
HAL Id: tel-03224484
https://pastel.hal.science/tel-03224484

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2D and 3D Geometric Attributes Estimation in Images
via deep learning

Xuchong Qiu

To cite this version:
Xuchong Qiu. 2D and 3D Geometric Attributes Estimation in Images via deep learning. Signal and
Image Processing. École des Ponts ParisTech, 2021. English. �NNT : 2021ENPC0005�. �tel-03224484�

https://pastel.hal.science/tel-03224484
https://hal.archives-ouvertes.fr


École Doctorale Paris-Est

Mathématiques & Sciences et Technologies

de l’Information et de la Communication

Thèse de doctorat
de l’Université Paris-Est

Domaine : Traitement du Signal et des Images

Présentée par

Xuchong QIU
pour obtenir le grade de

Docteur de l’Université Paris-Est

2D and 3D Geometric Attributes Estimation

in Images via Deep Learning

Soutenue publiquement le 11 Février 2021 devant le jury composé de :

Eric Marchand Professor, University of Rennes 1 Rapporteur

Christian Wolf Associate Professor, INSA de Lyon Rapporteur

Diane Larlus Principal Scientist, Naver Labs Europe Examinatrice

Vincent Lepetit Director of Research, École des Ponts ParisTech Examinateur

Renaud Marlet Senior Researcher, École des Ponts ParisTech Directeur de thèse

Chaohui Wang Associate Professor, University Gustave Eiffel Co-directeur de thèse



Abstract

The visual perception of 2D and 3D geometric attributes (e.g. translation, rotation, spatial
size and etc.) is important in robotic applications. It helps robotic system build knowledge
about objects of interest and its surrounding environment, and can serve as the input for
down-stream tasks such as object localization, scene understanding and motion planning.

The main goal of this thesis is to automatically detect 2D and 3D geometric attributes
of objects and the environment. In particular, we are interested in the low-level task of
estimating occlusion relationship in single images and the high-level tasks of object visual
tracking and object pose estimation.

The first focus is to track the object of interest with correct locations and sizes in a given
video. We first study systematically the tracking framework based on discriminative corre-
lation filter (DCF) and propose to leverage semantics information in two tracking stages:
the visual feature encoding stage and the target localization stage. Our experiments demon-
strate that the involvement of semantics improves the performance of both localization and
size estimation in our DCF-based tracking framework. We also make an analysis for failure
cases.

The second focus is using object shape information to improve the performance of object
6D pose estimation and do object pose refinement. We propose to estimate the 2D projec-
tions of object 3D surface points with deep models to recover object 6D poses. Our results
show that the proposed method benefits from the properties of these 3D-to-2D point corre-
spondences and achieves better performance. As a second part, we study the constraints of
existing object pose refinement methods and develop a pose refinement method for objects
in the wild. Our experiments demonstrate that our models trained on either real data or
generated synthetic data can refine pose estimates for objects in the wild, even though these
objects are not seen during training.

The third focus is studying geometric occlusion in single images to better discriminate
objects in the scene. We first formalize geometric occlusion definition and propose a method
to automatically generate high-quality occlusion annotations. Then we propose a new oc-
clusion relationship formulation (i.e. P2ORM) and the corresponding inference method.
Experiments on occlusion reasoning benchmarks demonstrate the superiority of the pro-
posed formulation and method. To recover accurate depth discontinuities, we also propose
a depth map refinement method and a single-stage monocular depth estimation method.
By using the estimates of occlusion relationship as guidance, these two methods achieve the
state-of-the-art performance.

All the methods that we propose leverage on the versatility and power of deep learning.
This should facilitate their integration in the visual perception module of modern robotic
systems.

Besides the above methodological advances, we also made available software (for occlu-
sion and pose estimation) and datasets (of high-quality occlusion information) as a contri-
bution to the scientific community.



Résumé

La perception visuelle d’attributs géométriques 2D et 3D (ex. la translation, la rotation, la
taille, etc.) est très importante dans les applications robotiques. Elle permet à un système
robotique d’acquérir des connaissances sur des objects intéressées et son environnement, et
peut fournir des entrées pour des tâches telles que la localisation d’objets, la compréhension
de scènes et la planification de mouvement.

Le principal objectif de cette thèse est d’estimer des attributs géométriques 2D et 3D
des objets et du environment. En particulier, nous nous intéressons à la tâche de bas niveau
d’estimation de la relation d’occultation dans des images, et aux tâches de plus haut niveau
de suivi visuel d’objets et d’estimation de la pose d’objets.

Le premier axe d’étude est le suivi (tracking) d’un objet d’intérêt dans une vidéo, avec
des locations et tailles correctes. Tout d’abord, nous étudions attentivement le cadre du
suivi d’objet basé sur des filtres de corrélation discriminants et proposons d’exploiter des
informations sémantiques à deux niveaux : l’étape d’encodage des caractéristiques visuelles
et l’étape de localisation de la cible. Nos expériences démontrent que l’usage de la sémantique
améliore à la fois les performances de la localisation et de l’estimation de taille de l’objet
suivi. Nous effectuons également des analyses pour comprendre les cas d’échec.

Le second axe d’étude est l’utilisation d’informations sur la forme des objets pour
améliorer la performance de l’estimation de la pose 6D d’objets et de son raffinement.
Nous proposons d’estimer avec un modèle profond les projections 2D de points 3D à la
surface de l’objet, afin de pouvoir calculer la pose 6D de l’objet. Nos résultats montrent
que la méthode que nous proposons bénéficie des propriétés des correspondances de points
3D à 2D et permet d’obtenir une meilleure précision des estimations. Dans un deuxième
temps, nous étudions les contraintes des méthodes existantes pour raffiner la pose d’objets
et développons une méthode de raffinement des objets dans des contextes arbitraires. Nos
expériences montrent que nos modèles, entraînés sur des données réelles ou des données
synthétiques générées, peuvent raffiner avec succès les estimations de pose pour les objets
dans des contextes quelconques.

Le troisième axe de recherche est l’étude de l’occultation géométrique dans des images,
dans le but de mieux pouvoir distinguer les objets dans la scène. Nous formalisons d’abord
la définition de l’occultation géométrique et proposons une méthode pour générer automa-
tiquement des annotations d’occultation de haute qualité. Ensuite, nous proposons une
nouvelle formulation de la relation d’occultation (P2ORM) et une méthode d’inférence cor-
respondante. Nos expériences sur les jeux de tests pour l’estimation d’occultations montrent
la supériorité de notre formulation et de notre méthode. Afin de déterminer des discontinu-
ités de profondeur précises, nous proposons également une méthode de raffinement de cartes
de profondeur et une méthode monoculaire d’estimation de la profondeur en une étape. En
utilisant l’estimation de relations d’occultation comme guide, ces deux méthodes atteignent
les performances de l’état de l’art.

Toutes les méthodes que nous proposons s’appuient sur la polyvalence et la puissance de
l’apprentissage profond. Cela devrait faciliter leur intégration dans le module de perception
visuelle des systèmes robotiques modernes.

Outre les avancées méthodologiques mentionnées ci-dessus, nous avons également rendu
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publiquement disponibles des logiciels (pour l’estimation de l’occlusion et de la pose) et
des jeux de données (informations de haute qualité sur les relations d’occultation) afin de
contribuer aux outils offerts à la communauté scientifique.
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Chapter 1

Introduction

This thesis addresses visual perception of 2D and 3D geometric attributes (e.g., trans-

lation, rotation, spatial size, etc.) with a focus on object visual tracking, object 6D

pose estimation and occlusion relationship estimation. This chapter presents the

goals, the motivations, the challenges and the contributions of our work.

1.1 Goals

Our main goal is to automatically detect 2D and 3D geometric attributes in images

via deep learning. In particular, we are interested in the low-level task of estimat-

ing occlusion relationship in single images and the high-level tasks of object visual

tracking and object pose estimation.

The first focus of this thesis is to track the object of interest with correct locations

and object sizes in a given video. Given the ground-truth bounding box of the object

in the first frame of the video, the tracker should be able to predict 2D bounding boxes

which successfully track the object in the subsequent frames. In particular, we try to

leverage the semantics information estimated by deep semantic segmentation models

in the DCF-based tracking framework. Our objective is reducing both localization

errors and scale estimation errors with the involvement of semantics. In Figure 1.1,

13



14 Chapter 1. Introduction

Figure 1.1: Object visual tracking task examples where the red bounding boxes are the
tracking ground truths.

we provide two examples for the object visual tracking task.

Second, with an object image and the object 3D shape, we aim to develop ob-

ject 6D pose estimation methods and object pose refinement methods which offer the

relative transformation between the object and the camera. The estimated transfor-

mation can be used for robot grasping tasks once the relative transformation between

the camera and the robot is known. Our first interest is exploiting the 3D-to-2D cor-

respondences between the object 3D surface and the observed object pixels to achieve

a better pose estimation performance. Our second interest is improving the accuracy

of coarse pose estimates for objects in the images which are captured during daily

life by different people without any experimental setup. In other words, we try to

alleviate the usage constraints of existing refinement methods and make our pose re-

finement method more applicable in real world. In Figure 1.2, some examples about

the object 6D pose estimation task and the object pose refinement task are displayed.

Third, we study the low-level geometric occlusion existing in single images as we

think it is a helpful information for scene understanding and discriminating objects

laying in the scene. As current geometric occlusion representations lack good formu-

lations and high-quality annotations, we first aim to develop new geometric occlusion

formulations which are reasonable and facilitate automatic methods which generate
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Figure 1.2: Examples of the object 6D pose estimation task and the pose refinement task.
The first row presents some objects whose poses are to be estimated where the green bound-
ing boxes are the projected object 3D bounding boxes using the ground-truth 6D poses;
The second row presents the iterative pose refinement of an object, from left to right: the
input image, the rendered object using the ground-truth pose, the rendered object using the
initial pose estimate, the rendered object using the first pose update, the rendered object
using the second pose update.

high-quality annotations. With the new occlusion formulation and the generated

annotations, we try to develop a corresponding inference method which recovers ge-

ometric occlusions from single images. The new occlusion inference method can also

help other scene understanding tasks such as monocular depth map estimation due

to the inherent relationship between geometric occlusion and other scene geometric

attributes. Thus, we also aim to develop scene understanding methods which profit

from our occlusion formulation and achieve a better performance. In Figure 1.3, we

present some scene geometric attributes to estimate in color images.
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(a) (b)

(c) (d)

Figure 1.3: Examples of scene geometric attributes estimation tasks: (a) Input color im-
age, (b) Ground-truth depth map, (c) Ground-truth surface normal map, (d) Ground-truth
geometric occlusion boundaries.

1.2 Motivations

Computer vision research has become increasingly successful with recent advance-

ments of deep learning techniques. Meanwhile, the computer vision research in

robotics domain draws more and more attention because of its vast application

prospects in daily life. Among all these related tasks, the perception of geometric

attributes of the objects and of the surrounding environments plays an important

role, and serve as an important building block for downstream tasks. While the input



1.2. Motivations 17

of a robot perception system can be varied (e.g., image, depth, IR, etc.) and mul-

timodal, doing estimations with only monocular images as input is very challenging

but has the broadest potential applications due to the ubiquitous availability of RGB

cameras. Considering the complexity of real world, deep-learning-based methods have

a big possibility to offer better solutions for these tasks as they are data-driven and

use the enormous data collected from real world. In the following, we list various

reasons why the geometric attributes understanding in images is an active research

area, together with the potential applications in the context of robotics.

Why geometric attributes understanding? Understanding the contents exist-

ing in images is always one core topic in computer vision. For a robotic agent in a

real scene, the contents in the scene can be roughly divided into the background and

the objects (including human beings) which the robot is interested in or may interact

with. Understanding the geometric attributes of the objects (e.g., 2D/3D location,

spatial size, orientation) help the robot keep attention on the objects of interest for

other applications (e.g., object recognition, defect detection, sentiment analysis) or

even interact with these objects physically (e.g., object grasping, object assembly,

elderly care). Meanwhile, understanding the geometric attributes of the whole scene

(e.g., depth map, surface normal map, occlusion) gives the robot some knowledge

about its surrounding environment which facilitates robot navigation in the scene

and some operations on the objects. In short, the understanding of geometric at-

tributes is one of the foundation stones which help intelligent systems understand our

physical world.

Applications of object visual tracking. Once the object of interest is selected

or detected, the object visual tracking system offers the 2D locations and the spatial

sizes of the object in an image sequence. Object visual tracking is one of the fun-

damental problems in computer vision and has numerous applications in real world.
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In autonomous driving, the vehicle needs to track other vehicles and pedestrians in

real-time to secure the security during driving. Video surveillance systems detect and

track criminal suspects in videos to help the police. The entertainment industry use

UAVs to track actors/actresses in outdoor environments and create amazing pictures

in movies. Except for aforementioned direct applications, the object regions offered

by tracking frameworks also facilitate many fine-grained applications which take the

estimated regions as input.

Applications of object pose estimation. The object pose estimation system

predicts the spatial position and orientation of the object of interest w.r.t. a reference

coordinate system. Many applications in robotics and augmented reality are based

on the knowledge of object poses. In assembly lines, industrial robots can grasp the

needed components successfully when the pose between the component and the robot

end-effector is given. Augmented reality games estimate the pose of objects in daily

life (e.g., tables, chairs) and cast virtual contents on these objects to create joyful

interactions with our real world. In autonomous driving, the poses of vehicles offer

useful information for predicting the future behaviours of vehicles.

Applications of scene geometry understanding. Scene geometry understand-

ing relates to estimating geometric attributes of the scene such as depth, occlusion

and surface normal. In scene 3D reconstruction, computing depth allows us to project

images captured from multiple views into 3D points where registration and match-

ing of all the points are applied later to reconstruct the scene. Geometric occlusion

appears as the depth discontinuities along the boundaries between different objects

and the recovered occlusions help discriminating foreground/background in numerous

applications such as the portrait mode of smartphone cameras. Microsoft HoloLens

calculates the surface normal of the scene and put furniture virtually and naturally

in real world to help interior designers think about new designs.
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In this section, we introduce briefly the potential applications of geometric at-

tributes estimation from visual data. Next, we discuss some of the challenges which

raise open research questions in these topics.

1.3 Challenges

The human visual system has no difficulty to continually perceive the objects of

interest and the surrounding environments. However, this is still a difficult task for

machines when only monocular images are given. The machines have to extract

meaningful geometric attributes (e.g., object regions in 2D images, spatial locations

in 3D scenes) from a set of raw pixels captured by cameras. In this thesis, we focus

on the aforementioned extraction task using deep models and study three important

specific tasks: object visual tracking, object pose estimation and scene geometry

understanding. The perception of geometric attributes in images is an active research

field that addresses in particular the following challenges.

Tracking objects accurately and robustly. Despite the achievement of exist-

ing methods, the features of real-world videos still make object visual tracking a

challenging task. Specifically, most object visual tracking benchmarks include videos

featuring object appearance variations, occlusions, motion blur, illumination changes,

etc. (see some examples in Figure 1.4). Despite the aforementioned challenges, an

object visual tracking system is required to track the target accurately and robustly.

Besides, the visual quality of videos is usually lower than the one of still images so

that methods working well on still images can not be easily used on videos.

Estimating object 6D pose from a single image. The 6D pose of a rigid object

can be decomposed into a 3D translation and a 3D rotation w.r.t. a reference coordi-

nate system. Recent methods relying on distance information (e.g., depth maps cap-

tured by depth cameras) have achieved a good performance. However, methods using



20 Chapter 1. Introduction

Figure 1.4: Some challenges in object visual tracking task. The first row illustrates object
appearance and size variations while the second row illustrates the additional impact of
occlusion. The red bounding boxes represent the tracking ground truths.

only color images still often fail due to the lack of 3D information as input. Mean-

while, the weakly-textured or non-textured object appearance as in Fig 1.2 degrades

the performance of traditional methods based on detecting local features in images.

Besides, most existing methods are tested with images captured in constrained ex-

perimental environments while methods working on images captured during daily life

(cf. Figure 1.5) are less addressed.

Figure 1.5: Examples illustrating the unconstrained backgrounds in everyday images for
object pose estimation task.

Good formulation and data for occlusion reasoning. The low-level informa-

tion about geometric occlusion in single images is useful for other scene geometry un-

derstanding tasks (e.g., depth estimation, surface normal estimation) and also helps

discriminating different objects when there are inter-object occlusions between mul-
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tiple objects. However, current occlusion representations are not extremely good for

deep models to learn and inference. Besides, the existing occlusion annotations are

either labeled manually with a great human labor or generated automatically with

a lack of completeness (cf. Figure 1.6). The aforementioned challenges disturb the

application of occlusion cues in downstream tasks although occlusions are ubiquitous

in 2D images.

Figure 1.6: Examples illustrating incomplete geometric occlusion boundary annotations.

1.4 Thesis Structure and Contributions

We break our thesis into three main chapters that address each of the previously

introduced challenges. In the remaining of this section, we describe the objective of

each chapter, the proposed methods and the corresponding contributions.

Single object visual tacking. In chapter 2, we present our work about leveraging

semantics information in object visual tracking framework. We first study systemati-

cally the popular tracking framework based on discriminative correlation filter. Then

we propose to use semantics information estimated by semantic segmentation models

in two tracking stages: the visual feature encoding stage and the target localization

stage. We conclude that the involvement of semantics in the feature encoding stage

improves the performance of both localization and scale estimation in the tracking

framework. Our use of semantics in the tracking localization stage does not bring

improvements in general, and we analyze the correlation between the tracking per-
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formance and the semantic segmentation quality to explain this phenomenon.

Object pose estimation with object shapes. In chapter 3, we focus on using

object shape information to improve the performance of object 6D pose estimation

and do object pose refinement. Given an object 3D model and its 2D projection in an

image, we propose to estimate the 2D coordinates of the projected object 3D surface

points with deep models and to predict the object 6D pose using the estimated 3D-to-

2D point correspondences. The proposed method benefits from the properties of these

correspondences and achieves a better performance than other methods, in particular

corner-based methods. In a second part, we study the constraints of existing object

pose refinement methods and develop a pose refinement method for objects in the

wild. Our experiments demonstrate that our models trained on either real data or

generated synthetic data can refine pose estimates for objects in real images which

are captured in daily life.

Geometric occlusion and depth map estimation. In chapter 4, we deal with

geometric occlusion in single images. We first formalize a definition of geometric

occlusion and propose a method to automatically generate high-quality occlusion

annotations. We then express a new occlusion relationship formulation (we call it

P2ORM) and propose a corresponding inference method. We show the relevance

of the proposed occlusion relationship as a guidance signal for a depth map refine-

ment method. According to evaluations on public benchmarks, both our occlusion

estimation method and depth map refinement method achieve state-of-the-art per-

formance. Last, we introduce our single-stage monocular depth estimation method

which directly recovers better depth discontinuities with the help of P2ORM. Besides,

we release three datasets containing the generated occlusion relationship annotations

(i.e., InteriorNet-OR, NYUv2-OR and iBims-1-OR) to contribute to the advancement

of research in the community.
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In the following, we list our publications as well as the software and dataset releases

that were performed during the course of this thesis.

1.4.1 Publications

The work done during this PhD led to the following publications:

• Qiu, X., Xiao, Y., Wang, C., Marlet, R.: Pixel-Pair occlusion relationship map

(P2ORM): Formulation, Inference & Application. In: European Conference on

Computer Vision (ECCV) (2020). [108] (Chapter 4)

• Xiao, Y., Qiu, X., Langlois, P., Aubry, M., Marlet, R.: Pose from shape: Deep

pose estimation for arbitrary 3D objects. In: British Machine Vision Conference

(BMVC) (2019). [152] (Chapter 3)

1.4.2 Software and dataset contributions

Software.

• P2ORM: The code and pretrained models for occlusion relationship estimation

and depth map refinement are released. The code for high-quality occlusion

annotation generation is also released as a part of the project presented in [108]

(Chapter 4). https://github.com/tim885/P2ORM

• PoseFromShape: The code and pretrained models for object pose estimation

are released as a part of the project presented in [152] (Chapter 3). https:

//github.com/YoungXIAO13/PoseFromShape

• BlockEstimation: The PyTorch [100] re-implementation for block pose estima-

tion and robotic manipulation is released as a part of the project presented

in [77]. https://github.com/tim885/blockEstimation

https://github.com/tim885/P2ORM
https://github.com/YoungXIAO13/PoseFromShape
https://github.com/YoungXIAO13/PoseFromShape
https://github.com/tim885/blockEstimation
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• BlockDimEstimation: The code and pretrained model of block 3D dimension

estimation for robotic manipulation are released. https://github.com/

tim885/blockDimEstimation

InteriorNet-OR dataset. We have publicly released the InteriorNet-OR dataset

(http://imagine.enpc.fr/~qiux/P2ORM/) with the publication of [108] (Chap-

ter 4). The synthetic RGB-D pairs come from the InteriorNet dataset [70] and the

pixel-pair occlusion relationship annotations are generated by the method proposed

in [108]. It contains 10K realistic images captured in 500 different indoor scenes and

can serve as the training dataset for occlusion relationship estimation and depth map

refinement on real images.

iBims-OR dataset. We have publicly released the iBims-OR dataset (http://

imagine.enpc.fr/~qiux/P2ORM/) with the publication of [108] (Chapter 4).

The real high-quality RGB-D pairs come from the iBims-1 dataset [58] and the pixel-

pair occlusion relationship annotations are generated by the method proposed in [108].

It contains 100 real images captured in 20 different indoor scenes and can serve

as an evaluation dataset for occlusion relationship estimation and monocular depth

estimation.

NYUv2-OR dataset. We have publicly released the NYUv2-OR dataset (http:

//imagine.enpc.fr/~qiux/P2ORM/) with the publication of [108] (Chapter 4).

Based on RGB-D pairs from the NYUv2 dataset [93] and occlusion boundaries of-

fered by [111], the pixel-pair occlusion relationship annotations are generated by the

method proposed in [108]. It contains 654 real images captured in 464 different indoor

scenes and can serve as an evaluation dataset for occlusion relationship estimation

and monocular depth estimation.

https://github.com/tim885/blockDimEstimation
https://github.com/tim885/blockDimEstimation
http://imagine.enpc.fr/~qiux/P2ORM/
http://imagine.enpc.fr/~qiux/P2ORM/
http://imagine.enpc.fr/~qiux/P2ORM/
http://imagine.enpc.fr/~qiux/P2ORM/
http://imagine.enpc.fr/~qiux/P2ORM/
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1.5 Outline

This thesis consists of five chapters including this introduction. In chapter 2, we

present our work on leveraging structural semantics information in object visual track-

ing framework. In chapter 3, we focus on using object shape information to improve

object 6D pose estimation performance and do object pose refinement for objects in

the wild. In chapter 4, we address geometric occlusion in single images and propose

methods both for annotation generation and inference. We also introduce our depth

estimation methods using the proposed geometric occlusion formulation. Finally, we

conclude our thesis in chapter 5 where we also present possible future work.



Chapter 2

Single Object Tracking with

Structural Semantics

2.1 Introduction

In this chapter, we focus on (online) single object tracking, which is a very impor-

tant topic in computer vision and has many practical applications such as video

surveillance, robot navigation and autonomous driving. Only given the ground-truth

bounding box of a target in the first frame of a video sequence, the tracker needs to

successfully track the target in subsequent frames, by overcoming a series of challenges

such as appearance variations, occlusions, motion blur and illumination changes.

The recent advances of deep learning community has led to tremendous progress

in object tracking [139, 48, 82, 8, 129, 21, 18, 37, 67, 122, 9], in particular those

discriminative methods, which utilize a classifier model to tell whether a target sample

is the object of interest or not. Model training is performed by collecting positive

and negative examples from the region of interest that is provided at the beginning of

the tracking (e.g., examples in the first frame, possibly with other offline examples).

The object localization in a frame is generally performed by looking for the candidate

location with the highest classification score.

26
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Among discriminative approaches for tracking, those based on Discriminative Cor-

relation Filter (DCF) have proved both the effectiveness and the computational effi-

ciency, thanks to Fast Fourier Transform (FFT). Given video frame(s) as input, the

DCF-based approaches regress all the circular-shifted versions of input features (e.g.,

pixel-wise intensity) to a target Gaussian function with a small spatial bandwidth,

while the maxima of response function indicates the target center position. Recently,

feature extractors based on Convolutional Neural Networks (CNNs) have achieved a

great success in many computer vision tasks (in particular object recognition) and

also demonstrated a powerful generalization ability in other domains where they are

not originally designed for. Meanwhile, convolutional features provide a type of pow-

erful and robust visual features for various visual perception problems, and thus many

DCF-based trackers using CNN features are proposed. However, these trackers often

suffer from localization drifts, and we argue that one possible reason is that they lack

structural semantics information of the target object in the image space. Inspired

by recent advancements of semantic segmentation, we propose a DCF-based tracker

which explicitly uses semantics information offered by deep models, so as to improve

the precision of localization and also the robustness.

Meanwhile, the Siamese-network-based trackers have also received significant at-

tentions, thanks to their well-balanced tracking accuracy and efficiency. These track-

ers formulate visual tracking as a cross-correlation problem and are expected to better

leverage the merits of deep networks from end-to-end learning. In order to produce a

similarity map from cross-correlation of the two branches, they train a Y-shaped neu-

ral network that combines the two branches, one for the target template and the other

one for the candidate region. However, the state of the art of Siamese-network-based

methods is lower than that of DCF-based methods.

To summarize, the main contribution of our work presented in this chapter is the

inclusion of structural semantics information in the image space within the DCF-based

tracking framework. The resulting tracker is demonstrated to be able to improve
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both the accuracy and the robustness, based on the experiments on standard object

tracking benchmarks.

The remainder of the chapter is structured as follows: We discuss related work in

Section 2.2. We introduce DCF-based tracking framework in Section 2.3. We show

how to explicitly use semantics information in Section 2.4. Implementation details

and experimental evaluation are presented in Section 2.5 and Section 2.6, respectively.

Finally, we make the conclusion in Section 2.7.

2.2 Related Work

DCF-based tracking framework. Starting from the proposition of MOSSE [10]

in 2010, Discriminative Correlation Filter (DCF) based approaches have evolved

quickly during these years with a continuous improvement of the performance on

object tracking. MOSSE trains the filter by minimizing the total squared error be-

tween the actual and the desired correlation outputs on a set of grayscale sample

patches. With the help of circular correlation and Fast Fourier transform, the com-

putation can be done efficiently in the Fourier domain by point-wise operations. The

initial DCF framework is later extended to use multi-channel feature maps (e.g., cor-

relation for object alignment, multi-channel correlation filter, color attributes, HOG,

Color Names, ). Based on such a multi-channel DCF framework, the performance

of trackers has been improved continuously by further extensions, including the ex-

ploitation of non-linear kernels cast as kernelized correlation filters (e.g., CSK [42],

KCF [43]), the involvement of long-term memory components [49], part-based model-

ing [75], adaptive scale estimation [71], and the reduction of boundary effects caused

by circular convolution [20], .

Recently, with the great achievement of Convolutional Neural Network (CNN) in

many computer vision tasks such as object recognition (e.g., Alexnet [60], VGG [121],

ResNet [39]) and semantic segmentation(e.g., FCN [78], DeepMask [105], Deeplab [16],
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the strong generalization power of image representations produced by CNNs is also

exploited by object tracking community. Danelljan et al. [19] involves CNN last con-

volutional layer feature in the DCF framework and achieves a significant performance

improvement. Ma et al. [82] employs both shallow and deep layers features from

CNN in a hierarchical ensemble of DCF trackers, so as to benefit from both low-level

and high-level visual information. CCOT [21] proposes a continuous-domain formula-

tion of the DCF framework with an integration of multi-resolution deep features and

achieves a top performance on standard object tracking benchmarks [146, 59]. Based

on CCOT, ECO [18] revisits the DCF core components and successfully achieves a

speedup.

Semantic segmentation is a fundamental task in scene parsing and the goal is to

assign a semantic class label to each pixel in the image. In the era of deep learning,

state-of-the-art methods for semantic segmentation are mostly based on fully convo-

lutional network (FCN), which only consists of convolutional layers. One important

advantage of FCN architecture is that the network input images can have different

spatial sizes. In order to enlarge the receptive fields of networks without downsam-

pling by pooling layer, methods like [15, 157] propose to add dilated convolutional

layers. Based on FCN, people also exploit the use of multi-scale feature ensembling to

benefit from both the precise location information offered by low-level layer features

and the semantics information offered by high-level layer features [119, 4]. Meanwhile,

people try to apply structure prediction methods to refine segmentation predictions.

Pioneer work [16] uses a Conditional Random Field (CRF) model to perform such

a refinement, and following methods [106, 52] apply end-to-end modeling. Both of

the two directions enhance the localization ability of models and therefore achieve

better detection on image boundary regions. In our work, the FCN model proposed

by [78] is adopted in the our tracking framework so as to exploit and fuse seman-

tics information. Another relevant segmentation task is semi-supervised video object
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segmentation where the object ground-truth mask in the video first frame is given.

Recent methods mainly propose different ways to quickly adapt the parameters of

a segmentation network during test time for the object segmentation in the video

resting frames [104, 137, 87, 155, 98].

Tracking with semantics information. Compared to traditional methods for

computer vision tasks, the superiority of deep models mainly owes to the ability

of capturing implicit semantics information in images. Typical deep-learning-based

recognition algorithms convert the output of CNN’s last layer into a feature vector and

do classification based on it. This is a reasonable choice as deep layers are more sen-

sitive to category-level semantics information and more invariant to visual variations,

such as illumination changes, color changes, deformations, . More concretely, the

majority of state-of-the-art trackers [19, 82, 21, 18] regard deep features from CNN as

additional input features which capture some implicit semantics information of both

the tracked targets and the surrounding environment. However, the used deep fea-

tures are not distributed spatially according to the target shape in the image space,

and somehow limit a further improvement of the tracking performance. Whereas,

deep segmentation models (e.g., FCN [78], DeepMask [105], Deeplab [16]) provide a

type of tools to address this limitation. Hence, in our work, with a proper adoption

of such segmentation models within the DCF-based tracking framework, we propose

a new tracker exploiting a type of semantics features (named structural semantics

features). This improves both the accuracy and the robustness of object tracking,

as demonstrated by the experiments on standard object tracking benchmarks (e.g.,

OTB-2015 [146]).
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Figure 2.1: Overview of the DCF-based tracking framework. In the learning stage, the
correlation filters are learned with the extracted feature maps and a ground-truth response
map as input. In the localization stage, the estimated response map is obtained by the
calculation between the new extracted feature maps and the correlation filters learned in the
learning stage. Here, ‘FFT’ and ‘IFFT’ represent Fast Fourier Transformation and Inverse
Fast Fourier Transformation respectively. The green bounding box is used as the ground-
truth bounding box for learning while the blue bounding box is the estimated bounding box
based on the estimated response map.

2.3 DCF-based Tracker

We adopt the DCF-based tracking framework as our tracking framework because of

its accuracy and robustness. A typical DCF-based tracker learns a set of correlation

filters {fl}Ll=1 in the first frame of the video sequence and update them during the

tracking process. Given the feature maps {xl}Ll=1 extracted from the image patch in

a new frame, a set of correlation response maps {Sl}Ll=1 are obtained by the learned

filters {fl}Ll=1 and the tracker estimates the translation and the scale change of the

target object based on the obtained response maps {Sl}Ll=1. The overview of the

DCF-based tracking framework is illustrated in Figure 2.1, we introduce the details

in Section 2.3.1 and Section 2.3.2.
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2.3.1 Learning correlation filter

Given a video frame and the associated target bounding box (either manually provided

or estimated), a DCF-based tracker will firstly crop an image patch I where the

target bounding box is in the center and then resize the patch to a spatial size

M × N . Now we consider the case where each correlation filter f is learned from

an extracted multi-channel feature map x of size M ×N ×D (where D is the number

of channels). We consider all the circular shifts of x along the two spatial dimensions

as training samples to augment data. For each shifted sample x(m,n), where (m,n) ∈

{0, 1, ...,M−1}×{0, 1, ..., N−1}, it has a 2-D correlation response map label y(m,n)

following a Gaussian distribution: y(m,n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , where σ is the kernel

width depending on the response map size (e.g., 0.1
√
MN). Given feature map x,

the correlation filter f of size M ×N ×D can be learned by minimizing the following

objective function:

E(f) =

M,N∑
m=1,n=1

‖f(m,n) · x(m,n)− y(m,n)‖2
L2 + λ

D∑
d=1

∥∥fd(m,n)
∥∥2

L2 . (2.1)

Here λ is a regularization parameter (λ ≥ 0) and the inner product is induced by a lin-

ear kernel in the Hilbert space: f(m,n) ·x(m,n) =
∑D

d=1 f
d(m,n)xd(m,n). As stated

in previous DCF-based methods, the minimization problem in Equation (2.1) can be

solved in each individual feature map channel d using Fast Fourier Transformation

(FFT). We use the capital letters to denote the corresponding Fourier transformed

signals of variables introduced before. By finding stationary point as stated in [10], a

closed-form solution is found for each channel of the correlation filter f :

F d =
Y � X̄d∑D

i=1(X i � X̄ i) + λ
, (2.2)

where Xd, Y, F d denote the Fourier-transformed signals of xd, y, fd, respectively, X̄d

complex conjugation of Xd, and the operator � the Hadamard (element-wise) prod-
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uct.

During the tracking, the appearance of target can often vary following the change

of its rotation, scale, pose, the light conditions, (and also non-rigid deformation for

non-rigid objects). Therefore, filters need to quickly adapt to target visual variance.

A running average across video frames is therefore used to generate correlation filter

F d
j in the current frame j. Let us consider two consecutive frames j, j − 1, and the

running average of filter at current frame F d
j is defined as:

Adj = ηY � X̄d
j + (1− η)Adj−1 (2.3a)

Bd
j = η

D∑
i=1

X i
j � X̄ i

j + (1− η)Bd
j−1 (2.3b)

F d
j =

Adj
Bd
j + λ

. (2.3c)

where η is a learning rate between consecutive frames and the temporal context is

therefore involved in filter learning. After the initialization of correlation filters {fl}Ll=1

in the first frame, they are updated from the second frame j = 2 to the last frame

j = J .

2.3.2 Target localization and scale estimation

Given a video frame and the target bounding box of the previous frame, the tracker

crops an image patch which is centered at the bounding box and whose size is larger

than the bounding box. The image patch is then resized to M × N , and the target

bounding box of the current frame needs to be estimated based on this image patch

I. With the extracted feature map Xl of I and the learned correlation filters Fl of

the previous frame, the corresponding correlation response map Sl of size M ×N can

be calculated as follows:

Sl = F−1(
D∑
i=1

F d
l � X̄d

l ) . (2.4)
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The operator F−1 denotes the inverse FFT transform and F d
l denotes the d channel

of filter Fl. The tracked target center location can then be estimated by searching for

the position of the maximum value of the correlation response map Sl:

(m̂, n̂) = arg max
(m,n)

Sl(m,n) . (2.5)

Given a set of response maps {Sl}Ll=1 relevant to feature maps {Xl}Ll=1, we can

compute the summation of all response maps and than determine the location via

maximization, i.e.:

(m̂, n̂) = arg max
(m,n)

L∑
l=1

Sl(m,n) . (2.6)

If DCF-based trackers use deep models with spatial pooling layer as feature ex-

tractor, the feature maps are originally CNN convolutional layers whose spatial size

decreases with the increase of the network depth, and then upsampled to the image

patch size, i.e., M × N . Thus a response map based on shallow layers have a more

fine-grained localization ability w.r.t deep layers, and a coarse-to-fine localization

strategy can be adopted. Given two response maps Sl−1, Sl and the maximum value

location (m̂l, n̂l) on coarser response map Sl, the maximum value location on Sl−1 is

calculated as follows:

(m̂l−1, n̂l−1) = arg max
(m,n)

Sl−1(m,n) + γSl(m,n) s.t. ‖m− m̂l‖+ ‖n− n̂l‖ ≤ r . (2.7)

The final response map for localization is a linear combination of Sl−1, Sl with a

coefficient γ. Meanwhile, the constraint indicates that only the r× r neighboring re-

gions of (m̂l, n̂l) are considered in the maximization process. By using Equation (2.7),

the final target location can be obtained by searching from the coarsest response map

SL to the finest response map S1.

The tracker also needs to detect the size of target during tracking, a multi-scale

detection strategy is used here. Given the target bounding box size Hj−1 × Wj−1
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in the previous frame j − 1, the size of the bounding box in the current frame j is

estimated as: αpHj−1 × αpWj−1, where a scaling factor αp should be determined.

As described in [20, 43], the tracker will firstly crop image patches using multiple

scaling factors (e.g., {αp}Pp=1 ∈ {1.02−2, 1.02−1, 1, 1.021, 1.022}) w.r.t. patch size in

the previous frame and then resize them to the size of M × N for target detection.

Given the response maps calculated from patches with different scales {Sp}Pp=1 and

the estimated target center location {(m̂p, n̂p)}Pp=1, the estimated scaling factor index

p̂ is calculated as follows:

p̂ = arg max
p
{Sp(m̂p, n̂p)}Pp=1 . (2.8)

2.3.3 Baseline: CCOT

In this work, we adopt a recently proposed DCF-based tracker, CCOT [21], as our

baseline. The main contribution of CCOT is the learning of convolution filters in

a continuous domain instead of discrete domain as introduced Section 2.3.1. Here,

we briefly describe the CCOT formulation. For clarity, we only present the one-

dimensional domain formulation, please refer to [21] for the generalization in higher

dimensions. The CCOT discriminatively learns a convolution filter f based on a

collection of M feature maps {xj}Mj=1 ⊂ X extracted from M video frames. Each

feature map xj contains D channels and each feature channel xdj ∈ RNd has an inde-

pendent scalar Nd to indicate the dimension of xj, whereas the feature map channels

of previous DCF-based trackers usually share the same resolution N . Each channel

of the feature map xd is transferred from the discrete spatial domain {n}Nd−1
0 to the

continuous spatial domain t ∈ [0, T ) by introducing an interpolation model as follows:

Jd
{
xd
}

(t) =

Nd−1∑
n=0

xd[n]bd

(
t− T

Nd

n

)
. (2.9)
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Here, bd is an interpolation kernel with period T > 0. The result Jd
{
xd
}

is thus

an interpolated feature channel, viewed as a continuous T -periodic function. We use

J{x} = {J{xd}}Dd=1 to denote the entire interpolated feature map.

In the CCOT formulation, a continuous T -periodic multi-channel convolution filter

f = (f 1 . . . fD) is trained to predict the detection scores S{x}(t) of the tracked target

location as follows:

S{x} = f ∗ J{x} =
D∑
d=1

fd ∗ Jd
{
xd
}
. (2.10)

The scores are defined in the continuous spatial domain t ∈ [0, T ). In Equation (2.10),

the convolution between single-channel T -periodic functions f(t), g(t) is defined as

f ∗ g(t) = 1
T

∫ T
0
f(t− τ)g(τ) dτ . The multi-channel convolution f ∗ J{x} is obtained

by summing the result across all the channels, as defined in Equation (2.10). The

filters are learned by minimizing the following objective function:

E(f) =
M∑
j=1

αj ‖S{xj} − yj‖2
L2 +

D∑
d=1

∥∥wfd∥∥2

L2 . (2.11)

The expected target detection scores yj(t) of sample xj is set to a periodically repeated

Gaussian function. The objective function consists of the weighted detection error,

given by the L2-norm ‖g‖2
L2 = 1

T

∫ T
0
|g(t)|2 dt and αj ≥ 0, which is the weight of

sample xj. The regularization term integrates a spatial penalty w(t) to mitigate the

drawbacks of the periodic assumption, while enabling an extended spatial support

[20].

As introduced in Section 2.3.1, a more tractable optimization problem is obtained

by switching the objective function into the Fourier domain. Parseval’s formula im-

plies the equivalent loss as follows:

E(f) =
M∑
j=1

αj

∥∥∥Ŝ{xj} − ŷj∥∥∥2

`2
+

D∑
d=1

∥∥∥ŵ ∗ f̂d∥∥∥2

`2
. (2.12)
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Here, we use ĝ to denote the Fourier series coefficients ĝ[k] = 1
T

∫ T
0
g(t)e−i

2π
T
kt dt of

a T -periodic function g(t), and the `2-norm is defined by ‖ĝ‖2
`2 =

∑∞
−∞ |ĝ[k]|2. The

Fourier coefficients of the detection score of one training sample x in Equation (2.10)

is given by the formula Ŝ{x} =
∑D

d=1 f̂
dXdb̂d, where Xd is the Discrete Fourier

Transform (DFT) of xd. Assuming that each filter fd has a finite number of non-zero

Fourier coefficients {f̂d[k]}Kdk=−Kd , where Kd =
⌊
Nd
2

⌋
, Equation (2.12) then becomes a

quadratic problem, which can be optimized by solving the following equation,

(
AHΓA+WHW

)
f̂ = AHΓŷ . (2.13)

Here, the superscript H is used to denotes the conjugate-transpose of a matrix. f̂

and ŷ are vectorizations of the Fourier coefficients: f̂ = [(f̂ 1)T (f̂ 2)T · · · (f̂D)T ]T , ŷ =

[ŷT1 ŷ
T
2 · · · ŷTM ]T . The matrix A is of a sparse structure, with diagonal blocks containing

elements of the form Xd
j [k]b̂d[k]. Further, Γ is a diagonal matrix of the weights

α1, α2, . . . , αM and W is a convolution matrix with the kernel ŵ[k]. The CCOT

[21] employs the Conjugate Gradient (CG) method [95] to iteratively approach the

solution of (2.13). By doing so, a convolution filter f in the continuous domain can

then be learned from a set of training feature maps {xj}Mj=1.

2.4 Tracking with Structural Semantics

2.4.1 Semantics representation for tracking

In this section, we present our approach of using semantic segmentation network out-

puts as additional features for object tracking. Such outputs offer pixel-wise semantics

information about the target and the background, and may help target localization

and scale estimation. The segmentation network that we use only consists of con-

volutional layers. Given the semantic segmentation network Fseg(.) with its learned

weights WFseg and an image patch I of spatial size M ×N , the convolutional features
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Figure 2.2: Illustration of convolutional features from image segmentation models and the
ones from image classification models: (a) Input image, (b) Semantic segmentation predicted
by the segmentation model [78], (c) The average over channels of last layer features from
the image segmentation model [78], (d) The average over channels of Conv-5 features from
the image classification model [121].

of network layers are extracted as follows:

{xo}Oo=1 = Fseg(I;WFseg) . (2.14)

To differentiate from feature maps used in previously introduced DCF trackers, we

use {xo}Oo=1 to denote the feature maps extracted by Fseg, where o presents the index

of relevant convolutional layer. Similar to the features extracted by deep object

recognition models [60, 121, 39], shallow layers of Fseg contains more fine-grained local

features, while deep layers contain more semantic-aware information. In particular,

the last layer feature xO is of size M × N ×K, where K is the number of semantic

classes for semantic segmentation. Compared to deep features of image classification

models, the main difference of xO is that it contains semantics information which

is more structural w.r.t. image pixel locations because Fseg is trained with pixel-

level supervision. As illustrated in Figure 2.2, the convolutional features from image

segmentation models are more sensitive to object spatial locations than the ones from

image classification models. The semantic class index of one pixel at position (m,n)

is estimated as follows:

k̂ = arg max
k
xO(m,n, k) . (2.15)
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Figure 2.3: The channel-wise score maps of the Fseg last layer feature xO. The green
bounding box in the input image is the tracking ground truth.

The channels of xO are shown in Figure 2.3 where Fseg is trained on PASCAL VOC

2011 dataset [28] with K = 21 in Figure 2.3. Each channel of xO corresponds to a

specific semantic class, and the value at one position indicates the possibility of being

the corresponding class for the relevant pixel in the image space. For simplicity, we

use x to represent xO in the following paragraphs.

For a well-trained Fseg, x(m,n, k) would be high, if and only if k is the ground-

truth semantic class of a pixel (m,n). For the tracked target of semantic class k,

the value of xk = x(·, ·, k) would be high for those pixels within the target region,

which demonstrates that x is an appropriate high-level feature (named as structural

semantics feature) for tracking.

If the target semantic class k is given, we can directly use xk as feature to train

relevant correlation filter f and calculate relevant target response map S in DCF-

based tracking framework. To validate, we evaluate one most common and challenging
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Figure 2.4: Scaled segmentation score maps as the input feature maps of the object tracking
framework. The green bounding box in input image is the tracking ground truth.

target class, i.e., the human, on the tracking benchmark as stated in Section 2.6.3.

In a more general case, the target semantic class is not given and a single channel

xk cannot be chosen. An alternative way is to detect the target class in the first

frame based on the segmentation feature maps x and choose relevant class channel.

However, a more general way is to use all the channels of x as features in the DCF-

based tracking framework. One issue of this method is that the feature channels

which are not relevant to target class may cause much nuisance and degrade the

effectiveness of the indication of the target region.

In order to enhance the importance of the channel of the target semantic class

and reduce negative impact of the other channels, we propose a feature re-scaling

mechanism for x. Concretely, for each class channel xk, we compute its mean score

x̄k within the target bounding box B of size MB × NB, and then a re-scaling factor
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αk by averaging all such mean scores:

x̄k =
1

MB, NB

∑
(m,n)∈B

xk(m,n) (2.16a)

αk =
x̄k

1
K

∑K
k=1 x̄

k
(2.16b)

xks = αkx
k , (2.16c)

where xks denotes the re-scaled feature map channel. Owing to this mechanism, for a

good semantic segmentation network Fseg, the score values of the target class would

be scaled up and the score values of the other classes would be scaled down, which

enhances the effectiveness of the semantic-aware features. These scaled-down score

maps make the tracker pay less attention on those non-target classes, therefore reduces

drifts to distractors. The channels of xs are illustrated in Figure 2.4.

After re-scaling, we fed xs into the DCF-based tracking framework as features. As

introduced in Section 2.3, given a set of feature maps {xl}Ll=1, a set of response maps

{Sl}Ll=1 are output by the learned feature-specific correlation filters {fl}Ll=1 during the

localization phase. The estimated target location is calculated as in Equation (2.6)

and the estimated scale factor for bounding box size is calculated as in Equation (2.8).

In our experiments, the feature map set {xl}Ll=1 consists of the input image, the

features of VGG network [121] Conv-5 layer and the re-scaled features of the FCN [78]

last layer xs. The whole method for the estimation of the localization response map

is illustrated in Figure 2.5. VGG and FCN are pre-trained on the image recognition

and semantic segmentation tasks, respectively, while their weights are fixed during

the tracking for the whole sequence. Meanwhile, as introduced in Section 2.3, the

weights of correlation filters {fl}Ll=1 are initialized in the first frame and continuously

updated in the following frames.
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Figure 2.5: Overview of our method for target localization response map generation. The
VGG network is trained for image classification task and extracts deep convolutional fea-
tures. The FCN network is trained for image semantic segmentation task and predicts the
segmentation score maps.

2.4.2 Module for generating target class probability distribu-

tion

In this section, we introduce how to generate the probability distribution of target

class in images during tracking. We first use the output of the segmentation model

last layer x (of size M × N ×K) to estimate the target semantic class t in the first

frame with the ground-truth bounding box of the target B (of size MB × NB). We

count the number of pixels belonging to different classes within B in the segmentation

map k̂ as the criterion,

k̂(m,n) = arg max
k
x(m,n, k) (2.17a)

N̂k =
1

MBNB

∑
(m,n)∈B

1(k̂(m,n) = k) (2.17b)

t̂ = arg max
k
{N̂k}Kk=1 , (2.17c)
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where the number of pixels belonging to t̂ is the most among all classes {k}Kk=1,

thus t̂ is the most possible semantic class of the target. If N̂t̂ > 0.5, we regard t̂

as the target semantic class, otherwise we think the segmentation model output is

not reliable enough in the given sequence and disable the methods proposed in this

section and Section 2.4.3 for this sequence.

If the target semantic class is t̂, we generate a pixel-wise probability distribution

of the target class considering the fact that segmentation outputs are not always

reliable. Based on x, the initial probability map of the target P̃ of size M × N is

calculated as follows,

p̂(m,n, i) =
ex(m,n,i)∑K
j=1 ex(m,n,j)

(2.18a)

P̃ (m,n) = p̂(m,n, t̂) , (2.18b)

where p̂ (of size M ×N ×K) is regarded as the pixel-wise semantic class probability

map. If the segmentation model performs well, the pixels within the target region will

have high probabilities in P̃ . Unfortunately, due to the domain gap between semantic

segmentation datasets and object tracking datasets, the segmentation model may

perform bad in some video sequences and result in unreliable target class probability

maps. We therefore consider estimating the uncertainty of segmentation predictions

by generating a pixel-wise confidence map K̂ whose values are between 0 and 1. For

one pixel location in the segmentation prediction x(m,n, ·), the value of each channel

and the relationship between the values of different channels both reflect in a degree

the confidence of the segmentation model. Thus we further assume that K̂ can be

decomposed into K̂a based on the absolute value of each channel and K̂r based on

the relationship between different channels. Without loss of generality, we use the

channels k̂1 and k̂2 which have the highest value and the second highest value in



44 Chapter 2. Single Object Tracking with Structural Semantics

x(m,n, ·) respectively to generate the confidence value K̂(m,n):

K̂(m,n) = K̂a(m,n)K̂r(m,n) (2.19a)

K̂a(m,n) =
1

1 + e−θa(x(m,n,k̂1)−ca)
(2.19b)

K̂r(m,n) =
1

1 + e−θr(x(m,n,k̂1)−x(m,n,k̂2)−cr)
, (2.19c)

where (θa, ca) and (θr, cr) are the parameters of two sigmoid functions respectively.

In our experiments, we empirically set (θa, ca) = (3, 1) and (θr, cr) = (5, 0.25). Given

the initial probability map P̃ and the segmentation confidence map K̂, we generate

the updated target class probability map P̂ . Here, a conservative policy is proposed

to reduce the impact of the poor quality of some segmentation predictions during

tracking. More concretely, we initially assume that all pixels within the image patch

possibly belong to the target class; we believe the initial probability map P̃ (m,n) in

function with the confidence score K(m,n) as follows:

P̂ (m,n) = (1− K̂(m,n)) + K̂(m,n)P̃ (m,n) . (2.20)

According to Equation (2.20), when the segmentation model does not have enough

confidence about its pixel-wise predictions, the relevant pixels can still have possibil-

ities to be the pixels belonging to the target class.

Meanwhile, the estimated target class probability map P̂ may have poor quality

in some frames with extreme conditions such as background clutters or strong illumi-

nation variations. As there is only a little variation between consecutive frames in a

video, temporal contexts between a small batch of video frames can also be used to

improve the robustness of P̂ while sacrificing a little bit accuracy:

P̂ =

Nf∑
i=1

wiP̂j−i+1 , (2.21)
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where Pj−i+1 is the target class probability map (cf. Equation (2.20)) calculated in

the frame j− i+1 and P̂ is the final target class probability map in the current frame

j considering temporal contexts. wi and Nf are respectively the weight for the frame

j − i+ 1 and the number of involved frames. In our experiments, we empirically set

Nf = 2 and {wi}
Nf
i=1 = {0.75, 0.25}.

2.4.3 Module for weighting localization response map

The estimated target class probability map P̂ introduced in Section 2.4.2 indicates

the regions possibly belonging to the target class during target localization phase.

In order to reduce tracklet drifts to the regions not belonging to the target class,

we therefore use P̂ to weight the localization response maps {Sl}Ll=1 introduced in

Equation (2.6). Considering the robustness of P̂ , we first generate the weighting map

Ŵs of size M ×N and then weight {Sl}Ll=1 with Ŵs:

Ŵs(m,n) =

 P̂ (m,n) if P̂ (m,n) > γlow

γlow if P̂ (m,n) ≤ γlow
(2.22)

Sw = Ŵs �
L∑
l=1

Sl , (2.23)

where γlow is the lower bound of Ŵs to avoid too strong weighting (in our experiments,

γlow = 0.5) and Sw of sizeM×N is the final localization response map weighted by Ŵs.

Sw is then used for target location and scale estimation as described in Section 2.3.2.

2.5 Implementation Details

For the VGG network introduced in Section 2.4.1, we use the publicly available

imagenet-vgg-m-2048 model [14] which is pretrained on ImageNet [22] for image classi-

fication. The fully connected layers of the VGG network are removed and the network
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works as a feature maps extractor. For the FCN model introduced in Section 2.4.1 for

semantic segmentation task, we use publicly available pascal-fcn16s-dag model [78]

and train it on PASCAL VOC 2011 dataset [28] with segmentation ground truths.

Our tracker is implemented in Matlab with open-source MatConvNet library [136].

We train and test our models on a single GeForce GTX TITAN X (12GB) GPU.

2.6 Experimental Evaluation

2.6.1 Datasets

OTB-2015. We evaluate our object tracking system on Online Object Tracking

Benchmark (OTB-2015) [146], which is a standard object tracking benchmark com-

monly used in the tracking community. It contains 100 challenging sequences with dif-

ferent difficulties such as appearance variations, occlusions, motion blur, illumination

changes, etc. Moreover, the authors of [146] select 50 most challenging sequences in

OTB-2015 (named TB-50), on which we evaluate the proposed method and compare

with 9 state-of-the-art trackers: CCOT [21], CF2 [82], DeepSRDCF [19], MEEM [160],

Staple [7], SRDCF [20], LCT [83], SAMF [71] and DCFNet [142]. Among TB-50 se-

quences, the targets of 33 sequences are human beings, we make these 33 sequences

make up a new subset (called TB-50-Human). Meanwhile, as the semantic classes

of tracking targets in TB-50 are partially shared with the ones of the semantic seg-

mentation dataset in our experiments (i.e., PASCAL VOC 2011 [28]), we also create

a new subset (called TB-50-Included) which consists of 44 sequences satisfying the

condition.

PASCAL VOC 2011. We train our semantic segmentation model on the training

split of PASCAL VOC 2011 semantic segmentation subset [28]. The subset contains

2913 labeled images and 21 object semantic classes.



2.6. Experimental Evaluation 47

2.6.2 Evaluation metrics

One Pass Evaluation (OPE). We choose the OPE metric where the tracking

errors are measured from the first frame to the last frame of each sequence. The

reason of using the OPE metric is that it reflects the practical situation when trackers

are used in online object tracking applications.

Precision plots measure the estimated target center location errors. Here, the

precision score of a sequence is defined as the percentage of sequence frames whose

estimated locations are within the given 2D distance threshold of the ground-truth

locations. The precision plot of a sequence shows the precision scores using distance

thresholds varying from 0 pixels to 50 pixels and the precision plot of each tracker

is an average over the precision plots of all sequences. For the comparison between

trackers, we use the precision score using the distance threshold of 20 pixels as the

representative precision score of each tracker.

Success plots measure the overlaps between the estimated target bounding boxes

and the ground-truth bounding boxes. The overlap between two bounding boxes is

defined as Intersection over Union (IoU) and the success score of a sequence is the

percentage of sequence frames whose IoUs are larger than the given IoU threshold.

The success plot of a sequence shows the success scores using IoU thresholds varying

from 0 to 1 and the success plot of each tracker is an average over the success plots of

all sequences. For the comparison between trackers, the Area Under Curve (AUC) of

each success plot is used to rank trackers. Compared to precision plots, success plots

also measure the target scale estimation errors.

2.6.3 Tracking with structural semantics representation

In this section, we asses the performance of the proposed method using structural se-

mantics features as described in Section 2.4.1. For the case where the target semantic
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Figure 2.6: Precision plots and success plots of our method and other methods on TB-50-
Human sequences whose targets are persons.

class is known, we perform the evaluation on the 33 sequences of TB-50-Human whose

targets are persons, since humans are one most common and challenging tracking tar-

get. The precision plots and success plots are shown in Figure 2.6. Compared to our

baseline CCOT tracker [21] and other state-of-the-art trackers, the results demon-

strate that the inclusion of single class structural semantics features indeed improves

the accuracy of target localization and of target size estimation.

When the target semantic class is not given, we evaluate our method on the 44

sequences of TB-50-Included whose targets semantic classes are included in PASCAL

VOC 2011. As shown in Figure 2.7, the inclusion of all classes structural semantics

features with our feature re-scaling mechanism improves our baseline performance

although targets classes are not known. We further offer an attribute-based evalua-

tion as in Figure 2.8, the proposed method gets a significant performance boost on

sequences with background clutter, illumination variation, in-plane rotation, low res-

olution, out-of-plane rotation and out-of-view. The attribute-based evaluation also

demonstrates that the inclusion of structural semantics information in image space

alleviates the performance degradation of state-of-the-art trackers caused by the dif-

ferent nuisances. We present some qualitative results of our method in Figure 2.9.

We also evaluate the proposed method on the 50 sequences of TB-50, despite
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Figure 2.7: Precision plots and success plots of our method and other methods on TB-50-
Included sequences whose targets semantic classes are included in PASCAL VOC 2011.

the fact that the target semantic classes of six sequences are not seen during the

training of our semantic segmentation model. For these unseen targets, our semantic

segmentation model cannot offer explicit semantics features for tracking. As shown

in Fig 2.10, although the improvement is reduced w.r.t. the one on TB-50-Included,

a performance boost can still be observed.

To better understand the contributions of the inclusion of structural semantics

information and of the feature re-scaling mechanism, we performs an additional ex-

periment to compare the performance with v.s. without feature re-scaling mechanism

(i.e., ours (w/ feat-scaling) v.s. ours (w/o feat-scaling) in Figure 2.11). As demon-

strated by the results in Figure 2.11, both of these two components can boost the

performance of the baseline tracker [21].
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Figure 2.8: Success plots of our method and other methods on TB-50-Included sequences
whose target semantic classes are included in PASCAL VOC 2011. The total success plot
(top-left) is displayed along with the plots for all 11 attributes. The title of each plot
indicates the name of the attribute and the number of sequences associated with it.
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Figure 2.9: Qualitative results of our method and our baseline method CCOT [21] on TB-50
sequences. green: the ground-truth bounding box; red: the bounding box predicted by
CCOT [21]; blue: the bounding box predicted by our method.
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Figure 2.10: Precision plots and success plots of our method and other methods on TB-50
sequences.

Figure 2.11: Precision plots and success plots of our method and baseline method CCOT [21]
on TB-50-Included sequences whose target semantic classes are included in PASCAL VOC
2011. ours (w/ feat-scaling) and ours (w/o feat-scaling) refer to the fact that feature re-
scaling mechanism is used or not
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2.6.4 Tracking with weighted localization response map

In this section, we evaluate our method which weights the target localization response

map with the generated target class probability distribution. As the proposed method

introduced in Section 2.4.3 is conditioned on the assumption that the target semantic

classes are seen during the training of our semantic segmentation model, we therefore

evaluate our method on the 44 sequences of TB-50-Included whose target semantic

classes are included in PASCAL VOC 2011 [28]. As shown in Figure 2.12, the pro-

posed method is equivalent in performance w.r.t the baseline method CCOT [21].

By comparing the performance on each sequence w.r.t. our baseline, our method

improves the performances on 10 sequences and degrades the performance on 9 se-

quences, while the performances on the other 25 sequences are almost unchanged.

Based on a sequence-wise analysis, we think that the improvement/degradation phe-

nomenon correlates to the semantic segmentation quality during tracking. Here, we

visualize the output of our semantic segmentation model for the sequences with perfor-

mance boost and the ones with performance degradation. As shown in Figure 2.13,

when the segmentation model performs well, some maximums on the initial local-

ization response map S can be filtered out by the proposed weighting map Ws in

Equation (2.23), and the robustness of tracker is improved. On the contrary, if the

input image is too difficult for the semantic segmentation model (e.g., extreme illu-

mination condition), the quality of the generated weighting map Ws is bad, which

can degrade the performance of the final target localization map SI and consequently

degrade the tracking performance. These results show that the proposed method is

highly conditioned on the quality of segmentation and the domain gap between seg-

mentation datasets and tracking datasets is in fact very big. Methods which alleviate

the domain gap are worth future research.
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Figure 2.12: Precision plots and success plots of our method and the baseline method
CCOT [21] on TB-50-Included sequences whose target semantic classes are included in
PASCAL VOC 2011 [28]

(a) (b) (c) (d) (e)

Figure 2.13: Visualizations of the proposed method components. The first two rows show
two examples where the segmentation model performs well, while the last two rows show two
counter-examples: (a) RGB input images, (b) Binary segmentation about target semantic
class, (c) Weighting map Ws introduced in Equation (2.23), (d) Initial target localization
response map S, (e) Final target localization response map SI .
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2.7 Conclusion

In this chapter, we first systematically summarize the DCF-based tracking framework

and then propose to include structural semantics information within it to enhance the

tracking performance. This information can either serve as an appearance-invariant

representation for tracking or an indication during the target detection phase. The

experimental results demonstrate that the involvement of structural semantics rep-

resentation can help to improve both the localization precision and the robustness

of the DCF-based tracking framework. Meanwhile, using structural semantics in the

target detection phase is highly conditioned on the quality of estimated semantics

and is worth future research.



Chapter 3

Object Pose Estimation with Object

Shapes

3.1 Introduction

In this chapter, we study the task of estimating the 6D pose of an rigid object in

a singe view with the object 3D shape. Concretely, given an object image and the

object 3D shape (e.g., object CAD model), we want to estimate the 3D translation

and the 3D rotation of the object frame w.r.t. a reference frame (e.g., camera frame).

The object image is the 2D projection of the object 3D shape (with a texture map)

in a scene-specific lighting, while the object 3D model describes the object shape,

the linked object frame, and optionally the object surface appearance. Recently, 6D

pose estimation of object instances has become more and more popular because of

its applications in robotics, virtual reality and augmented reality. Here we propose

an approach which takes advantage of 3D-to-2D point correspondences between the

object 3D shape and its 2D projections in images to improve the performance of our

pose estimator. Given initial object pose estimates, people also develop pose refine-

ment methods profiting from the object shape information to improve the accuracy of

pose estimates. To reduce the constraints of applying object pose refinement for daily

56
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life images, we propose a category-agnostic object pose refinement method which can

refine pose estimates for objects in the wild.

Traditionally, people use either feature-matching methods or template-matching

methods to estimate the pose of an object given its 3D shape. Feature-matching

methods first extract 2D local features (e.g., SIFT [80], SURF [6], ORB [120]) from

the object image and match them to the given object 3D shape. Then a PnP al-

gorithm is applied to recover the 6D pose based on the estimated 3D-to-2D point

correspondences. One main default of these methods is that local feature detectors

usually do not work well when the object appearance is poorly-textured. On the

other hand, template-matching methods [79, 66, 45, 46] match directly the observed

object image to one of the stored object templates (e.g., the rendered objects us-

ing the object 3D models) which are relevant to specific object poses. Although

this strategy can solve the poorly-textured appearance problem, the performance of

template-matching methods is often affected greatly by occlusions and truncation in

the observed object images. In the era of deep learning, more and more methods

train deep models to estimate the 2D projections associated to the object 3D shape

in images (e.g., the 2D projections of the object 3D bounding box corners), and then

recover the object pose with some PnP algorithm [109, 130, 96, 35]. This trend can be

regarded as a renaissance of feature-matching methods as deep models can estimate

more stable 2D features (e.g., 2D keypoints) for the poorly-textured objects owing

to their large receptive fields and implicit understanding of semantics. Although

these methods achieve the state-of-the-art performance, the accuracy of estimating

the bounding box corners is not always ideal and the low accuracy often results in

bad pose estimates. We argue that this phenomenon is possibly due to the fact that

some bounding box corner projections are very far away from the object in the image

and it is therefore very hard for deep models to learn the mapping from the observed

image to the corresponding 2D projections. To this end, we propose a object pose

estimator which directly predicts the 2D projections of the object 3D surface points
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instead of the bounding box corners to improve the accuracy of the 2D keypoints

regression and recover more accurate pose estimates.

Given an initial pose estimate and an object 3D shape, the accuracy of the pose

estimate can be further improved by a pose refinement method which compares the

rendered object image using the initial pose against the observed object image, and

then estimates the pose update. Based on ICP, [54] compares the estimated image

contours using the pose estimate against the observed ones to refine the pose estimate.

Deep refinement methods use deep models to predict 2D projection corrections [109]

or a pose update [85, 72]. While the aforementioned methods work well on synthetic

datasets or real datasets [46, 150] whose images have very constrained backgrounds

(e.g., a table), object pose refinement for objects in the wild is usually less addressed.

The main challenges include varying image sizes, unconstrained backgrounds, image-

wise camera intrinsics and diverse object shapes. In other words, the object images

are captured during daily life by different people without any experimental setup.

Inspired by the refinement methods using deep models [109, 86, 72], we propose a

pose refinement method conditioned on the object instance shapes to overcome the

aforementioned challenges. The proposed refinement method is category-agnostic

and conditions on the instance-wise object 3D shape to predict the relative pose

transformation. Our experiments demonstrate that the proposed method can refine

the pose estimates for objects in the wild. Moreover, the generalization ability of our

refinement method is illustrated by evaluating on object categories which are not seen

during the training of our models.

To summarize, the contributions of our work presented in this chapter, are as

follows:

• We propose a monocular object pose estimator which predicts the 2D projec-

tions of the object 3D surface points to reduce 2D estimation errors and recover

more accurate pose estimates.
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• We propose an object pose refinement method which can refine initial pose

estimates from images in the wild while existing methods work on images with

constrained backgrounds.

• We evaluate the proposed pose estimator on LINEMOD [46] and the proposed

pose refinement method on ObjectNet3D [148]. Our experiments show that the

proposed pose estimator achieves improvements over state-of-the-art methods

and the proposed refinement method can refine initial pose estimates for objects

in the wild, even for the objects which are not seen during the training of our

models.

The remainder of the chapter is structured as follows: We discuss related work

in Section 3.2. We introduce the proposed monocular object pose estimator in Sec-

tion 3.3. We discuss how to refine the coarse object pose estimates for objects in the

wild in Section 3.4. Experimental evaluations are presented in Section 3.5. We make

our conclusion in Section 3.6.

3.2 Related Work

In this section, we discuss pose estimation of a rigid object from a single RGB image,

first in the case where the shape of the object is known, then when the shape is

unknown.

Pose estimation explicitly using object shape. Given an object image and the

object 3D shape, traditional methods for monocular object pose estimation can be

roughly divided into feature-matching methods and template-matching methods. The

object shape representation has many variants such as a 3D mesh, voxels, a point cloud

or synthetic rendered images based on the object shape. Feature-matching methods

try to extract local features from the image, match them to the given object 3D

model and then use a PnP algorithm to recover the 6D pose based on the estimated
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3D-to-2D point correspondences. Increasingly robust local feature descriptors [80, 6,

133, 135, 101] and more effective PnP algorithms [64, 162, 69, 29] have been used in

this type of pipeline. Although performing well on textured objects, these methods

usually struggle with poorly-textured objects. To deal with this type of objects,

template-matching methods try to match the observed object to a stored pose-specific

template [66, 79, 45, 46]. However, they usually perform badly in the case of partial

occlusion or image truncation. Apart from the aforementioned two types of pipeline,

it is also possible to try to directly predict the 3D coordinates of the object model

vertices for each pixel and infer the object pose [12].

More recently, deep models have been trained for the object pose estimation from

an image of a known or estimated object 3D model. Most methods estimate the

2D projections in the test image of the object 3D bounding box [109, 130, 96, 35] or

category-agnostic semantic keypoints [101, 33] to find 2D-to-3D point correspondences

and then apply a PnP algorithm just like feature-matching methods.

Pose refinement with object shape. Once a coarse pose has been estimated,

the given object shape also enables a pose refinement method to refine the coarse

pose estimate. Based on ICP, [54] compares the estimated image contours using the

pose estimate against the observed ones to refine the pose estimate. Deep refinement

methods use deep models to predict 2D projection corrections [109] or a pose up-

date [85, 72] by matching the rendered object image using the current pose estimate

against the input object image.

Pose estimation not explicitly using object shape. In recent years, with the

release of large-scale datasets [32, 46, 149, 148, 127], data-driven learning methods

(on real and/or synthetic data) have been introduced which do not rely on an explicit

knowledge of the object 3D models. Learning-based approaches only using object

images without object shape information become possible and have proved its effec-
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tiveness. Conventionally, the model is trained on supervised data to directly map the

observed object appearance to the object pose w.r.t. a reference frame. These meth-

ods can be roughly separated into methods that estimate the pose of any object of a

training category and methods that focus on a single object or scene. For category-

wise pose estimation, people assume that all objects within the same category have

the same canonical view which describes how the object appearance is linked with the

object frame. As the category-specific canonical view is not given during test, they

have to be learned implicitly by models during training and these models are thus

category-specific. The prediction can be cast as a regression problem [99, 102, 89],

a classification problem [135, 125, 27] or a combination of both [92, 36, 65, 84]. Be-

sides, Zhou et al. manually label category-agnostic object 3D keypoints and regress

their 2D projections in images to recover the object pose [163]. It is also possible to

estimate the pose of a camera w.r.t. a single object 3D model but without actually

using the 3D model information. In fact, many recent works have applied this strat-

egy to recover the full 6-DoF pose for object [132, 92, 54, 150, 65] and do camera

re-localization in the scene [56, 55].

3.3 Pose Estimation with Rich 3D-to-2D Point Cor-

respondences

Given the image of a rigid object captured by a camera which is linked with its

coordinate system, the 6D pose of the object frame w.r.t the camera frame is defined

with a rotation matrix R and a translation vector t that transform the object from

its local coordinate system to the camera coordinate system. The rotation R and the

translation t of the object both have 3 degrees-of-freedom (DoF), therefore the rigid

object pose estimation problem is referred to as object 6D pose estimation task. If

we regard the object frame as the reference frame, this task can also be interpreted as
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a camera extrinsic calibration. Meanwhile, object shape representations (e.g., mesh,

point cloud, voxel, surface textures, etc.) describe both the appearance of object and

the linked object frame. Given the object 3D model, the object appearance in an 2D

image is in fact the 2D projection of its shape and surface textures with the relevant

object 6D pose and a scene-specific lighting. By using the 3D-to-2D correspondences

between the 2D projection and the relevant object 3D shape information, the object

6D pose can be recovered. Thus developing methods which predict accurate 3D-to-2D

correspondences is one main-stream direction for object 6D pose estimation task.

If we represent the object shape sparsely with n 3D control points, we can formu-

late the 6D pose estimation problem in terms of predicting the image 2D coordinates

of object 3D control points. The 2D coordinate vectors {pi}ni=1 in the 2D image

coordinate system and their corresponding 3D coordinate vectors {Pi}ni=1 in the ob-

ject coordinate system are related by R, t with the perspective projection model of

pinhole camera:

sip̄i = K[R|t]P̄i (3.1)

where P̄i = [x y z 1]T and p̄i = [u v 1]T are represented in homogeneous coordinates.

K is the camera intrinsic matrix and si is the z-axis coordinate of the point Pi in the

camera frame. Given these 3D-to-2D point correspondences, a Perspective-n-Point

algorithm can be adopted to estimate R and t. The minimal amount of needed

correspondences is 3 and commonly used solutions to the problem are called P3P

algorithms. For a more general case where n ≥ 3, many solutions are proposed and

they are referred to PnP algorithms.

Previous work parameterizes the 3D model of each object with 9 control points in

the object coordinate system where 8 points are 8 corners of the tight 3D bounding

box fitted to the 3D model and the 9th point is the centroid of the object 3D bounding

box [109, 130]. As we can see, once the 3D-to-2D point correspondences are fixed and

a standard PnP solver such as [64] is chosen, the quality of the estimated pose R̂, t̂
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Figure 3.1: Illustration of the correspondences between the 3D keypoints and their 2D
projections in images captured by cameras: (a) The observed image, (b) The 3D-to-2D
point correspondences of the 3D bounding box corners, (c) The 3D-to-2D correspondences
of the object surface keypoints.

relies directly on the accuracy of the estimated 2D coordinates {p̂i}ni=1. Recently

proposed approaches mainly focus on a better regression of these 2D coordinates

with deep models [109, 130].

3.3.1 Modeling

As introduced previously, people try to make deep models learn the mapping from

the object appearance to the object 3D bounding box corners and the centroid in the

2D image. However, 2D coordinates of corners are not easy to estimate with high

accuracy in practice. As illustrated in Figure 3.1(b), one main reason is that the 3D

bounding box corners in fact represent more the object 3D size than its 3D shape,

and their projected 2D points may be far away from the object appearance region.

Estimating 2D coordinates of points lying in the region of background without strong

object appearance indication is a tough task for deep models, and it usually results

in a performance degradation. Another possible reason is the large displacement of

each 2D corner point in images captured from different camera views. As the point

estimator only see limited views during training, the large displacement of 2D corner

point between supervised views and unseen views makes the point localization difficult

for the point estimator.

As a first step to alleviate this problem, we consider adding 6 object 3D bounding
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box face centroids as additional control points to recover object pose. In this setting,

there are therefore 15 3D-to-2D point correspondences which are fed into a PnP

algorithm. Compared to bounding box corners, the 2D projections of face centroids

are usually closer to the object appearance in the image, they are thus expected to

be estimated more easily by deep models. Our experiments in Section 3.5.3 validate

our intuition.

In a more general setting, as illustrated in Figure 3.1(c), we propose to directly

estimate 2D projections of n points sampled on the object surface and recover the

object pose with these n 3D-to-2D point correspondences. Given a point cloud (or

mesh vertices) {Pi}mi=1 representing the object shape, we uniformly sample n points

from this point set: {Pi}ni=1 ⊂ {Pi}mi=1, and use the 3D-to-2D point correspondences

to recover the object pose. The 2D coordinates to estimate {pi}ni=1 therefore lie in

the region of object appearance which offers more direct indication to deep models.

As the number of correspondences can be much bigger than 9 (in our experiments,

n = 100), we call it a pose estimation with rich 3D-to-2D point correspondences.

The number of surface points is chosen mainly based on two factors: the sampled

point cloud should represent approximately the object 3D shape; the spatial distance

between two sampled points should be large enough so that deep models can easily

discriminate each point in images. In our experiments, the object point cloud always

contains 3000 points (m = 3000), so uniformly sampling 100 points (n = 100) from

this point set is a reasonable choice.

More specifically, given an RGB image I of size H × W × 3, we first resize it

to size M ×M × 3 and then feed it into our 2D coordinates estimation network fΘ

which has a fully-convolutional architecture. The output of fΘ is a 3D tensor of size

S×S×D where S×S grid cells represent S×S 2D grid regions of the input image as

in YOLO [115]. For each grid cell j ∈ S × S, the output vector vj of size D contains

the predicted 2D coordinates of the 3D control points {p̂i}ni=1, one cell confidence

score and C object class scores. In our case, we sample n object surface points as the
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Figure 3.2: Overview of our object pose estimation method. Our model takes an RGB image
as input and predicts the 2D projection coordinates of the object surface 3D keypoints
in the image. The object 6D pose is estimated by feeding the predicted 3D-to-2D point
correspondences into a PnP algorithm [64]. green: ground-truth 3D bounding box; blue:
3D bounding box estimated by our method.

control points, so D = n × 2 + 1 + C. In each cell, fΘ actually predicts the offsets

w.r.t. the top-left corner of the associated grid region for the 2D coordinates of the

control points. The cell confidence score between 0 and 1 presents whether objects

are present in the current cell or not. As in image classification tasks, the output

C class scores pass trough a softmax function to get C class probabilities. We train

our network fΘ to predict the target tensor of size S × S ×D. During test, we first

select the cells containing the object, then get the corresponding 2D coordinates in

a voting manner. Concretely, we drop the cells with confidence scores lower than 0.1

and pick the cell which has the maximum confidence score and the cells in the 3× 3

neighborhood of it. The final 2D coordinate estimates are weighted averages over

all picked cells where the weights are the confidence scores of the associated cells.

By this way, multiple cells can contribute to the 2D coordinate localization for cases

where objects are rather big in the image. After the 2D coordinates estimation, a

PnP algorithm [64] is adopted to recover object 6D poses. Our method is illustrated

in Figure 3.2.

3.3.2 Training procedure

Given one color image I, our 2D coordinates estimation network fΘ outputs 2D co-

ordinates of control points, a confidence score and class probabilities for each grid
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cell as introduced in Section 3.3.1. During the training stage, we minimize the 2D

Euclidean distance Lpt over the parameters Θ of our network fΘ to estimate 2D coor-

dinates. To generate the ground-truth cell confidence score, we adopt the confidence

function Fconf proposed by [130] which decreases with the increment of the average

2D distance between the predicted 2D coordinates {p̂i}ni=1 and the ground-truth ones

{pi}ni=1. Thus the confidence ground truth is calculated on the fly during training.

The object classification ground truth is a one-hot vector as in image classification

tasks. To conclude, for each cell, the loss for backpropagation is a linear combination

of the 2D coordinates regression loss Lpt, the cell confidence loss Lconf and the object

classification loss Lcls :

L = Lpt + λconfLconf + Lcls (3.2)

Lpt =
1

n

n∑
i=1

‖pi − p̂i‖2
L2 (3.3)

Lconf =
∥∥∥Fconf ({pi}ni=1, {p̂i}ni=1)− Ĉ

∥∥∥2

, (3.4)

where Lcls is a standard cross-entropy loss and Ĉ is the predicted confidence score.

As proposed in [114], λconf is set to 0.1 for cells which do not overlap objects and is

set to 5.0 for cells overlapping objects according to the ground truth. The final loss

for training is an average over all cell losses.

3.3.3 Implementation details

During training, the network input image size M is randomly chose from the set

{320, 352, ..., 736, 768} to make our network robust to objects with different spatial

sizes. Similar to [130], the network downsamples the images by a factor of 32 so that

the output spatial size S = M/32. When testing, we fix the input image size as

672× 672. For all our experiments, we set the batch size to 16 and train our network

using the SGD optimizer [128] with a learning rate of 10−3 during the first half of
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train epochs, then we divide the learning rate by 10 for the rest of training epochs.

For the experiments on LINEMOD dataset [46], the number of training epochs is set

to 700. We train and test our models on a single TITAN X GPU with 12 GB memory,

and the speed during test is around 15 fps.

3.4 Pose Refinement for Objects in the Wild

As introduced in Section 3.3, the object shape (the object 3d model in practice)

describes both the object appearance and the linked object frame. Except for of-

fering 3D-to-2D point correspondences for object pose estimation, object shapes can

be further used to do pose refinement given initial pose estimates. In this section,

we propose a category-agnostic pose refinement method which compares the differ-

ence between the observed object appearance and the rendered object using an initial

pose estimate, to refine the pose estimate. Similar to [72], we make our models

conditioned on the instance-wise object appearance and the object frame offered by

the object shape during training. This enables a category-agnostic pose refinement

during test as our models do not learn any category-specific information. While ex-

isting deep-learning-based methods [86, 72] evaluate pose refinement either on real

datasets [46, 150] with constrained backgrounds (e.g., tables) or on synthetic datasets

(e.g., ModelNet [147]) with a black background, our pose refinement method can work

for objects with varying shapes in real images which are captured during daily life

without any experimental setup. We therefore call our method a pose refinement

method for objects in the wild. To demonstrate that our method has a good gener-

alization ability on objects which are not seen during training, we divide objects into

the objects for training and the ones for test and only evaluate our models on test

objects, as illustrated in Figure 3.3.
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Figure 3.3: Illustration of our object pose refinement method. (a) Training data: object 3D
shapes, input images and pose annotations for everyday man-made objects; (b) At testing
time, pose refinement of object categories which are not seen during training, given object
3D shapes, input images and initial pose estimates.

3.4.1 Modeling

Given an object image I, an initial pose estimate (i.e., a 3D translation vector

t̄ = (x̄, ȳ, z̄) and a 3D rotation matrix R̄) and the relevant object 3D shape, our

method directly outputs a relative SE (3) transformation that can be applied to the

initial pose estimate to improve the estimate accuracy. Concretely, our model en-

codes simultaneously the observed image and the object image rendered with the

initial pose estimate, and outputs a 3D translation update v̂ = (v̂x, v̂y, v̂z) and a 4D

quaternion vector q̂ representing the rotation update matrix R̂∆. Here, we use the

object image rendered with the initial estimate to represent the reference view, and

the goal of our model is therefore predicting the relative transformation from the ref-

erence view to the observed view. Similar to DeepIM [72], the 3D rotation update R̂∆

is defined as the rotation around the estimated object center instead of the camera

center so that the rotation update does not have an impact on the translation update.

Meanwhile, in order to let the model do not learn the object size information and the

metric translation information during training, the 3D translation update v̂ is actu-

ally defined as a 2D translation in image space and a scaling factor which matches the
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Figure 3.4: Overview of our object pose refinement method. Given an input image, an
object shape and an initial pose estimate, our method compares the input image and the
rendered object using the initial pose, and predicts a pose update to refine the initial pose
estimate.

rendered image of the object against the observed object. Given a camera intrinsic

K containing the focal lengths fx and fy, an initial pose estimate (t̄, R̄) and a pose

update (v̂, R̂∆), the refined pose (t̂, R̂) is calculated as:

R̂ = R̂∆R̄ (3.5a)

x̂ = ẑ(
v̂x
fx

+
x̄

z̄
) (3.5b)

ŷ = ẑ(
v̂y
fy

+
ȳ

z̄
) (3.5c)

ẑ =
z̄

ev̂z
, (3.5d)

where the refined translation estimate t̂ = (x̂, ŷ, ẑ). The overview of our method is

illustrated in Figure 3.4. Meanwhile, as the refined pose estimates can serve as the

new initial pose estimates, an iterative refinement strategy can be adopted. In our

experiments, we set the number of refinement iterations to 2. For the network archi-

tecture, we adopt the encoder of FlowNetSimple [24] and add three fully-connected

layers (with dimension 256, 256 and 7) on the top of it to predict the corresponding

pose update.
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Figure 3.5: Illustration of the annotation system of ObjectNet3D [148]: (a) The virtual
camera system, (b) The annotation interface for 2D-3D alignment.

3.4.2 Data generation

For pose estimation datasets with objects in the wild (e.g., Pascal3D+ [149], Object-

Net3D [148]), images are directly collected from the internet without either object

pose annotations or camera intrinsic information. Thus, people manually label the

pose of the observed object (t,R) by matching the rendered object against the ob-

served object in a virtual camera system where the camera always points towards

the object center and the camera focal length is constant across the dataset (cf. Fig-

ure 3.5). By using this strategy, the labeled annotations for an object are the rotation

matrixR, the distance d between the object and the camera, and the camera principal

point. As the translation annotation t = (0, 0, d) and t is not the real 3D translation

annotation between the object and the camera which captures the object, we there-

fore restrict our object pose refinement method to the object 3D rotation refinement

method for objects in the wild.

Due to the model architecture property (i.e., fully connected layers predicting

relative transformations), existing deep-learning-based methods [86, 72] do pose re-

finement on images of a fixed spatial size, however, the image spatial size is varied

for images in the wild. To alleviate this constraint, here we propose a method to

generate model input images from images of any spatial size. Given an image I con-

taining objects, we first generate the observed image of the concerned object IB by

cropping I with the object ground-truth 2D bounding box B. In practice, the area
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of the cropped image IB is larger than the area of B by a fixed ratio to include some

image contexts around the object. Following the annotation convention, the camera

still points towards the object center and the distance between the object and the

camera is d. As the network needs a fixed size input image, IB is scaled by a scaling

factor s1 and then pasted on the center of a black image of fixed size (e.g., 640× 480)

to generate the new object image Io. The scaling factor s1 is calculated automatically

to ensue that the object image is smaller than the black image of fixed size. For the

efficiency of training and test, the virtual camera intrinsic is fixed across images and

we set the distance between the object and the camera to d/s1. With this process, an

image I of any spatial size can be converted to the object image of a fixed size Io while

the object image and the annotation are still aligned. For generating the rendered

object Ir, we render the concerned object in the same virtual camera system with the

ground-truth translation t = (0, 0, d/s1) and an initial rotation estimate R̄. Similar

to [72], a zoom-in mechanism is used on Io, Ir afterwards to zoom into the object

region based on the ground-truth bounding box B during training or the estimated

bounding box B̂ from the rendered object during test. The zoom-in scaling factor

is s2 and the corresponding ground-truth translation t = (0, 0, d/s1s2). The model

input images are zoom-in versions of Io, Ir which share the same spatial size with

Io, Ir.

For objects in the wild, object CAD models usually do not have the exact surface

textures of the objects in images while objects in 6D pose datasets (e.g., LINEMOD [46]

and YCB [150]) have instance-wise high-quality textures. Compared to existing meth-

ods [86, 72] which train their models with the rendered objects using instance-specific

textures, our models are trained completely with an uniform gray texture to make

our model have a better generalization ability. By this way, our models will learn to

focus more on comparing the difference between the observed object shapes and the

rendered object shapes, instead of the difference between the object textures.

For the generation of the observed objects, we also propose an alternative choice
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Figure 3.6: Generated synthetic data for the training of our object pose refinement models.

to validate the synthetic-to-real setup. Except for using the cropped real image Io

as stated previously, the observed object image can also be a synthetic rendered

object using a generated ground-truth pose and a domain randomization as in [77].

Concretely, the rendered object is first generated from its 3D model and a randomly

selected surface texture from Unreal Engine to offer a great number of random object

appearances. Then the rendered object is pasted on a background image which is

randomly picked from either SUN397 [151] dataset or PASCAL-VOC [28]. As shown

in Figure 3.6, this domain randomization strategy finally offers a great amount of

samples for training. As shown in Section 3.5.4, our model trained only on the

generated synthetic data can also achieve a pose refinement performance on real

images, despite an a priori domain gap between the real images and the synthetic

ones.

3.4.3 Training procedure

To train the network, we add noise following Gaussian distribution to the ground-truth

poses as the initial pose estimates and feed the observed object image and the rendered

object image into the network as input. The network predictions v̂, q̂ introduced in

Section 3.4.1 representing the estimated relative transformations between the ground-

truth pose and its noisy version. As stated in [55, 72], given the ground-truth pose

[R|t] and the refined pose [R̂|t̂], we use a point-wise matching loss between the object
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3D points to train the refinement model:

Lpose =
1

n

n∑
i=1

∣∣∣(RPi + t)− (R̂Pi + t̂)
∣∣∣
L1
, (3.6)

where Pi is a randomly selected 3D point on the object model surface, we set n = 3000

in our experiments. By this way, it measures how the transformed 3D models match

against each other for the pose estimation. In our experiments about the object rota-

tion refinement for objects in the wild, we always set t̂ = t due to the dataset property

introduced in Section 3.4.2. During training, we also add the decoder of FlowNetSim-

ple [24] on the top of our model encoder to predict optical flow (between the observed

object and the rendered object) and binary object mask. As observed in [72], the

auxiliary predictions stabilize the training process. For training, we additionally use

the optical flow loss Lflow as in FlowNet [24] and the sigmoid cross-entropy loss as

the mask loss Lmask . The entire loss Lrefine for the model backpropagation is:

Lrefine = αLpose + βLflow + γLmask , (3.7)

where α = 0.1, β = 0.25 and β = 0.03 over all experiments.

3.4.4 Implementation details

For all our experiments, we set the batch size to 16 and train our network using

the SGD optimizer [128] with a learning rate of 10−4 during the first half of train

epochs, then we divide the learning rate by 10 for the rest of training epochs. For

the experiments on ObjectNet3D [148], the number of training epochs is set to 16.

We train and test our models on a single TITAN X GPU with 12 GB memory,

the speed during test is around 12 fps with two refinement iterations. For training,

the rotation noise added on the ground-truth rotation is an combination of angular

noises added on all three Euler angles (azimuth, elevation and in-plane rotation).
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Concretely, the angular noise for each Euler angle follows a Gaussian distribution

with µ = 0, σ = 15 degrees.

3.5 Experimental Evaluation

3.5.1 Datasets

LINEMOD [46] is a de facto standard benchmark for 6D object pose estimation.

The central object in each RGB image of the videos is assigned a ground-truth 6D

pose and an object class ID. A textured 3D mesh representing the object shape is

also provided. The datasets contains 13 objects and there are around 1200 instances

for each object.

ObjectNet3D [148] is a large-scale 3D dataset (90,127 images collected from Ima-

geNet [22]) containing 100 object categories selected from the ShapeNet repository [13]

(e.g., airplane, table, car, etc.) with a big variety of object shapes (791 CAD mod-

els). For each category, there exist many object instances with shape variations. As

the images were captured by different cameras with different camera intrinsics which

were not available, a virtual camera system was used to manually adjust the rendered

object (using approximated object CAD models selected from ShapeNet [13]) to the

observed object, yielding object pose annotations. Thus it only provides approximate

object models and relatively rough alignments between the observed objects and the

object pose annotations. As the true 3D translation annotation from the camera

to the object is not available on ObjectNet3D, we evaluate the object 3D rotation

refinement on object images based on the ground-truth object 2D bounding box in

the experiments.
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3.5.2 Evaluation metrics

The 2D Projection Error measures the average Euclidean distance in pixels be-

tween the 2D projections of 3D points using the ground-truth pose and the ones

estimated by models.

ADD-0.1d. As introduced in [12, 54, 109, 130], the ADD metric evaluates the ac-

curacy of pose estimation in 3D. For ADD-0.1d metric, a pose estimate is regarded as

correct if the mean distance between the coordinates of 3D mesh vertices transformed

by the ground-truth pose and those transformed by the estimated pose is less than

10% of the object 3D bounding box diameter. The final score is an average over

all pose estimates for each object. For objects with rotational symmetry, we use a

modified version ADD-S-0.1d as in [12, 54, 109, 130].

Accπ
6

evaluates the correctness of object 3D rotation estimation. A pose estimate

is regarded as correct if the angular distance between the ground-truth rotation and

the estimated rotation is less than 30 degrees. The final score is an average over all

pose estimates for each object category.

MedErr is the median number of angular distances between ground-truth rotations

and estimated ones across all pose estimates for each object category.

3.5.3 Pose estimation with rich 3D-to-2D point correspon-

dences

We first evaluate the precision of 2D coordinates estimation on LINEMOD [46] to

study the impact of selecting different 3D control points. Compared to our baseline

approach Tekin [130] which estimates the 3D bounding box corners and the object

centroid, adding the 3D bounding box face centroids (6 centroids on 6 faces), i.e.,

‘Ours (15 points)’ in Table 3.1, can reduce the 2D coordinates estimation errors.
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LINEMOD ape bvise cam can cat drill duck ebox glue holep iron lamp phone mean

2D Projection Error in pixels (lower is better)

Baseline [130] 4.05 5.00 4.59 4.08 3.84 5.58 4.89 4.38 3.57 5.62 7.08 7.05 7.86 5.20
Ours (15 points) 3.52 4.53 4.35 3.61 3.55 6.03 5.28 3.92 3.33 4.92 6.50 6.26 6.67 4.81
Ours (100 points) 2.28 3.06 3.26 2.59 2.38 4.32 3.71 3.76 2.51 4.01 5.97 4.26 5.41 3.66

Table 3.1: 2D error of estimated projections of 3D points on LINEMOD [46]

This is because the 2D projections of 3D bounding box face centroids are usually

closer to the object region than the ones of bounding box corners in the image.

Meanwhile, estimating the 2D projections of object surface points which are always

in the object region of the image, i.e., ‘Ours (100 points)’ in Table 3.1, achieves the

best performance among all three methods. The results demonstrate that estimating

2D projections near the object region is indeed easier for deep models to learn and

predict, as discussed in Section 3.3.1. In the following paragraphs, we evaluate our

method, i.e., ‘Ours (100 points)’ in Table 3.1, on 6D pose estimation metrics and

compare it with other existing methods [12, 54, 109, 130].

The performance of our method (cf. ‘Ours’) is displayed in Table 3.2. Compared to

other state-of-the-art methods without an additional object pose refinement stage, our

method achieves the best performance. When comparing with the methods using an

object pose refinement stage, we adopt the recent pose refinement method proposed

by DeepIM [72] and do pose refinement on the initial pose estimates predicted by

our method. As shown in the lower part of Table 3.2, our method also achieves

the best performance. We also report the accuracy numbers without the refinement

using the ADD metric in Table 3.3 for different thresholds (cf. ‘ADD-0.1d’, ‘ADD-

0.3d’, ‘ADD-0.5d’). Compared to our baseline method ‘Tekin’ [130], our method

consistently improve the pose estimation performance across metrics. These results

demonstrate the effectiveness of our method and the benefits of using rich 3D-to-

2D point correspondences in object pose estimation task. Some qualitative results

are shown in Figure 3.8. As an ablation study of our method, we also investigate the

pose estimation performance in function with the number of sampled points using the
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LINEMOD ape bvise cam can cat drill duck ebox*glue*holep iron lamp phone mean

ADD-0.1d in percentages (higher is better)

w/o Refine.

Branchmann [12] - - - - - - - - - - - - - 32.2
SSD-6D [54] 0 0.2 0.4 1.4 0.5 2.6 0 8.9 0 0.3 8.9 8.2 0.2 2.4
BB8 [109] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6
Tekin [130] 21.6 78.7 33.4 67.5 41.8 63.5 25.6 65.5 80.1 42.3 69.3 67.9 47.7 54.2
Ours 33.9 80.6 43.9 75.2 44.2 66.1 29.2 66.7 81.1 48.6 63.9 71.4 42.0 57.5

w/ Refine.

Branchmann [12] 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2
SSD-6D [54] 65 80 78 86 70 73 66 100 100 49 78 73 79 79.0
BB8 [109] 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7
Ours 78.7 97.7 93.8 97.2 82.7 95.0 77.6 98.7 99.3 53.1 98.4 97.6 88.8 89.1

Table 3.2: Quantitative results of object pose estimation on LINEMOD [46]. * ADD-S-0.1d
used for symmetric objects eggbox and glue.

LINEMOD ape bvise cam can cat drill duck ebox*glue*holep iron lamp phone mean

ADD-0.1d in percentages (higher is better)

w/o Refine. Tekin [130] 21.6 78.7 33.4 67.5 41.8 63.5 25.6 65.5 80.1 42.3 69.3 67.9 47.7 54.2
Ours 33.9 80.6 43.9 75.2 44.2 66.1 29.2 66.7 81.1 48.6 63.9 71.4 42.0 57.5

ADD-0.3d in percentages (higher is better)

w/o Refine. Tekin [130] 70.7 91.1 81.6 99.0 90.6 97.4 70.7 81.3 89.0 85.5 98.9 98.9 91.1 88.1
Ours 75.4 99.5 87.3 99.1 90.6 97.8 73.5 97.7 95.3 90.4 98.2 98.9 91.0 91.9

ADD-0.5d in percentages (higher is better)

w/o Refine. Tekin [130] 88.1 98.9 94.8 99.9 98.1 99.2 85.1 98.3 97.2 96.3 99.4 99.6 98.9 96.4
Ours 90.0 99.9 97.1 99.9 97.9 99.7 88.9 99.0 96.9 97.5 99.4 99.8 98.8 97.3

Table 3.3: Quantitative results of object pose estimation on LINEMOD [46] using ADD
metrics with different thresholds. * ADD-S used for symmetric objects eggbox and glue.

ADD-0.1d metric on LINEMOD [46]. The performance plot displayed in Figure 3.7

shows that our method achieves the best performance when the number of points

is 100. One explanation of this phenomenon is that the sampled point cloud should

represent approximately the object 3D shape and be easy to be discriminated by deep

models in images, as discussed in Section 3.3.1.
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Figure 3.7: The pose estimation performance in function with the number of sampled points
using the ADD-0.1d metric on LINEMOD [46].
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Figure 3.8: Qualitative results of our pose estimation method on LINEMOD [46]. green:
ground-truth 3D bounding box; blue: 3D bounding box estimated by our method.
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ObjectNet3D bed bookcase calc cellphone comp door cabinet guitar iron knife micro

Accπ
6

in percentages (higher is better)

Init 76 73 79 80 80 78 77 82 76 72 81
Ours (synthetic) 82 74 77 74 82 80 83 84 82 71 94
Ours (real) 85 85 91 85 90 92 89 86 93 72 91

MedErr in degrees (lower is better)

Init 21 24 22 21 22 21 21 19 19 24 23
Ours (synthetic) 20 23 20 21 16 19 17 18 20 24 14
Ours (real) 16 19 17 18 15 15 15 16 17 21 14

pen pot rifle shoe slipper stove toilet tub wheelchair mean

Accπ
6

in percentages (higher is better)

Init 79 76 79 76 80 72 76 72 80 77
Ours (synthetic) 77 74 86 78 74 84 73 75 76 79
Ours (real) 81 80 89 85 78 88 82 84 84 86

MedErr in degrees (lower is better)

Init 22 21 18 23 21 22 22 24 22 22
Ours (synthetic) 21 19 17 19 22 17 23 21 20 20
Ours (real) 18 18 16 17 21 15 18 19 18 17

[images: 90,127 in the wild | objects: 201,888 | categories: 100 | 3D models: 791]

Table 3.4: Pose refinement for unseen objects on ObjectNet3D [148]. Train and test are the
same as [163]; Training is on 80 object categories and test is on the other 20 unseen object
categories.

3.5.4 Pose refinement for objects in the Wild

We evaluate our method on ObjectNet3D [148]. To verify the generalization ability

of our method for unseen object categories, we follow the protocol of StarMap [163]:

we evenly hold out 20 categories (every 5 categories sorted in the alphabetical order)

from the training data and only use them for testing. The initial 3D rotation for test

is obtained by adding angular noises to the Euler angles of the ground-truth rotation

label where the angular noise for each Euler angle follows a Gaussian distribution

with µ = 0, σ = 15 degrees. As shown in Table 3.4, our models trained on either

synthetic data (cf. ‘Ours (synthetic)’) or real data (cf. ‘Ours (real)’) can achieve

a good pose refinement performance despite the challenge of applying it to images

in the wild. The results demonstrate the effectiveness of our refinement method for

objects in the wild and the good generalization ability of our models on novel objects

categories. Some qualitative results are shown in Figure 3.9.
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LINEMOD [46] ape bvise cam can cat drill duck ebox* glue* holep iron lamp phone mean

ADD-0.1d in percentages (higher is better)

Init 4.3 19.0 14.9 8.8 12.2 18.8 6.4 100 81.85 20.9 9.8 25.2 10.8 25.6
w/ our refinement 24.7 24.7 21.1 15.9 17.5 36.1 13.0 100 54.63 32.9 27.6 25.0 20.1 31.8

Table 3.5: Pose refinement for unseen objects on LINEMOD [46] using initial pose estimates
provided by our initial pose estimation model [152]. Our initial pose estimation model [152]
is trained on ShapeNetCore [13] and our refinement model is trained on ObjectNet3D [148].
* ADD-S-0.1d used for symmetric objects eggbox and glue.

In order to further prove the generalization ability of our pose refinement method,

we choose a cross-domain unseen pose refinement setup where the two domains are

significantly different in images and objects. Concretely, we train our model on syn-

thetic data generated from ObjectNet3D [148] and test it on LINEMOD [46] given

initial pose estimates by our initial pose estimation model [152] which is trained on

synthetic data generated from ShapeNetCore [13]. This setup means that both the

initial pose estimator and the pose refiner are trained only on synthetic data and

tested on a new real dataset used for evaluation. As shown in Table 3.5, our refine-

ment method can consistently refine our initial pose estimates on novel objects from

LINEMOD [46]. The results in this hard setup further demonstrate the generalization

ability of our category-agnostic pose refinement method. Some qualitative results are

displayed in Figure 3.10.
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Figure 3.9: Qualitative results of our pose refinement method on ObjectNet3D [148]. For
each sample, the four columns from left to right: the input image, the rendered object with
the ground-truth pose, the rendered object with the initial pose estimate and the rendered
object with the refined pose.
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Figure 3.10: Qualitative results of our pose refinement method on LINEMOD [46]. For each
sample, the four columns from left to right represent: the input image, the rendered object
with the ground-truth pose, the rendered object with the initial pose estimate by our initial
pose estimator [152] and the rendered object with refined pose.
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3.6 Conclusion

In this chapter, we analyze the use of object shape information in object pose es-

timation tasks. With this information, we first propose to use rich 3D-to-2D point

correspondences between the object 3D shape and the image of object for a more ac-

curate object pose estimation. Then we propose a category-agnostic pose refinement

method to refine coarse pose estimates for objects in the wild. Experiments prove

that the proposed monocular pose estimation method can boost the performance of

pose estimation and our refinement method can achieve good pose refinement results

on novel object categories which are not seen during training.



Chapter 4

Scene Occlusion Relationship and

Depth Estimation

4.1 Introduction

Occlusions are ubiquitous in 2D images (cf. Figure 4.1(a)) and constitute a major

obstacle to address scene understanding rigorously and efficiently. Besides the joint

treatment of occlusion when developing techniques for specific tasks [112, 51, 143,

103, 97, 109, 49], task-independent occlusion reasoning [116, 63, 131, 141, 138, 81]

offers valuable occlusion-related features for high-level scene understanding tasks.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.1: Illustration of the proposed methods: (a) input image, (b) estimated horizontal
occlusion relationship (a part of P2ORM) where red (resp. blue) pixels occlude (resp. are
occluded by) their right-hand pixel, (c) depth estimation obtained by a state-of-the-art
method [112], (d) our depth refinement method based on occlusion relationships.

85



86 Chapter 4. Scene Occlusion Relationship and Depth Estimation

In this work, we are interested in one most valuable but challenging scenario of

task-independent occlusion reasoning where the input is a single image and the out-

put is the corresponding pixel-level occlusion relationship in the whole image domain

(cf. Figure 4.1(b)); the goal is to capture both the localization and orientation of the

occlusion boundaries, similar to previous work such as [131, 141, 138, 81]. In this

context, informative cues are missing compared to other usual scenarios of occlusion

reasoning, in particular semantics [110], stereo geometry [164] and inter-frame mo-

tion [31]. Moreover, the additional estimation of orientation further increases the

difficulty compared to usual occlusion boundary estimation [3, 40, 31]. Despite of

recent progress achieved via deep learning [141, 138, 81], the study on pixel-level

occlusion relationship in monocular images is still relatively limited and the state-of-

the-art performance is still lagging.

Here, we formalize concepts around geometric occlusion in 2D images (i.e., ig-

noring semantics), and propose a unified formulation, called Pixel-Pair Occlusion

Relationship Map (P2ORM), that captures both localization and orientation infor-

mation of occlusion boundaries. Our representation simplifies the development of

estimation methods, compared to previous works [131, 141, 138, 81]: a common

ResNet-based [39] U-Net [119] outperforms carefully-crafted state-of-the-art architec-

tures on both indoor and outdoor datasets, with either low-quality or high-quality

ground truth. Besides, thanks to the modularity regarding pixel-level classification

methods, better classifiers can be adopted to further improve the performance of our

method. In addition, P2ORM can be easily used in scene understanding tasks to

increase their performance. As an illustration, we develop a depth map refinement

module based on P2ORM for monocular depth estimation (Figure 4.1(c-d)). Experi-

ments demonstrate that it significantly and consistently sharpens the edges of depth

maps generated by a wide range of methods [26, 74, 61, 68, 30, 73, 53, 112, 156],

including the method targeted at sharp edges [112].

Moreover, our representation derives from a 3D geometry study that involves a
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first-order approximation of the observed 3D scene, offering a way to create high-

quality occlusion annotations from a depth map with given or estimated surface nor-

mals. This allows the automated generation of large-scale, accurate datasets from

synthetic data [70] (possibly with domain adaptation [161] for more realistic images)

or from laser scanners [58]. Compared to manually annotated dataset that is com-

monly used [116], we generate a high-quality synthetic dataset of that is two orders

of magnitude larger.

Owing to our P2ORM formulation and generated annotations, we further propose

a one-stage monocular depth estimation method that recovers high-quality depth

discontinuities without depth map refinement procedures. Experiments demonstrate

that our method improves the state-of-the-art performance on depth boundary re-

gions.

Our contributions are:

• A formalization of geometric occlusion in 2D images and a relevant occlusion an-

notation generation method that creates three datasets: InteriorNet-OR, iBims-

1-OR and NYUv2-OR.

• A new formulation capturing occlusion relationship at pixel-pair level, from

which usual boundaries and orientations can be computed.

• An occlusion estimation method that outperforms the state-of-the-art on several

datasets.

• The illustration of the relevance of this formulation with an application to depth

map refinement that consistently improves the performance of state-of-the-art

monocular depth estimation methods.

• A single-stage monocular depth estimation method that recovers high quality

depth discontinuities.
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• Our code and data are available at http://imagine.enpc.fr/~qiux/

P2ORM/.

The remainder of the chapter is structured as follows: We discuss related work in

Section 4.2. We formalize geometric occlusion existing in single images in Section 4.3.

We propose the new formulation capturing occlusion relationship at pixel-pair level

and the corresponding occlusion estimation method in Section 4.4. We introduce a

depth map refinement method using estimated occlusions in Section 4.5. The pro-

posed single-stage monocular depth estimation method focusing on depth discontinu-

ities is presented in Section 4.6. Implementation details and experimental evaluation

are presented in Section 4.7 and Section 4.8 respectively. We make our conclusion in

Section 4.9.

4.2 Related Work

Task-independent occlusion relationship in monocular images has long been

studied due to the importance of occlusion reasoning in scene understanding. Early

work often estimates occlusion relationship between simplified 2D models of the un-

derlying 3D scene, such as blocks world [118], line drawings [126, 17] and 2.1-D

sketches [94]. Likewise, [47] estimates figure/ground labels using an estimated 3D

scene layout. Another approach combines contour/junction structure and local shapes

using a Conditional Random Field (CRF) to represent and estimate figure/ground

assignment [116]. [131] learns border ownership cues and impose a border owner-

ship structure with structured random forests. Specific devices, e.g., with multi-flash

imaging [113], have also been developed.

Recently, an important representation was used in several deep models to estimate

occlusion relationship [141, 138, 81]: a pixel-level binary map encoding the localization

of the occlusion boundary and an angle representing the oriented occlusion direction,

indicating where the foreground lies w.r.t. the pixel.

http://imagine.enpc.fr/~qiux/P2ORM/
http://imagine.enpc.fr/~qiux/P2ORM/
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This theme is also closely related to occlusion boundary detection, which ignores

orientation. Existing methods often estimate occlusion boundaries from images se-

quences. To name a few, [3] detects T-junctions in space-time as a strong cue to

estimate occlusion boundaries; [123] adds relative motion cues to detect occlusion

boundaries based on an initial edge detector [88]; [31] further exploits both spatial

and temporal contextual information in video sequences. Also, [158, 159, 76, 1] detect

object boundaries between specific semantic classes.

Monocular depth estimation is extremely valuable for geometric scene under-

standing, but very challenging due to its high ill-posedness. Yet significant progress

has been made with the development of deep learning and large labeled datasets.

Multi-scale networks better explore the global image context [26, 25, 61]. Depth esti-

mation also is converted into an ordinal regression task to increase accuracy [30, 62].

Other approaches propose a better regression loss [53] or the inclusion of geometric

constraints from either single images [107, 156] or stereo image pairs [41, 34].

Depth map refinement is often treated as a post-processing step, using CRFs

[140, 154, 44, 117]: an initial depth prediction is regularized based on pixel-wise and

pairwise energy terms depending on various guidance signals. These methods now

underperform state-of-the-art deep-learning-based methods without refinement [107,

53, 156] while being more computationally expensive. Recently, [111] predicts image

displacement fields to sharpen initial depth predictions.

4.3 Formalizing and Representing Geometric Occlu-

sion

In this section, we provide formal definitions and representations of occlusion in single

images based on scene geometry information. It enables the generation of accurate
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S1 ≺L S2

(a) surface occlusion

p ≺ q

(b) pixel occlusion

p ≺0 q

(c) order-0 occlusion

p⊀ q ∧ p� q

(d) order-0 wrong occlusion

Π�

��

��

��

��

Π�
�

p ≺1 q

(e) order-1 occlusion

p⊀1q ∧ p�1q

(f) salient angle

p⊀1q ∧ p�1q

(g) reentrant angle

p⊀1q ∧ p�1q

(h) small step

Figure 4.2: Occlusion configurations (solid lines represent real or tangent surfaces, dotted
lines are imaginary lines): (a) S1 occludes S2 along L; (b) p occludes q as Sp occludes Sq
along Lp; (c) p occludes q at order 0 as ‖Xq‖−‖Xp‖ ≥ δ > 0, cf. Equation (4.1); (d) no
occlusion despite order-0 occlusion as Πp,Πq do not occlude one another; (e) p occludes q
at order 1 as tangent plane Πp occludes tangent plane Πq in the [Lp, Lq] cone, cf. Equa-
tion (4.2); no occlusion for a (f) salient or (g) reentrant angle between tangent planes
Πp,Πq, cf. Equation (4.2); (h) tangent plane occlusion superseded by order-0 non-occlusion,
cf. Equation (4.2).

datasets and the development of an efficient inference method.

We consider a camera located at C observing the surface S of a 3D scene. Without

loss of generality, we assume C =0. We note L a ray from C, and LX the ray from

C through 3D point X. For any surface patch S on S intersecting L, we note L ∩ S

the closest intersection point to C, and ‖L ∩ S‖ it distance to C.

4.3.1 Approximating occlusion at order 0

Given two surface patches S1, S2 on S and a ray L (cf. Figure 4.2(a)), we say that

S1 occludes S2 along L, noted S1 ≺L S2 (meaning S1 comes before S2 along L), iff

L intersects both S1 and S2, and the intersection X1 = L ∩ S1 is closer to C than

X2 = L ∩ S2, i.e., ‖X1‖ < ‖X2‖.

Now given neighbor pixels p, q ∈P , which are also the 2D projections of 3D points
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in the image plane, we say that p occludes q, noted p ≺ q, iff there are surface

patches Sp, Sq on S containing respectively Xp, Xq such that Sp occludes Sq along

Lp, (cf. Figure 4.2(b)). Assuming Lp ∩Sq exists and ‖Lp ∩Sq‖ can be approximated

by ‖Lq ∩Sq‖ = ‖Xq‖, it leads to a common definition that we qualify as “order-0”.

We say that p occludes q at order 0, noted p ≺0 q iff Xq is deeper than Xp (cf.

Figure 4.2(c)):

p ≺0 q iff ‖Xp‖ < ‖Xq‖ . (4.1)

The depth here is w.r.t. the camera center (dp = ‖Xp‖), not to the image plane. This

definition is constructive (can be tested) and the relation is antisymmetric. The case

of a minimum margin ‖Xq‖−‖Xp‖ ≥ δ > 0 is considered as the existence of occlusion.

However, when looking at the same continuous surface patch Sp = Sq, the inci-

dence angles of Lp, Lq on Sp, Sq may be such that order-0 occlusion is satisfied whereas

there is no actual occlusion, as Sq does not pass behind Sp (cf. Figure 4.2(d)). This

yields many false positives, e.g., when the camera observes planar surfaces such as

walls.

4.3.2 Approximating occlusion at order 1

To address this issue, we consider an order-1 approximation of the surface. We assume

the scene surface S is regular enough for a normal nX to be defined at every point X

on S. For any pixel p, we consider Πp the tangent plane at Xp with normal np = nXp .

Then to assess if p occludes q at order 1, noted p ≺1 q, we approximate locally Sp by

Πp and Sq by Πq, and study the relative occlusion of Πp and Πq, cf. Figure 4.2(d-h).

Looking at a planar surface as in Figure 4.2(d), we now have p≺0q as ‖Xp‖ < ‖Xq‖,

but p⊀ 1q because Πp does not occlude Πq, thus defeating the false positive at order 0.

A question, however, is on which ray L to test surface occlusion, cf. Figure 4.2(a). If

we choose L=Lp, cf. Figure 4.2(b), only Πq (approximating Sq) is actually consid-
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ered, which is less robust and can lead to inconsistencies due to the asymmetry. If

we choose L = L(p+q)/2, which passes through an imaginary middle pixel (p + q)/2,

the formulation is symmetrical but there are issues when Πp,Πq form a sharp edge

(salient or reentrant) lying between Lp and Lq, cf. Figure 4.2(f-g), which is a common

situation in man-made environments. Indeed, the occlusion status then depends on

the edge shape and location w.r.t. L(p+q)/2, which is little satisfactory. Besides, such

declared occlusions are false positives.

To solve this problem, we define order-1 occlusion p≺1q as a situation where

Πp occludes Πq along all rays L between Lp and Lq, which can simply be tested

as ‖Xp‖ < ‖Πq ∩Lp‖ and ‖Xq‖ > ‖Πp ∩Lq‖. However, it raises yet another issue:

there are cases where ‖Xp‖ < ‖Xq‖, thus p≺0q, and yet ‖Πp ∩L‖ > ‖Πq ∩L‖ for all

L between Lp and Lq, implying the inverse occlusion p�1q, cf. Figure 4.2(h). This

small-step configuration exists ubiquitously (e.g., book on a table, frame on a wall)

but does not correspond to an actual occlusion. To prevent this paradoxical situation

and also to introduce some robustness, as normals can be wrong due to estimation

errors, we actually define order-1 occlusion so that it also implies order-0 occlusion.

In the end, we say that p occlude q at order 1 iff (i) p occludes q at order 0, (ii) Πp

occludes Πq along all rays L between Lp and Lq, i.e.,

p ≺1 q iff ‖Xp‖ < ‖Xq‖ ∧ ‖Xp‖ < ‖Πq ∩ Lp‖ ∧ ‖Xq‖ > ‖Πp ∩ Lq‖ . (4.2)

4.3.3 Discretized occlusion

In practice, we resort to a discrete formulation where p, q are neighboring pixels in

image P and Lp passes through the center of p. We note Np the immediate neighbors

of p, considering either only the 4 horizontal and vertical neighbors N 4
p , or including

also in N 8
p the 4 diagonal pixels.

As distances (depths) dp = ‖Xp‖ can only be measured approximately, we require

a minimum discontinuity threshold δ > 0 to test any depth difference. A condition
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(a) oriented occlusion boundary (b) oriented occlusion boundary (c) P2ORM: pixel-pair occlusion
(red curve, fg-on-left convention) with per-pixel orientation relation (arrows from occluder to

and boundary rasterization information (from fg to bg) occludee, one color per orientation)

fg

bg

fg

bg

fg

bg

(d) oriented boundary based on (e) line-segment-based boundary (f) line-segment-based boundary
annotated line segments (green), pixels oriented from line orient. pixels orient. as average direction
yielding a different rasterization (alt. orientation representation) of (here) bg neighbors (mauve)

fg

bg

fg

bg

fg

bg

(g) segmentation into layers (h) fg/bg occlusion relationship: (i) oriented border pixels (here fg)
with depth ordering, occlusion with all fg (yellow)→ bg (blue) from fg boundary pixel to average
at relative fg/bg pixel boundary arrows between neighbor pixels direction of all bg neighbors

Figure 4.3: Some representations of occlusion and oriented occlusion.

dp<dq thus translates as dq− dp≥ δ. However, to treat equally all pairs of neighboring

pixels p, q, the margin δ has to be relative to the pixel distance ‖p− q‖, which can

be 1 or
√

2 due to the diagonal neighbors. Extending the first-order approximation,

the relation dp<dq is thus actually tested as dpq >δ where dpq
def
= (dq − dp)/ ‖q − p‖,

making δ a pixel-wise depth increasing rate.

4.3.4 Occlusion relationship and occlusion boundary

Most of the literature on occlusion in images focuses on occlusion boundaries, that

are imaginary lines separating locally a foreground (fg) from a background (bg).

A problem is that they are often materialized as rasterized, 1-pixel-wide contours,

that are not well defined, cf. Figure 4.3(a). The fact is that vectorized occlusion
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delineations are not generally available in existing datasets, except for handmade

annotations, that are coarse as they are made with line segments, with endpoints

at discrete positions, only approximating the actual, ideal curve, cf. Figure 4.3(d).

An alternative representation [116, 47, 141] considers occlusion boundaries at the

border pixels of two relative fg/bg segments (regions) rather than on a separating

line (Figure 4.3(g)).

Inspired by this pixel-border representation but departing from the notion of fg/bg

segments, we model occlusion at pixel-level between a fg and a bg pixel, yielding

pixel-pair occclusion relationship maps (P2ORM) at image level, cf. Figure 4.3(c).

An important advantage is that it allows the generation of relatively reliable occlu-

sion information from depth maps, cf. Equation (4.2), assuming the depth maps are

accurate enough, e.g., generated from synthetic scenes or obtained by high-end depth

sensors. Together with photometric data, this occlusion information can then be used

as ground truth to train an occlusion relationship estimator from images (see Sec-

tion 4.4). Besides, it can model more occlusion configurations, i.e., when a pixel is

both occluder and occludee (of different neighbor pixels).

Still, to enable the comparison with existing methods, we provide a way to con-

struct traditional boundaries from P2ORM. Boundary-based methods represent oc-

clusion as a mask (ωp)p∈P such that ωp = 1 if pixel p is on an occlusion boundary, and

ωp = 0 otherwise, with associated predicate ω̇p
def
= (ωp = 1). We say that a pixel p is on

an occlusion boundary, noted ω̇p, iff it is an occluder or occludee:

ω̇p iff ∃q ∈ Np, p ≺ q ∨ p � q. (4.3)

This defines a 2-pixel-wide boundary, illustrated as the grey region in Figure 4.3(c).

As we actually estimate occlusion probabilities rather than certain occlusions, this

width may be thinned by thresholding or non-maximum suppression (NMS).
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4.3.5 Occlusion relationship and oriented occlusion boundary

Related to the notions of segment-level occlusion relationship, figure/ground repre-

sentation and boundary ownership [116, 141], occlusion boundaries may be oriented

to indicate which side is fg vs bg, cf. Figure 4.3(b). It is generally modeled as the

direction of the tangent to the boundary, conventionally oriented [47] (fg on the

left, Figure 4.3(a)). In practice, the boundary is modeled with line segments (Fig-

ure 4.3(d)), whose orientation θ is transferred to their rasterized pixels [141] (Fig-

ure 4.3(e)). Inaccuracies matter little here as the angle is only used to identify a

boundary side.

The occlusion border formulation, based on fg/bg pixels (Figure 4.3(g)), implicitly

captures orientation information: from each fg pixel to each neighbor bg pixel (Fig-

ure 4.3(h)). So does our modeling (Figure 4.3(c)). To compare with boundary-based

approaches, we define a notion of pixel occlusion orientation (that could apply to

occlusion borders too (Figure 4.3(i)), or even boundaries (Figure 4.3(f)). We say that

a pixel p is oriented as the sum vp of the unitary directions of occluded or occluding

neighboring pixels q, with angle θp = atan2(uyp, u
x
p)− π

2
where up = vp/ ‖vp‖ and

vp =
∑
q∈Np

(1(p ≺ q)− 1(p � q))
q − p
‖q − p‖

. (4.4)

4.4 Pixel-Pair Occlusion Relationship Estimation

4.4.1 Modeling

The occlusion relation is a binary property that is antisymmetric: p ≺ q ⇒ q ⊀ p.

Hence, to model the occlusion relationship of neighbor pair pq, we use a random

variable ωp,q with only three possible values r∈{−1, 0, 1} representing respectively:

p� q (p is occluded by q), p⊀ q ∧ p � q (no occlusion between p and q), and p≺ q (p

occludes q).
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Since ωp,q =−ωq,p, a single variable per pair is enough. We assume a fixed total

ordering < on pixels (e.g., lexicographic order on image coordinates) and note ωpq =

ωp,q if p < q. We also define the probability for each possible value: ωpqr = P(ωpq = r).

Concretely, we consider 4 inclinations, horizontal, vertical, diagonal, antidiagonal,

with canonical displacements h= (1, 0), v= (0, 1), d= (1, 1), a= (1,−1), and we call

Qi = {pq | p, q ∈P , q= p+ i} the set of pixel pairs with inclination i∈I4 = {h, v, d, a}.

For the 4-connectivity, we only consider i ∈ I2 = {h, v}.

4.4.1.1 Estimating the occlusion relation

For occlusion relationship estimation, we adopt a segmentation approach: we classify

each valid pixel pair pq by scoring its 3 possible statuses r∈{−1, 0, 1}, from which

we extract estimated probabilities ω̂pqr. The estimated occlusion status is obtained

as ω̂pq = argmaxr ω̂pqr.

Our architecture is sketched in Figure 4.4 (left). The P2ORM estimator (named

P2ORNet) takes an RGB image as input, and outputs its pixel-pair occlusion rela-

tionship map for the different inclinations. We use a ResNet-based [39] U-Net-like

auto-encoder with skip-connections [119]. It must be noted that this architecture is

strikingly simple compared to more complex problem-specific architectures that have

been proposed in the past [141, 138, 81]. Besides, our approach is not specifically

bound to U-Net or ResNet; in the future, we may benefit from improvements in

general segmentation methods.

4.4.1.2 From occlusion relations to occlusion boundaries.

As discussed with Equation (4.3), occlusion boundaries can be generated from an

occlusion relation. In case the occlusion relation is available with probabilities (i.e.,

{ω̂pqr | r∈{−1, 0, 1}), we define the probabilistic variant of being on an occlusion

boundary for a pixel p as ωp ∈ [0, 1]. The estimated probability ω̂p is an average con-

sidering the pairs between the pixel p and its neighbor pixels: ω̂p = 1
|Np|

∑
q∈Np(ω̂p,q,−1+
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Figure 4.4: Overview of our method. Left: a encoder-decoder structure followed by softmax
takes an RGB image as input and outputs 4 classification maps (ωip) where each pixel p
in a map for inclination i actually represents a pair of pixels pq with q= p+ i. The map
ωipq =ωip = r classifies p as occluded (r=−1), not involved in occlusion (r= 0) or occluding
(r= 1), with probability ωipqr. (If N =N 4, only 2 inclination maps are generated.) Colors
blue, white and red represent respectively r=−1, 0 or 1. The top two images presents
occlusion relationships along inclinations horizontal (i= h) and vertical (i= v); the bottom
two, along inclinations diagonal (i= d) and antidiagonal (i= a). Right: A direct use of the
occlusion relationship for depth map refinement.

ω̂p,q,1). Here, ω̂p,q,r = P(ω̂p,q = r) and it can be calculated from ω̂pqr.

As proposed in [23] and performed in many other methods, we operate a non-

maximum suppression to get thinner boundaries. The final occlusion boundary map

is given by thresholding NMS((ωp)p∈P) with a probability, e.g., 0.5.

Boundary orientations can then be generated as defined in Equation (4.4). Given

our representation, it has the following simpler formulation: vp =
∑

q∈Np ω̂p,q
q−p
‖q−p‖ .

4.4.2 Training procedure

We train our model with a class-balanced cross-entropy loss [153], taking into account

the low probability for a pair pq to be labeled 1 (p occludes q) or −1 (q occludes p),

given that most pixel pairs do not feature any occlusion. Our global loss Loccrel is a

sum of |I| losses for each kind of pair inclination i∈I, averaged over the number of
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pairs |Qi| to balance each task i∈I:

Loccrel =
∑
i∈I

1

|Qi|
∑
pq∈Qi

r∈{−1,0,1}

−αr ωpqr log(ω̂pqr). (4.5)

where ω̂pqr is the estimated probability that pair pq has occlusion status r, ωpqr =

1(ωpq = r) where ωpq is the ground-truth occlusion status of pair pq, αr = 1(r= 0) +

α1(r 6= 0) and α accounts for the disparity in label frequency. In the early stage of

our research, we also tried regularization terms considering the geometric constraints

of physical world (e.g., one pixel can not be occluded by all its neighbor pixels).

However, our experiments shows that the involvement of these regularization terms

slows down the learning of our models and does not contribute to a performance

boost. Thus, we only use class-balanced cross-entropy loss [153] during training.

4.5 Depth Map Refinement with Occlusion Relation-

ship

Given an image, a depth map (d̃p)p∈P estimated by some method, and an occlusion

relationship (ω̂p,p+i)p∈P,i∈I as estimated in Section 4.4, we produce a refined, more

accurate depth map (d̂p)p∈P with sharper edges. To this end, we propose a U-Net

architecture [119] (Figure 4.4 (right)), named DRNet, where (d̃p)p∈P and the 8 maps

((ω̂p,p+i)p∈P)i∈I∪(−I) are stacked as a multi-channel input of the network.

As a pre-processing, we first use the ground-truth depth map (dp)p∈P and normals

(np)p∈P to compute the ground-truth occlusion relationship (p≺gt q)p∈P, q∈Np . We
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then train the network via the following loss:

Lrefine = Locconsist + λLregul (4.6)

Locconsist =
1

N

∑
p∈P

∑
q∈N 8

p


B(log δ, log d̂pq) if p ≺gt q and d̂pq < δ

B(log δ, log D̂pq) if p 6≺gt q and D̂pq ≥ δ

0 otherwise

(4.7)

Lregul =
1

|P|
∑
p∈P

(
B(log d̃p, log d̂p) +

∥∥∥∇ log d̃p −∇ log d̂p

∥∥∥2
)

(4.8)

where B is the berHu loss [61], δ is the depth discontinuity threshold introduced in Sec-

tion 4.3, N is the number of pixels p having a non-zero contribution to Locconsist, and

D̂pq is the order-1 depth difference at mid-pixel (p + q)/2, i.e., D̂pq = min(d̂pq, m̂pq)

where m̂pq = (
∥∥∥Π̂q ∩L(p+q)/2

∥∥∥−∥∥∥Π̂p ∩L(p+q)/2

∥∥∥)/ ‖q− p‖ is the signed distance be-

tween predicted tangent planes Π̂p, Π̂q (using d̂p, d̂q and np,nq) along L(p+q)/2.

Locconsist penalizes refined depths dp that are inconsistent with ground-truth oc-

clusion relationship ≺gt, i.e., when p occludes q in the GT but not in the refinement,

or when p does not occlude q in the ground truth but does it in the refinement. Lregul

penalizes differences between the rough input depth (d̃p)p∈P and the refined output

depth (d̂p)p∈P , which makes refined depths conditioned on input depths. The to-

tal loss Lrefine tends to change depths only close to occlusion boundaries, preventing

excessive drifts.

To provide occlusion information that has the same size as the depth map, as

pixel-pair information is not perfectly aligned on the pixel grid, we turn pixel-pair

data (ωp,p+i)p∈P,i∈I,p+i∈P into a pixel-wise information: for a given inclination i∈I,

we define ωip = ωp,p+i. Thus, e.g., if p ≺ p+ i, then ωip = 1 and ωip+i = −1.

At test time, given the estimated occlusion relationships, we use NMS to sharpen

depth edges. For this, we first generate pixel-wise occlusion boundaries from the

estimated P2ORM (ω̂p,p+i)p∈P,i∈I , pass them through NMS [23] and do thresholding
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to get a binary occlusion boundary map (ω̂p)p∈P where ω̂p ∈{0, 1}. We then thin the

estimated directional maps (ω̂ip)p∈P by setting ω̂ip ← 0 if ω̂p = 0.

4.6 Accurate Depth Estimation on Boundaries

In section 4.5, our model predicts the refined depths conditioned on the input depths

with the help of P2ORM. As P2ORM features directed depth discontinuities, an-

other natural thinking is to use the generated P2ORM annotations as an additional

supervision signal in the learning of monocular depth estimation methods to make

models pay more attention to the depth boundaries regions. Instead of adopting a

multi-task learning strategy, we propose to use the estimated P2ORM conditioned

on the predicted depths to evaluate the quality of predicted depths and guide our

models towards better depth predictions.

4.6.1 Modeling

We first make the generation of P2ORM differentiable. In other words, we train

a deep network Gd2o which predicts pairwise occlusion relationship directly from the

depth map d with the supervision of P2ORM ground truth. Concretely, Gd2o adopts a

ResNet-based [39] U-Net-like auto-encoder with skip-connections [119] as the network

architecture. It takes the ground-truth depth map d as input and classifies each

valid pixel pair pq by scoring its 3 possible statuses r∈{−1, 0, 1}, from which we

extract the estimated probabilities ω̂pqr. The final classification map is obtained as

ω̂pq = argmaxr ω̂pqr. By this way, the mapping from scene geometry information to

occlusion relationship is learned by Gd2o and can be used in an end-to-end learning

scheme. Once the learning converges, we fix all parameters of Gd2o and use it in our

monocular depth estimation approach.

For monocular depth estimation, we adopt a DenseNet-based [50] U-Net-like

encoder-decoder Gi2d to predict metric depth d̂ from each image with the super-
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Figure 4.5: Overview of our monocular depth estimation method with the guidance of
P2ORM

vision of ground-truth depth d. Then the predicted depth d̂ is fed into Gd2o as input

to estimate the pixel-pair occlusion relationship map ω̂pq with the supervision of

P2ORM ground truth ωpq. As mentioned before, the mapping from depth map to oc-

clusion is learnt by Gd2o and the parameters of it are fixed during the learning of depth

estimation. Thus, the predicted P2ORM by Gd2o in fact reflects the quality of depth

prediction d̂ by Gi2d about depth discontinuities. As Gd2o is differentiable for back-

propagation, the supervision about occlusion will let our depth estimator Gi2d pay

more attention to the regions with depth discontinuities during training. By this way,

our single-stage depth estimator Gi2o can recovers high-quality depth discontinuities

without an additional depth refiner. More importantly, our method is independent of

the choice of Gi2d architecture so that more powerful choice of Gi2d can be used with

the advancement of research in the community. As shown in Figure 4.5, we train our

monocular depth estimator Gi2d with the supervision of d and of P2ORM where our

occlusion estimator Gd2o takes the predicted depth map d̂ as input. During test, we

only evaluate our monocular depth estimator Gi2d on benchmarks.
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4.6.2 Training procedure

For the learning of the mapping from depth map to P2ORM, similar to Section 4.4,

we train our model Gd2o with a class-balanced cross-entropy loss [153] Loccrel as in

Equation (4.5), taking into account the low probability for a pair pq to be labeled 1

(p occludes q) or −1 (q occludes p).

For the learning of the mapping from color image to depth map, we train our

model Gi2d with Loccrel mentioned before and loss terms between the predicted depth

map d̂ and the ground-truth depth map d. Regarding depth map as a set of pixels

P , the total loss Ldepth for backpropagation is as follows:

Ldepth = λdL1 + Lgrad + LSSIM + λoLoccrel (4.9)

L1 =
1

N

∑
p∈P

|dp − d̂p| (4.10)

Lgrad =
1

N

∑
p∈P

|∇xdp −∇xd̂p)|+ |∇ydp −∇yd̂p| (4.11)

LSSIM =
1− SSIM(d, d̂)

2
, (4.12)

where L1 is the pixel-wise L1 loss, Lgrad is the L1 loss between depth map gradients

and LSSIM is the Structural Similarity term [144]. Since SSIM has an upper bound of

one, we define LSSIM similar to [2]. In experiments, we set λd = 0.1 and λo = 0.1.

4.7 Implementation Details

Occlusion ground truth generation from depth acquired by laser scanner.

In real datasets such as iBims-1 [58] whose depths are captured by laser scanners,

the depth estimation noise varies with both actual depth, pixel spatial location and

surface orientation due to laser scanner hardware properties. Therefore we propose

the following formula (cf. Equation (4.13)) to calculate possible the depth estimation
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error Ep relevant to a pixel p considering aforementioned factors:

Ep =
η

tan (γ)
dp , (4.13)

where η is a constant representing laser scanner estimation angular noise, γ is the

angle between ray Lp and tangent plane Πp, dp is the Euclidean distance between

surface point Xp and camera center C and it’s estimated by laser scanner. Then the

discontinuity threshold δ as introduced in Section 4.3 between a pixel-pair p, q can be

calculated with Ep, Eq and a constant Cδ that ensures a minimum discontinuity (cf.

Equation (4.14)):

δ = Ep + Eq + Cδ . (4.14)

As shown in Figure 4.7 in Section 4.8, by using the proposed occlusion definition

and the proposed dynamic discontinuity threshold in Equation (4.14) for each pixel-

pair, the generated occlusion ground truths are accurate in the scene with a large

depth range. Specifically, for iBims-1 dataset, η = 0.005 rad in Equation (4.13) and

Cδ = 25mm in Equation (4.14).

Occlusion relationship estimation. In Figure 4.4, we sketch the architecture

of our network for pixel-pair occlusion relationship estimation (P2ORNet). Here we

provide additional information. The detailed architecture is depicted in Figure 4.6,

while the setup of each block is presented in Table 4.1. Blocks named as “Res” are

residual convolution blocks introduced in [39] and blocks named as “Deconv” are

transposed convolution layers.

We initialize the encoder model of the occlusion estimation module with the

weights of a ResNet-50 model [39] pre-trained on ImageNet, and the remaining layers

with random values (as defined by the PyTorch [100] default initialization). To train

the network, we use the ADAM optimizer [57] with learning rate 10−4 and divide
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Figure 4.6: Architecture of P2ORNet, for occlusion relationship estimation.

Conv1 Conv2 Res1 Res2 Res3 Conv3

[7×7, 64]×1
stride 2

[
3×3, 64
3×3, 64

]
×1

3×3
maxpool, stride 2 1×1, 64

3×3, 64
1×1, 256

×3

 1×1, 128
3×3, 128
1×1, 512

×4

 1×1, 256
3×3, 256
1×1, 1024

×6

[
3×3, 512
3×3, 512

]
×1

Deconv1 Conv4 Deconv2 Conv5 Deconv3 Conv6

[3×3, 512]×1
stride 2

[
3×3, 256
3×3, 256

]
×1 [3×3, 256]×1

stride 2

[
3×3, 64
3×3, 64

]
×1 [3×3, 64]×1

stride 2

[
3×3, 64
3×3, 64

]
×1

Deconv4 Conv7 Conv_h Conv_v Conv_d Conv_a

[3×3, 64]×1
stride 2

[
3×3, 64
3×3, 64

]
×1 [1×1, 3]×1 [1×1, 3]×1 [1×1, 3]×1 [1×1, 3]×1

Table 4.1: Detailed architecture of P2ORNet (pixel-pair occlusion relation estimation). For
each block, as in [39], we give the kernel size and the number of output channels. The blocks
Conv1, Res1, Res2, Res3 are the first four blocks of ResNet-50 [39].

it by 10 when half of the total training iterations (4000, 100000, 110000 for BSDS,

NYUv2-OR, iBims-1-OR respectively) is reached. The input image size during train-

ing is 320× 320, and the mini-batch size is 8.

Depth refinement. We initialize our network layers using the ’kaiming’ initializa-

tion as in [39] and train the network from scratch. The training set contains 10k

depth predictions of SharpNet [112] on the InteriorNet subset [70] that we consider,

and corresponding ground truth P2ORM. We use the ADAM optimizer [57] with a

fixed learning rate of 10−5 and stop the training after 40k iterations. The size of the

input depth images size is 640× 480 and the batch size is 8 for all experiments.
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Accurate Depth Estimation on Boundries. We initialize the encoder model of

the occlusion estimation network Gd2o with the weights of a ResNet-50 model [39]

pre-trained on ImageNet, and the remaining layers with random values (as defined

by the PyTorch [100] default initialization). To train the network, we use the ADAM

optimizer [57] with a learning rate 10−4 for 50000 iterations and divide it by 10 for

the remaining 50000 iterations. The input image size during training is 320× 320,

and the mini-batch size is 8. For the monocular depth estimation network Gi2d,

we initialize the encoder model with the weights of a DenseNet-169 model [50] pre-

trained on ImageNet and randomize the weights of remaining layers as what we do on

Gd2o. To train the model, we first set λo = 0 in Equation (4.12) and use the ADAM

optimizer [57] with a learning rate 10−4 for 250000 iterations. Then we set λo = 0.1

and train the model for the remaining 100000 iterations. The input image size during

training is 640× 480, and the mini-batch size is 4.

4.8 Experimental Evaluation

4.8.1 Datasets

Evaluation datasets. We evaluate on 3 datasets: BSDS ownership [116], NYUv2-

OR, iBims-1-OR (cf. Table 4.2). We keep the original training and testing data of

BSDS. NYUv2-OR picks the test set of NYUv2 [93] and add occlusion boundaries

from [111] and our generated occlusion labels. IBims-1-OR augments iBims-1 [58]

with the occlusion ground truth that we generated automatically (cf. Section 4.3). As

illustrated in Figure 4.7, this new accurate ground truth is much more complete than

the “distinct depth transitions” offered by iBims-1 [58], that are first detected on depth

maps with [23], then manually selected. For training, a subset of InteriorNet [70]

(namely InteriorNet-OR) is used for NYUv2-OR and iBims-1-OR. For NYUv2-OR,

because of the domain gap between sharp InteriorNet images and blurry NYUv2
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Table 4.2: Used and created occlusion datasets. (a) We only use 500 scenes and 20 images
per scene (not all 500M images). (b) Training on NYUv2-OR uses all InteriorNet-OR images
adapted using [161] with the 795 training images of NYUv2 as target domain. (c) Training
on iBims-1-OR uses all InteriorNet-OR images w/o domain adaptation.

Dataset InteriorNet-OR BSDS ownership NYUv2-OR iBim-1-OR
Origin [70] [116] [93] [58]
Type synthetic real real real
Scene indoor outdoor indoor indoor
Resolution 640× 480 481× 321 640× 480 640× 480
Depth synthetic N/A Kinect v1 laser scanner
Normals synthetic N/A N/A computed [11]

Relation annot.
ours from
depth

and normals

ours from
manual

fig./ground [116]

ours from
boundaries
and depth

ours from
depth

and normals
Boundary annot. from relation manual [116] manual [111] from relation
Orient. annot. from relation manual [141] manual (ours) from relation
Annot. quality high low medium high
# train img. (orig.) 10,000(a) 100 795(b) 0(c)

# train images 10,000(a) 100 10,000(b) 10,000(c)

# testing images 0 100 654 100
α in Loccrel N/A 50 10 10

images, the InteriorNet-OR images are furthermore adapted with [161] using NYUv2

training images.

Samples of occlusion relationship in generated datasets. As described in

introduction, we generated occlusion relationship annotations for three datasets, i.e.,

InteriorNet, iBims-1, NYUv2, and name the new datasets InteriorNet-OR, iBims-1-

OR, NYUv2-OR. We illustrate here a few annotation samples: from InteriorNet-OR

(cf. Figure 4.8), iBims-1-OR (cf. Figure 4.9) and NYUv2-OR (cf. Figure 4.10).
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(a) (b) (c) (d)

Figure 4.7: iBims-1-OR: (a) RGB images, (b) GT depth (invalid is black), (c) provided
“distinct depth transitions” [58], (d) our finer and more complete occlusion boundaries.
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Figure 4.8: Samples from our InteriorNet-OR dataset. For each sample, first row, left to
right: RGB image, depth map, normal map and generated occlusion boundaries; second row,
left to right: generated occlusion relationships along inclinations horizontal (i= h), vertical
(i= v), diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red respectively
represent pixel-pair occlusion status r=−1, 0 or 1.
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Figure 4.9: Samples from our iBims-1-OR dataset. For each sample, first row, left to right:
RGB image, depth map, normal map and generated occlusion boundaries; second row, left to
right: generated occlusion relationships along inclinations horizontal (i= h), vertical (i= v),
diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red respectively represent
pixel-pair occlusion status r=−1, 0 or 1.
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Figure 4.10: Samples from our NYUv2-OR dataset. For each sample, first row, left to
right: RGB image, depth map and occlusion boundaries labeled by [111]; second row, left to
right: generated occlusion relationships along inclinations horizontal (i= h), vertical (i= v),
diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red respectively represent
pixel-pair occlusion status r=−1, 0 or 1.



4.8. Experimental Evaluation 111

4.8.2 Evaluation metrics

Oriented occlusion boundary metrics. We use the same protocol as [138, 81]

to compute 3 standard evaluation metrics, based on the Occlusion-Precision-Recall

graph (OPR): F-measure with best fixed occlusion probability threshold over the all

dataset (ODS), F-measure with best occlusion probability threshold for each image

(OIS), and average precision over all occlusion probability thresholds (AP). Recall (R)

is the proportion of correct boundary detections, while Precision (P) is the propor-

tion of pixels with correct occlusion orientation w.r.t. all pixels detected as occlusion

boundary.

Depth map estimation metrics. We evaluate based on depth maps estimated by

methods that offer results on depth-edge metrics: [26, 61, 30, 112, 53, 156] on NYUv2,

and [26, 74, 68, 61, 112, 73] on iBims-1. We train our network on InteriorNet-OR for

ground truth, with input depth maps to refine estimated by SharpNet [112]. For a fair

comparison, we follow the evaluation protocol of [111]. To assess general depth accu-

racy, we measure: mean absolute relative error (rel), mean log10 error (log10), Root

Mean Squared linear Error (RMSE(lin)), Root Mean Squared log Error (RMSE(log)),

and accuracy under threshold (σi< 1.25i)i=1,2,3. For depth-edge, following [58], we

measure the accuracy εacc and completion εcomp of predicted boundaries.

4.8.3 Occlusion relationship estimation

4.8.3.1 Evaluation on oriented occlusion boundary

Because of the originality of our approach, there is no other method to directly com-

pare with. Yet to demonstrate its significance in task-independent occlusion reason-

ing, we translate our relation maps into oriented occlusion boundaries (cf. Section 4.3)

to compare with SRF-OCC [131], DOC-DMLFOV [141], DOC-HED [141], DOOB-
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Net [138]1, OFNet [81]1.

To disentangle the respective contributions of the P2ORM formulation and the

network architecture, we also evaluate a “baseline” variant of our architecture, that

relies on the usual paradigm of estimating separately boundaries and orientations [141,

138, 81]: we replace the last layer of our pixel-pair classifier by two separate heads,

one for classifying the boundary and the other one for regressing the orientation, and

we use the same loss as [138, 81].

Table 4.3 summarizes quantitative results. Our baseline is on par with the state-

of-the-art on the standard BSDS ownership benchmark as well as on the two new

datasets, hinting that complex specific architectures maybe buy little as a common

ResNet-based U-Net is at least as efficient. More importantly, our method with

8-connectivity outperforms existing methods on all metrics by a large margin (up

to 15 points), demonstrating the significance of our formulation on higher-quality

annotations, as opposed to BSDS whose lower quality levels up performances. It

could also be an illustration that classification is often superior to regression [90]

as it does not average ambiguities. Lastly, the 4-connectivity variant shows that the

ablation of diagonal neighbors decreases the performance, thus assessing the relevance

of 8-connectivity.

To allow a deeper assessment of the performance of our approach, compared to

other state-of-the-art methods, we plot two graphs (cf. Figure 4.11):

(a) the Occlusion Accuracy w.r.t. boundary Recall (AOR) curve, as introduced

in [141], represents accuracy as a function of recall;

(b) the Occlusion Precision w.r.t. boundary Recall (OPR) curve, as later proposed

in [138], represents precision as a function of recall — a harder metric;
1As DOOBNet and OFNet are coded in Caffe, in order to have an unified platform for experi-

menting them on new datasets, we carefully re-implemented them in PyTorch (following the Caffe
code). We could not reproduce exactly the same quantitative values provided in the original papers
(ODS and OIS metrics are a bit less while AP is a bit better), probably due to some intrinsic differ-
ences between frameworks Caffe and PyTorch, however, the difference is very small (less than 0.03,
cf. Table 4.3).
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Table 4.3: Oriented occlusion boundary estimation. *Our re-implementation.

Method BSDS ownership NYUv2-OR iBims-1-OR
Metric ODS OIS AP ODS OIS AP ODS OIS AP

SRF-OCC [131] .419 .448 .337 - - - - - -
DOC-DMLFOV [141] .463 .491 .369 - - - - - -
DOC-HED [141] .522 .545 .428 - - - - - -
DOOBNet [138] .555 .570 .440 - - - - - -
OFNet [81] .583 .607 .501 - - - - - -

DOOBNet* .529 .543 .433 .343 .370 .263 .421 .440 312
OFNet* .553 .577 .520 .402 .431 .342 .488 .513 .432

baseline .571 .605 .524 .396 .428 .343 .482 .507 .431
ours (4-connectivity) .590 .612 .512 .500 .522 .477 .575 .599 .508
ours (8-connectivity) .607 .632 .598 .520 .540 .497 .581 .603 .525

where:

• (R)ecall is the proportion of pixels with correct boundary detections;

• (P)recision is the proportion of pixels with correct occlusion orientation w.r.t.

all pixels detected as occlusion boundary;

• (A)ccuracy is the proportion of pixels with correct occlusion orientation w.r.t.

all pixels correctly detected as occlusion boundary.

We compared all methods using the BSDS ownership dataset. This dataset has

become a de facto standard benchmark regarding oriented occlusion boundary esti-

mation, despite its moderate size and its coarse manually-annotated ground truth.

We use exactly the same dataset (same training data and same test data) for all

methods, including ours. On both AOR and OPR curves, we largely outperform all

other existing methods, i.e., SRF-OCC [131], DOC-DMLFOV [141], DOC-HED [141],

DOOBNet [138] and OFNet [81]. We show some qualitative results in Figure 4.12.
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Figure 4.11: Oriented occlusion boundary estimation on BSDS ownership: (a) Occlusion-
Accuracy-Recall curve (AOR) [141], (b) Occlusion-Precision-Recall curve (OPR) [138].

(a) (b) (c) (d)

Figure 4.12: Occlusion estimation on BSDS ownership dataset: (a) input RGB image,
(b) ground-truth occlusion orientation, (c) OFNet estimation [81], (d) our estimation.
green: correct boundary and orientation; red: correct boundary, incorrect orientation;
blue: missed boundaries; gray: incorrect boundaries.
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NYUv2-OR (adapt. & test) w/o adaptation with adaptation gain
Method \ Metric ODS OIS AP ODS OIS AP ODS OIS AP

DOOBNet* .292 .324 .204 .343 .370 .263 .051 .046 .059
OFNet* .339 .366 .255 .402 .431 .342 .063 .065 .087

baseline .394 .418 .336 .396 .428 .343 .002 .010 .007
ours (4-connectivity) .425 .446 .369 .500 .522 .477 .075 .076 .108
ours (8-connectivity) .452 .477 .424 .520 .540 .497 .068 .063 .073

Table 4.4: Ablation study about domain adaptation using [161] with NYUv2-OR images as
target for training on synthetic images of InteriorNet-OR and testing on NYUv2-OR. *Our
re-implementation (cf. footnote in Section 4.8.3.1). In blue, the minimum gain; in red, the
maximum gain.

4.8.3.2 Ablation study on training data

Ablation study on domain adaptation for synthetic images. To evaluate on

NYUv2-OR and iBims-1-OR [58], we train on 104 synthetic images of InteriorNet-

OR (cf. Table 4.2). The pictures in InteriorNet are not totally photorealistic, but

still fairly good. In our experiments on iBims-1-OR, whose test images are of good

quality, we train directly on InteriorNet-OR images and get good results. However,

on NYUv2-OR, the test images are of low quality, with some amount of blur. To

get better results, we do domain adaptation on the InteriorNet-OR images using the

training images of NYUv2-OR as target domain and the method proposed by [161].

The quantitative results in Table 4.4 show that this domain adaptation is worth-

while: except for the “baseline” method, for which the gains are limited, we gain on all

other methods at least 4.6 points and up to 10.8 points, depending on the considered

metric.

Ablation study on ground truth generation. To illustrate the value of defining

occlusion at order-1 as introduced in Section 4.3, here we show quantitative results

where the occlusion ground truths are generated by occlusion at order-0 definition. We

train on 104 domain-adapted images of InteriorNet-OR (cf. Table 4.2) and evaluate

on NYUv2-OR dataset. As shown in Table 4.5, if the ground truths are generated

without considering occlusion at order-1, the performance of the model degrades
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Method NYUv2-OR
Metric ODS OIS AP

ours (w/o order-1) .404 .439 .368
ours .520 .540 .497

Table 4.5: Ablation study about P2ORM ground truth generation.

greatly due to the inaccurate supervision signals.

4.8.4 Depth map refinement

The implementation and experiments of depth map refinement are mainly done by

Yang Xiao, we are very grateful for his contributions in this section.

4.8.4.1 Evaluation on RGBD datasets

To assess our refinement approach, we compare with [111], which is the current state-

of-the-art method for depth refinement on boundaries.

Figure 4.13 summarizes quantitative results on depth boundaries. We significantly

improve edge metrics εacc, εcomp on NYUv2 [93] and iBims-1 [58], systematically out-

performing [111] and showing consistency across the two different datasets. The

differences on general metrics after refinement are negligible (< 1%), i.e., we improve

sharpness without degrading the overall depth.

Quantitative results of depth refinement on NYUv2 are shown in Table 4.6 for

all metrics and for input depth maps obtained from a wide range of state-of-the-

art depth estimation methods. After refinement, the improvement or degradation of

general accuracy metrics (i.e., “Depth Error” and “Depth Accuracy”) are negligible

(≤ 0.006 difference). This result is similar to the other depth refinement method,

namely DispField [111]. However, we significantly and systematically outperform

DispField on “Boundaries” metrics for the whole range of depth estimation methods.

We evaluate and compare our method to DispField [111] on iBims-1, in the same

setting as for NYUv2 above, cf. Table 4.7. The results are similar: after refinement,
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Figure 4.13: Gain in edge quality after depth refinement for metrics εacc (left) and εcomp
(right) on NYUv2 (top) for respectively [26, 61, 112, 30, 53, 156] and on iBimis-1 (bottom)
for [26, 61, 112, 73, 74, 68]: metric on input depth maps (blue), after refining with [111]
(orange), and after our refinement (green). Lower metric value is better.

the improvement or degradation of general accuracy metrics are negligible (≤ 0.02

difference); however, we significantly and almost systematically outperform Disp-

Field [111] on “Boundaries” metrics for the whole range of depth estimation methods.

We illustrate here, in Figure 4.14, examples of refinements on NYUv2 with initial

depth map estimation by SharpNet [112] as input, which is the second best method

regarding boundary metrics εacc and εcomp. Figure 4.15 illustrates the refinement on

depth maps of iBims-1.
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Depth estim. Refinement Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
method method εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Eigen et al. [26]
— 9.926 9.993 0.236 0.095 0.765 0.265 0.611 0.887 0.971

DispField [111] 2.168 8.173 0.232 0.094 0.758 0.263 0.615 0.889 0.971
ours 1.715 6.048 0.231 0.095 0.761 0.264 0.615 0.888 0.970

Laina et al. [61]
— 4.702 8.982 0.142 0.059 0.510 0.181 0.818 0.955 0.988

DispField [111] 2.372 7.041 0.140 0.059 0.509 0.180 0.819 0.956 0.989
ours 1.976 6.423 0.142 0.059 0.508 0.181 0.818 0.955 0.988

Fu et al. [30]
— 3.872 8.117 0.131 0.053 0.493 0.174 0.848 0.956 0.984

DispField [111] 3.001 7.242 0.136 0.054 0.502 0.178 0.844 0.954 0.983
ours 2.631 6.507 0.132 0.053 0.487 0.173 0.848 0.957 0.985

Ramamonjisoa — 3.041 8.692 0.116 0.053 0.448 0.163 0.853 0.970 0.993
and DispField [111] 1.838 6.730 0.117 0.054 0.457 0.165 0.848 0.970 0.993

Lepetit [112] ours 1.546 5.988 0.116 0.053 0.448 0.163 0.852 0.970 0.993

Jiao et al. [53]
— 8.730 9.864 0.093 0.043 0.356 0.134 0.908 0.981 0.995

DispField [111] 2.410 8.230 0.092 0.042 0.352 0.132 0.910 0.981 0.995
ours 1.985 6.990 0.093 0.042 0.351 0.133 0.909 0.981 0.995

Yin et al. [156]
— 1.854 7.188 0.112 0.047 0.417 0.144 0.880 0.975 0.994

DispField [111] 1.762 6.307 0.112 0.047 0.419 0.144 0.879 0.975 0.994
ours 1.544 5.453 0.113 0.047 0.421 0.145 0.878 0.975 0.994

Table 4.6: Evaluation of depth refinement on the output of several state-of-the-art methods
on NYUv2 [93], cropped within valid region as in [26]. Best results in bold.

Depth estimation Refinement Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
method method εacc εcomp rel log10 RMSlin σ1 σ2 σ3

Eigen et al. [26]
— 9.97 9.99 0.32 0.17 1.55 0.36 0.65 0.84

DispField 4.83 8.78 0.32 0.17 1.54 0.37 0.66 0.85
ours 2.46 5.74 0.32 0.17 1.55 0.36 0.65 0.84

Laina et al. [61]
— 6.19 9.17 0.26 0.13 1.20 0.50 0.78 0.91

DispField 3.32 7.15 0.25 0.13 1.20 0.51 0.79 0.91
ours 2.56 6.20 0.26 0.13 1.20 0.50 0.78 0.90

Liu et al. [74]
— 2.42 7.11 0.30 0.13 1.26 0.48 0.78 0.91

DispField 2.36 7.00 0.30 0.13 1.26 0.48 0.77 0.91
ours 2.37 5.91 0.30 0.13 1.26 0.48 0.78 0.91

Li et al. [68]
— 3.90 8.17 0.22 0.11 1.09 0.58 0.85 0.94

DispField 3.43 7.19 0.22 0.11 1.10 0.58 0.84 0.94
ours 2.07 5.26 0.22 0.11 1.10 0.58 0.84 0.94

Liu et al. [73]
— 4.84 8.86 0.29 0.17 1.45 0.41 0.70 0.86

DispField 2.78 7.65 0.29 0.17 1.47 0.40 0.69 0.86
ours 2.75 6.40 0.29 0.17 1.45 0.41 0.69 0.86

Ramamonjisoa — 3.69 7.82 0.27 0.11 1.08 0.59 0.83 0.93
and DispField 2.13 6.33 0.27 0.11 1.08 0.59 0.83 0.93

Lepetit [112] ours 2.16 5.82 0.27 0.11 1.08 0.59 0.83 0.93

Table 4.7: Evaluation of depth refinement on the output of several state-of-the-art methods
on iBims-1 [58], cropped within valid region as in [26]. Best results in bold.
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(a) (b) (c) (d)
Figure 4.14: Qualitative results of depth refinement on NYUv2 [93]: (a) input RGB image
from NYUv2, (b) ground-truth depth, (c) SharpNet depth estimation [112], (d) our refined
depth.

(a) (b) (c) (d)

Figure 4.15: Qualitative results of depth refinement on iBims-1 [58]: (a) input RGB image
from iBims-1, (b) ground-truth depth, (c) SharpNet depth prediction [112], (d) our refined
depth.
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Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
Method εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Initial estimation [26] 9.926 9.993 0.236 0.095 0.765 0.265 0.611 0.887 0.971
Bilateral Filter [134] 9.313 9.940 0.236 0.095 0.765 0.265 0.611 0.887 0.971

GF [38] 6.106 9.617 0.237 0.095 0.767 0.265 0.610 0.885 0.971
FBS [5] 5.428 9.454 0.236 0.095 0.765 0.264 0.611 0.887 0.971

Deep GF [145] 4.318 9.597 0.306 0.116 0.917 0.362 0.508 0.823 0.948
PACNet [124] 4.681 9.702 0.238 0.096 0.771 0.267 0.608 0.885 0.971

Ours 1.715 6.048 0.231 0.095 0.761 0.264 0.615 0.888 0.971

Table 4.8: Comparison with existing methods for image enhancement, adapted to the depth
map refinement problems on NYUv2 [93] where the initial depth estimations are given
by [26]. Best results in bold.

To further validate the effectiveness of P2ORM as depth refinement guidance, we

also compare many existing methods using image intensity as guidance signal [134, 38,

5, 145, 124] where the initial depth prediction is given by [26]. As shown in Table 4.8,

our method (line “Ours”) achieves the best quantitative performance on NYUv2 [93].

The results show the superiority of P2ORM as a guidance signal for depth refinement

w.r.t. image intensity.
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4.8.4.2 Ablation study for depth refinement

Many variants and alternatives are possible to exploit our pixel-pair occlusion rela-

tionships for depth map refinement. We report here quantitative results justifying

the particular choice we made in Section 4.5. To evaluate the effectiveness of different

variants, we consider the estimation by [53] as input because this method provides

the depth maps with the best accuracy on NYUv2 dataset [93]. But the conclusion

is still valid for other methods.

Alternative network inputs. We first explore the influence of other types of

input, in place of our pixel-pair occlusion relationships: the original RGB image, a

normal map estimated using [11], and a classical occlusion edge mask (i.e., a binary

map). The occlusion edge masks are created by thresholding the occlusion boundaries

derived from the estimated occlusion relationships after Non Maximal Suppression

(NMS), as described in Section 4.4. The network architecture and loss function are

unchanged w.r.t. our proposed method, except that the first convolutional layer is

adapted according to the number of input channels (1 more the edge map, 3 more for

the RGB image or the normal map).

As shown in the top part of Table 4.9, using the RGB image as input (line “RGB”)

instead of our pixel-pair occlusion relationships (line “Refined (ours)”) hardly improves

the quality of the output depth map, which is not surprising as most the cues that can

be directly exploited from the RGB image have already been exploited by [53]. Using

the normal map leads to slightly lower depth errors but much worse depth boundaries.

Last, using binary occlusion edges leads to a slightly higher depth accuracy but poor

depth boundaries too. In the end, our estimated occlusion relationships as guidance

achieves the lowest boundary errors without a noticeable degradation or improvement

of the depth error and accuracy, which we believe is the best compromise.



122 Chapter 4. Scene Occlusion Relationship and Depth Estimation

Boundaries(↓) Depth error(↓) Depth accuracy(↑)
Variant εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Initial depth [53] 8.730 9.864 0.093 0.043 0.356 0.134 0.908 0.981 0.995
Refined with DispField [111] 2.410 8.230 0.092 0.042 0.352 0.132 0.910 0.981 0.995

Refined (ours) 1.985 6.990 0.093 0.042 0.351 0.133 0.909 0.981 0.995

Alternative network inputs (in addition to the rough depth map)

RGB image 8.816 9.887 0.092 0.042 0.352 0.132 0.910 0.982 0.995
Normal map 9.437 9.937 0.087 0.038 0.333 0.125 0.917 0.982 0.996
Binary edges 5.619 9.397 0.096 0.044 0.362 0.138 0.902 0.980 0.995

Different loss functions L exploiting the ground-truth depth

Lgtdepth + Lregul 8.756 9.866 0.093 0.043 0.356 0.134 0.908 0.981 0.995
Locconsist + Lgtdepth 2.778 8.006 0.092 0.042 0.356 0.133 0.909 0.981 0.995

Locconsist + Lregul + Lgtdepth 3.090 7.291 0.093 0.042 0.351 0.132 0.910 0.982 0.995

Different depth combinations used in Locconsist

dd (order-0 depth only) 2.375 7.406 0.094 0.043 0.356 0.135 0.907 0.981 0.995
DD (order-1 depth only) 2.401 7.373 0.093 0.042 0.352 0.133 0.909 0.981 0.995

Table 4.9: Ablation study about depth map refinement: (a) using alternative network inputs,
(b) using different loss functions exploiting the ground-truth depth, (c) using a different
combination of order-0 and order-1 depth difference in Locconsist. See details in text. Best
results in bold.

Different loss functions exploiting the ground-truth depth. Then we study

variations in the loss function when adding ground-truth depth information at train-

ing time. We introduce the loss function Lgtdepth, which is the counterpart of Lregul

using the ground-truth depth d instead of the rough input depth d̃: it penalizes the

difference between the refined depth d̂ and the ground-truth depth d as defined in

Equation (4.10):

Lgtdepth =
1

|P|
∑
p∈P

(
B(log dp, log d̂p) +

∥∥∥∇ log dp −∇ log d̂p

∥∥∥2
)

(4.10)

We study different combinations of partial losses, i.e., Lgtdepth +Lregul (which ig-

nores occlusion information), Locconsist +Lgtdepth (which does not penalize difference

between d̃ and d̂), and Locconsist +Lregul +Lgtdepth (which combines both the rough in-

put depth and ground-truth depth information), comparing to the loss Lrefine defined

in Equation (4.8) (which uses only the rough input depth), i.e., line “Refined (ours)”

in Table 4.9.

As shown in the middle part of Table 4.9, Lgtdepth +Lregul does not improve or
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degrade the input depth map noticeably; information about edges [111] or occlusions

is missing to yield any significant improvement. Replacing the rough input depth map

by the ground truth as Locconsist +Lgtdepth significantly improves εacc, slightly improves

εcomp and does not affect much the general depth error and accuracy metrics. But

it is not as good as the performance of our method. Finally, using both the rough

input depth map and the ground-truth depth map as Locconsist +Lregul +Lgtdepth, i.e.,

adding ground-truth information to our setting, is not as good as not using it.

Different combinations or order-0 and order-1 depths. Last, we also consider

variations in the depths used in Locconsist, using either the refined order-0 depth dif-

ference d̂pq or the tangent-adjusted order-1 depth difference D̂pq. More precisely, we

consider the cases where the signed distances in Equation (4.8) are both d̂pq (named

“dd”) or both D̂pq (named “DD”), instead of d̂pq then D̂pq as defined in Equation (4.8).

As can be seen in the bottom part of Table 4.9, the performance of both variants

is not as good as the loss function we define in Equation (4.8).
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Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
Method εacc εcomp rel log10 RMSlin σ1 σ2 σ3

Baseline 2.171 6.387 0.116 0.048 0.526 0.888 0.980 0.993
Ours 1.830 5.965 0.110 0.044 0.492 0.891 0.981 0.993

Table 4.10: Comparison with our baseline method for monocular depth estimation on
SceneNet [91]. Best depth boundaries results in bold.

Depth estimation Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
method εacc εcomp rel log10 RMSlin σ1 σ2 σ3

Eigen et al. [26] 9.926 9.993 0.236 0.095 0.765 0.611 0.887 0.971
Laina et al. [61] 4.702 8.982 0.142 0.059 0.510 0.818 0.955 0.988
Fu et al. [30] 3.872 8.117 0.131 0.053 0.493 0.848 0.956 0.984

Ramamonjisoa and Lepetit [112] 3.041 8.692 0.116 0.053 0.448 0.853 0.970 0.993
Yin et al. [156] 1.854 7.188 0.112 0.047 0.417 0.880 0.975 0.994

Ours 1.398 6.414 0.130 0.056 0.483 0.834 0.966 0.992

Table 4.11: Evaluation of monocular depth estimation on NYUv2 [93], cropped within valid
region as in [26]. Best depth boundaries results in bold.

4.8.5 Accurate depth estimation on boundaries

We first evaluate our method as introduced in Section 4.6 on the synthetic dataset

SceneNet [91]. To disentangle the respective contribution of the proposed method, we

evaluate a ’baseline’ method which means training our monocular depth estimation

module Gi2d without the supervision of P2ORM introduced in Section 4.6. As shown

in Table 4.10, compared to our baseline method, our method successfully recover more

precise depth boundaries.

Then we evaluate our method quantitatively on NYUv2 dataset [93] in Table 4.11.

The proposed method also successfully recovers more precise depth boundaries com-

pared to other state-of-the-art methods. Figure 4.16 offers qualitative results of our

method compared to one state-of-the-art method Yin et al. [156], it is evident that

our method recovers better depth discontinuities while a depth refinement stage is

not needed.
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(a) (b) (c) (d)

Figure 4.16: Qualitative results of monocular depth estimation on NYUv2 [93]: (a) input
RGB image, (b) ground-truth depth, (c) depth prediction by Yin et al. [156], (d) our depth
prediction.

4.9 Conclusion

In this chapter, we propose a new representation of occlusion relationship based on

pixel pairs and design a simple network architecture to estimate it. Translating our

results into standard occlusion boundaries for comparison, we significantly outperform

the state-of-the-art for oriented occlusion boundary estimation. To illustrate the

potential of our representation, we also propose a depth map refinement model that

exploits our estimated occlusion relationships. It also consistently outperforms the

state-of-the-art regarding depth edge sharpness, without degrading accuracy in the

rest of the depth image. By using P2ORM as a supervision signal, we further propose

a one-stage monocular depth estimation method that recovers high-quality depth

discontinuities without a depth map refinement stage. These results are made possible

thanks to a our method which automatically generate accurate occlusion relationship

labels from depth maps, on a large scale.



Chapter 5

Discussion

In this chapter, we conclude the thesis by providing in Section 5.1 a summary of its

contributions and outlining in Section 5.2 directions of future work.

5.1 Summary of Contributions

This thesis has addressed 2D and 3D geometric attributes estimation in images via

deep learning. More concretely, we developed a series of deep-learning-based ap-

proaches that aim to improve the performance of geometric attributes estimation

tasks such as object visual tracking, object 6D pose estimation, scene occlusion rea-

soning and monocular depth estimation. Meanwhile, automatic labeling approaches

and synthetic data generation methods are also proposed to make our models less

dependent on manually labeled training data. To summarize, our contributions are

threefold:

• In Chapter 2, we involved semantics information offered by semantic segmenta-

tion models in the DCF tracking framework, which allowed the proposed tracker

to make use of the semantics of both the tracking target and its surrounding en-

vironment. Experiments on public benchmarks demonstrated that our method

could improve both the accuracy and the robustness of tracking.

126
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• In Chapter 3, we first introduced our monocular object 6D pose estimation

method that exploits the 3D-to-2D correspondences between the object image

and the object 3D shape. Our experiments demonstrated the performance boost

of using these correspondences. Then we proposed an object pose refinement

method for images in the wild while existing methods work on images captured

with experimental setup. To make our method more general, we also investi-

gated the generalization ability of our models trained on generated synthetic

data and evaluated our models on objects which are not seen during training.

Evaluation on pubic datasets showed that our models could achieve good pose

refinement results.

• In Chapter 4, we formalized the notion of geometric occlusion in single images

and proposed an automatic labeling method for the generation of high-quality

occlusion annotations. Based on our occlusion definition, we further proposed

a new pixel-pair occlusion relationship formulation and the corresponding in-

ference method using deep models. Experiments on occlusion reasoning bench-

marks demonstrated the superiority of the proposed formulation and method.

In order to recover accurate depth discontinuities, we also proposed a depth map

refinement method and a single-stage monocular depth estimation method. By

using our occlusion formulation as a guidance signal, both these methods signif-

icantly improve depth estimation by making occlusion edges in the scene much

sharper. Besides, we released three datasets containing generated occlusion an-

notations (i.e., InteriorNet-OR, NYUv2-OR and iBims-1-OR) to contribute to

the advancement of research in the community.

5.2 Future Work

Synthetic-real domain gap. Compared to real data, synthetic data is more con-

trollable and enables the training on large-scale datasets without expensive manual
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labeling. However, the appearance difference between real images and synthetic im-

ages still limits the wide applicability of synthetic data in training tasks. In Chapter 3,

we still observed a performance gap between the models trained on real images and

the ones trained on synthetic images. In Chapter 4, we compared the models trained

on synthetic data and the ones trained on synthetic data with a synthetic-to-real

domain adaption, the difference of performance illustrates the value of photo-realism

in synthetic data generation. A valuable avenue of study is image synthesis methods

and domain adaption methods to further reduce the appearance difference between

synthetic images and real images, and improve the performance of models trained on

synthetic data.

Another potential extension is the exploration of methods that bring synthetic

data distributions closer to real data distributions. For example, in Chapter 4, the

authors of the synthetic dataset [70] use real indoor room layouts created by interior

designers to approximate room layouts existing in real data. A less expensive and

more general way to do so can be the estimation of rough room layouts directly from

real images acquired from the internet and the use of these estimated room layouts

for synthetic data generation. The diversity of synthetic data is important and worth

a further study.

Occlusion reasoning in object 2D/3D detection and segmentation. In Chap-

ter 4, we studied low-level occlusion reasoning following a pure geometric definition.

As shown in Chapter 2 and Chapter 3, occlusion is ubiquitous in object 2D/3D de-

tection and segmentation, and can induce a performance degradation by misleading

corresponding estimators into focusing on neighboring objects. The proposed occlu-

sion formulation can be a useful guidance signal to discriminate different objects in

the scene and therefore helps determine the region of individual object instances. By

paying more attention to the correctly estimated object region, object 2D/3D detec-

tors have a higher chance to achieve more accurate estimates. Due to the lack of
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time, we haven’t conducted any experiment relevant to this topic. We believe that

this is an interesting next step and it will be one of our future work.
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