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Résumé

Le but de cette thèse est de développer des algorithmes pour la planification optimale
de la maintenance. On s’intéresse à des systèmes de grande taille constitués de plusieurs
composants liés par un stock commun de pièces de rechange. Les tests numériques sont
effectués sur des systèmes de composants d’une même centrale hydroélectrique.

La première partie est consacrée à l’étude des méthodes de type boîte noire qui sont
souvent utilisées pour la planification de la maintenance. On s’intéresse à un algorithme
basé sur le krigeage, Efficient Global Optimization (EGO), et à une méthode de re-
cherche directe, Mesh Adaptive Direct Search (MADS). On présente le fonctionnement
des algorithmes aussi bien d’un point de vue théorique que pratique et on propose
quelques améliorations pour l’implémentation d’EGO. On compare MADS et EGO sur
un banc d’essai académique et sur des cas industriels de petite taille, montrant la su-
périorité de MADS mais aussi les limites des méthodes boîte noire lorsque l’on veut
s’attaquer à des problèmes de grande taille.

Dans une deuxième partie, on veut prendre en compte la structure du système,
constitué de plusieurs composants liés par un stock commun, afin de pouvoir résoudre
des problèmes d’optimisation de maintenance en grande dimension. Dans ce but, on
développe un modèle de la dynamique du système étudié et on formule explicitement
un problème de contrôle optimal stochastique. On met en place un schéma de décompo-
sition par prédiction, basé sur le Principe du Problème Auxiliaire (PPA), qui permet de
ramener la résolution du problème en grande dimension à la résolution itérative d’une
suite de sous-problèmes de plus petite taille. La décomposition est d’abord appliquée
sur des cas tests académiques où elle se révèle très performante. Dans le cas industriel,
il est nécessaire de procéder à une « relaxation » du système pour appliquer la mé-
thode de décomposition. Lors des tests numériques, on résout une approximation de
Monte-Carlo du problème. La décomposition permet d’obtenir des gains substantiels
par rapport à l’algorithme de référence.

Pour résoudre l’approximation de Monte-Carlo du problème de maintenance, on a
utilisé une version déterministe du PPA. Dans la troisième partie, on étudie le PPA dans
le cadre de l’approximation stochastique. On se place dans un espace de Banach et on
prouve la mesurabilité des itérés de l’algorithme, on étend des résultats de convergence
existant dans les espaces de Hilbert et on donne des vitesses de convergence.

Mots-clés. Optimisation stochastique, Méthodes boîte noire, Principe du Problème
Auxiliaire, Décomposition-coordination, Planification de la maintenance.
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Abstract

The aim of the thesis is to develop algorithms for optimal maintenance scheduling. We
focus on the specific case of large systems that consist of several components linked by
a common stock of spare parts. The numerical experiments are carried out on systems
of components from a single hydroelectric power plant.

The first part is devoted to blackbox methods which are commonly used in mainten-
ance scheduling. We focus on a kriging-based algorithm, Efficient Global Optimization
(EGO), and on a direct search method, Mesh Adaptive Direct Search (MADS). We
present a theoretical and practical review of the algorithms as well as some improve-
ments for the implementation of EGO. MADS and EGO are compared on an academic
benchmark and on small industrial maintenance problems, showing the superiority
of MADS but also the limitation of the blackbox approach when tackling large-scale
problems.

In a second part, we want to take into account the fact that the system is composed
of several components linked by a common stock in order to address large-scale main-
tenance optimization problems. For that purpose, we develop a model of the dynamics
of the studied system and formulate an explicit stochastic optimal control problem.
We set up a scheme of decomposition by prediction, based on the Auxiliary Problem
Principle (APP), that turns the resolution of the large-scale problem into the iterative
resolution of a sequence of subproblems of smaller size. The decomposition is first
applied on synthetic test cases where it proves to be very efficient. For the industrial
case, a "relaxation" of the system is needed and developed to apply the decomposition
methodology. In the numerical experiments, we solve a Sample Average Approximation
(SAA) of the problem and show that the decomposition leads to substantial gains over
the reference algorithm.

As we use a SAA method, we have considered the APP in a deterministic setting.
In the third part, we study the APP in the stochastic approximation framework in
a Banach space. We prove the measurability of the iterates of the algorithm, extend
convergence results from Hilbert spaces to Banach spaces and give efficiency estimates.

Keywords. Stochastic optimization, Blackbox methods, Auxiliary Problem Prin-
ciple, Decomposition-coordination, Maintenance scheduling.
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Notations

|A| Cardinal of the set A.

Ac Complement of the set A.

dist(x,A) Distance between x and the set A.

X A capital bold symbol denotes a random variable.

Cov(X,Y ) Covariance between the random variables X and Y .

E (X) Expectation of the random variable X.

〈· , ·〉 Inner product in a Hilbert space or duality pairing between a Banach
space and its topological dual.

‖·‖ Euclidean norm or norm induced by the inner product 〈· , ·〉.

dxe Ceiling function: smallest integer greater than or equal to x.

bxc Floor function: greatest integer less than or equal to x.

∇ Gradient.

∇u Partial gradient with respect to u.

∂u Partial derivative with respect to u.

Id Identity matrix of size d.

1A Indicator function of the set A.

N (µ,Σ) Normal distribution with mean µ and covariance matrix Σ.

projA (u) Projection of the vector u onto the set A.

P-a.s. P-almost surely.

N Set of all natural numbers.

Q Set of all rational numbers.

R Extended real line R = R ∪ {−∞,+∞}.

R Set of all real numbers.

Z Set of all integers.
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CHAPITRE 1. INTRODUCTION (VERSION FRANÇAISE)

Cette thèse est le fruit d’une collaboration entre le département PRISME1 d’EDF
R&D2 et le CERMICS3, laboratoire de recherche en mathématiques appliquées de
l’École des Ponts ParisTech. Elle s’inscrit dans le cadre du projet AMPH4 dont le
but est de fournir à la filière hydraulique des outils décisionnels pour une maintenance
adaptée et optimisée, rendue nécessaire par le vieillissement des aménagements du parc
dans un contexte de contraintes toujours plus fortes sur les ressources. Plusieurs axes
de travail sont abordés dans le projet AMPH :

1. Exploiter au mieux les connaissances à disposition pour évaluer les risques de
défaillance des matériels.

2. Optimiser les politiques de maintenance pour assurer les performances du parc
sur la durée.

3. Être en appui sur les activités de surveillance, diagnostic et pronostic des maté-
riels.

Ce travail de thèse s’intègre dans le deuxième axe ci-dessus et touche donc au domaine
de l’optimisation mathématique avec une application à la gestion d’actifs industriels.

Un actif physique est un élément physique quelconque qui produit ou qui a de la
valeur pour une entreprise (par exemple une centrale électrique). La gestion d’actifs in-
dustriels est le domaine qui s’intéresse à l’analyse du cycle de vie des actifs physiques en
utilisant des outils et méthodes pour la quantification des risques technico-économiques,
dans le but de fournir une aide aux décisions d’investissement. Plus précisément, on
se focalise sur les décisions d’investissement liées aux politiques de maintenance des
actifs physiques. La Section 1.1 décrit le problème industriel de planification optimale
de la maintenance qui a donné naissance à ce projet de recherche, ainsi que les verrous
mathématiques associés. La Section 1.2 est une revue de la littérature sur l’optimi-
sation de la maintenance. On donne aussi un aperçu des deux principales approches
développées dans la thèse. Enfin, la Section 1.3 décrit le plan du manuscrit.

1.1 Contexte industriel
Pour produire de l’électricité, EDF exploite de nombreuses installations physiques
comme des centrales nucléaires ou hydroélectriques, des éoliennes ou des panneaux
solaires par exemple. EDF cherche à optimiser l’exploitation de ces installations de
manière à en améliorer la fiabilité et la performance technico-économique. Optimiser
la maintenance est un des principaux leviers d’actions pour atteindre ce but.

1.1.1 Le problème d’optimisation de la maintenance
Dans cette thèse, on s’intéresse à des composants de centrale hydroélectrique tels que
des turbines, des transformateurs ou des alternateurs, voir Figure 1.1.

Ces équipements sont coûteux (de 1 à 10 millions d’euros), de grande taille et sont au
cœur du processus de production d’électricité. On étudie des systèmes qui comprennent
jusqu’à 80 composants du même type et partageant un stock commun de pièces de

1 PRISME : Performance, Risque Industriel et Surveillance pour la Maintenance et l’Exploitation
2 EDF R&D : Électricité De France, Recherche et Développement
3 CERMICS : Centre d’Enseignement et de Recherche en MathématIques et Calcul Scientifique
4 AMPH : Asset Management Pour l’Hydraulique
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(a) Une turbine Pelton
©EDF - Christophe Huret

(b) Un transformateur
©EDF - Lionel Astruc

(c) Un alternateur
©EDF - Lionel Astruc

Figure 1.1: Exemples de composants d’intérêt dans cette thèse.

rechange. Étant donné le prix et la longue durée de vie de ces composants, le stock ne
comprend que peu de pièces. Les systèmes sont étudiés sur un horizon de long terme de
plusieurs décennies. Au cours du temps, les composants sont sujets à des défaillances
aléatoires, dont les dates sont distribuées selon des lois de défaillance supposées connues.
Le calcul de ces lois de défaillance est un domaine de recherche en soi qui n’entre pas
dans le cadre de ce travail. Ainsi, on suppose que ces lois sont des paramètres d’entrée
de notre problème. Si un composant défaillant ne peut pas être remplacé – parce que le
stock est vide par exemple – on dit que le système est en indisponibilité fortuite, ce qui
engendre de lourdes pertes de production. Une politique de maintenance efficace est
donc nécessaire pour améliorer la disponibilité des équipements et donc la production
électrique, ce qui amène des gains substantiels. On considère deux types de maintenance
dans ce travail :

• Une Maintenance Corrective (MC) correspond à la réparation ou au remplace-
ment d’un composant après une défaillance. C’est une opération non planifiée, on
réagit à l’occurrence d’un événement aléatoire (la défaillance d’un composant).

• Une Maintenance Préventive (MP) correspond à la réparation ou au remplace-
ment d’un composant avant l’occurrence d’une défaillance. C’est une opération
planifiée dont le but est d’éviter une défaillance future. Les MP pouvant être
anticipées, elles sont moins coûteuses que les MC.

Définir une stratégie de maintenance préventive, ou plus simplement une stratégie de
maintenance, consiste à fixer les dates de MP pour tous les composants du système.
Même si les composants sont indépendants entre eux, le stock commun de pièces de
rechange induit un couplage, ce qui implique que la stratégie de maintenance doit être
définie à l’échelle du système global et non composant par composant. Une stratégie
de maintenance efficace doit prendre en compte les interactions entre les composants
et le stock.

L’objectif industriel est de trouver une stratégie de maintenance optimale. Pour
préciser ce que l’on entend par optimale, on introduit les indicateurs économiques qui
permettent de quantifier la performance d’un actif, avec une attention particulière pour
l’évaluation de la rentabilité des stratégies de maintenance.

1.1.2 Performance d’une politique de maintenance
L’indicateur principal pour évaluer la performance d’un actif est le coût du cycle de vie
(CCV). Le CCV est le coût cumulé généré par un actif durant sa vie. Par exemple, la
Figure 1.2 représente le coût généré par un actif à chaque année de sa vie, le CCV est
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alors la somme de tous les coûts annuels. On prend en compte les coûts de conception
et de mise en service qui interviennent avant le fonctionnement nominal de l’actif.
Au cours des premières années d’exploitation, la majeure partie des coûts est due au
coût d’exploitation et, au fil du temps, les coûts de maintenance et de remise en état
deviennent importants. Enfin, après la durée d’exploitation du système, il convient
d’envisager les coûts de mise hors service ou de démantèlement.
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Figure 1.2: Exemple de coûts annuels générés par un actif physique. Le coût du cycle de
vie est la somme des coûts annuels.

La politique de maintenance d’un actif est un facteur majeur qui influence le CCV.
Pour un système donné, on définit une stratégie de référence, par exemple une stra-
tégie purement corrective qui consiste à ne réaliser que des MC. Cette stratégie ne
requiert pas d’investissement. En revanche, une MP représente un investissement pour
l’entreprise. Pour évaluer la rentabilité d’une stratégie de MP, aussi appelée stratégie
d’investissement, on utilise la Valeur Actuelle Nette (VAN), définie par :

VAN = CCVref − CCVinvest ,

où CCVref (resp. CCVinvest) est le CCV du système lorsque la stratégie de référence
(resp. la stratégie d’investissement) est appliquée. La calcul de la VAN est illustrée sur
la Figure 1.3. Une VAN positive signifie que l’investissement est rentable, une VAN
négative signifie que l’investissement est plus élevé que les gains réalisés. Dans notre
cas, la majeure partie des gains correspond en fait à des pertes évitées : on évite des
pertes de production dues aux indisponibilités fortuites (en vert) et une partie des coûts
de MC (en orange).

Il faut noter que le CCV, et donc la VAN, dépendent des occurrences des défaillances
qui sont des événements aléatoires. Ainsi, la VAN est elle-même une variable aléatoire.
Une stratégie de maintenance optimale est donc une politique qui optimise un critère
de risque sur la VAN. Dans la thèse, on recherche une stratégie de maintenance qui
maximise l’espérance de la VAN. Par la linéarité de l’espérance, on a :

E (VAN) = E (CCVref)− E (CCVinvest) ,

où l’espérance est calculée sur l’ensemble des scénarios de défaillance. Étant donné
que l’espérance du CCV de la stratégie de référence, E (CCVref), ne dépend pas de la
stratégie évaluée, maximiser l’espérance de la VAN équivaut à minimiser l’espérance du
CCV de la stratégie d’investissement, E (CCVinvest). Dans la thèse, l’objectif industriel
est donc formulé comme la minimisation de l’espérance du CCV.
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Coût du cycle de vie
(CCV)

Flux financiers communs
aux deux stratégies (pas
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Figure 1.3: Calcul de la VAN pour une stratégie d’investissement.

Méthodologie actuelle pour le calcul du CCV. EDF a développé le logiciel
Valorisation Maintenance Exceptionnelle (VME) pour l’évaluation de la performance
des stratégies d’investissement. Cet outil permet de modéliser des actifs physiques ainsi
que leurs interactions et de calculer des indicateurs de risque technico-économiques pour
une stratégie de maintenance donnée. VME estime la distribution du CCV avec une
méthode de Monte-Carlo où les dates de défaillances sont tirées aléatoirement à partir
de la loi de défaillance correspondante. En l’état actuel des choses, on peut exécuter
VME avec différentes stratégies de maintenance conçues « à la main » et comparer leur
performance. Une exécution de VME correspond en fait à une évaluation de la fonction
objectif (l’espérance du CCV). La version actuelle du logiciel ne permet pas d’effectuer
l’optimisation de la maintenance. L’objectif industriel de cette thèse est de mettre en
place une méthodologie efficace dans ce but.

1.1.3 Verrous mathématiques du problème d’optimisation
Le problème industriel de planification optimale de la maintenance est un problème
d’optimisation stochastique. L’optimisation stochastique est un domaine des mathéma-
tiques qui s’intéresse aux problèmes d’optimisation ayant un caractère aléatoire, que ce
soit dans le problème en lui-même (objectif ou contraintes aléatoires) ou dans l’algo-
rithme utilisé pour sa résolution (itérés aléatoires) [Spall, 2003]. Dans notre problème,
l’aléa vient des défaillances des composants. Plusieurs défis doivent être relevés d’un
point de vue mathématique :

• On considère des systèmes comprenant jusqu’à 80 composants qui sont couplés
par un stock commun. Il s’agit d’un problème difficile en grande dimension pour
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lequel l’objectif est plutôt d’améliorer la solution trouvée par des méthodes heu-
ristiques que de trouver le véritable optimum.

• Comme VME utilise des simulations de Monte-Carlo pour calculer le CCV, on a
seulement accès à une estimation de l’espérance du CCV et pas à sa vraie valeur.
Les évaluations sont dites bruitées. Il y a un lien fort entre l’importance du bruit
et le temps requis pour une évaluation de la fonction : lorsque l’on augmente le
nombre de simulations de Monte-Carlo, le bruit est réduit mais les évaluations
sont plus coûteuses en temps de calcul. Pour une estimation précise de l’espérance
du CCV, i.e. avec un intervalle de confiance à 95% qui est plus petit que 1% du
coût moyen, l’évaluation de l’espérance du CCV prend environ 30 minutes pour
le cas industriel avec 80 composants.

• VME est vu comme une boîte noire : pour une stratégie de maintenance donnée,
on ne connaît que la valeur de l’objectif (l’espérance du CCV). On n’a pas de
formule analytique liant la stratégie de maintenance au CCV, ni d’informations
sur le gradient, qui n’est peut-être même pas défini.

On se trouve dans le contexte boîte noire à précision variable [Alarie et al., 2019,
Polak and Wetter, 2006] dans le sens où le bruit de la boîte noire VME peut être
contrôlé par le nombre de simulations de Monte-Carlo effectuées.

1.2 Approches mathématiques pour l’optimisation
de la maintenance

Les politiques de maintenance ont un impact économique majeur et sont étudiées dans
de nombreux secteurs industriels comme le secteur de l’électricité [Froger et al., 2016],
l’industrie manufacturière [Ding and Kamaruddin, 2015] ou le domaine du génie civil
[Sánchez-Silva et al., 2016]. On présente une revue de la littérature des méthodes d’op-
timisation pour des problèmes de maintenance de systèmes à plusieurs composants.
Ensuite, on détaille les deux approches qui sont étudiées dans la thèse.

1.2.1 Revue des méthodes d’optimisation pour la planification
de la maintenance

Il y a une grande diversité dans la modélisation des problèmes de maintenance car
les objectifs et contraintes varient d’une étude à l’autre [Dekker, 1996]. Néanmoins,
de nombreuses revues de littérature existent dans le domaine de la planification de la
maintenance [Alrabghi et al., 2013, Cho and Parlar, 1991, Nicolai and Dekker, 2008].
Elles donnent en particulier un résumé des techniques d’optimisation utilisées. Ces
techniques peuvent être divisées en deux catégories principales : la programmation
mathématique et les méthodes heuristiques [Froger et al., 2016].

Du côté de la programmation mathématique, un processus de décision markovien
combiné à un algorithme d’itération sur la valeur pour optimiser conjointement la main-
tenance et la commande de pièces de rechange est utilisé dans [Olde Keizer et al., 2017].
Pour des problèmes en grande dimension, une résolution frontale est impossible, il
est donc souhaitable d’utiliser des méthodes de décomposition [Froger et al., 2016].
Dans [Lusby et al., 2013], un planning d’arrêt de centrales nucléaires est établi en uti-
lisant une décomposition de Benders couplée à diverses heuristiques. La programmation
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mixte est utilisée dans [Grigoriev et al., 2006] pour modéliser un problème d’optimisa-
tion de maintenance périodique. Une relaxation linéaire du problème est ensuite résolue
avec une décomposition de Dantzig-Wolfe.

Étant donnée la difficulté de modéliser des systèmes industriels toujours plus com-
plexes, les méthodes boîte noire ont été largement développées. Elles peuvent s’attaquer
à des problèmes avec des objectifs ou des contraintes non-linéaires plus facilement que
les approches analytiques [Froger et al., 2016] et peuvent être facilement couplées à des
modèles de simulation. Les techniques d’optimisation boîte noire qui sont utilisées pour
la planification optimale de la maintenance sont des méthodes heuristiques, comme
les algorithmes génétiques [Almakhlafi and Knowles, 2012], l’optimisation par essaims
particulaires [Suresh and Kumarappan, 2013] et le recuit simulé [Fattahi et al., 2014].
Dans une thèse précédente à EDF [Demgne, 2015], le système étudié est modélisé par
un processus de Markov déterministe par morceaux et l’optimisation de la mainte-
nance est effectuée avec un algorithme génétique. Pour des problèmes de grande taille,
la génération de solutions satisfaisantes avec les méthodes boîte noire peut être lente
à cause de la taille de l’espace de recherche.

1.2.2 Deux approches pour l’optimisation de la maintenance
Pour résoudre des problèmes d’optimisation industriels, la traduction des besoins opé-
rationnels en un problème mathématique est une étape fondamentale. L’objectif défini
par EDF pour l’optimisation de la maintenance est la minimisation de l’espérance
du CCV mais l’ensemble des stratégies de maintenance à considérer doit être défini.
Par exemple, on peut considérer les stratégies de maintenance périodiques, fixer un
nombre maximum de MP pour chaque composant ou alors considérer des stratégies
très générales où l’on prend une décision de maintenance chaque année pour chacun
des composants. Le choix d’un ensemble approprié pour les stratégies de maintenance
est essentiel : avec un ensemble de grande taille pour les stratégies, le coût optimal est
meilleur que sur un plus petit sous-ensemble mais la résolution du problème d’opti-
misation est plus difficile. L’ensemble des stratégies de maintenance admissibles doit
être adapté aux enjeux industriels. Pour des opérations courantes, comme la lubri-
fication des composants, il est suffisant de restreindre la recherche aux stratégies de
maintenance périodiques. En revanche, pour des maintenances exceptionnelles comme
le remplacement d’un composant de grande taille, il peut être intéressant de rechercher
des politiques de maintenance plus générales.

Actuellement, l’évaluation de la fonction objectif est faite avec le modèle de simu-
lation VME, considéré comme une boîte noire. L’idée naturelle est de se pencher sur
les méthodes d’optimisation boîte noire, qui peuvent être facilement couplées à VME.
Cette étude est l’objet de la Partie I du manuscrit. Ces méthodes peuvent être efficaces
pour des systèmes de petite taille ou lorsque l’ensemble des stratégies de maintenance
admissibles est petit, mais elles sont sujettes à la malédiction de la dimension. Ainsi,
lorsque l’on veut aborder des problèmes mettant en jeu des maintenances exception-
nelles – et donc lorsque l’on doit considérer des stratégies très générales – pour des
systèmes de grande taille, une autre approche est nécessaire.

Pour s’attaquer aux problèmes d’optimisation de maintenance en grande dimension,
on sort du contexte boîte noire. On développe un modèle analytique de la dynamique
du système. Ensuite, on met en place une méthode de décomposition qui utilise des
informations sur la structure du système afin d’effectuer l’optimisation de manière ef-
ficace. Cette approche est présentée dans la Partie II du manuscrit. La dynamique
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analytique du système, développée dans la Partie II, est plus simple que celle qui est
utilisée au sein de VME et nous permet donc de considérer des stratégies de mainte-
nance plus générales lors de l’optimisation. D’une certaine manière, on perd un peu de
la précision de la modélisation de la dynamique au profit d’un espace de recherche plus
grand pour les stratégies de maintenance. Les solutions trouvées après cette optimisa-
tion qui utilise la dynamique analytique sont ensuite évaluées avec VME pour s’assurer
que l’espérance du CCV, calculée avec la dynamique la plus précise, reste satisfaisante.

1.3 Plan du manuscrit

Le manuscrit est composé de trois parties qui sont détaillées ci-dessous.

Approches boîtes noires pour l’optimisation de la maintenance : comparai-
son entre un algorithme basé sur le krigeage et une méthode de recherche
directe. Dans la première partie, on étudie l’algorithme Efficient Global Optimi-
zation (EGO) [Jones et al., 1998] qui utilise des métamodèles, et une méthode de re-
cherche directe, Mesh Adaptive Direct Search (MADS) [Audet and Dennis, 2006], pour
la résolution du problème de planification optimale de la maintenance.

• Le Chapitre 3 est une revue bibliographique des principes du krigeage et de EGO,
abordant à la fois les aspects théoriques et pratiques. Ensuite, on présente une
version d’EGO où l’on effectue un étape finale d’optimisation locale car cette
méthode a déjà prouvé son efficacité dans [Mohammadi, 2016].

• Dans le Chapitre 4, on s’intéresse aux méthodes par recherche directe. Ce chapitre
est une revue bibliographique des méthodes de recherche par motifs et présente
les idées qui ont mené à la conception de l’algorithme MADS, qui jouit de fortes
garanties de convergence théoriques.

• Dans le Chapitre 5, on présente deux contributions originales. Dans un premier
temps, on propose une nouvelle version d’EGO, appelée EGO-FSSF, où le plan
d’expérience initial de taille fixe est remplacé par un plan séquentiel ayant de
bonnes propriétés de remplissage de l’espace, couplé avec une étape de validation
du métamodèle. Le but de cette variante est d’utiliser le budget d’évaluation plus
efficacement en permettant l’adaptation du plan initial à la difficulté du problème
d’optimisation. La seconde contribution est la comparaison de la performance de
nombreux solveurs pour l’étape de maximisation de l’Expected Improvement (EI)
au sein d’EGO. Le choix d’un solveur pour la maximisation de l’EI est souvent
fondé sur des arguments heuristiques dans la littérature, c’est pourquoi on donne
des arguments quantitatifs pour guider cette décision.

• Dans le Chapitre 6, les performances d’EGO et MADS sont comparées sur le
banc d’essai COmparing Continuous Optimizers (COCO) [Hansen et al., 2021].
Les deux algorithmes sont ensuite couplés à VME et sont utilisés pour résoudre
des cas industriels de petite taille. On compare EGO et MADS et on met en
lumière les limites des méthodes boîte noire dès lors que la dimension du problème
augmente.
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Une méthode de décomposition par prédiction pour l’optimisation de la
maintenance. Les méthodes boîte noire sont limitées pour s’attaquer à des pro-
blèmes de grande taille. Dans cette seconde partie, on utilise une autre approche
qui consiste à formuler explicitement le problème de maintenance en un problème
de contrôle optimal stochastique. On résout ce problème à l’aide d’une méthode de
décomposition-coordination.

• Le Chapitre 7 est une revue du Principe du Problème Auxiliaire (PPA) et de
son utilisation en décomposition. Ce chapitre fournit tous les outils théoriques
nécessaires à la compréhension de la méthode de décomposition que l’on va im-
plémenter pour résoudre le problème d’optimisation de la maintenance.

• Dans le Chapitre 8, on développe un modèle analytique d’un système industriel
de grande taille. On formule un problème de contrôle optimal stochastique qui
permet de considérer des stratégies de maintenance très générales. D’une certaine
façon, on ouvre la boîte noire pour utiliser des informations sur la fonction à
optimiser.5

• Dans le Chapitre 9, on applique le PPA sur deux cas tests académiques qui
partagent la même structure que le système industriel mais pour lesquels l’implé-
mentation de méthode de décomposition est plus aisée. Les résultats numériques
sur ces cas tests permettent de valider l’implémentation de la méthode avant
d’aborder le cas industriel.

• Dans le Chapitre 10, on applique la technique de décomposition-coordination
sur un problème d’optimisation industriel de grande taille. Les expériences nu-
mériques prouvent l’efficacité de la méthodologie. À notre connaissance, c’est
la première fois que le PPA est appliqué pour un problème de planification de
maintenance.

Le PPA stochastique dans les espaces de Banach : mesurabilité et conver-
gence. La troisième partie explore des aspects théoriques du PPA stochastique.

• Dans le Chapitre 11, on étudie le PPA stochastique, qui est un cadre général
regroupant de nombreux algorithmes classiques (par exemple la descente de gra-
dient stochastique ou l’algorithme mirror descent stochastique). On prouve la
mesurabilité des itérés de l’algorithme et on étend des résultats de convergence
dans le cadre des espaces de Banach. On donne aussi des vitesses de conver-
gence pour la fonction objectif en considérant soit la suite des itérés moyennés
soit le dernier itéré, ce dernier résultat étant obtenu en adaptant le concept de
monotonie de Fejér à nos besoins.

5 Pour la plupart des problèmes boîte noire, le changement de paradigme que l’on entreprend ici
en ouvrant la boîte noire ne peut être reproduit. Par exemple, lorsque la boîte noire est un code de
mécanique des fluides qui modélise un processus physique gouverné par des équations aux dérivées
partielles couplées, il est impossible d’utiliser une méthode analytique pour l’optimisation. Ici, on est
dans la situation peu commune où il peut être intéressant de sortir du cadre boîte noire pour concevoir
une méthode d’optimisation spécifique au problème et adaptée aux systèmes de grande taille.
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CHAPITRE 1. INTRODUCTION (VERSION FRANÇAISE)

1.4 Publications
Les travaux de cette thèse font l’objet de deux articles soumis à des revues à comité
de lecture.

• L’article suivant reprend les travaux des Chapitres 7, 8 et 10, et constitue la
contribution principale de cette thèse :
Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J. (2020). A Decom-
position Method by Interaction Prediction for the Optimization of Maintenance
Scheduling. arXiv:2002.10719 [math]. (Submitted to Annals of Operations Re-
search).

• Le travail présenté dans le Chapitre 11 fait l’objet de la publication suivante :
Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J. (2021). The sto-
chastic Auxiliary Problem Principle in Banach spaces: measurability and conver-
gence. arXiv:2101.08073 [math]. (Submitted to SIAM Journal on Optimization).
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2 Introduction

In mathematics the art of asking
questions is more valuable than
solving problems.

Georg Cantor
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CHAPTER 2. INTRODUCTION

This thesis stems from the collaboration between the PRISME1 department of
EDF R&D2 and CERMICS3, the research center in applied mathematics at École des
Ponts ParisTech. It is part of the AMPH4 project, the aim of which is to provide the
hydraulic industry with decision-making tools for adapted and optimized maintenance,
made necessary by the ageing of the hydroelectric fleet in a context of ever-increasing
constraints on resources. The AMPH project addresses several areas of work:

1. Make the most of the available knowledge to assess the risks of equipment failure.

2. Optimize maintenance policies to ensure the long-term performance of the fleet.

3. Be proactive on the activities of monitoring, diagnosis and prognosis of the equip-
ments.

This thesis is part of the second point above and falls within the field of mathematical
optimization, with an industrial application to engineering asset management.

A physical asset is any physical element that has or produces value for a company
(for example a power plant). Engineering asset management can be defined as a
field that focuses on the integrative analysis of the life cycle of physical assets by
using tools and methods for the quantification of technical and economic risks in order
to support investment decisions. More precisely, we are concerned with investment
decisions related to the maintenance policy of physical assets. In Section 2.1, we
describe the industrial problem of optimal maintenance scheduling that gave birth to
this research project and the related mathematical challenges. In Section 2.2, we give
an overview of the literature on optimal maintenance scheduling and we describe the
two main approaches that we develop in this work. Finally, in Section 2.3, we give the
outline of the manuscript.

2.1 Industrial context
In order to produce electricity, EDF operates many physical facilities such as nuclear
or hydroelectric power plants, wind turbines, solar panels and so on. EDF seeks to
optimize the exploitation of these physical assets in order to improve their reliability
as well as their economic and technical performance. Maintenance optimization is one
of the main levers of action towards this goal.

2.1.1 An optimal maintenance scheduling problem
We are concerned with components of hydroelectric power plants such as turbines,
transformers or generators, see Figure 2.1.

These equipments are expensive large components (from 1 to 10 million euros) that
are at the heart of the electricity production process. We study systems that consist in
a set of up to 80 components of the same kind sharing a common stock of spare parts.
Given the price and the long lifespan of these components, the stock consists only in
very few parts. The systems are studied on a long term horizon of several decades.
Over time, the components experience random failures that occur according to known

1 PRISME: Performance, Risque Industriel et Surveillance pour la Maintenance et l’Exploitation
2 EDF R&D: Électricité De France, Recherche et Développement
3 CERMICS: Centre d’Enseignement et de Recherche en MathématIques et Calcul Scientifique
4 AMPH: Asset Management Pour l’Hydraulique
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(a) A Pelton turbine
©EDF - Christophe Huret

(b) A transformer
©EDF - Lionel Astruc

(c) A generator
©EDF - Lionel Astruc

Figure 2.1: Examples of components of interest in this thesis.

failure distributions. The computation of these failure distributions constitutes a field
of research itself and is not in the scope of this work, hence we assume that they are
input parameters for our problem. If a failed component cannot be replaced – because
the stock is empty for example – the system is in forced outage which causes a heavy
loss of production. An efficient maintenance policy is then needed to increase the
availability of the equipments and hence the electricity production, which can lead to
important gains. We consider two kinds of maintenance in this work:

• A Corrective Maintenance (CM) occurs when we repair or replace a component
after a failure. This is an unplanned operation, we react to a random event (the
failure of a component).

• A Preventive Maintenance (PM) consists in repairing or replacing a component
before the occurrence of a failure. This is a planned operation whose goal is to
avoid a possible failure. Due to its anticipated scheduling, a PM is cheaper than
a CM.

Defining a preventive maintenance strategy, or simply a maintenance strategy, consists
in setting the dates of PM for all the components of the system. Even if the components
are independent, the common stock of spare parts introduces a coupling between them,
which implies that the maintenance strategy must be designed at the scale of the whole
system, and not component by component. An efficient maintenance strategy must
take into account the interactions between the components and the stock.

The industrial challenge is to design a methodology that enables to find an optimal
maintenance strategy. In order to precise what we mean by optimal, we introduce
the economic indicators that are used to assess the performance of an asset, with a
particular focus on the evaluation of the profitability of a maintenance strategy.

2.1.2 Economic performance of a maintenance policy
A major indicator that is used to assess the performance of an asset is the life cycle
cost (LCC). The LCC is the cumulative cost generated by the asset during its whole
life. For example, Figure 2.2 represents the cost generated by an asset at each year
of its life, the LCC is then the sum of all the yearly costs. We take into account the
design and commissioning costs that occur before the running time of the asset. In
the first operating years, the major part of the cost is due to the operating costs, and,
as time goes on, maintenance and refurbishment costs become significant. Finally,
after the operating time of the system, decommissioning or dismantling cost should be
considered.
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Figure 2.2: Example of yearly costs generated by a physical asset. The life cycle cost is the
sum of all the yearly costs.

The maintenance policy of an asset is a major factor that influences the LCC. For
a given system, we define a reference strategy, for example a pure corrective policy
that consists in performing only CMs. This strategy does not require an investment.
On the other hand, a PM represents an investment for the company. To evaluate the
profitability of a PM strategy, also called investment strategy, we use the Net Present
Value (NPV) computed as:

NPV = LCCref − LCCinvest ,

where LCCref (resp. LCCinvest) is the LCC of the system when the reference strategy
(resp. the investment strategy) is applied. The computation of the NPV is illustrated
on Figure 2.3. A positive NPV means that the investment is profitable, a negative NPV
means that the investment is higher than the realized gains. In our case, the major
part of the gains corresponds in fact to avoided losses: we avoid losses of production
due to forced outages (in green) and a part of the CM cost (in orange).

Note that the LCC, and in consequence the NPV, depend on the occurrence of
failures that are random events. Thus, the NPV is itself a random variable. An
optimal maintenance strategy is then a policy that optimizes a risk criterion on the
NPV. In the thesis, we focus on finding a strategy that maximizes the expected NPV.
By linearity of the expectation, we have:

E (NPV) = E (LCCref)− E (LCCinvest) ,

where the expectation is taken over all failure scenarios. As the expectation of the
LCC of the reference strategy, E (LCCref), does not depend on the evaluated strategy,
maximizing the expected NPV is equivalent to minimizing the expected LCC of the
investment strategy, E (LCCinvest). In the thesis, the industrial objective for a given
system is then formulated as the minimization of the expected LCC.

Current methodology for the computation of the LCC. EDF has developed
the software Valorisation Maintenance Exceptionnelle (VME) for the valuation of in-
vestment strategies. This tool allows to model physical assets as well as their interac-
tions and to compute technical and economic risk indicators for a given maintenance
strategy. VME estimates the distribution of the LCC with a Monte-Carlo method
where failure dates of the components are drawn at random from the corresponding
known failure distributions. We say that VME provides a simulation-based model for
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Figure 2.3: Computation of the NPV for a investment strategy.

the industrial system. As things stand, we can run VME with different handcrafted
maintenance strategies and compare the performance of the evaluated strategies. In
fact, one run of VME corresponds to one evaluation of the objective function (the ex-
pected LCC). The current version of the software is not able to perform maintenance
optimization. The goal of this thesis is to provide an efficient methodology to do it.

2.1.3 Optimization challenges
The industrial problem of optimal maintenance scheduling is a stochastic optimization
problem. Stochastic optimization is a field of mathematics concerned with optimiz-
ation problems that involve randomness, either in the problem (random objective or
constraints) or in the algorithm used for the resolution (random iterates) [Spall, 2003].
In our problem, randomness comes from the failures of the component. Some math-
ematical challenges must be addressed:

• We consider systems with up to 80 components coupled with a common stock.
This is a difficult large-scale optimization problem for which the goal is to improve
the solution given by heuristic methods rather than to find the true optimum.

• As VME uses Monte-Carlo simulations to compute the LCC, we only have access
to an estimation of the expected LCC and not to the true value of the objective.
The evaluations are said to be noisy. There is a strong link between the amount
of noise and the computation time for a function evaluation: when the number
of Monte-Carlo simulations is increased, the noise is reduced but the evaluations
are more time-consuming. For an accurate estimation of the expected LCC, i.e.
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with a 95% confidence interval that is smaller than 1% of the expected cost, the
evaluation of the expected LCC takes around 30 minutes for the largest industrial
case with 80 components.

• VME is a simulation model and is considered to be a blackbox : for a given
maintenance strategy, we only know the value of the objective function (the
expected LCC). We have no analytical formula linking the maintenance strategy
to the LCC and no information on the gradient, which may not even be defined.

VME is said to be a noisy blackbox with adaptive precision [Alarie et al., 2019,
Polak and Wetter, 2006] in the sense that it is a blackbox for which the amplitude of
the noise can be controlled by the number of Monte-Carlo simulations.

2.2 Mathematical approaches for optimal mainten-
ance scheduling

Maintenance policies have a major economic impact and are thus studied in many areas
of the industry such as the electricity sector [Froger et al., 2016], the manufacturing
industry [Ding and Kamaruddin, 2015] or civil engineering [Sánchez-Silva et al., 2016].
We give a literature overview of the optimization methods for multi-component main-
tenance scheduling problems. Then, we detail the two approaches that are studied in
this thesis.

2.2.1 Literature overview of the optimization techniques for
maintenance scheduling

There is a great diversity in the modeling of maintenance problems because the ob-
jective and constraints vary from one study to another [Dekker, 1996]. Nevertheless,
many reviews exist on optimal maintenance scheduling [Alrabghi and Tiwari, 2015,
Cho and Parlar, 1991, Nicolai and Dekker, 2008]. In particular, they give a summary
from the literature of the optimization techniques used for maintenance problems. They
can be split in two main categories: mathematical programming and heuristic methods
[Froger et al., 2016].

On the mathematical programming side, a Markov decision process combined with
the value iteration algorithm is used in [Olde Keizer et al., 2017] for a joint mainten-
ance and spare part ordering optimization problem. For high-dimensional problems,
a frontal resolution is impracticable, and resorting to decomposition methods is relev-
ant [Froger et al., 2016]. In [Lusby et al., 2013], a shutdown planning for the refueling
of nuclear power plants is designed with a Benders decomposition coupled with various
heuristics. In [Grigoriev et al., 2006], mixed integer programming is used to model a
periodic maintenance optimization problem. A linear relaxation of the problem is then
solved using Dantzig-Wolfe decomposition.

Due to the difficulty in modeling ever more complex industrial systems, black-
box methods have been largely developed. They can deal with non-linear objectives
and contraints more easily than analytical approaches [Froger et al., 2016] and are
easy to couple with simulation-based models. The blackbox optimization techniques
that are mainly used for optimal maintenance scheduling are heuristic methods, in-
cluding genetic algorithms [Almakhlafi and Knowles, 2012], particle swarm optimiz-
ation [Suresh and Kumarappan, 2013] and simulated annealing [Fattahi et al., 2014].
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In a previous thesis at EDF [Demgne, 2015], the author models the system of interest
with piecewise deterministic Markov processes and optimizes the maintenance with a
genetic algorithm. For large-scale problems, generating satisfying solutions with black-
box methods may be slow due to the size of the solution space.

2.2.2 Two approaches for maintenance optimization
When tackling industrial optimization problems, the translation of the operational
needs into a mathematical problem is a fundamental step. The goal defined by EDF
for the optimization of maintenance scheduling is to minimize the expected LCC but
the space of maintenance strategies to consider needs to be defined. For example, we
can choose to consider only periodic maintenance strategies, to set a maximum number
of PMs for each component or to allow for very general strategies where a maintenance
decision can be taken each year for each component. Choosing the appropriate space
for the maintenance strategies is fundamental: with a large space of strategies, the
optimal cost is better than on a smaller subset but the resolution of the optimization
problem is harder. The set of admissible maintenance strategies must be adapted to
the industrial stakes. For common operations, such as lubrication of the components,
it is sufficient to restrict the search to periodic maintenance strategies. On the other
hand, for exceptional maintenance such as the replacement of a large component, it
may be worth to look for more general policies.

Currently, the evaluation of the objective function is done with the simulation-
based model VME that is seen as a blackbox. A natural idea is then to investigate
blackbox optimization methods that can be easily plugged to VME. This is the object
of Part I of the manuscript. These methods may be efficient for small systems or when
the set of admissible maintenance strategies is small, but they are known to be subject
to the curse of dimensionality. This is why, if we aim at tackling problems involving
exceptional maintenance – hence considering very general strategies – for large-scale
systems, another approach is needed.

To tackle high-dimensional maintenance optimization problems, we get out of the
blackbox context. We develop an analytical model of the dynamics of the system.
Then, we set up a decomposition methodology that uses information on the structure
of the system to perform the optimization efficiently. This is the object of Part II of
the manuscript. The analytical dynamics of the system developed in Part II is simpler
than what is used within VME and allows us to consider more general maintenance
strategies in the optimization process. There is a trade-off between the accuracy of
the modeling of the dynamics and the size of the search space for the maintenance
strategies we can consider. The solutions found after this optimization process using
the analytical dynamics can then be evaluated with VME to ensure that the expected
LCC, computed with the accurate dynamics, is satisfying.

2.3 Outline of the thesis
The manuscript is composed of three parts that are detailed below.

Blackbox approaches for optimal maintenance scheduling: a comparison
between a kriging-based algorithm and a direct search method. In the first
part, we investigate a surrogate-based approach, the Efficient Global Optimization
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(EGO) algorithm [Jones et al., 1998], and a direct search algorithm, Mesh Adaptive
Direct Search (MADS) [Audet and Dennis, 2006], for the resolution of the optimal
maintenance scheduling problem.

• In Chapter 3, we carry out a bibliographical review of the principles of kriging
and EGO, with considerations both from the practical and the theoretical side.
Finally, we present a version of EGO where we do a final optimization with a
local solver as it has proved to be efficient in [Mohammadi, 2016].

• In Chapter 4, we focus on direct search methods. This chapter is a bibliographical
review of pattern search methods and exposes the ideas that have led to the design
of the MADS algorithm, which enjoys strong theoretical guarantees.

• In Chapter 5, we present two original contributions. First, we propose a new ver-
sion of EGO, called EGO-FSSF, where the classical fixed size initial design is re-
placed with a fully sequential space-filling initial design coupled with a metamodel
validation step. This variant aims at using the evaluation budget more efficiently
by allowing the size of the initial design to be adapted to the difficulty of the
optimization problem. The second contribution is a benchmark of solvers for
the Expected Improvement (EI) maximization step within EGO. The choice of a
solver for EI maximization is often based on heuristic arguments in the literature,
so we provide quantitative arguments to guide the decision.

• In Chapter 6, the performance of EGO and MADS are compared on the extensive
blackbox optimization benchmark COmparing Continuous Optimizers (COCO)
[Hansen et al., 2021]. Then, both methods are plugged on VME and run on small
industrial test cases. We compare EGO and MADS and highlight the limits of
blackbox methods when the dimension of the problem grows.

A decomposition method by interaction prediction for optimal mainten-
ance scheduling. Blackbox methods are limited when it comes to tackle large-scale
problems. In this second part, we take another approach by framing the maintenance
problem into an explicit stochastic optimal control problem. We solve this problem
with a decomposition-coordination method.

• In Chapter 7, we review the APP and its use in decomposition. This chapter
provides the necessary theoretical tools in order to understand the decomposition
methodology that we will implement to solve the optimal maintenance scheduling
problem.

• In Chapter 8, we develop an analytical model of a large-scale industrial system.
We formulate a stochastic optimal control problem that allows to consider very
general maintenance policies. In a way, we open the blackbox to use information
on the function to optimize.5

5 For most blackbox problems, the paradigm shift we undertake here by opening the blackbox cannot
be reproduced. For example, when the blackbox is a computational fluid dynamics code that models
a physical process governed by coupled partial differential equations, it is impossible to use analytical
methods for the optimization. Here, we are in the uncommon situation where it may be worth getting
out of the blackbox framework in order to design a problem-specific optimization method that can
tackle large-scale problems.
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• In Chapter 9, we apply the APP on two synthetic test cases that share a similar
structure as the industrial system but for which the decomposition methodology
can be implemented more easily. The numerical results on these synthetic test
cases allow to validate the implementation of the method before moving on to
the industrial case.

• In Chapter 10, we apply the decomposition-coordination technique on a large-
scale industrial optimization problem. Numerical experiments prove the efficiency
of the methodology. As far as we know, this is the first time that the APP is
applied for a maintenance scheduling problem.

The stochastic APP in Banach spaces: measurability and convergence. The
third part explores theoretical aspects of the stochastic APP.

• In Chapter 11, we study the stochastic APP, which is a general framework that
gathers many well-known algorithms (for instance stochastic gradient descent or
stochastic mirror descent). We prove the measurability of the iterates of the
algorithm and extend convergence results to the Banach case. We also give
efficiency estimates for the function value taken for the averaged sequence of
iterates or for the last iterate, the latter being obtained by adapting the concept
of Fejér monotonicity to our needs.

2.4 Publications
The work of this thesis is the subject of two journal papers.

• The following paper summarizes the work of Chapters 7, 8 and 10, and is the
main contribution of this thesis:
Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J. (2020). A Decom-
position Method by Interaction Prediction for the Optimization of Maintenance
Scheduling. arXiv:2002.10719 [math]. (Submitted to Annals of Operations Re-
search).

• The work presented in Chapter 11 is the subject of the following publication:
Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J. (2021). The
stochastic Auxiliary Problem Principle in Banach spaces: measurability and con-
vergence. arXiv:2101.08073 [math]. (Submitted to SIAM Journal on Optimiza-
tion).
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Blackbox approaches for optimal
maintenance scheduling:

comparison between a
kriging-based algorithm and a

direct search method
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Introduction to blackbox methods

In this part, we are interested in the following general problem:

min
u∈Uad

f(u) , (2.1)

where f : Rd → R is referred as the objective function, with d ∈ N being the dimension
of the input space. The set Uad ⊂ Rd is assumed to be compact. If moreover f is
continuous, then the Weierstrass theorem guarantees the existence of a global minimum
for Problem (2.1), that is, a point u] ∈ Uad such that f(u]) ≤ f(u) for all u ∈ Uad.
We assume that we are in the expensive blackbox framework, that is, the evaluations
of f are time consuming and we have no information on the gradients, which may
not even be defined. The only available information is the value of f at evaluation
points. This situation occurs when f is the output of an expensive computer code or
the result of physical experiments. An introduction to blackbox optimization can be
found in [Audet and Hare, 2017].

In our case, f represents the function that takes a maintenance strategy u as input
and returns the expectation of the life cycle cost (LCC), computed with the blackbox
computer code VME. We investigate blackbox optimization methods, with the object-
ive of plugging them to the VME software. In this way, we will be able to perform
maintenance optimization for small industrial systems.

Blackbox optimization algorithms only use function values to perform the optimiz-
ation as the derivative information is unavailable. A thorough review and classification
of unconstrained blackbox algorithms can be found in [Rios and Sahinidis, 2013]. Fol-
lowing this classification, we can distinguish between model-based and direct search
algorithms. Model-based methods construct approximations of the objective function
that are updated and used at each iteration to select the next evaluation point whereas
direct search algorithms only use the values of f to determine the search directions.
Among model-based methods, we can mention:

• Derivative-free trust-region algorithms [Powell, 2002]. These methods build a
local surrogate of the objective function, usually a quadratic approximation, that
is supposed to be accurate in the neighborhood – the so-called trust region –
of the current iterate. The next iterate is chosen by minimizing the surrogate
within the trust region. Constructing a quadratic approximation of f requires
many function evaluations, which is unaffordable in the expensive setting.

• Response surface methods [Jones, 2001]. These methods construct a global ap-
proximation of the objective function, called metamodel, surrogate or response
surface, which is a linear combination of some basis functions. Several functional
forms can be used for the metamodel (splines, radial-basis functions or defined by
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kriging for instance). The next iterate can be chosen by minimizing the response
surface directly or by finding a point that achieves the maximum of an acquis-
ition function. We refer to [Conn et al., 2009, Chapter 12] for a review of the
management of surrogates for optimization. Kriging has a statistical interpreta-
tion that allows to derive confidence bounds for the estimator. This measure of
uncertainty of the metamodel is used to design efficient search strategies.

Among direct search methods, we mention:

• Heuristic methods such as genetic algorithms (GA) [Holland, 1975], simulated
annealing (SA) [Metropolis et al., 1953] or particle swarm optimization (PSO)
[Kennedy and Eberhart, 1995]. These methods define a trajectory in the search
space (SA) or the evolution of a population of candidate solutions (GA, PSO)
based on probabilistic arguments inspired from biology (Darwin’s theory on evol-
ution for GA, social behavior of a bird flock for PSO) or physics (annealing in
metallurgy for SA). These methods are often hard to tune as good settings are
problem-dependent and not based on theoretical grounds but rather on heur-
istic considerations. Moreover, these methods may require a large number of
evaluations to find an acceptable solution which is not adapted to the expensive
framework.

• The DIRECT (DIvding RECTangles) algorithm [Jones et al., 1993] divides the
search space into hyperrectangles. The objective function is evaluated at the
center of potentially optimal rectangles which are then further subdivided.

• Pattern search methods [Torczon, 1997] generate search points only on a scaled
lattice. An iteration starts with a global exploratory search followed by a local
poll step. These algorithms enjoy strong theoretical convergence guarantees.

The goal of this part is to investigate blackbox optimization algorithms and to
compare their performance both on a comprehensive benchmark and on a small in-
dustrial maintenance optimization problem. We choose to focus on one model-based
and one direct search method. Kriging has the advantage over other model-based
methods to provide a measure of uncertainty of the metamodel. Hence, we start,
in Chapter 3, with a bibliographical review of kriging and of the Efficient Global
Optimization (EGO) algorithm. For the direct search method, we focus on pattern
search methods that are more flexible than DIRECT, thanks to the exploratory search
step that can be arbitrarily defined by the user. Chapter 4 is a review of pattern
search methods, with a particular focus on the Mesh Adaptive Direct Search (MADS)
algorithm [Audet and Dennis, 2006], which has the strongest theoretical convergence
results. In Chapter 5, we present an original variant of the EGO algorithm, called
EGO-FSSF, that uses a sequential initial space-filling design coupled with a metamodel
validation step. The insight is to adapt the size of the initial design in EGO to the
difficulty of the problem in order to improve the efficiency of the algorithm. We also
present a benchmark of solvers for the maximization of the Expected Improvement
within EGO in order to give quantitative arguments for the choice of a solver for this
task. Finally, Chapter 6 provides a numerical comparison between EGO, EGO-FSSF
and MADS on the COmparing Continuous Optimizers (COCO) platform and on a
small industrial case.
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3 Overview of kriging and of the
EGO algorithm

He who thinks little errs much. . .

Leonardo da Vinci
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CHAPTER 3. OVERVIEW OF KRIGING AND EGO

3.1 Introduction
Gaussian process (GP) regression, also known as kriging, is an interpolation method
that was initially developed by [Matheron, 1962] for mineral exploration. The term
kriging originates from the name of the South-African engineer Danie G. Krige who
tried to predict the concentration of ores in deposits from a small number of drillings.
This approach has since been popularized and applied in many fields such as numerical
simulation [Sacks et al., 1989] or machine learning [Rasmussen and Williams, 2006].

We consider the framework of Problem (2.1). Kriging aims at approximating f on
Uad by a metamodel, knowing only its values on a subset Uo = {u1, . . . , ul} ⊂ Uad,
called the observation set. The metamodel can provide a prediction of the value of
f(u) for an arbitrary u ∈ Uad at a cheap computational cost. More than that, the
properties of GPs allow to derive prediction intervals or more generally a prediction
distribution for the estimate of f(u). The theory of GP modeling, as well as some
practical considerations are exposed in Section 3.2. As the industrial problem driving
this thesis is an optimization problem, we are interested in using GP models for optim-
ization purpose. In Section 3.3, we describe the Efficient Global Optimization (EGO)
algorithm introduced by [Jones et al., 1998]. EGO uses the GP model and an acquis-
ition function, that takes advantage of the statistical properties of the GP models, to
build an efficient sequential evaluation strategy for the minimization of f .

Contributions. This chapter consists in a bibliographical review of kriging and of
the EGO algorithm. As GP regression is widely used in industrial contexts, for ex-
ample in [Marrel et al., 2008, Iooss and Marrel, 2019], we aim at providing a global
understanding of the method, as well as some practical implementation considerations.
We hope that in the light of this chapter, a practitioner would be able to use GP
regression. We also review some theoretical results on the EGO algorithm.

3.2 Overview of Gaussian process regression
This section is a review of GP regression. We start by some general definitions.
In §3.2.1, we expose the kriging equations that are at the heart of the theory of GP
regression. Then, we focus on some considerations that influence the practical per-
formance of kriging, namely the initial design of experiments, in §3.2.2, and the choice
of the covariance function, in §3.2.3. Finally, in §3.2.4, we present some criteria for
the assessment of the quality of the regression process. Throughout the manuscript,
random variables are denoted with capital bold letters.
Definition 3.1. Let (Ω,A,P) be a probability space and Uad be a subset of Rd. A
Gaussian process on Uad is a collection Z =

{
Zu : Ω→ R

}
u∈Uad

of real-valued random
variables such that for any finite subset {u1, . . . , ul} ⊂ Uad, the vector (Zu1

, . . . ,Zul
) is

a multivariate Gaussian random vector. The behavior of a GP is completely determined
by its mean function defined as:

µ : Uad 3 u 7→ E
(
Zu

)
∈ R ,

and its covariance function denoted by k and defined as follows:

k : Uad × Uad → R

(u, u′) 7→ Cov(Zu,Zu′) = E
((
Zu − µ(u)

)(
Zu′ − µ(u′)

))
.
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In the kriging framework, we assume that the mean is of the form:

µ(u) =
p∑
j=1

βjψj(u) = ψ(u)>β ,

where β = (β1, . . . , βp)> ∈ Rp and ψ = (ψ1, . . . , ψp)> is a set of known basis functions
from Uad to R.

Definition 3.2. We say that a Gaussian process Z is stationary when its mean µ is a
constant function and its covariance function satisfies:

k(u, u′) = k(u− u′, 0) ,

for all u, u′ ∈ Uad, i.e. the covariance depends only on the difference u− u′ but not on
the particular location of u and u′.

The covariance function k specifies the dependence structure of the random vari-
ables of the process and controls the smoothness of the functions u ∈ Uad 7→ Zu(ω),
for ω ∈ Ω. In §3.2.3, we will see that the covariance function has a strong influence on
the behavior of a GP.

3.2.1 Kriging equations

The core assumption of kriging is that f : Uad → R is the realization of a GP Z , that
is to say, there exists ω ∈ Ω such that for all u ∈ Uad, we have:

f(u) = Zu(ω) .

Definition 3.3. Assume that the values of f are known on Uo = {u1, . . . , ul} ⊂ Uad.
The set Uo is called the observation set. We introduce the vector of observations as:

fl = (f(u1), . . . , f(ul))> ,

and the Gaussian vector at observation points defined by:

Zo
l =

(
Zu1

, . . . ,Zul

)>
.

The goal of kriging is to predict the value of f on Uad knowing its values only on
the observation set Uo. Note that for any u ∈ Uad, we can compute the conditional
distribution of the random variable Zu knowing Zo

l = fl denoted by
[
Zu

∣∣∣Zo
l = fl

]
.

We obtain that it is still a Gaussian distribution. Moreover, its mean ml(u) and its
standard deviation sl(u) are given by the so-called kriging equations. We derive these
equations in two different frameworks:

1. First, the vector β, and therefore the mean µ of the GP, are known. This is
simple kriging.

2. Second, the vector β is unknown and estimated from the observations. This is
universal kriging or ordinary kriging.
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3.2.1.1 Simple kriging

We start with simple kriging which is defined as kriging under the assumption that the
mean µ of the GP Z is known. The simple kriging equations are given by the following
theorem.

Theorem 3.4 (Simple kriging equations). Let Uo = {u1, . . . , ul}, fl and Zo
l be as in

Definition 3.3 and let u ∈ Uad. Under the assumption that the mean µ of the GP Z is
known, the conditional distribution of Zu given that Zo

l = fl is:[
Zu

∣∣∣Zo
l = fl

]
∼ N

(
ml(u), s2

l (u)
)
, (3.1)

where the kriging mean, ml(u), and the kriging variance, s2
l (u), are given by:

ml(u) = ψ(u)>β + kl(u)>K−1
l (fl −Ψβ) , (3.2)

s2
l (u) = k(u, u)− kl(u)>K−1

l kl(u) . (3.3)

where Ψ = (ψj(ui))i,j is the matrix of explanatory variables for the mean, Kl =
(k(ui, uj))i,j is the covariance matrix of Zo

l and kl(u) = (k(u1, u), . . . , k(ul, u))>. The
conditional GP characterized by the kriging mean and the kriging variance is referred
as the kriging metamodel.

Proof. The joint distribution of Zo
l and Zu, which arises directly from the definition

of Z is given by: (
Zo
l

Zu

)
∼ Nn+1

((
Ψβ

ψ>(u)β

)
,

(
Kl kl(u)>
kl(u) k(u, u)

))
,

Then, Equation (3.1) giving the conditional distribution of Zu given that Zo
l = fl is a

straightforward consequence of [Eaton, 1983, Proposition 3.13]. �

We take ml(u) as the prediction of f(u). The prediction interval of level α is then:[
ml(u)− Φ−1(1− α/2)sl(u),ml(u) + Φ−1(1− α/2)sl(u)

]
, (3.4)

where Φ is the cumulative distribution function of the standard normal distribution.
We make some comments on the kriging mean and the kriging variance:

• The kriging mean ml(u) is the sum of two terms. The term ψ(u)>β is the mean
of the GP at u. The second term kl(u)>K−1

l (fl −Ψβ) is proportional to the
difference between the observations and the mean of the process. In the case of
a stationary process, if we assume that:

k(u− u′, 0)→ 0 when ‖u− u′‖ → +∞ ,

then,

ml(u)→ ψ(u)>β when dist(u, Uo)→ +∞ ,

where ‖·‖ is the Euclidean norm and dist(u, Uo) is the distance between u and
the set Uo. Thus, the kriging mean converges towards the mean of the process
ψ(u)>β when u is far from the observation points Uo.
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• The variance term s2
l (u) is composed of the variance k(u, u) of the GP at u

corrected by a term that only depends on the position of the observations points
{u1, . . . , ul} and not on the value of f at these points.

Figure 3.1 gives an example of kriging prediction. The main advantages of GP regres-
sion are the following:

1. Kriging only relies on the assumption that f is the realization of a GP and is
therefore a flexible non-parametric regression method. The regression function
corresponds to the kriging mean, which is the mean of a conditional GP. Hence,
it can be very general and is not constrained to belong to some parametric family,
contrary to polynomial regression for instance.

2. In the case where there is no uncertainty at the observation points, the kriging
mean ml(u) interpolates the observations and the variance sl(u) vanishes at these
points. Hence, the prediction of f at a point u ∈ Uo returns the exact value f(u).
This is indeed the case on Figure 3.1.

3. Finally, the uncertainty on the prediction of f at any point u ∈ Uad can be
quantified with the prediction interval (3.4).

0 2 4 6 8 10
u

−10

0

10

20 f (u) = u sin(u)

Observations

Prediction ml

95% prediction interval

Figure 3.1: Illustrative example of a kriging prediction.

There are other interpretations of GP regression that allow to retrieve the kriging
equations (3.2) and (3.3). We can show that the kriging mean is the Best Linear
Unbiased Predictor (BLUP) from the observations [Stein, 1999]. To do so, we must
work with the centered GP Y =

{
Yu

}
u∈Uad

and the related quantities defined as
follows:

Yu = Zu − µ(u) ,

Y o
l =

(
Yu1

, . . . ,Yul

)>
,

y(u) = f(u)− µ(u)
yl = fl −Ψβ ,

m̄l(u) = ml(u)− µ(u) .

The process Y is a zero mean GP with the same covariance as Z . The BLUP of y(u)
from the observations yl is λ](u)>yl where:

λ](u) = min
λ∈Rn

E
((
Yu − λ

>Y o
l

)2
)
.
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We have:

E
((
Yu − λ

>Y o
l

)2
)

= k(u, u)− 2λ>kl(u) + λ>Klλ , (3.5)

leading to λ](u) = K−1
l kl(u). The BLUP is then given by:

λ](u)>yl = K−1
l kl(u) (fl −Ψβ) = m̄l(u) .

We find that the prediction of y(u) is indeed given by the kriging mean. Plugging
the value of λ](u) into (3.5), we also get that the kriging variance is sl(u). This
interpretation of kriging allows to retrieve the same results as the direct computation
with the conditional distributions.

3.2.1.2 Universal and ordinary kriging

Now, consider the framework where the kriging mean is unknown, referred as universal
kriging. We will also present ordinary kriging, that is a special case of universal kriging.

Universal kriging. We give a prediction for f(u) while estimating the value of the
vector β at the same time. We use the BLUP approach to get the kriging equations.
We are looking for a prediction of the form:

ml(u) = λ](u)>fl , (3.6)

where λ](u) is the solution of:

min
λ∈Rn

E
((
Zu − λ

>Zo
l

)2
)
,

s.t. Ψ>λ = ψ(u) .
(3.7)

The equality constraint in (3.7) arises from the fact that we are looking for an unbiased
predictor. The resolution can be done by the method of Lagrange multipliers, see for
example [Le Gratiet, 2013]. We get:

λ](u) = K−1
l kl(u) +K−1

l Ψ
(
Ψ>K−1

l Ψ
)−1 (

ψ(u)−Ψ>K−1
l kl(u)

)
.

We use (3.6) to deduce the universal kriging mean. For the universal kriging variance,
we note that under the constraint Ψ>λ = ψ(u), we have:

E
((
Zu − λ

>Zo
l

)2
)

= k(u, u)− 2λ>kl(u) + λ>Klλ , (3.8)

and we substitute the value of λ](u) in (3.8). Finally, the universal kriging equations
write:

ml(u) = ψ(u)>β̂l + kl(u)>K−1
l (fl −Ψβ̂l) ,

s2
l (u) = k(u, u)− kl(u)>K−1

l kl(u)

+
(
ψ(u)> − kl(u)>K−1

l Ψ
) (

Ψ>K−1
l Ψ

)−1 (
ψ(u)> − kl(u)>K−1

l Ψ
)>

.

(3.9)

with β̂l =
(
Ψ>K−1

l Ψ
)−1

Ψ>K−1
l fl being the estimation of the vector β. The universal

kriging equations are similar to those of simple kriging, the unknown value β being
replaced by its estimate β̂l. There is also an additional term in the kriging variance
compared to the simple kriging case, accounting for the uncertainty on the estimation
of β.
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Ordinary kriging. This is a special case of universal kriging where the set of basis
functions ψ = (ψ1, . . . , ψp)> reduces to only one constant function ψ0 such that ψ0(u) =
γ ∈ R for all u ∈ Uad. The ordinary kriging equations can be derived from (3.9) using
that Ψ = γ1l with 1l = (1, . . . , 1)>:

ml(u) = µ̂l + kl(u)>K−1
l (fl − µ̂l1l) , (3.10)

s2
l (u) = k(u, u)− kl(u)>K−1

l kl(u) +

(
1− kl(u)>K−1

l 1l
)2

1>l K−1
l 1l

, (3.11)

with µ̂l = β̂lψ0(u) = β̂lγ = 1>l K
−1
l
fl

1>
l
K−1
l

1l
. In the remainder of the chapter, we work in the

framework of ordinary kriging.

3.2.1.3 A few words on the noisy case

In some situations, given u ∈ Uad, obtaining the exact value of f(u) is not possible as
any attempt to obtain f(u) is corrupted by noise. If f is the result of an experiment,
this noise can represent measurement errors. In the case where f is the output of a
stochastic simulation code, the noise represents the variability of the response between
different runs with the same input data. We address this situation by explaining how
kriging can take into account these evaluation errors. We assume that the user has
access to l observations of the form:

f̃(ui) = f(ui) + εi, i ∈ {1, . . . , l} ,

where εi is a realization of a real Gaussian random variable εi ∼ N (0, ζ2
i ). The random

errors ε1, . . . , εl are independent. They are also independent from the Gaussian process
Z . Let Z̃

ui
= Zui

+ εi and Z̃
o

l
=
(
Z̃
u1
, . . . , Z̃

ul

)>
. We derive the kriging equations in

the noisy case for the simple kriging framework. Note that:

Cov
(
Z̃
ui
,Zu

)
= k(ui, u) ,

Cov
(
Z̃
o

l
, Z̃

o

l

)
= Kl + ∆l ,

where ∆l is the following diagonal matrix:

∆l =


ζ2

1 0
. . .

0 ζ2
l

 .

In the case of simple kriging, we have the following joint distribution:(
Z̃
o

l

Zu

)
∼ Nn+1

((
Ψβ

ψ>(u)β

)
,

(
Kl + ∆l kl(u)>
kl(u) k(u, u)

))
.

Let f̃l =
(
f̃(u1), . . . , f̃(ul)

)>
be the vector of noisy observations, then we have:[

Zu

∣∣∣Z̃ o

l
= f̃l

]
∼ N

(
ml(u), s2

l (u)
)
,

with

ml(u) = ψ(u)>β + kl(u)> (Kl + ∆l)−1
(
f̃l −Ψβ

)
,

s2
l (u) = k(u, u)− kl(u)> (Kl + ∆l)−1 kl(u) .
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The kriging mean and the kriging variance are similar as in the noiseless case, except
that Kl is replaced by Kl + ∆l. This also applies in the universal and ordinary kriging
frameworks. In the noisy case, we lose the interpolation property of the kriging mean
ml(u) with the observations and the variance sl(u) is non zero even at the observation
points, see Figure 3.2. These features are natural as there is still some uncertainty on
the true value of f at the observation points.

0 2 4 6 8 10
u

−10

0
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20 f (u) = u sin(u)

Observations

Prediction ml

95% prediction interval

Figure 3.2: Kriging prediction in the noisy case.

The theory of GP regression is based on the kriging equations that have been
presented in this section. However, for an efficient implementation of kriging, other
considerations must be taken into account. In the following section, we emphasize the
importance of the initial observation set for the quality of the metamodel.

3.2.2 Initial design of experiments
The quality of the predictions given by the metamodel depends on the initial design
of experiments (DOE), that is, the initial set Uo = {u1, . . . , ul} where f is evaluated
before constructing the metamodel. We start by an example to illustrate this insight.

3.2.2.1 Illustrative example

For u = (u1, u2) ∈ Uad = [−1, 1]2, we consider the Ackley function f : Uad → R defined
by:

f(u) = −20 exp
−0.2

√√√√1
2

2∑
i=1

(ui)2

− exp
(

1
2

2∑
i=1

cos(2πui)
)

+ 20 + exp(1) .

Two different initial DOEs with 40 points are constructed on Figure 3.3a and 3.3b,
respectively with a crude Monte-Carlo strategy and an optimized Latin Hypercube
Sampling (LHS) strategy [Damblin et al., 2013]. The LHS is a sampling method that
ensures that all portions of the range of each input variable is represented. With
the crude Monte-Carlo design, large regions of the space are empty whereas the LHS
design has better space-filling properties. Then, Figures 3.3c and 3.3d represent the
metamodel constructed from the corresponding initial DOE and Figures 3.3e and 3.3f
show the corresponding kriging variance. We notice that the metamodel resulting
from the LHS design is better that the one from the Monte-Carlo design. Moreover,
the kriging variance, representing the uncertainty on the prediction, is larger for the
metamodel constructed from the Monte-Carlo design. This is due to the fact that some
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regions of the space are far from the set of observation points. In these regions, the
observations do not give much information to build the prediction, and the metamodel
may not be accurate.

3.2.2.2 Brief review of space-filling designs

The importance of the space-filling properties of a design for the predictivity perform-
ance of a metamodel is confirmed by theoretical results of [Wang et al., 2020] where
upper bounds are derived for the supremum of the estimation error:

sup
u∈Uad

|f(u)−ml(u)| .

These bounds are increasing function of the fill distance:

sup
u∈Uad

dist(u, Uo) , (3.12)

which quantifies the space-filling property of a design. The fill distance is the maximal
distance between a point of the domain Uad and the set of observation points Uo. The
designs that minimize the fill distance, called minimax designs [Johnson et al., 1990],
lead to the best theoretical bound for the maximum estimation error.

Many other space-filling designs are considered in the literature, a comprehensive
review can be found in [Abtini, 2018]. We quickly mention some popular designs.
The maximin design [Johnson et al., 1990] is constructed by maximizing the minimal
distance between two points of the design Uo. We can also construct a design with the
l first points of a low-discrepancy sequence such as the Halton sequence [Halton, 1960]
or the Sobol sequence [Sobol, 1967]. These designs ensure that the distribution of the
points is close to the uniform distribution. Another important class of designs are
stratified designs that consist in splitting the space Uad in multiple strata and drawing
a point at random in each stratum. The LHS design [McKay et al., 1979], which is one
of the most popular designs for kriging, is an extension of stratified sampling.

We quickly detail the principle of LHS and some of its refinements. The goal of
LHS is to ensure a good repartition of the points when projected on a one-dimensional
subspace. Suppose we construct a LHS design with l points. Each of the d input di-
mensions is divided into l equiprobable intervals. Then, for each input dimension, one
sample is generated in each interval. This results in l scalar samples for each dimension.
Finally, we randomly combine these scalar samples to obtain l samples of dimension d.
However, this procedure may lead to designs with poor space-filling properties. The
LHS design can then be optimized with respect to some criterion (minimax or max-
imin distance, discrepancy) to get these space-filling properties [Damblin et al., 2013].
However, most of LHS designs do not guarantee a good repartition of samples when
projected on multi-dimensional subspaces [Damblin et al., 2013]. Robustness to projec-
tion on multi-dimensional subspaces is relevant to capture interaction effects between
inputs. It is also essential in the case where the metamodel fitting is made on a sub-
space of the input space. This situation may occur after a screening step has discarded
non influent variables, so that the metamodel is fitted only on the subspace of influent
variables. Among the criteria tested in [Damblin et al., 2013], only discrepancy optim-
ized LHS achieves robustness to projections on high-dimensional subspaces. Finally, we
mention that there is another class of robust designs: the class of maximum projection
designs [Joseph et al., 2015].
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(c) Ackley function (solid lines) and kriging mean
ml (dashed lines) resulting from the Monte-Carlo
(MC) design.
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(d) Ackley function (solid lines) and kriging mean
ml (dashed lines) resulting from the optimal LHS
design.
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(e) Kriging variance s2
l with the MC design.
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(f) Kriging variance s2
l with the LHS design.

Figure 3.3: Influence of the initial design of experiments on the quality of the metamodel.
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In this section, we have seen that a good space-filling design can improve the quality
of the kriging metamodel. The choice of the initial DOE is therefore an important
consideration when using GP regression in practice. In the next section, we focus
on the choice of the covariance function, which is another aspect that influences the
performance of kriging.

3.2.3 Covariance functions
The covariance function can be interpreted as a similarity measure between variables.
When the points u and u′ are close, we expect Zu and Zu′ to be strongly correlated.
Conversely, when u and u′ are far away from each other, the values of Zu and Zu′

are not correlated. In §3.2.1, we have derived the kriging equations assuming that
the covariance function k is known. However, k is chosen by the user so that it fits
the structure of the observed data. In this section, we highlight the implications of
this choice on the properties of the underlying GP. First, we recall that a covariance
function satisfies the following properties [Rasmussen and Williams, 2006].

Definition 3.5. Let U be an arbitrary subset of Rd. A kernel is a mapping k :
U ×U → R. The kernel k is said to be an admissible covariance function if it satisfies
the following conditions:

• k is symmetric, i.e. k(u, u′) = k(u′, u) for all u, u′ ∈ U .

• k is positive semi-definite:

∀l ∈ N, ∀u1, . . . , ul ∈ U, ∀a1, . . . , al ∈ R,
l∑

i=1

l∑
j=1

aiajk(ui, uj) ≥ 0 .

This is equivalent to the fact that for all l ∈ N and for all u1, . . . , ul ∈ U , the
matrix Kl = (k(ui, uj))i,j is positive semi-definite, i.e. Kl is a covariance matrix.

3.2.3.1 Choosing a covariance function

In practice, it is difficult to check that an arbitrary function is positive definite and to
do a non-parametric estimation of the kernel [Roustant et al., 2012]. Thus, the choice
of the covariance function is done among parametric families which are known to be
positive definite.

Definition 3.6. Consider a covariance function of the form:

k(u, u′) = σ2rθ(u, u′), u, u′ ∈ Uad ,

where σ > 0 controls the variance of the GP and rθ : Uad × Uad → R is a correlation
function parametrized by the vector θ = (θ1, . . . , θd) ∈ Rd with θj > 0 for all j ∈
{1, . . . , d}.

• The parameter θi, i ∈ {1, . . . , d}, is called the characteristic length of the kernel
in the i-th direction.

• When the characteristic lengths are the same in every direction, the kernel is
isotropic, otherwise it is anisotropic, see Figure 3.4.
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Figure 3.4: Gaussian kernels k(h, 0) = σ2 exp
(
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)
.

• The variables θ and σ2 are called hyperparameters as they are parameters for the
construction of the kriging metamodel.

In practice, we choose a parametrized covariance function of the form given in
Definition 3.6. The characteristic lengths θ = (θ1, . . . , θd) give a precise meaning of
the words close and far away as they define the zone of influence of the variable Zu.
Figure 3.5 gives examples of realizations of a GP with different characteristic lengths.
With a large θ, Zu and Zu′ are highly correlated even when u and u′ are far away,
whereas with a small θ, Zu and Zu′ are almost not correlated, even when u and u′ are
close.
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Figure 3.5: Realizations of a Gaussian process with different characteristic lengths θ.

To get admissible covariance functions in large dimensions, we simply take the
product of admissible 1D-kernels, resulting in separable kernels. We assume that Uad =
Uad

1 × . . . × Uad
d with Uad

i ⊂ R for i ∈ {1, . . . , d}. All the kernels that are mentioned
below are stationary, i.e. they only depend on h = u− u′. Then, the structure of the
kernels we consider is the following:

k(h, 0) = k(u− u′, 0) = σ2rθ(h, 0) = σ2
d∏
j=1

cθj(hj) ,
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where hj ∈ Uad
j is the j-th coordinate of h. The function cθj : Uad

j → R is a 1D
correlation function. Examples of kernels, from [Rasmussen and Williams, 2006], are
given in Table 3.1. The function Γ is the Euler gamma function and Kν is the modified
Bessel function of the second kind of order ν [Abramowitz and Stegun, 1964]. Matérn
kernels have a simpler expression when ν = p + 1/2, p ∈ N as they can be written as
the product of an exponential and a polynomial function of order p. When ν = 1/2,
the Matérn kernel corresponds to the exponential kernel and, as ν → ∞, the Matérn
kernel converges to the Gaussian kernel.

Matérn ν > 0 cθ(h) = 21−ν

Γ(ν)

(√
2ν|h|
θ

)ν
Kν

(√
2ν|h|
θ

)

Gaussian (Matérn ν →∞) cθ(h) = exp
(
−h

2

2θ

)

Matérn ν = 5/2 cθ(h) =
(

1 +
√

5|h|
θ

+ 5h2

3θ2

)
exp

(
−
√

5|h|
θ

)

Matérn ν = 3/2 cθ(h) =
(

1 +
√

3|h|
θ

)
exp

(
−
√

3|h|
θ

)

Exponential (Matérn ν = 1/2) cθ(h) = exp
(
−h
θ

)

Rational quadratic α > 0 cθ(h) =
(

1 + h2

2αθ2

)−α

Table 3.1: Examples of admissible 1D correlation functions cθ : R→ R, θ > 0.

Now that we are able to construct admissible kernels in arbitrary dimension from
parametric families, the question is how to choose a kernel that is adapted to our
data. To guide this choice, we should note that the covariance function determines the
smoothness of the realizations of a GP. Figure 3.6 shows examples of GP realizations
with different kernels. With the exponential covariance function, the realizations are
only continuous, with the Matérn kernel 3/2 (resp. 5/2) they are C1-differentiable (resp.
C2-differentiable), and finally with the Gaussian kernel they are C∞-differentiable. More
generally, the realizations of a GP with a Matérn covariance function of parameter ν
are dνe − 1 differentiable, where dνe is the smallest integer greater than or equal to
ν [Stein, 1999]. In practice, the choice of a Matérn kernel with ν = 3/2 or ν = 5/2 is
justified when the function we try to predict is not smooth.

After the choice of a parametric family for the covariance, we have to compute the
hyperparameters θ and σ2 in order to get the explicit form of the kernel and to be able to
use the kriging equations. The hyperparameters computation is usually done by Max-
imum Likelihood Estimation (MLE). The expression of the likelihood and an efficient
algorithm to solve the maximization problem can be found in [Park and Baek, 2001].

In this part, we have argued that it is easier to choose covariance functions from
a parametric family and have highlighted that they determine the smoothness of the
underlying GP. The next paragraph focuses on numerical considerations and gives some
additional arguments to guide the choice of the kernel.
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Figure 3.6: Realizations of a Gaussian process with different covariance functions.

3.2.3.2 Numerical considerations

The computation of the kriging equations and of the likelihood for the estimation of
hyperparameters involve the inverse of the covariance matrix K−1

l . The difficulty of
the numerical computation of K−1

l is linked to the condition number of the matrix Kl.

Definition 3.7. Let Kl be a symmetric positive semi-definite matrix. Let λmin(Kl)
and λmax(Kl) be respectively the smallest and the largest eigenvalue of Kl. We define
the condition number of Kl as:

κ(Kl) = λmax(Kl)/λmin(Kl) .

When several observation points are close to each other relatively to the charac-
teristic length θ of the kernel, the covariance matrix Kl is ill-conditioned, meaning
that κ(Kl) is large. This makes the computation of K−1

l numerically difficult. This
phenomenon is all the more important when k is a Gaussian kernel as it enforces the
smoothness of the realizations of the GP. To overcome this issue, [Stein, 1999] recom-
mends to choose a Matérn kernel with ν = 3/2 or ν = 5/2.

We also mention the work of [Mohammadi, 2016, Chapter 3] which extensively
studies two methods to avoid the ill-conditioning of the covariance matrix, namely
the pseudo-inverse and the nugget regularizations. The pseudo-inverse regularization
consists in replacing K−1

l by its Moore-Penrose pseudo-inverse [Penrose, 1955] in the
kriging equations. The nugget regularization consists in adding a positive value τ 2 to
the diagonal of the covariance matrix Kl. This amounts to consider that the observa-
tions are perturbed with an additive Gaussian noise N (0, τ 2), similarly as in §3.2.1.3.
With the nugget, the interpolation property of the kriging mean with the data points
is lost and the variance is non-zero at these points. [Mohammadi, 2016] argues that
the pseudo-inverse regularization is equivalent to the nugget regularization when τ is
sufficiently small. In the sequel, we use the nugget regularization given its simplicity
and the fact that it is implemented in the software OpenTURNS [Baudin et al., 2017]
that is used for the numerical experiments.

These numerical considerations give additional arguments in favor of Matérn kernels
and justify the addition of a nugget in the covariance function, even in the case where
the observations are not corrupted by noise. However, even if we aim at choosing a
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covariance function that represents well the dependence structure of our data, it is
difficult to ensure that this is effectively the case in practice. This is why, we focus on
the effect of covariance misspecification in the next paragraph.

3.2.3.3 Effect of covariance misspecification

In order to build a kriging metamodel, the covariance function k is chosen by the
user in a parametric family and then the hyperparameters θ and σ2 are estimated by
maximum likelihood. It is interesting to understand the effects of a bad covariance
choice on the kriging metamodel.

A detailed study in this direction is done in [Stein, 1999]. One of the main con-
clusions is that a misspecification of the covariance structure has a greater impact on
the computation of the kriging variance s2

l than on the efficiency of the prediction
given by ml. More precisely, the smoother the covariance function, the more optimistic
the kriging variance. For example, in Figure 3.7, the true covariance structure of the
objective function is a Matérn kernel with ν = 5/2. When the kriging metamodel is
computed using a Gaussian kernel (Figure 3.7a), the kriging variance, is overoptim-
istic i.e. smaller than the true one. On the other hand, if a Matérn covariance with
ν = 3/2 (Figure 3.7c) or an exponential kernel is used (Figure 3.7d), the kriging vari-
ance is too conservative, which is still more desirable than being overoptimistic. This
is why [Stein, 1999] recommends to avoid Gaussian kernels and to use Matérn kernels
instead.
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(a) Kriging with a Gaussian kernel.
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(b) Kriging with a Matérn kernel ν = 5/2.
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(c) Kriging with a Matérn kernel ν = 3/2.
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(d) Kriging with a Matérn kernel ν = 1/2.

Figure 3.7: Kriging with different kernels. The objective function is a realization of a Gaussian
process with a Matérn covariance function ν = 5/2. We observe that the prediction interval
is too optimistic when the regression is done with the Gaussian kernel and too pessimistic
with the Matérn kernel ν = 3/2 or ν = 1/2.

Regarding the efficiency of the kriging prediction ml, upper and lower bounds are
derived in [Tuo and Wang, 2019]. The results are derived in the case where the under-
lying function is a random realization of a Gaussian process with a Matérn kernel of
parameter ν0. The kriging metamodel is constructed assuming a Matérn covariance of
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parameter ν. Under some assumptions on the space-filling properties of the DOE, we
have, as the size l of the design tends to infinity:

sup
u∈Uad

|f(u)−ml(u)| =


O
(
n−ν/d

√
log(n)

)
if ν ≤ ν0 ,

O
(
n−ν0/d

√
log(n)

)
if ν > ν0 ,

the rate for ν > ν0 being optimal. This result confirms the insight of [Stein, 1999] in
that the error of kriging prediction is not dramatically affected by covariance misspe-
cification. In fact, if the covariance function is oversmooth (ν > ν0), the predictive
performance of the kriging metamodel do not deteriorate. Non-asymptotic results de-
pending on space-filling metrics of the DOE are also given in [Tuo and Wang, 2019].
These theoretical bounds confirm the importance of the choice of the DOE for the
predictivity performance of the kriging metamodel, as already highlighted in §3.2.2.

In summary, oversmooth covariance functions give good prediction performance
but lead to an overoptimistic evaluation of the uncertainty of this estimation. On the
other hand, undersmooth covariance functions give slightly less efficient predictions of
the objective function and lead to a conservative estimation of the uncertainty, which
in our personal view is much more reassuring than the opposite. In light of these
observations and of the arguments already given in §3.2.3.1 and §3.2.3.2, it seems that
using a Matérn kernel with ν = 3/2 or ν = 5/2 is a good generic choice. The value of
ν may be adjusted by the user if some properties on the smoothness of the objective
function are known.

3.2.4 Metamodel validation
Recall that in kriging, the goal is to predict the value of a function f : Uad → R from
its values on an observation set Uo. After the study of space-filling designs (§3.2.2) and
of covariance functions (§3.2.3), we are able to compute the kriging equations, given by
Theorem 3.4, meaning that we have constructed a metamodel for the function f . In this
section, we focus on metamodel validation, which is a process that allows to evaluate
the quality of the regression. The validation step is essential when the metamodel is
used for prediction or sensitivity analysis, especially for critical industrial applications
such as nuclear safety in [Iooss et al., 2010].

3.2.4.1 The predictivity coefficient

Definition 3.8. Let {v1, . . . , vp} ⊂ Uad be a test sample that is disjoint from the
observation set Uo. We define the predictivity coefficient Q2 as:

Q2 = 1−
∑p
i=1 (f(vi)−ml(vi))2∑p

i=1

(
f(vi)− 1

p

∑p
j=1 f(vj)

)2 ,

The predictivity coefficient is used to assess the metamodel accuracy. The closer
to one the predictivity coefficient, the better the metamodel accuracy. Note that Q2

can be negative, meaning that the mean of the observations is a better estimator than
the metamodel estimation. The test sample can be drawn at random with a crude
Monte-Carlo strategy. A natural question that arises is how to choose the number p of
samples to get an accurate value for Q2. Moreover, the computation of the predictivity
coefficient on the test sample requires some new evaluations of f . When the function
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f is the output of a time consuming computer code, it may be impossible to use a
sufficiently large test sample. This is why in practice, the predictivity coefficient is
computed by K-fold cross validation [Hastie et al., 2001]. More precisely, we use the
leave-one-out cross validation:

Q2 = 1−
∑n
i=1 (f(ui)−m−i(ui))2∑n

i=1

(
f(ui)− 1

n

∑n
j=1 f(uj)

)2 ,

where m−i is the kriging mean of the metamodel constructed from the set of obser-
vations Uo \ {ui}. The idea of leave-one-out cross validation is to construct, for each
i ∈ {1, . . . , l}, a metamodel without taking into account the i-th observation f(ui) as it
will be used for validation. The kriging mean m−i(ui) is used as a prediction of f(ui).
As f(ui) is known, we can then compute the predictivity coefficient without using new
evaluations of f . This method involves the construction of l different metamodels.
However, the kriging equations, given by Theorem 3.4, involve the covariance function,
for which the hyperparameters θ and σ2 are computed by MLE (see §3.2.3), which can
be computationally expensive. In this case, it is possible to construct the l metamod-
els while keeping the same hyperparameters as in the metamodel constructed from Uo.
These fixed hyperparameters should be close to the optimal hyperparameters of each
metamodel as the sets Uo and Uo \ {ui} do not differ that much.

Note that [Iooss et al., 2010] warns that the test sample method may provide an
optimistic Q2 if the test sample is too small whereas the cross validation method may
provide a pessimistic Q2. The authors provide a sequential validation design that aims
at minimizing the number of necessary points in the test sample method to capture the
right metamodel predictivity. The idea consists in choosing test points in the unfilled
zone of the training sample. This method gives better results than cross validation but
is more computationally demanding.

In the thesis, our goal is to use GP regression for optimization purpose. Hence, the
metamodels are not used directly for estimation or sensitivity analysis, they are rather
just part of an optimization procedure. For the numerical experiments of Chapter 6,
reducing the computational effort is the main concern. Thus, the computation of the
predictivity coefficient will be done with the leave-one-out cross validation method.

3.2.4.2 The predictive variance adequation

Definition 3.9. Let {v1, . . . , vp} ⊂ Uad be a test sample that is disjoint from the ob-
servation set Uo. We define the Predictive Variance Adequation (PVA) [Bachoc, 2013]:

PVA =
∣∣∣∣∣log10

(
1
p

p∑
i=1

(f(vi)−ml(vi))2

s2
l (vi)

)∣∣∣∣∣ ,
where log10 is the logarithm with base 10.

The PVA is used to evaluate the quality of the kriging variance given by the
metamodel. The smaller the PVA, the better, because this means that the kriging
variance is of the same order as the prediction errors, and hence the prediction in-
tervals are reliable. The logarithm is used to equally weight underestimations and
overestimations of the kriging variance. A PVA equals to 1 means that we underestim-
ate or overestimate the prediction errors by a factor 10. For the same reasons as for the
predictivity coefficient, the PVA can be estimated by leave-one-out cross validation:

PVA =
∣∣∣∣∣log10

(
1
n

n∑
i=1

(f(ui)−m−i(ui))2

s2
−i(ui)

)∣∣∣∣∣ .
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where m−i and s2
−i are respectively the kriging mean and the kriging variance of the

metamodel constructed from the set of observations Uo \ {ui}.
The predictivity coefficient Q2 and the PVA are complementary indicators of the

quality of a metamodel, respectively to quantify the performance in terms of prediction
of the function f and in terms of reliability of the prediction intervals.

3.3 The Efficient Global Optimization algorithm
In Section 3.2, we have presented the theory of GP regression, that allows to predict
the value of a function f : Uad → R, knowing only the value of f on an observation set
Uo. In Part I of the thesis, the goal is to tackle Problem (2.1): we aim at finding the
minimum of f , which is considered to be a blackbox. In this section, we describe the
Efficient Global Optimization (EGO) algorithm that exploits the kriging predictions
for optimization purpose. The general idea is to use the predictions given by the
metamodel to smartly choose the evaluation points of the objective function f .

In §3.3.1, we give the general structure of the EGO algorithm. In §3.3.2, we focus
on the choice of the infill criterion, which defines the strategy to smartly choose the se-
quence of evaluation points in EGO. The infill criterion has therefore a great influence
on the behavior of the algorithm. Then, in §3.3.3, we review the few available theoret-
ical results for the EGO algorithm. Finally, in §3.3.4, we consider a local optimization
step after the EGO iterations in order to improve the efficiency of the algorithm.

3.3.1 Description of the EGO algorithm
The EGO algorithm is described by Algorithm 1. We assume that we are in the
ordinary kriging framework, so the computation of the metamodel at each iteration
is done with Equations (3.10) and (3.11). The termination criterion is a maximum
number M of evaluations of the objective function f .

Algorithm 1 General description the EGO algorithm
Step 0. Choose a class of covariance functions parametrized by the hyperparameters

θ and σ2 (see §3.2.3). Choose an infill criterion (see §3.3.2).
Step 1. (Initial design step) Let Uo = {u1, . . . , ul} ⊂ Uad be an initial DOE (§3.2.2).

(a) Evaluate f on Uo.
(b) Estimate the hyperparameters θ and σ2 with the maximum likelihood.
(c) Compute the initial metamodel with (3.10) and (3.11).

Step 2. (Infill step) For i = l + 1, . . . ,M :
(a) Choose a new evaluation point ui ∈ Uad by optimizing the infill criterion. Let

Uo ← Uo⋃{ui} and evaluate f(ui).
(b) Update the estimation of hyperparameters θ and σ2 with the maximum like-

lihood.
(c) Update the metamodel with (3.10) and (3.11).

Return. The best evaluated value minu∈Uo f(u).
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3.3.2 Infill criterion
The sequence of evaluation points is determined by the optimization of an infill cri-
terion, also called acquisition function. This criterion uses information from the current
metamodel to quantify the interest of evaluating any candidate point. Depending on
the infill criterion, the behavior of the EGO algorithm can range from pure exploration
to intensive evaluations near the current best solution (exploitation). We give a brief
overview of common infill criteria with a focus on the EI which is the most popular.

3.3.2.1 Minimizing the kriging mean

A first naive idea is to choose the (l + 1)-th evaluation point as the minimizer of the
kriging mean:

ul+1 ∈ arg min
u∈Uad

ml(u) .

However, [Jones, 2001] shows that this criterion is not efficient as the sequence of
evaluation points could be stuck near a local minimum. The flaw of this criterion
is that it does not take into account the uncertainty of the metamodel. We must
choose an infill criterion that uses both the information on the kriging mean and on
the uncertainty of the prediction, given by the kriging variance, so that the algorithm
is more exploratory. This criterion should not be used in practice.

3.3.2.2 The Expected Improvement (EI) criterion

The EI criterion is defined in [Jones et al., 1998].

Definition 3.10. Let Z = {Zu}u∈Uad be a GP and f ]l = min1≤i≤l f(ui) be the best
function value on an observation set Uo = {u1, . . . , ul} ∈ Uad.

1. We define the improvement as:

I lu =
(
f ]l −Zu

)+
, u ∈ Uad ,

where (·)+ = max(·, 0). The improvement I lu is a random variable. If Zu is larger
than the best observation, there is no improvement. Otherwise, the improvement
is the difference between Zu and the best observation.

2. The Expected Improvement is defined as the expectation of the improvement
conditionally to the observations:

EIl(u) = E
(
I lu

∣∣∣ Zo
l = fl

)
,

= E
((

min
1≤i≤l

f(ui)−Zu

)+ ∣∣∣∣ Zo
l = fl

)
,

where Zo
l and fl have been introduced in Definition 3.3.

In the EGO algorithm, the (l+1)-th point of evaluation of f is chosen as a maximizer
of the EI:

ul+1 ∈ arg max
u∈Uad

EIl(u) .
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The EI always vanishes at the observation points Uo and is always strictly positive on
Uad \Uo. Thus, f is never evaluated twice at the same point. Note also that the EI is
increasing with ml and sl. Using the computational properties of GPs, we can derive
an explicit formula for the EI [Jones et al., 1998]:

EIl(u) =
(
f ]l −ml(u)

)
Φ
(
f ]l −ml(u)
sl(u)

)
+ sl(u)φ

(
f ]l −ml(u)
sl(u)

)
,

where Φ and φ are respectively the cumulative distribution function and the probability
density function of the standard normal distribution. The popularity of the EI is partly
due to the availability of the explicit formula, which allows for gradient computation.

Let us illustrate the features of the EI on an example. The upper subplot of
Figure 3.8 shows the objective function f (dotted curve), the kriging metamodel (in
blue), and the associated EI (green curve). On the lower subplot, f is evaluated at the
point that maximizes the EI, the metamodel is updated accordingly and the new EI
function is plotted. The EI takes high values in the regions where the kriging mean is
low and the prediction intervals are wide, indeed these regions are the ones where the
objective function can be potentially improved. The EI function is multimodal, i.e.
it has multiple local maxima. Moreover, outside these local maxima, the EI is very
flat and is almost zero, but still strictly positive outside the observation points. These
characteristics make the maximization of the EI a challenging problem, even though
an analytical form of the function and the gradients are available. The choice of an
algorithm for the maximization of the EI is the subject of a benchmark in Section 5.3.
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Figure 3.8: Metamodel update after the evaluation at a point that maximizes the EI.

3.3.2.3 Other existing criteria

Other choices for the infill criterion are possible. [Srinivas et al., 2010] casts the GP
optimization problem as a multi-armed bandit problem and uses an upper-confidence
bound (for a maximization problem) as acquisition function. This algorithm is referred
as GP-UCB. For a minimization problem, we consider the lower-confidence bound:

ul+1 ∈ arg min
u∈Uad

ml(u)−√ρlsl(u) ,

where ρl ≥ 0 influences the exploration-exploitation tradeoff. Values for ρl are given
in [Srinivas et al., 2010] so as to minimize regret bounds in different contexts. The use
of upper or lower confidence bounds was already suggested by [Cox and John, 1992] in
a simplified version (ρl is not iteration dependent and tuned by the user).
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The EI and GP-UCB use the prediction of f to define the trade off between ex-
ploiting the kriging mean and exploring regions with large kriging variance. Another
class of infill criteria are information-based acquisition functions. The goal is instead
to maximize the information on the location of a global minimizer of f , by minimizing
the entropy of the predictive distribution of f(u), or of some related quantity. Ex-
amples include the Stepwise Uncertainty Reduction strategy [Villemonteix et al., 2009]
or the Predictive Entropy Search [Hernández-Lobato et al., 2014]. These strategies are
however more difficult to implement in practice as they rely on numerical integration
whereas the EI or the lower-confidence bound can be computed in closed form.

3.3.2.4 Choice of the infill criterion within the thesis

Comparing the performance of infill criteria is out of the scope of this work, but many
studies are done in this purpose. In [Picheny et al., 2013], the authors conclude that
several criteria have similar performance and that the choice may be based on user pref-
erence without a critical deterioration of performance. In [Rehbach et al., 2020], the EI
is compared with kriging mean minimization. Interestingly, this study concludes that
for the expensive setting in high dimension, the exploratory behavior of the EI may be
less efficient than the greedy minimization of the kriging mean. The authors acknow-
ledge that EGO with a direct minimization of the kriging mean can be stuck in a local
optimum, especially in low dimension, but identify scenarios where this criterion might
be preferred over the EI. We also mention the study in [Talgorn et al., 2015], which
compares several EI-based infill criteria that are adapted to the case of a constrained
optimization problem.

Nevertheless, in Chapters 5 and 6, we use the EI criterion as it is frequently used
among practitioners: the EI is the most common default infill criterion in surrogate-
based optimization softwares [Rehbach et al., 2020].

So far, we have tackled all the essential aspects for a basic implementation of the
EGO algorithm: the choice of the initial DOE §3.2.2, the covariance function §3.2.3
and the infill criterion §3.3.2. In the next section, we focus on some theoretical aspects
of the algorithm.

3.3.3 Theoretical considerations
The EGO algorithm has become very popular for industrial applications in the ex-
pensive blackbox setting, yet only a few theoretical results are available. We give an
overview of these results as they may help to understand the behavior of the algorithm
besides their own theoretical interest.

A first convergence result is given by [Vazquez and Bect, 2010] for EGO with the
EI and fixed mean and covariance functions, i.e. in the case of simple kriging and with
fixed values of the hyperparameters θ and σ2 along the iterations. Under an assumption
on the covariance function called the no-empty-ball property, the algorithm converges
to the optimum for P-almost all continuous functions, where P is the prior distribution
of the Gaussian process Z . The no-empty-ball property is defined as follows.

Definition 3.11. [Vazquez and Bect, 2010, Definition 3] A Gaussian process Z , or
equivalently its covariance function k, has the no-empty-ball property if for all sequences
{ul}l∈N in Uad and all v ∈ Uad, the following statements are equivalent:

(i) v is an adherent point of the set {ul, l ∈ N},
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(ii) s2
l (v)→ 0 when l→ +∞, where s2

l (v) is the kriging variance, computed by (3.3).

For continuous covariance functions (such as the examples of Table 3.1), (i) always
implies (ii). The other implication means that if s2

l (v) goes to 0 for some v, then neces-
sarily, for all ε > 0, there is an observation in a ball of radius ε centered in v, i.e. there
is no empty ball centered in v. The Matérn covariance functions have the no-empty-ball
property but this is not the case of the Gaussian kernel. Hence, the convergence of
EGO is not ensured with the Gaussian covariance function. In fact, [Yarotsky, 2013]
even exhibits an explicit example where EGO with a Gaussian covariance function does
not converge. This observation is another argument to avoid using Gaussian kernels in
EGO besides the numerical difficulties that have been highlighted in §3.2.3.

The result of [Vazquez and Bect, 2010] holds only with fixed hyperparameters.
However, in practice, the hyperparameters are often estimated from the observations.
In this case, [Bull, 2011] shows that the algorithm may not converge. Nevertheless,
under some additional assumptions, [Bull, 2011] proves a convergence rate of O(l−1/d)
for EGO, where d is the dimension of the input space.

These theoretical convergence results allow to justify the use of EGO in practice as,
in some settings, it will asymptotically get close to a global optimizer. However, in the
expensive blackbox framework, only a limited budget is used, so the behavior of EGO
may not be well-described by asymptotical results. The performance of EGO depends
heavily on the user-defined settings of the algorithm (initial DOE, covariance function,
infill criterion, fixed or estimated hyperparameters). The choice of a particular setting
for EGO is based more upon empirical considerations than theoretical grounds.

3.3.4 An additional local optimization step for EGO
By design, the EGO algorithm is an exploratory algorithm as, asymptotically, it will
tend to reduce the uncertainty on the prediction at every point of the space (except
if we use an infill criterion that does not take into account the uncertainty, which is
not recommended in practice, see for instance §3.3.2.1). This space-filling behavior is
confirmed by the theoretical result of [Vazquez and Bect, 2010], given in §3.3.3, which
states that under some mild assumptions, the EGO algorithm produces a dense se-
quence of evaluation points in the input domain. The EGO algorithm is then efficient
in detecting regions of interest for the minimization of the objective function but is
not designed to find the precise location of a local minimum inside these regions. This
behavior was already pointed out in [Mohammadi, 2016, Chapter 4] where EGO is effi-
ciently coupled with the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
algorithm [Hansen and Ostermeier, 1996]. In the same fashion, we allocate a propor-
tion 0 < plocal < 1 of the overall evaluation budget to a local search step that is done
with the L-BFGS algorithm [Nocedal, 1980] after the EGO iterations. The EGO al-
gorithm coupled with L-BFGS is summarized in Algorithm 2, where the maximum
number of evaluations of f is set to M ∈ N.

3.4 Conclusion
In this chapter, we have presented an overview of GP regression and of the EGO
algorithm, which is adapted for blackbox optimization. We have focused on the theory
of GP modeling and on many practical aspects for the implementation of kriging, such
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Algorithm 2 The EGO algorithm with a final local optimization
Step 0. Choose an infill criterion and a class of covariance functions parametrized by

the hyperparameters θ and σ2. Let 0 < plocal < 1 be the proportion of the
budget to allocate to the local search.

Step 1. (Initial design step) Let Uo = {u1, . . . , ul} ⊂ Uad be an initial DOE.
(a) Evaluate f on Uo.
(b) Estimate the hyperparameters θ and σ2 by maximum likelihood.
(c) Compute the initial metamodel with (3.10) and (3.11).

Step 2. (Infill step) For i = l + 1, . . . , (1− plocal)M :
(a) Choose a new evaluation point ui ∈ Uad by optimizing the infill criterion. Let

Uo ← Uo⋃{ui} and evaluate f(ui).
(b) Update the estimation of hyperparameters θ and σ2 by maximum likelihood.
(c) Update the metamodel with (3.10) and (3.11).

Step 3. (Final local search) Run a local optimization with L-BFGS starting from the
current best point arg minu∈Uo f(u) with the remaining evaluation budget
plocalM .

Return. The best iterate of the L-BFGS algorithm.

as the choice of the initial DOE and of the covariance function. It comes out that
– without prior information on the function we wish to optimize – using an initial
optimized LHS design and a Matérn covariance function seems to be a relevant choice.
Theoretical arguments of §3.2.3.3 also support this choice. We emphasize that the
validation of the metamodel is essential to ensure that the kriging predictions are of
good quality. In an optimization purpose, we have described the EGO algorithm, that
takes advantage of the kriging predictions to build a sequence of evaluation points of
the objective function. The behavior of EGO is controlled by an infill criterion. We
have reviewed several existing infill criteria and have justified that the EI is a relevant
choice. We also consider a version of EGO coupled with a final optimization step to
find the precise location of a minimum once a region of interest is identified.

We aim at applying EGO to a small industrial maintenance optimization problem in
Chapter 6, where it will be compared to the MADS algorithm presented in Chapter 4.
The understanding of kriging and of the numerical and theoretical aspects developed in
this chapter provides the keys for an informed choice of the settings of EGO. Before the
industrial application of EGO, we introduce, in Chapter 5, a new variant to adaptively
choose the size of the initial DOE, which should make the algorithm more efficient than
with the fixed-size initial DOE used in this chapter.
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4 Direct search algorithms

Knowledge is a process of piling up
facts; wisdom lies in their
simplification.

Martin Henry Fischer
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CHAPTER 4. DIRECT SEARCH ALGORITHMS

4.1 Introduction to direct search algorithms
Similarly as in Chapter 3, we consider the problem of minimizing an expensive blackbox
function f : Uad → R with Uad ⊂ Rd. In this chapter, we focus on direct search
methods that gather algorithms sharing the following characteristics [Wright, 1996]:

1. They only use function values.

2. They do not approximate the gradient.
The second criterion might be slightly ambiguous but intends to exclude methods that
use finite differences to approximate the gradient. These features make direct search
methods a viable choice to solve optimization problems in the expensive blackbox set-
ting. A more pictorial description of direct search methods is given in [Powell, 1994]:
it consists in finding the deepest point of a muddy lake, given a boat and a plumb line,
when there is a price to be paid for each sounding. The term direct search already ap-
pears in [Hooke and Jeeves, 1961] where a first description of this class of methods can
be found. The original motivation for direct search algorithms was to solve practical
problems that were unsuccessfully attacked by classical methods such as Newton-based
algorithms. The first direct search methods were proposed in the 1950s and 1960s, at
the time of the first digital computers. As direct methods require less computational
effort than classical methods – the choice of evaluation points is based on simple rules
and do not require to construct a local approximation of the objective function – they
were particularly appealing in these early years of numerical optimization where only
a limited computational power was available. The very first example of a direct search
method is the coordinate search attributed to [Fermi et al., 1954] (and concisely de-
scribed in [Davidon, 1991]) which used one of the first computers to fit some theoretical
parameters (phase shifts) to experimental data (scattering cross sections).

The development of direct search methods really took off in the 1960s with simplex-
based methods introduced by [Spendley et al., 1962] and the popular Nelder-Mead al-
gorithm [Nelder and Mead, 1965]. Simplex-based methods evaluate f on the vertices
of a simplex. At iteration l+ 1, a new simplex is constructed using a simple transform-
ation such as a reflection, a contraction or an expansion of the current simplex. The
transformations are chosen so that the simplex moves and shrinks around the optimum.
The Nelder-Mead algorithm has encountered a large success in practice but shows a
wide range of performance depending on the problem at hand [Wright, 1996]. In his
thesis [Woods, 1985], Woods even provides an example where the procedure converges
to a non-critical point. The Nelder-Mead algorithm was designed so that the simplex
adapts to the local landscape of the function, with the drawback that it is drastic-
ally deformed with a small volume for ill-conditioned functions. This feature may be
responsible for both the successes and the failures of the method [Wright, 1996].

The lack of theoretical guarantees for the convergence of the Nelder-Mead algorithm
is one of the main flaws of the method. A first direct search algorithm with strong con-
vergence properties is the multidirectional search method proposed by [Torczon, 1989].
This simplex-based method also belongs to the class of pattern search methods, in-
troduced in [Hooke and Jeeves, 1961], and for which theoretical guarantees are given
in [Torczon, 1997]. The idea of pattern search methods is to generate points only on a
scaled lattice, hence avoiding the degeneration of the simplex. This lattice structure is
at the heart of the convergence proofs of these algorithms. The interested reader can
refer to [Torczon and Trosset, 1998] for a more detailed exposition of the key features
of pattern search methods that the Nelder-Mead algorithm lacks.
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The ultimate goal of Part I of the thesis is to solve a maintenance optimization
problem where the objective function is given as a blackbox. In Chapter 3, we have
presented the EGO algorithm for this task. In this chapter, we study direct search
methods, that are another class of algorithms adapted to blackbox optimization.

Contributions. We carry out a bibliographical review of the Generalized Pattern
Search (GPS) algorithm in Section 4.2 and of its generalization in Section 4.3, called
the Mesh Adaptive Direct Search (MADS) algorithm. We give a detailed description
of the functioning of these methods as well as the associated theoretical guarantees.
The role of this chapter is to give the reader all the necessary material to understand
the philosophy behind the MADS algorithm. We will then be able, in Chapter 6, to
give a critical interpretation of the comparative performance of MADS and EGO when
applied to blackbox optimization problems.

4.2 Generalized Pattern Search (GPS)
The GPS algorithm has first been introduced in [Torczon, 1997] and exhibits theoretical
convergence properties. In §4.2.1, we describe the GPS algorithm using the terminology
of [Audet and Dennis, 2002] as in our view it is easier to work with. Then, in §4.2.2,
we give the associated theoretical convergence results. The GPS algorithm falls into
the general class of pattern search methods as defined by [Torczon, 1997].
Definition 4.1. A lattice M ⊂ Rd is a set of the form:

M =
{

d∑
i=1

aivi

∣∣∣∣ ai ∈ Z, ∀i ∈ {1, . . . , n}
}
,

where the family of vectors (v1, . . . , vd) is a basis of Rd. Hence, a lattice is the set of all
linear combinations with integer coefficients of the elements of the basis (v1, . . . , vd).

Figure 4.1 shows three examples of lattice in R2. The basis vectors are drawn in
red and the black points represent a finite subset of the elements of the lattice.

v1

v2

v1

v2
v1

v2

Figure 4.1: Examples of lattice in R2.

Pattern search methods are formally defined in [Torczon, 1997]. Here, we slightly
reformulate the original definition in order to make it clearer in our view, using the
concept of ρ-M compatibility defined below.
Definition 4.2. Let ρ = {ρn}n∈N be a strictly positive real sequence and M be a
lattice in Rd. A sequence {ul}l∈N of elements of Rd is said to be ρ-M compatible if for
all n ∈ N, the steps {ul+1 − ul}1≤l≤n−1 lie in the scaled lattice ρnM .
Definition 4.3. An algorithm with iterates {ul}l∈N is said to be a pattern search
algorithm if there exists a strictly positive real sequence ρ = {ρn}n∈N and a lattice M
such that the sequence {ul}l∈N is ρ-M compatible.
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4.2.1 Description of the GPS algorithm
We start with some definitions for the description of the GPS algorithm.

Definition 4.4. A set S ⊂ Rd is called a positive spanning set if every element of Rd

can be written as a nonnegative linear combination of elements of S.

Definition 4.5. A pattern is a positive spanning set S = {s1, . . . , sk} ⊂ Zd i.e. the
elements of S are integer vectors.1 By abuse of notation, we also denote by S ∈ Rd×k

the matrix with columns s1, . . . , sk.

Figure 4.2 shows examples of pattern in R2. In dimension d, the smallest pattern
contains d + 1 vectors. We can consider arbitrarily rich patterns in general, but for
the algorithms of this chapter, we always consider the pattern S = {s1, . . . , s2d} =
{±ei}1≤i≤d that consists of the canonical basis of Rd completed with its opposite,
represented on the left plot of Figure 4.2.

s1

s2

s3

s4

s1

s2

s3

s1

s2s3s4

s5

s6 s7 s8

Figure 4.2: Examples of pattern in R2.

Now, we introduce the notions of mesh and frame that are essential to describe the
iterations of the GPS algorithm.

Definition 4.6. Let S be a pattern and ul be the l-th iterate of the GPS algorithm.

1. We define the current mesh Ml as:

Ml =
{
ul + ∆m

l Sy, y ∈ Nk
}
, (4.1)

where ∆m
l > 0 is called the mesh size parameter.

2. Let Sl ⊂ S be a positive spanning set. We define the frame Pl centered in ul as:

Pl = {ul + ∆m
l s, s ∈ Sl} . (4.2)

The set Sl is referred as the set of polling directions at iteration l.

An iteration of the GPS algorithm consists of two steps: a search step and a poll
step. We denote by ul the iterate of the GPS algorithm at iteration l.

1 In fact, the general definition of a pattern allows S to be of the form S = GZ with G ∈ Rd×d
being a invertible matrix and Z ∈ Zd×k. However, as G is taken to be the identity in the manuscript,
we choose a simplified definition of a pattern.
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1. The search step consists in evaluating the objective function f on a finite number
of points (which can be none) lying on the mesh Ml. The requirement that
evaluation points belong to Ml ensures that the iterates lie on a scaled lattice,
see [Audet and Dennis, 2002, Proposition 3.4]. The search step is very flexible
and acts as an exploratory phase: any user-defined strategy or heuristics can be
used to choose some evaluation points. For instance, [Booker et al., 1999] uses
a surrogate to choose promising points. We just need to ensure that the search
step terminates after a finite number of evaluations of f . During the search step,
if we find a point ul+1 such that f(ul+1) < f(ul), the iteration terminates and
the mesh size parameter ∆m

l is unchanged or increased. The iteration is said to
be successful and ul+1 is said to be an improved mesh point. Otherwise, we go
on to the poll step.

2. In the poll step, we evaluate f on the frame Pl. Note that Pl ⊂ Ml. The frame
Pl consists of points of the mesh Ml that are in the neighborhood of the current
iterate ul.

• If we find a point uil ∈ Pl such that f(uil) < f(ul), then uil is called an
improved mesh point. We set ul+1 = uil and ∆m

l is unchanged or increased.
The iteration is said to be successful.

• Otherwise, the iteration is unsuccessful. We set ul+1 = ul and we decrease
the mesh size parameter. This allows to consider evaluation points closer to
the current best solution at the next iteration.

We will see in §4.2.2 that the convergence analysis of GPS only relies on the poll
step, this is why the search step is very flexible. However, this search step has a
important influence on the practical performance of the algorithm as good heuristics
or surrogate techniques can greatly speed up the method.

Remark 4.7. We give some precisions on the requirements and the choice for the positive
spanning sets S and Sl.

1. The requirement that Sl (and therefore S) is a positive spanning set ensures that
it contains at least one vector in each half space. If f is Gateaux-differentiable
and ul is not a critical point, then there exists in Sl at least one descent direction
for f at ul. The reduction of the mesh size parameter guarantees that there will
be only a finite number of unsuccessful iterations.

2. The frame Pl is defined by a positive spanning set Sl ⊂ S that is chosen by
the user at each iteration of the algorithm. When the problem of interest (2.1)
is a bound constrained problem, we can simply take S = {±ei}1≤i≤d being the
canonical basis of Rd completed with its opposite. Then, we take Sl = S at
each iteration of the GPS algorithm. The generality of Definition 4.6 is useful
for linearly constrained problem. In this case, when iterates are generated near
the boundary of the admissible set Uad, we must be able to choose a set Sl ⊂ S
of polling directions that is adapted to the geometry of Uad, i.e. we require that
Sl is a positive spanning set of some tangent cone of Uad. Hence, the set S
must be rich enough so that an adapted choice for Sl is possible. We can refer
to [Audet and Dennis, 2002, §3.5] for more details. ♦
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In order to precise the mesh size parameter update rule, let q > 1 be a rational
number and a− ≤ −1, a+ ≥ 0 be two integers. The mesh size parameter is updated as
follows:

∆m
l+1 = qal∆m

l , (4.3)

with:

al ∈
{

{0, 1, . . . , a+} if the iteration is successful ,
{a−, a− + 1, . . . ,−1} if the iteration is unsuccessful .

This formulation includes very general rules for the mesh size parameter update. The
general idea is to increase or keep the same mesh size parameter when the iteration
is successful (qal ≥ 1) and to decrease the mesh size parameter when the iteration is
unsuccessful (qal < 1). The strategy to choose al within {0, . . . , a+} (for a successful
iteration) or {a−, . . . ,−1} (unsuccessful iteration) is defined by the user.
Example 4.8. The case where ∆m

l remains unchanged for a successful iteration and is
divided by 2 for an unsuccessful iteration corresponds to q = 2, a+ = 0, a− = −1. 4

The GPS algorithm is summarized in Algorithm 3. The termination criterion is a
maximum number of iterations or a maximum number of evaluations of the objective
function.

Algorithm 3 The GPS algorithm
Initialization: Let N > 0 be the maximum number of iterations. Choose a pattern
S and the parameters q, a+, a− of the mesh size update rule. Let u0 ∈ Uad and
∆m

0 > 0.
Iteration: For l = 0, . . . , N − 1, let ul be the current iterate. Let Ml and Pl be the

mesh and the frame defined by (4.1) and (4.2) respectively.

Search step: Evaluate f on a finite number n of points, possibly zero, of the mesh
Ml with any user-defined strategy. Denote by {u1

l , . . . , u
n
l } the set of search points.

– If an improved mesh point uil is found, 1 ≤ i ≤ n, i.e. f(uil) < f(ul), set ul+1 = uil:
the iteration is successful, go to the mesh size parameter update step.

– Otherwise:
Poll step: Denote by {un+1

l , . . . , upl } the set of points in the frame Pl. Evaluate
f on {un+1

l , . . . , upl }.
∗ If an improved mesh point uil is found, n + 1 ≤ i ≤ p, i.e. f(uil) < f(ul), set
ul+1 = uil: the iteration is successful.

∗ If no improved mesh point is found, set ul+1 = ul: the iteration is unsuccessful.
Mesh size parameter update: Compute ∆m

l+1 according to (4.3).

Return the current best point uN .

Proposition 4.9. The GPS algorithm is a pattern search algorithm in the sense of
Definition 4.3.
Proof. Since the iterates of the algorithm satisfy ul+1 ∈ Ml for all l ∈ N, there exists
yl ∈ Nk such that:

ul+1 − ul = ∆m
l Syl .
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Moreover, from the update rule (4.3), we deduce that for all l ∈ N, there exists bl ∈ Z
such that ∆m

l = qbl∆m
0 . Let n ∈ N and introduce:

b−n = min{b0, . . . , bn} and b+
n = max{b0, . . . , bn} .

As q ∈ Q, we can write q = α
β
with α and β being relatively prime integers, so that:

ul+1 − ul = αb
−
n

βb
+
n

∆m
0

(
αbl−b

−
n βb

+
n−blSyl

)
.

By definition, the matrix S has integer coefficients. Moreover, αbl−b−n βb+
n−bl ∈ N and

yl ∈ Nk, therefore the vector
(
αbl−b

−
n βb

+
n−blSyl

)
has integer coefficients, showing that it

belongs to the latticeM generated by the canonical basis of Rd. With ρn = αb
−
n

βb
+
n

∆m
0 > 0,

we get that ul+1 − ul ∈ ρnM so that the GPS algorithm is indeed a pattern search
method. �

Specific pattern search methods can be distinguished by three factors: the choice
of the pattern S, the manner in which the research of an iterate among the set of
evaluation points is conducted and the rule for the mesh size parameter update (i.e.
the values of q, a+, a−).
Example 4.10. We specify the pattern S and the mesh size parameter update rule
for the coordinate search algorithm. Coordinate search is described concisely by
[Davidon, 1991] when he reports the methodology of [Fermi et al., 1954]: they var-
ied one theoretical parameter at a time by steps of the same magnitude, and when no
such increase or decrease in any one parameter further improved the fit to the exper-
imental data, they halved the step size and repeated the process until the steps were
deemed sufficiently small. Coordinate search is a pattern search algorithm with the
pattern S = {±ei}1≤i≤d. At iteration l, let ul be the current iterate and ∆m

l be the
mesh size parameter. No search step is performed and in the poll step, we take Sl = S.
The objective function is then evaluated on the points of the frame:

Pl = {ul ±∆m
l ei, 1 ≤ i ≤ d} .

If an improved mesh point is found, ∆m
l is unchanged, otherwise it is divided by 2.

This corresponds to the update rule (4.3) with q = 2, a+ = 0 and a− = −1.
We can find the explicit values of S and of the mesh size parameter update rule

in [Torczon, 1997] for some other pattern search algorithms. 4
Example 4.11. Figure 4.3 represents an example for the mesh Ml and the frame Pl =
{p1

l , p
2
l , p

3
l } at successive iterations of the GPS algorithm. We have supposed that

S = {(a, b) 6= (0, 0), a, b ∈ {−1, 0, 1}}, this pattern corresponds to the right plot of
Figure 4.2. At each iteration, the set of polling directions Sl is chosen as a subset of S
that is a positive spanning set of R2.

4.2.2 Convergence results
The convergence of pattern search methods has been established in the unconstrained
case [Torczon, 1997], in the bound constrained case [Lewis and Torczon, 1999] and in
the linearly constrained case [Lewis and Torczon, 2000]. A convergence analysis of the
GPS algorithm is also done in [Audet and Dennis, 2002] in the linearly constrained
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Figure 4.3: Example of mesh Ml and frame Pl = {p1
l , p

2
l , p

3
l } at successive (unsuccessful)

iterations of the GPS algorithm. The mesh Ml consists of the intersections of the lines, the
trial points of Pl are represented by black points. 4

case. The results show that when f is smooth, the GPS algorithm converges to a
stationary point of f . The theoretical convergence analysis relies only on the poll step,
this is why much flexibility is allowed in the search step. We start by some definitions.

Definition 4.12. Let {ul}l∈N be the sequence of iterates of the GPS algorithm:

• If iteration l is successful (i.e. f(ul+1) < f(ul)), ul+1 is said to be an improved
mesh point.

• If iteration l is unsuccessful (i.e. ul+1 = ul), then ul is said to be a mesh local
optimizer : ul+1 has a lowest objective function value than its neighboring mesh
points.

• A subsequence {uσ(l)}l∈N consisting of mesh local optimizers is a refining sub-
sequence if {∆m

σ(l)}l∈N converges to zero.

Definition 4.13. A function f : Rd → R is locally Lipschitz near u ∈ Rd if there exists
A > 0 and ε > 0 such that:

|f(v)− f(w)| ≤ A ‖v − w‖ , ∀v, w ∈ B(u, ε) ,

where B(u, ε) is the open ball of radius ε centered in u.

Definition 4.14. [Clarke, 1990] Let f : Rd → R be a locally Lipschitz function near
u ∈ Rd.

• The Clarke generalized directional derivative of f at u in the direction s ∈ Rd is
defined as:

f ◦(u; s) = lim sup
v→u, v∈Uad

t↓0, v+ts∈Uad

f(v + ts)− f(v)
t

.

• A point u ∈ Rd is a Clarke stationary point2 of f if f ◦(u; s) ≥ 0 for all s ∈ Rd.
2 The definition of a Clarke stationary point is given here in the unconstrained case. In the con-

strained case, u is a Clarke stationary point of f if and only if f◦(u; s) ≥ 0 for all s in the Clarke
tangent cone to Uad at u. We refer to [Audet and Dennis, 2006, Definition 3.5] for the definition of
the Clarke tangent cone.
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We can now give the main convergence result of the GPS algorithm.

Theorem 4.15. [Audet and Dennis, 2002] There exists at least one converging refining
subsequence. Let u] be the limit of such a sequence. Assume that f is locally Lipschitz
near u], then the Clarke generalized directional derivative of f at u] is nonnegative for
a finite set of directions Ŝ ⊂ S, that is f ◦(u]; s) ≥ 0 for all s ∈ Ŝ.3

In fact, the results of Theorem 4.15 cannot be improved in the sense that the
GPS algorithm does not converge to a Clarke stationary point in general, as shown
by Example F of [Audet, 2004]. The fact that the generalized derivative is provably
nonnegative only for a finite set directions comes from the restriction to a finite set S
of polling directions [Audet and Dennis, 2006]. This observation is the motivation for
considering a version of the algorithm that can generate a set of normalized polling
directions that is dense in the unit sphere of Rd: this is the goal of the Mesh Adaptive
Direct Search algorithm.

4.3 Mesh Adaptive Direct Search (MADS)

In this section, we present the MADS algorithm of [Audet and Dennis, 2006]. MADS
is similar to GPS with the only difference that a dense set of polling directions are
considered.

4.3.1 Description of the algorithm
In GPS, the fineness of the mesh Ml and of the frame Pl is defined by a unique mesh
size parameter ∆m

l . In MADS, a new parameter ∆p
l > 0 is introduced, called the poll

size parameter. The poll size parameter controls the maximal distance between the
current iterate ul and the evaluation points that are considered during the poll step.
In a sense, ∆p

l defines what is considered as a neighborhood of the current iterate. The
poll size parameter ∆p

l must satisfy two conditions:

(a) ∀l ∈ N, ∆m
l ≤ ∆p

l .

(b) For any subsequence index {σ(l)}l∈N:

lim
l∈N

∆m
σ(l) = 0 if and only if lim

l∈N
∆p
σ(l) = 0 .

In GPS, the frame Pl (4.2) is defined from a set of polling directions Sl ⊂ S, usually
Sl = S = {±ei}1≤i≤d. In MADS, the pattern S is similar as in GPS but more freedom
is allowed for the set of the polling directions Sl. Before introducing the new polling
directions, we need some technical definitions.

Definition 4.16. Let S = {s1, . . . , sk} be a subset of Rd. We introduce the normalized
set S̄ as the set of normalized vectors from S:

S̄ =
{
s1

‖s1‖
, . . . ,

sk

‖sk‖

}
.

3 The set of directions Ŝ will become clear in §4.3.2, this is the set of refining directions of the GPS
algorithm, see Definition 4.19.
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Definition 4.17. [Coope and Price, 2000] Let {Sl}l∈N be a sequence of subsets of Rd.
A set S∞ = {s1

∞, . . . , s
k
∞} is a CP-limit of the sequence of sets {Sl}l∈N if there exists a

subsequence {Sσ(l)}l∈N of {Sl}l∈N such that the sets Sσ(l) = {s1
σ(l), . . . , s

k
σ(l)} are all of

cardinality k and that:

lim
l→∞

siσ(l) = si∞, i ∈ {1, . . . , k} .

We can now present the conditions that must be satisfied by the polling directions
in the MADS algorithm.

Definition 4.18. Let S be pattern and ∆m
l ,∆

p
l > 0 be mesh and poll size parameters

satisfying conditions (a) and (b). At iteration l of MADS, the set of polling directions
Sl is a positive spanning set such that for all s ∈ Sl:

(i) s is a nonnegative integer combination of elements of S i.e. there exists y ∈ Nk

such that s = Sy.

(ii) ∆m
l ‖s‖ ≤ ∆p

l max {‖s′‖ , s′ ∈ S}, where ‖·‖ is the Euclidean norm in Rd.

(iii) The CP-limits of the normalized sets S̄l are positive spanning sets.

In MADS, the frame Pl is defined as:

Pl = {ul + ∆m
l s, s ∈ Sl} , (4.4)

with polling directions Sl taken as in Definition 4.18. Therefore, Sl is not restricted
to be subset of the pattern S as in GPS and we have more freedom for the poll
step. The parameter ∆p

l determines how far on the mesh we can go to construct
these polling directions as illustrated on Figure 4.4. The bold black square allows to
visualize condition (ii) of the definition of Pl: the evaluation points of the poll step
must be points of the mesh that are inside the square. We see that when ∆m

l decreases
faster than ∆p

l , MADS can choose among a larger and larger set of polling directions:
the possible directions are defined by all the mesh points inside the black square. In
Figure 4.4, three of these possible directions are selected at each iteration.

ul ul+1
ul+2

p1
lp2

l

p3
l

p1
l+1

p2
l+1

p3
l+1

p1
l+2

p2
l+2

p3
l+2

∆m
l = 1, ∆p

l = 1 ∆m
l+1 = 1

4 , ∆p
l+1 = 1

2 ∆m
l+2 = 1

16 , ∆p
l+2 = 1

4

Figure 4.4: Example of mesh Ml and frame Pl = {p1
l , p

2
l , p

3
l } at successive (unsuccessful)

iterations of the MADS algorithm. The mesh Ml consists of the intersections of the lines, the
evaluation points of Pl are represented by black points.

MADS is summarized in Algorithm 4 and has the same structure as GPS. In the
case where ∆m

l = ∆p
l for all l, we exactly get the GPS algorithm.
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Algorithm 4 The MADS algorithm
Initialization: Let N > 0 be the maximum number of iterations. Choose a pattern
S and the parameters q, a+, a− of the mesh size update rule. Let u0 ∈ Uad and
∆m

0 ,∆
p
0 > 0.

Iteration: For l = 0, . . . , N − 1, let ul be the current iterate. Let Ml and Pl be the
mesh and the frame defined by (4.1) and (4.4) respectively.

Search step: Evaluate f on a finite number n of points, possibly zero, of the mesh
Ml with any user-defined strategy. Denote by {u1

l , . . . , u
n
l } the set of search points.

– If an improved mesh point uil is found, 1 ≤ i ≤ n, i.e. f(uil) < f(ul), set ul+1 = uil:
the iteration is successful, go to the mesh size parameter update step.

– Otherwise:
Poll step: Denote by {un+1

l , . . . , upl } the set of points in the frame Pl. Evaluate
f on {un+1

l , . . . , upl }.
∗ If an improved mesh point uil is found, n + 1 ≤ i ≤ p, i.e. f(uil) < f(ul), set
ul+1 = uil: the iteration is successful.

∗ If no improved mesh point is found, set ul+1 = ul: the iteration is unsuccessful.
Mesh size parameter update: Compute ∆m

l+1 and ∆p
l+1 according to (4.3) and

in order to satisfy conditions (a) and (b).

Return the current best point uN .

4.3.2 Convergence results
The convergence analysis of MADS is carried out in [Audet and Dennis, 2006]. The
notions introduced in Definition 4.12 are still valid for MADS. We define the concept
of refining direction that is at the heart of the convergence results of MADS.

Definition 4.19. Let u] be the limit of a refining subsequence {uσ(l)}l∈N. Suppose that
there exists a subsequence of normalized polling directions

{
sτ(σ(l))/

∥∥∥sτ(σ(l))
∥∥∥}

l∈N
, with

sτ(σ(l)) ∈ Sτ(σ(l)), which converges to a limit s ∈ Rd and that uτ(σ(l)) + ∆m
τ(σ(l))sτ(σ(l)) ∈

Uad for all l. Then, the limit s is a refining direction for u].

We give the convergence result of MADS in the case where the limit point of the
algorithm is in the interior of the domain. In particular, the following result is valid in
the unconstrained case Uad = Rd.

Theorem 4.20. Let u] be the limit of a refining subsequence. Assume that u] ∈
int(Uad) and that f is Lipschitz continuous near u]. If the set of refining directions for
u] is dense in the unit sphere of Rd, then u] is a Clarke stationary point.

Remark 4.21. The convergence result is still valid if u] is on the boundary of the
domain Uad. We have only cited the case where u] ∈ int(Uad) in order to avoid some
technicalities that may not be useful to capture the essence of the point. The interested
reader can refer to [Audet and Dennis, 2006] for the complete results and proofs. ♦

The key point to guarantee the convergence of MADS to a stationary point is the
density of the refining directions. In the convergence result of GPS (Theorem 4.15),
the set Ŝ is in fact the set of refining directions for GPS. As refining directions are a
subset of normalized polling directions, they can only be in finite number for GPS.
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4.3.3 The OrthoMADS implementation of MADS
In the general description of MADS, nothing ensures that the set of refining directions
is dense. For example, GPS is a valid instance of MADS. In order to use MADS in
practice, we need to specify an implementation of the algorithm, that is, an expli-
cit strategy for the mesh size parameters update and an appropriate choice for the
polling directions Sl. The first implementation of MADS that has been described is
LTMADS [Audet and Dennis, 2006] where the polling directions are constructed from
a random lower triangular basis matrix. LTMADS is a stochastic instance of MADS as
some randomness is used in the choice of the polling directions. Here, we present the
implementation OrthoMADS [Abramson et al., 2009] that generates at each iteration
a set of polling directions which consists of an orthogonal basis and its opposite. The
advantage of OrthoMADS is that the polling directions are chosen deterministically
which allows for repeatability of the algorithm on a given problem.

4.3.3.1 Construction of the polling directions

In OrthoMADS, we take the pattern S = {±ei}1≤i≤d, that consists of the canonical
basis of Rd and its opposite. The construction of the set of polling directions Sl is
based the Halton sequence in [0, 1]d, here denoted by {vt}t∈N [Halton, 1960]. The
density of the polling directions will follow from the density of the Halton sequence
in the hypercube [0, 1]d. Recall that the elements of Sl must be nonnegative integer
combinations of elements of S (condition (i) in Definition 4.18), that is, integer vectors.
This property is not satisfied by the Halton sequence so we cannot use it directly. The
construction of Sl is done in three steps, that are illustrated on Figure 4.5:

1. The direction vt is translated, scaled and rounded to generate an adjusted Halton
direction at,r ∈ Zd, where r ∈ N is a parameter of the transformation such that the
norm of at,r is close to 2|r|/2 without exceeding it. The vector at,r is constructed
such that the normalized direction at,r

‖at,r‖ is close to
2vt−1d
‖2vt−1d‖

where 1d = (1, . . . , 1)>.

2. We apply the Householder transform [Householder, 1958] to at,r ∈ Zd in order to
construct an orthogonal basis of Rd composed of integer vectors:

Ht,r = ‖at,r‖2 Id − 2at,ra>t,r .

The columns of the matrix Ht,r form an integer orthogonal basis for Rd.

3. The set Sl is only determined by values tl ∈ N and rl ∈ Z that parametrize the
construction of the orthogonal basis Htl,rl . The set Sl is composed of the columns
of Htl,rl and their opposite:

Sl =
(
Htl,rl −Htl,rl

)
.

4.3.3.2 Mesh size update rule and choice of the parameters tl and rl

In order to fully specify the OrthoMADS instance, we need to give the explicit rule
for the mesh size and poll size parameters update and for the choice of tl and rl. At
iteration l = 0, we set ∆m

0 = ∆p
0 = 1 and l0 = 0.

• If iteration l is unsuccessful, then rl+1 = rl + 1.
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1

1

1

1
1

1

vt
at,r

√
8 2vt−1d

‖2vt−1d‖

Ht,re1

−Ht,re2

−Ht,re1

Ht,re2

Adjusted HaltonHalton Poll directions

Scaling and rounding Householder

Figure 4.5: Example of the construction of polling directions from [Abramson et al., 2009]
with d = 2 and (t, r) = (6, 3). The Halton direction is vt = (3/8, 2/9)> and the adjusted
Halton direction is at,r = (−1,−2)>. We have Ht,re1 = (3,−4)> and Ht,re2 = (−4,−3)>.

• Otherwise, rl+1 = rl − 1.

The mesh size parameters are then updated as follows:

∆p
l = 2−rl and ∆m

l =
{

4−rl if rl > 0 ,
1 otherwise . (4.5)

We always have ∆m
l ≤ ∆p

l and 2|rl|∆m
l = ∆p

l . The update rule (4.5) fits into the general
framework (4.3) with q = 4, a+ = 1 and a− = −1. We see that in unsuccessful itera-
tions, the parameter ∆m

l decreases faster than ∆p
l which corresponds to the illustration

of Figure 4.4 and is key to generate a dense set of polling directions.
The choice of tl is also important to generate a dense set of polling directions. We

store the smallest poll size value that is used before iteration l:

∆p
≤l,min = min{∆p

j , 0 ≤ j ≤ l} .

• If, at iteration l, we have ∆p
l = ∆p

≤l,min, i.e. the current poll size is the smallest
poll size used so far, then we set tl = rl + d+ 1.

• For the other iterations, we just set tl+1 = tl + 1.

Consider the sequence of ordered indices:

L = {l1, l2, . . .} =
{
l ∈ N, iteration l is unsuccessful and ∆p

l = ∆p
≤l,min

}
.

From our choice of tl and rl, we have (tlj , rlj) = (d + j, j − 1) for j ∈ N. The Halton
sequence {vtl}l∈L is then exactly {vt}t≥d+1. We can then use the density of the Halton
sequence to show that for i ∈ {1, . . . , 2d}, the set of normalized polling directions
{Slei/ ‖Slei‖}l∈L is dense in the unit sphere of Rd. Finally, note that we have ‖Slei‖ ≤
2|rl|, therefore:

∆m
l ‖Slei‖ ≤ ∆p

l .
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This corresponds to condition (ii) of Definition 4.18 meaning that the trial points of
the poll step indeed lie in the black square of Figure 4.4.

OrthoMADS is a valid implementation of MADS that satisfies all the necessary
conditions to ensure the convergence of the algorithm to a Clarke stationary point of
the objective function f .

4.4 Conclusion
This chapter gives an overview of direct search methods and more precisely of pattern
search algorithms. This class of methods is suited to tackle expensive blackbox op-
timization problems. We have described the GPS algorithm and highlighted the ideas
that have led to the design of MADS. The key feature of MADS is that it is possible to
generate a dense set of polling directions, which allows to strengthen the convergence
results compared to GPS. We have presented the explicit implementation OrthoMADS
that satisfies the requirements for these strong theoretical results. We must also keep
in mind that the practical performance of a pattern search method depends on the
user-defined strategy in the search step. In Chapter 6, we present a comparison of
the performance of MADS and EGO, introduced in Chapter 3, both on an academic
benchmark and on a industrial maintenance optimization problem.
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5 Two contributions for EGO

To doubt everything or to believe
everything are two equally
convenient solutions; both dispense
with the necessity of reflection.

Henri Poincaré
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5.1 Introduction

We are still concerned with the optimization problem (2.1) of minimizing f : Uad → R
in an expensive blackbox setting. In Chapter 3, we have presented the EGO algorithm
that is adapted to this framework and focused on several practical aspects for the
implementation of the method. In this chapter, we come back on the two following
points.

1. We have highlighted that the initial design of experiments (DOE) should have
space-filling properties for an efficient implementation of the method. The reason
is that the infill criterion driving the choice of the next evaluation point in EGO
is only computed from the metamodel. Hence, the algorithm achieves good per-
formance only if the metamodel of f built from the initial design is sufficiently
accurate. Most of the time, the size of the initial DOE is fixed using heuristic
criteria that depend on the dimension d of the input space but not on the func-
tion to be optimized [Jones et al., 1998, Loeppky et al., 2009]. Hence, the size of
the initial DOE may be either too small or too large for an optimal efficiency of
the algorithm.

2. As stated in §3.3.2, we use the EI as infill criterion for EGO. However, the EI
is difficult to optimize as it has many local maximizers and is very flat outside
these local maxima. Choosing an efficient solver for the EI maximization is then
a challenging task. This choice is almost always based on heuristic arguments in
the literature, yet it heavily influences the behavior of the EGO algorithm.

Contributions. In order to tackle the aforementioned challenges, we propose the
following approach.

1. In Section 5.2, we use a fully sequential space-filling (FSSF) initial design and
assess the quality of the metamodel after each evaluation of the objective function
f . Once the metamodel is accurate enough, we launch the infill step of the EGO
algorithm. Hence, the size of the initial design is adapted to the difficulty of
the problem and the evaluation budget is efficiently allocated between the initial
experimental design and the core step of the EGO procedure. This new variant
of EGO is called EGO-FSSF, standing for EGO with fully sequential space-filling
design.

2. Section 5.3 is devoted to the choice of a solver for the EI maximization. We carry
out a benchmark to assess the performance of various solvers for this particular
task and provide quantitative arguments to choose the most efficient solver.

5.2 The EGO-FSSF algorithm
In this section, we present a new variant of the EGO algorithm, called EGO-FSSF,
where the usual fixed-size initial design is replaced by a sequential design of adaptive
size that still preserves space-filling properties.

Step 1 of the EGO algorithm 1 consists in evaluating the objective function on a
fixed-size initial DOE. Possible choices for the DOE have been presented in §3.2.2. A
natural question we face is the choice of the number of points in the initial design.
If this number is too low, the metamodel may not be accurate enough and the EGO
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procedure may fail [Jones, 2001], especially in the case where f presents multiple local
minima. On the other hand, if too many points are used, the remaining budget for
the EGO procedure might be too low to get a satisfactory result. In the literat-
ure, a common rule of thumb is to choose a number of samples for the initial DOE
that is proportional to the input dimension d. Some authors explicitly choose 10d
samples [Jones et al., 1998, Loeppky et al., 2009]. However, for a given input dimen-
sion d, this rule does not adapt to the difficulty of the problem. For example, in order
to construct a metamodel with a given accuracy, fewer points may be needed for a
smooth convex function than for a multimodal function. This is why we propose to use
a FSSF design [Shang and Apley, 2020] instead of a fixed-size initial design in order to
adaptively choose the number of samples in the initial DOE.

5.2.1 Description of the algorithm
In the original EGO procedure (Algorithm 1), the first metamodel is constructed after
ldoe evaluations of the objective function f where ldoe is the predetermined size of the ini-
tial DOE. In EGO-FSSF, the initial step consists in sequential evaluations of the object-
ive function f with an update of the metamodel after each observation. The sequence of
evaluation points is determined by the FSSF-fr design of [Shang and Apley, 2020]. De-
tails on the construction of this design are given in §5.2.2. The quality of the metamodel
is assessed after each evaluation of f by computing the predictivity coefficient Q2 and
the PVA by leave-one-out cross validation (see §3.2.4). Once the metamodel accur-
acy reaches user-defined thresholds Q2

min and PVAmax, or when a maximum number of
evaluations pinitM is done, with 0 < pinit < 1 and M the overall budget, we go on to
the infill step. We expect that this procedure efficiently splits the budget between the
initial design (Step 1) and the infill step (Step 2).

The EGO-FSSF is summarized in Algorithm 5. We also consider the local optim-
ization step of Algorithm 2 as it has proved its efficiency in [Mohammadi, 2016]. The
performance of EGO-FSSF is compared to the classical EGO algorithm in Chapter 6.

5.2.2 Construction of the FSSF design
The sequential design we use is the FSSF design of [Shang and Apley, 2020], more
precisely the FSSF-fr variant ("fr" stands for forward-reflected). We have already seen
in §3.2.2 that space-filling properties are essential to get a metamodel of good quality.
The challenge in constructing a sequential space-filling design is that it must retain
good space-filling properties for each size. For example, designs produced with 10
points and 20 points must be as space-filling as possible, the design of size 10 being a
subset of the design of size 20. This is illustrated in Figure 5.1. The construction of
these designs is conceptually different from designs that are optimized for a predefined
size, such as LHS designs, where the location of all points is decided at the same time.
If we remove one point from a LHS design, it will have poor space-filling properties.

We summarize the construction of the FSSF-fr design. We start with a candidate
set of points S ⊂ Uad that covers the domain Uad fairly densely, for example a Sobol
sequence with lsob points. We choose lsob so that lsob � ldoe where ldoe is the maximum
number of points needed in the sequential design. The value lsob = 1000d+2ldoe (where
d is the dimension of the domain) is used in [Shang and Apley, 2020] and ldoe = pinitM
for the EGO-FSSF algorithm. Denote by Si = {u1, . . . , ui} ⊂ S the design with i
points. The design Si+1 is constructed from Si to which we add the point ui+1 ∈ S
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Algorithm 5 The EGO-FSSF algorithm
Initialisation. Choose an infill criterion and a class of covariance functions paramet-

rized by the hyperparameters θ and σ2. Define:
• M > 0 the maximum number of evaluations of the objective function f ,
• 0 < pinit, plocal < 1 respectively the maximum proportion of the budget

used for the sequential initial DOE and the proportion of the budget
allocated to the final local search.

• Q2
min < 1 the predictivity threshold and PVAmax > 0 the PVA threshold,

Evaluate f at u1, u2 ∈ Uad and construct a first metamodel. Set i = 2.
Step 1. While (Q2 < Q2

min or PVA > PVAmax) and i < pinitM :
(a) Add a new point ui in the initial design according to a FSSF strategy.
(b) Evaluate f(ui), estimate the hyperparameters θ and σ2 by maximum likeli-

hood and update the metamodel with (3.10) and (3.11).
(c) Compute the predictivity coefficient Q2 and the PVA by cross validation.
(d) i← i+ 1.

Step 2. While i < (1− plocal)M :
(a) Choose a new evaluation point ui by optimizing the infill criterion.
(b) Evaluate f(ui), update the estimation of hyperparameters θ and σ2 by max-

imum likelihood and update the metamodel with (3.10) and (3.11).
(c) i← i+ 1.

Step 3. With the remaining evaluation budget plocalM , run a local optimization with
L-BFGS starting from the current best point.

Return. The best iterate of the L-BFGS algorithm.

that maximizes the minimum pairwise distance (maximin criterion):

ui+1 ∈ arg max
u∈S

dist(u, Si) where dist(u, Si) = min
j∈{1,...,i}

‖u− uj‖ .

Choosing ui+1 based on this sole criteria leads to the FSSF-f design ("f" stands for
forward) but it has the drawback that too many points are near the boundary, see
Figure 5.2a. The FSSF-f design indeed optimizes the maximin distance but this is
not satisfactory as large areas of the interior of the domain are empty, i.e. the fill
distance (3.12) between design points is large.

To avoid selecting points too close to the boundary, we pretend that when we
consider adding a point u ∈ Uad to the design, the reflected point R(u) with respect to
the boundary of Uad is also added to the design, see Figure 5.3. The point ui+1 is then
chosen such that:

ui+1 ∈ arg max
u∈S

min
{

dist(u, Si),
√

2d× dist(u,R(u))
}
.

If u is close to the boundary, it is close to its reflected point R(u) so dist(u,R(u)) will
be small and the point will not be added to the design. The scaling factor

√
2d is used

to appropriately scale the distance dist(u,R(u)) so that it can be fairly compared to
pairwise distances between design points. An example of FSSF-fr design is given in
Figure 5.2b.
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Figure 5.1: Sequential construction of a FSSF-fr design. For l < m, the design with l points
is included in the design with m points. Each color represents the points that are added to
go from one design to the next.

(a) FSSF-f design with 20 points.
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(b) FSSF-fr design with 20 points.
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Figure 5.2: Two variants of FSSF designs on Uad = [0, 1]2.
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Uad

∂Uad

u

R(u)

Figure 5.3: The reflected point R(u) is the closest mirror image of u with respect to all
hyperplanes that form the boundary of the domain ∂Uad.

5.3 A comparison of solvers for EI maximization
In the numerical experiments with the EGO or the EGO-FSSF algorithm in Chapter 6,
we will use the EI as infill criterion. In this section, we aim at providing quantitative
arguments to select the most appropriate solver for EI maximization. To do so, we
design a benchmark of EI functions and compare the performance of various solvers. We
describe the experimental setting in §5.3.1 and present the numerical results in §5.3.2.

The EI maximization problem is always challenging, as highlighted in §3.3.2.2.
Nevertheless, this task must be performed efficiently because the infill step directly
drives the behavior of EGO. Various algorithms are used for EI maximization in the
literature:

• CMA-ES [Hansen and Ostermeier, 1996] is used in [Mohammadi, 2016].

• The DIRECT algorithm of [Jones et al., 1993] is used in [Brochu et al., 2010].

• The package DiceKriging [Roustant et al., 2012] uses GENOUD (GENetic Op-
timization Using Derivatives) [Sekhon and Mebane, 1998], which is a hybrid com-
bination between an evolutionary algorithm for global search and BFGS for local
search.

However, there is hardly any quantitative analysis on the performance of these al-
gorithms for the particular task of EI maximization. A notable contribution in this
direction can be found in [Munoz Zuniga and Sinoquet, 2020]. The authors consider
the EGO algorithm with mixed categorical-continuous variables and present an extens-
ive comparison between five algorithms to justify the choice of the EI maximization
solver. To our knowledge, no such work has been carried out for the continuous vari-
ables framework. We aim at giving a first contribution to fill this gap.

5.3.1 Experimental setting
To carry out a benchmark for EI maximization, the tricky part is to design EI-like func-
tions, i.e. functions that exhibit the same characteristics as the EI functions that are
encountered during the EGO algorithm. To construct our EI test bed, we take advant-
age of the COmparing Continuous Optimizers (COCO) platform [Hansen et al., 2021].
COCO provides a test bed of 24 functions that are scalable with the dimension. For
each function, 15 instances are defined, corresponding to translations of the original
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function. For each instance of a COCO function, we run the initial step of the EGO-
FSSF design. The maximum number of evaluations is set to 20d, where d is the
dimension of the input space. The quality threshold is (Q2

min,PVAmax) = (0.7, 2). We
store the resulting kriging metamodel along with the location and value of the observa-
tion points. This information is sufficient to compute the EI criterion. This procedure
is repeated for the 15 instances of the 24 functions of the COCO test bed, in dimension
2, 3, 5, 10, 20. We have then created a total of 15× 24× 5 = 1800 real EI functions,
that we denote by g1, . . . , g1800. Figure 5.4 shows examples of EI functions that have
been generated.

−5 5u1
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5

u
2

0.0e+00

1.2e+01

2.5e+01

3.7e+01

5.0e+01

6.2e+01

−5 5u1
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u
2

0.0e+00

3.4e+03

6.8e+03

1.0e+04

1.4e+04

1.7e+04

−5 5u1
−5
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u
2
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3.7e+00

4.9e+00

6.1e+00

−5 5u1
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u
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0.0e+00
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3.3e+00

5.0e+00

6.6e+00

8.3e+00

Figure 5.4: Typical examples of generated EI functions. The red dots indicate the location
of the sample points of the objective function that are used to create the kriging metamodel
and derive the EI function. We can check that the EI is zero at these points.

We work with the OpenTURNS software [Baudin et al., 2017]. OpenTURNS allows
to choose the EI maximization solver among a large variety of algorithms, including
solvers from the NLopt library [Johnson, 2009]. We run each algorithm of the NLopt
library, as well as TNC [Nash, 2000], Cobyla [Powell, 1994] and the global optimization
algorithm of the Dlib library (Dlib-Global) [King, 2009] on the 1800 EI functions. Some
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solvers are only designed for local optimization. For these solvers, we use a multistart
with 10d points, the initial points being chosen as an optimized LHS design. This
design is identical for each local optimization solver. The global optimization solvers
only use one starting point. This starting point is the same for all global solvers. The
algorithms stop after 200d calls to the EI function. The solvers TNC, Cobyla and
Dlib-Global use no information on the derivative of the EI. The names of the NLopt
solvers are of the form NLopt-{G,L}{N,D}-XXX (see Figures 5.5 and 5.6) where G
(resp. L) denotes a global (resp. local) solver and N (resp. D) denotes a derivative-
free (resp. gradient-based) solver. For gradient-based solvers, OpenTURNS provides
a finite difference approximation of the gradient of the EI.

5.3.2 Numerical results of the EI maximization benchmark
In this section, we present the results of the EI maximization benchmark. For each EI
function gp, p ∈ {1, . . . , 1800}, the optimum g]p is taken as the maximum value of gp
found over all solvers. Then, for each algorithm, we compute the relative error:

ralgop =

∣∣∣g]p − galgop

∣∣∣
g]p

,

where galgop is the maximum value of gp found by the algorithm algo. As the EI is always
positive, the relative error is always between 0 and 1. For each solver, the distribution
of the relative errors {ralgop }p∈{1,...,1800} is represented with box plots in Figure 5.5. The
boxes range from the first to the third quartile, with the inner line indicating the
median of the values. The whiskers represent the 10-th and 90-th percentile.

The upper and lower graphs of Figure 5.5 emphasize different aspects of the per-
formance of the algorithms. The linear scale (upper graph) allows to clearly compare
the third quartile and the 90-th percentile of the algorithms. We see that the MLSL
variants [Kucherenko and Sytsko, 2005] are the most robust, as the box is not even
visible and the 90-th percentile is around 0.2 compared to 0.8 for most other solvers.
The Dlib-Global algorithm is also performing well, with a third quartile close to zero
but a 90-th percentile of 0.6 which is higher than for MLSL. We can also see that
the STOGO variants do not perform well on the test bed with more than 25% of the
function with a relative error greater than 0.8.

In order to have a clearer view on the lower percentiles and to compare the 75-th
percentile of Dlib-Global and MLSL, we use the log scale representation of the lower
graph of Figure 5.5. The different variants of the MLSL solver are the most efficient:
for 75% of the functions, the relative error is in fact below 10−7. This is several order
of magnitude better than for all other algorithms, the second best being Dlib-Global
with 10−4.

As the location of the EI maximizer is what really determines the behavior of a
subsequent EGO iteration, we also compute the L2-distance between the location of
the maximizer given by a solver and the overall maximizer, up to a scaling factor:

dalgop =

∥∥∥u]p − ualgop

∥∥∥
√
d

,

where u]p is the maximizer of gp i.e. gp(u]p) = g]p and ualgop is the maximizer returned
by the algorithm algo for the function gp. The distribution of {dalgop }p∈{1,...,1800} is
represented in Figure 5.6. The scaling factor

√
d ensures that the values of dalgop are
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Figure 5.5: Relative error between the maximum EI value found by the solver and the optimal
EI for all the benchmarked solvers: the upper graph is in linear scale, the lower graph is in
log scale.
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of the same order of magnitude for functions with different input dimensions and can
be fairly aggregated in Figure 5.6. The conclusions remain the same with MLSL being
the most efficient algorithm, followed by Dlib-Global.
Remark 5.1. The log-scale graph of Figure 5.5 allows to compare the small relative
errors rp and is useful to rank the best algorithms. However, we argue that two solvers
with a small relative error but of different order of magnitude on a given EI function
may not lead to a real difference in the subsequent iteration of EGO. Suppose that
we have two solvers with respective relative errors rp of 10−7 and 10−4 on a given EI
function. Such small errors may only reflect that one of the solvers has better exploited
the local area around the optimum than the other, meaning that the distance between
the maximizers of the EI proposed by both solvers is small. In this case, the behavior
of the next EGO iteration is not affected.

On the other hand, if the relative error rp is large for some solver, it means that
the local area of the optimum has not been found. If this error is close to 1, this even
means that the solver has not managed to escape the flat areas of the EI function. In
this case, the maximizer provided by the solver can be far from the optimum, hence
completely modifying the behavior of EGO. This is why we have provided Figure 5.6
that shows the error on the maximizer.

Ranking the algorithms with respect to a high percentile is then more relevant
than looking at the low percentiles. For example, even if the lower quartile of rp is
around 10−4 for the DIRECT algorithm against 10−7 for most algorithms (of which
TNEWTON for instance), the third quartile is around 0.1 and the 90-th percentile is
around 0.8 which makes it better than TNEWTON (third quartile greater than 0.2
and 90-th percentile greater than 0.8). ♦

To conclude the benchmark, the solver MLSL is the best performing algorithm of
the benchmark with a 90-th percentile that is around 0.2, which is much better than
any other solver. Hence, when using EGO in Chapter 6, the EI is maximized with a
MLSL solver, more precisely we choose the GD-MLSL-LDS variant.

5.4 Conclusion
In this chapter, we have focused on two practical aspects for the implementation of
EGO.

First, we propose a variant of the EGO algorithm, called EGO-FSSF where the
initial design is built sequentially while retaining space-filling properties. Hence, we
can adaptively choose the size of the initial design, based on criteria assessing the
quality of the metamodel, whereas in the classical version of EGO, the size of the
initial DOE is fixed with some heuristic criteria. With the adaptive initial design
size, the budget of evaluations of the objective function is efficiently split between the
initial exploratory step and the infill step. A comparison of the performance of EGO
and EGO-FSSF is carried out in Chapter 6.

The second focus of this chapter is the choice of an efficient solver for EI maxim-
ization, which is an essential task within EGO. A specific benchmark of EI functions
has been designed and we have assessed many solvers available through the software
OpenTURNS. This benchmark provides quantitative arguments for the selection of a
solver for EI maximization, whereas it is usually based on heuristic considerations in
the literature. The MLSL algorithm is the best performing solver of the benchmark
and it will be used in the practical implementation of EGO in Chapter 6.
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Figure 5.6: Distance (scaled by the dimension) between the EI maximizer found by the solver
and the optimal point for all the benchmarked solvers: the upper graph is in linear scale, the
lower graph is in log scale.
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6 Benchmark and industrial
application of EGO and MADS

The biggest risk is not taking any
risk... In a world that is changing
really quickly, the only strategy that
is guaranteed to fail is not taking
risks.

Mark Zuckerberg

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Benchmarking EGO and MADS on COCO . . . . . . . . . . . . . 72

6.2.1 Presentation of the test bed . . . . . . . . . . . . . . . . . . 72
6.2.1.1 Conditioning . . . . . . . . . . . . . . . . . . . . . 73
6.2.1.2 Multimodality . . . . . . . . . . . . . . . . . . . . 73
6.2.1.3 Regularity . . . . . . . . . . . . . . . . . . . . . . 73
6.2.1.4 Separability . . . . . . . . . . . . . . . . . . . . . 74
6.2.1.5 Symmetry . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1.6 Final remarks on the test bed . . . . . . . . . . . 75

6.2.2 Parameters of the algorithms . . . . . . . . . . . . . . . . . 76
6.2.2.1 For EGO . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2.2 For MADS . . . . . . . . . . . . . . . . . . . . . . 77

6.2.3 Performance assessment with runlength-based targets . . . . 77
6.2.4 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.4.1 Aggregated results over all functions and targets . 79
6.2.4.2 Aggregated results by function group . . . . . . . 80
6.2.4.3 Conclusions of the benchmark . . . . . . . . . . . 81

6.3 Application to an industrial maintenance optimization problem . . 81
6.3.1 Description of the test cases . . . . . . . . . . . . . . . . . . 83
6.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Conclusion, limits of the blackbox methods and perspectives . . . 86

71



CHAPTER 6. BENCHMARK AND APPLICATION OF EGO AND MADS

6.1 Introduction
In Chapters 3 and 4, we have investigated two algorithms, EGO and MADS, that
are suited to solve the blackbox minimization problem (2.1). The interest in studying
the general problem (2.1) is that the industrial maintenance optimization problem
described in Section 2.1 fits into this framework.

Contributions. We consider the EGO algorithm 2, the EGO-FSSF algorithm 5 and
the MADS algorithm 4. In Section 6.2, these algorithms are benchmarked on the
COmparing Continuous Optimizers (COCO) platform [Hansen et al., 2021], a tool that
provides an experimental setup for blackbox optimization algorithms. This benchmark
allows to fairly compare the performance of blackbox methods in a very general setting.
In Section 6.3, we plug the algorithms EGO-FSSF and MADS to the software VME,
which is the tool used for the evaluation of the cost of a maintenance strategy at EDF.
We compare the performance of EGO-FSSF and MADS on small industrial test cases.
To our knowledge, this is the first time that EGO is used for maintenance optimization.
We mention that MADS has been applied for the maintenance scheduling of turbines
in [Aoudjit, 2010, Alarie et al., 2019].

6.2 Benchmarking EGO and MADS on COCO
Benchmarking blackbox optimization algorithms is not an easy task as their perform-
ance may depend on some properties of the objective function, such as its smoothness,
eventual symmetries or the presence of local minima. However, these features are not
known by the algorithm in the blackbox context. The optimization algorithms may
also be stochastic, meaning that two runs on the same problem may not give the same
output. Hence, appropriate metrics must be used for performance assessment.

In order to rigorously carry out this tedious benchmarking task, we use the COm-
paring Continuous Optimizers (COCO) platform [Hansen et al., 2021]. The COCO
framework provides an automatized benchmarking procedure (design of the test bed,
design of the experimental set up, generation of data output and post-processing of
results) that allows for the reproducibility of results and a fair performance comparison
between algorithms.

6.2.1 Presentation of the test bed
Several test beds are available in COCO for different purpose: noiseless or noisy, single
or multi-objective, real parameter or mixed-integer. In this chapter, we use the stand-
ard noiseless benchmark (single objective, continuous variables). Each function in the
benchmark is designed so as to have different features. Thus, we can analyze the be-
havior of the optimization algorithms in different situations. For example, can our
algorithm exploit the fact that the function is linear, or escape local minima? We
should keep in mind that we are in the blackbox context so the properties of the func-
tion are not given to the algorithm. Note also that some problems of the test bed are
very challenging and may be more difficult than practical applications.

The test bed is constituted of 24 functions defined on [−5, 5]d where the dimension
d is chosen by the user. The functions are designed so that the location and the value
of the optimum are known. Now, we describe the properties that are considered for

72



CHAPTER 6. BENCHMARK AND APPLICATION OF EGO AND MADS

the construction of the test bed. The presentation is based on [Hansen et al., 2009],
where the explicit formula for each function of the test bed can be found.

6.2.1.1 Conditioning

In the case of a convex quadratic function f(u) = 1
2u
>Hu, where H is a symmetric

definite positive matrix, the conditioning of f is the condition number of the Hessian
matrix H, see Definition 3.7. Loosely, for more general functions, the conditioning
κf (u) of f at u ∈ Uad is the ratio:

κf (u) = lim
ε→0

|f(u+ εe1)− f(u)|
|f(u+ εe2)− f(u)| ,

where e1, e2 ∈ Rd are the unit directions where f is the "steepest" and the "flattest"
respectively. The directions e1 and e2 depend on u, the conditioning is a local meas-
ure. The test bed contains functions with conditionings up to 106. Figure 6.1a shows
a function with a low conditioning whereas the function of Figure 6.1b has a high
conditioning. Ill conditioning is one of the most common challenges in optimization.
Remark 6.1. In all the plots representing functions from the COCO test bed (Fig-
ures 6.1-6.5), the z-axis is reversed for a better visualization. ♦
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(b) High conditioning.

Figure 6.1: Functions of the test bed with different conditionings.

6.2.1.2 Multimodality

A function is said to be multimodal when it has several local optima. Multimodality
is the other main difficulty of global optimization besides ill conditioning. Figure 6.2
shows two examples of multimodal functions from the test bed. The Rastrigin function
(Figure 6.2a) has a regular structure whereas the Gallagher function (Figure 6.2b) is
designed so as to present 101 local minima with randomly chosen location and value.

6.2.1.3 Regularity

The test bed contains some functions that are irregular, but still continuous. As func-
tions that are obtained from formula are often highly regular, a non-linear transform-
ation is applied to introduce some irregularities. Figure 6.3 shows two examples of
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Figure 6.2: Examples of multimodal functions of the test bed.

irregular functions from the test bed. The Weierstrass function (Figure 6.3a) has a
perturbed periodic structure. The Schwefel function (Figure 6.3b) is irregular only near
the local minima. Note that for the Schwefel function, the plot represents log10(f −f ])
where f ] is the optimal function value.
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Figure 6.3: Examples of irregular functions of the test bed.

6.2.1.4 Separability

A function is separable if it is the sum of functions of one scalar variable. The op-
timization of a d-dimensional separable function boils down to solving d problems in
dimension 1. Non separable functions are then much more difficult to optimize than
separable functions. In the test bed, non separable functions are constructed from sep-
arable functions to which a rotation operator is applied. Figure 6.4a and 6.4b represent
respectively a separable ellipsoidal function and its non separable counterpart.

6.2.1.5 Symmetry

Some stochastic optimization algorithms rely on the Gaussian distribution to select
iterates. Symmetric functions may favor these operators [Hansen et al., 2009]. To avoid
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Figure 6.4: Ellipsoidal function.

this bias, the test bed includes asymmetric functions that are generated by applying
a symmetry breaking operator to symmetric functions. Figure 6.5 gives examples of
asymmetric functions from the test bed.
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Figure 6.5: Examples of asymmetric functions of the test bed.

6.2.1.6 Final remarks on the test bed

For each of the 24 functions of the test bed, 15 instances are defined, corresponding to
translations of the original function. This allows to randomly choose the location and
the value of the optimum. Using different instances of the same function is particu-
larly interesting for stochastic algorithms as we can then estimate their probability of
reaching a given target. The benchmarked algorithms run on 15 instances of the 24
functions of the test bed in dimension 2, 3, 5 and 10, resulting in 15× 24× 4 = 1440
optimization problems to solve.
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6.2.2 Parameters of the algorithms
In this section, we specify the experimental setting for the benchmark. We use the ver-
sion 2.3.3 of COCO. The different variants of EGO are implemented with the software
OpenTURNS (version 1.15) [Baudin et al., 2017]. The algorithm MADS is available
through the software NOMAD (version 3.9.1) [Le Digabel, 2011]. The numerical exper-
iments run on a processor Intel® Core™ i7-6700HQ @2.60GHz. We give the parameters
that are used for each algorithm in the benchmark.

6.2.2.1 For EGO

Three variants of the EGO algorithm are considered. First, we consider the classical
EGO algorithm 2, referred as EGO-LHS, which uses a fixed size LHS initial design.
Then, we consider two variants called EGO-FSSF-lo and EGO-FSSF-hi, described by
Algorithm 5, which use a FSSF initial design but with different values of the quality
threshold (Q2

min, PVAmax). EGO-FSSF-hi requires a highly accurate metamodel to
start the infill step whereas EGO-FSSF-lo only requires a coarse metamodel (i.e. of
lower quality). The three variants of EGO use the final local optimization step with
L-BFGS. Parameters of the algorithms are summarized in Table 6.1.

Algorithm EGO-LHS EGO-FSSF-lo EGO-FSSF-hi

Initial design type Optimized LHS FSSF-fr FSSF-fr
Initial design size 10d Adaptive Adaptive
Threshold (Q2

min,PVAmax) / (0.4, 1) (0.7, 0.3)
Max budget proportion for
the initial design pinit

/ 0.5 0.5

Budget proportion the final
local search plocal

0.2 0.2 0.2

Common parameters

Evaluation budget 100d
Infill criterion EI
EI maximization algorithm NLopt-GD-MLSL-LDS
Covariance function Matérn 3/2
Nugget 10−6

Local search algorithm L-BFGS

Table 6.1: Parameters of the EGO algorithm.

We add some comments on the chosen parameters:

• The maximum proportion of the budget pinit that can be used for the sequential
initial design is set to 50%. We use this large value for pinit in order to ensure
that the infill step in EGO-FSSF is most of the time launched thanks to the good
accuracy of the metamodel rather than because of budget limitation.
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• For each variant, the infill criterion is the EI. We use the MLSL-LDS algorithm
[Kucherenko and Sytsko, 2005] for EI maximization as it is the best performing
algorithm from the benchmark of Section 5.3.

• We choose a Matérn covariance function with ν = 3/2 as non differentiable
functions are present in the benchmark. Moreover, as explained in §3.2.3, this
kernel makes the numerical inversion of the covariance matrix easier than with
a Gaussian kernel for instance and is also a robust choice in case of covariance
misspecification.

• A fixed nugget value of 10−6 is used, as recommended by [Mohammadi, 2016,
Chapter 5].

We also give complementary information on the solvers that are used for the es-
timation of the hyperparameters θ and σ2 of the metamodel at each iteration of EGO.
During the initial design step, it is particularly important to get the best possible
metamodel to efficiently start the infill step. By default, OpenTURNS uses TNC (a
truncated Newton method) which is a local optimization algorithm while the likeli-
hood maximization problem may be non-convex. This is why we choose to change the
default solver for maximum likelihood estimation.

• In EGO-LHS, the metamodel is computed only at the end of the initial step.
We use a multistart L-BFGS algorithm [Nocedal, 1980] for the estimation of the
hyperparameters. The starting points of L-BFGS are generated by a LHS design.

• In EGO-FSSF, the metamodel is updated after each new evaluation in the initial
sequential design. As the the hyperparameters estimation should not change
much between two evaluations, we still use the TNC algorithm but initialized
at the current estimated hyperparameters. However, it may happen that the
estimated correlation lengths θ are small with respect to the distance between
design points, meaning that the metamodel is noisy and of poor quality. In this
case, the TNC algorithm fails to provide better hyperparameters at the following
iteration because it is trapped in a local optimum. In this situation, we estimate
the hyperparameters with the multistart L-BFGS algorithm.

These choices are solely based on heuristic arguments but they might slightly im-
prove the overall performance of EGO compared to the default implementation of
OpenTURNS.

6.2.2.2 For MADS

We use the OrthoMADS implementation of MADS presented in §4.3.3, which details
the choice of the pattern, the polling directions, the initial mesh parameters and the
mesh size update rule. We use the default search step strategy of NOMAD, based on
quadratic models [Conn and Le Digabel, 2013]. Similarly as for EGO, the maximum
evaluation budget is set to 100d calls to the objective function. The parameters of
MADS are summarized in Table 6.2.

6.2.3 Performance assessment with runlength-based targets
The indicators used for performance assessment in the COCO platform as well as the
computation methodology are exhaustively described in [Hansen et al., 2016]. Here, we
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Algorithm MADS

Implementation OrthoMADS
Search step strategy Based on quadratic models
Evaluation budget 100d

Table 6.2: Parameters of the MADS algorithm.

present the notion of runlength-based target that is used for a meaningful comparison
of the algorithms in the benchmark.

Usually, the run of an algorithm is declared successful when it reaches a target of
the form ftar = f ]+∆f where f ] is the optimal value and ∆f is a desired precision. For
a given precision ∆f , the difficulty of reaching the target varies greatly for the different
functions of the test bed. For example, reaching a target with a precision ∆f = 10−6

is much easier for the regular, low conditioned function of Figure 6.1a than for the
Gallagher function of Figure 6.2b. As we are in the expensive blackbox setting, only a
low budget is available for the optimization. Hence, defining similar fixed targets for
all functions of the benchmark may not give relevant indicators on the performance of
the algorithms. A given target may indeed be too easy for some functions of the test
bed, so that each algorithm reach it in few iterations, whereas, it may be too hard for
other functions, so that no algorithm can reach it. No information on the comparative
performance of the algorithms is gained from those runs.

This is why COCO uses the notion of runlength-based targets. It aims at defining
target values that depend on the objective function in order to represent the same
level of difficulty. Instead of choosing a set of target precisions, we rather choose
a set of reference budgets. We also suppose that a reference algorithm has already
run on the benchmark. For a reference budget b > 0, we look, for each function, at
the precision ∆f(b) that has been reached by the reference algorithm. The precision
∆f(b) is referred as the runlength-based target b for the function f . Runlength-based
targets are different for each function but represent the same level of difficulty as they
require the same budget to be reached by the reference algorithm. In the numerical
experiments, 31 runlength-based targets are considered, with reference budgets evenly
spaced between 0.5d and 50d on the log scale, where d is the problem dimension. For
a given dimension d, we denote by:

• {fdi,j}(i,j)∈I×J , with I = {1, . . . , 24} and J = {1, . . . , 15}, the set of all function
instances of the benchmark where fdi,j is the j-th instance of the i-th function in
dimension d.

• {bdk}k∈K , with K = {1, . . . , 31}, the set of reference budgets.

The reference algorithm in COCO is the artificial best algorithm of the workshop
BBOB-2009 [Hansen et al., 2010]. In the BBOB-2009 workshop, 31 algorithms have
run on the benchmark. For each reference budget and function, the runlength-based
target is taken as the best precision attained by the algorithms of the benchmark. The
real algorithm that defines the runlength-based target can then be different for each
budget and function.
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6.2.4 Benchmark results
We can now perform a comparative study of the algorithms using the data generated
by COCO.

6.2.4.1 Aggregated results over all functions and targets

We start by analyzing aggregated results over all functions and all targets. Figure 6.6
shows the proportion of problems solved within a given budget. Each pair (fdi,j, bdk),
with (i, j, k) ∈ I × J ×K, defines a problem instance with the runlength-based target
∆fdi,j(bdk). The graphs of Figure 6.6 give, for a given budget b on the x-axis, the
proportion of problem instances among the set {(fdi,j, bdk)}(i,j,l)∈I×J×K that are solved
within the budget b. Each subplot corresponds to a different dimension d. Overall,
MADS solves around 5% more instances than any of the EGO variants.
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Figure 6.6: Proportion of problems solved within a given budget, aggregated over all targets
and functions, Ncalls is the number of calls to the objective function.

We can clearly distinguish the three steps of the EGO algorithm on the graphs. Let
us focus on Figure 6.6d as the behavior is the most easily visible. With a low budget,
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the proportion of solved problems increases slowly, this is the initial exploration step,
done either with a LHS or a FSSF design. Then, we see a clear change of slope
showing that we enter the infill step, driven by the EI maximization. The EI exploits
the metamodel built in the initial step to solve many instances in few iterations. Then,
the slope slowly decreases before another break, slightly before the maximum budget
is used. This corresponds to the beginning of the local search step, that allows to go
from 60% to 80% of solved instances (in dimension 10) and to almost reach the same
efficiency as MADS. These plots confirm the usefulness of the final local search that
has already been highlighted in [Mohammadi, 2016].

There is little difference in the final performance of the three variants of EGO. How-
ever, we notice differences at intermediate budgets. The initial design size is adaptive
for the EGO-FSSF variants. Hence, for the easiest functions, the EGO-FSSF variants
start the infill step sooner than EGO-LHS. This explains that the change of slope
arrives earlier with the EGO-FSSF variants. Moreover, for EGO-FSSF-hi, we notice
another change of slope slightly before the local search, corresponding to a budget of
50d evaluations, which is the maximum budget allocated for the initial design. This
change of slope is particularly visible in dimension d = 5 and d = 10. This reflects the
fact that for some functions, the metamodel has not reached the quality threshold. No
such change of slope is visible for EGO-FSSF-lo, meaning that the quality threshold is
reached for a greater number of functions.

After using the whole budget of 100d evaluations, the performance of the three
EGO variants are similar. If we compare two variants with different budgets allocated
to the initial design, the variant with the greater budget for the initial design has a
more efficient infill step due to a metamodel of better quality. This compensates the
additional budget used in the initial step compared to a variant with a coarser initial
design. This observation is consistent with the conclusions of [Picheny et al., 2013]
that compares EGO with LHS designs of different sizes and finds that the size of the
initial DOE is not critical.

The progress of MADS is much more regular than that of EGO, which makes MADS
more robust to interruptions of an experiment. Indeed, suppose that we launch the
algorithms with a predefined evaluation budget and that for some reason the run is
interrupted before the end. Then, if we are still in the initial design step or just before
the final search for EGO, the performance gap between EGO and MADS is significantly
larger than at the end of the run (see Figure 6.6): up to 20% more instances are solved
by MADS for a budget of 80d evaluations, i.e. before launching the local search in
EGO. The performance of EGO is conditioned by the complete realization of the three
steps of the algorithm (initial design, infill step, local search), whereas MADS can be
interrupted without consequences.

6.2.4.2 Aggregated results over all targets and by function group

Figure 6.7 shows the results aggregated by function group in dimension d = 10. The
EGO algorithms perform particularly well compared to MADS on multimodal func-
tions with global structure (Figure 6.7d), such as the Rastrigin function (Figure 6.2a).
MADS only solves around 60% of problems of this kind compared to more than 80%
for all the other groups. Our interpretation is that MADS does not manage to escape
local minima in this case. Indeed, suppose that MADS has found a local minimum for
a function like the Rastrigin function (Figure 6.2a). In order to escape this minimum,
the search step must produce a candidate point in another basin of attraction which is
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better than the current best point. However, the search step of MADS uses a quadratic
model around the current best point which may not be the best strategy for this task.

Figure 6.7 allows to highlight some differences between the behavior of the three
EGO variants, especially in the budget that is used for the initial design. Separable
functions (Figure 6.7a) correspond to the easiest problems of the test bed. Hence, only
few iterations are needed in the initial step to get the coarse metamodel required in
EGO-FSSF-lo. For EGO-LHS, the initial design always uses 10d evaluations, which,
in this particular case, is more than for EGO-FSSF-lo but less than for EGO-FSSF-hi.
For multimodal functions without global structure (Figure 6.7e), it is more difficult to
have a metamodel of good quality. In this case, even the coarse requirement on the
metamodel is not met for most functions: there is a clear change of slope after 50d
evaluations for EGO-FSSF-lo. These observations confirm that the size of the initial
design in the EGO-FSSF variants is adapted to the difficulty of the problem. However,
no matter how much effort is devoted to the initial design, the three variants exhibits
very similar performance after the 100d evaluations.

6.2.4.3 Conclusions of the benchmark

The COCO benchmark provides fair quantitative indicators to guide the choice of an
optimization algorithm in a blackbox context. Overall, MADS is more efficient than
EGO. Among the three variants of EGO, the performance are very similar after 100d
evaluations. However, in the case where an expensive simulation is interrupted before
the end, for example suppose that only 50d evaluations are done over the 100d that
were initially planned, EGO-FSSF-lo will perform better in most cases as the infill step
may have already been launched. This is why we advise to use EGO-FSSF-lo among
the three EGO variants.

These conclusions only hold when no information is known about the objective func-
tion. We have seen that for highly multimodal functions with global structure, EGO
performs better than MADS1. Other studies [Mohammadi, 2016, Rehbach et al., 2020]
confirm that multimodal functions are a favorable framework for EGO with EI as infill
criterion. More generally, if some properties of the function are known, we can refer to
the aggregated results by function group to guide the decision. The performance of a
blackbox algorithm is in fact highly dependent on the problem at hand.

For a given practical problem, we strongly believe that, when possible, we should
try to gain information on the objective function in order to guide the choice of the
algorithm. If no information is available, we choose MADS. In the next section, we
apply EGO and MADS to solve a first industrial maintenance optimization problem.

6.3 Application to an industrial maintenance op-
timization problem

We are interested in the industrial maintenance optimization problem described in
Section 2.1. In this section, we solve a first industrial case by plugging the blackbox
algorithms EGO-FSSF-lo and MADS to the software VME, which is the simulation
model that allows to evaluate the expected LCC of a maintenance strategy. The

1 The NOMAD software provides the Variable Neighborhood Search (VNS) option for MADS. VNS
is a strategy to espace local minima and has not been used in the thesis. Enabling the VNS option
would have probably improved the performance of MADS on multimodal functions.
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Figure 6.7: Proportion of problems solved within a given budget aggregated by function
group in dimension d = 10, Ncalls is the number of calls to the objective function.
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expected LCC is the objective function we seek to minimize. As the EGO variants
exhibit very similar performance on the COCO benchmark, we only consider the EGO-
FSSF-lo variant, following the recommendation of §6.2.4.3.

6.3.1 Description of the test cases
We consider a system of n components with n ≥ 1 sharing a common stock of spare
parts, on a horizon of T = 40 years. For this test case, we only consider periodic PM
strategies. A maintenance strategy is represented by a vector:

u = (u1, . . . , un) ∈ Uad = [0, T ]n , (6.1)

where ui is a continuous variable that represents the periodicity of the PMs of com-
ponent i ∈ {1, . . . , n}. More precisely, this means that component i undergoes a PM
at dates

{
k × ui, 1 ≤ k ≤ b T

ui
c
}
.

We focus on periodic maintenance strategies as they can be described using only
one parameter per component. These strategies are a subset of general maintenance
strategies where maintenance decisions can be made each year for each component.
Therefore, the optimal solution on the set of periodic strategies is worse than on the
set of general strategies. However, if we were to consider general strategies, the search
space would be described with T parameters per component, which is too large to
perform the optimization with blackbox methods. This is why we restrict the search
to periodic strategies in this part.

The industrial problem of minimizing the expected LCC can expressed as:

min
u∈Uad

E
(
j(u,W )

)
. (6.2)

where W is a random variable on a probability space (Ω,A,P) that models the ran-
dom failures of the components. The cost j(u,W ) is the LCC for the maintenance
strategy u. In practice, the software VME uses the Monte-Carlo method to estimate
E
(
j(u,W )

)
. Hence, we do not have access to the true value of the objective function.

This is why, in Section 2.1.3, we say that the evaluations made by VME are noisy.
In the numerical experiments, the noisy aspect is handled by considering a Monte-

Carlo approximation of Problem (6.2). We fix a set of Q = 100 realizations w1, . . . , wQ
of the random variable W and solve:

min
u∈Uad

1
Q

Q∑
q=1

j(u,wq) . (6.3)

Problem (6.3) is deterministic and the objective function can be evaluated exactly with
VME. Therefore, we can use the algorithms EGO and MADS that have been presented
in the noiseless case in Chapters 3 an 4.

We consider systems with the characteristics given in Table 6.3. We consider four
different test cases, respectively with 2, 3, 5 and 10 components. These test cases
represent only small instances of the industrial problems that can be encountered at
EDF. From (6.1), a maintenance strategy is parametrized with one variable for each
component, hence the number of optimization variables in the problem is equal to the
number of components n. The failure distributions of the components are Weibull
distributions of parameters β > 0 and λ > 0, denoted by Weib(β, λ). The definition of
the Weibull distribution is given in Definition B.8.

83



CHAPTER 6. BENCHMARK AND APPLICATION OF EGO AND MADS

Parameter Value

Number of components n 2, 3, 5 or 10
Initial number of spare parts bn5 c
Horizon 40 years
Delay for the spare parts supply 0.1 year
Forced outage cost 30000 ke/ month

Comp. 1 Comp. 2 Comp. i ≥ 3
PM cost 50 ke 50 ke 50 ke
CM cost 100 ke 250 ke 200 ke
Failure distribution Weib(2.3, 10) Weib(4, 20) Weib(3, 10)
Mean time to failure 8.85 years 18.13 years 8.93 years

Table 6.3: Characteristics of the industrial system.

For EGO-FSSF-lo and MADS, we use the same settings as for the COCO bench-
mark, described in Tables 6.1 and 6.2. In particular, the maximum number of evalu-
ations of the objective function is set to 100n where n is the number of components of
the system.

6.3.2 Numerical results
We present the results of the optimization with EGO-FSSF-lo and MADS plugged
on VME for the four test cases. In addition to the comparison of the performance
between EGO-FSSF-lo and MADS, the analysis strongly focuses on the behavior of
the algorithms with respect to the dimension of the problem, in order to highlight the
potential difficulties to solve the largest instances of the maintenance problem we wish
to consider in this thesis.

In Figure 6.8 we show the evolution of the objective function value along the iter-
ations for the two algorithms. The bullets on the curve denote the evaluations after
which an improvement effectively occurs. In Table 6.4, we report the best function
value and the running time for each algorithm.

EGO MADS
Test case Optimal value Running time Optimal value Running time
2 components 158.07 49.6s 158.22 6.49s
3 components 305.70 234s 306.83 11.7s
5 components 659.27 1830s 614.22 23.4s
10 components 1486.4 3.54× 104s 1462.7 66.2s

Table 6.4: Optimal function value and running time of EGO and MADS.

On the 2-component case (Figure 6.8a), both algorithms find a good solution after
around 10 evaluations. For the other test cases, we see that EGO is more efficient than
MADS in the first iterations, probably due to its fully exploratory behavior during the
initial design step. However, as more evaluations are carried out MADS manages to
improve the objective and returns a solution that is better than EGO by 7% in the
case with 5 components and by 1% in the case with 10 components. For the cases with
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2 and 3 components, there is less than 0.5% difference in the optimal value found by
EGO and MADS, but this time in favour of EGO. Therefore, EGO is slightly better
than MADS in low dimension but when the number of components grows, MADS has
a significant advantage.

For EGO, after an efficient start in the first evaluations, not much improvement
of the objective can be observed (Figure 6.8). We point out that the last group of
bullets on the EGO curves corresponds to the final local search. The orange curves do
not extend to the maximum allowed evaluation budget, meaning that the local search
stops before using all the budget. This behavior can be explained by the fact that the
dates of PM in VME are specified with a precision to the day. This means that in a
small neighborhood of a given u ∈ Uad, all the points correspond to the same day of
PM in VME and therefore have the same objective function value. Hence, if the local
search is done in a neighborhood of the current iterate that is small enough, the local
optimizer sees that the function has a zero gradient and stops.
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Figure 6.8: Evolution of the objective function value along the iterations for the algorithms
EGO-FSSF-lo and MADS plugged on VME.

Now, we comment on the running times of the algorithms. We notice that EGO
is much slower than MADS. An analysis of the runs of MADS shows that 88± 1% of
the computation time is spent in the evaluations of the objective function with VME,
and this proportion is the same for all test cases. The number of calls to VME is of
the same order of magnitude in EGO and MADS, meaning that for EGO most of the
computation time is spent in the inner working of the algorithm. The calls to VME
when EGO is used indeed represent only 11% of the computation time for the case with

85



CHAPTER 6. BENCHMARK AND APPLICATION OF EGO AND MADS

2 components and less than 0.2% with 10 components. A lot of computational resources
is used for the estimation of the hyperparameters, the inversion of the covariance matrix
and for the maximization of the EI in EGO. These tasks become hard quickly when
the dimension grows, hence EGO will not be able to tackle the industrial maintenance
optimization problem for large-scale systems with up to 80 components.

The algorithm MADS converges after 100n evaluations, where n is the number of
components (Figure 6.8) and the running time stays low, even for the case with 10
components (Table 6.4). However, when running MADS from different initial points2,
we observe that it does not converge to the same maintenance strategy: it is stuck too
early in a local optimum and is not exploratory enough, confirming the behavior we
have seen on the multimodal functions of the COCO benchmark in §6.2.4.2. In large
dimension, MADS may be able to converge in reasonable time to a local optimum but
the quality of the solution will be questionable.3

To conclude on the small cases considered in this section, MADS returns mainten-
ance strategies that perform similarly or better than those returned by EGO but within
a much lower running time. It is clear that EGO will not be able to scale up to larger
systems. The drawback of MADS in larger dimension is its insufficient exploratory
behavior, which may lead to solutions of low-quality. Hence, a simple application of
these blackbox methods will not be appropriate to tackle large-scale instances of the
industrial maintenance optimization problem.

Remark 6.2. In the numerical experiments, we have used Q = 100 as it allows for fast
runs of the optimization algorithms. However, in an operational context, maintenance
strategies are often compared using 104 or 105 scenarios so that the confidence interval
on the expected LCC is small enough to allow for robust decision making. This is why,
for a real small industrial case, say with less than 10 components, we advise to use
MADS with Q = 104 or Q = 105 so that the execution can be done in no more than
few hours and with an objective function that is an accurate estimation of the LCC.

♦

6.4 Conclusion, limits of the blackbox methods and
perspectives

In this chapter, we have assessed the performance of two blackbox algorithms, EGO
and MADS, on a comprehensive benchmark and on small industrial test cases. Overall,
MADS is performing better than EGO. On the COCO benchmark, only the highly mul-
timodal functions with global structure are more favorable for EGO. On the industrial
cases, MADS does always as good or better than EGO and is much faster. From the
user perspective, MADS requires less tuning and can be used more easily. Moreover,
as stated by [Conn and Le Digabel, 2013], if no structure of the objective function is
present or known, direct search methods may be preferred over model-based methods.
All these points argue in favor of MADS over EGO if a blackbox algorithm is to be
chosen for a small industrial maintenance scheduling problem.

2 The results of Table 6.4 have all been obtained with u0 being the center of the admissible set
Uad = [0, T ]n i.e. u0 = (T/2, . . . , T/2), the results of the runs with other initial point are not
presented in the manuscript.

3 This general remark is confirmed with the numerical results of Part II, where we argue that MADS
cannot sufficiently explore the whole space in Section 10.8.
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However, both EGO and MADS are limited for an application to large-scale prob-
lems. In EGO, some steps like the estimation of the hyperparameters or the maxim-
ization of the EI are computationally demanding. In MADS, the exploration of the
search space may not be sufficient to provide a solution of satisfying quality in large
dimension. Several ideas can be explored to improve the efficiency of the proposed
blackbox methods.

• We have highlighted that the performance of MADS is dependent of the search
step, which is currently done using a quadratic approximation of the objective
function. We can try a hybrid algorithm that uses EGO within MADS: EGO
would be used in the search step of MADS to take advantage of its exploratory
behavior, whereas the poll step of MADS ensures a good local exploitation.4 We
note that [Munoz Zuniga and Sinoquet, 2020] combines EGO and MADS in the
other way around: MADS is used as the EI solver within EGO. We can also use
the variable neighborhood search [Audet et al., 2008a] in MADS, that is designed
to escape local minima, to improve the exploratory behavior of the algorithm.

• The other path for improvement is parallelization. Parallel versions of MADS
[Audet et al., 2008b] and EGO [Ginsbourger et al., 2008] already exist but have
not been tested. Even though more evaluations are possible with parallel al-
gorithms, the complexity of the problem grows exponentially with the dimension
which may prevent from using these methods for large problems.

In this part, we have only considered periodic maintenance strategies in order to
reduce the size of the search space, so that the problem can be solved by a blackbox
approach. If we are to consider more general policies with larger systems, we would
not be able to run EGO in reasonable time. We may still be able to run MADS but
the direct approach with the blackbox method may be outperformed by more subtle
algorithms. In the next part, we use a different approach, based on decomposition
methods, to alleviate the curse of dimensionality.

4 This idea is implemented in the NOMAD software through the SGTELIB library.
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Part II

Decomposition by prediction for
optimal maintenance scheduling
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From blackbox optimization to
stochastic optimal control

The blackbox methods presented in Part I are limited when it comes to tackle large-
scale optimization problems. In this part, we use a different approach: we give an
explicit modeling of the industrial problem as a stochastic optimal control problem
and we design a decomposition method that takes advantage of the structure of the
problem.

Optimal control is concerned with the study of problems that involve dynamical
systems. When decision making is faced with uncertainties, either in the cost function,
or the constraints of a system, a problem is said to be stochastic and when we have
both a dynamics and uncertainties, we enter the realm of stochastic optimal control.

When it comes to optimization, and that we need to choose a cost function, several
attitudes are possible to deal with uncertainties. For instance, we can try to optimize
the worst case situation, or find the best decision in expectation. Hence, there is
no generic formulation of a stochastic optimization problem, unlike for deterministic
linear programming or convex optimization for example. We classify stochastic optimal
control problems given their information structure:

• In the open-loop framework, the decision is deterministic, it is only computed once
and for all, knowing the a priori probability distributions of the uncertainties.

• In the closed-loop framework, the decision may depend on past realizations of
the uncertainties, which amounts to say that the decision can be based on online
observations of the system.

For the interested reader, a more comprehensive typology of information structures
is given in [Carpentier et al., 2015]. The distinction between open-loop and closed-
loop is essential as it determines the methods that can be used for the problem
resolution. Open-loop problems can be tackled by stochastic gradient algorithms
[Robbins and Monro, 1951], whereas closed-loop problems often use stochastic dynamic
programming [Bertsekas and Shreve, 1996].

In the industrial problem described in Section 2.1, we are constrained to use open-
loop controls. The controls correspond to PMs and as we consider large critical com-
ponents of the electricity production process, the maintenance operations require a
shut down of the unit and the mobilization of important human resources, which must
be planned several years in advance. Hence, we cannot afford to adapt the PM strategy
to online observations of the system. Therefore, we stick to the open-loop framework
in this part.
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We are concerned with problems of the following form:

min
u∈Uad

J(u) where J(u) = E
(
j(u,W )

)
, (6.4)

where W is a random variable, defined on a probability space (Ω,A,P), that repres-
ents the uncertainties in the system. The function j is a real-valued cost function,
assumed to be differentiable with respect to u, and Uad ⊂ U is the space of admissible
controls, with U being a Hilbert space. The main difficulties to tackle Problem (6.4)
are the evaluations of J and ∇J , which involve the computation of an expectation.
Two approaches have been developed to get around this difficulty, namely Stochastic
Approximation (SA) and Sample Average Approximation (SAA), both based on Monte-
Carlo sampling techniques. A comparison between SA and SAA methods can be found
in [Nemirovski et al., 2009].

1. In a SA method, each iteration uses a different sample of the random variable
W . For instance, the l-th iteration of the stochastic gradient method, written in
terms of random variables, is given by:

U l+1 = projUad

(
U l − εl∇uj(U l,W l+1)

)
,

where {U l}l∈N is the sequence of random iterates of the algorithm, εl > 0 is the
step size and {W l}l∈N are independent random variables, identically distributed
as W . The projection operator must be understood "ω by ω". A numerical
execution of the algorithm, with iterates {ul}l∈N, corresponds to a realization of
the random sequence {U l}l∈N, that is:

∃ω ∈ Ω, ∀l ∈ N, ul = U l(ω) .

2. The SAA approach consists in approximating Problem (6.4) by the sample aver-
age problem:

min
u∈Uad

1
Q

Q∑
q=1

j(u,wq) , (6.5)

where Q ∈ N and (w1, . . . , wQ) is a realization of a sample of W of size Q.
The SAA problem (6.5) can then be solved by any appropriate deterministic
algorithm.

In Section 2.1, we consider industrial systems with up to 80 components. To solve
such large instances of the maintenance optimization problem, we must resort to de-
composition methods. Decomposition-coordination algorithms consist in splitting an
optimization problem into a sequence of smaller subproblems that are iteratively solved
and coordinated. Many decomposition schemes exist and they can formulated within
a unified framework called the Auxiliary Problem Principle (APP) [Cohen, 1980]. The
APP is a general principle that consists in turning the resolution of a master optimiz-
ation problem into the resolution of a sequence of auxiliary problems whose solutions
converge to the master’s one. The APP can be formulated both for a use in the SA or
the SAA context.

SA and SAA have the same efficiency estimates with respect to the sample size
[Nemirovski et al., 2009] but each approach requires the tuning of some parameters.
We think that an operational user of our maintenance optimization algorithm will
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more easily understand the stakes in tuning the sample size Q in the SAA approach
than the step size εl in a SA scheme, which is more technical due to the requirements on
the decrease rate of the sequence {εl}l∈N. This is why, we focus on the SAA approach
to solve the industrial problem of Section 2.1.

Part II of the thesis is organized as follows. Chapter 7 is a bibliographical review
of the APP, with a focus on the particular case of the so-called decomposition by pre-
diction. In Chapter 8, we model the industrial maintenance problem as a stochastic
optimal control problem. Then, in Chapters 9 and 10, we apply the APP respect-
ively on synthetic test cases and on the industrial system of Chapter 8. The APP
allows to design a decomposition by prediction of these large-scale systems. Numerical
experiments are carried out to show the efficiency of the decomposition method. In
Appendix A, we recall some basic definitions in convex analysis that are used in this
part.

Communication. The work presented in Chapters 7, 8 and 10 constitutes an exten-
ded version of the preprint [Bittar et al., 2020].

Notations. We introduce some notations that are used throughout this part and
which are related to the industrial system described in Section 2.1. We denote by
n ∈ N the number of physical components of the system and by N = n+ 1 the number
of entities, gathering the physical components and an added stock. We denote by:

• I = {1, . . . , N} the entity index set,

• I = {1, . . . , n} the component index set.

Note that I = I
⋃{N}. Let T ∈ N be a time horizon. We denote by:

• T = {0, . . . , T} the time index set,

• T−1 = {0, . . . , T − 1}.

For any v = {vi,t}(i,t)∈I×T, we use the following notations:

• vi = {vi,0, . . . , vi,T} denotes the value of v for the entity i ∈ I over all time steps.

• vi:j = {vi, . . . , vj} denotes the value of v for the entities i, i+ 1, . . . , j ∈ I over all
time steps, with the convention that vi:j is empty if i > j.

• v ·,t = {v1,t, . . . , vn,t} denotes the value of v over all entities at time t ∈ T.

• v ·,a:b = {v ·,a, . . . , v ·,b} denotes the value of v over all entities at time steps a, a+
1, . . . , b ∈ T.
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7 The Auxiliary Problem Principle
and its use in decomposition

Any intelligent fool can make things
bigger, more complex, and more
violent. It takes a touch of genius –
and a lot of courage – to move in
the opposite direction.

Ernst Friedrich Schumacher
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CHAPTER 7. THE AUXILIARY PROBLEM PRINCIPLE

7.1 Introduction
The industrial system of interest, presented in Section 2.1, presents some characteristics
that makes it a large system with a complex spatial structure according to the definition
of [Carpentier and Cohen, 2017, Chapter 1]:

• The system is described by a large number of variables or constraints, leading
to a high-dimensional optimization problem, that requires large computational
resources. We face the well-known curse of dimensionality.

• The global system is composed of several interconnected subsystems: different
components share a common stock of spare parts.

The interest in mathematical optimization for large systems appears in the 1960s,
in particular with the work of [Arrow and Hurwicz, 1960, Lasdon and Schoeffler, 1965,
Mesarović et al., 1970, Takahara, 1964], that introduces decomposition-coordination
methods. The idea of decomposition is to formulate subproblems involving only smal-
ler subsystems of the original large system. Each subproblem is easier to solve than
the global optimization problem and provides its local solution. Then, the goal of
coordination is to ensure that gathering the local solutions leads to a global solution.
Decomposition-coordination methods usually result in an iterative process alternating
an optimization step on the subsystems and a coordination step that updates the sub-
problems. Different types of decomposition-coordination schemes have been designed,
by prices, by quantities or by prediction. They have been unified within the Auxiliary
Problem Principle (APP) [Cohen, 1978].

As we use a SAA approach, we only focus on the deterministic APP in this chapter.
Still, we mention that the APP can be adapted to the stochastic case:

• In the open-loop stochastic case, the APP has been combined with stochastic
gradient descent [Culioli and Cohen, 1990].

• The closed-loop stochastic case is more challenging because the coordination
variables are stochastic processes (whereas they are deterministic in the open-
loop case), which complicates the resolution of the local subproblems. The Dual
Approximate Dynamic Programming algorithm [Barty et al., 2010] has been de-
signed to handle this situation.

The main advantage of decomposition is that solving all the small subproblems is
easier than solving the original problem. More than that, the computational complexity
of an optimization problem is often superlinear or even exponential in the size of the
problem. Hence, the sum of the computational efforts required for the resolution of
all subproblems will be lower than for the global problem, even if the resolution of the
subproblems must be carried out multiple times. Another feature of decomposition
methods is that they are naturally adapted to parallelization as each subproblem is
independent. This leads to a reduction of computation time.

Contributions. This chapter consists in a bibliographical review of the general
framework of the APP (Section 7.2) and its specialization to the decomposition by
prediction (Section 7.3). The decomposition scheme is implemented through a fixed-
point algorithm for which we recall a theoretical convergence result. This review is
essential as the APP is the tool that allows for the design of decomposition schemes in
the practical cases presented in Chapters 9 and 10.
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7.2 Presentation of the APP
Based on [Carpentier and Cohen, 2017], we present the main ideas of the APP. Con-
sider the following problem, which we call the master problem:

min
u∈Uad

JΣ(u) + J∆(u) such that Θ(u) ∈ −C , (7.1)

where:

• Uad is a non-empty, closed, convex subset of a Hilbert space U,

• C is a pointed closed convex cone of a Hilbert space C.

• JΣ : U→ R and J∆ : U→ R are convex and lower semi-continuous (l.s.c.). The
function JΣ + J∆ is coercive on Uad. Moreover, J∆ is differentiable1.

• Θ : U→ C is continuous, differentiable and C-convex, where C-convexity means
that:

∀u, v ∈ U, ∀ρ ∈ [0, 1], ρΘ(u) + (1− ρ)Θ(v)−Θ(ρu+ (1− ρ)v) ∈ C .

Under constraint qualification conditions, solving Problem (7.1) is equivalent to finding
a saddle point of the Lagrangian:

L : U× C→ R
(u, λ) 7→ L(u, λ) = JΣ(u) + J∆(u) + 〈λ ,Θ(u)〉 ,

on Uad × C?, where C? is the dual cone of C:

C? = {λ ∈ C, 〈λ , µ〉 ≥ 0 for all µ ∈ C} .

We write:

L = LΣ + L∆ ,

with LΣ(u, λ) = JΣ(u) and L∆(u, λ) = J∆(u) + 〈λ ,Θ(u)〉. From the assumptions
on JΣ, J∆ and Θ, we get that LΣ and L∆ are convex in u, concave in λ and L∆ is
differentiable. It is well-known that there is an equivalence between (u], λ]) ∈ Uad×C?

being a saddle point of L and the following pair of variational inequalities:

∀u ∈ Uad,
〈
∇uL

∆(u], λ]) , u− u]
〉

+ LΣ(u, λ])− LΣ(u], λ]) ≥ 0 ,

∀λ ∈ C?,
〈
∇λL

∆(u], λ]) , λ− λ]
〉
≤ 0 ,

(7.2)

Definition 7.1. (Auxiliary problem) Let (ū, λ̄) ∈ U×C and ε > 0. Let Q : U×C→ R
be an auxiliary function that is differentiable, strongly convex in its first argument and
concave in its second argument. Define:

Gū,λ̄(u, λ) = Q(u, λ) +
〈
ε∇uL

∆(ū, λ̄)−∇uQ(ū, λ̄) , u
〉

+
〈
ε∇λL

∆(ū, λ̄)−∇λQ(ū, λ̄) , λ
〉

+ εLΣ(u, λ) .

(7.3)

1 In this chapter, when a function is said to be differentiable, we mean that it is Gateaux-
differentiable, see Definition A.4.
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Assume that Gū,λ̄ admits a saddle point. Then, the problem of finding a saddle point
of Gū,λ̄, that writes:

max
λ∈C?

min
u∈Uad

Gū,λ̄(u, λ) = min
u∈Uad

max
λ∈C?

Gū,λ̄(u, λ) (7.4)

is an auxiliary problem for (7.1).

The following statement is the fundamental lemma for the theory of the APP.

Lemma 7.2. Let (u], λ]) be a solution of the auxiliary problem (7.4). If (u], λ]) =
(ū, λ̄), then (u], λ]) is a saddle point of the Lagrangian L of the master problem (7.1).

Proof. The fact that (u], λ]) is solution of (7.4), implies that (u], λ]) satisfies the fol-
lowing variational inequalities:

∀u ∈ Uad,
〈
∇uQ(u], λ]) + ε∇uL

∆(ū, λ̄)−∇uQ(ū, λ̄) , u− u]
〉

+ ε
(
LΣ(u, λ])− LΣ(u], λ])

)
≥ 0 ,

∀λ ∈ C?,
〈
∇λQ(u], λ]) + ε∇λL

∆(ū, λ̄)−∇λQ(ū, λ̄) , λ− λ]
〉
≤ 0 .

Then, using (u], λ]) = (ū, λ̄), we see that (u], λ]) satisfies the variational inequalit-
ies (7.2). This is equivalent to (u], λ]) being a saddle point of L. �

Lemma 7.2 suggests to use the fixed-point algorithm 6 to find a saddle point of L and
hence solve the master problem (7.1). There is a great flexibility in the construction of
the auxiliary problem. Some particular choices allow to retrieve well-known algorithms
such as Uzawa or Arrow-Hurwicz algorithms, see [Carpentier and Cohen, 2017, §3.3].
In the following section, we design the auxiliary problem so that the APP fixed-point
algorithm results in a scheme of decomposition by prediction.

Algorithm 6 APP fixed-point algorithm
1: Let (ū, λ̄) = (u0, λ0) ∈ Uad × C? and set l = 0.
2: At iteration l + 1:

• Solve the auxiliary problem (7.4), i.e., find a saddle point (ul+1, λl+1) of Gū,λ̄.

• Set (ū, λ̄) = (ul+1, λl+1).
3: If the maximum number of iterations is reached or

∥∥∥ul+1 − ul
∥∥∥ +

∥∥∥λl+1 − λl
∥∥∥ is

sufficiently small then stop, else l← l + 1 and go back to step 2.

7.3 The decomposition by prediction as a specific
instance of the APP

In this section, still based on [Carpentier and Cohen, 2017], we show that the APP
allows to retrieve the decomposition by prediction introduced in [Mesarović et al., 1970].
This decomposition scheme relies on a decomposition of both the primal space U and
the dual space C.
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• We assume that U = U1 × . . . × UN , with N ∈ N, and that Uad = Uad
1 × · · · ×

Uad
N , where for all i ∈ I = {1, . . . , N}, Uad

i ⊂ Ui is a closed convex set. The
decomposition of the admissible set Uad = Uad

1 × · · · × Uad
N defines the subset on

which each subproblem is solved.

• We assume that C = C1 × · · · × CN and that C = C1 × · · · × CN , where for
all i ∈ I, Ci ⊂ Ci is a closed convex cone. The decomposition of the cone
C = C1 × · · · × CN specifies which part of the constraint is assigned to each
subproblem.

We also assume that:
• JΣ is additive with respect to the decomposition of the admissible space, meaning

that for u = (u1, . . . , uN) ∈ Uad with ui ∈ Uad
i for all i ∈ I, we have:

JΣ(u) =
N∑
i=1

JΣ
i (ui) ,

where JΣ
i : Ui → R.

• Θ(u) = (Θ1(u), . . . ,ΘN(u)) with Θi : U→ Ci for i ∈ I.
Let ū = (ū1, . . . , ūN) ∈ U and λ̄ = (λ̄1, . . . , λ̄N) ∈ C?. We choose an auxiliary function
of the form2:

Q(u, λ) = K(u) + 〈λ ,Φ(u)〉 ,

where K is an auxiliary cost and Φ is an auxiliary constraint satisfying the following
properties:

• K : U→ R is convex, l.s.c., differentiable and additive: K(u) =
N∑
i=1

Ki(ui);

• Φ : U→ C is differentiable and block-diagonal: Φ(u) =
(
Φ1(u1), . . . ,ΦN(uN)

)
.

In the decomposition by prediction, we interpret the saddle point problem (7.4) as a
constrained optimization problem. Taking ε = 1 in (7.3), the auxiliary problem can be
written as:

min
u∈Uad

K(u) + JΣ(u) +
〈
∇J∆(ū)−∇K(ū) , u

〉
+
〈
λ̄ ,
(
Θ′(ū)− Φ′(ū)

)
· u
〉

s.t. Φ(u)− Φ(ū) + Θ(ū) ∈ −C .
(7.5)

Choosing K additive and Φ block-diagonal ensures that Problem (7.5) decomposes
in N independent subproblems that can be solved in parallel. For i ∈ I, the i-th
subproblem is given by:

min
ui∈Uad

i

Ki(ui) + JΣ
i (ui) +

〈
∇uiJ

∆(ū)−∇Ki(ūi) , ui
〉

−
〈
λ̄i ,Φ′i(ūi) · ui

〉
+

N∑
j=1

〈
λ̄j , ∂uiΘj(ū) · ui

〉
s.t. Φi(ui)− Φi(ūi) + Θi(ū) ∈ −Ci .

(7.6)

This subproblem only depends on ui ∈ Uad
i and inherits only the i-th component of

the constraint.
2 Other choices for the auxiliary function Q allow to retrieve different decomposition schemes.

For instance, using Q(u, λ) = K(u) − 1
2α ‖λ‖

2, with α > 0 leads to price decomposition, see
[Carpentier and Cohen, 2017, §4.2].

96



CHAPTER 7. THE AUXILIARY PROBLEM PRINCIPLE

Example 7.3. Let ū ∈ U. A canonical choice for the additive auxiliary cost function K
is:

K(u) =
N∑
i=1

Ki(ui) with Ki(ui) = J∆(ū1:i−1, ui, ūi+1:n) ,

where ui:j = (ui, . . . , uj) for i ≤ j and the convention that ui:j is empty if j > i.
Similarly, a canonical choice for the block-diagonal auxiliary constraint Φ is:

Φ(u) = (Φ1(u1), . . . ,ΦN(uN)) with Φi(ui) = Θi(ū1:i−1, ui, ūi+1:n) .

The general idea is to construct the i-th term of the auxiliary function from the original
function where only the i-th component is allowed to vary. 4

We can now write the APP fixed-point algorithm for the decomposition by predic-
tion. We set the maximum of iterations to M ∈ N.

Algorithm 7 APP fixed-point algorithm for decomposition by prediction
1: Start with (ū, λ̄) = (u0, λ0) and set l = 0.
2: for all i ∈ {1, . . . , N} do in parallel:
3: Solve the subproblem i defined by (7.6). Let (ul+1

i , λl+1
i ) be a solution.

4: end for
5: Set ū = (ul+1

1 , . . . , ul+1
N ) and λ̄ = (λl+1

1 , . . . , λl+1
N ).

6: If ‖ul+1 − ul‖ + ‖λl+1 − λl‖ is sufficiently small, then stop, else l ← l + 1 and go
back to step 2.

7: return (ū, λ̄).

A convergence result for Algorithm 7 is given in [Cohen, 1980].
Theorem 7.4. [Cohen, 1980, Theorem 5.1 with ε = 1] Assume that:

• the admissible space Uad is equal to the whole space U,

• the constraints are equality constraints, that is C = {0},

• K(u) = 1
2 〈u ,Ku〉 , J

Σ(u) = 0, J∆(u) = 1
2 〈u , Ju〉 + 〈j , u〉 where K and J are

linear self-adjoint strongly monotone and Lipschitz continuous operators, j is a
vector in U, and 2K− J is assumed to be strongly monotone,

• Φ(u) = Ou, Θ(u) = Tu+ t where the operators O and T are linear and surjective
and t is a vector in C,

• (Geometric condition) the operator 2
(
TJ−1O> + OJ−1T>

)
−TJ−1(2K + J)J−1T>

is strongly monotone.
Then, the sequence

{
(ul, λl)

}
l∈N

generated by the APP fixed-point algorithm for the
decomposition by prediction converges strongly to the unique optimal solution (u], λ])
of the original problem (7.1).

The convergence theorem 7.4 for Algorithm 7 holds only in the restrictive case where
the costs J∆ andK are quadratic and the constraints Θ and Φ are linear. The difficulty
for the convergence of the decomposition by prediction comes from the fact that the
auxiliary function Q is not strongly concave in λ, it is linear in λ. This choice of Q
was made to be able to interpret the auxiliary problem as a constrained minimization
problem. The geometric condition of Theorem 7.4 is the assumption that allows to
overcome the difficulty arising from this choice of Q.
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7.4 Conclusion
In this part, we have recalled the theoretical foundations of the APP which allows to
turn the resolution of an optimization problem into the iterative resolution of auxiliary
problems. In order to use the APP for decomposition purpose, we construct a de-
composable auxiliary problem. Hence, solving the auxiliary problem boils down to the
resolution of independent subproblems of smaller size, which can be done in parallel.
We have presented the particular case of the decomposition by prediction along with a
convergence result that holds when the cost function is quadratic and the constraints
are linear. The APP allows us to overcome the curse of dimensionality when it comes to
solve large-scale optimization problems, such as the industrial maintenance scheduling
problem, that we formulate in Chapter 8. The APP is applied on synthetic test cases
in Chapter 9 and on the industrial system in Chapter 10.
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8 Modeling of the industrial
maintenance optimization problem

Life is like riding a bicycle. To keep
your balance you must keep moving.

Albert Einstein
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8.1 Introduction
This thesis is driven by the industrial problem, presented in Section 2.1, of maintenance
optimization for a system of components from a single hydroelectric power plant. We
recall that the components share a common stock of spare parts. The goal is to find a
deterministic maintenance strategy that minimizes the expected life cycle cost (LCC).
We consider systems with up to 80 components, which fall into the category of large-
scale systems.

In Part I, the optimal maintenance scheduling problem is tackled with blackbox
optimization algorithms. However, these methods are limited when the number of
components is large. This is why, in Chapter 7, we have introduced the APP, a general
framework that can be used to produce decomposition-coordination schemes, such as
the decomposition by prediction, described in Section 7.3.

The ultimate goal of Part II is to apply the APP on the industrial case. To do so,
some modeling effort is required to formulate the maintenance optimization problem.1
We model the dynamics and the cost generated by the system and consider a more
general space of maintenance strategies than in Part I, where we have only considered
periodic maintenance strategies. In the model of this chapter, we will be able to decide
whether or not to do a Preventive Maintenance (PM) each year for each component.

Contributions. In this chapter, we develop a model for the industrial system de-
scribed in Section 2.1. In Section 8.2, we introduce variables to characterize the com-
ponents, the stock, the PM strategy and the random failures of the components. Then,
in Sections 8.3 and 8.4, we give an analytical expression of the dynamics and of the
cost generated by the system. Finally, in Section 8.5, we formulate the maintenance
optimization problem. This chapter is key to exit from the blackbox context, currently
used at EDF, which prevents from tackling large-scale optimization problems. The
modeling we propose consists in opening the blackbox and is a necessary step towards
the implementation of the decomposition method presented in Chapter 7.

8.2 Description of the system
The system under study has been physically described in Section 2.1. In this section,
we start the mathematical modeling of the system by introducing some variables to
characterize the different elements that make it up: the stock and the physical compon-
ents. Then, we define the space of admissible maintenance strategies and we present a
model for the random failures of the components. The modeling of the system is neces-
sary to provide a mathematical formulation of the maintenance optimization problem.
Before the description of the system, we give some definitions.

Definition 8.1. Let p ∈ N, A ⊂ Rp and x ∈ Rp. The indicator function of the set A
is:

1A(x) =
{

1 if x ∈ A ,

0 if x /∈ A .

We introduce the following notations for the space of random variables.
1 This modeling effort was not needed in Part I as the problem was solved in a blackbox context:

only the function evaluations are used to guide the search.
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Definition 8.2. Let (Ω,A,P) be a probability space and (Y,Y) be a measurable
space. The set of measurable functions from (Ω,A,P) to (Y,Y) is denoted by Y =
L0 (Ω,A,P;Y), where we omit the σ-algebra Y in the notation.

Remark 8.3. Any random variable Y : Ω→ Y is an element of Y . ♦

We consider a system of n ∈ N? physical components of a single hydropower plant
(generators, turbines or transformers) sharing a common stock of spare parts. A sketch
of the system with n = 2 components is represented in Figure 8.1. A Corrective
Maintenance (CM) consists in the replacement of a component after a failure. A
Preventive Maintenance (PM) is a planned replacement of a healthy component (before
a failure).

Unit

Component 1Component 1 Component 2Component 2

PM 1 PM 2

CM 1 CM 2
Stock

CM: Corrective Maintenance
PM: Preventive Maintenance

Figure 8.1: System of two components sharing the same stock of spare parts.

We use the notations defined in the introductory chapter of Part II. In the sequel,
i ∈ I = {1, . . . , n} is a component index, t ∈ T = {0, . . . , T} is a time step. In this
chapter, we use the component index set I rather than the entity index set I as the
variables describing the stock will be treated separately from the components.

8.2.1 Characterization of the stock and the components
The stock over time is characterized by the sequence of random variables

S = (S0, . . . ,ST ) ∈ S ,

defined on a given probability space (Ω,A,P) and where St is the random variable
representing the number of available spare parts at time t. We have S = L0 (Ω,A,P;S)
the set of all random variables taking values in S = {0, . . . , s}T+1. The parameter
s ∈ N is the maximum number of spare parts. The value of the initial stock is set to
S0 = s. The replenishment delay for the parts, that is, the time from order to delivery
of a part, is known and denoted by D ∈ N.

At time t, component i is characterized by random variables representing:

• its regime

Ei,t =
{

0 if the component is broken,
1 if the component is healthy.

A component has only two regimes: in the healthy regime, it runs in its nominal
operating point. In the broken regime, it stops working completely. Initially, all
components are healthy i.e. Ei,0 = 1 for all i ∈ I.

• its age (if healthy) or the time for which it has failed (if broken) denoted by the
real-valued random variable Ai,t. Initially, the components are new i.e. Ai,0 = 0
for all i ∈ I.
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• the time elapsed since its last D failures:

Pi,t = (P 1
i,t, . . . ,P

D
i,t) ,

where D is the number of time steps for the supply of spare parts. For d ∈
{1, . . . , D}, P d

i,t is the number of time steps elapsed since the d-th undiscarded
failure of component i. P d

i,t takes a default value δ if the component has failed
fewer than d times. Hence, P d

i,t takes values in {δ} ∪ R+ and Pi,0 = (δ, . . . , δ).
The random vector Pi,t is useful to compute the dates of replenishment of the
stock. It is enough to store at most the dates of the last D failures to describe
the supply of the stock. More details are given in §8.3.1.

The characteristics of component i at time t are gathered in:

Xi,t = (Ei,t,Ai,t,Pi,t) ∈ Xi,t ,

where Xi,t = L0 (Ω,A,P;Xi,t) with Xi,t = {0, 1} × R+ × ({δ} ∪ R+)D. The state
of the system is then described at t by (X1,t, . . . ,Xn,t,St). Finally, to describe the
components over the whole study period we introduce:

X = (X1, . . . ,Xn) = ((X1,0, . . . ,X1,T ), . . . , (Xn,0, . . . ,Xn,T )) ∈ X ,

where X = ∏n
i=1Xi and Xi = ∏T

t=0Xi,t, for all i ∈ I. In order to emphasize that X
depends on all the components of the system, we sometimes use the notation X1:n
instead of X .

8.2.2 Preventive maintenance strategy
A PM consists in repairing a component although it is in the healthy regime. The
dates of PM can be different for each component. They define the preventive mainten-
ance strategy of the system. Operational constraints impose to look for deterministic
strategies. This means that the dates of PM are chosen without any knowledge on
the state of the system after the beginning of the time horizon and cannot be changed
during the study. The maintenance strategy is defined by a vector:

u = (u1, . . . , un) = ((u1,0, . . . , u1,T−1), . . . , (un,0, . . . , un,T−1)) ∈ U = [0, 1]nT , (8.1)

where ui,t characterizes the PM for component i at time t. More precisely, we set a
threshold 0 < ν < 1: a control ui,t ≥ ν corresponds to a rejuvenation of the component
proportional to ui,t and a value ui,t < ν corresponds to not performing a maintenance.
We consider that the maintenance operation is instantaneous and that it does not
use parts from the stock. The reason is that PMs are planned in advance, hence it
is possible to order the parts so that they arrive just in time for the maintenance
operation.

Note that a PM decision could a priori be represented by a discrete variable taking
values in {0, 1}. As we intend to apply the APP which is a continuous optimization
algorithm, we choose to model the PM strategy with continuous decision variables
ui,t ∈ [0, 1], (i, t) ∈ I × T−1. The use of a continuous u and of the threshold ν will
become clearer in §8.3.1.

The modeling of §8.1 allows to consider very general maintenance strategies as for
each component, we can decide whether or not to do a PM at each time step. The space
U is then much larger than the space of periodic maintenance strategies considered in
Part I.
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8.2.3 Failures of the components
In our study, the distribution of the time to failure for component i is a known Weibull
distribution2 of parameters (βi, λi) denoted by Weib(βi, λi). The probability of failure
of a component at a given time step only depends on its age and its failure distribution.

Proposition 8.4. Let i ∈ I. Assume that component i has age a ≥ 0 at time t. Let Fi
be the cumulative distribution function of the time to failure for component i. Then,
the probability of failure of component i at time t+ ∆t conditionally to the component
being healthy at t is given by:

pi(a) = Fi(a+ ∆t)− Fi(a)
1− Fi(a) ,

The proof of this result can be found in [Meeker and Escobar, 2014, Section 2.2.1].
We introduce the random sequence:

W = (W1, . . . ,Wn) = ((W1,1, . . . ,W1,T ), . . . , (Wn,1, . . . ,Wn,T )) ∈ W ,

where W = L0
(
Ω,A,P; [0, 1]nT

)
. The random process W is an exogenous noise that

affects the dynamics of the regime E and the age A. We assume that all Wi,t are
independent random variables and follow a uniform distribution on [0, 1]. At time step
t, component i has age Ai,t. If Wi,t+1 < pi(Ai,t), component i fails at t+ 1, otherwise
no failure occurs.

8.3 Dynamics of the system
Now, we describe the dynamics of the system, that is, we explain how the variables
characterizing the system, presented in Section 8.2, evolve between two time steps.

8.3.1 Dynamics of a component
Let i ∈ I and t ∈ T−1. The dynamics of component i between t and t+ 1 is described
as follows.

1. If component i is healthy i.e. Ei,t = 1:

(a) If ui,t ≥ ν, then a PM is performed. After a PM, component i stays healthy
and is rejuvenated so that:

(Ei,t+1,Ai,t+1) = (1, (1− ui,t)(Ai,t + 1)) .

Note that ui,t = 1 makes the component as good as new: in this case we
have Ai,t+1 = 0.

(b) If ui,t < ν, then no PM is performed. Component i fails with probability
pi(Ai,t):

(Ei,t+1,Ai,t+1) =
(0, 0) if Wi,t+1 < pi(Ai,t) ,

(1,Ai,t + 1) otherwise .
2 The definition of the Weibull distribution is given in the Appendix, see Definition B.8.
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2. If component i is broken i.e. Ei,t = 0:

(a) If a spare is available in the stock, a CM is performed to replace the com-
ponent. We assume that the CM is an identical replacement, which implies
that the component becomes as good as new. We get:

(Ei,t+1,Ai,t+1) = (1, 0) .

(b) If no spare part is available, the defective component stays in the broken
regime:

(Ei,t+1,Ai,t+1) = (0,Ai,t + 1) .

As all components belong to the same power plant, when at least one com-
ponent is broken, the unit is shut down until the arrival of a spare part and
the execution of the CM. Such a situation is a forced outage. During the
shut down no electricity is produced.

We have to express formally that a spare part is available for the replacement
of component i. At time t, suppose that the stock has St = r parts and that m
components are broken. If r ≥ m then all components can be replaced immediately.
When r < m, we must choose which components to replace. Our modeling choice is
to replace the broken components following the order of their index: if i1 ≤ . . . ≤ ir ≤
. . . ≤ im are the indices of the broken components, we replace only the components
with index i1, . . . , ir, the others stay in the broken regime and wait for new available
parts. Using this choice, the availability of a spare part for component i corresponds
to the condition:

St ≥
i∑

j=1
1{0}(Ej,t) . (8.2)

The right hand side of (8.2) simply counts the number of broken components with
index smaller or equal than i.

To completely describe the dynamics of a component, we have to specify the dy-
namics of the vector Pi,t. It has been introduced in §8.2.1 to store the dates of failures
of the component and compute the dates for the replenishment of the stock.

• If Pi,t = (t1, . . . , td, δ, . . . , δ) with t1, . . . , td ≥ 0, meaning that component i has
undergone d < D failures so far, then:

Pi,t+1 =
{

(t1 + 1, . . . , td + 1, 0, δ, . . . , δ) if failure at t+ 1 ,
(t1 + 1, . . . , td + 1, δ, δ, . . . , δ) otherwise .

(8.3a)
(8.3b)

• If Pi,t = (t1, . . . , tD) with t1, . . . , tD ≥ 0, meaning that component i has undergone
at least D failures so far, then:

Pi,t+1 =
{

(t2 + 1, . . . , tD + 1, 0) if failure at t+ 1 ,
(t1 + 1, . . . , tD + 1) otherwise .

(8.4a)
(8.4b)

In (8.4a), note that t1 is discarded. As Pi,t = (t1, . . . , tD) and t1 > . . . > tD ≥ 0,
we get that t1 ≥ D−1. At time step t+ 1, the part ordered from the failure at t1
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has arrived. Then, storing t1 is not useful anymore. So if a failure occurs at t+1,
we can discard t1 to make room for the new date of failure. This proves that it is
enough to have Pi,t of size D to compute the replenishment of the stock as stated
in §8.2.1. Note that the dates are not discarded if there is no failure (see (8.4b)),
so it is possible to have td > D for some d ∈ {1, . . . , D}. Such variables have no
influence on the dynamics of the system.

(1,Ai,t)
Healthy, age Ai,t

(0,Ai,t)
Broken for a time Ai,t

ui,t ≥ ν
PM

ui,t < ν
No PM

(1, (1− ui,t)(Ai,t + 1))
Rejuvenation

(1,Ai,t + 1)
Ageing

(0, 0)
Failure

(1, 0)
Replacement

(0,Ai,t + 1)
Stays broken

St ≥
∑i
j=1 1{0}(Ej,t) ?

Enough spare parts ?

(Ei,t,Ai,t) (Ei,t+1,Ai,t+1)

pi(Ai,t)

1− pi(Ai,t)

Yes

No

Figure 8.2: Dynamics of component i.

Figure 8.2 summarizes the dynamics of component i from t to t + 1. Recall that we
have Xi,t = (Ei,t,Ai,t,Pi,t). We write the dynamics of component i on the whole time
horizon as:

Θi(X1:i,S , ui,Wi) = 0 ,

where Θi = {Θi,t}t∈T such that:Θi,t+1(X1:i,S , ui,Wi) = Xi,t+1 − fi(X1:i,t,St, ui,t,Wi,t+1), t ∈ T−1 ,

Θi,0(X1:i,S , ui,Wi) = Xi,0 − xi ,
(8.5)

with xi = (1, 0, δ, . . . , δ)> and fi represents the dynamics we just described for com-
ponent i. An explicit expression of fi is given in Appendix D.1.

Note that there is a coupling between the dynamics of component i and the stock.
There is also a coupling with components j < i. This is due to the choice (8.2) of
replacing the broken components with the smallest indices first if there are not enough
spare parts.

8.3.2 Dynamics of the stock
For the stock, the initial number of spare parts is S0 = s. As PMs can be anticipated,
we consider that the needed spares are ordered so that they arrive just in time for
the scheduled maintenance. Therefore, they do not appear in the dynamics of the
stock. A part is used for each CM and a new part is ordered only after the failure of a
component. The number of time steps for the supply of a part is D. Hence, the part
ordered after the d-th undiscarded failure of component i arrives in the stock at t + 1
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if P d
i,t+1 = D. This is equivalent to P d

i,t = D − 1. On the other hand, the number of
broken components is ∑n

i=1 1{0}(Ei,t) and we replace as many of them as possible given
the current level of stock St. Thus, we have:

St+1 = St +
n∑
i=1

D∑
d=1

1{D−1}(P d
i,t)−min

{
St,

n∑
i=1

1{0}(Ei,t)
}
, t ∈ T−1 . (8.6)

We write the dynamics of the stock in compact form as:

ΘS (X1:n,S) = 0 ,

where ΘS = {ΘS ,t}t∈T such that:ΘS ,t+1(X1:n,S) = St+1 − fS (X1:n,t,St), t ∈ T−1 ,

ΘS ,0(X1:n,S) = S0 − s ,
(8.7)

with fS corresponding to the right-hand side of (8.6). Note that St+1 depends on the
current level of stock St but also on Xi,t for all i ∈ I. The stock is coupling all the
components of the system.

Finally, the dynamics of the whole system is summarized by the almost sure equality
constraint Θ(X ,S , u,W ) = 0, where we have Θ : X × S × U × W → L, with
Θ =

{
{Θi}i∈I ,ΘS

}
and L = (∏n

i=1 Li) × LS where Li = L0
(
Ω,A,P;R(D+2)(T+1)

)
for

i ∈ I and LS = L0
(
Ω,A,P;R(T+1)

)
.

We have now completely described the dynamics of the system. In the next part
we specify the costs associated to the system.

8.4 Costs generated by the system
The costs generated by the system are due to PMs, CMs and forced outages of the
unit. In practice, as PMs are scheduled in advance, they are cheaper than unpredictable
CMs. A forced outage of the unit induces a loss of production. It is characterized by
a yearly cost which is higher than that of a PM or a CM. We consider a discount rate
τ meaning that a cost c occurring at time t will be valued ηtc with the discount factor
ηt := 1

(1+τ)t . We introduce the following notations:

• jPi,t(ui,t) is the PM cost incurred at time t ∈ T−1 for component i ∈ I. Let CP
i be

the cost of a PM operation on component i. We set:

jPi,t(ui,t) = ηtC
P
i u

2
i,t .

We use a quadratic cost as it is strongly convex and should favor numerical
convergence. In particular, in the case when 0 < ui,t < ν, which models a
situation where no PM is performed, we have jPi,t(ui,t) > 0.3

3 The fact that jPi,t(ui,t) > 0 when 0 < ui,t < ν is favorable from a numerical point of view. For
0 < ui,t < ν, we always have jPi,t(ui,t) > jPi,t(0) while no PM is performed. Hence, the system dynamics
is the same with ui,t = 0 and 0 < ui,t < ν while the cost is higher for 0 < ui,t < ν. Hence, the control
ui,t = 0 is always better to 0 < ui,t < ν. This feature will allow us to clearly distinguish the steps
where a PM is performed from the others.
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• jCi,t(Xi,t) is the CM cost. It is due at the time of the failure of a component,
even if there is no spare part to perform the operation immediately. Hence it
only occurs when (Ei,t,Ai,t) = (0, 0). Let CC

i be the cost of a CM operation on
component i. We have:

jCi,t(Xi,t) = ηtC
C
i 1{0}(Ei,t)1{0}(Ai,t) .

• jFt (X1:n,t) is the forced outage cost. As all components belong to the same
production unit, a forced outage occurs when at least one component is in a
failed state and the CM has not been performed immediately because of a lack
of spare part. Let CF be the forced outage cost per time unit. We have:

jFt (X1:n,t) = ηtC
F min

{
1,

n∑
i=1

1{0}(Ei,t)1R∗+(Ai,t)
}
.

In order to consider the previous costs over the whole study period we introduce:

• the total maintenance cost (preventive and corrective) generated by component
i ∈ I on the studied period:

ji(Xi, ui) =
T−1∑
t=0

jPi,t(ui,t) +
T∑
t=0

jCi,t(Xi,t) , (8.8)

• the total forced outage cost generated by the system during the studied period:

jF (X1:n) =
T∑
t=0

jFt (X1:n,t) , (8.9)

8.5 Formulation of the maintenance optimization
problem

The dynamics of the system is stochastic as it depends on the failure of the components,
modeled by the random vector W . The cost function is then stochastic as well. The
objective is to find the deterministic maintenance strategy u ∈ U that minimizes the
expected cost generated by the system over all failure scenarios. Hence, the industrial
optimal maintenance scheduling problem is formulated as follows:

min
(X ,S ,u)∈X×S×U

E
( n∑
i=1

ji(Xi, ui) + jF (X1:n)
)

s.t. Θ(X ,S , u,W ) = 0 , P-a.s. .
(8.10)

The goal of Part II of the thesis is to solve Problem (8.10) with the scheme of
decomposition by prediction introduced in Chapter 7. In this way, we should be able
to solve the maintenance optimization problem for systems with a large number of
components and in particular, to tackle the largest industrial case of interest with 80
components.

However, the description of the industrial system involves several integer variables –
such as the regime Ei,t or the stock St – which seems incompatible with the application
of the APP, a method based on variational techniques. The auxiliary problem (7.5)
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indeed involves the derivatives of the dynamics Θ which are not defined given that
integer variables appear in the expressions (8.5) and (8.7). Moreover, the convergence
result for the decomposition by prediction, given in Theorem 7.4, applies only when the
cost function is quadratic and the dynamics is linear. However, the forced outage cost
jF is not quadratic, nor even convex and the dynamics Θ is non linear. In the light of
these remarks, the application of the APP to the industrial problem is not straightfor-
ward and we have no guarantee that a decomposition by prediction of Problem (8.10)
will lead to a solution that achieves good performance.

8.6 Conclusion
In this chapter, we have developed a mathematical model for an industrial system of
several components from a single hydropower plant sharing a common stock of spare
parts. The system is described by a mix of integer and continuous variables and we
give analytical expressions for the dynamics and cost of the system. In the model,
we allow for very general maintenance strategies where one maintenance decision can
be taken at each time step for each component. Therefore, we are not restricted to
periodic maintenance strategies. The resulting optimization problem is a mixed-integer
program for which the application of the APP is not straightforward and without any
guarantee of performance. This is why, in Chapter 9, we choose to apply the APP
first on two synthetic test cases, that share some common characteristics with the
industrial problem (8.10) but that are closer to the theoretical scope of convergence
of the decomposition method. The performance of the decomposition by prediction
on these test cases will give a first indicator of whether it is relevant to use the APP
for the industrial problem. In Chapter 10, we show how to implement the APP for
Problem (8.10) and carry out some numerical experiments.
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9 Application of the APP on two
synthetic test cases

Theory is when you know everything
but nothing works. Practice is when
everything works but no one knows
why. Here, theory and practice are
combined: nothing works and no one
knows why.

Unknown
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9.1 Introduction
In Chapter 8, we have formulated the industrial maintenance optimization problem.
The goal of Part II of the thesis is to solve Problem (8.10) with the APP in order
to optimize the maintenance for large-scale industrial systems. However, we have
highlighted in Section 8.5 that the application of APP to the industrial problem is not
straightforward.

In this chapter, we design two synthetic test cases for which we apply the decom-
position by prediction presented in Chapter 7. The test cases are designed so as to
display the following characteristics.

1. They fit the structure of the industrial problem. By this, we mean that the
couplings that appear in the cost function and in the dynamics of the synthetic
system are chosen to be similar to those of the industrial system.

2. They have an analytical solution.

3. They have a linear dynamics and quadratic costs as required in Theorem 7.4, but
do not satisfy the geometric condition that is hard to check in practice.

We implement the decomposition by prediction for the test cases and compare the
numerical results given by the fixed-point algorithm with the analytical optimum. This
is a preliminary validation step of the decomposition methodology before moving on
to the application of the APP for the industrial case in Chapter 10. We consider the
two following test cases.

1. In Section 9.2, we design a system with a quadratic cost function and a de-
terministic linear dynamics for which we can directly use the decomposition by
prediction introduced in Section 7.3.

2. In Section 9.3, we design a system with a stochastic dynamics for which we aim at
minimizing the expectation of a quadratic cost function. We use a SAA approach
– as described in the introduction of Part II – to solve this problem and apply
the decomposition by prediction on a deterministic approximate problem.

In this chapter, we reuse the vocabulary and notations presented in the introductory
chapter of Part II.

Contributions. We present a progressive approach where the APP is applied on two
test cases of increasing difficulty. We tailor these synthetic cases to be counterparts
of the industrial problem but for which the application of the APP is easier. From a
practical point of view, our contributions include the design of the synthetic problems,
the result and the proof of the formula for the analytical solution of the problems,
the choice of the auxiliary problem for the application of the APP and the numerical
implementation of the fixed-point algorithm.

9.2 The deterministic synthetic test case
In this section, we apply the APP on a test case that evolves with a deterministic linear
dynamics and that generates a deterministic quadratic cost. We start by describing the
dynamics and cost of the synthetic system and we formulate the associated optimization
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problem. Then, we give the analytical optimal solution of the problem. Next, in order
to apply the APP, we give an explicit choice for the auxiliary function that leads
to a scheme of decomposition by prediction. Finally, we apply the APP fixed-point
algorithm on the test case and compare the numerical solution with the analytical one.

9.2.1 Description of the deterministic test case
We consider a system that consists in N = 3 entities, say two physical components and
a stock, to do the analogy with the industrial case. The system is studied on a discrete
time horizon T ∈ N. In the sequel, i ∈ I = {1, 2, 3} denotes an entity, I = {1, 2} is the
components index set and t ∈ T = {0, . . . , T} denotes a time step. The entities of the
system are characterized by a vector:

x = (x1, x2, x3) = ((x1,0, . . . , x1,T ), (x2,0, . . . , x2,T ), (x3,0, . . . , x3,T )) ∈ X = R3(T+1) ,

where for i ∈ I, we have xi ∈ Xi = R(T+1) and X = ∏
i∈IXi. On the system, we can

apply a control:

u = (u1, u2) = ((u1,0, . . . , u1,T−1), (u2,0, . . . , u2,T−1)) ∈ U = R2T , (9.1)

where for i ∈ I, we have ui ∈ Ui = RT and U = ∏
i∈I Ui. In the industrial case, controls

represent the PMs and can only be applied on the components but not on the stock,
justifying the size of the vector u.

Dynamics. The system evolves with a linear deterministic dynamics written as:

Θ(x, u) = 0 ,

where Θ = {Θi}i∈I with Θi representing the dynamics of entity i. We have Θi =
{Θi,t}t∈T with:

{
Θi,t+1(x, u) = xi,t+1 − Aix ·,t −Biu ·,t , t ∈ T−1 ,

Θi,0(x, u) = xi,0 − xi,init ,

where x ·,t = (x1,t, x2,t, x3,t), u ·,t = (u1,t, u2,t). We also have xi,init ∈ R, Ai ∈ R3 and
Bi ∈ R2. In the sequel, we denote by A ∈ R3×3 (resp. B ∈ R3×2) the matrix with rows
{Ai}i∈I (resp. {Bi}i∈I).

Cost. The cost generated by the system at time t is quadratic and given by:{
jt(x ·,t, u ·,t) = 〈x ·,t , Rx ·,t〉+ 〈u ·,t , Ou ·,t〉 , t ∈ T−1 ,

jT (x ·,T ) = 〈x ·,T , Rx ·,T 〉 ,

where R ∈ R3×3 and O ∈ R2×2 are symmetric matrices with R being positive semi-
definite and O being positive definite. These requirements ensure that the cost function
is positive and convex. The overall cost is then:

j(x, u) =
T−1∑
t=0

jt(x ·,t, u ·,t) + jT (x ·,T ) . (9.2)
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Problem of interest. We aim at solving the following optimization problem:
min

(x,u)∈X×U
j(x, u)

s.t. Θ(x, u) = 0 .
(9.3)

One interest of studying the test case (9.3) is that an analytical solution can be
computed thanks to the following theorem.
Theorem 9.1. The optimal control u] for Problem (9.3) is given by:

u] = C−1d .

Here u] is to be understood as the vector (u]1,0, u]2,0, . . . , u]1,T−1, u
]
2,T−1)> ∈ R2T where

the coordinates are sorted by time step whereas in (9.1) the coordinates are sorted by
component. The matrix C ∈ R2T×2T is defined by blocks of size 2× 2 such that:

Ct,t = O +
T−1∑
p=t

(Ap−tB)>R(Ap−tB) ∈ R2×2, t ∈ T−1 ,

Ct,k =
T−1∑

p=max(k,t)
(Ap−tB)>R(Ap−kB) ∈ R2×2, t, k ∈ T−1, t 6= k ,

and d ∈ R2T is defined by blocks of size 2× 1 such that:

dt = −
T−1∑
p=t

(Ap−tB)>RAp+1x ·,init ∈ R2, t ∈ T−1 .

Proof. In Problem (9.3), when the constraint Θ(x, u) = 0 is satisfied, we can express x
as a function of u and substitute its value in j(x, u). The cost function of Problem (9.3)
can then be expressed as a function ̃ : U→ R that depends only on u. By induction,
we get:

x ·,t+1 = At+1x ·,0 +
t∑

k=0
At−kBu ·,k, t ∈ T−1 .

Therefore:

̃(u) =
T∑
t=0

〈
Atx ·,init +

t−1∑
k=0

At−1−kBu ·,k , R

(
Atx ·,0 +

t−1∑
k=0

At−1−kBu ·,k

)〉

+
T−1∑
t=0
〈u ·,t , Ou ·,t〉 .

(9.4)

The cost function ̃ is strictly convex. Moreover, the feasible set is convex and non
empty, hence ̃ admits a unique minimizer u]. The optimal value x] is then determined
by the constraint Θ(x], u]) = 0. To compute u], we simply use that:

∇u ·,t ̃(u]) = 0, t ∈ T−1 .

This leads to:O +
T∑

p=t+1
(Ap−t−1B)>RAp−t−1B

u]·,t +
T∑

p=t+1
(Ap−t−1B)>R

p−1∑
k=0
k 6=t

Ap−k−1Bu]·,k

+
T∑

p=t+1
(Ap−t−1B)>RApx ·,init = 0 .
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Exchanging the two summation signs in the second term and using the change of indices
p← p+ 1, we get:O +

T−1∑
p=t

(Ap−tB)>RAp−tB
u]·,t +

T−1∑
k=0
k 6=t

T−1∑
p=max(k,t)

(Ap−tB)>RAp−kBu]·,k

+
T−1∑
p=t

(Ap−tB)>RAp+1x ·,init = 0 ,

which corresponds exactly to:

Ct,tu
]
·,t +

T−1∑
k=0
k 6=t

Ct,ku
]
·,k = dt . (9.5)

Equality (9.5) is valid for t ∈ T−1, so that we can write:

u] = C−1d .

This concludes the proof. �

9.2.2 Application of the APP for a decomposition by predic-
tion

In this section, we apply the APP as described in Section 7.3. We aim at decomposing
Problem (9.3) in three subproblems involving respectively only the spaces (X1 × U1)
(first subproblem), (X2 × U2) (second subproblem) and X3 (third subproblem). In
practice, this means that we consider the following decomposition of the space X×U:

X× U = (X1 × U1)× (X2 × U2)× X3 . (9.6)

The constraints of Problem (9.3) are represented by the function Θ : X×U→ X. Our
goal is to assign the constraint on the dynamics of entity i to the subproblem involving
this same entity. This means that we consider the following decomposition of the space
of constraints X:

X = X1 × X2 × X3 . (9.7)

Then, we can identify the additive part and the non-additive coupling part in the cost
j with respect to the decomposition (9.6) by writing:

j = jΣ + j∆ ,

with

jΣ(x, u) =
2∑
i=1

jΣ
i (xi, ui) + jΣ

3 (x3) where


jΣ
i (xi, ui) =

T∑
t=0

Ri,ix
2
i,t +

T−1∑
t=0

Oi,iu
2
i,t ,

jΣ
3 (x3) =

T∑
t=0

R3,3x
2
3,t ,

j∆(x, u) =
T∑
t=0

〈
x ·,t , R̄x ·,t

〉
+

T−1∑
t=0

〈
u ·,t , Ōu ·,t

〉
, (9.8)

where we write R = Rdiag+R̄ and O = Odiag+Ō with Rdiag and Odiag being respectively
the matrices R and O where only the diagonal elements are kept, the others being set
to zero.
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Remark 9.2. The additivity of the cost with respect to the decomposition (9.6) cor-
responds to the additivity with respect to the entity index i. We notice that both jΣ

and j∆ are additive with respect to the time t but this property plays no role in the
decomposition scheme entity by entity we are trying to set up. ♦

Now, we introduce an auxiliary cost function K that is additive with respect to
the decomposition (9.6) of the primal space and a auxiliary dynamics Φ that is block-
diagonal with respect to the decompositions (9.6) and (9.7) of the primal and the dual
spaces. We use the canonical technique from Example 7.3. Let x̄ ∈ X and ū ∈ U, we
consider:

• An auxiliary cost function K : X× U→ R such that:

K(x, u) = K1(x1, u1) +K2(x2, u2) +K3(x3) , (9.9)

with 
K1(x1, u1) = j∆((x1, x̄2, x̄3), (u1, ū2)) ,
K2(x2, u2) = j∆((x̄1, x2, x̄3), (ū1, u2)) ,

K3(x3) = j∆((x̄1, x̄2, x3), (ū1, ū2)) .
(9.10)

• An auxiliary dynamics Φ : X× U→ X such that:

Φ(x, u) = (Φ1(x1, u1),Φ2(x2, u2),Φ3(x3)) , (9.11)

with 
Φ1(x1, u1) = Θ1((x1, x̄2, x̄3), (u1, ū2)) ,
Φ2(x2, u2) = Θ2((x̄1, x2, x̄3), (ū1, u2)) ,

Φ3(x3) = Θ3((x̄1, x̄2, x3), (ū1, ū2)) .

Now that the auxiliary functions are chosen, we can derive the auxiliary problem that
is to be solved at each iteration of the APP fixed-point algorithm.

Proposition 9.3. Let (x̄, λ̄) ∈ X2 and ū ∈ U. The auxiliary problem that results from
the choices (9.9) and (9.11) of the auxiliary cost and dynamics is given by:

min
(x,u)∈X×U

K(x, u) + jΣ(x, u) +
〈
λ̄ , (Θ′(x̄, ū)− Φ′(x̄, ū)) · (x, u)

〉
s.t. Φ(x, u) = 0 .

(9.12)

Proof. The test case corresponds to the theoretical problem (7.1) where we identify jΣ

with JΣ and j∆ with J∆. Moreover, with the choice (9.9) for the auxiliary cost we
have:

∇j∆(x̄, ū)−∇K(x̄, ū) = 0 .

With the choice (9.11) for the auxiliary dynamics we have:

Θ(x̄, ū)− Φ(x̄, ū) = 0 .

Thus, the auxiliary problem (9.12) for the synthetic system corresponds exactly to the
theoretical auxiliary problem (7.5). �
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By construction, the auxiliary problem (9.12) is decomposable into independent
subproblems that are given for i ∈ I by:

min
(xi,ui)∈Xi×Ui

Ki(xi, ui) + jΣ
i (xi, ui) +

3∑
j=1
j 6=i

〈
λ̄j , ∂(xi,ui)Θj(x̄, ū) · (xi, ui)

〉

s.t. Φi(xi, ui) = 0 .

(9.13)

The third subproblem writes:

min
x3∈X3

K3(x3) + jΣ
3 (x3) +

2∑
j=1

〈
λ̄j , ∂x3Θj(x̄, ū) · x3

〉
s.t. Φ3(x3) = 0 .

(9.14)

We are now set to apply Algorithm 7 which reduces the resolution of the syn-
thetic problem (9.3) into the iterative resolution of the subproblems defined by (9.13)
and (9.14). The subproblems (9.13) are solved with the blackbox algorithm MADS
[Audet and Dennis, 2006] in order to stick to what we aim at doing for the industrial
case in Chapter 10. MADS only outputs a primal solution (x]i, u

]
i). Then, we need to

compute the optimal multiplier λ]i = {λ]i,t}t∈T. To do so, we use the backward recursion
that defines the adjoint state.

Lemma 9.4. Let i ∈ I. The optimal multipliers of subproblems i ∈ I (9.13) and
subproblem i = 3 (9.14) are given by the following backward recursion:

λ]i,T = −2R̄ix̄ ·,T − 2Ri,ix
]
i,T ,

λ]i,t = −2R̄ix̄ ·,t − 2Ri,ix
]
i,t + Ā>i λ̄ ·,t+1 + Ai,iλ

]
i,t+1, t ∈ T−1 ,

(9.15)

where Āi and R̄i denote the i-th row of Ā and R̄ respectively.

Proof. Let Li be the Lagrangian of subproblem i ∈ I. As subproblem i is convex with
linear constraints, Li admits a saddle point. Let (x]i, u

]
i, λ

]
i) ∈ Xi×Ui×Xi be a saddle

point of Li, we have:

∇Li(x]i, u
]
i, λ

]
i) = 0 .

The backward recursion (9.15) results from the computation of the partial derivatives
of Li with respect to xi,t for t ∈ T. �

Remark 9.5. Note that the third subproblem (9.14) is easy to solve numerically. The
constraint Φ3(x3) = 0 indeed completely determines the dynamics of the system in this
subproblem. Solving (9.14) then just amounts to simulate the dynamics and evaluate
the corresponding cost function. Hence, we easily get the primal solution x]3. The
optimal multiplier λ]3 = {λ]3,t}t∈T is then computed with the adjoint state given by
Lemma 9.4. ♦

9.2.3 Numerical results
In this section, we present the numerical setting of the synthetic problem, the paramet-
ers of the algorithms that are used for the practical implementation of the decomposi-
tion method and a comparison between the numerical results given by the fixed-point
algorithm and the analytical solution.
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9.2.3.1 Choice of the numerical values for the test case

Problem (9.3) is studied on a horizon of T = 10 time steps. Then, we need to specify
the numerical values for the dynamics and cost of the test case. The location of the
non-zero values in the matrices A, B, R and O is chosen so as to confer a structure
to the test case that is similar to the structure of the industrial problem presented in
Chapter 8. This means that we introduce couplings between the entities in the test
case that are the same as the couplings that occur between the components and the
stock in the industrial system. Recall that in the synthetic test case, entities i = 1 and
i = 2 are similar to physical components of the industrial system and that entity i = 3
plays the role of a common stock of spare parts. We set:

A = 1
4

 2 0 −1
0.2 2 −1
−1 −1 1

 , B =

−0.5 0
0 −0.5
0 0

 ,

R =

 5 −1 0
−1 2.5 0
0 0 0

 , O =
(

2 0
0 1

)
.

(9.16)

We can check that the matrix O is positive definite and that R is positive semi-
definite. Let us detail precisely how the choice of these numerical values has been
carried out.

For the matrix A. First, the stock appears in the dynamics of every component,
see (8.5), and conversely all components appear in the dynamics of the stock, see (8.6).
Hence, the third line and the third column of A do not contain any zeros. We choose
the same coefficients for A3,1 and A3,2 to model a case where the influence of the two
components on the stock is the same. Similarly, A1,3 and A2,3 are chosen to be identical
as the influence of the stock on the two components is the same. From (8.5), we see that
the dynamics of component i only depends on components j < i. Therefore, A1,2 is set
to zero as the dynamics of component 1 does not depend on component 2. However,
A2,1 takes a non-zero value as the dynamics of component 2 depends on component 1.
We choose a low value for A2,1 compared to the diagonal elements of A. The reason
is that the coupling between the components in the dynamics is weak. This coupling
indeed only occurs in the rare situation where many components must be replaced at
the same time without enough spare parts being available.

For the matrix B. Note that a control (i.e. a PM) on a component does not affect
the other component nor the stock, hence the only non-zero coefficients of B are B1,1
and B2,2. The diagonal coefficients are chosen to be identical as a PM has the same
effect on every component.

For the cost matrices R and O. The matrix R represents the cost due to CMs
and forced outages. The coupling part, represented by off-diagonal coefficients R1,2
and R2,1, is due to forced outages. Moreover, no cost is linked to the stock, therefore
we set the third line and third column of R to zero. Finally, O represents the PM cost.
This cost does not create any coupling between the components. Therefore, the matrix
O is chosen to be diagonal.
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Remarks on the violation of some requirements of Theorem 7.4. With the
choice (9.16) for the matrices A, B, R and O, some assumptions of Theorem 7.4 for
the convergence of fixed-point algorithm are not satisfied. The operator J that appears
in Theorem 7.4 is given by:

J = 2×


J0 . . . 0
... . . . ...
0 . . . JT

 where


Jt =

(
R 0
0 O

)
, t ∈ T−1 ,

JT = R .

With the choice (9.16) for the matrix R, and more precisely because no cost is incurred
by the stock in the industrial problem, the operator J is only monotone and not strongly
monotone as required in Theorem 7.4. Hence, even for the synthetic problem, we are
not within the theoretical scope of convergence of the fixed-point algorithm.

9.2.3.2 Algorithm setting

We run 25 iterations of the fixed-point algorithm 7. At iteration l, the two subproblems
defined by (9.13) are solved with MADS in its default configuration with a budget of
1000 evaluations, which leads to a primal solution (xli, uli) of subproblem i ∈ I. Then,
the optimal multiplier λli is computed using the backward recursion of Lemma 9.4. As
mentioned in Remark 9.5, solving the subproblem (9.14) just amounts to simulate the
dynamics Φ3(x3) = 0. This gives a primal solution xl3 of the subproblem. The optimal
multiplier λl3 is also computed with Lemma 9.4.

9.2.3.3 Results of the numerical experiments

Figure 9.1 shows the evolution of the value of the objective function j during the
iterations of the fixed-point algorithm. The analytical optimum is 111.15 and the
solution given by the decomposition method is 111.21 which represents a gap of 0.05%.
This is a very good result, especially accounting for the fact that some hypotheses of
Theorem 7.4 are violated.

0 5 10 15 20 25
Fixed-point algorithm iteration
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u
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Figure 9.1: Convergence of the objective function j during the fixed-point algorithm in the
deterministic case.

Figure 9.2 shows the convergence of some controls from the family {ui,t}(i,t)∈I×T−1 .
The convergence plots for the whole family {ui,t}(i,t)∈I×T−1 are given in Appendix C.1.
We see that the controls indeed converge after around 20 iterations of the fixed-point
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algorithm. However, the analysis shows that the fixed-point algorithm does not con-
verge to the analytical optimum u] (plotted in orange) but to another control u that
is close to u]. This can be confirmed if we look carefully at the convergence plots
given in Appendix C.1. This behavior is still not completely understood, as we can
check numerically that the matrix C defined in Theorem 9.1 to compute the analytical
optimum of the synthetic problem (9.3) is invertible and that u] is indeed uniquely
defined. Nevertheless, the fixed-point algorithm finds a solution with a very satisfying
cost as already shown in Figure 9.1.
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Figure 9.2: Convergence of the controls {u1,0, u2,0, u1,3, u2,3} during the fixed-point algorithm
in the deterministic case.

We can also look at the convergence of the multipliers {λi,t}(i,t)∈I×T in Figure 9.3.
As I = {1, 2, 3} and T = {0, . . . , 10}, there are 3× 11 = 33 multipliers. All multipliers
converge after few iterations, confirming that the solutions of the subproblems are well
coordinated and that the algorithm has indeed reached a fixed point.
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Figure 9.3: Convergence of the multipliers {λi,t}(i,t)∈I×T during the fixed-point algorithm in
the deterministic case.
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9.2.3.4 Conclusion of the numerical experiments

This first test case for the fixed-point algorithm is promising as the decomposition-
coordination scheme finds a solution with a cost that is very close to the analytical
optimum, despite that the conditions of Theorem 7.4 are not all satisfied. In this
section, we have considered a system with a deterministic dynamics. In the next
section, we get closer to the industrial maintenance problem by considering a more
challenging synthetic case, where the dynamics of the problem is stochastic.

9.3 The stochastic synthetic test case
The dynamics of the industrial system studied in Chapter 8 is stochastic due to the
random failures of the components. This feature motivates the study of a test case
with a stochastic dynamics. The stochastic synthetic problem is very similar to the
deterministic one of Section 9.2. The difference is that the dynamics of the stochastic
system is perturbed with an additive Gaussian noise. The objective function is then
the expectation of the cost generated by the system.

We follow the same organization as in Section 9.2. We start by describing the
synthetic system and we formulate the stochastic optimization problem. Then, we
give the relevant analytical results. We go on by choosing an auxiliary function for
the APP, leading to a scheme of decomposition by prediction. Finally, we run the
fixed-point algorithm and compare the numerical and analytical solutions. A notable
difference with the deterministic case is that in the numerical experiments, we only
solve a Monte-Carlo approximation of the stochastic problem. The reason for using
the SAA approach instead of solving the exact problem – which could be theoretically
possible for the synthetic case – is that we aim at solving the problem as if we were
in the realistic situation where the computation of the expected cost is intractable
numerically.

9.3.1 Description of the stochastic test case
Similarly as in the deterministic case of Section 9.2, we consider a system of N = 3
entities on a discrete time horizon T ∈ N. We still use the notations I, I and T for the
index sets and the notations X,Xi,U and Ui defined in Section 9.2.

In this part, we focus on a system with a stochastic dynamics, therefore the entities
are characterized by random variables. Let (Ω,A,P) be a probability space, the entities
of the system are represented by the random vector:

X = (X1,X2,X3) = ((X1,0, . . . ,X1,T ), (X2,0, . . . ,X2,T ), (X3,0, . . . ,X3,T )) ∈ X ,

where X = L2 (Ω,A,P;X) is the space of measurable square-integrable functions from
Ω to X. For all i ∈ I, we have Xi ∈ Xi = L2 (Ω,A,P;Xi) so that X = ∏

i∈IXi.
The controls are considered to be deterministic, as this is the case for the industrial

application. They are represented by a vector:

u = (u1, u2) = ((u1,0, . . . , u1,T−1), (u2,0, . . . , u2,T−1)) ∈ U . (9.17)

The admissible set for the controls is then the same as for the deterministic test case
of Section 9.2.

The system evolves with a linear dynamics perturbed with an additive Gaussian
noise. Let W = {Wi,t}(i,t)∈I×T be a sequence of Gaussian random variables so that
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W takes values in X. We assume that the random vectors {W ·,t}t∈T are independent,
where W ·,t = (W1,t,W2,t,W3,t). Moreover, we suppose that for all t ∈ T, W ·,t has
mean zero and variance Σ ∈ R3×3, that is:

W ·,t ∼ N (0,Σ) . (9.18)

Dynamics. The dynamics of the system is given by the almost sure equality:

Θ(X , u,W ) = 0, P-a.s. . (9.19)

where, similarly as in the deterministic case, Θ = {Θi}i∈I with Θi representing the
dynamics of entity i. We have Θi = {Θi,t}t∈T with:
Θi,t+1(X , u,W ) = Xi,t+1 − AiX ·,t −Biu ·,t −Wi,t+1, P-a.s., t ∈ T−1 ,

Θi,0(X , u,W ) = Xi,0 − xi,init, P-a.s. .
(9.20)

We still have xi,init ∈ R, Ai ∈ R3 and Bi ∈ R2 and we denote by A ∈ R3×3 (resp.
B ∈ R3×2) the matrix with rows {Ai}i∈I (resp. {Bi}i∈I).

Cost. We consider again the quadratic cost function (9.2). This means that for a
given outcome ω ∈ Ω, the cost generated by the system is:

j(X (ω), u) =
T∑
t=0

〈
X ·,t(ω) , RX ·,t(ω)

〉
+

T−1∑
t=0
〈u ·,t , Ou ·,t〉 .

Problem of interest. We aim at minimizing the expectation of the cost j, so the
test case writes:

min
(X ,u)∈X×U

J(X , u)

s.t. Θ(X , u,W ) = 0, P-a.s. ,
(9.21)

where J : (X , u) ∈ X × U 7→ E
(
j(X , u)

)
.

For the test case (9.21), when X satisfies the constraint Θ(X , u,W ) = 0, we can
compute analytically the cost J(X , u) for any u ∈ U as shown in the following lemma.

Lemma 9.6. Let u ∈ U, and introduce for t ∈ T:

y ·,t = Atx ·,init +
t−1∑
k=0

At−1−kBu ·,k .

For the synthetic system (9.21), hence assuming that X satisfies the constraint (9.19),
the expected cost can be expressed as a function J̃ : U→ R that depends only on u:

J̃(u) =
T−1∑
t=0
〈u ·,t , Ou ·,t〉+

T∑
t=0

(
〈y ·,t , Ry ·,t〉+

t−1∑
k=0

tr
(
RAt−1−kΣAt−1−k>

))
.
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Proof. We have:

J(X , u) =
T−1∑
t=0
〈u ·,t , Ou ·,t〉+

T∑
t=0

E
(〈
X ·,t , RX ·,t

〉)
. (9.22)

We just need to compute E
(〈
X ·,t , RX ·,t

〉)
. Using the dynamics (9.20), we get by

induction that for t ∈ T:

X ·,t = y ·,t +
t−1∑
k=0

At−1−kW ·,k+1, P-a.s. .

Then:
〈
X ·,t , RX ·,t

〉
= 〈y ·,t , Ry ·,t〉+ 2y>·,tR

t−1∑
k=0

At−1−kW ·,k+1

+
(
t−1∑
k=0

At−1−kW ·,k+1

)>
R

t−1∑
k=0

At−1−kW ·,k+1 .

(9.23)

Using that E
(
W ·,t

)
= 0 for all t, we get:

E
(

2y>·,tR
t−1∑
k=0

At−1−kW ·,k+1

)
= 0 . (9.24)

Finally, for the last term, let Z ·,t = ∑t−1
k=0A

t−1−kW ·,k+1. We have:

E
(
Z ·,t

>RZ ·,t

)
= E

(
tr
(
Z ·,t

>RZ ·,t

))
= E

(
tr
(
RZ ·,tZ ·,t

>
))

= E

∑
k 6=l

tr
(
RAt−1−kW ·,k+1W ·,l+1

>At−1−l>
)

+ E
(
t−1∑
k=0

tr
(
RAt−1−kW ·,k+1W ·,k+1

>At−1−k>
))

.

Now, note that for k 6= l, W ·,k and W ·,l are independent, which implies that:

E
(
W ·,kW ·,l

>
)

= E
(
W ·,k

)
E
(
W ·,l

)>
= 0, k 6= l ,

and recall from (9.18) that E
(
W ·,kW ·,k

>
)

= Σ for all k. Therefore:

E
(
Z ·,t

>RZ ·,t

)
=

t−1∑
k=0

tr
(
RAt−1−kΣAt−1−k>

)
. (9.25)

Combining (9.23) with (9.24) and (9.25), we get:

E
(〈
X ·,t , RX ·,t

〉)
= 〈y ·,t , Ry ·,t〉+

t−1∑
k=0

tr
(
RAt−1−kΣAt−1−k>

)
. (9.26)

Therefore, E
(〈
X ·,t , RX ·,t

〉)
depends only on u and plugging (9.26) into (9.22) yields

the desired result. �
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We can also compute the analytical solution u] of the stochastic problem (9.21). In
fact, the optimal control is the same as in the deterministic case.

Theorem 9.7. The optimal control u] for Problem (9.21) is given by:

u] = C−1d .

Here u] is to be understood as the vector (u]1,0, u]2,0, . . . , u]1,T−1, u
]
2,T−1)> ∈ R2T where

the coordinates are sorted by time step whereas in (9.17) the coordinates are sorted by
component. The matrix C ∈ R2T×2T is defined by blocks of size 2× 2 such that:

Ct,t = O +
T−1∑
p=t

(Ap−tB)>R(Ap−tB) ∈ R2×2, t ∈ T−1 ,

Ct,k =
T−1∑

p=max(k,t)
(Ap−tB)>R(Ap−kB) ∈ R2×2, t, k ∈ T−1, t 6= k ,

and d ∈ R2T is defined by blocks of size 2× 1 such that:

dt = −
T−1∑
p=t

(Ap−tB)>RAp+1x ·,init ∈ R2, t ∈ T−1 .

Proof. We have J̃ = ̃+α with ̃ defined in (9.4) and α = ∑t−1
k=0 tr

(
RAt−1−kΣAt−1−k>

)
does not depend on u. Therefore J̃ and ̃ have the same minimizer u], which is given
by Theorem 9.1. �

Similarly as in the deterministic case, the analytical optimal control u] and the
associated optimal cost J̃(u]) will be used to check the quality of the numerical results
given by the decomposition by prediction.

9.3.2 Application of the APP for a decomposition by predic-
tion

The process to apply the APP for a decomposition by prediction of the stochastic test
case (9.21) is the same as in the deterministic case of §9.2.2. We aim at designing three
subproblems involving respectively the spaces X1 × U1, X2 × U2 and X3. This means
that we consider the following decomposition of the space X × U:

X × U = (X1 × U1)× (X2 × U2)×X3 . (9.27)

In the stochastic case, we have Θ : X ×U→ X . Similarly as in the deterministic case,
we consider the following decomposition of the dual space X :

X = X1 ×X2 ×X3 . (9.28)

We still treat the additive and non-additive part of the cost separately by writing
j = jΣ + j∆ as defined in (9.8) and we introduce:

JΣ(X , u) = E
(
jΣ(X , u)

)
, J∆(X , u) = E

(
j∆(X , u)

)
JΣ
i (Xi, ui) = E

(
jΣ
i (Xi, ui)

)
, i ∈ I, JΣ

3 (X3) = E
(
jΣ

3 (X3)
)
.
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Then, we introduce an auxiliary cost function K that is additive with respect to the
decomposition (9.27) of the primal space and an auxiliary dynamics Φ that is block-
diagonal with respect to the decompositions (9.27) and (9.28) of the primal and dual
spaces. The difference with the deterministic case is that the auxiliary functions K
and Φ are defined on X ×U rather than on X×U. The deterministic cost that appears
in (9.10) is replaced by an expected cost. Let X ∈ X and ū ∈ U and define:

• An auxiliary cost function K : X × U→ R such that:

K(X , u) = K1(X1, u1) +K2(X2, u2) +K3(X3) , (9.29)

with 
K1(X1, u1) = E

(
j∆
(
(X1,X 2,X 3), (u1, ū2)

))
,

K2(X2, u2) = E
(
j∆
(
(X 1,X2,X 3), (ū1, u2)

))
,

K3(X3) = E
(
j∆
(
(X 1,X 2,X3), (ū1, ū2)

))
.

• An auxiliary dynamics Φ : X × U×X → X such that:

Φ(X , u,W ) = (Φ1(X1, u1,W ),Φ2(X2, u2,W ),Φ3(X3,W )) , (9.30)

with 
Φ1(X1, u1,W ) = Θ1((X1,X 2,X 3), (u1, ū2),W ) ,
Φ2(X2, u2,W ) = Θ2((X 1,X2,X 3), (ū1, u2),W ) ,

Φ3(X3,W ) = Θ3((X 1,X 2,X3), (ū1, ū2),W ) .

In the same way as in §9.2.2, now that the auxiliary functions are chosen, we can derive
the auxiliary problem.

Proposition 9.8. Let (X ,Λ) ∈ X 2 and ū ∈ U. The auxiliary problem that results
from the choices (9.29) and (9.30) of the auxiliary cost and dynamics is given by:

min
(X ,u)∈X×U

K(X , u) + JΣ(X , u) +
〈
Λ , (Θ′(X , ū)− Φ′(X , ū)) · (X , u)

〉
s.t. Φ(X , u,W ) = 0

(9.31)

Proof. With the choice (9.29) for the auxiliary cost, we have:

∇J∆(X , ū)−∇K(X , ū) = 0 .

With the choice (9.30) for the auxiliary dynamics, we have:

Θ(X , ū,W )− Φ(X , ū,W ) = 0, P-a.s. .

Thus, the auxiliary problem (9.31) for the stochastic synthetic system corresponds
exactly to the theoretical auxiliary problem (7.5). �

The auxiliary problem (9.31) is decomposable into independent subproblems that
are given for i ∈ I by:

min
(Xi,ui)∈Xi×Ui

Ki(Xi, ui) + JΣ
i (Xi, ui) + E

( 3∑
j=1
j 6=i

〈
Λ
j
, ∂(Xi,ui)

Θj(X , ū,W ) · (Xi, ui)
〉)

s.t. Φi(Xi, ui,W ) = 0 .
(9.32)

123



CHAPTER 9. APPLICATION OF THE APP ON SYNTHETIC CASES

The third subproblem writes:

min
X3∈X3

K3(X3) + JΣ
3 (X3) +

2∑
j=1

〈
Λ
j
, ∂X3Θj(X , ū,W ) ·X3

〉
s.t. Φ3(X3,W ) = 0 .

(9.33)

We can now apply Algorithm 7 to solve Problem (9.21). For a real-world stochastic
optimization problem, such as the industrial problem presented in Chapter 8, the exact
computation of the expectation in the cost is intractable numerically. This is why, in
order to proceed as if we were in a realistic situation, we choose to solve a Monte-Carlo
approximation of the test case (9.21) with Q = 1000 outcomes ω1, . . . , ωQ ∈ Ω:

min
(X ,u)∈X×U

1
Q

Q∑
q=1

j(X (ωq), u)

s.t. Θ(X (ωq), u,W (ωq)) = 0, q ∈ {1, . . . , Q} .
(9.34)

In the sequel, we only use the analytical value of J , given by Lemma 9.6, to assess the
quality of the numerical solution, but not in the resolution procedure itself.

The Monte-Carlo approximation of subproblems (9.32) are solved with the black-
box algorithm MADS, which returns a primal solution

(
{X ]

i
(ωq)}q∈{1,...,Q}, u]i

)
. Then,

we compute the optimal multipliers {Λ]
i
(ωq)}q∈{1,...,Q} with the following backward re-

cursion, valid for i ∈ I:Λ]
i,T

= −2R̄iX ·,T − 2Ri,iX
]
i,T
,

Λ]
i,t

= −2R̄iX ·,t − 2Ri,iX
]
i,t

+ Ā>i Λ ·,t+1 + Ai,iΛ]
i,t+1, t ∈ T−1 ,

(9.35)

The recursion (9.35) can be derived similarly as in Lemma 9.4 as we only consider
a finite number of scenarios in the Monte-Carlo approximation of the subproblems.
Remark 9.5, stating that the third subproblem is easy to solve numerically, still holds
in the stochastic case. Therefore, we just need to simulate the dynamics of subprob-
lem (9.33) to get the primal solution {X ]

3(ωq)}q∈{1,...,Q} and we again compute the
multipliers {Λ]

3(ωq)}q∈{1,...,Q} with the backward recursion (9.35).

9.3.3 Numerical results
In this section, we describe the settings of the problem and of the algorithm used to run
the APP fixed-point algorithm and we compare the analytical and numerical solutions
of the synthetic problem (9.21).

9.3.3.1 Settings of the numerical experiments

We use the same settings for the system as in the deterministic case, that is we take
T = 10 and use the matrices A,B,R and O defined by (9.16). We run 25 iterations
of the fixed-point algorithm 7. At each iteration of the algorithm, the Monte-Carlo
approximation of the two subproblems defined by (9.32) is solved with MADS in its
default configuration with 1000 evaluations. Solving the third subproblem just amounts
to simulate the auxiliary dynamics, see Remark 9.5. The optimal multipliers are com-
puted with the backward recursion (9.35).
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9.3.3.2 Results of the numerical experiments

Figure 9.4 shows the evolution of the value of the objective function J̃ during the iter-
ations of the fixed-point algorithm: after each iteration of the algorithm, we evaluate
J̃(ul) using Lemma 9.6, where ul is the current iterate. The analytical optimum is
841.73 and the solution given by the decomposition method is 843.15, which repres-
ents a gap of 0.17%. The gap between the analytical and numerical solutions can be
explained by the fact that we solve the approximate problem (9.34) instead of the
original problem (9.21). This approximation is new compared to the deterministic
case of Section 9.2. However, even with the use of a Monte-Carlo approximation of
Problem (9.21), the optimality gap remains low and the numerical solution is very
satisfying.

0 5 10 15 20 25
Fixed-point algorithm iteration

1000

2000

3000

V
al

u
e

Objective function J̃

Analytical optimum

Figure 9.4: Convergence of the objective function during the fixed-point algorithm in the
stochastic case.

Figure 9.5 shows the convergence of some controls from the family {ui,t}(i,t)∈I×T−1 .
The convergence plots for the whole family {ui,t}(i,t)∈I×T−1 are given in Appendix C.2.
The same analysis and conclusion as in the deterministic case of Section 9.2 applies,
namely, that the controls converge but not to the analytical optimum u] (plotted in
orange). This can be confirmed by a careful observation of the plots given in Ap-
pendix C.2. The solution found by the decomposition by prediction is nevertheless
very good as it generates a cost that is only 0.17% higher than the optimal cost as
observed on Figure 9.4.

We also look at the convergence of the multipliers. For each scenario ωq, there is
a family of multipliers {Λi,t(ωq)}(i,t)∈I×T. Hence, as I = {1, 2, 3}, T = {0, . . . , 10} and
Q = 1000, we manipulate a total of |I| × |T| × Q = 3.3 × 104 multipliers. Figure 9.6
shows the evolution of the |I| × |T| = 33 multipliers obtained for the scenario ω1
during the iterations of the fixed-point algorithm. Similarly as in the deterministic
case of Section 9.2, the multipliers converge after few iterations. The plots of the
multipliers for the other scenarios are not given in the manuscript, but we can check
that they behave similarly as in Figure 9.6. Therefore, all the multipliers converge,
showing that the coordination of the subproblems is ensured.

9.3.3.3 Conclusion of the numerical experiments

These numerical tests show that after few iterations, the fixed-point algorithm con-
verges to a solution u that is very close, but different, of the analytical solution u]. For
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Figure 9.5: Convergence of the controls {u1,0, u2,0, u1,3, u2,3} during the fixed-point algorithm
in the stochastic case.
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Figure 9.6: Convergence of the multipliers during the fixed-point algorithm in the stochastic
case.

the same reasons as in the deterministic case, this behavior is not yet fully understood.
In the stochastic case, we solve the Monte-Carlo approximation (9.34) of the original
problem (9.21). With Q = 1000 scenarios, the numerical solution of the approximate
problem is a good solution for the original problem.

9.4 Conclusion
We have applied the APP on a deterministic and on a stochastic test case. The mo-
tivation is to implement the decomposition by prediction on problems with increasing
difficulty. In this way, we validate the decomposition approach before tackling the
industrial maintenance optimization problem in Chapter 10. We have designed test
cases with a linear dynamics and quadratic cost functions that have the same coupling
structure as the industrial system. However, even for these synthetic test cases, the
assumptions of Theorem 7.4 – that are sufficient for the convergence of the fixed-point
algorithm towards the optimal solution – are not satisfied. Nevertheless, both in the
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deterministic and the stochastic case, the fixed-point algorithm achieves a very good
performance with less than 0.17% difference between the analytical optimal cost and
the numerical solution. Therefore, these results allow to validate our implementation of
the decomposition by prediction and are very promising for the industrial application.
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10
Application of the APP on an

industrial maintenance
optimization problem

Sub-optimization is when everyone
is for himself. Optimization is when
everyone is working to help the
company.

William Edwards Deming
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CHAPTER 10. APPLICATION OF THE APP ON AN INDUSTRIAL CASE

10.1 Introduction

The goal of this chapter is to solve the industrial maintenance optimization problem,
introduced in Chapter 8, with the APP. We aim at tackling the most demanding case
of a system with 80 components. In Chapter 9, we have successfully applied the de-
composition methodology on two test cases that have the same coupling structure as
the industrial system. However, the application of the APP to the industrial problem
is not as straightforward as for the synthetic cases. Indeed, the model of the indus-
trial system involves several integer variables whereas the APP is based on variational
techniques.

Let us expose the approach used for the industrial application of the APP. The
beginning of the chapter follows the same guidelines as Chapter 9. We start, in Sec-
tion 10.2, by specifying a decomposition of the admissible space and of the space of
contraints. Then, in Section 10.3, we construct an auxiliary problem that is adapted to
the proposed decomposition. The main novelty compared to the synthetic case turns
up in Section 10.4, where we proceed to a continuous relaxation of the system in order
to compute the gradients that appear in the auxiliary problem. This is where we over-
come the difficulty caused by integer variables. In Section 10.5, we give the explicit
formulation of the independent subproblems arising from the decomposition of this
auxiliary problem. In Section 10.6, we present an efficient implementation of the APP
fixed-point algorithm mixing a parallel and sequential strategy for the resolution of the
subproblems. We will see that some parameters, that either appear in the auxiliary
problem or linked to the relaxation of the system, influence the performance of the
fixed-point algorithm. Section 10.7 is devoted to a comprehensive study for the tuning
of these parameters in the algorithm. Finally, in Section 10.8, we present the results
of the numerical experiments on the large-scale industrial system of 80 components.

Contributions. This chapter presents the industrial application of the APP. To our
knowledge, this is the first time that a scheme of decomposition by prediction is applied
for a maintenance optimization problem. The other contributions of the chapter are
the following:

1. The original formulation of the maintenance optimization problem (8.10) is not
suited to the application of the APP. To overcome this difficulty, we propose a
continuous relaxation of the system.

2. In order to be computationally efficient, the implementation of the fixed-point
algorithm is tailored to the industrial problem with its mixed parallel/sequential
strategy.

3. The performance of the algorithm is dependent on some parameters, for which
the tuning is carefully studied using tools for sensitivity analysis.

4. Finally, we manage to run the fixed-point algorithm on the most demanding
industrial case of 80 components. A comparative study shows that we achieve
sensible gains compared to the blackbox method currently used at EDF.
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10.2 Decomposition of the space by component
This section specifies the decomposition of the admissible space and of the cone of
constraints that is considered for the design of the decomposition by prediction. The
notations used in this chapter have been introduced in Chapter 8.

Considering the physical nature of the industrial system composed of n components
and a stock, we choose to decompose the problem in n + 1 subproblems and call this
decomposition a decomposition by component. More precisely, for i ∈ I = {1, . . . , n},
the i-th subproblem is called subproblem on component i since it is solved on Xi × Ui

and only involves the dynamics of component i. The (n + 1)-th subproblem is called
subproblem on the stock since it is solved on S and only involves the dynamics of the
stock. This means that the admissible space X×S×U of Problem (8.10) is decomposed
as a product of a n+ 1 subspaces:

X × S × U = (X1 × U1)× . . .× (Xn × Un)× S , (10.1)

where, for (X ,S , u) = ((X1, . . . ,Xn),S , (u1, . . . , un)) ∈ X × S × U, we have:

(Xi, ui) ∈ Xi × Ui for all i ∈ I and S ∈ S .

The constraint in Problem (8.10), that is Θ(X ,S , u,W ) ∈ −C with C = {0}L is
decomposed through the following cone decomposition:

C = {0}L = {0}L1 × . . .× {0}Ln × {0}LS
= C1 × . . . Cn × CS , (10.2)

where for i ∈ I, {0}Li , {0}LS
and {0}L denote the null function of Li,LS and L

respectively. We recall that Θi takes values in Li and ΘS takes values in LS .

10.3 Construction of an auxiliary problem
In this section, we choose the auxiliary functions that lead to the construction of a
decomposable auxiliary problem, as described in Section 7.3.

Problem (8.10) is not directly decomposable by component because of couplings,
highlighted in Chapter 8, that we recall now.

• The expected maintenance cost E
(∑n

i=1 ji(Xi, ui)
)
is additive with respect to the

decomposition by component and can be identified with JΣ in Chapter 7.

• The forced outage cost jF induces a non-additive coupling between the compon-
ents. The expected forced outage cost E

(
jF (X

1:n
)
)
can be identified with J∆ in

Chapter 7.

• The dynamics Θi of component i induces a coupling with the stock and all com-
ponents with index j < i. The stock dynamics, ΘS , is coupling the stock with
all components.

In order to obtain a decomposition of Problem (8.10) by component, we use the ca-
nonical technique from Example 7.3. We define an additive mapping K and a block
diagonal mapping Φ so that the resulting auxiliary problem is decomposable. We also
choose to augment the auxiliary cost K with a strongly convex term in order to ease
the numerical convergence of the method. LetX = (X 1, . . . ,Xn

) ∈ X , S ∈ S, u ∈ U,
Λ ∈ C? and γx, γs, γu > 0. We consider:
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• An additive auxiliary cost function K : X × S × U→ R:

K(X ,S , u) =
n∑
i=1

Ki(Xi, ui) +KS (S) ,

with

Ki(Xi, ui) = E
(
jF (X 1:i−1,Xi,X i+1:n) + γx

2
∥∥∥Xi

∥∥∥2
+ γu

2 ‖ui‖
2
)
, i ∈ I ,

KS (S) = E
(
γs
2
∥∥∥S∥∥∥2

)
,

• A block-diagonal auxiliary dynamics mapping Φ : X × S × U×W → L:

Φ(X ,S , u,W ) = (Φ1(X1, u1,W1), . . . ,Φn(Xn, un,Wn),ΦS (S)) ,

with

Φi(Xi, ui,Wi) = Θi(X 1:i−1,Xi,S , ui,Wi), i ∈ I ,
ΦS (S) = ΘS (X 1:n,S) ,

with X 1:0 being by convention an empty vector.

We can now write an auxiliary problem for (8.10). Assume that the dynamics Θ is
differentiable. In this case, Φ is differentiable and the auxiliary problem writes:

min
(X ,S ,u)∈X×S×U

E
(

n∑
i=1

(
ji(Xi, ui) + jF (X 1:i−1,Xi,X i+1:n)

)
+ γx

2
∥∥∥X −X∥∥∥2

+ γs
2
∥∥∥S − S∥∥∥2

+ γu
2 ‖u− u‖

2

+
〈
Λ , (Θ′(X ,S , u,W )− Φ′(X ,S , u,W )) · (X ,S , u)

〉)
s.t. Φ(X ,S , u,W ) = 0 .

(10.3)

By construction, the auxiliary problem (10.3) is decomposable with respect to the
decompositions (10.1) and (10.2).

10.4 Relaxation of the system
The APP relies on variational techniques and requires the mappings Θ and Φ to be
differentiable as the derivatives Θ′ and Φ′ appear in Problem (10.3). However, the
dynamics Θ in Problem (8.10) involves integer variables so Θ′ is not defined. To
overcome this difficulty, we propose a continuous relaxation of the system with relaxed
cost and dynamics that are differentiable almost everywhere. It is possible to use a
differentiable relaxation of the system but this requires more implementation efforts.
As we are far from the conditions of convergence of the algorithm (see Section 8.5),
nothing ensures that a differentiable relaxation would give better results than the simple
one that is defined below.
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10.4.1 State variable relaxation
Let i ∈ I and t ∈ T. Recall from Section 8.2 that:

• Xi,t = (Ei,t,Ai,t,Pi,t) takes values in {0, 1} × R× ({δ} ∪ R+)D,

• St takes values in N.

We relax the integrity constraint on Ei,t and St, so we allow:

• Xi,t = (Ei,t,Ai,t,Pi,t) to take values in [0, 1]× R× ({δ} ∪ R+)D,

• St to take values in R.

Remark 10.1. We lose the physical interpretation of the relaxed variables.

• If 0 < Ei,t < 1, we could think that component i is in a degraded regime where
the closer Ei,t is to 1 the healthier it is. This interpretation is however not exact
as the health of a component is only characterized by its ageAi,t. The probability
of failure of a component is indeed only a function of Ai,t.

• A value St ∈ R means that there can be a non-integer number of parts in the
stock. ♦

10.4.2 Relaxation of the dynamics
The dynamics of the original system has been described in Section 8.3 and an explicit
expression is given in Appendix D.1. This expression involves indicator functions 1A
for some set A. The dynamics is then non-continuous. Replacing the original indicator
function 1A with a continuous relaxed version allows to define a relaxed dynamics for
the system.

Definition 10.2. Let A ⊂ Rp, x ∈ Rp and α > 0. We define a continuous relaxation
1αA with parameter α of the indicator function 1A as:

1αA(x) =


1− 2α× dist(x,A) if dist(x,A) ≤ 1

2α ,

0 if dist(x,A) > 1
2α ,

where dist(x,A) is the Euclidean distance between x and the set A.

Figure 10.1 illustrates the relaxation of the indicator function.

0
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1
A

(x
)

A 0
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α A

(x
) Slope -2α

A

Figure 10.1: Illustration of the relaxation of the indicator function.

The parameter α quantifies the stiffness of the relaxation. As α→ +∞, the relaxed
indicator 1αA converges pointwise towards the original indicator function 1A. As α→ 0,
the relaxed indicator 1αA converges pointwise towards the constant function 1. Note
that for all α > 0, the relaxed indicator 1αA is continuous and differentiable almost
everywhere.
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A continuous relaxation of the system dynamics of parameter α is obtained by
replacing the occurrences of the indicator function by its relaxed version. For instance,
the relaxed dynamics of the stock is obtained from (8.6):

St+1 = St +
n∑
i=1

D∑
d=1

1α{D−1}(P d
i,t)−min

(
St,

n∑
i=1

1α{0}(Ei,t)
)
.

Additional technical details and an explicit expression for the relaxed dynamics
of the components are given in Appendix D.2. The relaxed dynamics and relaxed
auxiliary dynamics are denoted by Θα and Φα respectively.

10.4.3 Cost relaxation
The relaxation of the maintenance cost and forced outage cost is constructed using the
same technique as for the dynamics. Let i ∈ I, t ∈ T and α > 0 be given.

• The relaxed maintenance cost for component i at time t with parameter α is
defined as:j

α
i,t(Xi,t, ui,t) = ηtC

P
i u

2
i,t + ηtC

C
i 1α{0}(Ei,t)1

α
{0}(Ai,t), t ∈ T−1 ,

jαi,T (Xi,T ) = ηTC
C
i 1α{0}(Ei,T )1α{0}(Ai,T ) .

• The relaxed forced outage cost at time t with parameter α is defined as:

jF,αt (X1:n,t) = ηtC
F min

{
1,

n∑
i=1

1α{0}(Ei,t)1
α
R∗+

(Ai,t)
}
.

Similarly, as in (8.8) and (8.9), we set:

jαi (Xi, ui) =
T−1∑
t=0

jαi,t(Xi,t, ui,t) + jαi,T (Xi,T ) and jF,α(X1:n) =
T∑
t=0

jF,αt (X1:n,t) .

We use the relaxed version of the dynamics Θα, of the auxiliary dynamics Φα, and
of the costs jαi and jF,α in the auxiliary problem (10.3). Hence, the objective function
and the dynamics are continuous and differentiable almost everywhere with respect to
(X ,S , u). Note that the choice of the relaxation parameter α plays an important role.
We can guess that choosing a low value for α leads to a problem that may be easier
to solve numerically than with a larger value of α. However, with a low value of α the
relaxed dynamics and cost do not represent well the industrial problem whereas with
a large α the original and relaxed dynamics are close. More details on the influence of
the parameter α and how it is chosen in practice are given in Section 10.7.

10.5 Explicit expression of the subproblems
By construction, the auxiliary problem (10.3) can be decomposed into n independent
subproblems on the components and a subproblem on the stock. In this section, we
provide the explicit expression of these subproblems. The APP fixed-point algorithm 7
will be applied on the relaxed system, so we use the relaxed dynamics and cost in
the writing of the subproblems. Formally, the gradients of Θα and Φα are not defined
everywhere. By abuse of notation, the subproblems are given as if Θα and Φα were
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differentiable. Appendix D.4 gives details on how we handle the points where the
relaxed indicator is not differentiable.

The subproblem on component i ∈ I is:

min
(Xi,ui)∈Xi×Ui

E
(
jαi (Xi, ui) + jF,α(X 1:i−1,Xi,X i+1:n)

+ γx
2
∥∥∥Xi −X i

∥∥∥2
+ γu

2 ‖ui − ui‖
2

+
〈
Λ
S
, ∂XiΘ

α
S (X 1:n,S) ·Xi

〉
+

n∑
j=i+1

〈
Λ
j
, ∂XiΘ

α
j (X 1:j,S , uj,Wj) ·Xi

〉)
s.t. Φα

i (Xi, ui,Wi) = 0 .

(10.4)

The subproblem on the stock is:

min
S∈S

E
(
γs
2
∥∥∥S − S∥∥∥2

+
n∑
i=1

〈
Λ
i
, ∂SΘα

i (X 1:i,S , ui,Wi) · S
〉)

s.t. Φα
S (S) = 0 .

(10.5)

10.6 The APP fixed-point algorithm for the indus-
trial system

We can now solve the original maintenance optimization problem (8.10) using the fixed-
point algorithm 7. In this section, we give details on the practical implementation of
the algorithm and present an efficient mixed parallel and sequential strategy for the
resolution of the subproblems, that is tailored for the industrial optimization problem.

At each iteration, we solve the auxiliary problem (10.3). In a fully parallel version
of the APP fixed-point algorithm, solving the auxiliary problem (10.3) boils down to
the parallel resolution of the n+ 1 independent subproblems defined by (10.4)–(10.5).

1. The subproblems on the components (10.4) are solved with the blackbox al-
gorithm MADS [Audet and Dennis, 2006], presented in Chapter 4. At iteration l,
we solve subproblem i ∈ I with:

(X ,S , u) = (X l,Sl, ul) and Λ = Λl .

MADS outputs a primal solution (X l+1
i , ul+1

i ). The optimal multiplier Λl+1
i is

computed afterwards using the adjoint state, in the same fashion as for the syn-
thetic cases of Chapter 9. The full derivation of the backward recursion for the
multipliers in the industrial case is carried out in Appendix D.3.

2. The subproblem on the stock (10.5) is very easy to solve numerically for an
analogous reason as in Remark 9.5. At iteration l of the fully parallel APP
fixed-point algorithm, we use:

(X ,S , u) = (X l,Sl, ul) and Λ = Λl .

The constraint Φα
S (S) = 0 represents the dynamics of the stock with X =

X l being fixed. The value of X completely determines the dynamics of the

134



CHAPTER 10. APPLICATION OF THE APP ON AN INDUSTRIAL CASE

stock. Hence, solving the subproblem on the stock just boils down to simulate
its dynamics, we get a primal solution Sl+1. The optimal multiplier Λl+1

S is also
computed using the adjoint state, see Appendix D.3.

The features of the subproblem on the stock suggest to change the fully parallel
strategy into a mixed parallel/sequential strategy.

1. At iteration l, the n subproblems on the components are still solved in parallel
using:

(X ,S , u) = (X l,Sl, ul) and Λ = Λl .

This yields a solution (X l+1
i , ul+1

i ,Λl+1
i ) for each subproblem i ∈ I.

2. The difference arises for the subproblem on the stock. At iteration l, we imme-
diately use the output of the subproblems on the components. This means that
we set before solving the subproblem on the stock at iteration l:

(X , u) = (X l+1, ul+1) and (Λ1, . . . ,Λn
) = (Λl+1

1 , . . . ,Λl+1
n ) .

This implies that the subproblem on the stock at iteration l can be solved only
after all subproblems on the components have been solved.

With this strategy, we see experimentally that the number of iterations for convergence
is reduced without penalizing the computation time per iteration as the subproblem
on the stock can be solved in negligible time. This results in an overall speed up
of the algorithm. The APP fixed-point algorithm with the mixed parallel/sequential
strategy is presented in Algorithm 8. The termination criteria is a maximum number
of iterations M ∈ N. This is the version that is used for the numerical experiments of
Sections 10.7 and 10.8.

Algorithm 8 APP fixed-point algorithm with a mixed parallel/sequential strategy
1: Start with (X ,S , u) = (X0,S0, u0), Λ = Λ0

2: for l = 0, . . . ,M − 1 do:
3: for all i ∈ {1, . . . , n} do in parallel:
4: Solve the subproblem (10.4) on component i.
5: Let (X l+1

i , ul+1
i ) be a solution and Λl+1

i be an optimal multiplier.
6: end for
7: Set (X , u) = ((X l+1

1 , . . . ,X l+1
n ), (ul+1

1 , . . . , ul+1
n ))

8: Set (Λ1, . . . ,Λn
) = (Λl+1

1 , . . . ,Λl+1
n )

9: Solve the subproblem (10.5) on the stock.
10: Let Sl+1 be a solution and Λl+1

S be an optimal multiplier.
11: Set S = Sl+1 and Λ

S
= Λl+1

S

12: end for
13: return the maintenance strategy uM

Remark 10.3. We could also have tried a fully sequential version of the fixed-point al-
gorithm, where each subproblem is solved sequentially. Then, when solving subproblem
i at iteration l we can use:

(X 1:i−1,X i:n, u1:i−1, ui:n,S) = (X l+1
1:i−1,X

l
i:n, u

l+1
1:i−1, u

l
i:n,S

l)
(Λ1:i−1,Λi:n,ΛS

) = (Λl+1
1:i−1,Λ

l
i:n,Λ

l
S )
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Even though this strategy may converge with fewer iterations than the mixed paral-
lel/sequential strategy, we lose all the interest of the decomposition as the subproblems
must be solved in a sequential manner, resulting in an overwhelmingly large computa-
tion time. ♦

10.7 Tuning of the APP fixed-point algorithm
The practical resolution of the industrial problem with the decomposition by prediction
consists in applying Algorithm 8 to Problem (8.10). However, the expectation in (8.10)
cannot be evaluated exactly, so we solve a Monte-Carlo approximation of the problem
with Q = 100 fixed failure scenarios ω1, . . . , ωQ ∈ Ω:

min
(X ,S ,u)∈X×S×U

1
Q

Q∑
q=1

(
n∑
i=1

ji
(
Xi(ωq

)
, ui) + jF

(
X1:n(ωq)

))

s.t. Θ
(
X (ωq),S(ωq), u,W (ωq)

)
= 0, q ∈ {1, . . . , Q} .

(10.6)

We consider the industrial system with the characteristics given in Table 10.1,
which is typical of the most demanding cases at EDF. As a maintenance strategy is
parametrized by the vector u ∈ U given in (8.1), the optimization problem for the 80-
component case involves nT = 80×40 = 3200 variables. Several parameters have to be
tuned in order to apply the APP fixed-point algorithm on this large-scale system. The
parameters γx, γs, γu appear in the auxiliary problem (10.3) and α characterizes the
relaxation of the system, see Section 10.4. In this section, we study the influence of these
parameters on the performance of the fixed-point algorithm, using tools for sensitivity
analysis. The cobwebs, presented in §10.7.3 and the Morris method presented in §10.7.4
are normally used to assess the sensibility of a simulation code (for physical phenomena
for instance) to some input parameters. Here, these tools are used in a different context,
for the tuning of an optimization algorithm.

Parameter Value

Number of components n 80
Initial number of spare parts S0 16
Horizon T 40 years
Time step ∆t 1 year
Number of time steps for supply D 2
Discount rate τ 0.08
Maintenance threshold ν 0.9
Yearly forced outage cost CF 10000 ke/ year

Comp. 1 Comp. 2 Comp. i ≥ 3
PM cost CP 50 ke 50 ke 50 ke
CM cost CC 100 ke 250 ke 200 ke
Failure distribution Weib(2.3, 10) Weib(4, 20) Weib(3, 10)
Mean time to failure 8.85 years 18.13 years 8.93 years

Table 10.1: Characteristics of the industrial system.
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Remark 10.4. In Section 10.8, the performance of the APP fixed-point algorithm is
compared with a reference algorithm, which is the blackbox algorithm MADS applied
directly on Problem (10.6). The maintenance threshold ν is used both in the reference
algorithm and the decomposition method, which is not the case for γx, γs, γu and α
that are only used in the APP fixed-point algorithm. Hence, we fix ν to a value that
gives good performance with the reference algorithm and use it for the fixed-point
algorithm. We do not consider changing the value of ν as it would mean that the
reference algorithm changes for each different ν, making a fair comparison harder and
the results less clear to analyze. ♦

10.7.1 Description of the parameters and tuning methodology
In the auxiliary problem (10.3), the value of γ = (γx, γs, γu) influences the numerical
behavior of the algorithm. We choose to increase the values of γx, γs and γu at each
iteration of the APP fixed-point algorithm. The insight is that we can use low values
of γ in the first iterations to get close to a good solution. Then, we use high values of
γ to avoid oscillations of the solution of the auxiliary problem. Indeed, with a large
value of γ, the solution (X l+1,Sl+1, ul+1) of the auxiliary problem at iteration l + 1 is
close to the previous solution (X l,Sl, ul). The value of γu evolves from iteration l to
l + 1 of the APP fixed-point algorithm with an additive step ∆γ > 0, so that:

γl+1
u = γlu + ∆γ .

Then, γx and γs are chosen to be proportional to γu with ratios rx > 0 and rs > 0
respectively, so that:

γl+1
x = γl+1

u /rx and γl+1
s = γl+1

u /rs .

The motivation for this choice is that the vectors X , S and u need some rescaling so
that their norms are of the same order of magnitude. The parameters γ0

u, rx, rs,∆γ
have to be tuned.

The other parameter that requires attention is the relaxation parameter α. Similarly
as for γ, we choose to increase the value of α at each iteration. A low value of α makes
the problem easier to solve numerically but does not represent well the real problem.
As α increases, the relaxed problem is closer and closer to the real one but becomes
harder to solve. To ease the resolution, we use the solution of the auxiliary problem
at iteration l as a warm start in MADS for iteration l + 1. The value of α varies from
iteration l to l + 1 of the APP fixed-point algorithm with a step ∆α > 0 so that:

αl+1 = αl + ∆α .

The values of α0 and ∆α have to be tuned. We denote by:

p = (γ0
u, rx, rs,∆γ, α0,∆α) ∈ R6 ,

the vector of parameters that have to be adjusted for the algorithm.

Tuning methodology. Choosing a good value for p is difficult in practice. We
cannot afford to test the fixed-point algorithm with many different values of p directly
on the 80-component case, as one run of the optimization takes around 22 hours. In
order to find an appropriate value for p, we will rely on a smaller system than the
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80-component case. This small system is designed so that the runs of the fixed-point
algorithm take a reasonable amount of time, 4 hours in our case. The small system
consists of 10 components with 2 spare parts initially. All the other characteristics of
this small system are the same as in Table 10.1. In a way, the 10-component system
can be seen as a downscaling of the 80-component case of interest.

The idea of the tuning procedure is to run the decomposition method on the 10-
component system several times, but with a different value for p at each run. To do so,
we start by defining bounds on the value of the parameters, they are given in Table 10.2.
These bounds are chosen to be wide in order to ensure that they contain good values
of the parameters.

Parameter γ0
u rx rs ∆γ α0 ∆α

Bounds [1, 100] [1, 104] [1, 103] [0, 100] [2, 200] [0, 200]

Table 10.2: Bounds for the parameters of the fixed-point algorithm.

Table 10.2 defines a hypercube H ⊂ R6, in which we look for a good value of p:

H = [1, 100]× [1, 104]× [1, 103]× [0, 100]× [2, 200]× [0, 200] .

Then, we choose a sampling strategy to draw values of p within the hypercube H,
we run the fixed-point algorithm with each of the sampled values and we analyze the
impact of p on the output of the algorithm.

In the following sections, we use different sampling strategies and visualization tools
in order to evaluate the influence of p and to guide the tuning of the algorithm. In each
case, we use around 200 samples of p. This means that the fixed-point algorithm is
executed 200 times. These 200 runs are launched in parallel and terminate in around 4
hours. Note that each run of the fixed-point algorithm consists in solving the optimiz-
ation problem for the small system of 10 components and is therefore itself parallelized
in 10 processes. Hence, there are two levels of parallelization and the whole procedure
runs with 200× 10 = 2000 processes.1

10.7.2 Histogram of the optimization outputs
In this paragraph, we aim at quantifying whether the influence of p on the output of
the optimization algorithm is significant. Here, the sampling strategy for p is an op-
timized Latin Hypercube Sampling (LHS) [Damblin et al., 2013], assuming a uniform
distribution of the values between the bounds given in Table 10.2. The optimized LHS
strategy allows to ensure good space-filling properties of the design, meaning that the
samples of p efficiently cover the hypercube H.2

In order to see if p impacts the output of the algorithm, we show, in Figure 10.2,
a histogram of the optimal cost given by the algorithm on the 200 runs. Each run
corresponds to a different value of p. For example, if we look at the leftmost bin of the
histogram, there are two runs for which the fixed-point algorithm returns an optimal
cost that is between 1250 and 1300 ke. Hence, we notice from Figure 10.2 that the
choice of p heavily impacts the performance of the fixed-point algorithm: the output of

1 These intensive parallel runs have been carried out on the cluster EOLE from EDF, that allows
the use of up to 2688 cores per user simultaneously.

2 We can refer to §3.2.2.2 for more details on space-filling designs.
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the algorithm varies between 1255 and 2955 ke. The best performance of the algorithm
is therefore 2.3 times better than its worst performance. This difference is only due to
the value of p, which confirms that we must pay attention to its tuning.
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Figure 10.2: Histogram of the output of the 200 runs of the fixed-point algorithm, each run
is done with a different value of p.

Hence, Figure 10.2 allows to see that p greatly influences the output of the al-
gorithm. Now, the question is how to choose a value of p that will give a good per-
formance on the 80-component case. To do so, we try to detect patterns linking the
value of p and the performance of the algorithm. This is the object of the next section.

10.7.3 A qualitative approach with cobweb plots
The easiest strategy to tune the parameter p, using the 200 runs that have been per-
formed in the previous section, is to simply take the value that has given the best
performance. However, we have only sampled 200 values of p in the hypercube H and
there may be better values than the ones that have been tested. This is why we aim
at detecting some patterns in the values of p that lead to good performance of the
algorithm. These patterns could then guide us towards an efficient choice of p that
may be outside the set of sampled values.

For this analysis, we use cobweb plots, that give a qualitative representation of the
output of the optimization given the input parameter p. The plots of this section are
drawn using the same runs as in §10.7.2.

In Figure 10.3, there are 7 vertical axes representing respectively each coordinate
of the vector p and the outputs of the runs of the fixed-point algorithm. On each axis,
the 200 values of the sampled parameters (or of the optimal cost for the last axis)
are sorted in increasing order. Each line (grey or red) represents a combination of
the parameters γ0

u, rx, rs,∆γ, α0,∆α from the sample (i.e. a value of p), along with
its associated output. Therefore, there are 200 lines representing the 200 samples of
p. Note that the visualization is only qualitative as the axes only show the ranking
of the values in increasing order but not the actual numerical values. In red, we have
highlighted the samples that lead to an optimal cost that is below 1450 ke. Then, we
can see if some trends are emerging for good values of p. In Figure 10.3, we notice that
most of the best samples have a low value for ∆γ, i.e. ∆γ < 20. We also remark that
good values for rx are mainly in the upper half of the graph, although the pattern is
not as clear as for ∆γ. For the other parameters, we can just say that extremely low
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values (for rs and α0) or extremely high values (for ∆α and γ0
u) do no lead to a highly

performing algorithm.

γ0
u

∆γ
rx
rs

α0

∆α

Output cost

Figure 10.3: Cobweb plot highlighting the values of the parameters for which the output cost
is better than 1450 ke.

It is difficult to detect a general trend from Figure 10.3 that could help us choosing
a good value of p. In Figure 10.4, we highlight the worst parameter values in order to
see if there are any regions of the hypercube H that should be avoided when choosing
p. The red lines show the parameter values for which the output cost is worse than
1975 ke. Contrary to Figure 10.3, we see that high values of ∆γ are highlighted.
We also notice that low values of ∆α are not very efficient. Otherwise, we cannot
distinguish a clear pattern in bad values of p.
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Output cost

Figure 10.4: Cobweb plot highlighting the values of the parameters for which the output cost
is worse than 1975 ke.

In this section, we have seen that cobweb plots are a good tool to visualize qual-
itative patterns of the effect of an input parameter on the output of an algorithm.
In our case, although we have highlighted some regions in which ∆γ or rx should be
chosen, the pattern is not clear enough to design new values of p that will give good
performance for sure.

10.7.4 A quantitative approach with the Morris method
The qualitative approach with cobweb plots in the previous section did not enable us
to detect clear patterns for the tuning of the components of p. In this section, we use
a quantitative approach, called the Morris method [Morris, 1991], to evaluate both the
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individual influence and the interaction effects of the parameters γ0
u, rx, rs,∆γ, α0 and

∆α on the output of the fixed-point algorithm.
Contrary to §10.7.2 and §10.7.3, we do not use an optimized LHS to draw the values

of p in this section. The Morris method is indeed based on randomized One-At-a-Time
(OAT) experiments. An OAT experiment consists in doing some runs of the algorithm
where the value of p used in two successive executions differs only by the value of one
of its coordinate, the others being kept to a baseline value. This means that we only
vary one value among {γ0

u, rx, rs,∆γ, α0,∆α} between two runs.
In the Morris method, we start by mapping the hypercube H to the unit hypercube

[0, 1]6. Then, the unit hypercube is discretized in M levels by input, hence generating
a grid over [0, 1]6. The next step is to randomly generate N paths of length 7 (i.e. the
dimension of H increased by one) along the grid.3 The following definitions are given
for the particular unit hypercube [0, 1]6 but hold in any finite dimension.

Definition 10.5. A path P is a set of samples P = {p(1), . . . , p(7)} ⊂ [0, 1]6 where, for
i ∈ {1, . . . , 6}, p(i+1) − p(i) has only one non-zero coordinate, of length δ > 0, where δ
is a multiple of the discretization step 1/(M−1). We also impose that each coordinate
is changed only once along the path.

In the remainder of this section, we denote by A : R6 → R the function such that
A(p) is the optimal cost given by the fixed-point algorithm running with the parameter
p ∈ R6.

Definition 10.6. Let P1, . . . , PN be the N paths that are generated in the Morris
method. We introduce the elementary effect di(Pj) of perturbating coordinate i ∈
{1, . . . , 6} on path j ∈ {1, . . . , N} as:

di(Pj) = A(p+ δei)− A(p)
δ

,

where ei is the i-th vector of the canonical Euclidean basis and p ∈ Pj is the only
element in Pj such that p+ δei ∈ Pj.

Remark 10.7. The elementary effect di(Pj) can be interpreted as an approximation on
a coarse grid of the partial derivative of the function A with respect to its i-th input
variable at the point p ∈ Pj where p is such that p+ δei ∈ Pj. ♦

Definition 10.8. For each coordinate i ∈ {1, . . . , 6}, we define two indices, the mean
elementary effect µi and the standard deviation of the elementary effects σi:

µi = 1
N

N∑
j=1

di(Pj) and σi =

√√√√√ 1
N

N∑
j=1

(di(Pj)− µi)2 . (10.7)

We also introduce the mean of the absolute elementary effects µ?i :

µ?i = 1
N

N∑
j=1
|di(Pj)| .

3 We can refer to [Campolongo et al., 2007] for a way of generating these paths so as to ensure a
good covering of the input hypercube [0, 1]6.
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The index µi quantifies the influence of the coordinate i of the parameter p on the
optimal cost given by the algorithm. Indeed µi is the mean of the elementary effects
{di(Pj)}1≤j≤N which can be seen as coarse approximations of the partial derivative of
A with respect to its i-th input variable. Using the index µ?i enables to avoid possible
vanishing effects due to terms of opposite sign in the sum ∑N

j=1 di(Pj). Hence, the
higher µ?i , the higher the approximations of the partial derivatives of A in absolute
value, meaning that the coordinate i of the parameter p strongly influences the output
of the algorithm. A low value of µ?i means that the coordinate i has little influence on
the output and can be discarded from the tuning procedure.

The index σi measures the spread of the elementary effects from the mean µi and
therefore the contribution of non-linear effects and of interactions between coordinates
on the output of the algorithm. Indeed, if the influence of the i-th coordinate is linear
with no interactions with others, then all di(Pj), 1 ≤ j ≤ N take the same value, which
is then equal to µi. In this case, we get that σi equals zero. A non-zero value of σi is
then the sign of non-linear or interaction effects.

We use N = 28 paths of size 7, generated so as to efficiently cover the input
space, using the technique of [Campolongo et al., 2007]. Thus, we perform a total of
28×7 = 196 runs of the fixed-point algorithm. Figure 10.5 shows the value of σ versus
µ or µ? for each of the coordinates of p. Let us first focus on the absolute elementary
effects (blue points). They are all in the upper right corner of the plot, that is, the
region with high µ? and high σ. This means that all inputs are influential and with
either non-linear effects and/or interactions with other coordinates. In particular, we
cannot discard any coordinate from the tuning procedure and we cannot set the 6
parameters independently of others because of interaction effects. Let us now explain
the interest in looking at the mean elementary effects µ. We see that µ is much smaller
than µ? for all the coordinates. For a given coordinate i, this means that in the sum
defining µi (10.7) there are terms of opposite signs, therefore the approximate partial
derivative di(Pj) can be positive or negative depending on the path Pj. Then – taking
the example of α0 – we deduce that increasing α0 could either improve or degrade the
performance of the algorithm depending on the point p at which we vary α0. The
same conclusion is true for the 6 parameters. Hence, we cannot exhibit a pattern for
choosing a good value of p for sure.

10.7.5 Conclusion of the tuning

The study performed in this section shows that the fixed-point algorithm is sensitive
to the value of p that parametrizes the auxiliary problem and the relaxation of the
system. As we are not able to design a rule for a good choice of the parameter p, we
simply use, for the 80-component case, the parametrization that gives the best results
on the 10-component case. The corresponding value of p was obtained in the LHS used
in §10.7.2 and §10.7.3:

p = (17.32, 7434, 815.3, 1.360× 10−1, 46.51, 135.5) . (10.8)

We give the value of p with 4 significant digits to emphasize that the performance of
the APP fixed-point algorithm is very sensitive to this value.
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Figure 10.5: Standard deviation of the elementary effects with respect to the mean of the
elementary effects in red (respectively absolute elementary effects in blue).

10.8 Numerical results on the 80-component case
Now that all the parameters of the fixed-point algorithm 8 are set, we can solve Prob-
lem (10.6). The performance of the fixed-point algorithm is compared with a reference
algorithm, which is the blackbox algorithm MADS applied directly on Problem (10.6).
We consider the system of 80 components described in Table 10.1. Parameters of the
computation are given in Table 10.3. When running the optimization, the reference
algorithm uses the original dynamics as it does not use gradient information. The APP
fixed-point algorithm runs with the value of p in (10.8) that parametrizes the auxiliary
problem and the relaxation of the system.

Decomposition MADS
Fixed-point iterations 50 /
Cost function calls 103/subproblem/iteration 8× 105

Cost and dynamics Relaxed Original
Processor model Intel® Xeon® Processor E5-2680 v4, 2.4 GHz
Computation time 18h24min 22h30min

Table 10.3: Parameters of the computation for the two algorithms.

Remark 10.9. The APP fixed-point algorithm solves a decomposable auxiliary problem
at each iteration, this algorithm is designed to be parallelized. It runs on 80 processors
so that the subproblems on the components are solved in parallel. The reference
algorithm MADS runs only on one processor. Note that it is also possible to parallelize
MADS [Audet et al., 2008b], although the implementation is not as straightforward as
for the decomposition method. The parallel version of MADS has not been tested in
this thesis. ♦
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The maintenance strategies returned by the two algorithms are then evaluated on a
common set of 105 failure scenarios, distinct from those used for the optimization. For
the two strategies, the evaluation is done with the original dynamics of the system in
order to ensure a fair comparison. The two algorithms return a maintenance strategy
with ui,t ∈ [0, 1] for (i, t) ∈ I × T. From the operational perspective, PMs make the
components as good as new. Hence, for the evaluation of the strategy, the controls are
projected on {0, 1}: we consider that if ui,t ≥ ν, then the PM makes the component
as good as new, otherwise no PM is performed. The comparison between the two
maintenance strategies is fair as we use the same procedure for their evaluation.

The mean cost is 12902 ke with MADS and 11483 ke with the decomposition which
represents a gain of 11%. The values of some quantiles are gathered in Table 10.4 and
the distribution of the cost is represented on Figure 10.6.

1% 5% 25% 50% 75% 95% 99%
Decomposition 10385 10683 11136 11472 11809 12326 12713
MADS 11858 12151 12588 12894 13211 13674 14010

Table 10.4: Quantiles of the cost of the two maintenance strategies (ke).
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Figure 10.6: Distribution of the cost for the
two maintenance strategies.
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Figure 10.7: Part of the PM, CM and forced
outage cost in the total expected cost.

Figure 10.7 outlines that the average CM cost is higher with the decomposition
strategy. However, a much lower PM cost makes the decomposition more efficient than
MADS. This is due to the fact that fewer PMs are performed with the decomposition
strategy than with MADS strategy (Table 10.5). The counterpart is that failures and
forced outages occur more often with the decomposition strategy (Table 10.5). The
forced outage cost is not visible on Figure 10.7 as it represents 0.05 ke for MADS
strategy (3.9 × 10−6 of the total expected cost) and 4.09 ke for the decomposition
strategy (3.5 × 10−4 of the total expected cost). There are more forced outages with
the decomposition strategy (63 occurrences in 105 failure scenarios versus 1 for MADS)
but they almost all occur in the last two time steps of the study horizon. Therefore,
the cost of forced outages is low because of the discount factor.

The cumulative number of PMs can be visualized on Figure 10.8. As already
noticed, there are fewer PMs with the decomposition strategy. A striking feature with
the decomposition strategy is that there are almost no PM in the first three years.
This exploits the fact that the components are new. The reference algorithm MADS
applied directly on the original problem does not detect this feature. In fact, the region
of the space corresponding to not doing any PM in the first three years jointly for all
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Decomposition MADS
Total number of PMs 447 558
Mean number of PMs/component 5.6 7.0
Mean time between PMs 6.1 years 5.0 years
Mean number of failures/component 1.40 1.18
Number of forced outages/Number of scenarios 63/10000 1/10000

Table 10.5: Overview of the number of PMs, failures and forced outages for each strategy.

components is a very small subset of the admissible space of the original problem and
is not explored by MADS. On the other hand, the subproblems in the APP fixed-point
algorithm act on an individual component, it is then easier to figure out that doing no
PM in the first three years is profitable.

There is also a significant reduction of the number of PMs in the last five years
of the study horizon. It is indeed useless to invest money to repair a component for
the last few years, as the payback period could exceed the remaining life of the plant.
Moreover, the discount factor at the end of the horizon greatly reduces the incurred
cost so that a forced outage is not too penalizing. This is why some forced outages
occur with the decomposition strategy at the end of the study period.
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Figure 10.8: Cumulative number of PMs.
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Figure 10.9: Evolution of the probability of
having an empty stock.

Another indicator that is monitored by decision makers is the level of stock. A
necessary condition for the occurrence of a forced outage is that the stock is empty.
Hence, we look at the probability of having an empty stock. The higher this probability,
the higher the probability of forced outage. The probability of having an empty stock is
very low for both strategies in the first 30 years and then increases for the decomposition
strategy (Figure 10.9). Again, because of the discount factor, forced outages in the last
few years do not have important financial consequences. It is then more profitable to
do fewer PMs and allow for a higher risk of failure. This is what the decomposition
strategy does.

Overall, the strategy returned by the decomposition by prediction is more cost ef-
fective than MADS strategy. For a decision maker, the decomposition strategy requires
less investment as we do fewer PMs. It also has the best expected cost. Even in the
case of extreme events, it is more robust than MADS strategy, as shown by the 99%
quantile in Table 10.4. The forced outages indeed only occur at the end of the horizon.
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10.9 Conclusion
We have applied the APP to the industrial maintenance optimization problem de-
scribed in Chapter 8. As the problem involves integer variables, we have introduced
a continuous relaxation of the system so that the gradients that appear in the aux-
iliary problem are correctly defined. The fixed-point algorithm runs on the relaxed
system and consists in the iterative resolution of independent subproblems involving
only a single component or the stock. Hence, the decomposition allows to overcome
the curse of dimensionality, that has been encountered in Part I. We have implemented
the fixed-point algorithm with an efficient mixed parallel and sequential strategy. This
implementation is particularly adapted to the structure of the industrial problem, for
which the subproblem on the stock is easy to solve numerically. The numerical per-
formance of the algorithm is sensitive to the tuning of some parameters that appear in
the auxiliary problem or control the relaxation of the system. A detailed study, using
sensitivity analysis tools, has been performed, but no clear pattern for a good choice
of the parameters has been detected. The selected method for the tuning consists in
choosing the parameters that lead to the best performance on a low-dimensional test
case.

We have presented a numerical application of the APP on an industrial case with
80 components, which is representative of the most challenging cases for EDF. The
decomposition method outperforms the blackbox algorithm MADS applied directly
on the full problem. The strategy returned by the decomposition involves fewer PMs
especially at the beginning and the end of the time horizon, hence considerably reducing
the investment. More forced outages occur but only at the end of the time horizon
so without heavy financial consequences. The decomposition methodology manages to
exploit the fact that the discount factor makes the forced outages not too penalizing
at the end of the time horizon and that there is no need to replace new components.
MADS applied on the full problem cannot detect these features because the search
space is too large. The strategy returned by the decomposition is also robust to extreme
events as the 99% quantile is better than for MADS.

This work proves the interest of the modeling effort needed to apply the decomposi-
tion method. Some challenges still remain for an application in an operational context.
Here, the dynamics is simulated with a time step of one year. A smaller time step must
be used for an accurate evaluation of the costs. This will not increase the complexity
of the problem as maintenance decisions are always made on a yearly basis, so that
the space of admissible maintenance strategies is still of the same dimension. However,
the time needed for the evaluation of the cost function will increase. It is also possible
to model more complex systems, by adding a control on the time of the order of spare
parts or dependence between the failures of the components for instance. We could
also consider imperfect preventive maintenance. A balance must be found between the
simplicity of the model and its adequation to reality given the industrial application
in mind.
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Part III

The stochastic APP in Banach
spaces: measurability and

convergence
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From Sample Average Approximation
to Stochastic Approximation

In this part, we are concerned with a stochastic optimization problem of the form:

min
u∈Uad

J(u) with J(u) = E
(
j(u,W )

)
, (10.9)

where Uad is a non-empty closed convex subset of a Banach space U, W is a random
variable defined on a probability space (Ω,A,P), taking values in a measurable space
W and j : Uad ×W→ R is a function. We also assume that J is differentiable.

The main difficulty to solve Problem (10.9) lies in the computation of ∇J(u) that
involves an expectation and is often intractable numerically. Two approaches, based
on Monte-Carlo sampling techniques, have been developed to overcome this difficulty,
namely Stochastic Approximation (SA) and Sample Average Approximation (SAA).
These methods have already been quickly mentioned in the introductory chapter of
Part II, and SAA has been chosen for the resolution of the industrial maintenance op-
timization problem. In this part, we come back to the SA technique and its translation
within the APP. Let us first recall the insight of each approach.

The SAA approach is described in details in [Shapiro et al., 2009, Chapter 5]. The
idea is to generate a Q-sample w1, . . . , wQ of the random variable W and to approx-
imate Problem (10.9) with the sample average problem:

min
u∈Uad

1
Q

Q∑
q=1

j(u,wq) . (10.10)

The approximate problem (10.10) can be solved efficiently with an appropriate determ-
inistic algorithm. The main drawback of SAA is that the sample size Q must be fixed
before solving the approximate problem. With a low value of Q, the solution of (10.10)
may be an inaccurate approximation of the solution of the true problem (10.9), whereas
a large value of Q leads to a high computation time for the gradient of the cost function
of (10.10).

On the other hand, a SA algorithm, first introduced in [Robbins and Monro, 1951],
is defined by a recursive stochastic update rule. For l ∈ N, the l-th iterate of a SA
algorithm is a mapping Ul : Ω → U, where the range of Ul is included in Uad. The
most basic SA scheme is the stochastic gradient descent algorithm. Assume that U is
a Hilbert space, that Uad = U and that j is differentiable with respect to u, then the
l-th iteration of stochastic gradient descent computes an iterate ul+1 such that:

ul+1 = ul − εl∇uj(ul, wl+1) ,
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where εl > 0 is a positive real and wl+1 is a realization of the random variableW . The
insight of the SA method is to use an approximation of ∇J by sequentially incorpor-
ating samples of W . Therefore, contrary to SAA, there is no need to choose a sample
size a priori. Moreover, the gradient ∇uj(ul, wl+1) does not involve an expectation and
can be computed easily numerically.

A comparison between SA and SAA is carried out in [Nemirovski et al., 2009]. The
authors show that robust versions of SA algorithms perform similarly as the SAA
method and argue that SA may constitute a viable alternative to SAA.

In Part II, we have studied the APP, a unifying framework for decomposition-
coordination methods, but also for classical algorithms such as gradient descent, the
proximal gradient algorithm or the Newton method [Carpentier and Cohen, 2017, Sec-
tion 3.3]. The APP has been used in the deterministic case as the optimization
problems of Part II are solved with the SAA approach. In this part, we focus on
SA schemes. We carry out a theoretical study of the measurability and the conver-
gence of the iterates of the stochastic APP introduced by [Culioli and Cohen, 1990].
The stochastic APP framework encompasses in particular the robust SA methods
of [Nemirovski et al., 2009].

Communication. The work presented in Chapter 11 is the subject of the pre-
print [Bittar et al., 2021].
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11Measurability and convergence
of the stochastic APP

Creativity is the ability to introduce
order into the randomness of nature.

Eric Hoffer
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CHAPTER 11. MEASURABILITY AND CONVERGENCE OF THE APP

11.1 Introduction

Let U be a Banach space with a norm ‖·‖, (Ω,A,P) be a probability space and
(W,B(W)) be a measurable topological vector space with B(W) being the Borel σ-field
onW. We refer to [Bauschke and Combettes, 2011, Billingsley, 1995] for the definitions
of basic concepts in analysis and probability theory. We consider a stochastic optimiz-
ation problem of the form:

min
u∈Uad

{
J(u) := J∆(u) + JΣ(u)

}
where


J∆(u) = E

(
j∆(u,W )

)
,

JΣ(u) = E
(
jΣ(u,W )

)
.

(11.1)

where Uad ⊂ U is a non-empty closed convex set, W : Ω → W is a random vari-
able, jΣ(·, w) and j∆(·, w) are proper, convex, lower-semicontinuous (l.s.c.) real-valued
functions for all w ∈W.

Stochastic Approximation (SA) algorithms are the workhorse for solving Prob-
lem (11.1). The SA technique has been introduced in [Kiefer and Wolfowitz, 1952,
Robbins and Monro, 1951] as an iterative method to find the root of a monotone
function which is known only through noisy estimates. SA algorithms have been
the subject of many theoretical studies [Bach and Moulines, 2011, Karimi et al., 2019,
Nemirovski et al., 2009, Polyak and Juditsky, 1992] and have applications in various
disciplines such as machine learning, signal processing or stochastic optimal control
[Benveniste et al., 2012, Kushner and Yin, 1997]. Back in 1990, with decomposition
applications in mind, [Culioli and Cohen, 1990] proposed a general SA scheme in an
infinite dimensional Hilbert space based on the so-called Auxiliary Problem Principle
(APP), called the stochastic APP algorithm. This algorithm also encompasses sev-
eral well-known algorithms such as stochastic gradient descent, the stochastic proximal
gradient algorithm or stochastic mirror descent. Recently, [Geiersbach and Pflug, 2019,
Martin et al., 2019] apply SA methods to solve PDE-constrained optimization prob-
lems. In this chapter, we extend the stochastic APP algorithm to the Banach case.

We study the measurability of the iterates of the stochastic APP algorithm, that
is, we prove that Ul is a random variable. The issue of measurability is not often
addressed in the literature, yet it is essential from a theoretical point of view. When
convergence results or efficiency estimates are derived for SA algorithms, the iterates
must be random variables so that the probabilities or the expectations that appear in
the computation are well-defined.

We denote by 〈· , ·〉 the duality pairing between U and the topological dual space
U?. In the case where j∆ is differentiable, the l-th iteration of the stochastic APP
algorithm computes a minimizer ul+1 such that:

ul+1 ∈ arg min
u∈Uad

K(u) +
〈
εl∇uj

∆(ul, wl+1)−∇K(ul) , u
〉

+ εlj
Σ(u,wl+1) , (11.2)

where εl > 0 is a positive real, wl+1 is a realization of the random variable W and
K is a user-defined Gateaux-differentiable convex function. The role of the function
K is made clear in Section 11.2. In the context of the APP, Problem (11.2) is called
the auxiliary problem and the function K is called the auxiliary function. Let us now
briefly expose how this scheme reduces to well-known algorithms for particular values
of K and jΣ.

Assume that U is a Hilbert space, Uad = U and jΣ = 0. The l-th iteration of
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stochastic gradient descent is given by:

ul+1 = ul − εl∇uj
∆(ul, wl+1) . (11.3)

This is exactly the stochastic APP algorithm (11.2) with jΣ = 0 and K = 1
2 ‖·‖

2 where
‖·‖ is the norm induced by the inner product in U.

When j∆ is differentiable and jΣ is non-smooth but with a proximal operator that
is easy to compute, proximal methods [Atchade et al., 2017, Parikh and Boyd, 2014]
are particularly efficient, even in a high-dimensional Hilbert space U. An iteration of
the stochastic proximal gradient algorithm is:

ul+1 ∈ arg min
u∈U

1
2εl
‖ul − u‖2 +

〈
∇uj

∆(ul, wl+1) , u− ul
〉

+ jΣ(u,wl+1) . (11.4)

This is again the stochastic APP algorithm with K = 1
2 ‖·‖

2 but with a non zero
function jΣ. The proximal term 1

2εl ‖ul − u‖
2 forces the next iterate ul+1 to be close to

ul with respect to the norm ‖·‖. When jΣ is the indicator of a convex set, the stochastic
proximal gradient method reduces to stochastic projected gradient descent and when
jΣ = 0, this is just the regular stochastic gradient descent (11.3). Proximal methods
are well-suited for regularized regression problems in machine learning for example.

When U is only a Banach space and not a Hilbert space, Equation (11.3) does not
make sense as ul ∈ U while ∇uj

∆(ul, wl+1) ∈ U? the topological dual of U, thus the
minus operation is not defined. This difficulty is addressed with the mirror descent
algorithm [Nemirovski and Yudin, 1983]. The original insight of the method is to map
the iterate ul to ∇K(ul) ∈ U?, where K is a user-defined Gateaux-differentiable func-
tion. Then, we do a gradient step in U? and we map back the resulting point to the
primal space U. The functionK is called the mirror map in this setting [Bubeck, 2015].
There is also a proximal interpretation of mirror descent: instead of defining the prox-
imity with the norm ‖·‖, the mirror descent algorithm and its stochastic counter-
part [Nemirovski et al., 2009] use a Bregman divergence [Bregman, 1967] that captures
the geometric properties of the problem:

ul+1 ∈ arg min
u∈Uad

1
εl
DK(u, ul) +

〈
∇uj

∆(ul, wl+1) , u− ul
〉
, (11.5)

where DK is the Bregman divergence associated with K:

DK(u, u′) = K(u)−K(u′)− 〈∇K(u′) , u− u′〉 , u, u′ ∈ U ,

The function K is sometimes called the distance-generating function as it defines the
proximity between u and u′. With K = 1

2 ‖·‖
2, we get back to the setting of stochastic

gradient descent. The mirror descent algorithm is particularly suited to the case where
∇uj

∆ has a Lipschitz constant which is large with respect to the norm ‖·‖ but small
with respect to some other norm that is better suited to the geometry of the prob-
lem [Nemirovski et al., 2009]. For example, in the finite-dimensional case, the per-
formance of stochastic gradient descent depends on the Lipschitz constant of ∇uj

∆

in the Euclidean geometry. Hence, if the problem exhibits a non-Euclidean geometric
structure, stochastic mirror descent may be more efficient. Note that stochastic mirror
descent corresponds to the stochastic APP with a general function K and jΣ = 0.

In fact, the stochastic APP algorithm combines the ideas of mirror descent and
of the proximal gradient method. The iteration defined by (11.2) can be equivalently
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written as:

ul+1 ∈ arg min
u∈Uad

1
εl
DK(u, ul) +

〈
∇uj

∆(ul, wl+1) , u− ul
〉

+ jΣ(u,wl+1) ,

In the sequel, we stick to the formulation (11.2) and we consider a more general version
as j∆ is only assumed to be subdifferentiable and we allow for an additive error on the
subgradient ∂uj∆(ul, wl+1). The complete setting and description of the algorithm
is given in §11.2.1. Some applications of the stochastic APP algorithm are given in
§11.2.2.

Figure 11.1 summarizes the relationship between the four stochastic approximation
algorithms that we have introduced.

Stochastic APP (11.2)

Stochastic Proximal Gradient (11.4) Stochastic Mirror Descent (11.5)

Stochastic Gradient Descent (11.3)

K = 1
2 ‖·‖

2
jΣ = 0

jΣ = 0 K = 1
2 ‖·‖

2

Figure 11.1: Links between various stochastic approximation algorithms.

Contributions. The main contributions of this chapter are the following:

• In Section 11.3, we prove the measurability of the iterates of the stochastic APP
algorithm in a Banach space. For that purpose, we carry out a precise study
based on [Castaing and Valadier, 1977, Hess, 1995] and we adapt some results
of [Rockafellar and Wets, 2004] to the Banach case.

• In §11.4.1, convergence results for the iterates and for the function values of the
stochastic APP algorithm are extended to the Banach case. These results already
appear in [Culioli and Cohen, 1990] for the Hilbert case. They are also given,
again in the Hilbert case, for stochastic mirror descent in [Nemirovski et al., 2009]
or stochastic projected gradient in [Geiersbach and Pflug, 2019].

• In §11.4.2, we derive efficiency estimates for the function values taken either
for the averaged sequence of iterates or for the last iterate. These efficiency
estimates take into account the additive error on the subgradient, using the tech-
nique from [Geiersbach and Wollner, 2019]. To obtain convergence rates for the
function values of the last iterate, we adapt the concept of modified Fejér mono-
tonicity [Lin et al., 2018] to the framework of the stochastic APP algorithm.

11.2 Description of the algorithm and examples
In this section, we describe the version of the stochastic APP algorithm that is studied
in this chapter and we give some examples of problems that fit in the general framework
of Problem (11.1).
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11.2.1 Setting of the stochastic APP algorithm
We aim at solving Problem (11.1) that we call the master problem. The original
idea of the APP, first introduced in [Cohen, 1978] and extended to the stochastic
case in [Culioli and Cohen, 1990], is to solve a sequence of auxiliary problems whose
solutions converge to the optimal solution of the master problem.

Assume that j∆ is subdifferentiable. At iteration l of the algorithm, a realization
wl+1 of a random variable Wl+1 is drawn. The random variables W1, . . . ,Wl+1 are
independent and identically distributed as W . Then, the following auxiliary problem
is solved:

min
u∈Uad

K(u) + 〈εl(gl + rl)−∇K(ul) , u〉+ εlj
Σ(u,wl+1) , (11.6)

where gl ∈ ∂uj∆(ul, wl+1) and we allow for an additive error rl on the gradient. The
term rl represents a numerical error or a bias due to an approximation of the gradient
e.g. with a finite difference scheme. The auxiliary problem is characterized by the
choice of the auxiliary function K. In the introduction, we have given particular
choices for K that lead to well-known algorithms. Depending on the context, the
function K allows for an adaptation of the algorithm to the geometric structure of the
data or it can provide decomposition properties to the algorithm, see Example 11.2.
The stochastic APP algorithm is given in Algorithm 9.

Algorithm 9 Stochastic APP algorithm
1: Choose an initial point u0 ∈ Uad, and a positive sequence {εl}l∈N.
2: At iteration l, draw a realization wl+1 of the random variable Wl+1.
3: Solve Problem (11.6), denote by ul+1 the solution.
4: l← l + 1 and go back to 2.

Note that no explicit stopping rule is provided in Algorithm 9. It is indeed dif-
ficult to know when to stop a stochastic algorithm as its properties are of statistical
nature. Nevertheless, stopping rules have been developed in [Wada and Fujisaki, 2015,
Yin, 1990] for the Robbins-Monro algorithm. In practice, the stopping criterion may
be a maximal number of evaluations imposed by a budget limitation.

11.2.2 Some cases of interest for the stochastic APP
The structure of Problem (11.1) is very general and covers a wide class of problems
that arise in machine learning or stochastic optimal control. We give some cases of
interest that can be cast in this framework.
Example 11.1. Regularized risk minimization in machine learning

Let (X,X) and (Y,Y) be two measurable spaces, where X and Y denote respectively
the σ-fields on X and Y. Let X ⊂ X and Y ⊂ Y and assume there is a probability
distribution ν onX×Y . Suppose that we have a training set {(xi, yi)}1≤i≤N ∈ (X×Y )N
which consists in independent and identically distributed samples of a random vector
(X ,Y ) following the distribution ν. Consider a convex loss function ` : Y × Y → R+
and let U be a space of functions from X to Y . The goal of regularized expected loss
minimization is to find a regression function u] ∈ Uad, where Uad ⊂ U, such that:

u] ∈ arg min
u∈Uad

∫
X×Y

`
(
y, u(x)

)
ν(dx, dy) +R(u) , (11.7)
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where R is a regularization term. In practice, as the distribution ν is unknown, we solve
an approximate problem, called the regularized empirical risk minimization problem:

u] ∈ arg min
u∈Uad

1
N

N∑
i=1

`
(
yi, u(xi)

)
+R(u) , (11.8)

Note that Problem (11.8) is in fact exactly of the form of Problem (11.7) if the dis-
tribution ν is taken to be the empirical measure ν = 1/N ∑N

i=1 δ(xi,yi), where δ(xi,yi)
denotes the measure of mass one at (xi, yi) and zero elsewhere.

The regularized expected loss minimization Problem (11.7) is of the form of Prob-
lem (11.1) with the smooth term J∆(u) =

∫
X×Y `

(
y, u(x)

)
ν(dx, dy) and the possibly

non-smooth term JΣ(u) = R(u). 4
Example 11.2. Decomposition aspects of the stochastic APP algorithm

Let N > 0 be a given positive integer. Suppose that U = U1 × . . . × UN and
Uad = Uad

1 × . . . × Uad
N with Uad

i ⊂ Ui for all i ∈ {1, · · · , N}. Moreover, assume that
jΣ is an additive function, that is, jΣ(u,W ) = ∑N

i=1 j
Σ
i (ui,W ) with ui ∈ Ui, whereas

j∆ induces a non-additive coupling. In this case, Problem (11.1) is:

min
u∈Uad

J∆(u) +
N∑
i=1

JΣ
i (ui) .

where JΣ
i (ui) = E

(
jΣ
i (ui,W )

)
. We apply the stochastic APP algorithm with an

additive auxiliary function K(u) = ∑N
i=1 Ki(ui). Let ū ∈ U be given, a canonical

choice for Ki is:
Ki(ui) = J∆

(
ū1:i−1, ui, ūi+1:N

)
, i ∈ {1, . . . , N}

where ūi:j = (ūi, . . . , ūj) for 1 ≤ i ≤ j ≤ N and ū1:0 denotes the empty vector by
convention. Another classical choice is K = 1

2 ‖·‖
2. With an additive function K, the

auxiliary problem (11.6) can be split into N independent subproblems that can be
solved in parallel. At iteration l of the stochastic APP algorithm, the i-th subproblem
is:

min
ui∈Uad

i

Ki(ui) +
〈
εl(gil + ril)−∇Ki(uil) , ui

〉
+ εlj

Σ
i (ui, wl+1) ,

where gil ∈ ∂uij∆(ul, wl+1) and ril is an additive error on ∂uij∆(ul, wl+1). This example
shows that the stochastic APP framework encompasses decomposition techniques. 4

11.3 Measurability of the iterates of the stochastic
APP algorithm

Convergence results for SA algorithms often consist in proving the almost sure conver-
gence of the sequence of iterates

{
Ul

}
l∈N

to the optimal value u]. Other results provide
non-asymptotic bounds for the expectation of function values E

(
J(Ul) − J(u])

)
, the

probability of large deviation P
(
J(Ul) − J(u]) > η

)
for some η > 0, or the quadratic

mean E
(∥∥∥Ul − u]

∥∥∥2
)
. In order for these expectations and probabilities to be well-

defined, Ul must be a measurable mapping from Ω to U. Hence, the measurability of
the iterates is a key theoretical issue. However, it is hardly addressed in the literat-
ure. In this section, we prove the measurability of the iterates of the stochastic APP
algorithm.
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11.3.1 A general measurability result
The aim of this section is to prove that we can obtain the measurability of the iterates
of the stochastic APP algorithm. For that purpose, we prove a general measurability
result in Theorem 11.24 and obtain the measurability of the iterates of the stochastic
APP algorithm as a consequence in Theorem 11.28.

Recall that (Ω,A,P) is a probability space and that (W,B(W)) is a measurable
topological vector space. The Banach space U is equipped with the Borel σ-field B(U).
The topological dual of U is denoted by U?, and its Borel σ-field is B(U?). We consider
the following problem:

min
u∈Uad

{
Φ(ω, u) := K(u) +

〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)}
, (11.9)

where ε > 0 is a given positive real and ϕ : Ω → U? is a given measurable function.
The goal is to show the existence of a measurable mapping Ũ such that for all ω ∈
Ω, Ũ (ω) ∈ arg minu∈Uad Φ(ω, u). The mapping ω 7→ arg minu∈Uad Φ(ω, u) is a set-
valued mapping. We recall some useful results on set-valued mappings in the next
section.

11.3.1.1 Some tools from the theory of set-valued mappings

We introduce some tools from the theory of set-valued mappings that are used to state
and prove the measurability result of Theorem 11.24. The definitions and propositions
are mostly taken from [Castaing and Valadier, 1977, Hess, 1995]. For two sets X, Y ,
we denote by Γ : X ⇒ Y a set-valued mapping Γ from X to Y . This means that for
x ∈ X, Γ(x) ⊂ Y or in other words that Γ(x) ∈ P(Y ) where P(Y ) is the power set of
Y .

Definition 11.3 (Measure completion). Let (Ω,A) be a measurable space.

• Let µ be a measure on (Ω,A). The µ-completion of A is the σ-field Aµ generated
by A ∪ {A′ ∈ P(Ω) |A′ ⊂ A,A ∈ A and µ(A) = 0}, that is, the union of A and
the µ-negligible sets. The σ-field A is said to be complete for the measure µ if
A = Aµ.

• The σ-field Â of universally measurable sets is defined by Â = ⋂
µAµ where µ

ranges over the set of positive σ-finite measures on the measurable space (Ω,A).

Definition 11.4 (Measurable selection). Let (Ω,A) be a measurable space and U be a
separable metric space. Let Γ : Ω⇒ U be a set-valued mapping. A function γ : Ω→ U
is a measurable selection of Γ if γ(ω) ∈ Γ(ω) for all ω ∈ Ω and γ is measurable.

Definition 11.5 (Measurable mapping). Let (Ω,A) be a measurable space and U be
a separable metric space. A set-valued mapping Γ : Ω⇒ U is Effros-measurable if, for
every open set O ⊂ U, we have:

Γ−(O) =
{
ω ∈ Ω, Γ(ω) ∩O 6= ∅

}
∈ A .

Remark 11.6. The Effros-measurability of a set-valued mapping Γ : Ω⇒ U is equivalent
to the measurability of Γ viewed as a function from Ω to P(U). ♦

Proposition 11.7. [Castaing and Valadier, 1977, Theorem III.9] Assume that (Ω,A)
is a measurable space and let U be a separable Banach space. Let Γ : Ω⇒ U be a non-
empty-valued and closed-valued mapping. Then the following statements are equivalent:
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(i) Γ is Effros-measurable.

(ii) Γ admits a Castaing representation: there exists a sequence of measurable func-
tions {γn}n∈N such that for all ω ∈ Ω, Γ(ω) = cl

{
γn(ω), n ∈ N

}
where cl denotes

the closure of a set.

Proposition 11.8. [Castaing and Valadier, 1977, Proposition III.23: Sainte-Beuve’s
projection theorem] Let (Ω,A) be a measurable space and (U,B(U)) be a separable
Banach space equipped with its Borel σ-field. Let G ∈ A⊗B(U). Denote by projΩ (G)
the projection of G on Ω. Then, projΩ (G) ∈ Â, where we recall that Â is the σ-field
of universally measurable sets.

Proposition 11.9. [Castaing and Valadier, 1977, Proposition III.30] Let (Ω,A,P) be
a measure space where A is a complete σ-field, that is, A = AP. Let U be a separable
Banach space. Let Γ : Ω⇒ U be a non-empty valued and closed-valued mapping. The
following statements are equivalent:

(i) Γ is Effros-measurable.

(ii) For every closed set C ⊂ U, we have:

Γ−(C) = {ω ∈ Ω, Γ(ω) ∩ C 6= ∅} ∈ A .

Remark 11.10. When U is finite-dimensional, Proposition 11.9 is true in any measur-
able space (Ω,A), that is, the completeness assumption of the σ-field A is not needed
[Rockafellar and Wets, 2004, Theorem 14.3]. In the infinite-dimensional setting, (ii)
implies (i) is true in any measurable space (Ω,A) [Castaing and Valadier, 1977, Pro-
position III.11]. The completeness assumption is only required to prove (i) implies (ii)
when U is infinite-dimensional. Essentially, in the finite-dimensional case, the proof of
(i) implies (ii) relies on the fact that U is locally compact. In the infinite-dimensional
case, U is not locally compact and the proof uses the Sainte Beuve’s projection theorem.

♦

Definition 11.11 (Graph and epigraph). Let (X,X) be a measurable space and U be
a Banach space. Let h : X→ R ∪ {+∞} be a function and Γ : X⇒ U be a set-valued
mapping.

• The graph and the epigraph of h are respectively defined by:

gph h =
{

(x, α) ∈ X× R, h(x) = α
}
,

epih =
{

(x, α) ∈ X× R, h(x) ≤ α
}
.

• The graph of Γ is defined by:

gph Γ =
{

(x, u) ∈ X× U, u ∈ Γ(x)
}
.

Definition 11.12 (Normal integrand). Let (Ω,A) be a measurable space and U be a
Banach space. A function f : Ω× U→ R ∪ {+∞} is a normal integrand if it satisfies
the following conditions:

(i) For all ω ∈ Ω, f(ω, ·) is l.s.c.
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(ii) The epigraphical mapping Sf : Ω ⇒ U × R defined by Sf (ω) = epi f(ω, ·) is
Effros-measurable.

Remark 11.13. The point (i) of Definition 11.12 is equivalent to Sf being closed-valued.
Here, we consider the definition of the normal integrand used by [Hess, 1995]. It differs
from the definition of [Castaing and Valadier, 1977] where the point (ii) is replaced by
the A ⊗ B(U)-measurability of f . We shall see in Proposition 11.18 that the Effros-
measurability of the epigraphical mapping Sf implies the A⊗B(U)-measurability of f .
Note also that if A is complete for a positive σ-finite measure P, these two definitions
are equivalent, see [Castaing and Valadier, 1977, Proposition III.30]. ♦

Definition 11.14 (Carathéodory integrand). Let (Ω,A) be a measurable space and
U be a separable Banach space. A function f : Ω × U → R (finite-valued) is a
Carathéodory integrand if it satisfies the following conditions:

(i) For all u ∈ U, f(·, u) is measurable.

(ii) For all ω ∈ Ω, f(ω, ·) is continuous.

Proposition 11.15. [Hess, 1995, Proposition 2.5] If f is a Carathéodory integrand,
then it is a normal integrand.

Proposition 11.16. [Castaing and Valadier, 1977, Proposition III.13] Let (Ω,A) be
a measurable space and (U,B(U)) be a separable Banach space equipped with its Borel
σ-field. If Γ : Ω ⇒ U is an Effros-measurable, closed-valued mapping, then gph Γ ∈
A⊗B(U).

We now recall a technical result on the Borel σ-field of a product space that is used
in the proof of subsequent propositions.

Proposition 11.17. [Bertsekas and Shreve, 1996, Proposition 7.13] Consider a se-
quence of measurable separable topological spaces

{(
Xi,B(Xi)

)}
i∈N

equipped with their
Borel σ-fields. For n ∈ N, let Yn = ∏n

i=1 Xi and let Y = ∏
i∈N Xi. Then, the Borel

σ-field of the product space Yn (resp. Y) coincides with the product of the Borel σ-fields
of {Xi}ni=1 (resp. {Xi}i∈N), that is:

B (Yn) =
n⊗
i=1

B(Xi) and B (Y) =
⊗
i∈N

B(Xi) .

The following proposition shows that a normal integrand f : Ω × U → R ∪
{+∞}, as defined in [Hess, 1995], is jointly A⊗B(U)-measurable. This result is given
in [Rockafellar and Wets, 2004, Corollary 14.34] when U = Rn but is extended here in
the Banach case.

Proposition 11.18. Let (Ω,A) be a measurable space and (U,B(U)) be a separable
Banach space equipped with its Borel σ-field. If f : Ω × U → R ∪ {+∞} is a normal
integrand, then f is A⊗B(U)-measurable.

Proof. The function f is a normal integrand so its epigraphical mapping Sf is Effros-
measurable and closed-valued. Moreover U is separable, so by Proposition 11.16, we
get that:

gphSf =
{

(ω, u, α) ∈ Ω× U× R, f(ω, u) ≤ α
}
∈ A⊗B(U× R) .
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Using that U and R are separable, we have B(U× R) = B(U) ⊗ B(R) by Proposi-
tion 11.17. Then, for each α ∈ R, we get:

f−1
(
]−∞, α]

)
=
{

(ω, u) ∈ Ω× U, f(ω, u) ≤ α
}
∈ A⊗B(U) .

This shows that f is A⊗B(U)-measurable. �

The following proposition is an adaptation of [Rockafellar and Wets, 2004, Propos-
ition 14.45(c)] on the composition operations on normal integrands to the Banach case.
Note that the separability of U is a crucial assumption that is used explicitly in the
proof of Proposition 11.19 and that appears in most of the results of this part. Es-
sentially, as only a countable union of measurable sets is measurable, countable dense
subsets of a separable space are often used in proofs of measurability. Moreover, in the
infinite-dimensional setting, we must assume the completeness of the σ-field A because
we appeal to Proposition 11.9 in the proof.

Proposition 11.19. Let (Ω,A,P) be a measure space where A is a complete σ-field,
that is, A = AP. Let (W,B(W)) be a topological measurable space and (U,B(U)) be a
separable Banach space equipped with its Borel σ-field. Let h : U×W→ R∪ {+∞} be
l.s.c. and W : Ω→W be a measurable mapping. Then:

f : (ω, u) ∈ Ω× U 7→ h
(
u,W (ω)

)
∈ R ∪ {+∞}

is a normal integrand.

Proof. We have that h is l.s.c. so f(ω, ·) = h(·,W (ω)) is l.s.c. for all ω ∈ Ω. It remains
to prove that the epigraphical mapping Sf is Effros-measurable. As h is l.s.c., the set
epih is closed. Define:

G : (ω, u, α) ∈ Ω× U× R 7→ (u,W (ω), α) ∈ U×W× R ,

Then, let:

Q(ω) =
[
(U× R)× epih

]
∩ gphG(ω, ·, ·) ,

=
{ (

(u, α), (u,W (ω), α)
)

such that h(u,W (ω)) ≤ α, (u, α) ∈ U× R
}
,

=
{ (

(u, α), (u,W (ω), α)
)

such that f(ω, u) ≤ α, (u, α) ∈ U× R
}
.

Now, define the projection operator P as:

P : (U× R)× (U×W× R)→ (U× R) ,
((u, α), (v, w, β)) 7→ (u, α)

so that we have:

Sf (ω) =
{

(u, α) ∈ U× R, f(ω, u) ≤ α
}

= P
(
Q(ω)

)
.

• Let Γ be the set valued mapping defined by Γ : ω ∈ Ω 7→ gphG(ω, ·, ·) ∈
(U×R)× (U×W×R). We show that Γ is Effros-measurable. As U is separable,
there exists a countable dense subset {(bn, rn), n ∈ N} of U × R. For n ∈ N,
let γn(ω) =

(
(bn, rn), G(ω, bn, rn)

)
. As G(ω, bn, rn) = (bn,W (ω), rn) and W is

measurable, we get that γn is measurable. Then, we have Γ(ω) = cl{γn(ω), n ∈
N}. Hence, {γn}n∈N is a Castaing representation of Γ. Moreover, Γ is closed-
valued and non-empty valued so by Proposition 11.7, we deduce that Γ is Effros-
measurable.
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• Let C ⊂ (U× R)× (U×W× R) be a closed set. We have:

Q−(C) =
{
ω ∈ Ω,

[
(U× R)× epih

]
∩ Γ(ω) ∩ C 6= ∅

}
,

= Γ−
(
C ∩

[
(U× R)× epih

])
.

As epih is closed, the set C ∩
[
(U × R) × epih

]
is closed. By assumption, the

σ-field A is complete and we have shown that Γ is Effros-measurable, therefore by
Proposition 11.9, we get that Γ−

(
C ∩

[
(U× R)× epih

])
= Q−(C) ∈ A. Hence,

Q is Effros-measurable.

• Finally, for every open set V ⊂ U× R, as Sf (ω) = P
(
Q(ω)

)
, we have:

S−f (V ) =
{
ω ∈ Ω, Q(ω) ∩ P−1(V ) 6= ∅

}
.

The projection P is continuous so P−1(V ) is open. By the Effros-measurability
of Q, we get that S−f (V ) ∈ A, that is, Sf is Effros-measurable.

This completes the proof. �

We now give the main results that are used to prove the measurability of the iterates
of the stochastic APP. The following proposition is a slight extension of [Hess, 1996,
Proposition 4.2(c)].

Proposition 11.20. Let (Ω,A) be a measurable space and (U,B(U)) be a separable
Banach space equipped with its Borel σ-field. Let Uad be a closed subset of U. Let
f : Ω× U → R ∪ {+∞} be an A⊗ B(U)-measurable function. Let M : Ω ⇒ U be the
argmin set-valued mapping:

M(ω) = arg min
u∈Uad

f(ω, u) .

Assume that the argmin mapping M is non-empty valued, then M admits an Â-
measurable selection.

Proof. Let α ∈ R and m(ω) = minu∈Uad f(ω, u). The function m is well-defined as M
is non-empty valued. Let:

H = (Ω× Uad) ∩ {(ω, u) ∈ Ω× U, f(ω, u) < α} .

We have:

{ω ∈ Ω, m(ω) < α} = projΩ (H) ,

where projΩ (H) is the projection of H on Ω. As f is A ⊗ B(U)-measurable and Uad

is closed hence measurable, we get that H ∈ A ⊗ B(U). From Proposition 11.8, we
deduce that m−1 (]−∞, α[) is Â-measurable so that m is Â-measurable. As A ⊂ Â,
the function f is Â⊗B(U)-measurable. We can write:

M(ω) =
{
u ∈ Uad, f(ω, u) = m(ω)

}
,

so, gphM =
{

(ω, u) ∈ Ω× Uad, f(ω, u) = m(ω)
}
. Therefore, gphM is Â ⊗ B(U)-

measurable as the inverse image of {0} under the Â ⊗ B(U)-measurable mapping
(ω, u) 7→ f(ω, u)−m(ω). Let O be an open subset of U. We have:

M−(O) = projΩ ((Ω×O) ∩ gphM) .
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As (Ω× O) ∩ gphM ∈ Â⊗B(U), by Proposition 11.8, we get that M−(O) ∈ ˆ̂
A = Â.

Hence, M is Effros-measurable for the σ-field Â and is non-empty-valued by assump-
tion, so by Proposition 11.7, M admits an Â-measurable selection. �

Corollary 11.21. Let (Ω,A,P) be a probability space, where A is a complete σ-field,
that is, A = AP. Let (U,B(U)) be a separable Banach space equipped with its Borel
σ-field. Let f : Ω × U → R ∪ {+∞} be an A ⊗ B(U)-measurable function. Suppose
that the argmin mapping M is non-empty valued. Then, M admits an A-measurable
selection.

Proof. As P is a positive σ-finite measure, we have Â = ⋂
µAµ ⊂ AP = A. By

Proposition 11.20,M admits an Â-measurable selection, which is also an A-measurable
selection. �

Proposition 11.22. [Hess, 1995, Theorem 4.6] Let (Ω,A) be a measurable space, U be
a separable Banach space with separable topological dual U?. Let f : Ω×U→ R∪{+∞}
be a normal integrand and assume that f(ω, ·) is proper, convex and subdifferentiable
for all ω ∈ Ω. Let U : Ω→ U be a measurable mapping. Then, the set-valued mapping
DU : Ω⇒ U? such that:

DU (ω) = ∂uf
(
ω,U (ω)

)
=
{
v ∈ U?, f(ω, u) ≥ f(ω,U (ω)) +

〈
v , u−U (ω)

〉
, ∀u ∈ U

}
,

is Effros-measurable.

11.3.1.2 Existence of a measurable selection for the argmin mapping

In this section, we make use of the tools introduced in §11.3.1.1 to prove our main
measurability result. We introduce the argmin set-valued mapping M : Ω ⇒ U for
Problem (11.9):

M(ω) = arg min
u∈Uad

{
Φ(ω, u) := K(u) +

〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)}
. (11.10)

We consider the following assumptions:

(A1) The space U is a reflexive, separable Banach space.

(A2) Uad is a non-empty closed convex subset of U.

(A3) jΣ : U×W→ R is jointly l.s.c. and for all w ∈W, jΣ(·, w) is proper and convex.

(A4) The function K : U → R is proper, convex, l.s.c. and Gateaux-differentiable on
an open set containing Uad.

(A5) For all ω ∈ Ω, the function u 7→ Φ(ω, u) is coercive.

(A6) The σ-field A is complete for the measure P, that is, A = AP.

(A7) The function W : Ω→W is measurable.

(A8) The function ϕ : Ω→ U? is measurable.
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The objective of this part is to prove that M defined in Equation (11.10) admits a
measurable selection. We start by a classical theorem from optimization theory giving
conditions for the existence and unicity of a minimizer Φ(ω, ·).

Theorem 11.23. Let ω ∈ Ω. Under Assumptions (A1)-(A5), M(ω) is non-empty,
closed and convex. Moreover, if K is strongly convex, then M(ω) is a singleton, mean-
ing that Φ(ω, ·), defined in (11.10), has a unique minimizer.

Proof. The objective function Φ(ω, ·) is the sum of three convex, l.s.c. functions, it
is then convex and l.s.c. By (A5), the objective function is also coercive. As U is a
reflexive Banach space (A1) and Uad is non-empty, closed and convex (A2), the set
of minimizers M(ω) is non-empty [Brézis, 2005, Corollary III.20]. The convexity of
Φ(ω, ·) ensures that M(ω) is convex and the lower-semicontinuity of Φ(ω, ·) ensures
that M(ω) is closed.

If K is strongly convex, then Φ(ω, ·) is strongly convex, hence the minimizer of
Φ(ω, ·) is unique so M(ω) is a singleton.1 �

Theorem 11.24. Under Assumptions (A1)-(A8), the mapping M defined in Equa-
tion (11.10) admits a measurable selection.

Proof. We start by proving that Φ(ω, u) = K(u) +
〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)
is a

normal integrand:

• As the function K is l.s.c. (A4), (ω, u) 7→ K(u) is a normal integrand. Indeed, its
epigraphical mapping ω 7→ {(u, α) ∈ U×R, K(u) ≤ α} is a constant function of
ω and is then measurable.

• We have that the Banach space U is separable (A1) and that A is complete (A6).
The space U? equipped with its Borel σ-field B(U?) is a measurable space. The
function ϕ is measurable (A8) and the function (u, v) ∈ U × U? 7→ 〈v , u〉 ∈ R
is continuous hence l.s.c. in particular. Then, Proposition 11.19 applies, showing
that the function (ω, u) 7→

〈
ϕ(ω) , u

〉
is a normal integrand.

• With the same reasoning, using that U is separable (A1),W is measurable (A7),
A is complete (A6) and jΣ is l.s.c. (A3), we appeal to Proposition 11.19 with
h = jΣ to deduce that (ω, u) 7→ jΣ

(
u,W (ω)

)
is a normal integrand.

The function Φ is then a normal integrand as the sum of three normal integrands.
By Proposition 11.18, Φ is then A ⊗ B(U)-measurable. Moreover, the σ-field A is
complete for P (A6) and U is separable (A1). In addition, using (A2)-(A5) to apply
Theorem 11.23 ensures that M is non-empty valued. Hence, by Corollary 11.21, we
conclude that M : ω 7→ arg minu∈Uad Φ(ω, u) admits a measurable selection. �

Corollary 11.25. Under Assumptions (A1)-(A8) and if we additionally assume that
K is strongly convex, then for all ω ∈ Ω, Φ(ω, ·), defined in (11.10), has a unique
minimizer and the mapping:

Ũ (ω) = arg min
u∈Uad

Φ(ω, u) ∈ U

is measurable, that is, Ũ is a random variable.
1 In the case where K is strongly convex, the coercivity assumption is not needed as it is implied

by the strong convexity of Φ(ω, ·).
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11.3.2 Application to the stochastic APP algorithm
We aim at studying the iterations of the stochastic APP in terms of random variables
so we consider the argmin set-valued mapping M : Ω⇒ U defined by:

M(ω) = arg min
u∈Uad

K(u)+
〈
ε(G(ω) +R(ω))−∇K(U (ω)) , u

〉
+εjΣ(u,W (ω)) , (11.11)

with ε > 0, U (ω) ∈ Uad,W (ω) ∈W, G(ω) ∈ ∂uj∆(U (ω),W (ω)) andR(ω) ∈ U?. An
iteration of the stochastic APP algorithm consists in solving Problem (11.11), which
is exactly of the form of Problem (11.10) with:

ϕ(ω) = ε
(
G(ω) +R(ω)

)
−∇K

(
U (ω)

)
. (11.12)

In addition to (A1)-(A7), we assume now:

(A9) The dual space U? is separable.

(A10) The function j∆ : U×W→ R that appears in Problem (11.1) is jointly l.s.c. and
for all w ∈ W, j∆(·, w) is proper, convex and subdifferentiable on an open set
containing Uad.

(A11) The mappings U : Ω→ Uad and R : Ω→ U? are measurable.

Assumption (A11) means that the mappings U and R are random variables. We
cannot do the same for the mapping G as it must satisfy G(ω) ∈ ∂uj∆(U (ω),W (ω))
for all ω ∈ Ω. Hence, we need to ensure that there exists a measurable mapping
satisfying this constraint. This is the object of the following proposition.

Proposition 11.26. Under Assumptions (A1), (A6), (A7), (A9)-(A11), the subgradi-
ent mapping Γ : ω 7→ ∂uj

∆(U (ω),W (ω)) ⊂ U? admits a measurable selection G : Ω→
U?.

Proof. Let f(ω, u) = j∆
(
u,W (ω)

)
for ω ∈ Ω, u ∈ U.

• Using that U is separable (A1),W is measurable (A7), A is complete (A6) and j∆

is l.s.c. (A10), Proposition 11.19 with h = j∆ shows that f is a normal integrand.

• We have that for all ω ∈ Ω, Γ(ω) = ∂uf
(
ω,U (ω)

)
. With (A10), we get that

f(ω, ·) is proper, convex and subdifferentiable for all ω ∈ Ω. We have that U and
U? are separable (A1), (A9), U is measurable (A11) and f is a normal integrand,
so by Proposition 11.22, Γ is Effros-measurable.

Assumption (A10) ensures that Γ is non-empty valued. In addition, Γ is Effros-
measurable and closed-valued in U? which is separable (A9). By Proposition 11.7,
Γ admits a measurable selection. This means that there exists a measurable function
G : Ω→ U? such that for all ω ∈ Ω, G(ω) ∈ Γ(ω) = ∂uj

∆(U (ω),W (ω)). �

In the sequel, G denotes a measurable selection of Γ. In order to apply The-
orem 11.24 to prove that the iterates of the stochastic APP algorithm are measurable,
we must ensure that Assumption (A8) is satisfied, that is, we must show that the
mapping ϕ defined in (11.12) is measurable. We prove in Proposition 11.27 that As-
sumption (A8) can be deduced from the other assumptions.
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Proposition 11.27. Under Assumptions (A1), (A4), (A7), (A9)-(A11), the function
ϕ is measurable.

Proof. We have already seen in the proof of Theorem 11.24 that Λ : (ω, u) 7→ K(u)
is a normal integrand. Assumption (A4) ensures that Λ(ω, ·) is proper, convex and
subdifferentiable for all ω ∈ Ω. We have that U and U? are separable (A1), (A9),
U is measurable (A11), so ω 7→ ∇uΛ

(
ω,U (ω)

)
= ∇K

(
U (ω)

)
is measurable by Pro-

position 11.22. Finally, R is also measurable (A11), so ϕ is measurable as a sum of
measurable functions. �

Putting Theorem 11.24 and Proposition 11.27 together, we have obtained that
under Assumptions (A1)-(A7), (A9)-(A11), the mappingM : Ω⇒ U defined in (11.11)
admits a measurable selection. We can now give the measurability result for the iterates
of the stochastic APP algorithm, which is defined by the following recursion for ω ∈ Ω
and l ∈ N:

M0(ω) = {u0} ⊂ Uad ,

Ml+1(ω) = arg min
u∈Uad

K(u) +
〈
εl
(
Gl(ω) +Rl(ω)

)
−∇K

(
Ul(ω)

)
, u
〉

+ εlj
Σ
(
u,Wl+1(ω)

)
,

(11.13)

Theorem 11.28. Under Assumptions (A1)-(A7), (A9)-(A11), for all l ∈ N, the map-
ping Ml that defines the l-th iteration of the stochastic APP algorithm (11.13) admits
a measurable selection.

Proof. The mapping M0 admits a measurable selection defined by U0(ω) = u0. Then,
by iteratively using the fact that (11.11) admits a measurable selection, we deduce that
for all l ∈ N, Ml admits a measurable selection. �

Corollary 11.29. Assume that (A1)-(A7), (A9)-(A11) are satisfied and that the aux-
iliary mapping K is strongly convex. Then, for all l ∈ N, the unique mapping Ul that
defines the l-th iterate of the stochastic APP algorithm is measurable.

Proof. If K is strongly convex, from Corollary 11.25, we get thatMl is single-valued, so
the iterate Ul is uniquely defined. The measurability of Ul follows from Theorem 11.28.
This concludes the proof of the measurability of the iterates of the stochastic APP
algorithm. �

Remark 11.30. In [Rockafellar and Wets, 2004, Chapter 14], a whole set of measurabil-
ity results are exposed in the case where U is finite-dimensional, which allows to avoid
some technicalities of the infinite-dimensional case. In particular, the completeness
Assumption (A6) is not needed as shown by [Rockafellar and Wets, 2004, Proposition
14.37] which is the analogous of Proposition 11.20 in the finite-dimensional case. ♦

Remark 11.31. In Problem (11.1), when U is a Hilbert space (and hence U? = U),
Uad = U and jΣ = 0, we can use stochastic gradient descent. Then, we have the
explicit formula:

Ul+1 = Ul − εl∇j
∆(Ul,Wl+1) . (11.14)

Under Assumptions (A1), (A7), (A10), the measurability of the iterates is directly
obtained by induction using the explicit formula (11.14). ♦

164



CHAPTER 11. MEASURABILITY AND CONVERGENCE OF THE APP

11.4 Convergence results and efficiency estimates
In this section, we prove the convergence of the stochastic APP algorithm for solving
Problem (11.1) that we recall here:

min
u∈Uad

{
J(u) := J∆(u) + JΣ(u)

}
where


J∆(u) = E

(
j∆(u,W )

)
,

JΣ(u) = E
(
jΣ(u,W )

)
.

In addition, we give efficiency estimates for the convergence of function values. In
Appendix E, we give some technical results that are used in the proofs of this section.

11.4.1 Convergence of the stochastic APP algorithm
We introduce a filtration {Fl}l∈N, where for l ∈ N, Fl is the σ-field generated by
the random variables

(
W1, . . . ,Wl

)
that appear in the successive iterations of the

stochastic APP algorithm (11.13). Recall that, in (11.13), Gl ∈ ∂uj∆(Ul,Wl+1)2 is an
unbiased stochastic gradient, whereas the term Rl represents a bias on the gradient.

The convergence results for the iterates and the function values of the stochastic
APP algorithm are already proved in [Culioli, 1987, Culioli and Cohen, 1990] in the
case where U is a Hilbert space (possibly infinite-dimensional) and when there is no bias
Rl. In [Geiersbach and Pflug, 2019], convergence of the projected stochastic gradient
descent is proved in a Hilbert space and with a bias Rl. For stochastic mirror descent,
convergence results and efficiency estimates can be found in [Nemirovski et al., 2009],
but no bias is considered. Here, we present convergence results in the Banach case
for the stochastic APP algorithm and we allow for a bias Rl, hence generalizing the
previous results.

In the sequel, in addition to (A1)-(A7), (A9)-(A11), we make the following assump-
tions:

(A12) The functions j∆(·, w) : U → R and jΣ(·, w) : U → R have linearly bounded
subgradient in u, uniformly in w ∈W:

∃c1 > 0, ∃c2 > 0, ∀u ∈ Uad, ∀w ∈W, ∀r ∈ ∂uj∆(u,w), ‖r‖ ≤ c1‖u‖+ c2 .

∃d1 > 0, ∃d2 > 0, ∀u ∈ Uad, ∀w ∈W, ∀s ∈ ∂ujΣ(u,w), ‖s‖ ≤ d1‖u‖+ d2 .

(A13) The objective function J is coercive3 on Uad. This assumption is automatically
satisfied if Uad is bounded.

(A14) The function K is b-strongly convex3 with b > 0 and ∇K is LK-Lipschitz
continuous3 with LK > 0.

(A15) The sequence of step sizes {εl}l∈N is such that:∑
l∈N

εl = +∞ ,
∑
l∈N

ε2
l < +∞ .

2 In this expression, the ∈ relationship is to be understood ω by ω.
3 Basic notions in convex analysis are defined in Appendix A.

165



CHAPTER 11. MEASURABILITY AND CONVERGENCE OF THE APP

(A16) The sequence of random variables
{
Rl

}
l∈N

is P-almost surely (P-a.s.) bounded,4
each Rl is measurable with respect to Fl+1 and we have:∑

l∈N
εlE

( ∥∥∥Rl

∥∥∥ ∣∣∣ Fl) < +∞ P-a.s.

Assumptions (A1)-(A3), (A10) and (A13) ensure that J is well-defined, convex,
l.s.c., coercive and attains its minimum on Uad. Hence, Problem (11.1) has a non-
empty set of solutions U ]. We denote by J ] the value of J on U ]. From (A14), K is
b-strongly convex, so by Corollary 11.29, the problem solved at each iteration l of the
stochastic APP algorithm admits a unique solution Ul+1, which is measurable.

We start by a technical lemma where we give an inequality that is satisfied by a
Lyapunov function for the stochastic APP algorithm. This inequality will be used for
the proof of convergence of the stochastic APP algorithm in Theorem 11.33 but also
to derive efficiency estimates in Theorems 11.36 and 11.37.

Lemma 11.32. Let v ∈ Uad and consider the Lyapunov function:

`v(u) = K(v)−K(u)−
〈
∇K(u) , v − u

〉
, u ∈ Uad .

Let {ul}l∈N be the sequence of iterates generated by Algorithm 9 corresponding to the
realization {wl}l∈N of the stochastic process

{
Wl

}
l∈N

. Then, under Assumptions (A10),
(A12) and (A14), there exists constants α, β, γ, δ > 0 such that, for all l ∈ N:

`v(ul+1) ≤
(

1 + αε2
l + 2

b
εl‖rl‖

)
`v(ul) + βε2

l `v(ul+1)

+
(
γε2

l + εl‖rl‖+ δ(εl‖rl‖)2
)

+ εl
(
(j∆ + jΣ)(v, wl+1)− (j∆ + jΣ)(ul, wl+1)

)
, (11.15)

where we recall that b > 0 is the strong convexity constant of K, εl is the step size and
rl is the additive error on the stochastic gradient at iteration l of the stochastic APP
algorithm.

Proof. By (A14), K is b-strongly convex implying that:

b

2‖u− v‖
2 ≤ `v(u) . (11.16)

This shows that `v is lower bounded and coercive.
Let l ∈ N, as ul+1 is solution of (11.6), it solves the following variational inequality:

for all u ∈ Uad,〈
∇K(ul+1)−∇K(ul) + εl(gl + rl) , u− ul+1

〉
+ εl(jΣ(u,wl+1)− jΣ(ul+1, wl+1)) ≥ 0 .

(11.17)
Then, we have:

`v(ul+1)− `v(ul) = K(ul)−K(ul+1)−
〈
∇K(ul) , ul − ul+1

〉
︸ ︷︷ ︸

T1

+
〈
∇K(ul)−∇K(ul+1) , v − ul+1

〉
︸ ︷︷ ︸

T2

.

4 The set
{
ω ∈ Ω, {Rl(ω)}l∈N is unbounded

}
is negligible.
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• By the convexity of K (A14), we get:

T1 ≤ 0 .

• The optimality condition (11.17) at u = v implies:

T2 ≤ εl
〈
gl + rl , v − ul+1

〉
+ εl

(
jΣ(v, wl+1)− jΣ(ul+1, wl+1)

)
≤ εl

(〈
gl , v − ul

〉
+ jΣ(v, wl+1)− jΣ(ul, wl+1)︸ ︷︷ ︸

T3

+
〈
rl , v − ul

〉
︸ ︷︷ ︸

T4

+
〈
gl + rl , ul − ul+1

〉
+ jΣ(ul, wl+1)− jΣ(ul+1, wl+1)︸ ︷︷ ︸

T5

)
.

– As j∆(·, wl+1) is convex (A10), we get:

T3 ≤
(
j∆ + jΣ

)
(v, wl+1)−

(
j∆ + jΣ

)
(ul, wl+1) .

– By Schwarz inequality, using a ≤ a2 + 1 for all a ≥ 0 and the upper
bound (11.16), we get:

T4 ≤ ‖rl‖‖v − ul‖
≤ ‖rl‖

(
‖v − ul‖2 + 1

)
≤ ‖rl‖+ 2

b
`v(ul)‖rl‖ .

– The optimality condition (11.17) at u = ul and the strong monotonicity
of ∇K, that arises from (A14), imply:

b
∥∥∥ul+1−ul

∥∥∥2
≤ εl

(
〈gl+rl , ul−ul+1〉+jΣ(ul, wl+1)−jΣ(ul+1, wl+1)

)
, (11.18)

where we recognize T5 as the right-hand side of (11.18). Using the linearly
bounded subgradient property of jΣ (A12) with the technical result of Pro-
position E.4, we deduce that:∣∣∣jΣ(ul, wl+1)− jΣ(ul+1, wl+1)

∣∣∣ ≤ (d1 max
{
‖ul‖, ‖ul+1‖

}
+ d2

)
‖ul − ul+1‖ ,

≤
(
d1
(
‖ul‖+ ‖ul+1‖

)
+ d2

)
‖ul − ul+1‖ .

With Schwarz inequality on the first term of T5, we have:

T5 ≤ ‖gl + rl‖‖ul − ul+1‖+
(
d1‖ul‖+ d1‖ul+1‖+ d2

)
‖ul − ul+1‖ .

By the triangular inequality and Assumption (A12) for j∆, we deduce that
there exist positive constants e1, e2 and e3 such that:

T5 ≤
(
e1‖ul‖+ e2‖ul+1‖+ e3 + ‖rl‖

)
‖ul+1 − ul‖ .

By the inequality (11.18), we then get:∥∥∥ul+1 − ul
∥∥∥ ≤ εl

b

(
e1‖ul‖+ e2‖ul+1‖+ e3 + ‖rl‖

)
, (11.19)
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and therefore by a repeated use of (a+ b)2 ≤ 2(a2 + b2),

T5 ≤
εl
b

(
e1‖ul‖+ e2‖ul+1‖+ e3 + ‖rl‖

)2
,

≤ 4εl
b

(
e2

1 ‖ul‖
2 + e2

2 ‖ul+1‖2 + e2
3 + ‖rl‖2

)
.

Finally we bound ‖ul‖ (resp. ‖ul+1‖) by ‖ul−v‖+‖v‖ (resp. ‖ul+1−v‖+‖v‖)
and we use (11.16) again to deduce that there exist four positive constants
α, β, γ and δ such that:

T5 ≤ εl
(
α`v(ul) + β`v(ul+1) + γ + δ‖rl‖2

)
.

We collect the bounds we have obtained for T1, T3, T4 and T5 to get:

`v(ul+1) ≤
(

1 + αε2
l + 2

b
εl‖rl‖

)
`v(ul) + βε2

l `v(ul+1)

+
(
γε2

l + εl‖rl‖+ δ(εl‖rl‖)2
)

+ εl
(
(j∆ + jΣ)(v, wl+1)− (j∆ + jΣ)(ul, wl+1)

)
.

�

When no bias is present, rl = 0, we retrieve the same inequality as in the PhD
thesis of Culioli [Culioli, 1987, §2.5.1]. In the proofs of the subsequent theorems, In-
equality (11.15) will be fundamental to derive boundedness properties or convergence
results for the Lyapunov function `v, using variants of the Robbins-Siegmund theorem.

Now, we give convergence results for the stochastic APP algorithm, in terms of
function values as well as for the iterates. The proof is similar to that in [Culioli, 1987,
Culioli and Cohen, 1990] (case of a Hilbert space, no bias considered). The assumption
that the Banach U is reflexive (A1) allows for a similar treatment as in the Hilbert case.
The additional contribution of the bias is already taken care of by inequality (11.15).
Theorem 11.33. Under Assumptions (A1)-(A7), (A9)-(A16), we have the following
statements:

• The sequence of random variables
{
J(Ul)

}
l∈N

converges to J ] almost surely.

• The sequence of iterates
{
Ul

}
l∈N

of the stochastic APP algorithm is bounded
almost surely and every weak cluster point of a bounded realization of this sequence
belongs to the optimal set U ].

Proof. Let u] ∈ U ] be a solution of Problem (11.1) and let {ul}l∈N be the sequence of
iterates generated by Algorithm 9 with the realization {wl}l∈N of the stochastic process{
Wl

}
l∈N

.

1. Upper bound on the variation of the Lyapunov function.
Lemma 11.32 with v = u] yields:

`u](ul+1) ≤
(

1 + αε2
l + 2

b
εl‖rl‖

)
`u](ul) + βε2

l `u](ul+1)

+
(
γε2

l + εl‖rl‖+ δ(εl‖rl‖)2
)

+ εl
(
(j∆ + jΣ)(u], wl+1)− (j∆ + jΣ)(ul, wl+1)

)
.
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We write this inequality in terms of random variables and take the conditional
expectation on both sides with respect to the σ-field Fl generated by the random
variables (W1, . . . ,Wl). By construction Ul is Fl-measurable, so:

E
(
`u]

(
Ul

) ∣∣∣ Fl) = `u]
(
Ul

)
.

The random variableWl+1 is independent of the past random variables
{
Wk

}
k≤l

and therefore of Ul, thus we have:

E
(
(j∆ + jΣ)(Ul,Wl+1)

∣∣∣ Fl) = (J∆ + JΣ)(Ul) = J(Ul) .

We finally get:

E
(
`u]

(
Ul+1

) ∣∣∣ Fl) ≤ (1 +αl)`u]
(
Ul

)
+ βlE

(
`u]

(
Ul+1

) ∣∣∣ Fl)+ γl
− εl

(
J(Ul)− J(u])

)
,

where we have:

αl = αε2
l + 2

b
εlE

(
‖Rl‖

∣∣∣ Fl) ,
βl = βε2

l ,

γl = γε2
l + εlE

(
‖Rl‖

∣∣∣ Fl)+ δ
(
εlE

(
‖Rl‖

∣∣∣ Fl))2
,

By Assumptions (A15) and (A16), αl,βl and γl are the terms of convergent
series. Recall that J(Ul) − J(u]) is almost surely nonnegative as u] is solution
of (11.1).

2. Convergence analysis. A direct application of Corollary E.3 of Robbins-
Siegmund theorem, shows that the sequence of random variables

{
`u]

(
Ul

) }
l∈N

converges P-a.s. to a random variable `∞
u]

almost surely bounded,

+∞∑
l=0

εl
(
J(Ul)− J(u])

)
< +∞ P-a.s. . (11.20)

3. Limits of sequences. The sequence
{
`u](Ul)

}
l∈N

is P-a.s. bounded, so by the
inequality (11.16), we get that the sequence

{
Ul

}
l∈N

is also P-a.s. bounded. As-
sumption (A12) then implies that the sequence

{
Gl

}
l∈N

is also P-a.s. bounded.
Finally, as the sequence

{
Rl

}
l∈N

is assumed to be P-a.s. bounded (A16), we de-
duce from (11.19) that the sequence

{
‖Ul+1 −Ul‖/εl

}
l∈N

is also P-a.s. bounded.
This last property ensures that Assumption (c) of Proposition E.6 is satisfied.
Assumption (b) of Proposition E.6 is exactly (11.20) and Assumption (a) is sat-
isfied as we have (A15). On a bounded set containing the sequence

{
Ul

}
l∈N

,
for instance the convex hull of this sequence, the function J is Lipschitz con-
tinuous by Corollary E.5. This ensures the continuity assumption required to
apply Proposition E.6. We conclude that

{
J(Ul)

}
l∈N

converges almost surely to
J(u]) = J ], the optimal value of Problem (11.1).
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Let Ω0 be the negligible subset of Ω on which the sequence
{
`u]

(
Ul

) }
l∈N

is
unbounded and Ω1 the negligible subset of Ω on which the relation (11.20) is
not satisfied. We have P

(
Ω0 ∪ Ω1

)
= 0. Let ω /∈ Ω0 ∪ Ω1. The sequence

{ul}l∈N associated to this element ω is bounded and each ul is in Uad, a closed
subset of U. As U is reflexive (A1), there exists a weakly converging subsequence
{uξ(l)}l∈N. Note that {ξ(l)}l∈N depends on ω. Let u be the weak limit of the
sequence {uξ(l)}l∈N. The function J is l.s.c. and convex, it is then weakly l.s.c.
by [Ekeland and Temam, 1976, Corollary 2.2]. Thus we have:

J(u) ≤ lim inf
l→+∞

J(uξ(l)) = J(u]) .

We conclude that u ∈ U ]. �

When the differential of K is weakly continuous, we can prove stronger convergence
results for the sequence of iterates of the stochastic APP algorithm. These results
already appear in [Culioli, 1987] and remain valid for our more general version of the
algorithm.

Theorem 11.34. Consider again (A1)-(A7), (A9)-(A16) and suppose that the dif-
ferential of K is weakly continuous. Then, the sequence of iterates

{
Ul

}
l∈N

converges
weakly P-a.s. to a single element of U ]. If moreover, the function J∆ is strongly convex,
then, the sequence of iterates

{
Ul

}
l∈N

converges strongly P-a.s. to the unique solution
u] of Problem (11.1).

Proof. Consider the case where the differential of K is weakly continuous. Let {ul}l∈N
be a sequence of iterates generated by the algorithm. Suppose that there exist two sub-
sequences {uξ(l)}l∈N and {uψ(l)}l∈N converging weakly respectively to two solutions uξ
and uψ of the problem, with uξ 6= uψ. Then we have:

K(uψ)−K(uξ(l))−
〈
∇K(uξ(l)) , uψ−uξ(l)

〉
= K(uψ)−K(uξ)−

〈
∇K(uξ(l)) , uψ−uξ

〉
+
(
K(uξ)−K(uξ(l))−

〈
∇K(uξ(l)) , uξ − uξ(l)

〉)
.

By the point 2 of the proof of Theorem 11.33,

lim
l→+∞

K(uψ)−K(uξ(l))−
〈
∇K(uξ(l)) , uψ − uξ(l)

〉
= lim

l→+∞
`uψ(ul) = `uψ ,

lim
l→+∞

K(uξ)−K(uξ(l))−
〈
∇K(uξ(l)) , uξ − uξ(l)

〉
= lim

l→+∞
`uξ(ul) = `uξ ,

therefore by weak continuity of the differential of K and strong convexity of K, we get:

`uψ − `uξ = lim
l→+∞

K(uψ)−K(uξ)−
〈
∇K(uξ(l)) , uψ − uξ

〉
,

= K(uψ)−K(uξ)−
〈
∇K(uξ) , uψ − uξ

〉
,

≥ b

2‖uξ − uψ‖
2 .

Inverting the roles of uψ and uξ, by a similar calculation as previously we get:

`uξ − `uψ ≥
b

2‖uξ − uψ‖
2 ,
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We then deduce that uξ = uψ, which contradicts the initial assumption. We conclude
that all weakly converging subsequences of the sequence {ul}l∈N converge to the same
limit, hence we have the weak convergence of the whole sequence {ul}l∈N to a single
element of U ].

Now let us consider the case where J∆ is strongly convex, with constant a. Then,
Problem (11.1) admits a unique solution u] which is characterized by the following
variational inequality:

∃r] ∈ ∂J∆(u]), ∀u ∈ Uad,
〈
r] , u− u]

〉
+ JΣ(u)− JΣ(u]) ≥ 0 .

The strong convexity assumption on J∆ yields:

J(Ul)− J(u]) ≥
〈
r] ,Ul − u

]
〉

+ a

2‖Ul − u
]‖2 + JΣ(Ul)− J

Σ(u]) ,

≥ a

2‖Ul − u
]‖2 .

As
{
J(Ul)

}
l∈N

converges almost surely to J(u]), we get that ‖Ul − u]‖ converges to
zero. Thus, we have the strong convergence of the sequence

{
Ul

}
l∈N

to the unique
solution u] of the problem. �

11.4.2 Efficiency estimates
In this section, we derive efficiency estimates for the convergence of the expecta-
tion of function values. In Theorem 11.36, we consider the expected function value
taken for the averaged iterates following the technique of [Polyak and Juditsky, 1992,
Ruppert, 1988]. We take a step size εl of the order O

(
l−θ
)
with 1/2 < θ < 1, ensuring

the convergence of the algorithm, and leading to a better convergence rate than with
a small step size εl = O (l−1). The efficiency estimate is obtained using a similar tech-
nique as in [Nemirovski et al., 2009] but without requiring the boundedness of Uad.
Moreover, we are able to take into account the bias on the gradient with the following
assumption, inspired from [Geiersbach and Wollner, 2019]:

(A17) For l ∈ N, let Ql = ess supω∈Ω

∥∥∥Rl(ω)
∥∥∥ be the essential supremum of

∥∥∥Rl

∥∥∥ and
assume that: ∑

l∈N
Qlεl <∞ .

We start by a lemma that proves the boundedness of the expectation of the Lya-
punov function. This result will be used multiple times in this section.

Lemma 11.35. Under Assumptions (A10), (A12), (A14), (A15) and (A17), the se-
quence of expectations of the Lyapunov function

{
E
(
`u]

(
Ul

)) }
l∈N

is bounded.

Proof. We start from Lemma 11.32 with v = u] where we use ‖rl‖ ≤ Ql and then take
the full expectation. This yields:

E
(
`u]

(
Ul+1

))
≤ (1 +αl)E

(
`u]

(
Ul

))
+βlE

(
`u]

(
Ul+1

))
+γl− εlE

(
J
(
Ul

)
− J

(
u]
))

,

(11.21)
where:

αl = αε2
l + 2

b
εlQl, βl = βε2

l , γl = (γ + δQ2
l )ε2

l +Qlεl ,

171



CHAPTER 11. MEASURABILITY AND CONVERGENCE OF THE APP

From (A15) and (A17), αl, βl and γl are the terms of convergent series. Using a
deterministic version of Corollary E.3, we get that the sequence

{
E
(
`u]

(
Ul

)) }
l∈N

converges and is therefore bounded. �

Theorem 11.36. Suppose that Assumptions (A1)-(A7), (A9)-(A17) are satisfied. Let
n ∈ N and let

{
Ul

}
l∈N

be the sequence of iterates of the stochastic APP algorithm.
Define the averaged iterate as:

Ũ
n

i
=

n∑
l=i

ηilUl with ηil = εl∑n
p=i εp

.

Suppose that for all l ∈ N, εl = cl−θ with 1/2 < θ < 1 and a constant c > 0. Then for
any minimizer u] of J , we have:

E
(
J
(
Ũ

n

1

)
− J

(
u]
))

= O
(
nθ−1

)
.

In particular, the rate of convergence can be arbitrarily close to the order n−1/2 if θ is
chosen to be arbitrarily close to 1/2.

Proof. From Lemma 11.35, we get that inequality (11.21) is satisfied and the se-
quence

{
E
(
`u]

(
Ul

)) }
l∈N

is bounded. Then, there exists a constant M ≥ 0 such
that E

(
`u]

(
Ul

))
≤ M for all l ∈ N. Summing (11.21) over i ≤ l ≤ n and using

E
(
`u]

(
Ul

))
≤M , we get:

n∑
l=i

εlE
(
J
(
Ul

)
− J

(
u]
))
≤

n∑
l=i

(
M(α + β) + γ + δQ2

l

)
ε2
l +

(2
b
M + 1

)
Qlεl .

In the sequel, let R = M(α + β) + γ and S = 2
b
M + 1. By convexity of J , we get:

E
(
J
(
Ũ

n

i

)
− J(u])

)
≤
∑n
l=i (R + δQ2

l ) ε2
l + SQlεl∑n

l=i εl
.

We have εl = cl−θ with 1/2 < θ < 1 and:
n∑
l=1

l−θ ≥ (n+ 1)1−θ − 1
1− θ ≥ C̃θn

1−θ ,

for some C̃θ > 0. Moreover, from (A15) and (A17), ε2
l , Qlεl and Q2

l ε
2
l are the terms of

convergent series. Thus, there exists a constant Cθ > 0 such that:

E
(
J
(
Ũ

n

1

)
− J(u])

)
≤ Cθ
n1−θ ,

which gives the desired rate of convergence. �

Theorem 11.36 proves a convergence rate of order O
(
nθ−1

)
for the stochastic APP

algorithm without assuming strong convexity of the objective. This rate appears for
stochastic gradient descent in [Bach and Moulines, 2011] where it is stated that the
combination of large step sizes of order O

(
n−θ

)
with 1/2 < θ < 1, together with aver-

aging lead to the best convergence behavior. A similar rate is also given for stochastic
proximal gradient in [Rosasco et al., 2019].
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In the following theorem, we show that this rate also holds when we consider
the expected function value taken at the last iterate Un instead of the averaged it-
erate Ũ n

1 . Using the concept of modified Fejér monotone sequences, the authors
of [Lin et al., 2018] have been able to give convergence rates of the expected func-
tion value of the last iterate for many algorithms, such as the projected subgradient
method or the proximal gradient algorithm. The idea of modified Fejér sequence is ad-
apted to the stochastic case in [Rosasco et al., 2019, Theorem 3.1]. We further adapt
this concept for the stochastic APP algorithm which allows to derive a convergence
rate for the expected function value of the last iterate.

Theorem 11.37. Suppose that Assumptions (A1)-(A7), (A9)-(A17) are satisfied. Let
n ∈ N and let

{
Ul

}
l∈N

be the sequence of the iterates of the stochastic APP algorithm.
Suppose that for all l ∈ N, εl = cl−θ with 1/2 < θ < 1 and a constant c > 0 and that
Ql ≤ ql−ν for ν > 1 − θ and a constant q > 0. Then, for any minimizer u] of J we
have:

E
(
J
(
Un

)
− J

(
u]
))

= O
(
nθ−1

)
.

In particular, the rate of convergence can be arbitrarily close to the order n−1/2 if θ is
chosen to be arbitrarily close to 1/2.

Proof. Let al = E
(
J
(
Ul

)
− J

(
u]
))

, from Lemma E.1, we can write:

εnan = 1
n

n∑
l=1

εlal +
n−1∑
i=1

1
i(i+ 1)

 n∑
l=n−i+1

εlal − iεn−ian−i

 .

We have:

1
i(i+ 1)

 n∑
l=n−i+1

εlal − iεn−ian−i

 = 1
i(i+ 1)

n∑
l=n−i+1

εlE
(
J
(
Ul

)
− J

(
Un−i

))

+ 1
i+ 1

1
i

n∑
l=n−i+1

εl − εn−i

 an−i .

By choice of εl, the sequence {εl}l∈N is decreasing so,

1
i

n∑
l=n−i+1

εl − εn−i ≤ 0 .

Moreover, by optimality of u], we have an−i ≥ 0 so,

εnan ≤
1
n

n∑
l=1

εlal +
n−1∑
i=1

1
i(i+ 1)

n∑
l=n−i+1

εlE
(
J
(
Ul

)
− J

(
Un−i

))
.

Again by optimality of u], we have E
(
J
(
Ul

)
− J

(
Un−i

))
≤ E

(
J
(
Ul

)
− J

(
u]
))

= al.
This yields:

εnan ≤
1
n

n∑
l=1

εlal +
n−1∑
i=1

1
i(i+ 1)

n∑
l=n−i+1

εlal . (11.22)
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From Lemma 11.35, inequality (11.21) is satisfied and there exists a constant M ≥ 0
such that E

(
`u]

(
Ul

))
≤M for all l ∈ N. Using this bound into (11.21) and summing

over j ≤ l ≤ n, we get:
n∑
l=j

εlal ≤
n∑
l=j

M(αl + βl) + γl . (11.23)

Taking j = 1 or j = n− i+ 1 in (11.23) allows to bound both terms in (11.22). Define:

ᾱl = αε2
l + 2

b
εlql

−ν , γ̄l =
(
γ + δq2l−2ν

)
ε2
l + εlql

−ν ,

As Ql ≤ ql−ν , we have αl ≤ ᾱl and γl ≤ γ̄l. We let ξl = M(ᾱl + βl) + γ̄l, so that we
have:

n∑
l=1

εlal ≤
n∑
l=1

ξl and
n−1∑
i=1

1
i(i+ 1)

n∑
l=n−i+1

εlal ≤
n−1∑
i=1

1
i(i+ 1)

n∑
l=n−i+1

ξl . (11.24)

Exchanging the order in the sum yields:
n−1∑
i=1

1
i(i+ 1)

n∑
l=n−i+1

ξl =
n∑
l=2

n−1∑
i=n−l+1

(1
i
− 1
i+ 1

)
ξl =

n∑
l=2

1
n− l + 1ξl−

1
n

n∑
l=2

ξl . (11.25)

Plugging (11.24) and (11.25) into (11.22), we get:

εnan ≤
1
n

n∑
l=1

ξl +
n∑
l=2

1
n− l + 1ξl −

1
n

n∑
l=2

ξl =
n∑
l=1

1
n− l + 1ξl .

From the assumptions on εl, {ξl}l∈N is non-increasing. Thus,
n∑
l=1

1
n− l + 1ξl ≤ ξbn2 +1c

∑
n/2+1≤l≤n

1
n− l + 1 + 2

n

∑
1≤l<n/2+1

ξl ,

≤ ξbn2 +1c
(

log
(
n

2

)
+ 1

)
+ 2
n

n∑
l=1

ξl .

Hence,

an ≤
ξbn2 +1c
εn

(
log

(
n

2

)
+ 1

)
+ 2
nεn

n∑
l=1

ξl .

Recall that,

ξl = M̄(ᾱl +βl) + γ̄l =
(
M̄(α + β) + γ + δq2l−2ν

)
c2l−2θ +

(2
b
M̄ + 1

)
cql−(ν+θ) ≤ ξl−µ ,

for µ = min {2θ, ν + θ} and some constant ξ > 0 so that,

an ≤ 2µ ξ
c
nθ−µ

(
log

(
n

2

)
+ 1

)
+ 2ξ

c
nθ−1

n∑
l=1

l−µ .

As θ > 1/2 and ν > 1− θ, we have µ > 1 so,
n∑
l=1

l−µ ≤ µ

µ− 1 .

Thus, noting that θ − µ < θ − 1, we have:

an ≤ 2µ ξ
c
nθ−µ

(
log

(
n

2

)
+ 1

)
+ 2µξ
c(µ− 1)n

θ−1 = O
(
nθ−1

)
.

This concludes the proof. �
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Remark 11.38. The inequality (11.21) (which holds in fact for any u ∈ Uad in place
of u]) is the counterpart of modified Fejér monotonicity [Lin et al., 2018]. The main
differences are that (11.21) involves a Bregman divergence instead of the Euclidean
distance. Moreover, there are coefficients αl, βl > 0 that slightly degrade the inequality
compared to what we obtain with Fejér monotone sequences where αl = βl = 0.
The summability of αl and βl in addition with the boundedness of the expectation
of the Bregman divergence

{
E
(
`u]

(
Ul

)) }
l∈N

allow us to proceed in the same way as
in [Lin et al., 2018, Rosasco et al., 2019] to get the convergence rate of Theorem 11.37.

♦

11.5 Conclusion
We have studied the stochastic APP algorithm in a Banach case. This framework
generalizes many stochastic optimization algorithms. We have proved the measurability
of the iterates of the algorithm, hence filling a theoretical gap to ensure that the
quantities we manipulate when deriving efficiency estimates are well-defined. We have
shown the convergence of the stochastic APP algorithm in the case where a bias on
the gradient is considered. Finally, efficiency estimates are derived while taking the
bias into account. Assuming a sufficiently fast decay of this bias, we get a convergence
rate for the expectation of the function values that is similar to that of well-known
stochastic optimization algorithms when no bias is present, such as stochastic gradient
descent [Bach and Moulines, 2011], stochastic mirror descent [Nemirovski et al., 2009]
or the stochastic proximal gradient algorithm [Rosasco et al., 2019].
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This thesis is driven by the industrial issue of maintenance scheduling optimization for
components of hydroelectric power plants that share a common stock of spare parts.

• In the first part, we consider blackbox optimization algorithms that can be eas-
ily coupled to VME, the software used at EDF for the evaluation of the cost
of maintenance strategies. We present an in-depth review of a kriging-based
algorithm, EGO, and of a direct search method, MADS, both from a theoret-
ical and a practical point of view. To guide the choice of the solver for the
maximization of the EI within EGO, we carry out a benchmark that provides
a quantitative assessment of a large number of solvers for this particular task.
Then, we propose a variant of EGO, called EGO-FSSF, where we use a sequen-
tial initial design with metamodel validation instead of a fixed-size initial design.
Thus, the evaluation budget allocated to the initial design step can be adapted
to the difficulty of the optimization problem. The algorithms EGO, EGO-FSSF
and MADS are launched on the COCO benchmark for a comparaison of their
performance on a large variety of blackbox optimization problems. MADS re-
veals to be the most competitive algorithm in general, and EGO-FSSF is slightly
better than EGO. We choose to plug MADS and EGO-FSSF on VME in or-
der to solve small industrial maintenance optimization cases, ranging from 2 to
10 components, and considering only periodic maintenance strategies. MADS
is more and more efficient relatively to EGO as the number of components in-
creases. Moreover, MADS is much faster than EGO. These small industrial cases
show the limitations of the blackbox approach: MADS may be trapped in a local
optimum that is not of good quality as the exploration of a high-dimensional
space is difficult to achieve. However, we mention that on small systems and for
common maintenance operations, such as lubrication of the components, looking
for periodic strategies is sufficient. In this case, blackbox methods are adapted
for an industrial application.

• In the second part, we tackle the optimal maintenance scheduling problem for
large-scale systems while considering more general maintenance strategies, where
one maintenance decision can be taken each year for each component. To do
so, we go out from the blackbox framework and develop an analytical model of
the industrial system of interest. Then, we formulate an explicit stochastic op-
timal control problem that reflects the industrial needs. To solve the large-scale
maintenance optimization problem, we design a decomposition by prediction of
the problem, called decomposition by component. We review the principles of the
APP, which is the general framework that is at the heart of the decomposition
methodology. The APP turns the resolution of a large-scale optimization prob-
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lem into the iterative resolution of a sequence of subproblems of smaller size. The
decomposition by prediction is implemented through a fixed-point algorithm that
is first tested on synthetic cases. These synthetic cases have been designed so as
to have a similar structure as the industrial problem and so that the application
of the fixed-point algorithm is straightforward. The numerical experiments show
that the decomposition by prediction is very efficient on the synthetic cases. The
APP cannot be applied directly for the industrial problem because some integer
variables are present in the model. Therefore, we design a relaxation of the sys-
tem. After a careful tuning of the algorithm, the decomposition methodology is
applied on a large-scale maintenance optimization problem with 80 components.
The decomposition leads to a gain of 11% over the current reference algorithm,
which represents more than 1, 4Me. The decomposition manages to design an
efficient maintenance strategy by exploiting the fact that the components are new
at the beginning of the time horizon and that the discount rate makes failures
not too penalizing at the end of the horizon.

• Finally, in the third part, we focus on theoretical aspects regarding the stochastic
APP algorithm in a Banach space. We prove the measurability of the iterates,
which is essential to ensure that the convergence results or the efficiency es-
timates, given in terms of random variables, are well-defined. Then, we extend
convergence results from the Hilbert case to the Banach case. Finally, we de-
rive efficiency estimates for the function value taken at the averaged sequence of
iterates and also at the last iterate.

This work opens up several research perspectives:

• Regarding blackbox optimization algorithms, we could consider to combine EGO
and MADS to make the most of these algorithms that have complementary
strengths: an efficient exploratory behavior for EGO and a guarantee of con-
vergence towards a local minimum for MADS. We suggest several ideas:

1. EGO could be used within the search step of MADS. This would give MADS
a more exploratory behavior, hence improving the weakness that has been
pointed out in the numerical experiments of Sections 6.3 and 10.8. This idea
has been explored by [Talgorn et al., 2015].

2. The numerical results of Section 6.3 suggest that EGO is more efficient than
MADS in the first iterations whereas MADS manages to steadily improve
the value of the objective function. We can then design an algorithm where
a first batch of iterations is done with EGO before moving on to MADS.
This idea is similar to that of adding a local optimizer at the end of EGO
(§3.3.4), except that using MADS still preserves an exploratory behavior in
the algorithm.

3. On the other way around, in [Munoz Zuniga and Sinoquet, 2020], the au-
thors use MADS as the solver for EI maximization within EGO.

• From an operational perspective, it may be worth to apply the decomposition
methodology on large systems with a search space restricted to periodic mainten-
ance strategies. The computation time will be greatly reduced compared to the
problem tackled in Chapter 10 and the returned strategy may still be efficient.
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• When modeling the industrial system in Chapter 8, we have considered that no
cost is incurred by the stock and that the spare part management strategy is
fixed. It is possible to consider a more complete model, that considers a holding
cost for the spare parts and a control for the dates of order of the spare parts. In
Chapter 8, we have also assumed that there is no dependence between the failures
of the components, and we can lift this restriction in a more realistic model.
Introducing a control on the stock or a dependence between the components lead
respectively to an increase of the dimension of the search space and to a more
complicated dynamics, which makes the optimization problem more challenging.
A balance must be found between the operational needs for a realistic model and
the difficulty of the optimization.

• In the thesis, we optimize the expected LCC but a decision maker often looks at
the robustness of the maintenance strategies. In Section 10.8, we compute the
distribution of the LCC of the optimal maintenance strategy a posteriori in order
to assess its robustness. An interesting direction for future research would be to
perform the optimization with respect to a risk criterion on the LCC, for example
the conditional value at risk. We can look at [Ruszczyński and Shapiro, 2006] for
a reference on the optimization of risk measures.

178



References

[Abramowitz and Stegun, 1964] Abramowitz, M. and Stegun, A. (1964). Handbook of
Mathematical Functions With Formulas, Graphs, and Mathematical Tables. (p. 35)

[Abramson et al., 2009] Abramson, M. A., Audet, C., Dennis Jr, J. E., and Le Digabel,
S. (2009). OrthoMADS: A deterministic MADS instance with orthogonal directions.
SIAM Journal on Optimization, 20(2):948–966. (p. 57, 58)

[Abtini, 2018] Abtini, M. (2018). Plans prédictifs à taille fixe et séquentiels pour le
krigeage. PhD thesis, Université de Lyon. (p. 31)

[Alarie et al., 2019] Alarie, S., Audet, C., Bouchet, P.-Y., and Digabel, S. L. (2019).
Optimization of noisy blackboxes with adaptive precision. arXiv:1911.05846 [math].
(p. 6, 16, 72)

[Almakhlafi and Knowles, 2012] Almakhlafi, A. and Knowles, J. (2012). Benchmarks
for maintenance scheduling problems in power generation. In 2012 IEEE Congress
on Evolutionary Computation, pages 1–8, Brisbane, Australia. (p. 7, 16)

[Alrabghi and Tiwari, 2015] Alrabghi, A. and Tiwari, A. (2015). State of the art in
simulation-based optimisation for maintenance systems. Computers & Industrial
Engineering, 82:167–182. (p. 16)

[Alrabghi et al., 2013] Alrabghi, A., Tiwari, A., and Alabdulkarim, A. (2013). Simu-
lation based optimization of joint maintenance and inventory for multi-components
manufacturing systems. In Proceedings of the 2013 Winter Simulation Conference,
pages 1109–1119. (p. 6)

[Aoudjit, 2010] Aoudjit, H. (2010). Planification de la maintenance d’un parc de
turbines-alternateurs par programmation mathématique. PhD thesis, Université de
Montréal. (p. 72)

[Arrow and Hurwicz, 1960] Arrow, K. J. and Hurwicz, L. (1960). Decentralization and
Computation in Resource Allocation. Stanford University, Department of Economics.
(p. 93)

[Atchade et al., 2017] Atchade, Y. F., Fort, G., and Moulines, E. (2017). On Perturbed
Proximal Gradient Algorithms. Journal of Machine Learning Research, 18:1–33.
(p. 152)

[Audet, 2004] Audet, C. (2004). Convergence Results for Generalized Pattern Search
Algorithms are Tight. Optimization and Engineering, 5(2):101–122. (p. 54)

179



REFERENCES

[Audet et al., 2008a] Audet, C., Béchard, V., and Digabel, S. L. (2008a). Nonsmooth
optimization through Mesh Adaptive Direct Search and Variable Neighborhood
Search. Journal of Global Optimization, 41(2):299–318. (p. 87)

[Audet et al., 2008b] Audet, C., Dennis, J. E., and Le Digabel, S. (2008b). Parallel
Space Decomposition of the Mesh Adaptive Direct Search Algorithm. SIAM Journal
on Optimization, 19(3):1150–1170. (p. 87, 143)

[Audet and Dennis, 2002] Audet, C. and Dennis, Jr, J. E. (2002). Analysis of Gener-
alized Pattern Searches. SIAM Journal on Optimization, 13(3):889–903. (p. 48, 50,
52, 54)

[Audet and Dennis, 2006] Audet, C. and Dennis, Jr, J. E. (2006). Mesh Adaptive
Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optim-
ization, 17(1):188–217. (p. 8, 18, 22, 53, 54, 56, 57, 115, 134)

[Audet and Hare, 2017] Audet, C. and Hare, W. (2017). Derivative-Free and Blackbox
Optimization. Springer Series in Operations Research and Financial Engineering.
Springer International Publishing, Cham. (p. 21)

[Bach and Moulines, 2011] Bach, F. and Moulines, E. (2011). Non-Asymptotic Ana-
lysis of Stochastic Approximation Algorithms for Machine Learning. In Advances in
Neural Information Processing Systems, pages 451–459. (p. 151, 172, 175)

[Bachoc, 2013] Bachoc, F. (2013). Cross Validation and Maximum Likelihood estima-
tions of hyper-parameters of Gaussian processes with model misspecification. Com-
putational Statistics & Data Analysis, 66:55–69. (p. 39)

[Barty et al., 2010] Barty, K., Carpentier, P., and Girardeau, P. (2010). Decomposition
of large-scale stochastic optimal control problems. RAIRO - Operations Research,
44(3):167–183. (p. 93)

[Baudin et al., 2017] Baudin, M., Dutfoy, A., Iooss, B., and Popelin, A.-L. (2017).
Open TURNS: An industrial software for uncertainty quantification in simulation.
In Handbook of uncertainty quantification, page 46. (p. 36, 66, 76)

[Bauschke and Combettes, 2011] Bauschke, H. H. and Combettes, P. L. (2011). Convex
analysis and monotone operator theory in Hilbert spaces. CMS books in mathematics.
Springer, New York. (p. 151, 191)

[Benveniste et al., 2012] Benveniste, A., Metivier, M., Priouret, P., and Wilson, S. S.
(2012). Adaptive algorithms and stochastic approximations. Number 22 in Stochastic
modelling and applied probability. Springer-Verl, Berlin. (p. 151)

[Bertsekas and Shreve, 1996] Bertsekas, D. P. and Shreve, S. E. (1996). Stochastic
Optimal Control: The Discrete-Time Case. Athena Scientific. (p. 89, 158)

[Billingsley, 1995] Billingsley, P. (1995). Probability and measure. Wiley series in prob-
ability and mathematical statistics. Wiley, New York, 3rd edition. (p. 151, 193)

[Bittar et al., 2020] Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J.
(2020). A Decomposition Method by Interaction Prediction for the Optimization
of Maintenance Scheduling. arXiv:2002.10719 [math]. (Submitted to Annals of
Operations Research). (p. 91)

180



REFERENCES

[Bittar et al., 2021] Bittar, T., Carpentier, P., Chancelier, J.-P., and Lonchampt, J.
(2021). The stochastic Auxiliary Problem Principle in Banach spaces: measurab-
ility and convergence. arXiv:2101.08073 [math]. (Submitted to SIAM Journal on
Optimization). (p. 149)

[Booker et al., 1999] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon,
V., and Trosset, M. W. (1999). A rigorous framework for optimization of expensive
functions by surrogates. Structural optimization, 17(1):1–13. (p. 50)

[Bregman, 1967] Bregman, L. M. (1967). The relaxation method of finding the com-
mon point of convex sets and its application to the solution of problems in con-
vex programming. USSR Computational Mathematics and Mathematical Physics,
7(3):200–217. (p. 152)

[Brochu et al., 2010] Brochu, E., Cora, V. M., and de Freitas, N. (2010). A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning. arXiv:1012.2599 [cs]. (p. 65)

[Brézis, 2005] Brézis, H. (2005). Analyse fonctionnelle: Théorie et applications. Math-
ématiques appliquées pour la maîtrise. Dunod. (p. 162)

[Bubeck, 2015] Bubeck, S. (2015). Convex Optimization: Algorithms and Complexity.
Foundations and Trends® in Machine Learning, 8(3-4):231–357. (p. 152)

[Bull, 2011] Bull, A. D. (2011). Convergence rates of efficient global optimization
algorithms. Journal of Machine Learning Research, 12(10):2879–2904. (p. 44)

[Campolongo et al., 2007] Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An
effective screening design for sensitivity analysis of large models. Environmental
Modelling & Software, 22(10):1509–1518. (p. 141, 142)

[Carpentier and Cohen, 2017] Carpentier, P. and Cohen, G. (2017). Décomposition-
coordination en optimisation déterministe et stochastique, volume 81 of Math-
ématiques et Applications. Springer Berlin Heidelberg. (p. 93, 94, 95, 96, 149)

[Carpentier et al., 2015] Carpentier, P., Cohen, G., Chancelier, J.-P., and De Lara, M.
(2015). Stochastic Multi-Stage Optimization. Number 75 in Probability Theory and
Stochastic Modelling. Springer. (p. 89)

[Castaing and Valadier, 1977] Castaing, C. and Valadier, M. (1977). Convex Ana-
lysis and Measurable Multifunctions, volume 580 of Lecture Notes in Mathematics.
Springer Berlin Heidelberg. (p. 153, 156, 157, 158)

[Cho and Parlar, 1991] Cho, D. I. and Parlar, M. (1991). A survey of maintenance
models for multi-unit systems. European Journal of Operational Research, 51(1):1–
23. (p. 6, 16)

[Clarke, 1990] Clarke, F. H. (1990). Optimization and nonsmooth analysis. Number 5
in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics.
(p. 53)

[Cohen, 1978] Cohen, G. (1978). Optimization by decomposition and coordination: A
unified approach. IEEE Transactions on Automatic Control, 23(2):222–232. (p. 93,
154)

181



REFERENCES

[Cohen, 1980] Cohen, G. (1980). Auxiliary problem principle and decomposition of
optimization problems. Journal of Optimization Theory and Applications, 32(3):277–
305. (p. 90, 97)

[Conn and Le Digabel, 2013] Conn, A. R. and Le Digabel, S. (2013). Use of quadratic
models with mesh-adaptive direct search for constrained black box optimization.
Optimization Methods and Software, 28(1):139–158. (p. 77, 86)

[Conn et al., 2009] Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduc-
tion to Derivative-Free Optimization. Society for Industrial and Applied Mathemat-
ics. (p. 22)

[Coope and Price, 2000] Coope, I. D. and Price, C. J. (2000). Frame based methods
for unconstrained optimization. Journal of Optimization Theory and Applications,
107(2):261–274. (p. 55)

[Cox and John, 1992] Cox, D. D. and John, S. (1992). A statistical method for global
optimization. In Proceedings of the 1992 IEEE International Conference on Systems,
Man, and Cybernetics, volume 2, pages 1241–1246. (p. 42)

[Culioli, 1987] Culioli, J.-C. (1987). Algorithmes de décomposition/coordination en op-
timisation stochastique. PhD thesis, Ecole Nationale Supérieure des Mines de Paris.
(p. 165, 168, 170)

[Culioli and Cohen, 1990] Culioli, J.-C. and Cohen, G. (1990). Decomposi-
tion/Coordination Algorithms in Stochastic Optimization. SIAM Journal on Control
and Optimization, 28(6):1372–1403. (p. 93, 149, 151, 153, 154, 165, 168)

[Damblin et al., 2013] Damblin, G., Couplet, M., and Iooss, B. (2013). Numerical
studies of space-filling designs: optimization of Latin Hypercube Samples and sub-
projection properties. Journal of Simulation, 7(4):276–289. (p. 30, 31, 138)

[Davidon, 1991] Davidon, W. C. (1991). Variable Metric Method for Minimization.
SIAM Journal on Optimization, 1(1):1–17. (p. 47, 52)

[Dekker, 1996] Dekker, R. (1996). Applications of maintenance optimization models:
a review and analysis. Reliability Engineering & System Safety, 51(3):229–240. (p. 6,
16)

[Demgne, 2015] Demgne, J. (2015). Modélisation d’actifs industriels pour
l’optimisation robuste des stratégies de maintenance. PhD thesis, Université de Pau
et des Pays de l’Adour. (p. 7, 17)

[Ding and Kamaruddin, 2015] Ding, S.-H. and Kamaruddin, S. (2015). Maintenance
policy optimization—literature review and directions. The International Journal of
Advanced Manufacturing Technology, 76(5-8):1263–1283. (p. 6, 16)

[Eaton, 1983] Eaton, M. L. (1983). Chapter 3: The normal distribution on a vector
space. In Multivariate Statistics, volume 53 of Lecture Notes–Monograph Series,
pages 103–131. Institute of Mathematical Statistics. (p. 26)

[Ekeland and Temam, 1976] Ekeland, I. and Temam, R. (1976). Convex Analysis and
Variational Problems. North-holland edition. (p. 170, 191)

182



REFERENCES

[Fattahi et al., 2014] Fattahi, M., Mahootchi, M., Mosadegh, H., and Fallahi, F.
(2014). A new approach for maintenance scheduling of generating units in elec-
trical power systems based on their operational hours. Computers & Operations
Research, 50:61–79. (p. 7, 16)

[Fermi et al., 1954] Fermi, E., Metropolis, N., and Alei, E. F. (1954). Phase Shift
Analysis of the Scattering of Negative Pions by Hydrogen. Physical Review Journals
Archive, 95(6):1581–1585. (p. 47, 52)

[Froger et al., 2016] Froger, A., Gendreau, M., Mendoza, J. E., Pinson, E., and
Rousseau, L.-M. (2016). Maintenance Scheduling in the Electricity Industry: A Lit-
erature Review. European Journal of Operational Research, 251(3):695–706. (p. 6,
7, 16)

[Geiersbach and Pflug, 2019] Geiersbach, C. and Pflug, G. C. (2019). Projected
Stochastic Gradients for Convex Constrained Problems in Hilbert Spaces. SIAM
Journal on Optimization, 29(3):2079–2099. (p. 151, 153, 165)

[Geiersbach and Wollner, 2019] Geiersbach, C. and Wollner, W. (2019). A Stochastic
Gradient Method with Mesh Refinement for PDE Constrained Optimization under
Uncertainty. arXiv:1905.08650 [cs, math]. arXiv: 1905.08650. (p. 153, 171)

[Ginsbourger et al., 2008] Ginsbourger, D., Riche, R. L., and Carraro, L. (2008).
A Multi-points Criterion for Deterministic Parallel Global Optimization based on
Gaussian Processes. Technical report. (p. 87)

[Grigoriev et al., 2006] Grigoriev, A., van de Klundert, J., and Spieksma, F. C. (2006).
Modeling and solving the periodic maintenance problem. European Journal of Op-
erational Research, 172(3):783–797. (p. 7, 16)

[Halton, 1960] Halton, J. H. (1960). On the efficiency of certain quasi-random se-
quences of points in evaluating multi-dimensional integrals. Numerische Mathematik,
2(1):84–90. (p. 31, 57)

[Hansen et al., 2010] Hansen, N., Auger, A., Ros, R., Finck, S., and Pošík, P. (2010).
Comparing results of 31 algorithms from the black-box optimization benchmarking
BBOB-2009. In Proceedings of the 12th annual conference companion on Genetic
and evolutionary computation, pages 1689–1696. ACM. (p. 78)

[Hansen et al., 2021] Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., and
Brockhoff, D. (2021). COCO: A Platform for Comparing Continuous Optimizers in
a Black-Box Setting. Optimization Methods and Software, 36(1):114–144. (p. 8, 18,
65, 72)

[Hansen et al., 2009] Hansen, N., Finck, S., Ros, R., and Auger, A. (2009). Real-
parameter black-box optimization benchmarking 2009: Noiseless functions defini-
tions. Working Paper 2009/20, INRIA. (p. 73, 74)

[Hansen and Ostermeier, 1996] Hansen, N. and Ostermeier, A. (1996). Adapting ar-
bitrary normal mutation distributions in evolution strategies: the covariance matrix
adaptation. In Proceedings of IEEE International Conference on Evolutionary Com-
putation, pages 312–317, Nagoya, Japan. IEEE. (p. 44, 65)

183



REFERENCES

[Hansen et al., 2016] Hansen, N., Tusar, T., Mersmann, O., Auger, A., and Brockhoff,
D. (2016). COCO: The Experimental Procedure. arXiv:1603.08776 [cs]. arXiv:
1603.08776. (p. 77)

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements
of statistical learning, volume 1. Springer series in statistics New York. (p. 39)

[Hernández-Lobato et al., 2014] Hernández-Lobato, J. M., Hoffman, M. W., and
Ghahramani, Z. (2014). Predictive Entropy Search for Efficient Global Optimiz-
ation of Black-box Functions. In Proceedings of the 27th International Conference
on Neural Information Processing Systems, volume 1, pages 918–926. (p. 43)

[Hess, 1995] Hess, C. (1995). On the Measurability of the Conjugate and the Subdiffer-
ential of a Normal Integrand. Journal of Convex Analysis, 2(1-2):153–165. (p. 153,
156, 158, 161)

[Hess, 1996] Hess, C. (1996). Epi-convergence of sequences of normal integrands and
strong consistency of the maximum likelihood estimator. The Annals of Statistics,
24(3):1298–1315. (p. 160)

[Holland, 1975] Holland, J. H. (1975). Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial intelligence.
University of Michigan Press, Ann Arbor, MI, USA. (p. 22)

[Hooke and Jeeves, 1961] Hooke, R. and Jeeves, T. A. (1961). "Direct Search” Solution
of Numerical and Statistical Problems. Journal of the ACM, 8(2):212–229. (p. 47)

[Householder, 1958] Householder, A. S. (1958). Unitary Triangularization of a Non-
symmetric Matrix. Journal of the ACM, 5(4):339–342. (p. 57)

[Iooss et al., 2010] Iooss, B., Boussouf, L., Feuillard, V., and Marrel, A. (2010). Nu-
merical studies of the metamodel fitting and validation processes. International
Journal on Advances in Systems and Measurements, 3(1&2):11. (p. 38, 39)

[Iooss and Marrel, 2019] Iooss, B. and Marrel, A. (2019). Advanced Methodology for
Uncertainty Propagation in Computer Experiments with Large Number of Inputs.
Nuclear Technology, 205(12):1588–1606. (p. 24)

[Johnson et al., 1990] Johnson, M., Moore, L., and Ylvisaker, D. (1990). Minimax and
maximin distance designs. Journal of Statistical Planning and Inference, 26(2):131–
148. (p. 31)

[Johnson, 2009] Johnson, S. G. (2009). The NLopt nonlinear-optimization package.
http://github.com/stevengj/nlopt. (p. 66)

[Jones, 2001] Jones, D. R. (2001). A taxonomy of global optimization methods based
on response surfaces. Journal of global optimization, 21(4):345–383. (p. 21, 41, 62)

[Jones et al., 1993] Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993).
Lipschitzian optimization without the Lipschitz constant. Journal of Optimization
Theory and Applications, 79(1):157–181. (p. 22, 65)

[Jones et al., 1998] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient
Global Optimization of Expensive Black-Box Functions. Journal of Global optimiz-
ation, 13(4):455–492. (p. 8, 18, 24, 41, 42, 61, 62)

184



REFERENCES

[Joseph et al., 2015] Joseph, V. R., Gul, E., and Ba, S. (2015). Maximum projection
designs for computer experiments. Biometrika, 102(2):371–380. (p. 31)

[Karimi et al., 2019] Karimi, B., Miasojedow, B., Moulines, E., and Wai, H.-T. (2019).
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme. In Proceed-
ings of the Thirty-Second Conference on Learning Theory, volume 99, pages 1944–
1974. (p. 151)

[Kennedy and Eberhart, 1995] Kennedy, J. and Eberhart, R. (1995). Particle Swarm
Optimization. In Proceedings of ICNN’95, volume 4, pages 1942–1948, Perth, WA,
Australia. (p. 22)

[Kiefer and Wolfowitz, 1952] Kiefer, J. and Wolfowitz, J. (1952). Stochastic Estima-
tion of the Maximum of a Regression Function. The Annals of Mathematical Stat-
istics, 23(3):462–466. (p. 151)

[King, 2009] King, D. E. (2009). Dlib-ml: A Machine Learning Toolkit. The Journal
of Machine Learning Research, 10:1755–1758. (p. 66)

[Kucherenko and Sytsko, 2005] Kucherenko, S. and Sytsko, Y. (2005). Application of
Deterministic Low-Discrepancy Sequences in Global Optimization. Computational
Optimization and Applications, 30(3):297–318. (p. 67, 77)

[Kushner and Yin, 1997] Kushner, H. J. and Yin, G. (1997). Stochastic approximation
algorithms and applications. Number 35 in Applications of Mathematics. (p. 151)

[Lasdon and Schoeffler, 1965] Lasdon, L. S. and Schoeffler, J. D. (1965). A multi-level
technique for optimization. Joint Automatic Control Conference, 3:85–92. (p. 93)

[Le Digabel, 2011] Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear Optim-
ization with the MADS Algorithm. ACM Transactions on Mathematical Software,
37(4):1–15. (p. 76)

[Le Gratiet, 2013] Le Gratiet, L. (2013). Multi-fidelity Gaussian process regression for
computer experiments. PhD Thesis, Université Paris-Diderot-Paris VII. (p. 28)

[Lewis and Torczon, 1999] Lewis, R. M. and Torczon, V. (1999). Pattern Search Al-
gorithms for Bound Constrained Minimization. SIAM Journal on Optimization,
9(4):1082–1099. (p. 52)

[Lewis and Torczon, 2000] Lewis, R. M. and Torczon, V. (2000). Pattern Search
Methods for Linearly Constrained Minimization. SIAM Journal on Optimization,
10(3):917–941. (p. 52)

[Lin et al., 2018] Lin, J., Rosasco, L., Villa, S., and Zhou, D.-X. (2018). Modified
Fejér sequences and applications. Computational Optimization and Applications,
71(1):95–113. (p. 153, 173, 175)

[Loeppky et al., 2009] Loeppky, J. L., Sacks, J., and Welch, W. J. (2009). Choosing
the Sample Size of a Computer Experiment: A Practical Guide. Technometrics,
51(4):366–376. (p. 61, 62)

185



REFERENCES

[Lusby et al., 2013] Lusby, R., Muller, L. F., and Petersen, B. (2013). A solution
approach based on Benders decomposition for the preventive maintenance scheduling
problem of a stochastic large-scale energy system. Journal of Scheduling, 16(6):605–
628. (p. 6, 16)

[Marrel et al., 2008] Marrel, A., Iooss, B., Van Dorpe, F., and Volkova, E. (2008). An
efficient methodology for modeling complex computer codes with Gaussian processes.
Computational Statistics & Data Analysis, 52(10):4731–4744. (p. 24)

[Martin et al., 2019] Martin, M., Nobile, F., and Tsilifis, P. (2019). A Multilevel
Stochastic Gradient method for PDE-constrained Optimal Control Problems with
uncertain parameters. arXiv:1912.11900 [math]. (p. 151)

[Matheron, 1962] Matheron, G. (1962). Traité de géostatistique appliquée, volume 1 of
Mémoires du BRGM. Éditions Technip, Paris. (p. 24)

[McKay et al., 1979] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code. Technometrics, 21(2):239–245. (p. 31)

[Meeker and Escobar, 2014] Meeker, W. Q. and Escobar, L. A. (2014). Statistical meth-
ods for reliability data. John Wiley & Sons. (p. 103)

[Mesarović et al., 1970] Mesarović, M. D., Macko, D., and Takahara, Y. (1970). The-
ory of Hierarchical, Multilevel Systems, volume 68 of Mathematics in Science and
Engineering. Academic Press. (p. 93, 95)

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H., and Teller, E. (1953). Equation of State Calculations by Fast Computing
Machines. Journal of Chemical Physics, 21:1087–1092. (p. 22)

[Mohammadi, 2016] Mohammadi, H. (2016). Kriging-based black-box global optimiza-
tion: analysis and new algorithms. PhD thesis, Université de Lyon. (p. 8, 18, 36,
44, 62, 65, 77, 80, 81)

[Morris, 1991] Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Com-
putational Experiments. Technometrics, 33(2):161–174. (p. 140)

[Munoz Zuniga and Sinoquet, 2020] Munoz Zuniga, M. and Sinoquet, D. (2020).
Global optimization for mixed categorical-continuous variables based on Gaussian
process models with a randomized categorical space exploration step. INFOR: In-
formation Systems and Operational Research, pages 1–32. (p. 65, 87, 177)

[Nash, 2000] Nash, S. G. (2000). A survey of truncated-Newton methods. Journal of
Computational and Applied Mathematics, 124:45–59. (p. 66)

[Nelder and Mead, 1965] Nelder, J. A. and Mead, R. (1965). A simplex method for
function minimization. The computer journal, 7(4):308–313. (p. 47)

[Nemirovski et al., 2009] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
(2009). Robust Stochastic Approximation Approach to Stochastic Programming.
SIAM Journal on Optimization, 19(4):1574–1609. (p. 90, 149, 151, 152, 153, 165,
171, 175)

186



REFERENCES

[Nemirovski and Yudin, 1983] Nemirovski, A. and Yudin, D. B. (1983). Problem Com-
plexity and Method Efficiency in Optimization. A Wiley-Interscience publication.
Wiley. (p. 152)

[Nicolai and Dekker, 2008] Nicolai, R. P. and Dekker, R. (2008). Optimal Maintenance
of Multi-component Systems: A Review. In Complex System Maintenance Handbook,
pages 263–286. Springer London. (p. 6, 16)

[Nocedal, 1980] Nocedal, J. (1980). Updating Quasi-Newton Matrices With Limited
Storage. Mathematics of Computation, 35(151):773–782. (p. 44, 77)

[Olde Keizer et al., 2017] Olde Keizer, M. C., Teunter, R. H., and Veldman, J. (2017).
Joint condition-based maintenance and inventory optimization for systems with mul-
tiple components. European Journal of Operational Research, 257(1):209–222. (p. 6,
16)

[Parikh and Boyd, 2014] Parikh, N. and Boyd, S. P. (2014). Proximal Algorithms.
Foundations and Trends® in Optimization, 1(3):127–239. (p. 152)

[Park and Baek, 2001] Park, J.-S. and Baek, J. (2001). Efficient computation of max-
imum likelihood estimators in a spatial linear model with power exponential covari-
ogram. Computers & Geosciences, 27(1):1–7. (p. 35)

[Penrose, 1955] Penrose, R. (1955). A generalized inverse for matrices. Mathematical
Proceedings of the Cambridge Philosophical Society, 51(3):406–413. (p. 36)

[Picheny et al., 2013] Picheny, V., Wagner, T., and Ginsbourger, D. (2013). A bench-
mark of kriging-based infill criteria for noisy optimization. Structural and Mul-
tidisciplinary Optimization, 48(3):607–626. (p. 43, 80)

[Polak and Wetter, 2006] Polak, E. and Wetter, M. (2006). Precision Control for Gen-
eralized Pattern Search Algorithms with Adaptive Precision Function Evaluations.
SIAM Journal on Optimization, 16(3):650–669. (p. 6, 16)

[Polyak and Juditsky, 1992] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of
Stochastic Approximation by Averaging. SIAM Journal on Control and Optimiza-
tion, 30(4):838–855. (p. 151, 171)

[Powell, 2002] Powell, M. (2002). UOBYQA: unconstrained optimization by quadratic
approximation. Mathematical Programming, 92(3):555–582. (p. 21)

[Powell, 1994] Powell, M. J. D. (1994). A Direct Search Optimization Method That
Models the Objective and Constraint Functions by Linear Interpolation. In Gomez,
S. and Hennart, J.-P., editors, Advances in Optimization and Numerical Analysis,
pages 51–67. Springer Netherlands, Dordrecht. (p. 47, 66)

[Rasmussen and Williams, 2006] Rasmussen, C. E. and Williams, C. K. I. (2006).
Gaussian processes for machine learning. Adaptive computation and machine learn-
ing. MIT Press, Cambridge, Mass. (p. 24, 33, 35)

[Rehbach et al., 2020] Rehbach, F., Zaefferer, M., Naujoks, B., and Bartz-Beielstein,
T. (2020). Expected improvement versus predicted value in surrogate-based optimiz-
ation. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference,
pages 868–876, Cancún Mexico. ACM. (p. 43, 81)

187



REFERENCES

[Rios and Sahinidis, 2013] Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free
optimization: a review of algorithms and comparison of software implementations.
Journal of Global Optimization, 56(3):1247–1293. (p. 21)

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951). A Stochastic Approx-
imation Method. The Annals of Mathematical Statistics, 22(3):400–407. (p. 89, 148,
151)

[Robbins and Siegmund, 1971] Robbins, H. and Siegmund, D. (1971). A Convergence
Theorem for Non Negative Almost Supermartingales and Some Applications. In
Optimizing Methods in Statistics, pages 233–257. Springer, New York, NY. (p. 206)

[Rockafellar and Wets, 2004] Rockafellar, R. T. and Wets, R. J.-B. (2004). Variational
analysis. Number 317 in Grundlehren der mathematischen Wissenschaften. Springer,
Berlin. (p. 153, 157, 158, 159, 164)

[Rosasco et al., 2019] Rosasco, L., Villa, S., and Vũ, B. C. (2019). Convergence of
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A Basic definitions in analysis

We recall some basic notions in analysis that are used within the manuscript. The
definitions presented in this appendix are taken from [Ekeland and Temam, 1976] and
[Bauschke and Combettes, 2011].

Definition A.1. (Topological dual) Let U be a real vector space. The topological dual
of U, denoted by U? is the set of all continuous linear functionals i.e. the linear maps
from U to R.

In the following definitions, the space U is a Banach space. We denote by 〈· , ·〉 the
duality pairing between U and its topological dual U?, by ‖·‖ the norm on U and by
‖·‖? the norm on U?.

Definition A.2. (Proper function) A function J : U → R = R ∪ {−∞,+∞} is said
to be proper if it nowhere takes the value −∞ and is not identically equal to +∞.

Definition A.3. (Convexity) A function J : U→ R is said to be:

• convex, if for all α ∈ [0, 1] and all u, v ∈ U, we have:

J(αu+ (1− α)v) ≤ αJ(u) + (1− α)J(v) ,

• strictly convex, if for all α ∈]0, 1[ and all u, v ∈ U with u 6= v, we have:

J(αu+ (1− α)v) < αJ(u) + (1− α)J(v) ,

• a-strongly convex, with a > 0, if all α ∈ [0, 1] and all u, v ∈ U, we have:

J(αu+ (1− α)v) ≤ αJ(u) + (1− α)J(v)− α(1− α)a2 ‖u− v‖
2 ,

Definition A.4. (Gateaux-differentiability) Let J : U→ R be a function. The direc-
tional derivative of J at u ∈ U in the direction d ∈ U is:

DJ(u; d) = lim
ε→0+

J(u+ εd)− J(u)
ε

,

provided that the limit exists. The function J is said to be Gateaux-differentiable at
u if it admits directional derivatives in all directions d and if DJ(u; ·) is linear and
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continuous on U. The Gateaux-derivative of J at u is then the element of U? denoted
by J ′(u) such that for all d ∈ U:

DJ(u; d) = 〈J ′(u) , d〉 .

Finally, the function J is said to be Gateaux-differentiable if it is Gateaux-differentiable
at every u ∈ U.

Definition A.5. (Subdifferential) Let J : U → R ∪ {+∞} be a proper, convex,
function. The subdifferential of J at u ∈ U is the set:

∂J(u) = {s ∈ U?, ∀v ∈ U, J(v) ≥ J(u) + 〈s , v − u〉} .

If ∂J(u) 6= ∅, we say that J is subdifferentiable at u. If J is subdifferentiable for all
u ∈ U, we say that J is subdifferentiable.

Proposition A.6. Let J : U → R be a Gateaux-differentiable function. Then, there
is an equivalence between J being a-strongly convex for some a > 0 and the following
inequality:

∀(u, v) ∈ U2, J(v) ≥ J(u) + 〈J ′(u) , v − u〉+ a

2 ‖v − u‖
2 .

Definition A.7. (Lower-semicontinuity) A function J : U → R is said to be lower
semi-continuous (l.s.c.) if for all u ∈ U:

lim inf
v→u

J(v) ≥ J(u) .

Definition A.8. (Coercivity) A function J : U→ R is coercive on Uad ⊂ U if:

lim
‖u‖→+∞
u∈Uad

J(u) = +∞ .

Note that if Uad is bounded, J is automatically coercive.

Definition A.9. (Lipschitz-continuity) An operator Ψ : U → U? is A-Lipschitz con-
tinuous, with A > 0, if for all u, v ∈ U, we have:

‖Ψ(u)−Ψ(v)‖? ≤ A ‖u− v‖ .

Definition A.10. (Monotonicity) An operator Ψ : U→ U? is said to be:

• monotone, if for all u, v ∈ U we have:

〈Ψ(u)−Ψ(v) , u− v〉 ≥ 0 ,

• a-strongly monotone, with a > 0, if for all u, v ∈ U we have:

〈Ψ(u)−Ψ(v) , u− v〉 ≥ a ‖u− v‖2 .

Remark A.11. Definitions A.9 and A.10 are often used in the case where Ψ : U → U?

is the derivative of a convex function. ♦
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B Basic notions from measure
theory

We recall some definitions from measure theory that are used within the manuscript.
Most of these definitions come into play in Part III where measurability is at the heart
of the matter. We can refer to [Billingsley, 1995] for a more detailed exposition of
measure theory.

Definition B.1. (σ-field, measurable space) Let Ω be an arbitrary non-empty set. A
family A of subsets of Ω is called a σ-field (or σ-algebra) on Ω if it satisfies the following
properties:

• Ω ∈ A,

• if A ∈ A, then Ac ∈ A,

• for any countable family {An}n∈N of elements of A, we have ⋃n∈NAn ∈ A.

The pair (Ω,A) is called a measurable space and the elements of A are called the
measurable sets.

Definition B.2. (Measure, probability space) Let (Ω,A) be a measurable space. A
measure on (Ω,A) is a function µ : A→ [0,+∞] such that:

• µ(∅) = 0,

• µ is σ-additive: for every countable sequence of pairwise disjoint setsA1, . . . , An ⊂
A, we have:

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai) .

The triple (Ω,A, µ) is called a measure space. If moreover µ(Ω) = 1, we say that
(Ω,A, µ) is a probability space.

Definition B.3. (Measurable function) Let (E,E) and (F,F) be two measurable
spaces. A function f : (E,E) → (F,F) is measurable if for all B ∈ F, we have
f−1(B) ∈ E.

Definition B.4. (Random variable) Let (Ω,A, µ) be a probability space and (E,E)
be a measurable space. An (E,E)-valued random variable X : (Ω,A, µ)→ (E,E) is a
measurable function from (Ω,A, µ) to (E,E).
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Definition B.5. (Topology, topological space) Let E be an arbitrary set. A family τ
of subsets of E is called a topology on E if it satisfies the following properties:

• ∅ ∈ τ and E ∈ τ ,

• for any finite family {A1, . . . , An} of elements of τ , we have
n⋂
i=1

Ai ∈ τ ,

• for any arbitrary family {Ai}i∈I of elements of τ , where I is an index set (that
may be uncountable), we have

⋃
i∈I
Ai ∈ τ .

The elements of τ are called the open sets in E. The pair (E, τ) is called a topological
space.

Definition B.6. (Borel σ-field) Let (E, τ) be a topological space. The Borel σ-field
on E, denoted by B(E), is the smallest σ-field that contains all open sets of E.

When we consider real-valued random variables, we assume that R is equipped
with its Borel σ-field B(R). The two following definitions are useful to characterize the
Weibull distribution that appears in Chapters 6, 8 and 10.

Definition B.7. (Cumulative distribution function) Let (Ω,A,P) be a probability
space and X be a real-valued random variable defined on Ω. The cumulative distribu-
tion function of X is the function FX : R→ [0, 1] such that:

FX (x) = P
(
{ω ∈ Ω, X (ω) ≤ x}

)
= P

(
X−1 ((−∞, x])

)
= P(X ≤ x) .

Definition B.8. (Weibull distribution) Let (Ω,A,P) be a probability space and X be
a real-valued random variable defined on Ω. We say that X has a Weibull distribution
of parameters β > 0 and λ > 0, denoted by Weib(β, λ), if its cumulative distribution
function FX is given by:

FX (x) =
1− e−(x/λ)β if x ≥ 0 ,

0 if x < 0 .
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C Full convergence plots of the
APP on the synthetic cases

We give the full convergence plots of the family of controls u = {ui,t}(i,t)∈I×T−1 for the
application of the APP to the synthetic problems of Chapter 9.

C.1 For the deterministic synthetic test case
We give the convergence plots for the deterministic test case tackled in Section 9.2.
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(a) Convergence of the whole family of controls u = {ui,t}(i,t)∈I×T−1 during the fixed-
point algorithm (first part).

C.2 For the stochastic synthetic test case
We give the convergence plots for the stochastic test case tackled in Section 9.3.
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(b) Convergence of the whole family of controls u = {ui,t}(i,t)∈I×T−1 during the fixed-
point algorithm (second part).
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(c) Convergence of the whole family of controls u = {ui,t}(i,t)∈I×T−1 during the fixed-
point algorithm (third part).
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(a) Convergence of the whole family of controls u = {ui,t}(i,t)∈I×T−1 during the
fixed-point algorithm in the stochastic case (first part).
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(b) Convergence of the whole family of controls u = {ui,t}(i,t)∈I×T−1 during the fixed-
point algorithm in the stochastic case (second part).
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D
Explicit expressions for the

implementation of the
decomposition by component

We give the explicit expression of the dynamics of the industrial system of described in
Chapter 8 (Section D.1) and of its relaxed version defined in Chapter 10 (Section D.2).
We also give the backward recursion for the optimal multipliers in Section D.3. Finally,
in Section D.4, we give some practical details for the computation of the derivative
of the relaxed indicator function introduced in Definition 10.2. With these explicit
expressions, we have all the tools for the practical implementation of the fixed-point
algorithm 8.

D.1 Explicit expression of the dynamics of the in-
dustrial system

We give an explicit expression for the dynamics fi of component i ∈ I that appears
in (8.5). We can write:

Xi,t+1 =

Ei,t+1
Ai,t+1
Pi,t+1

 =

fi,E (X1:i,t,St, ui,t,Wi,t+1)
fi,A(X1:i,t,St, ui,t,Wi,t+1)
fi,P (X1:i,t,St, ui,t,Wi,t+1)

 ,

so that fi = (fi,E , fi,A , fi,P ). We give an explicit formula for fi,E , fi,A and fi,P .

D.1.1 Dynamics of the regime Ei,t

Using Figure 8.2, we can write:
Ei,t+1 = fi,E (X1:i,t,St, ui,t,Wi,t+1)

= 1R+(St −
i∑

j=1
1{0}(Ej,t))1{0}(Ei,t)

+
(
1R+(ui,t − ν) + 1R+(Wi,t+1 − pi(Ai,t))1R∗+(ν − ui,t)

)
1{1}(Ei,t) .

(D.1)

The first part of (D.1) means that if the component is broken at t and we have
enough spares to repair it, it is then functioning at t + 1. The second part means
that if the component is functioning at t and we do a PM, it is still functioning at
t+ 1. Finally, if we do not do a PM, the regime depends on the occurrence of a failure
between t and t+ 1.
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D.1.2 Dynamics of the age Ai,t

Again, using Figure 8.2, we can write:

Ai,t+1 = fi,A(X1:i,t,St, ui,t,Wi,t+1)

= (Ai,t + 1)
[
1R∗+(

i∑
j=1

1{0}(Ej,t)− St)1{0}(Ei,t) +
(
(1− ui,t)1R+(ui,t − ν)

+ 1R+(Wi,t+1 − pi(Ai,t))1R∗+(ν − ui,t)
)
1{1}(Ei,t)

]
.

(D.2)
If the component is broken at t, it stays broken if there are not enough spares in

the stock. In this case the time Ai,t increases by 1. If the component is healthy at t,
it ages if no PM is done and no failure occurs. In the case of a PM the component is
rejuvenated. If there is a failure, we have Ai,t+1 = 0.

D.1.3 Dynamics of the vector of times since last failures P i,t

The expression of the dynamics of Pi,t = (P 1
i,t, . . . ,P

D
i,t) is more complex. We write:

Pi,t+1 =


P 1
i,t+1
...

PD
i,t+1

 =


f 1
i,P (X1:i,t,St, ui,t,Wi,t+1)

...
fDi,P (X1:i,t,St, ui,t,Wi,t+1)

 = fi,P (X1:i,t,St, ui,t,Wi,t+1) ,

so that fi,P = (f 1
i,P , . . . , f

D
i,P ). We give the expression of fdi,P for d ∈ {1, . . . , D}:

P d
i,t+1 =

(
(P d

i,t + 1)1R+(P d
i,t) + δ1{δ}(P d

i,t)
)(

1− 1{1}(Ei,t)1{0}(Ei,t+1)
)

+
(

(P d
i,t + 1)1R+(P d

i,t)1{δ}(P
D
i,t) + δ1{δ}(P d−1

i,t )1[2,D](d)

+ (P d+1
i,t + 1)1R+(PD

i,t)1[1,D−1](d)
)
1{1}(Ei,t)1{0}(Ei,t+1) .

(D.3)

The first line represents the case where there is no failure. Then Pi,t increases by one
if it is different from δ, otherwise it keeps the value δ. When there is a failure, if
component i has undergone fewer than D failures, the evolution of Pi,t is described
by (8.3a). This case is represented by the second line of (D.3). When the component
has already undergone D failures, the evolution of Pi,t is described by (8.4a). This case
is represented by the third line of (D.3). Note that this expression of P d

i,t+1 depends
on Ei,t+1. It is possible to express P d

i,t+1 only with variables describing component i at
time t, this can be done by replacing Ei,t+1 by its expression (D.1).

D.1.4 Dynamics of the stock St
We recall the explicit dynamics of the stock that is already given in (8.6):

St+1 = St +
n∑
i=1

D∑
d=1

1{D−1}(P d
i,t)−min

{
St,

n∑
i=1

1{0}(Ei,t)
}
. (D.4)

The dynamics of the whole system has now been explicitly described.
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D.2 Explicit expression of the dynamics of the re-
laxed system

The expression of the relaxed dynamics of parameter α > 0 is obtained from Equa-
tions (D.1), (D.2), (D.3) and (D.4) by replacing the indicator function with its relaxed
version.

We do not always substitute directly the indicator with its relaxation. The dynamics
often involves conditions on complementary events. For example, the condition if the
component is broken is represented by 1{0}(Ei,t). On the other hand, the condition
if the component is healthy is represented by 1{1}(Ei,t). For the original dynamics, as
Ei,t ∈ {0, 1}, we always have:

1{0}(Ei,t) + 1{1}(Ei,t) = 1 .

This relation is not true anymore using directly the relaxed version of the indicator
with the relaxed variables. Take for example α = 2, and suppose Ei,t = 1

2 , then:

1α{0}(Ei,t) + 1α{1}(Ei,t) = 0 .

If we replace directly all indicator functions by their relaxation, the consequence would
be in this case that Ei,t+1 = 0 no matter the control ui,t. This means that even if
we do a PM with ui,t = 1, the component is down at t + 1. This does not represent
the dynamics of the system as we would expect. To design a coherent relaxed dynam-
ics, complementary conditions 1A and 1Ac are represented using the relaxed version
1αA of the indicator function for the first condition and the function 1 − 1αA for the
complementary condition.

D.2.1 Relaxed dynamics of the regime Ei,t

The relaxed dynamics of the regime of parameter α > 0 is given by:

Ei,t+1 = fαi,E (X1:i,t,St, ui,t,Wi,t+1)

= 1αR+(St −
i∑

j=1
1α{0}(Ej,t))1

α
{0}(Ei,t) +

(
1αR+(ui,t − ν)

+ 1αR+(Wi,t+1 − pi(Ai,t))(1− 1αR+(ui,t − ν))
) (

1− 1α{0}(Ei,t)
)
.

We use the relaxed version of the indicator for 1{0}(Ei,t) and 1R+(ui,t − ν). We relax
1{1}(Ei,t) and 1R∗+(ν − ui,t) as 1− 1α{0}(Ei,t) and 1− 1αR+(ui,t − ν) respectively.

D.2.2 Relaxed dynamics of the age Ai,t

The relaxed dynamics of the age of parameter α > 0 is given by:

Ai,t+1 = fαi,A(X1:i,t,St, ui,t,Wi,t+1)

= (Ai,t + 1)
[
1αR∗+(

i∑
j=1

1α{0}(Ej,t)− St)1
α
{0}(Ei,t) +

(
(1− ui,t)1αR+(ui,t − ν)

+ 1αR+(Wi,t+1 − pi(Ai,t))(1− 1αR+(ui,t − ν))
)(

1− 1α{0}(Ei,t)
)]
.
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D.2.3 Relaxed dynamics of the vector of last failures P i,t

The relaxed dynamics of parameter α > 0 of the d-th element of the vector of last
failures is given by:

P d
i,t+1 = fd,αi,P (X1:i,t,St, ui,t,Wi,t+1)

=
(

(P d
i,t + 1)(1− 1α{δ}(P d

i,t)) + δ1α{δ}(P d
i,t)
)(

1− 1α{1}(Ei,t)1
α
{0}(Ei,t+1)

)
+
(

(P d
i,t + 1)(1− 1α{δ}(P d

i,t))1
α
{δ}(PD

i,t) + δ1α{δ}(P d−1
i,t )1[2,D](d)

+ (P d+1
i,t + 1)(1− 1α{δ}(PD

i,t))1[1,D−1](d)
)
1α{1}(Ei,t)1

α
{0}(Ei,t+1) .

We do not relax 1[2,D](d) and 1[1,D−1](d). The reason is that these indicator functions
do not arise from a discontinuity in the original dynamics. They are just used to take
into account in the same equation the cases of P 1

i,t and PD
i,t that have a slightly different

expression than P d
i,t for 1 < d < D.

D.2.4 Relaxed dynamics of the stock St
The relaxed dynamics of the stock of parameter α > 0 is given by:

St+1 = St +
n∑
i=1

D∑
d=1

1α{D−1}(P d
i,t)−min

{
St,

n∑
i=1

1α{0}(Ei,t)
}
.

D.3 Computation of optimal multipliers
At iteration l of the APP fixed-point algorithm, the subproblem on component i ∈ I
is solved with MADS. MADS directly solves the constrained problem and outputs a
primal solution (X l+1

i , ul+1
i ). Finding the primal solution Sl+1 of the subproblem on

the stock just requires a simulation of the dynamics. For each subproblem, we also
have to compute optimal multipliers Λl+1

1 , . . . ,Λl+1
n ,Λl+1

S to update the coordination
term at the end of each iteration.

Suppose that the optimal solution and optimal multiplier of the auxiliary prob-
lem (10.3) are uniquely defined. As we know the primal solution, we can compute
the optimal multiplier using the stationarity of the Lagrangian. In the following cal-
culation, we use the relaxed cost and dynamics to be able to compute the different
gradients that appear, however for the sake of readability we drop the superscript α.
The Lagrangian L of the auxiliary problem (10.3) is:

L(X ,S , u,Λ) =E
( n∑
i=1

(
ji(Xi, ui) + jF (X 1:i−1,Xi,X i+1:n)

)
+ γx

2
∥∥∥X −X∥∥∥2

+ γs
2
∥∥∥S − S∥∥∥2

+ γu
2 ‖u− u‖

2

+
〈
Λ , (Θ′(X ,S , u,W )− Φ′(X ,S , u,W )) · (X ,S , u)

〉
+
〈
Λ ,Φ(X ,S , u,W )

〉)
.

At the saddle point (X ],S ], u],Λ]) of L we have:

∇L(X ],S ], u],Λ]) = 0 . (D.5)
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Recall that for i ∈ {1, . . . , n,S}, we have

Λl+1
i = (Λl+1

i,0 , . . . ,Λ
l+1
i,T ) .

Using (D.5) and knowing the solution (X ],S ], u]) of the auxiliary problem, we can
update the multiplier Λ] with a backward recursion.

Proposition D.1. Let i ∈ I. For the dynamics of component i in the auxiliary prob-
lem (10.3), the optimal multiplier Λ]

i
= (Λ]

i,0, . . . ,Λ
]
i,T

) can be computed with the fol-
lowing backward recursion for t ∈ T:

Λ]
i,T

= −∇X
i,T
ji,T (X ]

i,T
)−∇X

i,T
jFT (X 1:i−1,T ,X

]
i,T
,X

i+1:n,T )− γx(X ]
i,T
−X

i,T
) ,

Λ]
i,t

= −∇Xi,tji,t(X
]
i,t
, u]i,t)−∇Xi,tj

F
t (X 1:i−1,t,X

]
i,t
,X

i+1:n,t)

− γx(X ]
i,t
−X

i,t
)−

n∑
j=i+1

∂Xi,tΘj,t+1(X 1:j,S , uj,Wj)
> ·Λ

j,t+1

− ∂Xi,tΘS ,t+1(X 1:n,S)> ·Λ
S ,t+1 − ∂Xi,tΦi,t+1(X ]

i
, u]i,Wi)

> ·Λ]
i,t+1 .

Proof. The gradient of the Lagrangian L with respect to Xi,t, t ∈ T is given by:

∇X
i,T
L(X ],S ], u],Λ]) = ∇X

i,T
ji,T (X ]

i,T
) +∇X

i,T
jFT (X 1:i−1,T ,X

]
i,T
,X

i+1:n,T )

+ γx(X ]
i,T
−X

i,T
) + ∂X

i,T
Φi,T (X ]

i
, u]i,Wi)

> ·Λ]
i,T
,

∇Xi,tL(X ],S ], u],Λ]) = ∇Xi,tji,t(X
]
i,t
, u]i,t) +∇Xi,tj

F
t (X 1:i−1,t,X

]
i,t
,X

i+1:n,t)

+ γx(X ]
i,t
−X

i,t
) + ∂Xi,tΘS ,t+1(X 1:n,S)> ·Λ

S ,t+1

+
n∑

j=i+1
∂Xi,tΘj,t+1(X 1:j,S , uj,Wj)

> ·Λ
j,t+1

+ ∂Xi,tΦi,t(X ]
i
, u]i,Wi)

> ·Λ]
i,t

+ ∂Xi,tΦi,t+1(X ]
i
, u]i,Wi)

> ·Λ]
i,t+1 .

Using:

∇Xi,tL(X ],S ], u],Λ]) = 0, t ∈ T ,

∂Xi,tΦi,t(X ]
i
, u]i,Wi) = I, t ∈ T ,

where I is the identity matrix of appropriate size, we get the desired result.

Proposition D.2. The optimal multiplier Λ]
S

= (Λ]
S ,0, . . . ,Λ

]
S ,T

) associated to the
dynamics of the stock in the auxiliary problem (10.3) can be computed with the following
backward recursion for t ∈ T:

Λ]
S ,T

= −γs(S ]
T
− S

T
) ,

Λ]
S ,t

= − γs(S ]
t
− S

t
)−

n∑
i=1

∂StΘi,t+1(X 1:i,S , ui,Wi)
> ·Λ

i,t+1

− ∂StΦS ,t+1(S ])> ·Λ]
S ,t+1 .

(D.6)
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Proof. The gradient of the Lagrangian L with respect to St, t ∈ T is given by:

∇S
T
L(X ],S ], u],Λ]) = γ(S ]

T
− S

T
) + ∂S

T
ΦS ,T (S ])> ·Λ]

S ,T
,

∇StL(X ],S ], u],Λ]) = γ(S ]
t
− S

t
) +

n∑
i=1

∂StΘi,t+1(X 1:i,S , ui,Wi)
> ·Λ

i,t+1

+ ∂StΦS ,t+1(S ])> ·Λ]
S ,t+1 + ∂StΦS ,t(S ])> ·Λ]

S ,t
.

Using:

∇StL(X ],S ], u],Λ]) = 0, t ∈ T ,

∂StΦS ,t(S ]) = 1, t ∈ T ,

we get the backward recursion (D.6).

D.4 Derivative of the relaxed indicator function
We give some details about the derivative of the relaxed indicator function. The relaxed
indicator function 1αA, where α > 0, appears in the dynamics and cost with three main
cases for the set A ⊂ R. Note that 1αA is not differentiable at x ∈ R if d(A, x) = 1

2α .
At such point, the derivative is taken to be 0. The following situations occur:

1. A is a singleton {a}, then for x ∈ R:

1α{a}(x) =


1− 2α|x− a| if |x− a| ≤ 1

2α ,

0 if |x− a| > 1
2α .

Hence the derivative 1′α{a} is given by:

1′α{a}(x) =


2α if a− 1

2α < x < a ,

−2α if a < x < a+ 1
2α ,

0 otherwise .

2. A = R+ then for x ∈ R we have:

1αR+(x) =


2αx+ 1 if − 1

2α < x < 0 ,

1 if x ≥ 0 ,

0 if x ≤ − 1
2α .

1′αR+(x) =

2α if − 1
2α < x < 0 ,

0 otherwise .

3. A = R∗+: if we strictly apply Definition 10.2, we would have 1αR∗+ = 1αR+ . However
with this definition we would not have pointwise convergence of 1αR∗+ towards 1R∗+
as α goes to 0. Indeed, for all α > 0 we would have 1αR∗+(0) = 1 but 1R∗+(0) = 0.
To overcome this issue we define 1αR∗+ as follows:

1αR∗+(x) =


2αx if 0 < x <

1
2α ,

1 if x ≥ 1
2α ,

0 if x ≤ 0 .

1′αR∗+(x) =

2α if 0 < x <
1

2α ,

0 otherwise .
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APPENDIX D. EXPRESSIONS FOR THE DECOMPOSITION BY COMPONENT

Using these formulas for the derivative of the relaxed indicator function and the explicit
expressions of the relaxed cost function and relaxed dynamics given in §10.4.3 and
Appendix D.2 respectively, all the gradients that appear either in the objective function
of the subproblems or in the backward recursion for the multiplier update can be
computed and the fixed-point algorithm can be implemented in practice.
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E Technical lemmas for the
stochastic APP

We give some technical results that are used in the proof of convergence of the stochastic
APP algorithm (Theorem 11.33) and for the derivation of efficiency estimates in §11.4.2.

Lemma E.1. Let {ai}i∈N be a sequence in R. Let n ∈ N and for i ∈ {1, . . . , n − 1},
let si = ∑n

l=n−i al. Then,

an = sn−1

n
+

n−1∑
i=1

1
i(i+ 1)(si−1 − ian−i) .

Proof. We have si = si−1 + an−i, so:
1
i
si−1 −

1
i+ 1si = 1

i(i+ 1) ((i+ 1)si−1 − isi)

= 1
i(i+ 1) (si−1 − ian−i) .

Summing over 1 ≤ i ≤ n− 1, we get:

an −
sn−1

n
=

n−1∑
i=1

1
i(i+ 1) (si−1 − ian−i) ,

giving the desired result. �

Theorem E.2. [Robbins and Siegmund, 1971] Consider four sequences of nonnegative
random variables {Λl}l∈N, {αl}l∈N, {βl}l∈N and {ηl}l∈N, that are all adapted to a given
filtration {Fl}l∈N. Moreover, suppose that:

E
(
Λl+1

∣∣∣ Fl) ≤ (1 +αl)Λl + βl − ηl, ∀l ∈ N ,

and that we have: ∑
l∈N
αl < +∞ ,

∑
l∈N
βl < +∞ , P-a.s. .

Then, the sequence of random variables {Λl}l∈N converges almost surely to Λ∞, an
almost surely bounded random variable1, and we have in addition that:∑

l∈N
ηl < +∞ , P-a.s. .

1 A random variable X is bounded P-a.s. if it is such that: P
(
{ω ∈ Ω |X (ω) = +∞}

)
= 0.
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An extension of Robbins-Siegmund theorem is given by the following corollary.

Corollary E.3. Consider five sequences of nonnegative random variables {Λl}l∈N,
{αl}l∈N, {βl}l∈N, {γl}l∈N, and {ηl}l∈N, that are all adapted to a given filtration {Fl}l∈N.
Moreover suppose that:

E
(
Λl+1

∣∣∣ Fl) ≤ (1 +αl
)
Λl + βlE

(
Λl+1

∣∣∣ Fl)+ γl − ηl ,

and that we have:∑
l∈N
αl < +∞ ,

∑
l∈N
βl < +∞ ,

∑
l∈N
γl < +∞ , P-p.s. .

Then, the sequence of random variables {Λl}l∈N converges almost surely to Λ∞, an
almost surely bounded random variable and we have in addition that:∑

l∈N
ηl < +∞ , P-p.s. .

Proof. Consider a realization of the different sequences satisfying the assumptions of
the corollary, and define three sequences {α̃l}l∈N, {γ̃l}l∈N and {η̃l}l∈N such that:

1 + α̃l = 1 + αl
1− βl

, γ̃l = γl
1− βl

, η̃l = ηl
1− βl

.

As the sequence {βl}l∈N converges to zero, we have that βl ≤ 1/2 for l large enough.
For such l, we get:

1
1− βl

≤ 1 + 2βl and 1 ≤ 1
1− βl

≤ 2 .

Then, we deduce that α̃l ≤ 2(αl + βl), γ̃l ≤ 2γl and η̃l ≥ ηl. The conclusions of the
corollary are then obtained by applying Theorem E.2 directly. �

Proposition E.4. Consider a function J : U → R that is subdifferentiable on a non-
empty, closed, convex subset Uad of U, with linearly bounded subgradient. Then, there
exist c1 > 0 and c2 > 0 such that:

∀(u, v) ∈ Uad × Uad ,
∣∣∣J(u)− J(v)

∣∣∣ ≤ (c1 max
{
‖u‖, ‖v‖

}
+ c2

)
‖u− v‖ .

Proof. Let (u, v) ∈ Uad × Uad. By the definition of subdifferentiability,

∀r ∈ ∂J(u) , J(v) ≥ J(u) + 〈r , v − u〉 ,
∀s ∈ ∂J(v) , J(u) ≥ J(v) + 〈s , u− v〉 ,

from which we get:

〈s , u− v〉 ≤ J(u)− J(v) ≤ 〈r , u− v〉 ,

and therefore: ∣∣∣J(u)− J(v)
∣∣∣ ≤ max

{
〈r , u− v〉, 〈s , v − u〉

}
.

Using Schwarz inequality and the linearly bounded subgradient assumption we have:∣∣∣J(u)− J(v)
∣∣∣ ≤ max

{
‖r‖‖u− v‖, ‖s‖‖v − u‖

}
,

≤
(
c1 max

{
‖u‖, ‖v‖

}
+ c2

)
‖u− v‖ .

for some c1 > 0 and c2 > 0, which gives the desired result. �
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Corollary E.5. A function J : U→ R that satisfies the assumptions of Proposition E.4
is Lipschitz continuous on every bounded subset that is contained in Uad.
Proposition E.6. Let J : U→ R be a Lipschitz continuous function with constant L >
0. Let {ul}l∈N be a sequence of elements in U and let {εl}l∈N be a real positive sequence
such that:
(a) ∑l∈N εl = +∞,

(b) ∃µ ∈ R, ∑l∈N εl |J(ul)− µ| < +∞,

(c) ∃δ > 0, ∀l ∈ N, ‖ul+1 − ul‖ ≤ δεl.
Then, the sequence

{
J(ul)

}
l∈N

converges to µ.

Proof. For α > 0, define:
Nα =

{
l ∈ N, |J(ul)− µ| ≤ α

}
, N {α = N \Nα .

(i) From Assumption (b), we have:

+∞ >
∑
l∈N

εl
∣∣∣J(ul)− µ

∣∣∣ ≥ ∑
l∈N{

α

εl
∣∣∣J(ul)− µ

∣∣∣ ≥ α
∑
l∈N{

α

εl ,

from which we get that:
∀β > 0 , ∃nβ ∈ N such that

∑
l≥nβ ,l∈N{

α

εl ≤ β .

(ii) From Assumption (a), we have:
+∞ =

∑
l∈N

εl =
∑
l∈Nα

εl +
∑
l∈N{

α

εl ,

but we have just proved that the last sum in the above equality is finite, hence
the first sum of the right hand side is infinite, which implies that Nα is infinite.

Let ε > 0, choose α = ε/2 and β = ε/(2Lδ) (where L is the Lipschitz constant of J).
Let nβ be the integer defined in (i). For l ≥ nβ, there are two possible cases:

• l ∈ Nα: then, by definition of Nα:∣∣∣J(ul)− µ
∣∣∣ ≤ α < ε ,

• l /∈ Nα: let m be the smallest element of Nα such that m ≥ l, this element exists
by (ii). Using the fact that J is Lipschitz continuous jointly with Assumption (c)
and the point (i), it comes:∣∣∣J(ul)− µ

∣∣∣ ≤ ∣∣∣J(ul)− J(um)
∣∣∣+ ∣∣∣J(um)− µ

∣∣∣
≤ L‖ul − um‖+ α

≤ Lδ

m−1∑
k=l

εk

+ α

≤ Lδ

 ∑
k≥nβ ,k∈N{

α

εk

+ α

≤ ε ,

so, we get
∣∣∣J(ul)− µ

∣∣∣ ≤ ε for all l ≥ nβ, giving the desired result. �

208


	Acronyms
	Notations
	Introduction (Version française)
	Contexte industriel
	Approches mathématiques pour l'optimisation de la maintenance
	Plan du manuscrit
	Publications

	Introduction
	Industrial context
	Mathematical approaches for optimal maintenance scheduling
	Outline of the thesis
	Publications

	I Blackbox approaches for optimal maintenance scheduling: comparison between a kriging-based algorithm and a direct search method
	Introduction to blackbox methods
	Overview of kriging and of the EGO algorithm
	Introduction
	Overview of Gaussian process regression
	The Efficient Global Optimization (EGO) algorithm
	Conclusion

	Direct search algorithms
	Introduction to direct search algorithms
	Generalized Pattern Search (GPS)
	Mesh Adaptive Direct Search (MADS)
	Conclusion

	Two contributions for EGO
	Introduction
	The EGO-FSSF algorithm
	A comparison of solvers for EI maximization
	Conclusion

	Benchmark and industrial application of EGO and MADS
	Introduction
	Benchmarking EGO and MADS on COCO
	Application to an industrial maintenance optimization problem
	Conclusion, limits of the blackbox methods and perspectives


	II Decomposition by prediction for optimal maintenance scheduling
	From blackbox optimization to stochastic optimal control
	The Auxiliary Problem Principle and its use in decomposition
	Introduction
	Presentation of the APP
	The decomposition by prediction as a specific instance of the APP
	Conclusion

	Modeling of the industrial maintenance optimization problem
	Introduction
	Description of the system
	Dynamics of the system
	Costs generated by the system
	Formulation of the maintenance optimization problem
	Conclusion

	Application of the APP on two synthetic test cases
	Introduction
	The deterministic synthetic test case
	The stochastic synthetic test case
	Conclusion

	Application of the APP on an industrial maintenance optimization problem
	Introduction
	Decomposition of the space by component
	Construction of an auxiliary problem
	Relaxation of the system
	Explicit expression of the subproblems
	The APP fixed-point algorithm for the industrial system
	Tuning of the APP fixed-point algorithm
	Numerical results on the 80-component case
	Conclusion


	III The stochastic APP in Banach spaces: measurability and convergence
	From Sample Average Approximation to Stochastic Approximation
	Measurability and convergence of the APP
	Introduction
	Description of the algorithm and examples
	Measurability of the iterates of the stochastic APP algorithm
	Convergence results and efficiency estimates
	Conclusion

	General conclusion and perspectives
	References
	Basic definitions in analysis
	Basic notions from measure theory
	Full convergence plots of the APP
	For the deterministic synthetic test case
	For the stochastic synthetic test case

	Explicit expressions for the implementation of the decomposition
	Explicit expression of the dynamics of the industrial system
	Explicit expression of the dynamics of the relaxed system
	Computation of optimal multipliers
	Derivative of the relaxed indicator function

	Technical lemmas for the stochastic APP


