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Introduction Preamble

Cancer is a versatile disease, that denotes a large variety of situations, body localizations, degree of pathogenicity, treatment sensitivity, and outcomes. Until two decades ago, tumor characterization and treatment strategy only depended on clinical features such as tumor location, size, histology and grade, but progressively have included some molecular phenotypes in the framework of precision medicine. This characterization is further complexified by intra-tumor heterogeneity (ITH). Acquisition of ITH is concomitant with tumor progression, as all cells in the human body acquire genomic alterations at each division, and tumor cells at an even faster rate. Most of those mutations do not impact cellular functions, but some may provide an advantage to their carrier, and lead to their progressive outgrowing of other tumor cells. This new subpopulation can entirely replace existing ones, or coexist with them, resulting in a composite structure. Recently, much work was dedicated to unravel the underlying population composition of tumors from the sequencing of one or several heterogeneous tumor samples. The accuracy of such reconstruction is critical for further clinical application.

The actual impact of the recently obtained catalog of cancer genome alterations on clinical practice is controversial [START_REF] Kaiser | Is genome-guided cancer treatment hyped?[END_REF]. Several hypotheses have been formulated to explain that setback, such as the existence of other involved mechanisms, namely gene expression regulation, epigenetic alterations, interaction with the tumor micro-environment, and ITH. Several processes could rely on this latter characteristic, such as treatment resistance, metastatic ability or immune system escapement. Indeed, this evolutionary framework allows researchers to consider and model not only tumor characteristics at the time of diagnosis, but also consider the full history of tumorigenesis, and its potential implications for future evolution, that can lead to better-suited therapeutic strategies.

The contributions of this thesis lie in the fields of computational methods conceived to estimate and describe genomic ITH from high throughput sequencing data. We propose a broad overview of existing methods developed to solve this problem, that highlights the associated computational challenges. A second aspect of this work focuses on the problem of evaluating existing (and to be developed) methods, which is a difficult question, as the truth is hidden and experimentally challenging to measure. Finally, with the development of a new approach, CloneSig, we illustrate the opportunity to integrate several aspects of tumor evolution in the inference for improved performance, and exploration of potentially informative patterns.

Association of cancer with genome alterations, and the potential to design efficient drugs to target the subsequent dysfunctions have been uncovered before any genome sequencing was performed. A frequent translocation in leukemia, the Philadelphia chromosome was detected by microscopic observation of samples with a particular chromosomal preparation in 1960 [START_REF] Hungerford | A minute chromosome in human chronic granulocytic leukemia[END_REF][START_REF] Rowley | Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia[END_REF][START_REF] Rowley | A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining[END_REF][START_REF] Larson | Evidence for a 15; 17 translocation in every patient with acute promyelocytic leukemia[END_REF], and targeted therapies were designed to inhibit the ectopic expression of the protein resulting from the fusion with a tyrosine kinase inhibitor [START_REF] Druker | Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells[END_REF][START_REF] Mardis | Insights from large-scale cancer genome sequencing[END_REF]. Nonetheless, generalization of this rationale has not met the expected success for a number of reasons, including difficulties for target identification and drug development, but also resistance to treatment, either out of hands, or after a few months of therapy. This work will focus on a transverse phenomenon, tumor evolution, which impacts the different aforementioned aspects, and in particular the elucidation of the genomic characteristics of a tumor, and the acquisition of functional properties. In this chapter, we will explain in details the concepts enabling us to interpret and potentially exploit genomic alterations in cancer, as well as the experimental and computational tools available to measure them.

Interpretation of genomic features

Over the last decades, DNA sequencing has become more and more efficient, allowing us to deepen our descriptive knowledge of thousands of alterations typically present in a cancer genome. However, detecting the key events that truly influence cancer development is more difficult than it appears.

Driver alterations

Despite the existence of numerous DNA repair mechanisms, a few to a dozen somatic mutations accumulate in cells every year [START_REF] Werner | Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates[END_REF]. In cancer cells, genomic instability leads to an increased mutation rate. A large body of evidence, ranging from mathematical models based on cancer incidence by age [START_REF] Ashley | The two "hit" and multiple "hit" theories of carcinogenesis[END_REF], to animal models recapitulating specific forms of cancer [START_REF] Böck | Mouse models of human cancer[END_REF], suggests that only a few key mutations, called "hits" or "drivers" are instrumental in fostering carcinogenesis [START_REF] Reiter | An analysis of genetic heterogeneity in untreated cancers[END_REF]. This hypothesis has been formalized within the framework of the "hallmarks of cancer", that identify crucial cellular functions that need to be impaired during the development of the disease [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF]. Identification of driver mutations is an important step towards precision medicine for cancer diagnosis, monitoring and treatment, and several rationales have been developed for that purpose:

• Identification of recurrent alterations, as repeatedly altered genes can be read into being under positive selection for cancer development. The number of alterations of a gene should be corrected for gene length, and background mutation rate [START_REF] Brown | Finding driver mutations in cancer: Elucidating the role of background mutational processes[END_REF].

• Prediction of functional impact of an alteration, based on structural data of the protein coded by the gene, known regulation sequences or conservation across species information [START_REF] Tang | Tools for predicting the functional impact of nonsynonymous genetic variation[END_REF].

• Pathway analysis to enrich genetic data. Indeed, as briefly mentioned earlier, driver mutations affect key functions in the cell, and are generally part of biological pathways constituted of several genes involved in a given function. We can use this underlying structure to better detect driver genes in several ways: for instance, exclusion patterns can be the sign of driver genes belonging to the same pathway, and hence not mutated together in the same cells, as the second mutation does not provide an additional change [START_REF] Szczurek | Modeling mutual exclusivity of cancer mutations[END_REF]. Another potential use of known pathways is to consider mutations at the pathway level instead of the gene level to increase the statistical power of detection of drivers [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF][START_REF] Morvan | NetNorM: capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis[END_REF].

Recent analyses highlight that a mutation that can be a driver in some tumors is not necessarily one in every context [START_REF] Reiter | An analysis of genetic heterogeneity in untreated cancers[END_REF][START_REF] Martincorena | Somatic mutant clones colonize the human esophagus with age[END_REF]. A way to refine the detection of driver events lies in the evolutionary history of a tumor. Deconvolution approaches allow us to distinguish early from late events, and more generally retrace mutations order. This order could be indicative of the actual contribution of each alteration. More in-depth analyses involving precise measurements of ITH can also unravel complex patterns such as exclusion patterns or convergent evolution but this time at the patient level (e.g. between distinct independent parts of the same heterogeneous tumor) rather than at the cohort level.

ITH and cancer evolution

Origin of ITH

In the 1970s, evolution has appeared as a new framework to study cancer and potential treatments [START_REF] Nowell | The clonal evolution of tumor cell populations[END_REF]. Indeed, cancer cells often exhibit genome instability, and accumulate alterations faster than normal cells, so that each cancer cell genome is unique. The alterations that are specific to a cell are called private, and are typically undetectable by bulk sequencing. When new alterations further accumulate, either due to selection or genetic drift, a tumor cell can undergo clonal expansion, and its descendants then represent an increasing proportion of the total tumor population, until they overcome the whole population, or coexist along it, leading to a mosaic structure. Indeed, cancer cells are constrained by their environment for survival, through competition with normal and other tumor cells for access to resources, and the necessity to evade the organism control systems that aim at maintaining tissue homeostasis (e.g. growth factors regulation, cell death, immune system). As a result of clonal expansions, all the descendant cells share the genomic alterations carried by their last common ancestor, which has two consequences: those alterations reach the threshold of detection, and as they are all shared together by this group of cells, they will be detected at similar frequencies by sequencing. This hypothesis is the cornerstone of the ITH methods considered throughout this work. This mechanism is illustrated schematically in Figure 1.1.

A few generalities on ITH inference

One can consider several distinct manifestations of ITH:

Functional heterogeneity i.e. all tumor cells may not express the same genes, that pathologists can observe directly on patient samples with immunohistochemistry, through expression or epigenetic assays. Some studies have attempted to link it to genetic heterogeneity [START_REF] Wen | Cell subpopulation deconvolution reveals breast cancer heterogeneity based on DNA methylation signature[END_REF][START_REF] Park | Measuring intratumor heterogeneity by network entropy using RNA-seq data[END_REF][START_REF] Kim | SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity from bulk tumor RNA-seq[END_REF] Genetic heterogeneity i.e. all tumor cells have different genomes.

In both cases, ITH can be detected using bulk genomic or functional measurements, that then necessitate to be deconvoluted to identify the different components of the mixture, or using recent approaches for single-cell measurements [START_REF] Chung | Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer[END_REF][START_REF] Min | Identification of distinct tumor subpopulations in lung adenocarcinoma via single-cell RNAseq[END_REF][START_REF] Navin | Tumour evolution inferred by single-cell sequencing[END_REF], that offer a simplification of the deconvolution step. A variety of intermediate settings allow researchers to explore ITH at different resolutions. Experimentally, ITH can be evidenced directly by sequencing of multiple samples (spatially or temporally separated) from the same tumor, but such approaches can be costly (even though sequencing costs keep decreasing), and invasive for the patients. Moreover, those observations can be confounded if samples are not homogeneous. For example in the case of genetic ITH, it can create an illusion that the subclonal mutations present in all samples are actually clonal. Hence, deconvolution is a necessary step for all ITH analysis if the sample is larger than a single cell [START_REF] Alves | Multiregional tumor trees are not phylogenies[END_REF]. Unless otherwise stated, heterogeneity will refer to genetic heterogeneity, which is the main focus of this thesis.

We can loosely define the problem of reconstructing ITH as identifying the number and genotypes of the main tumor populations, and infer their phylogenetic relationships. Two main objectives of ITH reconstruction are: (i) to assess whether a tumor is homogeneous or composed of several (detectable) subpopulations with distinct genomes, (ii) to reconstruct the evolutionary relationships between the identified such populations. Without going further into technical details that will be covered in Chapter 2, the main idea behind the first problem is to go beyond the simple detection of somatic alterations from sequencing data, and infer the proportion of cells in the sample that carry the detected alterations, and then try to group them into the correct number of mixture components. This is challenging because several parameters have to be taken into account to go from raw data to a proportion of cells, and measurements are noisy, making the grouping step more difficult. For the second problem, a few intuitive principles are applied to infer phylogenetic relationships between the identified alterations: the pigeonhole principle, or sum-rule, that states that if the sum of the clonal frequencies of two alterations is larger than 100%, at least one cell must have contained both alterations, and the infinite-site assumption, that each alteration occurs only once in the evolutionary history of the tumor, and can not be reversed. Those two principles provide some constraints that allow us to reconstruct potential evolutionary paths from the sequencing of a tumor sample.

Clinical implications of ITH

ITH can be leveraged to answer several important questions, including: Unravel cancer early stages those stages are not directly observed. ITH inference can complete our knowledge of driver events by refining their order of apparition and assess their importance. Better knowledge of tumor evolution patterns and time of growth can have important consequences on future strategies for cancer prevention and screening [Sottoriva et al., 2015a;[START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF][START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF].

Inform cancer treatment , as besides identifying driver events to target, reconstructing ITH can be helpful in selecting treatments that could reach all tumor cells, and not only a subset carrying the mutation of interest.

Risk stratification is also an important facet of cancer management, and there are indications that ITH can be a prognostic marker of future malignancy, both from premalignant as illustrated on predicting evolution to adenocarcinoma from the Barrett's esophagus [START_REF] Maley | Genetic clonal diversity predicts progression to esophageal adenocarcinoma[END_REF][START_REF] Martinez | Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus[END_REF], or suggested by the predictability of cancer evolution [START_REF] Hosseini S R | Estimating the predictability of cancer evolution[END_REF].

Ideas for new chronic disease management, inspired from what we know about species evolution and population genetics to propose entirely new treatment strategies that are not based on killing cancer cells, but lead the tumor to a stage where it will become extinct by itself, or remain quiescent at a low size [START_REF] Gatenby | First strike-second strike strategies in metastatic cancer: Lessons from the evolutionary dynamics of extinction[END_REF].

Mutational signatures

Relation with mutational processes

During an individual's lifetime, several processes can cause somatic mutations. Some of these processes are endogenous and inherent to the cellular functions, others are exogenous, such as exposition to carcinogens. The patterns of exposure can also vary, with lifelong exposure in the case of mutations caused by ageing, or later onset. In that latter situation, a specific mutational activity can either be transient in the case of exposure to an exogenous substance, or permanently acquired, in the case of the advent of an endogenous mechanism like DNA repair defects induced by mutations, though such cases can also be reversible in theory. One can define mutation types to better account for the genomic context of SNVs: six substitutions types (with accounting for reverse complements) and 4 possible 3' and 5' flanking nucleotides, resulting in 96 possibilities, as illustrated in Figure 1.2. There is strong evidence that several mutational processes have different probabilities to produce those 96 mutation types. Some of those particular patterns have been first experimentally observed several decades ago in several particular cases, with the discovery of 1958 of the mechanism by which UV exposition damages DNA [START_REF] Rörsch | The effect of U.V.-light on some components of the nucleic acids: I. Uracil, thymine[END_REF], and in 1980 of the spontaneous deamination of methylcytosines at CpG dinucleotides as mutagene [START_REF] Duncan | Mutagenic deamination of cytosine residues in DNA[END_REF].

First analyses of mutational patterns in cancer genomes in the 1980s were limited to well characterized and famous proteins like p53 [START_REF] Hollstein | Base changes in tumour DNA have the power to reveal the causes and evolution of cancer[END_REF], but the increasing availability of cancer genomic sequences allowed Stratton and his team to formalize the concept of mutational signatures [START_REF] Nik-Zainal | The life history of 21 breast cancers[END_REF] and Alexandrov to propose a first algorithm for their systematic identification and quantification in cancer genomes using nonnegative matrix factorization (NMF) on large cohorts (several thousands) of sequenced cancer genomes [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF]. A mutational signature can be formally defined as a discrete probability distribution over the 96 mutation types. The concept has been further extended to a more refined typology of mutations based on pentanucleotides [START_REF] Shiraishi | A simple model-based approach to inferring and visualizing cancer mutation signatures[END_REF][START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF], and also to small insertions and deletions (indels) [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF], larger structural variants [START_REF] Nik-Zainal | Landscape of somatic mutations in 560 breast cancer whole-genome sequences[END_REF][START_REF] Macintyre | Copy number signatures and mutational processes in ovarian carcinoma[END_REF]. A stabilized catalog of signatures is maintained by COSMIC [START_REF] Forbes | COSMIC: somatic cancer genetics at highresolution[END_REF][START_REF] Tate | COSMIC: The catalogue of somatic mutations in cancer[END_REF], and was recently updated to include 67 single nucleotide substitutions (SBS) signatures, 11 doublet base substitution (DBS) signatures and 17 small insertion and deletion (ID) signatures. SBS signatures are shown in Figure 1.3.

The underlying assumption of mutational signatures is that each signature represents a mutational process. This principle has been further investigated, both by comparison with known mechanisms (UV, spontaneous C>T mutations by deamination etc), and experimentally, with a first proof of concept illustrating the fact that different genetic alterations in DNA repair pathways induce distinct mutation profiles [Zou et al., 2018b], and systematic characterization of the effect of known chemical products [START_REF] Kucab | A compendium of mutational signatures of environmental agents[END_REF]. Association of signatures to mutational processes is done by confrontation with experimental data, or statistical association of patients' clinical data with signatures. Currently, most signatures are of unknown aetiology. Well-described signature-process associations include ageing (SBS1, SBS5), APOBEC activity (SBS2, SBS13), exposition to Aristolochic acid (SBS22), or to Aflatoxin (SBS24), DNA mismatch repair (MMR) defect (SBS6,15,[START_REF] Mcpherson | ReMixT: Clone-specific genomic structure estimation in cancer[END_REF]26), homologous recombination (HR) DNA repair defect (SBS3), tobacco smoking (SBS4) or chewing (SBS29), UV exposure (SBS7), somatic hypermutation in lymphoid cells (SBS9), Polymerase epsilon exonuclease domain mutations (SBS10) [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF].

Approaches for signature deconvolution in cancer genomes

There are two ways to approach the detection of mutational signatures in a tumor:

De novo discovery that considers an entire cohort of cancer genomes and extracts mutational signatures without a priori. Several approaches have been implemented: nonnegative matrix factorization (NMF) as the first approach, or NMF variants with incorporation of a LASSO penalty to enforce the sparsity of signatures [START_REF] Ramazzotti | De novo mutational signature discovery in tumor genomes using SparseSignatures[END_REF] or Bayesian variants, as well as other probabilistic approaches based on Latent Dirichlet Allocation (LDA) [START_REF] Shiraishi | A simple model-based approach to inferring and visualizing cancer mutation signatures[END_REF][START_REF] Matsutani | Discovering novel mutation signatures by latent Dirichlet allocation with variational bayes inference[END_REF]. Baez-Ortega and Gori [2019] provide a complete mathematical review of those approaches, and a benchmark can be found in [START_REF] Omichessan | Computational tools to detect signatures of mutational processes in DNA from tumours: a review and empirical comparison of performance[END_REF]. The difficulty lies in the fact that there is no guarantee that each signature corresponds to one mutational mechanism.

Signature refitting is the only applicable approach in the case of small cohorts, and consists in finding the proportions of known signatures in a new sample. We can use the reference signatures from the COSMIC database as input signatures. Common recent approaches rely on linear regression [START_REF] Rosenthal | deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution[END_REF], quadratic decomposition, or Bayesian approaches [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF], and have also been benchmarked in [START_REF] Omichessan | Computational tools to detect signatures of mutational processes in DNA from tumours: a review and empirical comparison of performance[END_REF].

Future challenges

Mutational signatures provide a unified concept to approach the causes of mutations, and deciphering such processes has promising applications in cancer prevention and patient stratification [START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF]. But despite those promises, several open questions remain to be addressed. The consensus around signatures and how to obtain them is still fragile, especially when considering the most recently defined signature for doublet substitutions, indels, and structural variants. A lot of signatures have no known associated mutational process, though systematic screenings are ongoing, both for chemical compounds [START_REF] Kucab | A compendium of mutational signatures of environmental agents[END_REF] and cancer drugs [START_REF] Pich | The mutational footprints of cancer therapies[END_REF]. Moreover, interactions with the genetic background and intrinsic signature variability between individuals are also considered [START_REF] Volkova | Mutational signatures are jointly shaped by DNA damage and repair[END_REF]. Accurate detection and quantification of signature activity is also far from solved with issues of identifiability [START_REF] Maura | A practical guide for mutational signature analysis in hematological malignancies[END_REF][START_REF] Robinson | Modeling clinical and molecular covariates of mutational process activity in cancer[END_REF]. The clinical implications of signature deconvolution for cancer prevention, patient stratification, and therapeutic strategies also remain to be explored. This last question could require to measure the variations of signature activities over the development of the tumor to further unravel the driver forces of carcinogenesis.

Specificities of sequencing for cancer research

In the previous section we have presented the challenges and some of the main thematics of current research in cancer genomics. All those applications rely on data extracted from the DNA sequencing of tumor samples, and are tailored to its technical particularities. In the rest of this chapter, we will cover in more details the revolutionary advances in sequencing technologies (both in cost and throughput) that have enabled tremendous progress in cancer genomics.

The first two sequencing techniques were described on the same year, with Maxam and Gilbert's chemical chain termination method for DNA sequencing [START_REF] Maxam | A new method for sequencing DNA[END_REF] and the dideoxy method by [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF], allowing researchers to obtain the first complete human genome sequence in 2001 [START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF][START_REF] Venter | The sequence of the human genome[END_REF]. This first attempt has required huge investments in human time (13 years) and money (3 billion dollars), but since then, the cost of genome sequencing has dramatically dropped, supporting a broad use in research in various domains. In Europe, 21 countries have committed to transnationally share one million human genomes by 2022 [START_REF] Saunders | Leveraging european infrastructures to access 1 million human genomes by 2022[END_REF].

Sequencing is involved in many aspects of cancer research, which is reflected in the variety of sample preparation techniques and sequencing methods designed to observe the complexity of cancer. A few of those numerous applications are the identification of hereditary risk factors, the identification of genomic (driver) alterations, either at the RNA or the DNA level, useful to isolate potential druggable targets or for patient stratification, and for the reconstruction of the tumor evolution process.

In each case, the sequencing strategy has to be adapted to the desired level of observation. A first specification is the choice of the input biological material:

• a piece of tissue from a biopsy or surgical resection, for a broad but unresolved overview,

• multiple samples from the same patient to improve spatial or temporal resolution,

• single cell sequencing, for easier deconvolution, or • circulating tumor cells, for non-invasive tumor sampling.

Depending on the biological question to explore, several sequencing settings are available,

• Whole genome sequencing (WGS).

• Whole exome sequencing (WES), where only the protein coding sequences (exons) are captured and sequenced, with the rationale that this will cover the genomic alterations that are the most likely to be involved in the cancer, but only 1 to 2% to the DNA amount.

• Targeted sequencing, either on a selection few dozens to hundreds of gene exons are capture and sequenced, often chosen among known cancer driver genes, or on regions of interest to confirm suspected point mutations (from WES or WGS).

• RNA sequencing, where RNA molecules are captures, and transcribed back to DNA for sequencing.

• More complex settings, like ChIP-seq (Chromatin ImmunoPrecipitation sequencing) to analyze protein interactions with DNA, Atac seq to detect regions of open chromatin, Hi-C to capture genome conformation, bisulfite sequencing to assess DNA methylation.

Finally, the cost is determined by the total amount of sequenced DNA, which depends on the aforementioned total size of the sequenced region, and of the sequencing depth, which can be loosely defined as n, the average number of times each position of the target region is covered by a read, and is denoted nX. The depth typically depends on the objective of the study: to detect subclonal variants, tumor samples are typically sequenced at a depth of 100X for WES, and at least 30X for WGS; the matched normal sample requires a more modest coverage. Targeted sequencing is typically used with a sequencing depth of 500 to 10000X. However, for copy number profile only, under 10X WGS can be used [START_REF] Raman | WisecondorX: improved copy number detection for routine shallow whole-genome sequencing[END_REF][START_REF] Griffith | Optimizing cancer genome sequencing and analysis[END_REF].

Overview of sequencing techniques

A large number of sequencing technologies have been developed over the last two decades, and have been extensively reviewed [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF][START_REF] Heather | The sequence of sequencers: The history of sequencing DNA[END_REF][START_REF] Van Dijk | The third revolution in sequencing technology[END_REF][START_REF] Mardis | DNA sequencing technologies: 2006-2016[END_REF]. The characteristics of the sequencing have important implications on the genome features that can be detected, and on the specificities of the involved computational pipelines, so we will briefly describe the sequencing techniques landscape. Sanger sequencing can deal with sequences up to 1000 base pairs (bp) with an accuracy as high as 99.999% [START_REF] Shendure | Next-generation DNA sequencing[END_REF], and relies on a complex setting where the polymerization reaction that elongates DNA is supplied di-deoxynucleotidetriphosphates (ddNTPs) instead of regular deoxynucleotidetriphosphates (dNTPs). The incorporation of a ddNTP prevents further elongation, and the resulting DNA molecules are then separated according to their molecular weight (and hence length) by electrophoresis. The separating power by one nucleotide limits the sequenced length.

The augmentation of sequencing throughput relies on several aspects

• the sequencing of many identical molecules at the same time (after PCR amplification) for robust signal detection,

• the parallelization of the sequencing of many DNA templates in parallel, typically by resorting to spacial resolution.

All approaches proceed with a first step of sequence amplification, and then a second step with the actual sequencing. The 3 main short read sequencing platforms have different solutions for the first step, with either on-bead amplification (454, SOLiD, GeneReader (Quiagen), Ion Torrent) that are then spread on a glass surface or on a plate with wells for the spatial separation, or amplification on a solid phase like Illumina bridge amplification or SOLiD Wildfire template walking. In the second step, ligation sequencing proceeds by successive ligation of fluorescent oligonucleotides with inserted shifts to cover the sequence, and deconvolution of the resulting signal (SOLiD). For sequencing-by-synthesis with cyclic reversible termination (Illumina, Qiagen), similarly to the principle of Sanger sequencing, the incorporation of marked nucleotides with a blocked 3' extremity, preventing elongation. Once the base is identified, the marker and the blocking extremity are removed, and the operation is repeated with the following position. Finally for sequencing-by-synthesis with single-nucleotide addition (454, Ion Torrent), for each position, each of the four possible bases are sequentially added and washed, and their incorporation is detected by the detection of the pyrophosphate molecule that is emitted when DNA elongation occurs. In the case of several identical residues, the quantity of pyrophosphate molecules is estimated.

In all those variations of short-read sequencing, the synchronization of the sequencing of similar sequences is key to reading the signal, and limits the read length. Illumina sequencing offers the longer reads and the higher throughput and now dominates the market, though SOLiD sequencing provides a much lower error rate, comparable to Sanger sequencing [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF].

Short read sequencing has proven instrumental in recent advances in genomics, however, it has several major drawbacks: several types of structural events, in particular involving repetitions can not be resolved, point variations or small indels can not be phased in genome sequencing, and splicing isoforms can not be easily identified in RNA sequencing. Long reads can address those limitations, and constitute the third generation sequencing techniques. Two rationales exist: either truly sequence a single molecule for lengths up to several kilobases, or alter the library preparation step to barcode small sequences originating from the same molecule, then use standard short read sequencing and recover the longer molecule during an extra assembling step. They constitute a promising alternative for higher quality genomic data, but remain expensive compared to short read sequencing, and are still limited in throughput.

Extraction of relevant features

From there we will focus on the problem of reconstructing the tumor history from sequencing data, mostly bulk, but a few remarks will outline the main differences with single cell sequencing. Hence, only genome sequencing approaches will be considered, and alternative signals such as transcriptome, methylome, and epigenome will not be covered, though they have central implications in cancer. The first step towards exploiting genomic data consists in converting the raw sequencing signal to the FASTQ format, containing all the sequenced reads (usually one to several hundreds of billions depending on depth and coverage) and the associated quality. Those short reads are then mapped to the reference genome [START_REF] Li | Fast and accurate long-read alignment with Burrows-Wheeler transform[END_REF][START_REF] Langmead | Ultrafast and memory-efficient alignment of short dna sequences to the human genome[END_REF], and other quality control steps can be taken such as marking or removal or duplicate reads (potential artifacts from the PCR amplification step), filter low mapping quality reads [START_REF] Broad | Picard toolkit[END_REF], base quality recalibration and realignment around indels [START_REF] Mckenna | The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[END_REF]. The following steps of analysis aim at detecting small alterations (single nucleotide variants, SNVs and small insertions and deletions, indels), the genome copy number profile, and larger structural variants.

Variant calling

Variant calling is a crucial step for subsequent analyses as this determines the list of detected genomic variants in a tumor sample. This is challenging because some variants are barely above the noise level of sequencing data. Several factors contribute to this fact: variants can occur in a small subset of the sample due to ITH and normal contamination, artefactual variations can be generated by polymerases during the amplification step or occur during sequencing itself, some genomic positions are less covered, typically in the GC-poor or GC-rich regions of the genome, some genomic regions are difficult to map (repeated sequences) [START_REF] Lander | Genomic mapping by fingerprinting random clones: A mathematical analysis[END_REF], capture and alignment are both biased toward the reference and can also lead to impaired mutation detection.

Over 40 variant callers have been developed in the past decade [START_REF] Xu | A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data[END_REF]; we will focus on the ones dedicated to somatic variant calling from a matched tumor-normal pair of sequenced samples. Most variant callers implement a position-based strategy, in which a statistical approach determines the situation best explaining the presence of variant reads. The complexity of the underlying models ranges from simple Fisher's exact test on the 2 × 2 contingency table of read counts in VarScan2 [START_REF] Koboldt | VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing[END_REF], or VarDict [START_REF] Lai | VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research[END_REF] to complex models of normal and tumor allele frequencies accounting for potential subclonal variants in non-diploid regions in MuSE [START_REF] Fan | MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data[END_REF], or deepSNV [START_REF] Gerstung | Reliable detection of subclonal single-nucleotide variants in tumour cell populations[END_REF]. Sequencing errors are also accounted for differently with either a single threshold [START_REF] Koboldt | VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing[END_REF], a site-specific estimate [START_REF] Gerstung | Reliable detection of subclonal single-nucleotide variants in tumour cell populations[END_REF], or a sample specific rate, depending on the sequencing depth and contamination of each sample [START_REF] Fan | MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data[END_REF]. The most recent approaches use a classification model that can incorporate complex features such as strand bias, position along the read, base quality score directly in the model as in SNooPer [START_REF] Spinella | SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing[END_REF] or DeepVariant [START_REF] Poplin | A universal SNP and small-indel variant caller using deep neural networks[END_REF], and can even additionally aggregate the calls of a group of variant callers to obtain more robust variants, as implemeted in Somat-icSeq [START_REF] Fang | An ensemble approach to accurately detect somatic mutations using SomaticSeq[END_REF], of NeoMutate [START_REF] Anzar | NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer[END_REF]. A second class of algorithms resort to an haplotype-based strategy like Mutect2 [START_REF] Cibulskis | Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[END_REF] in which reads are locally assembled to form candidates haplotypes, that are then confronted to read counts to estimate the likelihood of each haplotype. This strategy is advantageous in regions with poor mapping due to clustered SNVs or indels. More details can be found in the complete review of [START_REF] Xu | A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data[END_REF].

However, measuring the performances of each variant caller remains challenging, as simulated data often fail to fully reproduce sequencing biases, and real data benchmarks are not well suited to evaluate false negative calls. The application of any two variant callers to the same sample will provide discordant outputs in most cases. In practice, researchers often resort to additional ad-hoc filtering strategies to restrain variants, or even manual inspection in IGV, Integrative Genomics Viewer, a visualization tool for aligned reads [START_REF] Robinson | Variant review with the Integrative Genomics Viewer[END_REF]. Some of the point detection variant callers also include small insertions and deletions, i.e. of a few base pairs size. Other dedicated tools have also been developed. The principle is the same: statistical models comparing the count of reads with or without the alteration in the tumor sample compared to the normal sample. However, this is more challenging as reads including indels are harder to align to the reference genome, so the error rate of indel calling is much higher than for single nucleotide variants, and pre-processing steps like realignment around indels are important.

Copy number and Structural variants

Copy number alterations or variations (CNA, CNV) were the first ones detected through the direct observation of karyotypes, and have been associated to cancer and dysfunctional phenotypes quite early. Now the copy number profile of a tumor sample is accessible at higher resolution using comparative genomic hybridization arrays (CGH) or DNA sequencing approaches. The main idea is the same: observe the variations of signal intensity (either hybridization or number of reads) along the genome to distinguish amplified or deleted regions. Due to the coverage biases mentioned before (mappability in repeated regions or GC content), a normalization is necessary, either using a matched normal sample from the same patient, or a pool of normal samples. The resulting profile represents the total copy number profile along the genome. In the case of CGH arrays or WGS, the totality of the genome is covered, while the profile is highly incomplete in the case of WES or targeted sequencing; moreover the capture step induces an additional bias to the data, making it noisier.

The total copy number profile can be refined by focusing on allele-specific copy number. Indeed, the human genome is diploid, so each locus is present in two copies, for the 22 autosomes, and there exists a number of positions known as single nucleotide polymorphisms (SNPs) where each version of the locus has a different nucleotide. There are around 3 to 4 million such positions differing from the reference human genome per individual. Those are genetic variations present in the individual's original genome and are distinct from the somatic SNVs mentioned before that are supplementary genomic alterations that occur during the individual's lifetime. We can also distinguish a third category of alterations beyond SNPs and SNVs, that are the germline "private" alterations of an individual that are not widespread in the population (less than 1%), and hence are not SNPs, and are not considered here. At those SNP positions, one can measure the coverage separately for each allele, and detect allelic imbalance, where one of the alleles (denoted the A allele) is amplified compared to the other (denoted the B allele). Considering the B allele frequency (BAF) allows us to obtain more detailed information about the cancer genomes alterations, and processes at their origin.

To complete the analysis, the signal is segmented, either using only the total copy number or by performing joint segmentation with the BAF signal as implemented in [START_REF] Pierre-Jean | Performance evaluation of DNA copy number segmentation methods[END_REF], to determine regions of constant copy number, and breakpoints separating those regions. Some methods like Pindel [START_REF] Ye | Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads[END_REF] or DELLY [START_REF] Rausch | DELLY: Structural variant discovery by integrated paired-end and split-read analysis[END_REF] additionally analyze the split reads covering both ends around a breakpoint to ensure better detection of structural variants, however, WGS is necessary for this step, and long reads exhibit even more power to resolve complex situations that can be incorrectly mapped to the reference genome. Similarly to the variant calling problem, many methods have been developed to uncover the structural variations of tumor genomes, and their precise error rates are hard to evaluate for similar reasons [START_REF] Pierre-Jean | Performance evaluation of DNA copy number segmentation methods[END_REF]. Once the genome is segmented, the last stage of CNV calling consists in assigning integer copy number values to each segment, i.e. to determine the ploidy of the tumor. This step is highly confounded by the sample purity, and there exists multiple possible values for the pair (purity, ploidy), i.e. the problem is unidentifiable [START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF][START_REF] Shen | FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing[END_REF][START_REF] Favero | Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data[END_REF]. Finally, as in the case of variant calling, the problem is actually further complexified when considering the sample as a mixture of clones with different genomic landscapes; this will be further explored in the next chapter.

Chapter 2

Computational methods to unravel tumor evolution from genomic data Abstract

The problem of reconstructing the population structure of a tumor sample from genomic sequencing data has raised a lot of interest from the community, and more than eighty methods have been proposed in the last few years to solve it. In this chapter, we provide an overview of those methods, by describing the different types of input data considered in the reconstruction, and the underlying rationales and algorithms. This first outline can be useful for a potential user to select a method adapted to their scientific question and available data, but also highlights the lack of proper evaluation of those methods to choose the right one. This deficiency prevents the identification of the most promising directions for future developments, and keeps the expected accuracy when applying existing methods hidden from non-specialists, which may be misleading when designing experiments or interpreting the obtained results. We focus on some of the difficulties met when considering such a benchmark, which may explain the lack thereof. Finally, this brief review has allowed us to identify potential shortcomings in the field of ITH inference that motivate the contributions presented in the two following chapters, both on methodological developments, and evaluation of the clinical relevance.

Résumé

L'identification des sous-populations cellulaires composant un échantillon tumoral à partir des données de séquençage de leurs génomes est un problème qui a beaucoup intéressé la communauté, et plus de quatre-vingts méthodes ont été développées pour résoudre ce problème. Dans ce chapitre, nous fournissons une vue d'ensemble des méthodes existantes, en nous intéressant aux types de données d'entrée prises en compte pour la reconstruction d'une part, et à la logique et aux algorithmes sous-tendant ces approches d'autre part. Ce premier aperçu peut être utile à l'utilisateur potentiel, en lui permettant d'identifier les méthodes adaptées à sa question scientifique ou aux données disponibles, mais révèle aussi le manque d'évaluations adaptées de ces méthodes, pour pouvoir choisir laquelle appliquer. Cette lacune empêche l'identification des pistes les plus prometteuses à continuer à développer à l'avenir, et réserve aux spécialistes du domaine la connaissance de la véritable exactitude que l'on peut attendre des résultats de ces méthodes, ce qui peut conduire à des erreurs lors de la conception d'expériences ou de l'interprétation des résultats obtenus. Nous présentons ensuite certaines des raisons qui rendent la réalisation de telles évaluations difficiles, expliquant peut-être leur absence. Enfin, cet examen critique nous a permis d'identifier des insuffisances dans le domaine de la mesure de l'hétérogénéité intra-tumorale auxquelles nous nous sommes efforcés de remédier à travers les travaux présentés dans les chapitres suivants, à la fois sur le plan méthodologique que sur celui de l'évaluation de la pertinence clinique de ces mesures.

We have briefly introduced the concept of intra-tumor heterogeneity (ITH) in Chapter 1, and its continuous shaping by mutational processes and evolution, and will focus in this chapter on the overview of experimental and computational approaches designed to measure its true extent in tumors. We will first present a comprehensive overview of existing methods, then outline emerging ideas and opportunities for the field, and finally look into the question of the evaluation of their performances.

Overview of existing methods

Reconstruction of the evolutionary history of a tumor using bulk sequencing data is a problem that has raised interest within the community, and over 80 approaches have been designed to solve a variety of formulations of the question. A large part of those methods (probably not an exhaustive list despite our best efforts), further denoted ITH methods have been reviewed and are summarized in Supplementary Table D.1. Considering the number of methods, we have extracted a number of features to better approach and represent the complex diversity of the developed approach. This first step has allowed us to distinguish broad categories of methods, which can be helpful for the reader or potential user to navigate among methods and identify the one(s) best suited for their needs. We then consider the problem of method evaluation, which is a key issue for further performance improvement, and finally, we outline some challenges for future developments.

Selection of ITH methods

In Figure 2.1, ITH detection steps are represented schematically, and some technical challenges are highlighted. We can distinguish the following main steps of ITH and evolutionary history reconstruction:

1. identification of relevant variants from raw read counts data, 2. estimation of their cancer cell fractions (CCF) in the sample carrying those relevant variants,

3. grouping of variants with similar CCFs (returning either a clustering (denoted 3A), or sets of variants meant to represent actual tumor genotypes (3B)), and 4. reconstruction of a tree recapitulating the tumor evolutionary history?

The surveyed methods vary in the steps that they cover, with several methods taking up only one step; this is a first way to describe ITH methods. A second main distinction is whether the different steps are dealt with sequentially or jointly, with the ambition to integrate and leverage information of one step to inform the others. We do not consider methods that only perform the first step; those are the variant callers presented in the previous chapter. The decision to include a method is sometimes arbitrary, and may reflect the authors' branding, e.g. did they or did they not claim to have developed a CNV caller or an ITH method. ITH methods also vary in the input features they consider: as described in the first chapter, several kinds of descriptors can be extracted from raw sequencing data, and we will detail further how they can be leveraged for ITH deconvolution, and even combined together for the most integrated approaches. Finally, methods are also characterized by their algorithms, and we will describe the main classes convened to solve this problem.

ITH method features, and attribution strategies

Due to the high number of ITH methods to analyze, we have defined 3 groups of criteria to characterize them. This characterization is of course incomplete as each method is unique in its association of input combination, modeling choices, etc, which is not fully captured by our coarse representation, and described in slightly more details in Supplementary Table D.1. We describe here the different criteria chosen to describe the methods. We would like to warn the reader that feature attribution was performed by a human being in a subjective way and In panel a, we represent the successive clonal expansions leading the tumor to an heterogeneous state, from which a bulk sample is taken, and sequenced, with "raw reads" aligned to the reference genome (panel b). The colors represent detected alterations (step1), with a various proportions of altered reads (VAF). Panels c, d and e represent the VAF histogram, also called site frequency spectrum, with successive normalizations to account for CNVs and sample purity (step2, for SNVs; other approaches are tailored to deal with CNVs). In each case, the dotted lines represent the envelope for each (true) clone. Inferring those envelopes is the objective of step3. We can already see that step2 highly influences the identification of groups of alterations, with CNVs creating an illusion of two distinct clones. step3 remains challenging, as the blue clone (low frequency, and low number of alterations) is hard to distinguish. Finally, step4 aims at reconstructing a mutation tree recapitulating the evolutionary history (panel f). In the case of one sample, a linear history is always compatible with the data [START_REF] Beerenwinkel | Cancer evolution: Mathematical models and computational inference[END_REF]. can be questioned or further discussed in a number of cases, but we believe that the resulting typology still provides a valuable first perspective on the ITH methods landscape.

Input description

Not all ITH methods rely on the same input to provide a description of tumor samples. The underlying rationale of almost all methods considered in this analysis is to estimate and use the CCF of alterations, either SNVs, small indels or CNVs, based on sequencing data. We will here use abusively SNVs to refer to SNVs or small indels, as most methods deal with them in a similar way. Depending on the algorithm and simplifying assumptions, methods can take as input SNVs and/or CNVs, with all possible combination: a method can deal with only one of them, both, and the mandatory character of either input also varies. For instance,

• Some approaches consider only SNVs, such as PhyloSub [START_REF] Jiao | Inferring clonal evolution of tumors from single nucleotide somatic mutations[END_REF] or Pur-Bayes [START_REF] Larson | PurBayes: Estimating tumor cellularity and subclonality in next-generation sequencing data[END_REF].

• SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF] and other similar methods accept CNVs as input, in addition to SNVs, but deal with them in a deterministic manner, with exclusion of SNVs from altered regions (SciClone), or a priori normalization as in Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF]. Those methods can in theory be run with SNVs only, with a very naive simplifying assumption of unaltered ploidy, though this will impair the results.

• Few methods absolutely require both SNVs and CNVs, and model them jointly such as cloneHD [START_REF] Fischer | High-definition reconstruction of clonal composition in cancer[END_REF], PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF], PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF].

• Other methods, like TITAN [START_REF] Ha | TITAN: Inference of copy number architectures in clonal cell populations from tumor whole genome sequence data[END_REF], or THetA [START_REF] Oesper | THetA: Inferring intra-tumor heterogeneity from high-throughput DNA sequencing data[END_REF] solely model CNV abundance.

• Finally, some methods are agnostic to the nature of input alterations, and can work with either of them, like CloneSeeker [START_REF] Zucker | Inferring clonal heterogeneity in cancer using SNP arrays and whole genome sequencing[END_REF] This information is partially encoded in the binary variables SNV and CNV, without the information of the mandatory character of those inputs, or the relevance of integration of those data in the subsequent modeling steps. A "yes" value for one of this variable means that the method accepts such input.

Another variation in input requirements between methods is the number of samples: some methods are designed to deal with only one sample, others only with multiple samples, and some are compatible with both settings. We note that the fact that a method is able to provide a result with one setting or the other is not a guarantee that this results is relevant; in particular in the case of phylogeny reconstruction based solely on CCF information from a single sample, a linear evolution is always compatible with observed data, and two samples are necessary to infer a branching pattern [START_REF] Beerenwinkel | Cancer evolution: Mathematical models and computational inference[END_REF]. This information is encoded by the variables one_sample and multiple_samples, with a "yes" value meaning that the method is compatible with that setting.

Even between methods with the same class of input alterations, each method can adopt a different format and summary information. In the case of SNVs, either raw counts of reference and variant alleles can be required, or directly their ratio (VAF), or even a coarser presence/absence binary pattern. The same diversity is true for CNVs, with methods requiring total or allele-specific integer copy number profiles, or fractional copy numbers, or raw log ratios, or even segmented read counts. In addition, required inputs may include read counts at known germline SNPs in the tumor and paired normal samples. This of course is closely related to the method's algorithm, and will be further discussed in later sections. This is partly encoded in the binary variables raw_counts_SNV and raw_counts_CNV, indicating if the method accepts some kind of raw data directly based on read counts, or requires already pre-processed data. Complementary information is encoded in the WGS and WES variables, that indicate if data from WES or WGS can be sufficient to generate input data for the ITH method, that are partly related to required input in the sense that methods relying on splitreads covering a rearrangement can hence only be used with WGS data. There is one point that we could not properly assess for most methods: a recurrent problem of ITH inference the ability to scale to a large number of SNVs (or CNV segments), which might make it challenging to apply some of the methods to WGS data which typically detect several order of magnitude more alterations than WES.

Output description

We have established 4 successive steps for ITH reconstruction, that were enumerated in the previous section, and which we will describe in more details here. The first step consists in detecting the alterations from raw sequencing data. This step is typically covered by a variant caller or a CNA caller and then provided as input to ITH methods. However some methods include that step in the ITH pipeline, such as Sclust [START_REF] Cun | Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust[END_REF], and for other approaches, the calling step is even performed jointly with the deconvolution problem. This is the case only for CNA, where the calling of the copy number profile for each subclone is performed at the same time as subclonal deconvolution, for instance in THetA and THetA2 [START_REF] Oesper | THetA: Inferring intra-tumor heterogeneity from high-throughput DNA sequencing data[END_REF][START_REF] Oesper | Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data[END_REF], TITAN [START_REF] Ha | TITAN: Inference of copy number architectures in clonal cell populations from tumor whole genome sequence data[END_REF], cloneHD [START_REF] Fischer | High-definition reconstruction of clonal composition in cancer[END_REF],

HATCHet [START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF]. Intermediate methods, that are not only regular CNA callers but go a little further by associating a CCF at each alteration, such as CHAT [START_REF] Li | A general framework for analyzing tumor subclonality using SNP array and DNA sequencing data[END_REF], or Battenberg [START_REF] Nik-Zainal | The life history of 21 breast cancers[END_REF]] also include the first step. Interestingly, this calling step never concerns SNV calling. In each case, the expected measure VAF is computed, illustrating that CNV overlapping SNV locus can be a confounding factor when looking for ITH. Here tumor purity is kept constant to simplify the computation, but it obviously alters the proportion of observed reads from the tumor population, and hence the VAF. This figure is extracted from the publication of PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF].

A second step we isolated consists in estimating the CCF for each alteration. Let's focus first on the case of SNVs. For each SNV, raw data consists in the variant and total read counts at this position. Their ratio, denoted VAF for Variant Allele Frequency is usually used as a proxy for the actual variable of interest, the Cancer Cell Fraction (CCF). However, as illustrated in Figure 2.2, there are three approaches to obtain one from the other: (i) consider that the VAF is an estimation of the CCF for methods like SciClone, or PurBayes [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF][START_REF] Larson | PurBayes: Estimating tumor cellularity and subclonality in next-generation sequencing data[END_REF], (ii) correct each VAF for purity and copy number in a deterministic way for QuantumClone [START_REF] Deveau | QuantumClone: clonal assessment of functional mutations in cancer based on a genotype-aware method for clonal reconstruction[END_REF], Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF], CliP [START_REF] Yu | CliP: fast subclonal architecture reconstruction from whole-genome sequencing data[END_REF], (iii) more sophisticated corrections, that include for instance a joint estimation of ITH and of the copy number correction to apply as in PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF], or use of other information, like phased SNPs in OncoPhase [START_REF] Chedom-Fotso | OncoPhase: Quantification of somatic mutation cellular prevalence using phase information[END_REF]]. An orthogonal way to inform the SNV CCF estimation is to associate it with the clustering step (either 3A or 3B), in particular if some noise level is allowed in CCF estimation.

In the case of CNVs, CCF estimation is more complex, but follows similar principles. Several sources of raw data are available, as detailed in section 1.2.2.2 and 2.1.2.1: total read counts for total copy number inference, heterozygous SNP read counts for allele-specific calling, soft-clipped and discordant reads for more precise structural variant (SV) characterization. A segmentation step is usually needed prior to ITH inference. Methods resort to various simplifying assumptions, such as the existence of only one variant genotype for each segment [START_REF] Li | A general framework for analyzing tumor subclonality using SNP array and DNA sequencing data[END_REF], or more complex patterns can be modeled [START_REF] Mcpherson | ReMixT: Clone-specific genomic structure estimation in cancer[END_REF][START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF].

The third step of ITH reconstruction consists in grouping alterations with similar characteristics together in a way that is relevant to the tumor evolution. Two ways of addressing this issue have been implemented and are mutually exclusive: a first strategy consists in grouping together alterations with similar CCFs, usually forming peaks in the CCF histogram, and a second strategy aims at identifying genotypes and their mixing proportions. The main approaches for those steps consist in simple clustering approaches, such as k-means in BAMSE [START_REF] Toosi | BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples[END_REF] or hierarchical clustering in SuperFreq [START_REF] Flensburg | SuperFreq: Integrated mutation detection and clonal tracking in cancer[END_REF], potentially with some further refinement, or probabilistic mixtures, either finite or infinite (Dirichlet Processes), and either modeling CCFs or raw read counts, with a several choices of distributions (Binomial, Beta-Binomial to account for overdistribution for read counts, and then Gaussian or Beta for CCF estimates). For any algorithmic choice, the difficulty remains the choice of the number of components; classical approaches are used, with either standard criteria like the Bayesian Inference Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF], or the choice of prior distributions for fully bayesian settings. In the case where genotypes are inferred, probabilistic methods are used in most of the cases when no tree is inferred from those genotypes, with hierarchical probabilistic models specifically designed for this problem, like in Clomial [START_REF] Zare | Inferring clonal composition from multiple sections of a breast cancer[END_REF] or BayClone [START_REF] Sengupta | BayClone: Bayesian nonparametric inference of tumor subclones using ngs data[END_REF] for SNV-based approaches, or TITAN [START_REF] Ha | TITAN: Inference of copy number architectures in clonal cell populations from tumor whole genome sequence data[END_REF], CloneDeMix [START_REF] Tai | Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations[END_REF] for CNV-based approaches.

The last step (step4) relies on results from the previous step and reconstructs a clonal tree representing the order acquisition of mutations. It presents similarities with a phylogenetic tree with a major difference: internal nodes in the tree can be observed in tumor samples as new and ancient populations can coexist. Results from step3B are closer to the generation of a tree than step3A where there is no indication of groups of alterations hitting the same tumor cells. Tree inference resorts to two main types of algorithms: probabilistic, and in that case step3B and 4 are jointly performed, as in cloe [START_REF] Marass | A phylogenetic latent feature model for clonal deconvolution[END_REF], PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF], or Canopy [START_REF] Jiang | Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing[END_REF]; or combinatorial, in which case, pre-clustered alterations from step3A are used to reconstruct genotypes and then a tree, as in LICHeE [START_REF] Popic | Fast and scalable inference of multi-sample cancer lineages[END_REF], or CITUP [START_REF] Malikic | Clonality inference in multiple tumor samples using phylogeny[END_REF].

Preliminary algorithmic characterization

To describe the algorithms used by the different methods, we have very broadly distinguished 3 categories probabilistic approaches , with various strategies for inference (MCMC, variational inference, EM, maximum likelihood direct computation), and model selection criteria (fully bayesian, BIC or similar alternatives), graph or combinatorial approaches , where a high number of possible solutions are tested, often with heuristics to reduce the search space, and optimization algorithms , where an objective function to minimize is defined, and standard descent algorithms are implemented.

Several categories of algorithms can be used sequentially for the different steps of the reconstruction when they are performed independently by a single method.

Main classes of methods

We have characterized each considered ITH method according to the criteria defined in section 2.1.2, and delineated four main classes of ITH algorithms. This typology framework is fully represented in Figure 2 For each method, several criteria were evaluated (mostly in a binary way) to characterize each method. Hierarchical clustering was performed to distinguish several classes of approaches. Of course, such a typology is not unique, and is an attempt to provide the reader with a reading grid to approach the complex landscape of ITH methods.

Methods of the first group have in common to return an inferred tree, with or without providing subclonal genotypes, and their proportions in the sample(s), mostly relying on SNVs, with some approaches accounting for CNVs as well, and a few methods relying solely on CNVs. A first distinction that can be done between methods is whether genotype and tree inference are done jointly, which is the most interesting case, as the tree structure can help distinguish subclones that are close in CCF estimations. There are several levels of integration between genotype reconstruction and tree inference, with a fully joint inference, as in Canopy with a complete probabilistic model for both steps [START_REF] Jiang | Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing[END_REF] or CALDER that proposes a mixt integer linear program [START_REF] Myers | CALDER: Inferring phylogenetic trees from longitudinal tumor samples[END_REF], or CITUP for a small number of mutations [START_REF] Malikic | Clonality inference in multiple tumor samples using phylogeny[END_REF]. Other methods such as PASTRI rely on a third party ITH clustering algorithm, but consider the posterior CCF distributions of each alteration, instead of hard cluster assignments, allowing for some flexibility while reconstructing the tree [START_REF] Satas | Tumor phylogeny inference using tree-constrained importance sampling[END_REF]. Other methods implement heuristics to start from observed genotypes, and alternate clustering and tree reconstruction to provide a result, like TargetClone [START_REF] Nieboer | TargetClone: A multi-sample approach for reconstructing subclonal evolution of tumors[END_REF], and CloneFinder [START_REF] Miura | Predicting clone genotypes from tumor bulk sequencing of multiple samples[END_REF]. A second category of approaches implement a clustering strategy that is followed by the tree reconstruction step. That provides an advantage in terms of performance and algorithm complexity, though it might be at the expense of deducing constraints from the tree to inform the clustering step. Methods not performing genotype inference usually require grouped alterations as input, like SCHISM [START_REF] Niknafs | Subclonal hierarchy inference from somatic mutations: Automatic reconstruction of cancer evolutionary trees from multiregion next generation sequencing[END_REF], TrAp [START_REF] Strino | TrAp: A tree approach for fingerprinting subclonal tumor composition[END_REF] or Rec-BTP [START_REF] Hajirasouliha | A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data[END_REF]. Over those tree inference approaches, two stand out by taking the sample origin into account to help the reconstruction: CALDER that leverages the temporal relation between several samples [START_REF] Myers | CALDER: Inferring phylogenetic trees from longitudinal tumor samples[END_REF], and MACHINA that models metastatic seeding and can use the localization of multi-site samples [START_REF] El-Kebir | Inferring parsimonious migration histories for metastatic cancers[END_REF]. The method Meltos [START_REF] Ricketts | Meltos: multi-sample tumor phylogeny reconstruction for structural variants[END_REF] also proposes an interesting idea: build a high confidence tree from SNVs, and use this tree to help the calling of CNVs, and their placing on the tree. This idea has been already implemented to improve SNV calling [START_REF] Salari | Inference of tumor phylogenies with improved somatic mutation discovery[END_REF][START_REF] Van Rens | SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP[END_REF], but was not really further used.

The second group contains CNV-based methods that do not output a tree. They have diverse objectives: some like Battenberg are close to CNV callers, and additionally provide a CCF estimate. At the other extreme, methods like ReMixT [McPherson et al., 2017] and RCK [START_REF] Aganezov | Reconstruction of clone-and haplotype-specific cancer genome karyotypes from bulk tumor samples[END_REF] go beyond subclonal inference and CNV profiles, and attempt to reconstruct "assembled" tumor genotypes, with in-between more classical approaches like TITAN [START_REF] Ha | TITAN: Inference of copy number architectures in clonal cell populations from tumor whole genome sequence data[END_REF], THetA and THetA2 [START_REF] Oesper | THetA: Inferring intra-tumor heterogeneity from high-throughput DNA sequencing data[END_REF][START_REF] Oesper | Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data[END_REF], p-SCNAClonal [START_REF] Chu | p-SCNAClonal: Somatic copy number alterations based tumor subclonal population inferring method[END_REF], MixClone [START_REF] Li | MixClone: a mixture model for inferring tumor subclonal populations[END_REF] and HATCHet [START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF], that return proportions of clones, with CNAs assigned to the various clones. Due to combinatorial complexity, a lot of those methods are limited to two tumor populations. As CNV callers results are often not compatible with ITH, most of these methods require partially raw inputs, usually segmented read counts or segmented log ratios and provide their own inference of integer copy number for the different tumor populations.

The last two groups are focused on SNV-based approaches that provide either genotypes for the third group, or clusters for the last group. Most of those methods are probabilistic, with different a variety of models: finite mixture models or Dirichlet Processes [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF] that allow for the number of mixture components to be automatically inferred, correction for copy number, considering raw read counts, or directly VAFs, and finally, some of those methods also propose a probabilistic approach to tree inference. In the third group, all methods estimate genotypes, based on probabilistic models. Most of those approaches do not take CNVs as input, and consider only SNVs in copy-neutral regions. Others, like BayClone2 [START_REF] Lee | Bayesian inference for intratumour heterogeneity in mutations and copy number variation[END_REF], while not considering actual measures of CNVs allow the copy number at each position to vary up to a maximum value set by the user. Among methods that only reconstruct genotypes, most methods in this group have similar underlying models, and differ by the inference algorithm: Clomial [START_REF] Zare | Inferring clonal composition from multiple sections of a breast cancer[END_REF] proposes a generative model with parameter inference by an EM algorithm, while BayClone [START_REF] Sengupta | BayClone: Bayesian nonparametric inference of tumor subclones using ngs data[END_REF] (and its precursor Bayesian feature allocation [START_REF] Lee | A Bayesian feature allocation model for tumor heterogeneity[END_REF]) are fully Bayesian, and inference is performed by an MCMC algorithm. SeqClone [Ogundijo and Wang, 2019] implements the same model as BayClone, but with a more efficient inference using an Indian Buffet Process [START_REF] Griffiths | The indian buffet process: An introduction and review[END_REF] and a sequential Monte Carlo approach for inference; it was further ex-tended to tumor_clones [Ogundijo et al., 2019] with three possibilities for each SNV instead of two (with 0, 1 or 2 copies of the mutation). Finally BayClone2 [START_REF] Lee | Bayesian inference for intratumour heterogeneity in mutations and copy number variation[END_REF] further extended the model to an arbitrary number of mutated copies. For tree reconstruction, two approaches are considered: either a joint process for generating genotypes, their phylogenetic relations and their proportions using a tree-structured stick-breaking (TSSB) process, implemented first in PhyloSub [START_REF] Jiao | Inferring clonal evolution of tumors from single nucleotide somatic mutations[END_REF] for copy-neutral alterations, and then extended to account for copy-number alterations in PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF], or a tree-guided latent feature allocation model, close to the models behind Clomial or Bayclone, but with an underlying tree structure enforcing the infinite-site assumption, and the pigeonhole rule, with penalization rather than total impossibility of rule violation. This latter strategy was adopted in cloe [START_REF] Marass | A phylogenetic latent feature model for clonal deconvolution[END_REF], and TreeClone [START_REF] Zhou | TreeClone: Reconstruction of tumor subclone phylogeny based on mutation pairs using next generation sequencing data[END_REF] for SNVs in copyneutral regions, and further extended to arbitrary CNVs in PhylogenicNDT [START_REF] Leshchiner | Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment[END_REF] and SIFA [START_REF] Zeng | Phylogeny-based tumor subclone identification using a Bayesian feature allocation model[END_REF]. Finally, two methods, PairClone [START_REF] Zhou | PairClone: a Bayesian subclone caller based on mutation pairs[END_REF], and its extension to a tree structure in TreeClone [START_REF] Zhou | TreeClone: Reconstruction of tumor subclone phylogeny based on mutation pairs using next generation sequencing data[END_REF], are leveraging an original and relevant information, of the phasing of SNVs, that of course constraint the space of possible genotypes. In the last group of methods, most approaches are SNV-based methods, and implement probabilistic mixture models, and differ mostly by how they model SNVs (read counts, CCFs), the way they incorporate correction for copy number, the possibility to include several samples, and the exact method for inference (MCMC, EM, variational inference). CloneSig, the original method we propose and further describe in Chapter 4 would belong to this class.

Challenges for method evaluation

In the previous section, we presented the overwhelming variety of methods designed to resolve ITH. It might already be helpful to the reader or potential user to narrow down the choice depending on the scientific question and/or the data at hand, or be a guide to generate data in an optimal way. Unfortunately, performances of each method, the really useful information needed to choose the best-suited tool is missing from the previous overview. When a new method is published, the reader could expect that the authors provide a complete evaluation of their approach's performances, and convincing evidence that it outperforms existing ones. We have surveyed the evaluations provided for each method presented in the previous section, and reported results in Figure 2.4. A first striking observation is the sparsity of this matrix: very few methods provide a satisfying evaluation of their performances and compare them to existing methods.

We have also extracted from this co-test matrix the number of methods each new methods tests (including the method), and the number each method is used in a benchmark (including its own publication), and results are provided in Figure 2.5. Surprisingly, one third of the methods do not provide any comparison to an independent approach, and one fourth compare themselves to only one other method.

In this section, we will explore the difficulties associated with ITH methods evaluation, and review the existing benchmarks.

Different inputs, different outputs, different problems

A first challenge when trying to evaluate ITH methods is that they all require different inputs, perform different tasks and provide different outputs, which makes the comparison difficult. By relying on the task distinction we elaborated in the previous section, we can however design an evaluation for each task separately. Let us now focus on the technical specifications of the ideal benchmark.

Choice of a benchmarking dataset

An essential ingredient to method evaluation is the data used as input. A proper evaluation would involve simulated data and real data. Indeed, one can distinguish two main causes of failure: (i) the model fails to find the optimal solution, which can be the case for the ITH indicates that method i provided a comparison with method j on simulated data. Cells on the diagonal (position (i, i)) hence indicate whether results on simulated data for the new method are provided in the publication. As expected, all points are under the diagonal, as no method can compare itself with future methods.

methods as the problem is unidentifiable, and (ii) the model does not capture the real data, which could occur for instance if one applies a CNV-based ITH method to a tumor with only SNVs, or with a less pathological example, if SNVs and CNVs were to occur at different steps of tumor evolution, methods considering only one type of alterations would not be able to reconstruct an accurate picture of the tumor evolution. Simulated data can evaluate the first case, and constitute a sanity check, and real data can be relevant to test whether the method is well-suited to the real-life application.

Simulated data

Simulated data is an appealing solution to provide a benchmark for ITH methods, as they provide a controlled environment with the associated ground truth, and allow careful evaluation of methods in a variety of situations that can help researchers disentangle the necessary data to provide robust and accurate results with the different methods, and/or identify the best performing methods. However, the major drawback of simulated data is that one can only simulate hypothetic situations and may lead to a biased view of methods where the best Left panel presents the number of methods evaluated in each ITH methods publication, with the value "0" meaning that no evaluation on simulated data is provided, "1" that only the presented method is evaluated, etc. The right panel summarizes the number of independent evaluations for each method.

performing methods would actually be the ones with the hypotheses and underlying model closest to the simulated data. Another difficulty is that with the diversity of methods, the simulated data should represent accurately and jointly several aspects of the tumor evolution process, and this is a entirely unsolved problem. Elaborate simulations covering several key aspects exist, like complex CNA acquisition patterns with MASCoTE [START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF], or BAMSurgeon [START_REF] Ewing | Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection[END_REF], a tool created for variant calling benchmarks.

Other aspects are tied with tumor evolution, and are neglected in those previous simulation approaches, such as spatial constraints for tumor growth [START_REF] Noble | Spatial structure governs the mode of tumour evolution[END_REF], metastatic seeding patterns [START_REF] El-Kebir | Inferring parsimonious migration histories for metastatic cancers[END_REF] phasing of alterations, mutational signatures for structural variants, and realistic activity ranges and combinations of considered signatures, rate of acquisition of passenger mutations [START_REF] Caravagna | Model-based tumor subclonal reconstruction[END_REF][START_REF] Dinh | Statistical inference for the evolutionary history of cancer genomes[END_REF], varying tumor sizes. New phenomena will keep being discovered, making it really difficult to provide a static simulated dataset, that could be used as a common reference as new methods are published.

Real data

Real data is an obvious solution to the raised issue of simulating complex and poorlyunderstood aspects of tumor evolution, but it suffers from another very strong limitation: the absence of ground truth. Researchers have resorted to several strategies in the use of such data: the simpler one is to provide a qualitative accuracy assessment with the righteous detection of previously known patterns (detection by another approach, manual reconstruction). This is of course debatable as both assessments can be wrong. Another scheme is to rely on proxys for the ground truth, obtained via a second experimental strategy. One can resort to multi-sample sequencing, that can provide some reliable facts (e.g. 2 SNVs are not in the same clones are they are systematically present in different samples), but each sample must be considered heterogeneous [START_REF] Alves | Multiregional tumor trees are not phylogenies[END_REF], and reconstructions from multi-sample are deemed more biased by most available approaches [START_REF] Caravagna | Model-based tumor subclonal reconstruction[END_REF], creating the risk to evaluate methods against an erroneous ground truth. Single cells offer a promising orthogonal approach to unravel the evolutionary history of a tumor, and provides unmixed observed genotypes. However, there are currently serious technical limitations, like an elevated dropout rate that prevents the calling of a subset of SNVs in each cell. New technologies are being developed and may overcome those restrictions in a near future [START_REF] Laks | Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing[END_REF].

Metrics

The question of evaluation metrics is the counterpart of the fact that each method solves a different flavor of the ITH reconstruction problem. A large number of metrics have been proposed by the authors of the different evaluations, here are some of them Evaluation of purity estimate: absolute error [START_REF] Oesper | THetA: Inferring intra-tumor heterogeneity from high-throughput DNA sequencing data[END_REF].

Evaluation of step1 (calling of alterations):

proportion of the genome with correct copy number estimation [START_REF] Mcpherson | ReMixT: Clone-specific genomic structure estimation in cancer[END_REF], global ploidy error [START_REF] Mcpherson | ReMixT: Clone-specific genomic structure estimation in cancer[END_REF], median copy number error [START_REF] Oesper | THetA: Inferring intra-tumor heterogeneity from high-throughput DNA sequencing data[END_REF], precision/recall of whole genome duplication calling [START_REF] Zaccaria | Accurate quantification of copy-number aberrations and wholegenome duplications in multi-sample tumor sequencing data[END_REF].

Evaluation of step2: diverse indicators of the difference between true and inferred CCF, such as percent of alterations where the inferred value is within 10% of the true value, average and maximum values [START_REF] Fan | Towards accurate characterization of clonal heterogeneity based on structural variation[END_REF], correlation between the true and absolute values for all alterations together [START_REF] Li | A general framework for analyzing tumor subclonality using SNP array and DNA sequencing data[END_REF].

Evaluation of steps 3A/3B: [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] proposed two scores, one for the number of populations, and one inspired from clustering evaluation (relying on V-measure [START_REF] Rosenberg | V-Measure: A conditional entropy-based external cluster evaluation measure[END_REF], and correlation of the co-clustering matrices), proportion of mis-clustered alterations, after identifying a correspondence with the true mutation clusters [START_REF] Malikic | Clonality inference in multiple tumor samples using phylogeny[END_REF].

Evaluation of step4: [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] proposed to use a metric to compare matrices of ancestor-descendant relationships between pairs of alterations, [START_REF] Malikic | Clonality inference in multiple tumor samples using phylogeny[END_REF] measure whether the proportion of simulations where their method recovers the same exact phylogenetic structure among the top 3 trees, and El-Kebir et al.

[2016] report a "recall" metric, that is the proportion of edges in the initial tree correctly recovered in the inference. This is an active field of research as tree distance metrics are also relevant to perform patient stratification [START_REF] Karpov | A multi-labeled tree edit distance for comparing "clonal trees" of tumor progression[END_REF][START_REF] Dinardo | Distance measures for tumor evolutionary trees[END_REF].

Some metrics might be biased if they measure exactly the quantity optimized by the method, so it could be a good practice to consider several metrics for each aspect.

Other lines of thought for method evaluation could be the agreement between methods, but the chance that the minority is right can not be excluded, especially as a lot of methods have similar simplifying assumptions or similar models, and could create an illusion of consensus. Association with other independent variables could also be used as a proxy for method validation, but no known and well-accepted association could serve such a purpose to our knowledge.

Previous comparisons of ITH methods

Some studies have reflected on the ITH reconstruction problem and existing methods to provide guidance to the community. We consider here three types of such approaches: the reviews, the benchmarks, and a particular case of benchmarks, a Dream Challenge.

Several reviews cover the topic of ITH reconstruction, from distinct points of view:

Mathematical with the work of [START_REF] Beerenwinkel | Cancer evolution: Mathematical models and computational inference[END_REF] on mathematics models for cancer or the problem of timing mutations throughout evolution [START_REF] Jolly | Timing somatic events in the evolution of cancer[END_REF], and the work of [START_REF] Schwartz | The evolution of tumour phylogenetics: Principles and practice[END_REF] on tumor phylogenies.

Clinical significance several reviews recapitulate the different approaches developed to infer ITH, but with a strong focus on results and new concepts for tumor evolution, and clinical applications [START_REF] Mcgranahan | Clonal heterogeneity and tumor evolution: Past, present, and the future[END_REF][START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF][START_REF] Shaw | Tumour heterogeneity and resistance to cancer therapies[END_REF][START_REF] Turajlic | Resolving genetic heterogeneity in cancer[END_REF].

Broader views of the problem, with for instance a complete ecological perspective on tumor evolution [START_REF] Maley | Classifying the evolutionary and ecological features of neoplasms[END_REF].

Though offering the reader some perspectives on the field, none of those reviews was truly able to identify promising methodological avenues of research. This is partly due to the the absence of a proper evaluation of methods, from which the present works also suffers.

To overcome this deficiency, some authors have performed benchmarks of existing methods, that may offer some partial answers. A first benchmark has been published in October 2017 by [START_REF] Farahani | Engineered in-vitro cell line mixtures and robust evaluation of computational methods for clonal decomposition and longitudinal dynamics in cancer[END_REF], and proposes a very simple setup where two different cell lines are mixed in different proportions, and represent a tumor with two clones. Two pairs of cell lines were selected, a pair with diploid genomes, and a pair with aneuploidies to assess the influence of CNAs on the reconstruction. A variety of in silico experiments were additionally implemented to measure the impact of the sequencing depth, the number of samples, the number of SNVs. Four methods are evaluated in this framework: PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF], Clomial [START_REF] Zare | Inferring clonal composition from multiple sections of a breast cancer[END_REF] and PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF]. Metrics are standard and measure the absolute error in CCF estimation, and the Vmeasure [START_REF] Rosenberg | V-Measure: A conditional entropy-based external cluster evaluation measure[END_REF] to assess the quality of SNV clustering. The data is available for potential re-use, however there are several limitations to this setting: first it can not be used to evaluate phylogeny reconstruction, as the two cell lines are not related, second there are no details or code available regarding the incorporation of copy number estimates when running the methods, or the way they were obtained. This also probably indicates that this dataset is not appropriate to evaluate CNV-based methods. Low-pass WGS of those mixtures would have been an interesting complement to this dataset. Despite those limitations, this dataset is already relevant for a substantial part of methods of groups 3 and 4 of our proposed typology.

A second team proposes two evaluations, a first one published in 2018 [START_REF] Miura | Predicting clone genotypes from tumor bulk sequencing of multiple samples[END_REF]] is quite broad in the choice of methods and associates methods that return a tree or not, and a second one published as a preprint in 2019 [START_REF] Miura | Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data[END_REF] that focuses on the phylogeny reconstruction problem. In the first article, the authors also propose a new method, CloneFinder, but we still chose here to consider the benchmark part as it is much more thorough (9 methods are evaluated) and emphasized compared to other ITH method publications. Four datasets are simulated; they differ by the tree shape underlying them, their number of clones, and the number of tumor samples. However, they all have a small number of SNVs (max 100), and a similar read depth (100). They considered only one metric, called "genotype error", consisting in counting the percentage of SNVs wrongly assigned to clones or genotypes after matching inferred clones to the most similar true ones. For method comparison on two real tumor samples sets, the number of clones is additionally reported. Overall, LICHeE [START_REF] Popic | Fast and scalable inference of multi-sample cancer lineages[END_REF], CloneFinder [START_REF] Miura | Predicting clone genotypes from tumor bulk sequencing of multiple samples[END_REF] and PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF] were found to be the best performing methods. The authors also note important disparities in runtimes, and failure of some approaches to run on some of the datasets. In the second benchmark focused on tree inference methods [START_REF] Miura | Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data[END_REF], the same simulated samples are used, and 7 methods are evaluated, with CloneFinder [START_REF] Miura | Predicting clone genotypes from tumor bulk sequencing of multiple samples[END_REF], MACHINA [START_REF] El-Kebir | Inferring parsimonious migration histories for metastatic cancers[END_REF], LICHeE [START_REF] Popic | Fast and scalable inference of multi-sample cancer lineages[END_REF], MixPhy p [START_REF] Hujdurovic | Complexity and algorithms for finding a perfect phylogeny from mixed tumor samples[END_REF] and Treeomics [START_REF] Reiter | Reconstructing metastatic seeding patterns of human cancers[END_REF] being combinatorial approaches, and Phy-loWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF] and Cloe [START_REF] Marass | A phylogenetic latent feature model for clonal deconvolution[END_REF] probabilistic methods. Four metrics are used to cover several aspects of tree reconstruction, in particular the order of mutations, the branching patterns. The authors report overall poor performance for all methods, as the problem is hard and unidentifiable, but found CloneFinder, MACHINA, and LICHeE to show the best performances, and hypothesize that the explicit constraints inferred from multiple samples could be instrumental to their superiority.

A main issue of those benchmarks is that though they are very limited in the number of compared methods, implemented metrics, tested datasets, they represent a huge amount of work, with caveats like installation and setup, specific input and output requirements and formatting for each method, parameter tuning, important computational time, and eventually draw only moderate attention. A natural benchmark alternative is the principle of the challenge, where this overload is distributed among all participants, and is reduced, as each contestant knows well their method. In that spirit, a dream challenge for ITH was organized in Spring 2016.

Unfortunately, very few teams participated to the whole challenge, as reported in Table 2.1. We can think of several reasons for this lack of enrollment:

• Not all methods provide all outputs, hence limiting participation opportunities for most existing methods.

• To overcome installation and environment issues and standardize ITH methods running, an important setup involving Google Compute Engine, Docker and Galaxy was required by each team. Though enforcing such requirements constitutes a strong and admirable commitment towards reproducible science, this may have represented an elevated time investment for some potential participants. • The challenge timing seems to have coincided with a period of relative disinterest from the topic, suggested by the publication year distribution of ITH methods (see Figure 2.6).

Overall, though no complete leaderboard has emerges from the Dream Challenge for intatumor heterogeneity has brought an important contribution in the defined metrics, and some interesting insights in metrics design, and relevant characteristics of sequence data to vary for methods evaluation. Additionally, the generated data remains available for future use [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF].

Open questions for ITH inference

We have presented in the previous sections a large number of methods developed for ITH reconstruction, and considered the difficulties for their evaluation, and hence their broad use by non-specialist bioinformaticians. Here we outline a few ideas for future developments in the field of ITH inference.

Directions for future developments

A great variety of methods has been proposed for solving the problem of ITH inference. Besides the necessity of several methods well adapted to the different possible biological assays (WES, WGS, temporally or spatially diverse samples, single-cell approaches), this abundance has also allowed the different contributors to come up with creative new ways to exploit and combine the raw input data: more and more complex integrations of SNVs and CNVs, combination of several related measures of the CNVs (BAF, average read counts over segments, SNP read counts, split reads, discordant reads), phasing of SNVs, either together or with germline SNPs. Methodological integration is an orthogonal and complementary direction to improve inference: the structure of the tree can inform the grouping of mutations, and even the detection of alterations, as has been implemented for SNV calling [START_REF] Salari | Inference of tumor phylogenies with improved somatic mutation discovery[END_REF][START_REF] Van Rens | SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP[END_REF], and CNV detection [START_REF] Ricketts | Meltos: multi-sample tumor phylogeny reconstruction for structural variants[END_REF].

In Chapter 4, we present a novel method CloneSig, that is exactly in the same vein of new evolutionary hints in the data that can be exploited to better reconstruct ITH: the mutation type of SNVs, which is not random but depends on the mutational processes active at the time at their occurrence.

A future challenge, probably more in engineering, would be to achieve the association of all those clues into a single method. In our review, we noticed two tools that tend to integrate most of the steps, from variant calling to tree inference, and further analyses of the clones together: SuperFreq [START_REF] Flensburg | SuperFreq: Integrated mutation detection and clonal tracking in cancer[END_REF] and PhylogenicNDT [START_REF] Leshchiner | Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment[END_REF]. Though they do not jointly infer all those steps, this association certainly offers already the possibility to incorporate some dependencies that increase the consistency of the complete analysis.

Method evaluation

To accelerate those future developments, a careful evaluation of the methods could be helpful for several aspects. A first lesson from such results relies in a prioritization of the features that should be implemented, depending on their actual contribution to ITH inference improvement. In parallel, that can also be indicative of the inference algorithms that achieve the best performance. Finally, this is absolutely necessary to truly evaluate which experimental settings would allow a satisfying enough ITH estimation to answer the different scientific questions that researchers will address in the future.

In that respect, the work presented in Chapter 3, though not providing a complete benchmark of methods surveyed in this chapter, or a gold standard evaluation dataset, provides valuable insights on the robustness of conclusions and scientific knowledge of tumors one can truly hope to obtain through the use of one sample per patient with WES.

Chapter 3

Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data

This chapter is published in Plos One [START_REF] Abécassis | Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data[END_REF] 

Abstract

Tumors are made of evolving and heterogeneous populations of cells which arise from successive appearance and expansion of subclonal populations, following acquisition of mutations conferring them a selective advantage. Those subclonal populations can be sensitive or resistant to different treatments, and provide information about tumor aetiology and future evolution. Hence, it is important to be able to assess the level of heterogeneity of tumors with high reliability for clinical applications.

In the past few years, a large number of methods have been proposed to estimate intratumor heterogeneity from whole exome sequencing (WES) data, but the accuracy and robustness of these methods on real data remains elusive. Here we systematically apply and compare 6 computational methods to estimate tumor heterogeneity on 1,697 WES samples from the cancer genome atlas (TCGA) covering 3 cancer types (breast invasive carcinoma, bladder urothelial carcinoma, and head and neck squamous cell carcinoma), and two distinct input mutation sets. We observe significant differences between the estimates produced by different methods, and identify several likely confounding factors in heterogeneity assessment for the different methods. We further show that the prognostic value of tumor heterogeneity for survival prediction is limited in those datasets, and find no evidence that it improves over prognosis based on other clinical variables.

In conclusion, heterogeneity inference from WES data on a single sample, and its use in cancer prognosis, should be considered with caution. Other approaches to assess intratumoral heterogeneity such as those based on multiple samples may be preferable for clinical applications.

Résumé

Une tumeur est constituée d'un mélange hétérogène de populations cellulaires continuant à évoluer, résultant d'épisodes succesifs d'apparition et de croissance de populations sousclonals, après l'acquisition de mutations leur conférant un avantage sélectif. Ces populations sous-clonales peuvent être sensibles ou résistantes à des traitements différents, et révèlent certains aspects de l'étiologie et de l'évolution future de la maladie. Il est donc important de pouvoir mesurer le niveau d'hétérogénéité des tumeurs avec une grande fiabilité en vue de son utilisation médicale.

Au cours des dernières années, un grand nombre de méthodes ont été dévelopées pour évaluer l'hétérogénéité intra-tumorale à partir de données de séquençage d'exome, mais l'exactitude et la robustesse de ces méthodes sur des données réelles restent incertaines. Dans cette étude, nous avons appliqué et comparé de façon systématique six méthodes pour estimer l'hétérogénéité intra-tumorale à partir de données exomiques de 1697 échantillons tumoraux provenant du "Cancer Genome Atlas" (TCGA), représentant trois types de cancer (carcinome invasif du sein, carcinome urothélial de la vessie, et carcinome épidermoïde de la tête ou du cou), et deux ensembles de mutations différents en entrée. Nous avons observé des différences importantes entre les estimations provenant de différentes méthodes, et identifié de possibles facteurs perturbant l'appréciation de l'hétérogénéité intra-tumorale pour ces différentes approches. Nous montrons de plus que la valeur pronostique de l'hétérogénéité intra-tumorale pour la prédiction de la survie est limitée dans ces jeux de données, et n'avons trouvé aucune indication d'une amélioration par rapport au pronostique reposant sur d'autres variables cliniques classiques.

En conclusion, la mesure de l'hétérogénéité à partir de données de séquençage d'exome sur un seul échantillon tumoral, et son utilisation pour évaluer le pronostique des patients devraient être considérés avec précaution. D'autres approches pour évaluer l'hétérogénéité tumorale, par exemple à partir de plusieurs échantillons sont peut-être préférables dans le cadre d'applications médicales. 

Introduction

Cancer is characterized by the presence of cells growing and dividing without proper control.

In the 1970s, Nowell and colleagues suggested that tumor cells follow evolutionary principles, as any other biological population able to acquire heritable transformations [START_REF] Nowell | The clonal evolution of tumor cell populations[END_REF]. This evolutionary framework has proven very useful in deepening our understanding of cancer aetiology [START_REF] Gerstung | The evolutionary history of 2,658 cancers[END_REF].

A consequence of this progressive accumulation of mutations is intra-tumor heterogeneity. Indeed, when a new mutation occurs in a tumor cell and provides an evolutionary advantage, this cell tends to have a higher probability to survive and divide, hence seeding a new clonal population [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF]. This new clone may supersede the whole tumor population, or coexist along it. This process results in a tumor made of a mosaic of clones. Next generation sequencing (NGS), in particular whole exome and whole genome sequencing (WES, WGS), can provide new insights into the heterogeneity and evolution of tumors. Indeed, early mutations shared among all cancer cells should be detected in more sequencing reads than mutations acquired later by only a fraction of the tumor cells. Thus it may be possible to estimate the intra-tumor heterogeneity (ITH) and reconstruct the clonal history of tumors from WES or WGS data, as reviewed by [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF]; [START_REF] Beerenwinkel | Cancer evolution: Mathematical models and computational inference[END_REF]; [START_REF] Schwartz | The evolution of tumour phylogenetics: Principles and practice[END_REF], and many computational methods have been developed for that purpose [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF][START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF][START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF][START_REF] Andor | Expands: Expanding ploidy and allele frequency on nested subpopulations[END_REF]. We collectively refer to these methods as "ITH methods" in the following. Subclonal reconstruction from single cell sequencing has emerged as a new field, simplifying part of the inference problem, but raising other issues, related to technical limitations (high dropout rate) and high cost, possibly a limitation to the availability of large cohorts [START_REF] Jahn | Tree inference for single-cell data[END_REF][START_REF] Davis | Computing tumor trees from single cells[END_REF][START_REF] Ciccolella | Inferring cancer progression from single-cell sequencing while allowing mutation losses[END_REF][START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF].

Previous studies have reported that a large proportion of tumors are heterogeneous [START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF][START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF][START_REF] Mcgranahan | Clonal heterogeneity and tumor evolution: Past, present, and the future[END_REF][START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], with various consequences for the patient. In particular, high ITH has been associated with treatment resistance and poor prognosis [START_REF] Shaw | Tumour heterogeneity and resistance to cancer therapies[END_REF]. However, those results rely mostly on very detailed case studies involving only a small number of patients, with favorable experimental settings such as high coverage targeted sequencing on top of NGS, multiple sample collection (multi-site or longitudinal studies) [START_REF] Nik-Zainal | The life history of 21 breast cancers[END_REF][START_REF] Gerlinger | Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing[END_REF][START_REF] Navin | Tumor evolution in response to chemotherapy: Phenotype versus genotype[END_REF] or even single-cell sequencing [START_REF] Navin | Tumour evolution inferred by single-cell sequencing[END_REF]. In the perspective of large-scale application in a clinical context, one needs to consider more accessible data with respect to cost and invasiveness for the patient, like moderate coverage WES on one sample per patient. A precise evaluation of existing ITH methods in this setting is needed to determine whether they allow us to find distinguishable patterns of heterogeneity and evolution of clinical relevance. Several large scale analyses have attempted to depict the evolutionary landscape of ITH in several cancer types [START_REF] Gerstung | The evolutionary history of 2,658 cancers[END_REF], and to assess the prognostic power of ITH. In particular, using data from the cancer genome atlas (TCGA), a significant association between ITH and overall survival was found in at least one of the three studies [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF][START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF][START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF] for 9 cancer types: breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), prostate adenocarcinoma (PRAD), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), ovarian serous cystadenocarcinoma (OV), uterine corpus endometrial carcinoma (UCEC), and colon adenocarcinoma (COAD). However, 5 of them were considered in another study with no significant result. In other cancer types, 2 studies consistently found no significant results for 3 cancer types: bladder urothelial carcinoma (BLAC), lung squamous cell carcinoma (LUSC) and stomach adenocarcinoma (STAD), and all 3 studies found no significant results for lung adenocarcinoma (LUAD) nor for skin cutaneous melanoma (SKM). A possible explanation for this discrepancy is that the studies base their analyses on different computational pipelines, from variant calling to ITH estimation, leading to different and sometimes contradictory results [START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF].

To clarify the robustness and consistency of different ITH methods, we perform a systematic benchmark of 18 computational pipelines for ITH estimates from a single WES sample per patient (combining 2 ways to call mutations, and 2 methods to assess copy number varia-tions (only 3 out of 4 combinations were tested) with 6 ITH methods), using data from 1,697 patients with three types of cancer from the TCGA database (BRCA, BLCA, HNSC). We selected these cancer types following conclusions of [START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF], since HNSC, BRCA and BLCA are characterized by respectively high, intermediate and absence of prognostic power of ITH. We show that most existing ITH methods are very sensitive to the choice of mutations and copy number variations called, and that they can give very inconsistent results between each other. We highlight in particular that some methods are influenced by confounding factors such as tumor purity or mutation load. Finally, we show that although ITH measured by some computational pipelines have a weak prognostic power on some cancer types, the prognosis signal is not robust across methods and cancer types, and is confounded with informations available in standard clinical data. To further characterize those inconsistencies, we report results for ITH methods on 7 WES samples associated with single cell sequencing allowing to have an estimate of the ground truth. As a conclusion, we suggest that results of ITH analysis from single sample WES data with current computational pipelines should be manipulated with caution, and that more robust methods or protocols are likely to be needed for clinical applications.

Materials and methods

Data

We downloaded data from the GDC data portal https://portal.gdc.cancer.gov/ for 3 cancer types (BLCA -351 patients, BRCA -904 patients, HNSC -442 patients). We gathered annotated somatic mutations, both raw variant calling output, whose access is restricted and public mutations, from the new unified TCGA pipeline https://docs.gdc.cancer. gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/, with alignment to the GRCh38 assembly, and variant calling using 4 variant callers: MuSe, Mutect2, VarScan2 and SomaticSniper. Instructions for download can be found in the companion Github repository (https://github.com/judithabk6/ITH_TCGA). RNAseq data used to compute immune signatures were downloaded through TCGABiolinks [START_REF] Colaprico | TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data[END_REF], and we downloaded clinical data from the CBIO portal [START_REF] Gao | Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[END_REF].

Copy number calling and purity estimation

We obtained copy number alterations (CNA) data from the ASCAT complete results on TCGA data partly reported on the COSMIC database [START_REF] Martincorena | Universal patterns of selection in cancer and somatic tissues[END_REF][START_REF] Forbes | COSMIC: somatic cancer genetics at highresolution[END_REF]. We then converted ASCAT results on hg19 to GRCh38 coordinates using the segment_liftover Python package [START_REF] Gao | segment_liftover : a Python tool to convert segments between genome assemblies[END_REF]. ASCAT results also provide an estimate of purity, which we used as input to ITH methods when possible. Other purity measures are available [START_REF] Aran | Systematic pan-cancer analysis of tumour purity[END_REF]; however we selected the ASCAT estimate to ensure consistency with CNV data.

The calls of allele-specific copy number and purity from ABSOLUTE [START_REF] Carter | Absolute quantification of somatic DNA alterations in human cancer[END_REF] were downloaded from the GDC data portal https://gdc.cancer.gov/about-data/publications/ pancanatlas on August 18th 2019. They were converted to GRCh38 as the ones from AS-CAT.

Variant calling filtering

Variant calling is known to be a challenging problem. It is common practice to filter variant callers output, as ITH methods are deemed to be highly sensitive to false positive single nucleotide variants (SNVs). We filtered out indels from the public dataset, and considered the union of the 4 variant callers output SNVs. For the protected data, we also removed indels, and then filtered SNVs on the FILTER columns output by the variant caller ("PASS" only VarScan2, SomaticSniper, "PASS" or "panel_of_normals" for Mutect2, and "Tier1" to "Tier5" for MuSe). In addition, for all variant callers, we removed SNVs with a frequency in 1000 genomes or Exac greater than 0.01, except if the SNV was reported in COSMIC.

A coverage filter was added, and we kept SNVs with at least 6 reads at the position in the normal sample, of which 1 maximum reports the alternative nucleotide (or with a variant allele frequency (VAF) <0.01), and for the tumor sample, at least 8 reads covering the position, of which at least 3 reporting the variant, or a VAF>0.2. The relative amount of excluded SNVs from protected to public SNV sets varied significantly between the 3 cancer types (see Table B.3). All annotations are the ones downloaded from the TCGA, using VEP v84, and GENCODE v.22, sift v.5.2.2, ESP v.20141103, polyphen v.2.2.2, dbSNP v.146, Ensembl genebuild v.2014-07, Ensembl regbuild v.13.0, HGMD public v.20154, ClinVar v.201601. We further denote the filtered raw mutation set as "Protected SNVs" and the other one, which is publicly available, as "Public SNVs"

ITH methods

Published methods

We consider four published ITH methods: SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF], PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF], PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF] and EXPANDS [START_REF] Andor | Expands: Expanding ploidy and allele frequency on nested subpopulations[END_REF]. In addition, we consider the MATH score [START_REF] Mroz | MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma[END_REF] as a simple indicator of ITH, as well as a baseline ITH method described below. All computations were stopped after running 15 hours. This threshold was chosen to get results for most samples (> 95% when time was the limiting factor) for most methods while saving computational resources. Mean and standard deviation (std) of runtimes were computed for each method with each input mutation set separately. All parameters used for each method are detailed in the companion public Github repository containing all the commands https://github.com/judithabk6/ITH_TCGA. To ensure comparison, the runtimes were only performed on runs with ASCAT copy number calls.

We performed post-treatment to keep only clones with at least 5 SNVs, except for samples in which all clones were under 5 SNVs when all clones were considered. After running each ITH method we extracted 5 features to characterize ITH in a sample: the number of clones, the proportion of SNVs that belong the the major clone, the minimal cellular prevalence of a subclone, the Shannon index of the clonal distribution, and the cellular prevalence of the largest clone in terms of number of SNVs.

Consensus (CSR)

We computed a consensus of several ITH methods using the open source package CSR available at https://github.com/kaixiany/CSR. This method relies on matrix factorization to output a consensus clustering. We computed two separate consensus (for protected and public data), using as input the results of PyClone, SciClone, PhyloWGS, EXPANDS and baseline. MATH estimates were not well suited for the consensus. For each run, we ran matrix factorization for a maximum of 500 seconds.

Clinical variables

For each cancer type, we collected clinical variables from the CBIO Portal according to the following conditions: (i) categorical variables were one-hot encoded, and each level was kept if it involved at least 50 patients, and at most 50 patients had another level of the same variable; (ii) we kept numerical variables available for every patient; and (iii) in addition, we only kept the variables (if numerical) or the levels (categorical) which were significantly associated with overall survival by a single-variable cox model estimated with the Python package lifelines [Davidson-Pilon et al., 2019] after Benjamini-Hochberg correction for multiple hypothesis testing [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Tables A .2, A.3, and A.4 summarize the clinical variables retained for each cancer type.

Survival regression

Model

To estimate the prognosis power of a set of features, we use a survival SVM model [START_REF] Van Belle | Support vector methods for survival analysis: A comparison between ranking and regression approaches[END_REF]. Survival SVM maximizes a concave relaxation of the concordance between the predicted survival ranks and the original observed survival, regularized by a Euclidean norm penalty. Formally, given a training set of n patients with survival information (x i , y i , δ i ) i=1,...,n , where x i ∈ R p is a vector of p features for patient i, y i ∈ R is the time, and δ i ∈ {0, 1} indicates the event (δ i = 1) or censoring (δ i = 0), a survival SVM learns a linear score of the form f (x) = w ⊤ x for any new patient represented by features x ∈ R p by solving:

min w w ⊤ w + α ∑ i,j∈P max(0, 1 -(w ⊤ x i -w ⊤ x j )) 2 ,
where

P = {(i, j) ∈ [1, n] 2 | y i ≥ y j ∧δ j = 1}
is the set of pairs of patients (i, j) which are comparable, that is, for which we are certain that patient i lived longer than patient j. Intuitively, the loss penalizes the cases where patient i survives longer than patient j but the opposite is predicted by the model. For all computations, we used the function FastSurvivalSVM in the Python Package scikit-survival [START_REF] Pölsterl | Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients[END_REF], with default parameters. The model was trained and tested using a 5-fold cross-validation procedure.

Evaluation procedure

To assess the accuracy of a survival regression model, we use the concordance index (CI) between the predicted score and the true survival information on a cohort with survival information. Given such a cohort (x i , y i , δ i ) i=1,...,n , the CI measures how concordant the predicted survival times s i = f (x i ) are with the observed survival times y i for comparable pairs of patients:

CI = 1 |P| ∑ i,j∈P I(s j -s i ) , with I(u) =    1 if u > 0 , 1 2 if u = 0 , 0 otherwise.
In practice, we compute an approximation of CI with the function concordance.index from the R package survcomp [START_REF] Schröder | survcomp: An R/Bioconductor package for performance assessment and comparison of survival models[END_REF], using the noether method [START_REF] Pencina | Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation[END_REF], and the associated one-sided test to compare CI to 0.5, which is the mean CI obtained with a random predictor. To compare CI's of different methods, we use a paired Student t-test for dependent samples implemented in the function cindex.comp from the same package. In both test settings, we aggregate p-values from each of the five crossvalidation folds using the Fisher method from Python package statsmodels, and apply a Benjamini-Hochberg correction [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] to correct for multiple testing.

Immune signatures

We normalized RNAseq raw count data using a variance stabilizing transformation (VST) implemented in the Deseq2 R package [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF], treating each cancer type separately. We mapped genes from [START_REF] Bindea | Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer[END_REF] to Ensembl GeneIds present in the TCGA matrix using EntrezId match table downloaded from Biomart [Zerbino et al., 2018] on March 26th 2018. Out of 681 EntrezId (577 unique), 31 (24 unique) were not matched to an Ensembl Id with associated gene expression in the TCGA RNAseq data. Each signature was then computed by averaging the VST output value for the relevant Ensembl Id for each TCGA sample. The resulting signatures we used can be found as Supplementary Table A.5. For analysis purposes, we use the complementary to the maximal value in the cohort so that the content in immune cells varies in the same direction as tumor purity and remains a positive quantity. We denote those new variables with the prefix inv, e.g., for patient i in the BRCA cohort we define

inv_T_cells i = ( max j∈BRCA patients T_cells j ) -T_cells i ,
where T_cells i represents the signature for T cells estimated as explained above.

Correlations

We assessed correlations using Pearson's correlation coefficient. We computed the associated significance (for the null hypothesis that the correlation coefficient is 0) using the scipy.stats.pearsonr function, and we corrected the significance for multiple testing using the Benjamini Hochberg procedure at F DR ≤ 0.05.

Comparison metrics

In addition to the correlations of the number of clones between methods, we have implemented three metrics derived from [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] to compare ITH methods together: Score1B measures the adequacy between one number of clones J 1 and another number of clones J 2 . It is computed as J1+1-min(J1+1,|J2-J1|)

J1+1

.

Score1C is the Wasserstein distance between two clusterings, defined by the CCFs of the different clones and their associated weights (proportion of mutations), implemented as the function stats.wasserstein_distance in the Python package scipy.

Score2A measures the correlation between two binary co-clustering matrices in a vector form, M 1 and M 2 . It is the average of 3 correlation coefficients:

Pearson correlation coefficient P CC = Cov(M1,M2) σ M 1 ,σ M 2
, implemented as the function pearsonr in the Python package scipy,

Matthews correlation coefficient MCC =

T P ×T N -F P ×F N √ (T P +F P )(T P +F N )(T N +F P )(T N +F N )
, implemented as the function metrics.matthews_corrcoef in the Python package scikit-learn, V-measure is the harmonic mean of a homogeneity score that quantifies the fact that each cluster contains only members of a single class, and a completeness score measuring if all members of a given class are assigned to the same cluster [START_REF] Rosenberg | V-Measure: A conditional entropy-based external cluster evaluation measure[END_REF]; here the classes are the true clustering. We used the function v_measure_score in the Python package scikit-learn.

Before averaging, all those scores were rescaled between 0 and 1 using the score of the minimal score between two "bad scenarios": all mutations are in the same cluster, or all mutations are in their own cluster

(M pred = 1 N ×N or M pred = I N ×N ).
All scores as asymmetrical and were hence computed twice. In the case of score2A, only the mutations present in the two reconstructions were considered.

WES and single cell paired dataset

Data availability and preprocessing

The raw data for 7 normal-tumor WES samples analyzed jointly with matching single cell sequencing [START_REF] Malikic | Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data[END_REF] were downloaded from the NCBI SRA platform https: //www.ncbi.nlm.nih.gov/sra and processed into fastq format using the tool fastq-dump for the two acute lymphoblastic leukemia (ALL) patients (accession numbers: SRR1517761, SRR1517762, SRR1517763, SRR1517764) [START_REF] Gawad | Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics[END_REF], or directly downloaded in the fastq format from the EBI ENA platform https://www.ebi.ac.uk/ena for the Triple Negative Breast Cancer patient (TNBC) [START_REF] Wang | Clonal evolution in breast cancer revealed by single nucleus genome sequencing[END_REF] (accession number: SRR1163508 and SRR1298936), and the two samples (primary tumor and liver metastasis) from the two colorectal cancer patients (CRC) [START_REF] Leung | Single-cell DNA sequencing reveals a latedissemination model in metastatic colorectal cancer[END_REF] (accession number: SRR3472566, SRR3472567, SRR3472569, SRR3472571, SRR3472796, SRR3472798, SRR3472799, SRR3472800). All normal-tumor pairs underwent a pipeline of analysis including alignment with BWA-MEM [Li and Durbin, 2009] with options "-k 19 -T 30 -M", filtering of reads based on target intersection, mapping quality and PCR duplicates removal, using Picard [START_REF] Broad | Picard toolkit[END_REF], Bedtools [START_REF] Quinlan | BEDTools: A flexible suite of utilities for comparing genomic features[END_REF] and Samtools [Li et al., 2009], and preprocess using GATK [START_REF] Mckenna | The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[END_REF] for local realignment around indels, and base score recalibration. Variant calling was performed using Mutect2 [START_REF] Cibulskis | Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[END_REF], and variants filtered under the same rules as used for the TCGA (only "PASS" variants, and minimal covering rules), and copy number assessed with Facets [START_REF] Shen | FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing[END_REF]. SNVs used in the analysis with B-SCITE [START_REF] Malikic | Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data[END_REF], passing the covering filters but not recovered by this pipeline were added to the final variant list. Those variants and the copy number profile were then passed to PyClone, SciClone, PhyloWGS and Expands for ITH deconvolution.

Evaluation metrics

To measure the accuracy of subclonal reconstructions from the WES data only using different methods, we compared these reconstructions to the reconstruction obtained by B-SCITE using both WES and single cell sequencing [START_REF] Malikic | Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data[END_REF]. To quantify the similarity of the different reconstruction results, we compared the number of clones, and for the common mutations, the metric 2A, used in [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] and redefined above.

Results

Assessing ITH on TCGA samples

We collected somatic mutation information from 1,697 TCGA patients with BLCA (n = 351), BRCA (n = 904), and HNSC (n = 442). We selected these three cancer types following conclusions of [START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF], since HNSC, BRCA and BLCA are characterized by respectively high (hazard ratio, HR=3.75, p=0.007 in multivariate Cox model), intermediate (HR=2.5, p=0.15) and absence (HR=1.05, p=0.91) of prognostic power of ITH. For each patient, we collected two sets of mutations based respectively on protected and public SNV sets. The protected set corresponds to raw variant calling outputs, with an extra filtering step described in Methods. The public set corresponds to publicly available SNV calls, filtered from the raw variant calling outputs to only retain somatic mutations with very high confidence, in order to ensure patients' anonymity. Supplementary Table B.3 summarizes some statistics on the number of mutations per sample for each cancer type.

We assess ITH in each sample using 6 representative computational methods: PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF], PhyloWGS [START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF] EXPANDS [START_REF] Andor | Expands: Expanding ploidy and allele frequency on nested subpopulations[END_REF], the mutant-allele tumor heterogeneity (MATH) score [START_REF] Mroz | MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma[END_REF], and CSR [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], a method providing a consensus of all of the above results (except MATH which is not compatible, see Methods). Table 3.1 summarizes some important properties of the different methods, which might be helpful for designing future studies and selecting the appropriate tool. All methods but MATH take as input the CNA information in addition to a set of somatic mutation VAFs. PyClone and PhyloWGS also take purity as input. All input has to be pre-computed by third-party approaches. While MATH is a single quantitative measure of ITH based on differences in the mutant-allele fractions among mutated loci, all 6 other methods produce more details such as the number of subclones and their respective proportions in the tumor. In particular, PhyloWGS outputs a lineage tree connecting the subclones.

We tested each method three times: on each sample for the two mutation sets combined with ASCAT calls for purity and copy number, and combined with ABSOLUTE calls for the protected mutation set. We observed that some methods failed to produce an output on some samples, for different reasons (see success rate for each method in Table 3.1). EXPANDS produces an error for 30% of the samples, mostly for tumors with high purity or very few CNAs. SciClone fails to provide an output for samples with an insufficient number of SNV in regions without CNA or LOH event. PyClone and PhyloWGS non completion cases were caused by a too long runtime. As shown in Figure 3.1, there is little overlap between the samples where each method fails. Out of 1,697 initial TCGA samples, all methods produced an output for the three runs on only 686 samples (296 BRCA, 178 BLCA, 212 HNSC). Those failure cases unveil indications of each method's limitations, in particular EXPANDS and SciClone. In the following we restrict our analysis to those 686 samples. One can note that there is more difference between public and protected results for BRCA samples; this is expected as the number of mutations in those two sets is more different for this cancer type, as shown in B.3. In addition to failures, we observed that the runtime varies significantly between methods (Table 3.1 

Methods quantifying ITH exhibit inconsistent results

As a first evaluation of ITH methods in the absence of ground truth, we assess the agreement between methods, with a focus on the number of clones. Each method except MATH outputs an estimated number S of subclonal populations, ranging from S = 1 for an homogeneous, clonal tumor to any positive number for an heterogeneous one. Figure 3.3 presents the distribution of estimated clonality among all samples for each approach and each SNV set, and each copy number calling method. We observe large differences between methods, as well as between SNV sets: for instance, over all samples, the percentage of estimated clonal tumors (S = 1) varies from 4% (for PhyloWGS on protected data) to 57 % (for PyClone on public data). Moreover, the number of estimated populations can vary strikingly with the mutation set used, but not really with the different input copy number. There is a clear trend among all methods to yield higher ITH estimates with the protected mutation set. PhyloWGS and EXPANDS (and CSR) are the only methods that detect ITH in almost all tested samples with the protected mutation set.

Another way to compare methods is to consider correlations (Pearson's r) between the estimated numbers of populations. This allows us to include the MATH score in the evaluation, considering it as an increasing function of heterogeneity just like the number of populations. In addition, we add to the comparison 5 measures directly extracted from the NGS analysis, namely, the number of mutations in the protected and in the public sets, the percentage of non-diploid cells (estimated by ASCAT and ABSOLUTE), the purity (estimated by ASCAT and ABSOLUTE), and the inv_T _cell (estimated from gene expression signatures). Results are presented in Figure 3.4.

Although a clear and consistent message is hard to extract, a few general trends seem to emerge. First, there is a tendency of results to be more similar for different methods with the same input mutation set, in particular for BRCA, where results for PyClone, SciClone, Regarding potential confounding variables, previous studies have reported a correlation between MATH score and CNA abundance [START_REF] Pereira | The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes[END_REF][START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF][START_REF] Karn | Association between genomic metrics and immune infiltration in triplenegative breast cancer[END_REF], or between purity and ITH, as ITH methods were initially designed to refine purity estimation [START_REF] Carter | Absolute quantification of somatic DNA alterations in human cancer[END_REF], and we observe similar behaviors. Association with immune infiltration has also been considered [START_REF] Karn | Association between genomic metrics and immune infiltration in triplenegative breast cancer[END_REF], though it is worth noting that immune infiltration and tumor purity are not independent, as immune cells are not cancerous. Each group of ITH methods is highly correlated to distinct genomic metrics, mutation load and CNV abundance (perc_non_diploid) for the first group (MATH, Expands), and purity (and the opposite of immune cells infiltration (inv_T_cells)) for the latter (PyClone, SciClone, PhyloWGS CSR). This might be indicative of systematic biases in the different methods, rather than biological strong signal as previously reported. Indeed, the strength and direction of all correlations vary between the two groups of ITH methods, and is hence hardly reliable or interpretable in terms of clinically actionable information without more data.

Similar results are obtained on an independent dataset of 7 samples from 5 patients where both WES and single cell sequencing was performed. In this dataset, subclonal reconstruction was performed by the method B-SCITE [START_REF] Malikic | Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data[END_REF] that uses both bulk sequencing and single cell sequencing as input, and provides the most accurate representation possible. To further illustrate the behavior of ITH methods, we have compared results obtained for each sample separately to the B-SCITE result. To evaluate the concordance of each reconstruction to the B-SCITE reconstruction, we compare the number of clones, and the score2A from Salcedo et al. [2018] that evaluates the co-clustering of mutations. The other metrics considered in [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] focus on the distance between the true and reconstructed cancer cell fraction distributions (score 1C), but in this setting, the ground truth does not provide a true CCF distribution estimate, and on the phylogenetic relationships between clones (score 3), but only PhyloWGS provides a tree among the considered methods. For this evaluation, we have left the true estimate for PyClone that provides a lot (several dozens) of clones with a single mutation. The input to ITH methods we have used results from variant calling on the bulk WES data, whereas the input to B-SCITE is more restrictive, and focuses on mutations detected both in the WES and in the single cells; the score2A is computed on the common mutations. Results are presented in Table 3 

ITH is a weak and non robust prognosis factor

To test the prognostic power of each ITH quantification method, we collected survival information for the 686 patients on which all ITH methods ran successfully, and assessed how each ITH method allows to predict survival. Since all ITH methods except MATH output several features related to ITH, we did not test each feature individually but instead estimated a combined score for each method with a survival SVM model (see Methods). More precisely, we extract 5 features from each ITH method: the number of subclonal populations, the proportion of SNVs that belong the the major clone, the minimal cellular prevalence of a subclone, the Shannon index of the clonal distribution, and the cellular prevalence of the largest clone in terms of number of SNVs that enable to distinguish several evolutionary patterns, like early (star-like evolution) or late (tree with a long trunk) clonal diversification (see Methods). We evaluate the performance of each score by 5-fold cross-validation, and prognostic power is assessed on the test fold by computing the concordance index between the SVM prediction and the true patient survival. For MATH, a single feature is computed, so this procedure simply evaluates the concordance index of the MATH score with survival.

In addition, we consider a model where all features of all methods (i.e., a total of 6×5+1 = 26 features) are combined together. Figure 3.5 shows the results for each cancer type, each method, and each set of mutations used. Overall, we observe at least one method achieving significant survival prediction in each cancer type. The combined model is significantly prognostic with both protected and public sets in all three cancer types. Among the three cancer types, in the best case, however, the median concordance index on the test sets barely reaches 0.6 (except with the combination with absolute copy number in BRCA, but with an important variance), which remains modest for any clinical use. This suggests that there may be a weak prognostic signal captured by ITH measurement, but it can not be observed consistently with a single method and a single variant and copy number calling pipeline in the three cancer types, illustrating the frailty of obtained results. The combined model seems to be a robust alternative, as when it is significant, it has a concordance index in the range of the best performing single method; however the case of BRCA seems particular, as many methods perform worse than random. Some authors, [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF]; [START_REF] Venkatesan | Tumor evolutionary principles: How intratumor heterogeneity influences cancer treatment and outcome[END_REF], have suggested a nonlinear relation between survival and ITH, as very high ITH might be damaging for the tumor, while moderate ITH would be associated with aggressive tumors and prone to treatment resistance. To test this hypothesis in our framework we added squared features to the survival model, allowing second order polynomial relations between ITH and survival. However, this did not significantly impact the results (Supplementary A.1). Indeed, after multiple test correction, only PyClone with the protected mutation set and ABSOLUTE copy number in BRCA prognostic power is increased by adding the squared features (p = 0.027, paired t-test), but both CI indexes remain below 0.5. We also assessed whether the relatively poor performance of the different methods was due to the difficulty to learn a prognostic score combining 5 features from limited amounts of training samples, by assessing the prognostic ability of a single feature: the number of clones. A significant improvement was obtained for 7and a significant decrease in performance in 3 of the 36 tested settings (4 methods, 2 mutation sets, 2 copy number methods, 3 cancer types). This suggests that the complexity of the model (polynomial of order 2 instead of linear) and the choice of ITH features have little influence on the results. This might be related to the fact that very little signal can be detected in the first place.

ITH prognosis signal is redundant with other known factors

We have established that in some cases, ITH may exhibit weak prognostic power. It is then very important to assess whether it is complementary to already available prognostic features, like clinical characteristics. To answer this question, we consider relevant clinical features, as described in Methods.

Figure 3.6 presents a comparison between different prediction settings: clinical features without any clonality and clonality associated with clinical features. In all cases, clinical features alone have a significant prognostic power (median CI=0.79 for BRCA, 0.65 for BLCA, 0.65 for HNSC). More importantly, when we combine each ITH feature set with clinical features, we observe no significant improvement over clinical features alone. This suggests that the weak prognostic signal captured by ITH measures is in fact redundant with already available clinical factors. Left-most boxplots (with red contour lines) represent results using clinical variables alone, without any ITH, to serve as reference.

Discussion

Comparison to similar studies

Previous findings report divergent prognostic power for ITH in several pan cancer studies [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF][START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF][START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF]. [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF] analyzed 1,165 patients across 12 cancer types from the TCGA, and found an overall prognostic power by considering all types together, and suggested that this effect might be nonlinear, with a trade-off between ITH and overall survival [START_REF] Venkatesan | Tumor evolutionary principles: How intratumor heterogeneity influences cancer treatment and outcome[END_REF]. However, the association between the number of subclones and overall survival was significant with EXPANDS, but not with PyClone results, and no significant association was detected when considering each cancer type separately, except for gliomas. This might be due to the small number of cases of each type (between 33 and 166). [START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF] considered 3,383 patients of 9 cancer types from the TCGA and found significant association between the number of subclones found by PyClone in 5 types: HNSC, BRCA, KIRC, LGG, and PRAD. [START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF] studied 4,722 patients from 11 types from the TCGA, and found significant prognostic power in 4 types using MATH score and distinct input mutation sets from different variant callers. They obtain significant prognostic association for all variant calling results in only one cancer type: UCEC, and already report some lack of robustness in the results. We have been further in testing up to 7 ITH methods with 2 alternative input mutation sets, in addition to the combination of all methods, and found no significant association, either for the same framework in all considered cancer types, nor for the same cancer type with all frameworks. We have also tested more powerful polynomial models to account for a potential nonlinear relationship, and results were inconclusive. This is an important distinction, because mutation calling can be made robust by additional experiments (targeted sequencing on WXS or WGS candidates), but our results highlight intrinsic limitations of ITH methods.

Considering results in details, there are discrepancies that should be discussed. For BRCA, conclusions are more discordant: [START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF] found significant results, [START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF] did not, and in more specialized studies like METABRIC [START_REF] Pereira | The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes[END_REF], significant association was found when considering only the upper and lower quartile of MATH score for ER+ tumors. For BLCA, contradictory conclusions were also drawn, as previous studies [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF][START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF] found no prognostic power and we have with some ITH methods. There are several explanations: each study considered a distinct subset of patients, with a distinct pipeline for calling mutations and measure ITH. This instability with respect to patient selection has been confirmed by our study. All of those studies, including ours, observed ITH prognostic relevance in HNSC. Good prognostic power for HNSC and BLCA might be an indication that the importance of ITH for cancer aetiology differs across cancer types.

Can we truly measure ITH?

Beyond the question of the prognostic power of ITH, our results challenge the very fact that ITH can be measured accurately with one WES sample per patient. Up to 30 methods have been developed to tackle ITH detection and quantification from NGS data in tumor samples, and new ones are still being developed [START_REF] Eaton | Deconvolution and phylogeny inference of structural variations in tumor genomic samples[END_REF]. This analysis has focused on relatively early but among the most widely used ITH methods in order to provide valuable insight on the degree of reliability of provided results. Indeed results presented here show that there is a very weak correlation (and sometimes even a significant negative correlation) between results obtained with different methods on the same patients. Another source of inconsistency is that ITH methods rely on results from previous analysis steps, in particular variant calling. Indeed, all ITH methods rely on the distribution of SNV frequencies, in association or not with structural variants (also called by a variety of dedicated methods). This has already been discussed by [START_REF] Noorbakhsh | Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power[END_REF] for MATH score computation. We show here that this issue is not limited to the MATH score. Some authors have suggested that being very restrictive in variant calling, even resorting to targeted deep sequencing to experimentally validate SNVs [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], would exhibit less noisy results. Here we have not observed any evidence that ITH methods estimated more robust results with a restricted input mutation set (i.e. the public mutation set in this study). Overall, lack of agreement between the different ITH measures is a real concern, indicating again that ITH is probably not very accurate. A similar conclusion was recently and independently reached by [START_REF] Bhandari | The inter and intra-tumoural heterogeneity of subclonal reconstruction[END_REF].

Beyond the methods used for ITH inference, the data might also be questioned. Being able to measure ITH to one sample WES with moderate sequencing depth is tempting for future clinical application where the cost and the inconvenience of multiple samples for patients should be limited [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF], but it may be unrealistic, as the true heterogeneity of a tumor can be missed by a single biopsy. However, more complex experimental settings have allowed more convincing findings in the field of tumor evolution [START_REF] Turajlic | TRACERx renal: tracking renal cancer evolution through therapy[END_REF][START_REF] Kim | Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing[END_REF], and it may be necessary to further evaluate lack of accuracy due to undersampling from the whole tumor or to use of WES instead of WGS, and the impact of sequencing depth. A recent and broad analysis of ITH with one WGS sample per patient [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF] partially answers as the authors could detect ITH in almost every patient, and conduct interesting further analyses as they had confidence in the robustness of ITH estimates. Most published methods are able to account for multiple samples from the same patient, either sampled at different times or from different regions of the tumor. However, for extension to WGS analysis, our work highlights limitations with respect to the computation time for high numbers of mutation as input.

Association with survival, link with other variables

It is tempting to formulate the hypothesis that higher association with patient survival is a sign of higher accuracy. We have already mentioned some technical issues associated with the setting of one sample WES per patient, as even without measure issues, ITH might just be under-represented in the sample compared to the whole tumor [START_REF] Shi | Reliability of wholeexome sequencing for assessing intratumor genetic heterogeneity[END_REF]. Another limitation is that this does not represent a dynamic measure. For instance a tumor can be clonal because it is not very aggressive, or on the contrary this might be the result of a selective sweep after a phase of new clonal expansion. Moreover, several authors discuss the consequences and the interplay of the presence of distinct subclonal populations, in terms of cooperation [START_REF] Zhou | Clonal cooperativity in heterogenous cancers[END_REF][START_REF] Mcgranahan | Clonal status of actionable driver events and the timing of mutational processes in cancer evolution[END_REF], competition [START_REF] Keats | Clonal competition with alternating dominance in multiple myeloma[END_REF][START_REF] Scott | Somatic clonal evolution: A selection-centric perspective[END_REF], or even neutral evolution [START_REF] Cross | New paradigms in clonal evolution: punctuated equilibrium in cancer[END_REF][START_REF] Sottoriva | Catch my drift? making sense of genomic intra-tumour heterogeneity[END_REF]. Hence, the same level of ITH might uncover very diverse situations, and may not be a prognostic factor by itself.

Moreover, the dataset used in this survival analysis has some particularities: the TCGA has selected patients with criteria allowing high sequencing quality, and ITH analysis itself has further eliminated tumors with no or very high CNA abundance, which may also bias results. Finally, absence of prognosis power in one dataset does not constitute a formal proof that ITH is not associated with survival.

Besides, ITH is likely to be influenced and to interplay with other external factors including tumor micro-environment, immune response, nutrient availability. Recent work has tried to set a full framework for analysis including many factors [START_REF] Maley | Classifying the evolutionary and ecological features of neoplasms[END_REF]. However, in the case of the TCGA, not all those variables are measurable, but some might be included in further work. In this line of thought, earlier results exhibited correlation of ITH with other factors like CNA abundance, sample purity, immune infiltration [START_REF] Pereira | The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes[END_REF][START_REF] Karn | Association between genomic metrics and immune infiltration in triplenegative breast cancer[END_REF][START_REF] Safonov | Immune gene expression is associated with genomic aberrations in breast cancer[END_REF][START_REF] Morris | Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival[END_REF]. Our results show that the strength (and even direction in the case of CNA abundance and mutation load) of correlation between those factors and ITH varies between the different tested ITH measures. This again calls for further and more detailed analysis, as results show ambiguity and lack of robustness.

Can we build a gold standard dataset for benchmark?

The main difficulty of ITH estimation is to assess the accuracy of the results. In this work, we have considered two possibilities. The first one on data from the TCGA is to work without any ground truth proxy and measure other features of accuracy: robustness, agreement of results obtained by different methods and association with other clinical variables. The obtained results suggest that the considered ITH methods are relatively robust to changes in the copy number input, but very sensitive to the input mutations. The last two options are more difficult to work with, as one method could be in disagreement with all the others but still provide the most accurate result, and absence or presence of association between ITH and other clinical or genomic variables can be either due to a real biological signal or be an artifact (or bias) of the method. Though the goal of this study is not to provide a formal evaluation of the considered method, the results on the TCGA provide information on systematic trends of each method, and the level of confidence to expect when applying ITH methods.

A second possibility is to try and obtain a proxy for the ground truth. This can be done using single cell sequencing in addition to the bulk sequencing. Though suffering from other issues, single cell sequencing provides true associations or exclusions of mutations, and hence constraints the subclonal reconstruction [START_REF] Malikic | Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data[END_REF]. However, a large number of cells is necessary. In the 7 samples considered in this study, only a subset of the mutations identified in the bulk sequencing were also identified in single cells, limiting the representativity and the relevance of the extracted accuracy measures. A second possibility is to rely on several samples from the same tumor to obtain a better ground truth to compare to the result obtained with one sample. However, each sample is a priori heterogeneous itself, requiring a first multi-sample deconvolution. This first step can be challenging, as it is thought that multi-sample reconstruction is subject to a larger statistical bias compared to single sample reconstruction [START_REF] Caravagna | Model-based tumor subclonal reconstruction[END_REF], and the accuracy of this first step will be critical in the final results. A final possibility is to rely on simulated data, which have the major drawback to not be necessarily representative of the true biological data, as recently highlighted for ITH in [START_REF] Caravagna | Model-based tumor subclonal reconstruction[END_REF], that point to an aspect of the input data so far overlooked by the community.

Chapter 4

CloneSig: Joint Inference of intratumor heterogeneity and signature deconvolution in tumor bulk sequencing data

The content of this chapter has been submitted and is under review.

Abstract

The possibility to sequence DNA in cancer samples has triggered much effort recently to identify the forces at the genomic level that shape tumorigenesis and cancer progression. It has resulted in novel understanding or clarification of two important aspects of cancer genomics: (i) intra-tumor heterogeneity (ITH), as captured by the variability in observed prevalences of somatic mutations within a tumor, and (ii) mutational processes, as revealed by the distribution of the types of somatic mutation and their immediate nucleotide context. These two aspects are not independent from each other, as different mutational processes can be involved in different subclones, but current computational approaches to study them largely ignore this dependency. In particular, sequential methods that first estimate subclones and then analyze the mutational processes active in each clone can easily miss changes in mutational processes if the clonal decomposition step fails, and conversely information regarding mutational signatures is overlooked during the subclonal reconstruction. To address current limitations, we present CloneSig, a new computational method to jointly infer ITH and mutational processes in a tumor from bulk-sequencing data, including whole-exome sequencing (WES) data, by leveraging their dependency. We show through an extensive benchmark on simulated samples that CloneSig is always as good as or better than state-of-the-art methods for ITH inference and detection of mutational processes. We then apply CloneSig to a large cohort of 8,954 tumors with WES data from the cancer genome atlas (TCGA), where we obtain results coherent with previous studies on whole-genome sequencing (WGS) data, as well as new promising findings. This validates the applicability of CloneSig to WES data, paving the way to its use in a clinical setting where WES is increasingly deployed nowadays.

Résumé

La possibilité de séquencer l'ADN des échantillons tumoraux a récemment généré de nombreux efforts dans le but d'identifier les forces qui façonnent la tumorigénèse et la progressin du cancer au niveau génomique. Ces recherches ont permis la compréhension ou l'élucidation de deux apsects importants de la génomique du cancer : (i) l'hétérogénéité intra-tumorale, que l'on peut déceler par les différences observées dans la fréquence des mutations somatiques d'une tumeur, et (ii) les processus mutationnels, révélés par la distibution des types de mutations somatiques et leur context nucléotidique immédiat. Ces deux aspects ne sont pas indépendants l'un de l'autre, dans la mesure où des processus mutationnels différents peuvent être impliqués dans des sous-clones différents, mais les approches computationnelles qui les étudient ignorent largement cette dépendance. En particulier, les méthodes qui procèdent de façon séquentielle en estimant d'abord la structure sous-clonale de l'échantillon puis en analysant les processus mutationnels à l'oeuvre dans chaque clone peuvent facilement passer à côté d'un changement dans les processus mutationnels actifs si la première étape échoue, et inversement, l'information provenant des signatures mutationnelles est ignorées lors de la reconstruction sous-clonale. Pour remédier à ces limitations, nous présentons CloneSig, une nouvelle méthode pour inférer conjointement l'hétérogénéité intra-tumorale et les processus mutationnels dans une tumeur à partir de données de séquençage en masse, y compris d'exome seulement, en mettant à profit leur dépendance. Nous démontrons à l'aide d'une évaluation approfondie sur des données simulées que CloneSig est systématiquement meilleur ou aussi bon que les méthodes de l'état de l'art pour la reconstruction de l'hétérogénéité intra-tumorale et la détection des processus mutationnels. Nous appliquons ensuite Clone-Sig à une importante cohorte de 8954 échantillons tumoraux pour lesquels des données de séquençage d'exome sont disponibles dans le "Cancer Genome Atlas" (TCGA), pour lesquels nous obtenons des résultats en accord avec de précédentes études menées à partir de données de séquençage de génome complet, mais aussi de nouvelles observations prometteuses. Cela permet de valider l'applicabilité de CloneSig à des données de séquençage d'exome, ouvrant la voie vers son application dans un contexte médical où cette technique est de plus en plus utilisée.

Introduction

The advent and recent democratization of high-throughput sequencing technologies has triggered much effort recently to identify the genomic forces that shape tumorigenesis and cancer progression. In particular, they have begun to shed light on evolutionary principles happening during cancer progression, and responsible for intra-tumor heterogeneity (ITH). Indeed, as proposed by [START_REF] Nowell | The clonal evolution of tumor cell populations[END_REF], cancer cells progressively accumulate somatic mutations during tumorigenesis and the progression of the disease, following similar evolutionary principles as any biological population able to acquire heritable transformations. As new mutations appear in a tumor, either because they bring a selective advantage or simply through neutral evolution, some cancer cells may undergo clonal expansion until they represent the totality of the tumor or a substantial part of it. This may result in a tumor composed of a mosaic of cell subpopulations with specific mutations. Better understanding these processes can provide valuable insights with implications in cancer detection and monitoring, patient stratification and therapeutic strategy [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF]Sottoriva et al., 2015b;[START_REF] Turajlic | Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal[END_REF][START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF].

Bulk genome sequencing of a tumor sample allows us in particular to capture two important aspects of ITH. First, by providing an estimate of the proportion of cells harboring each single nucleotide variant (SNV), genome sequencing allows us to assess ITH in terms of presence and proportions of subclonal populations and, to some extent, to reconstruct the evolutionary history of the tumor [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF][START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF][START_REF] Yuan | Ccube: A fast and robust method for estimating cancer cell fractions[END_REF][START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF]. This estimation is challenging, both because a unique tumor sample may miss the full extent of the true tumor heterogeneity, and because the computational problem of deconvoluting a bulk sample into subclones is notoriously difficult due to noise and lack of identifiability [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF][START_REF] Shi | Reliability of wholeexome sequencing for assessing intratumor genetic heterogeneity[END_REF]. Second, beyond their frequency in the tumor, SNVs also record traces of the mutational processes active at the time of their occurrence through biases in the sequence patterns at which they arise, as characterized with the concept of mutational signature [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF]. A mutational signature is a probability distribution over possible mutation types, defined by the nature of the substitution and its trinucleotide sequence context, and reflects exogenous or endogenous causes of mutations. Sixty-five such signatures have been outlined [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF], and are referenced in the COSMIC database, with known or unknown aetiologies. Deciphering signature activities in a tumor sample, and their changes over time, can provide valuable insights about the causes of cancer, the dynamic of tumor evolution and driver events, and finally help us better estimate the patient prognosis and optimize the treatment strategy [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF][START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF]. A few computational methods have been proposed to estimate the activity of different signatures in a tumor sample from bulk genome sequencing [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF][START_REF] Rosenthal | deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution[END_REF].

These two aspects of genome alterations during tumor development are not independent from each other. For example, if a mutation triggers subclonal expansion because it activates a particular mutational process, then new mutations in the corresponding subclone may carry the mark of this process, which may in turn be useful to identify the subclone and its associated mutations from bulk sequencing. Consequently, taking into account mutation types in addition to SNV frequencies may benefit ITH methods. Furthermore, identifying mutational processes specific to particular subclones, and in particular detecting changes in mutational processes during cancer progression, may be of clinical interest since prognosis and treatment options may differ in that case. However, current computational pipelines for ITH and mutational process analysis largely ignore the dependency between these two aspects, and typically treat them independently from each other or sequentially. In the sequential approach, as for example implemented in Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF], subclones are first identified by an ITH analysis, and in a second step mutational signatures active in each subclone are investigated. In such a sequential analysis, however, we can not observe changes in mutational signature composition if the initial clonal decomposition step fails to detect correct subclones, and we ignore information regarding mutational signatures during ITH inference. Recently, TrackSig [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF] was proposed to combine these two steps by performing an evolution-aware signature deconvolution, in order to better detect changes in signature activity along tumor evolution. However, while TrackSig overcomes the need to rely on a previously computed subclonal reconstruction, it does not leverage the possible association between mutation frequency and mutation type to jointly infer ITH and mutation processes active in the tumor. Furthermore, by design TrackSig can only work if a sufficient number of SNV is available, limiting currently its use to whole genome sequencing (WGS) data. This is an important limitation given the popularity of whole exome sequencing (WES) to characterize tumors, particularly in the clinical setting.

In this work, we propose CloneSig, the first method that leverages both the frequency and the mutation type of SNVs to jointly perform ITH reconstruction and decipher the activity of mutational signatures in each subclone. By exploiting the association between subclones and mutational processes to increase its statistical power, we show that CloneSig performs accurate estimations with fewer SNVs than competing methods, and in particular that it can be used with WES data. We show through extensive simulations that CloneSig reaches state-of-the-art performance in subclonal reconstruction and mutation deconvolution from WGS and WES data. We then provide a detailed CloneSig analysis of 8,954 pancancer WES samples from the Cancer Genome Atlas (TCGA), where we recover results coherent with a previous study on WGS [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF] as well as novel promising findings of potential clinical relevance.

Results

Joint estimation of ITH and mutational processes with Clone-Sig

We propose CloneSig, a method to jointly infer ITH and estimate mutational processes active in different clones from bulk genome sequencing data of a tumor sample. The rationale behind CloneSig is illustrated in Figure 4.1, which shows a scatter-plot of all SNVs detected by WES in a sarcoma (TCGA patient TCGA-3B-A9HI) along two axes: horizontally, the mutation type of the SNV, and vertically, its cancer cell fraction (CCF) estimated from WES read counts. Following previous work on mutational processes [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF][START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF], we consider 96 possible mutation types, defined by the nature of the substitution involved and the two flanking nucleotides. Standard methods for ITH assessment and clonal deconvolution only exploit the distribution of CCF values in the sample, as captured by the histogram on the right panel of Figure 4.1, while standard methods for mutational signature analysis only exploit the mutation profiles capturing the distribution of mutation contexts, as represented by the histogram on the bottom panel. However, we clearly see in the scatter-plot that these two parameters are not independent, e.g., C>A mutations tend to occur frequently at low CCF, while C>T mutations occur more frequently at high CCF. CloneSig exploits this association by working directly at the 2D scatter-plot level, in order to jointly infer subclones and mutational processes involved in those subclones. Intuitively, working at this level increases the statistical power of subclone detection when subclones are better separated in the 2D scatter-plot than on each horizontal or vertical axis, i.e., when the activity of mutational processes varies between subclones. More precisely, CloneSig is based on a probabilistic graphical model [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series[END_REF], summarized graphically in Figure 4.2, to model the distribution of allelic counts and trinucleotidic contexts of SNVs in a tumor. These observed variables are statistically associated through shared unobserved latent factors, including the number of clones in the tumor, the CCF of each clone, and the mutational processes active in each clone. CloneSig infers these latent factors for each tumor from the set of SNVs by maximum likelihood estimation, using standard machinery of probabilistic graphical models. Once the parameters of the model are inferred for a given tumor, we can read from them the estimated number of subclones together with their CCF, as well as the set of mutational processes active in each clone along with their strength. In addition, for each individual SNV, CloneSig allows us to estimate the clone and the signature that generated it, in a fully probabilistic manner; for example, in Figure 4.1, each SNV in the scatter-plot is colored according to the most likely mutational signature that generated it, according to CloneSig. Finally, we developed a likelihood ratio-based statistical test to assess whether mutational signatures significantly differ between subclones, in order to help characterize the evolutionary process involved in the life of the tumor. We refer the reader to the Material and Methods section for all technical details regarding CloneSig.

Performance for subclonal reconstruction

We first assess the ability of CloneSig to correctly reconstruct the subclonal organization of a tumor on simulated data. To simulate data we used the probabilistic graphical model behind CloneSig with a variety of different parameters to investigate different scenarios, leading to a total of 6,300 simulations (see Material and Methods). For each simulation, we run CloneSig and other methods described below, and measure the correctness of the subclonal reconstruction using four different metrics adapted from [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] and described in details in the Material and Method section. Briefly, score1B measures how similar the true and the estimated number of clones are, score1C assesses in addition the correctness of frequency estimates for each subclone, score2A measures the adequacy between the true and predicted co-clustering matrices, and score2C the classification accuracy of clonal and subclonal mutations. We also assess the performance of five other state-of-the-art methods for ITH estimation and compare them to CloneSig. First we evaluate TrackSig [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF], that reconstructs signature activity trajectory along tumor evolution by binning mutations in groups of 100 with decreasing CCFs, and for each group performs signature deconvolution using an expectation-maximization (EM) algorithm. A segmentation algorithm is then applied to determine the number of breakpoints, from which we obtain subclones with different mutational processes. Because of this rationale, the authors recommend to have at least 600 observed mutations to apply TrackSig. For sake of completeness, however, we also apply TrackSig with fewer mutations in order to compare it with other methods in all settings. Second, we test Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF], another method which associates mutational signatures and evolutionary history of a tumor. In Palimpsest, a statistical test based on the binomial distribution of variant and reference read counts for each mutation is performed, with correction for copy number, in order to classify mutations as clonal or subclonal. Then, for each of the two groups, signature deconvolution is performed using non-negative matrix factorization (NMF). This limitation to two populations can induce a bias in the metrics 1B, 1C and 2A that are inspired from [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF], so we introduce the metric 2C to account for the specificity of Palimpsest. Finally, we test three popular methods for ITH reconstruction which do not model mutational processes: PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], a Bayesian clustering model optimized with a Markov Chain Monte Carlo (MCMC) algorithm, Ccube [START_REF] Yuan | Ccube: A fast and robust method for estimating cancer cell fractions[END_REF], another Bayesian clustering model, optimized with a variational inference method, and SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF], also a Bayesian clustering model, optimized with a variational inference method, that only focuses on mutation in copy-number neutral regions. Figures 4.3 summarize the performance of the different methods according to the different metrics, and under different scenarios, where we vary respectively the number of clones in the simulation (more clones should be more challenging), the number of mutations available (more mutations should help), and the percentage of diploid genome (a higher percentage should be easier). In addition, we provide in Supplementary Section B.2 a more complete benchmark of the different methods when we vary as well the type of mutational signatures used as prior knowledge.

U n C n M n B n D n p S n T n n = 1 . . . N
Regarding the estimation of the number of clones (score1B), CloneSig is the best method in all settings, except in the presence of 6 clones. It is in particular the only method achieving a perfect accuracy in identifying samples with one or two clones, and exhibits the best performance for score1B up to 5 clones. Both CloneSig and TrackSig see their performance decrease with the number of clones, as expected, while surprisingly Ccube has the opposite behavior and achieves better results when the number of clones is large. During the experiments we noticed that PyClone tends to find large numbers of clones with only one mutation, so we ignore these clones when we compute score1B in order not to excessively penalize PyClone for this problematic behavior. PyClone, SciClone and Palimpsest have overall a stable performance with varying numbers of clones. Regarding the impact of the number of mutations on score1B, we see that CloneSig outperforms all other methods in all settings. As expected, both CloneSig and TrackSig improve when the number of SNV increases, and we confirm that TrackSig requires at least 1,000 SNVs to be competitive with other methods in this experiment, while CloneSig reaches the best performance of TrackSig with as few as and their CCF, as assessed by score1B and score1C, we measure with score2A their ability to correctly assign individual mutations to their clones, an important step for downstream analysis of mutations in each subclone. According to score2A, CloneSig outperforms all other methods in all scenarios, illustrating the improved accuracy of accounting for both CCF and mutational signatures when achieving ITH reconstruction. For all methods, score2A decreases when the number of clones increases and when the percentage of diploid genomes decreases, as expected, but the relative order of methods does not change, with CloneSig followed by a group of three methods with similar performances: PyClone, Ccube and Palimpsest. SciClone performs poorly except when the genome is fully diploid, in which case it gets competitive with Palimpsest but still below CloneSig, PyClone and Ccube. The number of mutations has a limited impact on the performance of all methods except for TrackSig, which only becomes competitive after 1,000 mutations. CloneSig with 100 mutations still outperforms TrackSig with 1,000 mutations, though. Finally, when we assess the capacity of each method to simply discriminate clonal from subclonal mutations using score2C, a measure meant not to penalize Palimpsest which only performs that task, we see again that CloneSig is the best in all scenarios, closely followed by Ccube and PyClone, as well as TrackSig with 5,000 mutations. Palimpsest is a bit below these methods, while SciClone and TrackSig with 1,000 mutations or less are clearly not competitive for this metric.

Overall, these experiments show that CloneSig performs as well as or better than the stateof-the-art according to all metrics considered and in all simulated scenarios, confirming that accounting for the mutation type for each mutation, in addition to its CCF, improves the accuracy of subclonal reconstruction. We also confirm that TrackSig, the only existing method that combines CCF and mutational signature information to detect subclones, requires at least 1,000 mutations to obtain results competitive with other methods in our benchmark, while CloneSig reaches good accuracy in all scores with as few as 100 mutations.

CloneSig, like TrackSig, benefits from situations where mutational processes are not similarly active in different subclones to better detect them and assign individual mutations to them. As expected, we observe for example that the improvement of CloneSig over other methods in terms of score2A fades when there is no difference of signature activity between clones, with CloneSig performing as well as PyClone and Ccube in this situation (Supplementary Figure B.12). To further illustrate the interplay between signature change and ability to detect clones, we now test CloneSig on simulations with exactly two clones, and where we vary how the clones differ in terms of CCF, on the one hand, and in terms of mutational processes, on the other hand (quantified in terms of cosine distance between the two profiles of mutation type). Figure 4.4 shows the accuracy of the number of clones detected by CloneSig as a function of these two parameters. We see an increased number of cases where the two clones are correctly distinguished by CloneSig as the distance between the mutation type profiles increases, for a constant CCF difference. For example, when two clones have similar signatures (small cosine distance), they can be detected with a 50% accuracy when the difference between their CCF is around 0.3; when their signatures are very different (large cosine distance), they can be detected with the same accuracy when their CCF only differ by 0.1. We show in Supplementary Figure B.58 how other parameters (number of mutations, sequencing depth, diploid proportion of the genome) also impact the performance of CloneSig in this setting.

Performance for signature deconvolution

In addition to ITH inference in terms of subclones, CloneSig estimates the mutational processes involved in the tumor and in the different subclones. We now assess the accuracy of this estimation on simulated data, using six performance scores detailed in the Material and Methods section. In short, score_sig_1A is the Euclidean distance between the normalized mutation type counts and the reconstructed profile (activity-weighted sum of all signatures); score_sig_1B is the Euclidean distance between the true and the reconstructed profile; score_sig_1C measures the identification of the true signatures; score_sig_1D is the proportion of signatures for which the true causal signature is correctly identified; and score_sig_1E reports the median of the distribution of the cosine distance between the true and the predicted mutation type profile that generated each mutation. We compare Clone- Sig to the two other methods that perform both ITH and mutational process estimation, namely, TrackSig and Palimpsest, and add also deconstructSigs [START_REF] Rosenthal | deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution[END_REF] in the benchmark, a method that optimizes the mixture of mutational signature of a sample through multiple linear regressions without performing subclonal reconstruction. Figure 4.5 shows the performance of the different methods according to the different metrics. For Score_sig_1A and Score_sig_1B, all methods exhibit overall similar performances, with a small advantage for CloneSig and TrackSig over Palimpsets and deconstructSigs in several scenarios. For Score_sig_1C, CloneSig and TrackSig exhibit the best AUC to detect present signatures. It may be related to a better sensitivity as CloneSig and TrackSig perform signature deconvolution in smaller subsets of mutations. All methods perform similarly with respect to Score_sig_1D, with CloneSig slightly better than all methods in all settings. The median cosine distance (Score_sig_1E) is also slightly better for CloneSig than for other methods in all settings. Surprisingly, the performance for TrackSig is worse with 5000 mutations; we observed on a few examples that this may be due to the fact that TrackSig tends to find several change points for a single clone change, due to the gradual change in activities along CCF in the overlap zone between two clones.

Overall, as for ITH inference, we conclude that CloneSig is as good as or better than all other methods in all scenarios tested. Further results where we vary other parameters in each methods, notably the set of mutations used as inputs or the set of signatures used as prior knowledge, can be found in Supplementary Section B.2; they confirm the good performance of CloneSig in all settings tested.

Pan-cancer overview of signature changes

We now use CloneSig on real data, to analyze ITH and mutational process changes in a large cohort of 8,954 tumor WES samples from the TCGA spanning 31 cancer types. An overview of the main characteristics of the cohort is presented in Table B. [START_REF] Popic | Fast and scalable inference of multi-sample cancer lineages[END_REF].

For each sample in the cohort, we estimate with CloneSig the number of subclones present in the tumor, the signatures active in each subclone, and test for the presence of a signature change between clones. Figure 4.6 shows a global summary of the signature changes found in the cohort. For each cancer type, it shows the proportion of samples where a signature change is found, and a visual summary of the proportion of samples where each individual signature is found to increase or to decrease in the largest subclone, compared to the clonal mutations. The thickness of each bar, in addition, indicates the median change of each signature. Overall, CloneSig detects a significant change in signature activity from the protected set of mutations in 32% of all samples, and in 11% when it is trained on the public set of mutations, although these proportions vary between cancer types. In terms of signature changes, we recover patterns already observed in other cohorts, usually using WGS, which confirms that CloneSig is able to detect patterns of ITH and signature activity change using WES data. For example, similarly to the cohort of 2,778 WGS tumors analyzed by the International Cancer Genome Consortium's Pan-Cancer Analysis of Whole Genomes (PCAWG) initiative which represents the largest dataset of cancer WGS data to date [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], we observe that signature 5, of unknown aetiology, varies in almost all cancer types, and can be both increasing or decreasing. Lifestyle-associated signatures associated with tobacco-smoking (signature 4) and UV light exposure (signature 7) decrease systematically in lung tumors and oral cancers and skin melanoma respectively.

More precisely, patterns of change detected by CloneSig on the TCGA are similar to what was described on the PCAWG cohort for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), glioblastoma multiforme (GBM), uterine carcinosarcoma (UCS) and uterine corpus endometrial carcinoma (UCEC), kidney chromophobe (KICH), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), skin cutaneous melanoma (SKCM) and stomach adenocarcinoma (STAD). In addition, CloneSig detects several new patterns of variations. In bladder carcinoma (BLCA), signature 3, related to defective homologous recombination-based DNA damage repair is found increasing. In breast cancer (BRCA), CloneSig detects three new signature variation patterns: signature 8 is increasing, and signatures 26 and 30 are varying in both directions, while signatures 1 (deamination of 5-methylcytosine to thymine) and 18 (possibly damage by reactive oxygen species) tend to be preferentially decreasing and increasing respectively, instead of varying in both directions according to [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF]. In prostate adenocarcinoma (PRAD), CloneSig finds signature to be varying in both direction, contrary to solely increasing in [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], but similarly to the findings of [START_REF] Espiritu | The evolutionary landscape of localized prostate cancers drives clinical aggression[END_REF]. Signature 37 is found to vary in both directions instead of decreasing. Additionally to changes identified in [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], but already described in [START_REF] Espiritu | The evolutionary landscape of localized prostate cancers drives clinical aggression[END_REF], CloneSig detects variations in signatures 8, 9 and 16. A new signature seems to exhibit variations along tumor evolution: signature 15 (defective DNA mismatch repair), which was not previously described in PRAD to the best of our knowledge. In lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), we observe the important increase in signature 17 as in [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], but no variation of signature 9 (mutations induced during replication by polymerase η), and an undescribed increase in signatures 18 and 6 (defective DNA mismatch repair). In esophageal carcinoma (ESCA), we do not observe the important decrease of signature 17 [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], however, we describe an increase of signature 18 and a variation of signature 16 in both directions. For head-neck squamous cell carcinoma (HNSC), we observe similar patterns for signatures 5, 2 and 13 (related with APOBEC enzymes activity), and 18, but an undescribed increase of signature 3 [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], and a decrease of signature 4 (related to tobacco smoking), probably in relation to the fact that this cohort includes oral tumors. In ovary tumors (OV), increase of signature 40 and decrease of signature 5 are coherent with the findings of [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF], however, CloneSig finds an important number of samples with an increase of signature 8, while a decrease of this signature was reported in [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF]. For thyroid carcinoma (THCA), the variations of signatures found are different, however the number of samples with a significant change of signature activity is small. In liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD), we report important differences between patterns, in particular with signature 12 reported to decrease systematically in LIHC [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF] while we observe an increasing trend, and no variation of signature 40 in PAAD. In colorectal cancer (COADREAD), we observe as described in [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF] an strong increase in signatures 40 and 17, and a decrease in signature 18, a variation of signature 5 in both direction, and not only an increase, and no variation of signature 1. We also observe an increase in signature 26, observed in one of the three samples analyzed with single cells in [START_REF] Roerink | Intra-tumour diversification in colorectal cancer at the single-cell level[END_REF], and an increase in signature 30 that was not previously reported.

In addition, CloneSig detects changes in signature activity in cancer types where they have not yet been characterized to the best of our knowledge, though the number of samples is too low in some cases to detect a strong trend. In adrenocortical carcinoma (ACC), we observe an increase in signature 36 (associated to defective base excision repair) and variations in signature 3. In kidney renal papillary cell carcinoma (KIRP) and kidney renal clear cell carcinoma (KIRC), signature 40 is strongly decreasing, and signature 5 increasing. Additionally CloneSig uncovers variations in signature 3 in most samples with a signature change in KIRC; activity of signature 3 in KIRC was previously outlined in [START_REF] Warsow | Genomic features of renal cell carcinoma with venous tumor thrombus[END_REF].

Clinical relevance of ITH and signature changes

We now explore relations between the ITH detected by CloneSig and the potentially associated changes in signature activity and relevant clinical features. Looking first at the pan-cancer scale, we assess whether ITH measured either through the number of detected subclones or the presence of mutational signature changes is associated to overall survival. For that purpose, we split all TCGA samples in three groups using two different strategies, based on CloneSig's output on the protected input mutation set. In the first strategy, the three groups are based on the number of (sub-)clonal populations only (1, 2 or 3+ clones). A multivariate Cox model fitted to the data indicates for 2 clones a hazard ratio (HR) of 1.25 (95% confidence interval (CI): [1.14, 1.37], p = 2.27e -6), and for 3 clones a HR of 1.41 (CI= [1.26,1.58], p = 2.03e -9). A univariate Cox model fitted to compare the populations with 2 or 3+ clones indicates a HR of 1.12 for 3+ clones (CI=[1.02, 1.23], p = 0.022). This confirms that the presence of subclones as estimated by CloneSig is associated to survival, but that the difference between 2 and 3+ clones is limited in terms of survival. In the second strategy, we still keep the group of samples with only a single clone, but split the other samples (with 2 or more clonal populations) into two groups based on whether or not CloneSig detects a change in mutational signatures. The Cox results shows a HR of 1.14 without signature change (CI= [1.04, 1.26], p = 7.11e-3), and 1.51 with signature change (CI= [1.37, 1.67], p = 3.30e-16). With a focus on heterogeneous tumors only, the hazard ratio with a signature change compared to those without signature change is 1.33 (CI= [1.22,1.44], p = 5.22e -11). As with the first strategy, we observe a significant difference in survival between patients with homogeneous and heterogeneous tumors. However, the presence of a significant change in signature activity (second strategy) is more strongly associated to survival among heterogeneous tumors, compared to the case when we split the heterogeneous tumors based on the number of clones (Figure 4.7). We get similar results when using the public input mutation set (Supplementary Figure B.59), illustrating CloneSig's robustness to the input signatures, and ability to detect ITH and signature activity changes with a very small number of observed mutations. When considering the same survival analysis for each cancer type separately, we find no significant difference in survival between the different groups (homogeneous and heterogeneous tumors) after correcting for multiple tests. This may be due both to a lack of statistical power in the cancer-specific analysis because of the smaller number of samples available when we split them per cancer types, and to a confounding effect of cancer types where, for example, cancer types with a bad prognosis are enriched in heterogeneous tumors with a significant change in signature activity. Indeed, as shown in Figure 4.8, the proportion of tumors harboring ITH and changes in mutational processes varies a lot between cancer types. Finally, we also investigate whether patient stratification based on CloneSig output, in particular ITH and patterns of signature changes, is correlated with other clinical characteristics such as sex, age, tumor size or grade, but find overall no significant association; for sake of completeness we present detailed results of this analysis in Supplementary Section B.3.

Discussion

In recent years, a large number of methods have been developed to unravel ITH in tumors [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF][START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF][START_REF] Yuan | Ccube: A fast and robust method for estimating cancer cell fractions[END_REF][START_REF] Turajlic | Inferring mutational timing and reconstructing tumour evolutionary histories[END_REF]Dentro et 2017], and have been applied to different cohorts, including the TCGA. Recent analyses illustrate limits encountered when applying those methods to bulk WES [START_REF] Abécassis | Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data[END_REF][START_REF] Shi | Reliability of wholeexome sequencing for assessing intratumor genetic heterogeneity[END_REF], as the number of observed mutations is small, the variance in read counts can be high, and a unique sample may miss the heterogeneity of the tumor. As sequencing costs are continuously decreasing, WGS, multi-sample sequencing and single cell sequencing will constitute relevant alternatives and simplify the study of ITH. However, to date a much larger number of tumor samples with sufficient clinical annotation (in particular survival data) is available with WES compared to other more advanced technologies, and can lead to interesting insights. Beyond the number of clones present in a tumor, another relevant aspect of tumor evolution is the presence of changes in mutational signatures activities [START_REF] Fittall | Translating insights into tumor evolution to clinical practice: promises and challenges[END_REF], which could have clinical implications in cancer prevention and treatment, and unravel the evolutionary constraints shaping early tumor development. To the best of our knowledge, TrackSig [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF] and Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF] are the only methods addressing the problem of systematic detection of signature changes, but they both present serious limitations: Palimpsest first detects ITH, and then performs signature deconvolution, which has the major drawback that if this first step fails, no signature change can be detected. Moreover, Palimpsest simply aims to distinguish subclonal from clonal mutations, thus ignoring more complex patterns. TrackSig is only applicable to WGS data, and though avoiding the caveat of relying on a previous detection of ITH, the final step of associating signature changes to the subclonal reconstruction is manual. Finally, none of these methods leverages the changes in signature activity to inform and improve the ITH detection step. To overcome these limitations, we have developed CloneSig, the first method to offer joint inference of both subclonal reconstruction and signature deconvolution, which can be applied to WGS as well as to WES data.

Improved ITH and signature detection in WES

CloneSig is a generative probabilistic graphical model that considers somatic mutations as derived from a mixture of clones where different mutational signatures are active. We demonstrated with a thorough simulation study the benefits of the joint inference in detecting ITH, both in WES and WGS samples. We showed that CloneSig is competitive with or outperforms state-of-the art ITH methods, even in the absence of signature activity change between the clones, and is particularly efficient for the detection of samples with one or a few subclones. Interestingly, several other methods we considered including PyClone [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF], SciClone [START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF] and Ccube [START_REF] Yuan | Ccube: A fast and robust method for estimating cancer cell fractions[END_REF], are fully Bayesian and choose the number of clones by maximizing of the posterior probability of the data. In those methods the prior has a regularizing role, and they exhibit a decrease of accuracy as the number of observed mutations increases. This may be related to the fact that the regularizing prior is less influential as more mutations are taken into account. We instead developed a specific adaptive criterion to estimate the number of clones, as we observed that standard statistical tools for model selection performed poorly in preliminary experiments. When applied to real data, CloneSig's results on the TCGA exhibit a strong association with survival when comparing homogeneous and heterogeneous samples. This effect on survival is stronger than the one reported in [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF], also on the TCGA. This may be due to a better accuracy of CloneSig, as well as to the better statistical power of our analysis with larger sample sizes. Regarding the signature deconvolution problem, results on simulations (Score_sig_1C) suggest that CloneSig exhibits an improved sensitivity. Application to the TCGA also indicates such increased sensitivity: in the TCGA pancreatic ductal adenocarcinoma cohort (PAAD), the original study using deconstructSigs could not detect signature 3 activity in samples with somatic subclonal mutations in genes BRCA1 and BRCA2 [START_REF] Raphael | Integrated genomic characterization of pancreatic ductal adenocarcinoma[END_REF], while CloneSig reports signature 3 exposure in some PAAD tumors.

Clinical relevance of signature variations

An original result of this study is the ability to further stratify heterogeneous tumors based on the presence of a significant change in signature activity, which seems associated with a worse prognosis. This could be illustrative of a more advanced stage of tumor development where a new generation of driver events supplant the initial drivers of the tumor. However, we could not reproduce those results observed on the whole TCGA cohort in a cancer-type-specific way. There are several possibilities explaining this observation: smaller cohorts may lack statistical power, or there could be a confounding effect where larger proportions of cancer types of bad prognosis are heterogeneous and have a significant change in signature activity compared to cancer types with better prognosis. Even in this latter hypothesis, this stratification can still be the manifestation of a true biological process, and not just an artifact. Indeed, other factors may explain this phenomena, like systematic later diagnosis.

To further assess the clinical relevance of signature changes, we have systematically analyzed whether we could identify an association between the exact pattern of signature change and clinical variables, but found no significant association. However, more refined or complete analyses may be necessary to uncover the full significance of signature activity changes. Previous studies report important signature activity differences between early and metastatic tumors in endometrial and breast cancers [START_REF] Ashley | Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression[END_REF][START_REF] Bertucci | Genomic characterization of metastatic breast cancers[END_REF], with impact on the survival in the breast cancer study [START_REF] Bertucci | Genomic characterization of metastatic breast cancers[END_REF]. We could not perform a similar analysis using the TCGA with only untreated primary tumors, but this constitutes new directions and opportunities of research using CloneSig on metastatic cohorts, for instance to refine findings of [START_REF] Bertucci | Genomic characterization of metastatic breast cancers[END_REF], that compares signatures deconvoluted from the whole metastasis, and could benefit from subclonal analysis to distinguish early and late mutations.

A final potential clinical application could be usage as a marker for personalized treatment. Signature 3 is associated with homologous recombination repair defect (HRD), and a targeted therapy, PARP inhibitors, can successfully target cells with such defect. A first idea is to use detection of signature 3 to identify patients that can benefit from such therapy, and CloneSig exhibits better identification of active signatures, as illustrated in the simulation studies. Indeed, several mutations in genes like BRCA1 and 2, RAD51 are known to cause HRD, but some other mutations are less frequent, or other events may result in HRD and be undetectable using regular genome sequencing, such as epigenetic inactivation [START_REF] Knijnenburg | Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas[END_REF]. In addition, the intensity of HRD mutational process may be predictive of the treatment response. Pursuing this line of thought, the change in signature activity can also be exploited as an indicator of the current driver status of HRD in tumor development.

As the underlying processes of signatures will keep being uncovered, more examples of such applications are likely to arise.

Importance of input signatures and challenges

As illustrated in simulations, and based on our experience with the TCGA, the choice of the input signatures is key to CloneSig's optimal performances. This is related to the unidentifiability of the signature deconvolution problem. Several solutions have been proposed: use of a pre-defined cancer-specific matrix [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF][START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF], selection of signatures based on other genomic information, such as patterns of indels or structural variants, or strand biases [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF], or with other molecular or clinical covariates [START_REF] Robinson | Modeling clinical and molecular covariates of mutational process activity in cancer[END_REF]. The probabilistic framework of CloneSig is well suited to integrate other mutation types (indels, structural variants), as well as prior knowledge on signature co-occurrence, and a prior based on other molecular and clinical covariates. The difficulty of this approach is the possibility to learn such association patterns. Another direction for further development would be to use CloneSig's model to learn the signatures, or to allow some variations, as suggested in [START_REF] Volkova | Mutational signatures are jointly shaped by DNA damage and repair[END_REF].

Materials and methods

CloneSig model

CloneSig is a probabilistic graphical framework, represented in Figure 4.2, to model the joint distribution of SNV frequency and mutational context using several latent variables to capture the subclonal composition of a tumor and the mutational processes involved in each clone. For a given SNV it assumes that we observe the following variables: D, the total number of reads covering the SNV; B ≤ D, the number of mutated reads; T ∈ {1, . . . , 96} the index of the mutation type (i.e., the mutation and its flanking nucleotides, up to symmetry by reverse complement); and C = (C normal , C major tumor , C minor tumor ) the allele-specific copy number at the SNV locus, as inferred using existing tools such as ASCAT [START_REF] Martincorena | Universal patterns of selection in cancer and somatic tissues[END_REF]. Here C normal is the total copy number in normal cells, and (C major tumor , C minor tumor ) are respectively the copy number in the cancer cells of the major and minor allele, respectively. We therefore also observe C tumor = C major tumor + C minor tumor , the total copy number in cancer cells. Finally, we assume observed the tumor sample purity p, i.e., the fraction of cancer cells in the sample.

In addition to those observed variables, CloneSig models the following unobserved variables: U ∈ {1, . . . , J}, the index of the clone where the SNV occurs (assuming a total of J clones); S ∈ {1, . . . L} the index of the mutational signature that generated the SNV (assuming a total of L possible signatures, given a priori); and M ∈ {1, . . . , C major tumor }, the number of chromosomes where the SNV is present. Note that here we assume that SNVs can only be present in one of the two alleles, hence the upper bound of M by C major tumor . Denoting for any integer d by

Σ d = {u ∈ R d + ,
∑ d i=1 u i = 1} the d-dimensional probability simplex, and for u ∈ Σ d by Cat(u) the categorical distribution over {1, . . . , d} with probabilities u 1 , . . . , u d (i.e., X ∼ Cat(u) means that P (X = i) = u i for i = 1, . . . , d), let us now describe the probability distribution encoded by CloneSig for a single SNV; its generalization to several SNVs is simply obtained by assuming they are independent and identically distributed (i.i.d.) according to the model for a single SNV. We do not model the law of C and D, which are observed root nodes in Figure 4.2, and therefore only explicit the conditional distribution of (U, S, T, M, B) given (C, D).

Given parameters ξ ∈ Σ J , π ∈ (Σ L ) J and µ ∈ (Σ 96 ) L , we simply model U , S and T as categorical variables:

U ∼ Cat(ξ) , S | U ∼ Cat(π U ) , T | S ∼ Cat(µ S ) .
Conditionally on C, we assume that the number of mutated chromosomes M is uniformly chosen between 1 and C major tumor , i.e.,

M | C ∼ Cat(1/C major tumor ) ,
where 1/C major tumor ∈ Σ C major tumor represents the vector of constant probability. Finally, to define the law of B, the number of mutated reads, we follow a standard approach in previous studies that represent ITH as a generative probabilistic model [START_REF] Roth | PyClone: statistical inference of clonal population structure in cancer[END_REF][START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF][START_REF] Yuan | Ccube: A fast and robust method for estimating cancer cell fractions[END_REF][START_REF] Miller | SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution[END_REF] where the law of the mutated read counts for a given SNV must take into account the purity of the tumor, the proportion of cells in the tumor sample carrying that mutation (cancer cell fraction, CCF), as well as the various copy numbers of the normal and tumor cells. More precisely, as reviewed by [START_REF] Dentro | Principles of reconstructing the subclonal architecture of cancers[END_REF], one can show that the expected fraction of mutated reads (variant allele frequency, VAF)

satisfies VAF = p × CCF × M p × C tumor + (1 -p) × C normal .
Note that this only holds under the classical simplifying assumption that all copy number events are clonal and affect all cells in the sample. If we now denote by ϕ ∈ [0, 1] J the vector of CCF for each clone, and introduce a further parameter ρ ∈ R * + to characterize the possible overdispersion of mutated read counts compared to their expected values, we finally model the number of mutated reads using a beta binomial distribution as follows:

B | D, U, C, M ∼ BetaBinomial (D, ρϕ U η(M, C), ρ(1 -ϕ U η(M, C))) with η(M, C) = p × M p × C tumor + (1 -p) × C normal .

Parameter estimation

Besides the tumor purity p, we assume that the matrix of mutational processes µ ∈ (Σ 96 ) L is known, as provided by databases like COSMIC and discussed below in Section 4.4.10. We note that we could consider µ unknown and use CloneSig to infer a new set mutational signatures from large cohorts of sequenced tumors, but prefer to build on existing work on mutational processes in order to be able to compare the results of CloneSig to the existing literature.

Besides p and µ, the free parameters or CloneSig are J, the number of clones, and θ = (ξ, ϕ, π, ρ) which define the distributions of all random variables. On each tumor, we optimize θ separately for J = 1 to J max = 8 clones to maximize the likelihood of the observed SNV data in the tumor. The optimization is achieved approximately by an expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] 

Test of mutational signature changes

We use a likelihood ratio test to determine the significance of a signature change, by comparing a regular CloneSig fit to a fit with a single mixture of signatures common to all clones. To adapt the test, the parameter of the chi-squared distribution needs a calibration, that we perform on simulated data under the null hypothesis (without change of signatures between clones). We obtain the optimal parameter using a ridge regression model with the number of clones and the degree of freedom of the input signature matrix as covariates. The coefficient values are averaged over 10-fold cross-validation to ensure robustness. We provide more details about this test in Supplementary Section B.1.3.

Simulations

We use several simulation strategies to evaluate the performance of CloneSig and other methods in various situations. We also use simulations to adjust several aspects of CloneSig, in particular the setting of a custom stopping criterion and the calibration of the statistical test to detect a significant signature change along tumor evolution.

Default simulations

We implemented a class SimLoader to perform data simulation in CloneSig package. The user sets the number of clones J, the number of observed mutations N , and the matrix of L possible signatures µ. She can also specify the desired values for the CCF of each clone ϕ ∈ [0, 1] J , the proportion of each clone ξ ∈ Σ J , the exposure of each signature in each clone π ∈ (Σ L ) J , and the overdispersion parameter ρ ∈ R + * for the beta-binomial distribution, as well as the proportion of the genome that is diploid. If the user does not provide values for one or several parameters, we generate them randomly as follows:

π the number of active signatures follows a P oisson(7) + 1 distribution, and the signatures are chosen uniformly among the L available signatures. Then for each subclone, the exposures of active signatures follow a Dirichlet distribution of parameter 1 for each active signature;

ϕ the cancer cell fraction of each clone is set such that the largest clone has a CCF of 1, and each subsequent CCF is uniformly drawn in decreasing order to be greater than 0.1, and at a distance at least 0.05 from the previous clone;

ξ the proportions of clones are drawn from a Dirichlet distribution of parameter 1 for each clone. The proportions are repeatedly drawn until the minimal proportion of a clone is greater than 0.05; ρ follows a normal distribution of mean 60 and of variance 5.

The same strategy is used for random initialization of the parameters for the EM algorithm. The total copy number status is drawn for a user-set diploid proportion of the genome with a bell-like distribution centered in 2, and skewed towards the right (see Supplementary Figure B.57 for examples), or from a rounded log-normal distribution of parameters 1 and 0.3. The minor copy number is then drawn as the rounded product between a beta distribution of parameters 5 and 3 and the total copy number. The multiplicity of each mutation n is uniformly drawn between 1 and C n,tumormajor . The purity is drawn as the minimum between a normal variable of mean 0.7 and of variance 0.1, and 0.99. The other observed variables (T , B, D) are drawn according to CloneSig probabilistic model.

Simulations for comparison with other ITH and signature methods

To calibrate the custom stopping criterion and for further evaluation of CloneSig, we simulated 6, 300 datasets using the previously described setting, with a few adjustments: we set the minimal proportion of each clone to 0.1, the minimal difference between 2 successive clone CCFs to 0.1, and we chose the active signatures among the active signatures for each of the 35 cancer types described in the file signatures_in_samples_and_cancer_types.mat, extracted from the SigProfiler MATLAB package (version 2.5.1.7, downloaded from Mathworks on May 16th 2019). We draw the number of active signatures as the minimum of a P ois(7)+1 distribution and the number of active signatures for this cancer type. We required a cosine distance of at least 0.05 between the mutational profiles of two successive clones. In total, for each of the 35 cancer types, we generated a simulated sample for each combination of a number of mutations from the set {100, 300, 600, 1000, 5000} covering the range observed in WES and WGS data, a percentage of the genome that is diploid from the set {0%, 20%, 40%, 60%, 80%, 100%} to assess the impact of copy number variations, and finally, between 1 and 6 clones.

Simulations without signature change between clones

We generated a set of simulations similar in all points to the one for comparison with other ITH and signature methods, except that there is a unique signature mixture common to all clones. We used this dataset in two contexts: (i) to evaluate CloneSig in comparison to other methods in the absence of signature change, and (ii) to design a statistical test to assess the significance of a change in mutational signatures. For the latter, the dataset was limited to the first ten cancer types to avoid unnecessary computations.

Simulations to assess the separating power of CloneSig

To assess the separating power of CloneSig, we generated a dataset of 5,400 simulated tumor samples with two clones, where each clone represents 50% of the observed SNVs. Our objective was to explore the set of the distance between two clones, in terms of CCF distance, and of cosine distance between the two mutational profiles. For that purpose we first drew ten possible CCF distances evenly on a log scale between 0 and 1, and set to 1 the largest clone CCF. We also generated 30 matrices π with cosine distances covering regularly the possible cosine distances; to obtain them, we first generated 10,000 such π matrices to estimate an empirical distance distribution, and we implemented a rejection sampling strategy to obtain 30 samples from a uniform distribution. For each pair of CCF distance and π matrix, several samples were generated with the number of mutations varying among {100, 300, 1000}, the diploid proportion of the genome among {0.1, 0.5, 0.9}, and the sequencing depth among {100, 500}.

Simulations to assess the sensitivity of the statistical test

To measure the sensitivity of the statistical test to detect a significant signature change along tumor evolution, we generated a dataset of 2,700 simulated tumor samples with 2 to 6 clones. We used again a rejection sampling strategy to explore the space of the maximal distance between the profiles between any 2 clones, but the target distribution is here a beta distribution of parameters 1.5 and 8 as a target distribution, as the objective was to sample more thoroughly the small cosine distances. We repeated the sampling of 30 π matrices for 2 to 6 clones, and in each case, and generated several samples with the number of mutations varying among {100, 300, 1000}, the diploid proportion of the genome among {0.1, 0.5, 0.9}, and the sequencing depth among {100, 500}.

Evaluation metrics

We use several evaluation metrics to assess the quality of CloneSig and other comparable methods. Some assess specifically the accuracy of the subclonal decomposition, while others assess the performance of signature deconvolution.

Metrics evaluating the subclonal decomposition

The metrics described in this section evaluate the accuracy of the subclonal deconvolution. They are adapted from [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF].

Score1B measures the adequacy between the true number of clones J true and the estimated number of clones J pred . It is computed as

Jtrue+1-min(Jtrue+1,|J pred -Jtrue|) Jtrue+1
.

Score1C is the Wasserstein similarity, defined as 1 minus the Wasserstein distance between the true and the predicted clustering, defined by the CCFs of the different clones and their associated weights (proportion of mutations), implemented as the function stats.wasserstein_distance in the Python package scipy.

Score2A measures the correlation between the true and predicted binary co-clustering matrices in a vector form, M true and M pred . It is the average of 3 correlation coefficients:

Pearson correlation coefficient P CC = Cov(Mtrue,M pred ) σ M true ,σ M pred
, implemented as the function pearsonr in the Python package scipy,

Matthews correlation coefficient MCC =

T P ×T N -F P ×F N √ (T P +F P )(T P +F N )(T N +F P )(T N +F N )
, implemented as the function metrics.matthews_corrcoef in the Python package scikit-learn, V-measure is the harmonic mean of a homogeneity score that quantifies the fact that each cluster contains only members of a single class, and a completeness score measuring if all members of a given class are assigned to the same cluster [START_REF] Rosenberg | V-Measure: A conditional entropy-based external cluster evaluation measure[END_REF]; here the classes are the true clustering. We used the function v_measure_score in the Python package scikit-learn.

Before averaging, all those scores were rescaled between 0 and 1 using the score of the minimal score between two "bad scenarios": all mutations are in the same cluster, or all mutations are in their own cluster (M pred = 1 N ×N or M pred = I N ×N ).

Score2C quantifies the accuracy of each method prediction of clonal and subclonal mutations. We report the accuracy, and the area under the ROC curve (implemented in function metrics.roc_auc_score in the Python package scikit-learn), sensitivity and specificity in Supplementary Section B.2

Metrics evaluating the identification of mutational signatures

The metrics described in this section evaluate the accuracy of the mutational signature deconvolution.

Score_sig_1A computes the Euclidean distance between normalized mutation type counts (empirical), and the reconstituted profile. This is the objective function of most signature reconstruction approaches (including deconstructSigs [START_REF] Rosenthal | deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution[END_REF] and Palimpsest [START_REF] Shinde | Palimpsest: an r package for studying mutational and structural variant signatures along clonal evolution in cancer[END_REF]).

Score_sig_1B is the Euclidean distance between simulated and estimated signature profiles (weighted sum over all clones). This is closer to the objective of CloneSig and TrackSig [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF].

Score_sig_1C measures the ability of each method to correctly identify present signatures. For CloneSig, no signature has a null contribution to the mixture, so for each clone, the signatures are considered in the decreasing order of their contribution to the mixture, and selected until the cumulative sum reaches 0.95. This rule is applied to all methods. For that metric, the area under the ROC curve (implemented in function metrics.roc_auc_score in the Python package scikit-learn) is reported, as well as the accuracy, sensitivity, and specificity in Supplementary Section B.2

Score_sig_1D is the percent of mutations with the right signature. For each mutation, the most likely signature is found by taking into account the distribution of each mutation type in each signature, and the contribution of the signature to the mixture.

Score_sig_1E measures for each mutation the cosine distance between the clonal mutation type distribution that generated the mutation and the reconstituted one. We consider a unique global distribution for deconstructSigs. This allows us to measure the relevance of the reconstruction even if the wrong signatures are selected, as several signatures have very similar profiles. The result is a distribution of distances over all mutations, and we report the median of this distribution. We also report in Supplementary Section B.2 more results with the minimum, the maximum, and the standard deviation of this distribution (max_diff_distrib_mut, median_diff_distrib_mut), as well as the proportions of mutations with a distance below 0.05 or 0.1 (perc_dist_5 and perc_dist_10).

Implementation

CloneSig is implemented in Python, and is available as a Python package at https://github. com/judithabk6/clonesig. A wrapper function implements the successive optimization of CloneSig with increasing number of clones. For two clones and more, the model is initialized using results from the precedent run with one fewer clone, by splitting the subclone with the largest contribution to the mixture entropy as described in [START_REF] Baudry | EM for mixtures: Initialization requires special care[END_REF]. This process is stopped when the maximum number of subclones is reached, or when the selection criterion decreases for two successive runs. A class for simulating data according to the CloneSig model is also implemented, as detailed above.

Data

We downloaded data from the GDC data portal https://portal.gdc.cancer.gov/. We gathered annotated somatic mutations, both raw variant calling output, whose access is restricted and public mutations, from the new unified TCGA pipeline https://docs.gdc. cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/, with alignment to the GRCh38 assembly, and variant calling using 4 variant callers: MuSe, Mu-tect2, VarScan2 and SomaticSniper. Instructions for download can be found in the companion Github repository (https://github.com/judithabk6/CloneSig_analysis).

Copy number calling and purity estimation

We obtained copy number alterations (CNA) data from the ASCAT complete results on TCGA data partly reported on the COSMIC database [START_REF] Martincorena | Universal patterns of selection in cancer and somatic tissues[END_REF][START_REF] Forbes | COSMIC: somatic cancer genetics at highresolution[END_REF]. We then converted ASCAT results on hg19 to GRCh38 coordinates using the segment_liftover Python package [START_REF] Gao | segment_liftover : a Python tool to convert segments between genome assemblies[END_REF]. ASCAT results also provide an estimate of purity, which we used as input to ITH methods when possible. Other purity measures are available [START_REF] Aran | Systematic pan-cancer analysis of tumour purity[END_REF]; however we selected the ASCAT estimate to ensure consistency with CNV data.

Variant calling filtering

Variant calling is known to be a challenging problem. It is common practice to filter variant callers output, as ITH methods are deemed to be highly sensitive to false positive SNVs. We filtered out indels from the public dataset, and considered the union of the 4 variant callers output SNVs. For the protected data, we also removed indels, and then filtered SNVs on the FILTER columns output by the variant caller ("PASS" only VarScan2, SomaticSniper, "PASS" or "panel_of_normals" for Mutect2, and "Tier1" to "Tier5" for MuSe). In addition, for all variant callers, we removed SNVs with a frequency in 1000 genomes or Exac greater than 0.01, except if the SNV was reported in COSMIC. A coverage filter was added, and we kept SNVs with at least 6 reads at the position in the normal sample, of which 1 maximum reports the alternative nucleotide (or with a variant allele frequency (VAF) <0.01), and for the tumor sample, at least 8 reads covering the position, of which at least 3 reporting the variant, or a VAF>0.2. The relative amount of excluded SNVs from protected to public SNV sets varied significantly between the 3 cancer types (see Table B.3). All annotations are the ones downloaded from the TCGA, using VEP v84, and GENCODE v.22, sift v.5.2.2, ESP v.20141103, polyphen v.2.2.2, dbSNP v.146, Ensembl genebuild v.2014-07, Ensembl regbuild v.13.0, HGMD public v.20154, ClinVar v.201601. We further denote the filtered raw mutation set as "Protected SNVs" and the other one, which is publicly available, as "Public SNVs"

Construction of a curated list of signatures associated with each cancer type

A very important input for CloneSig is the signature matrix. For application to the TCGA data, we restrict ourselves to signatures known to be active in each subtype. To that end, we downloaded the signatures found in the TCGA using SigProfiler [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] from synapse table syn11801497. The resulting list was not satisfactory as it lacked important known patterns; for instance signature 3, associated with homologous recombination repair deficiency was not found to be active in any tumor of the prostate cohort, while signature 3 in prostate cancer is well described in the literature [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF][START_REF] Espiritu | The evolutionary landscape of localized prostate cancers drives clinical aggression[END_REF][START_REF] Riaz | Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes[END_REF]. We therefore completed the signatures present in each cancer type based on the literature [START_REF] Dentro | Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types[END_REF][START_REF] Nik-Zainal | Landscape of somatic mutations in 560 breast cancer whole-genome sequences[END_REF][START_REF] Roerink | Intra-tumour diversification in colorectal cancer at the single-cell level[END_REF][START_REF] Letouzé | Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis[END_REF][START_REF] Shibata | Molecular genomic landscapes of hepatobiliary cancer[END_REF][START_REF] Ren | Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma[END_REF][START_REF] Warsow | Genomic features of renal cell carcinoma with venous tumor thrombus[END_REF][START_REF] Royer-Bertrand | Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing[END_REF][START_REF] Espiritu | The evolutionary landscape of localized prostate cancers drives clinical aggression[END_REF][START_REF] Macintyre | Copy number signatures and mutational processes in ovarian carcinoma[END_REF][START_REF] Ashley | Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression[END_REF]Liu et al., 2018b;[START_REF] Verhagen | Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects in vitro and poor outcome in patients with advanced head and neck squamous cell carcinoma[END_REF], and used the resulting matrix in all CloneSig runs on the TCGA. Our curated list of signatures present in each cancer type is provided in Table B.4.

Chapter 5

Closing remarks

Conclusion

In this thesis, we have focused our efforts on the field of methods for the inference of tumor evolution, and their potential clinical application, in particular in the setting of one sample per patient, which is currently the standard practice.

In Chapter 2, we have presented the different approaches developed to study and quantify that aspect of cancer genomics, and highlighted a damaging lack of performance evaluations of those methods. The surveyed methods cover diverse aspects of the problem, from the simple detection of several subclonal populations, or the reconstruction of subclonal genotypes, to the most complete view of intra-tumor heterogeneity by reconstructing a mutation tree that recapitulates the history of mutation acquisition. Furthermore, though representing a fair amount of work, evaluations can be beneficial for future developments as they allow researchers to identify input and algorithms that truly impact the performance, and for potential users to choose the best-suited method for their data.

Chapter 3 introduces a first published contribution of this thesis, that provides an analysis of the robustness of ITH estimations by several methods, with different pre-processing pipelines. In addition, we evaluated the association of ITH measures with clinical variables that had previously been found correlated with the number of subclones. We considered three cohorts of patients from the TCGA: Breast cancer patients, Bladder cancer patients, and Head and Neck cancer patients. In all three types, we observed important discordances between the ITH measures from different pipelines, with in some cases a significant positive correlation between the measures from different pipelines, but in other cases an absence of correlation. Similarly, association with clinical variables, in particular the survival, was not robustly recovered with the different ITH measurements. Finally, correlation of the obtained ITH measures with genomic variables, such as mutational burden, copy number abundance and tumor purity, varies significantly between the tested pipelines, and are sometimes of opposite sign. This suggests that such associations may be algorithmic biases rather than a true biological signal. Those biases could be systematically evaluated using simulated approaches.

In Chapter 4, we propose CloneSig, a new method for ITH reconstruction, that also jointly performs signature deconvolution. We demonstrate on simulated data that this joint inference achieves more accurate results than existing methods for subclonal deconvolution, in particular when mutational processes, uncovered by mutational signatures, vary along tumor evolution. We then applied CloneSig to the whole TCGA to observe large-scale trends for each cancer type, and recovered patterns of signature evolution previously observed in WGS data, thus validating the ability of CloneSig to detect significant changes even with a low number of observed SNVs. We also observed new variations of signature activity in some cancer types, including signatures with known associated targeted therapies. Currently, CloneSig is restricted to single nucleotide substitutions, but a lot of work has been dedicated lately to define signatures for other kinds of alterations, and could be further included in CloneSig. This would constitute a new way to integrate several types of alterations, that we have not observed in any of the existing methods surveyed at the beginning of the manuscript.

Another lead to improve the model would be to alter the way signatures depend on clones. Currently, all signatures are equally likely, with the only possible adjustment being the list of considered signatures in input. However, more complex patterns could be modeled, with either a dependency between different signatures, that would be particularly relevant for different types of alteration signatures, or a dependency between signatures and other clinical variables; this is of particular importance if we want to refine the identification of signatures for use in the clinic, as signature deconvolution is an unidentifiable problem. Such association between the occurrence of several types of alterations would be a major step for data integration for ITH reconstruction.

Perspectives

How relevant is the number of clones to quantify tumor evolution?

An important focus has been dedicated to the number of clones as a measure of intra-tumor heterogeneity. We have demonstrated in Chapter 3 that this was a very non-robust quantity to assess, and that it was not very informative for patient stratification compared to classical clinical variables. Beyond the difficulty to measure it, there could be more fundamental reasons explaining that finding: clone may be an ill-defined concept and there is no true number of clones [START_REF] Caravagna | Model-based tumor subclonal reconstruction[END_REF]. This has been experimentally illustrated by [START_REF] Campbell | Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing[END_REF] as more and more subclonal populations are uncovered as sequencing depth increases. Hence, in the context of sequencing, the number of clones incidentally has a more practical definition, which is the number of populations that can be distinguished given a certain sequencing assay, which may not be identical between samples, notably due to the tumor purity. Moreover, similar subclonal structures can reflect very different evolutionary histories: for instance a single clonal population may be observed because a tumor is young and has not yet undergone clonal diversification, or on the contrary results from a recent selective sweep that has drastically reduced the tumor diversity. This illustrates the naivety of approaching tumor evolution through a single quantity, as tumors are complex populations, characterized by their genomes admittedly, but also by their epigenomes, their transcriptomes, and interactions with the micro-tumor environment, in particular with stromal and immune populations. This was hypothesized by a consortium of researchers [START_REF] Maley | Classifying the evolutionary and ecological features of neoplasms[END_REF], and recently experimentally described in lung tumors [START_REF] Sharma | Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors[END_REF], with several tumor characteristics exhibiting important spatial variations, without being reflected by genetic heterogeneity measurements. However, though being of limited interest for patient stratification, a number of measurements have been developed to quantify tumor evolution, and could inform clinical management of tumors (prevention, detection, treatment), or simply our knowledge of the driving forces of tumor development and aggressiveness. Here are some of those alternative measurements of phenomena closely related to intra-tumor heterogeneity, partly inspired by the field of population genetics

Somatic mutations and heterogeneity in normal tissues, or precancerous lesions

are important for two aspects, as they enlighten early steps of cancer development, and can help discriminate between several candidate theories for tumor evolution (continuous, punctuated etc). A second interesting aspect of those data is that it could provide a negative control to better estimate the pathogenic properties of intra-tumor heterogeneity. Indeed, continuous acquisition of alterations, and even clonal expansion phases are not restricted to tumor cells [START_REF] Maley | Genetic clonal diversity predicts progression to esophageal adenocarcinoma[END_REF][START_REF] Martincorena | Somatic mutant clones colonize the human esophagus with age[END_REF][START_REF] Martincorena | High burden and pervasive positive selection of somatic mutations in normal human skin[END_REF][START_REF] Moore | The mutational landscape of normal human endometrial epithelium[END_REF].

Quantification of selection , to answer the underlying question of whether tumor evolution is driven by neutral evolution and genetic drift, or positive selection of clones with higher fitness, or negative selection of clones with low fitness, which is highly debated in the community, and might be indicative of the clinical relevance of ITH [START_REF] Graham | Measuring cancer evolution from the genome[END_REF][START_REF] Williams | Identification of neutral tumor evolution across cancer types[END_REF][START_REF] Williams | Quantification of subclonal selection in cancer from bulk sequencing data[END_REF][START_REF] Tarabichi | Neutral tumor evolution[END_REF].

Age of the tumor and of the successive metastatic seeding events [START_REF] Hu | Quantitative evidence for early metastatic seeding in colorectal cancer[END_REF].

Eelation with selection against neoantigens with again some contradictory results, with evidence for positive selection of clones depleted in neoantigens [START_REF] Rosenthal | Neoantigen-directed immune escape in lung cancer evolution[END_REF], and other reports of lack of such trends [ [START_REF] Van Den Eynden | Lack of detectable neoantigen depletion signals in the untreated cancer genome[END_REF]. Interestingly, this latter example of investigation of neoantigen selection with contradictory findings is very illustrative of the lack of integration between different alteration types. Indeed, evidence of negative selection in the former study relies on CNV alterations, transcriptional depletion, and associated indications of hypermethylation [START_REF] Rosenthal | Neoantigen-directed immune escape in lung cancer evolution[END_REF], while the latter study conflicting results rely on point mutations [ [START_REF] Van Den Eynden | Lack of detectable neoantigen depletion signals in the untreated cancer genome[END_REF]. Also, both studies are performed on different datasets.

Overall, the relevant measures to quantify tumor evolution are an active research area, that goes beyond intra-tumor heterogeneity assessments. We hope that the two contributions of this thesis, in assessing the robustness and clinical relevance of ITH, and associating ITH with other manifestations of tumor evolution will provide solid grounds for further developments, and increasing data integration. Indeed, data integration is key to ensure consistency of findings from the different aspects of the data and studied phenomena, and to provide a more accurate detection of subtle effects. This lack of consensus on the right approach may also explain the lack of strong evaluation assays for such quantities, as is can be preemptive to refine and build on existing measures when the real question is what to measure. Moreover, the ideal evaluation should also prioritize the most relevant biological aspects, that are still to be determined.

The necessity to go beyond the TCGA

All the projects of this thesis, and a large proportion of results on tumor evolution rely on data from the Cancer Genome Atlas (TCGA), including landmark results regarding the prognosis power of ITH [START_REF] Andor | Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[END_REF], the presence of selection along tumor evolution [START_REF] Williams | Identification of neutral tumor evolution across cancer types[END_REF], the predictability of tumor evolution [START_REF] Hosseini S R | Estimating the predictability of cancer evolution[END_REF], the lack of evidence of selection for neoantigen depletion [ [START_REF] Van Den Eynden | Lack of detectable neoantigen depletion signals in the untreated cancer genome[END_REF], the establishment of reference mutational signatures [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF]. Though the TCGA provides an outstanding resource, with a high number of patients, numerous experimental assays performed for each of them, and a great effort in data processing normalization and sharing, the broad use of this dataset presents some weaknesses. A first obvious issue is the lack of validation on independent cohorts, and any bias in the selection of included patients will reflect on the drawn conclusions and generalization. Furthermore, this dataset is not necessarily the best-suited for all analyses: it contains only one sample of untreated primary tumors, with clinical information not always of high enough quality to study overall survival, or event-free survival [Liu et al., 2018a].

In particular for evolution analysis, other assays can be very relevant to fully approach its main characteristics

• One sample per tumor can miss part of the spatial heterogeneity [START_REF] Opasic | How many samples are needed to infer truly clonal mutations from heterogenous tumours[END_REF].

• Longitudinal studies are necessary to capture the dynamic of a tumor subclonal structure through time, treatments, and other relevant events.

• More comprehensive studies of other types of tumors, like pre-cancerous stages when available, or metastases can provide additional information that helps interpreting findings in primary tumors [START_REF] Bertucci | Genomic characterization of metastatic breast cancers[END_REF][START_REF] Priestley | Pan-cancer whole-genome analyses of metastatic solid tumours[END_REF].

• Circulating DNA analyses offer exciting perspectives as they would reduce sampling invasiveness for the patients, but it is not yet clear how much they reflect characteristics from the tumor [START_REF] Parikh A R | Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers[END_REF].

Beyond the sampling strategy, the measurement assay can also be leveraged to measure intra-tumor heterogeneity more accurately. Indeed, single cell sequencing can facilitate the inference as genotypes are directly observed, and only the proportions of the different populations and their phylogenetic relationships need to be inferred. Some difficulties remain, as single cell sequencing remains error prone, and costly, but recent studies are encouraging for its feasibility [START_REF] Laks | Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing[END_REF]. Finally, long read sequencing may enable to better leverage and detect structural variations, and offers promising perspectives.

The democratization of those more advanced techniques will certainly lead to new formats of data on which CloneSig may not be applicable, as well as the methods examined in our two evaluations. However, we believe and hope that the ideas underlying our contributions, both for robustness analyses on real data, and promotion for joint inference of related phenomena will lay the ground for future work, in the field of tumor evolution or for other problems with similar aspects. In each plot, the background color indicates the ITH method used. Each method is tested on protected or public mutations (hashed). For each method, we assess the ability to predict survival with a survival SVM using 4 sets of features: (i) the number of clones alone, (ii) the five custom features which include the number of clones, and (iii) and (iv) the concatenations of features in (i) and (ii) with their squares, to account for possible nonlinear quadratic effects. We observe no clear trend of one of the two sets performs systematically better than the other, and the squared features have not significantly improved results either. 0.33 0.29 0.33 0.67 0.67 1 0.8 0.67 0.67 0.67 0.5 0.67 0 0 0 0.33 0.4 0.4 0.8 0.75 0.8 1 0.67 0.67 0.67 0.6 0.67 0 0 0 0.5 0.5 0.6 0.67 0.67 0.67 0.67 1 0.67 0.67 0.5 0.5 0 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.67 1 0.75 0.5 0.67 0 0.083 0.18 0.6 0.6 0.67 0.75 0.75 0.69 0.67 0.6 0.75 1 0.5 0.6 0 0.17 0.25 0 1 BLCA score1B [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] penalizes differences between the number of clones inferred in each case in a symmetric way (only the difference matters, either more or fewer clones are detected), following the formula

J 1 +1-min(J 1 +1,|J 2 -J 1 |) J 1 +1
, with J1 and J2 the numbers of clones found by each method. The score was computed for all patients, and this heatmap represents the median score. We observe a particular feature of PyClone, which tends to find a lot (sometimes several dozens) of clones with only one mutation. They were discarded when comparing the number of clones, but not for the computation of metric 1B to ensure consistency with the other metrics. SNV, and D = (X 1 , . . . , X N ) the totality of observed variables. Then we define:

Q(θ, θ ′ ) = E(L(θ)|D; θ ′ , p, µ) = N ∑ n=1 J ∑ u=1 L ∑ s=1 Mmax n ∑ m=1 q nu r nus v mnu log [ ξ u π us µ st M -1 maxn BB(B n ; D n , ρϕ u η nm , ρ(1 -ϕ u η nm ))
] ,

(B.1)

with

q nu = P(U n = u|X n ; θ ′ ) , (B.2)
r nus = P(S n = s|U n = u, X n ; θ ′ ) , (B.3) v mnu = P(M n = m|U n = u, X n ; θ ′ ) . (B.4)
The EM algorithm iteratively builds a sequence of estimate θ 1 , θ 2 , . . . by solving recursively

θ i = argmax θ Q(θ, θ i-1
) .

For that purpose, at each iteration i, the expectation (E) step first consists in computing the function Q(θ, θ i-1 ) with the current parameters θ i-1 . In other words, we must estimate the variables (B.2)-(B.4). Given the conditional independence relationships encoded in the graphical model (Figure 4.2), one easily gets:

q nu = ∑ L s=1 ∑ Mmax n m=1 ξ i-1 u BB(B n |D n , ρ i-1 ϕ i-1 u η i-1 nm , ρ i-1 (1 -ϕ i-1 u η i-1 nm ))µ sTn π i-1 us ∑ J u ′ =1 ∑ L s=1 ∑ Mmax n m=1 ξ i-1 u ′ BB(B n |D n , ρ i-1 ϕ i-1 u ′ η i-1 nm , ρ i-1 (1 -ϕ i-1 u ′ η i-1 nm ))µ sTn π i-1 u ′ s , (B.5) r nus = µ sTn π i-1 us ∑ M s ′ =1 µ s ′ Tn π i-1 us ′ , (B.6) v mnu = ∑ L s=1 ξ i-1 u BB(B n |D n , ρ i-1 ϕ i-1 u η i-1 nm , ρ i-1 (1 -ϕ i-1 u η i-1 nm ))µ sTn π i-1 us ∑ L s=1 ∑ Mmax n m ′ =1 ξ i-1 u BB(B n |D n , ρ i-1 ϕ i-1 u η i-1 nm ′ , ρ i-1 (1 -ϕ i-1 u η i-1 nm ′ ))µ sTn π i-1 us . (B.7)
In the maximization (M) step, we compute θ i by plugging the estimates of the E-step (B.5)-(B.7) onto (B.1) and maximizing Q(θ, θ i-1 ) separately for each component of θ. The maximization in ξ and π are easily obtained as:

∀u ∈ (1 . . . J), ξ i u = N ∑ n=1 q nu N , ∀u ∈ (1 . . . J), ∀s ∈ (1 . . . L), π i us = ∑ N n=1 r nus q nu ∑ N n ′ =1 q n ′ u .
The optimization of ϕ and ρ inside the beta-binomial density term are not computable using a close formula. We therefore resort to numerical optimization and use a projected Newton method, with line search to set the Newton step at each iteration [START_REF] Bertsekas | Projected newton methods for optimization problems with simple constraints[END_REF], in order to compute approximations of ϕ i and ρ i that respect constraints on their domain. Indeed, ρ must be non-negative and ϕ is a proportion so in the unit interval. For that purpose, we now compute the first and second derivatives of Q with respect to ϕ and τ = 1/ρ:

Q(θ, θ i-1 ) = N ∑ n=1 J ∑ u=1 L ∑ s=1 Mmax n ∑ m=1 r nus q nu v mnu [ log(ξ u µ st π us M -1 maxn ) + log( ( d n b n ) ) + log(Γ(b n + ϕ u η nm τ )) + log(Γ( 1 -ϕ u η nm τ + d n -b n )) + log(Γ( 1 τ )) -log(Γ( 1 τ + d n )) -log(Γ( ϕ u η nm τ )) -log(Γ( 1 -ϕ u η nm τ )) ]
Let's now compute derivatives. ψ 0 and ψ 1 denote the digamma and trigamma functions respectively.

∂Q(θ, θ

i-1 ) ∂τ = N ∑ n=1 J ∑ u=1 Mmax n ∑ m=1 q nu v mnu τ 2 [ -η nm ϕ u ψ 0 (b n + ϕ u η nm τ ) -(1 -η nm ϕ u )ψ 0 ( 1 -ϕ u η nm τ + d n -b n ) -ψ 0 ( 1 τ ) + ψ 0 ( 1 τ + d n ) + η nm ϕ u ψ 0 ( η nm ϕ u τ ) +(1 -η nm ϕ u )ψ 0 ( 1 -η nm ϕ u τ ) ] ∂ 2 Q(θ, θ i-1 ) ∂τ 2 = N ∑ n=1 J ∑ u=1 Mmax n ∑ m=1 q nu v mnu [ 2 τ 3 ( η nm ϕ u ψ 0 (b n + ϕ u η nm τ ) +(1 -η nm ϕ u )ψ 0 ( 1 -ϕ u η nm τ + d n -b n ) + ψ 0 ( 1 τ ) -ψ 0 ( 1 τ + d n ) -η nm ϕ u ψ 0 ( η nm ϕ u τ ) -(1 -η nm ϕ u )ψ 0 ( 1 -η nm ϕ u τ ) ) + 1 τ 4 ( η 2 nm ϕ 2 u ψ 1 (b n + ϕ u η nm τ ) +(1 -η nm ϕ u ) 2 ψ 1 ( 1 -ϕ u η nm τ + d n -b n ) + ψ 1 ( 1 τ ) -ψ 1 ( 1 τ + d n ) -η 2 nm ϕ 2 u ψ 1 ( η nm ϕ u τ ) -(1 -η nm ϕ u ) 2 ψ 1 ( 1 -η nm ϕ u τ ) )] ∂Q(θ, θ i-1 ) ∂ϕ u = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu η nm τ [ ψ 0 (b n + ϕ u η nm τ ) -ψ 0 ( 1 -ϕ u η nm τ + d n -b n ) -ψ 0 ( η nm ϕ u τ ) + ψ 0 ( 1 -η nm ϕ u τ ) ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ 2 u = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu η 2 nm τ 2 [ ψ 1 (b n + ϕ u η nm τ ) + ψ 1 ( 1 -ϕ u η nm τ + d n -b n ) -ψ 1 ( η nm ϕ u τ ) -ψ 1 ( 1 -η nm ϕ u τ ) ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ u ∂τ = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu η nm τ 2 [ -ψ 0 (b n + ϕ u η nm τ ) - η nm ϕ u τ ψ 1 (b n + ϕ u η nm τ ) +ψ 0 ( 1 -ϕ u η nm τ + d n -b n ) + (1 -η nm ϕ u ) τ ψ 1 ( 1 -ϕ u η nm τ + d n -b n ) + ψ 0 ( η nm ϕ u τ ) + ϕ u η nm τ ψ 1 ( η nm ϕ u τ ) -ψ 0 ( 1 -η nm ϕ u τ ) - 1 -ϕ u η nm τ ψ 1 ( 1 -η nm ϕ u τ ) ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ u ∂ϕ u ′ = 0
For sake of completeness, we provide below a second, equivalent computation using another formulation following [START_REF] Martinez | Parameter estimation of the beta-binomial distribution: an application using the SAS software[END_REF].

Q(θ, θ i-1 ) = N ∑ n=1 J ∑ u=1 L ∑ s=1 Mmax n ∑ m=1 r nus q nu v mnu log [ ξ u µ st π us M -1 maxn ( d n b n ) Γ(b n + ρϕ u η nm )Γ(ρ(1 -ϕ u η nm ) + d n -b n ) Γ(ρ + d n ) Γ(ρ) Γ(ρϕ u η nm )Γ(ρ(1 -ϕ u η nm ) ] = N ∑ n=1 J ∑ u=1 L ∑ s=1 Mmax n ∑ m=1 r nus q nu v mnu log [ ξ u µ st π us M -1 maxn ( d n b n ) ∏ bn-1 i=0 (ϕ u η nm + i ρ ) ∏ dn-bn-1 i=0 (1 -ϕ u η nm + i ρ ) ∏ dn-1 i=0 (1 + i ρ ) ] = N ∑ n=1 J ∑ u=1 L ∑ s=1 Mmax n ∑ m=1 r nus q nu v mnu [ log(ξ u µ st π us M -1 maxn ) + log( ( d n b n ) ) + bn-1 ∑ i=0 [ log(ϕ u η nm + i ρ ) ] + dn-bn-1 ∑ i=0 [ log(1 -ϕ u η nm + i ρ ) ] - dn-1 ∑ i=0 [ log(1 + i ρ ) ] ]
Let's set τ = 1 ρ . We are trying to compute maximum likelihood estimates for ϕ u and τ .

∂Q(θ, θ

i-1 ) ∂τ = N ∑ n=1 J ∑ u=1 Mmax n ∑ m=1 q nu v mnu [ bn-1 ∑ i=0 [ i ϕ u η nm + iτ ] + dn-bn-1 ∑ i=0 [ i 1 -ϕ u η nm + iτ ] - dn-1 ∑ i=0 [ i 1 + iτ ] ] ∂ 2 Q(θ, θ i-1 ) ∂τ 2 = N ∑ n=1 J ∑ u=1 Mmax n ∑ m=1 q nu v mnu [ - bn-1 ∑ i=0 [ i 2 (ϕ u η nm + iτ ) ] - dn-bn-1 ∑ i=0 [ i 2 (1 -ϕ u η nm + τ ) 2 ] + dn-1 ∑ i=0 [ i 2 (1 + τ ) 2 ] ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ u ∂τ = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu [ - bn-1 ∑ i=0 [ iη nm (ϕ u η nm + iτ ) 2 ] + dn-bn-1 ∑ i=0 [ iη nm (1 -ϕ u η nm + iτ ) 2 ] ] ∂Q(θ, θ i-1 ) ∂ϕ u = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu [ bn-1 ∑ i=0 [ η nm ϕ u η nm + iτ ] + dn-bn-1 ∑ i=0 [ -η nm 1 -ϕ u η nm + iτ ] ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ 2 u = N ∑ n=1 Mmax n ∑ m=1 q nu v mnu [ - bn-1 ∑ i=0 [ η nm ϕ u η nm + iτ ] 2 - dn-bn-1 ∑ i=0 [ η nm 1 -ϕ u η nm + iτ ] 2 ] ∂ 2 Q(θ, θ i-1 ) ∂ϕ u ′ ∂ϕ u = 0
We can then plug these formulas in the projected Newton algorithm to estimate ϕ i and ρ i . We repeat the E and M steps until ∥θ iθ i-1 ∥ < 10 -5 × J × L.

B.1.2 Selecting the number of clones

As explained in Supplementary Section B.1.1, the EM algorithm allows us to optimize all parameters of the CloneSig model for a given number of clones J. Here we explain how to estimate J.A first idea to automatize that choice is to rely on a model selection heuristics, such as the widely used Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF], an asymptotic Bayesian criterion aiming at selecting the model best supported by the data. BIC is defined as

BIC(J) = ℓ(D; θ J ) - D J 2 log N,
where ℓ(D; θ J ) is the maximum log-likelihood as estimated by the EM procedure with J clones, and D J is the degree of freedom of the model; by default, we take it equal to the number of free parameters, namely, D J = J * (L -1 + 2) for J clones, where L is the number of signatures. Indeed, for each clone, we have L -1 parameters for the signature proportions (π), the frequency of the clone (ϕ u ), and the proportion of the clone ξ u . We have to remove 1 because ∑ J u=1 ξ u = 1, and add 1 for the overdispersion parameter τ . On simulations, however, we found that while BIC correctly identifies the number of clones when the number of SNVs is large, it tends to performs poorly when the number of mutations is low (a few hundreds) in which case it quasi systematically selects a single clone. On the other hand, when we observe the variation of the log-likelihood with the number of components J as for example in Supplementary Figure B.1, we clearly see an "elbow" for some J > 1, suggesting that the information about J is properly captured by CloneSig's likelihood but not by BIC. We observed similar behaviors with other classical criteria such as the Akaike Information Criterion (AIC) [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], the Integrated Classification Likelihood (ICL) [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]), or the slope heuristics as described in [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF]. This difficulty can be related to results from statistical theory of model selection and penalization suggesting that asymptotic results are known up to a factor when applied to smaller datasets [START_REF] Arlot | Minimal penalties and the slope heuristics: a survey[END_REF], and therefore propose now as an alternative an empirical criterion that can be fit on data with known model, such as simulations. More precisely, we consider the following criterion:

BIC α (J) = ℓ(D; θ J ) -αD J log N . (B.8)
with α > 0 is a free parameter to be user-defined or estimated, and D J is a measure complexity of the model. While we leave α as a user-defined parameter in the CloneSig software, we now propose a systematic approach to estimate it when we can simulate samples. For each simulated sample, we fit CloneSig for 1 to 10 clones. The objective is to estimate a parameter α such that BIC α,J is maximal for the true number of clones J true on all or most simulations. To achieve that, we formulate it as a standard supervised classification problem where for each simulation and each J ̸ = J true , we want BIC α (J true ) > BIC α (J); since BIC α (J) is itself a linear function of α, we estimate α by minimizing a convex proxy to the number of errors, namely,

min α ∑ D ∑ J̸ =Jtrue ϕ (BIC α (J true ) -BIC α (J)) , (B.9)
where ϕ(u) = max(0, 1u) is the hinge loss that pushes its argument to be larger than one when minimized; solving (B.9) is a simple support vector machine (SVM) problem that we solve with a standard SVM solver.

The second important aspect of (B.8) is D J , that measures the complexity of the model with J clones. The original BIC penalizes the "dimension of the model" [START_REF] Schwarz | Estimating the dimension of a model[END_REF], that can be interpreted as the degree of freedom of the model, and we now discuss different possible definitions for it. The parameters ϕ, ξ and ρ determining the CCFs and proportions of the different clones in the mixture must clearly be counted as in BIC. Regarding the signatures however, one can notice that the signatures are neither orthogonal (some signatures are very similar), nor independent (some signatures are associated with the same underlying biological process). Instead of just counting the number of signatures, we therefore propose to estimate the degree of freedom dof L of the matrix with L signatures by the number of eigenvalues of the cosine similarity matrix greater than 0.5 in absolute value. As shown in Figure B.2, dof L is roughly proportional to L, at least for L up to 20. Another source of degree of freedom is the copy number. Indeed, for each observed mutation, several values of the number of mutated copies are considered, so if the maximal average multiplicity for mutations in the sample is M maxavg , a unique clone CCF corresponds in average to M maxavg possible VAFs, adding some freedom to the model. We therefore consider four possible definitions for D J , indexed with letters A to D. We see that the dependence with the number of signature (slope) is different in the two cases.

Moreover, if we consider the variations of the degree of freedom associated with L signatures, dof L , as a function of L for the 35 available cancer types, and for the all 65 signatures, we note that there is a gap, as the maximal number of signatures in one cancer type is 19, and that the slope seems different for a subset or for all the signatures (see Supplementary Figure B.2). The dependency being quite different, this raises the question of whether we should estimate a single α for all situations (i.e., a unique BIC model), or whether we should fit two BIC models: one for the cases where CloneSig is run with only cancer type-specific signatures, and one for the case where CloneSig is run with all the 65 signatures.

For each possible definition of D J (B.10)-(B.13), and for each setting (estimating a unique or two separate BIC models), we ran simulations to estimate the value of α such that BIC α,j , j ∈ {1, . . . , 10} is maximal for the true value of J, by solving (B.9). To evaluate the results, we split the dataset into a train (80% of data) and a test set (20%), and assess the accuracy of J estimation on the test set. To evaluate the stability of the learnt parameter α, we compute the 95% confidence interval over 10 independent train-test splits. The values for learnt coefficients, averaged over 10 independent train/test splits for each case are presented in Table B criteria (BIC, AIC, ICL) perform overall poorly. Second, we notice that the "separate" strategy is usually slightly better than the "full" strategy, i.e., learning a single α for CloneSig with all 65 signatures or only a subset is not as good as learning two different α's. As for the definition of D J , we see in both cases that using the degree of freedom of the signature matrix is better than counting the number of columns, and that taking into account the variations in copy numbers through M maxavg does not bring any benefit. A complete overview of the number of clones found over the test set for each penalization strategy is given in Figure B.4.

In conclusion, we use in all our experiments an adaptive BIC criterion based on D D j as a measure of degree of freedom, and α estimated separately when CloneSig is fitted with 65 signatures or with a cancer-specific subset. To assess whether a signature change between clones is statistically significant, we design and calibrate a statistical test. To that end, we compare the likelihood of a CloneSig model with J clones as determined by the model selection criterion, and the likelihood of a model with the same clones but a single mixture of signatures common to all the clones (and found by fitting all observed mutations together). The objective of the test is to determine whether the difference between the two likelihoods is significant. To that end, we implement a likelihoodratio test based on the statistics:

λ = ℓ sigCst ℓ sigChange .
Following Neyman-Pearson lemma [START_REF] Neyman | On the problem of the most efficient tests of statistical hypotheses[END_REF] one can set a threshold c to reject the null hypothesis that there is no signature change if λ is lower or equal to c with a certain level of significance α determined by the distributions of the likelihood of the model. As this distribution is unknown, we apply the Wilks theorem stating that asymptotically, -2 log(λ) follows a chi-squared distribution of parameter the difference in dimensionality between the two alternative models [START_REF] Wilks | The large-sample distribution of the likelihood ratio for testing composite hypotheses[END_REF].

As previously illustrated for the model selection criterion, the number of parameters is different from the degree of freedom in the case of CloneSig, so we resort to simulations to fit the degree of freedom of the test. We simulate a dataset with a similar mixture of signatures for all clones of each sample, and focused on samples with at least 2 clones, as described in Material and Methods. For the purpose of calibration, we use the true number of clones to fit the two alternative models. The objective of this approach is to fit a chi-squared distribution on the empirical distribution of -2 log(λ) obtained in simulations. This is achieved again in two settings: fitting with all 65 signatures or with a cancer type-specific subset of signatures. In both cases, the distribution for each number of clones J evokes indeed a chi-squared distribution ( ℓ sigChange obtained by fitting CloneSig with the true number of clones on simulated data, either with all 65 signatures (left), or with a subset of cancer type-specific signatures. The distribution is estimated separately for each number of clones.

To fit the degree of freedom to use in the implementation of the test, as the degree of freedom of a chi-squared-distributed variable is its mean, we train a linear ridge regression model to fit -2 log(λ) to relevant covariates. Four covariates were initially considered: the number of clones, the degree of freedom of the input signature matrix, the number of mutations, and the diploid proportion of the genome. We found that the last two variables have no visible correlation with the target variable (see Supplementary Figure B.6). Additionally, when added to the model, with standard scaling of input variables, they have coefficients more than ten times smaller than the ones of the number of clones, and the signature degree of freedom. We therefore compute the final model on the two retained (unscaled) variables, and we average the values of the coefficients over 10-fold cross-validation. The resulting coefficients are reported in Table B.2.

To finally ascertain the validity of the test, we now check the uniform distribution of the p-values for negative samples in model likelihood (and instead to a local maxima), and thus does not respect the conditions of application of Wilks theorem. We finally explore the sensitivity of the test on the maximum cosine distance between signatures. The dataset used for that purpose consists of 2,700 samples with the number of clones varying between 2 and 6. For each number of clones, we drew 30 distinct π matrices with distinct maximal cosine distances between the mutation type profiles. For each number of clones and π matrix, we generated a sample with varying number of observed mutations, diploid percent of the genome, and sequencing depth. 

B.2 Full benchmarking results

To fully assess CloneSig's performance in simulations, in comparison with other state-of-theart approaches for subclonal reconstruction and signature deconvolution, we report here the full results with all tested "modes" (all signatures, a subset of cancer-type-specific signatures, or a pre-fit step where only the most prominent signatures found on the whole set of mutations are then retained for the true signature deconvolution for CloneSig, TrackSig and Palimpsest).

In this extensive version of the results, we report all metrics used to create score2C (AUC, specificity, sensitivity), score_sig_1C and score_sig_1E (max_diff_distrib_mut, median_diff_distrib_mut, perc_dist_5 and perc_dist_10).

Regarding the subclonal reconstruction problem, for all metrics, there is little difference between the different modes of each signature-aware method, except for score2C_sensitivity for CloneSig, where the use of the cancer-type-specific subset exhibits better results. For signature deconvolution, there is a higher variability of results with respect to the run mode. CloneSig is the best performing method, except for one metric: max_diff_distrib_mut. For Score_sig_1C, the mode cancer-type-specific subset for CloneSig achieves a very good specificity, but the other modes have a high proportion of false positive signatures.

Additionally, we conduct a similar benchmark in the case where there is no signature change between subclones, and present results in Supplementary Figures B.11 to B.25, panels b, c, f. The improvement of CloneSig over other methods in subclonal reconstruction is partially lost in this setting, but CloneSig remains competitive, and the best performing method for score 1B up to 3 clones. A similar trend is visible for all scores for the subclonal reconstruction problem, with slightly worse scores, and higher inter-quartile space when there is no signature variation between clones. For the signature deconvolution problem, most metrics are unaffected, except for score_sig_1E, where all methods perform better and close the gap with CloneSig. Overall, CloneSig performs better than other methods when there are differences of signature activities between subclones, and remains competitive with other approaches in the absence of signature change.

The runtimes of all methods for those simulations are presented in Figure B.25. The main determinant of runtime is the number of input mutations for all methods. CloneSig is slower than methods involving variational inference for the subclonal reconstruction problem, but is significantly faster than PyClone, especially for high numbers of mutations, thus illustrating its scalability to both WES and WGS data. 

B.3 Complete overview of TCGA results

To complete the analysis of the characteristics of datasets IS1-4 are summarized in table C.1. Each of these datasets was generated for a different sub-challenge, at different time points, allowing participants to modify their variant calling pipelines between sub-challenges based on their latest results. Hence, there is no indication to assume that the different submissions from the same team, either in the same or in different sub-challenges are similar.

In addition, 10 real normal-tumor pairs are provided, 5 are prostate cancers, and 5 pancreatic cancers. The same information is provided, except for the ground truth. These real datasets are evaluated on a separate leaderboard. The organizers were planning to provide independent experimental verifications of mutational status at numerous positions to evaluate submissions. 

C.2 Materials and Methods

C.2.1 Selection of pipelines

Both for synthetic and real data, the DREAM Challenge limits the number of pipelines to either 5 or 50, although running 50 variant callers to get a result seems unrealistic in terms of computational time. We implemented two different strategies:

Maximize consensus , where we constructed first a simple majority vote consensus among all available methods, and then selected the pipelines closest to that consensus using the Jaccard distance.

Maximize recall , where we selected with a greedy procedure the pipelines in order to maximize the number of considered positions.

An intermediate approach , that consists in selecting some of the pipelines with the first strategy, and some with the second.

C.2.2 Feature engineering

We have designed additional variables to better account for every aspect of variant calling: the CG content of a 50bp window around the variant position, and the homopolymer rate, defined by the sum of squared homopolymer lengths normalized by the length of the sequence. For instance, the sequence "AAATTGAGG" has an homopolymer rate of 

C.2.3 Implemented algorithms

The main difficulty with the Challenge setting is that each dataset comes from a separate sub-challenge of the SMC-DNA Challenge, therefore, there is no intersection between the calling pipelines run on each dataset, so any model learnt using results from variant callers as features on one dataset cannot be applied to a different dataset. (bottom). On left panels, we see all submissions with one color per Team, and on right panels, we see all submissions in gray, except ours, separated by used approach. We see that "Deep Learning" strategies performed best on the synthetic dataset, and "aggregation" on the real tumors, but with very close scores that do not really allow us to conclude.

C.4 Discussion

Our team BDD has not won in any category, but we are quite close to the best scores. We see that "Deep Learning" strategies performed best on the synthetic dataset, and "aggregation" on the real tumors, but with very close scores that do not really allow us to conclude. We note however that the gap in performance of the "Deep Learning" strategies is small compared to the additional complexity of the models. The difference of ordering of the methods performances between real and simulated data can be explained in two ways: the difference in metrics in the two cases, or the (in)ability of the simulated datasets to recapitulate the patterns of real data variant calling.

The official results of the challenge have not been published (either in a journal or on the dream challenge website). Unfortunately, the experimentally-verified positions on real data, which could have been used to further test models have not been published either. They could have been very interesting to further develop methodologies on the topic, as was done in [START_REF] Kim | Combining calls from multiple somatic mutation-callers[END_REF], where ground truth was available on a part of a real dataset, and features were homogeneous (i.e. the same set of callers is run on all data). En conclusion, nous mettons en évidence le besoin de renforcer l'intégration de données de nature ou d'origine multiples pour exploiter pleinement le potentiel de l'évolution tumorale dans la prise en charge clinique du cancer.

ABSTRACT

Accessing the repertoire of cancer somatic alterations has been instrumental in our current understanding of carcinogen esis. However, efforts in genomic characterization of cancers are not sufficient to predict a patient's outcome or response to therapy, which is key to inform their clinical management. This failure is partly attributed to the evolutionary aspect of cancers. Indeed, as any biological population able to acquire heritable transformations, tumor cells are shaped by natural selection and genetic drift, resulting in a mosaic structure, where several subclones with distinct genomes and properties coexist. This has important implications for cancer treatment as those subpopulations can be sensitive or resistant to different therapies, and new resistant phenotypes can keep emerging as the diseases progresses further. An important number of mathematical or statisical methods have been developed to detect and quantify the intratumor heterogeneity (ITH), but no systematic evaluation of their performances and potential for clinical application has been performed. Our first contribution consists in a survey of existing approaches to decipher ITH, that allows to navigate the different underlying ideas easily. We have also proposed a framework to assess the robustness of those approaches, and their potential for use in patient stratification. This survey has allowed us to identify an unexploited type of data in the process of ITH reconstruction, and our second contribution fills remedies to this shortfall. Indeed, besides observed prevalences of somatic mutations within a tumor sam ple that allow us to distinguish several clones, the nucleotidic context of those mutations reveals the unknown causative mutational processes. We illustrate on both simulated and real data the opportunity to jointly model those two aspects of tumor evolution.

In conclusion, we highlight the need to reinforce data integration from several sources or samples to harness the potential of tumor evolution for cancer clinical management.
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Figure 1 . 1 -

 11 Figure 1.1 -Acquisition of ITH in the course of tumor growth and evolution. A first set of genomic alterations initiate the tumor, which further develops (orange cells) and accumulates more alterations. The acquisition of the purple alterations seeds a new population that develops and coexists along the original population. The process repeats further with the apparition of the blue population.

Figure 2 . 1 -

 21 Figure 2.1 -Schematic representation of the ITH reconstruction problem.In panel a, we represent the successive clonal expansions leading the tumor to an heterogeneous state, from which a bulk sample is taken, and sequenced, with "raw reads" aligned to the reference genome (panel b). The colors represent detected alterations (step1), with a various proportions of altered reads (VAF). Panels c, d and e represent the VAF histogram, also called site frequency spectrum, with successive normalizations to account for CNVs and sample purity (step2, for SNVs; other approaches are tailored to deal with CNVs). In each case, the dotted lines represent the envelope for each (true) clone. Inferring those envelopes is the objective of step3. We can already see that step2 highly influences the identification of groups of alterations, with CNVs creating an illusion of two distinct clones. step3 remains challenging, as the blue clone (low frequency, and low number of alterations) is hard to distinguish. Finally, step4 aims at reconstructing a mutation tree recapitulating the evolutionary history (panel f). In the case of one sample, a linear history is always compatible with the data[START_REF] Beerenwinkel | Cancer evolution: Mathematical models and computational inference[END_REF].
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 22 Figure 2.2 -Influence of the cancer cell population CNV at SNV locus, and tumor purity on CCF derivation. Each circle represents a population present in the tumor samples, with each population in equal proportion in the mixture.In each case, the expected measure VAF is computed, illustrating that CNV overlapping SNV locus can be a confounding factor when looking for ITH. Here tumor purity is kept constant to simplify the computation, but it obviously alters the proportion of observed reads from the tumor population, and hence the VAF. This figure is extracted from the publication of PhyloWGS[START_REF] Deshwar | PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors[END_REF].
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 23 Figure 2.3 -Typology of ITH methods.For each method, several criteria were evaluated (mostly in a binary way) to characterize each method. Hierarchical clustering was performed to distinguish several classes of approaches. Of course, such a typology is not unique, and is an attempt to provide the reader with a reading grid to approach the complex landscape of ITH methods.
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 24 Figure 2.4 -Evaluation of a new published method and comparison with existing ones. ITH methods are ordered by date of publication, from top to bottom and left to right, and a dark cell at position (i, j)indicates that method i provided a comparison with method j on simulated data. Cells on the diagonal (position (i, i)) hence indicate whether results on simulated data for the new method are provided in the publication. As expected, all points are under the diagonal, as no method can compare itself with future methods.
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 25 Figure 2.5 -Number of evaluations per method.Left panel presents the number of methods evaluated in each ITH methods publication, with the value "0" meaning that no evaluation on simulated data is provided, "1" that only the presented method is evaluated, etc. The right panel summarizes the number of independent evaluations for each method.
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 26 Figure 2.6 -Number of ITH methods published per year.
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 31 Figure 3.1 -Intersection of successful runs among the 4 considered ITH methods. The upper venn diagrams concern runs with the public input SNV set, the second line with the protected, and the third the overall intersection, as results with both sets are necessary for a proper and rigorous comparison.
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 32 Figure 3.2 -Runtime of the different ITH methods as a function of the number of mutations in each sample. Lines represent second degree polynomial fit with shaded regions are 95% confidence-intervals
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 3 Figure 3.3 -Distribution of number of clones called by ITH methods with public and protected mutations sets as inputs.Distribution of the number of subclones for the tested ITH methods, and 2 alternative input mutation sets for samples in the different cancer types and 2 different copy number methods for the protected mutation set. MATH could not be included in this analysis as this method does not estimate a number of clones.
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 35 Figure 3.5 -Prognostic power of ITH measured using different ITH method and input mutation set combination. 0.5 corresponds to a random prediction, and stars indicate statistical significance (p-value < 0.001: ***, < 0.01: **, < 0.05: *). Results are presented for 3 cancer types (BRCA, BLCA and HNSC from left to right).
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 36 Figure 3.6 -Prognostic power of ITH-derived features compared to other prognostic factors (686 patients in total). ITH-derived features are used in association with clinical features to predict overall survival.Left-most boxplots (with red contour lines) represent results using clinical variables alone, without any ITH, to serve as reference.
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 41 Figure 4.1 -CloneSig analysis of 246 SNVs obtained by WES of a sarcoma sample (patient TCGA-3B-A9HI). The main panel displays all SNVs in 2 dimensions: horizontally the mutation type, which describes the type of substitution together with the flanking nucleotides, and vertically the estimated CCF, as corrected by CloneSig with the estimated mutation multiplicity. From these data CloneSig infers the presence of 2 clones and a number of mutational signatures active in the different clones. Each mutation in the main panel is colored according to the most likely mutational signature according to CloneSig. On the right panel, the CCF histogram is represented and colored with estimated clones, and superimposed with mutational signature density. The bottom panel represents the total mutation type profile. The changing pattern of mutation types with CCF is clearly visible, illustrating the opportunity for CloneSig to perform joint estimation of ITH and signature activity, while most methods so far explore separately those data, considering solely the CCF histogram in the right panel for ITH analysis, or the mutation profile of the bottom panel to infer mutational processes.
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 42 Figure 4.2 -Probabilistic graphical model for CloneSig.This plot summarizes the structure of the probabilistic graphical model underlying CloneSig. Each node represents a random variable, shaded ones being observed, and edges between two nodes describe a statistical dependency encoded as conditional distribution in CloneSig. For a given tumor we observe p, the tumor purity of the sample, and for each SNV, Bn and Dn are respectively the variant and total read counts, Cn is the copy number state, and Tn is the trinucleotide context. Unobserved latent variable include Un, the clone or subclone where the SNV occurs, Sn, the clone-dependent mutational process that generates the mutation, and Mn, the number of chromosomal copies harboring the mutation. See the main text for details about the distributions and parameters of the model.
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 43 Figure 4.3 -Comparison of CloneSig, TrackSig, Palimpsest, PyClone, SciClone and Ccube for subclonal reconstruction.Each row corresponds to one score, as detailed in the main text. All scores are normalized between 0 and 1, with 1 being the best and 0 the worst. Each column corresponds to a setting where one parameter in the simulation varies: the true number of clones (left), the observed number of mutations (middle), and the diploid proportion of the genome (right). Each point represents the average of the score over all available simulated samples. Bootstrap sampling of the scores was used to compute 95% confidence intervals.
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 44 Figure 4.4 -Accuracy of correctly estimating the presence of two clones by CloneSig as a function of the difference in the CCF between the two clones (vertical axis), and of the cosine distance between their mutational profiles. The accuracy denotes the proportion of runs where CloneSig rightfully identifies two clones.
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 45 Figure 4.5 -Comparison of CloneSig, TrackSig, Palimpsest, and deconstructSigs for signature deconvolution.Several metrics have been implemented, and are detailed in the main text. Scores 1A, 1B and 1E (respectively first, second and fifth rows) are distance and are better when close to 0, while scores 1C and 1D (respectively third and fourth rows) are normalized between 0 and 1 and are better when close to 1. The results are presented depending on several relevant covariates: the true number of clones (left), the number of mutations (middle), and the diploid proportion of the genome (right). Each point represents the average of the score over all available simulated samples. Bootstrap sampling of the scores was used to compute 95% confidence intervals.
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 46 Figure 4.6 -Mutational signature changes in the TCGA cohort. Each plot corresponds to one cancer type, indicates the number of samples with a significant signature change compared to the total number of samples, and shows on the right panel an increase of a signature in the largest subclone, compared to clonal mutations, and on the left panel a decrease. The length of each bar corresponds to the number of patients with such changes, and the thickness to the median observed change.
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 47 Figure 4.7 -Kaplan-Meier curves for all TCGA samples (8,954 patients with available survival data) distinguishing tumors only along the number of clones (left) or along the number of clones and the presence of a significant change in signatures along tumor evolution (right) using the protected input mutation sets. A multivariate Cox model was fitted in both cases, and indicates for 2 clones, hazard ratio (HR) of 1.25 (95% confidence interval (CI): [1.14, 1.37], p = 2.27e -6), and 3 clones (HR= 1.41,CI= [1.26, 1.58], p = 2.03e -9). Considering only heterogeneous tumors, the Cox model results in a HR of1.12 (CI=[1.02, 1.23], p = 0.022) for 3+ clones compared to 2 clones (left). For the distinction based on signature change, without signature change(HR= 1.14, CI= [1.04, 1.26], p = 7.11e -3), and with signature change(HR= 1.51, CI= [1.37, 1.67], p = 3.30e -16). For heterogeneous tumors with a signature change, compared to without, the HR is1.33 (CI= [1.22, 1.44], p = 5.22e -11) (right)
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 48 Figure 4.8 -Proportion of patients among the three categories: "1 clone", "2 clones and more without a change in signature activity", and "2 clones and more with a change in signature activity" for the different cancer types considered in the TCGA. Cancer types are sorted from left to right by increasing proportion of heterogeneous samples with change in signature activity.
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 1 Figure A.1 -Prognostic power of diverse combination of ITH-derived features, on the three cancer types (respectively BRCA, HNSC and BLCA from top to bottom). In each plot, the background color indicates the ITH method used. Each method is tested on protected or public mutations (hashed). For each method, we assess the ability to predict survival with a survival SVM using 4 sets of features: (i) the number of clones alone, (ii) the five custom features which include the number of clones, and (iii) and (iv) the concatenations of features in (i) and (ii) with their squares, to account for possible nonlinear quadratic effects. We observe no clear trend of one of the two sets performs systematically better than the other, and the squared features have not significantly improved results either.

Figure A. 2 -

 2 Figure A.2 -Pairwise computation of score1B for the different ITH methods and inputs. Score1B is a metric designed in[START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] penalizes differences between the number of clones inferred in each case in a symmetric way (only the difference matters, either more or fewer clones are detected), following the formula J 1 +1-min(J 1 +1,|J 2 -J 1 |)

Figure B. 1 -

 1 Figure B.1 -Evolution of the loglikelihood and BIC criterion for 2 simulated samples, with the same parameters and 200 mutations (up panels), and 2000 mutations (bottom panels). In both cases, the loglikelihood has an "elbow" at 3 clones indicating that the likelihood of the data increases much less at the addition of an additional mixture component beyond 3 components. The BIC criterion is maximal at 3 clones when 2000 mutations are observed, but at 1 clone in the case with 200 mutations.
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 2 Figure B.2 -Variation of the degree of freedom of a subset of cancer type-specific signatures (35 distinct types) or for all available signatures depending on the number of signatures. The left panel shows the dependence for subsets of the 65 signatures only, and the right panel for the 65 signatures additionally.We see that the dependence with the number of signature (slope) is different in the two cases.
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 4 Figure B.4 -Number of clones found with different model selection criteria on the test set (not used to fit the model selection criteria). This illustrates the improved accuracy of the adapted BIC criterion compared to classical criteria

FigureFigure B. 5 -

 5 Figure B.5 -Empirical distribution of -2 log(λ), with λ = ℓ sigCst

Figure B. 6 -

 6 Figure B.6 -Correlation of -2 log(λ), with λ = ℓ sigCst ℓ sigChange with potentially relevant covariates.
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 78 Figure B.7 -Empirical distribution of the p-values of the calibrated test of significance of signature change for negative simulated samples.

  Figure B.11 -Score_1B for ITH methods on simulated data, with varying number of clones (a,b), number of observed mutations (c,d) and diploid percent of the genome (e,f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.12 -Score_2A for ITH methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.14 -Score_2C (sensitivity) for ITH methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.15 -Score_2C (specificity) for ITH methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.18 -Score_sig_1C (sensitivity) for signature deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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 20 Figure B.20 -Score_sig_1D for signature deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.23 -Proportion of SNVs with cosine distance between the true and estimated mutation type profile under 0.05 for signature deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.

  Figure B.24 -Proportion of SNVs with cosine distance between the true and estimated mutation type profile under 0.10 for signature deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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 49 Figure B.26 -Panel a: Stratification of patients depending on their pattern of signature change for ACC patients (77 patients, including 12 with a significant signature change). The heatmap represents the difference between the signature activity in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of highest CCF).

Figure C. 2 -

 2 Figure C.2 -Resultsfrom the challenge leaderboard on simulated samples (top), and real tumors (bottom). On left panels, we see all submissions with one color per Team, and on right panels, we see all submissions in gray, except ours, separated by used approach. We see that "Deep Learning" strategies performed best on the synthetic dataset, and "aggregation" on the real tumors, but with very close scores that do not really allow us to conclude.
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 31 Main characteristics of ITH methods tested. The mean runtime is the mean time to process a TCGA sample. The success rate is the fraction of TCGA samples for which the method produced an output without error, with ASCAT calls as input only. The MATH score was computed in one step for all samples, using a table containing all mutations for all samples; the operation lasted 3.21s (std. 47.6 ms) for the protected dataset, and 3.39s (std. 11ms) for the public dataset. All time measurements were measured on a single cluster node with a 2.2 GHz processor and 3GB of RAM.

  Correlation between various measures of ITH (MATH score, and number of subclones for the other methods), and other potential confounding variables measured using WES and trancriptomics data. Row and color label represent the method used, with white for the genomic measures not involving ITH. Hatches correspond to public mutation sets. Heatmap colors represent the value of the Pearson's r, which is written numerically whenever it is significantly different from 0 (F DR ≤ 0.05 after Benjamini Hochberg correction for multiple tests). We can observe clustering tendencies stable across the 3 cancer types. One of them is highlighted in black lines.PhyloWGS and CSR are grouped together for each input set. Second, the really unexpected result is to observe that ITH results with the same input can be uncorrelated, and even significantly negatively correlated. Third, we observe two groups of methods that remain more similar across all three cancer types: EXPANDS and MATH score on the one hand, and PhyloWGS, PyClone, SciClone on the other hand. Those results can be related to the methods themselves. Indeed, PyClone, PhyloWGS and SciClone all define a probabilistic model explaining all observations of copy-number and read counts, based on a mixture model. They differ by the exact nature of the model (choice of distributions, exact definition of parameters), but they have similar structures. SciClone is different from PyClone and PhyloWGS in two ways: it only relies on mutations that are in regions without copy number alterations; and it does not correct for tumor purity. It is therefore not surprising that PyClone and PhyloWGS yield similar results, and that SciClone is a bit more different. CSR performs a consensus of all obtained clusterings; since 3 methods out of 4 have similar results, CSR might be biased towards those 3 methods. Expands makes similar assumptions as PyClone and PhyloWGS. However, the estimation process is very different: Expands estimates a distribution of read number for each position, and then clusters those distributions, while PyClone, SciClone and PhyloWGS attempt to find a common distribution for a group of mutations. The MATH score has an entirely different rationale as it simply ignores CNVs.Similar trends are observed when comparing the methods based on other pairwise comparison metrics (see Supplementary).
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  .2. As observed on the TCGA, different methods based on WES data exhibit very different estimates of the number of clones, and none is very close to the estimates of B-SCITE using WES and single-cell data. In terms of clone composition, PyClone is the closest to B-SCITE in terms of score2A correlation in four out or seven samples, although the score2A values remain very modest.

		nb clones	nb clones	nb clones	nb clones	nb clones	nb clones	score2A	score2A	score2A	score2A	score2A	MATH	nb mutations	nb mutations
	sample	bscite	pyclone	sciclone	phylowgs	expands	CSR	pyclone	sciclone	phylowgs	expands	CSR	score	WES	metric
	CO8_colon	10	20	2	4	6	4	0.000	0.211	0.000	0.146	0.387	82.733	272	12
	CO8_liver	10	81	6	5	6	3	0.254	0.248	0.218	0.241	0.185	80.062	486	17
	BRCA_wang_TNBC 13	166	7	3	9	5	0.465	0.193	0.269	0.227	0.296	53.939	1458	7
	ALL_gawad_P2	7	6	2	4	NA	NA	0.315	0.303	0.231	NA	NA	54.918	115	15
	CO5_liver	5	29	6	5	3	3	0.060	0.197	0.000	0.143	0.319	66.151	271	11
	CO5_colon	5	8	6	5	2	3	0.000	0.180	0.000	0.093	0.031	70.680	305	10
	ALL_gawad_P1	6	18	2	5	NA	NA	0.345	0.039	0.138	NA	NA	71.163	110	20
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 32 Results on the single cell-WES dataset.
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 A2 Clinical variables significance for single-variable cox model for BLCA (409 patients). Variable significantly associated with survival are shaded.

	SEX_Male TISSUE_SOURCE_SITE_DK			0.897401 5.131653e-01 0.563206 2.178870e-02	0.651638 0.124507
	RACE_WHITE TISSUE_SOURCE_SITE_XF			1.144930 5.054529e-01 1.263603 2.246627e-01	0.651638 0.499250
	HISTORY_OTHER_MALIGNANCY_No AJCC_TUMOR_PATHOLOGIC_PT_simple_T2		1.100403 5.660149e-01 0.515628 4.470852e-04	0.696634 0.004471
	HISTORY_OTHER_MALIGNANCY_Yes AJCC_TUMOR_PATHOLOGIC_PT_simple_T3		0.908758 5.660149e-01 1.271201 1.094625e-01	0.696634 0.329891
	NONINVASIVE_BLADDER_HISTORY_NO AJCC_TUMOR_PATHOLOGIC_PT_simple_T4		0.878835 3.891088e-01 1.880901 9.411876e-04	0.610367 0.008366
	NONINVASIVE_BLADDER_HISTORY_YES AJCC_NODES_PATHOLOGIC_PN_simple_N0		0.868563 4.940541e-01 0.450186 1.450583e-07	0.651638 0.000006
	NONINVASIVE_BLADDER_HISTORY_[Not Available] AJCC_NODES_PATHOLOGIC_PN_simple_N2		1.298013 1.113381e-01 2.130213 5.222366e-06	0.329891 0.000139
	NONINVASIVE_BLADDER_CA_TX_TYPE_[Not Applica-AJCC_METASTASIS_PATHOLOGIC_PM_simple_M0	0.878835 3.891088e-01 0.663211 6.797682e-03	0.610367 0.041832
	ble] AJCC_METASTASIS_PATHOLOGIC_PM_simple_MX		1.305408 7.476644e-02	0.249221
	NONINVASIVE_BLADDER_CA_TX_TYPE_[Not Available]	1.225435 2.146545e-01	0.490639
	TX_90DAYS_POST_RESECTION_[Not Applicable]		0.878835 3.891088e-01	0.610367
	TX_90DAYS_POST_RESECTION_[Not Available] Expands_protected TX_COMPLETE_RESPONSE_[Not Applicable] Expands_absolute TX_COMPLETE_RESPONSE_[Not Available] SciClone_protected TX_INDUCTION_COURSES_INDICATOR_[Not Applicable] SciClone_absolute TX_INDUCTION_COURSES_INDICATOR_[Not Available] PhyloWGS_public TX_MAINTENANCE_COURSES_INDICATOR_[Not Appli-CSR_protected CSR_absolute cable] TX_MAINTENANCE_COURSES_INDICATOR_[Not Avail-PhyloWGS_protected PhyloWGS_absolute able] PyClone_public	1.329106 6.724015e-02 0.878835 3.891088e-01 1.183784 2.774378e-01 0.878835 3.891088e-01 1.234697 1.748396e-01 0.878835 3.891088e-01 1.233463 1.768826e-01	0.244510 0.610367 0.539748 0.610367 0.436750 0.610367 0.436750
	OCCUPATION_CURRENT_Retired	Expands_public		0.917140 6.255270e-01	0.733401
	OCCUPATION_CURRENT_[Not Available] CSR_public		1.271108 1.467738e-01	0.404893
	OCCUPATION_CURRENT_retired	SciClone_public		0.960885 8.446695e-01	0.889126
	OCCUPATION_PRIMARY_[Not Available] PyClone_protected		1.295025 9.419336e-02	0.301419
	OCCUPATION_PRIMARY_CHEMICAL_EXPOSURE_[Not PyClone_absolute	1.765620 4.091600e-03	0.032733
	Avail... OCCUPATION_PRIMARY_INDUSTRY_[Not Available] FAMILY_HISTORY_CANCER_RELATIONSHIP_[Not Avail-able] FAMILY_HISTORY_CANCER_TYPE_[Not Available] RADIATION_TREATMENT_ADJUVANT_NO PyClone_protected PyClone_absolute Expands_protected Expands_absolute PyClone_public SciClone_protected SciClone_absolute Expands_public PhyloWGS_public PhyloWGS_protected PhyloWGS_absolute CSR_protected CSR_absolute CSR_public SciClone_public	1.160094 3.247413e-01 1.226713 1.856187e-01 1.226713 1.856187e-01 0.712057 2.632089e-02	0.590439 0.436750 0.436750 0.131604
	RADIATION_TREATMENT_ADJUVANT_[Not Available]	1.354145 5.230845e-02	0.210985
	PHARMACEUTICAL_TX_ADJUVANT_NO		0.986814 9.296012e-01	0.941368
	PHARMACEUTICAL_TX_ADJUVANT_YES		0.676359 4.539278e-02	0.201746
	PHARMACEUTICAL_TX_ADJUVANT_[Not Available]		1.387004 3.427365e-02	0.161288
	HISTOLOGICAL_SUBTYPE_Non-Papillary		1.364821 7.158132e-02	0.248979
	HISTOLOGICAL_SUBTYPE_Papillary			0.673148 2.630851e-02	0.131604
	METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Other	0.813722 4.457771e-01	0.631390
	meth...			
	METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Transureth...1.234871 2.692175e-01	0.539748
	METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_OTHER_[Not... 1.290044 3.459972e-01	0.610367
	AJCC_STAGING_EDITION_6th			0.931002 6.427039e-01	0.733401
	AJCC_STAGING_EDITION_7th			1.061071 7.031650e-01	0.760178
	ANGIOLYMPHATIC_INVASION_NO			0.485392 3.934074e-05	0.000577
	ANGIOLYMPHATIC_INVASION_YES			1.818002 6.992848e-05	0.000799
	ANGIOLYMPHATIC_INVASION_[Not Available]		1.282364 1.626703e-01	0.433787
	LYMPH_NODES_EXAMINED_NO			0.861162 4.914651e-01	0.651638
	LYMPH_NODES_EXAMINED_YES			1.144075 4.498650e-01	0.631390
	EXTRACAPSULAR_EXTENSION_NO			1.101253 5.846915e-01	0.708717
	EXTRACAPSULAR_EXTENSION_YES			1.411088 5.538363e-02	0.210985
	EXTRACAPSULAR_EXTENSION_[Not Available]		0.748263 5.291460e-02	0.210985
	EXTRACAPSULAR_EXTENSION_PRESENT_[Not	Avail-	0.804289 2.901143e-01	0.539748
	able]			
	METASTATIC_SITE_Lymph node only			1.687527 6.731283e-03	0.041832
	METASTATIC_SITE_None			0.641938 5.729977e-03	0.041673
	METASTATIC_SITE_[Not Available]			1.050773 7.417814e-01	0.791234
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage II		0.457221 3.329395e-05	0.000577
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage III		0.840677 2.814664e-01	0.539748
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IV		2.264256 4.728912e-08	0.000004
	INCIDENTAL_PROSTATE_CANCER_NO		1.002834 9.852841e-01	0.985284
	INCIDENTAL_PROSTATE_CANCER_YES		0.926590 6.685831e-01	0.742870
	INCIDENTAL_PROSTATE_CANCER_[Not Available]		1.107850 6.188245e-01	0.733401
	AJCC_INCIDENTAL_PROSTATE_CANCER_[Not Available]	1.135748 4.866109e-01	0.651638
	PRIMARY_SITE_Bladder -NOS			0.839975 2.465470e-01	0.533075
	Variable CLIN_T_STAGE_T2 age_at_diagnosis CLIN_T_STAGE_[Not Available] PROSPECTIVE_COLLECTION_NO ICD_10_C67.2 PROSPECTIVE_COLLECTION_YES ICD_10_C67.9 RETROSPECTIVE_COLLECTION_NO ICD_O_3_HISTOLOGY_8120/3 RETROSPECTIVE_COLLECTION_YES ICD_O_3_HISTOLOGY_8130/3 SEX_Female ICD_O_3_SITE_C67.2 ICD_O_3_SITE_C67.9		Hazard ratio 1.072482 6.867865e-01 P-value Corrected P-value 0.752643 1.032023 4.328538e-05 0.801825 1.408015e-01 0.402290 0.000577 0.885701 4.431127e-01 0.981491 9.276451e-01 0.941368 0.631390 1.129050 4.431127e-01 0.934338 6.508937e-01 0.733401 0.631390 1.138738 4.114412e-01 1.264392 2.765995e-01 0.539748 0.631390 0.885701 4.431127e-01 0.790498 2.838725e-01 0.539748 0.631390 1.114329 5.131653e-01 0.981491 9.276451e-01 0.941368 0.651638 0.934338 6.508937e-01 0.733401

  Pairwise computation of score1C for the different ITH methods and inputs. Score1C is a metric designed in[START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] that represents the Wasserstein distance between the cancer cell fraction (CCF) distribution resulting from each clone's mean CCF and number of mutations. Due to the number of single-mutation clones of PyClone, the resulting distribution is quite different from the other cases. As CSR only takes as input the mutation attribution to clones by other methods, without taking into account their CCF, we did not compute score1C for that method. The score was computed for all patients, and this heatmap represents the median score.

	48 0.46 0.9 0.89 0.89 0.92 1 0.79 0.81 0.81 0.8 0 0.69 0.68 0.66 0.74 0.72 0.72 0.8 0.79 1 0.85 0.85 0.85 0 0.58 0.58 0.57 0.83 0.82 0.82 0.82 0.81 0.85 1 0.96 0.95 0 0.57 0.58 0.56 0.82 0.82 0.82 0.82 0.81 0.85 0.96 1 0.98 0 0.58 0.58 0.57 0.81 0.82 0.82 0.81 0.8 0.85 0.95 0.98 1 HNSC score1C 0 0 0 0 0 0 0 0 351 445 Protected mutations 0 1 number of samples 962 average 530 735 456 std 1,189 890 544 min 79 61 31 median 342 525 340 max 21,821 12,774 7,941 Public mutations average 121 352 202 std 375 426 271 min 1 2 1 median 63 241 140 Figure A.3 -BRCA BLCA HNSC max 7,919 5,478 3,935

Table A . 1 -

 A1 Summary statistics of the number of protected and public mutations per sample for BRCA, BLCA and HNSC samples. The protected set corresponds to raw variant calling outputs. The public set corresponds to publicly available SNV calls.

	PATH_MARGIN_Negative TISSUE_SOURCE_SITE_AR		0.328745 2.487080e-11 0.426279 7.036257e-03	1.467377e-09 3.609906e-02
	PATH_MARGIN_Positive TISSUE_SOURCE_SITE_B6		1.456750 1.265338e-01 1.053316 8.202897e-01	2.447704e-01 9.046185e-01
	PATH_MARGIN_[Not Available] TISSUE_SOURCE_SITE_BH		4.295169 1.280242e-14 2.772661 1.247824e-08	1.510685e-12 4.908109e-07
	SURGERY_FOR_POSITIVE_MARGINS_[Not Available] TISSUE_SOURCE_SITE_D8		0.881873 7.014933e-01 0.947428 9.275108e-01	8.141488e-01 9.860025e-01
	MARGIN_STATUS_REEXCISION_Negative TISSUE_SOURCE_SITE_E2		1.189978 5.498957e-01 0.555754 1.612908e-01	6.830283e-01 3.021003e-01
	MARGIN_STATUS_REEXCISION_[Not Available] TISSUE_SOURCE_SITE_E9		0.788031 3.970790e-01 1.350339 4.798622e-01	5.714063e-01 6.279592e-01
	STAGING_SYSTEM_Axillary lymph node dissection a... AJCC_TUMOR_PATHOLOGIC_PT_simple_T1		1.147628 4.478192e-01 0.686002 5.620924e-02	6.047185e-01 1.411211e-01
	STAGING_SYSTEM_Sentinel lymph node biopsy plus ... AJCC_TUMOR_PATHOLOGIC_PT_simple_T2		0.471890 9.803200e-04 0.951778 7.620026e-01	6.088303e-03 8.563458e-01
	STAGING_SYSTEM_Sentinel node biopsy alone AJCC_TUMOR_PATHOLOGIC_PT_simple_T3		0.517762 9.212199e-03 1.220149 3.652398e-01	4.529331e-02 5.525423e-01
	STAGING_SYSTEM_[Not Available] AJCC_NODES_PATHOLOGIC_PN_simple_N0		2.306054 2.789049e-06 0.428539 2.290188e-06	3.502342e-05 3.502342e-05
	MICROMET_DETECTION_BY_IHC_NO AJCC_NODES_PATHOLOGIC_PN_simple_N1		0.983191 9.205373e-01 1.159871 3.741624e-01	9.860025e-01 5.588754e-01
	MICROMET_DETECTION_BY_IHC_YES AJCC_NODES_PATHOLOGIC_PN_simple_N2		0.330809 1.172534e-05 1.714021 1.986213e-02	1.257809e-04 7.812439e-02
	MICROMET_DETECTION_BY_IHC_[Not Available] AJCC_NODES_PATHOLOGIC_PN_simple_N3		2.187550 2.968086e-06 2.564601 6.195610e-04	3.502342e-05 4.873880e-03
	LYMPH_NODES_EXAMINED_YES AJCC_METASTASIS_PATHOLOGIC_PM_simple_M0		1.127012 4.842736e-01 0.509375 8.980883e-04	6.279592e-01 5.887468e-03
	LYMPH_NODES_EXAMINED_[Not Available] AJCC_METASTASIS_PATHOLOGIC_PM_simple_MX		0.789955 1.767459e-01 1.062431 8.307274e-01	3.160002e-01 9.076466e-01
	AJCC_STAGING_EDITION_5th		2.522972 2.425021e-06	3.502342e-05
	AJCC_STAGING_EDITION_6th		0.391254 3.279076e-07	9.673274e-06
	AJCC_STAGING_EDITION_7th		1.553473 5.971021e-02	1.455199e-01
	AJCC_STAGING_EDITION_[Not Available]		0.905993 7.048542e-01	8.141488e-01
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage I		0.623674 1.050290e-01	2.136796e-01
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IA		0.246046 1.650590e-02	6.956059e-02
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IIA		0.697084 6.472348e-02	1.510602e-01
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IIB		0.828285 3.501038e-01	5.365227e-01
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IIIA		1.293391 2.416799e-01	4.016651e-01
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IIIC		1.898479 6.528872e-02	1.510602e-01
	ER_STATUS_BY_IHC_Negative		1.272320 1.906432e-01	3.308221e-01
	ER_STATUS_BY_IHC_Positive		0.662619 1.727163e-02	7.027765e-02
	ER_STATUS_IHC_PERCENT_POSITIVE_90-99%		0.370064 2.554685e-03	1.435490e-02
	ER_STATUS_IHC_PERCENT_POSITIVE_<10%		0.771901 4.520339e-01	6.047185e-01
	ER_STATUS_IHC_PERCENT_POSITIVE_[Not Available]	2.276830 1.936838e-05	1.758053e-04
	ER_POSITIVITY_SCALE_USED_3 Point Scale		0.369684 5.031369e-02	1.349322e-01
	Variable ER_POSITIVITY_SCALE_USED_[Not Available]	Hazard ratio 2.435285 3.311614e-02 P-value Corrected P-value 1.116487e-01
	age_at_diagnosis ER_POSITIVITY_SCALE_OTHER_[Not Available] PROSPECTIVE_COLLECTION_NO BRACHYTHERAPY_TOTAL_DOSE_POINT_A_[Not Avail-PROSPECTIVE_COLLECTION_YES able] RETROSPECTIVE_COLLECTION_NO PR_STATUS_BY_IHC_Negative RETROSPECTIVE_COLLECTION_YES PR_STATUS_BY_IHC_Positive MENOPAUSE_STATUS_Post (prior bilateral ovariect... PR_STATUS_IHC_PERCENT_POSITIVE_90-99% MENOPAUSE_STATUS_Pre (<6 months since LMP AND n... PR_STATUS_IHC_PERCENT_POSITIVE_<10% MENOPAUSE_STATUS_[Not Available] PR_STATUS_IHC_PERCENT_POSITIVE_[Not Available] RACE_BLACK OR AFRICAN AMERICAN PR_POSITIVITY_SCALE_USED_3 Point Scale RACE_WHITE PR_POSITIVITY_SCALE_USED_[Not Available] RACE_[Not Available] PR_POSITIVITY_IHC_INTENSITY_SCORE_3+ ETHNICITY_NOT HISPANIC OR LATINO PR_POSITIVITY_IHC_INTENSITY_SCORE_[Not Avail-ETHNICITY_[Not Available] able] HISTORY_OTHER_MALIGNANCY_No PR_POSITIVITY_SCALE_OTHER_[Not Available] HISTORY_OTHER_MALIGNANCY_Yes PR_POSITIVITY_DEFINE_METHOD_[Not Available] RADIATION_TREATMENT_ADJUVANT_NO IHC_HER2_Equivocal RADIATION_TREATMENT_ADJUVANT_YES IHC_HER2_Negative RADIATION_TREATMENT_ADJUVANT_[Not Available] IHC_HER2_Positive PHARMACEUTICAL_TX_ADJUVANT_YES IHC_HER2_[Not Available] PHARMACEUTICAL_TX_ADJUVANT_[Not Available] HER2_IHC_PERCENT_POSITIVE_<10% METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Core HER2_IHC_PERCENT_POSITIVE_[Not Available] HER2_POSITIVITY_METHOD_TEXT_[Not Available] needl... METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Fine HER2_FISH_STATUS_Negative HER2_FISH_STATUS_Positive needl... METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Other HER2_FISH_STATUS_[Not Available] HER2_COPY_NUMBER_[Not Available] meth... METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_Tumor CENT17_COPY_NUMBER_[Not Available] PRIMARY_SITE_Left rese... METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_[Not PRIMARY_SITE_Left Upper Inner Quadrant PRIMARY_SITE_Left Upper Outer Quadrant Avail... METHOD_OF_INITIAL_SAMPLE_PROCUREMENT_OTHER_[Not... 0.994946 9.868232e-01 1.032118 4.566898e-07 1.595260 1.827359e-01 0.602422 4.530180e-02 0.994099 9.767911e-01 1.686136 3.888498e-02 1.686136 3.888498e-02 1.257745 1.746637e-01 0.602422 4.530180e-02 0.717066 4.336782e-02 1.324224 9.572180e-02 0.082244 1.281943e-02 0.431889 8.809889e-04 0.987074 9.609962e-01 2.943808 9.817809e-07 2.440652 1.832734e-05 1.215466 3.390936e-01 0.401865 7.305251e-02 0.825045 2.987240e-01 2.235079 5.428402e-02 1.274439 5.361448e-01 0.127355 4.012324e-02 2.207632 1.176302e-02 3.001282 2.553857e-03 0.603636 1.259999e-01 0.669493 2.469654e-01 1.327000 3.966578e-01 1.501028 2.411757e-01 1.008404 9.676018e-01 0.825072 6.454644e-01 0.601537 5.547120e-02 1.184551 6.240900e-01 0.791443 1.711526e-01 0.991267 9.744419e-01 1.504160 7.472326e-02 0.893189 7.194462e-01 1.460324 3.585853e-02 1.001332 9.961223e-01 0.408510 2.110215e-02 0.545734 3.371119e-04 1.864321 2.281919e-02 2.593860 6.042777e-02 1.669895 1.358907e-02 0.739080 1.150908e-01 0.880007 7.106553e-01 1.009070 9.765300e-01 1.385428 6.801151e-02 1.645350 1.487810e-01 0.740284 3.397987e-01 1.548415 2.047798e-01 1.945749 7.591896e-04 1.944929 3.630026e-02 0.734898 4.268913e-01 0.826630 4.397503e-01 PRIMARY_SITE_Right 0.892605 6.249852e-01 SURGICAL_PROCEDURE_FIRST_Lumpectomy 0.690083 9.704508e-02 PRIMARY_SITE_Right Upper Outer Quadrant 1.138461 6.005181e-01 SURGICAL_PROCEDURE_FIRST_Modified Radical Maste... 1.476196 2.170723e-02 HISTOLOGICAL_DIAGNOSIS_Infiltrating Ductal Carc... 0.969817 8.637923e-01 SURGICAL_PROCEDURE_FIRST_Other 0.882243 5.027363e-01 HISTOLOGICAL_DIAGNOSIS_Infiltrating Lobular Car... 0.823077 3.912033e-01 SURGICAL_PROCEDURE_FIRST_Simple Mastectomy 0.657380 9.788958e-02 ICD_O_3_HISTOLOGY_8500/3 0.949261 7.692879e-01 SURGICAL_PROCEDURE_FIRST_[Not Available] 2.480055 2.729308e-03 ICD_O_3_HISTOLOGY_8520/3 0.871304 5.370519e-01 FIRST_SURGICAL_PROCEDURE_OTHER_Surgical Resec-1.534372 3.107861e-01 METASTATIC_TUMOR_INDICATOR_NO 0.641384 2.830420e-02 METASTATIC_TUMOR_INDICATOR_[Not Available] 1.149966 4.502190e-01 tion FIRST_SURGICAL_PROCEDURE_OTHER_[Not Available] 1.084261 6.601793e-01 TISSUE_SOURCE_SITE_A2 0.816065 4.561012e-01 TISSUE_SOURCE_SITE_A8 1.386201 4.396658e-01	3.218334e-01 1.077788e-05 9.936324e-01 1.243166e-01 1.176520e-01 3.160002e-01 1.176520e-01 1.243166e-01 1.243166e-01 5.818049e-02 2.026486e-01 9.936324e-01 5.887468e-03 1.758053e-04 1.930836e-05 1.626452e-01 5.275821e-01 1.411211e-01 4.828689e-01 1.183636e-01 6.741716e-01 1.435490e-02 5.552148e-02 2.447704e-01 5.714063e-01 4.047489e-01 9.936324e-01 4.016651e-01 1.411211e-01 7.693415e-01 3.155626e-01 7.525332e-01 1.632842e-01 9.936324e-01 1.157684e-01 8.162947e-01 8.004541e-02 9.961223e-01 8.159588e-02 2.841372e-03 1.455199e-01 2.301816e-01 5.938927e-02 8.141488e-01 1.543338e-01 9.936324e-01 2.831638e-01 3.502032e-01 5.275821e-01 5.599023e-03 6.047185e-01 1.157684e-01 6.047185e-01 7.525332e-01 9.952576e-01 7.381368e-01 2.026486e-01 9.351146e-01 8.004541e-02 5.714063e-01 6.448140e-01 8.563771e-01 2.026486e-01 6.741716e-01 1.463901e-02 9.823221e-02 4.955778e-01 6.047185e-01 6.047185e-01 7.790115e-01 6.047185e-01
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 A3 Clinical variables significance for single-variable cox model for BRCA (1080 patients). Variable significantly associated with survival are shaded.

	CLIN_T_STAGE_T2		0.838379 0.251047	0.436185
	Variable CLIN_T_STAGE_T3		Hazard ratio 1.269859 0.104375 P-value Corrected P-value 0.262348
	INITIAL_PATHOLOGIC_DX_YEAR CLIN_T_STAGE_T4a age_at_diagnosis CLINICAL_STAGE_Stage II PRIMARY_SITE_Floor of mouth CLINICAL_STAGE_Stage III PRIMARY_SITE_Larynx CLINICAL_STAGE_Stage IVA PRIMARY_SITE_Oral Cavity ICD_10_C02.9 PRIMARY_SITE_Oral Tongue ICD_10_C04.9 LATERALITY_Left ICD_10_C14.8 LATERALITY_Right ICD_10_C32.9 LATERALITY_[Not Available] ICD_O_3_HISTOLOGY_8070/3 PROSPECTIVE_COLLECTION_NO ICD_O_3_HISTOLOGY_8071/3 PROSPECTIVE_COLLECTION_YES ICD_O_3_SITE_C02.9 RETROSPECTIVE_COLLECTION_NO ICD_O_3_SITE_C04.9 RETROSPECTIVE_COLLECTION_YES ICD_O_3_SITE_C14.8 SEX_Female ICD_O_3_SITE_C32.9 SEX_Male TISSUE_SOURCE_SITE_CN RACE_WHITE TISSUE_SOURCE_SITE_CR ETHNICITY_NOT HISPANIC OR LATINO TISSUE_SOURCE_SITE_CV LYMPH_NODE_NECK_DISSECTION_INDICATOR_NO AJCC_TUMOR_PATHOLOGIC_PT_simple_T2 LYMPH_NODE_NECK_DISSECTION_INDICATOR_YES AJCC_TUMOR_PATHOLOGIC_PT_simple_T3 LYMPH_NODE_DISSECTION_METHOD_Functional (Lim-AJCC_TUMOR_PATHOLOGIC_PT_simple_T4 AJCC_NODES_PATHOLOGIC_PN_simple_N0 ite... LYMPH_NODE_DISSECTION_METHOD_Modified Radical AJCC_NODES_PATHOLOGIC_PN_simple_N1 AJCC_NODES_PATHOLOGIC_PN_simple_N2 N... LYMPH_NODE_DISSECTION_METHOD_[Not Available] AJCC_NODES_PATHOLOGIC_PN_simple_NX LYMPH_NODES_EXAMINED_NO AJCC_METASTASIS_PATHOLOGIC_PM_simple_M0 LYMPH_NODES_EXAMINED_YES AJCC_METASTASIS_PATHOLOGIC_PM_simple_MX PATH_MARGIN_Negative AJCC_METASTASIS_PATHOLOGIC_PM_simple_[N	0.944473 0.000002 1.014869 0.918479 1.019742 0.001594 0.872315 0.435405 1.633189 0.009866 0.978740 0.898501 0.870495 0.392949 1.138939 0.338664 1.216594 0.257959 0.970829 0.852993 1.027363 0.864976 2.068995 0.000137 0.997223 0.985683 1.218218 0.254981 0.596169 0.001229 0.914839 0.578172 1.487693 0.003515 1.344115 0.221993 1.275968 0.136430 0.898413 0.682330 0.796014 0.163125 0.970829 0.852993 0.796014 0.163125 2.068995 0.000137 1.275968 0.136430 1.218218 0.254981 1.382324 0.024394 0.914839 0.578172 0.723420 0.024394 1.213414 0.297016 0.742605 0.111804 0.431810 0.009643 0.853619 0.414453 1.663811 0.000385 1.236683 0.203896 0.659617 0.011391 0.814286 0.215391 1.459494 0.016649 1.086460 0.540168 1.388501 0.017779 0.556349 0.000185 0.741422 0.093637 0.576861 0.022426 1.834907 0.000009 1.090921 0.583249 1.165686 0.381317 1.470161 0.061855 0.818485 0.176511 0.837805 0.290092 0.979428 0.928250 0.777605 0.079280 1.185902 0.220529	0.955798 0.000085 0.632698 0.012355 0.955798 0.048599 0.535334 0.589424 0.935381 0.436185 0.001823 0.935381 0.436185 0.985683 0.763974 0.010391 0.412907 0.021791 0.846089 0.309463 0.935381 0.337124 0.001823 0.337124 0.436185 0.309463 0.763974 0.087255 0.484604 0.087255 0.048599 0.273433 0.003978 0.611812 0.050448 0.403454 0.070379 0.412907 0.071889 0.749786 0.002146 0.086899 0.241895 0.000292 0.581352 0.763974 0.356858 0.179766 0.955798 0.481761 0.216854 0.412907
	PATH_MARGIN_Positive		1.727697 0.002205	0.014645
	PATH_MARGIN_[Not Available]		0.699698 0.158253	0.337124
	AJCC_STAGING_EDITION_6th		1.010909 0.944167	0.955798
	AJCC_STAGING_EDITION_7th		0.973421 0.855035	0.935381
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage II		0.668524 0.054444	0.168777
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage III		0.726051 0.114665	0.273433
	AJCC_PATHOLOGIC_TUMOR_STAGE_Stage IVA		1.532143 0.001807	0.012924
	AJCC_PATHOLOGIC_TUMOR_STAGE_[Not Available]	0.962185 0.849093	0.935381
	EXTRACAPSULAR_SPREAD_PATHOLOGIC_Microscopic	2.254494 0.000001	0.000085
	Ext...			
	EXTRACAPSULAR_SPREAD_PATHOLOGIC_No	Extran-	0.548915 0.000017	0.000392
	odal E...			
	EXTRACAPSULAR_SPREAD_PATHOLOGIC_[Not	Avail-	0.990168 0.945521	0.955798
	able]			
	GRADE_G1		0.657592 0.059833	0.179498
	GRADE_G2		1.431246 0.010999	0.050448
	GRADE_G3		0.957962 0.783689	0.915850
	ANGIOLYMPHATIC_INVASION_NO		0.693371 0.009929	0.048599
	ANGIOLYMPHATIC_INVASION_YES		1.484568 0.008174	0.047509
	ANGIOLYMPHATIC_INVASION_[Not Available]		1.057948 0.692475	0.847371
	PERINEURAL_INVASION_NO		0.516015 0.000030	0.000565
	PERINEURAL_INVASION_YES		1.588730 0.000670	0.006230
	PERINEURAL_INVASION_[Not Available]		1.147166 0.339620	0.535334
	HPV_STATUS_P16_Negative		0.856744 0.477818	0.673289
	HPV_STATUS_P16_[Not Available]		1.469555 0.052450	0.168202
	HPV_STATUS_ISH_Negative		0.842503 0.448772	0.642089
	HPV_STATUS_ISH_[Not Available]		1.564703 0.043660	0.145013
	TOBACCO_SMOKING_HISTORY_INDICATOR_1		0.853226 0.347479	0.538592
	TOBACCO_SMOKING_HISTORY_INDICATOR_2		1.349280 0.033815	0.116475
	TOBACCO_SMOKING_HISTORY_INDICATOR_3		0.708845 0.088463	0.235059
	TOBACCO_SMOKING_HISTORY_INDICATOR_4		0.949831 0.733565	0.874635
	ALCOHOL_HISTORY_DOCUMENTED_NO		1.064729 0.660954	0.841584
	ALCOHOL_HISTORY_DOCUMENTED_YES		0.941649 0.669647	0.841584
	RADIATION_TREATMENT_ADJUVANT_NO		1.062557 0.787828	0.915850
	RADIATION_TREATMENT_ADJUVANT_YES		0.905136 0.549419	0.751412
	RADIATION_TREATMENT_ADJUVANT_[Not Available]	1.055628 0.712535	0.860594
	PHARMACEUTICAL_TX_ADJUVANT_NO		0.774111 0.144766	0.320553
	PHARMACEUTICAL_TX_ADJUVANT_YES		1.454739 0.067970	0.191551
	PHARMACEUTICAL_TX_ADJUVANT_[Not Available]	1.032903 0.825634	0.935381
	CLIN_N_STAGE_N0		0.853501 0.240473	0.436185
	CLIN_N_STAGE_N1		0.915126 0.621348	0.802575
	CLIN_N_STAGE_N2b		0.980360 0.916449	0.955798

Table A . 4 -

 A4 Clinical variables significance for single-variable cox model for HNSC (526 patients). Variable significantly associated with survival are shaded.

	T cells Tcm Th2 cells TReg NK cells NK cells NK CD56dim cells NK CD56dim cells TRBC1 CYorf15B NEIL3 FOXP3 LOC643313 NCR1 KIR3DL2 KIR3DS1 NK CD56dim cells KIR3DL2 NK CD56dim cells KIR3DL3 iDC GSTT1 Macrophages GPC4 Mast cells LOC339524 Neutrophils CRISPLD2 213193_x_at 28639 214131_at 219502_at 55247 221333_at 211050_x_at 643313 84663 50943 217088_s_at 9437 216907_x_at 3812 211389_x_at 3813 211688_x_at 3812 216676_x_at 115653 203815_at 2952 204984_at 2239 215039_at 339524 221541_at 83716 Normal mucosa MYLK 202555_s_at 4638	NaN ENSG00000109674 NaN ENSG00000049768 NaN ENSG00000273916 ENSG00000278442 ENSG00000276498 ENSG00000284046 ENSG00000274696 ENSG00000277656 ENSG00000076716 ENSG00000267272 ENSG00000103196 ENSG00000065534
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Table A . 5 -

 A5 Signatures adapted from[START_REF] Bindea | Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer[END_REF]. Genes Id were matched from tables available at https://github.com/judithabk6/ITH_TCGA/tree/master/external_data

  .1. The test accuracies for different criteria and different learning settings

		D A J	D B J	D C J	D D J
	separate model			
	(subset)	-0.037 ± 0.000215 -0.061 ± 0.000268 -0.056 ± 0.000336 -0.092 ± 0.000404
	unique model	-0.014 ± 0.000072 -0.023 ± 0.000101 -0.034 ± 0.000173 -0.055 ± 0.000233
	separate model			
	(65 signatures) -0.012 ± 0.000060 -0.020 ± 0.000087 -0.030 ± 0.000146 -0.0490.000214±

Table B . 1 -

 B1 Values for the coefficients α for different penalty shapes and training subset. We see that the coefficients for the whole dataset and for the 65 signatures examples are close. Overall, the confidence interval for the coefficients are small. Test accuracy of various model selection criteria. BIC, AIC and ICL are standard model selection. The others are attempts to learn a valid criterion on simulated data.

	are presented in Figure B.3. We first see that, as mentioned earlier, standard model selection
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Table B . 2 -

 B2 Values for the coefficient α for different penalty shapes and training subset. We see that the coefficients for the whole dataset and for the 65 signatures examples are close. Overall, the confidence interval for the coefficients are small.

			Number of Clones	Degree of freedom
		Intercept	coefficient	coefficient
	separate model			
	(subset)	-13.677 ± 0.0778	4.777 ± 0.0117	1.662 ± 0.00991
	unique model	-19.420 ± 0.0589	7.124 ± 0.0169	1.069 ± 0.00210
	separate model			
	(65 signatures)	-1.156 ± 0.107	9.470 ± 0.0279	0 ± 0

  TCGA, we present here heatmaps to delineate an overview of each cancer type inFigures B.26 to B.56. For each type, the first panel represents the difference between subclonal and clonal signature activities (in case of a significant change in activity), and the bottom panel represents the absolute values of each signature activity for clonal SNVs (belonging to the clone of largest CCF estimated by CloneSig), and in the main subclone (in terms of number of SNVs). This allows researchers to fully explore CloneSig's results on the TCGA, and further compare their results in future studies. For each panel, we have added several clinical variables, in particular, the patient's age at diagnosis, the stage of the tumor, the size class of the primary tumor, and the patient's sex. Overall, we found no trend of association between signature activities or change in activities and those clinical characteristics, as previously observed in the particular case of prostate cancer[START_REF] Espiritu | The evolutionary landscape of localized prostate cancers drives clinical aggression[END_REF].In most types, like CESC (Figure B.29), HNSC (Figure B.35) and others, we observe groups of patients with different patterns of signature activity. The clinical significance of such groups remains to be further explored.

Table C .1 -Characteristics of synthetic datasets from the DREAM Challenge

 C 

	dataset Number of calls number of true positives number of submitted callers
	IS1	214541	3535	119
	IS2	51108	4303	69
	IS3	22884	7709	67
	IS4	129091	15163	223

  3 2 +2 2 +1 2 +1 2 +2 2 These features can help detect error-prone regions, due to a lower coverage or the occurrence of polymerase slippage in homopolymer regions.

	19 9 ≈ 2.11.	9	=

  Three main approaches were tested:Aggregation: for each dataset aggregate predictions from available variant caller results with different strategies (varying threshold for vote, etc), and apply this prediction to the dataset itself
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  THetA enumerates the potential copy number profiles for each clone, and estimates the mixtures in each case (convex optimization). The overall complexity is O(m k ), with m the number of segments, and k the number of populations. The model is chosen by BIC criterion, with respect to the likelihood of raw read counts per segments (with correction for segment legnth and mappabiity).ExPANdS characterizes subclonal populations by estimating for each SNV a probability distribution of its CCF, accounting for copy number alterations, and then clusters those CCFs using hierarchical clustering. A statistical test is then used to filter non-significant clusters.PhyloSub relies on a Tree-structured stickbreaking process (tree-based mixture model) to model raw SNV counts. The parameters of the model are inferred using MCMC, and the sampling process respects evolutionary constraints of the tree.SciClone models the subclonal structure of one or several tumor samples as a mixture of beta distributions over SNVs CCFs for SNV in copy number unaltered regions. The parameters are inferred through a variational inference strategy.This method uses several tumor samples from the same patient; each sample is considered homogeneous. The algorithm is based on automata (finite state transducer) to find the shortest path of transformations (amplifications or deletions) to transform an integer copy number profile into another. Classical algorithms for phylogenetics reconstruction from distance (in this case the Fitch-Margoliash method) can be applied to recover the tree.OncoSNP-SEQ2 models read counts covering SNPs, with a factorial HMM. Inference is made using Viterbi algorithm. Careful exploration of the copy-number detection sensitivity association with false positive clones is conducted.Rec-BTP proposes a combinatorial formulation of the subclone phylogeny problem. Rec-BTP takes as input SNV clusters along with their estimated CCF and adds nodes to provide a conflict-free tree, respecting the assumption that the CCF of a clone is equal to the sum of its children CCFs Clomial formulates the subclonal as a probabilistic matrix factorization problem, with one matrix representing the subclone (binary) genotypes, and another the mixture of clones in the different avaialable tumor samples. Estimation is done using an EM algorithm with a quasi-Newton method BFGS-B. The number of clones can be set by the user or chosen using BIC.TITAN jointly models subclonal populations and their associated copy number states as a factorial HMM model. The parameters are inferred by an EM algorithm, with observed data the counts of total and minor allele reads at SNP positions, normalized for CG content and mappability. The number of clones is chosen with the sdbw index.BreakDown relies on three data types to infer the CCF of each CNV from WGS data: coverage by normal reads, discordant reads (for paired-end sequencing, read pairs not in the expected order or orientation), and soft-clipped reads (reads overlapping a non-reference jonction).THetA2 builds on THetA, but introduces further constraints on the possible subclonal profiles (matrix C), thus allowing the algorithm to accomodate more segments (and hence WES data), and more subclonal populations.BayClone relies on a categorical Indian Buffet Process to model the SNV read counts based on three possible latent states for each SNV in each clone haplotype: non mutated, heterozygous or homozygous. Inference is performed using MCMC.PhyloWGS builds up on PhyloSub model, and takes as input CNVs in addition to SNVs. The model hence accounts and corrects the parameter estimation for SNVs affected bu CNVs.Sclust takes as input a pair of normal/tumor BAM files and a vcf, performs segmentation, and calling of copy number, allows for subclonal copy number, ie non-integer copy number for SNVs VAF normalization to CCF before clustering, but does not attribute CNAs to clones defined by SNVs. The clustering relies on a variational inference peak calling of the CCF histogram CliP sets the clustering of SNVs CCFs corrected for copy number as an optimization problem, where the objective function minimizes the difference between the estimated and the true CCF, and clustering is done by penalizing (Lasso, MCP, SCAD) the differences between the estimated CCFs for each SNV.MIPUP considers the problem of finding the minimum number of clones to be compatible with a perfect phylogeny, and stipulate that this is equivalent to finding an optimal branching in a direct acyclic graph (DAG), which is solvable by an ILPILPMOTS CLÉSInférence bayésienne Evaluation des performances Génomique des cancers Séquençage à hautdébit RÉSUMÉ L'obtention du répertoire des gènes de cancer mutés a été déterminant pour notre compréhension de la tumorigénèse. Cependant, les efforts menés pour caractériser les cancers au niveau génétique ne sont pas suffisants pour prédire la survie des patients, ou leur réponse aux traitements, ce qui est essentiel pour améliorer leur prise en charge. Cet échec est en partie attribué au caractère évolutif des cancers. En effet, comme toute population biologique capable d'acquérir des changements héréditaires, les cellules tumorales sont soumises à la sélection naturelle et la dérive génétique, résultant en une structure mosaique, dans laquelle coexistent plusieurs sousclones ayant des génomes et des propriétés différentes. Cela a d'importantes conséquences sur les traitements anticancéreux, puisque ces souspopulations peuvent être sen sibles ou résistantes à différentes thérapies, et de nouveaux phénotypes résistants peuvent continuer d'apparaître alors que la maladie continue à progresser. Un nombre importants de méthodes mathématiques ou statistiques a été développé pour détecter et mesurer l'hétérogénéité intratumorale (ITH), mais aucune évaluation systématique de leurs performances et de leur application clinique potentielle n'a été effectué. Notre première contribution a donc été de réaliser une étude des approches existantes pour détecter l'hétérogénéité intratumorale, pour permettre de naviguer plus facilement entre les idées soustendant ces approches. Nous avons aussi proposé un cadre pour analyser la robustesse de ces approches, et leur usage potentiel pour la stratification des patients. Cette enquête approfondie nous a aussi permis d'identifier un type de données encore non exploité pour la reconstruc tion de l'hétérogénéité intratumorale, et notre seconde contribution vise à combler ce manque. En effet, audelà de la fréquence observée d'une mutation somatique dans un échantillon tumoral, qui permet de distinguer plusieurs clones, le contexte nucléotidique d'une mutation révèle les processus mutationnels causaux et non observables. Nous montrons, à la fois avec des données simulées et réelles la possibilité de modéliser ces deux aspects de l'évolution tumorale conjoin tement.

		id id id id					input input input input				description description description description	method method method method
	method THetA method OncoSNP-method BreakDown 2014/9/8 date published reference 2013/7/29 Oesper et al. date published reference 2014/4/30 Yau [2014] date published reference Fan et al. method date published reference BayClone-2018/5/5 Dentro et al.	SNV no SNV no SNV no SNV yes	CNV yes (segmented CNV yes (snp po-CNV yes CNV yes	one sample one sample one sample one sample	mult. samples mult. samples mult. samples mult. samples	tool availability https://github.com/ tool availability https://sites. tool availability https:// tool availability https://github.	short description short description short description short description BayClone-C proposes a mixture of Gaussians	graph or combina-torial graph or combina-torial graph or combina-torial graph or combina-torial	optimi-zation optimi-zation optimi-zation optimi-zation	proba-bilistic proba-bilistic proba-bilistic proba-bilistic	algo-rithm NaN algo-rithm viterbi algo-rithm closed-form algo-algo-rithm MCMC
	SEQ2 C		[2013] [2014] [2018]				read counts) sition read			raphael-group/THetA google.com/site/ bioinformatics. com/compgenome365/	to cluster the SNV CCFs corrected by copy	rithm MLE
							counts)			oncosnpseq/ mdanderson.org/ bayclonec	number. The number fo clones is chosen by
										public-software/	BIC, and a post-processing step merges close
										breakdown/	clusters using a ridgeline unimodal method
	cloneHD palimpsest 2018/5/16 Shinde et al. 2014/5/29 Fischer et al.	yes yes	yes yes			https://github.com/ https://github.com/	CloneHD is an ensemble of three coupled Palimpsest relies on a binomial modelisation of	forward-confidence
			[2014] [2018]							andrej-fischer/ FunGeST/Palimpsest	HMM models for copy number, BAF and variant read counts corrected for copy number	backward interval compu-
	CHAT	2014/9/25 Li and Li [2014] yes	yes			cloneHD https://sourceforge.	SNVs, that jointly represent the subclonal CHAT first estimates subclonal CNAs, and to classify them as clonal or subclonal. Further	algorithm MCMC tation
										net/projects/	structure of tumor samples. then uses those to model the observed SNV Inference is options allow to characterize each subgroup in
	cancerTiming 2013/9/23 Purdom et al.	yes	yes			https://cran. clonalhetanalysistool/ CancerTiming relies on SNVs in CNA regions achieved using a forward-backward algorithm VAFs using a Dirichlet process Gaussian mix-terms of mutational signature and structural	EM
			[2013]							r-project.org/	to provide a relative timing of the CNA occur-and BIC is used for model selection. ture model inferred with MCMC. variant timing
	Rec-BTP THetA2 Sclust	2014/6/11 Hajirasouliha 2014/10/8 Oesper et al. 2018/5/24 Cun et al.	yes no yes	no yes yes			web/packages/ http://compbio.cs. https://github.com/ http://www.	rence. However, each segment is analysed sep-	NaN NaN variational in-
			et al. [2014] [2014] [2018]						cancerTiming/index. brown.edu/software/ raphael-group/THetA uni-koeln.de/	arately, and no population estimation is pro-	ference
										html med-fak/sclust/	vided
	EXPANDS 2013/10/30 Andor et al.	yes	yes			https://cran. Sclust.tgz		hierarchical
			[2014]							r-project.org/		clustering
	BayClone 2015/1/4	Sengupta et al.	yes	no			package=expands http://health.bsd.		MCMC
			[2015]							uchicago.edu/yji/	
	Clomial	2014/7/10 Zare	et	al.	yes	no			https:// soft.html		EM
			[2014]							bioconductor.org/	
	PhyloSub 2014/2/1 tusv 2018/6/27 Eaton et al. Jiao et al.	yes no	no no			https://github.com/ packages/Clomial/ https://github.com/	tusv associates breakpoint calling to CNA	MCMC linear program-
			[2014] [2018]							morrislab/phylosub/ jaebird123/tusv	profile to reconstruct a tree based on CNA-	ming
	CITUP	2015/1/6	Malikic et al.	yes	no			https://sourceforge.	CITUP infers clonal tree phylogeny from multi-only data. Optimization of the clone mix-	quadratic
			[2015]							net/projects/citup/	ple samples using a combinatorial method asso-ture is done by simple constrained optimiza-	integer	pro-
											ciated with quadratic integer programmation tion, and alternates with the optimization of	grammation
											or an iterative heuristic, to fit observed SNV tree-compatible copy number profiles for each	or an iterative
	PyClone	2014/3/16 Roth et al.	yes	yes			https://shahlab.ca/	PyClone is a Dirichlet Process mixture model VAFs. BIC criterion is used to choose a mini-clone using integer linear programming.	MCMC heuristic
	[2014] 2014/7/24 Ha et al. [2014] no SuperFreq 2018/7/30 Flensburg et al. TITAN yes	no yes (BAM in-			projects/pyclone/ https://shahlab.ca/ https://github.com/	that maximizes the likelihood of observed SNV mal tree structure. SuperFreq calls CNAs and filters input SNVs	EM hierarchical
	MixClone 2015/1/21 Li and Xie [2018]	no	yes put)			projects/TitanCNA/ https://github.com/ ChristofferFlensburg/	read counts, accounting for copy number (only MixClone models subclonal populations based from multiple tumor samples with or without	EM clustering
			[2015]							uci-cbcl/MixClone superFreq	one variant genotype is allowed). Inference is on segment coverage (CNVs) and heterozygous matched normal sample. The clones are then
											performed by MCMC. SNP read counts, via a generative probability inferred from a subset of high confidence SNVs
	SciClone	2014/4/12 Miller et al.	yes	no			http://github.com/	mixture model. Inference is performed by EM using hierarchical clustering, in a way com-	variational in-
			[2014]							genome/sciclone	and the number of clones is chosen heuristi-patible with a tree structure (through post-	ference
											cally. processing of obtained clones), and then incor-
	BitPhylogeny 2015/2/13 Yuan et al.	yes	yes			https://bitbucket.	BitPhylogeny attempts at reconstructing a porates the low confidence SNVs	MCMC
	CLONET 2014/8/15 Prandi et al. [2015] CliP 2018/7/31 Yu et al. [2018] yes no	yes yes			https://bitbucket. org/ke_yuan/ https://github.com/	CLONET is based on a local optimization tree and infers the number and genotypes of its	CCF penalized cost estima-
			[2014]							org/deid00/clonet bitphylogeny wwylab/CliP	which estimates the purity and ploidy of each nodes from various types of data, using a tree-	tion of each function mini-
	MEDICC 2014/4/17 Schwarz et al.	no	no			https://bitbucket.	CNV separately, to identify a few clonal events structured stick-breaking process, and adapt-	phylogenetic CNV mization
			[2014]							org/rfs/medicc	and provide heterogeneity-robust estimates. ing the "emission probability distribution" de-	reconstruction
	SubcloneSeeker 2014/8/26 Qiao et al.	yes	yes			https://github.com/	SucloneSeeker proceeds in 4 main steps: (i) es-pending on the data. Inference is achieved	from distance multi-
			[2014]							yiq/SubcloneSeeker	timate a CCF fraction for all alterations (SNVs with MCMC sampling.	dimensional
	PhyloWGS 2015/2/13 Deshwar et al.	yes	yes			https://github.com/	and CNVs), (ii) (multidimensional) clustering	clustering, and MCMC
	MIPUP	2018/8/8	[2015] Husić et al.	yes, bi-	no			morrislab/phylowgs https://github.com/	of alterations (if several samples), (iii) con-	enumeration of
			[2019]			nary				zhero9/MIPUP	struction of a tree for each sample, through	possible trees
											enumeration of all possibilities and (iv) merg-
											ing of the resulting trees.

proliférant sans contrôle adéquat, et formant finalement des masses à différents endroits de l'organisme. La plupart des cancers ont pour origine des anomalies génétiques, et une meilleure compréhension de leur nature exacte et de leur rôle dans le développement de la maladie offre des perspectives prometteuses pour la mise au point de traitements personnalisés plus efficaces. Nous présenterons dans un premier temps les approches existantes pour décrire une tumeur, en déterminant l'influence spécifique de chaque mutation, et en retraçant l'histoire de la tumeur à partir de son génome. Nous nous attacherons ensuite à décrire plus en détails les techniques de séquençage qui permettent aux chercheurs et aux médecins d'obtenir ces données génomiques, dans la mesure où les méthodes que nous étudierons dans cette thèse sont conçues pour exploiter au mieux la structure sous-jacente de ces données pour accéder aux étapes passées du développement de la tumeur, qui ne sont plus observables au moment du diagnostique.

SNVs. A surprising result is that for PyClone, SciClone and Ccube, score1B decreases with the number of observed mutations, which may suggest a bad calibration of the clone number estimate for large numbers of SNVs; for CloneSig we designed a specific, adaptive estimator for the number of clones since we observed that standard statistical approaches for model selection perform poorly in this setting (see Material and Methods and Supplementary Section B.1.2). The percentage of diploid genome has no visible impact on the performance of any method. Regarding score1C, which focuses not on the number of clones estimated but on their ability to correctly recapitulate the distribution of CCF values, we also see that CloneSig outperforms all other methods in all settings, while PyClone and Ccube are not far behind. TrackSig performs slightly worse, especially as the number of clones increases, but this may be explained by its poor performance when the number of mutations is too low, as performance matches the other methods for 5,000 mutations. Palimpsest has comparatively a relatively poor performance, and seems particularly impacted when the proportion of diploid regions decreases. Indeed, the number of mutated copies in Palimpsest is made under the assumption that the CCF for the mutation is 1, which may jeopardize the correct detection of subclonal mutations. Finally, SciClone is clearly the worse method for score1C, particularly with 1 to 3 clones.Besides the ability of different methods to reconstruct the correct number of subclones
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Survival analysis
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Appendix

Figure A.4 -Pairwise computation of score2A for the different ITH methods and inputs. Score2A is a metric designed in [START_REF] Salcedo | Creating standards for evaluating tumour subclonal reconstruction[END_REF] that assesses the similarity of the mutation clustering resulting from subclonal reconstruction (see Methods for details). We recover the previously observed pattern that PyClone and PhyloWGS are the closest methods. The score was computed for all patients, and this heatmap represents the median score.

Appendix B

Supplementary materials for Clone-Sig

B.1 Supplementary methods

B.1.1 EM algorithm for parameter estimation

In this section we detail the EM algorithm used to estimate the parameters θ = (ξ, ϕ, π, ρ) of CloneSig, for a given number of clones J. To lighten notations, we use in this section the notation M maxn = (C major tumor ) n for the maximum value that M n can take. We do not model the distributions of the observed variables C n (copy number information) and D n (total read count), and therefore only consider the following complete conditional log-likelihood:

] ,

where BB is the beta-binomial density:

and

To maximize L(θ), we introduce the auxiliary function Q(θ, θ ′ ) as the expected value of the loglikelihood function of θ when the latent variables follow the law with parameters θ ′ , that will be alternatively computed and maximized in the two steps of the EM algorithm. For that purpose, let us denote by X n = (C n , T n , B n , D n ) the set observed variables for the n-th

B.1.4 Several "modes" to run CloneSig

A crucial difficulty in performing mutational signature deconvolution is the identifiability of the problem. Indeed, several mixtures of signatures may provide satisfying results. The most common approach to address this issue is to reduce the number of candidate signatures, in particular by using only signatures known to be active in the cancer type of the considered tumor sample [START_REF] Alexandrov | The repertoire of mutational signatures in human cancer[END_REF] (approach cancer_type). An alternative approach is to perform two successive fits, the first one on all mutations in the sample in order to select potentially active signatures by keeping those with a contribution greater than a threshold, and the second one to refit those selected signatures with varying number of clones. This avoids the situation where a lot of signatures have very small contributions to the final mixture [START_REF] Rubanova | TrackSig: reconstructing evolutionary trajectories of mutations in cancer[END_REF] (approach prefit). Those two alternatives are implemented in CloneSig (see Figure B.10) and also tested for all methods tested (see supplementary . For the subclonal reconstruction problem, we see that the two approaches that limit the number of signatures have similar performance and improve the accuracy of CloneSig, especially in cases with few mutations. However, for the signature deconvolution problem, even though the prefit approach exhibits improved performance compared to taking all signatures, the cancer_type approach shows significantly better results. The results were similar for the other signature deconvolution methods, so for the rest of the analysis, we retain the cancer_type approach, and report only one result per method, to simplify the interpretation. all mutations together to select potential signatures, and then actally run CloneSig with the selected subset (prefit). Additionally, the contribution of CloneSig'a approach for accounting for copy number was evaluated, by implementing the simpler approach from Palimpsest [START_REF] Letouzé | Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis[END_REF] (all_nuclonal). In the first panel, labeled "default behavior", the user does not specify the percentage of genome that is diploid, and the total copy number values are drawn as specified in the Methods section.

On the other panels, the user specifies a desired percentage of genome that is diploid (0, 0.2, 0.4, 0.6, 0.8, 1) respectively for the cases shown. The distribution is slightly different from the default behavior. 

Supplementary tables

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 e 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 SBS5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SBS6 0 0 1 f 1 1 g 1 h 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 i 0 1 j SBS7a 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 SBS7b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 SBS7c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 SBS7d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 SBS8 0 0 1 f 0 1 g 0 0 0 1 b 0 1 0 0 0 0 0 0 0 1 b 0 0 1 k 1 0 0 0 0 1 0 0 0 SBS9 0 0 0 0 0 0 1 l 0 0 0 0 1 a 0 0 1 0 0 0 0 0 0 1 k 0 0 0 0 0 0 0 0 0 SBS10a 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 SBS10b 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 SBS11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 j SBS13 1 1 1 1 1 1 1 1 0 1 1 b 1 a 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 SBS14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 SBS15 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 SBS16 0 0 0 0 1 g 0 0 1 0 0 0 0 0 0 1 0 0 0 1 m 0 1 1 k 0 0 0 0 1 1 0 0 1 j SBS17a 0 0 1 f 0 1 g 1 1 1 0 0 1 1 a 0 0 1 e 0 0 0 0 1 b 1 0 0 0 1 1 0 1 0 0 0 SBS17b 0 0 1 f 0 1 g 1 1 1 0 0 0 1 a 0 0 1 e 0 0 0 0 1 b 0 0 0 0 1 0 0 0 0 0 0 SBS18 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 SBS20 0 0 1 f 0 1 g 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 SBS21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS22 0 0 0 0 1 g 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 SBS23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 SBS25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS26 0 0 1 f 0 0 1 h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 SBS29 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 SBS30 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 SBS32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 SBS33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 b 0 0 0 0 0 0 0 0 0 SBS35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 b 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 SBS36 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 b 0 0 0 0 0 0 0 0 0 0 0 SBS37 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 b 0 0 0 0 0 0 0 0 0 SBS38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 SBS39 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 b 0 0 0 0 0 0 1 0 0 0 0 0 SBS40 0 0 1 b 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 SBS41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS42 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 SBS43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS44 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 SBS45 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 SBS46 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 SBS48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS49 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 SBS50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS52 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 SBS53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 SBS55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBS57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 SBS58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 SBS59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 SBS60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 During the early months of my PhD, I had the occasion through my own experience with whole exome sequencing (WES) data to verify the difficulty and instability of variant calling, leading to subsequent difficulties to obtain robust intra-tumor heterogeneity estimates. Paul, a fellow PhD student had the same feeling, and we were both interested when a DREAM Challenge on that exact topic opened. Our team's name is BDD.

The ICGC-TCGA DREAM Somatic Mutation Calling Meta-pipeline Challenge (SMC-DNA Meta) lasted from October 2015 to March 2016 and was launched as the sequel of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge (SMC-DNA) [START_REF] Ewing | Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection[END_REF]. This first challenge organized from December 2013 to August 2016, included several rounds and both real and synthetic datasets. The goal of this initial challenge was to evaluate algorithms performing variant calling, and to provide a good benchmark tool to the community. Before the challenge started, an analysis of the results of the first rounds was performed and conclusions were published [START_REF] Ewing | Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection[END_REF], highlighting combination of results from several variant callers as a potential improvement: the organizers found that, for each sub-challenge, the majority vote of the five best ranked submissions systematically outperformed the best individual submissions. Moreover, an expected benefit of this strategy was also to reduce the sensitivity of variant calling to hyper-parameters which are very hard to fine-tune in real-life application as no ground truth is available. The objective of this challenge was hence to set up more advanced combination strategy to improve variant calling performances.

C.1 Description of available data

The organizers of the challenge provided for 4 synthetic datasets, called IS1 to IS4. For each dataset, the data consist in:

• All genomic positions called by at least one variant caller in SMC-DNA Challenge.

• For each position, the presence/absence binary status per variant calling pipeline submitted in the SMC-DNA Challenge. For each pipeline, only the submitting team was provided, but no further details on the exact content of the pipeline.

• 13 genomic features for each position, such as base quality, reference and variant read counts, mapping quality, and strand bias.

• The true status for each position.

Synthetic datasets 1 to 4 (noted IS1-4) are of increasing difficulty, with addition of contamination by non-mutated normal cells, structural variants, and subclonal variants. Main Autotrain: for each dataset use an aggregation of prediction as labels to train a supervised classifier with genomic features and variant callers results, and apply this prediction to the dataset itself.

deepLearning: use IS4 dataset as a training sample, with several supervised Random Forest Classifiers trained on different combinations of genomic and variant caller features, and finally combined by a last supervised Random Forest Classifier.

Hence, in the two first approaches, only the available calls are used to provide a new prediction, while in the third approach, the calls from the previous challenge are used to design a new feature, the proportion of pipelines calling each position, which is concatenated with the 13 genomic features provided, and the new features described in section C.2.2 and provided as input to the Random Forest Classifier. This latter approach was mainly designed by Paul Deveau.

We have designed an automated framework to evaluate new algorithms on the four test datasets using a fixed train and test split for the four synthetic datasets by ourselves, as the number of allowed submissions is limited.

C.3 Results

The results on this "local leaderboard" are shown in figure C.1. Overall, the "aggregation" models exhibit very stable performances across all attempts, and are close to the best "deepLearning" runs. It appears that autotrain baseline models perform very badly, so we have not explored them any further. We have tried a few strategies of aggregation (majority vote, more than 80 % of callers etc). The dream challenge presented four distinct leaderboards (synthetic and real tumors, with 5 or 50 callers), with each time a score averaged on all available datasets. In FigureC.2, results of the two leaderboards with 50 callers are presented, as the global behavior is the same with 5 pipelines. One important thing is that the performance metric used to evaluate submissions changes between the two settings. Altogether, all teams have obtained very close scores. Regarding our models, "deep learning" approaches are slightly better on the synthetic dataset, but "aggregation" runs exhibit better specificity on the real data. Meltos uses a tree built from reliable SNVs to refine SV calls, and then places them in the same tree.

Appendix D

Supplementary for intra-tumor heterogeneity methods review

EM and heuristic