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Chapter 1

Résumé en Français

1.1 Introduction

Dans cette section, nous allons introduire le problème de détection d’anomalie qui a motivé cette

étude. Notre travail s’inscrit dans une étude plus vaste réalisée chez Thales SystèmesAeroportés,

qui a débuté en 2010, quand a grandi l’idée d’utiliser des techniques d’apprentissage automatique

pour compléter le système de détection de panne qui équipe les radars produits à Thales. Nous

présenterons le problème industriel, l’équipement concerné, les données qu’ils produisent lors

de leur utilisation, quel est le système de détection actuel et les motivations industrielles qui ont

mené à notre étude.

Thales est un groupe mondial spécialisé dans l’aéronautique, l’espace, le transport terrestre,

la sécurité et la défense. Thales Systèmes Aeroportés, appartenant à la division aéronautique,

développe des systèmes qui répondent à de nombreux besoins opérationnels: systèmes embar-

qués, sous-systèmes, systèmes ou services complets, pour les clients militaires et civils. Dans le

cadre de son expertise, cette entreprise française surveille de nombreux programmes militaires

et travaille comme sous-traitant pour des programmes d’autres entreprises, comme Dassault Mi-

rage et Dassault Rafale, deux avions de chasse français produits par Dassault Aviation. Plus

précisément pour ces deux avions, Thales développe et produit certaines de ses composants élec-

troniques, parmi lesquelles leur radar de combat, les systèmes de défense intégrés, les systèmes

de gestion de vol, le contrôle de tir, les interfaces pour pilotes, les pods, les capteurs, etc.

Cette thèse répond à un besoin spécifique concernant le radar RBE2 (Radar à Balayage Élec-

tronique 2 plans), qui est le radar de combat équipant le Rafale. A de nombreux titres, il est plus

performant et complexe que les radars de générations antérieures.

1



1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

1.1.1 La maintenance intégrée

Un radar de combat est composé de nombreux sous-systèmes : l’antenne, le module hyper-

fréquence, des blocs de traitement du signal, un système de refroidissement, des interfaces avec

l’avion, entre autres. Tous ces composants doivent fonctionner de manière optimale dans de

nombreuses situations extrêmes, par exemple lors de fortes vibrations, des accélérations bru-

tales, où en présence de forte humidité, fortes pressions ou températures. Ces conditions de

fonctionnement peuvent causer des dégâts ou un vieillissement précoce. Pour contrôler leur état

de santé, chaque radar est équipé d’un système de maintenance, appelé maintenance intégrée,

qui a pour objectifs :

• Évaluer l’état de fonctionnement du radar et informer les autres systèmes de l’avion,

• Détecter et localiser les éléments en panne,

• Produire des rapports exploitables par des équipes expertes pour des investigations futures.

1.2 Apprentissage d’un modèle graphique

1.2.1 Présentation du modèle mixte pair-à-pair

Dans ce chapitre, nous introduisons les modèles graphiques mixtes et comment les appren-

dre à partir de données. Les données que nous examinons sont des échantillons de variables

hétérogènes : certaines variables sont quantitatives et peuvent représenter des gains, des phases

ou des températures, et d’autres variables sont catégorielles et peuvent représenter des états ou

des modes de fonctionnement. Dans les sections suivantes, on désignera par X une instance

des variables x, avec x = (xC;xQ) où xC = (xi; i ∈ C) sont les variables catégorielles et où
xQ = (xu;u ∈ Q) sont les variables quantitatives. Ici C et Q représentent respectivement les

indices des variables catégoriques et quantitatives de x.

Comme expliqué précédemment dans la section 1.1, les modèles graphiques non orientés

pair-à-pair offrent de nombreux avantages. La restriction aux modèles pair-à-pairs est un bon

compromis entre richesse des modèles disponibles et complexité d’apprentissage. Cette com-

plexité est polynomiale et rend l’apprentissage envisageable en grande dimension.

Lemodèle proposé est unmodèle mélangeant unmodèle Gaussien, utilisé quand les variables

sont continues et à valeur dansR, et un modèle d’Ising, utilisé quand les variables sont binaires à

valeur dans {−1, 1} ou {0, 1}. Un modèle Gaussien est paramétré par une matrice de covariance

2



1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

Σ définie positive et un vecteur moyenne µ, et sa densité est donné par

pΣ,µ(x) =
1

(2π)
n
2 |Σ| 12

exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
.

Cette densité peut se réécrire en utilisant la matrice de précision ∆ = Σ−1, et est donnée par

p∆,µ(x) =
1

Z∆,µ

exp

[
µT∆x− 1

2
xT∆x

]
, (1.1)

, où ici Z∆,µ est la constante de normalisation. Un modèle d’Ising est paramétré par une matrice

symétrique Θ = {(θi)i=1...n, (θij)i>j)}, et sa distribution est donnée par

pΘ(x) =
1

ZΘ

exp

[∑
i=1

θixi +
∑
i>j

θijxixj

]
, (1.2)

oùZΘ est la constante de normalisation. Dans ce rapport, nous utiliserons {0, 1} comme domaine

pour les variables binaires xi, ce qui implique notamment xi = x2
i . La densité d’un modèle

d’Ising peut ainsi se réécrire

pΘ(x) =
1

ZΘ

exp

[
n∑

i,j=1

θijxixj

]
=

1

ZΘ

exp(xTΘx). (1.3)

Ici nous considérons uniquement des variables binaires, et non pas des variables catégorielles (qui

peuvent être non binaires) . Il est possible d’utiliser un modèle de Potts (voir Potts [1953]) avec

des variables catégorielles, cependant ce modèle ne peut être utilisé que si toutes ces variables ont

le même domaine et si les états des différentes variables sont comparables, ce qui n’est pas le cas

des variables du RBE2. Pour résoudre ce problème, on peut binariser les variables catégorielles

non binaires avec le schéma classique one-hot, comme suggéré par [Bishop, 2006, §4.3.4] et

Schmidt [2010]. Le principe est le suivant: pour i ∈ C, si xi prends des valeurs dans 1, . . . ,mi, on

utilisera à la place le vecteur t(i) ∈ {0, 1}mi , avec t
(i)
k0

= 1 si xi = k0, et t
(i)
k = 0 ailleurs, pour k 6=

k0. Cette transformation est réalisée uniquement pour les variables catégorielles et ne va donc

impacter que les paramètres Θ and Φ, dont les dimensions vont augmenter en conséquence.

Dans la suite, quand on utilisera les notations X , x, XC et xC , on supposera que les variables

catégorielles non binaires ont déjà été binarisées.

On peut maintenant introduire le framework des modèles graphiques non orientés mixtes.

Pour des variables hétérogènes x = (xC, xQ) avec xC ∈ {0, 1}|C| and xQ ∈ R|Q|, on défini la
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1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

densité d’un modèle mixte non orienté pair-à-pair par

pΩ(x) =
1

ZΩ

exp

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
, (1.4)

oùΩ = (Θ, µ,∆,Φ) contient tous les paramètres du modèle, et où ZΩ est la fonction de partition

définie par

ZΩ =
∑

xC∈{0,1}|C|

∫
R|Q|

exp

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
dxQ. (1.5)

Ici, Θ = (θij)i,j∈C est une matrice symétrique, µ = (µi)i∈Q ∈ RQ, ∆ = (δuv)u,v∈Q est une

matrice symétrique définie positive et Φ = (φiu)i,u∈C×Q est une matrice quelconque. Pour sim-

plifier les notations, nous avons confondu les indices des variables C andQ avec les indices des

matrices correspondantes.

Le modèle (1.4) a d’intéressantes propriétés. On dénote par xC et xQ les variables binaires

et quantitatives, respectivement, avec x = (xC, xq) où xC ∈ {0, 1}|C| and xQ ∈ R|Q|. Les quatre

propriétés suivantes sont valables pour n’importe quel modèle mixte pair-à-pair (1.4) paramétré

par Ω = (Θ, µ,∆,Φ):

i. Etant donné xC , la distribution conditionnelle de xQ est gaussienne demoyenne∆−1
(
µ+ ΦTxC

)
et de matrice de covariance ∆−1.

ii. Etant donné xQ, la distribution conditionnelle de xC est un modèle d’Ising de paramètres

Θ+ Diag (ΦxQ).

iii. La distribution marginale de xC est un modèle d’Ising de paramètres Θ + Φ∆−1ΦT/2 +

Diag (Φ∆−1µ).

iv. La distribution marginale de xQ est un mélange de modèles Gaussien, sauf quand Φ = 0,

dans quel cas elle est gaussienne de moyenne ∆−1µ et de matrice de covariance ∆−1.

Deux de ces propriétés sont illustrées sur la Figure 1.1, où on illustres quelques simulations de

la densité mixte (1.4) dans le cas Φ = 0 (à gauche) et dans le cas Φ 6= 0 (à droite). Le processus

d’échantillonnage sera décris ultérieurement par l’algorithme ??. La propriété 1.0.i, indiquant

que les variables quantitatives ont conditionnellement une distribution gaussienne, est illustrée

sur les deux figure, où les échantillons de même couleur proviennent de la même distribution. La

propriété 3.1.iv, indiquant que la densité marginale de xQ est gaussienne seulement si Φ = 0, est

illustrée sur les deux figures: à gauche, où Φ = 0, les échantillons quantitatifs ont effectivement

une distribution gaussienne, tandis qu’à droite, où Φ 6= 0, les échantillons n’ont pas une densité

gaussienne multivariée mais un mélange de distributions gaussiennes.
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1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

Figure 1.1: Illustrations d’échantillons i.i.d. de la densité mixte (1.4) avec 2 variables quantitative et 3

variables binaires. Sur les deux figures, les variables binaires sont représentées par 23 = 8 couleurs, et

les deux variables quantitatives sont affichées dans le plan. La figure de gauche illustre le cas Φ = 0, i.e.,
quand xQ et xC sont indépendants, et la figure de droite illustre le cas Φ 6= 0, i.e., quand xQ et xC sont

dépendants.

1.2.2 Apprentissage d’un modèle

Nous avons développé deux algorithmes pour apprendre la structure et les paramètres d’un mod-

èle à partir de données : optimisation de la vraisemblance pénalisée en utilisant une version

stochastique du gradient proximal, et optimisation de la pseudo vraisemblance pénalisée en util-

isant la version classique du gradient proximal.

L’apprentissage repose sur une propriété importante du modèle mixte (1.4) : il est associé à

une fonction de vraisemblance strictement concave. Étant donné un ensemble deM échantillons

D = {X(m) = (X
(m)
C , X

(m)
Q ),m = 1, . . . ,M}, la log-vraisemblance de Ω = (Θ, µ,∆,Φ) est

donnée par

`(Ω : D) =
M∑

m=1

log pΩ(X
(m))

=
M∑

m=1

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
− logZΩ. (1.6)

On peut montrer que cette fonction est concave enΩ, et que le maxima est unique. Cette propriété

permet d’identifier un unique modèle à partir des données.

Il est connu que les méthodes à base d’optimisation de vraisemblances ont tendance à overfit-

ter les données d’apprentissage, et vont résulter en un réseau complètement connecté. L’utilisa-
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1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

tion de pénalisation permet de corriger ce problème. En l’occurrence, l’usage de la pénalisation

` − 1 dite Lasso (voir Tibshirani [1996]) est légitime lorsque l’on recherche à apprendre un

modèle parcimonieux. Cette pénalisation implique l’ajout d’un terme de régularisation dans la

fonction à optimiser:

− 1

β

k∑
i=1

|ωi| = −
1

β
||Ω||1,

où || · ||1 est la norme L1. Remarquons que ce terme est aussi concave.

Dans le cadre de notre étude, dans la mesure où certaines variables catégorielles ont été

binarisées, la pénalisation `1/`2 est prescrite (voir Yuan and Lin [2006]) afin de tenir compte des

apriori sur les variables issues de la binarisation. Cette pénalisation implique l’addition du terme

suivant dans la fonction objective:

− 1

β

J∑
j=1

||ωKj
||2,

uù ωKj
correspond au sous-ensemble {ωi, i ∈ Kj}, et où {Kj}j est l’ensemble des indices des

variables issues de la binarisation. Observons que ce terme est aussi concave.

Toutes les pénalisations pénalisent les paramètres d’amplitudes élevées (positifs ou négatifs),

cependant leurs impacts sont différents. De nombreux auteurs ont étudiés les impacts de leurs

utilisations (e.g., voir Ng [2004]). En pratique, la principale différence réside dans le fait que

les modèles appris avec une régularisation `1 ont tendance à être beaucoup plus parcimonieux

que des modèles appris avec des régularisation `2 ou `1/`2, c’est-à-dire que ces modèles auront

beaucoup plus de paramètres à zéro. D’un point de vue structurel, cela résulte en un graphe avec

beaucoup moins d’arc et des potentiels plus parcimonieux.

Le problème d’apprentissage à résoudre est trouver l’estimateur

Ω̂ = Argmin
Ω

(−`(Ω : D) + g(Ω)) , (1.7)

où D = {X(1), . . . , X(M)} est l’ensemble d’apprentissage et g est une pénalisation sur les

paramètres Ω du modèle. Dans la mesure où le Lasso tend à créer des structures parcimonieuses,

on utilisera une régularisation particulière pour ∆ afin d’assurer que cette matrice reste bien

symétrique définie positive durant l’apprentissage; cette hypothèse est en effet obligatoire pour

garantir que pΩ est une densité valide, mais aussi pour des raisons numériques : assurer que la

matrice∆ reste dans un compacte assure que la fonction d’apprentissage est gradient-Lipschitz,

ce qui est une hypothèse requise pour les algorithmes d’apprentissage proposés par la suite. La

régularisation envisagée est une contrainte d’ensemble compact définie comme suit : pour tout
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0 < ρ < 1, on dénote par Kρ le sous-ensemble compact des matrices définies positives défini

par

Kρ = {∆1/2
0 (I + ε)∆

1/2
0 : ε is symmetric with

−ρ < λmin(ε) < ρ} ,

où I est la matrice identité, λmin et λmax sont respectivement la plus petite et plus grande valeur

propre et ∆0 est la précision empirique définie par

∆0 =

[
1

M

M∑
m=1

(X(m) − X̄)(X(m) − X̄)T

]−1

,

où X̄ est la moyenne empirique de l’ensemble {X(m),m = 1 . . .M} de M échantillons. Ici, ρ

est choisi arbitrairement pour assurer la convergence de l’optimisation numérique ; en pratique,

on a simplement besoin de contrôler que l’estimateur obtenu reste bien à l’intérieur du compact.

La pénalisation utilisée est finalement

g(Ω) = λθ

∑
k 6=k′∈K

‖θkk′‖2 + I{Kρ}(∆) + λ∆

∑
u<v∈Q

|∆uv|+ λΦ

∑
k∈K,u∈Q

‖Φku‖2, (1.8)

où I{Kρ} est la fonction caractéristique de l’ensemble Kρ, i.e.,

I{Kρ}(∆) =

0 if ∆ ∈ Kρ,

+∞ otherwise,

où θkk′ = (θii′)i∈k,i′∈k′ et φku = (φiu)i∈k où, pour tout i ∈ C, ki est l’ensemble des indices des

variables crées lors de la binarisation. Remarquons que nous ne pénalisons pas les diagonales

de Θ et ∆.

Le problème général d’apprentissage revient à trouver l’estimateur

Ω̂ = Argmin
Ω

(−`(Ω : D) + g(Ω)) , (1.9)

où D = {X(1), . . . , X(M)} sont les données d’apprentissage, ` est une fonction de contraste et g
est la pénalisation sur les paramètres Ω définie par (1.8).

Remarquons que la fonction à optimiser est strictement convexe, et qu’elle est la somme

d’une fonction de classe C1 avec un gradient Lipschitzien, et d’une fonction non différentiable.
L’algorithme du gradient proximal est particulièrement adapté à ce type de problème d’optimisa-

tion convexe. Il repose sur un schéma itératif, où à chaque itération, une évaluation de l’opérateur

proximal de la fonction objective est réalisée. Cette évaluation implique la résolution d’un sous-
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1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

problème d’optimisation convexe, mais qui dans le cadre de notre étude, possède une forme

explicite.

L’opérateur proximal Proxg : Rn → Rn d’une fonction convexe propre g : Rn → R (c’est-

à-dire convexe et à valeur dans la droite réelle R̄ = R ∪ {−∞,+∞}) est défini par

Proxg(v) = argmin
x

(
g(x) +

1

2
||x− v‖22

)
,

où || · ||2 est la norme L2 usuelle. On rencontre souvent le cas où la fonction possède un multi-

plicande β, et l’opérateur proximal de βg est défini par

Proxβg(v) = argmin
x

(
g(x) +

1

2β
||x− v‖22

)
. (1.10)

Avoir une forme explicite de l’opérateur proximal permet un calcul rapide et amène à une

vitesse de convergence rapide de l’algorithme du gradient proximal. Il y a de nombreuses sit-

uations dans lesquelles l’opérateur est explicitement connu, voir Parikh and Boyd [2013]. Plus

spécifiquement, dans notre cas, les formules explicites des pénalisations rencontrées sont listées

ci-dessous.

Dans le cas où g est la fonction caractéristique I{C}(Ω) d’un ensemble convexe fermé C, i.e.,

I{C}(Ω) =

0 if Ω ∈ C,

+∞ otherwise,

la forme explicite de l’opérateur proximal est la projection orthogonale sur C, i.e., la fonction
ΠC(v) définie par

ΠC(v) = argmin
Ω∈C

||Ω− v||2. (1.11)

Dans le cas où g est une régularisation `1 β‖Ω‖1 = β
∑

i |ωi|, la forme explicite de l’opéra-

teur proximal est l’opérateur de seuillage doux composante par composante sβ défini, pour

chaque composant ωi de Ω, par

sβ(ωi) =


ωi − β if ωi ≥ β,

ωi + β if ωi ≤ β,

0 otherwise.

(1.12)
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Dans le cas où g est la régularisation `1/`2 β
∑

j ‖ωKj
‖2, la forme explicite de l’opérateur

proximal est l’opérateur de seuillage doux composante par composante s̃β,K défini, pour chaque

sous-ensemble de paramètres ωKj
= {ωi, i ∈ Kj}, par

s̃β,K(ωKj
) =


ωKj
− β

ωKj∣∣∣∣∣∣ωKj

∣∣∣∣∣∣
2

if
∣∣∣∣ωKj

∣∣∣∣
2
> β,

0 otherwise.

(1.13)

Observons que dans (1.8), la matrice de précision ∆ est pénalisée par la somme

1{Kρ}(∆) + λ∆

∑
u<v∈Q

|∆uv|,

pour laquelle il n’existe pas de forme explicite. On pourra alors utiliser l’algorithme generalised

forward-backward splitting (voir Raguet et al. [2013]) pour résoudre le problème d’optimisation.

En pratique, nous avons choisi d’utiliser une régularisation sans contrainte de compact et de

contrôler le pas de gradient pour assurer la convergence.

L’algorithme du gradient proximal est explicité

Algorithme du gradient proximal déterministe pour minimiser −`(Ω : D) + g(Ω)

Input Step sizes γt, a starting point Ω
(0),

1 At each i :teration t, given the current solution Ω(t) = (ω
(t)
1 , . . . , ω

(t)
k ),

2 Compute the gradient step ω̃(t) = ω(t) + γt∇`(ω(t)),
3 Compute ω(t) = Proxγtg(ω̃

(t)).

4 Return the last estimation Ω(t)

Il existe de nombreux résultats théorique prouvant la convergence et assurant la vitesse de

convergence (voir Parikh and Boyd [2013]). Notamment, l’algorithme converge avec des pas

de gradient γ plus petits que 2/L où L est la constante de Lipschitz de `. En pratique, cette

constante n’est pas connue et on peu choisir les pas γt par un algorithme de linesearch, comme

proposé par Beck and Teboulle [2009].

1.2.3 Apprentissage par gradient stochastique proximal

Dans cette section, on présente la méthode d’apprentissage d’un modèle en utilisant une version

stochastique du gradient proximal. Rappelons que la fonction de partition (1.5) d’un modèle

mixte (1.4) n’est pas calculable, et ne peut qu’être estimée.
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1.2. APPRENTISSAGE D’UN MODÈLE GRAPHIQUE

On peut réécrire la densité mixte 1.4:

pΩ(X) =
1

ZΩ

exp(〈F,Ω〉),

où ZΩ est la fonction de partition (1.5), où F = (F1, F2, F3, F4) est une statistique exhaustive de

X avec:

• F1 est la matrice indexée sur C × C définie par F1 = XCX
T
C ,

• F2 est le vecteur indexé sur Q défini par F2 = XQ,

• F3 est la matrice indexée sur Q×Q définie par F3 = −1
2
XQX

T
Q,

• F4 est la matrice indexée sur C × Q définie par F4 = XCX
T
Q,

et où 〈·, ·〉 est le produit scalaire défini par

〈F,Ω〉 = Tr
(
ΘF T

1

)
+ µTF2 + Tr

(
∆F T

3

)
+ Tr

(
ΦF T

4

)
. (1.14)

On dénote parD = {X(j)}j=1...M les données d’apprentissage constituées deM échantillons

et F (j) leur statistique exhaustives. Avec ces notations, la log-vraisemblance des paramètres Ω

étant donné D devient

`(Ω : D) = 1

M

M∑
j=1

〈Ω, F (j)〉 − logZΩ. (1.15)

On peut montrer que

∇ logZΩ = EΩ[F ] = EΩ[EΩ[F |XC]]. (1.16)

Cette formule amène à une estimation de ∇ logZΩ par une méthode MCMC: si {ξ(m)}m=1...η

sont η échantillons de pΩ, alors

∇ logZΩ ≈
1

η

η∑
m=1

EΩ[F |ξ(m)
C ]. (1.17)

Ces formules amène à une version stochastique de l’algorithme du gradient proximal.

1.2.4 Optimisation de la pseudo-vraisemblance

Dans cette section, on s’intéresse à l’optimisation de la pseudo-vraisemblance, une alternative à

la vraisemblance classique. La pseudo-vraisemblance est introduite par Besag [1975], et repose
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Estimation de ∇ logZΩ

Input Une paramétrisation Ω et une longueur de chaîne MCMCm,

1 Simuler η échantillons {ξ(m)}m=1...η de la distribution pΩ(xC), en utilisant par exemple l’al-

gorithme de Wolff 1,

2 calculer l’espérance conditionnelle EΩ[F |ξ(m)] = (EΩ[Fi|ξ(m)], i = 1 . . . 4) pour chaque
échantillon ξ(m), j = 1 . . . η,

3 Retourner l’estimation ∇ logZΩ donnée par

∇ logZΩ ≈
1

η

η∑
m=1

EΩ[F |ξ(m)
C ].

sur un estimateur consistent et facilement calculable.

Étant donné un jeu de donnéesD = {X(j)}j=1...M deM échantillons et un modèle paramétré

par Ω, la pseudo-vraisemblance est définie par

p`(Ω : D) = 1

M

M∑
j=1

log pΩ(X
(j)
Q |X

(j)
C ) +

1

M

M∑
j=1

∑
i∈C

log pΩ(X
(j)
i |X

(j)
−i ), (1.18)

où X−i désigne toutes les variables de X sauf Xi.

Remarquons que notre définition de la pseudo-vraisemblance est légèrement différente de la

pseudo-vraisemblance classique, qui est donnée par

1

M

M∑
j=1

n∑
i=1

log pΩ(X
(j)
i |X

(j)
−i ), (1.19)

dans la mesure où nous distinguons les variables catégorielles et quantitatives, et que nous

traitons la partie quantitative comme une vraisemblance conditionnellement gaussienne étant

donné les variables catégorielles. En ce sens, notre pseudo-vraisemblance est plus proche de

la vraisemblance classique que celle proposée par Besag [1975] et étudiée dans le contexte de

l’apprentissage de modèles graphiques par Lee and Hastie [2015]. Observons aussi que notre

pseudo-vraisemblance est définie sur un espace de paramétrisations tel que Θ et ∆ sont respec-

tivement symétrique et symétrique définie positive.

Observons aussi que la pseudo-vraisemblance (1.18) est une fonction strictement concave

en Ω. En effet, elle est la somme d’un terme associé aux variables quantitatives et d’un terme

associés aux variables catégorielles. On peut montrer que chaque terme est concave, et obtenir

les formules suivantes des gradients.

Concernant la partie quantitative, étant donné XC , XQ a une densité conditionnellement
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gaussienne de moyenne ∆−1(µ+ ΦTXC) et de matrice de covariance ∆−1. On a donc

log pΩ(XQ | XC) = −
1

2
XT

Q∆XQ + (µ+ ΦTXC)
TXQ

− 1

2
(µ+ ΦTXC)

T∆−1(µ+ ΦTXC)

+ log[(2π)−
|Q|
2 |∆|

1
2 ].

En différentiant par rapport à ∆, Φ et µ, on obtient les gradients

∇∆ log pΩ(XQ | XC) =
1

2

[
−XQX

T
Q +∆−1 +∆−1(µ+ ΦTXC)(µ+ ΦTXC)

T∆−1
]
,

∇Φ log pΩ(XQ | XC) = XCX
T
Q −XC(µ+ ΦTXC)

T∆−1,

∇µ log pΩ(XQ | XC) = XQ −∆−1µ−∆−1ΦTXC.

(1.20)

Concernant la partie catégorielle, la distribution conditionnelle des xi sachant toutes les autres

est donnée par

pΩ(xi | x−i) ∝ exp

[
θiix

2
i + xi

(∑
j>i

θijxj +
∑
u∈Q

φiuxu

)]
.

Chaque variable xi a donc une densité conditionnelle de Bernoulli, de moyenne

pi = EΩ[xi | x−i] =
eqΩ(x,i)

1 + eqΩ(x,i)
,

avec

qΩ(x, i0) = θi0i0 + 2Θi0,−i0xC,−i0 + Φi0,QxQ, (1.21)

où xC,−i0 désigne le vecteurXC où l’entée d’indice i0 a été enlevée,Θ−i0,i0 représente (θi0,j)j 6=i0 ,

la ligne d’indice i0 de Θ sans l’entrée de coordonnée i0, et Φi0,Q représente la ligne i0 de Φ. On

a donc

log pΩ(Xi0 | X−i0) = Xi0 logPΩ(Xi0 = 1 | X−i0)

+ (1−Xi0) log(1− PΩ(Xi0 = 1 | X−i0))

= Xi0qΩ(X, i0)− log(1 + exp qΩ(X, i0)).

12
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On obtient les gradients, pour tout i, j ∈ C,

∇Θi,j
qΩ(X, i0) =

1{i=i0} if i = j,

1{i=i0}Xj + 1{j=i0}Xi if i 6= j,

et, pour tout i ∈ C et v ∈ Q,
∇Φi,v

qΩ(X, i0) = 1{i=i0}Xv.

On en déduit que

∇Θ

∑
i0∈C

log pΩ(Xi0 | X−i0) = Diag (EΩ(X, C) ◦ (2XC − 1))

− Diag (−XC) + 2XCX
T
C − (EΩ(X, C)XT

C +XCEΩ(X, C)T ), (1.22)

où ici Diag (A) est la matrice diagonale de diagonale A, A ◦B est le produit de Hadamard de A

et B, et EΩ(X, C) est le vecteur défini par

EΩ(X, i) = pΩ(Xi0 = 1 | X−i0)
eqΩ(X,i)

1 + eqΩ(X,i)
, i ∈ C.

De manière similaire, on obtient que

∇Φ

∑
i0∈C

logPΩ(Xi0 | X−i0) = XCX
T
Q − EΩ(X, C)XT

Q. (1.23)

Remarquons aussi qu’une autre manière d’écrire qΩ(X, C) = (qΩ(X, i))i∈C est de définir

qΩ(X, C) = (Θ + ΘT )XC + Diag (Θ) ◦ (1− 2XC) + ΦXQ.

Ces équations amène un algorithme d’apprentissage de structure utilisant une méthode de

gradient proximal. Au contraire de la vraisemblance classique, tous les termes possèdent une

forme explicite. On utilise donc une version déterministe du gradient proximal: si Ω0 désigne le

point initial de l’algorithme, et {γt} une suite de pas de gradient positifs, alors étant donné Ω(t),

on déduit

Ω(t+1) = Proxγt+1g(Ω
(t) + γt+1∇p`(Ω(t)). (1.24)

1.3 Détection et localisation d’anomalies

La détection d’anomalies (voir Chandola et al. [2009]) consiste à retrouver des éléments anor-

maux dans un jeu d’observations. La plupart des travaux en détection d’anomalies s’intéressent

13



1.3. DÉTECTION ET LOCALISATION D’ANOMALIES

à détecter des données (non conditionnellement) anormales, étant donné le reste du jeu de don-

nées. Dans cette section, on s’intéresse au contraire à de la détection d’anomalies conditionnelle

(Chandola et al. [2009], Valko et al. [2011]), c’est-à-dire trouver des valeurs anormales dans un

sous-ensemble de variables étant donné les valeurs des variables restantes.

Dans notre étude, on va définir les anomalies conditionnelles comme des changements de

paramètres des lois conditionnelles des variables. On limite cette étude aux changements dans

la moyenne conditionnelle des variables aléatoires du modèle : rappelons que les variables ont

soit une densité conditionnellement gaussienne, paramétré par sa moyenne et variance condi-

tionnelle, ou une densité de Bernoulli, uniquement paramétré par sa moyenne conditionnelle.

1.3.1 Détection d’un changement dans la moyenne conditionnelle

Supposons que l’on a déjà appris un modèle pΩ de paramètres Ω et on note x1, . . . , xn les n vari-

ables dumodèle. D = {X(t), t = 1 . . .M} est un ensemble de données de test deM échantillons,

indexés par le temps. Le problème de localisation est alors de trouver le sous-ensemble de vari-

ables {xi, i ∈ 1 . . . n} pour lesquelles l’espérance conditionnelle E[X(t)
i |X

(t)
−i ], vue comme une

fonction du temps, a changé par rapport à l’espérance conditionnelle EΩ[X
(t)
i |X

(t)
−i ] du modèle

appris pΩ(X
(t)
i |X

(t)
−i ), où X−i représente toutes les variables sauf Xi.

Basseville et al. [1993] propose une revue de nombreusesméthodes pour détecter des change-

ments de paramètres dans des lois. Beaucoup de ces techniques reposent sur le calcul du rapport

instantané de log-vraisemblance d’un échantillon X, défini par

s(X) = log
pΩ1(X)

pΩ0(X)
.

Remarquons que, si EΩ0 et EΩ1 sont respectivement les espérances de X par rapport aux distri-

butions pΩ0 et pΩ1 , et si s représente le rapport de log-vraisemblance, alors, si pΩ0 et pΩ1 sont des

densités distinctes,

EΩ0(s) < 0 and EΩ1(s) > 0.

Cette propriété indique qu’un changement dans les paramètres Ω est caractérisé par un change-

ment de signe de la moyenne des rapports de log-vraisemblance.

La littérature est très prolifique en détection de changement, et propose des approches pour

de nombreuses situations, par exemple dans les cas où Ω0 et Ω1 sont connus, ou dans le cas

où le temps t0 auquel les paramètres changent est connu (voir Basseville et al. [1993] pour une

revue exhaustive des méthodes de détection de changement). Parmi ces techniques, l’algorithme

CUSUM Page [1954] a été introduit pour détecter séquentiellement des changement dans les

moyennes des distributions, et repose aussi sur le calcul de ratios de log-vraisemblance.
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1.3. DÉTECTION ET LOCALISATION D’ANOMALIES

Comme expliqué précédemment, sous l’hypothèse nulleΩ = Ω0, la somme cumulée
∑M−1

t=0 st

a un drift négatif, et un drift positif sous l’hypothèse alternative Ω = Ω1. L’algorithme CUSUM

repose sur le calcul de la somme cumulée des parties positive du rapport de log-vraisemblance

s. On défini la suite St, indexée par le temps, par

St = (St−1 + st)
+ ,

où z+ est la partie positive de z, c’est-à-dire z+ = max(0, z) pour tout réel z. Remarquons que

St reste proche de 0 sous l’hypothèse nulle, et adopte un drift positif après t0. Le temps t0 de

changement de paramètres s’obtient en seuillant la fonction de décision St.

Dans nos travaux, nous avons adapté cet algorithme au problème de localisation d’anomalies

dans un jeu de données D = (X
(t)
C , X

(t)
Q )t=0,1,.... On suppose que le modèle de référence p0

paramétré par Ω0 a déjà été appris à partir de données normales, i.e., sans anomalies. Dans la

mesure où on recherche un changement de moyenne conditionnelle qui peut être à la hausse ou

à la baisse, on utilise le two-sided CUSUM, comme proposé par Basseville et al. [1993]. De

manière similaire au CUSUM, pour tout t et pour chaque variable Xi, i ∈ C ∪ Q, on défini le

rapport instantané de log-vraisemblance conditionnel par

s
(t)
i = log

pΩ1

(
X

(t)
i |X

(t)
−i

)
pΩ0

(
X

(t)
i |X

(t)
−i

)
 ,

où X−i = {Xj, j ∈ C ∪ Q, j 6= i} et pΩ1 est la densité sous l’hypothèse alternative. On défini

aussi récursivement une statistique de décision par S
(0)
i = 0 et

S
(t)
i =

(
S
(t−1)
i + s

(t)
i

)+
, t = 1, 2, . . . , (1.25)

où (z)+ = max(z, 0). Ici p0 et p1 correspondent respectivement aux densités sous l’hypothèse

nulle, paramétré par Ω0, et sous l’hypothèse alternative, paramétré par Ω1, c’est-à-dire la densité

conditionnelle du comportement anormal ciblé.

Jusqu’ici, on a supposé qu’on connaissait la densité alternative pΩ1 . Cependant, Ω1 ne peut

pas être connu à l’avance, et nous devonsmaintenant trouver unemanière de fixerpΩ1pΩ1 . Dans la

mesure où on s’intéresse à des rapports de vraisemblances conditionnelles, on va définir chaque

densité conditionnelle pΩ1(xi|x−i) séparément, en fonction du type de chaque variable xi, i.e.,

catégoriel ou quantitatif.
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1.3.2 La densité alternative pour les variables quantitatives

On s’intéresse aux variables quantitatives. On sait que la densité conditionnelle des variables

quantitativesXQ est la densité gaussiennemultivariéeN (ν(t),∆−1), avec ν(t) = ∆−1(µ+ ΦTX
(t)
C ).

On en déduit que, pour tout i ∈ Q, la densité conditionnelle de X
(t)
i étant donné X

(t)
−i est la

gaussienne univariée de moyenne

e
(t)
i = EΩ[X

(t)
i | X

(t)
−i ] = ∆−1

i,−i∆−i,−i

(
X

(t)
Q−i − ν

(t)
−i

)
+ ν

(t)
i

et de variance

σ2
i = VarΩ(X

(t)
i | X

(t)
−i ) = ∆−1

ii −∆−1
i,−i∆−i,−i∆

−1
−i,i.

Remarquons que e
(t)
i dépend des données, contrairement à σi qui ne dépend que des paramètres∆.

On défini la densité alternative comme une gaussienne résultant de la translation de ±δσ
de la densité conditionnelle sous l’hypothèse nulle. Le paramètre δ contrôle la sensibilité de la

détection. Plus δ est large, plus anormal doit être le changement pour entrainer un drift positif de

la statistique de décision St et donc pour être détecté. Plus δ est faible, plus le risque de fausse

alarme est grand.

νν − δσ ν + δσ ν + δ′σ
x

p(x)

Figure 1.2: Densité alternative en dimension 1 pour une variable quantitative. Sous H0, la densité con-

ditionnelle normale est une gaussienne univariée (en bleu), et sous l’hypothèse alternative, la densité

alternative (en rouge) est une translation de la gaussienne bleue de +δσ ou −δσ, correspondant respec-
tivement à un changement à la hausse ou à la baisse de la moyenne conditionnelle. La courbe en pointillé

correspond au cas où l’alternative translatée de δ′ > δ. Les croix correspondent à deux échantillons pour
lesquels on veut décider s’ils sont simulés de la courbe bleue ou non. Intuitivement, quand l’alternative

est la gaussienne rouge de moyenne ν+δσ, on peut décider que la croix rouge est plus probablement issue

de la courbe rouge que de la courbe bleue, quand la croix bleue est plus probablement issu de la courbe

bleue. Au contraire, quand l’alternative est construite avec +δ′σ, les deux croix sont plus probablement

issues de la gaussienne bleue.

Ayant défini la densité alternative pΩ1 , on peut expliciter le ratio de vraisemblance condition-
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nelle. Pour tout i ∈ Q, on a

s
(t)±
i =

1

2

(
X

(t)
i − e

(t)
i

σi

)2

−

(
X

(t)
i − (e

(t)
i ± δσi)

σi

)2

= ±(X
(t)
i − e

(t)
i )

σi

δ − 1

2
δ2. (1.26)

En considérant s
(t)+
i et s

(t)−
i , cette définition produit deux statistiques S

(t)+
i et S

(t)−
i , pour détecter

respectivement un changement à la hausse ou à la baisse de la moyenne conditionnelle e
(t)
i . Dans

nos expériences, on considérera la somme S̄
(t)
i = S

(t)+
i +S

(t)−
i pour détecter un changement dans

les deux directions.

Remarquons que le paramètre δ a une interprétation géométrique intéressante. En effet, le

drift de la statistique de décision (1.26), sous l’hypothèse nulle, vaut EΩ[s
(t)
i |X

(t)
−i ] = −δ2/2. On

voit que le drift est négatif et complètement contrôlé par δ.

1.3.3 La densité alternative pour les variables quantitatives

On s’intéresse maintenant aux variables catégorielles. Rappelons que chaque variable caté-

gorielle Xi, i ∈ C a une densité de Bernoulli de moyenne

pi = EΩ[Xi | X−i] =
eqΩ(X,i)

1 + eqΩ(X,i)
,

where

qΩ(X, i0) = θi0i0 + 2Θi0,−i0X−i0 + Φi0,QXQ.

Spécifiquement pour les variables catégorielles, on défini la densité conditionnelle de l’hy-

pothèse alternative comme une densité de Bernoulli de moyenne a
(t)
i . Le ratio de vraisemblance

conditionnelles vaut ainsi

s
(t)
i = X

(t)
i log

a
(t)
i

p
(t)
i

+ (1−X
(t)
i ) log

(
1− a

(t)
i

1− p
(t)
i

)
. (1.27)

Il y a deux manières de fixer le paramètre α
(t)
i . Premièrement, on peut choisir a

(t)
i de telle sorte

que le drift la statistique de décision sous l’hypothèse nulle vaille aussi − δ2

2
, comme c’est le

cas pour les variables quantitatives. Ce drift est obtenu en calculant EΩ[s
(t)
i | X

(t)
−i ]. On obtient

l’équation

p
(t)
i log

a
(t)
i

p
(t)
i

+ (1− p
(t)
i ) log

(
1− a

(t)
i

1− p
(t)
i

)
= −δ2

2
. (1.28)
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Il est facile de montrer que cette équation en a
(t)
i (avec δ et p

(t)
i fixés) possède deux solutions

distinctes a
(t)+
i ∈ [p

(t)
i , 1] (associée à la statistique S

(t)+
i ) et a

(t)−
i ∈ [0, p

(t)
i ] (associée à S

(t)−
i ),

détectant respectivement un changement à la hausse ou à la baisse de la moyenne p
(t)
i , avec un

drift négatif − δ2

2
sous l’hypothèse nulle (voir Figure 1.3). Pour les mêmes raisons que pour les

variables quantitatives, on a considéré la somme S̄
(t)
i = S

(t)+
i + S

(t)−
i dans nos expériences.

1 α0 p
(t)
i

−

δ2

2

α
(t)+
i

α
(t)−
i

1

Figure 1.3: Evolution du drift négatif pour une variable catégorielle, vue comme une fonction deα ∈]0, 1[,
où la moyenne p

(t)
i de la densité de Bernoulli conditionnelle de xi est fixée arbitrairement à p

(t)
i = 1

3 . Il

y deux solutions, α
(t)−
i ∈]0, p(t)i [ et α

(t)+
i ∈]p(t)i , 1[ produisant un drift négatif de − δ2

2 .

Une autre manière de choisir α
(t)
i est de fixer la variance conditionnelle VarΩ

[
s
(t)
i |s

(t)
−i

]
égale

à un, comme c’est aussi le cas pour les variables quantitatives. On obtient alors aussi deux

solutions a
(t)−
i et a

(t)+
i , données par

a
(t)−
i =

1 + 1− p
(t)
i

p
(t)
i

exp

+
1√

p
(t)
i (1− p

(t)
i )

−1

,

a
(t)+
i =

1 + 1− p
(t)
i

p
(t)
i

exp

− 1√
p
(t)
i (1− p

(t)
i )

−1

.

(1.29)

La Figure 1.4 montre l’évolution du drift comme une fonction de p
(t)
i ∈]0, 1[.

1.3.4 Notre version du two-sided CUSUM

Notre algorithme de localisation d’anomalies est présenté dans l’algorithme??.

Remarquons que cet algorithme est paramétré par deux scalaires:

• le paramètre de sensibilité δ,

• le seuil de détection h.
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1 p
(t)
i0

1

Figure 1.4: Évolution du drift négatif pour une variable catégorielle xi quand les paramètres a
(t)+
i et a

(t)−
i

sont données par (1.29), dans le cas où la variance conditionnelle VarΩ[S
(t)
i |s

(t)
−i] est égale à un. Le drift

pour S
(t)−
i est la ligne en points, le drift pour S

(t)+
i est la ligne en tirets, et la ligne pleine est le drift pour

S̄
(t)
i .

Two-sided CUSUM pour la détection et localisation d’anomalies

Input Le modèle appris pΩ, un paramètre de sensibilité δ, un seuil h, et un jeu de données

{X(t)}t,

1 Initialiser S
(0)
i = 0 pour chaque i ∈ C ∪ Q.

2 for each X(t), do

3 for each i ∈ Q, do
4 Mettre à jour St+1

i = (S
(t)
i + s

(t)
i )+ en utilisant l’équation (1.26).

5 for each i ∈ C, do
6 Calculer la moyenne a

(t)
i de la Bernoulli alternative en utilisant l’équation (1.28) ou

(1.29),

7 Mettre à jour St+1
i = (S

(t)
i + s

(t)
i )+ en utilisant l’équation (1.27).

8 Pour chaque variable xi, déterminer le temps de changement de paramètre τi =

min{t;S(t)
i > h}.

9 Retourner {τi, i ∈ C ∪ Q}.
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1.4 Applications et résultats

1.4.1 Apprentissage d’un modèle à partir de données synthétiques

Dans cette section, on présente quelques expériences à partir de données synthétiques et de don-

nées réelles. Les données synthétiques sont générées à partir d’un modèle ”en échelle” proposé

par Lee and Hastie [2015]. La structure de ce modèle est présenté en Figure 1.5.

x1 x2 x3 x4 x5 x10

x11 x12 x13 x14 x15 x20

. . .

. . .

Figure 1.5: Structure du réseau en échelle utilisé pour simuler des données synthétiques. Ce réseau est

constitué de 10 variables binaires x1, . . . , x10 (en marron sur la couche supérieure) et 10 variables quan-

titatives x11, . . . , x20 (en gris sur la couche inférieure).

Les paramètres Ω∗ = (Θ∗, µ∗,∆∗,Φ∗) de ce modèle ont été choisi de la façon suivante:

• Θ∗ est une matrice carrée 10× 10, avec −0.5 sur les entrées de sa diagonale et 0.5 sur les
entrées des diagonales supérieures et inférieures,

• µ∗ est un vecteur vertical composé de 10 coefficients nuls,

• ∆∗ est une matrice carrée de dimension 10 × 10 avec 1 sur sa diagonale et 0.25 sur les

diagonales supérieures et inférieures,

• Φ∗ est une matrice 10× 10 avec 0.5 sur sa diagonaleet 0 partout ailleurs.

Les paramètres de régularisation ont été choisis distincts pour chaque matrice Θ,∆ et Φ, et

ont été choisi de telle façon à maximiser la vraisemblance sur des données de tests, parmi une

grille de valeurs. En l’occurrence, dans le cas de l’optimisation de la pseudo-vraisemblance, les

paramètres de régularisation ont été choisi tels que

λΘ = 1.4

√
log(20)

M
λ∆ = 0.95

√
log(20)

M
λΦ = 4.6

√
log(20)

M
, (1.30)

et dans le cas de l’optimisation de la vraisemblance par gradient proximal stochastique,

λΘ = 3.7

√
log(20)

M
λ∆ = 3.2

√
log(20)

M
λΦ = 4.3

√
log(20)

M
. (1.31)
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On a en outre choisi des pas de gradients constants γ = 1 et γ = 0.1 respectivement pour la

méthode du pseudo-vraisemblance et du gradient proximal stochastique (consécutivement des

discussions de Atchade et al. [2015]). Des expérience d’apprentissage de structures sur ces deux

méthodes ainsi que sur des techniques concurrentes actuelles de la littérature montrent que la

méthode par pseudo-vraisemblance est meilleure que les autres approches, voir Figure 1.6.
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Figure 1.6: Probabilité de découverte de structure du réseau en échelle Ω∗ ayant généré les données. On
considère que la structure de Ω∗ est découverte quand tous les arcs présents dans Ω∗ ont été découverts et
que aucun arc absent dans Ω∗ n’a été découvert. Chaque point de ce graphe est la moyenne de 100 essais.

En outre, on peut aussi observer que la structure du graphe est apprise relativement vite,

c’est-à-dire qu’elle n’évolue plus après quelques itérations de l’algorithme, en particulier pour

l’optimisation de la pseudo-vraisemblance. La Figure 1.7 montre l’évolution des ratios de vrais

positifs (TDR) et de faux positifs (FDR) durant l’apprentissage de deux graphes en échelles, le

premier avec 20 variables et le second avec 200 variables (tous deux construits sur le même

procédé qu’en Figure 1.5).

1.4.2 Détection et localisation d’anomalies dans des données synthétiques

On présente dans cette section les résultats en détection et localisation d’anomalies dans des don-

nées synthétiques. On suppose qu’on a déjà appris un modèle Ω∗ à partir de données normales.

Les données de test sont composé de 50 échantillons normaux, simulés à partir de Ω∗, et de 50
échantillons simulés à partir de Ω∗ après avoir modifié un paramètre.
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Figure 1.7: Évolution des taux de vrais positifs (TPR) et faux positifs (FDR) durant l’apprentissage d’un

modèle. Les données sont simulées à partir d’un réseau en échelle semblable à celui de la Figure 1.5,

avec 10 variables catégorielles et 10 variables quantitatives pour les graphes (a) et (c), et 100 variables

catégorielles et 100 variables quantitatives pour les graphes (b) et (d). Pour chaque graphe, les données

contiennent 1000 échantillons.
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Le modèle Ω∗ est un modèle en échelle, présenté en Figure 1.8, dont les paramètres sont

donnés par les matrices:

Θ∗ =


−0.5 0.5 0 0

0.5 −0.5 0.5 0

0 0.5 −0.5 0.5

0 0 0.5 −0.5

 , µ∗ =


0

0

0

0

 ,

∆∗ =


1 0.25 0 0

0.25 1 0.25 0

0 0.25 1 0.25

0 0 0.25 1

 , Φ∗ =


.5 0 0 0

0 .5 0 0

0 0 .5 0

0 0 0 .5

 .

xC1 xC2 xC3 xC4

xQ1 xQ2 xQ3 xQ4

Figure 1.8: Structure du réseau utilisé pour les expériences. Ce réseau a quatre variables catégorielles

xC1 , . . . , xC4 (sur la couche supérieure)et quatre variables quantitatives xQ1 , . . . , xQ4 (sur la couche in-

férieure).

On a testé trois différentes modifications sur des paramètres de Ω∗:

1. la distribution de la seconde variable quantitative (verte) est altérée en fixant µ∗
2 à 3,

2. la distribution de la première variable catégorielle (marron) est altérée en fixant θ∗1,1 à -4,

3. la distribution conditionnelle de la première variable catégorielle (marron) et de la troisième

variable quantitative (grise) est altérée en changeant φ∗
1,3 à 2.

La Figure 1.9 présente l’évolution temporelle de la statistique S̄
(t)
i calculée pour chaque variable

et pour les trois anomalies testées, en utilisant (1.29) pour les paramètres de la densité alternative

des variables catégorielles, correspondant à une variance fixée à un. Comme attendu, les figures

sur la ligne supérieure montrent que seule la statistique de décision correspondant à la variable

quantitative verte possède un drift positif, indiquant que la variable quantitative verte porte seule

un changement de paramètres. Les mêmes conclusions sont tirées sur les deux autres modifica-

tions sur θ1,1 et φ1,3. Ces résultats montrent que notre méthode détecte et localise correctement

des changements de paramètres dans des distributions conditionnelles.
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Figure 1.9: Evolution temporelle des statistiques S̄
(t)
i pour les variables quantitatives à gauche et pour les

variables catégorielles à droites. Les couleurs des statistiques correspondent aux couleurs des variables

de la Figure 1.8. Ligne supérieure : changement sur µ2. Ligne centrale : changement sur θ1,1. Ligne

inférieure : changement sur φ1,3. Pour chaque expérience, les 50 premiers échantillons sont simulés à

partir de Ω∗, et les 50 derniers échantillons sont simulés à partir de la densité alternative.
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Figure 1.10: Optimisation de la psedo-vraisemblance durant l’apprentissage d’un modèle mixte, en util-

isant la version classique du gradient proximal. Les données d’apprentissage sont issues du jeu de données

Touch and Go.

1.4.3 Apprentissage d’un modèle et localisation sur données réelles

Les données réelles sont les données produites par le radar RBE2. On dispose de deux jeux de

données, un jeu en faible dimension (appelé Touch and Go) composé M = 1.5 · 106 échantil-
lons de 77 variables binaires et 9 variables quantitatives, et un jeu en grande dimension (appelé

Tous modes) composé de M = 2.1 · 106 échantillons de 955 variables binaires et 49 variables

quantitatives.

La Figure 1.10 et 1.11 montrent la décroissances des scores lors de l’apprentissage d’un

modèle. La Figure 1.12 présente l’évolution de deux statistiques de décisions de deux variables

du modèle Touch and Go, centrées sur une courte fenêtre temporelle autour d’une anomalie.
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Figure 1.11: Optimisation de la vraisemblance durant l’apprentissage d’un modèle mixte, en utilisant le

gradient proximal stochastique. Les données d’apprentissage sont issues des données Tous modes.
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Figure 1.12: Statistiques de décision (1.25) S
(t)
A et S

(t)
B pour deux variables catégorielles A et quantita-

tiveB parmis les variables utilisées dans le scénario Touch and Go. Les données affichées correspondent à

une fenêtre temporelle de 25 seconds (correspondant à environ 10 000 échantillons), centrée autour d’une

anomalie portée par la variable A. La variable B n’est pas impliquée dans l’anomalie et sa statistique de

décision ne présente pas de drift positif.
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Chapter 2

Introduction

In this chapter, we introduce the anomaly detection problem that has motivated this thesis. Our

work fits into a larger study made in Thales Airborn Systems that has started in 2010 when

arose the first ideas of using a machine learning approach for completing the breakdown detec-

tion system that equips the radars produced in Thales. We will present the industrial problem,

the concerned equipment, the data they produce during their use, what is the current detection

system, and the industrial motivations that led to our study.

Thales is a worldwide group specialized in aeronautics, space, land transportation, security,

and defence. Thales Airborn Systems, belonging to the aeronautic division, develops systems

that answer many operational needs: embedded systems, sub-systems, complete systems or ser-

vices, for military as well as civil customers. Within its range of expertise, this french company

supervises many military programs and works as a subcontractor for other programs of other

companies, like the Dassault Mirage and the Dassault Rafale, two french fighter jets produced

by DassaultAviation. More precisely for those two fighters, Thales develops and produces some

of their main electronic features, among which combat radars, integrated defence-aids systems,

flight management systems, fire control, interfaces for the pilots, pods, sensors, etc.

Figure 2.1: RDY

One of the most important systems of a fighter is its com-

bat radar, often located in the nose of the plane. The Mirage

2000-5 fighter is equipped with aRDY RDY (Radar Doppler Mul-

titarget, see Figure 2.1), and the Rafale fighter is equipped

with aRBE2 RBE2 (Radar à Balayage Electronique 2 plans, see

Figure 2.2). Both radars can handle a lot of tasks, like air-to-

air and air-to-ground scanning or targeting, though the RBE2

is a lot more advanced one. The RDY has a mechanical an-

tenna that can only scan orthogonally to the surface of the

antenna and has to rotate inside the nose of the aircraft in order to detect, track or engage targets.

In contrast, the RBE2, which is a much more modern radar, has an electronic active antenna,
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composed of hundreds of smaller antennas. The broadcast electromagnetic field is no more sim-

ply a cone perpendicular to the antenna, but rather a combination of all the fields created by the

small antennas. By combining their effects, the RBE2 is able to detect targets in many directions

at the same time, and keeping track of all of them, even during an engagement.

2.1 The built-in test

Figure 2.2: RBE2

Both radars are an assembly of many components: in addition

to the antenna, there is a hyper-frequency emitter, a modu-

lator, some signal processing modules, a cooling system, an

interface with the aircraft, and many other parts. All of those

components are designed to work together in extreme situa-

tions, for instance when there are vibrations, brutal accelera-

tions, high variations of pressures and temperatures, humidity

or sand. These conditions can cause damages to the systems,

or lead to an accelerated ageing. Thales thus has to ensure

that the radars are working under such conditions, and also

has to provide the tools that will make easy the maintenance and the repair when breakdowns

occur.

To address this issue, both the RDY and the RBE2 are both equipped with aBuilt-in test built-in test. The

built-in test has several objectives:

• Evaluate the working state of the radar and inform the other systems of the plane,

• Detect and localise the broken down elements during the mission to make the online re-

pairing easy,

• Produce exploitable reports for offline repairing.

To achieve those goals, the built-in test is based on three major activities:

• Collecting theRaw data raw data produced during integrated tests in the radar,

• Process those pieces of information in order to detect and localise the failures,

• Publish all the necessary information to inform the plane about the working state of the

radar.
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2.1.1 The current breakdown detection system

The tests used by the built-in test are either starting tests (only made when the radar is starting

or after a reset), permanent tests (either made periodically or after a breakdown) or chain tests.

The collected breakdown information from these tests are broadcasted on the

Internal

communication

bus Internal Commu-

nication Bus (ICB) of the radar toward

Maintenance

manager

the maintenance manager using specific frames (called

CRD). On the RBE2, the conception of the ICB goes back to the early nineties. The RDY has a

similar functioning, but has not been studied in this thesis.

Several kinds of breakdowns can occur, from fugitive breakdowns to material destructions.

The appearance of such major breakdowns is watched by some security devices that will trigger

immediate appropriate responses to protect the equipment. On the other side, minor anomalies

areFiltering filtered by the maintenance manager and often ignored. If the breakdowns persist, the con-

cerned components are rearmed and the radar is reset. If after that reset the radar works normally,

the radar continues its operational functioning. In the other case where the component is still not

working, it is declared having broken down and a CRD is sent to the plane.

The tests that the built-in test uses to check the working state of the radar can be seen as

simple if-then-else rules, written by the radar experts over the years. The maintenance manager

constantly receives frames that contain tests reports and decides to filter or not the breakdowns

that do not compromise the material security of the radar. Through that filtering process, the

maintenance manager updates counters, by incrementing them when a breakdown is detected,

or decrementing them when no breakdown is seen after a short period of time. As long as these

counters remain under fixed thresholds, the radar continues its working mode, and no specific

breakdown report is broadcast to the plane. However, if one of these thresholds is reached, the

radar engages a reset process.

Example 2.1 False alarm raised by the maintenance manager The temperature of a lot of

components is constantly measured and has to remain within some interval. For instance, the

temperature of the small antenna’s components are acceptably lower than 30 degrees when the

antenna is switched off, and is supposed to be much higher only when it is on. If a too high

temperature is measured when the antenna is on, an anomaly might be detected. However, the

definition of a too high temperature depends on the context: if the antenna has been shut down

and restarted within some seconds, it is normal to see a high temperature.

Example 2.2 Non-detection due to uncommon correlations A radar that just came out the

production lines presented a strange anomaly during operational tests: the radar showed to the

pilot many targets on its screen, when there was nothing in the sky. Although it was clearly an

anomaly, no alarm was ever raised because this situation has never been anticipated as a possible

breakdown, and the technicians had to manually investigate to solve that case. It took several
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months to a whole expert team to understand the issue: due to assemblage mistake of a high-

frequency waveguide, a component of the radar was disrupted, which led to the anomalous plots

on the pilot screen.

The use of rules and filtering to analyse the raw data might lead the maintenance manager

to raise false alarms or have non-detections. The example 2.1 illustrates a false alarm issue, and

the example 2.2 illustrates a non-detection issue by showing how complex it can be to anticipate

uncommon anomalies.

During operations, the radars are used under configurations that depend on the mission: cli-

matic conditions, kind of missions, duration, etc. During the production, such conditions are

reproduced artificially to test the radar. There are special rooms where the climatic conditions

can be controlled and test benches to which the radar is connected for the test. One of the roles of

these test benches is to reproduce the stimuli that the radar would receive during real operations,

by executingDeterministic test

scenarios

deterministic scenarios. There is a finite number of scenarios, which are designed

to guarantee the working state of the radar. The example 2.3 and the example 2.4 describe two

real scenarios used for the tests, and that will serve as contexts for the experiments in section 5.

Example 2.3 The scenario Touch and go The simplest scenarios is the Touch and go. This

scenario runs through several landings and take-offs, what is a classic exercise for planes and

pilots, even in non-military contexts. During this scenario, only a few parts of the radar are

tested, like the antenna or the cooling system, whereas others are off, like the signal processing

systems.

Example 2.4 The scenario All modes The scenarioAll modes is the richest andmost complete

one. The aim of that scenario is to test the transition between every working mode to all the oth-

ers modes. Among those modes, we can find fire-control, combat, passive surveillance, target

tracking, ground scanning, very low altitude, etc. This scenario may be executed under several

environmental conditions: fog, humidity, heat, sand, wind, etc. Every part of the radar is conse-

quently tested during the modes rotation, producing the biggest data file among all scenarios.

Either after a mission of after a test during production, the breakdown reports are analysed

offline by the radar expert to investigate further the breakdowns. Although the raw data of the

radar are extractable, they are never directly analysed to locate breakdown, but only used to

clarify misunderstood breakdowns. This way of working is optimized for an operational use,

but might miss some breakdowns (as illustrated in Example 2.2), and will anyway ignore minor

breakdowns that will never be investigated, since they won’t be reported in the CRDs.
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2.1.2 The data circulating on the ICB

As explained above, all the components of the radar are communicating together using the ICB,

an internal common communication bus. On that bus are circulating raw data that are analysed

by the maintenance manager, as well as breakdown reports only sent when a major breakdown

occurs. This reports contain a synthesis of the detected breakdown and its detected causes. The

following will explain how these data is produced and sampled.

2.1.2.1 The structure of the data

The raw data sent by the components follow a very strict communication protocol. The support

for the exchange of data on the ICB areFrame frames, each of which carries between 12 bytes and 32

bytes. At a lower level, the frames are composed of several groups of two bytes calledWord words,

and each frame thus contains between 6 and 12 words. Frames are containers that always carry

the same information – like gains, temperatures, states, etc – and are broadcasted on the ICB by

the same sender to the same addressee.

At a higher level, the frames exchanged on the ICB are grouped to form bigger structures

calledMessage messages. The messages currently used contain between 1 and 138 frames. Considering

a message instead of considering individually the frames it carries make the communication

protocol lighter: instead of querying each frame separately, a single query is used for the whole

message. Thus, either all the frames of a message are sent – one by one – or no frame of this

message is sent. Since queries are also frames broadcast on the ICB, regrouping frames into

messages considerably reduces the traffic load on the communication bus.

It is important to note that this decomposition into frames and words is a very low-level

data structure; words, frames and messages do seldom correspond to interpretable pieces of

information, as physical measures like a gain, or categorical information like a working state or

a mode. Such pieces of information will be later referred to asFields fields. A word may actually be

the concatenation of several fields, and a field that requires 32 bits to be encoded will be stored

on two words. Generally speaking, the number of fields in a frame varies from 4 to 500, with

a mean around 100. The Figure 2.3 illustrate this data structure, and the Example 2.5 give an

example of a true message used on the ICB.

Example 2.5 Content of the message AGVE The message AGVE is sent by the active an-

tenna, headed to the maintenance manager. It is composed of three frames, each frames being

composed of 16 words. This message carries several kinds of information, like ICB signatures,

dates or working states. Its emission on the ICB is thus split into three sendings. Note that there

is no guarantee that the emission of other frames will not be inserted between two frames of the

AGVE message.

31



2.1. THE BUILT-IN TEST

MESSAGE  (2 FRAMES)  

FRAME 1 (16 words, 256 bits)  FRAME 2 (16 words, 256 bits)  

1 1 1 1 2 5 17 4 

Figure 2.3: Scheme of the structure of an arbitrary message and the information it carries. At the top is

shown the decomposition of a message (in blue) into two frames (in orange) and the decomposition of the

frames into words (in green). On this figure, the message is composed of two frames, where each frame

contains 16 words of 2 bytes. At the bottom is shown how fields (in brown) are stored in words: the words

have themselves no real meaning, and the fields (the number of bits on which they are encoded is written

in white) are either concatenated or split to fit into the 2 bytes of each word: one information might be

encoded on 1 or 2 bits in one frame, or exceed to another frame if it is too big.

2.1.2.2 The different samplings of the messages

In addition to the different kinds of message structures, each frame has a specific sampling pro-

cess. These samplings are related to the different tests that the built-in test runs during the use

of the radar (see subsection 2.1.1). In this study, we have met three sorts of sampling:

Periodic sampling: Some messages are broadcast at a fixed frequency, from around one emis-

sion every few milliseconds for the most frequent, to one emission every second for the

least frequent.

Contextual sampling: Some messages are broadcast only when a specific event is occurring,

like it is the case when the built-in test has detected a breakdown. This kind of messages

may never be sent if such an event never occurs.

Irregular sampling: Some messages have a very irregular sampling: the frames can be emitted

at a high frequency for a short period of time, and then be quiet for seconds. The sampling

of such frames is a very low-level process and is not the concern of this study, since we

will remove all of those frames when processing the data.

This mixture of sampling is quite complex but has been designed by the experts to investigate

breakdowns more rapidly: it is indeed possible to modify the content of the frames or even add
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new ones, and that operation can be done quite often to adapt the data production to the expert

needs.

2.1.2.3 The acquisition file

There is a card of the RBE2 that records some of the messages that circulate on the ICB, in

order to allow an offline analysis of the built-in test breakdown reports and the raw data. The

choice of which message to record depends on the needs of the experts and on the evolution of

the message list. The RBE2 is currently using more than 8 000 different words, corresponding

to around 100 000 fields.

Whenever a frame is sent on the ICB, that frame is caught and written in anAcquisition file acquisition file

(in a binary format). This acquisition file is thus composed of the succession of the records of all

the frames broadcasted on the ICB, in the order of which they have been read by the recording

card. Each record contains the content of a frame, plus the timestamp of when the frame has

been received by the recording card. The figure 2.4 shows a text version of the first lines of an

acquisition file.

Figure 2.4: First lines of an acquisition file in anASCII format. Each line corresponds to a frame recorded

by the recording card. The first column indicates which frame has been stored on each line, the second

column is the timestamp of the record, and the content of the frames is stored in the remaining columns in

the green zone. In this green zone, the comas are separating the several words of the frame, written with

hexadecimal hexadecimal numbers – corresponding to two bytes. As it can be seen here, the real fields

carried by the frame (temperatures, gains, states, …) are not yet visible and require more processing to be

accessible.

At this point, it is important to note that the data produced by the radar during the tests are

random in the way they are produced, even if the scenarios are deterministic: it is not possible to

simply compare the results files of a test with a reference file and look for the differences. Even

one radar running twice the same scenario in the same environment will produce two different

acquisition files. Fluctuations, external or internals disruptions, execution times, synchronisa-
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tions are among the plentiful causes that will create differences between two runs, even with the

same radar and the same scenario.

The resulting acquisition files will have a different number of lines, with a different order

of received messages, with potentially different frame’s content. However, when no breakdown

occurs, the behaviour of the radar remains the same, and the breakdown detection system we will

develop will have to deal with this file variability. As explained in the next sections, we have

thus concentrated our study on a probabilistic approach.

2.2 Industrial problem of production stage

2.2.1 Motivation for a machine learning approach

As explained above, the built-in test is designed to be optimized for operation, by providing an

online breakdown detection tool through the filtering processes of the maintenance manager, and

producing breakdown reports for offline investigations by the experts.

However, the whole data recorded on the ICB is never fully analysed directly by the experts:

currently, there isn’t a tool that detects and records the breakdowns ahead of the maintenance

manager. An expert that would like to investigate for unreported breakdowns – which are mainly

fugitive breakdowns –would have tomanually display the value taken by each of the 8 000words

and look for anomalous values. Though it would be fairly daunting, this way of looking for

unrecorded breakdown would maybe work for anomalous values of quantitative fields (which

may be far different than normal values), but is definitely not worth considering it for binary

or categorical fields, which values depend largely on the values of the other fields and whose

anomalous values are almost never visually identifiable.

If the notion of a breakdown is clearly defined in the built-in test by thresholds of counters

of anomalies detected by the maintenance manager, the definition of a breakdown in raw data is

not fixed.

It is clearly not possible to list all the potential breakdowns, because the number of anomalous

situations is exponential in the number of words. On the other hand, in production, since the tests

consist in the execution of deterministic scenarios, the global behaviour of good radars should

always be the same, if the set of used words and their sampling isn’t changed.

2.2.2 Reformulation of the anomaly detection problem

The industrial need consists in a breakdown detection tool that can complete the current detec-

tion system – formed by the raw data filtering of the maintenance manager and the radar experts

investigations of the breakdown reports – by using a statistical approach to directly analyse the
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raw data and detect breakdowns. That tool is thus not intended to supplant the maintenance man-

ager or to interfere in the expert management of the ICB and the way the different components of

the radar are communicating between each other: it will use the acquisition file produced during

the test, and analyse it offline.

Since it is not possible to list all possible breakdowns, the notion of breakdown has to be

redefined. From now on, we will speak aboutAnomaly anomalies rather than breakdowns. An anomaly

is the emission of a frame on the ICB, which field’s values are not consistent with the normal

behaviour of the radar. This definition of this normal behaviour depends on the scenario played

during the test.

However, just detecting at what time an anomaly occurs isn’t helpful for the Thales experts.

An anomaly might be detected after the emission of a specific frame, but that frame might only

be an anomaly trigger and not be the root cause of the anomaly: without breakdown synthesis

report, the expert will have in any case to investigate the raw data to find the true cause of the

anomaly.

Localisation

problem

In this thesis, we will explain the (industrial) localisation problem, what we define as finding

which component(s) of the radar is the cause of the detected anomaly. From an industrial point

of view, there are two main problems to solve :

1. using the acquisition file produced during the execution of every test scenario, what we

will refer later to as theReference file reference file, learn the normal behaviour of a radar;

2. compare newly recorded data from the execution of a known scenario, what we will refer

later to as theTest file test file, to the normal behaviour of this scenario, in order to detect anomalies

and locate the components that caused these anomalies.

In addition to this two objectives, the solution will have to address some challenges specified by

the final industrial usage:

1. the fields carried by the frames are heterogeneous: some are quantitative and represents

physical quantities which possess an arithmetic, whereas other are categorical and with

which no mathematical operations can be used,

2. the anomaly detection and localisation method will be used on a standard test bench which

has the power of a classic working computer (CPU with around 3 Ghz and 8 Gb of RAM),

3. the execution of the anomaly detection and localisation algorithms will require at most the

same time as the execution of a scenario, which is around two hours.

Before the presentation of our anomaly detection and localisation solution, we will explain

how we are processing the acquisition file.
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2.3 Adapted data preprocessing

Before being used by any software or algorithm, the data need to be extracted from the acquisition

file, which is, as explained in the section 2.1.2.3, a binary file which contains the succession of

all the frames emitted on the ICB, in the reading order of the recording card. There are several

objectives of this acquisition file processing:

• understanding how the acquisition file format and how to translate it into the chosen data

file format,

• defining a file format that is suitable for a lot of machine learning libraries or software.

This targeted data file format will simply be a file where each line corresponds to a state of

the radar – in some way related the receiving of a frame – and each column corresponds to a field

(single information like a physical measure, a working mode, status, …), what we will refer to as

aComplete data

file

complete data file. However, the number of fields in a frame is very low compared to the total

number of fields, with a ratio of less than 0,1%. The resulting file will thus have a lot of missing

values. To address that issue, we have first reduced the number of used field. The choices we

made to that end are presented in section 2.3.1. Secondly, we have chosen a specific strategy to

deal with the missing values. The motivations and consequences of that choice are explained in

section 2.3.2.

2.3.1 Defining a dimension reduction strategy

In this section, we present the strategy we deployed to reduce the number of frames we are

keeping from the acquisition file during its processing.

As said before, the number of frames used by the built-in test is around 400, which cor-

responds to several hundreds of thousands of fields. Without any field reduction strategy, the

resulting file contains around 100 000 columns and several tens of millions of lines, correspond-

ing of all the frames broadcasted on the ICB. This file would size around one Terabyte on a hard

drive, what would make it impossible to use with the current computer configurations we have.

It appears we can get rid of a lot of frames, because they are redundant with other frames,

contain useless information for our study like dates or counters, or are already synthesized in

other frames. After collecting the expert thoughts on that question, we have reduced the number

of used frames from around 400 to a few tens, depending on the scenario. This reduction of

used frames is also decreasing the number of lines in our data file, since we won’t consider the

emission of not kept frames. This results in a 90% reduction of the number of lines.

For reasons that will become clear in chapter 3, we won’t also keep fields that are constant

in the reference file. After having removed the constant fields, the final number of kept fields
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for the rest of this study varies from 69 (corresponding to the Touch and go scenario presented

in example 2.3) to 125 (for the All modes scenario of the example 2.4), depending on which

scenario is used during the tests.

2.3.2 Production of a data file

Variable First, we introduce the notion of variables that will replace the notion of fields in the following.

As it will bemore explained in the chapter 3, our algorithmswon’t be able to deal with categorical

non-binary fields. These fields will be removed in favour of binary variables following the

classic 1-to-K encoding scheme (see section 3.1.1). The definition of a variable thus depends

on the type of the field it corresponds to: for quantitative fields – like physical measures – and

categorical binary fields – like bits of working, variables and fields are interchangeable. But each

categorical non-binary field is transformed into as many binary variables as the number of values

it takes. Note that the 1-to-K encoding scheme can drastically increase the number of variables, if

a categorical field takes a lot of different values in the reference file. Again, that increase depends

on the scenario: for the Touch and go scenario there is no non-binary categorical variables, so

the number of variables and the number of fields are the same, but for the All mode scenario, the

number of variables is 839, where the number of fields was 150.

Once the field reduction strategy is defined, we can reassemble the text version of the acqui-

sition file to a data file where each line is an instance of all variables, without missing values.
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Figure 2.5: Histograms of the means (on the left) and standard deviations (on the right) of the difference

between two successive timestamps of the 27 frames remaining in the All modes scenario after the dimen-

sion reduction. The ten rays with the lowest timestamps difference are the same on both histograms: only

10 frames have a regular sampling from 5 milliseconds to 200 milliseconds, whereas the 17 other frames

have a low sampling frequency with a high variance.

The way we deal with the missing value depends on the sampling of each frame; the Figure

2.5 illustrates the diversity of the samplings by showing the mean and the standard deviation of
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the timestamps difference of the frames in an acquisition file produced during an All mode sce-

nario. Remember from section 2.1.2.2 that there are three kinds of sampling: periodic, contextual

and irregular sampling.

Periodic sampling For the frame who have a regular sampling, we decide to fill the missing

values by copying their last known values. From a radar perspective, that filling process

is very coherent, because without a new emission, the radar is also keeping the last known

value as the current one.

Contextual sampling The frames with a contextual sampling have the properties to be only

categorical and to be emitted only when a specific event occurs, which means that without

such an event, the frame may never be used: there is no value that corresponds to the

nothing to report event. In agreement with the expert, we have defined zero as the default

value for that nothing to report event. We have also defined a duration of 200 milliseconds

for every event that these frames could report, before returning to zero. The missing values

will thus be set to zero outside of the 200 milliseconds period following an emission, and

copied inside that time interval.

Irregular sampling This class of sampling regroups the remaining frames which have a very

chaotic behaviour. Just as in the case of the regular sampling, we decided to copy the last

known value, since it’s also the way the radar treats those frames.

Completion Completing the missing value with the last known ones results in a subsampling of the data:

the high frequencies of the spectrograms of the variables will be cut. To minimise the effect

of that completion, we haveResampling resampled the data to the frequency of the most emitted variable,

which is 200 Hz: instead of creating a line for every emitted frame, we create a new line every 5

milliseconds, filled with the values received during the last 5 milliseconds. The missing values

are yet still copied from the last known values.

These two data processings – completion and resampling – are producing the data file we

will use in the following for the anomaly detection and localisation algorithms.

Example 2.6 Data processing of the All Modes and Touch and Go scenario

On the all modes scenario, this resampling process has produced a file of 839 columns and

2 100 000 lines. The 1004 columns are composed of 955 binary variables and 49 quantitative

variables. With the Touch and go scenario, we ended up with a file of 86 columns and 1 600 000

lines, which are samples of 77 binary variables and 9 quantitative variables.

2.4 Anomaly detection and localisation

In this section, we define the anomaly detection and localisation problem.
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2.4.1 Related works in anomaly detection

Anomaly detection refers to the task of detecting samples or patterns in data that do not behave

according to a normal behaviour.

We can group the different kinds of anomalies into three groups (Chandola et al. [2009]):

Point anomalies: These anomalies are single samples which are anomalous with regard to the

rest of the dataset. This group of anomalies has attracted most of the studies on anomaly

detection.

Contextual anomalies: These anomalies relate to samples who are anomalous in a given con-

text, but not otherwise. These anomalies are also termed as conditional anomalies (Valko

et al. [2008], Valko [2011], Song et al. [2007]).

Collective anomalies: These anomalies refer to sets of samples that are anomalous given the

rest of the data. The individual samples may not be anomalies when taken alone, but their

succession or their collection is anomalous.

As explained in section 2.1.1, the built-in test if more focused on collective anomalies, since

it is counting the emission of certain frames – which might not be anomalies if taken alone – and

detect a breakdown when too much of those frames are received. On the other hand, contextual

anomalies are very hard to detect, because the number of all possible contexts is too high. These

contextual anomalies are the one we will be trying to detect in the following.

Anomaly detection has already attracted a lot of studies for many years (see Chandola et al.

[2009], Hodge and Austin [2004], Agyemang et al. [2006] or Patcha and Park [2007] for ex-

haustive surveys on the topic), and has been applied in a large variety of applications: intrusion

detection, fraud detection, medical and public health anomaly detection, industrial damage de-

tection (also called health management), image processing, analyse of text data, etc.

The problems coming from the medical health anomaly detection field and the health man-

agement field are very close from our study. The data is typically records of various features of

patients as the age, blood pressure and sugar level for the medical field, or sensor data for the

industrial field, with a temporal aspect. Most of the study on that topic aim at detecting point

anomalies – e.g., to detect anomalous records as well as instrumentation or recording errors – and

collective anomalies – e.g., to detect anomalies in electroencephalograms or electrocardiograms.

Many authors has addressed the point detection anomaly problem and developed specific ap-

proaches, including parametric statistical modelling (Horn et al. [2001], Laurikkala et al. [2000],

Guttormsson et al. [1999]), neural networks (Sakurada and Yairi [2014], Bennett and Campbell

[2001]), Bayesian networks (Wong et al. [2003]), rule-based systems (Aggarwal [2005]), nearest

neighbours based techniques (Lin et al. [2005]) and kernel-based weighted nearest neighbours

techniques (Valizadegan and Tan [2007]), among many others.
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The problem of detecting conditional anomalies has also attracted a lot of studies. The con-

cept has been introduced by Dubitzky et al. [2007], where such anomalies where detected using

Bayesian belief networks or naïve Bayes models , though this method did not scale to more than

a dozen features. Valko et al. [2008] uses distances between hyperplanes learned by SVM to de-

tect conditional anomalies in the medical field. Song et al. [2007] proposes a method where the

users defines a partitioning of the features in two subsets, the indicator features that will directly

be indicative for the anomaly, and the environmental features, which are not directly relevant

for labelling but influence the indicator features. Valko [2011] proposes an approach based on

nonparametric graph-based methods, relying on graph connectivity analysis and soft harmonic

solution (Valko et al. [2011]).

In a detection problem, the data might have labels, which are often labeled as anomalous

or normal. However, it is not always possible to have access to those labels or to have enough

data from both categories. The possible approaches to solve an anomaly detection problem often

depends on the available labels and the cost of their discovery. There are three main classes that

distinguish all the anomaly detection techniques:

Unsupervised anomaly detection: techniques that operate in this mode are working on unla-

beled data. The implicit assumption is made that the train data contains both normal sam-

ples and anomalous samples, where often the vast majority of the samples in the data is

normal.

Supervised anomaly detection: techniques that operate in thismode are considering datawhere

both the normal class and the anomaly class have samples. New unlabeled records are

compared to a model to decide whether they should be classified as normal or anomalies.

Often, it is very expensive to have a good representation of both the normal class and the

anomaly class (often, the anomaly class is under-represented). In that sense, supervised

anomaly detection is close to binary classification problems with very imbalanced classes.

Semi-supervised anomaly detection: techniques that operate in this mode make the assump-

tions that the training data – also called normal data – do not contain any anomaly and are

drawn from the same unknown distribution. Finding a precise description of the normal

data allows the detection of samples in new test sets that aren’t drawn from this distribu-

tion.

In this thesis, we are facing a semi-supervised conditional anomaly detection problem that

we will address using a graph-based parametric approach using probabilistic graphical models.
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2.4.2 Graphical models for anomaly detection

Among the diversity of available techniques and approach to solve an anomaly detection prob-

lem, we will focus on the use of parametric statistical techniques based on graphical models.

Parametric statistical techniques make the assumption that the normal data have been gener-

ated from an unknown distribution pΩ, where Ω is the set of parameters of the model. However,

learning these parameters from data is often intractable, especially in high dimension. In the

simplest case where all the n variables take 2 values, the joint distribution pΩ has 2n− 1 param-

eters and its learning requires a lot of data, which, assuming these are available, possibly raises

big training numerical issues. If we look at the data file produced by the scenario Touch and go

(see example 2.6), the data is formed of instances of 69 variables, with 63 binary variables. If

we consider the All modes scenario (see example 2.4), specifying a joint distribution of hundreds

of variables appears totally intractable. More generally, manipulating such a big number of pa-

rameters is inconceivable from every perspective. On a computational point of view, it is too

expensive to calculate those parameters, and too expensive to store. On a practical point of view,

learning such a density from data would require having access to a huge number of samples, in

order to have a good estimation of the underlying joint distribution. Those barriers are the main

reasons to adopt graphical models.

Probabilistic

Graphical

Models

Probabilistic graphical models (Lauritzen [1996],Whittaker [2009] and Friedman andKoller

[2009]) are a framework providing mechanisms for learning and exploiting the structure of com-

plex distributions. It uses a graph-based representation to represent a complex distribution over

a high-dimensional space. In this graphical representation, illustrated in Figure 2.6, the nodes

correspond to the variables of our domain, and the edges correspond to direct probabilistic inter-

actions between the variables.

A graphical model is an association between a graph G, where the nodes of G are a set of

random variables, and a distribution pΩ of these random variables, whereΩ is a set of parameters

induced by the model family. The construction of graphical models is based on two equivalent

perspectives: on one side, the graph is a representation of a set of conditional independences of

random variables that hold in pΩ, and on the other side, the graph is a skeleton over which the

distribution pΩ is factorised.

In the following, we will describe two families of graphical representation of distributions:

the Bayesian networks – whose graphs are directed acyclic – and the Markov networks – whose

graphs are undirected. For both families holds the duality of the two above perspectives, but

they differ in the set of independences they can represent and in the way the distribution are

factorised. For both Bayesian networks and Markov networks, we will describe how a model

can be learned from data, and how that learned model can be used for detecting and localising

anomalies.
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Figure 2.6: Two different perspectives on graphical models: undirected networks (on the left), also called

Bayesian networks and directed networks (on the right), also called Markov networks.

2.4.3 Anomaly localisation

In the industrial field, localising an anomaly means to find the component(s) that caused the

detected anomalies. Now that we have introduced the probabilistic graphical models framework,

we can reformulate the localisation problem.

Suppose we have access to a distribution pΩ from a graphical model – either learned from

data or constructed by an expert team. We will be looking for anomalies that are located in the

conditional distribution of each variable:

Definition 2.1 Localisation problem Suppose we have learned a model pΩ with the param-

eters Ω over a set of n variables x1, . . . , xn, and we have a test set D = {X(t), t = 1 . . .M}
of samples, indexed by the time. We define the localisation problem as finding the subset of

variables {xi, i ∈ 1, . . . , n} whose conditional distributions p(X(t)
i |X

(t)
−i ), where x−i denotes all

the variables except xi, monitored as a function of time, have changed compared to the learned

model pΩ(X
(t)
i |X

(t)
−i ).

As a first consequence of this definition, we see that the localisation task will be done along-

side the detection task. The detection task thus relates to the detection of anomalous samples,

whereas the localisation task aims at finding which variable(s) is (are) the cause of the anoma-

lies. We can also remark that this definition does not depend on the class of graphical model, and

both Bayesian networks and Markov networks can be used to achieve this goal, as long as the

conditional probability distributions can be computed. In the next two sections, we will present

these two model families, their learning process and how to use them for anomaly detection and

localisation.

2.4.4 Bayesian networks

Bayesian Networks (Pearl [2014], Friedman and Koller [2009], on the right on Figure 2.6) are

one way to model the joint distribution p(x1, . . . , xn) of a set of n random variables. To avoid

the intractability of the representation of the joint distribution, Bayesian networks exploit the
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conditional independence properties holding in this joint distribution to provide a more compact

representation.

2.4.4.1 Definition of a Bayesian Network

The representation of a Bayesian network is a Directed Acyclic Graph (DAG) G, whose nodes
are random variables of the domain and whose edges correspond to direct influences between

variables. Since the edges are oriented, we can define the parents of a node x as the set of nodes

PaGx for which there is an oriented arrow y → x for y ∈ PaGx in G, and the children of a node x
as the set of nodes y with x→ y in G.

A Bayesian network is often associated with a set of Conditional Probability Distributions

(CPDs) that specify the distribution of the values of each variable given the values of every

possible assignments of values of its parents in the graph G. These CPDs are defining a joint

probability distribution p via theChain rule for

Bayesian

networks

chain rule for Bayesian networks

p(x1, . . . , xn) =
n∏

i=1

p(xi|PaGxi
).

Factorisation When a joint distribution can be expressed as the product of factors, where those factors are

the conditional probabilities of each variable given its parent in the graph G, we say that this

distribution factorises over the graph G.

Definition 2.2 Bayesian NetworkBayesian

network

A Bayesian network is a pair B = (G, pΩ) where G is a

directed acyclic graph, pΩ is a distribution that factorises over G, and where pΩ is specified as a

set of CPDs, parametrised by Ω, associated with the nodes of G.

The common choices for the CPDs of a variable depend on the types of the variable and its

parents:

• when both the variable and its parents are categorical, one can represent the CPD with a

Conditional Probability Table (CPT,Heckerman et al. [1995]), which is a table providing

the probability distribution of the variable for every assignment of values of its parents;

• when the variable and its parents are quantitative, the CPD is a conditional Gaussian dis-

tribution, whose parameters depend on the value of the parents (Geiger and Heckerman

[1994]);

• when the variables and its parents are a mixture of quantitative and categorical variables,

the CPD are either CPT or Gaussian distributions whose parameters depends on the value

of continuous parents for each configuration of the categorical parents (Lauritzen andWer-

muth [1989]).
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To correctly take charge of Bayesian networks, we need to understand the relation between

independences and factorisation. This requires the notion of d-separation and active trail in a

graph. Let {i1, . . . , ik} be a subset of k elements of {1, . . . , n},Xi1 
 · · ·
 Xik be a trail in G
and Z be a subset of observed variables. We say that the trail Xi1 
 · · ·
 Xik isActive trail active if:

• whenever there is a structure Xi−1 → Xi ← Xi+1 (called v-structure), Xi or one of its

descendant are not in Z;

• there is no other node of the trail in Z.

This definition of an active trail leads to the definition of theD-separation d-separation (directed separa-

tion). Let X,Y ,Z be three subset of nodes in G, we say that X and Y are d-separated given

Z if there is no active trail between any nodes X ∈ X and Y ∈ Y given Z. This notion of

d-separation is the key to understand the relation between factorisation and independences:

Theorem 2.1 For almost all distribution p that factorises over G, i.e., for all distributions except
for a set of measure zero in the space of CPD parametrisations, two subsets of variablesX and

Y are d-separated given Z if and only if the independence (X ⊥ Y |Z) holds in p.

This theorem stipulates that the independences of a distribution that factorises over a graph

can be directly read from the graph, by finding the d-separated set of variables. For instance,

the independences that will hold for each distribution that factorises over the Bayesian network

structure in the Figure 2.6 (on the right) are (G ⊥M), (S ⊥ C | G) and (S ⊥ C |M).

In the next two sections, we discuss the problem of learning a Bayesian network using a

dataset D = {X(1), . . . , X(M)} consisting of M fully observed instances of the network vari-

ables. Learning a Bayesian network can be done in several ways, but it always decomposes in

two steps: first learning the structure of the graph G, and secondly learning the parameters Ω of

the corresponding CPDs.

2.4.4.2 Learning the parameters of a Bayesian network

Suppose for now that the structure G of a Bayesian network is known, and that our training set

D = {X(1), . . . , X(M)} is composed ofM i.i.d. drawn samples of the variables of the problem.

We consider the parametric model pG(X : Ω), which is the family of distributions factorising

over the structure G and parametrised by Ω, i.e., the distributions that will share CPDs with the

same entries.

Given the data D, theLikelihood

function

likelihood function of the parameters Ω is

L(Ω : D) =
M∏

m=1

pG(X
(m) : Ω).
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Maximum

Likelihood

Estimator

The Maximum Likelihood Estimator (DeGroot et al. [1986], Bishop [2006]) is a method to

choose the parameters Ω̂ given the dataset D:

Ω̂ = argmax
Ω

L(Ω : D).

We consider the case where the parameters Ω are disjointDisjoint

parameters

, i.e., when the CPDs are parame-

trised by a separate set of parameters that are independent (Spiegelhalter and Lauritzen [1990]):

pG(X : Ω) =
n∏

i=1

pG(X
(m)
i |PaGXi

: Ωx|PaGx
),

where Ωx|PaGx
denotes the subset of parameters that determines pG(X|PaGX) in the model. In that

case, the calculation of the likelihood is easily made due to the fact that it can be decomposed

into a product of terms, one for each variable of the domain:

L(Ω : D) =
M∏

m=1

pG(X
(m) : Ω)

=
n∏

i=1

[
M∏

m=1

pG(X
(m)
i |PaG

X
(m)
i

: ΩXi|PaGXi

)

]
.

This decomposition leads to the following property:

Proposition 2.2 (Global likelihood decomposition) The likelihood function can be decomposed

in a product of conditional likelihoods of each variable given its parents in G:

L(Ω : D) =
n∏

i=1

Li(ΩXi|PaGXi

: D),

where Li(ΩXi|PaGXi

: D) is the local likelihood function of the variable Xi.

This property leads to the main result for calculating the likelihood: we can maximise each local

likelihood independently to find the MLE.

Proposition 2.3 Let ΩXi|PaGXi

be the parameters of the CPD of Xi given its parents PaGXi
. Let

Ω̂Xi|PaGXi

be the parameter that maximises the local likelihood Li(ΩXi|PaGXi

: D). Then Ω̂ =

{Ω̂X1|PaGX1

, . . . , Ω̂Xn|PaGXn
} maximises L(Ω : D).

So far, we didn’t make any assumption regarding the domain of the variables. In particular,

the decomposition property apply to any type of CPD. TheMLE approach is thus valid, whatever

the domain of the variables. For a categorical variable X with categorical parents U , we can
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represent its CPD with a table, whose elements are Ωx|u, where x ∈ Val(X) and u ∈ Val(U).

In that case, the local likelihood is given by

LX(ΩX|U ) =
∏

u∈Val(U)

 ∏
x∈Val(X)

Ω
Mx|u
x|u

 ,

whereMx|u is the counter of the event X = x and U = u in the dataset D. We can then deduce

the MLE parameters:

Ω̂x|u =
Mx|u

Mu

,

whereMu =
∑

x Mx|u.

The case where some variables are not categorical leads to different formula for the local

likelihoods, without changing the main approach. In the special case where all the variables

are continuous (Geiger and Heckerman [1994]), the joint distribution of those variables is a

multivariate Gaussian distributionGaussian

Bayesian

networks

N (µ,Σ−1) with mean µ and covariance matrix Σ. This

distribution can be rewritten as a product of conditional density

p(x) =
n∏

i=1

p(xi|x−i),

each conditional density being an univariate Gaussian distribution

N (µi +
∑
j 6=i

bij(xj − µj), ν
−1
i ),

where µi is the mean of xi, νi is the conditional variance of xi given x−i, and bij is a coefficient

indicating the strength of the interaction between xi and xj .

We can thus interpret a multivariate Gaussian distribution as a Bayesian network, where

there is no edge from xi to xj when bij = 0. On the other hand, given a Bayesian network

where the conditional probability distributions are all univariate Gaussian, we can reconstruct a

multivariate Gaussian distribution. These networks are called Gaussian networks and have been

studied by Shachter and Kenley [1989].

The general case of networks having both categorical variables and quantitativeConditional

Gaussian

Bayesian

networks

Conditional

Gaussian Bayesian networks variables are called Conditional Gaussian Bayesian networks and

have been studied by Heckerman and Geiger [1995], Lauritzen and Wermuth [1989].
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2.4.4.3 Learning the structure of a Bayesian network

In this section, we address the problem of learning the structure of a Bayesian network from data.

We suppose the data D available for the learning are i.i.d. sampled from an implicit distribution

p∗G , induced by an unknown Bayesian network (G, p∗G).
First, we have to notice that the structure of the underlying Bayesian network is not identifi-

able from the data. Generally speaking, there are many network structures over which a distri-

bution can be factorised. Remember from Theorem 2.1 that the structure of a Bayesian network

encodes a set of independences. However, the same set of independences can be encoded by se-

veral structures, defining an equivalent class. To be convinced of this, one can consider the net-

works A← B and A→ B, which are encoding the same empty set of independences: over this

networks are factorising the densities P (A,B) = p(B)p(A|B) and p(A,B) = P (A)P (B|A)
which are strictly equivalent in term of independences.

The first thing to notice is that a network is hardly designable by human experts. It is ad-

mittedly feasible with a small number of variables, but becomes intractable as the dimension

grows. There are mainly two approaches to learn a network structure ([Friedman and Koller,

2009, chapter 18]): constraint-based structure learning and score-based structure learning.

Constraint-based structure learning Constraint-based structure learning methods (Margari-

tis [2003], udea Pearl [1991]) are based on the learning of the set of independences of the dis-

tribution. They try to test every conditional dependences and independences in the data to find

a member of the equivalent class of the network encoding the independences of the data. These

methods are based on independence tests (Lehmann and Romano [2006]) that are subjects to fail-

ure, and will result in a wrong structure. Common tests are the mutual information test for cate-

gorical Bayesian networks, and the exact Student’s T test for correlation for Gaussian Bayesian

networks, introduced by Shachter and Kenley [1989] in the context of influence diagrams. How-

ever, testing every tripletX , Y , Z to test if the conditional independencesX ⊥ Y |Z holds for

the data is intractable in hight dimension. Constraint-based method thus often limit the size of

Z to one or two variables, what may also result in a wrong structure.

Score based structure learning Score-based approaches are considering the Bayesian struc-

ture learning problem as a model selection problem: they explore through a hypothesis space

of candidate networks to find the highest-scoring structure. However, the space of Bayesian

network structure is a combinatorial space containing a superexponential number of structures

(2n
2
structures for n nodes). The exploration problem is thusNP-hard, and require heuristics to

explore the structure space. Most of the classic scores are based on the likelihood L(G : D) of
the structure given the dataset, which decomposes as follow:
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Proposition 2.4 (Likelihood score) LetD be a dataset ofM instances of the variablesX1, . . . , Xn

of our domain. The likelihood score decomposes as

L(G : D) = M
n∑

i=1

Ip̂(Xi,Pa
G
Xi
)−M

n∑
i=1

Hp̂(Xi),

where p̂ is the empirical distribution observed in the dataD, Ip̂(X,Y ) is the mutual information

betweenX and Y in the distribution p̂ and Hp̂(X) is the entropy of the variable X in p̂.

Remember that theMutual

Information

mutual information quantifies howmuch a set of variables is informative

about another set. For an arbitrary distribution p and some set of variablesX and Y , the mutual

information between X and Y in p is given by

Ip(X,Y ) =
∑

x∈Val(X),y∈Val(Y )

p(x, y) log
p(x, y)

p(x)p(y)
.

TheEntropy entropy is a measure of the amount of uncertainty in a distribution: a low entropy implies

that most of the distribution mass is spread on a few instances, whereas a high entropy implies a

more uniform distribution. For an arbitrary distribution p and a set of variables X , the entropy

of X in p is given by

Hp(X) =
∑

x∈Val(X)

p(x) log p(x).

Note that the entropy term does not discriminate the structures and can be removed with-

out changing the result of the score maximisation. The likelihood score thus boils down to the

calculation of mutual information, which can be interpreted as the strength of the dependences

between the variables. That score will favour networks where the parents of each variable are

informative about it. However, we can observe a property of the mutual information: for any

X , Y , Z and any distribution p,

Ip(X,Y ∪Z) ≥ Ip(X,Y ).

Thus, a conditional independence will be exhibited by the maximum likelihood structure only

when this independence holds exactly in the empirical distribution, which will practically never

happen, especially when there is a lot of data. The structure learned bymaximising the likelihood

score will consequently be fully connected, which means that this score willOverfitting overfit the data.

Several scores have been proposed to overcome this issue. Many authors have studied the

impact of using priors p(G) on the structure space to penalise certain structures or priors p(Ω|G)
over the parameters values for a network G. Using a Dirichlet prior for the parameters leads to

48



2.4. ANOMALY DETECTION AND LOCALISATION

the classicBayesian

Information

Criterion

Bayesian Information Criterion (Buntine [1991], Cooper and Herskovits [1992]):

scoreBIC(G : D) = logL(G : D)− logM

2
Dim(G),

where Dim(G) is the number of independent parameters in G. This score seems to favour simple

structures, and as it get more data, it will be able to recognize more complex structures.

The maximisation of any score though still requires exploring the structure space, which is a

finite space. Chickering et al. [1995] compares different search algorithms, including K2, local

search or simulated annealing. Glover and Laguna [2013] studied the use of Tabu search.

2.4.4.4 Detecting and localising anomalies using Bayesian networks

Bayesian networks constitute a widespread class of graphical models to achieve anomaly detec-

tion, see Rashidi et al. [2011], Ye and Xu [2000], Wong et al. [2003], Lerner et al. [2000] and the

references therein. Namely, given a Bayesian network (G, pΩ) whose parameters Ω of the con-

ditional distributions are estimated from normal data, the computation of the likelihood is easily

performed for new records of data to classify whether a record is anomalous or not. Indeed, the

lower the likelihood, the higher the probability of having an anomalous record. This method has

been successfully applied for network intrusion detection Ye and Xu [2000] and in the medical

fields for disease outbreak detection Wong et al. [2003].

Once anomalous samples have been detected, the localisation task (see definition 2.1) can

be done by analysing the conditional likelihood of each variable given its parents in the graph.

The variables with anomalous values given the values of their parents have a higher probability

of being the origin of the anomaly.

That approach has been successfully applied in Thales for detecting and localising anomalies

in the data produced by the built-in test of the RDY radar, see Kemkemian et al. [2013]. In this

study, a Bayesian network is learned over data, that are instances of 140 significant variables,

using a commercial software called BayesiaLab [2013]. The learning was made by optimising a

Minimum Description Length-like score, but the localisation inside low-likelihood samples had

still to be manually done.

We present in section 5 an application of anomaly detection and localisation using Bayesian

networks on true data from an RBE2 radar.

2.4.5 Undirected graphical models via the exponential family

We focus now on Markov networks, which is one of the two main graphical model families,

alongside the Bayesian networks. One of the advantages of working with Markov networks is

that we have no acyclicity constraint over the structure. This property will have many conse-
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quences for the learning, and in particular, the likelihood can be optimised using classic convex

optimisation algorithms – instead of local search heuristics – and has a unique optimum. How-

ever, the disadvantage of undirected models is that the log-likelihood does not decompose into

a product of local likelihood as it was the case for Bayesian networks, and this makes parameter

estimation much more expensive.

2.4.5.1 Definition of a Markov network

The representation of aMarkov network is an undirected graph G, whose nodes represent random
variables and whose edges correspond to direct influences between variables. AMarkov network

is associated to a distribution pΩ, which will have a different parametrisation and factorisation

than the Bayesian networks. Namely, those distributions, called Gibbs distributions, are writ-

ten as a productPotentials of potentials (or factors), which are simply positive functions over subsets of

variables:

pΩ(x1, . . . , xn) =
1

Z
· ϕ1(D1) · ϕ2(D2) · · · · · ϕk(Dk),

Partition function whereDj , j = 1 . . . k are subsets of {x1, . . . , xn}, ϕj are the potentials associated to the subsets

Dj and Z is the normalisation constant, also called partition function. Note that the potentials

are not densities and thus did not sum to one, hence the partition function is mandatory to ensure

that p is a valid distribution.

Wewant now to relate the parametrisation of a Gibbs distribution to the structure of aMarkov

network. An undirected structure can be decomposed into complete sub-graphs, i.e., graphs

where each node is connected to all the other nodes. TheseCliques complete sub-graphs are called

cliques – see Figure 2.7 for an example of clique decomposition of a graph structure – and the

notion of clique decomposition leads to the definition of the factorisation of a distribution over

a Markov network structure.

Definition 2.3 Markov network factorisation We say that a distribution pΩ parametrised by

a set of potentials Ω = {ϕ1(D1), . . . , ϕk(Dk)} factorises over a Markov structure G if eachDj ,

j = 1 . . . k is a clique of G, i.e., a complete sub-graph of G. The potentials that parametrised pΩ

are hence called clique potentials.

We can now give the definition of a Markov network.

Definition 2.4 Markov network AMarkov network is a pairH = (G, pΩ)where G is an undi-
rected graph and pΩ is a distribution parametrised by a set of clique potentials that factorises

over G.
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State

Mode

Calib.

Gain

Figure 2.7: Markov network structure with four nodes State (S), Mode (M), Calibration (C) and Gain (G),

corresponding respectively to four random variables S,M, C andG.This graph has six cliques, four formed

by the pairs (S,M), (M,C), (C,G) and (G,S), and two formed by the triplets (S,G,M) and (G,M,C). We can

also deduce the only independence holding for any distribution factorising over it, namely S ⊥ C | (G, M).

Note that several distributions can factorise over a Markov network structure. For example,

if we consider the network of the Figure 2.7, we can find at least two factorising distributions:

one using maximal clique decomposition,

p(S,M,C,G) =
1

Z
ϕ1(S,G,M)ϕ2(C,G,M),

and another one using pairwise clique decomposition

p(S,M,C,G) =
1

Z
ϕ1(S,G)ϕ2(S,M)ϕ3(M,C)ϕ4(C,G)ϕ5(M,G).

To fully understand the construction of Markov networks, we will describe how indepen-

dences and factorisation are related. We define the notion ofSeparation separation:

Definition 2.5 Separation We say that a set of nodes Z separatesX and Y in a Markov net-

work structure G, if each path going from X ∈ X to Y ∈ Y contains at least a node from

Z.

As it was the case for Bayesian network (see Theorem 2.1), the notion of separation allows

us to fully understand the relation between factorisation and independences.

Theorem 2.5 (Hammersley-Clifford) For all distribution p that factorises over a structure G,
for any subsets of variablesX , Y , Z, the conditional independence (X ⊥ Y | Z) holds in p if

and only if Z separatesX and Y in G.

The Figure 2.7 illustrates how the structure of a Markov network can be used to discover any

independences holding for a distribution that factorises over it.
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We only postulate that the clique potentials are nothing more than positive functions: this

allow us to provide a different representation for a Gibbs density. More precisely, we can rewrite

any potential ϕ(D) as

ϕ(D) = exp(−ε(D)),

where ε(D) = − logϕ(D) is called anEnergy function energy function – the use of that word comes from

the statistical physics, where the probability of a physical state depends inversely on its energy.

Usually, we reformulate the energy function as a weighted feature

ε(D) = −ωDfD(D),

where ωD is a positive weight and fD a feature function of the variablesD. This reformulation

leads to a more general framework for working with Markov networks.

Definition 2.6 Log-linear graphical models Adistribution pΩ can be expressed as a log-linear

model associated with a Markov network structure G if pΩ is associated with a set of features

f1(D1), . . . , fk(Dk) – where each Dj is a clique of G – and a set of weights Ω = ω1, . . . , ωk

such that

pΩ(x1, . . . , xn) =
1

ZΩ

exp

[
−

k∑
j=1

ωjfj(Dj)

]
. (2.1)

A subclass of networks that arises in many situations is thePairwise

networks

class of log-linear pairwise

Markov networks, where the clique potentials are functions of one or two variables. More pre-

cisely, a distribution factorising over a pairwise Markov networks is associated with a set of

node potentials {ϕi(xi) = ωifi(xi), i = 1 . . . n} and a set of edge potentials {ϕij(xi, xj) =

ωijfij(xi, xj), i 6= j}, where the fi and the fij are the associated features and Ω = {ωi}i ∪
{ωij, i 6= j} are the associated weights. Note that the weights associated to edges are symmetric,

i.e., ωij = ωji, for all i 6= j. In this framework, the factorising density has the form

pΩ(x1, . . . , xn) =
1

ZΩ

exp

[
n∑

i=1

ωifi(xi) +
∑
i<j

ωijfij(xi, xj)

]
, (2.2)

where the partition function is defined as

ZΩ =

∫
x

exp

[
n∑

i=1

ωifi(xi) +
∑
i 6=j

ωijfij(xi, xj)

]
dx.

Note that in this framework, two variables xi and xj are conditionally independent to all the

others variables if and only if ωij = 0 and ωji = 0. Indeed, the conditional distribution of xi
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given the other variables is

pΩ(xi|x−i) ∝ exp

(
ωifi(xi) + fi(xi)

∑
j>i

ωijfj(xj)

)
.

We thus see that when ωij is null, the conditional distribution of xi doest not depend on xj .

Pairwise Markov networks are attractive because of their simplicity and because edges in-

teractions are a special case that often arises in practice. Though it is an important restriction

in term of parametrisation, since pairwise networks have only O(n2) independent parameters

whereas the space of Markov network parametrisations is a combinatorial space containing a

superexponential number of parametrisations, the pairwise framework embraces a large variety

of models and in particular the exponential family, where the conditional distributions of each

node arise from the exponential family. This subclass contains many of the most classic pairwise

models, like the Ising model, the Potts model, or the Gaussian model.

2.4.5.2 Ising model and Potts model

The Ising model (Ising [1925], Wainwright and Jordan [2008]) is one of the earliest studied

pairwise Markov networks, and was used in statistical physics to model the energy of a physical

system involving interacting atoms. Each atom of this system corresponds to a binary-valued

variable xi, with values in {−1, 1}, defining the atom’s spin. In this model, the energy function

associated with the edges is symmetric and take the form

εij(xi, xj) = −ωijxixj,

and the node energy functions take the form

εi(xi) = −ωixi.

In the rest of our study, we will use the state space {0, 1} for the binary-valued variables. It is

convenient for the calculations, and in particular, we have x2
i = xi for each variable. The joint

probability distribution (2.2) take the form

pΩ(x1, . . . , xn) =
1

ZΩ

exp

[
n∑

i=1

ωixi +
∑
i 6=j

ωijxixj

]
. (2.3)

The term
∑n

i=1 ωixi defines the distribution when there is no interactions. The parameters

{ωij} are often constrained to be positive, since it corresponds to networks with only collabora-
tive interactions between the nodes.
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The Potts model Potts [1953] is a model where all the variables x1, . . . , xn are categorical

with the same state space {1, . . . ,m}, and its density is the same as the density (3.3) of the Ising

model.

Both models impose no condition on the parameters {ωi} and {ωij}, since there is a finite
number of configurations for the binary and categorical variables, and the distribution is always

normalisable.

2.4.5.3 Gaussian model

In aGaussianmodel (Lauritzen [1996], Malioutov et al. [2006]), the joint distribution of variables

n quantitative random variables x1, . . . , xn is modelled a multivariate Gaussian distribution with

mean vector µ and positive definite symmetric covariance matrix Σ:

p(x) =
1√

(2π)n|Σ|
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (2.4)

If we expand the term under the exponential in (2.4), we see that this equation is a special

case of the pairwise Markov network (2.2). In particular, in a Gaussian model (G, pΩ) where
Ω = (µ,Σ), the matrix∆ = Σ−1 is called thePrecision matrix precision matrix, and there is an edge in the graph

G between the node i and j if and only if ∆ij 6= 0.

An interesting property of the Gaussian model is that the precision matrix and the graph

structure are related (Speed and Kiiveri [1986]). If two subsets of variables xa and xb are con-

ditionally independent, then there is no edge between the corresponding nodes in the graph, and

the corresponding block∆ab of the precision matrix is null. On the contrary, a null element in the

covariance matrix Σ only states a marginal independence between the corresponding variables.

2.4.5.4 Exponential family

Often, when taken alone, the behaviour of variables can be easily represented by an appropriate

model, like a Poisson distribution for count-valued variables, a Gaussian distribution for physical

measures, or Bernoulli distribution for binary-valued variables. The generalisation from univari-

ate distributions to a multivariate distribution has been done when all the univariate distributions

are members of the exponential family, see Yang et al. [2015] in the general case and Lee and

Hastie [2015], Laby et al. [2015] for mixing Bernoulli and Gaussian univariate conditional den-

sity.

Given a set of variables, we consider the case where ever every conditional probability dis-
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tribution of each variable given all the others is a member of theExponential

family

exponential family:

p(xi|x−i) =
1

Zi(x−i)
exp[Ei(x−i)Bi(xi) + Ci(xi)], (2.5)

where x−i represent all the variables except xi. The sufficient statistic Bi(·) and the base mea-

sure Ci(·) are specified by the choice of the univariate exponential family, the function Ei(·)
is an arbitrary function of x−i, and Zi(·) is the normalisation constant. Then these conditional

distributions are consistent with a joint distribution pΩ factoring over a graph G, i.e., a Markov

network (G, pΩ) with cliques of size at most K, if for each i = 1 . . . n, the functions Ei(·) have
the following form (Yang et al. [2014]):

ωi +
n∑

j=1

ωijBj(xi) + · · ·+
n∑

j1,...,jK=1

ωij1...jK

K∏
k=2

Bjk(xtk).

In that case, the joint distribution take the form

pΩ(x1, . . . , xn) =
1

ZΩ

exp

[
n∑

i=1

ωiBi(xi) + · · ·+
n∑

i1,...,iK=1

ωi1,...,iK

K∏
k=1

Bik(xik) +
n∑

i=1

Ci(xi)

]
,

where Ω = {ω1, . . . , ωn,...,n}. In the special case of pairwise models, i.e., when K = 2, the

density above takes the form

pΩ(x1, . . . , xn) =
1

ZΩ

exp

[
n∑

i=1

ωiBi(xi) +
n∑

i,j=1

ωijBi(xi)Bj(xj) +
n∑

i=1

Ci(xi)

]
, (2.6)

where ZΩ is the partition function

ZΩ =

∫
x

exp

[
n∑

i=1

ωiBi(xi) +
n∑

i,j=1

ωijBi(xi)Bj(xj) +
n∑

i=1

Ci(xi)

]
dx.

Note that the partition function ZΩ might not be always integrable and its integrability has to be

checked for each different mixing.

The case where the variables can be regrouped in one or two typesManichean

graphical models

is called manichean

graphical models (Yang et al. [2014]). Under this framework, the variables can be partitioned in

two groups, Y taking values in Y , and Z taking values in Z . Depending on the cardinal of Y
and Z , it is possible to know if Y and Z can be mixed.
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If both Y and Z are finite, then the joint distribution over Y and Z is normalisable, since it

requires the summation of a finite number of cases.

If either Y or Z is finite, say Y without lost of generality, then the following theorem applies

(Yang et al. [2014]):

Theorem 2.6 If the domain Y is finite with max{Y} < +∞ and min{y ∈ Y} > −∞, and if

the conditional distribution p(Z|Y ) is normalisable for all Y ∈ Y , then the partition function

is finite and the pairwise joint distribution pΩ(Y ,Z) is normalisable.

In particular, this theorem shows that mixing Gaussian (where Bi(xi) = xi

σi
and Ci(xi) =

− x2
i

2σ2
i
) and Ising graphical models (where Bi(xi) = xi and Ci(xi) = 0) leads to a valid mixed

joint distributions. The domain of the binary variables of the Ising model is {0, 1} and is finite,
and the conditional distribution of the Gaussian variables given the binary one’s is well defined

(see Lee and Hastie [2015], Laby et al. [2015] and the section 3 of this thesis). However, mixing

Poisson (where Bi(xi) = xi and Ci(xi) = − log(xi!)) and Ising graphical models does lead to a

valid mixed joint distribution only if ωij ≤ 0 for all i, j corresponding to the Poisson variables

(Yang et al. [2013]).

If both Y and Z are infinite, with sup{y ∈ Y} = ∞ or inf{y ∈ Y} = −∞ with the same

for Z , for all class distributions with linear sufficient statistic Bi(xi) = xi (which include the

popular distributions like Poisson, Gaussian, Bernoulli, Ising, exponential, …), the following

theorem defines the valid mixed distributions:

Theorem 2.7 (Yang et al. [2014]) If both the domains Y and Z are infinite, if the sufficient

statistic for each variable is the identity function, then the mixed joint distribution (2.2) is not

normalisable if neither of the following conditions holds, for all i, j with ωij 6= 0:

1. the domain of xi and xj are both infinite only from one side,

2. for all α, β > 0 such that −Ci(xi) = O(Xα
i ) and −Cj(xj) = O(Xβ

j ), we have (α −
1)(β − 1) ≥ 1.

In particular, the Gaussian - Poisson mixed distribution is not a valid one. Without loss of

generality, suppose that the conditional distribution of the variables Y are univariate Gaussian

distribution with known variance σ2, and the variables Z correspond to a Poisson distribution.

Since the domain Y of the Gaussian variables is R, it is infinite in both directions and the first

condition 1. of the theorem 2.7 is thus not satisfied. Concerning the second condition, α = 2

since CY (Yi) = −Y 2
i

σ2 . Moreover, log(zi!) ∼ zi log(zi) so−CZ(zi) = O(zβi ) for any β > 1. The

second condition is also not valid, and mixing Poisson and Gaussian distribution is only possible

if there is no interaction between Y and Y .
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2.4.5.5 Model learning

The learning of a Markov network from data is a quite different task than the learning of a

Bayesian networks. If the problem often also relates to the calculation of themaximum likelihood

estimator, there is some main differences in the learning of both kinds of model:

1. first, there is no acyclicity constraint for the Markov networks, which allows the use of

convex optimisation techniques for optimising the likelihood. The use of `1 regularisation

for learning sparse structure has been extensively studied, see Schmidt [2010] for an ex-

haustive survey.

2. Secondly, under the log-linear framework, the likelihood function is a strictly concave

function of its parameters, which guarantees the existence of a unique optimum.

3. Finally, where the joint distribution of Bayesian networks was a product of conditional

probability distributions, the joint distribution of a Markov network has a global normal-

isation constant Z that prevents the decomposition of the learning into local parameters

learning problem, as it was the case for Bayesian networks. This global parameter has si-

gnificant computational consequences, because in many cases, it has no closed-form and

makes the exact calculation of the maximum likelihood estimator unachievable in practice.

Except for the case of the Gaussian model where the maximum likelihood estimator has a

known closed-formed, learning a graphical model, especially in the case of mixed distributions,

is still a challenging issue. The intractability of the calculation of the partition function forces the

use of iterative methods, for optimizing over the parameter space. The next chapter will address

the learning problem of a Markov network.

2.5 Motivation for the study

We chose to address the anomaly detection and localisation problem of Thales with a semi-

supervised fashion by using probabilistic graphical models. The benefits of using Bayesian net-

works had already been shown by Kemkemian et al. [2013], nevertheless we decided to inves-

tigate a different direction, because of the lack of guarantee that offers the Bayesian network

learning. Namely, the structure space of Bayesian networks is a combinatorial space, and the

underlying structure is not identifiable from the data.

In contrast, the Markov network framework provides the theoretical guarantees that will

make their learningmuchmore reliable: the hypothesis state is continuous, and the likelihood has

a unique optimum, what allows the use of convex optimisation algorithm and `1 regularisation

for learning sparse structures.
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The data provided by Thales are instances of heterogeneous variables, and in the following

chapters, we will describe how to learn a mixed pairwise Markov network to model the normal

behaviour of a radar and how to exploit this learned model to detect and locate anomalies in new

records.

Chapter 3 addresses the learning of a mixed network, with two approaches: the first uses a

stochastic version of the proximal gradient algorithm (Atchade et al. [2015]) that approximates

the partition functionZΩ throughMCMC simulations, and the second uses the pseudo-likelihood

(Besag [1975]) instead of the classic likelihood to avoid the intractability of the calculation of

the partition function.

Chapter 4 presents our anomaly detection and localisation method. This technique is based

on the monitoring of the conditional probability distributions as a function of time, and aim at

detecting a change in this conditional distributions by using a two-sided version of the CUSUM

algorithm (Basseville et al. [1993], Page [1954]).

In the chapter 5 we thoroughly investigate how the proposed methods performs on real data

coming from the RBE2 radar production in Thales and provide insights about the practical ap-

plication and results of our methods.
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Chapter 3

Learning a mixed undirected graphical

model

In this chapter, we will present the mixed graphical model framework and how to learn a mixed

graphical model from data. The data we are considering are instances of heterogeneous vari-

ables, some being quantitative like gains, phases, temperatures, and some being categorical like

working states or modes. In the following sections, we will denote by X an instance of the

variables x, with x = (xC, xQ) where xC = (xi, i ∈ C) are the categorical variables where and
xQ = (xu, u ∈ Q) are the quantitative variables. Here C and Q respectively refer to the indices

of categorical and quantitative variables of x.

Many authors have addressed the graphical model learning problem in the case where the

data is either categorical or quantitative, but only a few works are considering the heterogeneous

case. Though this field is too vast for exhaustively enumerating all the studies, we propose a

review of related works on that topic in the section 3.2.2.

We present in section 3.1 the mixed graphical model framework we designed for the anomaly

detection and localisation issue of Thales. In this model, conditionally to the other variables, each

variable will be associated either with a Bernoulli distribution if the variable is categorical or with

a univariate Gaussian density if the variable is quantitative. In section 3.2, we then propose two

algorithms we developed to learn a mixed graphical model from data. In section 3.3, we compare

our learning algorithms with other standard techniques on synthetic data.

3.1 Mixed model presentation

In this section, we present the mixed model framework that we will be using throughout this

thesis.
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3.1.1 The mixed model framework

As explained in section 2.4.5, the pairwise undirected graphical model framework is attractive

from many perspectives. The pairwise restriction is a good compromise between richness of the

model and learning complexity. On a computational point of view, the complexity of a learning

algorithm in the pairwise framework won’t scale exponentially with the dimension, what makes

them tractable in high dimension. For example, a pairwise network with n nodes associated

to n variables has maximum

(
n

2

)
= n(n− 1)/2 edges potentials, whereas a model with no

restrictions on the clique’s sizes can have 2n edges potentials. Of course, when n is large, the

dimension of the model still increases significantly. This will be taken into account in the follow-

ing. Another nice feature of the model is that the likelihood function is concave over a continuous

space of parametrisation, which allows us to rely on well understood numerical procedures for

statistical inference.

The model we propose is a pairwise undirected graphical model mixing a Gaussian model,

used with continuous variables with values in R, and an Ising model, used with binary variables

with values in {0, 1} or {−1, 1}. The Gaussian model is parametrised by a positive definite

covariance matrix Σ and a mean vector µ, and its density is given by

pΣ,µ(x) =
1

(2π)
n
2 |Σ| 12

exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
,

which can be formulated using the precision matrix ∆ = Σ−1, in which case the density takes

the form

p∆,µ(x) =
1

Z∆,µ

exp

[
µT∆x− 1

2
xT∆x

]
, (3.1)

where here Z∆,µ denotes the normalisation constant. On the other hand, the Ising model is para-

metrised by Θ = {(θi)i=1...n, (θij)i>j)}, and its distribution is given by

pΘ(x) =
1

ZΘ

exp

[∑
i=1

θixi +
∑
i>j

θijxixj

]
, (3.2)

where ZΘ denotes the normalisation constant. In this work, we will use the state space {0, 1} for
the binary variables xi, hence xi = x2

i . The Ising distribution can be reexpressed as

pΘ(x) =
1

ZΘ

exp

[
n∑

i,j=1

θijxixj

]
=

1

ZΘ

exp(xTΘx), (3.3)

where we have kept the same notation Θ for the parameters of the model as in equation (3.2).
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Note also that we are considering here categorical binary variables instead of general categorical

variables, either binary or non-binary. It is possible to use the Potts model (2.3) for modelling

non-binary categorical variables, however this model can be used only when all the variables

have the same states space and when these states are comparable between variables. Though

all categorical variables used by the built-in test take the same states – hexadecimal numbers

between 0000 and FFFF, see section 2.1.2 – these states are not comparable between each others

and have different meaning for different variables. To address this issue, wewill binarise the non-

binary categorical variables using1-to-K encoding

scheme

the classic 1-to-K encoding scheme, as proposed by [Bishop,

2006, §4.3.4] and Schmidt [2010]. The principle is the following: for i ∈ C, if xi takes values

in 1, . . . ,mi, we use instead the binary vector t
(i) ∈ {0, 1}mi , with t

(i)
k0

= 1 if xi = k0, and t
(i)
k = 0

elsewhere for k 6= k0. This transformation will only be done for non-binary categorical variables

and thus will only impactΘ and Φ, whose dimensions will be consequently increased. Note that

the binary variables are not concerned by this transformation. Thereafter in this paper, when we

use the notation X , x, XC and xC , we will suppose that the non-binary categorical data were

already transformed following this scheme.

We can now define the pairwise undirected mixed graphical model framework.

Definition 3.1 Mixed pairwise graphical model For heterogeneous variables x = (xC, xQ)with

xC ∈ {0, 1}|C| and xQ ∈ R|Q|,Mixed graphical

model

we use the pairwise undirected mixed graphical model

pΩ(x) =
1

ZΩ

exp

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
, (3.4)

where Ω = (Θ, µ,∆,Φ) contains all the parameters of the model, and where ZΩ is the partition

function defined by

ZΩ =
∑

xC∈{0,1}|C|

∫
R|Q|

exp

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
dxQ. (3.5)

Here, Θ = (θij)i,j∈C is a symmetric matrix, µ = (µi)i∈Q ∈ RQ, ∆ = (δuv)u,v∈Q is a positive

definite symmetric matrix and Φ = (φiu)i,u∈C×Q is a general matrix. To simplify the notation,

we have mixed the subset of variables indices C and Q with the indices of the corresponding

matrices.

As explained earlier, themixedmodel (3.4) involved amix between an Isingmodelmodelling

the interactions between the categorical variables, a Gaussian model modelling the interactions

between the quantitative variables and a last term for interactions between the categorical and the

quantitative variables. In order for pΩ to be a valid density with respect to the product measure

made up of the countingmeasure on {0, 1}|C| and the Lebesguemeasure onR|Q|, one just requires
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∆ to be a positive definite symmetric matrix. No other condition is imposed on µ,Θ and Φ other

than Θ symmetric.

3.1.2 Properties of the mixed models

The mixed model (3.4) has been studied by Laby et al. [2015] and Lee and Hastie [2015], and

is a special case of the joint density defined via exponential families introduced by Yang et al.

[2015]. In particular, the theorem 2.6 shows that the mixed density (3.4) is valid if the conditional

densities pΩ(xQ|xC) are normalisable.

Seen as a function of xQ only, the density (3.4) can be rewritten as

pΩ(xQ|xC) ∝ exp

((
µT + xT

CΦ
)
xQ −

1

2
xT
Q∆xQ

)
,

where∝means equality between functions up to a multiplicative constant depending on xC . We

recognise in the right part of the equation a special case of the Gaussian density (3.1). We can

thus conclude that, given xC , xQ has a Gaussian distribution with mean ∆−1
(
µ+ ΦTxC

)
and

covariance matrix ∆−1.

A similar property holds for the conditional distribution of xC . Seen as a function of xQ, the

density (3.4) becomes

pΩ(xC|xQ) ∝ exp
(
xT
CΘxC + xT

CΦxQ
)

∝ exp
(
xT
C [Θ + Diag (ΦxQ)]xC

)
,

where Diag (u) is the diagonal matrix with the vector u on its diagonal, and where we have used

x2
i = xi for i ∈ C. We recognise the Ising model with parameter Θ+ Diag (ΦxQ).

More surprisingly, the marginal distribution of xC is still an Ising model. Indeed, we have

that

pΩ(xC) ∝ exp(xT
CΘxC)

∫
R|Q|

exp

(
(µ+ ΦTxC)

TxQ −
1

2
xT
Q∆xQ

)
dxQ.

We can actually interpret the integral term (up to a multiplicative constant) as the expectation

E[exp
(
(µ+ ΦTxC)

TU
)
] where U is a Gaussian vector with zero mean and covariance∆−1. We

thus get

pΩ(xC) ∝ exp

(
xT
CΘxC +

1

2
(µ+ ΦTxC)

T∆−1(µ+ ΦTxC)

)
∝ exp

(
xT
C
[
Θ+ Φ∆−1ΦT/2 + Diag

(
Φ∆−1µ

)]
xC
)
.
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where Diag (u) is the diagonal matrix with the vector u on its diagonal. We recognise an Ising

model with parameter Θ+ Φ∆−1ΦT/2 + Diag (Φ∆−1µ).

However, there is no such similar property for the marginal distribution of xQ, which is a

Gaussian distribution if and only if Φ = 0, in which case this Gaussian distribution is parame-

trised by a mean vector ∆−1µ and a covariance matrix ∆−1. In every other cases, pΩ(xQ) is a

mixture of Gaussian distributions.

This four results are summarised in the following proposition.

Proposition 3.1 We denote by xC and xQ respectively the binary and quantitative variables x,

with x = (xC, xq) where xC ∈ {0, 1}|C| and xQ ∈ R|Q|. Then the four following properties are

holding for any mixed model defined by the definition 3.1 and parametrised byΩ = (Θ, µ,∆,Φ):

i. Given xC , the conditional distribution of xQ is Gaussian with mean∆−1
(
µ+ ΦTxC

)
and

covariance matrix ∆−1.

ii. GivenxQ, the conditional distribution of xC is a Isingmodel with parametersΘ+Diag (ΦxQ).

iii. The marginal distribution of xC is an Ising model with parameters Θ + Φ∆−1ΦT/2 +

Diag (Φ∆−1µ).

iv. The marginal distribution of xQ is a mixture of Gaussian distributions, except whenΦ = 0,

in which case it is Gaussian with mean ∆−1µ and covariance ∆−1.

Two of this properties are illustrated on the Figure 3.1, where we have shown some simu-

lations of the mixed density (3.4) in the case Φ = 0 (on the left) and in the case Φ 6= 0 (on

the right). The sampling process will be described later in the Algorithm 2. The property 3.1.i,

stating that the quantitative variables have a conditional Gaussian distribution, is illustrated on

both figures, where all samples with the same color have a Gaussian distribution. The property

3.1.iv, stating that the marginal density of xQ is Gaussian only if Φ = 0, is also illustrated on

this plots: on the left where Φ = 0, the quantitative samples are actually Gaussian distributed,

whereas on the right whereΦ 6= 0, the quantitative samples doesn’t have a multivariate Gaussian

distribution but rather a mixture of Gaussian distributions.

3.1.3 From distribution to graphs

Let us explore more deeply the relation between mixed undirected graphs and mixed distribu-

tions. Remember that, as explained in section 2.4.5.1, in the framework of undirected models,

the Hammersley-Clifford theorem 2.5 states that the absence of an edge between two nodes xi

and xj states that xi and xj are conditionally independent given all the others variables x−ij: ob-

serving x−ij actually separates xi and xj , since there is no active chain between this two nodes
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Figure 3.1: Illustration of i.i.d. samples of the mixed density (3.4) with 2 quantitative variables and 3

binary variables. On both figures, the binary variables are represented by 23 = 8 colours, and the two

quantitative variables are displayed along the two axis. The left figure illustrates the case Φ = 0, i.e.,
where xQ and xC are independent, and the right figure illustrates the case Φ 6= 0, i.e., where xQ and xC
are dependent.

(see definition 2.5). It also implies that pΩ(xi|x−i) is independent of xj , and pΩ(xj|x−j) is inde-

pendent of xi, where x−k denotes all the variables except xk. This conditional independence is

thus equivalent of having a null weight for the edge potential of xi and xj .

The discussion about the relation between independences and edge potentials in section

2.4.5.1 also shows that the weights associated to the edges potentials, i.e., θij , δij or φij de-

pending on the domain of the variables xi and xj , only occur in the two conditional distributions

pΩ(xi|x−i) and pΩ(xj|x−j). Let us compute the conditional distributions of the quantitative and

categorical variables to see how these properties hold for the mixed model.

In the case where xi is categorical, for i ∈ C, we have that

pΩ(xi|x−i) ∝ exp

[
θiix

2
i + xi

(
2
∑
j>i

θijxj +
∑
u∈Q

φiuxu

)]
, (3.6)

where we have used xu for the u-th entry ofXQ to keep the notation simple. We see that the only

parameters involved in the conditional distribution of xi given x−i are {θij}j∈C and {φiu}u∈Q.
In the case where xu is quantitative, for u ∈ Q, we have that

pΩ(xu|x−u) ∝ exp

[
−1

2
∆uux

2
u + xu

(
−
∑
v>u

∆uvxv +
∑
i∈C

φiuxi

)]
, (3.7)
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where we have also used xu for the u-th entry of XQ to keep the notation simple. We see that

the only parameters involved in the conditional distribution of xu are {∆uv}v∈Q and {φiu}i∈C .
The matrices Θ, ∆ and Φ can thus be considered as weighted adjacency matrix respectively

for the subgraphs containing only edges between categorical variables, quantitative variables,

and edges linking categorical and quantitative variables:

• φiu for i ∈ C and u ∈ Q is the weight corresponding to the edge potential between the

quantitative variable xu and the categorical variable xi. We clearly see by (3.6) and (3.7)

that the conditional distribution of xi depends on xu if and only if Φiu 6= 0, with the same

condition for the conditional distribution of xi. Hence there is an edge in the graph between

the nodes associated to the variables xi and xj if and only if Φiu 6= 0.

• θij for i, j ∈ C is the weight corresponding to the edge potential between the categorical

variables xi and xj . We see by (3.6) that the conditional distribution of xi depends on xj

if and only if θij 6= 0. Hence there is an edge in the graph between the nodes associated

to the variables xi and xj if and only if θij 6= 0.

• ∆uv for u, v ∈ Q is the weight corresponding to the edge potential between the quantitative

variables xu and xv. We see by (3.7) that the conditional distribution of xu depends on xv

if and only if δuv 6= 0. Hence there is an edge in the graph between the nodes associated

to the variables xu and xv if and only if δuv 6= 0.

Example 3.1 The Figure 3.2 illustrates the structure of a mixed graphical models, with four

binary variables x1, . . . , x4 and three quantitative variables x5, x6, x7, represented by the nodes

1 to 7. In the pairwise undirected model framework, the features are directly readable from the

graph structure, and the zeros of the parameters Θ, ∆ and Φ are known:

Θ =


? ? 0 0

? ? ? 0

0 ? ? 0

0 0 0 ?

 , ∆ =

 ? ? ?

? ? 0

0 ? ?

 , Φ =


? 0 0

0 0 0

? ? 0

? ? 0

 ,

where the ? indicates non-zero elements of the matrices. Note that we did not show the

parameter µ, since it is not related to the structure of the graph.

3.1.4 A sampling algorithm

The proposition 3.1 suggests an algorithm to sample from the mixed distribution (3.4). By the

Bayes theorem, we have the decomposition

pΩ(xC, xQ) = pΩ(xC)pΩ(xQ|xC).
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1

2
3

5

6

4

7

Figure 3.2: Structure of a mixed graphical model. The model has four binary variables x1, x2, x3 and

x4, represented by the brawn nodes with numbers 1 to 4, and three quantitative variables x5, x6 and x7,
represented by the grey nodes with number 5, 6 and 7.

The property 3.1.iii states that the marginal distribution of xC is an Ising model for which the

Wolff clustering algorithm can be used (Wolff [1989]). This algorithm is a variant of the classic

Swendsen-Wang algorithm (see Barbu and Zhu [2005]) and has good mixing properties. An

adapted version of theWolff algorithm to sample from an Isingmodel is proposed inAlgorithm 1.

Once we defined the Algorithm 1 to sample from the marginal distribution pΩ(xC) of the

binary variables, we propose the Algorithm 2 to sample a Markov chain from the mixed den-

sity (3.4). This algorithm uses theWolff algorithm to sample aMarkov chain {X(j)
C }j from pΩ(xC)

and exploits the property 3.1.i to sample from the conditional distribution pΩ(xQ|xC). In prac-

tice, the algorithm can be initialised randomly, and the first samples of the generated Markov

chain have to be discarded to avoid the starting samples over-sampling low-probability regions.

In high dimension, one might also consider discarding samples between two accepted samples,

otherwise the sampling might over-samples a region of the distribution.
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Algorithm 1Wolff algorithm to sample from the Ising model (3.3)

Input A starting sampleX(0) ∈ {0, 1}|C| and an Ising model (3.3) parametrised by a symmetric

matrix Θ with dimension |C| × |C|, and a Markov chain lengthM .

1 for t = 0, . . . ,M − 1 do
2 Select randomly i ∈ {1, . . . , |C|} and set C = {i},
3 Set the set of visited nodes V = {i}.
4 while V is not empty do

5 Remove an element j from V ,

6 for j′ ∈ C such that j′ 6∈ C and θjj′ > 0 do
7 With probability 1− exp(−θjj′), add j′ to C and to V .

8 Denote by X̄i the complementary of Xi in {0, 1},
9 Create a new vector X̃ ∈ {0, 1}|C| where X̃j = X̄

(t)
i for j ∈ C and X̃j = X

(t)
j for j /∈ C.

10 Define X(t+1) = X̃ with probability

min

(
1, (X̄i −Xi)

∑
j∈C0

θjj

)
,

and X(t+1) = X(t) with remaining probability.

11 Return the sampled sequence (X(t))t=0,...,M−1.

Algorithm 2 Sampling from the mixed distribution (3.4)

Input a starting sample X0, a mixed model (3.4) parametrised by Ω = (Θ, µ,∆,Φ), and a

Markov chain lengthM .

1 Sample a Markov chain (X
(t)
C )t=0,...,M−1 from the Ising model with parameters Θ +

Φ∆−1ΦT/2 + Diag (Φ∆−1µ) using the algorithm 1,

2 For each t = 0, . . . ,M − 1, given X
(t)
C , sample a Gaussian vector X

(t)
Q from the Gaussian

distribution with mean ∆−1
(
µ+ ΦTxC

)
and covariance matrix ∆−1.

3 Return (X(m) = (X
(m)
C , X

(m)
Q ),m = 0 . . .M − 1).
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3.2 Model learning

In this section, we will present two algorithms for learning a mixed graphical model. This learn-

ing will be done by optimising a penalised likelihood function using a proximal gradient algo-

rithm. We address the calculation of the partition term (3.5) in a first approach by approximat-

ing it using MCMC simulations, and in a second approach by optimising a pseudo-likelihood

function instead of the classic likelihood: the pseudo-likelihood can actually be expressed in

closed-form and do not require a numerical approximation for the likelihood.

3.2.1 The model learning problem

First, we will discuss the general learning problem, which consists in optimising a penalised

likelihood function of the parameters Ω given a training set of data.

3.2.1.1 The concavity of the likelihood function

We first explore more in details the likelihood function in the log-linear framework (2.1). In

particular, we show that this function is a concave function over a continuous space of parametri-

sation, what will allow many optimisation techniques to be used.

Given a set of M samples D = {X(m) = (X
(m)
C , X

(m)
Q ),m = 1, . . . ,M}, the log-likelihood

of Ω = (Θ, µ,∆,Φ) is given by

`(Ω : D) = 1

M

M∑
m=1

log pΩ(X
(m))

=
1

M

M∑
m=1

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
− logZΩ. (3.8)

Lets take a closer look at the log-partition function logZΩ. We start by introducing a new

formulation of the mixed model using a general notation for the features and the parameters:

pΩ(x) =
1

ZΩ

exp

[
xT
CΘxC + µTxQ −

1

2
xT
Q∆xQ + xT

CΦxQ

]
=

1

ZΩ

exp

[
K∑
k=1

ωkfk

]
,

where ωk, k = 1 . . . K is a general notation for every parameters of the model, i.e., members

of {θij}i≥j , {∆uv}u≥v, {φiu}iu or {µu}u, and fk, k = 1 . . . K is a general notation for every

features of the model, i.e., {xi}i∈C , {xixj}i>j∈C , {xu}u∈Q, {−1
2
xuxv}u≥v∈Q and {xixu}i∈C,u∈Q.

Note that this notation defines a map between the parameters and the features, as each feature fk
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is associated to a unique parameter ωk, and reciprocally. Using this notation, the first derivative

of logZΩ with regard to any parameter ωk0 is given by

∂

∂ωk0

logZΩ =
1

ZΩ

∑
xC∈{0,1}|C|

∫
R|Q|

∂

∂ωk0

exp
∑
k

ωkfk(xC, xQ)dxQ

=
1

ZΩ

∑
xC∈{0,1}|C|

∫
R|Q|

fk0(xC, xQ) exp
∑
k

ωkfk(xC, xQ)dxQ

= EΩ[fk0 ].

Similarly, we can consider the second derivative:

∂2

∂ωi∂ωj

logZΩ =
∂

∂ωj

 1

ZΩ

∑
xC∈{0,1}|C|

∫
R|Q|

fi(xC, xQ) exp
∑
k

ωkfk(xC, xQ)dxQ


= − 1

Z2
Ω

(
∂

∂ωj

ZΩ

) ∑
xC∈{0,1}|C|

∫
R|Q|

fi(xC, xQ) exp
∑
k

ωkfk(xC, xQ)dxQ

+
1

ZΩ

∑
xC∈{0,1}|C|

∫
R|Q|

fi(xC, xQ)fj(xC, xQ) exp
∑
k

ωkfk(xC, xQ)dxQ

= − 1

ZΩ

(
∂

∂ωj

ZΩ

)
EΩ[fi] + EΩ[fifj] = EΩ[fifj]− EΩ[fi]EΩ[fj]

= CovΩ(fi, fj).

We thus see that the Hessian of logZΩ is the covariance matrix of the features fk(xC, xQ) viewed

as random variables according to the distribution pΩ. Since a covariance matrix is always posi-

tive semi-definite, it follows that the negative log-partition function is a convex function of the

parameters Ω. Since the log-likelihood is the sum of a concave term and a linear term in the

parameters Ω, we proved that the likelihood function is a convex function.

Proposition 3.2 The log-likelihood function (3.8) is a concave function in the parameters Ω.

Note that this proposition actually holds for any distribution that is a member of the log-linear

framework (2.1), with the same proof.

This result implies that the likelihood has no local optimum. However, it does not imply

the uniqueness of the global optimum, and the model may still not be identifiable from data. In

particular, several parametrisations might give rise to the same distribution, and such parametri-

sations are calledRedundant

parametrisation

redundant parametrisations (see Friedman and Koller [2009]). A necessary

condition for having redundant parameters is the following: in the case of a log-linear represen-
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tation, there are coefficients α0, . . . , αK such that

α0 +
∑
k

αkfk = 0, (3.9)

for almost all features f = (fk)k from the feature space, with respect to the common dominating

measure χ. This is a necessary and sufficient condition to have pΩ = pΩ′ with Ω′ = {Ω1 +

α1, . . . ,Ωk + αk}. Now we observe that the Hessian of the log-likelihood is positive definite

if and only if the covariance matrix (CovΩ(fi, fj))i,j is positive definite, which is exactly the

negation of the condition (3.9). Hence we conclude that the log-likelihood is strictly concave if

and only if the model is identifiable.

In the case of our mixed model framework, the features are {xi}i∈C , {xixj}i>j∈C , {xu}u∈Q,
{−1

2
xuxv}u≥v∈Q and {xixu}i∈C,u∈Q. The condition (3.9) can be reformulated as

α0 +
∑
i,j∈C

αijxixj +
∑
u∈Q

αuxu −
1

2

∑
u,v∈Q

αuvxuxv +
∑

i∈C,u∈Q

αiuxixu = 0. (3.10)

To prove that the mixed model (3.4) is identifiable from data, one needs to verify that the equa-

tion (3.10) holds for almost every vector x only if α = 0, with respect to the counting measure

for xC = (xi, i ∈ C) and to the Lebesgue measure for xQ = (xu, u ∈ Q). In particular, xC

takes a finite number of values, so the equation (3.10) holds for any specific assignment for xC .

Considering the case xi = 0 for all i ∈ C leads to the following equation:

α0 +
∑
u∈Q

αuxu −
1

2

∑
u,v∈Q

αuvxuxv = 0.

This equation corresponds to the identifiable condition (3.9) for a Gaussian model. However,

it is well known that a Gaussian model is identifiable from data. Hence it results that α0 = 0,

αu = 0 and αuv = 0, for all u, v ∈ Q. The equation (3.10) now boils down to∑
i,j∈C

αijxixj +
∑

i∈C,u∈Q

αiuxixu = 0.

By considering xi0 = 1 for i0 ∈ C and xi = 0 for all i ∈ C with i 6= i0, we have that

αi0,uxu = 0,

which has to hold for almost every xu with respect to the Lebesgue measure. This implies that

αi0,u = 0 for all u ∈ Q, and a fortiori that αiu = 0 for all i ∈ C, u ∈ Q. Hence, equation (3.10)
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now boils down to ∑
i,j∈C

αijxixj = 0.

Similarly, by fixing xi0 = 1, xj0 = 1 and xi = 0 for all i 6= i0, j0, we get that αi0,j0 + αj0,i0 = 0.

Since (αij)i,j is symmetric, we get that αij = 0 for all i, j ∈ C. We have thus proved that the

mixed model is identifiable from data, and thus that the likelihood is a strictly concave function.

Proposition 3.3 The log-likelihood (3.8) is a strictly concave function in the parameters Ω.

3.2.1.2 Model learning with regularisations

We have shown that the likelihood function is a concave function over a continuous space of

parameters and that the global optima of the likelihood is unique. However, as discussed in

section 2.4.4.3, the maximum likelihood estimator is often prone to overfitting to the data and

results in a fully connected network.

The usage of parameters priors p(Ω) can reduce the effect of overfitting, as it was the case for

Bayesian networks. Most commonly used priors include Gaussian priors and Laplacian priors,

leading respectively to the well known `2 and `1 regularisations.

The `2-regularisation (e.g., Nigam et al. [1999]) involves`2-regularisation the use of a zero-mean Gaussian

prior on the log-linear parameters Ω

p(Ω|σ2) =
k∏

i=1

1√
2πσ

exp

(
− ω2

i

2σ2

)
,

for a fixed variance σ2. Converting to log-space, using this prior gives rise to the term

− 1

2σ2

k∑
i=1

ω2
i = − 1

2σ2
||Ω||22,

where || · ||2 is the L2-norm. Note that this term is concave.

The `1-regularisation, also called`1-regularisation Lasso regularisation (see Tibshirani [1996]), involves the

use of a zero-mean Laplacian prior

p(Ω|β) =
k∏

i=1

1

2β
exp

(
−|ωi|

β

)
.
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In the log-space, this prior gives rise to the term

− 1

β

k∑
i=1

|ωi| = −
1

β
||Ω||1,

where || · ||1 is the L1-norm. Note that this term is also concave.

The `1/`2-regularisation, also called`1/`2-

regularisation

Group Lasso regularisation (Yuan and Lin [2006]) is a

special case of the Lasso regularisation where knowledge about the structure of the variables is

known a priori. Suppose our variables are divided into J groups of variables, whose indices are

denoted by K1, . . . , KJ , then the Group Lasso regularisation involves the term

− 1

β

J∑
j=1

||ωKj
||2,

where ωKj
denotes the subset {ωi, i ∈ Kj}. Note that this term is also concave.

All regularisations penalise parameters with a highmagnitude (positive or negative), however

their impacts are very different. Many authors have discussed about the effects of their use (e.g.,

Ng [2004]). In practice, the main difference comes from the fact that the models learned with a

`1-regularisation tend to be much sparser than models learned with `2- or `1/`2-regularisation,

i.e., models where a lot of parameters are null. From a structural perspective, this results in a

graphical model with fewer edges and sparser potentials.

Note also that both regularisations are concave, and because the log-likelihood is also con-

cave, the posterior can thus be optimised using gradient-based methods. For this purpose, the

use of regularisation has been widely studied over the last years, especially for `1 and `1/`2 re-

gularisations, see Schmidt [2010] for recent reviews and Varoquaux et al. [2010] for the use of

`1/`2 in graph structure estimation.

Remember that an Ising model can only model binary variables, whereas our training data

includes categorical non-binary variables and that this non-binary variables will be transformed

into a binary vector using the 1-to-K encoding scheme (see section 3.1.1). In the following, we

will suppose that this transformation has already been done – i.e., all the categorical variables

are binary – and we denote byG the set of variables indices arising from this transformation, i.e.,

the indices from the binary variables originated from the same categorical non-binary variable.

The general learning problem we want to solve is finding the estimator

Ω̂ = Argmin
Ω

(−`(Ω : D) + g(Ω)) , (3.11)

where D = {X(1), . . . , X(M)} is a training set and g is a penalisation function over the parame-
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ters Ω.

Since the Lasso penalty tends to provide sparser structures, we will use a particular penalty

that involves group Lasso and Lasso regularisation for the parameters corresponding to edges

parameters, i.e., Θ, ∆ and Φ (Bach et al. [2012]). Remember from section 2.4.5.1 that in the

framework of undirected models, the absence of edge between two nodes xi and xj states that

they are conditionally independent given all the others variables.

In addition, we add a compact constraint on ∆, so that ∆ remains inside a compact set in-

cluded in the cone of positive definite matrices. That hypothesis is used to ensure that pΩ is a

valid density (see definition 3.1), but also for numerical reasons. Having a positive-definite pre-

cision matrix inside a compact set indeed ensures that our learning criterion is gradient-Lipschitz,

which is a required hypothesis for the learning algorithms we will use in the next sections.

The compact constraint is defined as follow: for any 0 < ρ < 1, denote by Kρ the compact

subset of positive definite symmetric matrices defined by

Kρ = {∆1/2
0 (I + ε)∆

1/2
0 : ε is symmetric with

−ρ < λmin(ε) < ρ} ,

where I is the identity matrix, λmin denotes the minimal eigenvalue and λmax denotes the maximal

one and ∆0 is the empirical precision defined by

∆0 =

[
1

M

M∑
m=1

(X(m) − X̄)(X(m) − X̄)T

]−1

,

where X̄ denotes the empirical mean of the set {X(m),m = 1 . . .M} of M samples. Observe

that Kρ is a closed convex set of symmetric matrices containing a ball centred at ∆0. Here ρ is

arbitrary chosen to ensure the convergence of the numerical optimization. In practice, one needs

to check that the obtained optimizer is in the interior of the compact set.

The penalisation we use is

g(Ω) = λθ

∑
k 6=k′∈K

‖θkk′‖2 + I{Kρ}(∆) + λ∆

∑
u<v∈Q

|∆uv|+ λΦ

∑
k∈K,u∈Q

‖Φku‖2, (3.12)

where I{Kρ} is the characteristic function of the closed convex set Kρ, i.e.,

I{Kρ}(∆) =

0 if ∆ ∈ Kρ,

+∞ otherwise,

where θkk′ = (θii′)i∈k,i′∈k′ and φku = (φiu)i∈k where, for all i ∈ C, ki is the set of indices of
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binary variables created after applying 1-of-K scheme over non binary categorical variable xi.

Notice that we do not penalise the diagonal terms of Θ and ∆.

3.2.2 Related works mixed model learning

The problem of optimising on concave regularised likelihoods has attracted some attention over

the last years, see Schmidt [2010] and Bach et al. [2012] for quite exhaustive surveys on that

topic.

In the case where the variables are supposed to be drawn from amultivariate zero-meanGaus-

sian distribution N (0,Σ) where the true covariance matrix Σ is unknown, the learning problem

is called covariance selection and is a widely studied topic. Lauritzen [1996] uses a forward-

backward search algorithm to determine the zeros in the precision matrix, but this approach do

not scale with the dimension and appears intractable even for a moderate number of variables.

Li and Gui [2006] uses a gradient descent algorithm over an objective function that is the neg-

ative log-likelihood that takes into account the sparsity of the precision function. d’Aspremont

et al. [2008] solves a maximum likelihood problem penalized by the number of non-zeros in the

inverse covariance matrix, in order to find a sparse representation of the data and to discover

conditional independences between the variables.

The learning of Ising or Potts models, used for categorical and binary variables, has been

applied in a large variety of fields, see e.g., Wainwright and Jordan [2008] for applications in

several areas associated to categorical variables. Loh et al. [2013] investigate the problem of

the relationship between conditional independences for categorical variables and the structure

of the inverse covariance matrix. They show that the structure is reflected in the inverse co-

variance matrix of an augmented sets of variables that include higher-order interactions between

variables. Many authors consider the optimisation of a penalised likelihood. However, contrary

to the Gaussian models, the partition function of an Ising or Potts model is intractable and its

evaluation is NP-hard (see, e.g., Friedman and Koller [2009]). Wainwright et al. [2006] deals

with this intractability by fitting `1-regularised logistic regressions on the conditional distribu-

tions. Schmidt et al. [2008] consider a `1-penalised symmetric pseudo-likelihood estimation,

where the conditional probability distributions of each variable given the others is seen as the

likelihood of a logistic regression model.

The general problem of optimising a penalised likelihood function has motivated several

works. Among them, the subgradient descent approach is widely applicable (see, e.g., Bertsekas

[1999]). It is an iterative scheme for learning with a low running time complexity, but also a slow

convergence rate. Namely, each iteration consists of the computationΩ(t+1) = Ω(t) − α
tβ
(s+ λs′),

where s ∈ ∂`(Ω(t)) and s′ ∈ ∂g(Ω(t)). Coordinate descent methods (see e.g., Fu [1998]) is based

on the optimisation of one coordinate at a time. It is also an iterative scheme: at each iteration t,
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the algorithm solves the optimisation problemω
(t+1)
i = argmin

y
`(ω

(t)
1 , . . . , ω

(t)
i−1, y, ω

(t)
i+1, . . . , ω

(t)
k ).

This method is effective if ` is close to be separable, but the performance deteriorates as the de-

pendences between the variables increase.

Another way to recover the structure of a graphical model is to determine the set of neigh-

bours of each node in the graph by regressing each variables against all the other remaining vari-

ables. This method, sometimes referred to as node-wise regression problems, have been widely

studied. Tibshirani [1996] uses the Lasso to discover a short list neighbours of each node in the

graph. Meinshausen and Bühlmann [2006] studied this approach in the case of Gaussian model

learning and showed that the used estimator is consistent, even in high dimension. Namely, they

are fitting a Lasso model to each variables and estimate each entry∆ij of the precision matrix to

be non-zero if either the estimated coefficient of the variable xi on xj or the estimated coefficient

of xj on xi is non-zero, i.e., they use a “and” rule. Ravikumar et al. [2010] separately uses the

same technique for estimating Ising models structures. Friedman et al. [2008] proposes a similar

approach, the well known graphical Lasso, that uses a coordinate gradient descent to maximise

the objective function log det∆− Tr (S∆)− λ‖∆‖1, where S is the empirical covariance ma-

trix and ∆ is the precision matrix over which the objective function is maximised.

Mixed graphical models have attracted a few studies over the last years. Some approaches are

transforming the data, for instance Bach and Jordan [2002] proposes a solution where the vari-

ables used for the learning are Gaussian versions of the initial data, whether they are categorical

or quantitative, using Mercer kernels.

Lauritzen [1996] proposes a graphical model framework with the property that, conditioned

to the categorical variables xC , the quantitative variables xQ have a Gaussian density with a

mean and a covariance matrix depending on xC . This model is a more general framework than

the model (3.4), but has a number of parameters that scales exponentially with the number of

categorical variables and is not suitable for high dimension problems: to each value assignments

of the categorical variables is associated a parametrisation of a Gaussian density.

In Laby et al. [2015], we introduce the mixed graphical model (3.4), which is a model that

mixes an Ising and a Gaussian model. This model has been separately studied by Lee and Hastie

[2015]. Haslbeck and Waldorp [2015b] proposes a generalisation of the generalised covariance

approach of Loh et al. [2013] to estimate the structure of the mixed same graphical model. This

model is a simplified version of the mixed model proposed by Cheng et al. [2013], which allows

higher-order interactions, where the covariances of the quantitative variables are functions of the

categorical variables.

Tur and Castelo [2012] addresses the learning problem by proposing a method based on

limited-order correlations that are used to determine conditional dependences between variables,

where the size of the conditioning set of variables is bounded. This method has been designed for

the case where the number of samplesM is much lower than the number of variables n. In order
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for the likelihood estimates to exist, the authors have made the assumption that the variables are

marginally independent.

Node-wise regression algorithms have been also studied, where a linear model is used to

estimate p(xi|x−i) for all variables xi. This method has been separately applied by Meinshausen

and Bühlmann [2006] for Gaussian model learning and by Ravikumar et al. [2010] for Ising

models, and Lee and Hastie [2015] proposes a version for learning mixed models. Yang et al.

[2012] and Yang et al. [2013] are also using node-wise regressions to learn generalized mixed

model, where the conditional distributions of each variables are members of the exponential

family.

To address the calculation of the partition function (3.5), Laby et al. [2015] and Lee andHastie

[2015] are using pseudo-likelihood (Besag [1975]) (with different formulation of the pseudo-

likelihood) instead of the likelihood. This method is computationally efficient since the pseudo-

likelihood can be expressed in closed-form, but is sub-optimal.

Proximal methods are a class of methods that particularly suit learning problems when the

objective function is the sum of a smooth term and a non-smooth term. The use of the `1-

regularisation makes the objective function non smooth. Lee and Hastie [2015] uses proximal

gradient and proximal Newton algorithm to minimise a pseudo-likelihood. In the following sec-

tion, we will describe a stochastic version of the proximal gradient.

3.2.3 The proximal gradient algorithm

In this section, we present the proximal gradient class of algorithms for solving convex opti-

misation problems. While Newton’s algorithms are standard methods for solving smooth un-

constrained minimisation problems, proximal algorithms (Bach et al. [2012]; Parikh and Boyd

[2013]) are tools for solving non-smooth, constrained or large-scale version of these problems.

They are specially designed for solving problems that can be formulated as a sum of a smooth

differentiable function with Lipschitz-continuous gradient and a non-differentiable function, as

it is the case in our problem form (3.11).

Proximal gradient algorithms are based on an iterative scheme, where at each iteration the

evaluation of a proximal operator of the objective function is done. The computation of the

proximal operator involves solving a convex optimisation problem. This sub-problem is often

easy to solve because a solution can be expressed in closed-form.

TheProximal

operator

proximal operator Proxg : Rn → Rn of a closed proper convex function g : Rn → R is

defined by

Proxg(v) = argmin
x

(
g(x) +

1

2
||x− v‖22

)
,
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where || · ||2 is the usual L2-norm. We often encounter the case where the used function is a

scaled function βf , where β > 0. In that case, the proximal operator can be expressed as

Proxβg(v) = argmin
x

(
g(x) +

1

2β
||x− v‖22

)
. (3.13)

The proximal operator defines amap from each vector v ∈ Rn to the unique solution Proxβg(v)

of the minimisation problem. Note that this solution is actually unique since the sum of the con-

vex function g and the strictly convex squared Euclidean norm defines a strictly convex function.

The parameter λ controls the compromise betweenminimising g andminimising ||x−v‖22: larger
values tends to move the proximal point toward the minimum of g, whereas lower values tends to

move Proxβg(v) closer from v. Proxβg(v) is thus calledProximal point proximal point of v with respect to βg.

The Figure 3.3 illustrates the concept of proximal point in the case where n = 1 and g is the

absolute value function.

x

f(x)

f(x) + 1

2
||x− v||2

2

vProxf (v)

1

Figure 3.3: Evaluation of the proximal point Proxg(v) of the point v with respect to the func-

tion g : x 7→ |x|. The proximal point Proxg(v) is minimising the function x 7→ |x|+ 1
2 ||x− v‖22.

Having a closed-form of the proximal operator allows a fast computation of the proximal

point and leads to fast convergence rate of proximal methods. There are many cases where such

a closed-form can be calculated (see Parikh and Boyd [2013]). The ones we encounter in this

thesis are listed below.

In the case where g is the characteristic function I{C}(Ω) of a closed convex set C, i.e.,

I{C}(Ω) =

0 if Ω ∈ C,

+∞ otherwise,
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the proximal operator reduces to the orthogonal projection on C, i.e., the function ΠC(v) defined

by

ΠC(v) = argmin
Ω∈C

||Ω− v||2. (3.14)

In the case where f is the `1-regularisation β‖Ω‖1 = β
∑

i |ωi|, the proximal operator re-

duces to the component-wise soft-thresholding operator sβ defined, for each component ωi of Ω,

by

sβ(ωi) =


ωi − β if ωi ≥ β,

ωi + β if ωi ≤ β,

0 otherwise.

(3.15)

In the case where f is the `1/`2-regularisation β
∑

j ‖ωKj
‖2, the proximal operator reduces

to the component-wise soft-thresholding s̃β,K defined, for each subset of parameters ωKj
=

{ωi, i ∈ Kj}, by

s̃β,K(ωKj
) =


ωKj
− β

ωKj∣∣∣∣∣∣ωKj

∣∣∣∣∣∣
2

if
∣∣∣∣ωKj

∣∣∣∣
2
> β,

0 otherwise.

(3.16)

Note that in (3.12), the precision matrix ∆ is penalised by the sum

1{Kρ}(∆) + λ∆

∑
u<v∈Q

|∆uv|,

for which there is no simple closed-form. We will address this using theGeneralised

forward-

backward

splitting

generalised forward-

backward splitting algorithm Raguet et al. [2013] in section 3.2.4.

The proximal gradient algorithm to minimise (3.11) – i.e., a sum of the opposite of a likeli-

hood function and a penalisation term – is given in algorithm 3. This algorithm involves, at each

iteration, a gradient step computation ω(t) + γt∇`(ω(t)) and the calculation of a proximal point

with respect to the scaled penalisation γtg(Ω), where g is the penalisation defined by (3.12).

The proximal gradient algorithm comes with some properties concerning the consistency and

the uniqueness of the solution (see Bauschke and Combettes [2011] and Atchade et al. [2015]).

Proposition 3.4 For a proper convex function g and a concave gradient-Lipschitz likelihood `

with Lipschitz constant L for∇`, for a fixed gradient step size γ ∈ [0, 1/L[,
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Algorithm 3 Deterministic proximal gradient algorithm to minimise −`(Ω : D) + g(Ω)

Input Step sizes γt, a starting point Ω
(0),

1 At each i :teration t, given the current solution Ω(t) = (ω
(t)
1 , . . . , ω

(t)
k ),

2 Compute the gradient step ω̃(t) = ω(t) + γt∇`(ω(t)),
3 Compute ω(t) = Proxγtg(ω̃

(t)).

4 Return the last estimation Ω(t)

1. For any starting pointΩ satisfying the hypothesis listed in definition 3.1, the series {Ω(t)}t
generated by the proximal gradient Algorithm 3 converges to a solution of the minimisation

problem (3.11).

2. Any minimiser Ω∗ of the function Ω 7→ −`(Ω) + g(Ω) satisfies

Ω∗ = Proxγg (Ω
∗ + γ∇`(Ω∗)) .

There are many ways to interpret the proximal gradient Algorithm 3, and Beck and Teboulle

[2009] and Parikh and Boyd [2013] propose several interpretations. Here we explain the majori-

sation -minimisation approach proposed by Beck andTeboulle [2009], a large class of algorithms

that includes the proximal gradient algorithm, Newton’s methods, etc. This approach is based

on the minimisation of a dominating function through the iteration of the scheme

Ω(t+1) = argmin
Ω

ϕ(Ω,Ω(t)), (3.17)

whereϕ(·,Ω(t)) is a convex function dominating a function f whereϕ(·,Ω(t)) is tight to f atΩ(t),

that is, ϕ(Ω,Ω(t)) ≥ f(Ω) and ϕ(Ω(t),Ω(t)) = f(Ω(t)). In our case of optimising a penalised

likelihood, the objective function f is−`+g, and we consider the dominating function ϕ defined

by

ϕ(ϑ,Ω) = −`(Ω)− 〈∇`(Ω), ϑ− Ω〉+ 1

2γt
||ϑ− Ω||22 + g(ϑ).

We can easily show that for any fixed Ω and any ϑ, ϕ(ϑ,Ω) ≥ −`(ϑ) + g(ϑ) when γt ∈ (0, 1
L
[,

where L is the Lipschitz constant of −∇`. Remember from definition 3.1 that the precision

matrix ∆ was constrained to be positive semi-definite, and hence the likelihood is gradient-

Lipschitz. We can also easily show that for any Ω, ϕ(Ω,Ω) = −`(Ω) + g(Ω), and that ϕ(·,Ω) is
convex. In addition, we have that

Proxγtg
(
Ω(t) + γt∇`(Ω(t))

)
= argmin

ϑ

ϕ
(
ϑ,Ω(t)

)
,
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hence the algorithm (3.17) can be seen as a majorisation-minimisation algorithm.

The algorithm can actually converge with step sizes smaller than 2/L (Parikh and Boyd

[2013]), although for step sizes greater than 1/L the Majorisation-Minimisation approach can

no longer be motivated. In practice, when the Lipschitz constant L is not known, the step sizes

γt can be found by line search, i.e., their values are chosen at each iteration of the algorithm. A

simple line search algorithm is proposed by Beck andTeboulle [2009] and is given in algorithm 4.

Algorithm 4 Line search to choose the step size γt

Input Ω(t−1), γt−1, and a parameter β ∈]0, 1[,

1 Define γ = γt−1.

2 do

3 Let ϑ = Proxg(Ω
(t−1) + γ∇`(Ω(t−1))),

4 Break If −`(ϑ) ≤ ϕ(Ω,Ω(t−1)).
5 Update γ := βγ.
6 while

7 Return γt = γ, Ω(t) = ϑ.

In the next two sections, we will show two algorithms we developed to optimise the penal-

ized likelihood to learn a mixed model from data, by addressing the calculation of the partition

function ZΩ defined by (3.5) through a stochastic approximation step.

3.2.4 Learning a mixed model with stochastic proximal gradient

In this section, we present a stochastic version of the proximal gradient algorithm, where the

intractability of the computation of the partition function ZΩ is addressed by estimating it using

MCMC simulations. To simplify the notation, we introduce the sufficient statistic F to rewrite

the mixed density pΩ(X):

pΩ(X) =
1

ZΩ

exp(〈F,Ω〉),

whereZΩ is the normalisation constant defined in (3.5), whereF = (F1, F2, F3, F4) is a sufficient

statistic for X with:

• F1 is the matrix indexed over C × C defined by F1 = XCX
T
C ,

• F2 is the vector indexed over Q defined by F2 = XQ,

• F3 is the matrix indexed over Q×Q defined by F3 = −1
2
XQX

T
Q,

• F4 is the matrix indexed over C × Q defined by F4 = XCX
T
Q,
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and where 〈·, ·〉 is the dot product defined by

〈F,Ω〉 = Tr
(
ΘF T

1

)
+ µTF2 + Tr

(
∆F T

3

)
+ Tr

(
ΦF T

4

)
. (3.18)

We denote by D = {X(j)}j=1...M the training dataset ofM samples and F (j) their sufficient

statistics. With this notation, the log-likelihood function of the parameters Ω given D becomes

`(Ω : D) = 1

M

M∑
j=1

〈Ω, F (j)〉 − logZΩ. (3.19)

In this section, we address the calculation of the partition function ZΩ. In particular, the

likelihood `(Ω : D) and its derivative∇`(Ω : D) are intractable by direct calculation. However,
the Fisher identity yields EΩ[∇`(Ω)] = 0, where EΩ denotes the expectation with respect to the

distribution pΩ. By (3.19), we have that

∇ logZΩ = EΩ[F ] = EΩ[EΩ[F |XC]]. (3.20)

This result suggests an algorithm to estimate ∇ logZΩ. Since it is not possible to sample di-

rectly from pΩ, we turn to MCMC. Remember from proposition 3.1.i that, given the categorical

variables xC , the quantitative variables xQ have a Gaussian density with mean∆−1
(
µ+ ΦTxC

)
and covariance matrix∆−1. We can then compute the conditional expectations EΩ[F |XC] of the

sufficient statistic F given an observation of the categorical variables XC:

EΩ[F1 | XC] = F1,

EΩ[F2 | XC] = E(XQ | XC) = ∆−1(µ+ ΦTXC),

EΩ[F3 | XC] = −
1

2
∆−1 − 1

2
EΩ(F2 | XC)EΩ(F2 | XC)

T ,

EΩ[F4 | XC] = XCEΩ(F2 | XC)
T .

(3.21)

This formulas lead to the estimation of ∇`(ZΩ): if {ξ(m)}m=1...η are η instances of pΩ, then

∇ logZΩ ≈
1

η

η∑
m=1

EΩ[F |ξ(m)
C ]. (3.22)

The proposition 3.1.iii stating that the marginal distribution ofXC is an Ising model with param-

eters Θ + Φ∆−1ΦT/2 + Diag (Φ∆−1µ) yield the algorithm 5 to estimate ∇ logZΩ via MCMC

simulations.

The proximal gradient algorithm need to be slightly adapted to include the estimation of the

partition function. Atchade et al. [2015] propose a stochastic version of the proximal gradient
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Algorithm 5 Estimation of ∇ logZΩ

Input a model parametrisation Ω and a MCMC lengthm,

1 Simulate η samples {ξ(m)}m=1...η from the marginal distribution pΩ(xC) of the categorical
variables using, e.g., the Wolff algorithm 1,

2 Compute the conditional expectation EΩ[F |ξ(m)] = (EΩ[Fi|ξ(m)], i = 1 . . . 4) for each
sample ξ(m), j = 1 . . . η, using the system of equations (3.21),

3 Return the estimation of ∇ logZΩ given by

∇ logZΩ ≈
1

η

η∑
m=1

EΩ[F |ξ(m)
C ].

Algorithm 3 that takes this estimation into account. This algorithm uses an estimationHη of the

likelihood gradient∇` using MCMC simulations, where η is the length of the simulated Markov

chain. The decomposition (3.19) rise to the gradient of the log-likelihood

∇`(Ω : D) = 1

M

M∑
m=1

F (m) −∇ logZΩ,

and the estimation (3.22) calculated with the Algorithm 5 leads to an estimation of ∇`(Ω : D),
denoted Hη:

Hη(Ω) =
1

M

M∑
m=1

F (m) − 1

η

η∑
m=1

EΩ[F |ξ(m)
C ], (3.23)

where {F (m)}m=1...M are the sufficient statistics of the training data D and {ξ(m)}m=1...η are

instances sampled from pΩ. From (3.23) rises the stochastic proximal gradient Algorithm 6 to

estimate the parameters of a mixed graphical models from data.

Algorithm 6 Stochastic proximal gradient algorithm for mixed model learning

Input a training datasetD = {X(m),m = 1 . . .M}, a series of gradient step sizes {γt}, a series
of MCMC length {ηt} and a starting point Ω(0),

1 Compute the left term of (3.23) given by 1
M

∑M
m=1 F

(m).
2 At each iteration t :

3 Compute an estimation of ∇ logZΩ(t) using the algorithm 5,

4 Infer the estimation Hη(Ω) of∇`(Ω(t)) using equation (3.23),
5 Compute Ω(t+1) = Proxγtg(Ω

(t) + γtHη).

Atchade et al. [2015] provide theoretical results to ensure the convergence of the series

{Ω(t)}t generated by the stochastic proximal gradient Algorithm 6. With the same hypothesis
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as for proposition 3.4 and some additional assumptions that are verified in our case, the Al-

gorithm 6 is guaranteed to converges almost surely when t → ∞ toward a fixed-point of the

algorithm, i.e., an element of {Ω : Ω = Proxγg(Ω + γ∇`(Ω))}.
Note that in our case where we use the penalisation (3.12) defined by

g(Ω) = λθ

∑
k 6=k′∈K

‖θkk′‖2 + IKρ(∆) + λ∆

∑
u<v∈Q

|∆uv|+ λΦ

∑
k∈K,u∈Q

‖Φku‖2, (3.24)

which is the sum of `1- and `1/`2-regularisations on the edges of the network and a compact con-

straint on∆ to ensure it remains inside the cone of the positive definite matrices. Remember that

there is no closed-formed formulation of the proximal operator, when the used penalty is (3.24).

With only `1 and `1/`2 regularisations, the proximal operator of the Lasso and group Lasso part

of g can be reformulated as a component-wise soft-threshold σλ,γ,K(Ω) defined by

σλ,γ,K(Ω) = (s̃λΘγ,K(Θ), sλ∆γ(∆), s̃λΦγ,K(Φ)),

where sλγ and s̃λγ have been defined respectively in (3.15) and (3.16), and K is the set of the

variables tight together with the 1-to-K encoding.

With only the compact constraint 1{Kρ}, the proximal operator is the orthogonal projection

on Kρ, which is the map ΠKρ defined in (3.14).

Algorithm 7 Generalised forward-backward splitting algorithm

Input a training set D = {X(m),m = 1 . . .M}, gradient step sizes {γt} and a starting point

Ω(0).

1 Define Ω1 = Ω(0) and Ω2 = Ω(0).

2 At each iteration t :

3 Compute Ω1 = Ω1 + Proxg1
(
2Ω(t) − Ω1 + γt∇`(Ω(t))

)
, where g1 is defined by

g1(Ω) = λθ

∑
k 6=k′∈K

‖θkk′‖2 + λ∆

∑
u<v∈Q

|∆uv|+ λΦ

∑
k∈K,u∈Q

‖Φku‖2.

4 Compute Ω2 = Ω2 + Proxg2
(
2Ω(t) − Ω2 + γt∇`(Ω(t))

)
, where g2 is defined by

g2(Ω) = IKρ(∆).

5 Compute Ω(t+1) = 1
2
(Ω1 + Ω2).

6 Return the last computed Ω(t+1).

Since our penalization is a sum of two standard penalties, we use theGeneralised

forward-

backward

splitting

generalized forward-

backward splitting algorithm Raguet et al. [2013]. This algorithm is designed to minimise com-

posite convex functions, where these functions are the sum of a convex function with Lipschitz-
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continuous gradient and some simple convex functions for which we can easily compute their

proximal operator. Davis andYin [2015] also propose the three-operator splitting scheme, which

is a similar approach to minimise composite convex functions of the form f + g+ h, where f is

a convex smooth function, g and h are both convex and associated to easy computed proximal

operator, but for which the proximal operator of f+g is not easily computable. The algorithmwe

used is proposed as Algorithm 7. This algorithm is designed to be used with deterministic prox-

imal gradient, though we used it with the stochastic version by estimating the gradient∇`(Ω) in
the same way as in Algorithm 6 and by forcing the gradient steps γt to be non-increasing. Note

that applying the compact constraint does not insure that ∆t will remain in Kρ for every itera-

tion, it only tends to bring ∆t back inside Kρ. In practice, to guarantee that ∆t remains definite

positive, one must control the gradient step γn.

Complexity of the stochastic proximal gradient Observe that the left term 1
M

∑M
j=1 F

(j)

in (3.23) is independent of the parameters Ω and can thus be calculated once and for all at the

beginning of the algorithm. Considering this, the complexity of each iteration is O(mt)(|C|2 +
|Q|2 + |C||Q|), where |C| and |Q| denotes respectively the number of categorical and quanti-

tative variables. The complexity broadly comes from the Wolff sampling Algorithm 1 and the

Algorithm 5 for estimating∇ logZΩ, where mainly basic matrix operations have to be done for

every sample of the simulated Markov Chain.

Number of Markov chain runs and gradient step size The learning parameters {γt} and
{ηt} have to be chosen carefully. When ∇` is L-Lipschitz, the proximal gradient algorithm is

known to converge with rateO(1/t)when a fixed step size γt = γ ∈ [0, 1/L[ is used (Parikh and

Boyd [2013]). However in practice the Lipschitz constant is unknown and γt can be determined

at each iteration using a line search algorithm (e.g., Algorithm 4).

The choice of the length ηt of the simulated Markov chain at the t-th iteration depends on the

bias of the estimator H of ∇`, defined in equation (3.23). Namely, Atchade et al. [2015] show

that a constant Markov chain length ηt = η can be used in the case of an unbiased estimator.

However, even if Hη(Ω) is asymptotically unbiased, i.e., E[Hη(Ω)]−∇`(Ω)→ 0 for η →∞,

the estimator is biased, i.e., E[Hη(Ω)] 6= ∇`(Ω) for all η > 0. As a consequence, the Markov

chain length {ηt} can not be constant and has to increase as a function of the number of iterations.

Atchade et al. [2015] show that, when the step sizes {γt} is constant, it is optimal to consider

a Markov chain length increasing linearly with the iterations. The same discussion also shows

that, when the gradient step size is vanishing, the convergence of the proximal gradient is optimal

when ηt increases as tγt, but yet yield a slower convergence rate and a higher computational cost.
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Choosing the hyperparametersλ Finally, the hyperparametersλ = (λΘ, λ∆, λΦ) can be fixed

using cross-validation or using a model selection criterion. Lee and Hastie [2015] treat all the

three parameters λΘ, λ∆ and λΦ as equal, but also propose a calibration where the regularisers

are weighted.

3.2.5 Learning a mixed model using the pseudo-likelihood

In this section, we address the learning task by optimising a penalised pseudo-likelihood instead

of using the classic likelihood.

3.2.5.1 Definition of the pseudo-likelihood

In this section, we introduce thePseudo-

likelihood

pseudo-likelihood as an alternative to the classic likelihood

for estimating the parameters Ω. The pseudo-likelihood approach has been introduced by Besag

[1975], and relies on a computationally efficient and consistent estimator.

Definition 3.2 Pseudo-likelihood Given a dataset D = {X(j)}j=1...M of M samples and a

model Ω, the pseudo log-likelihood is defined by

p`(Ω : D) = 1

M

M∑
j=1

log pΩ(X
(j)
Q |X

(j)
C ) +

1

M

M∑
j=1

∑
i∈C

log pΩ(X
(j)
i |X

(j)
−i ), (3.25)

where X−i denotes all the rest of the variables except Xi.

Note that our definition of the pseudo-likelihood is slightly different that the usual one

1

M

M∑
j=1

n∑
i=1

log pΩ(X
(j)
i |X

(j)
−i ), (3.26)

since we distinguish the quantitative and categorical variables, and treat the quantitative part as

a conditional Gaussian likelihood given the categorical variables only. In that sense, our pseudo-

likelihood is closer from the classic likelihood than the one proposed by Besag [1975] and studied

in the context of graphical model learning by Lee and Hastie [2015]. Note also that this pseudo-

likelihood is defined over a parametrization space such thatΘ and∆ are, respectively, symmetric

and symmetric positive-definite.

Proposition 3.5 The log-pseudo-likelihood (3.25) is a concave function of the parameters Ω.

The log-pseudo-likelihood (3.25) decomposes as a sum of two terms, the left one, associated

to the conditional probability of the quantitative variables given the categorical variables, and
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the right one, associated to the conditional probability of each categorical variable given all the

remaining variables.

Lets focus on the left term. By the proposition 3.1.i, we know that given the categorical vari-

ables xC , the quantitative variables have a conditional Gaussian likelihood with mean ∆−1(µ+

ΦTxC) and variance ∆
−1. We define υ = µ+ ΦTxC , and we want to show that the function

Ψx :
R|Q| × R|Q|×|Q| → R

(υ,∆) 7→ log pN (∆−1υ,∆−1)(x)

is concave in (υ, ∆), for every x ∈ R|Q|. We have that

Ψx(υ,∆) = −1

2
logDet(∆−1)− |Q|

2
log(2π)− 1

2

(
x−∆−1υ

)T
∆
(
x−∆−1υ

)
=

1

2
logDet(∆)− |Q|

2
log(2π)− 1

2
xT∆x+ υTx− υT∆−1υ.

The term−1
2
xT∆x+υTx is linear in υ and∆. The term logDet(∆−1) is concave in∆ (see [Boyd

and Vandenberghe, 2004, Section A.4.1]). Let’s analyse the last term Ψ̃(υ,∆) = −υT∆−1υ.

Since ∆ is symmetric, we get the gradients

∇υΨ̃(υ,∆) = −2∆−1υ,

∇∆Ψ̃(υ,∆) = ∆−1υυT∆−1.

We denote g(υ,∆) =
(
∇υΨ̃(υ,∆),∇∆Ψ̃(υ,∆)

)T
. Then its differential dg|υ,∆ is defined by

dg|υ,∆ :

R|Q| × R|Q|×|Q| → R|Q| × R|Q|×|Q|

(h,H) 7→


−2∆−1h+ 2∆−1H∆−1υ

∆−1hυT∆−1 +∆−1υhT∆−1−
∆−1H∆−1υυT∆−1 −∆−1υυT∆−1H∆−1

 .

Notice that here, we are using the fact that the differential of the gradient is exactly the Hessian

matrix. We now compute
〈
dg|υ,∆(h,H), (h,H)

〉
for any (h,H) ∈ R|Q| × R|Q|×|Q|, where here

〈·, ·〉 is the dot product defined, for any h1, h2 ∈ R|Q| and H1, H2 ∈ R|Q|×|Q|, by

〈(h1, H1), (h2, H2)〉 = Tr
(
H1H

T
2

)
+ hT

1 h2,
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and we now show that it is always negative for any (h,H). We have that

〈
dg|υ,∆(h,H), (h,H)

〉
= −2(HT∆−1υ)T∆−1(HT∆−1υ) + 4hT∆−1(H∆−1υ)− 2hT∆−1h

= −(HT∆−1υ + h)T∆−1(HT∆−1υ + h) ≤ 0.

Hence, Ψ̃ is a concave function of (υ,∆). We thus proved that the Gaussian term (left term) in

the log-pseudo-likelihood (3.25) is concave in the parameters ∆.

Concerning the Ising part of (3.25), the conditional distribution of xi with i ∈ C, given all

the other variables x−i, is

pΩ(xi | x−i) ∝ exp

[
θiix

2
i + xi

(∑
j>i

θijxj +
∑
u∈Q

φiuxu

)]
.

Each variable xi, i ∈ C has a conditional Bernoulli distribution with mean

EΩ[xi | x−i] =
eqΩ(x,i)

1 + eqΩ(x,i)
,

with

qΩ(x, i0) = θi0i0 + 2Θi0,−i0xC,−i0 + Φi0,QxQ, (3.27)

where xC,−i0 denotes the vector XC with the i0 entry removed, Θ−i0,i0 represents (θi0,j)j 6=i0 , the

i0th line of Θ without the i0-th element, and Φi0,Q represents the i0th line of Φ. We thus have

log pΩ(Xi0 | X−i0) = Xi0 logPΩ(Xi0 = 1 | X−i0)

+ (1−Xi0) log(1− PΩ(Xi0 = 1 | X−i0))

= Xi0qΩ(X, i0)− log(1 + exp qΩ(X, i0)).

The left term of this formula is linear in the parameters Ω. Similarly to the Gaussian part, it is

easy to show that the right term is concave in the parameters Ω. Finally, as a sum of concave and

linear terms, the pseudo-log-likelihood (3.25) is concave.

Surprisingly, the maximum pseudo-likelihood estimator approach is consistent and yields

an exact solution of in the case where the data is generated by a model pΩ∗ and when M →∞
whereM is the number of samples in the training dataset. The strong consistency of the (classic)

pseudo-likelihood (3.26) has been proved in the case of Isingmodel byGuyon andKünsch [1992]

and in the case of continuous models by Mase [1995].
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3.2.5.2 Optimising the pseudo-likelihood

We now focus on the calculation of the derivative of the pseudo log-likelihood. Concerning the

Gaussian left part of the pseudo log-likelihood (3.25), by the property 3.1.i, givenXC ,XQ admits

a conditional normal density with mean ∆−1(µ + ΦTXC) and covariance matrix ∆−1. We thus

have

log pΩ(XQ | XC) = −
1

2
XT

Q∆XQ + (µ+ ΦTXC)
TXQ

− 1

2
(µ+ ΦTXC)

T∆−1(µ+ ΦTXC)

+ log[(2π)−
|Q|
2 |∆|

1
2 ].

Differentiating in ∆, Φ and µ yields the gradients

∇∆ log pΩ(XQ | XC) =
1

2

[
−XQX

T
Q +∆−1 +∆−1(µ+ ΦTXC)(µ+ ΦTXC)

T∆−1
]
,

∇Φ log pΩ(XQ | XC) = XCX
T
Q −XC(µ+ ΦTXC)

T∆−1,

∇µ log pΩ(XQ | XC) = XQ −∆−1µ−∆−1ΦTXC.

(3.28)

Concerning the Ising right part of the pseudo log-likelihood (3.25), observe that, by (3.27),

we have the gradients, for all i, j ∈ C,

∇Θi,j
qΩ(X, i0) =

1{i=i0} if i = j,

1{i=i0}Xj + 1{j=i0}Xi if i 6= j.

and, for all i ∈ C and v ∈ Q,

∇Φi,v
qΩ(X, i0) = 1{i=i0}Xv.

It follows that

∇Θ

∑
i0∈C

log pΩ(Xi0 | X−i0) = Diag (EΩ(X) ◦ (2XC − 1))

− Diag (−XC) + 2XCX
T
C − (EΩ(X)XT

C +XCEΩ(X)T ), (3.29)

where here Diag (A) denotes the diagonal matrix with diagonal A, A ◦B denotes the Hadamard

product of two matrices A and B, and EΩ(X) is the vector defined of size |C|, whose i-th com-
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ponent is given by

EΩ(X)i = pΩ(Xi = 1 | X−i) =
eqΩ(X,i)

1 + eqΩ(X,i)
, i ∈ C.

Similarly, we get that

∇Φ

∑
i0∈C

logPΩ(Xi0 | X−i0) = XCX
T
Q − EΩ(X)XT

Q. (3.30)

Note also that another way to write qΩ(X, C) = (qΩ(X, i))i∈C is to set

qΩ(X, C) = (Θ + ΘT )XC + Diag (Θ) ◦ (1− 2XC) + ΦXQ.

Those equations carry out an algorithm for structure learning, using proximal gradient. Con-

trary to the classic likelihood (3.19), all terms of the pseudo-likelihood can be expressed in

closed-form. Thus we use the deterministic proximal gradient Algorithm 3: if Ω0 denotes the

starting estimates, and {γt} a sequence of positive step sizes, then given Ω(t), we compute

Ω(t+1) = Proxγt+1g(Ω
(t) + γt+1∇p`(Ω(t)), (3.31)

where Proxγtg is the proximal operator defined in (3.13).

Choosing the gradient step γt As discussed by Combettes and Pesquet [2011], the proximal

gradient algorithm converges with rate O(1/t) for a gradient-Lipschitz objective function with

Lipschitz constant L and fixed gradient step sizes γt = γ ∈ [0, 1/L[. Observe that the pseudo

log-likelihood (3.25) is actually gradient-Lipschitz, as a sum of conditional likelihood which are

all individually gradient-Lipschitz, yet with different Lipschitz constants. As discussed in section

3.2.4, since the Lipschitz constant is not known, the gradient step sizes γt can be determined by

line search, for which the Algorithm 4 can be applied.

Complexity of the pseudo-likelihood optimisation The pseudo-likelihood optimisation gives

rise to a different complexity than the likelihood optimisation with the stochastic proximal al-

gorithm. Namely, the algorithm still boils down to basic matrix operations as multiplication or

inverse calculations, and most terms in the calculation of the gradients (3.28) do not depend on

the parameters Ω(t) and can be done once and for all before starting the iterations of the learning

algorithm. However, contrary to the stochastic approach, the calculation of the pseudo-likelihood

and its gradient still require a loop over the data in equations (3.29) and (3.30) for computing the

terms involving
∑m

j=1EΩ(X
(t), C)X(t)T

Q . The complexity of an iteration of the proximal gradient

algorithm is thus O(M(|C|2 + |C||Q|) + |Q|2).
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3.3 Experiments on synthetic data

In this section, we will show some experiments made with synthetic data. The data is instances

of an underlying mixed graphical model Ω∗ (supposed unknown for the learning) introduced by

Lee and Hastie [2015] that uses ten binary variables x1, . . . , x10 and ten quantitative variables

x11, . . . , x20. The structure of the model is presented in Figure 3.4.

x1 x2 x3 x4 x5 x10

x11 x12 x13 x14 x15 x20

. . .

. . .

Figure 3.4: Structure of the network used for the experiments. This networks uses ten binary variables

x1, . . . , x10 (in brown, on the top row) and ten quantitative variables x11, . . . , x20 (in grey, on the bottom
row). The network has the structure of the a ladder, where each binary node is connected to a unique

quantitative node and reciprocally, and the nodes of each type are forming a chain, from x1 to x10 for the
binary nodes, and from x11 to x20 for the quantitative nodes. Here are only represented half of the node
for more visibility.

3.3.1 Presentation of the synthetic model

The parameters Ω∗ = (Θ∗, µ∗,∆∗,Φ∗) of the model are chosen this way:

• Θ∗ is a 10× 10 square matrix, with−0.5 for the diagonal entries and 0.5 for the entries of
the upper and lower diagonals,

• µ∗ is a vector of 10 null entries,

• ∆∗ is a 10× 10 square matrix with 1 for the diagonal entries and 0.25 for the entries of the

upper and lower diagonals,

• Φ∗ is a 10× 10 square matrix with 0.5 for the entries of the diagonal and 0 elsewhere.

Θ∗ =



−0.5 0.5 0 . . . 0

0.5 −0.5 . . .

0
. . .

. . .
...

. . . 0.5

0 0.5 −0.5


, µ∗ =



0
...

...

0


,
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∆∗ =



1 0.25 0 . . . 0

0.25 1
. . .

0
. . .

. . .
...

. . . 0.25

0 0.25 1


, Φ∗ =


.5 0 . . .

0 .5
...

. . . 0

0 0 .5

 .

For sampling the data, we use the sampling Algorithm 2. For each sampled Markov chain,

we discard the first 20 samples and we then keep only one sample every 20 samples.

3.3.2 Structure recovery experiments

The Figure 3.5 shows the results of experiments on structure recovery. We compare our methods

to several structure learning algorithms:

1. The stochastic proximal gradient algorithm presented in section 3.2.4.

2. The pseudo-likelihood approach we presented in section 3.2.5.

3. The BayesiaLab [2013] software, which can learn Bayesian network only from categorical

data. The quantitative variables have been categorised by the software, and the structure

is learned by optimising a BIC score.

4. Themixed graphicalmodel (mgm)R package developed byHaslbeck andWaldorp [2015a]

that uses `1-regularised neighbourhood regressions. We have used the standard parameters

proposed by the package, and in particular, we used the Extended Bayesian Information

Criterion procedure to select the parameter for the Lasso penalisation, and we used two

degrees of augmented interactions.

5. The maximum pseudo-likelihood approach of Lee and Hastie [2015], where the regu-

larised pseudo-likelihood is optimised using deterministic proximal gradient. We reused

the Matlab codes available on Jason Lee’s webpage (using the UGM and TFOCS Matlab

framework, see Becker et al. [2011]).

6. The shrinkage covariance algorithm, which is the estimator, for α ∈ [0, 1],

Σshrunk = (1− α)Σ̂ + α
Tr
(
Σ̂
)

n
Id,

where Σ̂ is the empirical covariance and Id is the identity matrix.
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In real applications, the underlying modelΩ∗ is unknown and the choice of λ = (λΘ, λ∆, λΦ) re-

quire a significant amount of computing by using a model selection criterion or a cross-validation

procedure. For our approaches with stochastic proximal gradient and pseudo-likelihood optimi-

sation, we have set the regularisation parameters λΘ, λ∆ and λΦ proportional to
√
log(n)/M

for all the simulations (as suggested by Wainwright et al. [2006]). We chose the proportionality

constants by trials and errors with a dataset containing 3000 samples, i.e., they are the values for

which the zeros ofΘ,∆ and φ are correctly recovered when there is enough data. Note that these

constants are different for each regulariser. Namely, for the pseudo-likelihood approach we used

λΘ = 1.4

√
log(20)

M
λ∆ = 0.95

√
log(20)

M
λΦ = 4.6

√
log(20)

M
, (3.32)

and for the stochastic proximal gradient approach we used

λΘ = 3.7

√
log(20)

M
λ∆ = 3.2

√
log(20)

M
λΦ = 4.3

√
log(20)

M
. (3.33)

Following our discussion in section 3.2.3 and in section 3.2.5.2, we have chosen a fixed gradient

step size γ = 1 for the pseudo-likelihood approach and γ = 0.1 for the stochastic approach.
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Figure 3.5: Probability of recovering the true network structure, i.e., every true edge from Ω∗ is selected
and no false edge – absent in Ω∗ – is selected, for a given sample size. Remember that Ω∗ is a network
with 10 categorical and 10 quantitative variables, and its structure is presented in Figure 3.4. Each training

set is i.i.d. sampled from pΩ∗ using Algorithm 2. Each displayed point is the average of 100 trials.

Note that distinguishing the three regularisers instead of choosing the same values yields a
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better structure recovery. The figure 3.6 shows that choosing the regularisers separately leads to

better structure recovery probability with less samples.
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Figure 3.6: Comparison of the probability of structure recovery between the cases where the regularisers

are equals and whey they are chosen separately. The results use for the disjoint case are the same than

the ones in Figure 3.5 for our pseudo-likelihood approach. We can clearly see that taking all the three

regalirisers λΘ, λ∆ and λΦ leads to a poorer structure recovery algorithm.

Concerning the Bayesian network learning, the structure of a Bayesian network and aMarkov

network are not directly comparable. However, we can still compare the set of conditional

independences encoded by each graph. Generally speaking, it not possible to find a oriented

structure that encodes the same set of independences encoded by an undirected structure, and

reciprocally. In our case, the set of conditional independences in the graph represented on the

Figure 3.4 is defined by the notion of separation (introduced in section 2.4.5.1). For exam-

ple, if we look at the four nodes x1, x2, x11, x12 on the Figure 3.4, we see that the indepen-

dences x1 ⊥ x12 | x2, x11 and x2 ⊥ x11 | x1, x12 hold for this network. However, there is no

oriented structure for which this two independences holds together (a similar case is studied by

[Friedman and Koller, 2009, Chapter 4]). Hence there is no Bayesian structure that encodes the

whole set of conditional independences of pΩ∗ . More generally, observe that each square sub-

graph xi − xi+1 − xi+11 − xi+10 − xi on the Figure 3.4 defines two conditional independences

xi ⊥ xi+11 | xi+1, xi+10 and xi+1 ⊥ xi+10 | xi, xi+11, and only one of them can be encoded by a

single Bayesian structure. Any Bayesian structure learned with enough data sampled from pΩ∗

will encode only one of the two conditional independences defined by every square subgraph

of the Figure 3.4. Reciprocally, any conditional independence of the form x ⊥ y|z encoded by
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the learned Bayesian network holds in pΩ∗ and is thus also encoded by the mixed undirected

network. We thus state that a Bayesian network has correctly recovered the structure of the undi-

rected network parametrised by Ω∗ when all the conditional independences of the form x ⊥ y|z
that is encoded by the Bayesian network is also encoded by the Markov network, and when

only one of the two conditional independences encoded by each square subgraph in the Markov

network is also encoded in the Bayesian network. Note that in the case of the ladder-shaped

structure of Figure 3.4, it means that the skeleton of the learned Bayesian network (i.e., when

every oriented edge of the Bayesian network has been replaced by an undirected edge) is exactly

the structure of the network in Figure 3.4.

The results of the structure recovery probability estimation is presented in Figure 3.5. We

first notice that the shrinkage covariance approach (based on the calculation of the empirical

covariance) never recovers the true structure, as highlighted by Loh et al. [2013]. Secondly, we

see that our pseudo-likelihood approach slightly outperforms the pseudo-likelihood approach of

Lee and Hastie [2015].

We can also observe that the structure of the graph is learned relatively fast, i.e., it does not

evolve after a few iterations, especially for the pseudo-likelihood approach. This result is known

for the Lasso, see Liang et al. [2014]. The Figure 3.7 shows the evolution of the True Positive

Rate (TPR) and False Discovery Rate (FDR) during the learning of two graphs, one with 20

variables and one with 200 variables. The TPR and FDR are respectively the rate of recovered

edges that exist in Ω∗ and the rate of edges that do not exist in Ω∗. They are defined as

TPRt =

∑
i<j 1{|ω(t)

ij |>0}1{|ω∗
ij |>0}∑

i<j 1{|ω∗
ij |>0}

, FDRt =

∑
i<j 1{|ω(t)

ij |>0}1{ω∗
ij=0}∑

i<j 1{|ω(t)
ij |>0}

,

where Ω is here seen as a symmetric matrix defined by blocs by

Ω =

 Θ Φ

ΦT ∆

 .

Observe that as shown in Figure 3.5, the maximum pseudo-likelihood estimator correctly recov-

ers the structure, even in high dimension, whereas the (stochastic) maximum likelihood estimator

performs poorly. There is no notable difference between the low and high dimension for the max-

imum pseudo-likelihood estimator, since with the ladder structure of Ω∗, each node has a fixed

number of neighbours - 3 in general, and 2 for the extremities of the structure - and hence the

conditional distributions of each node have few parameters and are easy to learn. However, as the

number of parameters of the conditional distributions increases, the pseudo-likelihood approach

defaces for non-sparse structures.
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Figure 3.7: Evolution of True Positive Rates and False Discovery Rate during the learning of a mixed

graphical model. The data have been sampled from a mixed graphical model with a ladder shape, similar

to the structure of Figure 3.4, with 10 categorical and 10 quantitative variables for the graphs (a) and (c),

and 100 categorical and 100 quantitative variables for the graphs (b) and (d). For all graphs, we used 1000

samples in the training set.
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We end this experiment section by comparing the execution times. For both stochastic prox-

imal gradient and pseudo-likelihood approaches, we compare the execution time and the number

of iterations required to reach a fixed score change between two successive score measures. Note

that for the stochastic approach, since we estimate the log-likelihood with Markov chain sim-

ulations, the score is never strictly decreasing but has a decreasing tendency. We decided to

stop the learning when the average of score computed over a small time windows is not varying

enough, i.e., when the difference between two successive averaged score is lower than a fixed

threshold. The Figure 3.8 illustrates the experiment done by varying the samples sizes of the

training datasets with a fixed dimension of 10 categorical and 10 quantitative variables, and the

Figure 3.9 shows the results of an experiment made with fixed sample sizes and by varying the

dimension. As expected, the execution time of an iteration of the stochastic proximal gradient

does not depend on the sample size.

M
stochastic prox pseudo-likelihood

mean execution time (sec) iterations execution time (sec) iterations

100 3.34 274 0.12 445

1000 3.32 265 0.51 507

10000 3.45 287 0.59 495

100000 3.43 279 6.25 603

1000000 3.48 294 67 576

Figure 3.8: Execution time of each iteration of the stochastic proximal gradient learning Algorithm 3 and

the pseudo-likelihood optimisation Algorithm 3, when the dimension is fixed to |C| = 100 and |Q| =
100, for various sample sizes M .For the pseudo-likelihood approach, we stopped the learning when the

difference between two successive scores was less than 0.0001. For the MCMC approach, we stopped

when the difference between two averaged scores is less than 0.1.

|C|+ |Q| stochastic prox pseudo-likelihood

mean execution time (sec) iterations execution time (sec) iterations

20 .76 82 0.005 151

100 1.21 388 0.12 445

200 3.3 412 0.50 626

1000 42 1015 11 1634

2000 94 1867 59 2040

Figure 3.9: Execution time of each iteration of the stochastic proximal gradient learning Algorithm 3 and

the pseudo-likelihood optimisation Algorithm 3, when the sample size is fixed to M = 1000 and the

dimension n = |C|+ |Q| is varying. For the pseudo-likelihood approach, we stopped the learning when
the difference between two successive scores was less than 0.0001. For the MCMC approach, we stopped

when the difference between two averaged scores is less than 0.1.
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Chapter 4

Anomaly Localisation

Anomaly detection (Chandola et al. [2009]) refers to the task of finding unusual elements in

a set of observations. Most of the existing works on anomaly detection are focusing on point

(unconditional) anomaly detection (see section 2.4.1) and are looking for outliers with respect to

all the features in the dataset. In this section, we rather study theConditional

Anomaly

Detection

conditional anomaly detection

problem (Chandola et al. [2009], Valko [2011]), i.e., the problem of detecting unusual values in

a subset of variables given the values of the remaining variables.

In the industrial terminology, the conditional anomaly detection task is referred asLocalisation

problem

the lo-

calisation problem. The data is often collected by sensors and the instanced variables often

correspond to physical measures or states of specific parts and components of the systems, and

localising which part of the system is failing is a valuable information. However, for com-

plex system, the number of variables can be very high so that finding the cause(s) of a detected

anomaly is unachievable, even for an expert team. In particular, the wave guide case explained

in the Example 2.2 depicts a case where localising the causes of unexpected displays on the pi-

lot screen has required months of investigation by an expert team. For this specific case, the

benefits of using Bayesian networks has been revealed by Kemkemian et al. [2013], where a

Bayesian network has been learned with data produced by a radar behaving normally, and where

the root causes of the anomaly were localised by manually analysing the conditional probability

distributions of each of the 140 variables of the problem.

In this section, we present our approach for solving the localisation task in the industrial

context of RBE2 production in Thales.

4.1 Definition of the localisation task

The concept of conditional anomaly in data is somewhat ambiguous in the literature. Seve-

ral definitions have been proposed in the past (Markou and Singh [2003a], Markou and Singh
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4.1. DEFINITION OF THE LOCALISATION TASK

[2003b], Valko et al. [2011]), and different detection approaches have been proposed (see sec-

tion 2.4.1). In particular, Valko [2011] study the case of detecting unusual values of one variable

given the values of the remaining variables, where the variables are all categorical and take a

finite number of values. Namely, given a dataset {Xm}m=1...M of M samples, a conditional

anomaly in the value x
(m)
i in them-th sample given the remaining values x

(m)
−i is detected when

p(x
(m)
i | x(m)

−i ) = O(exp(−κM)) for some level κ, where p is the underlying density of the data.

Several approaches addressing the inaccessibility of this underlying model are discussed.

Concerning our study, the conditional anomalies can not be defined in term of single samples.

From an industrial perspective, breakdowns might be generated by isolated samples behaving

anomalously, but they only encompass a small fraction of all possible anomalies, like anomalous

accumulations or drifts. From a statistical perspective, most of the measures are made with

sensors which are subject to noise or easily disturbed, and focusing only on the outliers might

leads to a high false alarm rate.

In our study, we will define the conditional anomalies in term of change in the parameters of

the conditional probability distributions of the variables. The Figure 4.1 and Figure 4.2 depict

a synthetic case, close to potential real situations, for which the anomalies lie in a small change

of the parameters of the underlying density sampling the data. On both figures, data were drawn

from two univariate Gaussian distributions, representing a normal and an anomalous situation.

If some outliers can be visually identified with a threshold approach, a lot of samples from both

class might be wrongly labelled.

0 50 100

−2

0

2

4

samples

N (0, 1)
N (2, 1)

Figure 4.1: Samples of univariate Gaussian distributions. The first fifty samples (in blue) are drawn from

N (0, 1) and the last fifty samples (in red) from N (0.2, 1).

The change of parameters in the underlying density has a very valuable meaning for the

industrial experts. It can be the evidence of the ageing of a component, an unanticipated corre-

lation, a leak, or more. That is why, rather than detecting the outliers in the data, we are more

interested in detecting the time at which the parameters of the underlying conditional density
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0 50 100

2

4

6

samples

N (0, 1)
N (2, 1)

Figure 4.2: Negative log-likelihood of 100 samples calculated with respect to the parameters of the Gaus-

sian distributionN (0, 1). The first fifty samples (in blue) are drawn fromN (0, 1) and the last fifty samples

(in red) from N (0.2, 1).

have changed and has sampled the outliers. Note that this implies to keep unchanged the time

order of the samples.

We have limited our study on changes of the conditional mean of the random variables.

Remember that our data is heterogeneous, that is either quantitative or binary. By the proposi-

tion 3.1, conditionally to the other variables, each variable has either a Bernoulli distribution,

parametrised by its mean value, or a Gaussian distribution, parametrised by a mean and a stan-

dard deviation.

These considerations lead to the following definition of the anomaly localisation task. This

definition complements the Definition 2.1 proposed in section 2.4.3 by specifying the analysis

of the conditional mean of the variables.

Definition 4.1 Anomaly localisation Suppose we have learned a model pΩ with the parame-

ters Ω over a set of n variables x1, . . . , xn, and we have a test setD = {X(t), t = 1 . . .M} ofM
samples, indexed by the time. We define the localisation problem as finding the subset of vari-

ables {xi, i ∈ 1 . . . n} whose conditional means E[X(t)
i |X

(t)
−i ], monitored as a function of time

have changed compared to the expectation EΩ[X
(t)
i |X

(t)
−i ] of the learned model pΩ(X

(t)
i |X

(t)
−i ),

where X−i denotes all the variables except Xi.

4.2 Detection of a change in the conditional mean

In this section, we present our method to detect changes in the conditional mean of random

variables. Although we are using batch datasets in our industrial applications (produced by the

built-in test during the execution of deterministic scenarios), a future aim of this work is to be

embedded in jet fighters for operational use, in which case the data will be produced online.

Hence we will focus on online change detection approaches.

99



4.2. DETECTION OF A CHANGE IN THE CONDITIONAL MEAN

The method we propose will simultaneously detect and localise anomalies from a sequence

of new data (X
(t)
C , X

(t)
Q ), t = 1, 2, . . . using a reference model pΩ, where the parameters Ω have

already been learned with normal data (see chapter 3). The main idea to localise anomalies is

to monitor each term of the log-pseudo-likelihood Besag [1975] as a function of time and detect

a change in the parameter of these terms. This problem is commonly referred to as change

detection in the statistics literature.

4.2.1 Change detection techniques

Many approaches have been studied to detect a change in the distribution of data, and Basseville

et al. [1993] proposes a large survey of online approaches addressing this subject. Namely, given

a sequence of i.i.d. observations {X(t)}t with probability distribution pΩ(X), we suppose that

there is an unknownChange time change time t0 before which the parameters Ω are equal to Ω0, and after

which they are equal toΩ1 6= Ω0. In the case where the parametersΩ0 is known, the change-point

detection task is to detect the change time t0 and/or estimate the new parameters Ω1.

4.2.1.1 Elementary online parametric change detection algorithms

Most of the change detection techniques rely on the study of theLog-likelihood

ratio

instantaneous log-likelihood

ratio for a sample X , defined by

s(X) = log
pΩ1(X)

pΩ0(X)
. (4.1)

The following property follows on this definition.

Proposition 4.1 LetEΩ0 andEΩ1 denote the expectation respectively under the distributions pΩ0

and pΩ1 , and s denotes the log-likelihood ratio (4.1), then, if pΩ0 and pΩ1 are distinct densities,

EΩ0(s) < 0 and EΩ1(s) > 0.

This property states that a change in the parameters Ω depicts a change in the sign of the mean

of the log-likelihood ratio.

The literature is very wide in change detection, and embrace many situations, whether the

samples are independent or not, whether the parameters Ω0 and Ω1 are known, or whether the

change time t0 is known. Many of these approaches are exploiting the proposition 4.1, see

Basseville et al. [1993] and the references therein for an exhaustive review.

The techniques presented in the following have been developed for the case where Ω0 and

Ω1 are available.
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4.2. DETECTION OF A CHANGE IN THE CONDITIONAL MEAN

The Shewhart control charts (see Shewhart [1931], Duncan [1986]) is a tool used in quality

control. The samples are divided into set of samples with size M , and for each samples set, the

sum of the log-likelihood ratio SM =
∑M

t=1 st is computed. A change is detected if the sum SM

is greater than a fixed threshold.

The geometric moving average control charts approach, proposed by Roberts [2000], relies

on a weighted sum of log-likelihood ratio, to increase the impact of recent samples over old ones.

Namely, the decision statistic is Sk =
∑M−1

t=0 γtsk−t where the weights γt are exponential, i.e.,

γt = α(1− α)t for 0 < α ≤ 1. Again, a change is detected by thresholding the decision function

Sk. The filtered derivative approach, introduced by Duncan [1986], uses the same weighted

sum of log-likelihood ratio with exponential weights, but the detection of change is made by

looking at the differences δSk = Sk − Sk−1, and the change time is given by the stopping rule

min{k :
∑M−1

i=0 1{δgk−i≥h} ≥ ν}.
Bayesian approaches are available when a priori information is known about the change

time, in which case the a priori takes the form of a probability distribution of the change time,

see Girshick and Rubin [1952] and Shiryaev [1961].

In the case where the parameters Ω1 is not available after the change, Wald [1973] proposes

two approaches, the first where the likelihood ratio is replaced by a a weighted sum of likelihood

ratio over all possible parameters Ω1, and the second, called generalized likelihood ratio (see

Lorden [1971]), where Ω1 is reimplaced by its maximum likelihood estimate.

4.2.1.2 The CUSUM algorithm

TheCUSUM CUSUM algorithm Page [1954] has been introduced to sequentially detect a change in the

mean of a distribution, and also relies on the calculation of the log-likelihood ratio (4.1).

As depicted in proposition 4.1, under the null hypothesisΩ = Ω0, the cumulative sum
∑M−1

t=0 st

has a negative drift, and under the alternative hypothesis Ω = Ω1, it has a positive drift. This

property is illustrated on Figure 4.3, where the cumulative sum of st is displayed. The data used

are the same as for the Figure 4.1. We can see the negative drift for first 50 samples, and the

positive drift for the last 50 samples.

Therefore, the relevant information lies in the difference between the current value of cumu-

lative sum of log-likelihood ratios and its minimum value in the past. The decision function is

thus defined as

St = σt −mt, (4.2)

where σt =
∑t

r=0 sr is the cumulative sum of the log-likelihood ratios and mt = min
0≤r≤t

σr is the

minimum value of the past cumulative sums. A equivalent recursive formulation is to set S0 = 0
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0 50 100
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Cumulative sum of st

Figure 4.3: Cumulative sum of the log-likelihood ratio st = log
pΩ1

(X(t))

pΩ0
(X(t))

calculated using a hundred

Gaussian samples {X(t)}t=0...99. This samples are the same as the ones used in Figure 4.1: the first fifty

are drawn from N (0, 1) and the last fifty are drawn from N (2, 1). We can clearly see the change of drift

around t = 50 indicating the change time.

and to define St, t ≥ 1 recursively by

St = (St−1 + st)
+ , (4.3)

where z+ is the positive part of z, that is z+ = max(0, z) for any real z. The behaviour of the

decision functions (4.2) and (4.3) are displayed in Figure 4.4. The change time is thus defined

by thresholding this decision function.

4.2.2 Localising anomalies using the CUSUM algorithm

In this section, we show how we adapt this algorithm to localise anomalies from a sequence of

new data (X
(t)
C , X

(t)
Q ), t = 1, 2, . . . , assuming that a reference modelΩ0 has already been learned

using normal data, i.e., data that does not contain anomalies.

So far, we assumed that the parametersΩ0 andΩ1 of the underlying densities before and after

the change time t0 are known. The chapter 3 provides the materials for estimating a model Ω̂0

using normal data, i.e., data that does not contain anomalies. We will explain in the following

how to choose the parameters Ω1 after the change time.

Remember from Definition 4.1 thatAnomaly

localisation

localising anomalies means detecting a change in the

conditional means of each variables given the others. Since this change might be an increase

or a decrease, we use theTwo-sided

CUSUM

two-sided CUSUM algorithm as proposed in Basseville et al. [1993],

and we will use two different alternative densities, either for detecting an increase or a decrease.

Similarly to the CUSUM algorithm, for each t and each variable Xi, i ∈ C ∪ Q, we define the
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Figure 4.4: Evolution of the decision function defined by (4.3), using the same data as for Figure 4.1 i.e.,

the first fifty samples are drawn from N (0, 1) and the last fifty from N (2, 1).

instantaneous conditional log-likelihood ratio

s
(t)
i = log

pΩ1

(
X

(t)
i |X

(t)
−i

)
pΩ0

(
X

(t)
i |X

(t)
−i

)
 , (4.4)

where X−i = {Xj, j ∈ C ∪ Q, j 6= i} and pΩ1 is the density under the alternative hypothesis.

We also defined recursively a decision statistic by S
(0)
i = 0 and

S
(t)
i =

(
S
(t−1)
i + s

(t)
i

)+
, t = 1, 2, . . . , (4.5)

where (z)+ = max(z, 0). Here p0 and p1 denote respectively the density of the null hypothesis

with parameters Ω0 and the alternative hypothesis with parameters Ω1, that is, the conditional

density of the targeted anomalous behaviour.

The use of the conditional distributions in equation (4.4) actually yields a localisation algo-

rithm. As it was discussed in section 3.1.3, for two arbitrary variables Xi and Xj with i 6= j,

i, j ∈ C ∪ Q, the entries associated with node potentials – i.e., {Θii}i∈C , {µi}i∈Q and {∆ii}i∈Q
– only parametrise the conditional distribution of xi given the remaining variables x−i, and the

entries associated to edge potentials – i.e., all the entries of Φ plus the non diagonal entries of

Θ and ∆ – only parametrise the conditional distributions pΩ(xi|x−i) and pΩ(xj|x−j). Hence, a

change in a parameter ω will only impact the conditional distribution(s) parametrised by ω.

In contrast, the marginal distribution pΩ(xi) of any variable xi is parametrised by all the

entries of Ω. Hence, a modification of any parameter of the model will impact all the marginal
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distributions, what prevents the localisation of the changed parameter.

So far, we have assumed that pΩ0 and pΩ1 were known. On the one hand, Ω0 is learned

using normal data available before hand. On the other hand, Ω1 can not be known in advance

and we now need to find a sensible approach to set the density under the alternative. Since we

monitor conditional likelihood ratios, we define each conditional density pΩ1(xi|x−i) separately,

depending on the type of the variable xi, that is, either quantitative or categorical.

4.2.2.1 The alternative density for quantitative variables

We focus first on the quantitative variables. By the proposition 3.1.i, the conditional distribution

of X
(t)
Q given X

(t)
C is the multivariate Gaussian N (ν(t),∆−1), with ν(t) = ∆−1(µ+ ΦTX

(t)
C ). It

follows that, for all i ∈ Q, the conditional distribution of X(t)
i given X

(t)
−i is Gaussian univariate

with mean

e
(t)
i = EΩ[X

(t)
i | X

(t)
−i ] = ∆−1

i,−i∆−i,−i

(
X

(t)
Q−i − ν

(t)
−i

)
+ ν

(t)
i

and variance

σ2
i = VarΩ(X

(t)
i | X

(t)
−i ) = ∆−1

ii −∆−1
i,−i∆−i,−i∆

−1
−i,i.

Observe that e
(t)
i depends on the data, whereas it is not the case for σi, which only depends on

the parameter ∆.

Intuitively, in the case where there is only one quantitative variable, under the null hypothesis,

the data have a Gaussian distribution with mean ν and variance σ2. We define the alternative

densities as shifts of ±δσ of the conditional density under the null hypothesis, as depicted in

Figure 4.5. The parameter δ is controlling the sensitivity of the anomaly detection. On the one

hand, the larger δ, the more anomalous the change must be to make the likelihood ratio positively

drifted and then eventually trigger a detection. On the other hand, the smaller δ, the less negative

the drift is when no change occurs, increasing the probability of a false alarm.

In the general case, for each quantitative variable Xi, i ∈ Q, we want to detect a change in
pΩ(X

(t)
i | X

(t)
−i ). We define the conditional density p(X

(t)
i | X

(t)
−i ) of the alternative hypothesis

as a Gaussian density with same variance σ2
i and a modified mean e

(t)
i ± δσi. The log-likelihood

ratio (4.4) then becomes, for i ∈ Q,

s
(t)±
i =

1

2

(
X

(t)
i − e

(t)
i

σi

)2

−

(
X

(t)
i − (e

(t)
i ± δσi)

σi

)2

= ±(X
(t)
i − e

(t)
i )

σi

δ − 1

2
δ2. (4.6)
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νν − δσ ν + δσ ν + δ′σ
x

p(x)

Figure 4.5: Alternative density in dimension 1 for a Gaussian variable. UnderH0, the normal (conditional)

density is a univariate Gaussian density (in blue), and under H1 the two alternative densities (in red) are

defined by translating the blue curve by +δσ or −δσ, corresponding respectively to an increase and a

decrease of the mean. The dashed red Gaussian corresponds to an increase of the mean with a different

δ′ > δ. The crosses correspond to two samples, for which we want to decide whether they are drawn

from the blue Gaussian or not. Intuitively, when the alternative is a Gaussian density with mean ν + δσ,
we can assess that the red dot is more likely drawn from the right red Gaussian than from the blue one,

when the blue sample is more likely drawn from the blue Gaussian. On the contrary, when the alternative

is defined with a greater mean shift +δ′σ (corresponding to the dashed red Gaussian), then both red and

blue are more likely drawn from the blue Gaussian.

In term of s
(t)+
i and s

(t)−
i , this definitions yields two statistics S

(t)+
i and S

(t)−
i in (4.5), for detect-

ing respectively an increase and a decrease of the conditional mean e
(t)
i . Later in our experiments,

we will consider the sum S̄
(t)
i = S

(t)+
i + S

(t)−
i in order to detect a change in both possible direc-

tions.

Note that the parameter δ has an interesting geometric interpretation. By (4.6), the conditional

negative drift under the null hypothesis (when no changes occur) of the decision statistic (4.5)

is given by EΩ[s
(t)
i |X

(t)
−i ] = −δ2/2. This property is illustrated on the Figure 4.4, where the drift

toward zero is controlled by δ.

4.2.2.2 The alternative density for categorical variables

We focus now on the categorical variables. As explained in section 3.1.3, each categorical vari-

able Xi, i ∈ C has a conditional Bernoulli distribution with mean

pi = EΩ[Xi | X−i] =
eqΩ(X,i)

1 + eqΩ(X,i)
,

where

qΩ(X, i0) = θi0i0 + 2Θi0,−i0X−i0 + Φi0,QXQ.
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Specifically for the categorical variables, we define the conditional distribution of the alternative

hypothesis as a Bernoulli distribution with mean a
(t)
i . The instantaneous log-likelihood ratio is

then given by

s
(t)
i = X

(t)
i log

a
(t)
i

p
(t)
i

+ (1−X
(t)
i ) log

(
1− a

(t)
i

1− p
(t)
i

)
. (4.7)

From there, there are two ways of fixing the parameters α
(t)
i . First, we choose a

(t)
i such as the

drift of the decision function (4.5) under the null hypothesis is set to the same value − δ2

2
, as

for quantitative variables in (4.6). This drift is given by computing EΩ[s
(t)
i | X

(t)
−i ] with s

(t)
i as

in (4.6), yielding the equation

p
(t)
i log

a
(t)
i

p
(t)
i

+ (1− p
(t)
i ) log

(
1− a

(t)
i

1− p
(t)
i

)
= −δ2

2
. (4.8)

It is easy to show that this equation in a
(t)
i (with δ and p

(t)
i fixed) has two distinct solutions a

(t)+
i ∈

[p
(t)
i , 1] (associated to the statistic S

(t)+
i ) and a

(t)−
i ∈ [0, p

(t)
i ] (associated to S

(t)−
i ), detecting

respectively increase and decrease of the mean p
(t)
i , with a conditional negative drift − δ2

2
under

the null hypothesis, see Figure 4.6. For the same reasons as with quantitative variables, we will

consider the sum S̄
(t)
i = S

(t)+
i + S

(t)−
i in the experiments.

1 α0 p
(t)
i

−

δ2

2

α
(t)+
i

α
(t)−
i

1

Figure 4.6: Evolution of the negative drift of a categorical variable as a function of α ∈]0, 1[, when the

mean p
(t)
i of the conditional Bernoulli distribution of xi is fixed to p

(t)
i = 1

3 . There are two values of α,

α
(t)−
i ∈]0, p(t)i [ and α

(t)+
i ∈]p(t)i , 1[ yielding a negative drift of − δ2

2 .

Another possible choice is to fix the parameters α
(t)
i in order to have a conditional variance

VarΩ

[
s
(t)
i |s

(t)
−i

]
equal to one, as it is the case for the quantitative variables in section 4.2.2.1.

By (4.7), we have that

VarΩ[s
(t)
i |s

(t)
−i] = Var[X

(t)
i |X

(t)
−i ]

(
log

a
(t)
i

p
(t)
i

− log
1− a

(t)
i

1− p
(t)
i

)2

.
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Since xi has a conditional Bernoulli distribution, Var[X
(t)
i |X

(t)
−i ] = p

(t)
i (1 − p

(t)
i ) and we have

that

VarΩ[s
(t)
i |s

(t)
−i] = p

(t)
i (1− p

(t)
i )

(
log

a
(t)
i

1− a
(t)
i

− log
p
(t)
i

1− p
(t)
i

)2

. (4.9)

We want VarΩ[s
(t)
i |s

(t)
−i] = 1 for any fixed p

(t)
i ∈]0, 1[. By (4.9), we have that

a
(t)
i

1− a
(t)
i

= exp

(
±
√

1

p
(t)
i (1− p

(t)
i )

)
· p

(t)
i

1− p
(t)
i

,

which finally yields two solutions a
(t)−
i and a

(t)+
i , depending on the sign of the term in the expo-

nential, given by

a
(t)−
i =

1 + 1− p
(t)
i

p
(t)
i

exp

+
1√

p
(t)
i (1− p

(t)
i )

−1

,

a
(t)+
i =

1 + 1− p
(t)
i

p
(t)
i

exp

− 1√
p
(t)
i (1− p

(t)
i )

−1

.

(4.10)

The Figure 4.7 shows the evolution of the drift seen as a function of p
(t)
i ∈]0, 1[.

1 p
(t)
i0

1

Figure 4.7: Evolution of the negative drift for a categorical variable xi when the parameters a
(t)+
i and

a
(t)−
i are given by (4.10), so that the conditional variance VarΩ[S

(t)
i |s

(t)
−i] is equal to one. The drift for

S
(t)−
i is the dotted line, the drift for S

(t)+
i is the dashed line and the drift for S̄

(t)
i is the continuous line.
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Algorithm 8 Two-sided CUSUM for anomaly detection and localisation

Input A learned model pΩ, a sensibility parameter δ, a threshold h, and a dataset or a stream

{X(t)}t,

1 Initialize S
(0)
i = 0 for each i ∈ C ∪ Q.

2 for each sample X(t), do

3 for each i ∈ Q, do
4 Update St+1

i = (S
(t)
i + s

(t)
i )+ using the equation (4.6).

5 for each i ∈ C, do
6 Compute the mean a

(t)
i of the alternative Bernoulli distribution using equation (4.8),

7 Update St+1
i = (S

(t)
i + s

(t)
i )+ using the equation (4.7).

8 For each variable xi, find the change time τi = min{t;S(t)
i > h}.

9 Return the change times {τi, i ∈ C ∪ Q}.

4.2.2.3 Our two-sided CUSUM algorithm and calibration of its parameters

Our two-sided CUSUM is given in Algorithm 8 for detecting and localising anomalies in data.

Used with a batch file ofM samples, this algorithm has a time complexityO(M · |C| · |Q|), in the
case where we use the parameters a

(t)
i defined by (4.10). Note that in the case where we would

like to fix the drift instead of the conditional variance, there is no closed-form of the inverse of

the drift (4.8) and thus it has to be approximated using for instance a dichotomy method or by

preloading a table associating, with δ fixed, the parameter a of the anomalous density given the

parameter p of the density under H0.

The Algorithm 8 has two tuning parameters that the user has to set:

• the sensitivity parameter δ,

• the detection threshold h.

Under the null hypothesis, each decision statistic S
(t)+
i or S

(t)−
i evolves with a negative drift

−δ2/2. Hence, because of the positive part in (4.5), it remains close to zero with high probability.

In contrast, under the alternative, the conditional drift becomes positive and the decision statistic

S̄
(t)
i eventually increase above any arbitrarily high threshold h. We thus label as a change time

the first times twhen S̄
(t)
i > h. The choice of δ sets how sensitive the test is to a close alternative,

while the choice of h is a compromise between the false alarm probability over a given horizon

and the delay needed to raise an alarm after a change of distribution. Finally and most interest-

ingly, the set of indices i for which the alarm is raised provides a way to identify the variables

for which not only the marginal distribution has changed but also the conditional one, given all

other available variables.

108



4.3. APPLICATION TO SYNTHETIC DATA

Fixing the detection threshold is a complex task, and the most classic ways require the com-

putation of theDetection delay the detection delay in the worst case (Lorden [1971]) defined by

ĒΩ1 [t0] = sup
t≥0

{
ess sup EΩ1

[
(t0 − t+ 1)+ | X(0), . . . , X(t)

]}
,

where ess sup denotes the essential supremum, Ω1 is the parameter of the model under the alter-

native hypothesis and t0 is the change time (see section 4.2.1), or theAverage Run

Length

average run length function

(ARL, Page [1954]), defined as

ARL = EΩ[t0],

where t0 is the change time. Depending on the value taken by Ω, the ARL function can take two

particular interesting values.

• IfΩ = Ω0, then the average run length under the null hypothesis becomesARL0 = EΩ0 [t0],

i.e., the expected number of samples before a false alarm is raised, and can be also viewed

as the average time between two false detections. We thus want this quantity to be as large

as possible to minimise the false detection rate.

• If Ω = Ω1, then ARL1 = EΩ1 [t0] is an expected number of samples before detecting a

change and can also be viewed as a average detection delay. We want this quantity to be

as small as possible to minimise the reaction time of the algorithm.

We refer to Lorden [1971], Moustakides [1986], Ritov [1990] and Basseville et al. [1993] for

precise results on the computation of these delays under simple assumptions, when the CUSUM

algorithm is computed with the standard conditional likelihood.

4.3 Application to synthetic data

In this section, we present results of anomaly detection and localisation with synthetic data. We

suppose here that we have already learned the model parameters Ω from normal data. The data

is composed of 50 normal observations sampled from the model using the Algorithm 2, and 50

anomalous observations sampled from an altered model where one parameter value in Ω has

been modified.

We use the same model structure as in section 3.3.1, with 4 categorical and 4 quantitative

variables. The model is represented in Fig. 4.8, with a colormap that will be kept for all the

experiments. The parameters Ω∗ = (Θ∗, µ∗,∆∗,Φ∗) of the model are chosen this way:

• Θ∗ is a 4 × 4 square matrix, with −0.5 for the diagonal entries and 0.5 for the entries of

the upper and lower diagonals,
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4.3. APPLICATION TO SYNTHETIC DATA

• µ∗ is a vector of 4 null entries,

• ∆∗ is a 4 × 4 square matrix with 1 for the diagonal entries and 0.25 for the entries of the

upper and lower diagonals,

• Φ∗ is a 4× 4 square matrix with 0.5 for the entries of the diagonal and 0 elsewhere.

Θ∗ =


−0.5 0.5 0 0

0.5 −0.5 0.5 0

0 0.5 −0.5 0.5

0 0 0.5 −0.5

 , µ∗ =


0

0

0

0

 ,

∆∗ =


1 0.25 0 0

0.25 1 0.25 0

0 0.25 1 0.25

0 0 0.25 1

 , Φ∗ =


.5 0 0 0

0 .5 0 0

0 0 .5 0

0 0 0 .5

 .

xC1 xC2 xC3 xC4

xQ1 xQ2 xQ3 xQ4

Figure 4.8: Structure of the network used for the experiments. This network uses four binary variables

xC1 , . . . , xC4 (on the top row) and four quantitative variables xQ1 , . . . , xQ4 (in grey, on the bottom row).

We have tested three different modifications on the parameters of Ω∗ :

1. the conditional distribution of the second (green) quantitative variable is changed by mov-

ing µ2 from 0 to 3,

2. the conditional distribution of the first (brown) categorical variable is changed by moving

θ1,1 from −0.5 to −4,

3. the conditional distributions of the first (brown) categorical and third (grey) quantitative

variable are changed by moving φ1,3 from 0.5 to 2. Hence in this case the Markov field

structure is modified, see Figure 4.9.
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xC1 xC2 xC3 xC4

xQ1 xQ2 xQ3 xQ4

Figure 4.9: Structure of the network used for the third experiment, where an edge was added between the

first categorical variable xC1 and the third quantitative variable xQ3 .

Figure 4.10 shows the temporal evolution of the statistic S̄
(t)
i computed for every variable and

for the three kinds of anomalies, when we use (4.10) for the parameters under H1 of the condi-

tional distribution of the categorical variables, corresponding to a fixed variance of the decision

function. As expected, the plots on the top row show that when changing µ1, only the statistic of

the green quantitative variable is increasing, indicating that the green variable is carrying alone

the change of conditional distribution. The same thing can be concluded for the two others mod-

ifications on θ1,1 and φ1,3. These results show that our method correctly detects and localises the

changes in the conditional distributions.

We compare our method to theWilcoxon test Wilcoxon test presented in Lung-Yut-Fong et al. [2011],

which is designed to detect changes in the distribution of a set of quantitative variables from

a batch dataset {X(m)}, m = 1 . . .M of M samples. This test is based on the rank statistics

computed, for each quantitative variable Xi, i ∈ Q, as

Vi(M1) =
1

M3/2

M1∑
r=1

M∑
s=M1+1

(
1{X(r)

i ≤X
(s)
i } − 1{X(s)

i ≤X
(r)
i }

)
, 1 ≤M1 < M. (4.11)

In the following, we apply this approach to detect a change of distribution for each quantitative

variable. Figure 4.11 displays the statistic of this test as a function of the possible change times.

When only one change occurs in the data, this statistic is expected to approximately have a

triangle shape with a maxima or a minima around the true change time. We use the same dataset

as for the experiment with the anomalies localised on the second (green) quantitative variable,

where µ1 changes from 0 to 3 at time t = 50. Figure 4.11 should thus be compared with the top

row of Figure 4.10. TheWilcoxon test is a batch method as it requires the whole set of data to be

computed. We observe that, in contrast to our approach, theWilcoxon test applied individually to

each variable is not suited to localise the anomaly since a change of µ1, although it only modifies

the conditional distribution of X1 given X−1, yields a change of all the marginal distributions.

This is why in Figure 4.11, theWilcoxon statistics displays triangle shapes for all the quantitative

variables with a more obvious change for the variables directly connected to X1.
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Figure 4.10: Time evolution of S̄
(t)
i for quantitative variables on the left and categorical variables on the

right, where we have used the parameters (4.10) yielding VarΩ[s
(t)
i |s

(t)
−i] = 1 for all i ∈ C. The colors of

the plots correspond to the colors of the variables in the graph of Figure 4.8. Top row : change on µ2.

Middle row : change on θ1,1. Bottom row : change on φ1,3. For each experiment, the first 50 samples are

sampled with parameter Ω, and the last 50 samples are sampled with the modified parameter.
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Figure 4.11: Evolution of theWilcoxon statistic for 100 samples of 4 quantitative variables, with the same

color code as for Figure 4.8. After the 50th sample, we have modified Ω with µ1 = 3. The dashed lines
indicate the thresholds for detecting a change with a 5% false detection probability.

We end this experimental section by showing some ROC curves in Figure 4.12. We use the

same data as for Figure 4.10, i.e., three datasets of 100 samples, the first fifties being i.i.d. drawn

from pΩ∗ , and the last fifties are drawn from the same distribution, where a parameter has been

changed. For these curves, the false alarms are the points for which, under H0, the statistics

of any variable not impacted by the parameter change is higher than a threshold, and the true

positive are the point for which, underH1, the statistic of the variable impacted by the parameter

change is higher than the threshold. The probability of true detection PTD and the probability

of false alarm PFA are thus defined, for our CUSUM approach, by

PTD = P(∀i ∈ A, S
(t)
i ≥ h | H1),

PFA = P(∃i ∈ C ∪ Q�A such as S
(t)
i ≥ h | H0),

and, for the Wilcoxon statistic, by

PTD = P(∀i ∈ A, |V (t)
i | ≥ h | H1),

PFA = P(∃i ∈ C ∪ Q�A such as |V (t)
i | ≥ h | H0),

where h denotes a threshold, A denotes the variables impacted by the parameter change, and

C ∪Q�A is the complementary set ofA in C ∪Q, i.e., the variables not impacted by the change.

Namely, for the three changes on µ2, θ11 and φ13, the set A respectively corresponds to {xQ,2},
{xC,1} and {xC,1, xQ,3}.
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Figure 4.12: ROC curves computed over a set of 100 samples, where the 50 first were drawn from the

model Ω∗ and the last 50 from Ω∗ change on one parameter. The black line indicate the bisector PTD =
PFA. The graph (a) is obtained using the decision statistics we defined in (4.3), and the graph (b) is

obtained using the Wilcoxon statistics (4.11).
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Chapter 5

Applications

This chapter presents the experiments we performed for mixed model learning and anomaly

localisation using real data provided by Thales. We inform the reader that most of the used

names, shown values and times have been slightly altered or totally changed for confidentiality

reasons, in a way so that the problems we faced and the choices we made are still completely

valid.

5.1 Presentation of the data

The data are produced by the built-in test during the execution of the Touch and go scenario,

simulating a series of takeoffs and landings (see Example 2.3) and the all modes scenario (see

Example 2.4). Both scenarios are deterministic: a test bench reproduces flight conditions by

simulating some predetermined environmental conditions and orders of the pilot. The behaviour

of the radar is hence very different depending on the scenario. In particular, a different set of

fields and variables is used for each scenario.

Scenario Touch and go This scenario is the smallest in term of involved fields and variables.

After applying a dimensionality reduction strategy (as explained in section 2.3.1), we kept

9 frames, 28 fields, and 86 variables. Among the fields, 9 are quantitative and 19 are

categorical. These 19 categorical fields correspond to 77 binary variables, i.e., |C| = 77

and |Q| = 9. Following the reassembling process explained in section 2.3.2, each datafile

produced during a Touch and go scenario end up with around 1.5 million samples.

Scenario All modes This scenario is the largest scenario in term of involved variables. After

reducing the dimension, we ended up with 29 frames, 219 fields and 1004 variables. In

particular, among the 219 fields, 49 are quantitative and 170 are categorical. These 170

categorical variables correspond to 955 binary variables, i.e., |C| = 955 and |Q| = 49.

Each datafile has around 2 million samples.
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5.1. PRESENTATION OF THE DATA

Also note that, as discussed in section 2.1.2.3, even if the stimuli are deterministic, the be-

haviour of the radar is partially random. Many variables may take different values during the

tests, and some events (breakdowns, calibrations, …) will change the data produced by the radar.

Let’s illustrate these facts with some examples.

• The temperature of some pieces of the radar has a very particular behaviour. At start, these

temperatures are equal to the temperature of the test room, which may vary depending on

the use of the room (particularly if other radars are being tested), the weather or the season

of the year. Similarly, the asymptotic temperature (the temperature reached by the radar

after a long moment of use) is supposed to be quite constant, but this constant also depends

on many environmental parameters and is not the same for every test, even on the same

radar. The Figure 5.1 depicts these observations.
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Figure 5.1: Evolution of the temperature of the same component of two different radars, during the execu-

tion of two all modes scenarios several months apart. The values have been modified for confidentiality

reasons.

This dependency in the environmental conditions also impacts other quantitative variables.

A noteworthy common characteristic of these variables is that they often have a different

behaviour during different tests, even for the same radar. The initial temperature depends

a lot on environmental conditions, and the asymptotic values are also not guaranteed to be

equal. These particularities result in the rise of many false alarms. To address this issue,

in the training dataset, we have added a centred noiseN (0, σi) on each concerned variable

xi. This modification has made the number of false alarm dropped to zero in the cases we

studied, while still detecting the true anomalies.

• Remember that, as explained in section 2.3.2, the data have been recovered from the radar

with a specific format, which mainly consists of a series of frames containing the values of
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5.2. MODEL LEARNING

a few variables, in the order at which they have been read on the internal communication

bus by the recording device. The processing we defined in section 2.3 produces an array

where each column corresponds to a variable, and each row to a read frame. The missing

data in each row have been mainly filled by copying the last known values. However,

the order at which the data have been read necessarily changes between two tests (due to

computational load, stacking of queries, …), which results in changes in the data produced

by our processing. This observation mainly impacts frames sent at a high frequency, like

calibration reports.

When learning a graphicalmodel from data, wewill assume that this data does not contain any

anomalies. Neither the built-in test nor basic manual investigations have reported any breakdown

or anomaly. Our belief in this assumption will be reinforced retrospectively by applying the

detection and localisation task on the training data themselves. However, we still can not ensure

that the training data doest not contain any anomalies.

For the anomaly detection and localisation part, we will analyse data that may contain break-

downs, i.e., data for which the built-in test has produced breakdown reports. One objective is

to retrieve, at least, those reported breakdowns. We will show the results on several test sets

produced by the All modes and the Touch and Go scenarios. We will analyse one test set from

produced by the Touch and Go scenario, which contains one known breakdown (reported by the

built-in test), consisting in a reset of the radar, followed by a wrong activated mode of working.

We will also test several test sets produced by the All Modes scenario, for some of which no

breakdown has been reported by the built-in test and appears to be well-working.

5.2 Model learning

We will apply the learning techniques we developed in Chapter 3 on real data produced by the

RBE2 during the execution of deterministic scenarios. For the scenario Touch and go, Figure 5.2

and Figure 5.3 show respectively the minimisation of the negative log-pseudolikelihood (opti-

misedwithAlgorithm 3) and theminimisation of the negative log-likelihood (usingAlgorithm 6).

The training set contains aroundM = 1.5 · 106 samples of 86 variables, with 9 quantitative vari-

ables and 77 binary variables, i.e., |Q| = 9 and |C| = 77, without missing data. Similarly,

Figure 5.4 shows the minimisation of the negative the log-likelihood using Algorithm 6, for a

training set produced by theAll Modes scenario. This training set contains aroundM = 2.1 ·106

samples of 1004 variables, among which 49 are quantitative and 955 are binary, i.e., |Q| = 49

and |C| = 955, without missing data.

When using the deterministic proximal gradient algorithm, we used the line search Algo-

rithm 4 to determine the gradient step size γt at each iteration. We used γ0 = 0.1 and β = 0.5.
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Figure 5.2: Minimisation of the negative log-pseudolikelihood (3.25) during the learning of a mixed

model, using the proximal gradientAlgorithm 3. The data are produced during the execution of the Touch

and go scenario, with 1.7 millions samples of 314 variables.

We have used the following regularisation parameters, as discussed in section 3.3.2:

λΘ = 1.4

√
log(|C|+ |Q|)

M
λ∆ = 0.95

√
log(|C|+ |Q|)

M
λΦ = 4.6

√
log(|C|+ |Q|)

M
.

The learning is stopped when the difference of the log-pseudolikelihood between two successive

iterations is smaller than a given threshold ε > 0, i.e., when

|`(Ωt : D)− `(Ωt+1 : D)| < ε,

with ε = 0.001 for our experiments.

For the stochastic proximal gradient algorithm, it is complex to define a stopping criterion

based on the score change, because of the variability of the estimation of the partition func-

tion ZΩ. We have manually stopped the learning after around one day of learning. Following

the discussion made in section 3.2.4, we used a constant gradient step γt = 1e−4 and a linearly

increasing Markov chain length νt = |C|+ |Q|+ t, for t > 0. We used the following regulari-

sation parameters, as discussed in section 3.3.2:

λΘ = 3.7

√
log(|C|+ |Q|)

M
λ∆ = 3.2

√
log(|C|+ |Q|)

M
λΦ = 4.3

√
log(|C|+ |Q|)

M
.
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Figure 5.3: Minimisation of the negative log-likelihood (3.19) during the learning of a mixedmodel, using

the stochastic proximal gradient Algorithm 6. The data are produced during the execution of the Touch

and go scenario, with 1.7 millions samples of 314 variables.
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Figure 5.4: Minimisation of the negative log-likelihood (3.19) during the learning of a mixedmodel, using

the stochastic proximal gradient Algorithm 6. The data are produced during the execution of the scenario

All modes, with 2 millions samples of 1004 variables.
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5.3 Anomaly detection and localisation

We present the results of the anomaly detection and localisation of new records of the sce-

nario Touch and go and All modes, using the models learned with good data. For the sce-

nario Touch and go, we are using the model learned by optimising the regularised negative

log-pseudolikelihood with deterministic proximal gradient, and for the scenario All modes, we

are using the model learned by optimising the penalised negative log-likelihood using stochastic

proximal gradient.

5.3.1 Setting the detection thresholds

As highlighted in section 4.2.2.3, the definition of the detection threshold is a complex task. In

this work, we decided to fix these thresholds variable by variable to the maximum values reached

by the decision statistics on the training set. This decision is motivated by several empirical

observations.

• First, the reported anomalies have to contain as little false alarm as possible: it is not

worth to have all the true breakdowns detected, if alongside too much false alarms are also

detected. Each anomaly will trigger an investigation by an expert, and this investigation

time has to be spent mainly on major anomalies or breakdowns. We thus rejected threshold

strategies that are based on false alarm probability.

• Even if the log-likelihood ratios (4.6) and (4.7) (with parameters (4.10) for the categorical

variables) have been designed to have a conditional variance equal to one, and even under

the assumption that the training data are all normal, the conditional probabilities of some

samples are sometimes still low, and thusmay be labelled as anomalies. This is particularly

true for the All Mode scenario, where such an anomaly is visible at each switch of mode,

as depicted in Figure 5.5.

Note that fixing the thresholds to the maximum values strongly relies on the assumption that

the training data does not contain anomalies, otherwise thresholds might be fixed at a too high

value, and true anomalies in new datasets will remain undetected.

5.3.2 Anomaly localisation

5.3.2.1 Analysis of the data produced by the Touch and Go scenario

The radar tested using a Touch and Go scenario came up with some breakdowns, some of which

have been reported by the built-in test. According to this report, they consist in a reset of the radar

after around one hour of run, followed by a wrong radar mode activation. This wrong mode will
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Figure 5.5: The decision statistic of some variable will behaves anomalously when switching modes, but

these events are normal from a radar point of view and should not be considered as anomalies.

change the behaviour of many (but not all) variables: most of the quantitative variables are not

impacted, in contrast to many of the categorical variables.

The anomaly is detected and localised by thresholding the decision function (4.5), where the

thresholds have been fixed variable by variable to themaximum value of their respective decision

statistics on the training set. For the training data and the test data, we used the value of the

sensitivity parameter δ = 1 for all variables. The Figure 5.6 shows the decision function (4.5) for

an categorical variable renamed A (the real name being confidential) during 25 seconds around

the detected anomaly, which corresponds to the reset of the radar. We see the score largely

exceeding the threshold around the 887 000th sample. In addition, many smaller anomalies are

detected after the reset, corresponding to the wrong configuration of the radar. The Figure 5.6

also shows the decision statistic of another quantitative variable renamed B, corresponding to

a sensor measuring a temperature on the antenna. In contrast to the variable A, no anomaly

is detected, since the decision function S
(t)
B remains below the threshold for all samples in the

dataset.

The analysis of the decision statistics has enabled the localisation of the main cause of the

reset of the radar. However, the activation of the wrong mode has made a lot of variables been

anomalous during the rest of test, what has hidden the switch to the wrong mode, in addition to

potential new anomalies.

5.3.2.2 Analysis of the data produced by the All Modes Scenario

We tested several records from the All Modes scenario. Again, the thresholds values have been

fixed to the maximal values of the decision statistics on the training set. For the training set and

the test sets, we fixed the sensitivity parameter to δ = 1 for all variables.
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Figure 5.6: Decision functions (4.5) S
(t)
A and S

(t)
B of an arbitrary categorical variable A and an arbitrary

quantitative variable B among the variables used by the scenario Touch and go. They are computed

using new records of the scenario Touch and go, where only the samples with index between 883 500

and 891 000 are displayed. This window corresponds to a time window of 25 seconds, centred around a

detected anomaly.

Some of the breakdowns occurring during these tests have been detected by the built-in test.

In these cases, because of the filtering system (see section 2.1.1), the anomalies are localised on

low-level variables alongside on high-level variables. Figure 5.7 shows the decision statistics

for a case where an anomaly has been localised on two categorical variables : the first one is

a bit of working and is the root cause of the anomaly, and the second one is a signature, i.e., a

categorical information summing up other low-level variables.

For all the cases we studied, when a breakdown report were produced by the built-in test,

we localised anomalies on the high-level reported variables, alongside on low-level variables

that were the root causes of these anomalies. Similarly, we get a low rate of false alarms among

the anomalies undetected by the built-in test. This false alarms mainly come from the short

test starting period, when all the variables are still warming up and haven’t taken their normal

values. This is typically the case for the temperature depicted in Figure 5.1, and give rise to
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Figure 5.7: Decision functions S
(t)
A and S

(t)
B for two categorical variables of a test set. The built-in test

has reported an anomaly on variable B, and our localisation algorithm has localised the anomaly on two

variables. The anomaly impact first the low-level variable A and then appear on variable B.
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decision statistics profile such as the one in Figure 5.8. Since these anomalies might occur in

the training set, their maximum values will be anomalously high, and so will be the thresholds

for detecting anomalies in the test set. To address this issue, we have either added a noise (as for

the temperature case explained in section 5.1, or we have removed this starting period from the

data.
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Figure 5.8: Decision functions (4.5) of a variable A which has a starting period causing anomalies.

Finally note that, for a substantial number of cases, the breakdowns lies in the frequencies of

anomalies, not in the anomalies themselves; Figure 5.5 depict a standard situation where many

anomalies are visible, but for which a breakdown would only occur if these anomalies are too

close in time. This kind of breakdowns are not detected by our approach and could fuel further

works on anomaly detection.
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Chapter 6

Discussion

We presented our anomaly detection and localisation approach to address the improvement of

the built-in test of the RBE2. The discussion we made in chapter 2 shows that it is not possible

to list all the possible anomalies. We thus focused on an semi-supervised approach, where as a

first step data without anomalies were used to learn a model, and as a second step this learned

model is exploited to perform anomaly detection of new records.

Built-in test The built-in test allows the radars to evaluate its own working state and detect

anomalies. These tasks rely on data that the built-in test is constantly producing and broadcasting

on the internal communication bus, and the anomaly detection is performed by filtering the data

with rules written by the experts over the years. The built-in test is thus affected by a too high

false negative rate and has a limited anomaly localisation ability.

Mixed graphical models Our anomaly detection and localisation algorithm is based on a spe-

cific type of pairwise undirected graphical models that we called mixed graphical models. This

model is designed for mixing categorical and quantitative variables without any transformation

of this variables. Our mixed graphical model framework is built by mixing two classic pairwise

undirected models, the Ising model and the Gaussian model, so that the conditional distribu-

tions of each variable given the others is either a Bernoulli distribution or a univariate Gaussian

distribution depending on the type of each variable.

Mixed model learning We studied two approaches for learning a mixed graphical model from

data, all based on the minimisation of a penalised score. If the score we used are always differ-

entiable, we used Lasso and group Lasso regularisations. The optimisation of such regularised

scores is done using the proximal gradient algorithm. First, we study the case where the score

function is the negative log-likelihood. We showed that the log-likelihood is a concave function

of the parameters of the model. However, generally, the likelihood of an undirected model is
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intractable, because its partition function has no closed-form and can not be computed. We thus

proposed a method to estimate this partition function, and the penalised log-likelihood is finally

minimised using a stochastic version of the proximal gradient algorithm. Secondly, we also

studied the case where the score function is the log-pseudo-likelihood. The pseudo-likelihood is

admittedly sub-optimal, but can be expressed in closed-form and do not require any estimation.

Anomaly detection and localisation In our work, we defined anomalies as samples for which

the underlying density has changed. The localisation task, what we defined as the task of finding

the variables that caused the anomalies, is performed by detecting a change in the parameters

of conditional distribution of each variable given the others. For that purpose, we use a two-

sided version of the CUSUM algorithm. We propose a decision statistic, based on conditional

log-likelihood ratios of each variable given the others.

All themethodswe developedwere designed to address the industrial need of Thales of build-

ing a complementary tool for the built-in test. They were also designed to match the industrial

constraints and challenges imposed by Thales, that is, dealing with heterogeneous variables, an-

ticipating the future embedding in the Rafale for operational use by designing an online anomaly

localisation algorithm, and in particular, all the process, from the data processing to the produc-

tion of the report of the localised anomalies, should need less than 2 hours, which is around the

production time of the data. In particular, the detection and localisation task require around 15

minutes for a batch file of 2 million samples of 1000 variables, on a standard technical machine.

There are, however, some assumptions and limitation of our approaches.

• We assumed that the data produced by the built-in test can be modelled by a pairwise

model.

• We assumed that, conditionally, the quantitative variables have all an univariate Gaus-

sian distribution, and that, conditionally, the categorical variables have all an Ising model.

However, some variables used by the built-in test have already a specific distribution, like

counters, which conditional distribution could be modelled with Poisson distribution.

We also outline some questions we did not address:

• the setting of the detection threshold and the sensibility parameter,

• the generalisation of the mixing model to heterogeneous variables with more than two

types of variables.

We expect our work to be directly used in the production of radar. So far, with the settings

proposed in chapter 5, our algorithms performed well on the test cases, that is, all the anomalies
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detected by the built-in tests are also detected by our algorithms, as well as other undetected true

anomalies. The localisation of these anomalies did also performed well: the variables localised

as causes of the anomalies were always directly related to the physical anomalies, and helped

the expert investigating the breakdowns much faster than usually.
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Détection et localisation d’anomalies

par utilisation de modèles graphiques mixtes
Romain Laby

RESUME : Cette thèse s’articule autour d’un besoin industriel de la société Thales Système Aéroportés et
du radar de combat RBE2 équipant les avions de chasses Dassault Rafale. Elle développe une méthodologie
de localisation d’anomalies dans des flux de données hétérogènes en utilisant un modèle graphique mixte non
orienté et pairs à pairs. Les données sont un mélange de variables catégorielles et quantitatives, et le modèle
est appris à partir d’un jeu de données dont on suppose qu’il ne contient pas de données anormales. Les
algorithmes de localisation d’anomalies utilisent une version adaptée de l’algorithme CUSUM, dont la fonction
de décision est basée sur le calcul de ratios de vraisemblance conditionnelles. Cette fonction permet de
réaliser une détection d’anomalies variable par variable et de localiser précisément les variables impliquées
dans l’anomalie.

MOTS-CLEFS : Détection d’anomalies, modèles graphiques, données hétérogènes, flux de données

ABSTRACT : This thesis revolves around an industrial need of Thales Système Aéroportés and the RBE2
combat radar equipping Dassault Rafale fighter aircraft. It develops a methodology for locating anomalies in
heterogeneous data stream using a mixed, non-orientation and peer-to-peer graphical model. The data are
a mixture of categorical and quantitative variables, and the model is learned from a data set that is assumed
not to contain abnormal data. Anomaly localization algorithms use an adapted version of the CUSUM algo-
rithm, whose decision function is based on the calculation of conditional likelihood ratios. This function allows
the detection of variable anomalies per variable and the precise localization of the variables involved in the
anomaly.

KEY-WORDS : Anomaly detection, graphical models, heterogeneous data, data stream
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