(0;;) is a stable ¢ x ¢ positive-definite matrix, i.e. its
smallest eigenvalue [ is positive.

3. Forall (4,7) € U2, the mapping 6 € V + m; ;(6) is continuous.

Under these assumptions, and similarly to the results establish in section 3.4.2 we have the
following TCL.

Theorem 4.4. (CONDITIONAL CENTRAL LIMIT THEOREM)  Suppose that Assumptions 4—
5 are fulfilled and that ~y; = ot~ for some constants « € (1/2,1] and ~yy > 0. When o = 1,
take vo > 1/(21) and set n := 1/(2v0); set n := 0 otherwise. Given the observations D,, and
conditioned upon the event E(6,), we have the convergence in distribution as t — 400

V1/7 (0a(t) = 6) = N (0, ),
where the asymptotic covariance matrix Y, is the unique solution of the Lyapunov equation
H,Y +YH,+2n¥ =17, (4.10)

with 'Y, = T',,(07) and, for all 6 € O,

T,(0) = % ;1 <7T7(79)J7% - 1) VI(Z;,0)VI(Z,0)". @.11)

The result stated below provides the asymptotic conditional distribution of the error. Because
it is a direct application of the second order delta method, the proof is omitted.

Corollary 4.5. (ERROR RATE)  Under the hypotheses of Theorem 4.4, given the observa-
tions D,, and conditioned upon the event £(6}), as t — 400 we have the convergence in
distribution towards a non-central chi-square distribution:

1 (La0a(t)) — La(0)) = % ol Y2 g, Y2,

where U is a q-dimensional standard Gaussian random vector.

4.4.3 Asymptotic Covariance Optimization in the Poisson Case

Now that the limit behavior of the solution produced by the HTGD algorithm has been de-
scribed for general collections of survey designs R = {R,,(f) }sco of fixed expected sample
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size, we turn to the problem of finding survey plans yielding estimates with best accuracy.
Formulating this objective in a quantitative manner, this boils down to finding ‘R so as to min-
imize the asymptotic covariance matrix summary ||Z],lr/n2 ||, for an appropriately chosen norm
||.|| on the space My(R) of ¢ x ¢ matrices with real entries for instance, when it comes to
estimate 6. In order to get a natural summary of the asymptotic variability, we consider here
the Frobenius (Hilbert-Schmidt) norm, ie. [All = /Tr(ATA) = (32, ; a? ;)!/* for any
A = (a;;) € My(R). For simplicity’s sake, we focus on Poisson schemes and consider the
case where n = 0 in Theorem 4.4. Notice that the cross terms (¢ # j) in Eq. (4.11), i.e.
the U-statistic part of the conditional asymptotic variance, vanish in the Poisson case. The
following result exhibits an optimal collection of Poisson schemes among those with N as
expected sizes, in the sense that it yields an HTGD estimator with an asymptotic covariance
of square root with minimum Frobenius norm. We point out that it is generally different from
that considered in subsection 4.4.1, revealing the difference between the issue of estimating
the empirical gradient accurately by means of a Poisson Scheme and that of optimizing the
HTGD procedure.

Proposition 4.6. (OPTIMALITY) Consider the same assumptions as in Theorem 5 in the
case where n = 0 and suppose that

S G VU(Z:,0)||

N < inf 4.12
=00 max | GuVIZ,.O)] 12
1<i<n
with G, .= Hy, 12 Then, the collection of Poisson schemes with positive inclusion probabili-

ties {p},(0) }oco defined for all 0 € © and i € Uy, by

1GnVI(Zi, 0)|
2251 1GnVI(Z;, 0)|

pi(0) =N
is a solution of the minimization problem

>

min
Prn={Pn(0)}oco

subject to Zpi(e) = N.
i=1
In addition, we have

n 2 n
2 1 1 1 * 1 *
|=] =3 n<nZHan<Zi,en>!> =z 2 IGn VUZi, 0P
i=1 =1

*
Pn

Of course, the optimal solution exhibited in the result stated above is completely useless from
a practical perspective, since the matrix H,, is unknown in general and the computation of the
values taken by the gradient at each point Z; is precisely what we are trying to avoid in order
to reduce the computational cost of the GD procedure. However, we show in the next section
that choosing inclusion probabilities positively correlated with the p(6)’s is actually sufficient
to reduce asymptotic variability (compared to the situation where equal inclusion probabilities
are used). In addition, as illustrated by the two easily generalizable examples described in
section 4.6, such a sampling strategy can be implemented in many situations.

Notice finally that, if we consider the asymptotic excess of empirical risk of the estimate
L, (0,(T)) — L,(0}) rather than the asymptotic variance of the estimate itself, the survey
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design R must be picked in order to minimize the quantity

EW%fm@ﬁUw4_Iq@W$f®%mﬂ”ng]
— Tr(HpSr),

using the fact that U ~ N(0,1;) is chosen independent from D,, here. Observing that
H, Y, + X, H, =17 inthe case n = 0, we have

Tr (HySx,) = 5 Tr(C5) = E{ier, (6)] ) @13

Now, since we have in the Poisson case

o *\ (12
r) = Z (o 1) 190282012

the optimal Poisson scheme regarding this alternative criterion generally differs from that in-
volved in Proposition 4.6 and boils down to that introduced in subsection 4.4.1 for optimal
Horvitz-Thompson estimation of the gradient.

4.4.4 Extensions to More General Poisson Survey Designs

In this subsection, we still consider Poisson schemes and the case = 0 for simplicity and
now place ourselves in the situation where the information at disposal consists of a collection
of i.i.d. random pairs (Zy, W1),...,(Zn, Wy,) valued in R x R¥. Take a link function
p:RY x © — (0,1] such that § € © + p(w, §) is continuous for all w € R, then choose
an expected sample size N € {1,...,n} that satisfies

N < inf —ZZ 12V, 6)
9co max p(W;,0)

1<i<n

and define
b (Wiv 9)

Z?:l p(W]7 9) ’

Observe that for all # € © we have > | p;(f) = N and p;(#) € (0,1] forall i € U,,. The
computational cost of the inclusion probability p(W;, 6) is assumed to be much smaller than
that of VI(Z;,0) (see the examples in section 4.6) for all (i,0) € U,, x ©. The assumption

introduced below involves the empirical covariance c,, () between ||G,,VI(Z,0)||?/p(W, 0)
and p(W, ), for 0 € O:

1< 1 252 p(W;,0)
cn(0) = > G VU2, 0)] (1 . (1Wz,9;> :

pi(0) = N for all (i,0) € Uy, x ©. (4.14)

Assumption 6. The link function p(w, #) fulfills the following condition:
cn(0) > 0.
The result stated below reveals to which extent sampling with inclusion probabilities defined

by some appropriate link function may improve upon sampling with equal inclusion probabil-
ities, p; = N/n for 1 < i < N, when implementing stochastic gradient descent. Namely,



56Chapter 4. Horvitz Thompson Stochastic Gradient Descent : Application to M-estimation

the accuracy of the HTGD gets closer and closer to the optimum, as the empirical covariance
cn(60%) increases to its maximum. Notice that in the case where inclusion probabilities are all
equal, we have ¢, = 0.

Proposition 4.7. Let N be fixed. Suppose that the collection of Poisson designs p with ex-
pected sizes N is defined by a link function p(w,0) satisfying Assumption 6. Then, when
Theorem 4.4 applies, we have

Hzl/Q Hzl/z

’
7F

as well as

1 * *
0 < HEl/Q ) 7N {0721(671) - Cn(gn)} )

=

7F

where )
o ZHG Vi (Zi,0)) — ( ZHG Vi ZM)H)

denotes the empirical variance of the r.v. H]E [VQdJ(Z, 9)] —1/2 Vi(Z,0)|, 0 € ©.

As illustrated by the easily generalizable examples provided in the next section, one may
generally find link functions fulfilling Assumption 6 without great effort, permitting to gain in
accuracy from the implementation of the HTGD algorithm.

4.5 Unconditional Asymptotic Analysis

Building upon the results of the previous section, we now investigate the behaviour of the
HTGD estimator as n, N and ¢ simultaneously tend to +oc at appropriate rates. For the sake
of simplicity we assume in this section that the minimizer 6* over the supposedly compact
parameter space © is unique, as well as the empirical minimizer 6 with probability one. All
the results stated in this section can be directly extended to more general cases.

The assumption below, related to the asymptotic behavior of (4.11), is involved in the subse-
quent unconditional analysis.

Assumption 7. As both n and N tend to oo, NI}, converges in probability toward a positive
semi-definite matrix I'*.

Although this condition may seem strong at first glance, it is actually fulfilled in several im-
portant situations. In particular, the following proposition shows it holds true in the Poisson
case under weak conditions.

Proposition 4.8. Suppose that the survey schemes are of Poisson type with link functions
p(.,0) : RY — (0,1), § € O, based on the auxiliary information W observed on the statistical
population. Assume also that the following conditions are fulfilled.

(i) We have 0}, — 0* with probability one, as n — +00.

N
(ii) The expected size N tend to infinity as n — oo, so that — — ¢y € [0, 1].
n

(iii) Forall§ € ©:

E [p(W,0)] < 400 and E VI(Z,0)V0l(Z,0)" | < +ooc.

p(W,0)
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(iv) The essential supremum below is finite:

IVI(Z,0)]
sup sup x>O:IP’{>:c =0, < +o0.
e { p(W,0)

(v) We have: p = infy, ¢ p(w,0) > 0 and p = sup,, g p(w,d) < oco.

Then, the quantities (4.14) define the inclusion probabilities of a Poisson scheme with proba-
bility one, as soon as N < np/p. In addition, assumption 7 is fulfilled with

* * 1 * *
I'* =E[p(W,6")E WVZ(Z,G WI(Z,0%)T .

We are now ready to state the main result of this section, which illustrates the trade-off between
(asymptotic) generalization and optimization errors, ruled by the limit behavior of ny, /N.

Theorem 4.9. Suppose that Assumptions 4, 5, 7 are fulfilled and that the rate ; satisfies the
condition of Theorem 4.4 with o < 1 (and thus n = 0). Assume that the symmetric positive
semi-definite matrix H* = E[V?21(Z, 0%)] is invertible, set

A = (HY)'EVI(Z,0%)VI(Z,0%) T (H") ™

and denote by X* the unique solution of the Lyapunov equation: H*Y + X H* = I'*. The
assertions below hold true.

(i) If lim  {y = +oo, then we have the convergence in distribution:
n,N,t—+o0

lim { lim /N/7 (0n(1) — 9*)} = N(0,5%).

n,N—oo (t—o0

(ii) If lim 5y = 0, then we have the convergence in distribution:
n,N,t—+o0

lim Vi (0a(t) — 0%) = N(0, A%).

n,N,t——+o0

(iii) If lim &7y = ¢ > 0, then we have the convergence in distribution:
n,N,t—+o0

lim { lim /7 (6,(t) — 0*)} — N(0,A* + X%,

n,N—oo (t{—o0

We first point out that, in contrast to case (i) where they can be swapped, the limits involved
in cases (¢) and (77) must be taken sequentially: assertion (i) (respectively, assertion (i7))
describes the asymptotic regime for large values of n and N, the number ¢ of HTGD iterations
is such that 1/, < n/N (respectively, such that 1/+; ~ n/N). In the asymptotic regime
(i), corresponding to the "Big Data’ setup, the optimization error rules the limit behavior
of the HTGD estimator, whereas the estimation error determines the asymptotic covariance
structure in case (i7). Case (7i7) corresponds to the situation where both terms impact the limit
distribution. Just like in Corollary 4.5 for the conditional analysis, the asymptotic distribution
of the error can be straightforwardly deduced from the Central Limit Theorem above by means
of the delta method.
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Corollary 4.10. Suppose that the assumptions of Theorem 4.9 are fulfilled. Let U be a d-
dimensional Gaussian centered r.v. with the identity as covariance matrix. The assertions
below hold true.

(i) If lim  $y = +oo, then we have the convergence in distribution:
n,N,t—+o0

i { i 2 (20,0) - 107 } = JuTs e

n,N—oo |t—00 7y

(ii) If lim 5y = 0, then we have the convergence in distribution:
n “+o0o

4V

lim 0 (L(0,(t) — L(6*)) = %UTA*l/QH*A*l/QU'

n,N,t—+o0

(iii) If lim v = c > 0, then we have the convergence in distribution:
n,t—-4o00

n,N—oo (t—0o0

4.6 Illustrative Numerical Experiments

For illustration purpose, this section shows how the results previously established apply to two
problems by means of simulation experiments. For both examples, the performance of the
HTGD algorithm is compared with that of a basic SGD strategy with the same (mean) sample
size.

4.6.1 Linear logistic regression

Consider the linear logistic regression model corresponding to Example 4.2 with § = («, ) €
R x R% and h(z,0) = a + Tz for all z € R Let X’ be a low dimensional marginal vector
of the input r.v. X, of dimension d’ < d say, so that one may write X = (X', X”') as well as
B = (#,5") in a similar manner. The problem of fitting the parameter # through conditional
MLE corresponds to the case

1+ eat8T=

l(z,).6) = g (6“%@ +1)/24 (1 y>/2> |

We propose to implement the HTGD with p((z/,y),0) o ||[VI'((X,Y),0)] as link function,
where

!(2.2).0) = ~log (ea“’ /24 (1= y>/2> |

1 + 601+B/T$/

In order to illustrate the advantages of the HTGD technique for logistic regression, we con-
sidered the toy numerical model with parameters d = 11 and 0 = («,f1,...,010) =
(-9,0,3,-9,4,-9,15,0,—7,1,0), the 10 input variables being independent, uniformly dis-
tributed on (0, 1). The maximum likelihood estimators of § were computed using the HTGD
and SGD (mini-batch) . In order to compare them, the same number of iterations was chosen
in each situation and a learning rate proportionnal to 1/1/t was considered. As a first go, we
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drew a single sample of size n = 5000 on which the two algorithms were performed for 2000
iterations. Two sub-sample sizes were considered : N = 10 and N = 100. As can be seen on
Fig. 4.2, while virtually equivalent in terms of computation time, thus taking a larger sample
improves the efficiency of the HTGD. It also appears to reach a better level of precision in less
steps than both competitors, a phenomenon that is consistent on all 11 coordinates of 6.

-8 -85

-105

-110
:

-12ly -115

120

-12.5§

. I . ~130 . I I
0 500 1000 1500 2000 0 500 1000 1500 2000

FIGURE 4.1: Evolution of the estimator of 35 with the number of iterations in the HTGD
(solid), mini-batch SGD (dotted) and GD (dashed) algorithms with N = 10 (left) and N =
100 (right).

So as to account for the randomness due to the data, we then simulated 50 samples according
to the model for two population sizes, n = 500 and n = 1000. For both the HTGD and the
mini-batch SGD algorithms, a sub-sample size of 20 was chosen. As shown in Table 4.1, the
HTGD seems to be more robust to data randomness than SGD and GD. It is not surprising,
since the sampling phase selects the most informative observations relative to the gradient
descent, which makes HTGD less sensitive to the possible noise. It also provides more precise
estimates, as illustrated by the results in Table 4.3.

n =500 n = 1000
HTGD 1.52 1.45
SGD 221 2.09

TABLE 4.1: Mean standard deviations of the final estimates of (= —9) across the 50 simu-
lations

Min. Median Max. Mean S.D.
HTGD
05 -9.5 -8.7 -7.8 -8.6 145
g 13.3 14.6 159 145 152
SGD
05 -9.9 -8.2 74 82 209
O 12.7 13.9 16.6 152 221

TABLE 4.2: Statistics on the global behavior of the final estimates of 85 and (¢ across the 50
simulations
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FIGURE 4.2: 50 trajectories of the estimator of 35 with the number of iterations in the HTGD
(solid), mini-batch SGD (dotted) over 50 populations (left) and of 65 over 1 populations
(right).

4.6.2 The Symmetric Model

Consider now an i.i.d. sample (X1, Xs,...,X,,) drawn from an unknown probability distri-
bution on R¢, supposed to belong to the semi-parametric collection {Pys,0 € ©},0 C R,
dominated by some o-finite measure A. The related densities are denoted by f(z — ), where
6 € O is a location parameter and a f(z) a (twice differentiable) density, symmetric about
0, i.e.f(z) = f(—x). The density f is unknown in practice and may be multimodal. For
simplicity, we assume here that © C R but similar arguments can be developed when d > 1.
For such a general semi-parametric model, it is well-known that neither the sample mean nor
the median (if, for instance, the distribution does not weight the singleton {0}) are good can-
didates for estimating the location parameter §. In the semiparametric literature this model is
referred to as the symmetric model, see Bickel et al. (1993). It is known that the tangent space
(i.e. the set of scores) with respect to the parameter of interest 6 and that with respect to the
nuisance parameter are orthogonal. The global tangent space at I ¢ is given by

Ty [Py, P] = {cm +h(x—0);ceR, he PQ},

where Py is the tangent space with respect to the nuisance parameter:
Py = {h:Ep, [M(X)] =0, h(z) = h(—=x) and Ep, , [n*(X)] < 00} .

Orthogonality simply results from the fact that f’(x) is an odd function and implies that the
parameter 6 can be adaptively estimated, as if the density f(z) was known, refer to Bickel
et al. (1993) for more details. In practice f(x) is estimated by means of some symmetrized
kernel density estimator. Given a Parzen-Rosenblatt kernel K (z) (e.g. a Gaussian kernel) for
instance, consider the estimate

Jonle) = 1 ZK (===,

where h > 0 is the smoothing bandwidth, and form its symetrized version (which is an even
function)

fon@) = 5 (Fonl@) + Fon(—2)



Chapter 4. Horvitz Thompson Stochastic Gradient Descent : Application to M-estimation61

The related score is given by

R d> =
sn(2,0) = —5 fon(2)/ fon(@).

In order to perform maximum likelihood estimation approximately, one can try to implement
a gradient descent method to get an efficient estimator of #. For instance, for a reasonable
sample size n, it is possible to show that, starting for instance from the empirical median 6y
with an adequate choice of the rate -y, the sequence

~ ~

0ul) = Bt 1) + 2> 305, 0t~ 1.~ 1)
j=1

converges to the true MLE. The complexity of this algorithm is typically of order 27" x n? if
T > 1 is the number of iterations, due the tedious computations to evaluate the kernel density

~

estimator (and its derivatives) at all points X; — (¢ — 1). It is thus relevant in this case to try
to reduce it by means of (Poisson) survey sampling. The iterations of such an algorithm would
be then of the form

Es ~ ~

() = Bt —1)+ 2t 30 5,0~ Bt — 1), — 1)

=1 P
n
d.p = N
7j=1

As shown in section 4.4.3, the optimal choice would be to choose p; proportional to |s,, (X; —

~ ~

O(t —1),0(t — 1))| at the ¢-th iteration:

e (30010 N[Sa(X; =0t —1),6(t — 1))
i (0 -v) = S [Bn (X, — 6t —1),6(t — 1)) )

~

Unfortunately this is not possible because s is unknown and replacing s(z —6) by s, (z —0(t —

1),6(t — 1)) in (4.15) yields obvious computational difficulties. For this reason, we suggest to
use the (much simpler) Poisson weights:

pi(0) = NIX; — 6]/ > |X;—0l.
j=1

Fig. 4.4 depicts the performance of the HTGD algorithm when 6 = 0 and f(z) is a balanced
mixture of two Gaussian densities with means 4 and —4 respectively and same variance 0> =
1, compared to that of the usual SGD method. Based on a population sample of size n = 1000,
the HTGD and SGD methods have been implemented with NV = 10 and T = 3000 iterations,
whereas 30 iterations have been made for the basic GD procedure (with N = n = 1000)
so that the number of gradient computations is of the same order for each method. For each
instance of the algorithms we took 6 equal to the median of the population.
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FIGURE 4.3: Evolution of the estimator of the location parameter § = 0 of the balanced
Gaussian mixture with the number of iterations in the HTGD (solid red), mini-batch SGD
(dashed green) and GD (dotted blue) algorithms

FIGURE 4.4: Evolution of the estimator of the location parameter § = 0 of the balanced
Gaussian mixture with the number of iterations in the HTGD (solid blue) and mini-batch
SGD (dashed red) algorithms over 50 populations
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Min. Median Max. Mean S.D.

HTGD

6 -035 0.006 029 0.014 0.16
SGD

0 -038 -0.036 042 0.025 0.22
GD

# -052 -0.162 0.70 0.20 045

TABLE 4.3: Statistics on the global behavior of the final estimates of the location parameter
across the 50 simulations

4.7 Conclusion

In this article, we have shown how survey sampling can be used in order to improve the accu-
racy of the stochastic gradient descent method in M -estimation, while preserving the complex-
ity of the procedure. Beyond theoretical limit results, the approach we promote is illustrated
by promising numerical experiments. Whereas massively parallelized/distributed approaches
combined with random data splitting are now receiving much attention in the Big Data con-
text, the present chapter explores a possible alternative way of scaling up statistical learning
methods, based on gradient descent techniques.

4.8 Technical Proofs

4.1.1 Proof of Theorem 4.3

The conditional consistency of the HTGD algorithm described in Section 4.3 is obtained by
applying Theorem 13 in Delyon (2000) (or Theorem 2.2 in Chapter 5 of Kushner & Yin (2010)
among other references). Specifically, it states that if the following conditions are fulfilled,
then 6,,(¢) converges as t — +o0 to some ¢} € L£,, with probability 1:

e > o1 =+ooand Y,o07%(t) = +00, which was assumed,

0,,(t) remains in a compact subset of O for all ¢ > 0, which was also assumed,

e c O —Ly(f)and § € O an(ﬁ) are continuous, which is guaranteed by
Assumption 4-(i),

L,, is finite, which corresponds to Assumption 4-(4i7),

for any compact subset K C © we have that supE (||(g, (0)||* | D,) < +oco with
ek

probability 1, wich we shall now check.
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Let KC be a compact subset of ©, then

1 & 7,0
sup E (|[tg, (0)|? | D,,) = sup — — W YI(Z;:,0)TVI(Z;,0
96/13 (H Rn( )H ’ ) OGE n2 iJZ:1 7_‘_1(9) 7T](9) ( ) ( J )

n

2
L IVUZi0)
§< 2 ) )

o106k

which is finite with probability 1 by virtue of Assumption 4-(i7). O

4.1.2 Proof of Theorem 4.4

Our conditional Central Limit Theorem results from Theorem 1 in Pelletier (1998), the appli-
cability of which needs to be checked.

First of all, rewrite the algorithm sequence as
On(t+1) = 0n(t) — % VLn(0) + n&al(t +1),

where &, (t + 1) := VL,(8;) — Lr, (0,(t)). This way, —V Ly, (6;) appears as the mean field
of the algorithm and &, (¢ + 1) as a noise term. Now consider the filtration F = {F;}i>1
where for each ¢t > 1, F; is the o-field generated by the indicator vectors e,(ll) ey eT(f -1 and
by D,,. Then Assumption 1-(¢7) guarantees that {£,,(¢) }+>1 is a sequence of increments of a
g-dimensional square integrable martingale adapted to the filtration F: for all £ > 1 we have

both E[¢,(t + 1) | F¢] = 0 and
E [lln(t + )I* | 7] =

1< Tij (On(t))
n? 2 <7Ti(9n(t))ﬂj(9

ij=1 "

_ . T )
@) 1) VIU(Zi, 0n(t))" VI(Z;,0,())

n

2
s IVUzaoly
S( Z P 2 (0) ) < +o0.

n ST oek

Given this representation, our result is assured by Theorem 1 in Pelletier (1998) provided that
the following conditions hold true:
o an(ﬁ;'fb) = 0, which was assumed,

e on a neighborhood V of 67 we have VL, (0) = H,, (6 — 0:) + O(]|0 — 6%]|?), which
results from a simple Taylor expansion made possible by Assumption 5-(7),

e —H,, is astable ¢ x ¢ matrix (the largest real part of its eigenvalues is negative), which
corresponds to Assumption 5-(i1),

e + is regularly varying with index —a € (—1,0] or 74 = o/t with vy > 1/(2[) for all
t > 1, which was also assumed,

* (A) swE (an(tJr 1)]° | ft) 1{0,(t) € V} < +oo almost-surely for any b > 2,

which we shall verify,
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e B) E(&(t+1)&(t+1)T | F) — T almost-surely on £(6}) as t — +oo, with T’
a positive-definite deterministic matrix, which also needs to be checked.

Let us start with condition (A). Since 0 < ||&,(t+1)]| < % Z W

i=1

almost-surely
for all ¢ > 0, then for any b > 2

supE (H{n(t +1)|° | .7-",5) I{6,(t) e V} < 1 Zn: <sup Wi’tg)”)b < 400

£>0 T n \eev  mi(0)
with probability 1, by Assumption 4-(i7).

Regarding condition (B), we have E[¢,(t + 1) &,(t + 1)T | Fi] = Tn(0a(t)) for all t > 1,
where for any 6 € O,

T,(0) = ngjzl (W?H)ﬂ% _ 1> Vi(Z:,0)VI(Z;,0)"

By virtue of the continuity assumptions of the inclusion probabilities (Assumption 5-(ii7))
and of the gradient (Assumption 4-(7)), given the population data D,, we have the almost-sure
convergence I',,(0,,(t)) — ', = I',(6) on the event £(0}") as t — +o0o. The limit matrix is,
indeed, positive-definite and deterministic (given Dy,). ]

4.1.3 Proof of Proposition 4.6

Let us start by calculating HE%,/T? |? for some collection of positive Poisson inclusion probabil-
ities pp, = {pPn(0) }oco. In the case where n = 0, since H, is invertible by Assumption 5-(i7),

the Lyapunov equation (4.10) can be rewritten as
Yp, + H 'Sy, H, = H,'T%,

1/2

2 1 |
which implies that Hzpn = STr (H;'T;) = 5T (Ga T} GY). Now recall that 0 is

a stationary point, i.e. vin(e;;) = 0, and that we are considering a Poisson scheme (with
independent inclusion variables). Thus,

1 & 1

and then

2 11 & 1 5
=== -1 n VU(Zi, 03)]7 . 4.1
207 2 (pi(ﬁz) > 1Gn VI(Z;, 67l 4.1

Let us now turn to the definition of an optimal collection of Poisson plans. Using the Lagrange
multiplier method like in subsection 4.4.1, we find that any p,, minimizing (4.1) must satisfy
the equalities

|G VI(Zi,0;)l

rn

2251 1Gn VU(Z5, 63)1I

pi(0,,) =N i€U,.
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This is the case, in particular, of the collection p, defined in Proposition 4.6. Condition (4.12)
and the positive-definiteness of H,, (Assumption 5-(77)) ensure that p}(¢) is almost-surely in
(0,1] forall @ € © and i € U,,. O

4.1.4 Proof of Proposition 4.7

Let us start by proving the first assertion. Using Eq. (4.1) with the corresponding inclusion
probabilities, we immediately obtain

1/2 1/2]|2 cn(05)
el =l =%
= o5
which is positive by Assumption 6.
Turning to the second assertion, observe that
R i e i e e

= o {026 — enl6)}

By definition of p}, (see Proposition 4.6), this quantity is always nonnegative. 0

4.1.5 Proof of Proposition 4.8

Consider a Poisson sampling plan with inclusion probabilities as in ((4.14)). We shall prove
that Assumption 7 is fulfilled by establishing the asymptotic convergences (as n, N — 400)
of the three averages in brackets that appear in the following decomposition:

1« 1
NT* = (Wi, 07) - Vi(Z;,0°)VI(Z;, 6"
; [Zp ][ X g VA RIvH >]
[ sz Zi, 05V Z;,07) ]
Recall that (Z1, Wh),...,(Z,, W,,) were taken as independent copies of some generic r.v.

(Z,W), which is thus independent from 6;;, for any n € N*. The respective distributions of
Z, W and (Z,W) are denoted by Pz, Py and P .

First average We shall verify that the first term in brackets tends to E [p(W, 6*)] almost-
surely as n — +oc. For any n € N* we have

Zp (Wi, 0y,) — E[p(W,67)]| <sup|—

sup me,e — E[p(W,0)]

+ \E[p(W 0,)] = Elp(W,67)]| .

Thus, it suffices to check that both the supremum and the difference of expectations above
(almost-surely) vanish as n grows.

The supremum can be controlled using Lemma 3.10 in van de Geer (2000). The parameter
space O is assumed to be a compact metric space and the map 6 € © — p(w, 6) is supposed
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to be continuous for all w € R?. In addition, since the link function p was chosen to be
bounded by some finite positive constant f, the envelope w € R — supycg |p(w, 8)| is Py -
integrable. By virtue of the aforementioned Lemma, these conditions are sufficient to obtain
the uniform law of large numbers: as n — 400, with probability one,

su W;,0) — W, 0
sup an E[p(W,0)]| —

Let us now turn to the difference of expectations. Fix some w € R%. The empiri-
cal risk minimizer 0 is assumed to be strongly consistent (condition (7)) and the map-
ping 6 € © — p(w,0) to be continuous. Thus, by the continuous mapping theorem,
p(w, 6) converges almost-surely to p(w, 6*), as n — +o0o. Then, because p is a bounded
function, by the dominated convergence theorem we also have E[p(w,8})] — p(w,0*)
as n — —4oo. Next for any n € N*, the independence between W and 6 implies
E[p(W,0;)] = [z Elp(w, 0;;)] Py (dw). Applying the dominated convergence theorem to
this last 1ntegral we ﬁnally obtain that E[p(W, 6} )] — E[p(W,0*)] as n — +o0.

Second average The second term in brackets is a ¢ X ¢ matrix, the convergence of which
shall be established element-wise. Let (k,h) € {1,...,¢}? and define the function Vpn :
(2,0) € RY x © s (01/00,)(2,0) x (01/063)(2,0). The element at the intersection of the
k-th row and h-th column of this matrix is

1 < 1
— Vi n(Z;,0
o 2 iy )
Using the same reasoning as before, this quantity can be shown to converge almost-surely, as
n, N — 400, to E [p(W,0*)~1 U, ,(Z,6*)]. We only need to check that
1. the map 6 € © + p(w, #) " Uy, 4(z,0) is continuous for any (z,w) in R? x RY,

2. the envelope (z,w) € R? x RY s sup [p(w, 0) 1 ¥y, (2, 0)| is Pz y-integrable,
0O

3. the class of random variables {p(W, 6)~1 W, ,(Z,67)} is uniformly P yy-integrable.

Condition (a) is guaranteed by the construction of p and by Assumption 4-(7).

4.1.6 An Intermediary Result
Before beginning to prove Theorem 4.9, we first establish the following lemma. It describes
the limit behavior of the solution of the Lyapunov equation ((4.10)) as n, N — 4-o0.

Lemma 4.11. Suppose that the assumptions of Theorem 4.9 are fulfilled. Then as n, N tend
to +o00, we have:
N, — X* in probability.

Proof. Observe first that it follows from H, X, + ¥, H, = L'}, that

A = 2l H S, |1 + 277 (Hn Yo, Hn Y, ),

>0
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Hence, we have:
T3 > V2( Hn S, .

We deduce from this inequality combined with assumptions 7 and the fact that H,, ! = Op(1)
as n — oo (this can be deduced from the LLN H,, — H* and the hypothesis that the Hessian
matrices H,, and H* are invertible) that

Yr, =Op(1/N)asn — oo. (4.2)
Since H*¥* + ¥X*H* =1 and H X5, + Xx, Hy = I}, we have:
I'*— NI, =H* (X —NXg,)+ (X = N, ) H*+
+N(H,— H")Y; + NX (H,— H"). (4.3)

Combining (4.3) with

[ (2 = NS, = (5" = NS, ) H'|
1 * * * *
< Gl O3 = N3, ) 4 (90 = N9 JH'| (44)

we easily get
1
V2

By virtue of the LLN, we have H,, — H* — 0 almost surely as n — oo. Combining this with
(4.2) and assumption 7 we see that the term on the right hand side of (4.5) converges toward 0
in probability as n — co. Combined with the invertibility of H*, this establishes the desired
result. O O

IH* (5 = NS, )l < —= 0" = NT; || + V2[|NSx, (Hn — HY)J. (4.5)

4.1.7 Proof of Theorem 4.9

Consider the decomposition:
On(t) — 0" =0,(t) — 0, + 6, — 0"
= VN7 (Bat) = 62) +

=\ 3 Y/ 0.1) — 607)

M

1
+—=/n (0 —6%).
Tn ((2) )

;ﬁme;; o)

The term (2) above is asymptotically normal. By virtue of the classical Central Limit Theorem
for M -estimators, see Theorem 5.23 in Van der Vaart (2000) for instance, we have:

Vn (0 —6*) = N(0,A*) asn — oo. (4.6)

This suffices to establish assertion (i) since the parameter space © is assumed to be compact
here. Turning to term (1), holding n and N fixed, Theorem 4.4 claims that, in probability
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along the sequence X (respectively, the sequence (X, W)):

VIS m 2 (0n(t) — 07) = Z as t — oo, 4.7

where Z denotes a g-dimensional centered Gaussian random vector with the identity as co-
variance, independent from the sequence X (from the sequence (X, W) respectively). Now
it follows from Lemma 4.11 combined with the continuity of the application that maps any
symmetric positive semi-definite matrix to its square root that

(NZ )% = »*1/2 ip probability, as n, N — oo. (4.8)
Given that one may write

f (0u(t) — 63) = (NS )2 /12 (6, (1) — 67).

it results from (4.7) and (4.8) that the following convergence in distribution holds true:

: : N ¥\ _ yxl/2
lim Jim ,/a(an(t) 6:) = v*1/27. 4.9)

Assertions (7) and (7i7) can be then deduced from (4.9) and (4.6) in a straightforward fashion
(using the independence of the limits, regarding (7i)).

4.1.8 Rate Bound Analysis

Here we establish a rate bound for the HTGD algorithm under the additional assumption that
the mapping 6 — [(z, 8) is convex, referred to as Assumption 8, as we have done in chapter
4. Note that Assumptions 5 and 8 imply that 8 is unique and L, is! strongly convex on V.
For simplicity’s sake, we suppose that the strong convexity property holds true on R%. The
following result relies on standard arguments in stochastic approximation, see Nemirovski
et al. (2009a), Bach & Moulines (2011a) or Nesterov (2004a). All expectations are taken
conditionally upon the observations.

Theorem 4.12. Under Assumptions 4, 5 and 8 and for a stepsize v, = ot~ with some
constants o > 0 and o € (1/2,1] (when o = 1, take o > 1/(2l)), there exists a constant
Cy < +00 such that: vVt > 1,

E[|0n(t) — 65117 < —=. (4.1)

Proof. We restrict ourselves to the case « = 1 and follow the proof of Bach & Moulines
(2011a). By construction, we have

16n(t +1) = 6511 = 116n(t) — 05 11° — 27elr, (Bu(t))” (9n(t) — 5) + |7elR,, (6a(2))]*.

Since

E[(R, (6n(1)|F) = VLa(0n(1)),
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we get
E[|6n(t +1) = 05 | 6n(8)] = [0 () = 6511 = 29V Lo (6 (1)) (60 (t) — 63)
+2E[|ER, (Ou(t)]? | Oa(t)].

The strong convexity property gives

T T * T * [ *

Ln(0n(t)) = Ln(07) < VLn(0n(£))" (0n(t) = 07) = S116n(t) — 0,1
and ;

Ln(07) = Ln(0n(t)) < = [10n(t) = 637,

so that R
10(t) = 0311 < VLn(0n() (00 (t) — 6;,).

Combining this inequality with the previous one and taking the expectation, we obtain
E[|0n(t + 1) = 051%] < E[I0a(8) = O311P)(1 — 27ed) + %7 Ell|¢r, (0n(t))]1%].

Under Assumption 4, we have E[||¢g, (6,,())||?] < D for some constant D > 0. Using this

bound and iterating the recursion, we finally obtain

E[|6,(t + 1) = 6;1°) < E[10(1) = 01 [J(1 = 209()) + DD 47 [T (1= 20v(k))

j=1 j=1  k=j+1

with the convention [} _, +1(1 = 2ly(k)) = 1 We now substitute the expression of ~; and,
using the following classical inequalities

1+z<e”

and

t
1
1 - j < PR
og(t+1)—1log(j+1) Z :
k=j7+1
we get
ot
(|6, (1) — 031> + D > m)
j=1J
(t 4 1)%0

where D is a positive constant. Since 7o > 1/(21), we have

E[|0n(t+1) — 05 <

9

t 1 £2l0—1

<
j; F30 S 2y — 1

and we finally obtain the desired bound. O



CHAPTER 5

Stochastic Gradient Descent based on incomplete
U-Statistics

Abstract In many learning problems, ranging from clustering to ranking through metric
learning, empirical estimates of the risk functional consist of an average over tuples (e.g.,
pairs or triplets) of observations, rather than over individual observations. In this chapter, we
focus on how to best implement a stochastic approximation approach to solve such risk mini-
mization problems. We argue that in the large-scale setting, gradient estimates should be ob-
tained by sampling tuples of data points with replacement (incomplete U -statistics) instead of
sampling data points without replacement (complete U-statistics based on subsamples). We
develop a theoretical framework accounting for the substantial impact of this strategy on the
generalization ability of the prediction model returned by the Stochastic Gradient Descent
(SGD) algorithm. It reveals that the method we promote achieves a much better trade-off
between statistical accuracy and computational cost. Beyond the rate bound analysis, exper-
iments on AUC maximization and metric learning provide strong empirical evidence of the
superiority of the proposed approach.

5.1 Background and Problem Setup

For clarity, we start with recalling the definition of generalized U-statistics and their crucial
properties and providing examples of learning problems motivated by various applications
where such data functionals are naturally involved. We recall that the variance of any square
integrable r.v. Z is denoted by 0%(Z)

5.1.1 U-statistics: Definition and Examples

Generalized U -statistics are extensions of standard sample mean statistics, as defined below.

Definition 5.1. Let K > 1and (di, ..., dg) € N*. Let X1,y = (X7, ) X0,
1 <k < K, be K independent samples of sizes nj > dj and composed of i.i.d. random vari-
ables taking their values in some measurable space X} with distribution F(dx) respectively.
Let H : del X oo x X Id(K — R be a measurable function, square integrable with respect to
the probability distribution y = F {X) “o...9F f?dK . Assume in addition (without loss of
generality) that H (x(l), o, xE )) is symmetric within each block of arguments x(¥) (valued
in X:’“), 1 < k < K. The generalized (or K-sample) U-statistic of degrees (di, ..., dg)
with kernel H, is then defined as

e, (nk) > ZH(X(ﬁ)X(Ii)ng)) (5.1)

d/) I

Un(H) =

71
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where n = (n1, ..., ng), the symbol >, --->_, refers to summation over all elements
K nE\ . .
of A, the set of the [[,_, (d:) index vectors (I, ..., Ig), Iy being a set of dj indexes
1<ip <...<ig <mpand X = (xP, . X)) for1 <k < K.
k

In the above definition, standard mean statistics correspond to the case where K = 1 = dj.
More generally when K = 1, U, (H) is an average over all d;-tuples of observations. Finally,
K > 2 corresponds to the multi-sample situation where a dg-tuple is used for each sample
ke{l,...,K}.

The key property of the statistic (5.1) is that it has minimum variance among all unbiased
estimates of

W(H)=E [H (XF), L X xTO Xff’)] = E[U,(H)|.

One may refer to Lee (1990a) for further results on the theory of U-statistics. In machine
learning, generalized U -statistics are widely used for estimating properties of probability dis-
tributions (e.g. variance, Gini mean difference), for statistical hypothesis testing (i.e. Kendall
tau, Mann-Whitney statistic) and used as performance criteria in various problems, such as
those listed below.

Clustering. Given a distance D : X7 x X1 — R, the quality of a partition P of X} with
respect to the clustering of an i.i.d. sample X1, ..., X,, drawn from F}(dx) can be assessed
through the within cluster point scatter:

2

Wn(P):mZD(Xu Xj)'zﬂ{(Xi,Xj) €C?}. (5.2)
i<j cep

It is a one sample U-statistic of degree 2 with kernel Hp(x, 2") = D(x,2)- Y ocp {(z,2) €

).

Multi-partite ranking. Suppose that K independent i.i.d. samples ka), cee XT(L]Z) with
ng > land 1 < k < K on X} C RP have been observed. The accuracy of a scoring function
s : X1 — R with respect to the K -partite ranking is empirically estimated by the rate of
concordant K -tuples (sometimes referred to as the Volume Under the ROC Surface):

K n
\ﬁﬁn(s) = nlxlanz zk: H{s(XZ,(ll)) < < S(Xz(f))}

k=1i=1
The quantity above is a K-sample U-statistic with degrees d; = ... = dx = 1 and kernel
Hy(xy, ..., ox) =Hs(x1) <--- <s(zk)}
Metric learning. Based on an i.i.d. sample of labelled data (X;,Y7), ..., (X,,Y,) on
X; = RP x {1,...,J}, the empirical pairwise classification performance of a distance D :

X x X1 — R, can be evaluated by:

6

EH(D) - n(n —1)(n — 2)

> I{D(Xi, X;) < D(Xi, Xp), Vi =Y; £V} (53)
i<j<k

which is a one sample U-statistic of degree three with kernel Hp ((z,y), (z/,v/), (z",4")) =
{D(z,2") < D(z,2"), y =y #y"}.
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e Pairwise classification. Based on an i.id. sample of labelled data
(X1,Y1), ..., (Xn,Y,) on & = R? x R, the empirical ranking performance
of any antisymmetric ranking rule » : R? x RY — {—1, +1} (the quantity r(z,z’)
being expected to be +1 when the label assigned to x is larger than that assigned to x’)
is evaluated through the pairwise classification risk

P, (r) = (n_ 5 > I{r(Xi, X;) - (Yi = Y;) < 0}
i#]
It is a one sample U-statistic of degree 2 with kernel H,.((x,y), (z',y')) = I{r(z, ') -
(y —y') <0}
e Metric learning. Suppose that K independent i.i.d. samples X fk), ey X,(llz) with

ng>1landl < k< Kondj C R? are available. The empirical performance of a
similarity measure D : R? x R? — R regarding its capacity to discriminate among the
K populations when combined with a nearest-neighbor can be evaluated by:

K
—2 1+ DX, xM) —b
;nk (g —1 )1<i§'§nk( )Jr

ng 1y

Y 7ZZ< ,X§”)—b)+,

1<k<I<K

where b > 0 is a tuning threshold parameter and z denotes the positive part of any real
number z. It is a K sample U-statistic of degrees d; = ... = dxg = 2.

5.2 SGD Implementation based on Incomplete U/-Statistics

Let © C R? with ¢ > 1 be some parameter space, we consider the risk minimization problem
mingco L(G) with

1 1 K K
L) =EHEX, ..., x{, L xU X e = wH (),
where H : Hle X:’“ x © — R is a convex loss function, the (ka), R ng))’s,

1 < k < K, are K independent random variables with distribution F; ,;@ d’“(daj) on X,j * re-
spectively so that H is square integrable for any § € ©. Based on K independent i.i.d.

(k) X,(JZ) with 1 < k£ < K, the empirical version of the risk function is

samples X
9O L, (0) = Uy, (H(.; 6)). So far in this manuscript, we emphasized how important are
stochastic method to solve the ERM problem, this is even truer in this case where the sample

sizes ny, ..., nx of the training datasets are such that computing the empirical gradient

K
G0(0) < VL0 )—(1/1'[(3:))2 ZVH Wox®axie s
k=1

just once is intractable due to the number #A = Hszl (Z:) of terms to be averaged. Note also
that trying to adopt a similar approach to what we have done in chapter 3 and 4 is impossible as
we would have to maintain a probability distribution over all the Hszl (Z:) couples of obser-
vations. A possible approach could consist in replacing (5.4) by a (complete) U-statistic com-

puted from subsamples of reduced sizes nj, << ng, {(X{(k), cee X;l(:)) k=1, ..., K}
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say, drawn uniformly at random without replacement among the original samples, leading to
the following gradient estimator:

gn,(a)—iz ZVH WX X ), (5.5)

Hk 1 (dk) I
where ) 1, refers to summation over all (Z}%) subsets X' glz) = (X ;fk), ey X :C(ZIZ)) related to
a set Iy, of dj indexes 1 < 41 < ... < ig, < njandn’ = (n}, ..., n)). Provided that

!
the n}’s are sufficiently small, it may be numerically tractable to average over the H,lle (Z;]:)
terms involved in the definition of (5.5). Although this approach is very natural, one can obtain
a better estimate for the same computational cost, as shall be seen below.

5.2.1 Monte-Carlo Estimation of the Empirical Gradient

From a practical perspective, the alternative strategy we propose is of disarming simplicity.
It is based on a Monte-Carlo sampling scheme that consists in drawing independently with
replacement among the set of index vectors A, yielding a gradient estimator in the form of a
so-called incomplete U -statistic (see Lee (1990a)):

1
ml)=5 Y VHX WL xg), (5.6)
(Il,‘..,IK)E’DB

where Dp is built by sampling B times with replacement in the set A. We point out that
the conditional expectation of (5.6) given the K observed data samples is equal to g,,(6). The
parameter B, corresponding to the number of terms to be averaged, controls the computational
complexity of the SGD implementation. Observe incidentally that an incomplete U -statistic is
not a U-statistic in general. Hence, as an unbiased estimator of the gradient of the statistical
risk L(0), (5.6) is of course less accurate than the full empirical gradient (5.4) (i.e., it has larger
variance), but this slight increase in variance leads to a large reduction in computational cost.
In our subsequent analysis, we will show that for the same computational cost (i.e., taking
B = Hszl (Z;kf) ), implementing SGD with (5.6) rather than (5.5) leads to much more accurate
results. We will rely on the fact that (5.6) has smaller variance w.r.t. to VL(¢) (except in the
case where K = 1 = dy), as shown in the proposition below.

Proposition 5.2. Set B = Hk 1 ( ) There exists a universal constant ¢ > 0, such that we

have:
K K o
7 O) <o/ Yon and o (an®) < cot/ T (1)
k=1 k=1 \F
for alln € N*K | with 03 = JQ(VH(Xl(l), e XC(ZI;); 0)). Explicit but lengthy expressions

of the variances are given in Lee (1990a).

Remark 5.3. The results of this chapter can be extended to other sampling schemes to ap-
proximate (5.4), such as Bernoulli sampling or sampling without replacement in A, following
the proposal of Janson (1984). For clarity, we focus on sampling with replacement, which is
computationally more efficient.
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5.2.1.1 A Conditional Performance Analysis

As a first go, we investigate and compare the performance of the SGD methods described
above conditionally upon the observed data samples. In this section, all expectations are taken
conditionally upon the observations. Given a matrix M, we recall that we defined M7 to be
the transpose of M and || M| := /Tr(MM?) to be its Hilbert-Schmidt norm. We assume
that the loss function H is [-smooth in 6, i.e its gradient is {-Lipschitz, with [ > 0. We also
restrict ourselves to the case where En is a-strongly convex for some deterministic constant
o

La(81) = Lu(62) < VLa(61)" (2 — y) = 51161 — 6 (5.7)

and we denote by ¢ its unique minimizer. We point out that the present analysis can be
extended to the smooth but non-strongly convex case, see Bach & Moulines (2011b). A clas-
sical argument based on convex analysis and stochastic optimization (see Bach & Moulines
(2011b); Nemirovski et al. (2009b) for instance) shows precisely how the conditional variance
of the gradient estimator impacts the empirical performance of the solution produced by the
corresponding SGD method and thus strongly advocates the use of the SGD variant proposed
in Section 5.2.1.

Proposition 5.4. Consider the recursion 0;+1 = 0, — v,9(0;) where E[g(6;)]0:] = an(ﬁt),
and denote by o2(g(0)) the conditional variance of g(0). With v; = ~1/tP, the following
holds.

1. If 5 < B <1, then:

L p o2(g(63)) Ly .
oller) = bl o 2 e 7) Tolp)
Cq
and with probability at least 1 — 6:
L 7 (B* o (0 Dglog(L/§
Ly (0t41) — Ln(0;,) < t(ﬁ)Cl + ﬂfﬁ(/)

2. IfB=1and v > % then:

oalg(6n) 27 exp(2aly) B
t+1 (2071 — 1) oy

Ca

E[Ln(6i41) — Ln(67)] <

and with probability at least 1 — 6:

2 (p*
AP

L 7 Dlog(L/é
Ln(041) — Ln(0;,) < ; gt(/)

for some constants D and Dg depending on the parameters L, o, 71, ay.

Proposition 5.4 is another illustration of the fact that the convergence rate of SGD is dominated
by the variance term and corroborate our approach of chapter 3 and 4 (see Zhao & Zhang
(2015); Johnson & Zhang (2013b); Defazio et al. (2014) for instance).

As we have done in theorem 4.4, we can also give the asymptotic behaviour of the algorithm
(when t — 4-00), under the following assumptions:
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A The function En(Q) is twice differentiable on a neighborhood of 6.

A, The function vin(e) is bounded.

Letus set T = V2L, (67), then we have under the conditional probability:

Theorem 5.5. Let the covariance matrix X, be the unique solution of the Lyapunov equation:
L5+ S50 — % = 5,(05), (55)

where 3, (05) = Elg(0;)9(0;,)"] and n = v1 > 5= if B = 1, 0 if not. Then, under Assump-
tions A1 — Ao, we have:

~ ~ 1
1/ (Ln(00) = La(0)) = 5UT(S3) /20 (23) 20,
where U ~ N(O, Iq). In addition, in the case n = 0, we have:

I(Z5D) s = EUT (£3)V/°0(25)2U) = %Uﬁ(g(ﬁl))- (5.9)

Theorem 5.5 reveals that the conditional variance term again plays a key role in the asymptotic
performance of the algorithm. In particular, it is the dominating term in the precision of the
solution. In the next section, we build on these results to derive a generalization bound in the
spirit of Bottou & Bousquet (2007) which explicitly depend on the true variance of the gradient
estimator. We also point out that the result established in section 4.5 (i.e an unconditional
TCL) could also be established in a straightforward fashion, and comparison of norms of the
asymptotic variance would also be straightforward thanks to equation (4.13).

5.3 Generalization Bounds

All expectations are now taken w.r.t the sampling procedure and the distribution of the obser-
vations. We introduce the following notations. Let §* = argming.g L(#) be the minimizer
of the true risk. As proposed in Bottou & Bousquet (2007), the mean excess risk can be
decomposed as follows: ¥n € N*K,

E[L(6)) — L(6")) < 2E |sup L (6) - L(G)]] +E [En(et) — La(63)] - (5.10)

& &

Beyond the optimization error (the second term on the right hand side of (5.10)), the analysis
of the generalization ability of the learning method previously described requires to control
the estimation error (the first term). This can be achieved by means of the result stated below,
which extends Corollary 3 in Clémencgon et al. (2008b) to the K -sample situation.

Proposition 5.6. Let H be a collection of bounded symmetric kernels on Hle X:k
such that My = supy gyenxx [H(z)| < +oo. Suppose also that H is a VC ma-
jor class of functions with finite Vapnik-Chervonenkis dimension V. < 4o0o. Let Kk =

min {|ny/dy], ..., |nx/dx|}. Then, for any n € N*K
E ;lé%lUn(H)—u(H)l] SMH{Q W} 5.11)
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forall § € (0,1), we have with probability at least 1 — 9,

sup [Un (H) — u(H)| < My, {2\/2V10g(1 TR \/log(1/5) } . (5.12)

HeH K K

We are now ready to derive our main result.

Theorem 5.7. Let 0, be the sequence generated by SGD using the incomplete statistic gradient
estimator (5.6) with B = Hszl (Z:) terms for some 1, . .., nh.. Assume that {L(.; 0) : 0 €
©} is a VC major class class of finite VC dimension V s.t.

Mg = sup HxD, ..., x5 )] < 400, (5.13)
06@7 (x(l)v ceey x(K))GH}‘Z(:l ng

and Ng = supycg ag < 4o00. If the step size satisfies the condition of Proposition 5.4, we
have:

vne N, E[L@) — L] < SO 4 ame {2

Btb

2V log(1 + k) }
=t

For any 6 € (0,1), we also have with probability at least 1 — §: ¥n € N*K,

L(0)—L(6%)] < <0Ne+ Dﬂlog(2/6)>+2M® {2\/2V10g(1+/£) +\/log(4/5)}.

Bt? 8 K K
(5.14)

for some constants C and Dg depending on the parameters |, o, v1, a1.

The generalization bound provided by Theorem B.15 shows the advantage of using an incom-
plete U-statistic (5.6) as the gradient estimator. In particular, we can obtain results of the same

form as Theorem B.15 for the complete U-statistic estimator (5.5), but B = Hszl (Z;Z) is then

replaced by > le n;. (following Proposition 5.2), leading to greatly damaged bounds. Using
an incomplete U-statistic, we thus achieve better performance on the test set while reducing
the number of iterations (and therefore the numbers of gradient computations) required to con-
verge to a accurate solution. To the best of our knowledge, this is the first result of this type for
empirical minimization of U-statistics. In the next section, we provide experiments showing
that these gains are very significant in practice.

5.4 Numerical Experiments

In this section, we provide numerical experiments to compare the incomplete and complete
U -statistic gradient estimators (5.5) and (5.6) when they rely on the same number of terms B.
The datasets we use are available online.! In all experiments, we randomly split the data into
80% training set and 20% test set and sample 100K pairs from the test set to estimate the test
performance. For SGD, we used a step size of the form v, = ~1/t, where ~; is the initial
value. The results below are with respect to the number of SGD iterations. Computational
time comparisons can be found in the supplementary material.

'nttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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FIGURE 5.1: Average over 50 runs of the risk estimate with the number of iterations (solid
lines) +/- their standard deviation (dashed lines)

AUC Optimization We address the problem of learning a binary classifier by optimizing the
Area Under the Curve, which corresponds to the VUS criterion (Eq. 5.2) when K = 2. Given
a sequence of i.i.d observations Z; = (X;,Y;) where X; € R and Y; € {—1,1}, we denote
by Xt ={X;;V; =1}, X~ ={X;;Y; = —1} and n = | X "||X~|. As done in Zhao et al.
(2011); Herschtal & Raskutti (2004), we take a linear scoring rule sg(x) = 67z where § € R?
is the parameter to learn, and use the logistic loss as a smooth convex function upper bounding
the Heaviside function, leading to the following ERM problem:

min = 5737 log(l + exp(se(X;) — 59(X;))).

Xrex+ X:ex—

We use two datasets: IICNN1 (~200K examples, 22 features) and covtype (~600K examples,
54 features). We try different values for the initial step size y; and the batch size B. Some of
the results, averaged over 50 runs of SGD, are displayed in Figure 5.1. As predicted by our
theoretical findings, the incomplete U -statistic estimator consistently outperforms its complete
variant on average.” We also observe a smaller variance between SGD runs when using the
incomplete version.

Metric Learning We now turn to a metric learning formulation, where we are given a sample
of n i.i.d observations Z; = (X;,Y;) where X; € RP and Y; € {1,...,c}. Following the
existing literature Bellet et al. (2013), we focus on (pseudo) distances of the form D (x, 2') =
(x — )T M(x — 2') where M is a p x p symmetric positive semi-definite matrix. We again

20f course, the step size must be in an appropriate range. If it is unnecessarily small, both methods have
comparable performance, while if it is too large, they both diverge.
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FIGURE 5.2: Average over 50 runs of the error test with the number of iterations (solid lines)
+/- their standard deviation (dashed lines)

use the logistic loss to obtain a convex and smooth surrogate for (5.3). The ERM problem is
as follows:

i 30 LY =¥, 7 Vi log(1 + explDu(Xe X5) = Dur(e X0)

We use the binary classification dataset SUSY (5M examples, 18 features). Figure 5.2 shows
that the performance gap between the two strategies is much larger on this problem than in
Figure 5.1. This is consistent with the theory: one can see from Proposition 5.2 that the
variance gap between the incomplete and the complete approximations is much wider for
a one-sample U-statistic of degree 3 (metric learning) than for a two-sample U-statistic of
degree 1 (AUC optimization).

5.5 Conclusion and Perspectives

In this chapter, we have studied a specific implementation of the SGD algorithm when the nat-
ural empirical estimates of the objective function are of the form of generalized U-statistics.
This situation covers a wide variety of statistical learning problems such as multi-partite rank-
ing, pairwise clustering and metric learning. The gradient estimator we propose in this context
is based on an incomplete U-statistic obtained by sampling tuples with replacement. First, we
have provided asymptotic and non-asymptotic rates for the convergence of this SGD-based
learning method to the empirical risk minimizer. Our main result is a thorough analysis of
the generalization ability of the predictive rules produced by this algorithm involving both the
optimization and the estimation error in the spirit of Bottou & Bousquet (2007). These results
show that the SGD variant we propose far surpasses a more naive implementation (of same
computational cost) based on subsampling the data points with replacement. Furthermore, we
have shown that these performance gains are very significant in practice when dealing with
large-scale datasets. Note all the results established can be extended to case where we sam-
ple tuples without replacement like we did in chapter 2 (in the general framework of rejective
sampling) and would lead to upper bound of the same order.
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5.6 Technical Proofs

5.6.1 Proof of Proposition 5.4

We follow the proof of Bach & Moulines (2011b) to derive bounds. We highlight the fact that
since the loss function H is [-smooth, g,(0;) and g, (0;) are [-Lipschitz. We introduce the
sequence ¥ = (1 — l7y¢). In all generality we will denote by g¢(#) an unbiased estimator of
the gradient at iteration ¢, [-Lipschitz in §. We study the recursion 0;11 = 0; — v:g:(6).

We will make use of the two following classical inequalities from convex analysis (see Nes-
terov (2004b)):

Lu(61) = La(62) < VL (6))" (x = y) = 5102 — 6a]” (5.15)

Tlau(6) = 9e62) 1 < (9u(61) — (62))" 61— 02) (5.16)

As mentioned previously the analysis we proposed can easily be extended to a more general
setting as in Bach & Moulines (2011b). We now begin the proof of the proposition:

10es1 — 05017 = 116 — 051> — 27090(80)" (0 — 6,) + 719 (6:)

Using (5.16) we get

1g: (0011 < 2([|ge(8e) — ge(O)11 + [lg(65) %)

<
< 20(94(0s) — g:(0;)) " (0: — 63) + 21 9:(65)11%) (5.17)
which together with E[g,(0,)|6;] = §.(0;) gives

E[[|6r+1 = 0311%10:) < 160 — 05117 — 27990 (6:) (6 — 0) + 2971|9067, 12

For the sake of simplicity we assume (1 — l;) > 0 V¢ (which is eventually true since the
sequence (7 )¢=0 goes to 0 as t goes to infinity). Let a; = E[||§; — 0% ||%], 02 (6;;) the variance
(conditionally upon the data) of g,(6). Using (5.15) and taking the expectation we get the
following recursion:

a1 < ag (1 - 20%) + 2970, (0;)

t t t
<ar [T =20%)+20200;) > 7 [ (1209 (5.18)
j=1 j=1  k=j+1

with the convention H',;:t +1(1 =2a%;) = 1. Using 1 + x < e we get the following upper
bound:

t

. t
(1—20%;) < exp(—2a Y ;) exp(2al > 77)
=1 J=1 3=1

J

We now need to distinguish two cases:
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5.6.1.1 Caseg=1

If 3 = 1 we have:

¢
1. log(t+1) —log(j +1) <
k=it

,_.
=

2. exp(2al 34 _ 1%) exp(4al)

3. exp(2ad 3 _ Y- %) < exp(%’,‘l) < exp(2ad)

Under the assumption 2ay; > 1:

t . 20
a 2 2 ( 22N W 1)Tm 1
py1 < (t+1)20m exp(4alyy) + 20,,(6;,) exp(2advyi) 71 Jz::l 2 (t+1)2om
2012072 (0 2007} )7t
< a1 exp(4alﬁ) a5 (05,) exp(2 Vi)
(t 4 1)2om 2oy — 1)(t+1)
which gives the result.
5.6.1.2 Casef( <1
If 6 < 1, let tg be a positive index, by splitting the sum in two parts we get:
¢ ¢
3¢ T[ (=20 =355 [T 0 -2+ 3 2 1] -2
k=j+1 k=j+1 j=to+1  k=j+1
t
< H (1 —2a%y) Zvj + Yt Z Vi H (1 —2a%)
k=to+1 Jj=to+1 k=j+1

where we used that the sequence (7y;);>1 is decreasing. Since v; = M + lfy we have:
t t L& t t
> H (1—204’71@):%42 IT @=2a%) -] (1 —209)
Jj=to+1 k=j+1 Jj=to+1k=j+1 k=j
t t t
1> I =209 <~ +1 > 7]
Jj=to+1 k=j+1 Jj=to+1
which leads to
t t t t to
v TI 0 =209k) <exp(—2a Y yp)exp2al > 4> 7}
j=1  k=j+1 j—to+1 J=to+1 Jj=1
+ h + Vel Z V2
Jj=to+1

Taking tg ~ 5 and using the integral test for convergence:
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t t 1 t+1)1-B—(tg+1)1-8 t+1)1-
1. Zj:tOJrl Yi =M Zj:t0+1 3P P 71( ) 1_([30 ) P il (2(115)
1

t 1 2 N\ tHoo vy
2. ijtg—i—l 'Y] 71 Zg =to+1 j28 <M j=2 j2B < 26-1

to
2
3. Z:I’YJQ <+ 251,1) = 25&7%
j:

gives the following bound:

1 1-6 2
ai+1 < a1 exp(—2amy; (7;("; —)ﬂ) ) exp(2ad 25 )
1 1-8 2 9
+ 20 (9*)(exp(—2a(;(—;_)ﬂ)) exp(2al 26 T ) 53 f 17%

28y m2° 20 2
2atf T 1B 25 —1 1

S LR

which concludes the proof.

5.6.2 Proof of Theorem 5.5

We recall that I' = VQEH(G;*L), Yn(02) = Elgi(07)g:(0)T] and X7 is the solution of Lya-
punov’s equation:
IS + 0T — f = %,(07), (5.19)

Using classical results from stochastic approximation theory (see Delyon (2000); G.Fort
(2014); Pelletier (1998) for instance) , we first show that under our assumptions:

V 1/ (0 —05) = N(0,%5),

The asymptotic behavior of 1/, ( (0¢) — n(ﬁ*)) is therefore a consequence of the second
order delta method. We now turn to the second part of Theorem 5.5 and similarly to chapter 4:

B[UT (55) V2T (55)V20) = BITr(T2(55) V20U (25) 2T
= Tr(DV2(5) V2EUUT(S5) VA0 ?)
= Tr(DY2(2)TY?) = Tr(TS))

1 * 1 *

where we used the linearity of the trace, the linearity of the expectation, the dominated con-

vergence theorem (to arrange the different terms) and Lyapunov’s equation to conclude.

5.6.3 Proof of Theorem B.15

We prove a more general result and apply it to our specific setting. We consider the recursion
defined in the proof of Proposition 2 and keep the same notations.

Theorem 5.8. Let 0; be the sequence generated by SGD and define o> = E[o2(g(6}))).
Assume that {L(.; 0) : 0 € O} is a VC major class class of finite VC dimension V s.t

Mg = sup HxD, ..., x5 9)] < 400, (5.20)
0eo, (x(), .., x(K))e[TE_ | a*
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If the step size satisfies the condition of Proposition 2, we have:

2
vn e N, E[|L(6,) — L(6Y)]] < (’;—‘; +2Me {2 ngﬂ(”“)} .

For any 6 € (0,1), we also have with probability at least 1 — §: ¥n € N*K,

L(0)— L(6%)| < <C<72+ Dglog(2/5)>+2M@ {2\/2V10g’il+/£)+\/log(4/5)}‘

t8 8 K
(5.21)

for some constant Dg depending on the parameters |, c,7y1, a1 and where C' = Cy if f < 1
and Cy otherwise.

Proof. For the sake of simplicity, we place ourselves in the special case where © is compact,
but tedious calculations would lead to similar results under less restrictive assumptions. We
therefore introduce the quantities M and M that satisfy ||g;(6%)[> < M? and ||§; — 6] <
M#2. We now turn to the proof of the result:

L(6y) — L(6*) < 23“8 1L, (8) — L(0)| + Ln(6;) — L (67).

Taking a union bound we directly get:

(L) - 16> L7001 e) <P (1Tnen) - En@r) > L 20+ 6
t /2t6 € x n\Ut n\Up, /Qtﬁ 9
P1
+ P(sup|L,(6) — L(0)] = %)
0O 4

P2

The analysis of Py is classical and we refer to Clémencon et al. (2008b) to obtain that for all
0 € (0,1), we have with probability at least 1 — 4,

sup|Ln(0) — L(8)| < My {2\/2V10g(1 ) + \/log(l/é) } . (5.22)
0coe K K

We now focus on the second term.
Using L, (60) — L, (6};) < L[|6 — 07 ||? (see Nesterov & Nesterov (2004) for instance) we have:

)

T = * lO’2 € . 0.2
P (\ant) — La(07)| = 555C > 2) <P (Het — 037 = 25C >

~| ™

Applying the recursion we get:

10141 — 0511% = 116: — 0311 — 2%90(0)" (0, — 0%) + 7 [19¢ (1)
= (16 — 0211 — 2%(9:(8:) — VL (00))T (0 — 02) — 2%V L (0)T (8 — 05) + 7211 9:(0) ||

and using (5.17):

lge (017 < 20(9(0e) — g (05) (0 — 07) + 2]l (67)1%)
= 20(g1(0r) = VLu(0) = 9:(0;))" (0 = 03) + 20V La(6)" (0 — 0;) + 219:(6) 1
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which with @; := [|0;11 — 67||? gives

G < (1= 204;) + 29700 (05) — 29(9¢(61) — VL (60)" (6 — 67,)
= 29719 (03))" (0 — 03) + 297 (|9 (G5) 1 — o3 (67)).-

An immediate recursion leads to

~

t

t
a1 < an [J(1—209) +20505) > 7 [ (1 —209)
j:l j=1  k=j+1
t t

+ 227? [T @ —20%) (lge(B)I* — o2(67))

t t

—2) % [ (0—20%) (9:(6) — VLa(6:))" (6 — 67,)
j=1  k=j+1

=2y of [I (02090 (6,)" (0 07)

j=1  k=j+1

The first two terms are analyzed in 5.6.1. We turn now to the tree remaining terms and we
introduce the following quantities:

LS, = 2; 2 TTh i (1= 2030) (I (012 - 02(63)
2. 5y, = 2; 5T 1 (1 209%) (00(80) — Vin(6)7(61 — 63)
3. Sz =21 ]él 9 e jr (1= 20%) 9:(65)7 (6 — 0;,)
Placing ourself under the conditional probability and applying a union bound yields

t t t
Po | |01 — 07 > H (1= 20%) +202(0:) > v [[ (1—20%) +
j=1 =1  k=j+1

€ € €

Pn(sl,t = g) + ]P)n(SQ,t = g) +Pn(83,t = g)

Under our assumptions, we have lge (01> < M2, |gi(0:)T (0, — 6)] < MM; and

1(ge(6:) — VLn(0:)T (8, — 62| < (2AMy + M)M;. Applying Azuma’s A.9 inequality yields
the following bounds (conditionally upon the observations):

2
P(S1:>€) < exp ( " € - 2)
4M Z] 1 '}’j Hk =j+1 ( QOé’Yk)

—€2

p -
<8M12(2lM1 + M2 A [Ty (1— 2047k)2>

P(S2: =€) <

)

_¢2
P(S3:>¢€) < exp ( — )
8M2M2 Z] 1 7] Hk—]Jrl ( - 204716)2
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t ¢
We thus need to bound the sums '21 o HZ:jH (1 —2a7;)%and 21 3 szjﬂ (1 —2a9;)%
= =

5.6.3.1 Casef <1

We have for g < 1:

T T T
S [T -2 < [ -205'35 ot 3° o T =200
t=1  k=j+1 j=to+1 j=to+1  k=j+1
T
< exp(—4a Z ;) exp(4al Z 'y] nyj
j=t0+1 J=to+1
1
2 2\2
Jj=to+1
T+)0D  dal? 45,
—4
GXp( am 2(1_6) eXp 26_1)4ﬁ_1’}/1
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which concludes this case.
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5632 Casef=1
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Consider v < ﬁ, then v; < %'yj, and
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bringing all the pieces back together and substituting the corresponding bounds give the
result under the conditional probability . Taking the expectation over the distribution of
the observations gives the result in terms of E[c2(6})]. Since E[g(6}] = 0, we have
E[o2(60)] = E[||g(02)]1?] = 02(g(67)) and we get the final result.

O]






PART 111

Fast Learning Rates for
Graph Reconstruction

89







CHAPTER O
On Graph Reconstruction via Empirical Risk Minimization

Abstract The problem of predicting connections between a set of data points finds many
applications, in systems biology and social network analysis among others. This chapter
focuses on the graph reconstruction problem, where the prediction rule is obtained by mini-
mizing the average error over all n(n — 1)/2 possible pairs of the n nodes of a training graph.
Our first contribution is to derive learning rates of order O(logn/n) for this problem, signif-
icantly improving upon the rates of order O(1/+/n) established in the seminal work of Biau
& Bleakley (2006). Strikingly, these fast rates are universal, in contrast to similar results
known for other statistical learning problems (e.g., classification, density level set estimation,
ranking, clustering) which require strong assumptions on the distribution of the data. Moti-
vated by applications to large graphs, our second contribution deals with the computational
complexity of graph reconstruction. Specifically, we investigate to which extent the learning
rates can be preserved when replacing the empirical reconstruction risk by a computation-
ally cheaper Monte-Carlo version, obtained by sampling with replacement B < n? pairs of
nodes. Finally, we illustrate our theoretical results by numerical experiments on synthetic
and real graphs.

6.1 Introduction

Although statistical learning theory mainly focuses on establishing universal rate bounds (i.e.,
which hold for any distribution of the data) for the accuracy of a decision rule based on training
observations, refined concentration inequalities have recently helped understanding conditions
on the data distribution under which learning paradigms lead to faster rates. In binary classifi-
cation, i.e., the problem of learning to predict a random binary label Y € {—1,41} from on
an input random variable X based on independent copies (X1, Y1), ..., (X,,Y,) of the pair
(X,Y), rates faster than 1/,/n are achieved when little mass in the vicinity of 1/2 is assigned
by the distribution of the random variable n(X) = P{Y = 41 | X}. This condition and
its generalizations are referred to as the Mammen-Tsybakov noise conditions (see Mammen
et al., 1999; Tsybakov, 2004; Massart & Nédélec, 2006). It has been shown that a similar
phenomenon occurs for various other statistical learning problems. Indeed, specific conditions
under which fast rate results hold have been exhibited for density level set estimation (Rigollet
& Vert, 2009), (bipartite) ranking (Clémencon et al., 2008a; Clémencon & Robbiano, 2011;
Agarwal, 2014), clustering (Antos et al., 2005; Clémengon, 2014) and composite hypothesis
testing (Clémencon & Vayatis, 2010).

In this chapter, we consider the supervised learning problem on graphs referred to as graph
reconstruction, rigorously formulated by Biau & Bleakley (2006). The objective of graph
reconstruction is to predict the possible occurrence of connections between a set of object-
s/individuals known to form the nodes of an undirected graph. Precisely, each node is de-
scribed by a random vector X which defines a form of conditional preferential attachment:
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one predicts whether two nodes are connected based on their features X and X’. This statis-
tical learning problem is motivated by a variety of applications such as systems biology (e.g.,
inferring protein-protein interactions or metabolic networks, see Jansen et al., 2003; Kane-
hisa, 2001) and social network analysis (e.g., predicting future connections between users, see
Liben-Nowell & Kleinberg, 2003). It has recently been the subject of a good deal of atten-
tion in the machine learning literature (see Vert & Yamanishi, 2004; Biau & Bleakley, 2006;
Shaw et al., 2011), and is also known as supervised link prediction (Lichtenwalter et al., 2010;
Cukierski et al., 2011). The learning task is formulated as the minimization of a reconstruc-
tion risk, whose natural empirical version is the average prediction error over the n(n — 1)/2
pairs of nodes in a training graph of size n. Under standard complexity assumptions on the
set of candidate prediction rules, excess risk bounds of the order O(1/+/n) for the empirical
risk minimizers have been established by Biau & Bleakley (2006) based on a representation
of the objective functional very similar to the first Hoeffding decomposition for second-order
U -statistics (see Hoeffding, 1948). However, the computational complexity of finding an em-
pirical risk minimizer, which scales at least as O(n?) since the empirical graph reconstruction
risk involves summing up over n(n — 1)/2 terms was ignored. This makes the approach im-
practical when dealing with large graphs commonly found in many applications.

Building up on the above work, our contributions to statistical graph reconstruction are two-
fold:

Universal fast rates. We prove that a fast rate of order O(logn/n) is always achieved by em-
pirical reconstruction risk minimizers, in absence of any restrictive condition imposed on the
data distribution. This is much faster than the O(1/4/n) rate established by Biau & Bleakley
(2006). Our analysis is based on a different decomposition of the excess of reconstruction risk
of any decision rule candidate, involving the second Hoeffding representation of a U-statistic
approximating it, as well as appropriate maximal/concentration inequalities.

Scaling-up ERM. We investigate the performance of minimizers of computationally cheaper
Monte-Carlo estimates of the empirical reconstruction risk, built by averaging over B < n?
pairs of vertices drawn with replacement. The rate bounds we obtain highlight that B plays
the role of a tuning parameter to achieve an effective trade-off between statistical accuracy and
computational cost. Numerical results based on simulated graphs and real-world networks are
presented in order to support these theoretical findings.

The chapter is organized as follows. In Section 6.2, we present the probabilistic setting for
graph reconstruction and recall state-of-the-art results. Section 6.3 provides our fast rate bound
analysis, while Section 6.4 deals with the problem of scaling-up reconstruction risk minimiza-
tion to large graphs. Numerical experiments are displayed in Section 6.5, and a few concluding
remarks are collected in Section 6.6.

6.2 Background and Preliminaries

We start by describing at length the probabilistic framework we consider for statistical infer-
ence on graphs, as introduced by Biau & Bleakley (2006). We then briefly recall the related
theoretical results documented in the literature.
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6.2.1 A Probabilistic Setup for Preferential Attachment

In this chapter, G = (V, E) is an undirected random graph with aset V' = {1, ..., n} of
n > 2 vertices and aset E = {e;; : 1 <i# j < n} € {0,1}™"~1 describing its edges:
for all ¢ # j, we have e; ; = e;,; = +1 if the vertices ¢ and j are connected by an edge and
ejj = ej; = 0 otherwise. We assume that G is a Bernoulli graph, i.e. the random variables
eij» 1 <1i < j < n, are independent labels drawn from a Bernoulli distribution Ber(p) with
parameter p = P{e; ; = 41}, the probability that two vertices of G are connected by an edge.
The degree of each vertex is thus distributed as a binomial with parameters n and p, which can
be classically approximated by a Poisson distribution of parameter A > 0 in the limit of large
n, when np — A.

Whereas the marginal distribution of the graph G is that of a Bernoulli graph (also sometimes
abusively referred to as a random graph), a form of conditional preferential attachment is
also specified in the framework considered here. Precisely, we assume that, for all 7 € V, a
continuous r.v. X;, taking its values in a separable Banach space X, describes some features
related to vertex i. The X;’s are i.i.d. with common distribution p(dx) and, for any i # j,
the random pair (X;, X;) models some information useful for predicting the occurrence of
an edge connecting the vertices ¢ and j. Conditioned upon the features (X, ..., X,), any
binary variables e; ; and ey ; are independent only if {7, j} N {k,I} = (. The conditional
distribution of e; j, ¢ # 7, is supposed to depend on (X, X;) solely, described by the posterior
preferential attachment probability:

n(Xi, X;) =P{ei; =+1 ] (X;, X;)}. (6.1)

For instance, V(z1,22) € X2, n(z1,22) can be a certain function of a specific distance or
similarity measure between 1 and x, as in the synthetic graphs described in Section 6.5.

The conditional average degree of the vertex ¢ € V given X; (respectively, given
(X1, ooy Xp))isthus (n — 1) [\ n(X;, x)u(dz) (respectively, >4 1(Xi, Xj)). Ob-
serve incidentally that, equipped with these notations, p = |, (27 EX? n(x, 2" ) u(dz)p(dx').
Hence, the 3-tuples (X, X, em), 1 <4 < j < n, are non-i.i.d. copies of a generic random
vector (X1, X2, €1 2) whose distribution £ is given by the tensorial product p(dz1) @ pu(dxe)®
Ber(n(z1,x2)), which is fully described by the pair (i, 7). Observe also that the function 7
is symmetric by construction: V(z1, z2) € X2, n(z1, 22) = n(xe, 7).

In this framework, the learning problem introduced by Biau & Bleakley (2006), referred to as
graph reconstruction, consists in building a symmetric reconstruction rule g : X* — {0,1},
from a training graph G, with nearly minimum reconstruction risk

R(g) =P{g(X1,X2) # e12}, 6.2)

thus achieving a comparable performance to that of the Bayes rule g* (z1, x2) = I{n(x1, z2) >
1/2}, whose risk is given by R* = E[min{n(Xy, X3), 1 —n(Xy,Xs)}] = inf; R(g).
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6.2.2 Related Results on Empirical Risk Minimization

Based on the labeled sample D,, = {(X;, Xj,e;;) : 1 < i < j < n} related to G, (6.2) is

replaced by its empirical version':

> T{g(Xi, X)) # eij}- (6.3)

1<i<j<n

We denote by g,,, an empirical risk minimizer g,, i.e a solution of the optimization problem
mingeg ﬁn (g9), where G is a class of reconstruction rules of controlled complexity, hopefully
rich enough to yield a small bias inf,eg R(g) — R*. The performance of g, is measured
by its excess risk R(gn) — infyeg R(g), which can be bounded if we can derive probability
inequalities for the maximal deviation

sup [Rn(g) — R(g)|- (6.4)
geg

In the framework of classification, the flagship problem of statistical learning theory, the em-
pirical risk is of the form of an average of i.i.d. r.v.’s, so that results pertaining to empirical
process theory can be readily used to obtain bounds for the performance of empirical error
minimization. Unfortunately, the empirical risk (6.3) is a sum of dependent variables. Fol-
lowing in the footsteps of Clémencon et al. (2008a), the work of Biau & Bleakley (2006)
circumvents this difficulty by means of a representation of ﬁn (g) as an average of sums of
ii.d. r.v.’s, namely

3]
1 1
n! 0626: [n/2] ;H{Q(Xa(ng(ng)) # €o(i)o(i+]2)) )

where the sum is taken over all permutations of &,,, the symmetric group of order n, and ||
denotes the integer part of any v € R. Very similar to the first Hoeffding decomposition for
U -statistics (see Lee, 1990b), this representation reduces the first order analysis of the concen-
tration properties of (6.4) to the study of a basic empirical process (see Biau & Bleakley, 2006,
Lemma 3.1). Biau & Bleakley (2006) thereby establish rate bounds of the order O(1/+/n) for
the excess of reconstruction risk of g,, under appropriate complexity assumptions (namely, G
is of finite VC-dimension). Note incidentally that (6.3) is a U-statistic only when the variable
n(X1, X2) is almost-surely constant (see Janson & Nowicki, 1991, for an asymptotic study of
graph reconstruction in this restrictive context).

We finally point out that instead of estimating the reconstruction risk by R, (g), one could split
the training dataset into two halves and consider the unbiased estimate of R(g) given by

[n/2]

W Z_; ]I{g(Xz‘,XHLn/zJ) # 6,-7,‘4_@/2]}. (6.5)

Since only independent r.v.’s are involved in the sum (6.5), the analysis of its generalization
ability is much simpler. In particular, fast rates can be obtained under the following classical
noise condition (see Tsybakov, 2004; Boucheron et al., 2005¢; Massart & Nédélec, 2000).

'A classical Lehmann-Scheffé argument shows that (6.3) is the estimator of (6.2) with smallest variance among
all unbiased estimators.
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Assumption 8. There exists § > 0 and o € [0, 1] such that for all £ > 0:

P (‘H(XLX?) - ;’ < t) < po/a-o),

One can then show that minimizers of (6.5) achieve a learning rate of order O((lo%)l/ (2=a)y,
We make the following observations:

e Assumption 8 is always satisfied for @ = 0 and corresponds to the classical learning rate
of O(4/log(n)/n) obtained by Biau & Bleakley (2006).

e Fast learning rates of the same order as the one we obtained for the minimizer of ﬁn( 9)
are achieved if and only if Assumption 8 is satisfied with o = 1. This corresponds to
the case where the posterior preferential attachment probability 7 stays bounded away
from 1/2 with probability one (¢f Massart & Nédélec, 2006).

In fact, the assumption o = 1 is very restrictive. We illustrate this using the following toy
example. Let Ny € N*. For each node 1 < ¢ < n, we observe X; = (XZ»I, Xf), where
X} and X? are two distinct elements uniformly drawn from P({1, ..., No}). Consider now
the case where two nodes are likely to be connected if they share common preferences, say
eij ~ Ber(#(X;NX;)/#(X;UX;)). One can easily check that P(|n(X1, X2)—3| = 0) > 0,
so fast learning rates cannot be obtained for minimizers of (6.5). In contrast, the fast rates of
Theorem 6.1 always hold for minimizers of R (g), as shall be seen in next section.

6.3 Empirical Reconstruction is Always Fast!

In this section, we show that the rate bounds established by Biau & Bleakley (2006) can be
largely improved without any additional assumptions. Precisely, we prove that fast learning
rates of order O(log n/n) are always attained by the minimizers of the empirical reconstruction
risk (6.3), as revealed by the following theorem. For simplicity, our results are stated for the
case of the classic 0-1 loss I{g(X;, X;) # e;;}, but we point out that the same arguments
directly apply to other loss functions (see Section 5.4 of Boucheron et al., 2005b, for instance).
This includes the following two practical examples:

e In order to solve the ERM problem with efficient optimization methods (e.g. gradient-
based), one typically considers a convex surrogate of the 0-1 loss (e.g., hinge loss, lo-
gistic loss), as done in our experiments.

e Real-world networks can be very sparse (i.e., they have very few edges), leading to a
highly imbalanced prediction problem. One may then consider a weighted loss in order
to assign a higher cost to errors on edges than to errors on non-edges.

We now state our main theorem:

Theorem 6.1. (FAST RATES) Let g, be any minimizer of the empirical reconstruction risk
(6.3) over a class G of finite VC-dimension V < +o00. Forall 6 € (0,1), we have w.p. at least
1—46:Vn>2,

1
R(Gn) —R* <2 <inf R(g) — R> Lo x Vlos(n/o)
9€g n
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where C' < 400 is a universal constant.*

Remark 6.2. (ON THE BIAS TERM) Apart from its remarkable universality, Theorem 6.1 takes
the same form as in the case of empirical minimization of U-statistics (Clémencon et al.,
2008a, Corollary 6), with the same constant 2 in front of the bias term inf,cg R(g) — R*. As
can be seen from the proof, this constant has no special meaning and can be replaced by any
constant strictly larger than 1 at the cost of increasing the constant C'. Note that the O(1//n)
rate obtained by Biau & Bleakley (2006) has a factor 1 in front of the bias term. Therefore,
Theorem 6.1 provides a significant improvement unless the bias overly dominates the second
term of the bound (i.e., the complexity of G is too small).

Remark 6.3. (ON COMPLEXITY ASSUMPTIONS) We point out that a similar result can be
established under weaker complexity assumptions involving Rademacher averages . As may
be seen by carefully examining the proof of Theorem 6.1, this would require to use the moment
inequality for degenerate U-processes stated in (Clémencgon et al., 2008a, Theorem 11) instead
of that proved by Arcones & Giné (1994).

In the rest of this section, we outline the main ideas used to obtain this result. We rely on some
arguments used in the fast rate analysis for empirical minimization of U-statistics (Clémencon
et al., 2008a), although these results only hold true under restrictive distributional assumptions.
Whereas the quantity (6.3) is not a U-statistic, one may decompose the difference between the
excess of reconstruction risk of any candidate rule g € G and its empirical counterpart as the
sum of its conditional expectation given the X;’s, which is a U-statistic, plus a residual term.
In order to explain the main argument underlying the present analysis, additional notation is
required. Set

Hy(x1,29,e12) = {g(x1,22) # e12}
qg(x1,72,€12) = Hy(x1,72,€12) — Hye (21, 72, €1,2)
for any (z1,x2,e12) € X x X x {0,1}. Denoting by A(g) = R(g) — R* =

E[gy(X1, X2, €1 2)] the excess reconstruction risk with respect to the Bayes rule, its empir-
ical estimate is given by

An(g) = Rn(g) — Ru(g") = =1 Z q9(Xi, Xj, €i5)-
1<i<j<n
For all g € G, one may write:
An(9) = Alg) = Un(g) + Walg), (6.6)
where
2 ~
Un(9) =E[An(g) —A(g) | Xa, ..., Xi] = m Z q9(Xi, X;5) — A(g)
1<i<j<n

is a U-statistic of degree 2 with symmetric kernel g,(X;,X2) — A(g), where we denote
Gg(X1,X2) = Elgy(X1, X2, e12) | X1, Xo], and Wi(g) = ptgy 2ici{dg(Xi, Xj €15) —
Equipped with this notation, we can now sketch the main steps of the proof of the fast rate

bound stated in Theorem 6.1. It is based on Eq. (6.6) combined with two intermediary results,
each providing a control of one of the terms involved in it. The second order analysis carried

Note that, throughout the chapter, the constant C' is not necessarily the same at each appearance.
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out by Clémencon et al. (2008a) shows that the small variance property of U-statistics may
yield fast learning rates for empirical risk minimizers when U-statistics are used to estimate
the risk, under a certain “low-noise” condition. One of our main findings is that this condition
is always fulfilled for the specific U-statistic U, (g) involved in the decomposition (6.6) of the
excess of reconstruction risk of any rule candidate g, as shown by the following lemma.

Lemma 6.4. (VARIANCE CONTROL) For any distribution L and any reconstruction rule g,
we have

Var (E [qq(X1, X2, e1.2) | X1]) < A(g).

The fundamental reason for the universal character of this result lies in the fact that the em-
pirical reconstruction risk is not an average over all pairs (i.e., a U-statistic of order 2) but an
average over randomly selected pairs (random selection being ruled by the function 7). The
resulting smoothness is the key ingredient allowing us to establish the desired property.

Empirical reconstruction risk minimization over a class G being equivalent to minimization of
An(g) — A(g), the result below, combined with (6.6), proves that it also boils down to mini-
mizing U, (g) under appropriate conditions on G, so that the fast rate analysis of Clémencon
et al. (2008a) can be extended to graph reconstruction.

Lemma 6.5. (UNIFORM APPROXIMATION) Under the same assumptions as in Theorem 6.1,
forany 6 € (0,1), we have with probability larger than 1 — §: ¥n > 2,

" Vlogn(n/é)

I

sup Wn(g)‘ <C
geg

where C' < 400 is a universal constant.

The proof relies on classical symmetrization and randomization tricks combined with the de-
coupling method, in order to cope with the dependence structure of the variables and apply
maximal/concentration inequalities for sums of independent random variables (see De la Pena
& Giné, 1999).

Based on the above results, Theorem 6.1 can then be derived by relying on the second Ho-
effding decomposition (see Hoeffding, 1948). This allows us to write U, (g) as a leading
term taking the form of a sum of i.i.d r.v.s with variance 4V ar(E[q,(X1, X2, e12) | X1]),
plus a degenerate U-statistic (i.e., a U-statistic of symmetric kernel h(xj,x2) such that
E[h(x1,X2)] = 0 for all x; € X). The latter can be shown to be of order O(1/n) uniformly
over the class G by means of concentration results for degenerate U-processes.

6.4 Scaling-up Empirical Risk Minimization

The results of the previous section, as well as those of Biau & Bleakley (2096), characterize
the excess risk achieved by minimizers of the empirical reconstruction risk R,,(g) but do not
consider the computational complexity of finding such minimizers. For large training graphs,
the complexity of merely computing ﬁn(g) is prohibitive as the number of terms involved in
the summation is O(n?). In this section, we introduce a sampling-based approach to build
approximations of the reconstruction risk with much fewer terms than O(n?), so as to scale-up
risk minimization to large graphs.

The strategy we propose, inspired from the notion of incomplete U -statistic (see Lee, 1990b),
is of disarming simplicity: instead of the empirical reconstruction risk (6.3), we will consider
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an incomplete approximation obtained by sampling pairs of vertices (and not vertices) with
replacement. Formally, we define the incomplete graph reconstruction risk based on B > 1
pairs of vertices as

Rolo) =5 S (X0 X)) # eig) 67

where Pp is a set of cardinality B built by sampling with replacement in the set ©,, = {(i, j) :
1 <4 < j < n} of all pairs of vertices of the training graph G. For any b € {1, ..., B}
and all (i,7) € ©,, denote by €(i, j) the variable indicating whether the pair (7, j) has been
picked at the b-th draw (ep(4,j) = +1) or not (e,(i, 7) = +0). The (multinomial) random
vectors €, = (€(i,)) (i j)co, areiid. (notice that 3 . » o €(i,j) = +1forl <b < B)
and the incomplete risk can be then rewritten as

B
Z > eliyg) T{g(Xi, X;) # iy} (6.8)

1(4,7)€0n

Observe that the statistic (6.7) is an unbiased estimate of the true risk (6.2) and that, given the
X;’s, its conditional expectation is equal to (6.3). Considering (6.7) with B = 0(712) as our
empirical risk estimate significantly reduces the computational cost, at the price of a slightly
increased variance:

Var (7%3(9)) = Var (ﬁn(g)> + % (Var (7/@1(9)) — Var (ﬁn(g))> )

for any reconstruction rule g. Note in particular that the above variance is smaller than that of
the complete reconstruction risk based on a subsample of |v/B | vertices drawn at random (thus
involving O(B) pairs as well). To characterize Var(Rp(g)), we need to derive an explicit
expression for Var(R,(g)). This is done by relying on the second Hoeffding decomposition
(see Hoeffding, 1948) of ﬁn(g) For all 1 < i < j < mn, let us define

o K1(X;)=E[[{g(X1,X;) # e1,:}Xil,
o Ko(Xi, Xj) = R(g) — K1(Xi) — K1(Xj) + E[[{g(Xy, Xj) # eij }HXi, Xy,
o K3(Xi, Xj,e5) =H{g(Xi, Xj) # eij} — E[l{g(Xs, Xj) # eij} Xi, Xjl.

We have the following “orthogonal” decomposition:

Rnlg)— ZKl (n 5 > Ko(Xi, Xj)+ ZKg Xi, Xj, i)

1<j l<j

Introducing the following variance terms:

Var(
ar(

K> (X1, X2)),
K3(X1,X2,e12)),

o3
o3

one easily gets
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Substituting the expression of Var(R,,(g)) gives

Var (Rs(9)) =0 <max (; i)) |

This shows that if B = O(n), Var(Rz (g)) is of the same order as Var(R,(g)) while R(g)
is computationally much cheaper than R, (g) as it consists of only O(n) terms. In contrast
to (6.7), the estimator obtained by sampling m nodes has a larger variance: it is equal to
Var(Ryn(g)), which is of order 1/m = O(1/v/B). We are thus interested in characterizing
the performance of solutions gp to the computationally simpler problem mingcg Rz (g). The
following theorem shows that, when the class G is of finite VC-dimension, the concentration
properties of the incomplete reconstruction risk process {Rp(g)}4eg can be deduced from
those of the complete version {R,,(g) }geg-

Theorem 6.6. (UNIFORM DEVIATIONS) Suppose that the class G is of finite VC-dimension
V < +o0. Forall§ > 0,n > 1and B > 1, we have with probability at least 1 — §:,

\/logQ + Viog ((1+n(n—1)/2)/0)
2B

sup |Rp(g) — Ra(g)| <
geg

The finite VC-dimension hypothesis can be relaxed and a bound of the same order can be
proved to hold true under weaker complexity assumptions involving Rademacher averages (see
Remark 6.3). Remarkably, with only B = O(n) pairs, the rate in Theorem 6.6 is of the same
order (up to a log factor) as that obtained by Biau & Bleakley (2006) for the maximal deviation
SUp,eg 1Rn(g) — R(g)| related to the complete reconstruction risk Ry, (g) with O(n?) pairs.
From Theorem 6.6, one can get a learning rate of order O(1/4/n) for the minimizer of the
incomplete risk involving only O(n) pairs.

Unfortunately, such an analysis does not exploit the relationship between conditional variance
and expectation formulated in Lemma 6.4, and is thus not sufficient to show that reconstruction
rules minimizing the incomplete risk (6.7) can achieve learning rates comparable to those
stated in Theorem 6.1. In contrast, the next theorem provides sharper statistical guarantees.

Theorem 6.7. Let g be any minimizer of the incomplete reconstruction risk (6.7) over a class
G of finite VC-dimension V- < +o0. Then, for all 6 € (0, 1), we have with probability at least
1—-96:Vn>2,

R(ip) — R* <2 (;25 R(g) R) + OV log(n/6) x (:L 4 \/15) ,

where C' < +00 is a universal constant.

This bound reveals that the number B > 1 of pairs of vertices plays the role of a tuning pa-
rameter, ruling a trade-off between statistical accuracy (taking B(n) = O(n?) fully preserves
the convergence rate) and computational complexity. This will be confirmed numerically in
Section 6.5.

The above results can be extended to other sampling techniques, such as Bernoulli sampling
and sampling without replacement.
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6.4.1 Extensions to Alternative Sampling Schemes

Although the Monte-Carlo scheme previously described is very appealing from a compu-
tational perspective, In this section, we show that the results of the previous section can
be extended to other sampling techniques, such as Bernoulli sampling and sampling with-
out replacement. Borrowing the terminology of survey theory, the (finite) population un-
der study is the collection ©,, of all pairs of vertices of the graph G. Its cardinality is
#0,, = n(n — 1)/2. In this context, a survey sample is any subset S of ©,, with (possi-
bly random) cardinality m < n(n — 1)/2, referred to as its size. A survey scheme with-
out replacement is thus any conditional probability distribution D on the power set of ©,,
P(Oy), given the data D,, = {(X;,Xj,e;;) : (4,7) € ©n}. The probability that the
pair (i,7) € O, belongs to the sample S drawn from D, conditioned upon D,,, is denoted
by 75 = Pp{(i,j) € S} and termed a first order inclusion probability. The quantities
Tk = Po{((i,5), (k1)) € S?}, for (i, ) # (k,1), are referred to as second order in-
clusion probabilities. Equipped with these notations, the Horvitz-Thompson version (Horvitz
& Thompson, 1951) of the empirical reconstruction risk of a rule ¢ € G based on a sample
S ~ D is then given by:

~ 2 €
RP)(g) = nn—1) Z #H{Q(Xqu) # €ijts (6.9)
(i.j)en ="

where €; ; = I{(4,j) € S} forall (i,j) € ©, and 0/0 = 0 by convention. Provided that the
7,5 s are all strictly positive, (6.9) is an unbiased estimate of (6.3) and, when the size B <
n(n — 1)/2 of the survey scheme is deterministic, its condmonal variance given the tralnmg

graph is Var(R(P)(g) | Dy) = 4/(n(n — 1))* X 35 2k 0F; i) (k) Where of oy i
given by

( W(z] oo X (”(ivj),(k,l) T ')W(k,l))

i) T(k,D)

for all (i, 7) # (k,1). Two specific sampling techniques can naturally be considered.

Bernoulli sampling. Let B < n(n — 1)/2. This sampling plan corresponds to the situation
where the €(; ;y’s are i.i.d. Bernoulli r.v’s with parameter 25B/(n(n — 1)). In this case, the
(random) size is a binomial variable of size n(n — 1) /2 with B as expected value. Incidentally,
we mention that Bernoulli sampling is a particular case of Poisson sampling (relaxing the
assumption that the ¢; ;’s are identically distributed), widely used for the purpose of graph
sparsification (see e.g. Spielman, 2005, Section 6).

Sampling without replacement (SWOR). Fixing in advance B < n(n — 1)/2, one may
uniformly draw a sample .S among all samples of size B (there are (”(”]_91)/ 2) such samples).
In this case, we have 7(; ;) = 2B/(n(n—1)) and 7(; ) k) = 4B(B—1)/(n(n— 1)2(n—2))
for all (i,75) # (k,l) in ©,,. This is a special case of rejective sampling, corresponding to the
situations where the 7(; ;)’s are all equal.

The following proposition reveals that, just like (6.7), the Horvitz-Thompson reconstruction
risk (6.9), when based on SWOR or Bernoulli schemes, estimates the empirical reconstruction
risk of rules in G uniformly well (provided that G is of finite VC dimension).

Proposition 6.8. (UNIFORM DEVIATIONS) Suppose that G is of finite VC dimension V <
+oo. Forall § € (0,1), we have with probability larger than 1 — 6: foralln > 1, B <
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nin—1)/2,

~

_ 21og (2(1+n(n5—1)/2)v)
sup [R™®)(g) — Ru(g)| < e :
geg

if D is a Bernoulli plan of expected size B < n(n — 1)/2,

_ R 2log (2(1+n(n6—1)/2)v) 2log (2(1+n(n5—1)/2)v>
sup [R™)(g) = Ru(g)| < +

geg B B ’

when D is a SWOR plan of size B < n(n —1)/2.

Performance of minimizer of (6.9) are given by the following proposition.

Proposition 6.9. Let @JE be any minimizer of (6.9) over a class G of finite VC-dimension
V' < 400. When D is a Bernoulli plan or a SWOR plan of size B, then, for all § € (0,1), we
have with probability at least 1 — 6: ¥Yn > 2,

R(FB) -~ R* <2 (;Ielg R(g) R) + OV log(n/6) x (Tll + \/%) ,

where C' < 400 is a universal constant.

6.5 Numerical Experiments

In this section, we present some numerical experiments on large-scale graph reconstruction
to illustrate the practical relevance of the idea of incomplete risk introduced in Section 6.4.
Following a well-established line of work (Vert & Yamanishi, 2004; Vert et al., 2007; Shaw
et al., 2011), we formulate graph reconstruction as a distance metric learning problem (Bellet
et al., 2015): we learn a distance function such that we predict an edge between two nodes
if the distance between their features is smaller than some threshold. Assuming X' C RY, let
Si be the cone of symmetric PSD ¢ x ¢ real-valued matrices. The reconstruction rules we
consider are parametrized by M € S‘i and have the form

gm(x1,x2) = 1{Dp(z1,22) < 1},

where Dy (z1,22) = (z1—x2)T M (21 —12) is a (pseudo) distance equivalent to the Euclidean
distance after a linear transformation L € R?%%, with M = LT L. Note that g/ (21, z2) can be
seen as a linear separator operating on the pairwise representation vec((x1 —x2) (71 —x5)7) €
R%, hence the class of learning rules we consider has VC-dimension bounded by ¢ + 1. We
define the reconstruction risk as:

=~ 2

Snlgm) = m Z[(Qei,j — D(Du (X, X5) = D)1,

i<j

where [-]; = max(0, -) is a convex surrogate for the 0-1 loss. In earlier work, ERM has only
been applied to graphs with at most a few hundred or thousand nodes due to scalability issues.
Thanks to our results, we are able to scale it up to much larger networks by sampling pairs
of nodes and solve the resulting simpler optimization problem. In all experiments, we used
the generic convex optimization method Adagrad (implemented in Python) and stopped the
optimization when the training error had not been improving for the last 10 epochs.
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(a) True graph (b) Graph with scrambled features (c) Reconstructed graph

FIGURE 6.1: Illustrative experiment with n = 50, ¢ = 2, 7 = 0.27 and p = 0. Figure 6.1(a)
shows the training graph, where the position of each node is given by its 2D feature vector.
Figure 6.1(b) depicts the same graph after applying a random transformation R to the features.
On this graph, the Euclidean distance with optimal threshold achieves a reconstruction error
of 0.1311. In contrast, the reconstruction rule learned from B = 100 pairs of nodes (out
of 1225 possible pairs) successfully inverts R and accurately recovers the original graph
(Figure 6.1(c)). Its reconstruction error is 0.008 on the training graph and 0.009 on a held-out
graph generated with the same parameters.

TABLE 6.1: Results (averaged over 10 runs) on synthetic graph with n = 1,000, 000, ¢ =
100, p = 0.05.

B=00ln B=01n B=n B=5n B=10n

Reconstruction error 0.2272 0.1543 0.1276  0.1185 0.1159
Relative improvement - 32% 17% 7% 2%
Training time (seconds) 21 398 5,705 20,815 42,574

6.5.1 Synthetic Graph

We create a synthetic graph with n nodes as follows. Each node i has features X"“¢ € RY
sampled uniformly over [0,1]. We then add an edge between nodes that are at Euclidean
distance smaller than some threshold 7, and introduce some noise by flipping the value of e; ;
for each pair of nodes (i, j) independently with probability p. We then apply a random linear
transformation R € R9*9 to each node to generate a “scrambled” version X; = RX!"¢ of the
nodes’ features. The learning algorithm is only allowed to observe the scrambled features and
must find a rule which accurately recovers the graph by solving the ERM problem above. Note
that, denoting D;; = ||R~'X; — R™1X}||2, the posterior preferential attachment probability
is given by
n(Xi, Xj) =1 —p)- KDy <7} +p-HDy > 7}

The process is illustrated in Figure 6.1. Using this procedure, we generate a training graph
with n = 1,000,000 and ¢ = 100. We set the threshold 7 such that there is an edge between
about 20% of the node pairs, and set p = 0.05. We also generate a test graph using the same
parameters. We then sample uniformly with replacement B pairs of nodes from the training
graph to construct our incomplete reconstruction risk. The reconstruction error of the resulting
empirical risk minimizer is estimated on 1,000,000 pairs of nodes drawn from the test graph.
Table 6.1 shows the test error (averaged over 10 runs) as well as the training time for several
values of B. Consistently with our theoretical findings, B implements a trade-off between
statistical accuracy and computational cost. For this dataset, sampling B = 5, 000, 000 pairs
(out of 10'? possible pairs!) is sufficient to find an accurate reconstruction rule. A larger B
would result in increased training time for negligible gains in reconstruction error.
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TABLE 6.2: Reconstruction error on synthetic graph with parameters n = 1,000, 000, ¢ =

100, p = 0.05.

B=00In B=01n B=n B=5n B=10n
Sampling nodes 0.2552 0.1847 0.1411  0.1279 0.1233
Sampling pairs of nodes 0.2272 0.1543 0.1276  0.1185 0.1159

We also compare the above scheme with an alternative strategy based on sampling nodes.
Specifically, we randomly sample m nodes and use the reconstruction risk evaluated on the re-
sulting sub-graph as an approximation to the risk on the full graph. To allow a fair comparison,
we set m such that B ~ m(m — 1)/2 in order to get approximately the same computational
complexity for both approaches. Table 6.2 compares the reconstruction error of both strategies
for various values of B, averaged over 10 runs. Sampling nodes leads to significantly larger
error than sampling pairs, as it only leverages information from a subset of training nodes.
We have noticed experimentally that the error gap between these two strategies widens as the

complexity of the class of reconstruction rules gets larger (for instance, if we increase the data
dimension q).

Figure 6.2 summarizes these results by displaying both the test error and the training time
with respect to the number of terms in the risk estimate. For completeness, we also show the

performance of the “dataset splitting” strategy (see Eq. 7 of the main text). It exhibits a good
statistical/runtime trade-off but leads to suboptimal test error.

0.20

: : 45000
== Sampling nodes | « = Training time
= Sampling pairs of nodes 140000
B Dataset splitting
0.18 . {35000
1
' {30000
5 016 | : g
c ' 125000 S
Q ] )
- . o 2
0 S {20000
F 0.14} £
{15000
0.12l 110000
15000
0.0k ‘ 0
10K 1M 5M 10M

Number of terms in risk estimate

FIGURE 6.2: Summary of results on the synthetic graph.

6.5.2 Real Network

Finally, we also validate our approach on Cit-HepTh, the high-energy physics theory citation
network extracted from arXiv.> The graph has 27,770 nodes representing research chapters and

*http://snap.stanford.edu/data/cit-HepTh.html
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TABLE 6.3: Reconstruction error (averaged over 10 runs) on the Cit-HepTh graph.

B=10K B=100K B=1M B=5M

Balanced reconstruction error 0.3080 0.2629 0.2484 0.2464
Relative improvement - 15% 6% <1%
Training time (seconds) 418 1,675 4,481 18,895

352,807 edges corresponding to a citation between two papers. We generate simple features
based on the paper abstracts as follows. We first remove stop words and those with less than
4 characters, then apply a tokenizer and stemmer from the NLTK library* and keep only the
300 most frequent words among all abstracts. Finally, we build a 300-dimensional bag-of-
words feature vector for each paper by counting the number of occurrences of these words
in its abstract and applying an L;-norm normalization. We randomly split the nodes into a
training set (80%) and a test set (20%). Note that the graph is very sparse: there is an edge
between about 0.1% of the node pairs. Since classification error is not meaningful in such an
imbalanced regime, we optimize a balanced error rate by sampling active edges with higher
probability (this is equivalent to optimizing a weighted version of the reconstruction risk, see
the remark at the beginning of Section 6.7). Note that the Euclidean distance (with threshold
tuned on the training set) achieves a balanced test error of about 0.37.

Table 6.3 shows the balanced test error (averaged over 10 runs) as well as the training time
for several values of B. Despite the higher dimensional and sparse nature of the features,
we are able to significantly improve over the Euclidean baseline using few training pairs.
Furthermore, sampling B = 1M pairs is sufficient to get very close to the best performance:
going from 1M to 5M pairs brings less than 1% relative improvement in test error at the
expense of a 4 times increase in training time.

6.6 Conclusion

In this chapter, we proved that the learning rates for ERM in the graph reconstruction problem
are always of order O(logn/n). We also showed how sampling schemes applied to the pop-
ulation of edges (not nodes) can be used to scale-up such ERM-based predictive methods to
very large graphs by means of a detailed rate bound analysis, further supported by empirical
results. A first possible extension of this work would naturally consist in considering more
general sampling designs, such as Poisson sampling (which generalizes Bernoulli sampling)
used in graph sparsification (cf Spielman, 2005), and investigating the properties of minimiz-
ers of Horvitz-Thompson versions of the reconstruction risk (see Horvitz & Thompson, 1951).
Another challenging line of future research is to extend the results of this chapter to more
complex unconditional graph structures in order to account for properties shared by some real-
world graphs (e.g., graphs with a power law degree distribution).

*nttp://www.nltk.org
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6.7 Technical Proofs

6.7.1 Proof of Lemma 6.4

For any reconstruction rule g, observe first that with probability one:

Elgy(X1,X2,e12) | X1] = E[E[gy(X1,X2,e12) | X1, Xo] | X4]
Ex,[|1 — 2n(X1, X2)[[{g(X1, X2) # g" (X1, X2)}]]

Observing that we have
1= 20(X1, Xa)” < [1 - 25(X1, Xo)]
almost surely, and combining with Jensen inequality, we have

Ex, [(Ex, (|1 — 2n(X1, X2)|{g(X1,X2) # ¢"(X1,X2)}])’]
E[]1 - 2n(Xy, X2)|I{g(X1, X2) # g" (X1, X2)}]
A(g).

Var(Elgy(X1,X2,e12) | Xq]) <
<

6.7.2 Proof of Lemma 6.5

By definition, for all g, we have: Vn > 2,

A”n(g)* 2 E {Qg(;(h;(ﬁei,j) (’]vg(liulij)}
n(n —1)
1<j

The proof relies on the key property: for all ¢ £ j,
Elgg(Xs, Xj, €i,5) — qg(Xi, X5)|1Xi] = Elqg(Xi, Xj, €q5) — 4o(Xi, X;)|X;5] =0

almost surely. This basically implies that the process {/Wn (9)}geg "behaves" as a second
order Rademacher Chaos. Mimicking the techniques introduced in De la Pena & Giné (1999),
this can be deduced from the following two technical lemmas, which we prove separately in
Section 6.7.3 and Section 6.7.4 for clarity.

Lemma 6.10. (DECOUPLING) Let (X!)"_, be an independent copy of the sequence (X;)?_;.
Consider r.v.s valued in {0, 1}, {€; ;,1 < j}, conditionally independent given the X;’s and the
X7’s and such that P(é; ; = 1|X;, X§) = n(X;, X}). Then, for all ¢ > 1, we have:

Efsup | Y qq(Xi, Xj, €55) — Gy (Xi, X;)|9] < 4%Blsup | Y~ q0(Xs, X, 655) — Go(Xi, X)[).
9€9 i 9€9 i<

Thanks to the decoupling argument above, one can next introduce the following randomiza-
tion.

Lemma 6.11. Let (0;)!" , and (0})}_, be two independent sequences of i.i.d. Rademacher
variables, independent from the (X;, X/, €; j, €; ;)’s. Then, for all ¢ > 1, we have:

Efsup | Y ag(Xi, X, &) —do(Xi, X))|7] < 4%Efsup | Y 0307 (q9(Xi, XF, &1.5) = (X, X)))|)-
99 gy 99 gy
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Consider the conditional Rademacher average

Eq o SUP|ZUz Qg (Xi, X ez]) q~g(Xi>X]/‘))|q]»
9€g 1<J

where E, . denotes the expectation taken w.r.t. the (o;,07})’s. Following Clémencon et al.
(2008a), we can derive an exponential inequality using Markov’s inequality and show that,
w.p. at least 1 — 9,

Vlog(n/d) '

n

Sup|ZUZU h Xianl‘aéiJ)‘ <O x
geg i<j

6.7.3 Proof of Lemma 6.10

For any random variable £, we denote by £(¢) its distribution. Let (X/)? ; be an independent
copy of (X;), and F (respectively F') be the sigma-field generated by { X1, ..., X, } (re-
spectively { X1, ..., X }). Let {ez p1<i<j< n} be Bernoulli random variables such that
P(e; ; = 1|F, F') = n(X}, X}) (i.e, the conditional distribution of ¢; ; depends on (X, X7)
only). As in De la Pena & Giné (1999), let (0;);"_; be independent Rademacher variables and
define:

Z; = X; if 0; = 1 and X/ otherwise,
Z! = X[ if 0, = 1 and X otherwise.

Conditionally upon the X; and X/, the random vector (Z;, Z!) takes the values (X;, X/) or
(X/, X;), each with probability 1/2. In particular, we have (see De la Pena & Giné, 1999):

LOX1, i X, X XY = L(Z4s oy Do, 24y ZL). (6.10)

Let {€;;,1 <i<j<n} be Bernoulli random variables such that P(¢;; = 1|F,F') =
1(Xi, X}) and define for i < j:

€ij lfO'l =1 and 05 = -1

) e;j ifo,=—lando; =1
€ij=9." .
€ ifo;=1lando; =1

éjﬁ' ifai = —1and O‘j =1.
We also recall the following notations:

Hy(xz1,29,e12) = I{g(z1,22) # e12},
qg(x1,20,e12) = Hy(x1,22,e12) — Hy<(x1,22,€1,2)
0g(X1,X2) = Elgg(X1, X2,e12)[X1, X2

Let izg = g4 — ¢4 and notice that for all 7 < j:

. R 1/- . o }
Eolhe(Zi, Z5, é15)] = Z(hg(Xqu»@i,j)Jrh (X7, X], €. 1) +hg (Xi’XJ/"eivj)—i_hg(Xz(?Xj’ej,i))?
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where E, denotes the expectation taken with respect to o1, ..., 0,. Moreover, using

Elhg (X7, X}, € ;)| F] = Elhg(X], X, ] ;)] = 0

and
[ﬁ (X, X ez])‘}"] [Qg(XzaX €i5)1 Xl — [E[QQ(XMX e”)|X1,X’]|X]
we easily get R R
hg(Xi, X, €i ) = 4E[hy(Zi, Z5, é; 4)]| F].
For all ¢ > 1, we therefore have:

sup\Zh (Xi, Xj, €))7 < 4quup\Zh (Zi, Z}, éi,4)|7].
9€9 i 9€9 i<

We now use (6.10) combined with the fact that by construction, the law of é; ; only depends
on the realizations Z;, 77, i.e., P(é; j = 1|Z;, Z}) = n(Z;, Z7), to obtain

Efsup | > hg(Zi, Zj,6.5)|") = Elsup | > he(Xs, Xj, & 5)|7),
gEg l<] geg Z<]

which concludes the proof.

6.7.4 Proof of Lemma 6.11

In this section, we find it more convenient to work with sums over {1 < i # j < n} than sums
over {1 <i < j < n}, so that for i < j and any random variables ajj, We set aj; = ajj.
Using the symmetry of our problem we have:

21E[sup | Y hy(Xi, X}, &) supyzh (X, X7 €5)],
9€9 1<j i#£j

where Bg is defined as in Section 6.7.3. Re-using the notations used in Section 6.7.3, we
further introduce (X!")"_,, a copy of (X/)",, independent from F, 7', and denote by F”

1
Z j )
UF, F',F") = n(X;, X]). We now use classical randomization techniques and introduce
our “ghost” sample:

its sigma-field. Let { 1<i<)< n} Bernoulli random variables such that P(é! €, =

Elsup | Y hg(Xi, X},&,)Y = Elsup| Y hy(Xs, X}, 65) — Epn[hg(Xi, X7, & )]
9€9 i#£] 9€9 i#£]

q

< sup ZZh (Xi, X, 6i5) — he(Xi, XJ 1))
g€y J=1 itj
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where Ez» denotes expectation with respect to the (X/)" ;. Let (0;)!"; be independent

Rademacher variables, independent of F, " and F”, then we have:

Sup|ZZh (Xi, X, 615) — he(Xi, X[ & )| 7F]

9€9 i3 iz
sup|ZJ]Zh (Xi, X, €15) — ho(Xi, XJ €] 1)|7|F]
Jj=1 i#j
< 27E Sup]ZUJZh (Xi, X}, &.5) |9 F],
J=1 i#j
and get:

sup\Zh (Xi, X5, €i.5)|7] 2quup\ZJ]Zh (Xi, X5, €i.5)]7].

9SG iz J=1 g

We now repeat the same argument but for the (X;)? ;. Let (X/”)"_, be a copy of (X;)!" ;, in-

dependent of 7, 7', and denote by F" its sigma-field. Let {” "1<i<j< n} be Bernoulli
random variables such that P(€] ; = 1|F, 7', F"') = n(X]", X}). Then:

sup]Za]Zh (Xi, Xj, €)Y = [Sup|ZZa] (Xi, X5, €i5)

99 j=1 iy 99 =1 i

—Eulohy(X/", X}, )1

[sup|ZZa] (X; X’ ,€ij)
9€G = 1 j4i

—O'Jh (X/// X' & )| }

J’ Z]

N

Let (0})™_, be a copy of (0;)™_;, independent of (7)™, F, F', F, we have

Sup|ZZU] (Xi, X}, 615) — 05hg(X]", X5, & )T, (00)i]
966 112

—ESESIZ 0; ) 0ihg(Xi, X}, €5) — 0ihg(Xi, X7, &)1 F, (00)i]
9 i=1 j#i

<2quup|Z I oihg(Xi, XG, )| F, (03)iy)-
9c9 i=1 jFi

Finally, we get

sup]ZZh (Xi, X5, €))7 < 4quup\Zazah (Xi, X5, €5)]7).

9€9 j=1 it 9SG iz

6.7.5 Proof of Theorem 6.1

We prove a more general version of Theorem 1.
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Theorem 6.12. For any 6 > 0, with probability at least 1 — 0, the empirical risk minimizer g,
satisfies:

R(G:) ~ Rig) < 0(R(') ~ R(g")) + (140 + 1) py &L

for some universal constant D.

The version of the main text is obtained by taking # = 1 and adding R(g’) — R(g*) on both
sides of the inequality.

Proof. Following the analysis of Clémencon et al. (2008a), for all g € G we rewrite:

An(9) — Ag) = 2(Tn(g) — Alg)) + Walg) + Walg).

where
1 n
To(g) = - Z hg(Xi)
1=1
is a sum of i.i.d random variables with h,(X;) = E[qq(X;, X, €; ;)| Xi],

Wi(g) = n(nl—l) Z?Lg(Xian)
i#]

is a degenerate U-statistic with symmetric kernel

hg(Xi, Xj) = Elqe(Xs, Xj, e1,5)| Xi, Xj] + Alg) — hy(Xi) — hy(X;)

and

_ 1 .
Wh(g) = nn—1) ; hyg(Xi, Xj,€i5)

with

hg(Xi, Xj,eij) = qg(Xi, Xj, €ij) — Elgg(Xi, X5, €i.5)| Xi, Xj].

We also recall that we proved in Lemma 2 that
Var (E [¢4(X1, X2, €1,2) | X1]) < A(g).

As mentioned before, the fact that we can upper-bound the variance of h,(X) by its expecta-
tion is the key property that will allow us to derive fast rates. We now follow the analysis of
Boucheron et al. (2005b) and introduce the following quantities:

H={hy:9€G}
H ={ahy:g€G,acl0]1]}.

P(r) = ER, {f e H*: VE[f(X)?] < r}, where R,, denotes the Rademacher chaos
taken over the observation X;.

Forr > 0, teG, =4 — "9 .4cGb.
orr we note G { o g Q}

max(r,
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For all h € G,, E[h] — h < 2 and Var(h) < r so that applying Bousquet’s Inequality for the
Supremum of Empirical Processes Bousquet (2002); Boucheron et al. (2005b) to the class G,
gives that with probability at least 1 — §/6, for any g € G:

A(g) = Tu(g) <

max(r, /A(g)) (

9F[ sup A(g) — Tp(g)] + 7 210%(6/5)4_810g(1/5)>'

hg€Gr n 3n

Since E[supy,, cg, (A(9) — Tn(9))] < 2ER,[G,] < 2¢(r) we get:

4ap(r)

o max(r, A(g))(

. . 21og(6/0) n 810g(6/(5)).

n 3n

We now apply Bernstein’s Inequality to hj, and using the fact that Var(hy) < A(g') < A(g)
for any g € G, we get that with probability at least 1 — §/6:

21og(6/96) N 810g(6/6)'

n 3n

To(9') — Ag') < max(r, \/A(g))

Summing the two inequality and taking a union bound we get that with probability at least
1—0/3,forallg € G:

M@_nwmquw—mw<waw“@»@wm+% ﬂ%§®+umgw®)

= T 3n
We now rewrite T,(g) as:

—

To(9) = 5 (Ag) + Aulg) ~ Walg) ~ Wa(s))

which we substitute in the previous inequality and obtain:

3 1

5 (A9) @) < 5(Aa(9) — Anl9) + Walg)) = Walg) + Walg') — Walg)

N max(r,?:/A(g)) (4¢(r) 4o /QIOgT(LG/d) N 1610;56/5))

We take g = gy, so that A,,(9,) — An(¢’) < 0 and use Lemma 3 together with a result from
Clémencon et al. (2008a) to obtain that with probability at least 1 — 24 /3:

— —~ —~ 4CV log(3n/d

Walo) — Walg) + Walg') — Walg) < 25up [ Wa(g)] + 2sup [T (g)] < 2V 108G/
9€G 9€g n

We finally get that with probability at least 1 — J:

o 4CV log(3n/9d) +max(r, VA(Gn)) "

n r

210g(6/5)%_1610g(6/5)>.

A@)-A(g) =

<4w(r)+2r

Now, we either have A(g,,) < 72, in which case we have in particular A(g,,) — A(¢g') < 2, or

A(g,) = r2. Under the latter hypothesis:

AGn) Al < SVIEO0N) XD (1) 4oy [2LA000) , 10Nl

n 3n
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For § € [0, 1], we finally introduce r*(¢) as solution of

r = (VT + 2V 210g(6/0) , 1610g(6/)

n 3n

Substituting 7*(8)? for 7 and using its definition in the previous bound gives:

< 4CV log(3n/9) N

A(gn) - A(g/) n A(gn)r*(d)

Now, using for all § > 0:

8@ ® < 5 (gt + 1)

gives that with probability at least 1 — §:

0+1)%

R(Gn) = R(9") < O(R(g') = R(g")) + —77=r"(8) + (1 + 0)4CV log(3n/6).

Putting all the pieces back together, we have shown

0+1)%

R(Gn) = R(g") < max(r"(9), 0(R(g') = R(g")) + =577 (0) + (1+0)ACV log(3n/5)).

Convenient upper bound for *(J) can be found in Boucheron et al. (2005b):

v(5) < cylos/d)

n

for some universal constant C'. This concludes the proof. U

6.7.6 Proof of Theorem 6.6

One may write forallg € G,n > 2and B > 1,

B
Ris(g) ~Rale) = 35 3 Z(0).
b=1

where
. 2
Z() =Y (ebu,]) - ) (X0, X;) # €1y}

Lt n(n —1)

1<)
for all (¢9,b) € G x {1, ..., B}. Conditioned upon the (X;, X;,e;;)’s, for all g € G, the
Z4(g)’s are i.i.d. centered random variables, bounded by 1. In addition, the collection G being
of finite VC-dimension V', Sauer’s lemma yields:

#U9(Xi, X;) # eij}: g€ G < (L+n(n—1)/2)".

Applying Hoeffding’s inequality to the Z;(g)’s conditioned upon the (X;, X, e; ;)’s and the
union bound leads to: V¢ > 0,

B
P < sup
geg

%Z Zy(9)

b=1

> ¢ (X, X5, em)}@-,ﬂ@} < 2(1+n(n —1)/2)" exp (~2B¢?) .
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Taking the expectation w.r.t. the (X;, X, e; ;)’s yields the desired bound.

6.7.7 Proof of Theorem 6.7

As done for Theorem 1, we prove the following generalization of Theorem 5.

Theorem 6.5. For any 0 > 0, with probability at least 1—0, the minimizer g of the incomplete
risk satisfies:

og(00) , flog(n/B)y

R(G5) ~ R(g) < BR(G) ~ R(g")) +(1+6+ 5)D7/( -

for some universal constant D;.

Proof. We proceed in a similar fashion than for the proof of Theorem 6.12 and first start by
recalling that we have with probability at least 1 — /4,

< CV log(4n/d)

sup |Wx (g
sup W, (0)] < S22
and CV log(4n/5)
- O n
sup [W, (9)] < ———o %
geg n

We also recall that Theorem 4 gives that with probability at least 1 — §/4:

_ ~ log 2 + V log ( 1H2G=0/2) C1V log(4n /s
sup K () ~ Ralg)] < 2(3 ) [ S osn/o)
geg

We follow the proof of Theorem 6.12. For all > 0 with probability at least 1 — §/4:

Ag)—Tn(9)+Tn(d)—A(g) < w@w(m 161og(8/4) Lor 210g(8/5)>.

T 3n n
Forany g € G, let Ag(g) = Rp(g9) — Rp(ds) be the incomplete excess risk of g. We rewrite:

To(g) — Tu(9) = ~(Ag") — Alg) + Anlg) — An(g)) + An(e)) — An(e) + An(g) — Anlo)

2
+ Wilg') = Walg) + Walg) — Walg)), (6.11)

which we substitute in the previous bound, take g = §p so that Ag(g5) — Ap(g’) < 0 and get
that with probability at least 1 — §:

AGs) — A(g) < max (7, \/A(g)) (4¢(r) 4o /210g?§8/6) n 1610g(8/6))

T 3n

+4CV 1og(4n/0) + 1/ CIVIOEM.

Let 7] () be solution of

r = 4(r) + Qr\/ﬂognw )
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Then we either have A(gp) < r}(5)? or:

~ ~ ~ C1V log(4n/é
R(i5) - R(g) = A(G5) ~ Ale) < /AGo)ri(6) + 10V log(an/a) 1 | SV 1EE/),
In the latter case we easily get that for all § > 0,
. / : R G
R(5s) = R(g) < O(R(g") = R(g")) + ~—71(8) + (1 +0) (4CV log(4n/2)

01Vlog(4n/5))
— 5 )

Upper-bounding 73 () as in the proof of Theorem 6.12 gives the result. O

6.7.8 Proof of Proposition 6.8

Proof. We first establish the following preliminary result.

Lemma 6.6. Suppose that the hypotheses of Proposition 6.8 are fulfilled. Then, we have:

Vg € G,
2

E [(ﬁ“)) (9) = Rulo))” | Dn] <= 6.12)

Proof. 1t suffices to notice that, for both sampling plans, we have for all (i, 7) # (k,[) in A,

2B\’ 2B
E = ————— < — 6.13
[(61’] n(n—1)> ] “n(n-1) 6.13)
as well as
B 2B 2B < 4B

2 Ve, - 2 2

" n(n—1) M n(n—1) - n?(n —1)2’
and to the fact that the collection {¢; ; : (7,j) € A} is independent from the training data I,
by assumption. O

For the Bernoulli case, we apply Bernstein inequality to the sum Z(g) of the r.v.’s

<5i,j - n(jBl)> {g(Xi, X;) # eij}

conditioned upon the graph ,,, which are bounded by 1 and have conditional variance less
than 2B/(n(n — 1)). We obtain: Vg € G, V¢ > 0,

2
P{|Z(g)] > ¢ | Do} < 2exp (—2B+<2C/3> |

Using the union bound, one gets: V( > 0,

P<sup|Z(g)| > B¢ | D, <2exp<—B<2>.
Prte - 2+2C/3

Solving § = 2(1 4+ n(n — 1)/2)? exp(—B¢?/(2 4 2¢/3)) leads to the first bound.
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Turning next to the second bound, the exponential inequality tailored to the SWOR case (see
Serfling, 1974, Corollary 1.1) yields:

2
P{5 121> ¢} <20 (-5-).

for all ¢ € G, ¢ > 0. Using the union bound and then solving 6 = 2(1 + n(n —
1)/2)% exp(—B(¢?/2) completes the proof. O

Note that following Section 6.7.7, one can easily derive a version of Theorem 5 for the mini-
mizer of RP by replacing Ag(g) with Ag(g) (the incomplete excess risk corresponding to the
sampling plan D) in the decomposition (6.11) and making the appropriate modifications.



CHAPTER 7
Conclusion, Limitations & Perspectives

In this manuscript we study and implement sampling strategies for statistical learning related
problems. By establishing theoretical results and displaying numerical experiments, we show
that the different strategies that we propose are an efficient way to deal with scaling issues. In
particular, we show how sampling strategies are useful to reduce the complexity induced by
the size of the dataset, for problems typically arising in a Big Data context. We highlight the
impact of such strategies by establishing upper bounds and asymptotic limit illustrating the
trade-off between accuracy and statistical error. We also show how such strategies can be used
to speed-up the learning process by providing an analysis in the spirit of Bottou & Bousquet
(2008), bridging the gap between results from statistics and optimization.

For the first problem we consider in Chapter 2 (i.e learning from survey training sam-
ples), we show that learning is possible when taking into account the sampling procedure
used to sample the observations. Our analysis focuses on the binary Classification problem
but can be extended to more general frameworks. However, in Chapter 6, we introduce fast
learning rates and the type of hypothesis on the data distribution required to prove them. It is
therefore natural to investigate to which extent fast learning rates results can be established
when observation are drawn from a general survey sampling scheme. The analysis we develop
in chapter 2 would fail because of two main reasons:

e Fast learning rates are established because of small variance property of minimizer
of the empirical risk. Unfortunately our analysis is based on upper bounding
SUpgeg ‘Een (9) — En(g)} and we can not expect to establish fast rates for this quantity.

However, this difficulty is easily overcome by controlling the risk as we do in chapter 6
(or in Boucheron et al. (2005a)).

e The second issue is that we separate the randomness coming from the observations with
the randomness coming from the sampling procedure when decomposing the risk. We
then dealt with each term separately by using well known results and working condi-
tionally upon the observations. The fast rates being established under assumptions on
the data distribution, our analysis would therefore fail.

An other point of interest to study is what lower bounds can we expect to have on the quantity

SUp,eg Le,(9) — Ly(g)|. In the rejective case (and more generally for negatively associated

1.v.) we expect it to be of order O(1/+/N) because negatively associated r.v. "behaves at least
as well" as independent r.v. for which lower bound exists (see Lecué & Mendelson (2010) in
the i.i.d case).

The second problem we consider in Chapter 3, 4 and 5 was the implementation of
sampling strategies for SGD. A very simple extension to our results would be to see how
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they can be extended in presence of some regularization term. When the regularization term
is not differentiable, one typically use the stochastic proximal gradient descent (see Atchade
et al. (2014) for instance) which essentially boils down to perform one step of SGD on the
data-fitting term before performing a proximal step on the regularization term. Incorporating
non uniform sampling strategies is therefore a problem that would be very interesting to study
for stochastic proximal gradient descent. Finally and as mentioned in chapter 3, significant
advances have been recently made in the design of efficient incremental methods(see for
instance Mairal (2014), Mairal (2013), Johnson & Zhang (2013a), Shalev-Shwartz & Zhang
(2012), Schmidt et al. (2013) or Defazio et al. (2014)) achieving better performances than the
traditional SGD method, some of these methods do work when observation are sampled non
uniformly but they do not shed light on how observations should be sampled or what would
be the potential gain on the risk, which would be very interesting to study.

For the problem we considered in chapter 6, we prove that the learning rates for ERM
in the graph reconstruction problem are always of order O(log n/n), it would be interesting to
see if we can establish a lower bound that matches this upper bound. Another challenging line
of future research is to see what happens when the noise condition of assumption 8 is satisfied.
It would straightforwardly lead to fast rate for minimizer of (6.5) but what it would change
for minimizers of (6.3) is an open question. Extension of the results of this chapter to more
complex dependence structures can also be investigated. For instance, the probability that
two nodes are connected could be modelled as a function of their features, as in the present
framework, but also on those of their neighbours in the graph,(i.e. relaxing the independence
assumption for the e; ;’s) in order to account for properties shared by some real-world graphs
(e.g., graphs with a power law degree distribution).



APPENDIX A

Concentration Inequalities and Applications to Empirical
Risk Minimization

We introduce well-known results as well as the methodology typically applied to derive con-
centration inequalities. The ideas and results introduced in this chapter are of the utmost
importance and are used all along this manuscript. We refer to McDiarmid (1998) and Janson
(2002) for good references on this subject, and Massart (2007); Boucheron et al. (2013) for a
very complete review on concentration inequalities. References on classification and statisti-
cal learning theory include Vapnik & Chervonenkis (1974); Devroye et al. (1996b); Bousquet
et al. (2004); Boucheron et al. (2005a); Bishop (2006); Friedman et al. (2001); Vapnik (2013).
We keep the notations introduced for the binary classification problem of section 1.1. We re-
call that (€2, A, IP) is a probability space and Z = (X,Y") a random pair defined on (2, 4, P),
taking its values in some measurable product space X x {—1, +1} and for some classifier g in
G. L(g) = P{g(X) # Y} denotes its risk and L, (g) its empirical counterpart. We first present
in section A.1 some classical result pertaining to the Vapnik-Chervonenkis theory as well as
the methodology used to establish this result. In section A.2 we give traditional concentration
inequalities that we use in this manuscript.

A.1 Vapnik-Chervonenkis’s Inequality and The Method of
Bounded Difference

This section is a step by step guide on how to establish Vapnik-Chervonenkis’s inequality
A.4 for the binary classification problem. Its purpose is to serve as a reference for the dif-
ferent problems we consider in this manuscript. Let g,, be an empirical risk minimizer and
g* € argmin g L(g). As mentioned in chapter 1, the ERM paradigm requires to establish
upper bound for the quantity L(g,) — L*. This is typically upper bounded by introducing the
empirical counterpart of the risk and rewriting this quantity as:

~

L(Gn) = L* = L(Gn) = Ln(Gn) + Ln(Gn) = La(§") + La(3") = L(G") + L(5") — ",

Since gy, is an empirical risk minimizer, the quantity En(ﬁn) — En(g*) is non positive. The
quantities L(gn) — Ly (gn) and L (g*) — L(g") are upper bounded by sup,cg [L(g) — Ln(9)|
which overall leads to the bound (1.4):

L(Gn) - L* < 25up|Bulg) — L(g)| + (inf Lig) - L*) . A1)
Y [SY

The class § is supposed rich enough to make the second term on the right hand side small, so
that we only have to check that 2 sup e |Ln(g) — L(g)| is small to be sure that the empirical
risk minimizer g,, achieves a similar performance to the one achieved by g*. This result is
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typically established by showing that the r.v. sup ¢ ]En(g) — L(g)| does not vary much from
its expectation by using the bounded difference inequality McDiarmid (1998):

Proposition A.1. (MCDIARMID INEQUALITY, OR ‘INDEPENDENT BOUNDED DIFFERENCES
INEQUALITY’) Let Z = (Zi,...,Zy) where the Z;’s are independent r.v. with values in
X x {=1,41}. Let f : (X x {—1,4+1})" — R verifying the following Lipschitz condition.

Forany z, 2/ € (X x {=1,+1})", |f(2) = f() < if z :z;-, for j £k 1<j5<
(A.2)

Let yp = E[f(Z)]. Then, for anyt > 0,
PIf(Z) - p>1] < e 2/ 2%

The same inequality holds true when replacing f(X) — p by p — f(X).

It is easy to check that Proposition A.1 can be applied to the r.v. sup g L, (g) — L(g)| with
cp = % In particular, this gives that with probability at least 1 —

sup |Ln(9) — L(g)| < Efsup Zn(g) = L(g)] + 21°gn(1/5).

The next step is to upper bound E[sup g IZ.(g) — L(g)|] by distribution free constant de-
pending on the number of observations n and the richness of the class G. A first step toward
this direction is to introduce a ghost sample 21, ..., z/, independent of the z; with same dis-
tribution to symmetrize our quantity. We denote by E; the empirical risk based on the ghost
sample. Then we have:

Efsup |La(g) — L(g)]] = Elsup |Ln(g) — E[L,(9) Z1. - . -, Za]]

9€g 9€9
< E[sup [Ln(g) — Ly (9)I]-
9eg
We then randomize this inequality by introducing rademacher r.v. o1,..., 0, with P(o; =

1) = P(0; = —1) = } independent from our samples Z, ..., Z, and Z1, ..., Z},. We have:

Efsup|Ln(g) — L, (9)] = E {sup !% > Hg(Xi) # Yi} - % > (X)) # Y{}\}

9€9 9€9 " im i=1

—E {sup 3" aul{g(X0) £ Yi} ~ Ho(X) # Ymr}

9€9 i
1 n

< 2E ¢ sup !*ZUz‘H{Q(Xi) #Yi} ¢
9€6 i

n

The quantity E[sup g 115" 0:1{g(X;) # Yi}|] is very interesting as it can be expressed
as:

1 & 1 &
E[zlelg !5 ; oil{g(Xi) # Yi}l] = E[E[Zlelg !; ; oil{g(Xi) # Yi}llZ1, ..., Zn], (A3)

and is the first step toward a distribution-free bound. Indeed, if for any bounded set of vectors
Vin R" we define R, (V) = E[sup,ey |1 S0, 00;|] as the Rademacher Average of order n
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associated to V, then

Efsup La(g) — Lh(9)]] < 2E[Ra(G(Z™))] (A.4)
ge

where G(Z") denotes the class of vector (I{g(X;) # Y1},...,{g(X,) # Y, }) for any g in
G. Itis very easy to establish upper bound for R, (V) when the set V is finite (see Boucheron
et al. (2005a) for instance).

Proposition A.2. Assume V has cardinal Ny and let Viy € R such that for any v € V),

Vo, then:
v/ 2log (N
R, (V) < %M.

n

vl| <

The proof of this proposition is given remark A.8. For our problem, G(Z") is a subset of
{0, +1}" so its elements have norm smaller than \/n and its cardinality is upper bounded by
2™, Unfortunately this is not satisfactory when plugged into proposition A.2 because th bound
obtained would be a O(1). Note that if we could get an upper bound on the cardinal of G(Z™)
that would be polynomial in n instead of exponential, then proposition A.2 would give an
upper bound of order O(%). This is essentially what happens what when we assume that
the class of indicator functions indexed by G has finite VC-dimension. It is defined for any set

VY as:

Definition A.3. Let V a subset of {0,+1}", we call VC dimension of V the size V' of
the largest set of indices {i1,...,iy} C {1,...,n} such that for each binary V -vector
b= (b1,...,by) there exists v = (v1,...,vy) in V such that (v;,,...,v;, ) =b.

An other very important result is Sauer’s Lemma (see Sauer (1972) for instance) which states
that a subset V with VC dimension V' has its cardinality bounded by (n + 1)V .

Going back to our problem, the cardinal of G(Z") is called the VC shatter coefficient and
let V,, be its VC-dimension. The logarithm of the shatter coefficient is upper bounded by
Vp log(n + 1) thanks to Sauer’s Lemma. If we assume that we have finite VC-dimension,
then there exists V' < oo such that sup,,cy Vi, < V. Applying proposition A.2 this leads to
distribution-free upper bound known as Vapnik-Chervonenkis’s inequality:

Theorem A.4. (VAPNIK-CHERVONENKIS) For any distribution, we have with probability at
least 1 — 6:

2V log(n + 1) \/210g(1/(5)
- - @7 + - -~ 7

L(gn) —L" < L(g") — L™+ 2\/ (A.5)

The VC-dimension is an important combinatorial parameter of the class, in particular, when
G is a d-dimensional vector space of real-valued functions, the class of indicator functions
{I{g(.) > 0}} has finite VC-dimension V' < d. The rest of this chapter is devoted to present
other useful results for statistical learning.

A.2 Concentration Inequalities for Empirical Risk Minimization

In this section we present popular inequalities often used in statistical learning. We first deal
with bounded r.v. and establish McDiarmid’s inequality and Azuma-Hoeffding’s inequality.
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We then focus on r.v. whose variance is bounded and establish Bernstein’s inequality. We first
set a few definitions :

Let (2, F,P) be a probability space. Let X be a random variable on this space and G a sub-o-
algebra of F.

Notation 1. X is areal r.v. in L*°(€2). The conditional essential supremum sup(X|G) is the
unique real r.v. fX : Q — R satisfying:

o Xis G-measurable
e X < Xas.

o IfY : Q — R verifies the two previous conditions then X < Y as.

It is straightforward to check that sup(X|G) > E(X|G) and sup(X|G1) > sup(X|G2) when
G1 C Go. Equipped with these notations we can state our main results in the following section.

A.2.1 Inequality for Bounded Random Variables(Azuma-Hoeffding and McDi-
armid)

In this section we work with bounded r.v.. The theorem that we give now is strong enough
to derive the fundamental inequality of Azuma-Hoeffding (A.9) and McDiarmid ’s bounded
difference inequality (A.10). We make use of this inequalities later in chapter 2,5 and 6. It
involves the following notations:

Notation 2. Let X be a bounded r.v.. Let (Fi)o<k<n be a filtration of F such that X is F,,-
measurable. We denote X1, ..., X, the martingale X, = E(X|F;) and Y, = X — X1
the associated martingale difference. The r.v. ran(X|G) := sup(X|G) + sup(—X|G) is the
conditional range of X w.r.t G. We also denote:

e rany = ran(Yy|Fi_1) = ran(X|Fx_1) the conditional range,

e R? = Y rany? the sum of squared conditional ranges, and #2 = esssup(R?) the
maximum sum of squared conditional ranges.

A.2.1.1 A Preliminary Theorem

Here we establish the following theorem and give its proof. The methodology used to establish
this result is classical and treated as an example. In particular its proof will be adapted to derive
concentration inequalities in chapter 2.

Theorem A.5. (McDiarmid, 1998) Let X be a bounded r.v. with E(X) = i, and (Fj,)o<k<n @
filtration of F such that Fo = {0, Q} and such that X is JF,,-measurable. Then for any t > 0,

PX —pu>t) < e 27

and more generally

Vr2 >0, P((X —p>t)N(RE<r?)) < e 200/,
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The main idea used to derive this theorem is to express X — 4 as a sum of martingale increment:
X — p =", Y} and control its Laplace transform using the following lemma:

Lemma A.6. Let (Fy)o<k<n be a filtration of F with Fy = {0,Q}, and (Y)1<k<n be a
martingale difference for this filtration such that each Yy, is bounded. Let Z be any random
variable. Then

E(Ze"2Y%) < sup(Z [ [ E(e"*| Fimn).
k=1

Proof. This result can be easily proved by induction.

o [Zehzyk} _F :ehylE :ZehESYk | ;1”

- :ehylE :ehYQ... E [E (Z | Fole | fnfl} | EH
<E :ehylE :ehYQ ... E {sup (Z | Fp) e | .7:n_1} v | -7'_1”
=FE :eh’YlE :ehYQ ... sup {ZIE [ehY" | fn_l} | fn} oo | fl“
=sup | Z [ [ E("*|Fimr) | fn]

k
< sup ZHE(ehYk|fk_1)] (since Fo C Fp).

k

O]

With this lemma, we decompose the expectation of a product into a product of expectations. It
can be interpreted as doing ‘almost as if” ) Y}, was a sum of independent variables. The next
step to prove Theorem A.5 is to control the Laplace transform of bounded r.v., it can be done
using Hoeffding’s Lemma:

Lemma A.7. (HOEFFDING’S LEMMA) Let X be a centered random variable and (a,b) € R?
such that a < X <'b, then for any h > 0, we have E(th) < exh?(t—a)?,

Equipped with these intermediate results, the proof of Theorem A.5 is quite straightforward:
Proof of Theorem A.5. We start with Chernoff method then apply Lemma A.6, before using
Lemma A.7, and finally choose the value of parameter h.

Let X, = E(X|Fi_1) and Y}, = X — X} the associated martingale difference. Define the
r.v. Z as Z = 1 g2<,2. Exponential Markov inequality yields, for any h > 0,

P((X —p>t)N(R?<r?) = P(Ze"X~1 > ¢t
e_htlE(Zeh(X_“))

PR Zh(E W),

IN A
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From Lemma A.7, E(eM*|F;,_;) < es""% 5o that using Lemma A.6,

E(Zeh2=Ye) < sup ZH]E "5 Fr1)),

sup ZH elh2
h2R2)

IN

sup(Zes
5 L sup(ZR?)

IN

1,22
3h7.

IN

We take h = 4t/r2, we finally obtain

P((X — p > 1) N (R2 < 1r2)) < e Mitsh™® < =2°/r?

Remark A.8. Using Lemma A.7, we can prove proposition A.2. Indeed for any A > 0,

exp(AR,(V)) = exp(AE[sup o;v;]) < E[exp(Asup o]
(AR (V) = exp( vevnz E| <U6Vn;

ZE exp(A— ZUW@

veY

< Z H Elexp(Aojv;i)],

veY i=1

where we use the convexity of the exponential for the first inequality. Hoeffding’s Lemma A.7
gives E[exp(Ao;v;)] < exp(A\?v?/2n?) so that

A2l
exp(AR, (V) < ) exp( )

2n2
veY
)\2‘/02
< Ny exp( 5,2 ).

Taking A = +/log(Np)2n2/V;? gives Theorem A.4.

A.2.1.2 Azuma-Hoeffding’s Inequality and McDiarmid’s Inequality

In this section, we apply Theorem A.5 and derive classical concentration inequalities as corol-
laries . The first result that we give is Azuma-Hoeffding’s inequality that deals with sum of
random variables.

Proposition A.9. (AZUMA-HOEFFDING INEQUALITY) Let (Fy)o<k<n be a filtration of F
such that Fo = {0,Q}, Z a martingale and Y the associated martingale difference. If for
then we have

+2

IP(Z Vi >t)<e 2Ziack.

The same inequality holds true when replacing ZZ:1 Y. by — 22:1 Y.
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Proof. Apply Theorem A.5 with X = Y 1Yy, Fr, = o(Y1,...,Y,) and X}, = E(X|Fy).
Thus, p = 0, X = Z'sz because Z is a martingale, and Y; = X; — X;_1. Therefore,
rang = ran(Y;|Fy) < 2c, hence R? < 4% ¢? and #2 < 43 ci. By Theorem A.5,

o2 42
P(X >t <e 7o< e oF Applying this inequality to —X, we obtain the desired

result. O

The second Theorem that can be derived from Theorem A.5 is McDiarmid inequality used
previously in section A.1.

Proposition A.10. (MCDIARMID INEQUALITY, OR ‘INDEPENDENT BOUNDED DIFFER-
ENCES INEQUALITY’) Let X = (Xi,...,X,,) where the X;’s are independent rv. with
respected values in A;. Let f : [ Ax — R verifying the following Lipschitz condition.

Forany x, ' € HAk, |f(z) = f(@")| <cx if zj :x;-, for j#£k, 1<j<n.
1
(A.6)
Let us denote pn = E [f(X)]. Then, for anyt > 0,
PIA(X)—p>1] < e 2/2e%

The same inequality holds true when replacing f(X) — p by p — f(X).

Proof. Lipschitz condition (A.6) implies that f is bounded, thus from Theorem A.5 we have
PIf(X)—p>t] <e 27,

where 72 is defined with the filtration Fj, = o(X1,..., X})and X = f(X1,..., X,,). We can
easily establish an upper bound on 7#2: rany = ran(E(f(X)|Fx) —E [f(X)|Fr_1] |Fr_1) <
ck. This concludes the proof O

The following inequality is similar to Proposition A.9 and can be applied to sum of independent
r.v.. It provides a tighter bound than the one in Proposition A.9.

Proposition A.11. (HOEFFDING INEQUALITY) Let X1,..., X, be n independent random
variables such that a; < X; < b;, 1 <i < n. Define S,, = >_ Xy and pn = E(S,,). Then,

P(S, — pu > 1) < e 20/ Xlbeman)®

The same inequality holds true when replacing S, — by u — Sy,

Proof. This is aimmediate consequence of previous McDiarmid inequality (Proposition A.10)
with Ay = [ag, bi], f(x) = >_ 21 and ¢, = by, — ay. Within this setting, 72 < by, — a. d

A.2.2 Bernstein-type Inequality (with Variance Term)

Now, we remove our boundedness hypothesis and instead make variance assumption. The
theorem stated below will help us derive the popular Bernstein inequality, that is used to derive
fast rate of convergence under appropriate variance control (see Tsybakov (2004)). We make
use of a general version of this inequality in chapter 2 and 6. We first set a few notations:
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Notation 3. Ther.v. var(X|G) := E((X —E(X|G))?|G) is called the conditional variance of
X w.rt. G and we set:

e vary = var(Yy|F,_1) = var(Xy|Fi_1) the conditional variance,

V = 37 vary the sum of conditional variances and o = ess sup(V') the maximum sum
of conditional variances,

dev," = sup(Y)|Fj_1) the conditional positive deviation,

maxdev™ = esssup( max dev,j) the maximum conditional positive deviation.
0<k<n

We now give the following theorem that will help us establish Bernstein-type inequalities.

Theorem A.12. (McDiarmid, 1998) Let X be a r.v. with E(X) = pand (Fi)o<k<n a filtration
of F such that Fy = {0,Q} and such that X is F,-measurable. Let b = maxdev™ the
maximum conditional deviation assumed to be finite, and U = esssup V the maximum sum of
conditional variances also assumed to be finite. Then, for any t > 0,

+2

P(X — > t) <e 2(0+0t/3) |

and more generally, for any v > (),

2

P((X —p > )N (V <)) < e o7,

In spirit, the proof of Theorem A.12 is similar to the proof of Theorem A.5 but require a dif-
ferent control of the Laplace transform to make use of variance assumptions. This is achieved
by the following Lemma which combined with Hoeffding’s lemma A.7 gives the result.

Lemma A.13. Let g defined for x # 0 by g(x) = & ;%_”*’ and X a centered r.v. satisfting for
someb >0, X <b. Then E(eX) < e9(b)var(X),

Proof. g is non decreasing so by taylor expansion of the exponential we have e* < 1+ x +
22g(b) for < b. Taking expectation yields E(e™) < 1 + g(b)var(X) < ed(®var(X), O

Proof of Theorem A.12. The proof follows the same classical lines as the ones of Theo-
rem A.5. Let Yy,...,Y, be the martingale differences associated to X and (Fj), and
Z = 1y<,. Exponential Markov inequality yields, for every h > 0,

P(X —p>t)N(V <)) = P(ZeX71) > ht)
e_htE(Zeh(X_“))
eTME(ZeM=Yx))

IN A
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+
From Lemma A.13, E(e"Ys|Fj,_q) < eM*olhdevijvary < gh*g(hbjvark ¢ that from Lemma A.6
we obtain,

E(Zeh2Ye)

IN

sup(Z | [ E(¢"*|Fi-1))
p(ZH6h2 hbvark)
(
(h

IN

= sup Zel
h%g

hb)V)

b) sup(ZV)

IN

e

2
6h g(hb)v.

IN

By setting & = $In(1+ %) and using the fact that for every positive z, we have (14 ) In(1+
x) —x > 32%/(6 + 2z), we finally get

]P)((X —u> t) N (R2 < 7“2)) efht+hzg(hb)v

IN

2
S 6_ 2(v+bt/3)

We finally state Bernstein’s inequality as a corollary of Theorem A.12.

Proposition A.14. (BERNSTEIN INEQUALITY) Let X1,...,X,, be n independent random
variables with X, — E(Xy) < b. We consider their sum S, = Y, X, the sum variance
V = wvar(S,) as well as the sum expectation E(S,,) = p. Then, for any t > 0,

+2

P(Sh— 2 ) < ¢ TV

and more generally,

+2

P((S, —pu>t)N(V <wv)) <e 20+/3)

Remark A.15. (GAIN WITH RESPECT TO INEQUALITIES WITHOUT VARIANCE TERM) As-

sume that 0 < X; < 1 and consider renormalized quantities, namely S, = /M, L= p/n,
V = V/n?. Then,
P(S, — i > t) < e 2 (Hoeffding)
nt2

and IP’(S’H — g >t)<e 20V+/3) (Bernstein),

with ¢ typically of order between 1/n and 1/y/n. Thus, if the variance V is small enough,
Bernstein inequality ‘almost’ allows to have rates in e~ instead of e~ In other words,
Bernstein-type inequality may give high probability bounds in - log 5 instead of 4/ % log %.
This is of the utmost importance in the fast rate analysis we prov1de in chapter 6.

Pi‘OOf. Let Fk = U(Xl,.L.,X@) ’ X = Z(Xk — EXk) = Sn - K, Xk = E(X|.F]€) =
Z’f(Xi—EXi) andY;, = X, — X;_1. Then Y3, = X, —EX}, hence dev;r < b, maxdevt <b
and vary = ’U(M“(Y]Jfk,l) = E((Yk — E(Yk’fkfl))z‘}—kfl) = E((Yk — EYk)Q) = var(Yk).
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Therefore 7 = esssup()_ vary) = esssup(V) = V. Theorem A.12 applies and yields,
+2
P(S, —p>1t) < e XVHTD,

+2

P(S, — 1> )N (V < v)) < e Th073
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ApPENDIX B
Résumé des contributions en francais

B.1 Motivation

Dans ce manuscrit, nous présentons et étudions des stratégies d’échantillonnage appliquées
a problemes liés a I’apprentissage statistique. L’objectif est de traiter les problemes qui
surviennent généralement dans un contexte de données volumineuses lorsque le nombre
d’observations et leur dimensionnalité contraignent le processus d’apprentissage. Nous pro-
posons donc d’aborder ce probleme en utilisant deux stratégies d’échantillonnage:

e Accélérer le processus d’apprentissage en échantillonnant les observations les plus
utiles.

e Simplifier le probléme en écartant certaines observations pour réduire la complexité et
la taille du probleme.

Pour introduire le probléme que nous traitons, nous introduisons tres rapidement la minimisa-
tion du risque empirique (ERM) dans le contexte de la classification binaire. Le probléme de
classification binaire est considéré comme un exemple récurrent tout au long de ce manuscrit.
Parce qu’il peut étre facilement formulé, il est indéniablement le probleme d’apprentissage
statistique le plus documenté dans la littérature et beaucoup de ses résultats s’étendent a des
cadres plus généraux (e.g., Classification multi-classe, régression, ranking). Soit (£2, A, P) un
espace de probabilité et (X, Y") une paire de variables aléatoires définie sur (2, A, P), prenant
ses valeurs dans un espace mesurable X x {—1, 41}, avec distribution jointe P(dz,dy): la
variable aléatoire X représente une observation, utile pour prédire le label Y. La distribution
P peut aussi étre décrite par la paire (F,7n) ot F'(dz) désigne la distribution marginale de la
variable d’entrée X et n(z) = P{Y = +1 | X = z}, z € X, est la distribution postérieure.
L’objectif est de construire, a partir de I’ensemble de données d’apprentissage a disposition,
un mapping mesurable g : X — {—1, 41}, appelé classifier, avec rigsue minimum:

L(g) € P{g(x) £ Y} (B.1)

Il est bien connu que le Bayes classifier g*(x) = 2I{n(z) > 1/2} — 1 est une solution du
probleme de minimisation du risque inf, L(g), ot I’infinimum est pris sur la collection de tous
les classifieurs définis sur ’espace X'. Le risque minimum est noté L* = L(g*). Puisque
la distribution P des données est inconnue, le vrai risque est remplacé par son estimation
empirique:

~ 1 &
Ln(g) =~ Z;H{gom # Vi, (B2)
1=
basé sur I’échantillon d’exemples (Xi,Y7), ..., (X,,Y,) de copies indépendantes de

(X,Y). La véritable minimisation du risque est alors remplacée par la minimisation empirique

129
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du risque

min L, (g), (B.3)
g€g

ou le minimum est pris sur une classe G de classifieurs, supposés assez riches pour inclure
le classifieur naif de Bayes (ou une approximation raisonnable de ce dernier). Considérant
une solution g,, de (B.3), un probléme majeur dans la théorie de I’apprentissage statistique est
d’établir des bornes de confiance sur 1" excés de risque L(g,) — L* en ’absence de toute hy-
potheése distributionnelle mais en prenant en compte de la complexité de la classe G (eg, décrite
par des caractéristiques géométriques ou combinatoires telles que la dimension de Vapnick-
Chervnonenkis VC), et un controle de 1’approximation de P par sa contrepartie empirique
Py = (1/n) Y1 0(x,,v,) sur la classe G . En effet, ’exces de risque des minimiseurs du
risque empirique est typiquement borné de ma fagon suivante:

L) - I < 2509 [La(o) ~ L(o)| + (inf Llo) 7). (B.4)
geg 9€g

Le second terme du co6té droit est appelé bias et dépend de la richesse de la classe G, tan-
dis que le premier terme, appelé erreur stochastique, est contr6lé au moyen de résultats de la
théorie des processus empiriques, voir Boucheron et al. (2005a). Malheureusement, 1’'une des
choses généralement négligées dans ce type d’analyse est de savoir comment résoudre efficace-
ment le probleéme de minimisation du ridque empirique, ¢’est-a-dire comment trouver g,,. Ce
probléme est habituellement résolu par un algorithme d’optimisation incrémentale, calculant
itérativement I’estimateur du gradient du risque empirique. Nous étudions des moyens effi-
caces d’améliorer le processus d’apprentissage et comment introduire des approches basées sur
I’échantillonnage pour construire des approximations de g,,. Nous le faisons de deux maniéres
différentes:

e Nous remplagons le risque empirique En(g) par une approximation basée sur moins
de termes L, (g) Cela facilite naturellement le probleme d’apprentissage. Soit g, un
minimiseur de L, (g), alors (B.4) devient:

L) — L* < 25up|Ln(g) — Tng)] + 25up|Tnlg) — L(g)] + (inf Lig) L*) .
9€g g€eg 9€g

Nous nous concentrons sur le contrdle approprié€ 2 sup,cg |Ln(9) — Ln(g)| que nous
faisons généralement conditionnellement sur les observations. Une telle stratégie est
discutée et implémentée dans les chapitres ?? et 6 pour deux problemes différents.

e Lors du calcul de I'estimateur du gradient, la plupart des algorithmes incrémentaux
échantillonnent uniformément et indépendamment les observations dans 1’ensemble de
données. Nous proposons d’utiliser des méthodes d’échantillonnage non uniformes pour
calculer un estimateur du gradient de En avec une variance plus faible. Pour les al-
gorithmes que nous proposons, si nous notons g, (7") le classificateur obtenu apres 7'
itérations de I’algorithme d’optimisation, alors suivant le raisonnement introduit dans
de Bottou & Bousquet (2007), I’inégalité (B.4) peut étre bornée par:

L(gn(T)) - L7 < En(gn(T)) - En(/g\n)

6]

+ 25up|Eulg) — L(g)| + (inf Lig) - L*) .
geg 9€g

(@)
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ou (1) correspond a I’erreur d’optimisation et (2) correspond a I’erreur stochastique.
Cette décomposition illustre le fait bien connu (voir Bottou & Bousquet (2007)) que
lorsque nous résolvons le probléme de minimisation des risques empiriques, nous de-
vons prendre en compte le caractere aléatoire induit par les observations afin que I’ erreur
d’optimisation soit du méme ordre que le terme de généralisation. Nous portons parti-
culierement attention a ce fait et I’illustrons théoriquement et empiriquement dans les
chapitres 3, 4 et 5.

Le reste de ce chapitre est consacré a la présentation de nos différentes contributions. Ici et
dans le reste de ce chapitre, la fonction indicateur de tout événement £ est notée par I{€} et la
variance de toute variable aléatoire de carré intégrable Z par o2 (Z).
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B.2 Apprendre de données de sondages

Cette sous-section est un résumé du chapitre 2. Nous nous placons dans le contexte de la
classification binaire, lorsque les observations utilisées pour former un classificateur sont is-
sues d’un schéma d’échantillonnage/sondage et présentent une structure de dépendance com-
plexe. Nous considérons, (X1,Y1), ..., (X,,Y,) un échantillon de copies indépendantes
de (X,Y) observées sur une population finie Z,, := {1, ..., n}. Nous appelons un survey
sample de taille (éventuellement aléatoire) N < n de la population Z,,, tout sous-ensemble
s = {i1,...,in)} € P(Z,) avec cardinalit¢ N =: N(s) inférieur & n. Un schéma
d’échantillonnage est défini par une distribution de probabilité R,, sur I’ensemble de tous les
échantillons possibles s € P(Z,,) conditionnellement aux observations D,, = {(X;,Y;) : i €
Z,}. La probabilité que I’unité i appartienne a

Theorem B.1. Let 0, be the sequence generated by SGD using the incomplete statistic gradient
estimator (5.6) with B = [[r_, (Z:) terms for some 1y, . .., nh.. Assume that {L(.; 0) : 0 €
©} is a VC major class class of finite VC dimension V' s.t.

Mg = sup ]H(x(l), o, xUE), 0)| < +oo, (B.5)
9eo, (x(), ..., x(K) e, alk

and Ng = supycg ag < +o0. If the step size satisfies the condition of Proposition 5.4, we
have:

Vne N*¥ E[|L(6;) — L(6%)]] < N | oMo {2

2V'log(1 + k)
BtP '

K

For any 6 € (0,1), we also have with probability at least 1 — §: ¥n € N*K,

11060~ L(6°)] < <cvv@+ DﬂlOg(Q/‘S)>+2 Mo {2\/2VIogS+n> . \/1og<4/5>}‘

Bt# t8 K
(B.6)
for some constants C and Dg depending on the parameters |, o, v1, a1.

échantillon aléatoire S tiré de la distribution conditionnelle R,, est appelée probabilité

d’inclusion du premier ordre et est notée m; = Ppr {¢ € S}. Nous définissons 7, =
(w1, ..., 7). Etant donné un échantillon observé S, il est entierement déterminé par les
variables aléatoires €, = (€1, ..., €,), o0 ¢ = I{i € S} pour 1 < ¢ < n. La plupart

des résultats disponibles dans la littérature (voir Boucheron et al. (2005¢) par exemple) trait-
ent du cas ou I’ensemble de données D,, est a disposition. Cependant, ce n’est pas le cas ici
car nous n’observons qu’un sous-ensemble d’observations issue du schéma de sondage. Par
conséquent, ces résultats ne sont pas directement applicables a notre probleme, essentiellment
a cause de la structure de dépendance induite par le schéma d’échantillonnage. Néanmoins,
nous montrons que la théorie de I’ERM peut étre étendue au cas ou I’apprentissage statistique
est basé sur des observations obtenues par sondages. Nous prouvons que, en minimisant une
version pondérée du risque empirique, que nous nommons le risque d’Horvitz-Thompson ,
Ierreur stochastique peut étre bornée par Op((ky, (logn)/n)/?) (ol £y, est défini plus tard)
lorsque les données sont échantillonnés au moyen d’un schéma rejectif. Nous étendons ensuite
ces résultats a d’autres schémas d’échantillonnage par un argument de couplage.

Risque de Horvitz-Thompson .
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Comme défini dans Horvitz & Thompson (1951), pour tout candidat classificateur g, le risque
empirique (non disponible) L,,(g) = n~1 Y, <i<n {Y: # g(X;)} estremplacée par sa version
de Horvitz-Thompson:

— 1

Le,(9) = Z T{g(Xi) # Y3}, (B.7)

n
= 1

ol €, = (€1,...,€,) indique le vecteur en correspondance avec I’échantillon tiré.

Alors que de nombreux plans d’échantillonnage pourraient etre considérés pour le probleme
que nous considérons, nous faisons particulierement attention au schéma rejectif, un plan
d’échantillonnage R,, de taille fixe N < n, qui généralise le tirage aléatoire simple sans
remise (ou tous les échantillons de cardinalité /V sont également susceptibles d’€tre choisis).
Ce plan d’échantillonnage est plus difficile a analyser car les ¢; sont des variables aléatoires
dépendantes. Par conséquent, lorsque 1’apprentissage statistique est basé sur des observations
obtenues au moyen d’un schéma rejectif, les résultats classiques de minimisation du risque
empirique ne peuvent étre appliqués. Néanmoins, nous montrons que des résultats similaires
a ceux classiquement établis peuvent étre établis pour le minimiseur de (B.7) dans le cas du
schéma rejectif. Pour établir ces résulatats, nous montrons et utilisons une propriéré du schéma
rejectif: ce schéma forme une collection de variables aléatoires négativement associées (voir
Briandén & Jonasson (2012), Kramer et al. (2011)), un type de structure de dépendance par-
ticulierement utile pour 1’téblissement de bornes de concentration. En utilisant la propriété
d’association négative, nous montrons que pour un schéma d’échantillonnage rejeté €,, avec
des probabilités d’inclusion de premier ordre 7, et avec k,, = N/(n x min;<, 7;) nous avons
pour toute solution g, du probléme de minimisation inf,eg Le, (¢), une limite supérieure du
risque d’erreur stochastique de I’ordre Op ((#,, (log ) /N )'/?).

Proposition B.2. Supposons que le schéma d’échantillonage €,, soit rejectif avec probabilté
d’inclusion du premier ordre m,, et que la classe de fonctions G a dimension VC V' < 4o0.
Soit kp, = N/(n x min;<,, m;). Alors les affirmations suivantes sont vraies:

(i) Pour tout § € (0, 1), avec probabilité au moins 1 — 6, nous havons: VN < n,

7 ? log(%) + V1 1 log(2) - V1 1
sup |Le, (9) — Ln(g)‘ < \/Q'in og(5) + Nog(TH- ) ok, og(5) + 3Nog(n+ )‘
geG

(B.8)

(ii) Pour toute solution g, du probleme de minimisation inf ;g Le, (g), nous avons que pour
tout 6 € (0, 1), avec probabilité au moins 1 — 6, nous havons: ¥n > 1,

log($) + V1 1 log($) + V1 1
L@ﬂ)_pg\/mog(w Bt 1) |, oa(d) + Vies(n

21 2
+C\/ \/ 0g6 + inf L(g) — L*.
geg

Le facteur kv présent dans les bornes reflete I’influence du schéma d’échantillonnage, (remar-
quons en particulier que s, > 1 puisque ), m; = N). Dans le cas du tirage sans remise,
i.e. quand m; = N/n pour touti € {1, ..., n}, le coefficient est alors minimum et est égal a
1. Plus généralement quand N = o(n) avec n — +o0, dés que les poids ne tendent pas vers
0 plus rapidement que N/n, le taux de convergence atteint par les minimiseurs du risque em-
pirique sont de 1’ordre de O(y/(logn)/N). 1l existe de nombreux schéma d’échantillonnage
(par exemple Rao-Sampford sampling, Pareto sampling, Srinivasan sampling) de taille fixe
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étant décrits par des vecteurs aléatoires €,, avec des variables aléatoires négativement associés,
voir par exemple Brindén & Jonasson (2012) ou Kramer et al. (2011). Ainsi, la preuve de
la proposition B.2 permet d’étendre le résulyat a tout schéma négativement associé. Voir la
section 2.8 pour plus de détails et de référence. Avant de montrer comment ce résultat peut
étre étendu a des schéma d’échantillonnage génériques, nous faisons les remarques suivantes:

Remark B.3. (SUR L’HYPOTHESE DE COMPLEXITE) Nous faisons remarquer qu’il est possi-
ble d’établir le résultat précédent avec des hypotheses plus faibles, en ayant recours au mémes
arguments que ceux développés dans la section 2.6, sous des hypotheses de compléxité dif-
férentes, avec des conditions sur 1’entropie de la classe de reconstruction G (voir par exemple
van der Vaart & Wellner (1996)).

Remark B.4. (MODEL SELECTION) Une légere modification de la Proposition B.2 mene a des
bornes sur I’éxces de risque E[L(ge,, )] —inf,eg L(g). En suivant le principe de Structural Risk
Minimization (voir Vapnik (2001)), de telles VC bornes peuvent ensuite étre utilisés en tant
que termes de régularisation pour pénaliser le risque de HT (2.4) et, pour une suite de classes
de modelisation G, avec k > 1 de VC dimension fini, permet d’obtenit de nouvelles bornes

quand on choisit le classifieur ayant le minimum de risque {arg mingcg, Le,(g), k > 1} sur
la suite de classe.

La propriété de l’association négative étant partagée par de nombreux autres schémas
d’échantillonnage, le méme argument peut donc €tre naturellement appliqué pour effectuer
une analyse et établir des vitesses de convergence similaire pour les données d’apprentissage
produites par de tels plans. Cependant, cette analyse ne peut pas étre étendue a tous les
schémas d’échantillonnage. Nous contournons cette difficulté en utilisant les résultats étab-
lis pour le plan rejectif et en nous appuyant sur un argument de couplage. Considérons
un schéma d’échantillonnage abec une structure de dépendance a priori complexe R avec
des probabilités d’inclusion du premier ordre 7}, = (7], ..., 7)) représenté par le vecteur
€ = (e, ..., €) (avec des variables aléatoires non nécessairement négativement associés).
Soit g, un minimiseur du risque empirique HT Le: (g) = (1/n) 31, (ef /77 I{Y; # 9(X:)}

sur une classe G. Puisque nous avons déja établi des résultats dans le cas du schéma rejectif,
nous introduisons un schéma d’échantillonnage rejectif R,, décrit par les variables aléatoires

€y, avec probabilités d’inclusion du premier ordre 7, = (71, ..., m,) ainsi que la quantité
suivante: N

- 1 €;

Le,(9) = ~ 2; Y # 9(X0), (B.9)

pour tout classifieur g. Observez que (B.9) est différent du risque empirique de Horvitz
Thompson Le,, (g) 1ié au schéma d’échantillonnage réjectif €, car elle fait intervenir les 7}
au lieu des m;. L'exces de risque du minimiseur du risque empirique de Horvitz Thompson
peut étre borné comme suit:

L(g}) — inf L(g) < 2sup |L(g) = Lu(g)| + 25up [L0(9) — Le, ()
=Y g€eg 9€g

+2sup | Le, (9) — Le,(9)| + 25up | Le, (9) — Lez (9)| - (B.10)
Y 9€g

Nous avons controlé le premier terme du c6té droit de (B.10) en utilisant les inégalités Vapnik-
Chervonenkis et McDiarmid (voir par exemple Vapnik (2001) et le chapitre A), assertion (i) de
la proposition B.2 établie dans le cas du schéma rejectif permet d’obtenir un controle du second
terme. Le troisieme terme est borné au moyen d’un argument de couplage alors que le dernier
terme est controlé par des hypotheses liées a la proximité entre les probabilités d’inclusion du
premier ordre 7}, et 7,. Plus précisément, les hypotheses requises dans 1’analyse qui suit fait
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appel a la distance de variation entre les plans d’échantillonnage R,, et R}, définie par:
«y def 1 *
dTV(an Rn) = 5 Z |Rn(5) - Rn(s)’
s€EP(Zy)

Avec Ky = (N/n)min<, 7 et k, = (N/n X min<,m), nous établis-
sons que L(g:) — infyeg L(g) est de lordre de Op((kn(logn)/N)V?) + 2(k¥ +
kn)(n/N)infgr, dry(Rn, R}), ou le minimmum est pris sur I’ensemble des plans
d’échantillonnage rejectif R, ave probabilit¢é d’inclusion du premier ordre m, =

(1, vy ).

Theorem B.5. Supposons que les hypotheses de la proposition B.2 sont satisfaites. Soit k7, =
(N/n) min;<,, 7} et ky = (N/n)/ min;<,, m;. Alors il existe une constante C' < +oc tel que,
Vn > 1,

log(3) + V1 1 log(3) + V1 1
]Q\/M oB(3) + Viogln + 1), logld) +Vlogln +1)

2log(2
+C\/Z+2W+2(K7VJrfiN)(n/N)dTV(Rna R:L)’ (B.11)

ou le minimum est pris sur I’ensemble des schémas d’échantillonnage rejectif R,, ayant pour
probabilité d’inclusion du premier ordre les w,, = (71, ..., TN).

E |L(g,) — inf L(g)
geg

Le taux de convergence obtenu dépend de I’erreur minimale faite lors de I’approximation du
plan d’échantillonnage par un plan d’échantillonnage réjectif en termes de distance de varia-
tion totale. Il est du méme ordre dans le cas ou les observations sont échantillonnées unifor-
mément a un terme multiplicatif pres et montrent que 1’apprentissage avec un échantillon de
sondage est possible en tenant compte des probabilités d’inclusion du premier ordre.



136 Appendix B. Résumé des contributions en frangais

B.3 Stratégie d’échantillonnage pour 1’algorithme du gradient
stochastique

Nous présentons dans cette section un résumé des résultats établis dans les chapitres 3, 4 et
5, dans lequel nous présentons le probleme de la stratégie d’échantillonnage non uniforme
pour la descente de gradient stochastique (SGD en abrégé). Le probléme de minimisation du
risque empirique précédemment introduit est de la plus haute importance et la mise en ceuvre
d’algorithmes efficaces pour résoudre ce probleme est une question a laquelle nous avons tenté
de répondre. Nous considérons ici un cadre plus général que celui de la classification binaire,
et considérons les problemes d’optimisation de la forme:

i L = — 1(Z;,0), B.12
piy 0) = i D17 512
ol © est un espace euclidien, typiquement R? avec d > 1, et [(Z1,.), ..., I(Z,,.) forme

une collection de fonctions convexes continuellement dérivables valables sur ©. En ef-
fet, un tel probléme d’optimisation se pose typiquement dans une grande variété de prob-
lémes d’apprentissage statistique, en particulier de taches supervisées, ol 1’objectif poursuivi
est d’apprendre un modele prédictif, entierement déterminé par un parametre 6. La per-
formance de la fonction prédictive définie par 6 est typiquement mesurée par 1’espérance
L(9) = E[¢((X,Y),0)], appelée le risque, ou ¢ est un fonction de perte supposé convexe
0. 11 est généralement évalué via son homologue empirique

1 n
ni=
basé sur n > 1 exemples d’entrainement indépendants disponibles (X1, Y1), ..., (Xn, Ya),

copies de la paire aléatoire Z = (X,Y). Le probleme de minimisation (B.12) peut &tre ré-
solu de fagcon incrémentale, au moyen de variantes de la méthode approximation stochastique
initialement introduite dans la contribution séminale de Robbins & Monro (1951). Celui-ci
consiste a calculer les estimations successives d’un minimiseur de (B.2) en utilisant I’équation
récursive

0111 = 0 — 17(0r) (B.14)

a partir d’une valeur initiale 6y € ©, ou 7y dénote un estimateur du gradient Vin et v, est le
taux d’apprentissage ou step-size. La mise en ceuvre de SGD est assez simple pour la minimi-
sation d’un risque empirique prenant la forme d’une moyennes standard, car elle est générale-
ment effectuée en échantillonnant uniformément au hasard (avec ou sans remplacement) un
sous-échantillon d’observations avant de calculer un estimateur du gradient. Contrairement a
I’approche batch, ou toutes les données sont utilisées pour estimer le gradient a chaque itéra-
tion (ie 7:(0) = vin(a) pour tout t > O et § € O), seuls les sous-ensembles de 1’échantillon
de données sont impliqués dans les étapes d’estimation de gradient de dans ces algorithmes in-
crémentaux, dans le but de réduire le cofit de calcul lorsque n est grand. Dans I’implémentation
la plus couramment utilisée de 1’algorithme de la descente de gradient stochastique (SGD),
I’estimateur de gradient est calculé a partir d’un sous-ensemble de taille réduite S < n uni-
formément dessiné sans remplacement parmi tous les sous-ensembles possibles de taille .S a
chaque étape ¢ > 0. En pratique, la limitation principale de cette technique d’optimisation
incrémentale est due au bruit stochastique induit par le choix aléatoire des données impliquées
dans le calcul de I’estimateur de gradient a chaque itération. En particulier, la plupart des jus-
tifications théoriques du SGD sont établies dans un cadre tres général (voir Robbins & Monro
(1951) ou Bach & Moulines (2011a) par exemple) qui englobe le cas de la minimisation du
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risque empirique. Nous proposons d’introduire une stratégie d’échantillonnage non uniforme
ainsi qu’une nouvelle analyse soulignant I’avantage d’utiliser une stratégie d’échantillonnage
non uniforme pour le probleme de la minimisation du risque empirique. Nous introduisons
d’abord dans le chapitre 3 une nouvelle implémentation de 1’algorithme SGD, ou le sous-
ensemble de données utilisé a un pas donné n’est pas choisi au hasard parmi tous les sous-
ensembles possibles mais simulé & I’aide d’un schéma d’échantillonnage adaptatif spécifique,
construit a partir des itérations passées. Nous proposons ensuite un cadre général pour étendre
ces résultats en utilisant la théorie des sondages dans le chapitre 4 dans lequel nous prenons
également en compte la distribution de 1’observation dans notre analyse finale. Nous conclu-
ons cette section en considérant le cas spécifique ol le risque empirique prend la forme d’une
U -statistique et proposons une implémentation efficace de 1’algorithme SGD dans ce cas. Ici
dans le reste de cette sections, les opérateurs du gradient et de la hessienne par rapport a une
variable 6 sont notés V et V2 respectivement. Par convention, V° correspond a I’opérateur
d’identité et les valeurs de gradient sont représentées comme des vecteurs de colonne. Pour
tout vecteur V € R?, on note ||V|| sa norme euclidienne et pour toute matrice A on note A”
sa transposée.

B.3.1 Un stratégie d’échantillonnage non uniforme pour le SGD

Afin d’accélérer le processus d’apprentissage, nous introduisons une variante spécifique de
I’algorithme SGD avec un schéma d’échantillonnage adaptatif, en ce sens qu’il peut varier
avec t, en fonction des itérations passées. Nous considérons un échantillonnage non uniforme
avec remplacement. Nous commengons par identifier une bonne distribution d’échantillonnage
en choisissant celle qui minimise la variance de 1’estimateur. Lorsque 1’on tire un échantillon
S de taille S avec probébilités d’inclusion du premier ordre p; indépendamment avec rem-
placement, la quantité

EZL(Z“Q) (B.15)
S« b

€S

est un estimateur sans biais de V L, (6) avec une variance égale a:

1< IVIzio)| IVL,(0)]
SZ > 5 . (B.16)

=1

Pour obtenir la meilleure estimation du gradient (i.e en minimisant la variance) au parametre
0 conditionnellement aux observations, il est donc naturel d’échantillonner 1’observation Z;
avec probabilité: p;(0) = VI(Z;,0)|/ 227, [IVI(Z;,0)]| car ce choix minimise la valeur
de la variance. Malheureusement, la mise en oeuvre pratique du schéma d’échantillonnage
ci-dessus n’est pas pertinente car elle nécessite d’évaluer tous les gradients pour calculer les
normes ||VI(Z1,04)|, ..., ||VI(Z,,0:)]| achaque itération, ce que nous essayons précisément
d’éviter en utilisant 1’algorithme du gradient stochastique. Nous proposons donc un schéma
d’échantillonnage approximant p; := (p;(6;))!; sans nécessiter d’évaluation de gradient
supplémentaire. Nous utilisons quelques anciennes valeurs du gradient dans notre approxima-
tion. Plus précisément, 1’idée principale est de remplacer chaque norme de gradient inconnue
|\VI(Z;, 6)| par une norme précédemment calculée ¢:; = ||VI(Z;,6)| & un ancien instant
k = k(i,t) correspondant au dernier instant k£ < ¢ ot Z; a été tiré. Plus formellement, nous
définissons la suite aléatoire g, comme étant égale a:

p . . (S
IVUZ 00| ifi € (i), if3)

. (B.17)
Gt.i otherwise.

Gt+1,5 =
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Alors, une fagon naturelle d’approximer p; est de construire p; = (p,;);~; ol nous définis-

sons pour chaque ¢
gt

p ti — Zn o
=1 9t,j
Il s’avere que la convergence ne peut pas €tre garantie avec ce choix, car un certain composant

Dt.; peut étre arbitrairement proche de zéro. Un remede possible consiste a appliquer un plan
d’échantillonnage greedy:

(B.18)

Vi € {]-a tee n}) bii = pv; + (]— - p)pt,ia (B19)

ou v = (vq,...,Vy,) est une distribution de probabilité avec v; > 0 pour 1 < i < n, et
0 < p < 1. Cette condition a I’interprétation suivante: p, est un mélange entre deux lois de
probabilité et une de cette loi () est indépendante du passé. Maintenant que nous avons défini
notre stratégie d’échantillonnage, I’algorithme que nous proposons est simplement de calculer
a chaque itération ¢ un estimateur du gradient basé sur I’équation (1.11) par 1’observation
d’échantillonnage selon p; := (p; ;)7 ;. Cette stratégie d’échantillonnage peut également étre
mise en ceuvre efficacement dans la pratique et nous montrons que 1’échantillonnage dans le
cadre de cette stratégie n’a qu’un coit additionnel de O(log(n)). Les résultats théoriques
sont ensuite établis au moyen d’un argument asymptotique oll nous montrons qu’avec cette
stratégie d’échantillonnage, le comportement asymptotique de 6; est optimal jusqu’a une er-
reur proportionnelle a p. Sous les hypotheses suivantes nous montrons d’abord la convergence
de I’agorithme proposé:

Assumption 9. Pour touti € {1, ..., n}, la fonction § — [(Z;,6) est convexe, dérivable et
son gradient VI(Z;, 0) est L;-Lipschitz continue avec L; < +o0.

Assumption 10. i) La fonction § — En(a) est o fortement convexe, i) Le minimiseur 6} de
L,, est dans I’intérieur de K.

Le lemme ci-dessous permet de controler I’erreur quadratique moyenne a; = E(||6; — 0}[|),
ou 0, est généré par 1’algorithme 1. La preuve de ce résultat est fortement inspirée de Bach &
Moulines (2011a) et A.Nemirovski et al. (2009), ou des bornes similaires sont établies.

Lemma B.6. Sous les hypothéses 9 et 10, soit vy = 1t~ on g € (0,1] et supposons que
v > B/(2a). Pour tout t € N*,
at < Cve/p, (B.20)

N 2B2 B2 .
ouC = max(Qw‘;zll, 24) quand B = 1 et C' = max( L o1) sinon, avec

1 n
B, = — —1 1(Z:,0)|.
Sngi;% sup | VL(Z, 0)|

Ce résultat bien que classique quand 1’on cherche a prouver la convergence d’un algorithme du
gradient stochastique ne met pas en évidence I’avantage que 1’on aurait d’utiliser I’algorithme
que nous proposons. Nous contournons cette difficulté en établissant le premier lemme suivant,
caracterisant 1’écart moyen entre les gradients utlisés dans le schéma d’approximation et les
vrais gradients:

Lemma B.7. Sous les hypothéses du lemme 3.1, Pour tout t € N,

(20;)%2° C _
i L . .
b < 1—(1—pVi)5pt5+0(t ) (B.21)
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Ce lemme est le premier résultat intermédiaire requis pour montrer le meilleur comportement
asymptotique de I’estimateur que nous proposons, et caractérisé par le résultat suivant, établie
sous I’hypothese de la double différenciabilité au voisinage de 6;;, de la fonction ;. Nous
introduisons la distribution de probabilité 7* = pv + (1 — p)7*, ol

. IVU(Z;, 0;)]
T = <=m - (B.22)
251 IV Z;, 65)
porut tou i = 1, ..., n. Nous définisssons Q* = Y"1 | VI(Z;,0:)VI(Z;,0:)T /(Sn’m}) et

notons H = V2fn(0;;) la hessienne au point 6*.

Theorem B.8. Sous les hypotheses 9, 10 and 3, et avec un stepsize satisfaisant les condi-
tions énoncés dans le Lemme 3.1. Alors la suite (0; — 0;))/./7: converge eb distribution vers
variable aléatoire gaussience centrée avec matrice de covariance ¥ = ¥(p, v) est solution de
I’équation de Lyapunov suivante:

SH+HS = Q" (iff<1)
S(Ug+2nH)+ Uy +2nH)E =2mQ" (fB=1).

Le corollaire suivant est directement obtenu par la méthode delta du second ordre Pelletier
(1998). Nous notons Tr(A) la trace d’une matrice carrée A.

Corollary B.9. Sous les hypotheses que théoréeme B.S, vy, YLn(6) — Ly (6%)) converge en
distribution vers la variable aléatoire V- = (1/2)Z7%(p,v)\2HX(p, )2 Z o Z es un
vecteur gaussien N (0, I;). De plus, nous havons E(V') = tr(HX(p,v)) /2.

Nous utilisons maintenat le Corollaire 3.5 afin de comparer notre algorithme avec et son choix
de schéma d’échantillonage avec le meilleur schéma d’échantillonnage possible fixé. Notez
aussi que la recherche d’un meilleur d’un schéma optimal est aussi discuté dans Clemencon
et al. (2014).

Quand la distribution est fixée égale a p, la covariance asymptotique de I’erreur est donnée
par by X(1,p) tel qu’il est définie dans Theorem 3.4. Motivé par le Corollaire 3.5, nous
faisons référence a la meilleur distribution de probabilité comme étant le minimiseur p de
tr(HX(1,p)). Il est facile de montrer que

argmin tr(HX(1,p)) = 7",
P

ol 7* est définie dans (B.22). Nous définissons aussi 02 = tr(HX(1,7*)). La proposition
suivante est facilement établie a I’aide de résultats d’algebre linéaire classique.

Proposition 2. Soit X(p,v) la matrice de covariance asymptotique définie dans le
Théoreme B.8. alors,

o? < tr(HX(p,v)) < 07(1+ Sp/(1—p)).

La Proposition 2 établit que la performance de 1’algorithme que nous proposons peut étre rendu
aussi proche que possible de la performance associée a I’algorithme employant les probabilités
optimales, pour peu que p soit proche de zero. Il est bien entendu tentant de choisir p = 0
in (3.8), cependant dans ce cas le Théoréme 3.4 n’est plus vrai.
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Notez que tout les résultats obtenus dans le chapitre 3 restent vrais conditionnellement aux
observations et ne tient donc pas compte de la nature statistique de notre probleme (nous
résolvons ERM car nous ne connaissons pas le vrai risque). Nous abordons ce probleme dans
la section suivante ol nous discutons d’un probléme similaire (Stratégie d’échantillonnage non
uniforme pour SGD) dans le contexte de la M-estimation. Plus précisément, nous utilisons le
cadre des sondages introduit précédemment pour étendre nos résultats.

B.3.2 (HTSGD) et applications a la M-estimation

Les sections précédentes suggerent fortement d’utiliser les techniques de sondage pour
améliorer 1’algorithme d’apprentissage. Nous montrons maintenant comment incorporer
des schémas de sondage efficaces dans de telles techniques itératives pour la M-estimation.
Plus précisément, nous proposons un estimateur spécifique du gradient, que I’on appelle
Iestimateur estimation du gradient de Horvitz-Thompson (HTGD en bref). Pour I’estimateur
ainsi produit, les résultats de normalité asymptotique décrivant sa performance statistique sont
établis. Le framework que nous considérons est le méme que celui de la section 1.3.1. Nous
définissons 1" estimateur de Horvitz-Thompson du gradient £,,(6) basé sur un échantillon de
sondage S tiré par un design S,, avec probabilités d’inclusion du premier ordre {m; }1<;<n, et
le vecteur d’inclusion €,, = (€y,...,€y,) as

n

1«1 1 :
(5. (0) =~ > —VI(Z:.0) = “NI(2,0). (B.23)
ES 7

-
i=1 "'

Avec ces notations, nous étudions la convergence d’un algorithme SGD lorsque I’estimateur du
gradient est calculé en échantillonnant des observations dans un ensemble de données sous un
plan d’échantillonnage S,, (éventuellement en fonction de déoendant de ¢ et la valeur actuelle
du parametre). On note 6,,(7T") la valeur du parametre a 'instant 7. Conditionné sur les
données D,, = {Z1, ..., Z,}, nous étudions les propriétés asymptotiques de 1’estimateur M
produit par I’algorithme HTGD. Les résultats limites indiqués ci-dessous reposent essentielle-
ment sur le fait que I’estimateur HT (B.23) du gradient du risque empirique est non biaisé et
sous certaines hypotheses listées dans la section précédente.

Theorem B.10. (CONDITIONAL CENTRAL LIMIT THEOREM)  Supposons que vy = ot~ @
avec o € (1/2,1] et vo0 > 0. Quand o« = 1, y9 > 1/(21) et n := 1/(279); 1 := 0 sinon.
Conditionnellement a D,, nous avons la convergence en distribution quand t — —+00

V1/7 (0n(t) — 6)) = N(0,2x,),
ou la matrice de covariance asymptotique > est I’unique solution de
H,YX+YH,+2n¥x =17, (B.24)

avec I't =T,(6) and, for all § € O,

Tn(0) = % ;1 <7T7(T9)37% - 1> VI(Z;,0)VI(Z;,0)". (B.25)

La réduction de la variance asymptotique de 6, (T) (de En(én (T')), respectivement) est étudiée
plus tard dans le cas de Poisson (c’est-a-dire quand les ¢; sont indépendants). Par une applica-
tion directe de la méthode Delta du second ordre, nous caractérisons alors le comportement de
En(gn(t)) - En(ﬁj‘l) ol 6 est un minimiseur empirique des risques.
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Corollary B.11. (ERROR RATE)  Sous les hypothéses du theoréme B.10, conditionnellement
a D,, quand t — 00 nous avons la convergence en distribution :

~ ~ 1
1/ (La(0n(8) = Lal63)) = 5 U7 S Hy 220,
ou U est une q-dimensionnelle variable aléatoire gaussienne centrée réduite.

Nous discutons ensuite comment choisir 7; dans le cas ol les variables aléatoires sont de type
Poisson (cas ou les ¢; sont indépendants) et retrouvons le résultat du chapitre 3 en montrant
que 1’échantillonnage avec m; proportionnel a ||VI(Z;,0)|| donne des résultats optimaux en
essayant de minimiser la variance de En(é\n(t)) - En(é;;)

Proposition B.12. (OPTIMALITY) Sous les hypotheses du théoreme 5 quand n = 0 avec

S G VU(Z;,0) ||

N < inf B.26
S e [GVIZa o) (B.26)
1<i<n
et Gy = Hy "% Alors le sondage de Poisson avec probabilité d’inclusion {p}(0)}eco

defined for all 0 € © and i € Uy, by

1GnVI(Zi,0)|l

pi(0) = N =z
2= 1GnVU(Z;,0)]|

est solution du probleme de minimisation

sy

min

subject to pi(@) = N.
Pn={pPn(0)}oco Zz_; ( )

De plus, nous havons

2

n 2 n
P 1)1 (1 ) — L o2
=] =595 (n;Hanzz,en)r) 2 211G vz 0|

Nous établissons ensuite des résultats similaires dans le cas général ou le sondage n’est pas
de Poisson. Le chapitre est ensuite conclu par une analyse non conditionnelle par rapport aux
données. En dénotant par IV la taille moyenne d’un échantillon obtenue par un sondage, notre
analyse est finalement complétée en étudiant le comportement de 60,,(t) quand n, N tend vers
+00. Ceci est tres différent de ce que nous avons fait dans le chapitre 3 parce que notre analyse
s’était limitée au cas ou n est fixé a I’avance nos résultats étaient obtenus conditionnellement
aux observations. Cela nous permet d’illustrer le compromis bien connu entre la généralisa-
tion (asymptotique) et les erreurs d’optimisation, régies par le comportement limite de n~y; /N
(voir Bottou & Bousquet (2008) par exemple). Nous montrons que sous des hypotheses sup-
plémentaires, si limnvy;/N = ¢ > 0, alors nous avons la convergence dans la distribution:

lm {lim yn <§n(t) - 0)} = N(0,A* + c%).
n, N—oco (t—00

ol lim,, N0 NI';, = I'* et A* est la matrice de covariance asymptotique impliquée dans

le TCL pour la M estimation appliquée a 0, — 6*. L’énoncé complet du théoréme requiert

I’hypotheses suivante:

Assumption 11. Quand n et N tendent vers oo, NI';, converge en probabilité vers une matrice
matrix ['* semi-définie positive.
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Bien que cette condition ait I’air forte au premier abord, elle est en général assez souvent
satisfaite. En particulier elle est vrai dans le cas poissonien sous de faibles hypotheses.

Theorem B.13. Sous les hypotheses 4, 5, 7 et si v, satisfait les conditions du Théoréme B.10
avec o < 1 (et doncn = 0). Si H* = E[V?1(Z,6*)] soit

A* = (H)'B[VI(Z,0°)VI(Z,67)T)(H*) "

et ¥ la solution unique de: H*Y + X H* = T'*. alors:

(i) If Nlim NVt = +00, alors nous avons la convergence en distribution.:
n,N,t—-+oo

Jim {Jim VN 0a(0) - 67) | = N (0.3).

(ii) If hm ~ 7t = 0, alors nous avons la convergence en distribution:
N,t—400

lim V7 (0,(t) — 6%) = N(0, A%).

n,N,t——+o0

(iii) If th ~ 7 = ¢ > 0, alors nous avons la convergence en distribution:
n,N,t—-+00

lim { lim /7 (6 (t) — e*)} = N(0, A" + c5%).

n,N—oo (t—oo

Avec 7, typiquement de 1’ordre O(1/t), la condition lim ny,/N = ¢ > 0 donne une idée de
la facon dont le nombre d’itérations doit étre réglé en fonction du nombre d’observations et la
taille du dataset a disposition pour obtenir des résultats optimaux.

B.3.3 SGD pour la minimisation de U-Statistic

Nous discutons ici de I’'implémentation de SGD dans le cas ou le risque empirique prend
la forme d’une U-Statistique. Nous présentons brievement le probléme et les notations et
expliquons la différence avec les problemes de la section B.3.1 et B.3.2.

Les U-statistiques sont des extensions des moyennes. En apprentissage automatique, elles
sont utilisées comme criteres de performance dans de nombreux problémes, Metric Learning
et AUC en particulier sont deux exemples que nous considérons dans nos expériences. Elles
sont définies comme suit:

Definition B.14. Soit K > Let(dy, ..., dx) € N*K. SoitXgy oy = (X7, ..., X,
1 < k < K, soit K échantillons indépendants de tailles ny > dj et composés de variables
aléatoires i.i.d prenant leurs valeurs dans un espace mesurable X} avec distribution F(dz)
respectivement. Soit H : del X oo X X}'?( — R une fonction mesurable, de carré inté-

grable par rapport a y = F1®d1 Q- Ff?dK . Supposons en plus (en toute généralité) que
H(X(l), ey X(K)) soit symétrique en ses arguments x(¥) (2 valeurs dans Xg’“), 1<k<K.
La K U-statistique généralisée de degrés (di, ..., dx) avec noyau H, est alors défini comme

suit:
Un(H) = T Zk ; ZH(X“) X X)), (B.27)
k 1
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oin = (ni, ..., ng), le symbole >, --->°; fait référence a la sommation sur tous
les éléments de A, I’ensemble des vecteurs d’index Hk 1 ( ) (I, ..., Ig), I} étant un
ensemble de dj, index 1 < 7; < ... < ig, < ny et X([k) = (XZ.(lk), ce XZ(::) pour
1<k<K.

La sous-section B.3.1 et B.3.2 préconise I’ utilisation de SGD pour gérer le nombre de termes
polynomial dans (1.8). Notons que lorsque le risque empirique prend la forme d’une statistique
U généralisée, le nombre de termes impliqués dans la somme est de I’ordre O(nd1+dx)
rendant le probleme extrémement difficile & résoudre. Néanmoins, nous montrons comment
implémenter le SGD dans ce cas.

Nous nous placons dans le cadre paramétré. Notant encore © 1’espace des parametres, avec
H: Hle X: ¥ x © — R une fonction de perte convexe , nous notons la version empirique du
risque par § € © — L,,(8) = U,(H(.; 6)). Comme nous I’avons mentionné précédemment,
la mise en ceuvre de SGD est assez simple pour la minimisation des statistiques standard,
car elle est généralement réalisée en échantillonnant uniformément au hasard (avec ou sans
remplacement) un sous-ensemble d’observations avant de calculer un estimateur du gradient.
Lorsque le risque empirique prend la forme d’une U statistique, 1’algorithme SGD pourrait
étre implémenté de cette facon. Cela conduirait a un estimateur du gradient égal a:

- 1 K
gn,(a)—iz ZVH XX ), (B.28)
Hk‘ 1(dk) I
N Ry 5 1(k ) (k) 1(R)Y 134
ou ), fait référence a la somme des " i ) sous-ensembles X'} 7 = (X7, ..., X; ) liés
k
a un ensemble I, de dj indexes 1 < i1 < ... < ig, < 1, et n’ = (n}, ..., ny). Dans

le cas de U-Statistiques,, nous montrons que cette stratégie (que nous appellerons plus tard
"complete U -statistique") n’est pas efficace. Nous proposons plutot de procéder différemment
en tirant indépendamment avec remise parmi 1’ensemble des vecteurs d’index A, obtenant un
estimateur du gradient sous la forme d’une incomplete U -statistique (voir Lee (1990a)):

. 1 (1) (K).
gs(0) = % > VHX, .. X050, (B.29)
(I1, ..., Ix)€Dp
olt Dy est construit en échantillonnant B fois avec remplacement dans ’ensemble A. Le
parametre B est le nombre de termes moyennés. Pour le méme coiit de calcul (ie, prendre
/

B = Hszl (Z’:)) et implémenter SGD avec (B.29) plutot que (B.28) donne de "meilleurs"
solutions, essentiellement parce que (B.29) est un estimteur avec une plus petite variance (sauf
dans le cas ot K = 1 = d;). Intuitivement, 1’échantillonnage d’une incompléte U -statistique
est préférable car le nombre d’observations présent dans cet estimateur est supérieur au nombre
d’observations présent dans I’estimateur complet.

Ceci est mis en évidence lorsque 1’on compare conditionnellement aux observations les perfor-
mances des méthodes SGD décrites ci-dessus en étudiant a la fois le comportement asympto-
tique et non asymptotique de 1’algorithme SGD pour les deux implémentations. Comme nous
I’avons déja fait dans les chapitres précédents, nous proposons des bornes de généralisation
similaire a (voir Bottou & Bousquet (2007)), nous décomposons I’erreur stochastique comme
suit:

BIL(0:) — L(0°) < 26 [sup|E.(0) - L<e>@ VE[L.0) - Lu0)] . B30

& &
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ol #* = argming.g L(6) et montrons le téoréme suivant:

Theorem B.15. Soi 0; la séquence obtenue par ’algorithme du gradient stochastique avec la
U-statistique incomplete, (5.6) avec B = Hle (Z:) termes avec des 1, ... ,n. Suppose
que {L(.; 0) : 6 € ©} est une VC classe avec dimension VC dimension V tel que

Mg = sup HxW, ..., x5 )] < +oo, (B.31)
9cO, (xM), ..., xUD)e[TE_| Xsk

et Ng = SUPyco ag < +o0. Si le stepsize satisait les conditions de 5.4, on a:

CNe
Btb

voeNK, E[|L(6,) - L(0)]) <

2V 1 1
+2M@{2 Vog(ﬂ)}

K

Pour tout § € (0,1), on a aussi avec probabilité au moins 1 — §: ¥n € N*K,

L(0)—L#")| < (CNG s Dﬁlog<2/5>>+2 o {2\/2v10g<1+m> ., wog@/a)}_

Bt# t8 K K
(B.32)
pour des constantes C' et Dg dépendant des parameétres [, o, 71, a1.

La limite de généralisation montre 1’avantage d’utiliser la méthode incomplete pour obtenir un
estimateur de gradient tout en mettant en lumiere le fait bien connu que lorsque nous utilisons
une méthode d’optimisation pour résoudre le probleéme de minimisation du risque empirique,
nous devons prendre en compte les bornes de généralisation pour que I’erreur d’optimisation
soit du méme ordre (voir la sous-section B.3.2).
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B.4 Vitesse rapide pour la reconstruction de graphe

Cette section est un résumé du chapitre 6 dans lequel nous présentons un bref apercu du prob-
léme de reconstruction de graphes. Nous introduisons dans un premier temps le contexte
avant de décrire le probleme d’intérét. Soit G = (V, FE) un graphe aléatoire non orienté

avec un ensemble V' = {1, ..., n} de n > 2 sommets et un ensemble £ = {e; ; : 1 <
i # § < n} € {0,1}"1) décrivant ses arétes: pour touti # j,onae;; = ej; = +1
si les sommets 7 et j sont reliés par une aréte et ¢; ; = e;; = 0 sinon. Nous supposons

également que pour tout ¢ € V, une variable aléatoire continue X; est associé au sommet
i. Les X; sont i.i.d. et pour tout i # j, la paire aléatoire (X;, X;) représente un ensemble
d’informations utiles pour prédire 1I’occurrence d’une aréte reliant les sommets ¢ et j. Condi-
tionnellement a (X3, ..., X,,), les variables aléatoirese; ; et ej; ne sont indépendantes que
si{i,7} N{k,1} = 0. En particulier, la distribution conditionnelle de ¢; ;, i # j, est supposée
dépendre uniquement de (X, X;) et est décrite par:

T](X,L,Xj) = P{em = +1 | (XZ,X])} (B33)

Le probleme d’apprentissage introduit par Biau & Bleakley (2006), appelé graph reconstruc-
tion, consiste A construire une régle symétrique de reconstruction g : X? — {0,1}, a partir
d’un graphe d’apprentissage (7, avec un risque de reconstruction le plus petit possible:

R(g) = P{g(X1,X2) # e12}, (B.34)

obtenant ainsi dans le meilleur des cas une performance comparable a celle de la regle de Bayes
9" (z1,72) = I{n(x1,z2) > 1/2}, dont le risque est donné par R* = E[min{n(X, Xs), 1 —
T](Xl, XQ)}] = infg R(g)

Le risque de reconstruction (B.34) n’étant pas disponible, il est remplacé par sa version em-
pirique basée sur I’ensemble labélisé D,, = {(X;, Xj,e;5) : 1 < i < j < n} associé a
G:

Y Hg(Xi Xj) # el (B.35)

1<i<j<n

Notez que (B.35) présente a prioir une structure de dépendance complexe car ce n’est pas
une somme de variables aléatoires indépendantes. Soit g, un minimiseur du risque empirique:
mingeg ﬁn( g), ou G estune classe de reconstruction. Comme nous 1’avons déja fait précédem-
ment, les performances de g,, sont alors mesurées par R(g,,) —inf,eg R(g), qui peut étre borné
si nous pouvons obtenir des inégalités de concentration sur 1’écart maximal

sup [R,(g) — R(g)|- (B.36)
geg

Biau & Bleakley (2006) établissent des bornes de I’ordre Op(1/+/n) pour le risque de re-
construction de g,, sous des hypothéses de complexité appropriées (a savoir que G a sa VC-
dimension finie). Nous prouvons que les taux d’ordre Op(logn/n) sont toujours atteints par
les minimiseurs du risque de reconstruction empirique (B.35) sans autres hypotheses. Pour
établir ce résultat, nous nous appuyons sur certains arguments utilisés dans 1’analyse de taux
rapide pour la minimisation empirique de U-statistiques (Clémengon et al., 2008a), bien que
ces résultats soient établis sous des hy6theses resctrictives. Alors que la quantité (1.23) n’est
pas une U -statistique, nous réécrivons la différence entre 1’exces de risque de reconstruction
de toute regle candidate g € G et sa contrepartie empirique comme somme de son espérance
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conditionnelle étant donné les X;, qui sont des U-statistiques, plus un terme résiduel. Déno-
tant par A(g) = R(g) — R* I’exces de risque de reconstruction par rapport a la regle de Bayes,
son estimateur empirique est donné par

~

An(g) = Ralg) — Rulg").

Pour tout g € G, nous avons la décomposition suivante:

—

An(g) — A(g) = Un(g) + Wa(g), (B.37)

Un(g) - ]E[An<g) - A(g) ’ . STIFR XTL]

est une U-statistique de degree 2.

Sous une certaine condition de «faible bruit», 1’analyse effectuée par Clémencon et al.
(2008a) montre qu’une "small variance property" des U-statistiques conduit a des vitesses
d’apprentissage rapides pour les minimiseurs du risque empirique. Nous montrons que cette
condition est toujours remplie pour la U-statistique spécifique U, (g), apparaissant dans la dé-
composition (B.37). Ce résultat est dii au fait que le risque de reconstruction empirique n’est
pas une moyenne sur toutes les paires (ie, une statistique U d’ordre 2) mais une moyenne sur
des paires sélectionnées au hasard aléatoirement par la fonction 7). Nous concluons ensuite la
preuve des résultats en établissant que le terme restant W, (g) est également d’ordre Op(1/n).

Theorem B.16. (VITESSE RAPIDES) Soit §,, un minimiseur du risque empirigue (??) sur une
classe G avec VC-dimension V' < +o00. Pour tout § € (0, 1), nous avons avec probabilité au
moins 1 — 6: Vn > 2,

V'log(n/d)

R(Gn) — R* <2 [ inf R(g) — R* | + O x —=>1L20
(9n) < (;relg (9) >+ X -

ou C < +o0o est une constante universelle.

Remark B.17. (SUR LE TERME DE BIAIS) Au dela de son universalité, Theorem B.16 a la
méme forme que dans le cas des U-Statistiques (Clémencon et al., 2008a, Corollary 6), avec la
méme constante devant Is biais inf,cg R(g) — R*. Néanmoins, la preuve du theoréme montre
que cette constante n’a pas de signification particuliere et peut €tre remplacée par n’importe
quelle constance plus grande que 1 mais en augmentant alors la valeur de la constante C.
Notez aussi que la vitesse O(1/4/n) obtenu par Biau & Bleakley (2006) a un facteur 1 en face
du terme de biais. Donc, Théoreme B.16 est un meilleur résultat a moins que le terme de biais
ne domine complétement le second terme de la borne (i.e., la compléxité de G est trop faible).

Nous concluons enfin notre analyse en passant le processus d’apprentissage a 1’échelle.
Comme pour le chapitre 5, pour les graphes d’entrainement, la complexité de simplement
calculer ﬁn (g) est prohibitive car le nombre de termes impliqués dans la sommation est de
I'ordre de O(n?). Tout comme nous I’avons fait dans la section B.3.3, nous introduisons
une approche basée sur 1’échantillonnage pour construire des approximations du risque de re-
construction avec beaucoup moins de termes que O(n?). Au lieu du risque de reconstruction
empirique (B.35), nous considérons une approximation incompléte obtenue en échantillonnant
des paires de sommets (et non pas sommets) avec remise. Un parallele peut facilement étre
tiré avec les résultats obtenus dans le chapitre 5 ol nous avons recommandé d’implémenter
I’algorithme SGD avec des U -Statistiques incomplétes, ce qui correspond dans ce cas a tirer
des aretes plutot que de noeuds. Formellement, nous définissons le risque de reconstruction
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de graphe incomplet basé sur B > 1 paires de sommets comme

ﬁB(g)zé > {g(Xi, X;) #eij}, (B.38)

(17]) €Pp

ol P est un ensemble de cardinalité B construit en échantillonnant avec remise dans
I’ensemble ©,, = {(i,j) : 1 <i < j <n}.Pourtoutb € {1, ..., B} ettout (i,5) € Oy,
notons (4, j) la variable aléatoire indiquant si la paire (,5) a été sélectionnée au b-ieme
tirage. Le risque incomplet est alors représenté par:

~ 1 &

Rp(9) =5 >, alid) H{g(Xi X)) #eij}. (B.39)
b

=1 (4,7)€On

et étant donné les X;, son espérance conditionnelle est égale a (4.2). En prenant B = o(n?),
les cofts de calcul sont considérablement réduits, au prix d’une variance 1égerement accrue.
Nous caractérisons la performance des solutions gp pour le probleme de calcul plus simple
mingeg Rp(g) et montrons qu’avec seulement B = O(n) paires, le taux est du méme ordre
(jusqu’a un facteur log) que celui obtenu par Biau & Bleakley (2006) pour 1’écart maximal
SUPgeg IRn(g) — R(g)| 1ié au risque de reconstruction complet R, (g) avec des paires O(n?).

Theorem B.18. (UNIFORM DEVIATIONS) Supposons que la class G a VC-dimension V <
+o00. Pour tout § > 0, n > 1 et B > 1, nous avons avec probabilité au moins 1 — 9.,

\/logQ + Vieg ((1+n(n—1)/2)/6)
2B

sup [R5(g) — Ra(g)] <
geg

Comme attendu, nous montrons que le nombre B > 1 de paires de sommets joue le role d’un
parametre de réglage, arbitrant un compromis entre précision statistique (prenant B(n) =
O(n?) entierement préserve le taux de convergence) et la complexité de calcul.

Theorem B.19. Soit g un minimiseur de (6.7) sur une classe G avec VC-dimension V <
+o0. Alors pour tout 6 € (0, 1), nous avons avec probabilité au moins 1 — 6: ¥n > 2,

R(Gg) — R* <2 <;2£ R(g) — R) + CV log(n/8) x (:L + ;E) ,

on C < +o0 est une constance universelle.

des expériences numériques illustrant et justifiant les différents résultats théoriques proposés
dans cette sous-section sont aussi réalisés.
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